



John Coleman, Project Manager c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (240) 615 -7389 JColeman@clinellc.com

November 1, 2021

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

### RE: Notice of Exempt Modification // Site: BYRAM PARK CT (ATC: 414240) 48 RITCH AVE WEST, GREENWICH, CT 06830 N 41.00506388 // W -73.64831111

Dear Ms. Bachman,

Cellco Partnership d/b/a Verizon Wireless currently maintains twelve (12) antenna at the 57-ft level on the existing 77ft Monopine tower, located at 48 Ritch Avenue West, Greenwich, CT. The tower is owned by American Tower. The property is owned by 36 Ritch Avenue LLC. The Council approved Verizon Wireless use of the existing tower in July 2011. Verizon Wireless now intends to remove Nine (9) antenna, Nine (9) RRH's, One (1) OVP and associated cabling, and install Nine (9) new antenna for the LTE (3700 MHz) replacements for its 5G upgrade. Additionally, Verizon Wireless intends to install Nine (9) new Remote Radio Heads (RRHs), Three (3) Diplexers, one (1) OVP and associated cabling; altogether updating leased equipment rights, as reflected by the final configuration outlined in the structural analysis and proposed hereby).

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Fred Camillo, First Selectman, its Director of Planning & Zoning, Katie DeLuca, American Tower, the tower owner, and the property owner, 36 Ritch Avenue LLC.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Enclosed to accommodate this filing are construction drawings dated September 21, 2021, by A.T. NB&C Engineering Services, LLC, a structural analysis dated July 28, 2021, by American Tower Corp., and a structural mount analysis by Maser Consulting Connecticut date July 7, 2021, and radio frequency (RF) analysis table showing worst-case RF emission calculation by Verizon Wireless RF Design Engineering.





1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading, as shown in the attached structural analysis by American Tower Corp., dated July 28, 2021, and a structural mount analysis by Maser Consulting Connecticut, dated July 7, 2021, pursuant to certain conditions defined therein. Design and engineering are fully illustrated within final construction drawings, signed and stamped dated September 21, 2021.

For the foregoing reasons, Verizon Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

# John Coleman

John Coleman, Project Manager c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (240) 615 -7389 JColeman@clinellc.com

Attachments cc: Fred Camillo – First Selectman – Chief Elected Official Katie DeLuca, Building Official - as P&Z official American Tower Corporation - as tower owner 36 Ritch Avenue LLC – as ground owner

#### UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

#### 3. GETTING YOUR SHIPMENT TO UPS

#### **Customers with a Daily Pickup**

Your driver will pickup your shipment(s) as usual.

#### **Customers without a Daily Pickup**

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point<sup>TM</sup> CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access Point<sup>TM</sup> CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access Point<sup>TM</sup> TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

FOLD HERE



UPS Barbara Kassabian UPS Delivery Notification, Tracking Number 1Z9Y45030338391226 Friday, November 5, 2021 10:04:11 AM



#### Hello, your package has been delivered.

Delivery Date: Friday, 11/05/2021 Delivery Time: 10:02 AM Left At: MAIL ROOM Signed by: CALABRECE

# **CENTERLINE SITE ACQUISITION**

| Tracking Number:    | <u>1Z9Y45030338391226</u>                                                               |
|---------------------|-----------------------------------------------------------------------------------------|
| Ship To:            | TOWN OF GREENWICH CT<br>101 FIELD POINT RD. FIRST FLR.<br>GREENWICH, CT 068306488<br>US |
| Number of Packages: | 1                                                                                       |
| UPS Service:        | UPS Ground                                                                              |
| Package Weight:     | 1.0 LBS                                                                                 |
| Reference Number:   | 414240                                                                                  |
| Reference Number:   | BRYAM PARK CT                                                                           |

?

**Download the UPS mobile app** 

© 2021 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email. UPS will not receive any reply message.

<u>Review the UPS Privacy Notice</u> <u>For Questions, Visit Our Help and Support Center</u>

#### UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

#### 3. GETTING YOUR SHIPMENT TO UPS

#### **Customers with a Daily Pickup**

Your driver will pickup your shipment(s) as usual.

#### **Customers without a Daily Pickup**

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point<sup>TM</sup> CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access Point<sup>TM</sup> CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access Point<sup>TM</sup> TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

FOLD HERE



UPS Barbara Kassabian UPS Delivery Notification, Tracking Number 1Z9Y45030326996837 Friday, November 5, 2021 10:04:11 AM



#### Hello, your package has been delivered.

Delivery Date: Friday, 11/05/2021 Delivery Time: 10:02 AM Left At: MAIL ROOM Signed by: CALABRECE

# **CENTERLINE SITE ACQUISITION**

| Tracking Number:    | <u>1Z9Y45030326996837</u>                                                              |
|---------------------|----------------------------------------------------------------------------------------|
| Ship To:            | TOWN OF GREENWICH CT<br>101 FIELD POINT RD. FIRST FLR<br>GREENWICH, CT 068306488<br>US |
| Number of Packages: | 1                                                                                      |
| UPS Service:        | UPS Ground                                                                             |
| Package Weight:     | 1.0 LBS                                                                                |
| Reference Number:   | 414240                                                                                 |
| Reference Number:   | BRYAM PARK CT                                                                          |

?

**Download the UPS mobile app** 

© 2021 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email. UPS will not receive any reply message.

Review the UPS Privacy Notice

For Questions, Visit Our Help and Support Center

#### UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

#### 3. GETTING YOUR SHIPMENT TO UPS

#### **Customers with a Daily Pickup**

Your driver will pickup your shipment(s) as usual.

#### **Customers without a Daily Pickup**

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point<sup>TM</sup> CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access Point<sup>TM</sup> CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356

UPS Access Point<sup>TM</sup> TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

FOLD HERE



| ?                                                                                                              |                                                                                                                                             |                  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Hello, your package has bee<br>Delivery Date: Friday, 11/05/2<br>Delivery Time: 2:12 PM<br>Left At: FRONT DOOR |                                                                                                                                             |                  |
|                                                                                                                |                                                                                                                                             |                  |
|                                                                                                                |                                                                                                                                             |                  |
| Set Delivery Instructions                                                                                      | Manage Preferences                                                                                                                          | View My Packages |
| Set Delivery Instructions                                                                                      |                                                                                                                                             | View My Packages |
|                                                                                                                |                                                                                                                                             | View My Packages |
| CENTERLINE SITE ACQU                                                                                           | ISITION                                                                                                                                     |                  |
| CENTERLINE SITE ACQU<br>Tracking Number:                                                                       | <b>ISITION</b><br><u>1Z9Y45030322895444</u><br>36 RITCH AVENUE LLC<br>16B ARTHER STREET<br>GREENWICH, CT 068315106                          |                  |
| CENTERLINE SITE ACQU<br>Tracking Number:<br>Ship To:                                                           | <b>ISITION</b><br>1Z9Y45030322895444<br>36 RITCH AVENUE LLC<br>16B ARTHER STREET<br>GREENWICH, CT 068315106<br>US                           |                  |
| CENTERLINE SITE ACQU<br>Tracking Number:<br>Ship To:<br>Number of Packages:                                    | <b>ISITION</b><br><b>1Z9Y45030322895444</b><br>36 RITCH AVENUE LLC<br>16B ARTHER STREET<br>GREENWICH, CT 068315106<br>US<br>1               |                  |
| CENTERLINE SITE ACQU<br>Tracking Number:<br>Ship To:<br>Number of Packages:<br>UPS Service:                    | <b>ISITION</b><br><b>1Z9Y45030322895444</b><br>36 RITCH AVENUE LLC<br>16B ARTHER STREET<br>GREENWICH, CT 068315106<br>US<br>1<br>UPS Ground |                  |

 $^{\odot}$  2021 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the

| DOCKET NO. 414 - Cellco Partnership d/b/a Verizon Wireless                                                                           | } | Connecticut   |
|--------------------------------------------------------------------------------------------------------------------------------------|---|---------------|
| application for a Certificate of Environmental Compatibility and<br>Public Need for the construction, maintenance and operation of a | } | Siting        |
| telecommunications facility located at 36 Ritch Avenue,<br>Greenwich, Connecticut.                                                   | } | Council       |
|                                                                                                                                      | - | July 14, 2011 |

#### **Decision and Order**

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Cellco Partnership d/b/a Verizon Wireless, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 36 Ritch Avenue in Greenwich, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a 77-foot monopole, designed as a simulated pine tree. Simulated branches shall not extend higher than 84 feet above ground level. The tower shall be no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Cellco, T-Mobile, AT&T and other entities, both public and private.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Greenwich for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
  - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
  - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
  - c) simulated pine tree tower designs and photographs of actual installations from various manufacturers.
  - d) construction schedule.
- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, and at the nearest point of abutting property lines consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. Additionally, the Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Greenwich public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Greenwich. Any proposed modifications to this Decision and Order shall likewise be so served.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 10. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 12. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

Docket No. 414 Decision and Order Page 3

- 13. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 14. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 15. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the *Greenwich Time*.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

#### **Applicant**

Cellco Partnership d/b/a Verizon Wireless

#### **Its Representative**

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

Alexandria Carter Regulatory Manager Verizon Wireless 99 East River Drive East Hartford, CT 06108

Party John Hartwell 42 Ritch Avenue W. Greenwich, CT 06830

<u>Intervenor</u> T-Mobile Northeast LLC

#### **Its Representative**

Julie D. Kohler, Esq. Cohen and Wolf, P.C. 1115 Broad Street Bridgeport, CT 06604



# **AMERICAN TOWER®**

CORPORATION

# **Structural Analysis Report**

| Structure           | : | 83.2 ft Monopine              |                      |        |
|---------------------|---|-------------------------------|----------------------|--------|
| ATC Site Name       | : | Byram Park CT, CT             |                      |        |
| ATC Asset Number    | : | 414240                        |                      |        |
| Engineering Number  | : | 13701270_C3_02                |                      |        |
| Proposed Carrier    | : | VERIZON WIRELESS              |                      |        |
| Carrier Site Name   | : | BYRAM PARK CT                 |                      |        |
| Carrier Site Number | : | 468044                        |                      |        |
| Site Location       | : | 48 RITCH AVENUE WEST          |                      |        |
|                     |   | <b>GREENWICH, CT 06830-99</b> | 92                   |        |
|                     |   | 41.005100,-73.648300          |                      |        |
| County              | : | Fairfield                     |                      |        |
| Date                | : | July 28, 2021                 | WOF CONNECTION AL    |        |
| Max Usage           | : | 96%                           |                      | di     |
| Result              | : | Pass                          | 32593                |        |
|                     |   |                               | CENSED               |        |
| Prepared By:        |   | Reviewed By:                  | SONAL ENGINE         |        |
| Sarah Kramer        |   |                               | Authorized by "EOR"  |        |
| Structural Engineer |   |                               | 28 Jul 2021 09:17:22 |        |
| Sarah D. Kramer     |   |                               | 20 341 2021 09.17.22 | cosign |

COA: PEC.0001553



## **Table of Contents**

| Introduction                    | 1        |
|---------------------------------|----------|
| Supporting Documents            | . 1      |
| Analysis                        | 1        |
| Conclusion                      | 1        |
| Existing and Reserved Equipment | 2        |
| Equipment to be Removed         | . 2      |
| Proposed Equipment              | 3        |
| Structure Usages                | 4        |
| Foundations                     | 4        |
| Deflection and Sway             | . 4      |
| Standard Conditions             | . 5      |
| Calculations                    | Attached |



#### Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 83.2 ft monopine to reflect the change in loading by VERIZON WIRELESS.

#### **Supporting Documents**

| Tower Drawings      | EEI Project #16733 Rev. 3, dated December 9, 2011             |
|---------------------|---------------------------------------------------------------|
| Foundation Drawing  | Centek Engineering Job #09129 Rev. 0, dated February 14, 2012 |
| Geotechnical Report | DET Job #2010.14, dated October 4, 2010                       |
| Modifications       | ATC Project #OAA711130_C6_09, dated October 26, 2018          |

### **Analysis**

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

| Basic Wind Speed:             | 113.06 mph (3-Second Gust)                                       |
|-------------------------------|------------------------------------------------------------------|
| Basic Wind Speed w/ Ice:      | 48.73 mph (3-Second Gust) w/ 0.85" radial ice concurrent         |
| Code:                         | ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code |
| Exposure Category:            | D                                                                |
| Risk Category:                | 11                                                               |
| Topographic Factor Procedure: | Method 1                                                         |
| Topographic Category:         | 1                                                                |
| Crest Height (H):             | 0 ft                                                             |
| Spectral Response:            | Ss = 0.28, S <sub>1</sub> = 0.06                                 |
| Site Class:                   | D - Stiff Soil                                                   |

\*\*Wind load and Ice thickness have been reduced by applicable existing structure load modification factors in accordance with TIA-222-H, Annex S.

### **Conclusion**

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.



# **Existing and Reserved Equipment**

| Elev. <sup>1</sup> (ft) | Qty | Equipment                           | Mount Type           | Lines                                                                                                                           | Carrier          |
|-------------------------|-----|-------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------|
|                         | 2   | dbSpectra DS7C09P36U-D              | Pole Mount           | (2) 1/2" Coax                                                                                                                   | TOWN OF          |
| 89.0                    | 1   | Bird 428D-83I-01-T                  | Pole Wount           | (2) 7/8" Coax                                                                                                                   | GREENWICH, CT    |
|                         | 3   | Ericsson AIR32 B66Aa/B2a            |                      |                                                                                                                                 |                  |
|                         | 3   | RFS APXVAARR24_43-U-NA20            |                      | (6) 1 1/4" (1.25"-                                                                                                              |                  |
|                         | 3   | Ericsson RRUS 32 B66                |                      | 31.8mm) Fiber<br>(1) 1 1/4" Hybriflex                                                                                           |                  |
| 77.0                    | 3   | Ericsson Air6449 B41                | T-Arm                | Cable                                                                                                                           | T-MOBILE         |
|                         | 3   | Ericsson Radio 4449 B71 B85A        |                      | (3) 1 5/8" (1.63"-                                                                                                              |                  |
|                         | 3   | Commscope CBC1923Q-43               |                      | 41.3mm) Fiber                                                                                                                   |                  |
|                         | 3   | Ericsson RRUS 4415 B25              |                      | 41.511111/11001                                                                                                                 |                  |
|                         | 6   | CCI DMP65R-BU4D                     | _                    | (2) 0.39" (10mm)<br>Fiber Trunk<br>(8) 0.78" (19.7mm)<br>8 AWG 6 AT&T M<br>(12) 1 5/8" Coax<br>(1) 2" conduit<br>(3) 3" conduit | AT&T MOBILITY    |
|                         | 3   | CCI OPA-65R-LCUU-H6                 |                      |                                                                                                                                 |                  |
|                         | 3   | Powerwave Allgon P65-16-XLH-RR      |                      |                                                                                                                                 |                  |
|                         | 6   | CCI DTMABP7819VG12A                 |                      |                                                                                                                                 |                  |
|                         | 1   | Raycap DC6-48-60-0-8C-EV            | Site Pro 1 RMV12-496 |                                                                                                                                 |                  |
| 67.0                    | 2   | Raycap DC6-48-60-18-8F(32.8 lbs)    | T-Arms               |                                                                                                                                 |                  |
|                         | 3   | Ericsson RRUS 4426 B66              | I FAITIS             |                                                                                                                                 |                  |
|                         | 3   | Ericsson RRUS 4449 B5, B12          |                      |                                                                                                                                 |                  |
|                         | 3   | Ericsson RRUS 4478 B14              | -                    |                                                                                                                                 |                  |
|                         | 3   | Ericsson RRUS 32 B2                 |                      |                                                                                                                                 |                  |
|                         | 3   | Ericsson RRUS-32 (77 lbs)           |                      |                                                                                                                                 |                  |
| 56.0                    | 6   | Amphenol Antel LPA-80063-6CF-EDIN-X | TArm                 | (16) 1 5/8" Coax                                                                                                                |                  |
| 0.0                     | 1   | VZW Unused Reserve (14306.88 sqin)  | T-Arm                | (1) 1 5/8" Hybriflex                                                                                                            | VERIZON WIRELESS |

### **Equipment to be Removed**

| Elev. <sup>1</sup> (ft) | Qty | Equipment                      | Mount Type | Lines                               | Carrier          |
|-------------------------|-----|--------------------------------|------------|-------------------------------------|------------------|
|                         | 3   | Alcatel-Lucent RRH 2X60-1900   |            |                                     |                  |
|                         | 3   | Alcatel-Lucent RRH2x60 700     |            |                                     |                  |
|                         | 3   | Alcatel-Lucent B66 RRH4x45     |            | (1) 1 E /0" /1 CO"                  |                  |
| 56.0                    | 4   | Commscope SBNHH-1D45A          | -          | (1) 1 5/8" (1.63"-<br>41.3mm) Fiber | VERIZON WIRELESS |
|                         | 3   | Amphenol Antel BXA-171063-12CF |            | 41.5mm) Fiber                       |                  |
|                         | 2   | Commscope SBNHH-1D65A          |            |                                     |                  |
|                         | 2   | Commscope RC2DC-4750-PF-48     |            |                                     |                  |



# Proposed Equipment

| Elev. <sup>1</sup> (ft) | Qty | Equipment                 | Mount Type | Lines                | Carrier          |
|-------------------------|-----|---------------------------|------------|----------------------|------------------|
|                         | 3   | Commscope CBC78T-DS-43-2X |            |                      |                  |
|                         | 3   | Samsung B2/B66A RRH-BR049 |            |                      |                  |
|                         | 3   | Samsung B5/B13 RRH-BR04C  |            |                      |                  |
| 56.0                    | 3   | Samsung MT6407-77A        | T-Arm      | (1) 1 5/8" Hybriflex | VERIZON WIRELESS |
|                         | 1   | Raycap RCMDC-6627-PF-48   |            |                      |                  |
|                         | 2   | Commscope JAHH-65A-R3B    |            |                      |                  |
|                         | 4   | Commscope JAHH-45A-R3B    |            |                      |                  |

<sup>1</sup>Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed lines inside the pole shaft.



### Structure Usages

| Structural Component | Controlling<br>Usage | Pass/Fail |
|----------------------|----------------------|-----------|
| Anchor Bolts         | 46%                  | Pass      |
| Shaft                | 96%                  | Pass      |
| Base Plate           | 23%                  | Pass      |
| Flanges              | 4%                   | Pass      |

#### **Foundations**

| Reaction Component | Original Design<br>Reactions | Factored Design<br>Reactions* | Analysis Reactions | % of Design |
|--------------------|------------------------------|-------------------------------|--------------------|-------------|
| Moment (Kips-Ft)   | 4,725.0                      | 4,725.0                       | 2,646.4            | 56%         |
| Shear (Kips)       | 75.6                         | 75.6                          | 49.9               | 66%         |

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

### **Deflection and Sway\***

| Antenna<br>Elevation (ft) | Antenna                   | Antenna Carrier  |       |       |  |  |
|---------------------------|---------------------------|------------------|-------|-------|--|--|
|                           | Commscope CBC78T-DS-43-2X |                  |       |       |  |  |
|                           | Samsung B2/B66A RRH-BR049 |                  |       |       |  |  |
|                           | Samsung B5/B13 RRH-BR04C  |                  |       |       |  |  |
| 56.0                      | Raycap RCMDC-6627-PF-48   | VERIZON WIRELESS | 0.172 | 0.325 |  |  |
|                           | Samsung MT6407-77A        |                  |       |       |  |  |
|                           | Commscope JAHH-65A-R3B    |                  |       |       |  |  |
|                           | Commscope JAHH-45A-R3B    |                  |       |       |  |  |

\*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H



### **Standard Conditions**

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

### Job Information

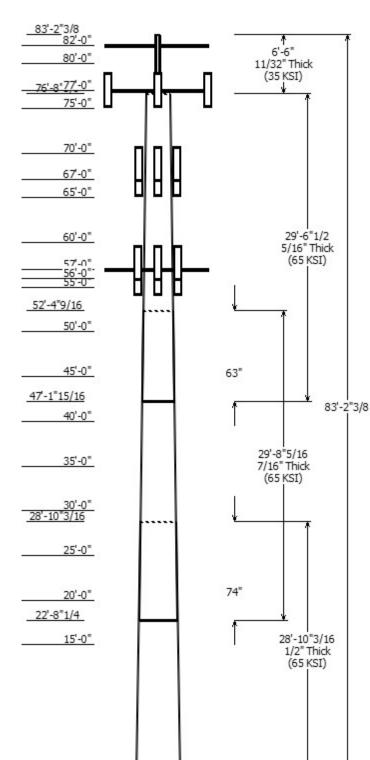
| Client : VERIZON WIRELES       | S                      |
|--------------------------------|------------------------|
| Pole : 414240                  | Code: ANSI/TIA-222-H   |
| Location : Byram Park CT, CT   |                        |
| Description : 83.2 ft monopine | Risk Category : II     |
| Shape : 18 Sides               | Exposure : D           |
| Height : 83.20 (ft)            | Topo Method : Method 1 |
| Base Elev (ft): 0.00 Topog     | raphic Category: 1     |
| Taper: 0.335724in/ft)          |                        |
|                                |                        |

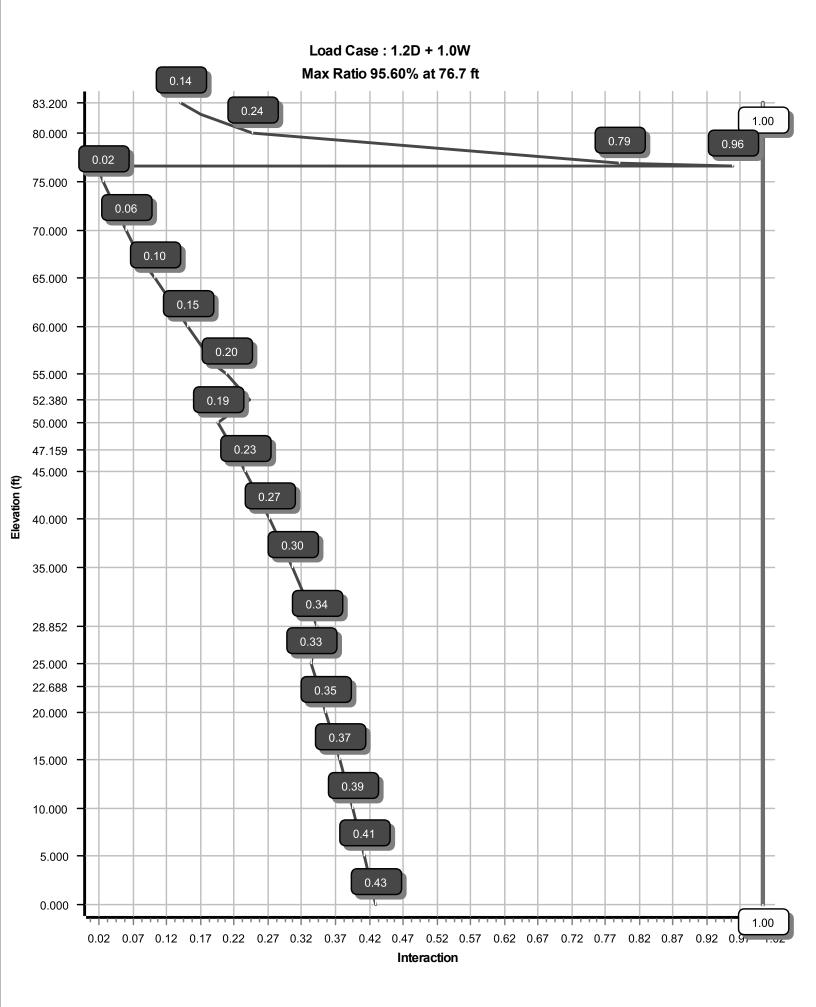
<u>83'-2</u>"3/8 82'-0" 6'-6" 11/32" Thick (35 KSI) 80'-0" 76'-8"77'-0" ψ. 75'-0" 70'-0" 67'-0" H b 65'-0" 29'-6"1/2 5/16" Thick (65 KSI) 60'-0" 57'-0" 56'-0" 55'-0 52'-4"9/16 50'-0" 45'-0" 63" 47'-1"15/16 83'-2"3/8 40'-0" 29'-8"5/16 7/16" Thick (65 KSI) 35'-0" 30'-0" 28'-10"3/16 25'-0" 74" 20'-0" 22'-8"1/4 28'-10"3/16 1/2" Thick (65 KSI) 15'-0"

|                  | Sections Properties                   |       |       |       |            |        |          |      |  |  |  |  |  |  |  |
|------------------|---------------------------------------|-------|-------|-------|------------|--------|----------|------|--|--|--|--|--|--|--|
| Shaft<br>Section | · · · · · · · · · · · · · · · · · · · |       |       |       |            |        |          |      |  |  |  |  |  |  |  |
| 1                | 28.852                                | 42.31 | 52.00 | 0.500 |            | 0.000  | 18 Sides | 65   |  |  |  |  |  |  |  |
| 2                | 29.693                                | 35.29 | 45.25 | 0.438 | Slip Joint | 73.969 | 18 Sides | 65   |  |  |  |  |  |  |  |
| 3                | 29.541                                | 27.75 | 37.66 | 0.313 | Slip Joint | 62.656 | 18 Sides | 65   |  |  |  |  |  |  |  |
| 4                | 6.500                                 | 4.500 | 4.500 | 0.337 | Butt Joint | 0.000  | Round    | I 35 |  |  |  |  |  |  |  |

|                  |                  | Disci  | rete Appurtenance                               |
|------------------|------------------|--------|-------------------------------------------------|
| Attach           | Force            |        |                                                 |
| Elev (ft)        | Elev (ft)        | Qty    | Description                                     |
| 89.000           | 89.000           | 2      | dbSpectra DS7C09P36U-D                          |
| 89.000           | 89.000           | 1      | Bird 428D-83I-01-T                              |
| 82.000           | 82.000           | 2      | Pole Mount                                      |
| 80.000           | 80.000           | 1      | Pine Branches                                   |
| 77.000           | 77.000           | 3      | Ericsson AIR32 B66Aa/B2a                        |
| 77.000           | 77.000           | 3      | Ericsson Air6449 B41                            |
| 77.000           | 77.000           | 3      | Ericsson RRUS 32 B66                            |
| 77.000           | 77.000           | 3      | RFS APXVAARR24_43-U-NA20                        |
| 77.000           | 77.000           | 3      | Ericsson RRUS 4415 B25                          |
| 77.000           | 77.000           | 3      | Ericsson Radio 4449 B71 B85A                    |
| 77.000           | 77.000           | 3      | Commscope CBC1923Q-43                           |
| 77.000           | 77.000           | 3      | Flat T-Arms                                     |
| 75.000           | 75.400           | 1      | Pine Branches                                   |
| 70.000           | 70.000           | 1      | Pine Branches                                   |
| 67.000           | 68.000           | 3      | Powerwave Allgon P65-16-                        |
| 67.000           | 68.000           | 3      | Ericsson RRUS-32 (77 lbs)                       |
| 67.000           | 68.000           | 3      | Ericsson RRUS 32 B2                             |
| 67.000           | 67.000           | 3      | Ericsson RRUS 4478 B14                          |
| 67.000           | 67.000           | 3<br>3 | Ericsson RRUS 4449 B5, B12                      |
| 67.000<br>67.000 | 68.000<br>68.000 | 3<br>2 | Ericsson RRUS 4426 B66                          |
| 67.000<br>67.000 | 68.000<br>67.000 | 2<br>1 | Raycap DC6-48-60-18-8F(32.8 lb                  |
| 67.000           | 67.000<br>68.000 | 6      | Raycap DC6-48-60-0-8C-EV<br>CCI DTMABP7819VG12A |
| 67.000           | 67.000           | 3      | Site PRO1, RMV12-496                            |
| 67.000           | 68.000           | 3      | CCI OPA-65R-LCUU-H6                             |
| 67.000           | 67.000           | 6      | CCI DMP65R-BU4D                                 |
| 65.000           | 65.000           | 1      | Pine Branches                                   |
| 60.000           | 60.000           | 1      | Pine Branches                                   |
| 57.000           | 57.000           | 3      | Flat T-Arm                                      |
| 56.000           | 56.000           | 1      | VZW Unused Reserve                              |
| 56.000           | 57.000           | 6      | Amphenol Antel LPA-80063-                       |
| 56.000           | 56.000           | 4      | Commscope JAHH-45A-R3B                          |
| 56.000           | 56.000           | 2      | Commscope JAHH-65A-R3B                          |
| 56.000           | 56.000           | 1      | Raycap RCMDC-6627-PF-48                         |
| 56.000           | 56.000           | 3      | Samsung MT6407-77A                              |
| 56.000           | 56.000           | 3      | Samsung B5/B13 RRH-BR04C                        |
| 56.000           | 56.000           | 3      | Samsung B2/B66A RRH-BR049                       |
| 56.000           | 56.000           | 3      | Commscope CBC78T-DS-43-2X                       |
| 55.000           | 55.000           | 1      | Pine Branches                                   |
| 50.000           | 50.000           | 1      | Pine Branches                                   |
| 45.000           | 45.000           | 1      | Pine Branches                                   |
| 40.000           | 40.000           | 1      | Pine Branches                                   |
| 35.000           | 35.000           | 1      | Pine Branches                                   |
| 30.000           | 30.000           | 1      | Pine Branches                                   |
|                  |                  |        |                                                 |

#### © 2007 - 2021 by ATC IP LLC. All rights reserved.


| 25.000 | 25.000 | 1 | Pine Branches |  |
|--------|--------|---|---------------|--|
| 20.000 | 20.000 | 1 | Pine Branches |  |
| 15.000 | 15.000 | 1 | Pine Branches |  |


|       | Linear Appurtenance |                  |         |  |  |  |  |  |  |  |  |  |
|-------|---------------------|------------------|---------|--|--|--|--|--|--|--|--|--|
| Elev  | (ft)                |                  | Exposed |  |  |  |  |  |  |  |  |  |
| From  | То                  | Description      | To Wind |  |  |  |  |  |  |  |  |  |
| 0.000 | 56.000              | 1 5/8" Coax      | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 56.000              | 1 5/8" Hybriflex | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 56.000              | 1 5/8" Hybriflex | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 67.000              | 0.39" (10mm)     | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 67.000              | 0.78" (19.7mm) 8 | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 67.000              | 0.78" (19.7mm) 8 | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 67.000              | 1 5/8" Coax      | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 67.000              | 2" conduit       | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 67.000              | 3" conduit       | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 77.000              | 1 1/4" (1.25"-   | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 77.000              | 1 1/4" (1.25"-   | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 77.000              | 1 1/4" Hybriflex | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 77.000              | 1 5/8" (1.63"-   | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 89.000              | 1/2" Coax        | No      |  |  |  |  |  |  |  |  |  |
| 0.000 | 89.000              | 7/8" Coax        | No      |  |  |  |  |  |  |  |  |  |

| Load Cases           |                                  |  |  |  |  |  |  |
|----------------------|----------------------------------|--|--|--|--|--|--|
| 1.2D + 1.0W          | 113 mph with No Ice              |  |  |  |  |  |  |
| 0.9D + 1.0W          | 113 mph with No Ice (Reduced DL) |  |  |  |  |  |  |
| 1.2D + 1.0Di + 1.0Wi | 49 mph with 0.85 in Radial Ice   |  |  |  |  |  |  |
| 1.2D + 1.0Ev + 1.0Eh | Seismic                          |  |  |  |  |  |  |
| 0.9D - 1.0Ev + 1.0Eh | Seismic (Reduced DL)             |  |  |  |  |  |  |
| 1.0D + 1.0W          | Serviceability 60 mph            |  |  |  |  |  |  |

| Reactions            |          |       |       |  |  |  |  |  |  |  |  |
|----------------------|----------|-------|-------|--|--|--|--|--|--|--|--|
| Load Case            | Moment   | Shear | Axial |  |  |  |  |  |  |  |  |
|                      | (kip-ft) | (kip) | (kip) |  |  |  |  |  |  |  |  |
| 1.2D + 1.0W          | 2646.41  | 49.86 | 45.98 |  |  |  |  |  |  |  |  |
| 0.9D + 1.0W          | 2640.27  | 49.84 | 34.47 |  |  |  |  |  |  |  |  |
| 1.2D + 1.0Di + 1.0Wi | 667.14   | 12.70 | 56.25 |  |  |  |  |  |  |  |  |
| 1.2D + 1.0Ev + 1.0Eh | 177.57   | 3.14  | 46.11 |  |  |  |  |  |  |  |  |
| 0.9D - 1.0Ev + 1.0Eh | 177.01   | 3.14  | 30.84 |  |  |  |  |  |  |  |  |
| 1.0D + 1.0W          | 666.45   | 12.57 | 38.36 |  |  |  |  |  |  |  |  |

| Dish Deflections |                     |                                   |       |  |  |  |  |  |  |  |
|------------------|---------------------|-----------------------------------|-------|--|--|--|--|--|--|--|
| Load Case        | Attach<br>Elev (ft) | Deflection Rotation<br>(in) (deg) |       |  |  |  |  |  |  |  |
|                  | 0.00                | 0.000                             | 0.000 |  |  |  |  |  |  |  |





Site Name: Byram Park CT, CT

Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02 © 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:36 PM

|                       |                  |                    | Ar                | alysis Parameters              |                     |         |  |  |  |        |  |  |
|-----------------------|------------------|--------------------|-------------------|--------------------------------|---------------------|---------|--|--|--|--------|--|--|
| Location :            | F                | airfield County, C | т                 | Height (ft) :                  |                     | 83.2    |  |  |  |        |  |  |
| Code :                | А                | NSI/TIA-222-H      |                   | Base Diameter (in) :           |                     | 52.00   |  |  |  |        |  |  |
| Shape :               | 1                | 8 Sides. Sect 4: R | ound              | Top Diameter (in) :            |                     | 4.50    |  |  |  |        |  |  |
| Pole Type :           | с                | ustom              |                   | Taper (in/ft) :                |                     | 0.336   |  |  |  |        |  |  |
| Pole Manfactu         | rer: E           | EI                 |                   | Rotation (deg) :               |                     | 0.00    |  |  |  |        |  |  |
| Kd (non-servic        | e): 0.           | 95                 |                   | Ke :                           |                     | 1.00    |  |  |  |        |  |  |
|                       |                  |                    | lce               | & Wind Parameters              |                     |         |  |  |  |        |  |  |
| Exposure Category: D  |                  |                    |                   | Design Wind Speed Without Ice: | 113 mph             |         |  |  |  |        |  |  |
| Risk Category:        | :                | Ш                  |                   | Design Wind Speed With Ice:    | 49                  | mph     |  |  |  |        |  |  |
| Topographic Fa        | actor Procedure: | Method 1           |                   | <b>Operational Wind Speed:</b> | 60 mph              |         |  |  |  | 60 mph |  |  |
| Topographic C         | ategory:         | 1                  |                   | Design Ice Thickness:          | 0.85 in             |         |  |  |  |        |  |  |
| Crest Height:         |                  | 0 ft               |                   | HMSL:                          | 50                  | 0.00 ft |  |  |  |        |  |  |
|                       |                  |                    | Se                | ismic Parameters               |                     |         |  |  |  |        |  |  |
| Analysis Meth         | od: E            | quivalent Lateral  | Force Method      |                                |                     |         |  |  |  |        |  |  |
| Site Class:           | D                | - Stiff Soil       |                   |                                |                     |         |  |  |  |        |  |  |
| Period Based of       | on Rayleigh Meth | od (sec):          | 0.78              |                                |                     |         |  |  |  |        |  |  |
| T <sub>L</sub> (sec): | 6                |                    | p:                | 1                              | C <sub>s</sub> :    | 0.082   |  |  |  |        |  |  |
| S <sub>s</sub> :      | 0.277            |                    | S <sub>1</sub> :  | 0.060                          | C <sub>s</sub> Max: | 0.082   |  |  |  |        |  |  |
| F <sub>a</sub> :      | 1.578            |                    | F <sub>v</sub> :  | 2.400                          | C <sub>s</sub> Min: | 0.030   |  |  |  |        |  |  |
| S <sub>ds</sub> :     | 0.291            |                    | S <sub>d1</sub> : | 0.096                          |                     |         |  |  |  |        |  |  |

## Load Cases

1.2D + 1.0W 0.9D + 1.0W 1.2D + 1.0Di + 1.0Wi 1.2D + 1.0Ev + 1.0Eh 0.9D - 1.0Ev + 1.0Eh 1.0D + 1.0W 113 mph with No Ice 113 mph with No Ice (Reduced DL) 49 mph with 0.85 in Radial Ice Seismic Seismic (Reduced DL) Serviceability 60 mph

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

# Shaft Section Properties

| Shaft Section Properties |                     |        |      |      |                   |                |             | - Bot        | tom 🗕                      |                          |              |              |             | — т          | op 🗕          |                          |              |              |                  |
|--------------------------|---------------------|--------|------|------|-------------------|----------------|-------------|--------------|----------------------------|--------------------------|--------------|--------------|-------------|--------------|---------------|--------------------------|--------------|--------------|------------------|
| Sect<br>Info             | Length<br>(ft)      |        |      |      | Joint<br>Len (in) | Weight<br>(lb) | Dia<br>(in) | Elev<br>(ft) | Area<br>(in <sup>2</sup> ) | lx<br>(in <sup>4</sup> ) | W/t<br>Ratio | D/t<br>Ratio | Dia<br>(in) | Elev<br>(ft) | Area<br>(in²) | lx<br>(in <sup>4</sup> ) | W/t<br>Ratio | D/t<br>Ratio | Taper<br>(in/ft) |
| 1-18                     | 28.852              | 0.5000 | ) 65 |      | 0.00              | 7,269          | 52.00       | 0.00         | 81.73                      | 27386.5                  | 16.93        | 104.00       | 42.31       | 28.85        | 66.36         | 14658.0                  | 13.51        | 84.63        | 0.335724         |
| 2-18                     | 29.693              | 0.4375 | 5 65 | Slip | 73.97             | 5,589          | 45.25       | 22.69        | 62.24                      | 15796.5                  | 16.83        | 103.45       | 35.29       | 52.38        | 48.39         | 7427.0                   | 12.81        | 80.66        | 0.335724         |
| 3-18                     | 29.541              | 0.3125 | 5 65 | Slip | 62.66             | 3,230          | 37.66       | 47.16        | 37.05                      | 6532.0                   | 19.84        | 120.54       | 27.75       | 76.70        | 27.21         | 2588.4                   | 14.25        | 88.80        | 0.335724         |
| 4-R                      | 6.500               | 0.3370 | ) 35 | Butt | 0.00              | 97             | 4.500       | 76.70        | 4.41                       | 9.6                      | 0.00         | 13.35        | 4.500       | 83.20        | 4.41          | 9.6                      | 0.00         | 13.35        | 0.000000         |
|                          | Shaft Weight 16,186 |        |      |      |                   |                |             |              |                            |                          |              |              |             |              |               |                          |              |              |                  |

# **Discrete Appurtenance Properties**

| Attach<br>Elev |                                                  |        |              | Vert<br>Ecc    | Weight         | No Ice =       | Prientation | Weight          | Ice –          | rientation |
|----------------|--------------------------------------------------|--------|--------------|----------------|----------------|----------------|-------------|-----------------|----------------|------------|
| (ft)           | Description                                      | Qty    | Ka           | (ft)           | (lb)           | (sf)           | Factor      | (lb)            | (sf)           | Factor     |
| 89.00          | Bird 428D-83I-01-T                               | 1      | 1.00         | 0.000          | 8.90           | 0.465          | 5 1.00      | 18.26           | 0.719          | 1.00       |
| 89.00          | dbSpectra DS7C09P36U-D                           | 2      | 1.00         | 0.000          | 70.00          | 3.550          | 1.00        | 119.07          | 6.250          |            |
| 82.00          | Pole Mount                                       | 2      | 1.00         | 0.000          | 40.00          | 1.630          |             | 65.19           | 2.236          |            |
| 80.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         |             | 822.47          | 61.685         |            |
| 77.00          | Commscope CBC1923Q-43                            | 3      | 0.80         | 0.000          | 7.30           | 0.318          |             | 13.17           | 0.532          |            |
| 77.00          | Ericsson Radio 4449 B71 B85A                     | 3      | 0.80         | 0.000          | 75.00          | 1.650          |             | 106.94          | 2.101          |            |
| 77.00          | Ericsson RRUS 4415 B25                           | 3      | 0.80         | 0.000          | 46.00          | 1.842          |             | 72.04           | 2.318          |            |
| 77.00          | Ericsson RRUS 32 B66                             | 3      | 0.80         | 0.000          | 53.00          | 2.743          |             | 92.06           | 3.364          |            |
| 77.00          | Ericsson Air6449 B41                             | 3      | 0.80         | 0.000          | 104.00         | 5.682          |             | 176.38          | 6.525          |            |
| 77.00          | Ericsson AIR32 B66Aa/B2a                         | 3      | 0.80         | 0.000          | 132.20         | 6.510          |             | 216.97          | 7.673          |            |
| 77.00          | Flat T-Arms                                      | 3      | 0.75         | 0.000          | 250.00         | 12.900         |             | 361.00          | 17.243         |            |
| 77.00          | RFS APXVAARR24_43-U-NA20                         | 3      | 0.80         | 0.000          | 127.90         | 20.243         |             | 336.40          | 22.213         | 0.63       |
| 75.00          | Pine Branches                                    | 1      | 1.00         | 0.400          | 600.00         | 45.000         |             | 820.71          | 61.553         |            |
| 70.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         |             | 819.46          | 61.459         |            |
| 67.00          | CCI DTMABP7819VG12A                              | 6      | 0.80         | 1.000          | 19.20          | 0.972          |             | 32.52           | 1.315          |            |
| 67.00          | Raycap DC6-48-60-0-8C-EV                         | 1      | 0.80         | 0.000          | 16.00          | 1.020          |             | 39.69           | 1.315          |            |
| 67.00<br>67.00 | Raycap DC6-48-60-18-8F(32.8                      | 2<br>3 | 0.80<br>0.80 | 1.000<br>1.000 | 32.80<br>48.40 | 1.470<br>1.650 |             | 65.07<br>71.75  | 1.835<br>2.094 |            |
|                | Ericsson RRUS 4426 B66                           | 3      |              |                |                |                |             |                 |                |            |
| 67.00          | Ericsson RRUS 4449 B5, B12                       |        | 0.80         | 0.000          | 71.00          | 1.969          |             | 104.71          | 2.457          |            |
| 67.00<br>67.00 | Ericsson RRUS 4478 B14                           | 3<br>3 | 0.80         | 0.000          | 59.40          | 2.021          |             | 91.50           | 2.514          |            |
| 67.00<br>67.00 | Ericsson RRUS 32 B2<br>Ericsson RRUS-32 (77 lbs) | 3      | 0.80<br>0.80 | 1.000<br>1.000 | 53.00<br>77.00 | 2.743<br>3.314 |             | 91.47<br>127.87 | 3.355<br>3.985 |            |
| 67.00          | Powerwave Allgon P65-16-XLH-                     | 3      | 0.80         | 1.000          | 53.00          | 8.133          |             | 139.16          | 9.591          |            |
| 67.00          | CCI DMP65R-BU4D                                  | 6      | 0.80         | 0.000          | 67.90          | 8.280          |             | 162.37          | 9.339          |            |
| 67.00          | CCI OPA-65R-LCUU-H6                              | 3      | 0.80         | 1.000          | 73.00          | 9.658          |             | 179.46          | 11.108         |            |
| 67.00          | Site PRO1, RMV12-496                             | 3      | 0.75         | 0.000          | 452.60         | 9.700          |             | 617.53          | 13.235         | 0.67       |
| 65.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         |             | 817.45          | 61.309         |            |
| 60.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         |             | 816.02          | 61.202         |            |
| 57.00          | Flat T-Arm                                       | 3      | 0.75         | 0.000          | 250.00         | 12.900         |             | 357.64          | 17.112         |            |
| 56.00          | Commscope CBC78T-DS-43-2X                        | 3      | 0.80         | 0.000          | 20.70          | 0.552          |             | 32.06           | 0.813          |            |
| 56.00          | Samsung B2/B66A RRH-BR049                        | 3      | 0.80         | 0.000          | 84.40          | 1.875          |             | 117.20          | 2.339          |            |
| 56.00          | Samsung B5/B13 RRH-BR04C                         | 3      | 0.80         | 0.000          | 70.30          | 1.875          |             | 99.71           | 2.339          |            |
| 56.00          | Raycap RCMDC-6627-PF-48                          | 1      | 0.80         | 0.000          | 32.00          | 4.056          |             | 97.34           | 4.758          |            |
| 56.00          | Samsung MT6407-77A                               | 3      | 0.80         | 0.000          | 81.60          | 4.709          |             | 134.00          | 5.490          |            |
| 56.00          | Commscope JAHH-65A-R3B                           | 2      | 0.80         | 0.000          | 50.70          | 6.673          |             | 132.01          | 7.772          |            |
| 56.00          | Commscope JAHH-45A-R3B                           | 4      | 0.80         | 0.000          | 70.50          | 8.420          | 0.63        | 162.31          | 9.548          | 0.63       |
| 56.00          | Amphenol Antel LPA-80063-6CF-                    | 6      | 0.80         | 1.000          | 27.00          | 9.732          | 0.75        | 161.15          | 11.140         | 0.75       |
| 56.00          | VZW Unused Reserve (14306.88                     | 1      | 0.80         | 0.000          | 1,151.60       | 99.353         | 0.90        | 1,564.04        | 134.936        | 0.90       |
| 55.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 814.17          | 61.063         | 1.00       |
| 50.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 812.04          | 60.903         | 1.00       |
| 45.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 809.23          | 60.692         | 1.00       |
| 40.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 806.62          | 60.497         | 1.00       |
| 35.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 803.69          | 60.277         | 1.00       |
| 30.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 801.67          | 60.126         | 1.00       |
| 25.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         |             | 797.48          | 59.811         | 1.00       |
| 20.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 791.46          | 59.360         | 1.00       |
| 15.00          | Pine Branches                                    | 1      | 1.00         | 0.000          | 600.00         | 45.000         | 1.00        | 785.13          | 58.885         | 1.00       |
|                |                                                  |        |              |                |                |                |             |                 |                |            |

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Code: ANSI/TIA-222-H

| Site Number: 414240<br>Site Name: Byram Park CT, CT<br>Customer: VERIZON WIRELESS | Code: ANSI/TIA-222-H<br>Engineering Number:13701270_C3_02 |                         |     |                      |                              |      |                  | © 2007 - 2021 by ATC IP LLC. All rights reserved<br>7/28/2021 2:56:37 PM |    |                |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|-----|----------------------|------------------------------|------|------------------|--------------------------------------------------------------------------|----|----------------|--|--|
| Totals Num Loadings:47                                                            | 111                                                       |                         |     |                      | 17,531.                      |      | 27,202.09        |                                                                          |    |                |  |  |
| Linear Appurtenance Properties                                                    | Load                                                      | Case A                  | zir | nuth (d              | leg) :                       |      |                  |                                                                          |    |                |  |  |
| Elev Elev<br>From To<br>(ft) (ft) Qty Description                                 | Coax<br>Dia<br>(in)                                       | Coax<br>Wt<br>(Ib/ft) F | lat | Max<br>Coax /<br>Row | Dist<br>Between<br>Rows (in) |      | Azimuth<br>(deg) |                                                                          | To |                |  |  |
| 0.00 89.00 2 1/2" Coax                                                            | 0.63                                                      | 0.15                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | TOWN OF        |  |  |
| 0.00 89.00 2 7/8" Coax                                                            | 1.09                                                      | 0.33                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | TOWN OF        |  |  |
| 0.00 77.00 3 1 1/4" (1.25"- 31.8mm)                                               | 1.25                                                      | 1.05                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | T-MOBILE       |  |  |
| 0.00 77.00 3 1 1/4" (1.25"- 31.8mm)                                               | 1.25                                                      | 1.05                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | T-MOBILE       |  |  |
| 0.00 77.00 1 1 1/4" Hybriflex Cable                                               | 1.54                                                      | 1.00                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | T-MOBILE       |  |  |
| 0.00 77.00 3 1 5/8" (1.63"-41.3mm)                                                | 1.63                                                      | 1.61                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | T-MOBILE       |  |  |
| 0.00 67.00 2 0.39" (10mm) Fiber                                                   | 0.39                                                      | 0.06                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | AT&T MOBILITY  |  |  |
| 0.00 67.00 6 0.78" (19.7mm) 8 AWG                                                 | 0.78                                                      | 0.59                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | AT&T MOBILITY  |  |  |
| 0.00 67.00 2 0.78" (19.7mm) 8 AWG                                                 | 0.78                                                      | 0.59                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | AT&T MOBILITY  |  |  |
| 0.00 67.00 12 1 5/8" Coax                                                         | 1.98                                                      | 0.82                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | AT&T MOBILITY  |  |  |
| 0.00 67.00 1 2" conduit                                                           | 2.38                                                      | 3.65                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | AT&T MOBILITY  |  |  |
| 0.00 67.00 3 3" conduit                                                           | 3.50                                                      | 7.58                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | AT&T MOBILITY  |  |  |
| 0.00 56.00 16 1 5/8" Coax                                                         | 1.98                                                      | 0.82                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  |                |  |  |
| 0.00 56.00 1 1 5/8" Hybriflex                                                     | 1.98                                                      | 1.30                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | VERIZON WIRELE |  |  |
| 0.00 56.00 1 1 5/8" Hybriflex                                                     | 1.98                                                      | 1.30                    | Ν   | 0                    | 0.00                         | 0.00 | 0                | 0.00                                                                     | Ν  | VERIZON WIRELE |  |  |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02 © 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:37 PM

Segment Properties (Max Len : 5.ft)

| Seg To<br>Elev<br>(ft) | op<br>Description | Thick<br>(in) | Flat<br>Dia<br>(in) | Area<br>(in²)    | lx<br>(in⁴)        | W/t<br>Ratio   | D/t<br>Ratio     | F'y<br>(ksi) | S<br>(in³) | Z<br>(in³) | Weight<br>(Ib) |  |
|------------------------|-------------------|---------------|---------------------|------------------|--------------------|----------------|------------------|--------------|------------|------------|----------------|--|
| 0.00                   |                   | 0.5000        | 52.000              |                  | 27,386.5           | 16.93          | 104.00           | 81.5         | 1037.      | 0.0        | 0.0            |  |
| 5.00                   |                   |               | 50.321              |                  | 24,794.9           | 16.34          | 100.64           |              |            |            | 1,367.8        |  |
| 10.00                  |                   |               | 48.643              |                  | 22,372.1           | 15.74          | 97.29            |              |            |            | 1,322.5        |  |
| 15.00                  |                   |               | 46.964              |                  | 20,112.6           | 15.15          | 93.93            |              |            |            | 1,277.2        |  |
| 20.00                  |                   |               | 45.286              |                  | 18,010.6           | 14.56          |                  |              | 783.3      |            | 1,231.9        |  |
| 22.69                  | Bot - Section 2   |               | 44.383              |                  | 16,943.8           | 14.24          | 88.77            |              |            |            | 643.4          |  |
| 25.00                  | -                 |               | 43.607              |                  | 16,060.4           | 13.97          | 87.21            |              | -          |            | 1,028.6        |  |
| 28.85                  | Top - Section 1   |               | 43.189              |                  | 13,707.9           | 16.00          | 98.72            |              |            |            | 1,672.9        |  |
| 30.00                  |                   |               | 42.803              |                  | 13,340.4           | 15.84          | 97.84            |              |            | 0.0        |                |  |
| 35.00                  |                   |               | 41.125              |                  | 11,816.7           | 15.16          | 94.00            |              |            | 0.0        | 981.1          |  |
| 40.00                  |                   |               | 39.446              |                  | 10,413.6           | 14.49          | 90.16            |              |            | 0.0        | 941.4          |  |
| 45.00                  | Bat Castion 2     |               | 37.767              | 51.835           | 9,126.3            | 13.81          | 86.33            |              |            | 0.0        | 901.8          |  |
| 47.16                  | Bot - Section 3   |               | 37.043              | 50.829           | 8,605.0            | 13.52          | 84.67            |              |            | 0.0        | 377.1          |  |
| 50.00                  | Ton Continn 2     |               | 36.089              | 49.505           | 7,949.7            | 13.13          | 82.49            |              |            | 0.0        | 838.6          |  |
| 52.38                  | Top - Section 2   |               | 35.915<br>35.035    | 35.312           | 5,654.9            | 18.85<br>18.36 | 114.93<br>112.11 |              |            | 0.0<br>0.0 | 685.7<br>310.9 |  |
| 55.00<br>56.00         |                   |               | 35.035              | 34.439<br>34.106 | 5,246.1<br>5,095.4 | 18.17          | 111.04           |              |            | 0.0        | 116.6          |  |
| 57.00                  |                   |               | 34.364              | 33.773           |                    | 17.98          | 109.96           |              |            | 0.0        | 115.5          |  |
| 60.00                  |                   |               | 33.357              | 32.774           | 4,521.4            | 17.41          | 106.74           |              |            | 0.0        | 339.7          |  |
| 65.00                  |                   |               | 31.678              | 31.110           | 3,866.8            | 16.46          | 101.37           |              |            | 0.0        | 543.5          |  |
| 67.00                  |                   |               | 31.007              | 30.444           | 3,623.7            | 16.08          | 99.22            |              |            | 0.0        | 209.5          |  |
| 70.00                  |                   |               | 29.999              | 29.445           | 3,278.6            | 15.52          | 96.00            |              |            | 0.0        | 305.7          |  |
| 75.00                  |                   |               | 28.321              | 27.780           | 2,753.3            | 14.57          | 90.63            |              |            | 0.0        | 486.8          |  |
| 76.70                  | Top - Section 3   |               | 27.750              | 27.214           | 2,588.4            | 14.25          | 88.80            |              |            | 0.0        | 159.1          |  |
| 76.70                  | Bot - Section 4   | 0.3370        | 4.500               | 4.407            | 9.6                | 0.00           | 13.35            | 35.0         | 4.2        | 5.9        |                |  |
| 77.00                  |                   | 0.3370        | 4.500               | 4.407            | 9.6                | 0.00           | 13.35            |              | 4.2        | 5.9        | 4.5            |  |
| 80.00                  |                   | 0.3370        | 4.500               | 4.407            |                    | 0.00           | 13.35            |              | 4.2        | 5.9        | 45.0           |  |
| 82.00                  |                   | 0.3370        | 4.500               | 4.407            |                    | 0.00           | 13.35            | 35.0         | 4.2        | 5.9        | 30.0           |  |
| 83.20                  |                   | 0.3370        | 4.500               | 4.407            | 9.6                | 0.00           | 13.35            | 35.0         | 4.2        | 5.9        | 18.0           |  |
| -                      |                   | -             | -                   |                  |                    |                | -                | -            |            |            | 6 10E E        |  |

16,185.5

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:37 PM

Load Case: 1.2D + 1.0W

113 mph with No Ice

16 Iterations

Gust Response Factor :1.10

Dead Load Factor :1.20 Wind Load Factor :1.00

Willu Load Factor . 1.00

# Applied Segment Forces Summary

|       |                 | Shaft I | orces   | Discrete Forces |         |         |         | Linear Forces |        |          | Sum of Forces |         |        |
|-------|-----------------|---------|---------|-----------------|---------|---------|---------|---------------|--------|----------|---------------|---------|--------|
| Seg   |                 |         | Dead    |                 | Torsion | Moment  | Dead    |               | Dead   |          | Dead          | Torsion | Moment |
| Elev  |                 | Wind FX | Load    | Wind FX         | MY      | MZ      | Load    | Wind FX       | Load   | Wind FX  | Load          | MY      | MZ     |
| (ft)  | Description     | (lb)    | (lb)    | (lb)            | (lb-ft) | (lb-ft) | (lb)    | (lb)          | (lb)   | (lb)     | (lb)          | (lb-ft) | (lb)   |
| 0.00  |                 | 277.8   | 0.0     |                 |         |         |         | 0.0           | 0.0    | 277.8    | 0.0           | 0.0     | 0.0    |
| 5.00  |                 | 546.5   | 1,641.4 |                 |         |         |         | 0.0           | 419.3  | 546.5    | 2,060.7       | 0.0     | 0.0    |
| 10.00 |                 | 528.2   | 1,587.0 |                 |         |         |         | 0.0           | 419.3  | 528.2    | 2,006.3       | 0.0     | 0.0    |
| 15.00 | Appurtenance(s) | 516.9   | 1,532.6 | 1,582.5         | 0.0     | 0.0     | 720.0   | 0.0           | 419.3  | 2,099.4  | 2,671.9       | 0.0     | 0.0    |
| 20.00 | Appurtenance(s) | 396.5   | 1,478.2 | 1,663.7         | 0.0     | 0.0     | 720.0   | 0.0           | 419.3  | 2,060.2  | 2,617.5       | 0.0     | 0.0    |
| 22.69 | Bot - Section 2 | 261.3   | 772.1   |                 |         |         |         | 0.0           | 225.4  | 261.3    | 997.4         | 0.0     | 0.0    |
| 25.00 | Appurtenance(s) | 325.2   | 1,234.4 | 1,729.6         | 0.0     | 0.0     | 720.0   | 0.0           | 193.9  | 2,054.8  | 2,148.3       | 0.0     | 0.0    |
| 28.85 | Top - Section 1 | 263.3   | 2,007.5 |                 |         |         |         | 0.0           | 323.0  | 263.3    | 2,330.5       | 0.0     | 0.0    |
| 30.00 | Appurtenance(s) | 321.0   | 277.1   | 1,785.3         | 0.0     | 0.0     | 720.0   | 0.0           | 96.3   | 2,106.3  | 1,093.4       | 0.0     | 0.0    |
| 35.00 | Appurtenance(s) | 517.3   | 1,177.3 | 1,833.8         | 0.0     | 0.0     | 720.0   | 0.0           | 419.3  | 2,351.1  | 2,316.6       | 0.0     | 0.0    |
| 40.00 | Appurtenance(s) | 507.9   | 1,129.7 | 1,876.9         | 0.0     | 0.0     | 720.0   | 0.0           | 419.3  | 2,384.8  | 2,269.0       | 0.0     | 0.0    |
| 45.00 | Appurtenance(s) | 357.9   | 1,082.1 | 1,915.7         | 0.0     | 0.0     | 720.0   | 0.0           | 419.3  | 2,273.6  | 2,221.4       | 0.0     | 0.0    |
| 47.16 | Bot - Section 3 | 247.4   | 452.5   | ·               |         |         |         | 0.0           | 181.0  | 247.4    | 633.5         | 0.0     | 0.0    |
| 50.00 | Appurtenance(s) | 257.0   | 1,006.3 | 1,951.2         | 0.0     | 0.0     | 720.0   | 0.0           | 238.2  | 2,208.2  | 1,964.6       | 0.0     | 0.0    |
| 52.38 | Top - Section 2 | 242.2   | 822.8   |                 |         |         |         | 0.0           | 199.6  | 242.2    | 1,022.4       | 0.0     | 0.0    |
| 55.00 | Appurtenance(s) | 173.6   | 373.1   | 1,983.8         | 0.0     | 0.0     | 720.0   | 0.0           | 219.7  | 2,157.3  | 1,312.8       | 0.0     | 0.0    |
| 56.00 | Appurtenance(s) | 94.8    | 139.9   | 6,503.6         | 0.0     | 1,554.1 | 3,000.0 | 0.0           | 83.9   | 6,598.4  | 3,223.8       | 0.0     | 0.0    |
| 57.00 | Appurtenance(s) | 187.0   | 138.6   | 862.6           | 0.0     | 0.0     | 900.0   | 0.0           | 65.0   | 1,049.7  | 1,103.6       | 0.0     | 0.0    |
| 60.00 | Appurtenance(s) | 366.1   | 407.6   | 2,014.0         | 0.0     | 0.0     | 720.0   | 0.0           | 195.0  | 2,380.2  | 1,322.6       | 0.0     | 0.0    |
| 65.00 | Appurtenance(s) | 314.4   | 652.1   | 2,042.2         | 0.0     | 0.0     | 720.0   | 0.0           | 325.0  | 2,356.7  | 1,697.1       | 0.0     | 0.0    |
| 67.00 | Appurtenance(s) | 217.5   | 251.3   | 4,147.5         | 0.0     | 2,062.9 | 3,919.7 | 0.0           | 130.0  | 4.365.0  | 4.301.0       | 0.0     | 0.0    |
| 70.00 | Appurtenance(s) | 337.7   | 366.8   | 2,068.7         | 0.0     | 0.0     | 720.0   | 0.0           | 47.1   | 2,406.5  | 1,133.9       | 0.0     | 0.0    |
| 75.00 | Appurtenance(s) | 276.9   | 584.2   | 2,095.6         | 0.0     | 838.3   | 720.0   | 0.0           | 78.5   | 2,372.6  | 1,382.7       | 0.0     | 0.0    |
| 76.70 | Top - Section 3 | 71.1    | 190.9   |                 |         |         |         | 0.0           | 26.7   | 71.1     | 217.6         | 0.0     | 0.0    |
| 77.00 | Appurtenance(s) | 27.3    | 5.4     | 3,679.4         | 0.0     | 0.0     | 2,863.4 | 0.0           | 4.7    | 3,706.8  | 2,873.6       | 0.0     | 0.0    |
| 80.00 | Appurtenance(s) | 41.5    | 54.0    | 2.117.3         | 0.0     | 0.0     | 720.0   | 0.0           | 3.5    | 2,158.8  | 777.4         | 0.0     | 0.0    |
| 82.00 | Appurtenance(s) | 26.6    | 36.0    | 154.0           | 0.0     | 0.0     | 96.0    | 0.0           | 2.3    | 180.7    | 134.3         | 0.0     | 0.0    |
| 83.20 |                 | 10.0    | 21.6    |                 |         |         |         | 0.0           | 1.4    | 10.0     | 23.0          | 0.0     | 0.0    |
|       |                 |         |         |                 |         |         |         | То            | otals: | 49,718.8 | 45,856.8      | 0.00    | 0.00   |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

113 mph with No Ice

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:40 PM

16 Iterations

### Load Case: 1.2D + 1.0W

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00

### **Calculated Forces**

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| 0.00                | -45.98                 | -49.86                 | 0.00                  | -2,646.41             | 0.00                  | 2,646.41                         | 5,994.05 1          | ,434.32             | 6,672.27               | 6,339.93               | 0.00                     | 0.00              | 0.426 |
| 5.00                | -43.80                 | -49.41                 | 0.00                  | -2,397.12             | 0.00                  | 2,397.12                         | 5,848.22 1          | ,387.57             | 6,244.46               | 5,982.13               | 0.07                     | -0.13             | 0.409 |
| 10.00               | -41.69                 | -48.97                 | 0.00                  | -2,150.08             | 0.00                  | 2,150.08                         | 5,676.12 1          | ,340.82             | 5,830.83               | 5,608.53               | 0.28                     | -0.26             | 0.392 |
| 15.00               | -38.92                 | -46.94                 | 0.00                  | -1,905.23             | 0.00                  | 1,905.23                         | 5,478.21 1          | ,294.07             | 5,431.37               | 5,222.30               | 0.63                     | -0.39             | 0.373 |
| 20.00               | -36.25                 | -44.92                 | 0.00                  | -1,670.53             | 0.00                  | 1,670.53                         | 5,280.30 1          | 1,247.31            | 5,046.08               | 4,849.84               | 1.11                     | -0.52             | 0.353 |
| 22.69               | -35.20                 | -44.69                 | 0.00                  | -1,549.80             | 0.00                  | 1,549.80                         | 5,173.92 1          | 1,222.19            | 4,844.84               | 4,655.34               | 1.42                     | -0.59             | 0.341 |
| 25.00               | -33.02                 | -42.66                 | 0.00                  | -1,446.46             | 0.00                  | 1,446.46                         | 5,082.39 1          | ,200.56             | 4,674.96               | 4,491.17               | 1.72                     | -0.64             | 0.330 |
| 28.85               | -30.65                 | -42.40                 | 0.00                  | -1,282.17             | 0.00                  | 1,282.17                         | 4,410.41 1          | I,041.83            | 4,023.22               | 3,870.44               | 2.28                     | -0.74             | 0.340 |
| 30.00               | -29.53                 | -40.32                 | 0.00                  | -1,233.48             | 0.00                  | 1,233.48                         | 4,370.63 1          | 1,032.43            | 3,950.99               | 3,800.59               | 2.46                     | -0.76             | 0.333 |
| 35.00               | -27.17                 | -37.99                 | 0.00                  | -1,031.91             | 0.00                  | 1,031.91                         | 4,197.46            | 991.53              | 3,644.15               | 3,503.90               | 3.33                     | -0.89             | 0.302 |
| 40.00               | -24.87                 | -35.61                 | 0.00                  | -841.98               | 0.00                  | 841.98                           | 4,024.29            | 950.62              | 3,349.71               | 3,219.28               | 4.32                     | -1.00             | 0.269 |
| 45.00               | -22.65                 | -33.33                 | 0.00                  | -663.93               | 0.00                  | 663.93                           | 3,851.11            | 909.71              | 3,067.67               | 2,946.70               | 5.42                     | -1.10             | 0.233 |
| 47.16               | -22.00                 | -33.08                 | 0.00                  | -591.99               | 0.00                  | 591.99                           | 3,776.34            | 892.05              | 2,949.72               | 2,832.74               | 5.93                     | -1.14             | 0.216 |
| 50.00               | -20.05                 | -30.85                 | 0.00                  | -497.99               | 0.00                  | 497.99                           | 3,677.94            | 868.80              | 2,798.03               | 2,686.19               | 6.63                     | -1.19             | 0.192 |
| 52.38               | -19.02                 | -30.60                 | 0.00                  | -424.56               | 0.00                  | 424.56                           | 2,517.80            | 619.72              | 1,992.88               | 1,842.71               | 7.23                     | -1.23             | 0.240 |
| 55.00               | -17.74                 | -28.42                 | 0.00                  | -344.40               | 0.00                  | 344.40                           | 2,473.70            | 604.41              | 1,895.64               | 1,765.31               | 7.92                     | -1.27             | 0.204 |
| 56.00               | -14.66                 | -21.76                 | 0.00                  | -314.42               | 0.00                  | 314.42                           | 2,456.62            | 598.57              | 1,859.17               | 1,736.02               | 8.19                     | -1.29             | 0.188 |
| 57.00               | -13.56                 | -20.69                 | 0.00                  | -292.66               | 0.00                  | 292.66                           | 2,439.40            | 592.72              | 1,823.05               | 1,706.88               | 8.46                     | -1.31             | 0.178 |
| 60.00               | -12.28                 | -18.29                 | 0.00                  | -230.59               | 0.00                  | 230.59                           | 2,386.97            | 575.19              | 1,716.81               | 1,620.34               | 9.30                     | -1.35             | 0.148 |
| 65.00               | -10.63                 | -15.90                 | 0.00                  | -139.12               | 0.00                  | 139.12                           | 2,296.90            | 545.97              | 1,546.84               | 1,479.25               | 10.75                    | -1.41             | 0.100 |
| 67.00               | -6.44                  | -11.43                 | 0.00                  | -105.25               | 0.00                  | 105.25                           | 2,259.94            | 534.28              | 1,481.33               | 1,423.98               | 11.35                    | -1.43             | 0.077 |
| 70.00               | -5.36                  | -9.00                  | 0.00                  | -70.95                | 0.00                  | 70.95                            | 2,187.59            | 516.75              | 1,385.73               | 1,332.71               | 12.25                    | -1.45             | 0.056 |
| 75.00               | -4.04                  | -6.60                  | 0.00                  | -25.10                | 0.00                  | 25.10                            | 2,063.89            | 487.53              | 1,233.47               | 1,185.51               | 13.78                    | -1.47             | 0.023 |
| 76.70               | -3.82                  | -6.52                  | 0.00                  | -13.89                | 0.00                  | 13.89                            | 2,021.83            | 477.60              | 1,183.72               | 1,137.43               | 14.31                    | -1.47             | 0.014 |
| 76.70               | -3.82                  | -6.52                  | 0.00                  | -13.89                | 0.00                  | 13.89                            | 138.83              | 41.65               | 15.24                  | 15.36                  | 14.31                    | -1.47             | 0.956 |
| 77.00               | -1.02                  | -2.75                  | 0.00                  | -11.93                | 0.00                  | 11.93                            | 138.83              | 41.65               | 15.24                  | 15.36                  | 14.40                    | -1.47             | 0.788 |
| 80.00               | -0.31                  | -0.57                  | 0.00                  | -3.69                 | 0.00                  | 3.69                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 15.59                    | -2.17             | 0.243 |
| 82.00               | -0.19                  | -0.38                  | 0.00                  | -2.56                 | 0.00                  | 2.56                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 16.54                    | -2.36             | 0.168 |
| 83.20               | 0.00                   | -0.37                  | 0.00                  | -2.10                 | 0.00                  | 2.10                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 17.14                    | -2.44             | 0.137 |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:40 PM

16 Iterations

| Load Case: 0.9D + 1.0W     | 113 mph with No Ice (Reduced DL) |  |
|----------------------------|----------------------------------|--|
| Gust Response Factor :1.10 |                                  |  |
| Dead Load Factor :0.90     |                                  |  |

Wind Load Factor :1.00

# Applied Segment Forces Summary

|       |                 | Shaft I | Forces  | Discrete Forces |         |         |         | Linear Forces |        |          | Sum of Forces |         |        |
|-------|-----------------|---------|---------|-----------------|---------|---------|---------|---------------|--------|----------|---------------|---------|--------|
| Seg   |                 |         | Dead    | - <u> </u>      | Torsion | Moment  | Dead    |               | Dead   |          | Dead          | Torsion | Moment |
| Elev  |                 | Wind FX | Load    | Wind FX         | MY      | MZ      | Load    | Wind FX       | Load   | Wind FX  | Load          | MY      | MZ     |
| (ft)  | Description     | (lb)    | (lb)    | (lb)            | (lb-ft) | (lb-ft) | (lb)    | (lb)          | (lb)   | (lb)     | (lb)          | (lb-ft) | (lb)   |
| 0.00  |                 | 277.8   | 0.0     |                 |         |         |         | 0.0           | 0.0    | 277.8    | 0.0           | 0.0     | 0.0    |
| 5.00  |                 | 546.5   | 1,231.1 |                 |         |         |         | 0.0           | 314.5  | 546.5    | 1,545.5       | 0.0     | 0.0    |
| 10.00 |                 | 528.2   | 1,190.3 |                 |         |         |         | 0.0           | 314.5  | 528.2    | 1,504.7       | 0.0     | 0.0    |
| 15.00 | Appurtenance(s) | 516.9   | 1,149.5 | 1,582.5         | 0.0     | 0.0     | 540.0   | 0.0           | 314.5  | 2,099.4  | 2,003.9       | 0.0     | 0.0    |
| 20.00 | Appurtenance(s) | 396.5   | 1,108.7 | 1,663.7         | 0.0     | 0.0     | 540.0   | 0.0           | 314.5  | 2,060.2  | 1,963.1       | 0.0     | 0.0    |
| 22.69 | Bot - Section 2 | 261.3   | 579.1   |                 |         |         |         | 0.0           | 169.0  | 261.3    | 748.1         | 0.0     | 0.0    |
| 25.00 | Appurtenance(s) | 325.2   | 925.8   | 1,729.6         | 0.0     | 0.0     | 540.0   | 0.0           | 145.4  | 2,054.8  | 1,611.2       | 0.0     | 0.0    |
| 28.85 | Top - Section 1 | 263.3   | 1,505.6 |                 |         |         |         | 0.0           | 242.2  | 263.3    | 1,747.8       | 0.0     | 0.0    |
| 30.00 | Appurtenance(s) | 321.0   | 207.8   | 1,785.3         | 0.0     | 0.0     | 540.0   | 0.0           | 72.2   | 2,106.3  | 820.1         | 0.0     | 0.0    |
| 35.00 | Appurtenance(s) | 517.3   | 883.0   | 1,833.8         | 0.0     | 0.0     | 540.0   | 0.0           | 314.5  | 2,351.1  | 1,737.4       | 0.0     | 0.0    |
| 40.00 | Appurtenance(s) | 507.9   | 847.3   | 1,876.9         | 0.0     | 0.0     | 540.0   | 0.0           | 314.5  | 2,384.8  | 1,701.7       | 0.0     | 0.0    |
| 45.00 | Appurtenance(s) | 357.9   | 811.6   | 1,915.7         | 0.0     | 0.0     | 540.0   | 0.0           | 314.5  | 2,273.6  | 1,666.0       | 0.0     | 0.0    |
| 47.16 | Bot - Section 3 | 247.4   | 339.4   | ·               |         |         |         | 0.0           | 135.8  | 247.4    | 475.2         | 0.0     | 0.0    |
| 50.00 | Appurtenance(s) | 257.0   | 754.8   | 1,951.2         | 0.0     | 0.0     | 540.0   | 0.0           | 178.7  | 2,208.2  | 1,473.4       | 0.0     | 0.0    |
| 52.38 | Top - Section 2 | 242.2   | 617.1   |                 |         |         |         | 0.0           | 149.7  | 242.2    | 766.8         | 0.0     | 0.0    |
| 55.00 | Appurtenance(s) | 173.6   | 279.8   | 1,983.8         | 0.0     | 0.0     | 540.0   | 0.0           | 164.8  | 2,157.3  | 984.6         | 0.0     | 0.0    |
| 56.00 | Appurtenance(s) | 94.8    | 105.0   | 6,503.6         | 0.0     | 1,554.1 | 2,250.0 | 0.0           | 62.9   | 6,598.4  | 2,417.9       | 0.0     | 0.0    |
| 57.00 | Appurtenance(s) | 187.0   | 103.9   | 862.6           | 0.0     | 0.0     | 675.0   | 0.0           | 48.7   | 1,049.7  | 827.7         | 0.0     | 0.0    |
| 60.00 | Appurtenance(s) | 366.1   | 305.7   | 2,014.0         | 0.0     | 0.0     | 540.0   | 0.0           | 146.2  | 2,380.2  | 991.9         | 0.0     | 0.0    |
| 65.00 | Appurtenance(s) | 314.4   | 489.1   | 2,042.2         | 0.0     | 0.0     | 540.0   | 0.0           | 243.7  | 2,356.7  | 1,272.8       | 0.0     | 0.0    |
| 67.00 | Appurtenance(s) | 217.5   | 188.5   | 4,147.5         | 0.0     | 2,062.9 | 2,939.8 | 0.0           | 97.5   | 4,365.0  | 3,225.8       | 0.0     | 0.0    |
| 70.00 | Appurtenance(s) | 337.7   | 275.1   | 2,068.7         | 0.0     |         | 540.0   | 0.0           | 35.3   | 2,406.5  | 850.5         | 0.0     | 0.0    |
| 75.00 | Appurtenance(s) | 276.9   | 438.1   | 2,095.6         | 0.0     | 838.3   | 540.0   | 0.0           | 58.9   | 2,372.6  | 1,037.0       | 0.0     | 0.0    |
| 76.70 | Top - Section 3 | 71.1    | 143.2   |                 |         |         |         | 0.0           | 20.0   | 71.1     | 163.2         | 0.0     | 0.0    |
| 77.00 | Appurtenance(s) | 27.3    | 4.0     | 3,679.4         | 0.0     | 0.0     | 2,147.6 | 0.0           | 3.5    | 3,706.8  | 2,155.2       | 0.0     | 0.0    |
| 80.00 | Appurtenance(s) | 41.5    | 40.5    | 2.117.3         | 0.0     |         | 540.0   | 0.0           | 2.6    | 2.158.8  | 583.1         | 0.0     | 0.0    |
| 82.00 | Appurtenance(s) | 26.6    | 27.0    | 154.0           | 0.0     |         | 72.0    | 0.0           | 1.7    | 180.7    | 100.7         | 0.0     | 0.0    |
| 83.20 |                 | 10.0    | 16.2    |                 |         |         |         | 0.0           | 1.0    | 10.0     | 17.2          | 0.0     | 0.0    |
|       |                 |         |         |                 |         |         |         | То            | otals: | 49,718.8 | 34,392.6      | 0.00    | 0.00   |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:43 PM

| Load Case: 0.9D + 1.0W     | 113 mph with No Ice (Reduced DL) | 16 Iterations |
|----------------------------|----------------------------------|---------------|
| Gust Response Factor :1.10 |                                  |               |
| Dead Load Factor :0.90     |                                  |               |
| Wind Load Factor :1.00     |                                  |               |

#### **Calculated Forces**

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips)( | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips)   | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect<br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|------------------------|-----------------------|----------------------------------|-----------------------|---------------------|------------------------|------------------------|--------------------------|-------------------|-------|
| 0.00                | -34.47                 | -49.84                 | 0.00                  | -2.640.27              | 0.00                  | 2.640.27                         | 5.994.05 <sup>2</sup> | 1.434.32            | 6.672.27               | 6.339.93               | 0.00                     | 0.00              | 0.423 |
| 5.00                | -32.81                 | -49.37                 | 0.00                  | -2,391.05              | 0.00                  | 2,391.05                         | 5,848.22              | 1,387.57            | 6,244.46               | 5,982.13               | 0.07                     | -0.13             | 0.407 |
| 10.00               | -31.20                 | -48.91                 | 0.00                  | -2,144.19              | 0.00                  | 2,144.19                         | 5,676.12              | 1,340.82            | 5,830.83               | 5,608.53               | 0.28                     | -0.26             | 0.389 |
| 15.00               | -29.10                 | -46.86                 | 0.00                  | -1,899.65              | 0.00                  | 1,899.65                         | 5,478.21 <sup>-</sup> | 1,294.07            | 5,431.37               | 5,222.30               | 0.63                     | -0.39             | 0.370 |
| 20.00               | -27.08                 | -44.83                 | 0.00                  | -1,665.34              | 0.00                  | 1,665.34                         | 5,280.30 <sup>2</sup> | 1,247.31            | 5,046.08               | 4,849.84               | 1.10                     | -0.52             | 0.350 |
| 22.69               | -26.28                 | -44.59                 | 0.00                  | -1,544.86              | 0.00                  | 1,544.86                         | 5,173.92              | 1,222.19            | 4,844.84               | 4,655.34               | 1.41                     | -0.58             | 0.338 |
| 25.00               | -24.64                 | -42.55                 | 0.00                  | -1,441.74              | 0.00                  | 1,441.74                         | 5,082.39 <sup>2</sup> | 1,200.56            | 4,674.96               | 4,491.17               | 1.71                     | -0.64             | 0.327 |
| 28.85               | -22.85                 | -42.29                 | 0.00                  | -1,277.84              | 0.00                  | 1,277.84                         | 4,410.41 <sup>-</sup> | 1,041.83            | 4,023.22               | 3,870.44               | 2.27                     | -0.73             | 0.337 |
| 30.00               | -22.00                 | -40.21                 | 0.00                  | -1,229.27              | 0.00                  | 1,229.27                         | 4,370.63 <sup>2</sup> | 1,032.43            | 3,950.99               | 3,800.59               | 2.45                     | -0.76             | 0.330 |
| 35.00               | -20.22                 | -37.87                 | 0.00                  | -1,028.25              | 0.00                  | 1,028.25                         | 4,197.46              | 991.53              | 3,644.15               | 3,503.90               | 3.32                     | -0.88             | 0.300 |
| 40.00               | -18.50                 | -35.49                 | 0.00                  | -838.90                | 0.00                  | 838.90                           | 4,024.29              | 950.62              | 3,349.71               | 3,219.28               | 4.30                     | -0.99             | 0.267 |
| 45.00               | -16.83                 | -33.21                 | 0.00                  | -661.44                | 0.00                  | 661.44                           | 3,851.11              | 909.71              | 3,067.67               | 2,946.70               | 5.40                     | -1.10             | 0.230 |
| 47.16               | -16.33                 | -32.97                 | 0.00                  | -589.74                | 0.00                  | 589.74                           | 3,776.34              | 892.05              | 2,949.72               | 2,832.74               | 5.91                     | -1.14             | 0.214 |
| 50.00               | -14.88                 | -30.74                 | 0.00                  | -496.08                | 0.00                  | 496.08                           | 3,677.94              | 868.80              | 2,798.03               | 2,686.19               | 6.61                     | -1.19             | 0.190 |
| 52.38               | -14.10                 | -30.49                 | 0.00                  | -422.92                | 0.00                  | 422.92                           | 2,517.80              | 619.72              | 1,992.88               | 1,842.71               | 7.21                     | -1.23             | 0.238 |
| 55.00               | -13.15                 | -28.32                 | 0.00                  | -343.03                | 0.00                  | 343.03                           | 2,473.70              | 604.41              | 1,895.64               | 1,765.31               | 7.90                     | -1.27             | 0.202 |
| 56.00               | -10.87                 | -21.67                 | 0.00                  | -313.16                | 0.00                  | 313.16                           | 2,456.62              | 598.57              | 1,859.17               | 1,736.02               | 8.17                     | -1.29             | 0.186 |
| 57.00               | -10.06                 | -20.61                 | 0.00                  | -291.49                | 0.00                  | 291.49                           | 2,439.40              | 592.72              | 1,823.05               | 1,706.88               | 8.44                     | -1.30             | 0.176 |
| 60.00               | -9.10                  | -18.22                 | 0.00                  | -229.66                | 0.00                  | 229.66                           | 2,386.97              | 575.19              | 1,716.81               | 1,620.34               | 9.27                     | -1.35             | 0.147 |
| 65.00               | -7.88                  | -15.83                 | 0.00                  | -138.59                | 0.00                  | 138.59                           | 2,296.90              | 545.97              | 1,546.84               | 1,479.25               | 10.72                    | -1.41             | 0.098 |
| 67.00               | -4.76                  | -11.39                 | 0.00                  | -104.86                | 0.00                  | 104.86                           | 2,259.94              | 534.28              | 1,481.33               | 1,423.98               | 11.31                    | -1.42             | 0.076 |
| 70.00               | -3.96                  | -8.97                  | 0.00                  | -70.68                 | 0.00                  | 70.68                            | 2,187.59              | 516.75              | 1,385.73               | 1,332.71               | 12.21                    | -1.44             | 0.055 |
| 75.00               | -2.99                  | -6.57                  | 0.00                  | -25.01                 | 0.00                  | 25.01                            | 2,063.89              | 487.53              | 1,233.47               | 1,185.51               | 13.74                    | -1.47             | 0.023 |
| 76.70               | -2.82                  | -6.49                  | 0.00                  | -13.84                 | 0.00                  | 13.84                            | 2,021.83              | 477.60              | 1,183.72               | 1,137.43               | 14.26                    | -1.47             | 0.014 |
| 76.70               | -2.82                  | -6.49                  | 0.00                  | -13.84                 | 0.00                  | 13.84                            | 138.83                | 41.65               | 15.24                  | 15.36                  | 14.26                    | -1.47             | 0.946 |
| 77.00               | -0.75                  | -2.74                  | 0.00                  | -11.90                 | 0.00                  | 11.90                            | 138.83                | 41.65               | 15.24                  | 15.36                  | 14.36                    | -1.47             | 0.784 |
| 80.00               | -0.23                  | -0.56                  | 0.00                  | -3.68                  | 0.00                  | 3.68                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 15.54                    | -2.17             | 0.242 |
| 82.00               | -0.14                  | -0.38                  | 0.00                  | -2.56                  | 0.00                  | 2.56                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 16.49                    | -2.35             | 0.168 |
| 83.20               | 0.00                   | -0.37                  | 0.00                  | -2.10                  | 0.00                  | 2.10                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 17.09                    | -2.43             | 0.137 |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

# Code: ANSI/TIA-222-H

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Engineering Number:13701270\_C3\_02

7/28/2021 2:56:43 PM

| Load Case: 1.2D + 1.0Di + 1.0Wi | 49 mph with 0.85 in Radial Ice | 15 Iterations               |
|---------------------------------|--------------------------------|-----------------------------|
| Gust Response Factor :1.10      | Ice Dead Load Factor 1.00      |                             |
| Dead Load Factor :1.20          |                                | Ice Importance Factor :1.00 |
| Wind Load Factor :1.00          |                                |                             |

# Applied Segment Forces Summary

|       |                 | Shaft I | Forces  | Discrete Forces |         |         |         | Linear Forces |        |          | Sum of Forces |         |        |
|-------|-----------------|---------|---------|-----------------|---------|---------|---------|---------------|--------|----------|---------------|---------|--------|
| Seg   |                 |         | Dead    | · · ·           |         | Moment  | Dead    |               | Dead   |          | Dead          | Torsion | Moment |
| Elev  |                 | Wind FX | Load    | Wind FX         | MY      | MZ      | Load    | Wind FX       | Load   | Wind FX  | Load          | MY      | MZ     |
| (ft)  | Description     | (lb)    | (lb)    | (lb)            | (lb-ft) | (lb-ft) | (lb)    | (lb)          | (lb)   | (lb)     | (lb)          | (lb-ft) | (lb)   |
| 0.00  |                 | 87.0    | 0.0     |                 |         |         |         | 0.0           | 0.0    | 87.0     | 0.0           | 0.0     | 0.0    |
| 5.00  |                 | 171.4   | 1,851.2 |                 |         |         |         | 0.0           | 419.3  | 171.4    | 2,270.4       | 0.0     | 0.0    |
| 10.00 |                 | 166.2   | 1,813.8 |                 |         |         |         | 0.0           | 419.3  | 166.2    | 2,233.0       | 0.0     | 0.0    |
| 15.00 | Appurtenance(s) | 163.1   | 1,763.3 | 384.7           | 0.0     |         | 845.1   | 0.0           | 419.3  | 547.8    | 3,027.7       | 0.0     | 0.0    |
| 20.00 | Appurtenance(s) | 125.3   | 1,708.6 | 407.7           | 0.0     | 0.0     | 851.5   | 0.0           | 419.3  | 533.0    | 2,979.3       | 0.0     | 0.0    |
| 22.69 | Bot - Section 2 | 82.7    | 895.9   |                 |         |         |         | 0.0           | 225.4  | 82.7     | 1,121.3       | 0.0     | 0.0    |
| 25.00 | Appurtenance(s) | 103.0   | 1,342.4 | 427.1           | 0.0     | 0.0     | 857.5   | 0.0           | 193.9  | 530.1    | 2,393.8       | 0.0     | 0.0    |
| 28.85 | Top - Section 1 | 83.5    | 2,184.4 |                 |         |         |         | 0.0           | 323.0  | 83.5     | 2,507.4       | 0.0     | 0.0    |
| 30.00 | Appurtenance(s) | 101.9   | 329.9   | 443.2           | 0.0     | 0.0     | 861.7   | 0.0           | 96.3   | 545.1    | 1,287.9       | 0.0     | 0.0    |
| 35.00 | Appurtenance(s) | 164.5   | 1,400.4 | 456.4           | 0.0     | 0.0     | 863.7   | 0.0           | 419.3  | 620.8    | 2,683.4       | 0.0     | 0.0    |
| 40.00 | Appurtenance(s) | 161.8   | 1,347.1 | 468.8           | 0.0     | 0.0     | 866.6   | 0.0           | 419.3  | 630.6    | 2,633.0       | 0.0     | 0.0    |
| 45.00 | Appurtenance(s) | 114.2   | 1,293.1 | 480.0           | 0.0     | 0.0     | 869.2   | 0.0           | 419.3  | 594.3    | 2,581.6       | 0.0     | 0.0    |
| 47.16 | Bot - Section 3 | 79.1    | 542.7   |                 |         |         |         | 0.0           | 181.0  | 79.1     | 723.7         | 0.0     | 0.0    |
| 50.00 | Appurtenance(s) | 82.2    | 1,124.6 | 490.6           | 0.0     | 0.0     | 872.0   | 0.0           | 238.2  | 572.8    | 2,234.9       | 0.0     | 0.0    |
| 52.38 | Top - Section 2 | 77.6    | 920.3   |                 |         |         |         | 0.0           | 199.6  | 77.6     | 1,119.9       | 0.0     | 0.0    |
| 55.00 | Appurtenance(s) | 55.6    | 478.3   | 500.1           | 0.0     | 0.0     | 874.2   | 0.0           | 219.7  | 555.8    | 1,572.2       | 0.0     | 0.0    |
| 56.00 | Appurtenance(s) | 30.4    | 179.9   | 1,516.0         | 0.0     | 330.5   | 4,578.8 | 0.0           | 83.9   | 1,546.4  | 4,842.5       | 0.0     | 0.0    |
| 57.00 | Appurtenance(s) | 60.1    | 178.2   | 212.6           | 0.0     | 0.0     | 1,132.9 | 0.0           | 65.0   | 272.7    | 1,376.1       | 0.0     | 0.0    |
| 60.00 | Appurtenance(s) | 117.9   | 523.5   | 508.9           | 0.0     | 0.0     | 876.0   | 0.0           | 195.0  | 626.8    | 1,594.5       | 0.0     | 0.0    |
| 65.00 | Appurtenance(s) | 101.4   | 837.1   | 516.9           | 0.0     | 0.0     | 877.5   | 0.0           | 325.0  | 618.3    | 2,039.5       | 0.0     | 0.0    |
| 67.00 | Appurtenance(s) | 70.3    | 324.2   | 930.2           | 0.0     | 457.3   | 5,619.8 | 0.0           | 130.0  | 1.000.5  | 6.074.0       | 0.0     | 0.0    |
| 70.00 | Appurtenance(s) | 109.4   | 473.1   | 524.9           | 0.0     |         | 879.5   | 0.0           | 47.1   | 634.4    | 1,399.6       | 0.0     | 0.0    |
| 75.00 | Appurtenance(s) | 89.9    | 752.6   | 532.6           | 0.0     | 213.0   | 880.7   | 0.0           | 78.5   | 622.5    | 1,711.8       | 0.0     | 0.0    |
| 76.70 | Top - Section 3 | 23.1    | 247.3   |                 |         |         |         | 0.0           | 26.7   | 23.1     | 274.0         | 0.0     | 0.0    |
| 77.00 | Appurtenance(s) | 9.1     | 7.2     | 815.2           | 0.0     | 0.0     | 4,132.2 | 0.0           | 4.7    | 824.3    | 4,144.1       | 0.0     | 0.0    |
| 80.00 | Appurtenance(s) | 13.9    | 72.4    | 539.2           | 0.0     |         | 882.5   | 0.0           | 3.5    | 553.1    | 958.3         | 0.0     | 0.0    |
| 82.00 | Appurtenance(s) | 8.9     | 48.3    | 39.3            | 0.0     |         | 132.8   | 0.0           | 2.3    | 48.2     | 183.5         | 0.0     | 0.0    |
| 83.20 |                 | 3.4     | 29.0    |                 |         |         |         | 0.0           | 1.4    | 3.4      | 30.4          | 0.0     | 0.0    |
|       |                 |         |         |                 |         |         |         | То            | otals: | 12,651.3 | 55,997.9      | 0.00    | 0.00   |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

\_02 7/28/2021 2:56:46 PM

| Load Case: 1.2D + 1.0Di + 1.0Wi | 49 mph with 0.85 in Radial Ice | 15 Iterations               |
|---------------------------------|--------------------------------|-----------------------------|
| Gust Response Factor :1.10      | Ice Dead Load Factor 1.00      |                             |
| Dead Load Factor :1.20          |                                | Ice Importance Factor :1.00 |
| Wind Load Factor :1.00          |                                |                             |

## Calculated Forces

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips)( | Mu<br>MX<br>ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect I<br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|------------------------|----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|----------------------------|-------------------|-------|
| 0.00                | -56.25                 | -12.70                 | 0.00                  | -667.14                | 0.00                 | 667.14                           | 5,994.05            | 1,434.32            | 6,672.27               | 6,339.93               | 0.00                       | 0.00              | 0.115 |
| 5.00                | -53.97                 | -12.56                 | 0.00                  | -603.64                | 0.00                 | 603.64                           | 5,848.22            | 1,387.57            | 6,244.46               | 5,982.13               | 0.02                       | -0.03             | 0.110 |
| 10.00               | -51.73                 | -12.42                 | 0.00                  | -540.86                | 0.00                 | 540.86                           | 5,676.12            | 1,340.82            | 5,830.83               | 5,608.53               | 0.07                       | -0.07             | 0.106 |
| 15.00               | -48.70                 | -11.89                 | 0.00                  | -478.76                | 0.00                 | 478.76                           | 5,478.21            | 1,294.07            | 5,431.37               | 5,222.30               | 0.16                       | -0.10             | 0.101 |
| 20.00               | -45.72                 | -11.37                 | 0.00                  | -419.29                | 0.00                 | 419.29                           | 5,280.30            | 1,247.31            | 5,046.08               | 4,849.84               | 0.28                       | -0.13             | 0.095 |
| 22.69               | -44.59                 | -11.30                 | 0.00                  | -388.72                | 0.00                 | 388.72                           | 5,173.92            | 1,222.19            | 4,844.84               | 4,655.34               | 0.36                       | -0.15             | 0.092 |
| 25.00               | -42.20                 | -10.78                 | 0.00                  | -362.59                | 0.00                 | 362.59                           | 5,082.39            | 1,200.56            | 4,674.96               | 4,491.17               | 0.43                       | -0.16             | 0.089 |
| 28.85               | -39.69                 | -10.70                 | 0.00                  | -321.08                | 0.00                 | 321.08                           | 4,410.41            | 1,041.83            | 4,023.22               | 3,870.44               | 0.57                       | -0.19             | 0.092 |
| 30.00               | -38.40                 | -10.16                 | 0.00                  | -308.79                | 0.00                 | 308.79                           | 4,370.63            | 1,032.43            | 3,950.99               | 3,800.59               | 0.62                       | -0.19             | 0.090 |
| 35.00               | -35.71                 | -9.55                  | 0.00                  | -257.98                | 0.00                 | 257.98                           | 4,197.46            | 991.53              | 3,644.15               | 3,503.90               | 0.84                       | -0.22             | 0.082 |
| 40.00               | -33.08                 | -8.92                  | 0.00                  | -210.24                | 0.00                 | 210.24                           | 4,024.29            | 950.62              | 3,349.71               | 3,219.28               | 1.08                       | -0.25             | 0.074 |
| 45.00               | -30.50                 | -8.33                  | 0.00                  | -165.62                | 0.00                 | 165.62                           | 3,851.11            | 909.71              | 3,067.67               | 2,946.70               | 1.36                       | -0.28             | 0.064 |
| 47.16               | -29.77                 | -8.25                  | 0.00                  | -147.64                | 0.00                 | 147.64                           | 3,776.34            | 892.05              | 2,949.72               | 2,832.74               | 1.49                       | -0.29             | 0.060 |
| 50.00               | -27.54                 | -7.67                  | 0.00                  | -124.21                | 0.00                 | 124.21                           | 3,677.94            | 868.80              | 2,798.03               | 2,686.19               | 1.66                       | -0.30             | 0.054 |
| 52.38               | -26.42                 | -7.59                  | 0.00                  | -105.95                | 0.00                 | 105.95                           | 2,517.80            | 619.72              | 1,992.88               | 1,842.71               | 1.82                       | -0.31             | 0.068 |
| 55.00               | -24.85                 | -7.03                  | 0.00                  | -86.06                 | 0.00                 | 86.06                            | 2,473.70            | 604.41              | 1,895.64               | 1,765.31               | 1.99                       | -0.32             | 0.059 |
| 56.00               | -20.01                 | -5.46                  | 0.00                  | -78.70                 | 0.00                 | 78.70                            | 2,456.62            | 598.57              | 1,859.17               | 1,736.02               | 2.06                       | -0.32             | 0.054 |
| 57.00               | -18.64                 | -5.18                  | 0.00                  | -73.24                 | 0.00                 | 73.24                            | 2,439.40            | 592.72              | 1,823.05               | 1,706.88               | 2.13                       | -0.33             | 0.051 |
| 60.00               | -17.05                 | -4.55                  | 0.00                  | -57.70                 | 0.00                 | 57.70                            | 2,386.97            | 575.19              | 1,716.81               | 1,620.34               | 2.33                       | -0.34             | 0.043 |
| 65.00               | -15.01                 | -3.92                  | 0.00                  | -34.95                 | 0.00                 | 34.95                            | 2,296.90            | 545.97              | 1,546.84               | 1,479.25               | 2.70                       | -0.35             | 0.030 |
| 67.00               | -8.94                  | -2.88                  | 0.00                  | -26.66                 | 0.00                 | 26.66                            | 2,259.94            | 534.28              | 1,481.33               | 1,423.98               | 2.85                       | -0.36             | 0.023 |
| 70.00               | -7.55                  | -2.24                  | 0.00                  | -18.01                 | 0.00                 | 18.01                            | 2,187.59            | 516.75              | 1,385.73               | 1,332.71               | 3.07                       | -0.36             | 0.017 |
| 75.00               | -5.84                  | -1.61                  | 0.00                  | -6.59                  | 0.00                 | 6.59                             | 2,063.89            | 487.53              | 1,233.47               | 1,185.51               | 3.46                       | -0.37             | 0.008 |
| 76.70               | -5.56                  | -1.58                  | 0.00                  | -3.86                  | 0.00                 | 3.86                             | 2,021.83            | 477.60              | 1,183.72               | 1,137.43               | 3.59                       | -0.37             | 0.006 |
| 76.70               | -5.56                  | -1.58                  | 0.00                  | -3.86                  | 0.00                 | 3.86                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 3.59                       | -0.37             | 0.293 |
| 77.00               | -1.42                  | -0.73                  | 0.00                  | -3.38                  | 0.00                 | 3.38                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 3.61                       | -0.37             | 0.231 |
| 80.00               | -0.47                  | -0.17                  | 0.00                  | -1.18                  | 0.00                 | 1.18                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 3.92                       | -0.57             | 0.080 |
| 82.00               | -0.29                  | -0.12                  | 0.00                  | -0.83                  | 0.00                 | 0.83                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 4.17                       | -0.63             | 0.056 |
| 83.20               | 0.00                   | -0.12                  | 0.00                  | -0.68                  | 0.00                 | 0.68                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 4.34                       | -0.66             | 0.044 |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

#### 7/28/2021 2:56:46 PM

Load Case: 1.0D + 1.0W

Serviceability 60 mph

15 Iterations

Gust Response Factor :1.10

Dead Load Factor :1.00

Wind Load Factor :1.00

# Applied Segment Forces Summary

|       |                 | Shaft F | orces   |         | Discrete | Forces  |         | Linear F | orces  |          | Sum o    | f Forces |        |
|-------|-----------------|---------|---------|---------|----------|---------|---------|----------|--------|----------|----------|----------|--------|
| Seg   |                 |         | Dead    |         | Torsion  | Moment  | Dead    |          | Dead   |          | Dead     | Torsion  | Moment |
| Elev  |                 | Wind FX | Load    | Wind FX | MY       | MZ      | Load    | Wind FX  | Load   | Wind FX  | Load     | MY       | MZ     |
| (ft)  | Description     | (lb)    | (lb)    | (lb)    | (lb-ft)  | (lb-ft) | (lb)    | (lb)     | (lb)   | (lb)     | (lb)     | (lb-ft)  | (lb)   |
| 0.00  |                 | 70.0    | 0.0     |         |          |         |         | 0.0      | 0.0    | 70.0     | 0.0      | 0.0      | 0.0    |
| 5.00  |                 | 137.7   | 1,367.8 |         |          |         |         | 0.0      | 349.4  | 137.7    | 1,717.2  | 0.0      | 0.0    |
| 10.00 |                 | 133.1   | 1,322.5 |         |          |         |         | 0.0      | 349.4  | 133.1    | 1,671.9  | 0.0      | 0.0    |
| 15.00 | Appurtenance(s) | 130.2   | 1,277.2 | 398.8   | 0.0      |         | 600.0   | 0.0      | 349.4  | 529.0    | 2,226.6  | 0.0      | 0.0    |
| 20.00 | Appurtenance(s) | 99.9    | 1,231.9 | 419.2   | 0.0      | 0.0     | 600.0   | 0.0      | 349.4  | 519.1    | 2,181.3  | 0.0      | 0.0    |
| 22.69 | Bot - Section 2 | 65.8    | 643.4   |         |          |         |         | 0.0      | 187.8  | 65.8     | 831.2    | 0.0      | 0.0    |
| 25.00 | Appurtenance(s) | 81.9    | 1,028.6 | 435.8   | 0.0      | 0.0     | 600.0   | 0.0      | 161.6  | 517.8    | 1,790.2  | 0.0      | 0.0    |
| 28.85 | Top - Section 1 | 66.4    | 1,672.9 |         |          |         |         | 0.0      | 269.1  | 66.4     | 1,942.0  | 0.0      | 0.0    |
| 30.00 | Appurtenance(s) | 80.9    | 230.9   | 449.8   | 0.0      | 0.0     | 600.0   | 0.0      | 80.3   | 530.7    | 911.2    | 0.0      | 0.0    |
| 35.00 | Appurtenance(s) | 130.3   | 981.1   | 462.1   | 0.0      | 0.0     | 600.0   | 0.0      | 349.4  | 592.4    | 1,930.5  | 0.0      | 0.0    |
| 40.00 | Appurtenance(s) | 128.0   | 941.4   | 472.9   | 0.0      | 0.0     | 600.0   | 0.0      | 349.4  | 600.9    | 1,890.8  | 0.0      | 0.0    |
| 45.00 | Appurtenance(s) | 90.2    | 901.8   | 482.7   | 0.0      | 0.0     | 600.0   | 0.0      | 349.4  | 572.9    | 1,851.2  | 0.0      | 0.0    |
| 47.16 | Bot - Section 3 | 62.3    | 377.1   |         |          |         |         | 0.0      | 150.9  | 62.3     | 528.0    | 0.0      | 0.0    |
| 50.00 | Appurtenance(s) | 64.8    | 838.6   | 491.6   | 0.0      | 0.0     | 600.0   | 0.0      | 198.5  | 556.4    | 1,637.2  | 0.0      | 0.0    |
| 52.38 | Top - Section 2 | 61.0    | 685.7   |         |          |         |         | 0.0      | 166.3  | 61.0     | 852.0    | 0.0      | 0.0    |
| 55.00 | Appurtenance(s) | 43.7    | 310.9   | 499.9   | 0.0      | 0.0     | 600.0   | 0.0      | 183.1  | 543.6    | 1,094.0  | 0.0      | 0.0    |
| 56.00 | Appurtenance(s) | 23.9    | 116.6   | 1,638.8 | 0.0      | 391.6   | 2,500.0 | 0.0      | 69.9   | 1,662.6  | 2,686.5  | 0.0      | 0.0    |
| 57.00 | Appurtenance(s) | 47.1    | 115.5   | 217.4   | 0.0      | 0.0     | 750.0   | 0.0      | 54.2   | 264.5    | 919.6    | 0.0      | 0.0    |
| 60.00 | Appurtenance(s) | 92.3    | 339.7   | 507.5   | 0.0      | 0.0     | 600.0   | 0.0      | 162.5  | 599.7    | 1,102.2  | 0.0      | 0.0    |
| 65.00 | Appurtenance(s) | 79.2    | 543.5   | 514.6   | 0.0      | 0.0     | 600.0   | 0.0      | 270.8  | 593.8    | 1,414.3  | 0.0      | 0.0    |
| 67.00 | Appurtenance(s) | 54.8    | 209.5   | 1,045.1 | 0.0      | 519.8   | 3,266.4 | 0.0      | 108.3  | 1,099.9  | 3,584.2  | 0.0      | 0.0    |
| 70.00 | Appurtenance(s) | 85.1    | 305.7   | 521.3   | 0.0      | 0.0     | 600.0   | 0.0      | 39.3   | 606.4    | 944.9    | 0.0      | 0.0    |
| 75.00 | Appurtenance(s) | 69.8    | 486.8   | 528.1   | 0.0      | 211.2   | 600.0   | 0.0      | 65.4   | 597.8    | 1,152.3  | 0.0      | 0.0    |
| 76.70 | Top - Section 3 | 18.1    | 159.1   |         |          |         |         | 0.0      | 22.3   | 18.1     | 181.3    | 0.0      | 0.0    |
| 77.00 | Appurtenance(s) | 8.8     | 4.5     | 927.1   | 0.0      | 0.0     | 2,386.2 | 0.0      | 3.9    | 935.9    | 2,394.6  | 0.0      | 0.0    |
| 80.00 | Appurtenance(s) | 13.3    | 45.0    | 533.5   | 0.0      | 0.0     | 600.0   | 0.0      | 2.9    | 546.8    | 647.9    | 0.0      | 0.0    |
| 82.00 | Appurtenance(s) | 8.6     | 30.0    | 38.8    | 0.0      |         | 80.0    | 0.0      | 1.9    | 47.4     | 111.9    | 0.0      | 0.0    |
| 83.20 |                 | 3.2     | 18.0    |         |          |         |         | 0.0      | 1.2    | 3.2      | 19.1     | 0.0      | 0.0    |
|       |                 |         |         |         |          |         |         | То       | otals: | 12,535.4 | 38,214.0 | 0.00     | 0.00   |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

### Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:49 PM

Load Case: 1.0D + 1.0W

Serviceability 60 mph

15 Iterations

Gust Response Factor :1.10 Dead Load Factor :1.00

Wind Load Factor : 1.00

### **Calculated Forces**

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips)   | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect  <br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|-----------------------|---------------------|------------------------|------------------------|----------------------------|-------------------|-------|
| 0.00                | -38.36                 | -12.57                 | 0.00                  | -666.45               | 0.00                  | 666.45                           | 5,994.05 <sup>-</sup> | 1,434.32            | 6,672.27               | 6,339.93               | 0.00                       | 0.00              | 0.112 |
| 5.00                | -36.63                 | -12.45                 | 0.00                  | -603.61               | 0.00                  | 603.61                           | 5,848.22 <sup>-</sup> | 1,387.57            | 6,244.46               | 5,982.13               | 0.02                       | -0.03             | 0.107 |
| 10.00               | -34.96                 | -12.34                 | 0.00                  | -541.36               | 0.00                  | 541.36                           | 5,676.12 <sup>-</sup> | 1,340.82            | 5,830.83               | 5,608.53               | 0.07                       | -0.07             | 0.103 |
| 15.00               | -32.72                 | -11.82                 | 0.00                  | -479.68               | 0.00                  | 479.68                           | 5,478.21 <sup>-</sup> | 1,294.07            | 5,431.37               | 5,222.30               | 0.16                       | -0.10             | 0.098 |
| 20.00               | -30.54                 | -11.31                 | 0.00                  | -420.57               | 0.00                  | 420.57                           | 5,280.30 <sup>-</sup> | 1,247.31            | 5,046.08               | 4,849.84               | 0.28                       | -0.13             | 0.093 |
| 22.69               | -29.70                 | -11.25                 | 0.00                  | -390.17               | 0.00                  | 390.17                           | 5,173.92 <sup>-</sup> | 1,222.19            | 4,844.84               | 4,655.34               | 0.36                       | -0.15             | 0.090 |
| 25.00               | -27.91                 | -10.74                 | 0.00                  | -364.15               | 0.00                  | 364.15                           | 5,082.39 <sup>-</sup> | 1,200.56            | 4,674.96               | 4,491.17               | 0.43                       | -0.16             | 0.087 |
| 28.85               | -25.97                 | -10.67                 | 0.00                  | -322.78               | 0.00                  | 322.78                           | 4,410.41 <sup>-</sup> | 1,041.83            | 4,023.22               | 3,870.44               | 0.57                       | -0.19             | 0.089 |
| 30.00               | -25.05                 | -10.15                 | 0.00                  | -310.53               | 0.00                  | 310.53                           | 4,370.63 <sup>-</sup> | 1,032.43            | 3,950.99               | 3,800.59               | 0.62                       | -0.19             | 0.088 |
| 35.00               | -23.12                 | -9.56                  | 0.00                  | -259.79               | 0.00                  | 259.79                           | 4,197.46              | 991.53              | 3,644.15               | 3,503.90               | 0.84                       | -0.22             | 0.080 |
| 40.00               | -21.23                 | -8.96                  | 0.00                  | -211.98               | 0.00                  | 211.98                           | 4,024.29              | 950.62              | 3,349.71               | 3,219.28               | 1.09                       | -0.25             | 0.071 |
| 45.00               | -19.38                 | -8.39                  | 0.00                  | -167.17               | 0.00                  | 167.17                           | 3,851.11              | 909.71              | 3,067.67               | 2,946.70               | 1.36                       | -0.28             | 0.062 |
| 47.16               | -18.85                 | -8.33                  | 0.00                  | -149.07               | 0.00                  | 149.07                           | 3,776.34              | 892.05              | 2,949.72               | 2,832.74               | 1.49                       | -0.29             | 0.058 |
| 50.00               | -17.21                 | -7.76                  | 0.00                  | -125.41               | 0.00                  | 125.41                           | 3,677.94              | 868.80              | 2,798.03               | 2,686.19               | 1.67                       | -0.30             | 0.051 |
| 52.38               | -16.36                 | -7.70                  | 0.00                  | -106.93               | 0.00                  | 106.93                           | 2,517.80              | 619.72              | 1,992.88               | 1,842.71               | 1.82                       | -0.31             | 0.065 |
| 55.00               | -15.27                 | -7.15                  | 0.00                  | -86.76                | 0.00                  | 86.76                            | 2,473.70              | 604.41              | 1,895.64               | 1,765.31               | 1.99                       | -0.32             | 0.055 |
| 56.00               | -12.59                 | -5.48                  | 0.00                  | -79.21                | 0.00                  | 79.21                            | 2,456.62              | 598.57              | 1,859.17               | 1,736.02               | 2.06                       | -0.32             | 0.051 |
| 57.00               | -11.67                 | -5.21                  | 0.00                  | -73.74                | 0.00                  | 73.74                            | 2,439.40              | 592.72              | 1,823.05               | 1,706.88               | 2.13                       | -0.33             | 0.048 |
| 60.00               | -10.57                 | -4.60                  | 0.00                  | -58.11                | 0.00                  | 58.11                            | 2,386.97              | 575.19              | 1,716.81               | 1,620.34               | 2.34                       | -0.34             | 0.040 |
| 65.00               | -9.16                  | -4.00                  | 0.00                  | -35.09                | 0.00                  | 35.09                            | 2,296.90              | 545.97              | 1,546.84               | 1,479.25               | 2.71                       | -0.36             | 0.028 |
| 67.00               | -5.58                  | -2.88                  | 0.00                  | -26.56                | 0.00                  | 26.56                            | 2,259.94              | 534.28              | 1,481.33               | 1,423.98               | 2.86                       | -0.36             | 0.021 |
| 70.00               | -4.64                  | -2.27                  | 0.00                  | -17.91                | 0.00                  | 17.91                            | 2,187.59              | 516.75              | 1,385.73               | 1,332.71               | 3.09                       | -0.36             | 0.016 |
| 75.00               | -3.49                  | -1.67                  | 0.00                  | -6.35                 | 0.00                  | 6.35                             | 2,063.89              | 487.53              | 1,233.47               | 1,185.51               | 3.47                       | -0.37             | 0.007 |
| 76.70               | -3.31                  | -1.65                  | 0.00                  | -3.52                 | 0.00                  | 3.52                             | 2,021.83              | 477.60              | 1,183.72               | 1,137.43               | 3.60                       | -0.37             | 0.005 |
| 76.70               | -3.31                  | -1.65                  | 0.00                  | -3.52                 | 0.00                  | 3.52                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 3.60                       | -0.37             | 0.254 |
| 77.00               | -0.92                  | -0.70                  | 0.00                  | -3.02                 | 0.00                  | 3.02                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 3.63                       | -0.37             | 0.204 |
| 80.00               | -0.28                  | -0.14                  | 0.00                  | -0.93                 | 0.00                  | 0.93                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 3.93                       | -0.55             | 0.063 |
| 82.00               | -0.17                  | -0.10                  | 0.00                  | -0.65                 | 0.00                  | 0.65                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 4.17                       | -0.60             | 0.043 |
| 83.20               | 0.00                   | -0.09                  | 0.00                  | -0.53                 | 0.00                  | 0.53                             | 138.83                | 41.65               | 15.24                  | 15.36                  | 4.32                       | -0.62             | 0.034 |

Site Name: Byram Park CT, CT

Code: ANSI/TIA-222-H Engineering Number:13701270\_C3\_02 © 2007 - 2021 by ATC IP LLC. All rights reserved. 7/28/2021 2:56:49 PM

Customer: VERIZON WIRELESS

| Spectral Response Acceleration for Short Period (S <sub>s</sub> ):             | 0.28    |
|--------------------------------------------------------------------------------|---------|
| Spectral Response Acceleration at 1.0 Second Period (S 1):                     | 0.06    |
| Long-Period Transition Period (T _):                                           | 6       |
| Importance Factor (I <sub>E</sub> ):                                           | 1.00    |
| Site Coefficient F <sub>a</sub> :                                              | 1.58    |
| Site Coeffiecient F v:                                                         | 2.40    |
| Response Modification Coefficient (R):                                         | 1.50    |
| Design Spectral Response Acceleration at Short Period (S <sub>ds</sub> ):      | 0.29    |
| Design Spectral Response Acceleration at 1.0 Second Period (S <sub>d1</sub> ): | 0.10    |
| Seismic Response Coefficient (C <sub>s</sub> ):                                | 0.08    |
| Upper Limit C <sub>s</sub>                                                     | 0.08    |
| Lower Limit C <sub>s</sub>                                                     | 0.03    |
| Period based on Rayleigh Method (sec):                                         | 0.78    |
| Redundancy Factor (p):                                                         | 1.00    |
| Seismic Force Distribution Exponent (k):                                       | 1.14    |
| Total Unfactored Dead Load:                                                    | 38.36 k |
| Seismic Base Shear (E):                                                        | 3.14 k  |
|                                                                                |         |

#### Load Case 1.2D + 1.0Ev + 1.0Eh

Seismic

|         | Height<br>Above<br>Base | Weight | Wz      |                 | Horizontal<br>Force | Vertical<br>Force |
|---------|-------------------------|--------|---------|-----------------|---------------------|-------------------|
| Segment | (ft)                    | (lb)   | (lb-ft) | C <sub>vx</sub> | (lb)                | (lb)              |
| 27      | 82.60                   | 19     | 3       | 0.001           | 3                   | 24                |
| 26      | 81.00                   | 32     | 5       | 0.002           | 5                   | 40                |
| 25      | 78.50                   | 48     | 7       | 0.002           | 7                   | 60                |
| 24      | 76.85                   | 8      | 1       | 0.000           | 1                   | 11                |
| 23      | 75.85                   | 181    | 25      | 0.009           | 27                  | 228               |
| 22      | 72.50                   | 552    | 73      | 0.025           | 79                  | 695               |
| 21      | 68.50                   | 345    | 43      | 0.015           | 46                  | 434               |
| 20      | 66.00                   | 318    | 38      | 0.013           | 41                  | 400               |
| 19      | 62.50                   | 814    | 91      | 0.031           | 98                  | 1,025             |
| 18      | 58.50                   | 502    | 52      | 0.018           | 56                  | 632               |
| 17      | 56.50                   | 170    | 17      | 0.006           | 18                  | 213               |
| 16      | 55.50                   | 187    | 18      | 0.006           | 20                  | 235               |
| 15      | 53.69                   | 494    | 46      | 0.016           | 50                  | 622               |
| 14      | 51.19                   | 852    | 76      | 0.026           | 82                  | 1,072             |
| 13      | 48.58                   | 1,037  | 87      | 0.030           | 94                  | 1,305             |
| 12      | 46.08                   | 528    | 42      | 0.014           | 45                  | 664               |
| 11      | 42.50                   | 1,251  | 90      | 0.031           | 97                  | 1,574             |
| 10      | 37.50                   | 1,291  | 81      | 0.028           | 87                  | 1,624             |
| 9       | 32.50                   | 1,330  | 71      | 0.024           | 76                  | 1,674             |
| 8       | 29.43                   | 311    | 15      | 0.005           | 16                  | 392               |
| 7       | 26.93                   | 1,942  | 83      | 0.029           | 90                  | 2,444             |
| 6       | 23.84                   | 1,190  | 44      | 0.015           | 48                  | 1,498             |
| 5       | 21.34                   | 831    | 27      | 0.009           | 29                  | 1,046             |
| 4       | 17.50                   | 1,581  | 41      | 0.014           | 45                  | 1,990             |
| 3       | 12.50                   | 1,627  | 29      | 0.010           | 31                  | 2,047             |

Site Number: 414240

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:49 PM

| 2                                            | 7.50           | 1,672         | 17        | 0.006          | 18         | 2,104       |
|----------------------------------------------|----------------|---------------|-----------|----------------|------------|-------------|
| 1                                            | 2.50           | 1,717         | 5         | 0.002          | 5          | 2,161       |
| Bird 428D-83I-01-T                           | 83.20          | 9             | 1         | 0.000          | 1          | 11          |
| dbSpectra DS7C09P36U                         | 83.20          | 140           | 22        | 0.007          | 23         | 176         |
| Pole Mount                                   | 82.00          | 80            | 12        | 0.004          | 13         | 101         |
| Pine Branches                                | 80.00          | 600           | 89        | 0.030          | 96         | 755         |
| Commscope CBC1923Q-4                         | 77.00          | 22            | 3         | 0.001          | 3          | 28          |
| Ericsson Radio 4449                          | 77.00          | 225           | 32        | 0.011          | 34         | 283         |
| Ericsson RRUS 4415 B                         | 77.00          | 138           | 20        | 0.007          | 21         | 174         |
| Ericsson RRUS 32 B66                         | 77.00          | 159           | 23        | 0.008          | 24         | 200         |
| Ericsson Air6449 B41                         | 77.00          | 312           | 44        | 0.015          | 48         | 393         |
| Ericsson AIR32 B66Aa                         | 77.00          | 397           | 56        | 0.019          | 61         | 499         |
| Flat T-Arms                                  | 77.00          | 750           | 106       | 0.036          | 115        | 944         |
| RFS APXVAARR24_43-U-                         | 77.00          | 384           | 54        | 0.019          | 59         | 483         |
| Pine Branches                                | 75.00          | 600           | 83        | 0.028          | 89         | 755         |
| Pine Branches<br>CCI DTMABP7819VG12A         | 70.00<br>67.00 | 600<br>115    | 76        | 0.026<br>0.005 | 82<br>15   | 755<br>145  |
|                                              | 67.00          | 16            | 14        | 0.005          | 2          | 20          |
| Raycap DC6-48-60-0-8                         | 67.00          | 66            | 2         | 0.003          | 9          | 83          |
| Raycap DC6-48-60-18-                         |                |               | 8         |                |            |             |
| Ericsson RRUS 4426 B<br>Ericsson RRUS 4449 B | 67.00<br>67.00 | 145<br>213    | 18        | 0.006<br>0.009 | 19<br>28   | 183<br>268  |
| Ericsson RRUS 4449 B<br>Ericsson RRUS 4478 B | 67.00          | 213<br>178    | 26        | 0.009          | 28<br>23   | 268<br>224  |
|                                              |                |               | 22        |                |            |             |
| Ericsson RRUS 32 B2<br>Ericsson RRUS-32 (77  | 67.00<br>67.00 | 159<br>231    | 19        | 0.007<br>0.010 | 21<br>30   | 200<br>291  |
| •                                            | 67.00          | 159           | 28<br>19  | 0.007          | 21         | 200         |
| Powerwave Allgon P65<br>CCI DMP65R-BU4D      | 67.00          | 407           | 49        | 0.007          | 53         | 513         |
| CCI OPA-65R-LCUU-H6                          | 67.00          | 219           | 49<br>26  | 0.009          | 29         | 276         |
| Site PRO1, RMV12-496                         | 67.00          | 1,358         |           | 0.056          | 177        | 1,709       |
| Pine Branches                                | 65.00          | 600           | 164<br>70 | 0.024          | 76         | 755         |
| Pine Branches                                | 60.00          | 600           | 70<br>64  | 0.024          | 69         | 755         |
| Flat T-Arm                                   | 57.00          | 750           | 75        | 0.026          | 81         | 944         |
| Commscope CBC78T-DS-                         | 56.00          | 62            | 6         | 0.002          | 7          | 78          |
| Samsung B2/B66A RRH-                         | 56.00          | 253           | 25        | 0.009          | 27         | 319         |
| Samsung B5/B13 RRH-B                         | 56.00          | 211           | 25        | 0.007          | 22         | 265         |
| Raycap RCMDC-6627-PF                         | 56.00          | 32            | 3         | 0.001          | 3          | 40          |
| Samsung MT6407-77A                           | 56.00          | 245           | 24        | 0.008          | 26         | 308         |
| Commscope JAHH-65A-R                         | 56.00          | 101           | 10        | 0.003          | 11         | 128         |
| Commscope JAHH-45A-R                         | 56.00          | 282           | 28        | 0.010          | 30         | 355         |
| Amphenol Antel LPA-8                         | 56.00          | 162           | 16        | 0.005          | 17         | 204         |
| VZW Unused Reserve (                         | 56.00          | 1,152         | 113       | 0.039          | 123        | 1,449       |
| Pine Branches                                | 55.00          | 600           | 58        | 0.020          | 63         | 755         |
| Pine Branches                                | 50.00          | 600           | 52        | 0.018          | 56         | 755         |
| Pine Branches                                | 45.00          | 600           | 46        | 0.016          | 50         | 755         |
| Pine Branches                                | 40.00          | 600           | 40        | 0.014          | 43         | 755         |
| Pine Branches                                | 35.00          | 600           | 35        | 0.012          | 37         | 755         |
| Pine Branches                                | 30.00          | 600           | 29        | 0.010          | 31         | 755         |
| Pine Branches                                | 25.00          | 600           | 24        | 0.008          | 25         | 755         |
| Pine Branches                                | 20.00          | 600           | 18        | 0.006          | 20         | 755         |
| Pine Branches                                | 15.00          | 600           | 13        | 0.005          | 14         | 755         |
|                                              |                | 38,363        | 2,913     | 1.000          | 3,144      | 48,272      |
|                                              |                |               |           |                | ·          | -, <b>-</b> |
| Load Case 0.9D - 1.0Ev + 1.0                 |                | Seismic (Redu | icea DL)  |                |            |             |
|                                              | Height         |               |           |                |            | Vertical    |
|                                              | Above          |               |           |                | Horizontal |             |
|                                              | Base           | Weight        | Wz        |                | Force      | Force       |
| Segment                                      | (ft)           | (lb)          | (lb-ft)   | C vx           | (lb)       | (lb)        |
| 27                                           | 82.60          | 19            | 3         | 0.001          | 3          | 16          |
| 26                                           | 81.00          | 32            | 5         | 0.002          | 5          | 27          |
| 25                                           | 78.50          | 48            | 7         | 0.002          | 7          | 40          |
| 24                                           | 76.85          | 8             | 1         | 0.000          | 1          | 7           |
| 23                                           | 75.85          | 181           | 25        | 0.009          | 27         | 153         |
| 22                                           | 72.50          | 552           | 73        | 0.025          | 79         | 465         |
|                                              |                |               |           |                |            |             |

Site Name: Byram Park CT, CT

Customer: VERIZON WIRELESS

Engineering Number:13701270\_C3\_02

© 2007 - 2021 by ATC IP LLC. All rights reserved.

7/28/2021 2:56:49 PM

| 21                   | 68.50          | 345            | 43       | 0.015          | 46       | 29           |
|----------------------|----------------|----------------|----------|----------------|----------|--------------|
| 0                    | 66.00          | 318            | 38       | 0.013          | 41       | 20           |
| 9                    | 62.50          | 814            | 91       | 0.031          | 98       | 6            |
| 8                    | 58.50          | 502            | 52       | 0.018          | 56       | 42           |
| 7                    | 56.50          | 170            | 17       | 0.006          | 18       | 14           |
| 6                    | 55.50          | 187            | 18       | 0.006          | 20       | 1            |
| 5                    | 53.69          | 494            | 46       | 0.016          | 50       | 4            |
| 4                    | 51.19          | 852            | 76       | 0.026          | 82       | 7'           |
| 3                    | 48.58<br>46.08 | 1,037          | 87       | 0.030<br>0.014 | 94<br>45 | 87<br>44     |
| 2<br>1               | 48.08          | 528            | 42       | 0.031          | 45<br>97 |              |
| 0                    | 42.50<br>37.50 | 1,251<br>1,291 | 90<br>81 | 0.028          | 97<br>87 | 1,04<br>1,08 |
|                      | 32.50          | 1,330          | 71       | 0.024          | 76       | 1,12         |
|                      | 29.43          | 311            | 15       | 0.005          | 16       | 2            |
|                      | 26.93          | 1,942          | 83       | 0.029          | 90       | 1,6          |
| i                    | 20.95          | 1,190          | 63<br>44 | 0.015          | 48       | 1,0          |
|                      | 21.34          | 831            | 44<br>27 | 0.009          | 29       | 7            |
|                      | 17.50          | 1,581          | 41       | 0.014          | 45       | 1,3          |
|                      | 12.50          | 1,627          | 29       | 0.010          | 31       | 1,3          |
|                      | 7.50           | 1,672          | 29<br>17 | 0.006          | 18       | 1,3          |
|                      | 2.50           | 1,717          | 5        | 0.002          | 5        | 1,4          |
| ird 428D-83I-01-T    | 83.20          | 9              | 3<br>1   | 0.000          | 1        | 1,-          |
| bSpectra DS7C09P36U  | 83.20          | 140            | 22       | 0.007          | 23       | 1            |
| Pole Mount           | 82.00          | 80             | 12       | 0.004          | 13       |              |
| ine Branches         | 80.00          | 600            | 89       | 0.030          | 96       | 5            |
| Commscope CBC1923Q-4 | 77.00          | 22             | 3        | 0.001          | 3        | Ũ            |
| ricsson Radio 4449   | 77.00          | 225            | 32       | 0.011          | 34       | 1            |
| ricsson RRUS 4415 B  | 77.00          | 138            | 20       | 0.007          | 21       | 1            |
| ricsson RRUS 32 B66  | 77.00          | 159            | 23       | 0.008          | 24       | 1            |
| ricsson Air6449 B41  | 77.00          | 312            | 44       | 0.015          | 48       | 2            |
| ricsson AIR32 B66Aa  | 77.00          | 397            | 56       | 0.019          | 61       | 3            |
| lat T-Arms           | 77.00          | 750            | 106      | 0.036          | 115      | 6            |
| RFS APXVAARR24_43-U- | 77.00          | 384            | 54       | 0.019          | 59       | 3            |
| ine Branches         | 75.00          | 600            | 83       | 0.028          | 89       | 5            |
| Pine Branches        | 70.00          | 600            | 76       | 0.026          | 82       | 5            |
| CI DTMABP7819VG12A   | 67.00          | 115            | 14       | 0.005          | 15       |              |
| Raycap DC6-48-60-0-8 | 67.00          | 16             | 2        | 0.001          | 2        |              |
| Raycap DC6-48-60-18- | 67.00          | 66             | 8        | 0.003          | 9        |              |
| ricsson RRUS 4426 B  | 67.00          | 145            | 18       | 0.006          | 19       | 1            |
| ricsson RRUS 4449 B  | 67.00          | 213            | 26       | 0.009          | 28       | 1            |
| ricsson RRUS 4478 B  | 67.00          | 178            | 22       | 0.007          | 23       | 1            |
| ricsson RRUS 32 B2   | 67.00          | 159            | 19       | 0.007          | 21       | 1            |
| ricsson RRUS-32 (77  | 67.00          | 231            | 28       | 0.010          | 30       | 1            |
| Powerwave Allgon P65 | 67.00          | 159            | 19       | 0.007          | 21       | 1            |
| CI DMP65R-BU4D       | 67.00          | 407            | 49       | 0.017          | 53       | 3            |
| CI OPA-65R-LCUU-H6   | 67.00          | 219            | 26       | 0.009          | 29       | 1            |
| ite PRO1, RMV12-496  | 67.00          | 1,358          | 164      | 0.056          | 177      | 1,1          |
| ine Branches         | 65.00          | 600            | 70       | 0.024          | 76       | 5            |
| ine Branches         | 60.00          | 600            | 64       | 0.022          | 69       | 5            |
| lat T-Arm            | 57.00          | 750            | 75       | 0.026          | 81       | 6            |
| ommscope CBC78T-DS-  | 56.00          | 62             | 6        | 0.002          | 7        |              |
| amsung B2/B66A RRH-  | 56.00          | 253            | 25       | 0.009          | 27       | 2            |
| amsung B5/B13 RRH-B  | 56.00          | 211            | 21       | 0.007          | 22       | 1            |
| aycap RCMDC-6627-PF  | 56.00          | 32             | 3        | 0.001          | 3        |              |
| amsung MT6407-77A    | 56.00          | 245            | 24       | 0.008          | 26       | 2            |
| commscope JAHH-65A-R | 56.00          | 101            | 10       | 0.003          | 11       |              |
| commscope JAHH-45A-R | 56.00          | 282            | 28       | 0.010          | 30       | 2            |
| mphenol Antel LPA-8  | 56.00          | 162            | 16       | 0.005          | 17       | 1            |
| ZW Unused Reserve (  | 56.00          | 1,152          | 113      | 0.039          | 123      | 9            |
| Pine Branches        | 55.00          | 600            | 58       | 0.020          | 63       | 5            |
| Pine Branches        | 50.00          | 600            | 52       | 0.018          | 56       | 5            |
| Pine Branches        | 45.00          | 600            | 46       | 0.016          | 50       | 5            |
| Pine Branches        | 40.00          | 600            | 40       | 0.014          | 43       | 5            |
| Pine Branches        | 35.00          | 600            | 35       | 0.012          | 37       | 5            |

| Site Number: 414240                                        |       | Code: ANSI/TIA-222-H              |       |       | © 2007 - 2021 by ATC IP LLC. All rights reserved. |              |  |
|------------------------------------------------------------|-------|-----------------------------------|-------|-------|---------------------------------------------------|--------------|--|
| Site Name: Byram Park CT, CT<br>Customer: VERIZON WIRELESS |       | Engineering Number:13701270_C3_02 |       |       | 7/28/2021                                         | l 2:56:49 PM |  |
| Pine Branches                                              | 30.00 | 600                               | 29    | 0.010 | 31                                                | 505          |  |
| Pine Branches                                              | 25.00 | 600                               | 24    | 0.008 | 25                                                | 505          |  |
| Pine Branches                                              | 20.00 | 600                               | 18    | 0.006 | 20                                                | 505          |  |
| Pine Branches                                              | 15.00 | 600                               | 13    | 0.005 | 14                                                | 505          |  |
|                                                            |       | 38,363                            | 2,913 | 1.000 | 3,144                                             | 32,290       |  |

Site Number: 414240

Site Name: Byram Park CT, CT

Code: ANSI/TIA-222-H

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Engineering Number:13701270\_C3\_02

7/28/2021 2:56:49 PM

Customer: VERIZON WIRELESS

#### Load Case 1.2D + 1.0Ev + 1.0Eh

Seismic

**Calculated Forces** 

| Seg<br>Ele<br>(ft) | •         |       | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect ∣<br>(in) | Rotation<br>(deg) | Ratio |
|--------------------|-----------|-------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|----------------------------|-------------------|-------|
| 0.                 | 00 -46.11 | -3.14 | 0.00                  | -177.57               | 0.00                  | 177.57                           | 5.994.05 1          | 1.434.32            | 6.672.27               | 6.339.93               | 0.00                       | 0.00              | 0.036 |
|                    | 00 -44.01 | -3.13 |                       | -161.85               | 0.00                  | 161.85                           | 5,848.22            | ,                   | -,-                    |                        | 0.00                       | -0.01             | 0.035 |
|                    | 00 -41.96 | -3.11 | 0.00                  | -146.20               | 0.00                  | 146.20                           | 5,676.12            |                     | ,                      |                        | 0.02                       | -0.02             | 0.033 |
| 15.                |           | -3.05 | 0.00                  | -130.67               | 0.00                  | 130.67                           | 5,478.21            |                     | ,                      | ,                      | 0.04                       | -0.03             | 0.032 |
| 20.                | 00 -37.41 | -3.01 | 0.00                  | -115.42               | 0.00                  | 115.42                           | 5,280.30            | -                   | -                      | -                      | 0.07                       | -0.04             | 0.031 |
|                    | 69 -35.92 |       |                       | -107.34               | 0.00                  | 107.34                           | 5,173.92            | ,                   | ,                      |                        | 0.10                       | -0.04             | 0.030 |
|                    | 00 -32.72 | -2.85 |                       | -100.49               | 0.00                  | 100.49                           | 5.082.39            |                     |                        |                        | 0.12                       | -0.04             | 0.029 |
|                    | 85 -32.32 | -2.83 |                       | -89.53                | 0.00                  | 89.53                            | 4,410.41            | ,                   | ,                      | , -                    | 0.15                       | -0.05             | 0.030 |
| 30.                | 00 -29.90 | -2.72 | 0.00                  | -86.28                | 0.00                  | 86.28                            | 4,370.63 1          | 1,032.43            | 3,950.99               | 3,800.59               | 0.17                       | -0.05             | 0.030 |
| 35.                | 00 -27.52 | -2.60 | 0.00                  | -72.66                | 0.00                  | 72.66                            | 4,197.46            | 991.53              | 3,644.15               | 3,503.90               | 0.23                       | -0.06             | 0.027 |
| 40.                | 00 -25.19 | -2.46 | 0.00                  | -59.65                | 0.00                  | 59.65                            | 4,024.29            |                     | 3,349.71               |                        | 0.29                       | -0.07             | 0.025 |
| 45.                | 00 -23.77 | -2.37 | 0.00                  | -47.34                | 0.00                  | 47.34                            | 3,851.11            | 909.71              | 3,067.67               | 2,946.70               | 0.37                       | -0.08             | 0.022 |
| 47.                | 16 -22.46 | -2.27 | 0.00                  | -42.23                | 0.00                  | 42.23                            | 3,776.34            | 892.05              | 2,949.72               | 2,832.74               | 0.41                       | -0.08             | 0.021 |
| 50.                | 00 -20.64 | -2.13 | 0.00                  | -35.77                | 0.00                  | 35.77                            | 3,677.94            | 868.80              | 2,798.03               | 2,686.19               | 0.45                       | -0.08             | 0.019 |
| 52.                | 38 -20.01 | -2.08 | 0.00                  | -30.69                | 0.00                  | 30.69                            | 2,517.80            | 619.72              | 1,992.88               | 1,842.71               | 0.50                       | -0.09             | 0.025 |
| 55.                | 00 -19.02 | -2.00 | 0.00                  | -25.23                | 0.00                  | 25.23                            | 2,473.70            |                     | 1,895.64               |                        | 0.54                       | -0.09             | 0.022 |
| 56.                | 00 -15.67 | -1.71 | 0.00                  | -23.23                | 0.00                  | 23.23                            | 2,456.62            | 598.57              | 1,859.17               | 1,736.02               | 0.56                       | -0.09             | 0.020 |
| 57.                | 00 -14.09 | -1.57 | 0.00                  | -21.52                | 0.00                  | 21.52                            | 2,439.40            | 592.72              | 1,823.05               | 1,706.88               | 0.58                       | -0.09             | 0.018 |
| 60.                | 00 -12.31 | -1.40 | 0.00                  | -16.80                | 0.00                  | 16.80                            | 2,386.97            | 575.19              | 1,716.81               | 1,620.34               | 0.64                       | -0.09             | 0.016 |
| 65.                | 00 -11.16 | -1.29 | 0.00                  | -9.79                 | 0.00                  | 9.79                             | 2,296.90            | 545.97              | 1,546.84               | 1,479.25               | 0.74                       | -0.10             | 0.011 |
| 67.                | 00 -6.61  | -0.80 | 0.00                  | -7.22                 | 0.00                  | 7.22                             | 2,259.94            | 534.28              | 1,481.33               | 1,423.98               | 0.78                       | -0.10             | 0.008 |
| 70.                | 00 -5.16  | -0.64 | 0.00                  | -4.80                 | 0.00                  | 4.80                             | 2,187.59            | 516.75              | 1,385.73               | 1,332.71               | 0.85                       | -0.10             | 0.006 |
| 75.                | 00 -4.18  | -0.52 | 0.00                  | -1.59                 | 0.00                  | 1.59                             | 2,063.89            | 487.53              | 1,233.47               | 1,185.51               | 0.95                       | -0.10             | 0.003 |
| 76.                | 70 -4.17  | -0.52 | 0.00                  | -0.70                 | 0.00                  | 0.70                             | 2,021.83            | 477.60              | 1,183.72               | 1,137.43               | 0.99                       | -0.10             | 0.003 |
| 76.                | 70 -4.17  | -0.52 | 0.00                  | -0.70                 | 0.00                  | 0.70                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 0.99                       | -0.10             | 0.076 |
| 77.                | 00 -1.11  | -0.14 | 0.00                  | -0.55                 | 0.00                  | 0.55                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.00                       | -0.10             | 0.044 |
| 80.                | 00 -0.31  | -0.04 | 0.00                  | -0.11                 | 0.00                  | 0.11                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.07                       | -0.13             | 0.010 |
| 82.                | 00 -0.19  | -0.03 | 0.00                  | -0.03                 | 0.00                  | 0.03                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.13                       | -0.14             | 0.003 |
| 83.                | 20 0.00   | -0.02 | 0.00                  | 0.00                  | 0.00                  | 0.00                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.16                       | -0.14             | 0.000 |

Site Number: 414240

Site Name: Byram Park CT, CT

Code: ANSI/TIA-222-H

© 2007 - 2021 by ATC IP LLC. All rights reserved.

Engineering Number:13701270\_C3\_02

7/28/2021 2:56:49 PM

Customer: VERIZON WIRELESS

#### Load Case 0.9D - 1.0Ev + 1.0Eh

Seismic (Reduced DL)

**Calculated Forces** 

| Seg<br>Elev<br>(ft) | Pu<br>FY (-)<br>(kips) | Vu<br>FX (-)<br>(kips) | Tu<br>MY<br>(ft-kips) | Mu<br>MZ<br>(ft-kips) | Mu<br>MX<br>(ft-kips) | Resultant<br>Moment<br>(ft-kips) | phi<br>Pn<br>(kips) | phi<br>Vn<br>(kips) | phi<br>Tn<br>(ft-kips) | phi<br>Mn<br>(ft-kips) | Total<br>Deflect  <br>(in) | Rotation<br>(deg) | Ratio |
|---------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|---------------------|---------------------|------------------------|------------------------|----------------------------|-------------------|-------|
| 0.00                | -30.84                 | -3.14                  | 0.00                  | -177.01               | 0.00                  | 177.01                           | 5,994.05            | 1,434.32            | 6,672.27               | 6,339.93               | 0.00                       | 0.00              | 0.033 |
| 5.00                | -29.44                 | -3.13                  | 0.00                  | -161.30               | 0.00                  | 161.30                           | 5,848.22            | 1,387.57            | 6,244.46               | 5,982.13               | 0.00                       | -0.01             | 0.032 |
| 10.00               | -28.07                 | -3.10                  | 0.00                  | -145.67               | 0.00                  | 145.67                           | 5,676.12            | 1,340.82            | 5,830.83               | 5,608.53               | 0.02                       | -0.02             | 0.031 |
| 15.00               | -26.23                 | -3.04                  | 0.00                  | -130.17               | 0.00                  | 130.17                           | 5,478.21            | 1,294.07            | 5,431.37               | 5,222.30               | 0.04                       | -0.03             | 0.030 |
| 20.00               | -25.03                 | -3.00                  | 0.00                  | -114.95               | 0.00                  | 114.95                           | 5,280.30            | 1,247.31            | 5,046.08               | 4,849.84               | 0.07                       | -0.04             | 0.028 |
| 22.69               | -24.02                 | -2.95                  | 0.00                  | -106.89               | 0.00                  | 106.89                           | 5,173.92            | 1,222.19            | 4,844.84               | 4,655.34               | 0.10                       | -0.04             | 0.028 |
| 25.00               | -21.88                 | -2.84                  | 0.00                  | -100.07               | 0.00                  | 100.07                           | 5,082.39            | 1,200.56            | 4,674.96               | 4,491.17               | 0.12                       | -0.04             | 0.027 |
| 28.85               | -21.62                 | -2.82                  | 0.00                  | -89.14                | 0.00                  | 89.14                            | 4,410.41            | 1,041.83            | 4,023.22               | 3,870.44               | 0.15                       | -0.05             | 0.028 |
| 30.00               | -20.00                 | -2.71                  | 0.00                  | -85.90                | 0.00                  | 85.90                            | 4,370.63            | 1,032.43            | 3,950.99               | 3,800.59               | 0.17                       | -0.05             | 0.027 |
| 35.00               | -18.41                 | -2.59                  | 0.00                  | -72.33                | 0.00                  | 72.33                            | 4,197.46            | 991.53              | 3,644.15               | 3,503.90               | 0.23                       | -0.06             | 0.025 |
| 40.00               | -16.85                 | -2.45                  | 0.00                  | -59.37                | 0.00                  | 59.37                            | 4,024.29            | 950.62              | 3,349.71               | 3,219.28               | 0.29                       | -0.07             | 0.023 |
| 45.00               | -15.90                 | -2.36                  | 0.00                  | -47.11                | 0.00                  | 47.11                            | 3,851.11            | 909.71              | 3,067.67               | 2,946.70               | 0.37                       | -0.08             | 0.020 |
| 47.16               | -15.02                 | -2.26                  | 0.00                  | -42.02                | 0.00                  | 42.02                            | 3,776.34            | 892.05              | 2,949.72               | 2,832.74               | 0.40                       | -0.08             | 0.019 |
| 50.00               | -13.80                 | -2.12                  | 0.00                  | -35.60                | 0.00                  | 35.60                            | 3,677.94            | 868.80              | 2,798.03               | 2,686.19               | 0.45                       | -0.08             | 0.017 |
| 52.38               | -13.39                 | -2.07                  | 0.00                  | -30.54                | 0.00                  | 30.54                            | 2,517.80            | 619.72              | 1,992.88               | 1,842.71               | 0.49                       | -0.09             | 0.022 |
| 55.00               | -12.72                 | -1.99                  | 0.00                  | -25.11                | 0.00                  | 25.11                            | 2,473.70            | 604.41              | 1,895.64               | 1,765.31               | 0.54                       | -0.09             | 0.019 |
| 56.00               | -10.48                 | -1.70                  | 0.00                  | -23.12                | 0.00                  | 23.12                            | 2,456.62            | 598.57              | 1,859.17               | 1,736.02               | 0.56                       | -0.09             | 0.018 |
| 57.00               | -9.42                  | -1.56                  | 0.00                  | -21.41                | 0.00                  | 21.41                            | 2,439.40            | 592.72              | 1,823.05               | 1,706.88               | 0.58                       | -0.09             | 0.016 |
| 60.00               | -8.23                  | -1.40                  | 0.00                  | -16.72                | 0.00                  | 16.72                            | 2,386.97            | 575.19              | 1,716.81               | 1,620.34               | 0.64                       | -0.09             | 0.014 |
| 65.00               | -7.46                  | -1.28                  | 0.00                  | -9.74                 | 0.00                  | 9.74                             | 2,296.90            | 545.97              | 1,546.84               | 1,479.25               | 0.74                       | -0.10             | 0.010 |
| 67.00               | -4.42                  | -0.80                  | 0.00                  | -7.18                 | 0.00                  | 7.18                             | 2,259.94            | 534.28              | 1,481.33               | 1,423.98               | 0.78                       | -0.10             | 0.007 |
| 70.00               | -3.45                  | -0.64                  | 0.00                  | -4.78                 | 0.00                  | 4.78                             | 2,187.59            | 516.75              | 1,385.73               | 1,332.71               | 0.84                       | -0.10             | 0.005 |
| 75.00               | -2.80                  | -0.52                  | 0.00                  | -1.59                 | 0.00                  | 1.59                             | 2,063.89            | 487.53              | 1,233.47               | 1,185.51               | 0.95                       | -0.10             | 0.003 |
| 76.70               | -2.79                  | -0.52                  | 0.00                  | -0.70                 | 0.00                  | 0.70                             | 2,021.83            | 477.60              | 1,183.72               | 1,137.43               | 0.99                       | -0.10             | 0.002 |
| 76.70               | -2.79                  | -0.52                  | 0.00                  | -0.70                 | 0.00                  | 0.70                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 0.99                       | -0.10             | 0.066 |
| 77.00               | -0.74                  | -0.14                  | 0.00                  | -0.54                 | 0.00                  | 0.54                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 0.99                       | -0.10             | 0.041 |
| 80.00               | -0.21                  | -0.04                  | 0.00                  | -0.11                 | 0.00                  | 0.11                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.07                       | -0.13             | 0.009 |
| 82.00               | -0.13                  | -0.03                  | 0.00                  | -0.03                 | 0.00                  | 0.03                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.12                       | -0.14             | 0.003 |
| 83.20               | 0.00                   | -0.02                  | 0.00                  | 0.00                  | 0.00                  | 0.00                             | 138.83              | 41.65               | 15.24                  | 15.36                  | 1.16                       | -0.14             | 0.000 |

Site Number: 414240

Code: ANSI/TIA-222-H

© 2007 - 2021 by ATC IP LLC. All rights reserved. 7/28/2021 2:56:49 PM

Site Name: Byram Park CT, CT Customer: VERIZON WIRELESS

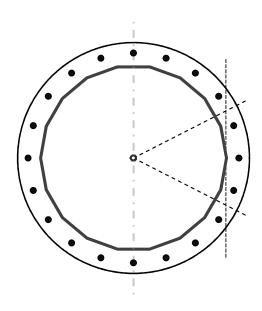
#### Engineering Number:13701270\_C3\_02

# Analysis Summary

| Reactions            |                       |                       |                       |                           |                           |                           | Max                       | Usage               |
|----------------------|-----------------------|-----------------------|-----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------|
| Load Case            | Shear<br>FX<br>(kips) | Shear<br>FZ<br>(kips) | Axial<br>FY<br>(kips) | Moment<br>MX<br>(ft-kips) | Moment<br>MY<br>(ft-kips) | Moment<br>MZ<br>(ft-kips) | Elev <sup>I</sup><br>(ft) | nteraction<br>Ratio |
| 1.2D + 1.0W          | 49.86                 | 0.00                  | 45.98                 | 0.00                      | 0.00                      | 2646.41                   | 76.70                     | 0.96                |
| 0.9D + 1.0W          | 49.84                 | 0.00                  | 34.47                 | 0.00                      | 0.00                      | 2640.27                   | 76.70                     | 0.95                |
| 1.2D + 1.0Di + 1.0Wi | 12.70                 | 0.00                  | 56.25                 | 0.00                      | 0.00                      | 667.14                    | 76.70                     | 0.29                |
| 1.2D + 1.0Ev + 1.0Eh | 3.14                  | 0.00                  | 46.11                 | 0.00                      | 0.00                      | 177.57                    | 76.70                     | 0.08                |
| 0.9D - 1.0Ev + 1.0Eh | 3.14                  | 0.00                  | 30.84                 | 0.00                      | 0.00                      | 177.01                    | 76.70                     | 0.07                |
| 1.0D + 1.0W          | 12.57                 | 0.00                  | 38.36                 | 0.00                      | 0.00                      | 666.45                    | 76.70                     | 0.25                |



#### Base Plate & Anchor Rod Analysis


| Pole Dimensions    |     |    |  |  |  |  |  |
|--------------------|-----|----|--|--|--|--|--|
| Number of Sides    | 18  | -  |  |  |  |  |  |
| Diameter           | 52  | in |  |  |  |  |  |
| Thickness          | 1/2 | in |  |  |  |  |  |
| Orientation Offset |     | •  |  |  |  |  |  |

| Base Plate           |        |       |  |  |  |  |
|----------------------|--------|-------|--|--|--|--|
| Shape                | Round  | -     |  |  |  |  |
| Diameter, ø          | 66     | in    |  |  |  |  |
| Thickness            | 2 3/4  | in    |  |  |  |  |
| Grade                | A57    | 2-50  |  |  |  |  |
| Yield Strength, Fy   | 50     | ksi   |  |  |  |  |
| Tensile Strength, Fu | 65     | ksi   |  |  |  |  |
| Clip                 | N/A    | in    |  |  |  |  |
| Orientation Offset   |        | •     |  |  |  |  |
| Anchor Rod Detail    | d      | η=0.5 |  |  |  |  |
| Clear Distance       | 4 1/2  | in    |  |  |  |  |
| Applied Moment, Mu   | 596.1  | k     |  |  |  |  |
| Bending Stress, φMn  | 2601.6 | k     |  |  |  |  |

| Original Anchor Rods |        |      |  |  |  |  |
|----------------------|--------|------|--|--|--|--|
| Arrangement          | Radial | -    |  |  |  |  |
| Quantity             | 20     | -    |  |  |  |  |
| Diameter, ø          | 2 1/4  | in   |  |  |  |  |
| Bolt Circle          | 60     | in   |  |  |  |  |
| Grade                | A61    | 5-75 |  |  |  |  |
| Yield Strength, Fy   | 75     | ksi  |  |  |  |  |
| Tensile Strength, Fu | 100    | ksi  |  |  |  |  |
| Spacing              | 9.4    | in   |  |  |  |  |
| Orientation Offset   |        | •    |  |  |  |  |
| Applied Force, Pu    | 112.4  | k    |  |  |  |  |
| Anchor Rods, φPn     | 243.6  | k    |  |  |  |  |

| Base Reactions         |         |      |  |  |  |  |  |
|------------------------|---------|------|--|--|--|--|--|
| Moment, Mu             | 2,646.4 | k-ft |  |  |  |  |  |
| Axial, Pu              | 46.0    | k    |  |  |  |  |  |
| Axial, Pu<br>Shear, Vu | 49.9    | k    |  |  |  |  |  |
| Neutral Axis           | 270     | 0    |  |  |  |  |  |

| Report Capacities |        |      |  |  |  |  |  |
|-------------------|--------|------|--|--|--|--|--|
| Component         | Result |      |  |  |  |  |  |
| Base Plate        | 23%    | Pass |  |  |  |  |  |
| Anchor Rods       | 46%    | Pass |  |  |  |  |  |
| Dwyidag           | -      | -    |  |  |  |  |  |



# Calculations for Monopole Base Plate & Anchor Rod Analysis

#### **Reaction Distribution**

| Reaction                      | Shear | Moment | Factor |
|-------------------------------|-------|--------|--------|
| Reaction                      | Vu    | Mu     | Factor |
| -                             | k     | k-ft   | -      |
| Base Forces                   | 49.9  | 2646.4 | 1.00   |
| Anchor Rod Forces             | 49.9  | 2646.4 | 1.00   |
| Additional Bolt (Grp1) Forces | 0.0   | 0.0    | 0.00   |
| Additional Bolt (Grp2) Forces | 0.0   | 0.0    | 0.00   |
| Dywidag Forces                | 0.0   | 0.0    | 0.00   |
| Stiffener Forces              | 0.0   | 0.0    | 0.00   |

#### **Geometric Properties**

20

2.25

60

75

100

112.4

1.2

243.6

0.462

0.232

-

in

in

ksi

ksi

k

k

k

ОК

ОК

| Section   | Gross<br>Area   | Net Area        | Individual<br>Inertia | Threads<br>per Inch | Moment<br>of Inertia |
|-----------|-----------------|-----------------|-----------------------|---------------------|----------------------|
| -         | in <sup>2</sup> | in <sup>2</sup> | in <sup>4</sup>       | #                   | in <sup>4</sup>      |
| Pole      | 80.4859         | 4.4714          | 0.3744                |                     | 26690.34             |
| Bolt      | 3.9761          | 3.2477          | 0.8393                | 4.5                 | 26977.81             |
| Bolt1     | 0.0000          | 0.0000          | 0.0000                | 0                   | 0.00                 |
| Bolt2     | 0.0000          | 0.0000          | 0.0000                | 0                   | 0.00                 |
| Dywidag   | 0.0000          | 0.0000          | 0.0000                |                     | 0.00                 |
| Stiffener | 0.0000          | 0.0000          | 0.0000                |                     | 0.00                 |

| Base Plate            |        |                 | Anchor Rods               |
|-----------------------|--------|-----------------|---------------------------|
| Shape                 | Round  | -               | Anchor Rod Quantity, N    |
| Diameter, D           | 66     | in              | Rod Diameter, d           |
| Thickness, t          | 2.75   | in              | Bolt Circle, BC           |
| Yield Strength, Fy    | 50     | ksi             | Yield Strength, Fy        |
| Tensile Strength, Fu  | 65     | ksi             | Tensile Strength, Fu      |
| Base Plate Chord      | 40.645 | in              | Applied Axial, Pu         |
| Detail Type           | d      | -               | Applied Shear, Vu         |
| Detail Factor         | 0.50   | -               | Compressive Capacity, φPn |
| Clear Distance        | 4.5    | -               | Tensile Capacity, φRnt    |
|                       |        |                 | Interaction Capacity      |
| External Base Pl      | ate    |                 |                           |
| Chord Length AA       | 34.485 | in              |                           |
| Additional AA         | 5.500  | in              |                           |
| Section Modulus, Z    | 75.597 | in <sup>3</sup> |                           |
| Applied Moment, Mu    | 596.1  | k-ft            |                           |
| Bending Capacity, φMn | 3401.9 | k-ft            |                           |
| Capacity, Mu/фMn      | 0.175  | ОК              |                           |
|                       |        |                 |                           |
| Chord Length AB       | 33.238 | in              |                           |
| Additional AB         | 5.500  | in              |                           |
| Section Modulus, Z    | 73.239 | in <sup>3</sup> |                           |
| Applied Moment, Mu    | 464.8  | k-ft            |                           |
| Bending Capacity, φMn | 3295.7 | k-ft            |                           |
| Capacity, Mu/фMn      | 0.141  | ОК              |                           |
|                       |        |                 |                           |
| Bend Line Length      | 30.579 | in              |                           |
| Additional Bend Line  | 0.000  | in              |                           |
| Section Modulus, Z    | 57.814 | in <sup>3</sup> |                           |
| Applied Moment, Mu    | 596.1  | k-ft            |                           |
| Bending Capacity, φMn | 2601.6 | k-ft            |                           |
| Capacity, Mu/фMn      | 0.229  | ОК              |                           |
|                       |        |                 |                           |
| Internal Base Pla     |        |                 |                           |
| Arc Length            | 0.000  | in              |                           |
| Section Modulus 7     | 0 000  | . 3             |                           |

| Arc Length            | 0.000 | in              |
|-----------------------|-------|-----------------|
| Section Modulus, Z    | 0.000 | in <sup>3</sup> |
| Moment Arm            | 0.000 | in              |
| Applied Moment, Mu    | 0.0   | k-ft            |
| Bending Capacity, φMn | 0.0   | k-ft            |
| Capacity, Mu/фMn      |       |                 |

|                                               |        | Fla         | ange Plate A | nalysis          |          |                  |
|-----------------------------------------------|--------|-------------|--------------|------------------|----------|------------------|
| Plate Type                                    | Flange | @ 77.00 ft  | Code Rev.    | Н                | Date     | 7/28/2021        |
| Pole Diameter                                 | 4.5    | in          | Coue Nev.    | п                | Engineer | SDK              |
| Pole Thickness                                | 0.337  | in          |              |                  | Site #   | 414240           |
|                                               | 35     | in          | Moment       | 13.9 k-ft        | Carrier  | VERIZON WIRELESS |
| Plate Diameter<br>Plate Thickness<br>Plate Fy | 1.5    | in          | Axial        | 3.8 k            | Carrier  | VERIZON WIRELESS |
|                                               |        |             | AXIdi        | 3.8 K            |          |                  |
|                                               | 50     | ksi         |              |                  |          |                  |
| Weld Length                                   | 0.3125 | in<br>Is in |              |                  |          |                  |
| f <sub>s</sub> Resistance                     | 936.85 | k-in        |              |                  |          |                  |
| Applied                                       | 25.70  | k-in        |              |                  |          |                  |
| #                                             | 6      | Show        |              |                  |          |                  |
| Thickness                                     | 0.75   | in          |              |                  |          |                  |
|                                               | 12     | in          |              | -                | •        |                  |
| Length<br>Height<br>Chamfer                   | 12     | in          | /            |                  |          | $\backslash$     |
| Chamfer                                       | 1.25   | in          |              | 1                | /        | $\backslash$     |
| Offset Angle                                  | 0      | •           | /•           |                  |          | • \              |
| Fy                                            | 50     | ksi         | (            |                  |          |                  |
| • •                                           | 50     | Nor         | -            |                  | N_ /     |                  |
| #                                             | 12     |             | Lo           | ···· >_          |          | )                |
| Bolt Circle                                   | 32     | in          | ×            | -                |          | *                |
| (R)adial / (S)quare                           | R      |             |              |                  |          | -                |
| Bolt Gan                                      | 6      |             | \            |                  | \        | /                |
| Diameter                                      | 1      | in          | $\backslash$ |                  | 1        | /                |
| Hole Diameter                                 | 1.125  | in          | $\backslash$ | •                | 1        | /                |
| Туре                                          | A325   |             |              | $\backslash$ .   | \ 。/     | /                |
| Fy                                            | 92     | ksi         |              | $\checkmark$     | •        |                  |
| Fu                                            | 120    | ksi         |              |                  | Ľ        |                  |
| f <sub>s</sub> Resistance                     | 54.52  | k           |              |                  |          |                  |
| Applied                                       | 2.00   | k           |              |                  |          |                  |
| Applica                                       | 2.00   | IX.         |              |                  |          |                  |
| #                                             | 0      |             |              |                  |          |                  |
|                                               |        |             | Pla          | ate Stress Ratio | :        |                  |
|                                               |        |             |              | 3% P             | ass      |                  |

**Bolt Stress Ratio:** 

4% Pass

Extra Bolts O

#

0

Reinforcemen





Maser Consulting Connecticut 2000 Midlantic Drive, Suite 100 Mount Laurel, NJ 08054 856.797.0412 Greg.Dulnik@colliersengineering.com

# **Post-Mod Antenna Mount Analysis Report and PMI Requirements**

Mount Fix

SMART Tool Project #: 10084892 Maser Consulting Connecticut Project #: 20777259A

July 7, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 468044-VZW / Byram Park CT Byram Park CT Verizon Wireless 36 Ritch Ave W Greenwich, Connecticut 06830 Fairfield County 41.005064° -73.648312°

Latitude: Longitude:

Structure Information

*Tower Type: Mount Type:*  79-Ft Monopole 10.00-Ft T-Frame

FUZE ID # 16231909

#### Analysis Results

T-Frame: 79.9% Pass

<u>\*\*\*Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements also Noted on Mount Modification Drawings Requirements may also be Noted on A & E drawings

Report Prepared By: Frank Centone



#### Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

# Sources of Information:

| Document Type                     | Remarks                                                                      |
|-----------------------------------|------------------------------------------------------------------------------|
| Radio Frequency Data Sheet (RFDS) | Verizon RFDS, Site ID: 688717, dated November 10, 2020                       |
| Mount Mapping Report              | Tower Engineering Professionals, Site ID: 468044-VZW, dated October 21, 2020 |
| Previous Mount Analysis Report    | Maser Consulting Connecticut Project #: 20777259A, dated July 2 , 2021       |
| Mount Modification Drawings       | Maser Consulting Connecticut Project #: 20777259A, dated July 7, 2021        |

## Analysis Criteria:

| Codes and Standards:    | ANSI/TIA-222-H                                                                                                                                                                                                                                                                                |                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Wind Parameters:        | Basic Wind Speed (Ultimate 3-sec. Gust), V <sub>ULT</sub> :<br>Ice Wind Speed (3-sec. Gust):<br>Design Ice Thickness:<br>Risk Category:<br>Exposure Category:<br>Topographic Category:<br>Topographic Feature Considered:<br>Topographic Method:<br>Ground Elevation Factor, K <sub>e</sub> : | 116 mph<br>50 mph<br>1.00 in<br>II<br>D<br>1<br>N/A<br>N/A<br>0.998 |
| Seismic Parameters:     | S <sub>S</sub> :<br>S <sub>1</sub> :                                                                                                                                                                                                                                                          | 0.277<br>0.060                                                      |
| Maintenance Parameters: | Wind Speed (3-sec. Gust):<br>Maintenance Live Load, Lv:<br>Maintenance Live Load, Lm:                                                                                                                                                                                                         | 30 mph<br>250 lbs.<br>500 lbs.                                      |
| Analysis Software:      | RISA-3D (V17)                                                                                                                                                                                                                                                                                 |                                                                     |

#### Final Loading Configuration:

| Mount<br>Elevation<br>(ft) | Equipment<br>Elevation<br>(ft) | Quantity | Manufacturer | Model             | Status     |           |              |
|----------------------------|--------------------------------|----------|--------------|-------------------|------------|-----------|--------------|
|                            |                                | 6        | Antel        | LPA-80063/6CF     | Retained   |           |              |
|                            |                                | 4        | Commscope    | JAHH-45A-R3B      |            |           |              |
|                            |                                | 2        | Commscope    | JAHH-65A-R3B      |            |           |              |
| 56.00                      | 57.00                          | 57.00    | 3            | Samsung           | MT6407-77A |           |              |
| 56.00                      |                                |          | 57.00        | 57.00             | 3          | Commscope | CBC78T-DS-43 |
|                            |                                | 3        | Samsung      | B2/B66A RRH-BR049 |            |           |              |
|                            |                                | 3        | Samsung      | B5/B13 RRH-BR04C  |            |           |              |
|                            |                                | 1        | Raycap       | RVZDC-6627-PF-48  |            |           |              |

The following equipment has been considered for the analysis of the mounts:

The recent mount mapping reported existing OVP units. It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

| Model Number     | Ports | AKA    |
|------------------|-------|--------|
| DB-B1-6C-12AB-0Z | 6     | OVP-6  |
| RVZDC-6627-PF-48 | 12    | OVP-12 |

#### **Standard Conditions:**

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped by Maser Consulting Connecticut, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

| 0 | Channel, Solid Round, Angle, Plate | ASTM A36 (Gr. 36)   |
|---|------------------------------------|---------------------|
| 0 | HSS (Rectangular)                  | ASTM 500 (Gr. B-46) |
| 0 | Pipe                               | ASTM A53 (Gr. B-35) |
| 0 | Threaded Rod                       | F1554 (Gr. 36)      |
| 0 | Bolts                              | ASTM A325           |
|   |                                    |                     |

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

#### Analysis Results:

| Component           | Utilization % | Pass/Fail |
|---------------------|---------------|-----------|
| Mod Standoff        | 27.9%         | Pass      |
| Mod Face            | 20.3%         | Pass      |
| Antenna Pipe        | 71.2%         | Pass      |
| Face Horizontal     | 20.8%         | Pass      |
| Standoff            | 33.6%         | Pass      |
| Standoff Vertical   | 0.0%          | Pass      |
| Existing Connection | 79.9%         | Pass      |
| MOD Connection      | 26.4%         | Pass      |

Structure Rating – (Controlling Utilization of all Components)

79.9%

#### **Recommendation:**

The existing mounts will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

#### Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams
- 6. TIA Adoption and Wind Speed Usage Letter



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            | _                                              |                                                    |                                                                                    |                                                         |                                                  | V3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Updated on 8-3                         | FCC #                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enna Mount Ma                                                                     | pping                                      | Form                                           | (PATEN                                             | IT PEN                                                                             | DING)                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | N/A                                                |
| MASER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tower Owner:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |                                            |                                                |                                                    | Mapping Date:                                                                      |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 1/2020                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Byram Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |                                            |                                                |                                                    | Tower Ty                                                                           |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | opole                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site Number or ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 468044-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZW                                                                                |                                            |                                                |                                                    | Tower He                                                                           |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 79                                                 |
| This antenna manning form is the property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mapping Contractor:<br>of TES and under PATENT PENDING. The form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | herein is considered confic                                                       | lential in n                               | ature and is t                                 | o he used on                                       |                                                                                    | evation (Ft.                                            |                                                  | enroduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | 57<br>publication                                  |
| modification or disclosure by any method is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is prohibited except by express written permiss<br>arrantying the usability of the safety climb as it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion of TES. All m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eans and methods are the                                                          | responsibi                                 | lity of the cor                                | ntractor and th                                    |                                                                                    |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                | e Configura                                        | tion and G                                                                         | eometries                                               | [Unit = Inches]                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| Plus View Alexa or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sector /<br>Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mount Pipe Size & I                                                               | Length                                     | Vertical<br>Offset<br>Dimension<br>""          | Horizontal<br>Offset "C1,<br>C2, C3, etc."         | Sector /<br>Position                                                               | n                                                       | /lount Pipe Size & Len                           | gth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vertical<br>Offset<br>Dimension<br>"u" | Horizonta<br>Offset "C1<br>C2, C3, etc.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AL DA. 4 39" 51" 8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              |                                            | 51.00                                          | 4.00                                               | C1                                                                                 | 2.4"Øx0.1                                               | 5625"x8'-6"                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.00                                  | 4.00                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{2}{3}$ $\frac{41}{21}$ $\frac{26}{3}$ $\frac{3}{21}$ $\frac{3}{3}$ $\frac{3}{-3}$ $\frac{3}{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              |                                            | 51.00                                          | 28.50                                              | C2                                                                                 |                                                         | 5625"x8'-6"                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.00                                  | 28.50                                              |
| 13 14 13 19 13 19 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deir 130+ = 2   0,   -   0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              |                                            | 51.00                                          | 60.00                                              | C3                                                                                 |                                                         | 5625"x8'-6"                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.00                                  | 60.00                                              |
| 240" 5 " 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES: EUG RRA 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              |                                            | 51.00                                          | 91.50                                              | C4                                                                                 | 2.4"Øx0.1                                               | 5625"x8'-6"                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.00                                  | 91.50                                              |
| 7-8 connections service - 1060A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22+ 5/5 RE1 4+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              |                                            | 51.00                                          | 116.00                                             | C5                                                                                 | 2.4"Øx0.1                                               | 5625"x8'-6"                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.00                                  | 116.00                                             |
| 9-11 Aughorol BAR - 171063 - 1367 - 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\label{eq:states} g(\beta) = g(\beta_{1},\beta_{2}) + g(\beta_{2},\beta_{3}) + g(\beta_{3},\beta_{3}) + g(\beta_{3},\beta_{3}$ | A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |                                            |                                                |                                                    | C6                                                                                 |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| 5-8 Consteps SONHA- 1045A Par V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | view behild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              |                                            | 51.00                                          | 4.00                                               | D1                                                                                 |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| ¥ \$ 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | penetron to face state of 19,8 Crn & 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4"Øx0.15625"x8'-6"                                                              | _                                          | 51.00                                          | 28.50                                              | D2                                                                                 |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B3<br>B4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4"Øx0.15625"x8'-6"<br>2.4"Øx0.15625"x8'-6"                                      |                                            | 51.00<br>51.00                                 | 60.00<br>91.50                                     | D3<br>D4                                                                           |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B) Sude View Of the I'm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B4<br>B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 Øx0.15625 x8-6<br>2.4"Øx0.15625"x8'-6"                                        | _                                          | 51.00                                          | 116.00                                             | D4<br>D5                                                                           |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| e de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4 \$20.13023 x8 0                                                               |                                            | 51.00                                          | 110.00                                             | D6                                                                                 |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| D FL 10", 5", 5" will be the reality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | www. 11 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Distance between be                                                               | ottom ra                                   | il and mou                                     | nt CL elevati                                      |                                                                                    | ). Unit is ir                                           | nches. See 'Mount El                             | ev Ref' tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for details.                           | 0.00                                               |
| 5-5-54, 5+5-54<br>\$3 1455 = 101 + 14 + 14 = 15 = 6 (weiders)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | () PL 2354'3 (3'55" w) (0'54'3 (1-644).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                |                                                    |                                                                                    |                                                         | nt./eqpt. of Carrier a                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| () 45.48 54.8 57. 9.96<br>() 45.48.79.75.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25" WE THE ABOUT, ab"C-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                |                                                    |                                                                                    |                                                         | nt./eqpt. of Carrier b                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| (B) (W) Treasy (100) of [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) PL 3'55 (5'75K 85'503 (united))<br>1'98 346100, 55'5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            | Please ent                                     | er addition                                        | al infomat                                                                         | ion or com                                              | nments below.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| D FL YL'S B'S B' SH M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                |                                                    |                                                                                    |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| COUNTY BALL INCOME, TODAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                |                                                    |                                                                                    |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            |                                                | I= .                                               |                                                                                    |                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                    |
| 1/\*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tower Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Width at Mount Elev.                                                            | (ft.):                                     |                                                | Tower Leg                                          | Size or Pole                                                                       | e Shaft Diar                                            | neter at Mount Elev. (                           | in.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 34.5                                               |
| SECTOR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SECTOR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enter antenn                                                                      | na model                                   | . If not labe                                  | eled, enter "                                      | Unknown'                                                                           | ".                                                      | Mountin<br>[Units are incl                       | g Location<br>hes and de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | Photos o<br>antenna:                               |
| FACE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ś                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                            |                                                |                                                    |                                                                                    |                                                         |                                                  | Horiz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                    |
| LEG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ltems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antenna Models if                                                                 | Width                                      | Depth                                          | Height                                             | Coax                                                                               | Antenna                                                 | Vertical                                         | Offset "h"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antenna                                | Photo                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s. H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Known                                                                             | (in.)                                      | (in.)                                          | (in.)                                              | Size and                                                                           |                                                         | Distances"b <sub>1a</sub> , b <sub>2a</sub> ,    | (Use "-" if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Azimuth                                | Number                                             |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | ()                                         |                                                |                                                    | 0.5.4                                                                              | line (Ft.)                                              | b <sub>3a</sub> , b <sub>1b</sub> " (Inches)     | Ant. is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            | (,                                             |                                                    | Qty                                                                                |                                                         | 53a, 515 (incres)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Degrees)                              |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   |                                            | ()                                             |                                                    |                                                                                    |                                                         | 53a, 515 (menes)                                 | behind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Degrees)                              |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                            |                                                |                                                    | Sector A                                                                           |                                                         | 53a, 515 (menes)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Degrees)                              |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ant <sub>1a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                            |                                                |                                                    | Sector A                                                                           | \                                                       |                                                  | behind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 46.47                                              |
| SECTOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ant <sub>1b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LPA-80063-6CF-EDIN                                                                | 14.96                                      | 13.07                                          | 70.87                                              |                                                                                    |                                                         | 39.00                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Degrees)                              | 46-47                                              |
| SECTOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ant <sub>1b</sub><br>Ant <sub>1c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |                                            | 13.07                                          | 70.87                                              | Sector A                                                                           | 58                                                      | 39.00                                            | behind)<br>14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                    |
| SECTOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GG A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant <sub>1b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B66a RRH 4x45                                                                     | 11.80                                      | 13.07<br>10.30                                 | 70.87                                              | Sector A                                                                           | 58                                                      | 39.00                                            | behind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 51-52                                              |
| SECTOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ant <sub>1b</sub><br>Ant <sub>1c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   |                                            | 13.07                                          | 70.87                                              | Sector A                                                                           | 58                                                      | 39.00                                            | behind)<br>14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 51-52                                              |
| SECTOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ant <sub>1b</sub><br>Ant <sub>1c</sub><br>Ant <sub>2a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B66a RRH 4x45                                                                     | 11.80                                      | 13.07<br>10.30                                 | 70.87                                              | Sector A<br>1)FH 1-5/<br>from Ray                                                  | 58                                                      | 39.00                                            | behind)<br>14.00<br>-6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00                                   | 51-52                                              |
| SECTOR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B66a RRH 4x45                                                                     | 11.80                                      | 13.07<br>10.30                                 | 70.87                                              | Sector A<br>1)FH 1-5/<br>from Ray                                                  | 58<br>60.8333<br>57.5833                                | 39.00                                            | behind)<br>14.00<br>-6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00                                   | 51-52<br>48-50                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30                                      | 11.80<br>11.85<br>12.00                    | 13.07<br>10.30<br>7.09<br>8.50                 | 70.87<br>28.93<br>55.63<br>21.50                   | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray                                      | 58<br>60.8333<br>57.5833<br>60.75                       | 39.00<br>5.00<br>44.00<br>6.00                   | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00                                   | 51-52<br>48-50<br>55-56                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c c} & Ant_{1b} \\ \hline & Ant_{1c} \\ \hline & Ant_{2a} \\ \hline & Ant_{2b} \\ \hline & Ant_{2c} \\ \hline & Ant_{3a} \\ \hline & Ant_{3b} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B66a RRH 4x45<br>SBNHH-1D65A                                                      | 11.80<br>11.85                             | 13.07<br>10.30<br>7.09                         | 70.87 28.93 55.63                                  | Sector A<br>1)FH 1-5/<br>from Ray                                                  | 58<br>60.8333<br>57.5833<br>60.75                       | 39.00<br>5.00<br>44.00                           | behind)<br>14.00<br>-6.00<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                                   | 51-52<br>48-50                                     |
| Antio SI Antio S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Antso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ant <sub>1b</sub><br>Ant <sub>1c</sub><br>Ant <sub>2a</sub><br>Ant <sub>2b</sub><br>Ant <sub>2c</sub><br>Ant <sub>3a</sub><br>Ant <sub>3b</sub><br>Ant <sub>3b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30                                      | 11.80<br>11.85<br>12.00                    | 13.07<br>10.30<br>7.09<br>8.50                 | 70.87<br>28.93<br>55.63<br>21.50                   | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray                                      | 58<br>60.8333<br>57.5833<br>60.75                       | 39.00<br>5.00<br>44.00<br>6.00                   | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00                                   | 51-52<br>48-50<br>55-56                            |
| Antio Antio A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Antso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c} & Ant_{1b} \\ \hline Ant_{1c} \\ \hline Ant_{2a} \\ \hline Ant_{2b} \\ \hline Ant_{2c} \\ \hline Ant_{3a} \\ \hline Ant_{3b} \\ \hline Ant_{3c} \\ \hline Ant_{4a} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A                       | 11.80<br>11.85<br>12.00<br>11.85           | 13.07<br>10.30<br>7.09<br>8.50<br>7.09         | 70.87<br>28.93<br>55.63<br>21.50<br>55.63          | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray                          | 60.8333<br>57.5833<br>60.75<br>57.5833                  | 39.00<br>5.00<br>44.00<br>6.00<br>44.00          | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00<br>2.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54                   |
| Antro 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant3a Ant4a Ant4a Ant5a Ant5a Ant5a Ant5a Ant5a Ant5a Ant6a Ant5a Ant6a Ant5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} & Ant_{1b} \\ \hline Ant_{1c} \\ Ant_{2a} \\ \hline Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ \hline Ant_{3b} \\ \hline Ant_{3c} \\ \hline Ant_{4a} \\ \hline Ant_{4a} \\ \hline Ant_{4b} \\ \hline Ant_{4b} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30                                      | 11.80<br>11.85<br>12.00<br>11.85           | 13.07<br>10.30<br>7.09<br>8.50                 | 70.87<br>28.93<br>55.63<br>21.50                   | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray                                      | 58<br>60.8333<br>57.5833<br>60.75                       | 39.00<br>5.00<br>44.00<br>6.00                   | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00                                   | 51-52<br>48-50<br>55-56<br>53-54                   |
| Antio Antio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Antso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c} & Ant_{1b} \\ \hline Ant_{1c} \\ \hline Ant_{2a} \\ \hline Ant_{2b} \\ \hline Ant_{2c} \\ \hline Ant_{3a} \\ \hline Ant_{3b} \\ \hline Ant_{3c} \\ \hline Ant_{4a} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A                       | 11.80<br>11.85<br>12.00<br>11.85           | 13.07<br>10.30<br>7.09<br>8.50<br>7.09         | 70.87<br>28.93<br>55.63<br>21.50<br>55.63          | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray                          | 60.8333<br>57.5833<br>60.75<br>57.5833                  | 39.00<br>5.00<br>44.00<br>6.00<br>44.00          | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00<br>2.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54                   |
| Antro 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant3a Ant4a Ant4a Ant5a Ant5a Ant5a Ant5a Ant5a Ant5a Ant6a Ant5a Ant6a Ant5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} & Ant_{1b} \\ \hline Ant_{1c} \\ Ant_{2a} \\ \hline Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ \hline Ant_{3b} \\ \hline Ant_{3c} \\ \hline Ant_{4a} \\ \hline Ant_{4a} \\ \hline Ant_{4b} \\ \hline Ant_{4b} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A                       | 11.80<br>11.85<br>12.00<br>11.85           | 13.07<br>10.30<br>7.09<br>8.50<br>7.09         | 70.87<br>28.93<br>55.63<br>21.50<br>55.63          | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray                          | 60.8333<br>57.5833<br>60.75<br>57.5833                  | 39.00<br>5.00<br>44.00<br>6.00<br>44.00          | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00<br>2.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54                   |
| Antro 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant3a Ant4a Ant4a Ant5a Ant5a Ant5a Ant5a Ant5a Ant5a Ant6a Ant5a Ant6a Ant5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \Rightarrow \begin{array}{ c c c } \hline Ant_{1b} \\ \hline Ant_{1c} \\ \hline Ant_{2a} \\ \hline Ant_{2b} \\ \hline Ant_{2c} \\ \hline Ant_{3a} \\ \hline Ant_{3b} \\ \hline Ant_{4c} \\ \hline Ant_{4b} \\ \hline Ant_{4c} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A                       | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09         | 70.87<br>28.93<br>55.63<br>21.50<br>55.63          | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray                          | 60.8333<br>57.5833<br>60.75<br>57.5833                  | 39.00<br>5.00<br>44.00<br>6.00<br>44.00          | behind)<br>14.00<br>-6.00<br>8.00<br>-6.00<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00<br>2.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56                            |
| Antro 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ant3a Ant4a Ant4a Ant5a Ant5a Ant5a Ant5a Ant5a Ant5a Ant6a Ant5a Ant6a Ant5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ = \begin{bmatrix} Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ Ant_{3a} \\ Ant_{3b} \\ Ant_{4c} \\ Ant_{4b} \\ Ant_{4c} \\ Ant_{5a} \\ Ant_{5b} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antis 81 Antis 82<br>Antis 8 Antis 8<br>Antis 8 Antis 8<br>Antis 9 Antis 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anta Ante Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} & Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ Ant_{3a} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{4a} \\ Ant_{4a} \\ Ant_{5a} \\ Ant_{5c} \\ An$ | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antis Antis Anta A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ant3a Ant4a Ant4a Ant5a Ant5a Ant5a Ant5a Ant5a Ant5a Ant6a Ant5a Ant6a Ant5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} & Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{4a} \\ Ant_{4c} \\ Ant_{5a} \\ Ant_{5b} \\ Ant_{5c} \\ Ant on \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antis 81 Antis 82<br>Antis 8 Antis 8<br>Antis 8 Antis 8<br>Antis 9 Antis 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anta Ante Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \exists Ant_{1b} Ant_{1c} Ant_{2a} Ant_{2b} Ant_{2c} Ant_{3a} Ant_{3b} Ant_{3c} Ant_{4a} Ant_{4b} Ant_{4c} Ant_{5a} Ant_{5c} Ant_{5c$                                                                                                                                                                                                | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antis Antis Antas | Anta Ante Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} & Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ Ant_{3a} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4b} \\ Ant_{4c} \\ Ant_{5b} \\ Ant_{5c} \\ Ant_{5c} \\ Ant on \\ Standoff \\ Ant on \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antia | Anta Ante Ante Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= \frac{Ant_{1b}}{Ant_{2c}}$ $= \frac{Ant_{2b}}{Ant_{2c}}$ $= \frac{Ant_{3a}}{Ant_{3a}}$ $= \frac{Ant_{3a}}{Ant_{4a}}$ $= \frac{Ant_{4a}}{Ant_{4a}}$ $= \frac{Ant_{4b}}{Ant_{5a}}$ $= \frac{Ant_{5b}}{Ant_{5c}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antis Antis Anta Anta Anta Anta Anta Anta Anta Anta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Anta Ante Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} & Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ Ant_{3a} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4b} \\ Ant_{4c} \\ Ant_{5b} \\ Ant_{5c} \\ Ant_{5c} \\ Ant on \\ Standoff \\ Ant on \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |
| Antis Antiz Antzo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anta Ante Ante Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} Ant_{1b} \\ Ant_{1c} \\ Ant_{2a} \\ Ant_{2b} \\ Ant_{2c} \\ Ant_{3a} \\ Ant_{3b} \\ Ant_{3c} \\ Ant_{3c} \\ Ant_{4a} \\ Ant_{4c} \\ Ant_{5a} \\ Ant_{5c} \\ Ant_{5c} \\ Ant_{5c} \\ Ant on \\ Standoff \\ Ant Stand$              | B66a RRH 4x45<br>SBNHH-1D65A<br>B13 RRH 4x30<br>SBNHH-1D65A<br>BXA-171063-12BF-ED | 11.80<br>11.85<br>12.00<br>11.85<br>0 4.10 | 13.07<br>10.30<br>7.09<br>8.50<br>7.09<br>6.10 | 70.87<br>28.93<br>55.63<br>21.50<br>55.63<br>72.50 | Sector A<br>1)FH 1-5/<br>from Ray<br>from Ray<br>from Ray<br>from Ray<br>2)FH 1-5/ | 58<br>60.8333<br>57.5833<br>60.75<br>57.5833<br>57.5833 | 39.00<br>5.00<br>44.00<br>6.00<br>44.00<br>39.00 | behind) 14.00 -6.00 8.00 -6.00 8.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 -6.00 | 2.00<br>3.00<br>3.00<br>3.00           | 51-52<br>48-50<br>55-56<br>53-54<br>53-54<br>57-58 |

| Моц                  | nt Azimuth (De                                                                              | egree  | ١           | Tower Leg Azimu       | uth (Degree)                                                                                                     |                                        |                         |          |           |            | Sector E   | 6       |       |       |        |       |
|----------------------|---------------------------------------------------------------------------------------------|--------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------|-----------|------------|------------|---------|-------|-------|--------|-------|
|                      | for Each Secto                                                                              |        | ,           | for Each Se           |                                                                                                                  | Ant <sub>1a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
| Sector A:            | 0.00 [                                                                                      | Deg [  | .eg A:      |                       | Deg                                                                                                              | Ant <sub>1b</sub>                      | LPA-80063-6CF-EDIN      | 14.96    | 13.07     | 70.87      | 1)FH 1-5/  | 58      | 39.00 | 14.00 | 118.00 | 61-63 |
| Sector B:            |                                                                                             |        | Leg B:      |                       | Deg                                                                                                              | $Ant_{1c}$                             |                         |          |           |            |            |         |       |       |        |       |
| Sector C:            | 240.00 [                                                                                    | Deg l  | Leg C:      |                       | Deg                                                                                                              | Ant <sub>2a</sub>                      | B66a RRH 4x45           | 11.80    | 10.30     | 28.93      | from Ray   | 60.8333 | 5.00  | -6.00 |        | 66    |
| Sector D:            | ۵                                                                                           | Deg l  | leg D:      |                       | Deg                                                                                                              | Ant <sub>2b</sub>                      | SBNHH-1D45A             | 17.99    | 7.01      | 48.03      | from Ray   | 57.5833 | 44.00 | 9.00  | 117.00 | 64-65 |
|                      | C                                                                                           | limbi  | ng Fac      | ility Information     |                                                                                                                  | $Ant_{2c}$                             |                         |          |           |            |            |         |       |       |        |       |
| Location:            | Flat 1                                                                                      | Deg    |             | Sector A              |                                                                                                                  | Ant <sub>3a</sub>                      | B13 RRH 4x30            | 12.00    | 8.50      | 21.50      | from Ray   | 60.75   | 6.00  | -6.00 |        | 70-71 |
| Climbing             | Corrosior                                                                                   | n Type | :           | Good condition.       |                                                                                                                  | Ant <sub>3b</sub>                      | SBNHH-1D45A             | 17.99    | 7.01      | 48.03      | from Ray   | 57.5833 | 44.00 | 9.00  | 118.00 | 67-69 |
| Climbing<br>Facility | Acce                                                                                        | ss:    |             | Climbing path was uno | bstructed.                                                                                                       | Ant <sub>3c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
| ,                    | Condit                                                                                      | ion:   |             | Good condition.       |                                                                                                                  | Ant <sub>4a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      | [                                                                                           | TT     | Π.          | r                     |                                                                                                                  | Ant <sub>4b</sub>                      | BXA-171063-12BF-ED      | 4.10     | 6.10      | 72.50      | 2)FH 1-5/  | 58      | 39.00 | 8.00  | 118.00 | 72-73 |
| ]                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |        | ll r        | ו ה                   |                                                                                                                  | Ant <sub>4c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>5a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
| c                    |                                                                                             | 122    |             | =====                 |                                                                                                                  | Ant <sub>5b</sub>                      | LPA-80063-6CF-EDIN      | 14.96    | 13.07     | 70.87      | 1)FH 1-5/  | 58      | 39.00 | 14.00 | 117.00 | 74-75 |
|                      | a a 1                                                                                       |        | -0          | THE OF EQUIPMENT      |                                                                                                                  | Ant <sub>5c</sub><br>Ant on            |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        | 111 -       |                       | ESTANCE FROM TOP OF MAN                                                                                          | Standoff                               |                         |          |           |            |            |         |       |       |        |       |
| -                    |                                                                                             | Щ.     |             |                       | ISTINCE FROM TOP OF MAIN<br>LATIONM MEMBER TO LOWEST THE<br>IF ANT,/EGFT, OF CARRIEN ABOVE,<br>N/A IF > 10 FT.)  | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Standoff<br>Ant on                     |                         |          |           |            |            |         |       |       |        |       |
| 9                    |                                                                                             |        | TTL         | а стуреница (         | ESTANCE FROM TOP OF MAIN<br>LATCORM MEMBER TO HIGHEST TP<br>F ANT_VOOPT. OF CARRIER BELOW.<br>N/A IF > 10 FT.)   | Tower                                  | RRFDC-3315-PF-48 (N     | 11.88    | 8.50      | 21.50      | Hybrid 1.  | 60      |       |       |        | 77-78 |
| DISTNG PLATFORM-     | _                                                                                           |        |             | TP OF DOUPMONT        | H ANL/DOPT. OF CARREN BELOW.<br>N/A IF > 10 FT.)                                                                 | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
| ſ                    | ት ሱ!                                                                                        |        | 114         |                       |                                                                                                                  | Tower                                  |                         |          |           |            | Sector C   |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>1a</sub>                      |                         |          |           |            | Sector C   |         |       |       |        |       |
| c                    | ====   +                                                                                    | 2.3    |             | p                     |                                                                                                                  | Ant <sub>1b</sub>                      | LPA-80063-6CF-EDIN      | 14.96    | 13.07     | 70.87      | 1)FH 1-5/  | 58      | 39.00 | 14.00 | 241.00 | 79-81 |
| l                    | J LĮ                                                                                        |        | 114         | J LJ                  |                                                                                                                  | Ant <sub>1c</sub>                      |                         |          |           |            | -,         |         |       |       |        |       |
|                      | ر<br>بر                                                                                     | -      | <u>لا</u> ر | _ <b>_</b>            |                                                                                                                  | Ant <sub>2a</sub>                      | B66a RRH 4x45           | 11.80    | 10.30     | 28.93      | from Ray   | 60.8333 | 5.00  | -6.00 |        | 84-85 |
|                      |                                                                                             | lk-    | $\neg$      | -n 🗌                  | ĺ                                                                                                                | Ant <sub>2b</sub>                      | SBNHH-1D45A             | 17.99    | 7.01      | 48.03      | from Ray   | 57.5833 | 44.00 | 9.00  | 241.00 | 82-83 |
| e                    |                                                                                             |        | 4           |                       |                                                                                                                  | Ant <sub>2c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
| e                    |                                                                                             |        |             | <u> </u>              |                                                                                                                  | Ant <sub>3a</sub>                      | B13 RRH 4x30            | 12.00    | 8.50      | 21.50      | from Ray   | 60.75   | 6.00  | -6.00 |        | 88-89 |
| ور                   | <del>ل</del> ور ۲                                                                           |        | F           | T THE OF EQUIPMENT    |                                                                                                                  | Ant <sub>3b</sub>                      | SBNHH-1D45A             | 17.99    | 7.01      | 48.03      | from Ray   | 57.5833 | 44.00 | 9.00  | 241.00 | 86-87 |
|                      |                                                                                             |        | /           |                       |                                                                                                                  | Ant <sub>3c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
| ſ                    |                                                                                             | K      | $\square$   |                       | DISTANCE FROM TOP OF BOTTOM<br>SUPPORT RAL TO LOWEST TIP OF<br>ANT./EGPT. OF CARRIER ADOVE.<br>(N/A IF > 10 FT.) | Ant <sub>4a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
| C                    |                                                                                             |        | 1           | <u>+</u>   ⊨  `       | N/N # 2 10 PL)                                                                                                   | Ant <sub>4b</sub>                      | BXA-171063-12BF-ED      | 4.10     | 6.10      | 72.50      | 2)FH 1-5/  | 58      | 39.00 | 8.00  | 241.00 | 90-91 |
| c                    |                                                                                             | H      |             |                       |                                                                                                                  | Ant <sub>4c</sub><br>Ant <sub>5a</sub> |                         |          |           |            |            |         |       |       |        |       |
| DISTING SECTOR FR    | 년 / 년<br>wt_                                                                                |        | 7           | <u>ل</u>              | DISTANCE FROM TOP OF BOTTOM<br>SUPPORT RAL TO HIGHEST TIP OF<br>ANT, /EGPT, OF CARRIER BELOW.                    | Ant <sub>5b</sub>                      | LPA-80063-6CF-EDIN      | 14.96    | 13.07     | 70.87      | 1)FH 1-5/  | 58      | 39.00 | 14.00 | 241.00 | 92-93 |
| MO                   | UNT                                                                                         | K      | <u> </u>    | - '                   | ANT./EGPT. OF CARREN BELOW.<br>(N/A # > 10 PT.)                                                                  | Ant <sub>sc</sub>                      | LFA-80003-0CF-EDIN      | 14.90    | 13.07     | 70.87      | 1)FH 1-3/- | - 30    | 35.00 | 14.00 | 241.00 | 52-55 |
| م                    | h rah                                                                                       |        | 1º          |                       |                                                                                                                  | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Standoff                               |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        | ľ           |                       |                                                                                                                  | Ant on<br>Standoff                     |                         |          |           |            |            |         |       |       |        |       |
| L                    | ļ                                                                                           | V      | 7           | T L                   |                                                                                                                  | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             | 0      |             | -0                    |                                                                                                                  | Tower                                  |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Tower                                  |                         |          |           |            | Sector D   | )       |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>1a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>1b</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | $Ant_{1c}$                             |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | $\operatorname{Ant}_{2a}$              |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>2b</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>2c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>3a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>3b</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>3c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>4a</sub><br>Ant <sub>4b</sub> |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>4c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>5a</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>5b</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant <sub>5c</sub>                      |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Standoff<br>Ant on                     |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant on<br>Standoff                     |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant on                                 |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Tower                                  |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  | Ant on<br>Tower                        |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       |                                                                                                                  |                                        |                         |          |           |            |            |         |       |       |        |       |
|                      |                                                                                             |        |             |                       | Obs                                                                                                              | erved Safe                             | ety and Structural Issu | es Durin | g the Mou | nt Mapping | 3          |         |       |       |        |       |

\_\_\_\_\_

Issue #

Photo #

| 1 | (6) Unused (cut) FH 1-5/8 at mount |  |
|---|------------------------------------|--|
| 2 |                                    |  |
| 3 |                                    |  |
| 4 |                                    |  |
| 5 |                                    |  |
| 6 |                                    |  |
| 7 |                                    |  |
| 8 |                                    |  |

#### Mapping Notes

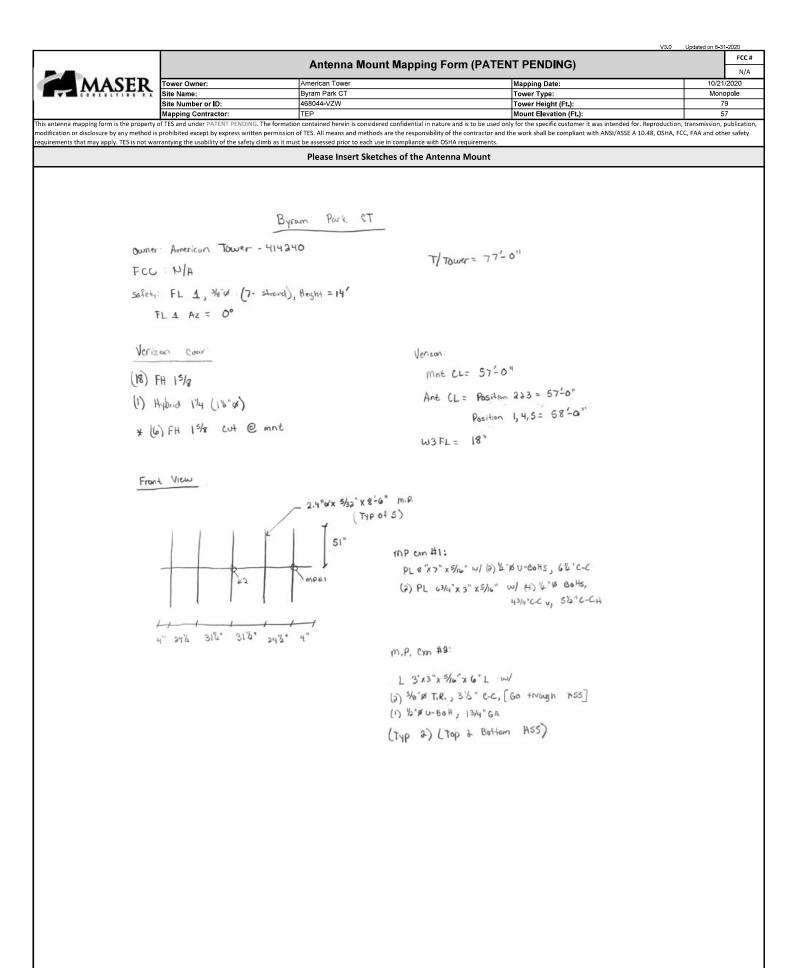
1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

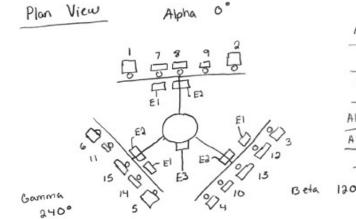
2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.


6. Please measure and report the size and length of all existing antenna mounting pipes.


7. Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

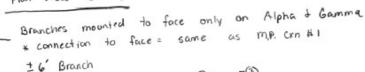
Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.





| Ant            | B     | U   | H              |
|----------------|-------|-----|----------------|
| All Pos 1      | 39"   | 51  | 14"            |
| Aa, Az         | 44 "  | 51" | 8"             |
| Ba, B3, B2, G3 | 44 '' | 51" | 9 <sup>n</sup> |
| All Pos. 4     | 39"   | 51" | 8"             |
| All Pos. S     | 39"   | 51" | 14"            |
| EI             | 5*    | -   | 6"             |
| E2             | 64    | -   | 6" o           |


1-6 Amphenol LPA -80063-6CF-EDIN

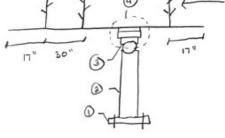
7-8 commscope SBNHH-1065A

9-11 Amphenol BXA - 171063 - 126F - EDIN'

12-15 Commiscope SBNHH - 1045A

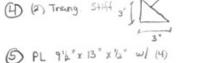
Plan View Details




E1 = B66a RRH 4×45

E2= B13 RRH 4x30

E3= Ray cap RRFDC-3315-PF=48

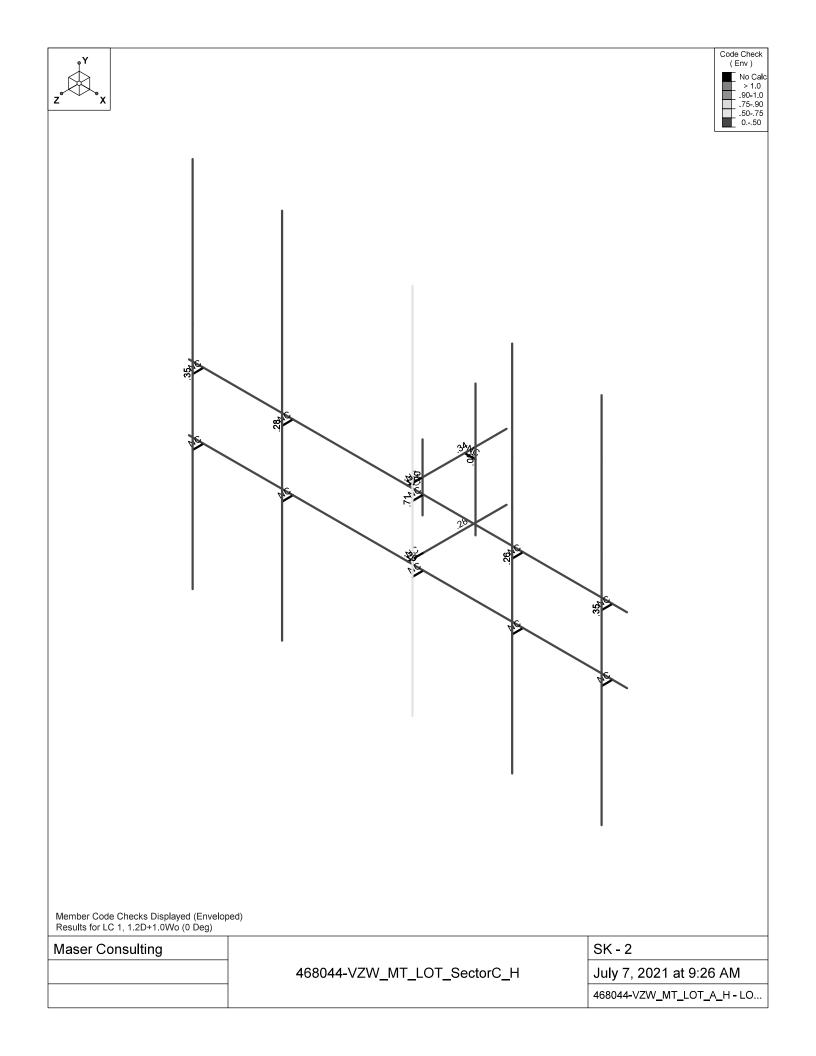

5%

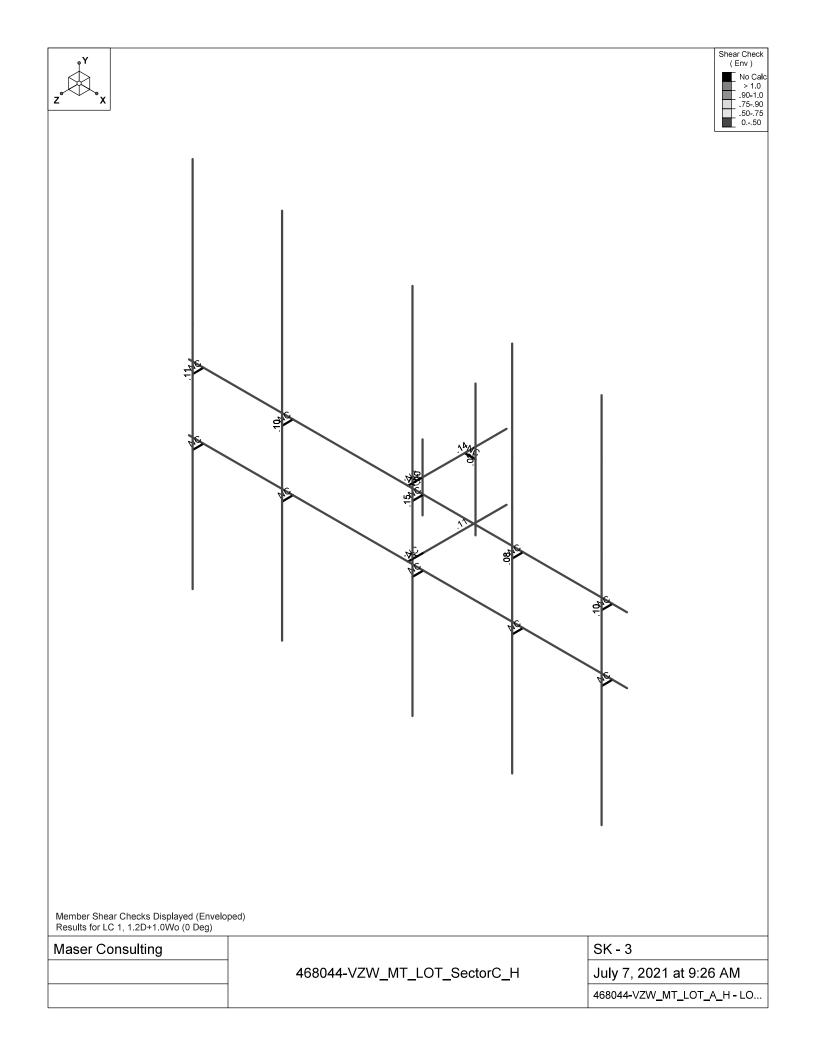
5%

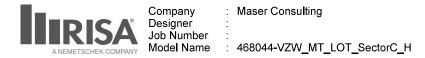


(4) Side Views (4) 3/4"& U-Bolts

- D PL 10"x 6"x 1/2" w/ (4) 5/8" & Bolls, 3"C-CH, 8" C-CV
- ( H55 4"x4"x 14" x 23"L (welded)
- 3) 4.5 " x 14 "x 27" Pipe
- PL % "TP, 75'C-C



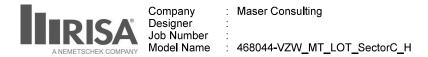


5/8" & Bolts, 101/ "C-CH, 7"C-CV


- ( PL 231/4" × 13" x 1/2" ω/ (4) 3/4" α U-BoHs, 2'6" ME TOPS Bott, 2'6" C-C
- > PL 3" DX 1/2" TH X 8 1/2" (welded)

1" ME TOPS BOTH, S'L"C-C

| Maser Consulting | 468044-VZW_MT_LOT_SectorC_H | SK - 1<br>July 7, 2021 at 9:26 AM<br>468044-VZW_MT_LOT_A_H - LO |
|------------------|-----------------------------|-----------------------------------------------------------------|








#### Basic Load Cases

|    | BLC Description       | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Me | Surface(P |
|----|-----------------------|----------|-----------|-----------|-----------|-------|-------|-------------|---------|-----------|
| 1  | Antenna D             | None     |           |           |           |       | 42    |             |         |           |
| 2  | Antenna Di            | None     |           |           |           |       | 42    |             |         |           |
| 3  | Antenna Wo (0 Deg)    | None     |           |           |           |       | 42    |             |         |           |
| 4  | Antenna Wo (30 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 5  | Antenna Wo (60 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 6  | Antenna Wo (90 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 7  | Antenna Wo (120 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 8  | Antenna Wo (150 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 9  | Antenna Wo (180 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 10 | Antenna Wo (210 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 11 | Antenna Wo (240 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 12 | Antenna Wo (270 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 13 | Antenna Wo (300 Deg)  | None     |           |           |           |       | 42    |             |         |           |
|    | Antenna Wo (330 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 15 | Antenna Wi (0 Deg)    | None     |           |           |           |       | 42    |             |         |           |
| 16 | Antenna Wi (30 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 17 | Antenna Wi (60 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 18 | Antenna Wi (90 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 19 | Antenna Wi (120 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 20 | Antenna Wi (150 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 21 | Antenna Wi (180 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 22 | Antenna Wi (210 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 23 | Antenna Wi (240 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 23 | Antenna Wi (240 Deg)  |          |           |           |           |       | 42    |             |         |           |
|    | Antenna Wi (300 Deg)  | None     |           |           |           |       |       | -           |         |           |
| 25 | Antenna Wi (300 Deg)  | None     | _         |           |           |       | 42    |             |         |           |
| 26 |                       | None     |           |           |           |       | 42    |             |         |           |
| 27 | Antenna Wm (0 Deg)    | None     |           |           |           |       | 42    |             |         |           |
| 28 | Antenna Wm (30 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 29 | Antenna Wm (60 Deg)   | None     |           |           |           |       | 42    |             |         |           |
|    | Antenna Wm (90 Deg)   | None     |           |           |           |       | 42    |             |         |           |
| 31 | Antenna Wm (120 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 32 | Antenna Wm (150 Deg)  | None     |           |           |           |       | 42    |             |         |           |
|    | Antenna Wm (180 Deg)  | None     |           |           |           |       | 42    |             |         |           |
|    | Antenna Wm (210 Deg)  | None     |           |           |           |       | 42    |             |         |           |
|    | Antenna Wm (240 Deg)  | None     |           |           |           |       | 42    |             |         |           |
|    | Antenna Wm (270 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 37 | Antenna Wm (300 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 38 | Antenna Wm (330 Deg)  | None     |           |           |           |       | 42    |             |         |           |
| 39 | Structure D           | None     |           | -1        |           |       |       |             |         |           |
| 40 | Structure Di          | None     |           |           |           |       |       | 11          |         |           |
|    | Structure Wo (0 Deg)  | None     |           |           |           |       |       | 22          |         |           |
| 42 | Structure Wo (30 Deg) | None     |           |           |           |       |       | 22          |         |           |
| 43 | Structure Wo (60 Deg) | None     |           |           |           |       |       | 22          |         |           |
| 44 | Structure Wo (90 Deg) | None     |           |           |           |       |       | 22          |         |           |
| 45 | Structure Wo (120 D   | None     |           |           |           |       |       | 22          |         |           |
|    | Structure Wo (150 D   | None     |           |           |           |       |       | 22          |         |           |
| 47 | Structure Wo (180 D   | None     |           |           |           |       |       | 22          |         |           |
|    | Structure Wo (210 D   | None     |           |           |           |       |       | 22          |         |           |
| 49 | Structure Wo (240 D   | None     |           |           |           |       |       | 22          |         |           |
|    | Structure Wo (270 D   | None     |           |           |           |       |       | 22          |         |           |
| 51 | Structure Wo (300 D   | None     |           |           |           |       |       | 22          |         |           |
| 52 |                       | None     |           |           |           |       |       | 22          |         |           |
| 53 | Structure Wi (0 Deg)  | None     |           |           |           |       |       | 22          |         |           |
|    | Structure Wi (30 Deg) | None     |           |           |           |       |       | 22          |         |           |
| 55 | Structure Wi (60 Deg) | None     |           |           |           |       |       | 22          |         |           |
| 56 |                       | None     |           |           |           |       |       | 22          |         |           |
| 50 |                       | NULLE    |           |           |           |       |       | 44          |         |           |

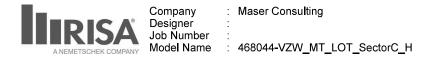
RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 1



## Basic Load Cases (Continued)

|    | BLC Description      | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Me | Surface(P |
|----|----------------------|----------|-----------|-----------|-----------|-------|-------|-------------|---------|-----------|
| 57 | Structure Wi (120 De | None     |           | -         |           |       |       | 22          |         |           |
| 58 | Structure Wi (150 De | None     |           |           |           |       |       | 22          |         |           |
| 59 | Structure Wi (180 De | None     |           |           |           |       |       | 22          |         |           |
| 60 | Structure Wi (210 De | None     |           |           |           |       |       | 22          |         |           |
| 61 | Structure Wi (240 De | None     |           |           |           |       |       | 22          |         |           |
| 62 | Structure Wi (270 De | None     |           |           |           |       |       | 22          |         |           |
| 63 | Structure Wi (300 De | None     |           |           |           |       |       | 22          |         |           |
| 64 | Structure Wi (330 De | None     |           |           |           |       |       | 22          |         |           |
| 65 | Structure Wm (0 Deg) | None     |           |           |           |       |       | 22          |         |           |
| 66 | Structure Wm (30 De  | None     |           |           |           |       |       | 22          |         |           |
| 67 | Structure Wm (60 De  | None     |           |           |           |       |       | 22          |         |           |
| 68 | Structure Wm (90 De  | None     |           |           |           |       |       | 22          |         |           |
| 69 | Structure Wm (120 D  | None     |           |           |           |       |       | 22          |         |           |
| 70 | Structure Wm (150 D  | None     |           |           |           |       |       | 22          |         |           |
| 71 | Structure Wm (180 D  | None     |           |           |           |       |       | 22          |         |           |
| 72 | Structure Wm (210 D  | None     |           |           |           |       |       | 22          |         |           |
| 73 | Structure Wm (240 D  | None     |           |           |           |       |       | 22          |         |           |
| 74 | Structure Wm (270 D  | None     |           |           |           |       |       | 22          |         |           |
| 75 | Structure Wm (300 D  | None     |           |           |           |       |       | 22          |         |           |
| 76 | Structure Wm (330 D  | None     |           |           |           |       |       | 22          |         |           |
| 77 | Lm1                  | None     |           |           |           |       | 1     |             |         |           |
| 78 | Lm2                  | None     |           |           |           |       | 1     |             |         |           |
| 79 | Lv1                  | None     |           |           |           |       | 1     |             |         |           |
| 80 | Lv2                  | None     |           |           |           |       | 1     |             |         |           |

## Load Combinations


|    | Description | Sol | .PD | .SR | BLC | Fact | .BLC | Fact | BLC | Fact | .BLC | Fact | .BLC | Fact | .BLC | Fact. | .BLC | Fact | .BLC | Fact | .BLC | Fact | .BLC | Fact |
|----|-------------|-----|-----|-----|-----|------|------|------|-----|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|
| 1  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 3   | 1    | 41   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 2  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 4   | 1    | 42   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 3  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 5   | 1    | 43   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 4  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 6   | 1    | 44   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 5  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 7   | 1    | 45   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 6  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 8   | 1    | 46   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 7  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 9   | 1    | 47   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 8  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 10  | 1    | 48   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 9  | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 11  | 1    | 49   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 10 | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 12  | 1    | 50   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 11 | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 13  | 1    | 51   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 12 | 1.2D+1.0    | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 14  | 1    | 52   | 1    |      |      |      |       |      |      |      |      |      |      |      |      |
| 13 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 15   | 1    | 53   | 1     |      |      |      |      |      |      |      |      |
| 14 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 16   | 1    | 54   | 1     |      |      |      |      |      |      |      |      |
| 15 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 17   | 1    | 55   | 1     |      |      |      |      |      |      |      |      |
| 16 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 18   | 1    | 56   | 1     |      |      |      |      |      |      |      |      |
| 17 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 19   | 1    | 57   | 1     |      |      |      |      |      |      |      |      |
| 18 | 1.2D + 1.0  | Yes | Y   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 20   | 1    | 58   | 1     |      |      |      |      |      |      |      |      |
| 19 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 21   | 1    | 59   | 1     |      |      |      |      |      |      |      |      |
| 20 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 22   | 1    | 60   | 1     |      |      |      |      |      |      |      |      |
| 21 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 23   | 1    | 61   | 1     |      |      |      |      |      |      |      |      |
| 22 | 1.2D + 1.0  | Yes | Y   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 24   | 1    | 62   | 1     |      |      |      |      |      |      |      |      |
| 23 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 25   | 1    | 63   | 1     |      |      |      |      |      |      |      |      |
| 24 | 1.2D + 1.0  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 2   | 1    | 40   | 1    | 26   | 1    | 64   | 1     |      |      |      |      |      |      |      |      |
| 25 | 1.2D + 1.5  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 77  | 1.5  | 27   | 1    | 65   | 1    |      |       |      |      |      |      |      |      |      |      |
| 26 | 1.2D + 1.5  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 77  | 1.5  | 28   | 1    | 66   | 1    |      |       |      |      |      |      |      |      |      |      |
| 27 | 1.2D + 1.5  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 77  | 1.5  | 29   | 1    | 67   | 1    |      |       |      |      |      |      |      |      |      |      |
| 28 | 1.2D + 1.5  | Yes | Υ   |     | 1   | 1.2  | 39   | 1.2  | 77  | 1.5  | 30   | 1    | 68   | 1    |      |       |      |      |      |      |      |      |      |      |

# Load Combinations (Continued)

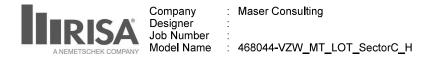
|          | Description So | olPE | )S | RBL | C Fact | BLC | Fact | .BLC | Fact | BLC | Fact | .BLC | Fact. | BLC | Fact | BLC | Fact | BLC | Fact. | BLC | Fact. | BLC | Fact |
|----------|----------------|------|----|-----|--------|-----|------|------|------|-----|------|------|-------|-----|------|-----|------|-----|-------|-----|-------|-----|------|
| 29       | 1.2D + 1.5Ye   | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 31  | 1    | 69   | 1     |     |      |     |      |     |       |     |       |     |      |
| 30       | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 32  | 1    | 70   | 1     |     |      |     |      |     |       |     |       |     |      |
| 31       | 1.2D + 1.5Ye   | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 33  | 1    | 71   | 1     |     |      |     |      |     |       |     |       |     |      |
| 32       | 1.2D + 1.5Ye   | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 34  | 1    | 72   | 1     |     |      |     |      |     |       |     |       |     |      |
| 33       | 1.2D + 1.5Ye   | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 35  | 1    | 73   | 1     |     |      |     |      |     |       |     |       |     |      |
| 34       | 1.2D + 1.5Ye   | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 36  | 1    | 74   | 1     |     |      |     |      |     |       |     |       |     |      |
| 35       | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 37  | 1    | 75   | 1     |     |      |     |      |     |       |     |       |     |      |
| 36       | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 77   | 1.5  | 38  | 1    | 76   | 1     |     |      |     |      |     |       |     |       |     |      |
| 37       | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 27  | 1    | 65   | 1     |     |      |     |      |     |       |     |       |     |      |
| 38       | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 28  | 1    | 66   | 1     |     |      |     |      |     |       |     |       |     |      |
| 39       | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 29  | 1    | 67   | 1     |     |      |     |      |     |       |     |       |     |      |
|          | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 30  | 1    | 68   | 1     |     |      |     |      |     |       |     |       |     |      |
| <u> </u> | 1.2D + 1.5 Ye  |      | ′  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 31  | 1    | 69   | 1     |     |      |     |      |     |       |     |       |     |      |
|          | 1.2D + 1.5Ye   |      |    | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 32  | 1    | 70   | 1     |     |      |     |      |     |       |     |       |     |      |
| 10       | 1.2D + 1.5Ye   | es Y | ′  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 33  | 1    | 71   | 1     |     |      |     |      |     |       |     |       |     |      |
|          | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 34  | 1    | 72   | 1     |     |      |     |      |     |       |     |       |     |      |
| 10       | 1.2D + 1.5 Ye  | es Y | ′  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 35  | 1    | 73   | 1     |     |      |     |      |     |       |     |       |     |      |
|          | 1.2D + 1.5 Ye  | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 36  | 1    | 74   | 1     |     |      |     |      |     |       |     |       |     |      |
| <u> </u> | 1.2D + 1.5 Ye  | es Y | ′  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 37  | 1    | 75   | 1     |     |      |     |      |     |       |     |       |     |      |
| 48       | 1.2D + 1.5Ye   | es Y | '  | 1   | 1.2    | 39  | 1.2  | 78   | 1.5  | 38  | 1    | 76   | 1     |     |      |     |      |     |       |     |       |     |      |
| 10       | 1.2D + 1.5 Ye  |      | _  | 1   | 1.2    | 39  | 1.2  | 79   | 1.5  |     |      |      |       |     |      |     |      |     |       |     |       |     |      |
| 50       | 1.2D + 1.5 Ye  |      |    | 1   | 1.2    | 39  | 1.2  | 80   | 1.5  |     |      |      |       |     |      |     |      |     |       |     |       |     |      |
| 51       | 1.4D Ye        |      |    | 1   | 1.4    | 39  | 1.4  |      |      |     |      |      |       |     |      |     |      |     |       |     |       |     |      |
| 52       | Seismic M      | Y    | ′  | 1   | 1      | 39  | 1    |      |      |     |      |      |       |     |      |     |      |     |       |     |       |     |      |
| 53       | 1.2D + 1.0     | Y    | '  | 1   | 1.2    | 39  | 1.2  | SX   |      | SY  | 1    | SZ   | -1    |     |      |     |      |     |       |     |       |     |      |
| <u> </u> | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | .5   | SY  | 1    | SZ   | 866   |     |      |     |      |     |       |     |       |     |      |
| 00       | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | .866 |     | 1    | SZ   | 5     |     |      |     |      |     |       |     |       |     |      |
| 00       | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | 1    | SY  | 1    | SZ   |       |     |      |     |      |     |       |     |       |     |      |
| 01       | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | .866 |     | 1    | SZ   | .5    |     |      |     |      |     |       |     |       |     |      |
|          | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | .5   | SY  | 1    | SZ   | .866  |     |      |     |      |     |       |     |       |     |      |
| 00       | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   |      | SY  | 1    | SZ   | 1     |     |      |     |      |     |       |     |       |     |      |
| 00       | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | 5    | SY  | 1    | SZ   | .866  |     |      |     |      |     |       |     |       |     |      |
| <u> </u> | 1.2D + 1.0     | Y    |    | 1   | 1.2    | 39  | 1.2  | SX   | 866  |     | 1    | SZ   | .5    |     |      |     |      |     |       |     |       |     |      |
| 1        | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | -1   | SY  | 1    | SZ   |       |     |      |     |      |     |       |     |       |     |      |
|          | 1.2D + 1.0     | Y    | _  | 1   | 1.2    | 39  | 1.2  | SX   | 866  |     | 1    | SZ   | 5     |     |      |     |      |     |       |     |       |     |      |
| 64       | 1.2D + 1.0     | Y    | '  | 1   | 1.2    | 39  | 1.2  | SX   | 5    | SY  | 1    | SZ   | 866   |     |      |     |      |     |       |     |       |     |      |

# Joint Coordinates and Temperatures

|    | Label | X [ft]    | Y [ft] | Z [ft]   | Temp [F] | Detach From Diap |
|----|-------|-----------|--------|----------|----------|------------------|
| 1  | N1    | Ö         | Ö      | 0.708333 | 0        |                  |
| 2  | N3    | 0         | 0      | 2.625    | 0        |                  |
| 3  | N4    | 0         | 0      | 2.958333 | 0        |                  |
| 4  | N5    | 0         | 75     | 2.625    | 0        |                  |
| 5  | N6    | 0         | .75    | 2.625    | 0        |                  |
| 6  | N7    | 5         | 0      | 2.958333 | 0        |                  |
| 7  | N8    | -5        | 0      | 2.958333 | 0        |                  |
| 8  | N9    | -4.666667 | 0      | 2.958333 | 0        |                  |
| 9  | N11   | 4.666667  | 0      | 2.958333 | 0        |                  |
| 10 | N12   | -4.666667 | 0      | 3.208333 | 0        |                  |
| 11 | N13   | .35       | 0      | 3.208333 | 0        |                  |
| 12 | N14   | 4.666667  | 0      | 3.208333 | 0        |                  |
| 13 | N15   | -4.666667 | 4.25   | 3.208333 | 0        |                  |
| 14 | N16   | .35       | 4.25   | 3.208333 | 0        |                  |
| 15 | N17   | 4.666667  | 4.25   | 3.208333 | 0        |                  |
| 16 | N18   | -4.666667 | -4.25  | 3.208333 | 0        |                  |



## Joint Coordinates and Temperatures (Continued)


|    | Label | X [ft]    | Y [ft] | Z [ft]   | Temp [F] | Detach From Diap |
|----|-------|-----------|--------|----------|----------|------------------|
| 17 | N19   | .35       | -4.25  | 3.208333 | 0        |                  |
| 18 | N20   | 4.666667  | -4.25  | 3.208333 | 0        |                  |
| 19 | N20A  | 0         | 0      | 1.666667 | 0        |                  |
| 20 | N21   | .25       | 0      | 1.666667 | 0        |                  |
| 21 | N22   | .25       | 1.5    | 1.666667 | 0        |                  |
| 22 | N23   | .25       | -1.5   | 1.666667 | 0        |                  |
| 23 | N24   | 2.625     | 0      | 2.958333 | 0        |                  |
| 24 | N25   | 2.625     | 0      | 3.208333 | 0        |                  |
| 25 | N26   | 2.625     | 4.25   | 3.208333 | 0        |                  |
| 26 | N27   | 2.625     | -4.25  | 3.208333 | 0        |                  |
| 27 | N28   | -2.625    | 0      | 2.958333 | 0        |                  |
| 28 | N29   | -2.625    | 0      | 3.208333 | 0        |                  |
| 29 | N30   | -2.625    | 4.25   | 3.208333 | 0        |                  |
| 30 | N31   | -2.625    | -4.25  | 3.208333 | 0        |                  |
| 31 | N31A  | 4.666667  | 1      | 3.208333 | 0        |                  |
| 32 | N32   | 4.666667  | 3      | 3.208333 | 0        |                  |
| 33 | N33   | -4.666667 | 1      | 3.208333 | 0        |                  |
| 34 | N35   | 2.625     | 1      | 3.208333 | 0        |                  |
| 35 | N36   | -2.625    | 1      | 3.208333 | 0        |                  |
| 36 | N37   | 2.625     | 2      | 3.208333 | 0        |                  |
| 37 | N38   | -2.625    | 3      | 3.208333 | 0        |                  |
| 38 | N39   | 0         | -1.5   | 2.958333 | 0        |                  |
| 39 | N40   | 5         | -1.5   | 2.958333 | 0        |                  |
| 40 | N41   | -5        | -1.5   | 2.958333 | 0        |                  |
| 41 | N42   | -4.666667 | -1.5   | 2.958333 | 0        |                  |
| 42 | N43   | 4.666667  | -1.5   | 2.958333 | 0        |                  |
| 43 | N44   | -4.666667 | -1.5   | 3.208333 | 0        |                  |
| 44 | N45   | .35       | -1.5   | 3.208333 | 0        |                  |
| 45 | N46   | 4.666667  | -1.5   | 3.208333 | 0        |                  |
| 46 | N47   | 2.625     | -1.5   | 2.958333 | 0        |                  |
| 47 | N48   | 2.625     | -1.5   | 3.208333 | 0        |                  |
| 48 | N49   | -2.625    | -1.5   | 2.958333 | 0        |                  |
| 49 | N50   | -2.625    | -1.5   | 3.208333 | 0        |                  |
| 50 | N51   | 0         | -1.5   | 0.708333 | 0        |                  |
| 51 | N52   | 0         | -1.5   | 2.625    | 0        |                  |
| 52 | N53   | .35       | 0      | 2.958333 | 0        |                  |
| 53 | N54   | .35       | -1.5   | 2.958333 | 0        |                  |

#### Hot Rolled Steel Section Sets

|   | Label             | Shape    | Туре   | Design List | Material  | Design R | A [in2] | lyy [in4] | zz [in4] | J [in4] |
|---|-------------------|----------|--------|-------------|-----------|----------|---------|-----------|----------|---------|
| 1 | Antenna Pipe      | PIPE_2.0 | Beam   | Pipe        | A53 Gr. B | Typical  | 1.02    | 627       | 627      | 1.25    |
| 2 | Face Horizontal   | HSS4X4X4 | Beam   | SquareTube  | A500 Gr   | Typical  | 3.37    | 7.8       | 7.8      | 12.8    |
| 3 | Standoff Vertical | PIPE_4.0 | Column | Pipe        | A53 Gr. B | Typical  | 2.96    | 6.82      | 6.82     | 13.6    |
| 4 | Standoff          | HSS4X4X4 | Beam   | SquareTube  | A500 Gr   | Typical  | 3.37    | 7.8       | 7.8      | 12.8    |
| 5 | MOD STANDOFF      | HSS3X3X4 | Beam   | SquareTube  | A500 Gr   | Typical  | 2.44    | 3.02      | 3.02     | 5.08    |
| 6 | Prop Antenna Pipe | PIPE_2.5 | Beam   | Pipe        | A53 Gr. B | Typical  | 1.61    | 1.45      | 1.45     | 2.89    |
| 7 | MOD FACE          | PIPE_3.0 | Beam   | Pipe        | A53 Gr. B | Typical  | 2.07    | 2.85      | 2.85     | 5.69    |

#### Hot Rolled Steel Properties

|   | Label      | E [ksi] | G [ksi] | Nu | Therm (/1E | .Density[k/ft | Yie <b>l</b> d[ksi] | Ry  | Fu[ksi] | Rt  |
|---|------------|---------|---------|----|------------|---------------|---------------------|-----|---------|-----|
| 1 | A36 Gr.36  | 29000   | 11154   | .3 | .65        | .49           | 36                  | 1.5 | 58      | 1.2 |
| 2 | A53 Gr. B  | 29000   | 11154   | .3 | .65        | .49           | 35                  | 1.5 | 60      | 1.2 |
| 3 | A572 Gr.50 | 29000   | 11154   | .3 | .65        | .49           | 50                  | 1.1 | 65      | 1.1 |
| 4 | A992       | 29000   | 11154   | .3 | .65        | .49           | 50                  | 1.1 | 65      | 1.1 |



#### Hot Rolled Steel Properties (Continued)

|   |   | Label         | E [ksi] | G [ksi] | Nu | Therm (/1E | .Density[k/ft | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|---|---------------|---------|---------|----|------------|---------------|------------|-----|---------|-----|
| 5 | 5 | A500 Gr. B 42 | 29000   | 11154   | .3 | .65        | .49           | 42         | 1.4 | 58      | 1.3 |
| 6 | 3 | A500 Gr. B 46 | 29000   | 11154   | .3 | .65        | .49           | 46         | 1.4 | 58      | 1.3 |

#### Member Primary Data

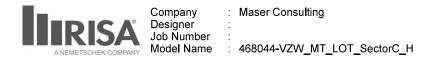

|    | Label | I Joint | J Joint | K Joint | Rotate(deg) | Section/Shape     | Туре   | Design List | Materia   | Design Rules |
|----|-------|---------|---------|---------|-------------|-------------------|--------|-------------|-----------|--------------|
| 1  | M4    | N6      | N5      |         |             | Standoff Vertical | Column | Pipe        | A53 Gr. B | Typical      |
| 2  | M3    | N1      | N3      |         |             | Standoff          | Beam   |             | A500 Gr   | Typical      |
| 3  | M1    | N3      | N4      |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 4  | M9    | N9      | N12     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 5  | M10   | N53     | N13     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 6  | M11   | N11     | N14     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 7  | M11A  | N20A    | N21     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 8  | M14   | N24     | N25     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 9  | M16   | N28     | N29     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 10 | M5    | N8      | N7      |         |             | Face Horizontal   | Beam   | SquareTube  |           | Typical      |
| 11 | MP1A  | N17     | N20     |         |             | Antenna Pipe      | Beam   | Pipe        | A53 Gr. B | Typical      |
| 12 | MP3A  | N16     | N19     |         |             | Antenna Pipe      | Beam   | Pipe        | A53 Gr. B | Typical      |
| 13 | MP5A  | N15     | N18     |         |             | Antenna Pipe      | Beam   | Pipe        | A53 Gr. B | Typical      |
| 14 | M17   | N22     | N23     |         |             | Antenna Pipe      | Beam   | Pipe        | A53 Gr. B | Typical      |
| 15 | MP2A  | N26     | N27     |         |             | Antenna Pipe      | Beam   | Pipe        | A53 Gr. B | Typical      |
| 16 | MP4A  | N30     | N31     |         |             | Antenna Pipe      | Beam   | Pipe        | A53 Gr. B | Typical      |
| 17 | M17A  | N42     | N44     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 18 | M18   | N54     | N45     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 19 | M19   | N43     | N46     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 20 | M20   | N47     | N48     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 21 | M21   | N49     | N50     |         |             | RIGID             | None   | None        | RIGID     | Typical      |
| 22 | M22   | N41     | N40     |         |             | MOD FACE          | Beam   | Pipe        | A53 Gr. B | Typical      |
| 23 | M23   | N51     | N52     |         |             | MOD STAND         | Beam   | SquareTube  | A500 Gr   | Typical      |
| 24 | M24   | N52     | N39     |         |             | RIGID             | None   | None        | RIGID     | Typical      |

#### Hot Rolled Steel Design Parameters

|    | Labe | Shape        | Length[ft] | Lbyy[ft] | Lbzz[ft] | Lcomp top[ft] | Lcomp bot[ft] | L-torqu | Куу | Kzz | Cb | Function |
|----|------|--------------|------------|----------|----------|---------------|---------------|---------|-----|-----|----|----------|
| 1  | M4   | Standoff Ve  | 1.5        |          |          | Lbyy          |               | •       |     |     |    | Lateral  |
| 2  | M3   | Standoff     | 1.917      |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 3  | M5   | Face Horizo  | 10         |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 4  | MP1A | Antenna Pipe | 8.5        |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 5  | MP3A | Antenna Pipe | 8.5        |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 6  | MP5A | Antenna Pipe | 8.5        |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 7  | M17  | Antenna Pipe | 3          |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 8  | MP2A | Antenna Pipe | 8.5        |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 9  | MP4A | Antenna Pipe | 8.5        |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 10 | M22  | MOD FACE     | 10         |          |          | Lbyy          |               |         |     |     |    | Lateral  |
| 11 | M23  | MOD STAN     | 1.917      |          |          | Lbyy          |               |         |     |     |    | Lateral  |

## Member Point Loads (BLC 1 : Antenna D)

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | MP1A         | Y         | -13.5              | 1.25           |
| 2 | MP1A         | My        | 009                | 1.25           |
| 3 | MP1A         | Mz        | 0                  | 1.25           |
| 4 | MP1A         | Y         | -13.5              | 5.25           |
| 5 | MP1A         | My        | 009                | 5.25           |
| 6 | MP1A         | Mz        | 0                  | 5.25           |

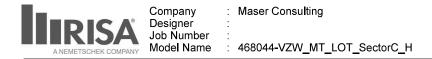



# Member Point Loads (BLC 1 : Antenna D) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 7  | MP5A         | Y         | -13.5              | 1.25           |
| 8  | MP5A         | My        | 009                | 1.25           |
| 9  | MP5A         | Mz        | 0                  | 1.25           |
| 10 | MP5A         | Y         | -13.5              | 5.25           |
| 11 | MP5A         | My        | 009                | 5.25           |
| 12 | MP5A         | Mz        | 0                  | 5.25           |
| 13 | MP3A         | Y         | -36.93             | 1.25           |
| 14 | MP3A         | My        | 022                | 1.25           |
| 15 | MP3A         | Mz        | .034               | 1.25           |
| 16 | MP3A         | Y         | -36.93             | 5.25           |
| 17 | MP3A         | My        | 022                | 5.25           |
| 18 | MP3A         | Mz        | .034               | 5.25           |
| 19 | MP3A         | Y         | -36.93             | 1.25           |
| 20 | MP3A         | My        | 022                | 1.25           |
| 21 | MP3A         | Mz        | 034                | 1.25           |
| 22 | MP3A         | Y         | -36.93             | 5.25           |
| 23 | MP3A         | My        | 022                | 5.25           |
| 24 | MP3A         | Mz        | 034                | 5.25           |
| 25 | MP4A         | Y         | -43.55             | 2.25           |
| 26 | MP4A         | My        | 015                | 2.25           |
| 27 | MP4A         | Mz        | 0                  | 2.25           |
| 28 | MP4A         | Y         | -43.55             | 4.25           |
| 29 | MP4A         | My        | 015                | 4.25           |
| 30 | MP4A         | Mz        | 0                  | 4.25           |
| 31 | MP3A         | Y         | -10.4              | 7              |
| 32 | MP3A         | My        | .003               | 7              |
| 33 | MP3A         | Mz        | 0                  | 7              |
| 34 | MP3A         | Y         | -84.4              | 1.5            |
| 35 | MP3A         | My        | .056               | 1.5            |
| 36 | MP3A         | Mz        | 0                  | 1.5            |
| 37 | MP4A         | Y         | -70.3              | 1.5            |
| 38 | MP4A         | My        | .047               | 1.5            |
| 39 | MP4A         | Mz        | 0                  | 1.5            |
| 40 | M17          | Y         | -32                | 1              |
| 41 | M17          | My        | 0                  | 1              |
| 42 | M17          | Mz        | 0                  | 1              |

# Member Point Loads (BLC 2 : Antenna Di)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Y         | -80.467            | 1.25           |
| 2  | MP1A         | My        | 054                | 1.25           |
| 3  | MP1A         | Mz        | 0                  | 1.25           |
| 4  | MP1A         | Y         | -80.467            | 5.25           |
| 5  | MP1A         | My        | 054                | 5.25           |
| 6  | MP1A         | Mz        | 0                  | 5.25           |
| 7  | MP5A         | Y         | -80.467            | 1.25           |
| 8  | MP5A         | My        | 054                | 1.25           |
| 9  | MP5A         | Mz        | 0                  | 1.25           |
| 10 | MP5A         | Y         | -80.467            | 5.25           |
| 11 | MP5A         | My        | 054                | 5.25           |
| 12 | MP5A         | Mz        | 0                  | 5.25           |
| 13 | MP3A         | Y         | -55.968            | 1.25           |
| 14 | MP3A         | My        | 033                | 1.25           |
| 15 | MP3A         | Mz        | .051               | 1.25           |
| 16 | MP3A         | Y         | -55.968            | 5.25           |
| 17 | MP3A         | My        | 033                | 5.25           |

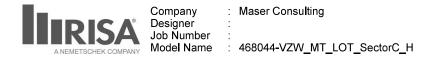



#### Member Point Loads (BLC 2 : Antenna Di) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 18 | MP3A         | Mz        | .051               | 5.25           |
| 19 | MP3A         | Y         | -55.968            | 1.25           |
| 20 | MP3A         | My        | 033                | 1.25           |
| 21 | MP3A         | Mz        | 051                | 1.25           |
| 22 | MP3A         | Y         | -55.968            | 5.25           |
| 23 | MP3A         | My        | 033                | 5.25           |
| 24 | MP3A         | Mz        | 051                | 5.25           |
| 25 | MP4A         | Y         | -32.218            | 2.25           |
| 26 | MP4A         | My        | 011                | 2.25           |
| 27 | MP4A         | Mz        | 0                  | 2.25           |
| 28 | MP4A         | Y         | -32.218            | 4.25           |
| 29 | MP4A         | My        | 011                | 4.25           |
| 30 | MP4A         | Mz        | 0                  | 4.25           |
| 31 | MP3A         | Y         | -9.588             | 7              |
| 32 | MP3A         | My        | .003               | 7              |
| 33 | MP3A         | Mz        | 0                  | 7              |
| 34 | MP3A         | Y         | -40.562            | 1.5            |
| 35 | MP3A         | My        | .027               | 1.5            |
| 36 | MP3A         | Mz        | 0                  | 1.5            |
| 37 | MP4A         | Y         | -36.452            | 1.5            |
| 38 | MP4A         | My        | .024               | 1.5            |
| 39 | MP4A         | Mz        | 0                  | 1.5            |
| 40 | M17          | Y         | -79.66             | 1              |
| 41 | M17          | My        | 0                  | 1              |
| 42 | M17          | Mz        | 0                  | 1              |

# Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 0                  | 1.25           |
| 2  | MP1A         | Z         | -182.808           | 1.25           |
| 3  | MP1A         | Mx        | 0                  | 1.25           |
| 4  | MP1A         | X         | 0                  | 5.25           |
| 5  | MP1A         | Z         | -182.808           | 5.25           |
| 6  | MP1A         | Mx        | 0                  | 5.25           |
| 7  | MP5A         | Х         | 0                  | 1.25           |
| 8  | MP5A         | Z         | -182.808           | 1.25           |
| 9  | MP5A         | Mx        | 0                  | 1.25           |
| 10 | MP5A         | Х         | 0                  | 5.25           |
| 11 | MP5A         | Z         | -182.808           | 5.25           |
| 12 | MP5A         | Mx        | 0                  | 5.25           |
| 13 | MP3A         | Х         | 0                  | 1.25           |
| 14 | MP3A         | Z         | -170.431           | 1.25           |
| 15 | MP3A         | Mx        | 156                | 1.25           |
| 16 | MP3A         | X         | 0                  | 5.25           |
| 17 | MP3A         | Z         | -170.431           | 5.25           |
| 18 | MP3A         | Mx        | 156                | 5.25           |
| 19 | MP3A         | Х         | 0                  | 1.25           |
| 20 | MP3A         | Z         | -170.431           | 1.25           |
| 21 | MP3A         | Mx        | .156               | 1.25           |
| 22 | MP3A         | Х         | 0                  | 5.25           |
| 23 | MP3A         | Z         | -170.431           | 5.25           |
| 24 | MP3A         | Mx        | .156               | 5.25           |
| 25 | MP4A         | Х         | 0                  | 2.25           |
| 26 | MP4A         | Z         | -89.5              | 2.25           |
| 27 | MP4A         | Mx        | 0                  | 2.25           |
| 28 | MP4A         | Х         | 0                  | 4.25           |




# Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 29 | MP4A         | Z         | -89.5              | 4.25           |
| 30 | MP4A         | Mx        | 0                  | 4.25           |
| 31 | MP3A         | Х         | 0                  | 7              |
| 32 | MP3A         | Z         | -14.091            | 7              |
| 33 | MP3A         | Mx        | 0                  | 7              |
| 34 | MP3A         | Х         | 0                  | 1.5            |
| 35 | MP3A         | Z         | -71.219            | 1.5            |
| 36 | MP3A         | Mx        | 0                  | 1.5            |
| 37 | MP4A         | Х         | 0                  | 1.5            |
| 38 | MP4A         | Z         | -71.219            | 1.5            |
| 39 | MP4A         | Mx        | 0                  | 1.5            |
| 40 | M17          | Х         | 0                  | 1              |
| 41 | M17          | Z         | -139.48            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

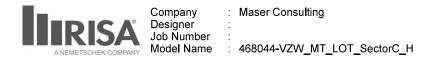
# Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 88.964             | 1.25           |
| 2  | MP1A         | Z         | -154.09            | 1.25           |
| 3  | MP1A         | Mx        | 059                | 1.25           |
| 4  | MP1A         | Х         | 88.964             | 5.25           |
| 5  | MP1A         | Z         | -154.09            | 5.25           |
| 6  | MP1A         | Mx        | 059                | 5.25           |
| 7  | MP5A         | Х         | 88.964             | 1.25           |
| 8  | MP5A         | Z         | -154.09            | 1.25           |
| 9  | MP5A         | Mx        | 059                | 1.25           |
| 10 | MP5A         | X         | 88.964             | 5.25           |
| 11 | MP5A         | Z         | -154.09            | 5.25           |
| 12 | MP5A         | Mx        | 059                | 5.25           |
| 13 | MP3A         | X         | 73.029             | 1.25           |
| 14 | MP3A         | Z         | -126.49            | 1.25           |
| 15 | MP3A         | Mx        | 159                | 1.25           |
| 16 | MP3A         | Х         | 73.029             | 5.25           |
| 17 | MP3A         | Z         | -126.49            | 5.25           |
| 18 | MP3A         | Mx        | 159                | 5.25           |
| 19 | MP3A         | X         | 73.029             | 1.25           |
| 20 | MP3A         | Z         | -126.49            | 1.25           |
| 21 | MP3A         | Mx        | .073               | 1.25           |
| 22 | MP3A         | X         | 73.029             | 5.25           |
| 23 | MP3A         | Z         | -126.49            | 5.25           |
| 24 | MP3A         | Mx        | .073               | 5.25           |
| 25 | MP4A         | X         | 37.942             | 2.25           |
| 26 | MP4A         | Z         | -65.718            | 2.25           |
| 27 | MP4A         | Mx        | 013                | 2.25           |
| 28 | MP4A         | X         | 37.942             | 4.25           |
| 29 | MP4A         | Z         | -65.718            | 4.25           |
| 30 | MP4A         | Mx        | 013                | 4.25           |
| 31 | MP3A         | Х         | 6.503              | 7              |
| 32 | MP3A         | Z         | -11.264            | 7              |
| 33 | MP3A         | Mx        | .002               | 7              |
| 34 | MP3A         | X         | 32.658             | 1.5            |
| 35 | MP3A         | Z         | -56.565            | 1.5            |
| 36 | MP3A         | Mx        | .022               | 1.5            |
| 37 | MP4A         | X         | 31.527             | 1.5            |
| 38 | MP4A         | Z         | -54.607            | 1.5            |
| 39 | MP4A         | Mx        | .021               | 1.5            |
|    |              |           |                    | 1.0            |



#### Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 40 | M17          | Х         | 61.128             | 1              |
| 41 | M17          | Z         | -105.877           | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

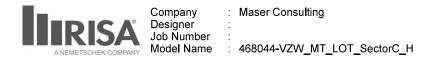

#### Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 145.636            | 1.25           |
| 2  | MP1A         | Z         | -84.083            | 1.25           |
| 3  | MP1A         | Mx        | 097                | 1.25           |
| 4  | MP1A         | Х         | 145.636            | 5.25           |
| 5  | MP1A         | Z         | -84.083            | 5.25           |
| 6  | MP1A         | Mx        | 097                | 5.25           |
| 7  | MP5A         | Х         | 145.636            | 1.25           |
| 8  | MP5A         | Z         | -84.083            | 1.25           |
| 9  | MP5A         | Mx        | 097                | 1.25           |
| 10 | MP5A         | Х         | 145.636            | 5.25           |
| 11 | MP5A         | Z         | -84.083            | 5.25           |
| 12 | MP5A         | Mx        | 097                | 5.25           |
| 13 | MP3A         | Х         | 84.277             | 1.25           |
| 14 | MP3A         | Z         | -48.657            | 1.25           |
| 15 | MP3A         | Mx        | 094                | 1.25           |
| 16 | MP3A         | Х         | 84.277             | 5.25           |
| 17 | MP3A         | Z         | -48.657            | 5.25           |
| 18 | MP3A         | Mx        | 094                | 5.25           |
| 19 | MP3A         | Х         | 84.277             | 1.25           |
| 20 | MP3A         | Z         | -48.657            | 1.25           |
| 21 | MP3A         | Mx        | 005                | 1.25           |
| 22 | MP3A         | Х         | 84.277             | 5.25           |
| 23 | MP3A         | Z         | -48.657            | 5.25           |
| 24 | MP3A         | Mx        | 005                | 5.25           |
| 25 | MP4A         | Х         | 42.136             | 2.25           |
| 26 | MP4A         | Z         | -24.327            | 2.25           |
| 27 | MP4A         | Mx        | 014                | 2.25           |
| 28 | MP4A         | Х         | 42.136             | 4.25           |
| 29 | MP4A         | Z         | -24.327            | 4.25           |
| 30 | MP4A         | Mx        | 014                | 4.25           |
| 31 | MP3A         | Х         | 9.384              | 7              |
| 32 | MP3A         | Z         | -5.418             | 7              |
| 33 | MP3A         | Mx        | .003               | 7              |
| 34 | MP3A         | Х         | 46.341             | 1.5            |
| 35 | MP3A         | Z         | -26.755            | 1.5            |
| 36 | MP3A         | Mx        | .031               | 1.5            |
| 37 | MP4A         | Х         | 40.466             | 1.5            |
| 38 | MP4A         | Z         | -23.363            | 1.5            |
| 39 | MP4A         | Mx        | .027               | 1.5            |
| 40 | M17          | Х         | 103.121            | 1              |
| 41 | M17          | Z         | -59.537            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

#### Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | MP1A         | Х         | 163.285            | 1.25           |
| 2 | MP1A         | Z         | 0                  | 1.25           |
| 3 | MP1A         | Mx        | 109                | 1.25           |
| 4 | MP1A         | X         | 163.285            | 5.25           |
| 5 | MP1A         | Z         | 0                  | 5.25           |

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 9

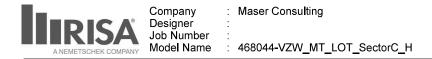



#### Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 6  | MP1A         | Mx        | 109                | 5.25           |
| 7  | MP5A         | Х         | 163.285            | 1.25           |
| 8  | MP5A         | Z         | 0                  | 1.25           |
| 9  | MP5A         | Mx        | 109                | 1.25           |
| 10 | MP5A         | Х         | 163.285            | 5.25           |
| 11 | MP5A         | Z         | 0                  | 5.25           |
| 12 | MP5A         | Mx        | 109                | 5.25           |
| 13 | MP3A         | Х         | 72.942             | 1.25           |
| 14 | MP3A         | Z         | 0                  | 1.25           |
| 15 | MP3A         | Mx        | 043                | 1.25           |
| 16 | MP3A         | Х         | 72.942             | 5.25           |
| 17 | MP3A         | Z         | 0                  | 5.25           |
| 18 | MP3A         | Mx        | 043                | 5.25           |
| 19 | MP3A         | Х         | 72.942             | 1.25           |
| 20 | MP3A         | Z         | 0                  | 1.25           |
| 21 | MP3A         | Mx        | 043                | 1.25           |
| 22 | MP3A         | Х         | 72.942             | 5.25           |
| 23 | MP3A         | Z         | 0                  | 5.25           |
| 24 | MP3A         | Mx        | 043                | 5.25           |
| 25 | MP4A         | Х         | 35.039             | 2.25           |
| 26 | MP4A         | Z         | 0                  | 2.25           |
| 27 | MP4A         | Mx        | 012                | 2.25           |
| 28 | MP4A         | Х         | 35.039             | 4.25           |
| 29 | MP4A         | Z         | 0                  | 4.25           |
| 30 | MP4A         | Mx        | 012                | 4.25           |
| 31 | MP3A         | Х         | 9.75               | 7              |
| 32 | MP3A         | Z         | 0                  | 7              |
| 33 | MP3A         | Mx        | .003               | 7              |
| 34 | MP3A         | Х         | 47.606             | 1.5            |
| 35 | MP3A         | Z         | 0                  | 1.5            |
| 36 | MP3A         | Mx        | .032               | 1.5            |
| 37 | MP4A         | Х         | 38.561             | 1.5            |
| 38 | MP4A         | Z         | 0                  | 1.5            |
| 39 | MP4A         | Mx        | .026               | 1.5            |
| 40 | M17          | Х         | 133.114            | 1              |
| 41 | M17          | Z         | 0                  | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 145.636            | 1.25           |
| 2  | MP1A         | Z         | 84.083             | 1.25           |
| 3  | MP1A         | Mx        | 097                | 1.25           |
| 4  | MP1A         | Х         | 145.636            | 5.25           |
| 5  | MP1A         | Z         | 84.083             | 5.25           |
| 6  | MP1A         | Mx        | 097                | 5.25           |
| 7  | MP5A         | Х         | 145.636            | 1.25           |
| 8  | MP5A         | Z         | 84.083             | 1.25           |
| 9  | MP5A         | Mx        | 097                | 1.25           |
| 10 | MP5A         | Х         | 145.636            | 5.25           |
| 11 | MP5A         | Z         | 84.083             | 5.25           |
| 12 | MP5A         | Mx        | 097                | 5.25           |
| 13 | MP3A         | Х         | 84.277             | 1.25           |
| 14 | MP3A         | Z         | 48.657             | 1.25           |
| 15 | MP3A         | Mx        | 005                | 1.25           |
| 16 | MP3A         | Х         | 84.277             | 5.25           |

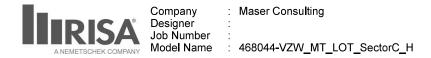



#### Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 17 | MP3A         | Z         | 48.657             | 5.25           |
| 18 | MP3A         | Mx        | 005                | 5.25           |
| 19 | MP3A         | Х         | 84.277             | 1.25           |
| 20 | MP3A         | Z         | 48.657             | 1.25           |
| 21 | MP3A         | Mx        | 094                | 1.25           |
| 22 | MP3A         | Х         | 84.277             | 5.25           |
| 23 | MP3A         | Z         | 48.657             | 5.25           |
| 24 | MP3A         | Mx        | 094                | 5.25           |
| 25 | MP4A         | Х         | 42.136             | 2.25           |
| 26 | MP4A         | Z         | 24.327             | 2.25           |
| 27 | MP4A         | Mx        | 014                | 2.25           |
| 28 | MP4A         | Х         | 42.136             | 4.25           |
| 29 | MP4A         | Z         | 24.327             | 4.25           |
| 30 | MP4A         | Mx        | 014                | 4.25           |
| 31 | MP3A         | Х         | 9.384              | 7              |
| 32 | MP3A         | Z         | 5.418              | 7              |
| 33 | MP3A         | Mx        | .003               | 7              |
| 34 | MP3A         | Х         | 46.341             | 1.5            |
| 35 | MP3A         | Z         | 26.755             | 1.5            |
| 36 | MP3A         | Mx        | .031               | 1.5            |
| 37 | MP4A         | Х         | 40.466             | 1.5            |
| 38 | MP4A         | Z         | 23.363             | 1.5            |
| 39 | MP4A         | Mx        | .027               | 1.5            |
| 40 | M17          | Х         | 130.196            | 1              |
| 41 | M17          | Z         | 75.169             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 88.964             | 1.25           |
| 2  | MP1A         | Z         | 154.09             | 1.25           |
| 3  | MP1A         | Mx        | 059                | 1.25           |
| 4  | MP1A         | Х         | 88.964             | 5.25           |
| 5  | MP1A         | Z         | 154.09             | 5.25           |
| 6  | MP1A         | Mx        | 059                | 5.25           |
| 7  | MP5A         | Х         | 88.964             | 1.25           |
| 8  | MP5A         | Z         | 154.09             | 1.25           |
| 9  | MP5A         | Mx        | 059                | 1.25           |
| 10 | MP5A         | Х         | 88.964             | 5.25           |
| 11 | MP5A         | Z         | 154.09             | 5.25           |
| 12 | MP5A         | Mx        | 059                | 5.25           |
| 13 | MP3A         | Х         | 73.029             | 1.25           |
| 14 | MP3A         | Z         | 126.49             | 1.25           |
| 15 | MP3A         | Mx        | .073               | 1.25           |
| 16 | MP3A         | Х         | 73.029             | 5.25           |
| 17 | MP3A         | Z         | 126.49             | 5.25           |
| 18 | MP3A         | Mx        | .073               | 5.25           |
| 19 | MP3A         | Х         | 73.029             | 1.25           |
| 20 | MP3A         | Z         | 126.49             | 1.25           |
| 21 | MP3A         | Mx        | 159                | 1.25           |
| 22 | MP3A         | Х         | 73.029             | 5.25           |
| 23 | MP3A         | Z         | 126.49             | 5.25           |
| 24 | MP3A         | Mx        | 159                | 5.25           |
| 25 | MP4A         | Х         | 37.942             | 2.25           |
| 26 | MP4A         | Z         | 65.718             | 2.25           |
| 27 | MP4A         | Mx        | 013                | 2.25           |




## Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 28 | MP4A         | Х         | 37.942             | 4.25           |
| 29 | MP4A         | Z         | 65.718             | 4.25           |
| 30 | MP4A         | Mx        | 013                | 4.25           |
| 31 | MP3A         | Х         | 6.503              | 7              |
| 32 | MP3A         | Z         | 11.264             | 7              |
| 33 | MP3A         | Mx        | .002               | 7              |
| 34 | MP3A         | Х         | 32.658             | 1.5            |
| 35 | MP3A         | Z         | 56.565             | 1.5            |
| 36 | MP3A         | Mx        | .022               | 1.5            |
| 37 | MP4A         | Х         | 31.527             | 1.5            |
| 38 | MP4A         | Z         | 54.607             | 1.5            |
| 39 | MP4A         | Mx        | .021               | 1.5            |
| 40 | M17          | Х         | 76.76              | 1              |
| 41 | M17          | Z         | 132.952            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

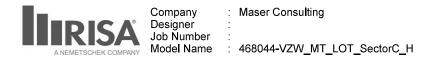
# Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | X         | 0                  | 1.25           |
| 2  | MP1A         | Z         | 182.808            | 1.25           |
| 3  | MP1A         | Mx        | 0                  | 1.25           |
| 4  | MP1A         | Х         | 0                  | 5.25           |
| 5  | MP1A         | Z         | 182.808            | 5.25           |
| 6  | MP1A         | Mx        | 0                  | 5.25           |
| 7  | MP5A         | Х         | 0                  | 1.25           |
| 8  | MP5A         | Z         | 182.808            | 1.25           |
| 9  | MP5A         | Mx        | 0                  | 1.25           |
| 10 | MP5A         | X         | 0                  | 5.25           |
| 11 | MP5A         | Z         | 182.808            | 5.25           |
| 12 | MP5A         | Mx        | 0                  | 5.25           |
| 13 | MP3A         | Х         | 0                  | 1.25           |
| 14 | MP3A         | Z         | 170.431            | 1.25           |
| 15 | MP3A         | Mx        | .156               | 1.25           |
| 16 | MP3A         | Х         | 0                  | 5.25           |
| 17 | MP3A         | Z         | 170.431            | 5.25           |
| 18 | MP3A         | Mx        | .156               | 5.25           |
| 19 | MP3A         | Х         | 0                  | 1.25           |
| 20 | MP3A         | Z         | 170.431            | 1.25           |
| 21 | MP3A         | Mx        | 156                | 1.25           |
| 22 | MP3A         | Х         | 0                  | 5.25           |
| 23 | MP3A         | Z         | 170.431            | 5.25           |
| 24 | MP3A         | Mx        | 156                | 5.25           |
| 25 | MP4A         | Х         | 0                  | 2.25           |
| 26 | MP4A         | Z         | 89.5               | 2.25           |
| 27 | MP4A         | Mx        | 0                  | 2.25           |
| 28 | MP4A         | Х         | 0                  | 4.25           |
| 29 | MP4A         | Z         | 89.5               | 4.25           |
| 30 | MP4A         | Mx        | 0                  | 4.25           |
| 31 | MP3A         | Х         | 0                  | 7              |
| 32 | MP3A         | Z         | 14.091             | 7              |
| 33 | MP3A         | Mx        | 0                  | 7              |
| 34 | MP3A         | Х         | 0                  | 1.5            |
| 35 | MP3A         | Z         | 71.219             | 1.5            |
| 36 | MP3A         | Mx        | 0                  | 1.5            |
| 37 | MP4A         | Х         | 0                  | 1.5            |
| 38 | MP4A         | Z         | 71.219             | 1.5            |



#### Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 39 | MP4A         | Mx        | 0                  | 1.5            |
| 40 | M17          | X         | 0                  | 1              |
| 41 | M17          | Z         | 139.48             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

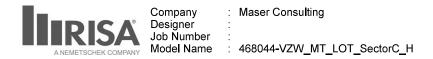

#### Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -88.964            | 1.25           |
| 2  | MP1A         | Z         | 154.09             | 1.25           |
| 3  | MP1A         | Mx        | .059               | 1.25           |
| 4  | MP1A         | Х         | -88.964            | 5.25           |
| 5  | MP1A         | Z         | 154.09             | 5.25           |
| 6  | MP1A         | Mx        | .059               | 5.25           |
| 7  | MP5A         | Х         | -88.964            | 1.25           |
| 8  | MP5A         | Z         | 154.09             | 1.25           |
| 9  | MP5A         | Mx        | .059               | 1.25           |
| 10 | MP5A         | Х         | -88.964            | 5.25           |
| 11 | MP5A         | Z         | 154.09             | 5.25           |
| 12 | MP5A         | Mx        | .059               | 5.25           |
| 13 | MP3A         | Х         | -73.029            | 1.25           |
| 14 | MP3A         | Z         | 126.49             | 1.25           |
| 15 | MP3A         | Mx        | .159               | 1.25           |
| 16 | MP3A         | Х         | -73.029            | 5.25           |
| 17 | MP3A         | Z         | 126.49             | 5.25           |
| 18 | MP3A         | Mx        | .159               | 5.25           |
| 19 | MP3A         | Х         | -73.029            | 1.25           |
| 20 | MP3A         | Z         | 126.49             | 1.25           |
| 21 | MP3A         | Mx        | 073                | 1.25           |
| 22 | MP3A         | Х         | -73.029            | 5.25           |
| 23 | MP3A         | Z         | 126.49             | 5.25           |
| 24 | MP3A         | Mx        | 073                | 5.25           |
| 25 | MP4A         | Х         | -37.942            | 2.25           |
| 26 | MP4A         | Z         | 65.718             | 2.25           |
| 27 | MP4A         | Mx        | .013               | 2.25           |
| 28 | MP4A         | Х         | -37.942            | 4.25           |
| 29 | MP4A         | Z         | 65.718             | 4.25           |
| 30 | MP4A         | Mx        | .013               | 4.25           |
| 31 | MP3A         | Х         | -6.503             | 7              |
| 32 | MP3A         | Z         | 11.264             | 7              |
| 33 | MP3A         | Mx        | 002                | 7              |
| 34 | MP3A         | Х         | -32.658            | 1.5            |
| 35 | MP3A         | Z         | 56.565             | 1.5            |
| 36 | MP3A         | Mx        | 022                | 1.5            |
| 37 | MP4A         | Х         | -31.527            | 1.5            |
| 38 | MP4A         | Z         | 54.607             | 1.5            |
| 39 | MP4A         | Mx        | 021                | 1.5            |
| 40 | M17          | Х         | -61.128            | 1              |
| 41 | M17          | Z         | 105.877            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | MP1A         | Х         | -145.636           | 1.25           |
| 2 | MP1A         | Z         | 84.083             | 1.25           |
| 3 | MP1A         | Mx        | .097               | 1.25           |
| 4 | MP1A         | Х         | -145.636           | 5.25           |

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 13

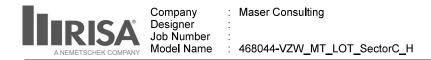



## Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 5  | MP1A         | Z         | 84.083             | 5.25           |
| 6  | MP1A         | Mx        | .097               | 5.25           |
| 7  | MP5A         | Х         | -145.636           | 1.25           |
| 8  | MP5A         | Z         | 84.083             | 1.25           |
| 9  | MP5A         | Mx        | .097               | 1.25           |
| 10 | MP5A         | Х         | -145.636           | 5.25           |
| 11 | MP5A         | Z         | 84.083             | 5.25           |
| 12 | MP5A         | Mx        | .097               | 5.25           |
| 13 | MP3A         | Х         | -84.277            | 1.25           |
| 14 | MP3A         | Z         | 48.657             | 1.25           |
| 15 | MP3A         | Mx        | .094               | 1.25           |
| 16 | MP3A         | Х         | -84.277            | 5.25           |
| 17 | MP3A         | Z         | 48.657             | 5.25           |
| 18 | MP3A         | Mx        | .094               | 5.25           |
| 19 | MP3A         | Х         | -84.277            | 1.25           |
| 20 | MP3A         | Z         | 48.657             | 1.25           |
| 21 | MP3A         | Mx        | .005               | 1.25           |
| 22 | MP3A         | Х         | -84.277            | 5.25           |
| 23 | MP3A         | Z         | 48.657             | 5.25           |
| 24 | MP3A         | Mx        | .005               | 5.25           |
| 25 | MP4A         | Х         | -42.136            | 2.25           |
| 26 | MP4A         | Z         | 24.327             | 2.25           |
| 27 | MP4A         | Mx        | .014               | 2.25           |
| 28 | MP4A         | Х         | -42.136            | 4.25           |
| 29 | MP4A         | Z         | 24.327             | 4.25           |
| 30 | MP4A         | Mx        | .014               | 4.25           |
| 31 | MP3A         | Х         | -9.384             | 7              |
| 32 | MP3A         | Z         | 5.418              | 7              |
| 33 | MP3A         | Mx        | 003                | 7              |
| 34 | MP3A         | Х         | -46.341            | 1.5            |
| 35 | MP3A         | Z         | 26.755             | 1.5            |
| 36 | MP3A         | Mx        | 031                | 1.5            |
| 37 | MP4A         | Х         | -40.466            | 1.5            |
| 38 | MP4A         | Z         | 23.363             | 1.5            |
| 39 | MP4A         | Mx        | 027                | 1.5            |
| 40 | M17          | Х         | -103.121           | 1              |
| 41 | M17          | Z         | 59.537             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -163.285           | 1.25           |
| 2  | MP1A         | Z         | 0                  | 1.25           |
| 3  | MP1A         | Mx        | .109               | 1.25           |
| 4  | MP1A         | Х         | -163.285           | 5.25           |
| 5  | MP1A         | Z         | 0                  | 5.25           |
| 6  | MP1A         | Mx        | .109               | 5.25           |
| 7  | MP5A         | Х         | -163.285           | 1.25           |
| 8  | MP5A         | Z         | 0                  | 1.25           |
| 9  | MP5A         | Mx        | .109               | 1.25           |
| 10 | MP5A         | Х         | -163.285           | 5.25           |
| 11 | MP5A         | Z         | 0                  | 5.25           |
| 12 | MP5A         | Mx        | .109               | 5.25           |
| 13 | MP3A         | Х         | -72.942            | 1.25           |
| 14 | MP3A         | Z         | 0                  | 1.25           |
| 15 | MP3A         | Mx        | .043               | 1.25           |

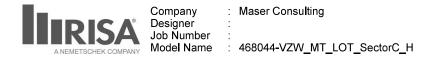



## Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 16 | MP3A         | Х         | -72.942            | 5.25           |
| 17 | MP3A         | Z         | 0                  | 5.25           |
| 18 | MP3A         | Mx        | .043               | 5.25           |
| 19 | MP3A         | Х         | -72.942            | 1.25           |
| 20 | MP3A         | Z         | 0                  | 1.25           |
| 21 | MP3A         | Mx        | .043               | 1.25           |
| 22 | MP3A         | Х         | -72.942            | 5.25           |
| 23 | MP3A         | Z         | 0                  | 5.25           |
| 24 | MP3A         | Mx        | .043               | 5.25           |
| 25 | MP4A         | Х         | -35.039            | 2.25           |
| 26 | MP4A         | Z         | 0                  | 2.25           |
| 27 | MP4A         | Mx        | .012               | 2.25           |
| 28 | MP4A         | Х         | -35.039            | 4.25           |
| 29 | MP4A         | Z         | 0                  | 4.25           |
| 30 | MP4A         | Mx        | .012               | 4.25           |
| 31 | MP3A         | Х         | -9.75              | 7              |
| 32 | MP3A         | Z         | 0                  | 7              |
| 33 | MP3A         | Mx        | 003                | 7              |
| 34 | MP3A         | Х         | -47.606            | 1.5            |
| 35 | MP3A         | Z         | 0                  | 1.5            |
| 36 | MP3A         | Mx        | 032                | 1.5            |
| 37 | MP4A         | Х         | -38.561            | 1.5            |
| 38 | MP4A         | Z         | 0                  | 1.5            |
| 39 | MP4A         | Mx        | 026                | 1.5            |
| 40 | M17          | Х         | -133.114           | 1              |
| 41 | M17          | Z         | 0                  | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -145.636           | 1.25           |
| 2  | MP1A         | Z         | -84.083            | 1.25           |
| 3  | MP1A         | Mx        | .097               | 1.25           |
| 4  | MP1A         | Х         | -145.636           | 5.25           |
| 5  | MP1A         | Z         | -84.083            | 5.25           |
| 6  | MP1A         | Mx        | .097               | 5.25           |
| 7  | MP5A         | Х         | -145.636           | 1.25           |
| 8  | MP5A         | Z         | -84.083            | 1.25           |
| 9  | MP5A         | Mx        | .097               | 1.25           |
| 10 | MP5A         | Х         | -145.636           | 5.25           |
| 11 | MP5A         | Z         | -84.083            | 5.25           |
| 12 | MP5A         | Mx        | .097               | 5.25           |
| 13 | MP3A         | Х         | -84.277            | 1.25           |
| 14 | MP3A         | Z         | -48.657            | 1.25           |
| 15 | MP3A         | Mx        | .005               | 1.25           |
| 16 | MP3A         | Х         | -84.277            | 5.25           |
| 17 | MP3A         | Z         | -48.657            | 5.25           |
| 18 | MP3A         | Mx        | .005               | 5.25           |
| 19 | MP3A         | Х         | -84.277            | 1.25           |
| 20 | MP3A         | Z         | -48.657            | 1.25           |
| 21 | MP3A         | Mx        | .094               | 1.25           |
| 22 | MP3A         | Х         | -84.277            | 5.25           |
| 23 | MP3A         | Z         | -48.657            | 5.25           |
| 24 | MP3A         | Mx        | .094               | 5.25           |
| 25 | MP4A         | Х         | -42.136            | 2.25           |
| 26 | MP4A         | Z         | -24.327            | 2.25           |




## Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 27 | MP4A         | Mx        | .014               | 2.25           |
| 28 | MP4A         | Х         | -42.136            | 4.25           |
| 29 | MP4A         | Z         | -24.327            | 4.25           |
| 30 | MP4A         | Mx        | .014               | 4.25           |
| 31 | MP3A         | Х         | -9.384             | 7              |
| 32 | MP3A         | Z         | -5.418             | 7              |
| 33 | MP3A         | Mx        | 003                | 7              |
| 34 | MP3A         | Х         | -46.341            | 1.5            |
| 35 | MP3A         | Z         | -26.755            | 1.5            |
| 36 | MP3A         | Mx        | 031                | 1.5            |
| 37 | MP4A         | Х         | -40.466            | 1.5            |
| 38 | MP4A         | Z         | -23.363            | 1.5            |
| 39 | MP4A         | Mx        | 027                | 1.5            |
| 40 | M17          | Х         | -130.196           | 1              |
| 41 | M17          | Z         | -75.169            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

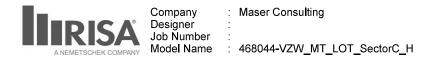
## Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -88.964            | 1.25           |
| 2  | MP1A         | Z         | -154.09            | 1.25           |
| 3  | MP1A         | Mx        | .059               | 1.25           |
| 4  | MP1A         | Х         | -88.964            | 5.25           |
| 5  | MP1A         | Z         | -154.09            | 5.25           |
| 6  | MP1A         | Mx        | .059               | 5.25           |
| 7  | MP5A         | X         | -88.964            | 1.25           |
| 8  | MP5A         | Z         | -154.09            | 1.25           |
| 9  | MP5A         | Mx        | .059               | 1.25           |
| 10 | MP5A         | Х         | -88.964            | 5.25           |
| 11 | MP5A         | Z         | -154.09            | 5.25           |
| 12 | MP5A         | Mx        | .059               | 5.25           |
| 13 | MP3A         | Х         | -73,029            | 1.25           |
| 14 | MP3A         | Z         | -126.49            | 1.25           |
| 15 | MP3A         | Mx        | 073                | 1.25           |
| 16 | MP3A         | Х         | -73.029            | 5.25           |
| 17 | MP3A         | Z         | -126.49            | 5.25           |
| 18 | MP3A         | Mx        | 073                | 5.25           |
| 19 | MP3A         | Х         | -73.029            | 1.25           |
| 20 | MP3A         | Z         | -126.49            | 1.25           |
| 21 | MP3A         | Mx        | .159               | 1.25           |
| 22 | MP3A         | Х         | -73.029            | 5.25           |
| 23 | MP3A         | Z         | -126.49            | 5.25           |
| 24 | MP3A         | Mx        | .159               | 5.25           |
| 25 | MP4A         | Х         | -37.942            | 2.25           |
| 26 | MP4A         | Z         | -65.718            | 2.25           |
| 27 | MP4A         | Mx        | .013               | 2.25           |
| 28 | MP4A         | Х         | -37.942            | 4.25           |
| 29 | MP4A         | Z         | -65.718            | 4.25           |
| 30 | MP4A         | Mx        | .013               | 4.25           |
| 31 | MP3A         | Х         | -6.503             | 7              |
| 32 | MP3A         | Z         | -11.264            | 7              |
| 33 | MP3A         | Mx        | 002                | 7              |
| 34 | MP3A         | Х         | -32.658            | 1.5            |
| 35 | MP3A         | Z         | -56.565            | 1.5            |
| 36 | MP3A         | Mx        | 022                | 1.5            |
| 37 | MP4A         | Х         | -31.527            | 1.5            |



### Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 38 | MP4A         | Z         | -54.607            | 1.5            |
| 39 | MP4A         | Mx        | 021                | 1.5            |
| 40 | M17          | X         | -76.76             | 1              |
| 41 | M17          | Z         | -132.952           | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

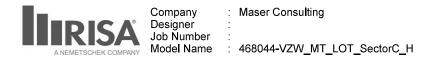

#### Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 0                  | 1.25           |
| 2  | MP1A         | Z         | -36.778            | 1.25           |
| 3  | MP1A         | Mx        | 0                  | 1.25           |
| 4  | MP1A         | Х         | 0                  | 5.25           |
| 5  | MP1A         | Z         | -36.778            | 5.25           |
| 6  | MP1A         | Mx        | 0                  | 5.25           |
| 7  | MP5A         | Х         | 0                  | 1.25           |
| 8  | MP5A         | Z         | -36.778            | 1.25           |
| 9  | MP5A         | Mx        | 0                  | 1.25           |
| 10 | MP5A         | Х         | 0                  | 5.25           |
| 11 | MP5A         | Z         | -36.778            | 5.25           |
| 12 | MP5A         | Mx        | 0                  | 5.25           |
| 13 | MP3A         | Х         | 0                  | 1.25           |
| 14 | MP3A         | Z         | -32.344            | 1.25           |
| 15 | MP3A         | Mx        | 03                 | 1.25           |
| 16 | MP3A         | Х         | 0                  | 5.25           |
| 17 | MP3A         | Z         | -32.344            | 5.25           |
| 18 | MP3A         | Mx        | 03                 | 5.25           |
| 19 | MP3A         | X<br>Z    | 0                  | 1.25           |
| 20 | MP3A         |           | -32.344            | 1.25           |
| 21 | MP3A         | Mx        | .03                | 1.25           |
| 22 | MP3A         | Х         | 0                  | 5.25           |
| 23 | MP3A         | Z         | -32.344            | 5.25           |
| 24 | MP3A         | Mx        | .03                | 5.25           |
| 25 | MP4A         | Х         | 0                  | 2.25           |
| 26 | MP4A         | Z         | -18.594            | 2.25           |
| 27 | MP4A         | Mx        | 0                  | 2.25           |
| 28 | MP4A         | Х         | 0                  | 4.25           |
| 29 | MP4A         | Z         | -18.594            | 4.25           |
| 30 | MP4A         | Mx        | 0                  | 4.25           |
| 31 | MP3A         | Х         | 0                  | 7              |
| 32 | MP3A         | Z         | -3.721             | 7              |
| 33 | MP3A         | Mx        | 0                  | 7              |
| 34 | MP3A         | Х         | 0                  | 1.5            |
| 35 | MP3A         | Z         | -15.596            | 1.5            |
| 36 | MP3A         | Mx        | 0                  | 1.5            |
| 37 | MP4A         | Х         | 0                  | 1.5            |
| 38 | MP4A         | Z         | -15.596            | 1.5            |
| 39 | MP4A         | Mx        | 0                  | 1.5            |
| 40 | M17          | Х         | 0                  | 1              |
| 41 | M17          | Z         | -29.271            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | MP1A         | Х         | 17.925             | 1.25           |
| 2 | MP1A         | Z         | -31.047            | 1.25           |
| 3 | MP1A         | Mx        | 012                | 1.25           |

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 17

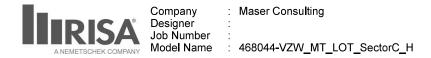



### Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 4  | MP1A         | Х         | 17.925             | 5.25           |
| 5  | MP1A         | Z         | -31.047            | 5.25           |
| 6  | MP1A         | Mx        | 012                | 5.25           |
| 7  | MP5A         | Х         | 17.925             | 1.25           |
| 8  | MP5A         | Z         | -31.047            | 1.25           |
| 9  | MP5A         | Mx        | 012                | 1.25           |
| 10 | MP5A         | Х         | 17.925             | 5.25           |
| 11 | MP5A         | Z         | -31.047            | 5.25           |
| 12 | MP5A         | Mx        | 012                | 5.25           |
| 13 | MP3A         | Х         | 14.077             | 1.25           |
| 14 | MP3A         | Z         | -24.381            | 1.25           |
| 15 | MP3A         | Mx        | 031                | 1.25           |
| 16 | MP3A         | Х         | 14.077             | 5.25           |
| 17 | MP3A         | Z         | -24.381            | 5.25           |
| 18 | MP3A         | Mx        | 031                | 5.25           |
| 19 | MP3A         | Х         | 14.077             | 1.25           |
| 20 | MP3A         | X<br>Z    | -24.381            | 1.25           |
| 21 | MP3A         | Mx        | .014               | 1.25           |
| 22 | MP3A         | Х         | 14.077             | 5.25           |
| 23 | MP3A         | Z         | -24.381            | 5.25           |
| 24 | MP3A         | Mx        | .014               | 5.25           |
| 25 | MP4A         | Х         | 7.956              | 2.25           |
| 26 | MP4A         | Z         | -13.779            | 2.25           |
| 27 | MP4A         | Mx        | 003                | 2.25           |
| 28 | MP4A         | Х         | 7.956              | 4.25           |
| 29 | MP4A         | Z         | -13.779            | 4.25           |
| 30 | MP4A         | Mx        | 003                | 4.25           |
| 31 | MP3A         | X<br>Z    | 1.743              | 7              |
| 32 | MP3A         | Z         | -3.018             | 7              |
| 33 | MP3A         | Mx        | .000581            | 7              |
| 34 | MP3A         | Х         | 7.2                | 1.5            |
| 35 | MP3A         | Z         | -12.471            | 1.5            |
| 36 | MP3A         | Mx        | .005               | 1.5            |
| 37 | MP4A         | Х         | 6.973              | 1.5            |
| 38 | MP4A         | X<br>Z    | -12.077            | 1.5            |
| 39 | MP4A         | Mx        | .005               | 1.5            |
| 40 | M17          | X         | 12.975             | 1              |
| 41 | M17          | Z         | -22.474            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

#### Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 29.44              | 1.25           |
| 2  | MP1A         | Z         | -16.997            | 1.25           |
| 3  | MP1A         | Mx        | 02                 | 1.25           |
| 4  | MP1A         | Х         | 29.44              | 5.25           |
| 5  | MP1A         | Z         | -16.997            | 5.25           |
| 6  | MP1A         | Mx        | 02                 | 5.25           |
| 7  | MP5A         | Х         | 29.44              | 1.25           |
| 8  | MP5A         | Z         | -16.997            | 1.25           |
| 9  | MP5A         | Mx        | 02                 | 1.25           |
| 10 | MP5A         | Х         | 29.44              | 5.25           |
| 11 | MP5A         | Z         | -16.997            | 5.25           |
| 12 | MP5A         | Mx        | 02                 | 5.25           |
| 13 | MP3A         | Х         | 17.123             | 1.25           |
| 14 | MP3A         | Z         | -9.886             | 1.25           |

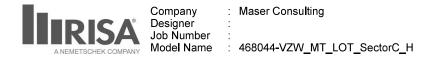



### Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 15 | MP3A         | Mx        | 019                | 1.25           |
| 16 | MP3A         | Х         | 17.123             | 5.25           |
| 17 | MP3A         | Z         | -9.886             | 5.25           |
| 18 | MP3A         | Mx        | 019                | 5.25           |
| 19 | MP3A         | Х         | 17.123             | 1.25           |
| 20 | MP3A         | Z         | -9.886             | 1.25           |
| 21 | MP3A         | Mx        | 000926             | 1.25           |
| 22 | MP3A         | Х         | 17.123             | 5.25           |
| 23 | MP3A         | Z         | -9.886             | 5.25           |
| 24 | MP3A         | Mx        | 000926             | 5.25           |
| 25 | MP4A         | Х         | 9.132              | 2.25           |
| 26 | MP4A         | Z         | -5.272             | 2.25           |
| 27 | MP4A         | Mx        | 003                | 2.25           |
| 28 | MP4A         | Х         | 9.132              | 4.25           |
| 29 | MP4A         | Z         | -5.272             | 4.25           |
| 30 | MP4A         | Mx        | 003                | 4.25           |
| 31 | MP3A         | Х         | 2.609              | 7              |
| 32 | MP3A         | Z         | -1.506             | 7              |
| 33 | MP3A         | Mx        | .00087             | 7              |
| 34 | MP3A         | Х         | 10.399             | 1.5            |
| 35 | MP3A         | Z         | -6.004             | 1.5            |
| 36 | MP3A         | Mx        | .007               | 1.5            |
| 37 | MP4A         | Х         | 9.218              | 1.5            |
| 38 | MP4A         | Z         | -5.322             | 1.5            |
| 39 | MP4A         | Mx        | .006               | 1.5            |
| 40 | M17          | Х         | 21.942             | 1              |
| 41 | M17          | Z         | -12.668            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

#### Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 33.067             | 1.25           |
| 2  | MP1A         | Z         | 0                  | 1.25           |
| 3  | MP1A         | Mx        | 022                | 1.25           |
| 4  | MP1A         | Х         | 33.067             | 5.25           |
| 5  | MP1A         | Z         | 0                  | 5.25           |
| 6  | MP1A         | Mx        | 022                | 5.25           |
| 7  | MP5A         | Х         | 33.067             | 1.25           |
| 8  | MP5A         | Z         | 0                  | 1.25           |
| 9  | MP5A         | Mx        | 022                | 1.25           |
| 10 | MP5A         | Х         | 33.067             | 5.25           |
| 11 | MP5A         | Z         | 0                  | 5.25           |
| 12 | MP5A         | Mx        | 022                | 5.25           |
| 13 | MP3A         | Х         | 15.581             | 1.25           |
| 14 | MP3A         | Z         | 0                  | 1.25           |
| 15 | MP3A         | Mx        | 009                | 1.25           |
| 16 | MP3A         | Х         | 15.581             | 5.25           |
| 17 | MP3A         | Z         | 0                  | 5.25           |
| 18 | MP3A         | Mx        | 009                | 5.25           |
| 19 | MP3A         | Х         | 15.581             | 1.25           |
| 20 | MP3A         | Z         | 0                  | 1.25           |
| 21 | MP3A         | Mx        | 009                | 1.25           |
| 22 | MP3A         | Х         | 15.581             | 5.25           |
| 23 | MP3A         | Z         | 0                  | 5.25           |
| 24 | MP3A         | Mx        | 009                | 5.25           |
| 25 | MP4A         | Х         | 7.862              | 2.25           |




## Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 26 | MP4A         | Z         | 0                  | 2.25           |
| 27 | MP4A         | Mx        | 003                | 2.25           |
| 28 | MP4A         | Х         | 7.862              | 4.25           |
| 29 | MP4A         | Z         | 0                  | 4.25           |
| 30 | MP4A         | Mx        | 003                | 4.25           |
| 31 | MP3A         | Х         | 2.777              | 7              |
| 32 | MP3A         | Z         | 0                  | 7              |
| 33 | MP3A         | Mx        | .000926            | 7              |
| 34 | MP3A         | X         | 10.811             | 1.5            |
| 35 | MP3A         | Z         | 0                  | 1.5            |
| 36 | MP3A         | Mx        | .007               | 1.5            |
| 37 | MP4A         | Х         | 8.993              | 1.5            |
| 38 | MP4A         | Z         | 0                  | 1.5            |
| 39 | MP4A         | Mx        | .006               | 1.5            |
| 40 | M17          | Х         | 28.044             | 1              |
| 41 | M17          | Z         | 0                  | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

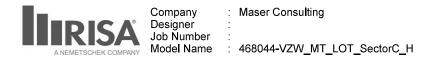
## Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 29.44              | 1.25           |
| 2  | MP1A         | Z         | 16.997             | 1.25           |
| 3  | MP1A         | Mx        | 02                 | 1.25           |
| 4  | MP1A         | Х         | 29.44              | 5.25           |
| 5  | MP1A         | Z         | 16.997             | 5.25           |
| 6  | MP1A         | Mx        | 02                 | 5.25           |
| 7  | MP5A         | Х         | 29.44              | 1.25           |
| 8  | MP5A         | Z         | 16.997             | 1.25           |
| 9  | MP5A         | Mx        | 02                 | 1.25           |
| 10 | MP5A         | Х         | 29.44              | 5.25           |
| 11 | MP5A         | Z         | 16.997             | 5.25           |
| 12 | MP5A         | Mx        | 02                 | 5.25           |
| 13 | MP3A         | Х         | 17.123             | 1.25           |
| 14 | MP3A         | Z         | 9.886              | 1.25           |
| 15 | MP3A         | Mx        | 000926             | 1.25           |
| 16 | MP3A         | Х         | 17.123             | 5.25           |
| 17 | MP3A         | Z         | 9.886              | 5.25           |
| 18 | MP3A         | Mx        | 000926             | 5.25           |
| 19 | MP3A         | Х         | 17.123             | 1.25           |
| 20 | MP3A         | Z         | 9.886              | 1.25           |
| 21 | MP3A         | Mx        | 019                | 1.25           |
| 22 | MP3A         | Х         | 17.123             | 5.25           |
| 23 | MP3A         | Z         | 9.886              | 5.25           |
| 24 | MP3A         | Mx        | 019                | 5.25           |
| 25 | MP4A         | Х         | 9.132              | 2.25           |
| 26 | MP4A         | Z         | 5.272              | 2.25           |
| 27 | MP4A         | Mx        | 003                | 2.25           |
| 28 | MP4A         | Х         | 9.132              | 4.25           |
| 29 | MP4A         | Z         | 5.272              | 4.25           |
| 30 | MP4A         | Mx        | 003                | 4.25           |
| 31 | MP3A         | Х         | 2.609              | 7              |
| 32 | MP3A         | Z         | 1.506              | 7              |
| 33 | MP3A         | Mx        | .00087             | 7              |
| 34 | MP3A         | Х         | 10.399             | 1.5            |
| 35 | MP3A         | Z         | 6.004              | 1.5            |
| 36 | MP3A         | Mx        | .007               | 1.5            |
|    |              |           |                    |                |



### Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 37 | MP4A         | Х         | 9.218              | 1.5            |
| 38 | MP4A         | Z         | 5.322              | 1.5            |
| 39 | MP4A         | Mx        | .006               | 1.5            |
| 40 | M17          | Х         | 27.162             | 1              |
| 41 | M17          | Z         | 15.682             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

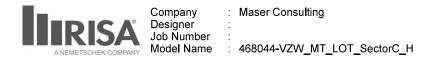

#### Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | X         | 17.925             | 1.25           |
| 2  | MP1A         | Z         | 31.047             | 1.25           |
| 3  | MP1A         | Mx        | 012                | 1.25           |
| 4  | MP1A         | X         | 17.925             | 5.25           |
| 5  | MP1A         | Z         | 31.047             | 5.25           |
| 6  | MP1A         | Mx        | 012                | 5.25           |
| 7  | MP5A         | Х         | 17.925             | 1.25           |
| 8  | MP5A         | Z         | 31.047             | 1.25           |
| 9  | MP5A         | Mx        | 012                | 1.25           |
| 10 | MP5A         | X         | 17.925             | 5.25           |
| 11 | MP5A         | Z         | 31.047             | 5.25           |
| 12 | MP5A         | Mx        | 012                | 5.25           |
| 13 | MP3A         | X         | 14.077             | 1.25           |
| 14 | MP3A         | Z         | 24.381             | 1.25           |
| 15 | MP3A         | Mx        | .014               | 1.25           |
| 16 | MP3A         | X         | 14.077             | 5.25           |
| 17 | MP3A         | Z         | 24.381             | 5.25           |
| 18 | MP3A         | Mx        | .014               | 5.25           |
| 19 | MP3A         | Х         | 14.077             | 1.25           |
| 20 | MP3A         | Z         | 24.381             | 1.25           |
| 21 | MP3A         | Mx        | 031                | 1.25           |
| 22 | MP3A         | X         | 14.077             | 5.25           |
| 23 | MP3A         | Z         | 24.381             | 5.25           |
| 24 | MP3A         | Mx        | 031                | 5.25           |
| 25 | MP4A         | X         | 7.956              | 2.25           |
| 26 | MP4A         | Z         | 13.779             | 2.25           |
| 27 | MP4A         | Mx        | 003                | 2.25           |
| 28 | MP4A         | X         | 7.956              | 4.25           |
| 29 | MP4A         | Z         | 13.779             | 4.25           |
| 30 | MP4A         | Mx        | 003                | 4.25           |
| 31 | MP3A         | X         | 1.743              | 7              |
| 32 | MP3A         | Z         | 3.018              | 7              |
| 33 | MP3A         | Mx        | .000581            | 7              |
| 34 | MP3A         | Х         | 7.2                | 1.5            |
| 35 | MP3A         | Z         | 12.471             | 1.5            |
| 36 | MP3A         | Mx        | .005               | 1.5            |
| 37 | MP4A         | X         | 6.973              | 1.5            |
| 38 | MP4A         | Z         | 12.077             | 1.5            |
| 39 | MP4A         | Mx        | .005               | 1.5            |
| 40 | M17          | X         | 15.989             | 1              |
| 41 | M17          | Z         | 27.693             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | MP1A         | X         | 0                  | 1.25           |
| 2 | MP1A         | Z         | 36.778             | 1.25           |

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 21

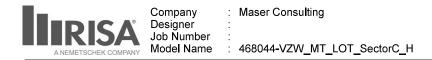



### Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 3  | MP1A         | Mx        | 0                  | 1.25           |
| 4  | MP1A         | Х         | 0                  | 5.25           |
| 5  | MP1A         | Z         | 36.778             | 5.25           |
| 6  | MP1A         | Mx        | 0                  | 5.25           |
| 7  | MP5A         | Х         | 0                  | 1.25           |
| 8  | MP5A         | Z         | 36.778             | 1.25           |
| 9  | MP5A         | Mx        | 0                  | 1.25           |
| 10 | MP5A         | Х         | 0                  | 5.25           |
| 11 | MP5A         | Z         | 36.778             | 5.25           |
| 12 | MP5A         | Mx        | 0                  | 5.25           |
| 13 | MP3A         | Х         | 0                  | 1.25           |
| 14 | MP3A         | Z         | 32.344             | 1.25           |
| 15 | MP3A         | Mx        | .03                | 1.25           |
| 16 | MP3A         | Х         | 0                  | 5.25           |
| 17 | MP3A         | Z         | 32.344             | 5.25           |
| 18 | MP3A         | Mx        | .03                | 5.25           |
| 19 | MP3A         | X<br>Z    | 0                  | 1.25           |
| 20 | MP3A         | Z         | 32.344             | 1.25           |
| 21 | MP3A         | Mx        | 03                 | 1.25           |
| 22 | MP3A         | Х         | 0                  | 5.25           |
| 23 | MP3A         | Z         | 32.344             | 5.25           |
| 24 | MP3A         | Mx        | 03                 | 5.25           |
| 25 | MP4A         | Х         | 0                  | 2.25           |
| 26 | MP4A         | Z         | 18.594             | 2.25           |
| 27 | MP4A         | Mx        | 0                  | 2.25           |
| 28 | MP4A         | Х         | 0                  | 4.25           |
| 29 | MP4A         | Z         | 18.594             | 4.25           |
| 30 | MP4A         | Mx        | 0                  | 4.25           |
| 31 | MP3A         | Х         | 0                  | 7              |
| 32 | MP3A         | Z         | 3.721              | 7              |
| 33 | MP3A         | Mx        | 0                  | 7              |
| 34 | MP3A         | Х         | 0                  | 1.5            |
| 35 | MP3A         | Z         | 15.596             | 1.5            |
| 36 | MP3A         | Mx        | 0                  | 1.5            |
| 37 | MP4A         | Х         | 0                  | 1.5            |
| 38 | MP4A         | Z         | 15.596             | 1.5            |
| 39 | MP4A         | Mx        | 0                  | 1.5            |
| 40 | M17          | Х         | 0                  | 1              |
| 41 | M17          | Z         | 29.271             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -17.925            | 1.25           |
| 2  | MP1A         | Z         | 31.047             | 1.25           |
| 3  | MP1A         | Mx        | .012               | 1.25           |
| 4  | MP1A         | Х         | -17.925            | 5.25           |
| 5  | MP1A         | Z         | 31.047             | 5.25           |
| 6  | MP1A         | Mx        | .012               | 5.25           |
| 7  | MP5A         | Х         | -17.925            | 1.25           |
| 8  | MP5A         | Z         | 31.047             | 1.25           |
| 9  | MP5A         | Mx        | .012               | 1.25           |
| 10 | MP5A         | Х         | -17.925            | 5.25           |
| 11 | MP5A         | Z         | 31.047             | 5.25           |
| 12 | MP5A         | Mx        | .012               | 5.25           |
| 13 | MP3A         | Х         | -14.077            | 1.25           |

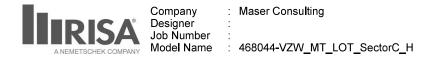



## Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 14 | MP3A         | Z         | 24.381             | 1.25           |
| 15 | MP3A         | Mx        | .031               | 1.25           |
| 16 | MP3A         | Х         | -14.077            | 5.25           |
| 17 | MP3A         | Z         | 24.381             | 5.25           |
| 18 | MP3A         | Mx        | .031               | 5.25           |
| 19 | MP3A         | Х         | -14.077            | 1.25           |
| 20 | MP3A         | Z         | 24.381             | 1.25           |
| 21 | MP3A         | Mx        | 014                | 1.25           |
| 22 | MP3A         | Х         | -14.077            | 5.25           |
| 23 | MP3A         | Z         | 24.381             | 5.25           |
| 24 | MP3A         | Mx        | 014                | 5.25           |
| 25 | MP4A         | Х         | -7.956             | 2.25           |
| 26 | MP4A         | Z         | 13.779             | 2.25           |
| 27 | MP4A         | Mx        | .003               | 2.25           |
| 28 | MP4A         | Х         | -7.956             | 4.25           |
| 29 | MP4A         | Z         | 13.779             | 4.25           |
| 30 | MP4A         | Mx        | .003               | 4.25           |
| 31 | MP3A         | Х         | -1.743             | 7              |
| 32 | MP3A         | Z         | 3.018              | 7              |
| 33 | MP3A         | Mx        | 000581             | 7              |
| 34 | MP3A         | Х         | -7.2               | 1.5            |
| 35 | MP3A         | Z         | 12.471             | 1.5            |
| 36 | MP3A         | Mx        | 005                | 1.5            |
| 37 | MP4A         | Х         | -6.973             | 1.5            |
| 38 | MP4A         | Z         | 12.077             | 1.5            |
| 39 | MP4A         | Mx        | 005                | 1.5            |
| 40 | M17          | Х         | -12.975            | 1              |
| 41 | M17          | Z         | 22.474             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

### Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -29.44             | 1.25           |
| 2  | MP1A         | Z         | 16.997             | 1.25           |
| 3  | MP1A         | Mx        | .02                | 1.25           |
| 4  | MP1A         | Х         | -29.44             | 5.25           |
| 5  | MP1A         | Z         | 16.997             | 5.25           |
| 6  | MP1A         | Mx        | .02                | 5.25           |
| 7  | MP5A         | Х         | -29.44             | 1.25           |
| 8  | MP5A         | Z         | 16.997             | 1.25           |
| 9  | MP5A         | Mx        | .02                | 1.25           |
| 10 | MP5A         | Х         | -29.44             | 5.25           |
| 11 | MP5A         | Z         | 16.997             | 5.25           |
| 12 | MP5A         | Mx        | .02                | 5.25           |
| 13 | MP3A         | Х         | -17.123            | 1.25           |
| 14 | MP3A         | Z         | 9.886              | 1.25           |
| 15 | MP3A         | Mx        | .019               | 1.25           |
| 16 | MP3A         | Х         | -17.123            | 5.25           |
| 17 | MP3A         | Z         | 9.886              | 5.25           |
| 18 | MP3A         | Mx        | .019               | 5.25           |
| 19 | MP3A         | Х         | -17.123            | 1.25           |
| 20 | MP3A         | Z         | 9.886              | 1.25           |
| 21 | MP3A         | Mx        | .000926            | 1.25           |
| 22 | MP3A         | Х         | -17.123            | 5.25           |
| 23 | MP3A         | Z         | 9.886              | 5.25           |
| 24 | MP3A         | Mx        | .000926            | 5.25           |




### Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

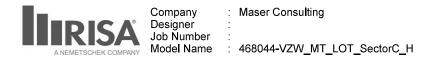
|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 25 | MP4A         | Х         | -9.132             | 2.25           |
| 26 | MP4A         | Z         | 5.272              | 2.25           |
| 27 | MP4A         | Mx        | .003               | 2.25           |
| 28 | MP4A         | Х         | -9.132             | 4.25           |
| 29 | MP4A         | Z         | 5.272              | 4.25           |
| 30 | MP4A         | Mx        | .003               | 4.25           |
| 31 | MP3A         | Х         | -2.609             | 7              |
| 32 | MP3A         | Z         | 1.506              | 7              |
| 33 | MP3A         | Mx        | 00087              | 7              |
| 34 | MP3A         | Х         | -10.399            | 1.5            |
| 35 | MP3A         | Z         | 6.004              | 1.5            |
| 36 | MP3A         | Mx        | 007                | 1.5            |
| 37 | MP4A         | Х         | -9.218             | 1.5            |
| 38 | MP4A         | Z         | 5.322              | 1.5            |
| 39 | MP4A         | Mx        | 006                | 1.5            |
| 40 | M17          | Х         | -21.942            | 1              |
| 41 | M17          | Z         | 12.668             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

### Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | X         | -33.067            | 1.25           |
| 2  | MP1A         | Z         | 0                  | 1.25           |
| 3  | MP1A         | Mx        | .022               | 1.25           |
| 4  | MP1A         | X         | -33.067            | 5.25           |
| 5  | MP1A         | Z         | 0                  | 5.25           |
| 6  | MP1A         | Mx        | .022               | 5.25           |
| 7  | MP5A         | X         | -33.067            | 1.25           |
| 8  | MP5A         | Z         | 0                  | 1.25           |
| 9  | MP5A         | Mx        | .022               | 1.25           |
| 10 | MP5A         | Х         | -33.067            | 5.25           |
| 11 | MP5A         | Z         | 0                  | 5.25           |
| 12 | MP5A         | Mx        | .022               | 5.25           |
| 13 | MP3A         | Х         | -15.581            | 1.25           |
| 14 | MP3A         | Z         | 0                  | 1.25           |
| 15 | MP3A         | Mx        | .009               | 1.25           |
| 16 | MP3A         | Х         | -15.581            | 5.25           |
| 17 | MP3A         | Z         | 0                  | 5.25           |
| 18 | MP3A         | Mx        | .009               | 5.25           |
| 19 | MP3A         | Х         | -15.581            | 1.25           |
| 20 | MP3A         | Z         | 0                  | 1.25           |
| 21 | MP3A         | Mx        | .009               | 1.25           |
| 22 | MP3A         | Х         | -15.581            | 5.25           |
| 23 | MP3A         | Z         | 0                  | 5.25           |
| 24 | MP3A         | Mx        | .009               | 5.25           |
| 25 | MP4A         | Х         | -7.862             | 2.25           |
| 26 | MP4A         | Z         | 0                  | 2.25           |
| 27 | MP4A         | Mx        | .003               | 2.25           |
| 28 | MP4A         | Х         | -7.862             | 4.25           |
| 29 | MP4A         | Z         | 0                  | 4.25           |
| 30 | MP4A         | Mx        | .003               | 4.25           |
| 31 | MP3A         | X         | -2.777             | 7              |
| 32 | MP3A         | Z         | 0                  | 7              |
| 33 | MP3A         | Mx        | 000926             | 7              |
| 34 | MP3A         | Х         | -10.811            | 1.5            |
| 35 | MP3A         | Z         | 0                  | 1.5            |
| •  |              |           |                    |                |



## Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

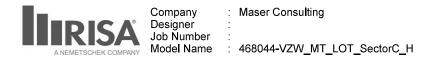

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 36 | MP3A         | Mx        | 007                | 1.5            |
| 37 | MP4A         | Х         | -8.993             | 1.5            |
| 38 | MP4A         | Z         | 0                  | 1.5            |
| 39 | MP4A         | Mx        | 006                | 1.5            |
| 40 | M17          | Х         | -28.044            | 1              |
| 41 | M17          | Z         | 0                  | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -29.44             | 1.25           |
| 2  | MP1A         | Z         | -16.997            | 1.25           |
| 3  | MP1A         | Mx        | .02                | 1.25           |
| 4  | MP1A         | Х         | -29.44             | 5.25           |
| 5  | MP1A         | Z         | -16.997            | 5.25           |
| 6  | MP1A         | Mx        | .02                | 5.25           |
| 7  | MP5A         | Х         | -29.44             | 1.25           |
| 8  | MP5A         | Z         | -16.997            | 1.25           |
| 9  | MP5A         | Mx        | .02                | 1.25           |
| 10 | MP5A         | Х         | -29.44             | 5.25           |
| 11 | MP5A         | Z         | -16.997            | 5.25           |
| 12 | MP5A         | Mx        | .02                | 5.25           |
| 13 | MP3A         | Х         | -17.123            | 1.25           |
| 14 | MP3A         | Z         | -9.886             | 1.25           |
| 15 | MP3A         | Mx        | .000926            | 1.25           |
| 16 | MP3A         | Х         | -17.123            | 5.25           |
| 17 | MP3A         | Z         | -9.886             | 5.25           |
| 18 | MP3A         | Mx        | .000926            | 5.25           |
| 19 | MP3A         | Х         | -17.123            | 1.25           |
| 20 | MP3A         | Z         | -9.886             | 1.25           |
| 21 | MP3A         | Mx        | .019               | 1.25           |
| 22 | MP3A         | Х         | -17.123            | 5.25           |
| 23 | MP3A         | Z         | -9.886             | 5.25           |
| 24 | MP3A         | Mx        | .019               | 5.25           |
| 25 | MP4A         | Х         | -9.132             | 2.25           |
| 26 | MP4A         | Z         | -5.272             | 2.25           |
| 27 | MP4A         | Mx        | .003               | 2.25           |
| 28 | MP4A         | Х         | -9.132             | 4.25           |
| 29 | MP4A         | Z         | -5.272             | 4.25           |
| 30 | MP4A         | Mx        | .003               | 4.25           |
| 31 | MP3A         | Х         | -2.609             | 7              |
| 32 | MP3A         | Z         | -1.506             | 7              |
| 33 | MP3A         | Mx        | 00087              | 7              |
| 34 | MP3A         | Х         | -10.399            | 1.5            |
| 35 | MP3A         | Z         | -6.004             | 1.5            |
| 36 | MP3A         | Mx        | 007                | 1.5            |
| 37 | MP4A         | Х         | -9.218             | 1.5            |
| 38 | MP4A         | Z         | -5.322             | 1.5            |
| 39 | MP4A         | Mx        | 006                | 1.5            |
| 40 | M17          | Х         | -27.162            | 1              |
| 41 | M17          | Z         | -15.682            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | MP1A         | Х         | -17.925            | 1.25           |
|   |              |           |                    |                |

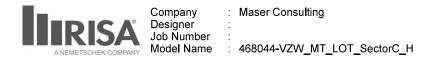



#### Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 2  | MP1A         | Z         | -31.047            | 1.25           |
| 3  | MP1A         | Mx        | .012               | 1.25           |
| 4  | MP1A         | Х         | -17.925            | 5.25           |
| 5  | MP1A         | Z         | -31.047            | 5.25           |
| 6  | MP1A         | Mx        | .012               | 5.25           |
| 7  | MP5A         | Х         | -17.925            | 1.25           |
| 8  | MP5A         | Z         | -31.047            | 1.25           |
| 9  | MP5A         | Mx        | .012               | 1.25           |
| 10 | MP5A         | Х         | -17.925            | 5.25           |
| 11 | MP5A         | Z         | -31.047            | 5.25           |
| 12 | MP5A         | Mx        | .012               | 5.25           |
| 13 | MP3A         | Х         | -14.077            | 1.25           |
| 14 | MP3A         | Z         | -24.381            | 1.25           |
| 15 | MP3A         | Mx        | 014                | 1.25           |
| 16 | MP3A         | Х         | -14.077            | 5.25           |
| 17 | MP3A         | Z         | -24.381            | 5.25           |
| 18 | MP3A         | Mx        | 014                | 5.25           |
| 19 | MP3A         | X<br>Z    | -14.077            | 1.25           |
| 20 | MP3A         |           | -24.381            | 1.25           |
| 21 | MP3A         | Mx        | .031               | 1.25           |
| 22 | MP3A         | Х         | -14.077            | 5.25           |
| 23 | MP3A         | Z         | -24.381            | 5.25           |
| 24 | MP3A         | Mx        | .031               | 5.25           |
| 25 | MP4A         | Х         | -7.956             | 2.25           |
| 26 | MP4A         | Z         | -13.779            | 2.25           |
| 27 | MP4A         | Mx        | .003               | 2.25           |
| 28 | MP4A         | Х         | -7.956             | 4.25           |
| 29 | MP4A         | Z         | -13.779            | 4.25           |
| 30 | MP4A         | Mx        | .003               | 4.25           |
| 31 | MP3A         | X<br>Z    | -1.743             | 7              |
| 32 | MP3A         |           | -3.018             | 7              |
| 33 | MP3A         | Mx        | 000581             | 7              |
| 34 | MP3A         | X<br>Z    | -7.2               | 1.5            |
| 35 | MP3A         |           | -12.471            | 1.5            |
| 36 | MP3A         | Mx        | 005                | 1.5            |
| 37 | MP4A         | Х         | -6.973             | 1.5            |
| 38 | MP4A         | Z         | -12.077            | 1.5            |
| 39 | MP4A         | Mx        | 005                | 1.5            |
| 40 | M17          | Х         | -15.989            | 1              |
| 41 | M17          | Z         | -27.693            | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 0                  | 1.25           |
| 2  | MP1A         | Z         | -12.227            | 1.25           |
| 3  | MP1A         | Mx        | 0                  | 1.25           |
| 4  | MP1A         | Х         | 0                  | 5.25           |
| 5  | MP1A         | Z         | -12.227            | 5.25           |
| 6  | MP1A         | Mx        | 0                  | 5.25           |
| 7  | MP5A         | Х         | 0                  | 1.25           |
| 8  | MP5A         | Z         | -12.227            | 1.25           |
| 9  | MP5A         | Mx        | 0                  | 1.25           |
| 10 | MP5A         | X         | 0                  | 5.25           |
| 11 | MP5A         | Z         | -12.227            | 5.25           |
| 12 | MP5A         | Mx        | 0                  | 5.25           |

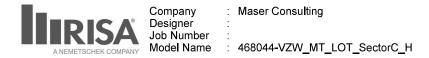



#### Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 13 | MP3A         | Х         | 0                  | 1.25           |
| 14 | MP3A         | Z         | -11.399            | 1.25           |
| 15 | MP3A         | Mx        | 01                 | 1.25           |
| 16 | MP3A         | Х         | 0                  | 5.25           |
| 17 | MP3A         | Z         | -11.399            | 5.25           |
| 18 | MP3A         | Mx        | 01                 | 5.25           |
| 19 | MP3A         | Х         | 0                  | 1.25           |
| 20 | MP3A         | Z         | -11.399            | 1.25           |
| 21 | MP3A         | Mx        | .01                | 1.25           |
| 22 | MP3A         | Х         | 0                  | 5.25           |
| 23 | MP3A         | Z         | -11.399            | 5.25           |
| 24 | MP3A         | Mx        | .01                | 5.25           |
| 25 | MP4A         | Х         | 0                  | 2.25           |
| 26 | MP4A         | Z         | -5.986             | 2.25           |
| 27 | MP4A         | Mx        | 0                  | 2.25           |
| 28 | MP4A         | Х         | 0                  | 4.25           |
| 29 | MP4A         | Z         | -5.986             | 4.25           |
| 30 | MP4A         | Mx        | 0                  | 4.25           |
| 31 | MP3A         | Х         | 0                  | 7              |
| 32 | MP3A         | Z         | 943                | 7              |
| 33 | MP3A         | Mx        | 0                  | 7              |
| 34 | MP3A         | Х         | 0                  | 1.5            |
| 35 | MP3A         | Z         | -4.763             | 1.5            |
| 36 | MP3A         | Mx        | 0                  | 1.5            |
| 37 | MP4A         | Х         | 0                  | 1.5            |
| 38 | MP4A         | Z         | -4.763             | 1.5            |
| 39 | MP4A         | Mx        | 0                  | 1.5            |
| 40 | M17          | Х         | 0                  | 1              |
| 41 | M17          | Z         | -9.329             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 5.95               | 1.25           |
| 2  | MP1A         | Z         | -10.306            | 1.25           |
| 3  | MP1A         | Mx        | 004                | 1.25           |
| 4  | MP1A         | Х         | 5.95               | 5.25           |
| 5  | MP1A         | Z         | -10.306            | 5.25           |
| 6  | MP1A         | Mx        | 004                | 5.25           |
| 7  | MP5A         | Х         | 5.95               | 1.25           |
| 8  | MP5A         | Z         | -10.306            | 1.25           |
| 9  | MP5A         | Mx        | 004                | 1.25           |
| 10 | MP5A         | Х         | 5.95               | 5.25           |
| 11 | MP5A         | Z         | -10.306            | 5.25           |
| 12 | MP5A         | Mx        | 004                | 5.25           |
| 13 | MP3A         | Х         | 4.885              | 1.25           |
| 14 | MP3A         | Z         | -8.46              | 1.25           |
| 15 | MP3A         | Mx        | 011                | 1.25           |
| 16 | MP3A         | Х         | 4.885              | 5.25           |
| 17 | MP3A         | Z         | -8.46              | 5.25           |
| 18 | MP3A         | Mx        | 011                | 5.25           |
| 19 | MP3A         | Х         | 4.885              | 1.25           |
| 20 | MP3A         | Z         | -8.46              | 1.25           |
| 21 | MP3A         | Mx        | .005               | 1.25           |
| 22 | MP3A         | Х         | 4.885              | 5.25           |
| 23 | MP3A         | Z         | -8.46              | 5.25           |




### Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 24 | MP3A         | Mx        | .005               | 5.25           |
| 25 | MP4A         | X         | 2.538              | 2.25           |
| 26 | MP4A         | Z         | -4.396             | 2.25           |
| 27 | MP4A         | Mx        | 000846             | 2.25           |
| 28 | MP4A         | Х         | 2.538              | 4.25           |
| 29 | MP4A         | Z         | -4.396             | 4.25           |
| 30 | MP4A         | Mx        | 000846             | 4.25           |
| 31 | MP3A         | X         | .435               | 7              |
| 32 | MP3A         | Z         | 753                | 7              |
| 33 | MP3A         | Mx        | .000145            | 7              |
| 34 | MP3A         | Х         | 2.184              | 1.5            |
| 35 | MP3A         | Z         | -3.783             | 1.5            |
| 36 | MP3A         | Mx        | .001               | 1.5            |
| 37 | MP4A         | X         | 2.109              | 1.5            |
| 38 | MP4A         | Z         | -3.652             | 1.5            |
| 39 | MP4A         | Mx        | .001               | 1.5            |
| 40 | M17          | Х         | 4.089              | 1              |
| 41 | M17          | Z         | -7.082             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

### Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 9.741              | 1.25           |
| 2  | MP1A         | Z         | -5.624             | 1.25           |
| 3  | MP1A         | Mx        | 006                | 1.25           |
| 4  | MP1A         | Х         | 9.741              | 5.25           |
| 5  | MP1A         | Z         | -5.624             | 5.25           |
| 6  | MP1A         | Mx        | 006                | 5.25           |
| 7  | MP5A         | Х         | 9.741              | 1.25           |
| 8  | MP5A         | Z         | -5.624             | 1.25           |
| 9  | MP5A         | Mx        | 006                | 1.25           |
| 10 | MP5A         | Х         | 9.741              | 5.25           |
| 11 | MP5A         | Z         | -5.624             | 5.25           |
| 12 | MP5A         | Mx        | 006                | 5.25           |
| 13 | MP3A         | Х         | 5.637              | 1.25           |
| 14 | MP3A         | Z         | -3.254             | 1.25           |
| 15 | MP3A         | Mx        | 006                | 1.25           |
| 16 | MP3A         | Х         | 5.637              | 5.25           |
| 17 | MP3A         | Z         | -3.254             | 5.25           |
| 18 | MP3A         | Mx        | 006                | 5.25           |
| 19 | MP3A         | Х         | 5.637              | 1.25           |
| 20 | MP3A         | Z         | -3.254             | 1.25           |
| 21 | MP3A         | Mx        | 000305             | 1.25           |
| 22 | MP3A         | Х         | 5.637              | 5.25           |
| 23 | MP3A         | Z         | -3.254             | 5.25           |
| 24 | MP3A         | Mx        | 000305             | 5.25           |
| 25 | MP4A         | Х         | 2.818              | 2.25           |
| 26 | MP4A         | Z         | -1.627             | 2.25           |
| 27 | MP4A         | Mx        | 000939             | 2.25           |
| 28 | MP4A         | Х         | 2.818              | 4.25           |
| 29 | MP4A         | Z         | -1.627             | 4.25           |
| 30 | MP4A         | Mx        | 000939             | 4.25           |
| 31 | MP3A         | X         | .628               | 7              |
| 32 | MP3A         | Z         | 362                | 7              |
| 33 | MP3A         | Mx        | .000209            | 7              |
| 34 | MP3A         | Х         | 3.099              | 1.5            |



## Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 35 | MP3A         | Z         | -1.789             | 1.5            |
| 36 | MP3A         | Mx        | .002               | 1.5            |
| 37 | MP4A         | X         | 2.707              | 1.5            |
| 38 | MP4A         | Z         | -1.563             | 1.5            |
| 39 | MP4A         | Mx        | .002               | 1.5            |
| 40 | M17          | Х         | 6.897              | 1              |
| 41 | M17          | Z         | -3.982             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

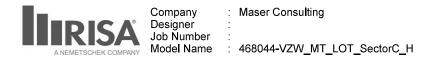

#### Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 10.921             | 1.25           |
| 2  | MP1A         | Z         | 0                  | 1.25           |
| 3  | MP1A         | Mx        | 007                | 1.25           |
| 4  | MP1A         | Х         | 10.921             | 5.25           |
| 5  | MP1A         | Z         | 0                  | 5.25           |
| 6  | MP1A         | Mx        | 007                | 5.25           |
| 7  | MP5A         | Х         | 10.921             | 1.25           |
| 8  | MP5A         | Z         | 0                  | 1.25           |
| 9  | MP5A         | Mx        | 007                | 1.25           |
| 10 | MP5A         | Х         | 10.921             | 5.25           |
| 11 | MP5A         | Z         | 0                  | 5.25           |
| 12 | MP5A         | Mx        | 007                | 5.25           |
| 13 | MP3A         | Х         | 4.879              | 1.25           |
| 14 | MP3A         | Z         | 0                  | 1.25           |
| 15 | MP3A         | Mx        | 003                | 1.25           |
| 16 | MP3A         | Х         | 4.879              | 5.25           |
| 17 | MP3A         | Z         | 0                  | 5.25           |
| 18 | MP3A         | Mx        | 003                | 5.25           |
| 19 | MP3A         | Х         | 4.879              | 1.25           |
| 20 | MP3A         | Z         | 0                  | 1.25           |
| 21 | MP3A         | Mx        | 003                | 1.25           |
| 22 | MP3A         | Х         | 4.879              | 5.25           |
| 23 | MP3A         | Z         | 0                  | 5.25           |
| 24 | MP3A         | Mx        | 003                | 5.25           |
| 25 | MP4A         | Х         | 2.344              | 2.25           |
| 26 | MP4A         | Z         | 0                  | 2.25           |
| 27 | MP4A         | Mx        | 000781             | 2.25           |
| 28 | MP4A         | Х         | 2.344              | 4.25           |
| 29 | MP4A         | Z         | 0                  | 4.25           |
| 30 | MP4A         | Mx        | 000781             | 4.25           |
| 31 | MP3A         | Х         | .652               | 7              |
| 32 | MP3A         | Z         | 0                  | 7              |
| 33 | MP3A         | Mx        | .000217            | 7              |
| 34 | MP3A         | X         | 3.184              | 1.5            |
| 35 | MP3A         | Z         | 0                  | 1.5            |
| 36 | MP3A         | Mx        | .002               | 1.5            |
| 37 | MP4A         | X         | 2.579              | 1.5            |
| 38 | MP4A         | Z         | 0                  | 1.5            |
| 39 | MP4A         | Mx        | .002               | 1.5            |
| 40 | M17          | X         | 8.903              | 1              |
| 41 | M17          | Z         | 0                  | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

#### Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

 Member Label
 Direction
 Magnitude[Ib,k-ft]
 Location[ft,%]

 RISA-3D Version 17.0.4
 [\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d]
 Page 29

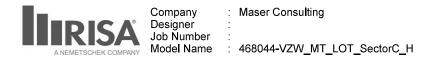



## Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 9.741              | 1.25           |
| 2  | MP1A         | Z         | 5.624              | 1.25           |
| 3  | MP1A         | Mx        | 006                | 1.25           |
| 4  | MP1A         | Х         | 9.741              | 5.25           |
| 5  | MP1A         | Z         | 5.624              | 5.25           |
| 6  | MP1A         | Mx        | 006                | 5.25           |
| 7  | MP5A         | Х         | 9.741              | 1.25           |
| 8  | MP5A         | Z         | 5.624              | 1.25           |
| 9  | MP5A         | Mx        | 006                | 1.25           |
| 10 | MP5A         | Х         | 9.741              | 5.25           |
| 11 | MP5A         | Z         | 5.624              | 5.25           |
| 12 | MP5A         | Mx        | 006                | 5.25           |
| 13 | MP3A         | X         | 5.637              | 1.25           |
| 14 | MP3A         | Z         | 3.254              | 1.25           |
| 15 | MP3A         | Mx        | 000305             | 1.25           |
| 16 | MP3A         | Х         | 5.637              | 5.25           |
| 17 | MP3A         | Z         | 3.254              | 5.25           |
| 18 | MP3A         | Mx        | 000305             | 5.25           |
| 19 | MP3A         | X         | 5.637              | 1.25           |
| 20 | MP3A         | Z         | 3.254              | 1.25           |
| 21 | MP3A         | Mx        | 006                | 1.25           |
| 22 | MP3A         | Х         | 5.637              | 5.25           |
| 23 | MP3A         | Z         | 3.254              | 5.25           |
| 24 | MP3A         | Mx        | 006                | 5.25           |
| 25 | MP4A         | X<br>Z    | 2.818              | 2.25           |
| 26 | MP4A         | Z         | 1.627              | 2.25           |
| 27 | MP4A         | Mx        | 000939             | 2.25           |
| 28 | MP4A         | Х         | 2.818              | 4.25           |
| 29 | MP4A         | Z         | 1.627              | 4.25           |
| 30 | MP4A         | Mx        | 000939             | 4.25           |
| 31 | MP3A         | Х         | .628               | 7              |
| 32 | MP3A         | Z         | .362               | 7              |
| 33 | MP3A         | Mx        | .000209            | 7              |
| 34 | MP3A         | X         | 3.099              | 1.5            |
| 35 | MP3A         | Z         | 1.789              | 1.5            |
| 36 | MP3A         | Mx        | .002               | 1.5            |
| 37 | MP4A         | X         | 2.707              | 1.5            |
| 38 | MP4A         | Z         | 1.563              | 1.5            |
| 39 | MP4A         | Mx        | .002               | 1.5            |
| 40 | M17          | X         | 8.708              | 1              |
| 41 | M17          | Z         | 5.028              | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | 5.95               | 1.25           |
| 2  | MP1A         | Z         | 10.306             | 1.25           |
| 3  | MP1A         | Mx        | 004                | 1.25           |
| 4  | MP1A         | Х         | 5.95               | 5.25           |
| 5  | MP1A         | Z         | 10.306             | 5.25           |
| 6  | MP1A         | Mx        | 004                | 5.25           |
| 7  | MP5A         | Х         | 5.95               | 1.25           |
| 8  | MP5A         | Z         | 10.306             | 1.25           |
| 9  | MP5A         | Mx        | 004                | 1.25           |
| 10 | MP5A         | Х         | 5.95               | 5.25           |
| 11 | MP5A         | Z         | 10.306             | 5.25           |

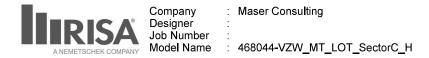



## Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 12 | MP5A         | Mx        | 004                | 5.25           |
| 13 | MP3A         | Х         | 4.885              | 1.25           |
| 14 | MP3A         | Z         | 8.46               | 1.25           |
| 15 | MP3A         | Mx        | .005               | 1.25           |
| 16 | MP3A         | Х         | 4.885              | 5.25           |
| 17 | MP3A         | Z         | 8.46               | 5.25           |
| 18 | MP3A         | Mx        | .005               | 5.25           |
| 19 | MP3A         | Х         | 4.885              | 1.25           |
| 20 | MP3A         | Z         | 8.46               | 1.25           |
| 21 | MP3A         | Mx        | 011                | 1.25           |
| 22 | MP3A         | Х         | 4.885              | 5.25           |
| 23 | MP3A         | Z         | 8.46               | 5.25           |
| 24 | MP3A         | Mx        | 011                | 5.25           |
| 25 | MP4A         | Х         | 2.538              | 2.25           |
| 26 | MP4A         | Z         | 4.396              | 2.25           |
| 27 | MP4A         | Mx        | 000846             | 2.25           |
| 28 | MP4A         | Х         | 2.538              | 4.25           |
| 29 | MP4A         | Z         | 4.396              | 4.25           |
| 30 | MP4A         | Mx        | 000846             | 4.25           |
| 31 | MP3A         | Х         | .435               | 7              |
| 32 | MP3A         | Z         | .753               | 7              |
| 33 | MP3A         | Mx        | .000145            | 7              |
| 34 | MP3A         | Х         | 2.184              | 1.5            |
| 35 | MP3A         | Z         | 3.783              | 1.5            |
| 36 | MP3A         | Mx        | .001               | 1.5            |
| 37 | MP4A         | Х         | 2.109              | 1.5            |
| 38 | MP4A         | Z         | 3.652              | 1.5            |
| 39 | MP4A         | Mx        | .001               | 1.5            |
| 40 | M17          | Х         | 5.134              | 1              |
| 41 | M17          | Z         | 8.892              | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | X         | 0                  | 1.25           |
| 2  | MP1A         | Z         | 12.227             | 1.25           |
| 3  | MP1A         | Mx        | 0                  | 1.25           |
| 4  | MP1A         | X         | 0                  | 5.25           |
| 5  | MP1A         | Z         | 12.227             | 5.25           |
| 6  | MP1A         | Mx        | 0                  | 5.25           |
| 7  | MP5A         | Х         | 0                  | 1.25           |
| 8  | MP5A         | Z         | 12.227             | 1.25           |
| 9  | MP5A         | Mx        | 0                  | 1.25           |
| 10 | MP5A         | X         | 0                  | 5.25           |
| 11 | MP5A         | Z         | 12.227             | 5.25           |
| 12 | MP5A         | Mx        | 0                  | 5.25           |
| 13 | MP3A         | Х         | 0                  | 1.25           |
| 14 | MP3A         | Z         | 11.399             | 1.25           |
| 15 | MP3A         | Mx        | .01                | 1.25           |
| 16 | MP3A         | Х         | 0                  | 5.25           |
| 17 | MP3A         | Z         | 11.399             | 5.25           |
| 18 | MP3A         | Mx        | .01                | 5.25           |
| 19 | MP3A         | Х         | 0                  | 1.25           |
| 20 | MP3A         | Z         | 11.399             | 1.25           |
| 21 | MP3A         | Mx        | 01                 | 1.25           |
| 22 | MP3A         | Х         | 0                  | 5.25           |

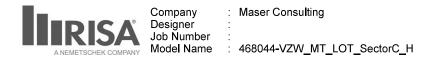



## Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 23 | MP3A         | Z         | 11.399             | 5.25           |
| 24 | MP3A         | Mx        | 01                 | 5.25           |
| 25 | MP4A         | Х         | 0                  | 2.25           |
| 26 | MP4A         | Z         | 5.986              | 2.25           |
| 27 | MP4A         | Mx        | 0                  | 2.25           |
| 28 | MP4A         | Х         | 0                  | 4.25           |
| 29 | MP4A         | Z         | 5.986              | 4.25           |
| 30 | MP4A         | Mx        | 0                  | 4.25           |
| 31 | MP3A         | Х         | 0                  | 7              |
| 32 | MP3A         | Z         | .943               | 7              |
| 33 | MP3A         | Mx        | 0                  | 7              |
| 34 | MP3A         | Х         | 0                  | 1.5            |
| 35 | MP3A         | Z         | 4.763              | 1.5            |
| 36 | MP3A         | Mx        | 0                  | 1.5            |
| 37 | MP4A         | Х         | 0                  | 1.5            |
| 38 | MP4A         | Z         | 4.763              | 1.5            |
| 39 | MP4A         | Mx        | 0                  | 1.5            |
| 40 | M17          | Х         | 0                  | 1              |
| 41 | M17          | Z         | 9.329              | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -5.95              | 1.25           |
| 2  | MP1A         | Z         | 10.306             | 1.25           |
| 3  | MP1A         | Mx        | .004               | 1.25           |
| 4  | MP1A         | Х         | -5.95              | 5.25           |
| 5  | MP1A         | Z         | 10.306             | 5.25           |
| 6  | MP1A         | Mx        | .004               | 5.25           |
| 7  | MP5A         | Х         | -5.95              | 1.25           |
| 8  | MP5A         | Z         | 10.306             | 1.25           |
| 9  | MP5A         | Mx        | .004               | 1.25           |
| 10 | MP5A         | Х         | -5.95              | 5.25           |
| 11 | MP5A         | Z         | 10.306             | 5.25           |
| 12 | MP5A         | Mx        | .004               | 5.25           |
| 13 | MP3A         | Х         | -4.885             | 1.25           |
| 14 | MP3A         | Z         | 8.46               | 1.25           |
| 15 | MP3A         | Mx        | .011               | 1.25           |
| 16 | MP3A         | Х         | -4.885             | 5.25           |
| 17 | MP3A         | Z         | 8.46               | 5.25           |
| 18 | MP3A         | Mx        | .011               | 5.25           |
| 19 | MP3A         | Х         | -4.885             | 1.25           |
| 20 | MP3A         | Z         | 8.46               | 1.25           |
| 21 | MP3A         | Mx        | 005                | 1.25           |
| 22 | MP3A         | Х         | -4.885             | 5.25           |
| 23 | MP3A         | Z         | 8.46               | 5.25           |
| 24 | MP3A         | Mx        | 005                | 5.25           |
| 25 | MP4A         | Х         | -2.538             | 2.25           |
| 26 | MP4A         | Z         | 4.396              | 2.25           |
| 27 | MP4A         | Mx        | .000846            | 2.25           |
| 28 | MP4A         | X         | -2.538             | 4.25           |
| 29 | MP4A         | Z         | 4.396              | 4.25           |
| 30 | MP4A         | Mx        | .000846            | 4.25           |
| 31 | MP3A         | Х         | 435                | 7              |
| 32 | MP3A         | Z         | .753               | 7              |
| 33 | MP3A         | Mx        | 000145             | 7              |
|    |              |           |                    | -              |

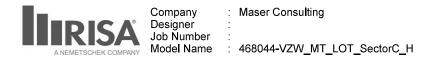



## Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 34 | MP3A         | Х         | -2.184             | 1.5            |
| 35 | MP3A         | Z         | 3.783              | 1.5            |
| 36 | MP3A         | Mx        | 001                | 1.5            |
| 37 | MP4A         | Х         | -2.109             | 1.5            |
| 38 | MP4A         | Z         | 3.652              | 1.5            |
| 39 | MP4A         | Mx        | 001                | 1.5            |
| 40 | M17          | Х         | -4.089             | 1              |
| 41 | M17          | Z         | 7.082              | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

|    | iber i cint Ecads (BEC 50 : A |           |                    |                |
|----|-------------------------------|-----------|--------------------|----------------|
|    | Member Label                  | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
| 1  | MP1A                          | X         | -9.741             | 1.25           |
| 2  | MP1A                          | Z         | 5.624              | 1.25           |
| 3  | MP1A                          | Mx        | .006               | 1.25           |
| 4  | MP1A                          | X         | -9.741             | 5.25           |
| 5  | MP1A                          | Z         | 5.624              | 5.25           |
| 6  | MP1A                          | Mx        | .006               | 5.25           |
| 7  | MP5A                          | Х         | -9.741             | 1.25           |
| 8  | MP5A                          | Z         | 5.624              | 1.25           |
| 9  | MP5A                          | Mx        | .006               | 1.25           |
| 10 | MP5A                          | Х         | -9.741             | 5.25           |
| 11 | MP5A                          | Z         | 5.624              | 5.25           |
| 12 | MP5A                          | Mx        | .006               | 5.25           |
| 13 | MP3A                          | Х         | -5.637             | 1.25           |
| 14 | MP3A                          | Z         | 3.254              | 1.25           |
| 15 | MP3A                          | Mx        | .006               | 1.25           |
| 16 | MP3A                          | Х         | -5.637             | 5.25           |
| 17 | MP3A                          | Z         | 3.254              | 5.25           |
| 18 | MP3A                          | Mx        | .006               | 5.25           |
| 19 | MP3A                          | X         | -5.637             | 1.25           |
| 20 | MP3A                          | Z         | 3,254              | 1.25           |
| 21 | MP3A                          | Mx        | .000305            | 1.25           |
| 22 | MP3A                          | Х         | -5.637             | 5.25           |
| 23 | MP3A                          | Z         | 3.254              | 5.25           |
| 24 | MP3A                          | Mx        | .000305            | 5.25           |
| 25 | MP4A                          | Х         | -2.818             | 2.25           |
| 26 | MP4A                          | Z         | 1.627              | 2.25           |
| 27 | MP4A                          | Mx        | .000939            | 2.25           |
| 28 | MP4A                          | X         | -2.818             | 4.25           |
| 29 | MP4A                          | Z         | 1.627              | 4.25           |
| 30 | MP4A                          | Mx        | .000939            | 4.25           |
| 31 | MP3A                          | X         | 628                | 7              |
| 32 | MP3A                          | Z         | .362               | 7              |
| 33 | MP3A                          | Mx        | 000209             | 7              |
| 34 | MP3A                          | X         | -3.099             | 1.5            |
| 35 | MP3A                          | Z         | 1.789              | 1.5            |
| 36 | MP3A                          | Mx        | 002                | 1.5            |
| 37 | MP4A                          | X         | -2.707             | 1.5            |
| 38 | MP4A                          | Z         | 1.563              | 1.5            |
| 39 | MP4A                          | Mx        | 002                | 1.5            |
| 40 | M17                           | X         | -6.897             | 1              |
| 40 | M17                           | Z         | 3.982              | 1              |
| 42 | M17                           | Mx        | 0                  | 1              |
| 42 | IVI I /                       | IVIX      | 0                  |                |

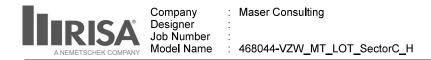



#### Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -10.921            | 1.25           |
| 2  | MP1A         | Z         | 0                  | 1.25           |
| 3  | MP1A         | Mx        | .007               | 1.25           |
| 4  | MP1A         | Х         | -10.921            | 5.25           |
| 5  | MP1A         | Z         | 0                  | 5.25           |
| 6  | MP1A         | Mx        | .007               | 5.25           |
| 7  | MP5A         | Х         | -10.921            | 1.25           |
| 8  | MP5A         | Z         | 0                  | 1.25           |
| 9  | MP5A         | Mx        | .007               | 1.25           |
| 10 | MP5A         | Х         | -10.921            | 5.25           |
| 11 | MP5A         | Z         | 0                  | 5.25           |
| 12 | MP5A         | Mx        | .007               | 5.25           |
| 13 | MP3A         | Х         | -4.879             | 1.25           |
| 14 | MP3A         | Z         | 0                  | 1.25           |
| 15 | MP3A         | Mx        | .003               | 1.25           |
| 16 | MP3A         | Х         | -4.879             | 5.25           |
| 17 | MP3A         | Z         | 0                  | 5.25           |
| 18 | MP3A         | Mx        | .003               | 5.25           |
| 19 | MP3A         | Х         | -4.879             | 1.25           |
| 20 | MP3A         | Z         | 0                  | 1.25           |
| 21 | MP3A         | Mx        | .003               | 1.25           |
| 22 | MP3A         | Х         | -4.879             | 5.25           |
| 23 | MP3A         | Z         | 0                  | 5.25           |
| 24 | MP3A         | Mx        | .003               | 5.25           |
| 25 | MP4A         | Х         | -2.344             | 2.25           |
| 26 | MP4A         | Z         | 0                  | 2.25           |
| 27 | MP4A         | Mx        | .000781            | 2.25           |
| 28 | MP4A         | X         | -2.344             | 4.25           |
| 29 | MP4A         | Z         | 0                  | 4.25           |
| 30 | MP4A         | Mx        | .000781            | 4.25           |
| 31 | MP3A         | Х         | 652                | 7              |
| 32 | MP3A         | Z         | 0                  | 7              |
| 33 | MP3A         | Mx        | 000217             | 7              |
| 34 | MP3A         | Х         | -3.184             | 1.5            |
| 35 | MP3A         | Z         | 0                  | 1.5            |
| 36 | MP3A         | Mx        | 002                | 1.5            |
| 37 | MP4A         | Х         | -2.579             | 1.5            |
| 38 | MP4A         | Z         | 0                  | 1.5            |
| 39 | MP4A         | Mx        | 002                | 1.5            |
| 40 | M17          | Х         | -8.903             | 1              |
| 41 | M17          | Z         | 0                  | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

# Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | Х         | -9.741             | 1.25           |
| 2  | MP1A         | Z         | -5.624             | 1.25           |
| 3  | MP1A         | Mx        | .006               | 1.25           |
| 4  | MP1A         | Х         | -9.741             | 5.25           |
| 5  | MP1A         | Z         | -5.624             | 5.25           |
| 6  | MP1A         | Mx        | .006               | 5.25           |
| 7  | MP5A         | Х         | -9.741             | 1.25           |
| 8  | MP5A         | Z         | -5.624             | 1.25           |
| 9  | MP5A         | Mx        | .006               | 1.25           |
| 10 | MP5A         | Х         | -9.741             | 5.25           |
| 11 | MP5A         | Z         | -5.624             | 5.25           |




### Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 12 | MP5A         | Mx        | .006               | 5.25           |
| 13 | MP3A         | Х         | -5.637             | 1.25           |
| 14 | MP3A         | Z         | -3.254             | 1.25           |
| 15 | MP3A         | Mx        | .000305            | 1.25           |
| 16 | MP3A         | Х         | -5.637             | 5.25           |
| 17 | MP3A         | Z         | -3.254             | 5.25           |
| 18 | MP3A         | Mx        | .000305            | 5.25           |
| 19 | MP3A         | Х         | -5.637             | 1.25           |
| 20 | MP3A         | Z         | -3.254             | 1.25           |
| 21 | MP3A         | Mx        | .006               | 1.25           |
| 22 | MP3A         | Х         | -5.637             | 5.25           |
| 23 | MP3A         | Z         | -3.254             | 5.25           |
| 24 | MP3A         | Mx        | .006               | 5.25           |
| 25 | MP4A         | Х         | -2.818             | 2.25           |
| 26 | MP4A         | Z         | -1.627             | 2.25           |
| 27 | MP4A         | Mx        | .000939            | 2.25           |
| 28 | MP4A         | Х         | -2.818             | 4.25           |
| 29 | MP4A         | Z         | -1.627             | 4.25           |
| 30 | MP4A         | Mx        | .000939            | 4.25           |
| 31 | MP3A         | Х         | 628                | 7              |
| 32 | MP3A         | Z         | 362                | 7              |
| 33 | MP3A         | Mx        | 000209             | 7              |
| 34 | MP3A         | Х         | -3.099             | 1.5            |
| 35 | MP3A         | Z         | -1.789             | 1.5            |
| 36 | MP3A         | Mx        | 002                | 1.5            |
| 37 | MP4A         | Х         | -2.707             | 1.5            |
| 38 | MP4A         | Z         | -1.563             | 1.5            |
| 39 | MP4A         | Mx        | 002                | 1.5            |
| 40 | M17          | Х         | -8.708             | 1              |
| 41 | M17          | Z         | -5.028             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

## Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 1  | MP1A         | X         | -5.95              | 1.25           |
| 2  | MP1A         | Z         | -10.306            | 1.25           |
| 3  | MP1A         | Mx        | .004               | 1.25           |
| 4  | MP1A         | Х         | -5.95              | 5.25           |
| 5  | MP1A         | Z         | -10.306            | 5.25           |
| 6  | MP1A         | Mx        | .004               | 5.25           |
| 7  | MP5A         | Х         | -5.95              | 1.25           |
| 8  | MP5A         | Z         | -10.306            | 1.25           |
| 9  | MP5A         | Mx        | .004               | 1.25           |
| 10 | MP5A         | Х         | -5.95              | 5.25           |
| 11 | MP5A         | Z         | -10.306            | 5.25           |
| 12 | MP5A         | Mx        | .004               | 5.25           |
| 13 | MP3A         | Х         | -4.885             | 1.25           |
| 14 | MP3A         | Z         | -8.46              | 1.25           |
| 15 | MP3A         | Mx        | 005                | 1.25           |
| 16 | MP3A         | Х         | -4.885             | 5.25           |
| 17 | MP3A         | Z         | -8.46              | 5.25           |
| 18 | MP3A         | Mx        | 005                | 5.25           |
| 19 | MP3A         | Х         | -4.885             | 1.25           |
| 20 | MP3A         | Z         | -8.46              | 1.25           |
| 21 | MP3A         | Mx        | .011               | 1.25           |
| 22 | MP3A         | Х         | -4.885             | 5.25           |



#### Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

|    | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|----|--------------|-----------|--------------------|----------------|
| 23 | MP3A         | Z         | -8.46              | 5.25           |
| 24 | MP3A         | Mx        | .011               | 5.25           |
| 25 | MP4A         | Х         | -2.538             | 2.25           |
| 26 | MP4A         | Z         | -4.396             | 2.25           |
| 27 | MP4A         | Mx        | .000846            | 2.25           |
| 28 | MP4A         | Х         | -2.538             | 4.25           |
| 29 | MP4A         | Z         | -4.396             | 4.25           |
| 30 | MP4A         | Mx        | .000846            | 4.25           |
| 31 | MP3A         | Х         | 435                | 7              |
| 32 | MP3A         | Z         | 753                | 7              |
| 33 | MP3A         | Mx        | 000145             | 7              |
| 34 | MP3A         | Х         | -2.184             | 1.5            |
| 35 | MP3A         | Z         | -3.783             | 1.5            |
| 36 | MP3A         | Mx        | 001                | 1.5            |
| 37 | MP4A         | Х         | -2.109             | 1.5            |
| 38 | MP4A         | Z         | -3.652             | 1.5            |
| 39 | MP4A         | Mx        | 001                | 1.5            |
| 40 | M17          | Х         | -5.134             | 1              |
| 41 | M17          | Z         | -8.892             | 1              |
| 42 | M17          | Mx        | 0                  | 1              |

#### Member Point Loads (BLC 77 : Lm1)

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | M10          | Y         | -500               | 0              |

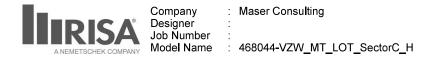
#### Member Point Loads (BLC 78 : Lm2)

| _ | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | M5           | Y         | -500               | %97            |

#### Member Point Loads (BLC 79 : Lv1)

|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | M5           | Y         | -250               | 0              |

#### Member Point Loads (BLC 80 : Lv2)


|   | Member Label | Direction | Magnitude[lb,k-ft] | Location[ft,%] |
|---|--------------|-----------|--------------------|----------------|
| 1 | M5           | Y         | -250               | %50            |

#### Member Distributed Loads (BLC 40 : Structure Di)

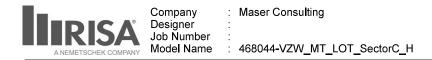
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Y         | -7.154                 | -7.154                | 0                      | %100               |
| 2  | M3           | Y         | -8.645                 | -8.645                | 0                      | %100               |
| 3  | M5           | Y         | -8.645                 | -8.645                | 0                      | %100               |
| 4  | MP1A         | Y         | -4.417                 | -4.417                | 0                      | %100               |
| 5  | MP3A         | Y         | -4.417                 | -4.417                | 0                      | %100               |
| 6  | MP5A         | Y         | -4.417                 | -4.417                | 0                      | %100               |
| 7  | M17          | Y         | -4.417                 | -4.417                | 0                      | %100               |
| 8  | MP2A         | Y         | -4.417                 | -4.417                | 0                      | %100               |
| 9  | MP4A         | Y         | -4.417                 | -4.417                | 0                      | %100               |
| 10 | M22          | Y         | -5.866                 | -5.866                | 0                      | %100               |
| 11 | M23          | Y         | -6.823                 | -6.823                | 0                      | %100               |

#### Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

 Member Label
 Direction
 Start Magnitude[lb/ft,... End Magnitude[lb/ft,F...
 Start Location[ft,%]
 End Location[ft,%]



## Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 0                      | 0                     | 0                      | %100               |
| 2  | M4           | Z         | -9.394                 | -9.394                | 0                      | %100               |
| 3  | M3           | Х         | 0                      | 0                     | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | -15.869                | -15.869               | 0                      | %100               |
| 7  | MP1A         | Х         | 0                      | 0                     | 0                      | %100               |
| 8  | MP1A         | Z         | -9.045                 | -9.045                | 0                      | %100               |
| 9  | MP3A         | Х         | 0                      | 0                     | 0                      | %100               |
| 10 | MP3A         | Z         | -9.045                 | -9.045                | 0                      | %100               |
| 11 | MP5A         | Х         | 0                      | 0                     | 0                      | %100               |
| 12 | MP5A         | Z         | -9.045                 | -9.045                | 0                      | %100               |
| 13 | M17          | Х         | 0                      | 0                     | 0                      | %100               |
| 14 | M17          | Z         | -7.397                 | -7.397                | 0                      | %100               |
| 15 | MP2A         | Х         | 0                      | 0                     | 0                      | %100               |
| 16 | MP2A         | Z         | -9.045                 | -9.045                | 0                      | %100               |
| 17 | MP4A         | Х         | 0                      | 0                     | 0                      | %100               |
| 18 | MP4A         | Z         | -9.045                 | -9.045                | 0                      | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | -13.33                 | -13.33                | 0                      | %100               |
| 21 | M23          | Х         | 0                      | 0                     | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |

## Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

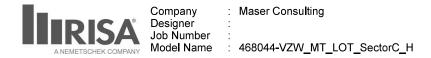
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 4.697                  | 4.697                 | 0                    | %100               |
| 2  | M4           | Z         | -8.135                 | -8.135                | 0                    | %100               |
| 3  | M3           | Х         | 1.406                  | 1.406                 | 0                    | %100               |
| 4  | M3           | Z         | -2.436                 | -2.436                | 0                    | %100               |
| 5  | M5           | Х         | 5.951                  | 5.951                 | 0                    | %100               |
| 6  | M5           | Z         | -10.307                | -10.307               | 0                    | %100               |
| 7  | MP1A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 8  | MP1A         | Z         | -7.833                 | -7.833                | 0                    | %100               |
| 9  | MP3A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 10 | MP3A         | Z         | -7.833                 | -7.833                | 0                    | %100               |
| 11 | MP5A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 12 | MP5A         | Z         | -7.833                 | -7.833                | 0                    | %100               |
| 13 | M17          | Х         | 3.698                  | 3.698                 | 0                    | %100               |
| 14 | M17          | Z         | -6.406                 | -6.406                | 0                    | %100               |
| 15 | MP2A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 16 | MP2A         | Z         | -7.833                 | -7.833                | 0                    | %100               |
| 17 | MP4A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 18 | MP4A         | Z         | -7.833                 | -7.833                | 0                    | %100               |
| 19 | M22          | Х         | 4.999                  | 4.999                 | 0                    | %100               |
| 20 | M22          | Z         | -8.658                 | -8.658                | 0                    | %100               |
| 21 | M23          | Х         | 1.087                  | 1.087                 | 0                    | %100               |
| 22 | M23          | Z         | -1.882                 | -1.882                | 0                    | %100               |

## Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

|   | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1 | M4           | Х         | 8.135                  | 8.135                 | 0                    | %100               |
| 2 | M4           | Z         | -4.697                 | -4.697                | 0                    | %100               |
| 3 | M3           | Х         | 7.307                  | 7.307                 | 0                    | %100               |
| 4 | M3           | Z         | -4.218                 | -4.218                | 0                    | %100               |
| 5 | M5           | Х         | 3.436                  | 3.436                 | 0                    | %100               |
| 6 | M5           | Z         | -1.984                 | -1.984                | 0                    | %100               |



## Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 7  | MP1A         | Х         | 7.833                  | 7.833                 | 0                      | %100               |
| 8  | MP1A         | Z         | -4.523                 | -4.523                | 0                      | %100               |
| 9  | MP3A         | Х         | 7.833                  | 7.833                 | 0                      | %100               |
| 10 | MP3A         | Z         | -4.523                 | -4.523                | 0                      | %100               |
| 11 | MP5A         | Х         | 7.833                  | 7.833                 | 0                      | %100               |
| 12 | MP5A         | Z         | -4.523                 | -4.523                | 0                      | %100               |
| 13 | M17          | Х         | 6.406                  | 6.406                 | 0                      | %100               |
| 14 | M17          | Z         | -3.698                 | -3.698                | 0                      | %100               |
| 15 | MP2A         | Х         | 7.833                  | 7.833                 | 0                      | %100               |
| 16 | MP2A         | Z         | -4.523                 | -4.523                | 0                      | %100               |
| 17 | MP4A         | Х         | 7.833                  | 7.833                 | 0                      | %100               |
| 18 | MP4A         | Z         | -4.523                 | -4.523                | 0                      | %100               |
| 19 | M22          | Х         | 2.886                  | 2.886                 | 0                      | %100               |
| 20 | M22          | Z         | -1.666                 | -1.666                | 0                      | %100               |
| 21 | M23          | Х         | 5.646                  | 5.646                 | 0                      | %100               |
| 22 | M23          | Z         | -3.26                  | -3.26                 | 0                      | %100               |

## Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

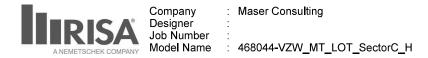
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 9.394                  | 9.394                 | 0                    | %100               |
| 2  | M4           | Z         | 0                      | 0                     | 0                    | %100               |
| 3  | M3           | Х         | 11.249                 | 11.249                | 0                    | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                    | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                    | %100               |
| 6  | M5           | Z         | 0                      | 0                     | 0                    | %100               |
| 7  | MP1A         | Х         | 9.045                  | 9.045                 | 0                    | %100               |
| 8  | MP1A         | Z         | 0                      | 0                     | 0                    | %100               |
| 9  | MP3A         | Х         | 9.045                  | 9.045                 | 0                    | %100               |
| 10 | MP3A         | Z         | 0                      | 0                     | 0                    | %100               |
| 11 | MP5A         | Х         | 9.045                  | 9.045                 | 0                    | %100               |
| 12 | MP5A         | Z         | 0                      | 0                     | 0                    | %100               |
| 13 | M17          | Х         | 7.397                  | 7.397                 | 0                    | %100               |
| 14 | M17          | Z         | 0                      | 0                     | 0                    | %100               |
| 15 | MP2A         | Х         | 9.045                  | 9.045                 | 0                    | %100               |
| 16 | MP2A         | Z         | 0                      | 0                     | 0                    | %100               |
| 17 | MP4A         | Х         | 9.045                  | 9.045                 | 0                    | %100               |
| 18 | MP4A         | Z         | 0                      | 0                     | 0                    | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                    | %100               |
| 20 | M22          | Z         | 0                      | 0                     | 0                    | %100               |
| 21 | M23          | Х         | 8.693                  | 8.693                 | 0                    | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                    | %100               |

## Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 8.135                  | 8.135                 | 0                    | %100               |
| 2  | M4           | Z         | 4.697                  | 4.697                 | 0                    | %100               |
| 3  | M3           | Х         | 7.307                  | 7.307                 | 0                    | %100               |
| 4  | M3           | Z         | 4.218                  | 4.218                 | 0                    | %100               |
| 5  | M5           | Х         | 3.436                  | 3.436                 | 0                    | %100               |
| 6  | M5           | Z         | 1.984                  | 1.984                 | 0                    | %100               |
| 7  | MP1A         | Х         | 7.833                  | 7.833                 | 0                    | %100               |
| 8  | MP1A         | Z         | 4.523                  | 4.523                 | 0                    | %100               |
| 9  | MP3A         | Х         | 7.833                  | 7.833                 | 0                    | %100               |
| 10 | MP3A         | Z         | 4.523                  | 4.523                 | 0                    | %100               |
| 11 | MP5A         | Х         | 7.833                  | 7.833                 | 0                    | %100               |
| 12 | MP5A         | Z         | 4.523                  | 4.523                 | 0                    | %100               |



## Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 13 | M17          | Х         | 6.406                  | 6.406                 | 0                    | %100               |
| 14 | M17          | Z         | 3.698                  | 3.698                 | 0                    | %100               |
| 15 | MP2A         | Х         | 7.833                  | 7.833                 | 0                    | %100               |
| 16 | MP2A         | Z         | 4.523                  | 4.523                 | 0                    | %100               |
| 17 | MP4A         | Х         | 7.833                  | 7.833                 | 0                    | %100               |
| 18 | MP4A         | Z         | 4.523                  | 4.523                 | 0                    | %100               |
| 19 | M22          | Х         | 2.886                  | 2.886                 | 0                    | %100               |
| 20 | M22          | Z         | 1.666                  | 1.666                 | 0                    | %100               |
| 21 | M23          | Х         | 5.646                  | 5.646                 | 0                    | %100               |
| 22 | M23          | Z         | 3.26                   | 3.26                  | 0                    | %100               |

### Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 4.697                  | 4.697                 | 0                    | %100               |
| 2  | M4           | Z         | 8.135                  | 8.135                 | 0                    | %100               |
| 3  | M3           | Х         | 1.406                  | 1.406                 | 0                    | %100               |
| 4  | M3           | Z         | 2.436                  | 2.436                 | 0                    | %100               |
| 5  | M5           | Х         | 5.951                  | 5.951                 | 0                    | %100               |
| 6  | M5           | Z         | 10.307                 | 10.307                | 0                    | %100               |
| 7  | MP1A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 8  | MP1A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 9  | MP3A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 10 | MP3A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 11 | MP5A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 12 | MP5A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 13 | M17          | Х         | 3.698                  | 3.698                 | 0                    | %100               |
| 14 | M17          | Z         | 6.406                  | 6.406                 | 0                    | %100               |
| 15 | MP2A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 16 | MP2A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 17 | MP4A         | Х         | 4.523                  | 4.523                 | 0                    | %100               |
| 18 | MP4A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 19 | M22          | Х         | 4.999                  | 4.999                 | 0                    | %100               |
| 20 | M22          | Z         | 8.658                  | 8.658                 | 0                    | %100               |
| 21 | M23          | Х         | 1.087                  | 1.087                 | 0                    | %100               |
| 22 | M23          | Z         | 1.882                  | 1.882                 | 0                    | %100               |

# Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 0                      | 0                     | 0                      | %100               |
| 2  | M4           | Z         | 9.394                  | 9.394                 | 0                      | %100               |
| 3  | M3           | Х         | 0                      | 0                     | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 15.869                 | 15.869                | 0                      | %100               |
| 7  | MP1A         | Х         | 0                      | 0                     | 0                      | %100               |
| 8  | MP1A         | Z         | 9.045                  | 9.045                 | 0                      | %100               |
| 9  | MP3A         | Х         | 0                      | 0                     | 0                      | %100               |
| 10 | MP3A         | Z         | 9.045                  | 9.045                 | 0                      | %100               |
| 11 | MP5A         | Х         | 0                      | 0                     | 0                      | %100               |
| 12 | MP5A         | Z         | 9.045                  | 9.045                 | 0                      | %100               |
| 13 | M17          | Х         | 0                      | 0                     | 0                      | %100               |
| 14 | M17          | Z         | 7.397                  | 7.397                 | 0                      | %100               |
| 15 | MP2A         | Х         | 0                      | 0                     | 0                      | %100               |
| 16 | MP2A         | Z         | 9.045                  | 9.045                 | 0                      | %100               |
| 17 | MP4A         | Х         | 0                      | 0                     | 0                      | %100               |
| 18 | MP4A         | Z         | 9.045                  | 9.045                 | 0                      | %100               |



## Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 19 | M22          | Х         | 0                      | 0                     | 0                    | %100               |
| 20 | M22          | Z         | 13.33                  | 13.33                 | 0                    | %100               |
| 21 | M23          | Х         | 0                      | 0                     | 0                    | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                    | %100               |

#### Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

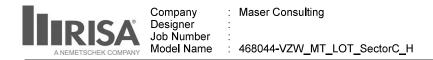
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | -4.697                 | -4.697                | 0                    | %100               |
| 2  | M4           | Z         | 8.135                  | 8.135                 | 0                    | %100               |
| 3  | M3           | Х         | -1.406                 | -1.406                | 0                    | %100               |
| 4  | M3           | Z         | 2.436                  | 2.436                 | 0                    | %100               |
| 5  | M5           | Х         | -5.951                 | -5.951                | 0                    | %100               |
| 6  | M5           | Z         | 10.307                 | 10.307                | 0                    | %100               |
| 7  | MP1A         | Х         | -4.523                 | -4.523                | 0                    | %100               |
| 8  | MP1A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 9  | MP3A         | Х         | -4.523                 | -4.523                | 0                    | %100               |
| 10 | MP3A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 11 | MP5A         | Х         | -4.523                 | -4.523                | 0                    | %100               |
| 12 | MP5A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 13 | M17          | Х         | -3.698                 | -3.698                | 0                    | %100               |
| 14 | M17          | Z         | 6.406                  | 6.406                 | 0                    | %100               |
| 15 | MP2A         | Х         | -4.523                 | -4.523                | 0                    | %100               |
| 16 | MP2A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 17 | MP4A         | Х         | -4.523                 | -4.523                | 0                    | %100               |
| 18 | MP4A         | Z         | 7.833                  | 7.833                 | 0                    | %100               |
| 19 | M22          | Х         | -4.999                 | -4.999                | 0                    | %100               |
| 20 | M22          | Z         | 8.658                  | 8.658                 | 0                    | %100               |
| 21 | M23          | Х         | -1.087                 | -1.087                | 0                    | %100               |
| 22 | M23          | Z         | 1.882                  | 1.882                 | 0                    | %100               |

#### Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | -8.135                 | -8.135                | 0                      | %100               |
| 2  | M4           | Z         | 4.697                  | 4.697                 | 0                      | %100               |
| 3  | M3           | Х         | -7.307                 | -7.307                | 0                      | %100               |
| 4  | M3           | Z         | 4.218                  | 4.218                 | 0                      | %100               |
| 5  | M5           | Х         | -3.436                 | -3.436                | 0                      | %100               |
| 6  | M5           | Z         | 1.984                  | 1.984                 | 0                      | %100               |
| 7  | MP1A         | Х         | -7.833                 | -7.833                | 0                      | %100               |
| 8  | MP1A         | Z         | 4.523                  | 4.523                 | 0                      | %100               |
| 9  | MP3A         | Х         | -7.833                 | -7.833                | 0                      | %100               |
| 10 | MP3A         | Z         | 4.523                  | 4.523                 | 0                      | %100               |
| 11 | MP5A         | Х         | -7.833                 | -7.833                | 0                      | %100               |
| 12 | MP5A         | Z         | 4.523                  | 4.523                 | 0                      | %100               |
| 13 | M17          | Х         | -6.406                 | -6.406                | 0                      | %100               |
| 14 | M17          | Z         | 3.698                  | 3.698                 | 0                      | %100               |
| 15 | MP2A         | Х         | -7.833                 | -7.833                | 0                      | %100               |
| 16 | MP2A         | Z         | 4.523                  | 4.523                 | 0                      | %100               |
| 17 | MP4A         | Х         | -7.833                 | -7.833                | 0                      | %100               |
| 18 | MP4A         | Z         | 4.523                  | 4.523                 | 0                      | %100               |
| 19 | M22          | Х         | -2.886                 | -2.886                | 0                      | %100               |
| 20 | M22          | Z         | 1.666                  | 1.666                 | 0                      | %100               |
| 21 | M23          | Х         | -5.646                 | -5.646                | 0                      | %100               |
| 22 | M23          | Z         | 3.26                   | 3.26                  | 0                      | %100               |



### Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | -9.394                 | -9.394                | 0                    | %100               |
| 2  | M4           | Z         | 0                      | 0                     | 0                    | %100               |
| 3  | M3           | Х         | -11.249                | -11.249               | 0                    | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                    | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                    | %100               |
| 6  | M5           | Z         | 0                      | 0                     | 0                    | %100               |
| 7  | MP1A         | Х         | -9.045                 | -9.045                | 0                    | %100               |
| 8  | MP1A         | Z         | 0                      | 0                     | 0                    | %100               |
| 9  | MP3A         | Х         | -9.045                 | -9.045                | 0                    | %100               |
| 10 | MP3A         | Z         | 0                      | 0                     | 0                    | %100               |
| 11 | MP5A         | Х         | -9.045                 | -9.045                | 0                    | %100               |
| 12 | MP5A         | Z         | 0                      | 0                     | 0                    | %100               |
| 13 | M17          | Х         | -7.397                 | -7.397                | 0                    | %100               |
| 14 | M17          | Z         | 0                      | 0                     | 0                    | %100               |
| 15 | MP2A         | Х         | -9.045                 | -9.045                | 0                    | %100               |
| 16 | MP2A         | Z         | 0                      | 0                     | 0                    | %100               |
| 17 | MP4A         | Х         | -9.045                 | -9.045                | 0                    | %100               |
| 18 | MP4A         | Z         | 0                      | 0                     | 0                    | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                    | %100               |
| 20 | M22          | Z         | 0                      | 0                     | 0                    | %100               |
| 21 | M23          | Х         | -8.693                 | -8.693                | 0                    | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                    | %100               |

## Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

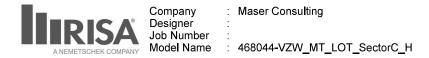
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | -8.135                 | -8.135                | 0                    | %100               |
| 2  | M4           | Z         | -4.697                 | -4.697                | 0                    | %100               |
| 3  | M3           | Х         | -7.307                 | -7.307                | 0                    | %100               |
| 4  | M3           | Z         | -4.218                 | -4.218                | 0                    | %100               |
| 5  | M5           | Х         | -3.436                 | -3.436                | 0                    | %100               |
| 6  | M5           | Z         | -1.984                 | -1.984                | 0                    | %100               |
| 7  | MP1A         | Х         | -7.833                 | -7.833                | 0                    | %100               |
| 8  | MP1A         | Z         | -4.523                 | -4.523                | 0                    | %100               |
| 9  | MP3A         | Х         | -7.833                 | -7.833                | 0                    | %100               |
| 10 | MP3A         | Z         | -4.523                 | -4.523                | 0                    | %100               |
| 11 | MP5A         | Х         | -7.833                 | -7.833                | 0                    | %100               |
| 12 | MP5A         | Z         | -4.523                 | -4.523                | 0                    | %100               |
| 13 | M17          | Х         | -6.406                 | -6.406                | 0                    | %100               |
| 14 | M17          | Z         | -3.698                 | -3.698                | 0                    | %100               |
| 15 | MP2A         | Х         | -7.833                 | -7.833                | 0                    | %100               |
| 16 | MP2A         | Z         | -4.523                 | -4.523                | 0                    | %100               |
| 17 | MP4A         | Х         | -7.833                 | -7.833                | 0                    | %100               |
| 18 | MP4A         | Z         | -4.523                 | -4.523                | 0                    | %100               |
| 19 | M22          | Х         | -2.886                 | -2.886                | 0                    | %100               |
| 20 | M22          | Z         | -1.666                 | -1.666                | 0                    | %100               |
| 21 | M23          | Х         | -5.646                 | -5.646                | 0                    | %100               |
| 22 | M23          | Z         | -3.26                  | -3.26                 | 0                    | %100               |

## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

|   | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1 | M4           | Х         | -4.697                 | -4.697                | 0                      | %100               |
| 2 | M4           | Z         | -8.135                 | -8.135                | 0                      | %100               |
| 3 | M3           | Х         | -1.406                 | -1.406                | 0                      | %100               |
| 4 | M3           | Z         | -2.436                 | -2.436                | 0                      | %100               |
| 5 | M5           | Х         | -5.951                 | -5.951                | 0                      | %100               |
| 6 | M5           | Z         | -10.307                | -10.307               | 0                      | %100               |



## Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 7  | MP1A         | Х         | -4.523                 | -4.523                | 0                      | %100               |
| 8  | MP1A         | Z         | -7.833                 | -7.833                | 0                      | %100               |
| 9  | MP3A         | Х         | -4.523                 | -4.523                | 0                      | %100               |
| 10 | MP3A         | Z         | -7.833                 | -7.833                | 0                      | %100               |
| 11 | MP5A         | Х         | -4.523                 | -4.523                | 0                      | %100               |
| 12 | MP5A         | Z         | -7.833                 | -7.833                | 0                      | %100               |
| 13 | M17          | Х         | -3.698                 | -3.698                | 0                      | %100               |
| 14 | M17          | Z         | -6.406                 | -6.406                | 0                      | %100               |
| 15 | MP2A         | Х         | -4.523                 | -4.523                | 0                      | %100               |
| 16 | MP2A         | Z         | -7.833                 | -7.833                | 0                      | %100               |
| 17 | MP4A         | Х         | -4.523                 | -4.523                | 0                      | %100               |
| 18 | MP4A         | Z         | -7.833                 | -7.833                | 0                      | %100               |
| 19 | M22          | Х         | -4.999                 | -4.999                | 0                      | %100               |
| 20 | M22          | Z         | -8.658                 | -8.658                | 0                      | %100               |
| 21 | M23          | Х         | -1.087                 | -1.087                | 0                      | %100               |
| 22 | M23          | Z         | -1.882                 | -1.882                | 0                      | %100               |

## Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

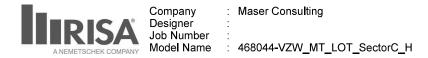
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 0                      | 0                     | 0                      | %100               |
| 2  | M4           | Z         | -2.983                 | -2.983                | 0                      | %100               |
| 3  | M3           | Х         | 0                      | 0                     | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | -4.44                  | -4.44                 | 0                      | %100               |
| 7  | MP1A         | Х         | 0                      | 0                     | 0                      | %100               |
| 8  | MP1A         | Z         | -3.173                 | -3.173                | 0                      | %100               |
| 9  | MP3A         | Х         | 0                      | 0                     | 0                      | %100               |
| 10 | MP3A         | Z         | -3.173                 | -3.173                | 0                      | %100               |
| 11 | MP5A         | Х         | 0                      | 0                     | 0                      | %100               |
| 12 | MP5A         | Z         | -3.173                 | -3.173                | 0                      | %100               |
| 13 | M17          | Х         | 0                      | 0                     | 0                      | %100               |
| 14 | M17          | Z         | -2.647                 | -2.647                | 0                      | %100               |
| 15 | MP2A         | Х         | 0                      | 0                     | 0                      | %100               |
| 16 | MP2A         | Z         | -3.173                 | -3.173                | 0                      | %100               |
| 17 | MP4A         | Х         | 0                      | 0                     | 0                      | %100               |
| 18 | MP4A         | Z         | -3.173                 | -3.173                | 0                      | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | -3.969                 | -3.969                | 0                      | %100               |
| 21 | M23          | Х         | 0                      | 0                     | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |

## Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 1.491                  | 1.491                 | 0                      | %100               |
| 2  | M4           | Z         | -2.583                 | -2.583                | 0                      | %100               |
| 3  | M3           | Х         | .399                   | .399                  | 0                      | %100               |
| 4  | M3           | Z         | 691                    | 691                   | 0                      | %100               |
| 5  | M5           | Х         | 1.665                  | 1.665                 | 0                      | %100               |
| 6  | M5           | Z         | -2.884                 | -2.884                | 0                      | %100               |
| 7  | MP1A         | Х         | 1.586                  | 1.586                 | 0                      | %100               |
| 8  | MP1A         | Z         | -2.747                 | -2.747                | 0                      | %100               |
| 9  | MP3A         | Х         | 1.586                  | 1.586                 | 0                      | %100               |
| 10 | MP3A         | Z         | -2.747                 | -2.747                | 0                      | %100               |
| 11 | MP5A         | Х         | 1.586                  | 1.586                 | 0                      | %100               |
| 12 | MP5A         | Z         | -2.747                 | -2.747                | 0                      | %100               |



## Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)


|    | Member Label | Direction | _Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 13 | M17          | Х         | 1.324                   | 1.324                 | 0                    | %100               |
| 14 | M17          | Z         | -2.293                  | -2.293                | 0                    | %100               |
| 15 | MP2A         | Х         | 1.586                   | 1.586                 | 0                    | %100               |
| 16 | MP2A         | Z         | -2.747                  | -2.747                | 0                    | %100               |
| 17 | MP4A         | Х         | 1.586                   | 1.586                 | 0                    | %100               |
| 18 | MP4A         | Z         | -2.747                  | -2.747                | 0                    | %100               |
| 19 | M22          | Х         | 1.488                   | 1.488                 | 0                    | %100               |
| 20 | M22          | Z         | -2.578                  | -2.578                | 0                    | %100               |
| 21 | M23          | Х         | .34                     | .34                   | 0                    | %100               |
| 22 | M23          | Z         | 588                     | 588                   | 0                    | %100               |

# Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 2.583                  | 2.583                 | 0                    | %100               |
| 2  | M4           | Z         | -1.491                 | -1.491                | 0                    | %100               |
| 3  | M3           | Х         | 2.074                  | 2.074                 | 0                    | %100               |
| 4  | M3           | Z         | -1.197                 | -1.197                | 0                    | %100               |
| 5  | M5           | Х         | .961                   | .961                  | 0                    | %100               |
| 6  | M5           | Z         | 555                    | 555                   | 0                    | %100               |
| 7  | MP1A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 8  | MP1A         | Z         | -1.586                 | -1.586                | 0                    | %100               |
| 9  | MP3A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 10 | MP3A         | Z         | -1.586                 | -1.586                | 0                    | %100               |
| 11 | MP5A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 12 | MP5A         | Z         | -1.586                 | -1.586                | 0                    | %100               |
| 13 | M17          | Х         | 2.293                  | 2.293                 | 0                    | %100               |
| 14 | M17          | Z         | -1.324                 | -1.324                | 0                    | %100               |
| 15 | MP2A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 16 | MP2A         | Z         | -1.586                 | -1.586                | 0                    | %100               |
| 17 | MP4A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 18 | MP4A         | Z         | -1.586                 | -1.586                | 0                    | %100               |
| 19 | M22          | Х         | .859                   | .859                  | 0                    | %100               |
| 20 | M22          | Z         | 496                    | 496                   | 0                    | %100               |
| 21 | M23          | Х         | 1.765                  | 1.765                 | 0                    | %100               |
| 22 | M23          | Z         | -1.019                 | -1.019                | 0                    | %100               |

# Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 2.983                  | 2.983                 | 0                      | %100               |
| 2  | M4           | Z         | 0                      | 0                     | 0                      | %100               |
| 3  | M3           | Х         | 3.193                  | 3.193                 | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 0                      | 0                     | 0                      | %100               |
| 7  | MP1A         | Х         | 3.173                  | 3.173                 | 0                      | %100               |
| 8  | MP1A         | Z         | 0                      | 0                     | 0                      | %100               |
| 9  | MP3A         | Х         | 3.173                  | 3.173                 | 0                      | %100               |
| 10 | MP3A         | Z         | 0                      | 0                     | 0                      | %100               |
| 11 | MP5A         | Х         | 3.173                  | 3.173                 | 0                      | %100               |
| 12 | MP5A         | Z         | 0                      | 0                     | 0                      | %100               |
| 13 | M17          | Х         | 2.647                  | 2.647                 | 0                      | %100               |
| 14 | M17          | Z         | 0                      | 0                     | 0                      | %100               |
| 15 | MP2A         | Х         | 3.173                  | 3.173                 | 0                      | %100               |
| 16 | MP2A         | Z         | 0                      | 0                     | 0                      | %100               |
| 17 | MP4A         | Х         | 3.173                  | 3.173                 | 0                      | %100               |
| 18 | MP4A         | Z         | 0                      | 0                     | 0                      | %100               |



#### Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | 0                      | 0                     | 0                      | %100               |
| 21 | M23          | Х         | 2.718                  | 2.718                 | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |

#### Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 2.583                  | 2.583                 | 0                    | %100               |
| 2  | M4           | Z         | 1.491                  | 1.491                 | 0                    | %100               |
| 3  | M3           | Х         | 2.074                  | 2.074                 | 0                    | %100               |
| 4  | M3           | Z         | 1.197                  | 1.197                 | 0                    | %100               |
| 5  | M5           | Х         | .961                   | .961                  | 0                    | %100               |
| 6  | M5           | Z         | .555                   | .555                  | 0                    | %100               |
| 7  | MP1A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 8  | MP1A         | Z         | 1.586                  | 1.586                 | 0                    | %100               |
| 9  | MP3A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 10 | MP3A         | Z         | 1.586                  | 1.586                 | 0                    | %100               |
| 11 | MP5A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 12 | MP5A         | Z         | 1.586                  | 1.586                 | 0                    | %100               |
| 13 | M17          | Х         | 2.293                  | 2.293                 | 0                    | %100               |
| 14 | M17          | Z         | 1.324                  | 1.324                 | 0                    | %100               |
| 15 | MP2A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 16 | MP2A         | Z         | 1.586                  | 1.586                 | 0                    | %100               |
| 17 | MP4A         | Х         | 2.747                  | 2.747                 | 0                    | %100               |
| 18 | MP4A         | Z         | 1.586                  | 1.586                 | 0                    | %100               |
| 19 | M22          | Х         | .859                   | .859                  | 0                    | %100               |
| 20 | M22          | Z         | .496                   | .496                  | 0                    | %100               |
| 21 | M23          | Х         | 1.765                  | 1.765                 | 0                    | %100               |
| 22 | M23          | Z         | 1.019                  | 1.019                 | 0                    | %100               |

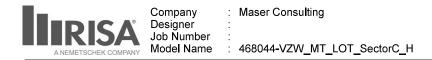
#### Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 1.491                  | 1.491                 | 0                    | %100               |
| 2  | M4           | Z         | 2.583                  | 2.583                 | 0                    | %100               |
| 3  | M3           | Х         | .399                   | .399                  | 0                    | %100               |
| 4  | M3           | Z         | .691                   | .691                  | 0                    | %100               |
| 5  | M5           | Х         | 1.665                  | 1.665                 | 0                    | %100               |
| 6  | M5           | Z         | 2.884                  | 2.884                 | 0                    | %100               |
| 7  | MP1A         | Х         | 1.586                  | 1.586                 | 0                    | %100               |
| 8  | MP1A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 9  | MP3A         | Х         | 1.586                  | 1.586                 | 0                    | %100               |
| 10 | MP3A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 11 | MP5A         | Х         | 1.586                  | 1.586                 | 0                    | %100               |
| 12 | MP5A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 13 | M17          | Х         | 1.324                  | 1.324                 | 0                    | %100               |
| 14 | M17          | Z         | 2.293                  | 2.293                 | 0                    | %100               |
| 15 | MP2A         | Х         | 1.586                  | 1.586                 | 0                    | %100               |
| 16 | MP2A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 17 | MP4A         | Х         | 1.586                  | 1.586                 | 0                    | %100               |
| 18 | MP4A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 19 | M22          | Х         | 1.488                  | 1.488                 | 0                    | %100               |
| 20 | M22          | Z         | 2.578                  | 2.578                 | 0                    | %100               |
| 21 | M23          | Х         | .34                    | .34                   | 0                    | %100               |
| 22 | M23          | Z         | .588                   | .588                  | 0                    | %100               |



#### Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 0                      | 0                     | 0                      | %100               |
| 2  | M4           | Z         | 2.983                  | 2.983                 | 0                      | %100               |
| 3  | M3           | Х         | 0                      | 0                     | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 4.44                   | 4.44                  | 0                      | %100               |
| 7  | MP1A         | Х         | 0                      | 0                     | 0                      | %100               |
| 8  | MP1A         | Z         | 3.173                  | 3.173                 | 0                      | %100               |
| 9  | MP3A         | Х         | 0                      | 0                     | 0                      | %100               |
| 10 | MP3A         | Z         | 3.173                  | 3.173                 | 0                      | %100               |
| 11 | MP5A         | Х         | 0                      | 0                     | 0                      | %100               |
| 12 | MP5A         | Z         | 3.173                  | 3.173                 | 0                      | %100               |
| 13 | M17          | Х         | 0                      | 0                     | 0                      | %100               |
| 14 | M17          | Z         | 2.647                  | 2.647                 | 0                      | %100               |
| 15 | MP2A         | Х         | 0                      | 0                     | 0                      | %100               |
| 16 | MP2A         | Z         | 3.173                  | 3.173                 | 0                      | %100               |
| 17 | MP4A         | Х         | 0                      | 0                     | 0                      | %100               |
| 18 | MP4A         | Z         | 3.173                  | 3.173                 | 0                      | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | 3.969                  | 3.969                 | 0                      | %100               |
| 21 | M23          | Х         | 0                      | 0                     | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |


## Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | -1.491                 | -1.491                | 0                    | %100               |
| 2  | M4           | Z         | 2.583                  | 2.583                 | 0                    | %100               |
| 3  | M3           | Х         | 399                    | 399                   | 0                    | %100               |
| 4  | M3           | Z         | .691                   | .691                  | 0                    | %100               |
| 5  | M5           | Х         | -1.665                 | -1.665                | 0                    | %100               |
| 6  | M5           | Z         | 2.884                  | 2.884                 | 0                    | %100               |
| 7  | MP1A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 8  | MP1A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 9  | MP3A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 10 | MP3A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 11 | MP5A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 12 | MP5A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 13 | M17          | Х         | -1.324                 | -1.324                | 0                    | %100               |
| 14 | M17          | Z         | 2.293                  | 2.293                 | 0                    | %100               |
| 15 | MP2A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 16 | MP2A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 17 | MP4A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 18 | MP4A         | Z         | 2.747                  | 2.747                 | 0                    | %100               |
| 19 | M22          | Х         | -1.488                 | -1.488                | 0                    | %100               |
| 20 | M22          | Z         | 2.578                  | 2.578                 | 0                    | %100               |
| 21 | M23          | Х         | 34                     | 34                    | 0                    | %100               |
| 22 | M23          | Z         | .588                   | .588                  | 0                    | %100               |

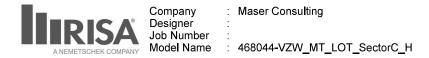
## Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

|   | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1 | M4           | Х         | -2.583                 | -2.583                | 0                    | %100               |
| 2 | M4           | Z         | 1.491                  | 1.491                 | 0                    | %100               |
| 3 | M3           | Х         | -2.074                 | -2.074                | 0                    | %100               |
| 4 | M3           | Z         | 1.197                  | 1.197                 | 0                    | %100               |
| 5 | M5           | Х         | 961                    | 961                   | 0                    | %100               |
| 6 | M5           | Z         | .555                   | .555                  | 0                    | %100               |

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 45



## Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 7  | MP1A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 8  | MP1A         | Z         | 1.586                  | 1.586                 | 0                      | %100               |
| 9  | MP3A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 10 | MP3A         | Z         | 1.586                  | 1.586                 | 0                      | %100               |
| 11 | MP5A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 12 | MP5A         | Z         | 1.586                  | 1.586                 | 0                      | %100               |
| 13 | M17          | Х         | -2.293                 | -2.293                | 0                      | %100               |
| 14 | M17          | Z         | 1.324                  | 1.324                 | 0                      | %100               |
| 15 | MP2A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 16 | MP2A         | Z         | 1.586                  | 1.586                 | 0                      | %100               |
| 17 | MP4A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 18 | MP4A         | Z         | 1.586                  | 1.586                 | 0                      | %100               |
| 19 | M22          | Х         | 859                    | 859                   | 0                      | %100               |
| 20 | M22          | Z         | .496                   | .496                  | 0                      | %100               |
| 21 | M23          | Х         | -1.765                 | -1.765                | 0                      | %100               |
| 22 | M23          | Z         | 1.019                  | 1.019                 | 0                      | %100               |

## Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

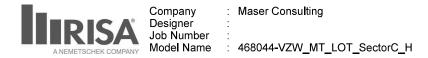
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | -2.983                 | -2.983                | 0                      | %100               |
| 2  | M4           | Z         | 0                      | 0                     | 0                      | %100               |
| 3  | M3           | Х         | -3.193                 | -3.193                | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 0                      | 0                     | 0                      | %100               |
| 7  | MP1A         | Х         | -3.173                 | -3.173                | 0                      | %100               |
| 8  | MP1A         | Z         | 0                      | 0                     | 0                      | %100               |
| 9  | MP3A         | Х         | -3.173                 | -3.173                | 0                      | %100               |
| 10 | MP3A         | Z         | 0                      | 0                     | 0                      | %100               |
| 11 | MP5A         | Х         | -3.173                 | -3.173                | 0                      | %100               |
| 12 | MP5A         | Z         | 0                      | 0                     | 0                      | %100               |
| 13 | M17          | Х         | -2.647                 | -2.647                | 0                      | %100               |
| 14 | M17          | Z         | 0                      | 0                     | 0                      | %100               |
| 15 | MP2A         | Х         | -3.173                 | -3.173                | 0                      | %100               |
| 16 | MP2A         | Z         | 0                      | 0                     | 0                      | %100               |
| 17 | MP4A         | Х         | -3.173                 | -3.173                | 0                      | %100               |
| 18 | MP4A         | Z         | 0                      | 0                     | 0                      | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | 0                      | 0                     | 0                      | %100               |
| 21 | M23          | Х         | -2.718                 | -2.718                | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |

## Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | -2.583                 | -2.583                | 0                      | %100               |
| 2  | M4           | Z         | -1.491                 | -1.491                | 0                      | %100               |
| 3  | M3           | Х         | -2.074                 | -2.074                | 0                      | %100               |
| 4  | M3           | Z         | -1.197                 | -1.197                | 0                      | %100               |
| 5  | M5           | Х         | 961                    | 961                   | 0                      | %100               |
| 6  | M5           | Z         | 555                    | 555                   | 0                      | %100               |
| 7  | MP1A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 8  | MP1A         | Z         | -1.586                 | -1.586                | 0                      | %100               |
| 9  | MP3A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 10 | MP3A         | Z         | -1.586                 | -1.586                | 0                      | %100               |
| 11 | MP5A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 12 | MP5A         | Z         | -1.586                 | -1.586                | 0                      | %100               |



## Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 13 | M17          | Х         | -2.293                 | -2.293                | 0                      | %100               |
| 14 | M17          | Z         | -1.324                 | -1.324                | 0                      | %100               |
| 15 | MP2A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 16 | MP2A         | Z         | -1.586                 | -1.586                | 0                      | %100               |
| 17 | MP4A         | Х         | -2.747                 | -2.747                | 0                      | %100               |
| 18 | MP4A         | Z         | -1.586                 | -1.586                | 0                      | %100               |
| 19 | M22          | Х         | 859                    | 859                   | 0                      | %100               |
| 20 | M22          | Z         | 496                    | 496                   | 0                      | %100               |
| 21 | M23          | Х         | -1.765                 | -1.765                | 0                      | %100               |
| 22 | M23          | Z         | -1.019                 | -1.019                | 0                      | %100               |

# Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

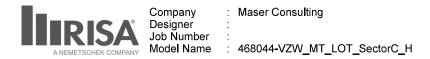
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | -1.491                 | -1.491                | 0                    | %100               |
| 2  | M4           | Z         | -2.583                 | -2.583                | 0                    | %100               |
| 3  | M3           | Х         | 399                    | 399                   | 0                    | %100               |
| 4  | M3           | Z         | 691                    | 691                   | 0                    | %100               |
| 5  | M5           | Х         | -1.665                 | -1.665                | 0                    | %100               |
| 6  | M5           | Z         | -2.884                 | -2.884                | 0                    | %100               |
| 7  | MP1A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 8  | MP1A         | Z         | -2.747                 | -2.747                | 0                    | %100               |
| 9  | MP3A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 10 | MP3A         | Z         | -2.747                 | -2.747                | 0                    | %100               |
| 11 | MP5A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 12 | MP5A         | Z         | -2.747                 | -2.747                | 0                    | %100               |
| 13 | M17          | Х         | -1.324                 | -1.324                | 0                    | %100               |
| 14 | M17          | Z         | -2.293                 | -2.293                | 0                    | %100               |
| 15 | MP2A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 16 | MP2A         | Z         | -2.747                 | -2.747                | 0                    | %100               |
| 17 | MP4A         | Х         | -1.586                 | -1.586                | 0                    | %100               |
| 18 | MP4A         | Z         | -2.747                 | -2.747                | 0                    | %100               |
| 19 | M22          | Х         | -1.488                 | -1.488                | 0                    | %100               |
| 20 | M22          | Z         | -2.578                 | -2.578                | 0                    | %100               |
| 21 | M23          | Х         | 34                     | 34                    | 0                    | %100               |
| 22 | M23          | Z         | 588                    | 588                   | 0                    | %100               |

## Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 0                      | 0                     | 0                      | %100               |
| 2  | M4           | Z         | 628                    | 628                   | 0                      | %100               |
| 3  | M3           | Х         | 0                      | 0                     | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | -1.061                 | -1.061                | 0                      | %100               |
| 7  | MP1A         | Х         | 0                      | 0                     | 0                      | %100               |
| 8  | MP1A         | Z         | 605                    | 605                   | 0                      | %100               |
| 9  | MP3A         | Х         | 0                      | 0                     | 0                      | %100               |
| 10 | MP3A         | Z         | 605                    | 605                   | 0                      | %100               |
| 11 | MP5A         | Х         | 0                      | 0                     | 0                      | %100               |
| 12 | MP5A         | Z         | 605                    | 605                   | 0                      | %100               |
| 13 | M17          | Х         | 0                      | 0                     | 0                      | %100               |
| 14 | M17          | Z         | 495                    | 495                   | 0                      | %100               |
| 15 | MP2A         | Х         | 0                      | 0                     | 0                      | %100               |
| 16 | MP2A         | Z         | 605                    | 605                   | 0                      | %100               |
| 17 | MP4A         | Х         | 0                      | 0                     | 0                      | %100               |
| 18 | MP4A         | Z         | 605                    | 605                   | 0                      | %100               |



### Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 19 | M22          | Х         | 0                      | 0                     | 0                    | %100               |
| 20 | M22          | Z         | 892                    | 892                   | 0                    | %100               |
| 21 | M23          | Х         | 0                      | 0                     | 0                    | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                    | %100               |

#### Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | .314                   | .314                  | 0                    | %100               |
| 2  | M4           | Z         | 544                    | 544                   | 0                    | %100               |
| 3  | M3           | Х         | .094                   | .094                  | 0                    | %100               |
| 4  | M3           | Z         | 163                    | 163                   | 0                    | %100               |
| 5  | M5           | Х         | .398                   | .398                  | 0                    | %100               |
| 6  | M5           | Z         | 689                    | 689                   | 0                    | %100               |
| 7  | MP1A         | Х         | .302                   | .302                  | 0                    | %100               |
| 8  | MP1A         | Z         | 524                    | 524                   | 0                    | %100               |
| 9  | MP3A         | Х         | .302                   | .302                  | 0                    | %100               |
| 10 | MP3A         | Z         | 524                    | 524                   | 0                    | %100               |
| 11 | MP5A         | Х         | .302                   | .302                  | 0                    | %100               |
| 12 | MP5A         | Z         | 524                    | 524                   | 0                    | %100               |
| 13 | M17          | Х         | .247                   | .247                  | 0                    | %100               |
| 14 | M17          | Z         | 428                    | 428                   | 0                    | %100               |
| 15 | MP2A         | Х         | .302                   | .302                  | 0                    | %100               |
| 16 | MP2A         | Z         | 524                    | 524                   | 0                    | %100               |
| 17 | MP4A         | Х         | .302                   | .302                  | 0                    | %100               |
| 18 | MP4A         | Z         | 524                    | 524                   | 0                    | %100               |
| 19 | M22          | Х         | .334                   | .334                  | 0                    | %100               |
| 20 | M22          | Z         | 579                    | 579                   | 0                    | %100               |
| 21 | M23          | Х         | .073                   | .073                  | 0                    | %100               |
| 22 | M23          | Z         | 126                    | 126                   | 0                    | %100               |

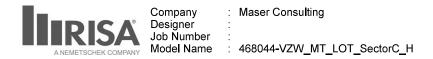
#### Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | .544                   | .544                  | 0                      | %100               |
| 2  | M4           | Z         | 314                    | 314                   | 0                      | %100               |
| 3  | M3           | Х         | .489                   | .489                  | 0                      | %100               |
| 4  | M3           | Z         | 282                    | 282                   | 0                      | %100               |
| 5  | M5           | Х         | .23                    | .23                   | 0                      | %100               |
| 6  | M5           | Z         | 133                    | 133                   | 0                      | %100               |
| 7  | MP1A         | Х         | .524                   | .524                  | 0                      | %100               |
| 8  | MP1A         | Z         | 302                    | 302                   | 0                      | %100               |
| 9  | MP3A         | Х         | .524                   | .524                  | 0                      | %100               |
| 10 | MP3A         | Z         | 302                    | 302                   | 0                      | %100               |
| 11 | MP5A         | Х         | .524                   | .524                  | 0                      | %100               |
| 12 | MP5A         | Z         | 302                    | 302                   | 0                      | %100               |
| 13 | M17          | Х         | .428                   | .428                  | 0                      | %100               |
| 14 | M17          | Z         | 247                    | 247                   | 0                      | %100               |
| 15 | MP2A         | Х         | .524                   | .524                  | 0                      | %100               |
| 16 | MP2A         | Z         | 302                    | 302                   | 0                      | %100               |
| 17 | MP4A         | Х         | .524                   | .524                  | 0                      | %100               |
| 18 | MP4A         | Z         | 302                    | 302                   | 0                      | %100               |
| 19 | M22          | Х         | .193                   | .193                  | 0                      | %100               |
| 20 | M22          | Z         | 111                    | 111                   | 0                      | %100               |
| 21 | M23          | Х         | .378                   | .378                  | 0                      | %100               |
| 22 | M23          | Z         | 218                    | 218                   | 0                      | %100               |



#### Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | .628                   | .628                  | 0                      | %100               |
| 2  | M4           | Z         | 0                      | 0                     | 0                      | %100               |
| 3  | M3           | Х         | .752                   | .752                  | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 0                      | 0                     | 0                      | %100               |
| 7  | MP1A         | Х         | .605                   | .605                  | 0                      | %100               |
| 8  | MP1A         | Z         | 0                      | 0                     | 0                      | %100               |
| 9  | MP3A         | Х         | .605                   | .605                  | 0                      | %100               |
| 10 | MP3A         | Z         | 0                      | 0                     | 0                      | %100               |
| 11 | MP5A         | Х         | .605                   | .605                  | 0                      | %100               |
| 12 | MP5A         | Z         | 0                      | 0                     | 0                      | %100               |
| 13 | M17          | Х         | .495                   | .495                  | 0                      | %100               |
| 14 | M17          | Z         | 0                      | 0                     | 0                      | %100               |
| 15 | MP2A         | Х         | .605                   | .605                  | 0                      | %100               |
| 16 | MP2A         | Z         | 0                      | 0                     | 0                      | %100               |
| 17 | MP4A         | Х         | .605                   | .605                  | 0                      | %100               |
| 18 | MP4A         | Z         | 0                      | 0                     | 0                      | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | 0                      | 0                     | 0                      | %100               |
| 21 | M23          | Х         | .581                   | .581                  | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |


## Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | .544                   | .544                  | 0                    | %100               |
| 2  | M4           | Z         | .314                   | .314                  | 0                    | %100               |
| 3  | M3           | Х         | .489                   | .489                  | 0                    | %100               |
| 4  | M3           | Z         | .282                   | .282                  | 0                    | %100               |
| 5  | M5           | Х         | .23                    | .23                   | 0                    | %100               |
| 6  | M5           | Z         | .133                   | .133                  | 0                    | %100               |
| 7  | MP1A         | Х         | .524                   | .524                  | 0                    | %100               |
| 8  | MP1A         | Z         | .302                   | .302                  | 0                    | %100               |
| 9  | MP3A         | Х         | .524                   | .524                  | 0                    | %100               |
| 10 | MP3A         | Z         | .302                   | .302                  | 0                    | %100               |
| 11 | MP5A         | Х         | .524                   | .524                  | 0                    | %100               |
| 12 | MP5A         | Z         | .302                   | .302                  | 0                    | %100               |
| 13 | M17          | Х         | .428                   | .428                  | 0                    | %100               |
| 14 | M17          | Z         | .247                   | .247                  | 0                    | %100               |
| 15 | MP2A         | Х         | .524                   | .524                  | 0                    | %100               |
| 16 | MP2A         | Z         | .302                   | .302                  | 0                    | %100               |
| 17 | MP4A         | Х         | .524                   | .524                  | 0                    | %100               |
| 18 | MP4A         | Z         | .302                   | .302                  | 0                    | %100               |
| 19 | M22          | Х         | .193                   | .193                  | 0                    | %100               |
| 20 | M22          | Z         | .111                   | .111                  | 0                    | %100               |
| 21 | M23          | Х         | .378                   | .378                  | 0                    | %100               |
| 22 | M23          | Z         | .218                   | .218                  | 0                    | %100               |

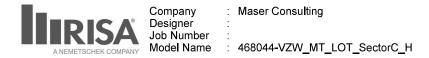
## Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

|   | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|---|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1 | M4           | Х         | .314                   | .314                  | 0                      | %100               |
| 2 | M4           | Z         | .544                   | .544                  | 0                      | %100               |
| 3 | M3           | Х         | .094                   | .094                  | 0                      | %100               |
| 4 | M3           | Z         | .163                   | .163                  | 0                      | %100               |
| 5 | M5           | Х         | .398                   | .398                  | 0                      | %100               |
| 6 | M5           | Z         | .689                   | .689                  | 0                      | %100               |

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\...\...\468044-VZW\_MT\_LOT\_A\_H - LOADED.r3d] Page 49



## Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 7  | MP1A         | Х         | .302                   | .302                  | 0                      | %100               |
| 8  | MP1A         | Z         | .524                   | .524                  | 0                      | %100               |
| 9  | MP3A         | Х         | .302                   | .302                  | 0                      | %100               |
| 10 | MP3A         | Z         | .524                   | .524                  | 0                      | %100               |
| 11 | MP5A         | Х         | .302                   | .302                  | 0                      | %100               |
| 12 | MP5A         | Z         | .524                   | .524                  | 0                      | %100               |
| 13 | M17          | Х         | .247                   | .247                  | 0                      | %100               |
| 14 | M17          | Z         | .428                   | .428                  | 0                      | %100               |
| 15 | MP2A         | Х         | .302                   | .302                  | 0                      | %100               |
| 16 | MP2A         | Z         | .524                   | .524                  | 0                      | %100               |
| 17 | MP4A         | Х         | .302                   | .302                  | 0                      | %100               |
| 18 | MP4A         | Z         | .524                   | .524                  | 0                      | %100               |
| 19 | M22          | Х         | .334                   | .334                  | 0                      | %100               |
| 20 | M22          | Z         | .579                   | .579                  | 0                      | %100               |
| 21 | M23          | Х         | .073                   | .073                  | 0                      | %100               |
| 22 | M23          | Z         | .126                   | .126                  | 0                      | %100               |

## Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

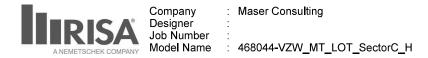
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 0                      | 0                     | 0                      | %100               |
| 2  | M4           | Z         | .628                   | .628                  | 0                      | %100               |
| 3  | M3           | Х         | 0                      | 0                     | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 1.061                  | 1.061                 | 0                      | %100               |
| 7  | MP1A         | Х         | 0                      | 0                     | 0                      | %100               |
| 8  | MP1A         | Z         | .605                   | .605                  | 0                      | %100               |
| 9  | MP3A         | Х         | 0                      | 0                     | 0                      | %100               |
| 10 | MP3A         | Z         | .605                   | .605                  | 0                      | %100               |
| 11 | MP5A         | Х         | 0                      | 0                     | 0                      | %100               |
| 12 | MP5A         | Z         | .605                   | .605                  | 0                      | %100               |
| 13 | M17          | Х         | 0                      | 0                     | 0                      | %100               |
| 14 | M17          | Z         | .495                   | .495                  | 0                      | %100               |
| 15 | MP2A         | Х         | 0                      | 0                     | 0                      | %100               |
| 16 | MP2A         | Z         | .605                   | .605                  | 0                      | %100               |
| 17 | MP4A         | Х         | 0                      | 0                     | 0                      | %100               |
| 18 | MP4A         | Z         | .605                   | .605                  | 0                      | %100               |
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | .892                   | .892                  | 0                      | %100               |
| 21 | M23          | Х         | 0                      | 0                     | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |

## Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 314                    | 314                   | 0                      | %100               |
| 2  | M4           | Z         | .544                   | .544                  | 0                      | %100               |
| 3  | M3           | Х         | 094                    | 094                   | 0                      | %100               |
| 4  | M3           | Z         | .163                   | .163                  | 0                      | %100               |
| 5  | M5           | Х         | 398                    | 398                   | 0                      | %100               |
| 6  | M5           | Z         | .689                   | .689                  | 0                      | %100               |
| 7  | MP1A         | Х         | 302                    | 302                   | 0                      | %100               |
| 8  | MP1A         | Z         | .524                   | .524                  | 0                      | %100               |
| 9  | MP3A         | Х         | 302                    | 302                   | 0                      | %100               |
| 10 | MP3A         | Z         | .524                   | .524                  | 0                      | %100               |
| 11 | MP5A         | Х         | 302                    | 302                   | 0                      | %100               |
| 12 | MP5A         | Z         | .524                   | .524                  | 0                      | %100               |



## Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 13 | M17          | Х         | 247                    | 247                   | 0                    | %100               |
| 14 | M17          | Z         | .428                   | .428                  | 0                    | %100               |
| 15 | MP2A         | Х         | 302                    | 302                   | 0                    | %100               |
| 16 | MP2A         | Z         | .524                   | .524                  | 0                    | %100               |
| 17 | MP4A         | Х         | 302                    | 302                   | 0                    | %100               |
| 18 | MP4A         | Z         | .524                   | .524                  | 0                    | %100               |
| 19 | M22          | Х         | 334                    | 334                   | 0                    | %100               |
| 20 | M22          | Z         | .579                   | .579                  | 0                    | %100               |
| 21 | M23          | Х         | 073                    | 073                   | 0                    | %100               |
| 22 | M23          | Z         | .126                   | .126                  | 0                    | %100               |

# Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

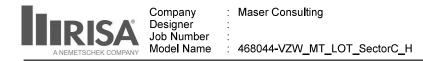
|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 544                    | 544                   | 0                      | %100               |
| 2  | M4           | Z         | .314                   | .314                  | 0                      | %100               |
| 3  | M3           | Х         | 489                    | 489                   | 0                      | %100               |
| 4  | M3           | Z         | .282                   | .282                  | 0                      | %100               |
| 5  | M5           | Х         | 23                     | 23                    | 0                      | %100               |
| 6  | M5           | Z         | .133                   | .133                  | 0                      | %100               |
| 7  | MP1A         | Х         | 524                    | 524                   | 0                      | %100               |
| 8  | MP1A         | Z         | .302                   | .302                  | 0                      | %100               |
| 9  | MP3A         | Х         | 524                    | 524                   | 0                      | %100               |
| 10 | MP3A         | Z         | .302                   | .302                  | 0                      | %100               |
| 11 | MP5A         | Х         | 524                    | 524                   | 0                      | %100               |
| 12 | MP5A         | Z         | .302                   | .302                  | 0                      | %100               |
| 13 | M17          | Х         | 428                    | 428                   | 0                      | %100               |
| 14 | M17          | Z         | .247                   | .247                  | 0                      | %100               |
| 15 | MP2A         | Х         | 524                    | 524                   | 0                      | %100               |
| 16 | MP2A         | Z         | .302                   | .302                  | 0                      | %100               |
| 17 | MP4A         | Х         | 524                    | 524                   | 0                      | %100               |
| 18 | MP4A         | Z         | .302                   | .302                  | 0                      | %100               |
| 19 | M22          | Х         | 193                    | 193                   | 0                      | %100               |
| 20 | M22          | Z         | .111                   | .111                  | 0                      | %100               |
| 21 | M23          | Х         | 378                    | 378                   | 0                      | %100               |
| 22 | M23          | Z         | .218                   | .218                  | 0                      | %100               |

## Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 1  | M4           | Х         | 628                    | 628                   | 0                      | %100               |
| 2  | M4           | Z         | 0                      | 0                     | 0                      | %100               |
| 3  | M3           | Х         | 752                    | 752                   | 0                      | %100               |
| 4  | M3           | Z         | 0                      | 0                     | 0                      | %100               |
| 5  | M5           | Х         | 0                      | 0                     | 0                      | %100               |
| 6  | M5           | Z         | 0                      | 0                     | 0                      | %100               |
| 7  | MP1A         | Х         | 605                    | 605                   | 0                      | %100               |
| 8  | MP1A         | Z         | 0                      | 0                     | 0                      | %100               |
| 9  | MP3A         | Х         | 605                    | 605                   | 0                      | %100               |
| 10 | MP3A         | Z         | 0                      | 0                     | 0                      | %100               |
| 11 | MP5A         | Х         | 605                    | 605                   | 0                      | %100               |
| 12 | MP5A         | Z         | 0                      | 0                     | 0                      | %100               |
| 13 | M17          | Х         | 495                    | 495                   | 0                      | %100               |
| 14 | M17          | Z         | 0                      | 0                     | 0                      | %100               |
| 15 | MP2A         | Х         | 605                    | 605                   | 0                      | %100               |
| 16 | MP2A         | Z         | 0                      | 0                     | 0                      | %100               |
| 17 | MP4A         | Х         | 605                    | 605                   | 0                      | %100               |
| 18 | MP4A         | Z         | 0                      | 0                     | 0                      | %100               |



### Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)


|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | . Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|------------------------|--------------------|
| 19 | M22          | Х         | 0                      | 0                     | 0                      | %100               |
| 20 | M22          | Z         | 0                      | 0                     | 0                      | %100               |
| 21 | M23          | Х         | 581                    | 581                   | 0                      | %100               |
| 22 | M23          | Z         | 0                      | 0                     | 0                      | %100               |

#### Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

|    | Member Label | Direction | _Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|-------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 544                     | 544                   | 0                    | %100               |
| 2  | M4           | Z         | 314                     | 314                   | 0                    | %100               |
| 3  | M3           | Х         | 489                     | 489                   | 0                    | %100               |
| 4  | M3           | Z         | 282                     | 282                   | 0                    | %100               |
| 5  | M5           | Х         | 23                      | 23                    | 0                    | %100               |
| 6  | M5           | Z         | 133                     | 133                   | 0                    | %100               |
| 7  | MP1A         | Х         | 524                     | 524                   | 0                    | %100               |
| 8  | MP1A         | Z         | 302                     | 302                   | 0                    | %100               |
| 9  | MP3A         | Х         | 524                     | 524                   | 0                    | %100               |
| 10 | MP3A         | Z         | 302                     | 302                   | 0                    | %100               |
| 11 | MP5A         | Х         | 524                     | 524                   | 0                    | %100               |
| 12 | MP5A         | Z         | 302                     | 302                   | 0                    | %100               |
| 13 | M17          | Х         | 428                     | 428                   | 0                    | %100               |
| 14 | M17          | Z         | 247                     | 247                   | 0                    | %100               |
| 15 | MP2A         | Х         | 524                     | 524                   | 0                    | %100               |
| 16 | MP2A         | Z         | 302                     | 302                   | 0                    | %100               |
| 17 | MP4A         | Х         | 524                     | 524                   | 0                    | %100               |
| 18 | MP4A         | Z         | 302                     | 302                   | 0                    | %100               |
| 19 | M22          | Х         | 193                     | 193                   | 0                    | %100               |
| 20 | M22          | Z         | 111                     | 111                   | 0                    | %100               |
| 21 | M23          | Х         | 378                     | 378                   | 0                    | %100               |
| 22 | M23          | Z         | 218                     | 218                   | 0                    | %100               |

#### Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

|    | Member Label | Direction | Start Magnitude[lb/ft, | End Magnitude[lb/ft,F | Start Location[ft,%] | End Location[ft,%] |
|----|--------------|-----------|------------------------|-----------------------|----------------------|--------------------|
| 1  | M4           | Х         | 314                    | 314                   | 0                    | %100               |
| 2  | M4           | Z         | 544                    | 544                   | 0                    | %100               |
| 3  | M3           | Х         | 094                    | 094                   | 0                    | %100               |
| 4  | M3           | Z         | 163                    | 163                   | 0                    | %100               |
| 5  | M5           | Х         | 398                    | 398                   | 0                    | %100               |
| 6  | M5           | Z         | 689                    | 689                   | 0                    | %100               |
| 7  | MP1A         | Х         | 302                    | 302                   | 0                    | %100               |
| 8  | MP1A         | Z         | 524                    | 524                   | 0                    | %100               |
| 9  | MP3A         | Х         | 302                    | 302                   | 0                    | %100               |
| 10 | MP3A         | Z         | 524                    | 524                   | 0                    | %100               |
| 11 | MP5A         | Х         | 302                    | 302                   | 0                    | %100               |
| 12 | MP5A         | Z         | 524                    | 524                   | 0                    | %100               |
| 13 | M17          | Х         | 247                    | 247                   | 0                    | %100               |
| 14 | M17          | Z         | 428                    | 428                   | 0                    | %100               |
| 15 | MP2A         | Х         | 302                    | 302                   | 0                    | %100               |
| 16 | MP2A         | Z         | 524                    | 524                   | 0                    | %100               |
| 17 | MP4A         | Х         | 302                    | 302                   | 0                    | %100               |
| 18 | MP4A         | Z         | 524                    | 524                   | 0                    | %100               |
| 19 | M22          | Х         | 334                    | 334                   | 0                    | %100               |
| 20 | M22          | Z         | 579                    | 579                   | 0                    | %100               |
| 21 | M23          | Х         | 073                    | 073                   | 0                    | %100               |
| 22 | M23          | Z         | 126                    | 126                   | 0                    | %100               |



#### Member Area Loads

| Joint A | Joint B | Joint C | Joint D    | Direction | Distribution | Magnitude[ksf] |
|---------|---------|---------|------------|-----------|--------------|----------------|
|         |         | No Data | a to Print |           |              | • • •          |

#### **Envelope Joint Reactions**

|   | Joint   |     | X [ <b>l</b> b] | LC | Y [ <b>İ</b> b] | LC | Z [ <b>İ</b> b] | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|---|---------|-----|-----------------|----|-----------------|----|-----------------|----|-----------|----|-----------|----|-----------|----|
| 1 | N1      | max | 2141.075        | 10 | 1566 92         | 13 | 2422.851        | 1  | 527       | 1  | 3.933     | 10 | 1.523     | 39 |
| 2 |         | min | -2002.487       | 4  | 309.206         | 7  | -3422.625       | 7  | -2.719    | 19 | -3.666    | 4  | -1.087    | 49 |
| 3 | N51     | max | 749.689         | 41 | 835.369         | 19 | 1208.908        | 18 | .136      | 1  | 1.442     | 47 | .6        | 39 |
| 4 |         | min | -482.534        | 49 | -48.593         | 1  | 177.799         | 1  | -1.296    | 19 | 926       | 49 | 436       | 49 |
| 5 | Totals: | max | 1702.948        | 10 | 2221.259        | 19 | 2600.65         | 1  |           |    |           |    |           |    |
| 6 |         | min | -1702.948       | 4  | 1058.347        | 1  | -2600.649       | 7  |           |    |           |    |           |    |

## Envelope AISC 15th(360-16): LRFD Steel Code Checks

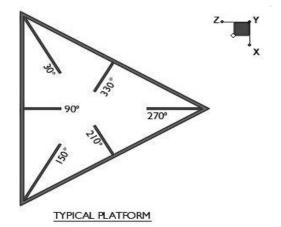
|    | Member | Shape    | Code Check | Loc[ft] | LC | Shear | .Loc[ft] | Dir | LC | phi*Pnc | .phi*Pnt [ | .phi*Mn y | .phi*Mn z. | Cb Eqn |
|----|--------|----------|------------|---------|----|-------|----------|-----|----|---------|------------|-----------|------------|--------|
| 1  | M4     | PIPE 4.0 | .000       | .75     | 8  | .000  | .75      |     | 8  | 92571.3 | 93240      | 10.631    | 10.631     | 1H1-1b |
| 2  | M3     | HSS4X4X4 | .336       | 0       | 9  | .143  | 0        | y   | 39 | 137389  | 139518     | 16.181    | 16.181     | 1H1-1b |
| 3  | M5     | HSS4X4X4 | .208       | 5       | 7  | .119  | 5        | z   | 1  | 91806.5 | 139518     | 16.181    | 16.181     | 1H1-1b |
| 4  | MP1A   | PIPE 2.0 | .346       | 4.25    | 7  | .104  | 4.25     |     | 4  | 13511.2 | 32130      | 1.872     | 1.872      | 1H1-1b |
| 5  | MP3A   | PIPE 2.0 | .712       | 4.25    | 1  | .155  | 5.313    |     | 9  | 13511.2 | 32130      | 1.872     | 1.872      | 4H1-1b |
| 6  | MP5A   | PIPE 2.0 | .347       | 4.25    | 7  | .110  | 4.25     |     | 10 | 13511.2 | 32130      | 1.872     | 1.872      | 1H1-1b |
| 7  | M17    | PIPE 2.0 | .046       | 1.5     | 6  | .017  | 1.5      |     | 6  | 28843.4 | 32130      | 1.872     | 1.872      | 1H1-1b |
| 8  | MP2A   | PIPE 2.0 | .263       | 4.25    | 41 | .084  | 4.25     |     | 6  | 13511.2 | 32130      | 1.872     | 1.872      | 1H1-1b |
| 9  | MP4A   | PIPE 2.0 | .281       | 4.25    | 1  | .101  | 4.25     |     | 8  | 13511.2 | 32130      | 1.872     | 1.872      | 1H1-1b |
| 10 | M22    | PIPE 3.0 | .203       | 5       | 12 | .167  | 5.313    |     | 6  | 38176.7 | 65205      | 5.749     | 5.749      | 1H1-1b |
| 11 | M23    | HSS3X3X4 | .279       | 0       | 44 | .110  | 1.917    | z   | 40 | 98153.0 | 101016     | 8.556     | 8.556      | 2H1-1b |

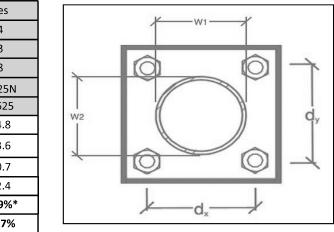
|                  | Client:     | Verizon Wireless       | Date: | 7/7/2021 |
|------------------|-------------|------------------------|-------|----------|
| MASER CONSULTING | Site Name:  | Byram Park CT          |       |          |
| -CONNECTICUT-    | Project No. | 20777259A              |       |          |
|                  | Title:      | Antenna Mount Analysis | Page: | 1        |
|                  |             |                        |       |          |

Version 3.1

## I. Mount-to-Tower Connection Check

#### RISA Model Data


| Nodes<br>(labeled per RISA) | Orientation<br>(per graphic of typical platform) |
|-----------------------------|--------------------------------------------------|
| N1                          | 90                                               |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |


#### Tower Connection Bolt Checks

Any moment resistance?: Bolt Quantity per Reaction: d<sub>x</sub> (in) (*Delta X of typ. bolt config. sketch*): d<sub>y</sub> (in) (*Delta Y of typ. bolt config. sketch*): Bolt Type: Bolt Diameter (in): Required Tensile Strength (kips): Required Shear Strength (kips):

Tensile Strength / bolt (kips): Shear Strength / bolt (kips): Tensile Capacity Overall: Shear Capacity Overall:

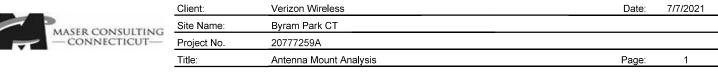
| yes    |  |
|--------|--|
| 4      |  |
| 3      |  |
| 8      |  |
| A325N  |  |
| 0.625  |  |
| 14.8   |  |
| 33.6   |  |
| 20.7   |  |
| 12.4   |  |
| 17.9%* |  |
| 67.7%  |  |
|        |  |





\*Note: Tension reduction not required if tension or shear capacity < 30%

## Tower Connection Plate and Weld Check


| Connecting Standoff Member Shape: |
|-----------------------------------|
| Plate Width (in):                 |
| Plate Height (in):                |
| W1 (in):                          |
| W2 (in):                          |
| Fy (ksi, plate):                  |
| t <sub>Plate</sub> (in):          |
| Weld Size (1/16 in):              |
| Phi*Rn (kip/in):                  |
| Required Weld Strength (kip/in):  |
| Plate Bending Capacity:           |
| Weld Capacity:                    |

| Rect  |  |
|-------|--|
| 6     |  |
| 10    |  |
| 4     |  |
| 4     |  |
| 36    |  |
| 0.5   |  |
| 3     |  |
| 4.18  |  |
| 2.44  |  |
| 79.9% |  |
| 58.4% |  |
|       |  |

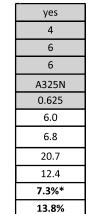
#### Max Plate Bending Strengths

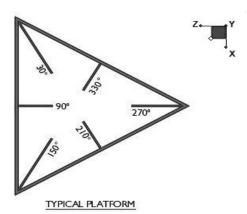
Mu<sub>xx</sub> (kip-in): Phi\*Mn<sub>xx</sub> (kip-in): Mu<sub>yy</sub> (kip-in): Phi\*Mn<sub>yy</sub> (kip-in):

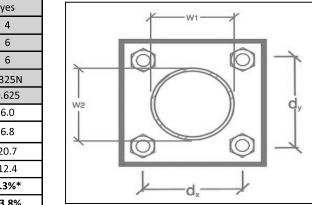
| 9.9  |
|------|
| 12.2 |
| -0.3 |
| 20.3 |



Version 3.1


#### I. Mount-to-Tower Connection Check - Proposed


#### RISA Model Data


| Nodes<br>(labeled per RISA) | Orientation<br>(per graphic of typical platform) |
|-----------------------------|--------------------------------------------------|
| N51                         | 90                                               |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |
|                             |                                                  |

#### Tower Connection Bolt Checks

Any moment resistance?: Bolt Quantity per Reaction: d<sub>x</sub> (in) (Delta X of typ. bolt config. sketch): d<sub>y</sub> (in) (Delta Y of typ. bolt config. sketch): Bolt Type: Bolt Diameter (in): Required Tensile Strength (kips): Required Shear Strength (kips): Tensile Strength / bolt (kips): Shear Strength / bolt (kips): Tensile Capacity Overall: Shear Capacity Overall:







\*Note: Tension reduction not required if tension or shear capacity < 30%

#### Tower Connection Plate and Weld Check Connecting Standoff Member Shape: Plate Width (in): Plate Height (in): W1 (in): W2 (in): Fy (ksi, plate): t<sub>Plate</sub> (in): Weld Size (1/16 in): Phi\*Rn (kip/in): Required Weld Strength (kip/in): Plate Bending Capacity: Weld Capacity:

| Rect  |
|-------|
| 8.25  |
| 8.25  |
| 3     |
| 3     |
| 50    |
| 0.75  |
| 5     |
| 6.96  |
| 1.84  |
| 14.7% |
| 26.4% |
|       |

#### Max Plate Bending Strengths

Muxx (kip-in): Phi\*Mn<sub>xx</sub> (kip-in): Muyy (kip-in): Phi\*Mnyy (kip-in):

| 3.1  |
|------|
| 52.2 |
| 4.6  |
| 52.2 |
|      |

## Mount Desktop – Post Modification Inspection (PMI) Report Requirements

## **Documents & Photos Required from Contractor – Mount Modification**

<u>**Purpose**</u> – to provide Maser Consulting Connecticut the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

#### **Base Requirements:**

- Any special photos outside of the standard requirements will be indicated on the drawings
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) must be shown.
- Notation that all hardware was properly installed, and the existing hardware was inspected for any issues.
- Verification that loading is as communicated in the modification drawings. NOTE If loading is different than what is conveyed in the modification drawing contact Maser Consulting Connecticut immediately.
- Each photo should be time and date stamped
- Photos should be high resolution and submitted in a Zip File and should be organized in the file structure as depicted in Schedule A attached.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope.
- The photos in the file structure should be uploaded **to <u>https://pmi.vzwsmart.com</u>** as depicted on the drawings

## Photo Requirements:

- Base and "During Installation Photos"
  - $\circ \quad \text{Base pictures include} \\$ 
    - Photo of Gate Signs showing the tower owner, site name, and number
    - Photo of carrier shelter showing the carrier site name and number if available
    - Photos of the galvanizing compound and/or paint used (if applicable), clearly showing the label and name
  - $\circ$  "During Installation Photos if provided must be placed only in this folder
- Photos taken at ground level
  - o Overall tower structure before and after installation of the modifications
  - Photos of the appropriate mount before and after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed

- <u>Photos taken at Mount Elevation</u>
  - Photos showing each individual sector before and also after installation of modifications. Each entire sector must be in one photo to show in the inter-connection of members.
    - These photos should also certify that the placement and geometry of the equipment on the mount is as depicted on the sketch and table in the mount analysis
  - Close-up photos of each installed modification per the modification drawings; pictures should also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
  - Photos showing the measurements of the installed modification member sizes (i.e. lengths, widths, depths, diameters, thicknesses)
  - Photos showing the elevation or distances of the installed modifications from the appropriate reference locations shown in the modification drawings
  - Photos showing the installed modifications onto the tower with tape drop measurements (if applicable) (i.e. ring/collar mounts, tie-backs, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, a tape drop measurement shall be provided before the elevation change
  - Photos showing the safety climb wire rope above and below the mount prior to modification.
  - Photos showing the climbing facility and safety climb if present.

## Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by Maser Consulting Connecticut.
  - If the drawings are as specified on the drawings
    - The contractor should provide the packing list or the materials utilized to perform the mount modification
  - o If an equivalent is utilized
    - It is required that the Maser Consulting Connecticut certification of such is included in the contractor submission package. There may be an additional charge for this certification if the equivalent submission doesn't meet specifications as prescribed in the drawings.
- The contractor must certify that the materials meet these specifications by one of these methods.

□ The Material utilized was as specified on the Maser Consulting Connecticut Mount Modification Drawings and included in the Material certification folder is a packing list or invoice for these materials

□ The material utilized was an "equivalent" and included as part of the contractor submission is the Maser Consulting Connecticut certification, invoices, or specifications validating accepted status

Certifying Individual: Company

| Name      | <br> | <br> |  |
|-----------|------|------|--|
|           |      |      |  |
| Signature | <br> | <br> |  |

#### Antenna & equipment placement and Geometry Confirmation:

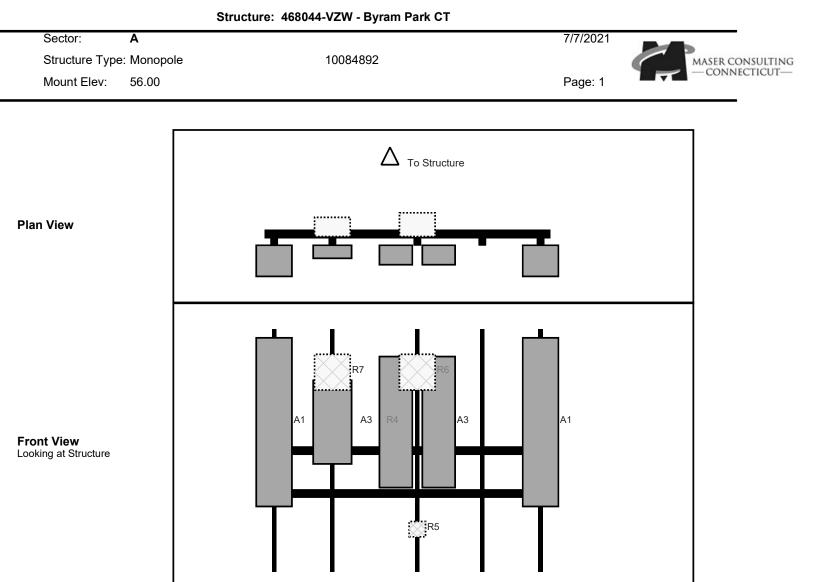
- The contractor must certify that the antenna & equipment placement and geometry is in accordance with the antenna placement diagrams as included in this mount analysis.
- □ The contractor certifies that the photos support and the equipment on the mount is as depicted on the antenna placement diagrams as included in this mount analysis.
- □ The contractor notes that the equipment on the mount is not in accordance with the antenna placement diagrams and has accordingly marked up the diagrams or provided a diagram outlining the differences.

| Certifying Individual: | Company   |  |
|------------------------|-----------|--|
|                        | Name      |  |
|                        | Signature |  |

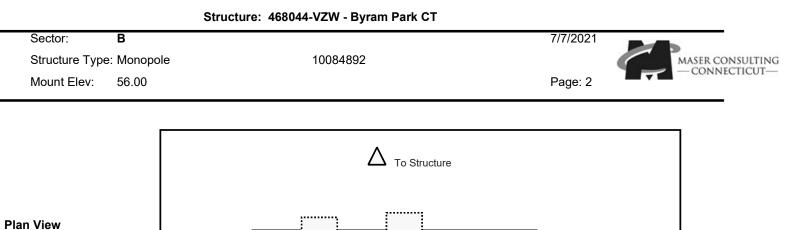
#### Special Instructions / Validation as required from the MA or Mod Drawings:

#### Issue:

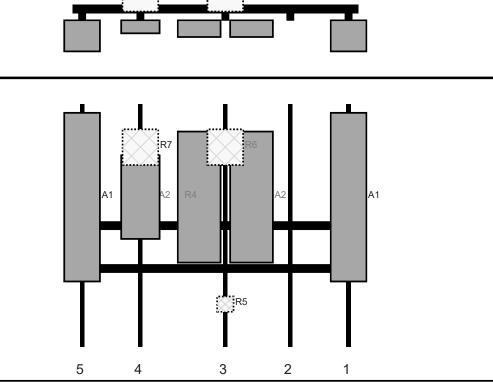
Contractor to Install safety climb wire clip on existing/proposed standoff such that the existing safety climb wire does not contact the existing/proposed mount members.


Contractor to install 36" long P2.0 STD mount pipe on Gamma standoff horizontal. Attach proposed mount pipe to the standoff with crossover plate (Site Pro 1 – SQCX4-K, or EOR approved equivalent). Contractor shall attach proposed OVP 12" from top of mount pipe.

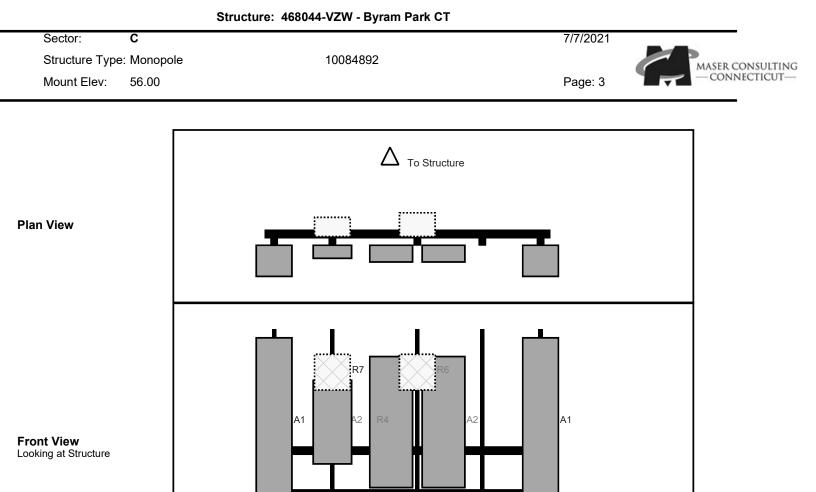
#### **Response:**


## Schedule A – Photo & Document File Structure

VzW Site Number / Name Base & "During Installation" Photos Pre-Installation Photos Alpha Beta Gamma Ground Level Tape Drop Post-Installation Photos Alpha Beta Gamma Ground Level Tape Drop Photos of climbing facility and safety climb - If Present Certifications – Submission of this document including certifications


Specific Required Additional Photos




|      |                   | Height | Width | H Dist | Pipe | Pipe  | Ant    | C. Ant | Ant   |          |            |
|------|-------------------|--------|-------|--------|------|-------|--------|--------|-------|----------|------------|
| Ref# | Model             | (in)   | (in)  | Frm L. | #    | Pos V | Pos    | Frm T. | H Off | Status   | Validation |
| A1   | LPA-80063/6CF     | 70.9   | 15    | 116    | 1    | а     | Front  | 39     | 0     | Retained | 10/21/2020 |
| A3   | JAHH-65A-R3B      | 55.1   | 13.8  | 64.2   | 3    | а     | Front  | 39     | 9     | Added    |            |
| A3   | JAHH-65A-R3B      | 55.1   | 13.8  | 64.2   | 3    | b     | Front  | 39     | -9    | Added    |            |
| R5   | CBC78T-DS-43      | 6.4    | 6.9   | 64.2   | 3    | а     | Behind | 84     | 0     | Added    |            |
| R6   | B2/B66A RRH-BR049 | 15     | 15    | 64.2   | 3    | а     | Behind | 18     | 0     | Added    |            |
| R4   | MT6407-77A        | 35.1   | 16.1  | 28.5   | 4    | а     | Front  | 39     | 0     | Added    |            |
| R7   | B5/B13 RRH-BR04C  | 15     | 15    | 28.5   | 4    | а     | Behind | 18     | 0     | Added    |            |
| A1   | LPA-80063/6CF     | 70.9   | 15    | 4      | 5    | а     | Front  | 39     | 0     | Retained | 10/21/2020 |
| -    |                   |        |       |        |      |       |        |        |       |          |            |



Front View Looking at Structure



|      |                   | Height | Width | H Dist | Pipe | Pipe  | Ant    | C. Ant | Ant   |          |            |
|------|-------------------|--------|-------|--------|------|-------|--------|--------|-------|----------|------------|
| Ref# | Model             | (in)   | (in)  | Frm L. | #    | Pos V | Pos    | Frm T. | H Off | Status   | Validation |
| A1   | LPA-80063/6CF     | 70.9   | 15    | 116    | 1    | а     | Front  | 39     | 0     | Retained | 10/21/2020 |
| A2   | JAHH-45A-R3B      | 55.08  | 17.99 | 64.2   | 3    | а     | Front  | 39     | 11    | Added    |            |
| A2   | JAHH-45A-R3B      | 55.08  | 17.99 | 64.2   | 3    | b     | Front  | 39     | -11   | Added    |            |
| R5   | CBC78T-DS-43      | 6.4    | 6.9   | 64.2   | 3    | а     | Behind | 84     | 0     | Added    |            |
| R6   | B2/B66A RRH-BR049 | 15     | 15    | 64.2   | 3    | а     | Behind | 18     | 0     | Added    |            |
| R4   | MT6407-77A        | 35.1   | 16.1  | 28.5   | 4    | а     | Front  | 39     | 0     | Added    |            |
| R7   | B5/B13 RRH-BR04C  | 15     | 15    | 28.5   | 4    | а     | Behind | 18     | 0     | Added    |            |
| A1   | LPA-80063/6CF     | 70.9   | 15    | 4      | 5    | а     | Front  | 39     | 0     | Retained | 10/21/2020 |



R5

|      |                   | Height | Width | H Dist | Pipe | Pipe  | Ant    | C. Ant | Ant   |          |            |
|------|-------------------|--------|-------|--------|------|-------|--------|--------|-------|----------|------------|
| Ref# | Model             | (in)   | (in)  | Frm L. | #    | Pos V | Pos    | Frm T. | H Off | Status   | Validation |
| A1   | LPA-80063/6CF     | 70.9   | 15    | 116    | 1    | а     | Front  | 39     | 0     | Retained | 10/21/2020 |
| A2   | JAHH-45A-R3B      | 55.08  | 17.99 | 64.2   | 3    | а     | Front  | 39     | 11    | Added    |            |
| A2   | JAHH-45A-R3B      | 55.08  | 17.99 | 64.2   | 3    | b     | Front  | 39     | -11   | Added    |            |
| R5   | CBC78T-DS-43      | 6.4    | 6.9   | 64.2   | 3    | а     | Behind | 84     | 0     | Added    |            |
| R6   | B2/B66A RRH-BR049 | 15     | 15    | 64.2   | 3    | а     | Behind | 18     | 0     | Added    |            |
| R4   | MT6407-77A        | 35.1   | 16.1  | 28.5   | 4    | а     | Front  | 39     | 0     | Added    |            |
| R7   | B5/B13 RRH-BR04C  | 15     | 15    | 28.5   | 4    | а     | Behind | 18     | 0     | Added    |            |
| A1   | LPA-80063/6CF     | 70.9   | 15    | 4      | 5    | а     | Front  | 39     | 0     | Retained | 10/21/2020 |
| -    |                   |        |       |        |      |       |        |        |       |          |            |



# **Maser Consulting Connecticut**

| <u>Subject</u>        | TIA-222-H Usage                                     |                                                                                                                                      |
|-----------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Site Information      | Site ID:<br>Site Name:<br>Carrier Name:<br>Address: | 468044-VZW / Byram Park CT<br>Byram Park CT<br>Verizon Wireless<br>36 Ritch Ave W<br>Greenwich, Connecticut 6830<br>Fairfield County |
|                       | Latitude:<br>Longitude:                             | 41.005064°<br>-73.648312°                                                                                                            |
| Structure Information | Tower Type:<br>Mount Type:                          | 79-Ft Monopole<br>10.00-Ft T-Arm                                                                                                     |

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

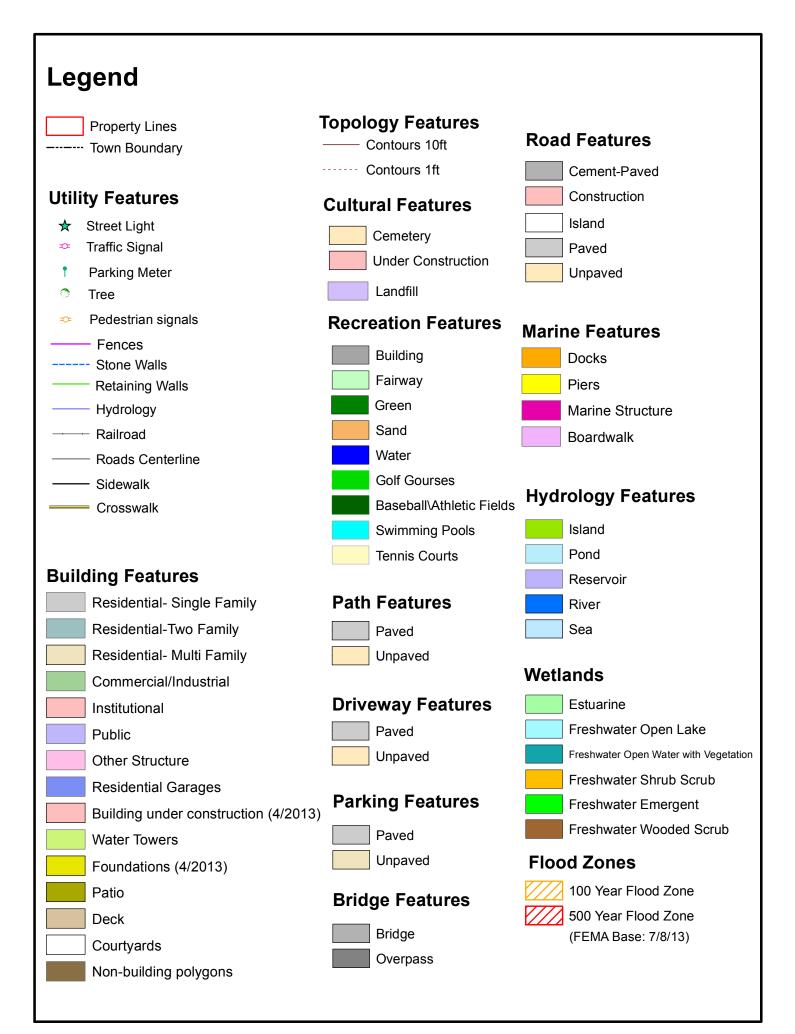
The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Derek Hartzell, PE<sup>V</sup> Technical Specialist


#### Site Name: BYRAM PARK CT Cumulative Power Density

| Operator            | Operating<br>Frequency | Number of<br>Trans. | ERP Per<br>Trans. | Total ERP | Distance to<br>Target | Calculated<br>Power<br>Density | Maximum<br>Permissible<br>Exposure* | Fraction of<br>MPE |
|---------------------|------------------------|---------------------|-------------------|-----------|-----------------------|--------------------------------|-------------------------------------|--------------------|
|                     | (MHz)                  |                     | (watts)           | (watts)   | (feet)                | (mW/cm^2)                      | (mW/cm^2)                           | (%)                |
| VZW 700             | 751                    | 4                   | 739               | 2954      | 57                    | 0.0327                         | 0.5007                              | 6.53%              |
| VZW CDMA            | 877.26                 | 2                   | 499               | 998       | 57                    | 0.0110                         | 0.5848                              | 1.89%              |
| VZW Cellular        | 874                    | 4                   | 841               | 3365      | 57                    | 0.0372                         | 0.5827                              | 6.39%              |
| VZW PCS             | 1980                   | 4                   | 2035              | 8139      | 57                    | 0.0901                         | 1.0000                              | 9.01%              |
| VZW AWS             | 2120                   | 4                   | 2035              | 8141      | 57                    | 0.0901                         | 1.0000                              | 9.01%              |
| VZW CBAND           | 3730.08                | 4                   | 6531              | 26125     | 57                    | 0.2892                         | 1.0000                              | 28.92%             |
|                     |                        |                     |                   |           |                       |                                |                                     |                    |
|                     |                        |                     |                   |           |                       |                                |                                     |                    |
| Fotal Percentage of | of Maximum Permiss     | ible Exposure       |                   |           |                       |                                |                                     | 61.75%             |

\*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992 \*\*Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.



#### 04-2334/S

#### **36 RITCH AVENUE LLC** OWNERSHIP

#### ADMINISTRATIVE INFORMATION

| PARCEL | NUMBER |  |
|--------|--------|--|
| 04-233 | 4/S    |  |
|        |        |  |

Parent Parcel Number

Property Address RITCH AVENUE 0036

Neighborhood 2700 BYRAM

Property Class 270 Telecommunications

TAXING DISTRICT INFORMATION

Jurisdiction 57 Greenwich, CT

Area 001 057

Corporation District 04

Section & Plat 040

Routing Number 7117N0001

Site Description

Topography:

Water, Sewer, Electric

Street or Road:

R-7 Single F

Legal Acres:

0.2670

Public Utilities:

Neighborhood

Zoning:

BA10: Sustained

BA15: Decrease Total value by \$114,700 BP15: 15-0972, \$15,000 9 Antenna Panels BP17: 16-3234, 16-4235, 16-4392: Cellular Work, \$85,000 CKMP: 8586 DBA: Telecommunications site w/ a 70' flagpole monopole owned by Cingular (and carrier), and a 77' monopine (pole) owned by

Verizon (w/ Verizon, ATT & Mobile carriers) both serviced by a custom utility bldg. LAND: See BP03 memo.

Permit Number FilingDate Est. Cost Field Visit Type Est. SqFt

KELLY BRIAN & LAURA W/S 02/15/2002

TRANSFER OF OWNERSHIP

Date

\$0 Bk/Pg: 3786, 114 CATALANO ANTHONY ETAL DBA CATALANO B \$125000 11/16/2000 Bk/Pg: 3492, 86 08/20/1986 NA \$0 Bk/Pg: 1611, 290

Printed 01/12/2021 Card No. 1

# COMMERCIAL

36 RITCH AVENUE LLC

LOT NO PT5 & PT7A-1-1-3 R ITCH AV N1B

16B ARTHER STREET GREENWICH, CT 06831

| Assessment Year  | c .      | 10/01/2015            | 10/01/2015           | 10/01/2016  | 10/01/2017   | 10/01/2018 | 10/01/2019 | 10/01/2020 |
|------------------|----------|-----------------------|----------------------|-------------|--------------|------------|------------|------------|
| Reason for Char  | nge      | 2015 Final            | 2015 BAA             | 2016 List   | 2017 List    | 2018 List  | 2019 List  | 2020 List  |
| VALUATION        | L        | 664000                | 664000               | 664000      | 664000       | 664000     | 664000     | 664000     |
| Market           | В        | 2350700               | 2236000              | 2236000     | 2236000      | 2236000    | 2236000    | 2236000    |
|                  | Т        | 3014700               | 2900000              | 2900000     | 2900000      | 2900000    | 2900000    | 290000     |
| VALUATION        | L        | 464800                | 464800               | 464800      | 464800       | 464800     | 464800     | 464800     |
| 70% Assessed     | В        | 1645490               | 1565200              | 1565200     | 1565200      | 1565200    | 1565200    | 1565200    |
|                  | Т        | 2110290               | 2030000              | 2030000     | 2030000      | 2030000    | 2030000    | 203000     |
|                  |          |                       | LA                   | ND DATA AND | CALCULATIONS | 5          |            |            |
| Rating<br>Soil I | <i>,</i> | asured Table<br>reage | Prod. Factor<br>-or- |             |              |            |            |            |

**RITCH AVENUE 0036** 

Tax ID 182/005

| od:        | Land Type            | -or-<br>Actual | Effective<br>Depth | Depth Factor<br>-or-<br>Square Feet | Base<br>Rate | Adjusted<br>Rate | Extended<br>Value | Influence<br>Factor | Value |        |
|------------|----------------------|----------------|--------------------|-------------------------------------|--------------|------------------|-------------------|---------------------|-------|--------|
| Family 7,5 | 1 Primary Commercial |                |                    | 11630.52                            | 57.0         | 9 57.09          | 664000            |                     | 6     | 564000 |

of 1

Supplemental Cards TOTAL LAND VALUE

Supplemental Cards

TRUE TAX VALUE

664000

|                                  |        |            |        | 1  |
|----------------------------------|--------|------------|--------|----|
| PHYSIC                           | CAL CH | IARACT     | ERISTI | cs |
| ROOFING                          |        |            |        |    |
| Built-up                         |        |            |        |    |
| WALLS                            |        |            |        |    |
| Frame<br>Brick<br>Metal<br>Guard | В      | 1          | 2      | U  |
| FRAMING                          |        |            |        |    |
|                                  | В      | 1          | 2      | U  |
| F Res                            | 0      | 644        | 0      | 0  |
| HEATING A                        |        |            |        |    |
|                                  | В      | 1          | 2      | U  |
| Heat<br>Sprink                   | 0<br>0 | 644<br>644 | 0      | 0  |

|                  |            | F           | RITCH AVENUE | 0036 |
|------------------|------------|-------------|--------------|------|
| Item Description | Unit:      | s Cost      | Total        | Pct  |
|                  | M & S Cost | Database Da | ate: 01/2015 |      |
| Base Cost        | -          | 61.99       | 39922        |      |

| Exterior Walls<br>Heating & Cooling<br>Sprinklers<br>Basic Structure Cost<br>Physical<br>Depreciated Cost<br>Rounded Total          |            | 31.57<br>53.92<br>7.68<br>155.16<br>0.00<br>150.50<br>0.00 | 20331<br>34724<br>4946<br>99923<br>2998<br>96925<br>96900 | 3.00           |
|-------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|-----------------------------------------------------------|----------------|
| OMP<br>Total Exterior Features Va<br>Depreciated Ext Features<br>Total Before Adjustments<br>Neighborhood Adjustment<br>TOTAL VALUE | 364<br>lue | 33.87                                                      | 12330<br>11960<br>108860<br>54440<br>163300               | 12330<br>50.00 |

50.00)

|             |        |                                       |                                                                             |                                                      |                 |                                           |                                                              |                                              |                                  |                                                          |                       |                                                           |                                     |                                              |                                      |                             |                                        |                                        | (LCM: 15                                                        |
|-------------|--------|---------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|-----------------|-------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------------|-------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------|
| SPECIAL FEA | ATURES |                                       |                                                                             |                                                      |                 |                                           | SU                                                           | MMAR                                         | Y C                              | FIMP                                                     | ROVE                  | MENTS                                                     |                                     |                                              |                                      |                             |                                        |                                        |                                                                 |
| Description | Value  | ID                                    | Use                                                                         | Stry<br>Hgt                                          | Const<br>Type G |                                           | Year E<br>Const Y                                            |                                              | ond                              |                                                          | Feat-<br>ures         |                                                           | ize or (<br>Area                    | Computed H<br>Value I                        | PhysObso<br>Depr Dep                 |                             |                                        | %<br>omp                               | Value                                                           |
|             |        | C<br>01<br>02<br>03<br>04<br>05<br>06 | STGCA<br>TOWERMON<br>STNWALGS<br>PAVING<br>RTWCBREF<br>TOWERMON<br>COMCNPYH | 0.00<br>0.00<br>8.00<br>0.00<br>0.00<br>0.00<br>0.00 | 5PF             | Good<br>Good<br>Avg<br>Good<br>Exe<br>Exe | 2012<br>2003<br>2012<br>2012<br>2012<br>2012<br>2012<br>2012 | 2003<br>2012<br>2012<br>2012<br>2012<br>2012 | AV<br>GD<br>AV<br>AV<br>AV<br>AV | 0.00<br>1477<br>125.00<br>5.20<br>17.00<br>0.00<br>63.00 | N<br>N<br>N<br>N<br>N | 0.00<br>3323<br>281.25<br>7.80<br>38.25<br>0.00<br>226.80 | 70<br>992@ 0<br>2856<br>4x112<br>77 | 232630<br>279000<br>22280<br>17140<br>200000 | 0<br>0<br>2<br>2<br>2<br>2<br>2<br>2 | 0<br>0<br>0<br>0<br>SV<br>0 | 150<br>100<br>100<br>100<br>100<br>100 | 100<br>100<br>100<br>100<br>100<br>100 | 163300<br>663000<br>779200<br>62200<br>47900<br>558600<br>91200 |
|             |        | <b>Data</b><br>TD                     | <b>Collector</b><br>08/03/2017                                              | -                                                    |                 | <b>ppraise</b><br>OG 10,                  | <b>er/Date</b><br>/01/201                                    |                                              |                                  |                                                          |                       | <b>ghborhoo</b><br>gh 2700                                | 5                                   | Supplement<br>FOTAL IMPR                     |                                      |                             | JE                                     |                                        | 2365400                                                         |

IMPROVEMENT DATA

01 02 03 04 05 06

04-2334/S

Property Class: 270 RITCH AVENUE 0036





# **AMERICAN TOWER®**

ATC SITE NAME: BYRAM PARK CT ATC SITE NUMBER: 414240 VERIZON SITE NAME: BYRAM PARK CT VERIZON SITE NUMBER: 468044 SITE ADDRESS: 48 RITCH AVENUE WEST GREENWICH, CT 06830-9992



| VERIZON                    |  |
|----------------------------|--|
| ANTENNA AMENDMENT DRAWINGS |  |

| COMPLIANCE CODE                                                                                       | PROJECT SUMMARY                                                                       | PROJECT DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | SHEET INDEX                    |      |          |     |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|------|----------|-----|
| ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED<br>IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE | SITE ADDRESS:                                                                         | THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED<br>AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SHEET<br>NO: | DESCRIPTION:                   | REV: | DATE:    | BY: |
| FOLLOWING CODES AS ADOPTED BY THE LOCAL<br>GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS          | 48 RITCH AVENUE WEST                                                                  | REMOVE (9) ANTENNA(s), (6) RRH(s), (1) OVP(s), AND (2) 1-5/8" HYBRID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G-001        | TITLE SHEET                    | 0    | 09/21/21 | BIW |
| TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO<br>THESE CODES.                                      | GREENWICH, CT 06830-9992                                                              | CABLE(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G-002        | GENERAL NOTES                  | 0    | 09/21/21 | BIW |
| 1. INTERNATIONAL BUILDING CODE (IBC)                                                                  | COUNTY: FAIRFIELD                                                                     | INSTALL MOUNT MODIFICATIONS, (9) ANTENNA(s), (9) RRH(s), (3)<br>DIPLEXER(s), (1) OVP(s), AND (2) 1-5/8" HYBRID CABLE(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-101        | DETAILED SITE PLAN             | 0    | 09/21/21 | BIW |
| 2. NATIONAL ELECTRIC CODE (NEC)                                                                       | GEOGRAPHIC COORDINATES:                                                               | EXISTING (3) ANTENNA(s), AND (16) 1-5/8" COAX CABLE(s) TO REMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-201        | TOWER ELEVATION                | 0    | 09/21/21 | BIW |
| 3. LOCAL BUILDING CODE                                                                                | LATITUDE: 41.00506388                                                                 | EXISTING (3) ANTENNA(5), AND (10) 1-3/0 COAX CABLE(5) TO REMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                | 0    |          | BIW |
| 4. CITY/COUNTY ORDINANCES                                                                             | LONGITUDE: -73.64831111<br>GROUND ELEVATION: 53' AMSL                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C-401        | ANTENNA INFORMATION & SCHEDULE |      | 09/21/21 |     |
|                                                                                                       | GROUND ELEVATION. 33 AWSE                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C-501        | CONSTRUCTION DETAILS           | 0    | 09/21/21 | BIW |
|                                                                                                       |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E-501        | GROUNDING DETAILS              | 0    | 09/21/21 | BIW |
|                                                                                                       |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R-601        | SUPPLEMENTAL                   |      |          |     |
|                                                                                                       |                                                                                       | PROJECT NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-602        | SUPPLEMENTAL                   |      |          |     |
|                                                                                                       | PROJECT TEAM                                                                          | 1. THE FACILITY IS UNMANNED.         2. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-603        | SUPPLEMENTAL                   |      |          |     |
|                                                                                                       | TOWER OWNER: APPLICANT:                                                               | MONTH FOR ROUTINE INSPECTION AND MAINTENANCE.<br>3. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAN<br>DISTUBUTED FOR SOLUTION OF STORMAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-604        | SUPPLEMENTAL                   |      |          |     |
|                                                                                                       | AMERICAN TOWER VERIZON WIRELESS                                                       | DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE.<br>4. NO SANITARY SEWER, POTABLE WATER OR TRASH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | MOUNT MODIFICATION DRAWINGS    |      |          |     |
|                                                                                                       | 10 PRESIDENTIAL WAY 180 WASHINGTON VALLEY RD<br>WOBURN, MA 01801 BEDMINSTER, NJ 07921 | DISPOSAL IS REQUIRED.<br>5. HANDICAP ACCESS IS NOT REQUIRED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                |      |          |     |
| UTILITY COMPANIES                                                                                     | ENGINEER:                                                                             | 6. THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN<br>ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                |      |          |     |
| POWER COMPANY: EVERSOURCE                                                                             | NB+C ENGINEERING SERVICES, LLC                                                        | REVIEW UNDER 47 U.S.C. 1455(A) AS A MODIFICATION OF AN EXISTING WIRELESS TOWER THAT INVOLVES THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                |      |          |     |
| PHONE: (866) 554-6025                                                                                 | 8601 SIX FORKS ROAD, SUITE 540                                                        | COLLOCATION REMOVAL AND/OR REPLACEMENT OF<br>TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                |      |          |     |
| TELEPHONE COMPANY: UNKNOWN<br>PHONE: (000) 000-0000                                                   | RALEIGH, NC 27615<br>PROPERTY OWNER:                                                  | CHANGE UNDER CFR 1.61000 (B)(7).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                |      |          |     |
|                                                                                                       | 36 RITCH AVENUE LLC                                                                   | PROJECT LOCATION DIRECTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                |      |          |     |
| Know what's below.<br>Call before you dig.                                                            | 48 RITCH AVENUE WEST<br>GREENWICH, CT 06830-9992                                      | TAKE RITCH AVE W AND HAMILTON AVE TO GLEN ST IN GREENWICH, 4 MIN (1.6<br>MI), HEAD NORTHEAST ON 1-95 N, 0.2 MI, TAKE EXIT 2 FOR BYRAM TOWARD<br>DELAVAN AVE, 0.2 MI, CONTINUE ONTO DORAN AVE, 361 FT, TURN LEFT ONTO<br>BYRAM SHORE RD, 167 FT, TURN RIGHT ONTO RITCH AVE W, 0.6 MI, CONTINUE<br>ONTO HAMILTON AVE, 0.5 MI, TAKE RODWELL AVE TO HAMILTON AVE, 43 S (0.2<br>MI), TURN RIGHT ONTO GLEN ST, 351 FT, GLEN ST TURNS LEFT AND BECOMES<br>RODWELL AVE, 476 FT, ROPWELL AVE TURNS LEFT AND BECOMES STOME AVE,<br>358 FT, CONTINUE ON HAMILTON AVE, DRIVE TO RITCH AVE W, 3 MIN (1.1 MI),<br>TURN LEFT ONTO HAMILTON AVE, DRIVE TO RITCH AVE W, 3 MIN (1.1 MI),<br>DESTINATION WILL BE ON THE RIGHT, |              |                                |      |          |     |



#### **GENERAL CONSTRUCTION NOTES:**

- OWNER FURNISHED MATERIALS, VERIZON "THE COMPANY" WILL PROVIDE AND THE CONTRACTOR WILL INSTALL
  - A. BTS EQUIPMENT FRAME (PLATFORM) AND ICEBRIDGE SHELTER (GROUND BUILD/CO-LOCATE ONLY)
  - AC/TELCO INTERFACE BOX (PPC)
  - C. ICE BRIDGE (CABLE TRAY WITH COVER) (GROUND BUILD/CO-LOCATE ONLY, GC TO FURNISH AND INSTALL FOR ROOFTOP INSTALLATION)
  - D. TOWERS, MONOPOLES TOWER LIGHTING
  - GENERATORS & LIQUID PROPANE TANK
  - G. ANTENNA STANDARD BRACKETS, FRAMES AND PIPES FOR MOUNTING
  - ANTENNAS (INSTALLED BY OTHERS)
  - TRANSMISSION LINE
  - TRANSMISSION LINE JUMPERS TRANSMISSION LINE CONNECTORS WITH WEATHERPROOFING KITS
  - TRANSMISSION LINE GROUND KITS
  - M. HANGERS
  - HOISTING GRIPS O. BTS EQUIPMENT
- 2 THE CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL OTHER MATERIALS FOR THE COMPLETE INSTALLATION OF THE STE INCLUDING, BUT NOT LIMITED TO, SUCH MATERIALS AS FENCING, STRUCTURAL STEEL SUPPORTING SUB-FRAME FOR PLATFORM, ROOFING LABOR AND MATERIALS. GROUNDING RINGS, GROUNDING WIRES. COPPER-CLAD OR XIT CHEMICAL GROUND ROD(S), BUSS BARS, TRANSFORMERS AND DISCONNECT SWITCHES WHERE APPLICABLE, TEMPORARY ELECTRICAL POWER, CONDUIT, LANDSCAPING COMPOUND STONE, CRANES, CORE DRILLING, SLEEPERS AND RUBBER MATTING, REBAR, CONCRETE CAISSONS, PADS AND/OR AUGER MOUNTS, MISCELLANEOUS FASTENERS, CABLE TRAYS, NON-STANDARD ANTENNA FRAMES AND ALL OTHER MATERIAL AND LABOR REQUIRED TO COMPLETE THE JOB ACCORDING TO THE DRAWINGS AND SPECIFICATIONS, IT IS THE POSITION OF VERZION TO APPLY FOR PERMITTING AND CONTRACTOR RESPONSIBLE FOR PICKUP AND PAYMENT OF REQUIRED PERMITS
- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC CONSTRUCTION SPECIFICATIONS.
- CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED 5. INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND 6. SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 7 DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS
- 8 DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION 9. SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED 10. FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS 11. DRAINS, DRAIN PIPES, VENTS, ETC, BEFORE COMMENCING WORK.
- 12. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE VERIZON REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE VERIZON REP PRIOR TO PROCEEDING.
- EACH CONTRACTOR SHALL COOPERATE WITH THE VERIZON REP, AND COORDINATE HIS 13. WORK WITH THE WORK OF OTHERS.
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS 14. PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE VERIZON CONSTRUCTION MANAGER
- ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING 15. INSTALLATION USING A SILICONE SEALANT
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET. CONTRACTOR SHALL NOTIFY THE VERIZON REP AND ENGINEER OF RECORD IMMEDIATELY
- 17. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF 18. EACH DAY.
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH AMERICAN TOWER 19. CORPORATION (ATC) AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- CONTRACTOR SHALL FURNISH VERIZON AND AMERICAN TOWER CORPORATION (ATC) 20. WITH A PDF MARKED UP AS BUILT SET OF DRAWINGS UPON COMPLETION OF WORK
- 21. PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH VERIZON, REP. TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED.

- 22. PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH VERIZON REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED PERMITS NOT OBTAINED BY VERIZON MUST BE OBTAINED, AND PAID FOR, BY THE CONTRACTOR
- 23. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH VERIZON SPECIFICATIONS AND REQUIREMENTS.
- 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO VERIZON FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO VERIZON SPECIFICATIONS, AND AS SHOWN IN THESE PLANS
- 26. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
- CONTRACTOR SHALL NOTIFY VERIZON, REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL. FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND
- CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.
- THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SPECIAL CONSTRUCTION SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 30. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANI IKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE VERIZON REP. ANY WORK FOUND BY THE VERIZON REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS OBTAINED
- 31. IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SPECIFIED.
- VERIZON FURNISHED FOUIPMENT SHALL BE PICKED-UP AT THE VERIZON WAREHOUSE 32. NO LATER THAN 48HR AFTER BEING NOTIFIED INSURED, STORED, UNCRATE, PROTECTED AND INSTALLED BY THE CONTRACTOR WITH ALL APPURTENANCES REQUIRED TO PLACE THE EQUIPMENT IN OPERATION, READY FOR USE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE EQUIPMENT AFTER PICKING IT UP.
- 33. VERIZON OR HIS ARCHITECT/ENGINEER RESERVES THE RIGHT TO REJECT ANY EQUIPMENT OR MATERIALS WHICH, IN HIS OWN OPINION ARE NOT IN COMPLIANCE WITH THE CONTRACT DOCUMENTS, EITHER BEFORE OR AFTER INSTALLATION AND THE EQUIPMENT SHALL BE REPLACED WITH EQUIPMENT CONFORMING TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS BY THE CONTRACTOR AT NO COST TO VERIZON OR THEIR ARCHITECT/ENGINEER.

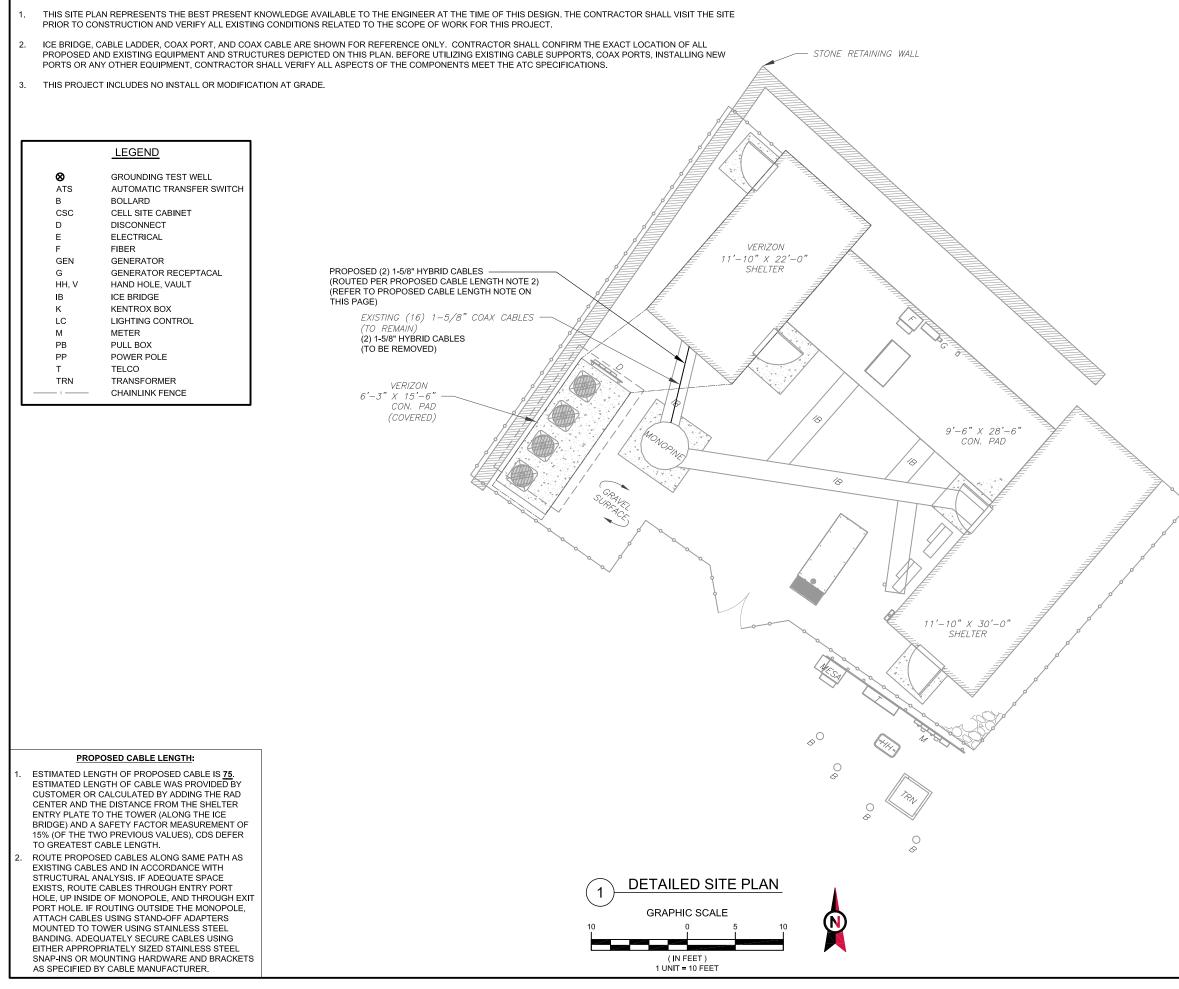
#### STRUCTURAL STEEL NOTES:

28.

29.

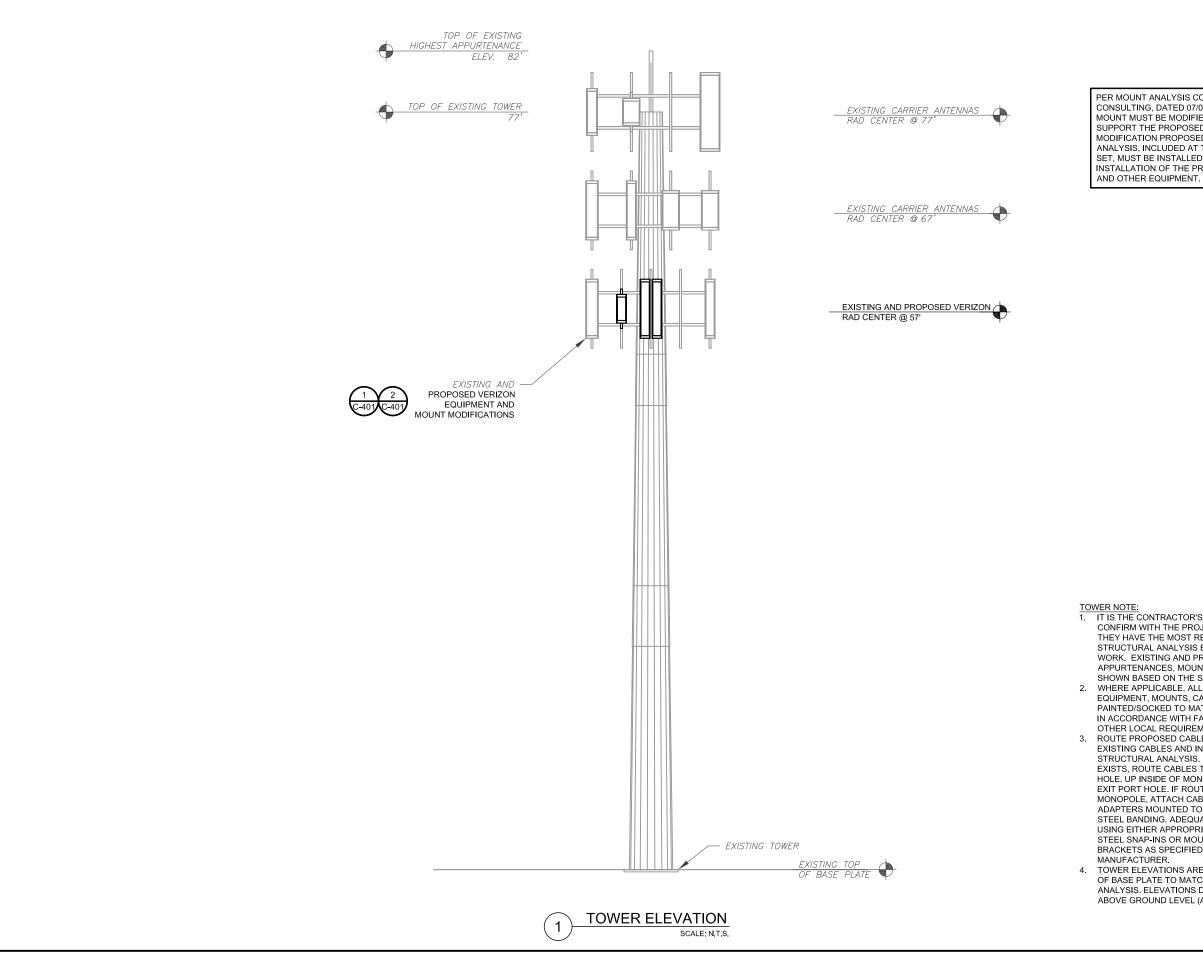
- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS.
- STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
- A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
- B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED
- C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
- D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
- E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695
- ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.
- DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- CONNECTIONS
- A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.

- ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1, REPAIR ALL WELDS AS NECESSARY
- C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR
- D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
- E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE
- F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE
- G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING %" BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURERS RECOMMENDATIONS.
- H. THE CONTRACTOR SHALL PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE REQUIRED DURING CONSTRUCTION UNTIL ALL CONNECTIONS ARE COMPLETE
- ANY FIELD CHANGES OR SUBSTITUTIONS SHALL HAVE PRIOR APPROVAL FROM THE ENGINEER, AND T- MOBILE PROJECT MANAGER IN WRITING


## ANTENNA INSTALLATION NOTES:

- WORK INCLUDED: 1.
  - ANTENNA AND COAXIAL CABLES ARE FURNISHED BY VERIZON UNDER A SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OD COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF PERSONNEL AND
  - B. INSTALL ANTENNA AS INDICATE ON DRAWINGS AND VERIZON SPECIFICATIONS.
  - C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS
  - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE AND PROVIDE PRINTOUT OF THAT TEST
  - E CONTRACTOR SHALL PROVIDE FOUR (4) SETS OF SWEEP TESTS USING ANRITZU-PACKARD 8713B RF SCALAR NETWORK ANALYZER. SUBMIT REQUENCY DOMAIN REFLECTOMETER(FDR) TESTS RESULTS TO THE PROJECT MANAGER. SWEEP TESTS SHALL BE AS PER ATTACHED RFS "MINIMUM FIELD TESTING RECOMMENDED FOR ANTENNA AND HELIAX COAXIAL CABLE SYSTEMS" DATED 10/5/93. TESTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING SERVICE AND BE BOUND AND SUBMITTED WITHIN ONE WEEK OF WORK COMPLETION.
  - F. INSTALL COAXIAL CABLES AND TERMINATING BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTIONS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED.
  - G. ANTENNA AND COAXIAL CABLE GROUNDING:
- 2 ALL EXTERIOR #6 GREED GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE WEATHER SEALED WITH RFS CONNECTORS/SPLICE WEATHERPROOFING KIT #221213 OR EQUAL
- ALL COAXIAL CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF COAXIAL CABLE (NOT WITHIN BENDS)




ALL DISCREPANCIES FROM WHAT IS SHOWN ON THESE CONSTRUCTION DRAWINGS SHALL BE COMMUNICATED TO ATC ENGINEERING IMMEDIATELY FOR CORRECTION OR RE-DESIGN FAILURE TO COMMUNICATE DIRECTLY WITH ATC ENGINEERING OR ANY CHANGES FROM THE DESIGN CONDUCTED WITHOUT PRIOR APPROVAL FROM ATC ENGINEERING SHALL BE THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR.

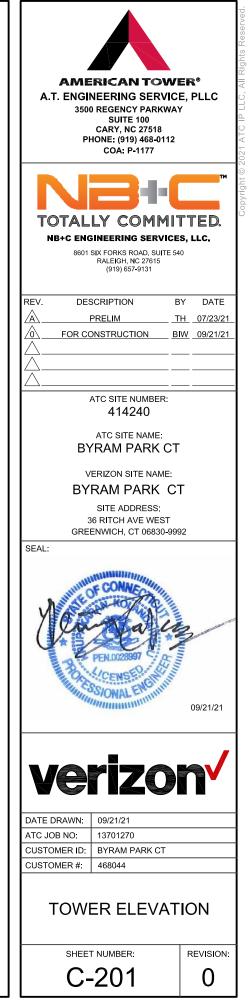
#### SITE PLAN NOTES:

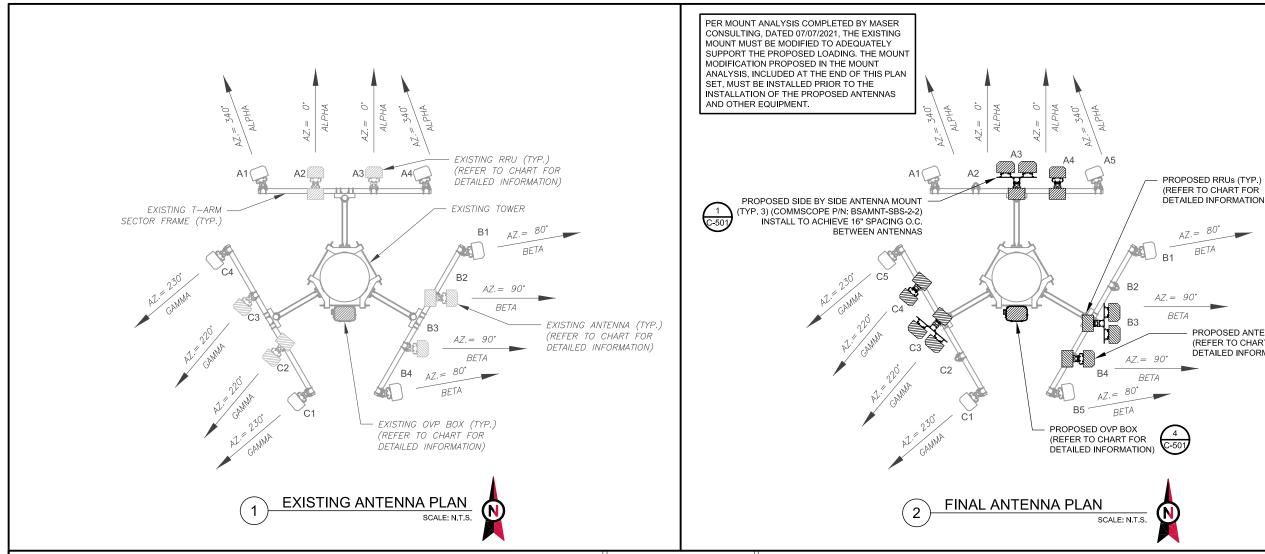




WOODEN FENCE




PER MOUNT ANALYSIS COMPLETED BY MASER CONSULTING, DATED 07/07/2021, THE EXISTING MOUNT MUST BE MODIFIED TO ADEQUATELY SUPPORT THE PROPOSED LOADING. THE MOUNT MODIFICATION PROPOSED IN THE MOUNT ANALYSIS, INCLUDED AT THE END OF THIS PLAN SET, MUST BE INSTALLED PRIOR TO THE INSTALLATION OF THE PROPOSED ANTENNAS


1. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONFIRM WITH THE PROJECT MANAGER THAT THEY HAVE THE MOST RECENT VERSION OF THE STRUCTURAL ANALYSIS BEFORE COMMENCING WORK. EXISTING AND PROPOSED TOWER APPURTENANCES, MOUNTS, AND ANTENNAS ARE SHOWN BASED ON THE STRUCTURAL ANALYSIS. 2. WHERE APPLICABLE, ALL NEW ANTENNAS, EQUIPMENT, MOUNTS, CABLING, ETC. SHALL BE PAINTED/SOCKED TO MATCH EXISTING EQUIPMENT

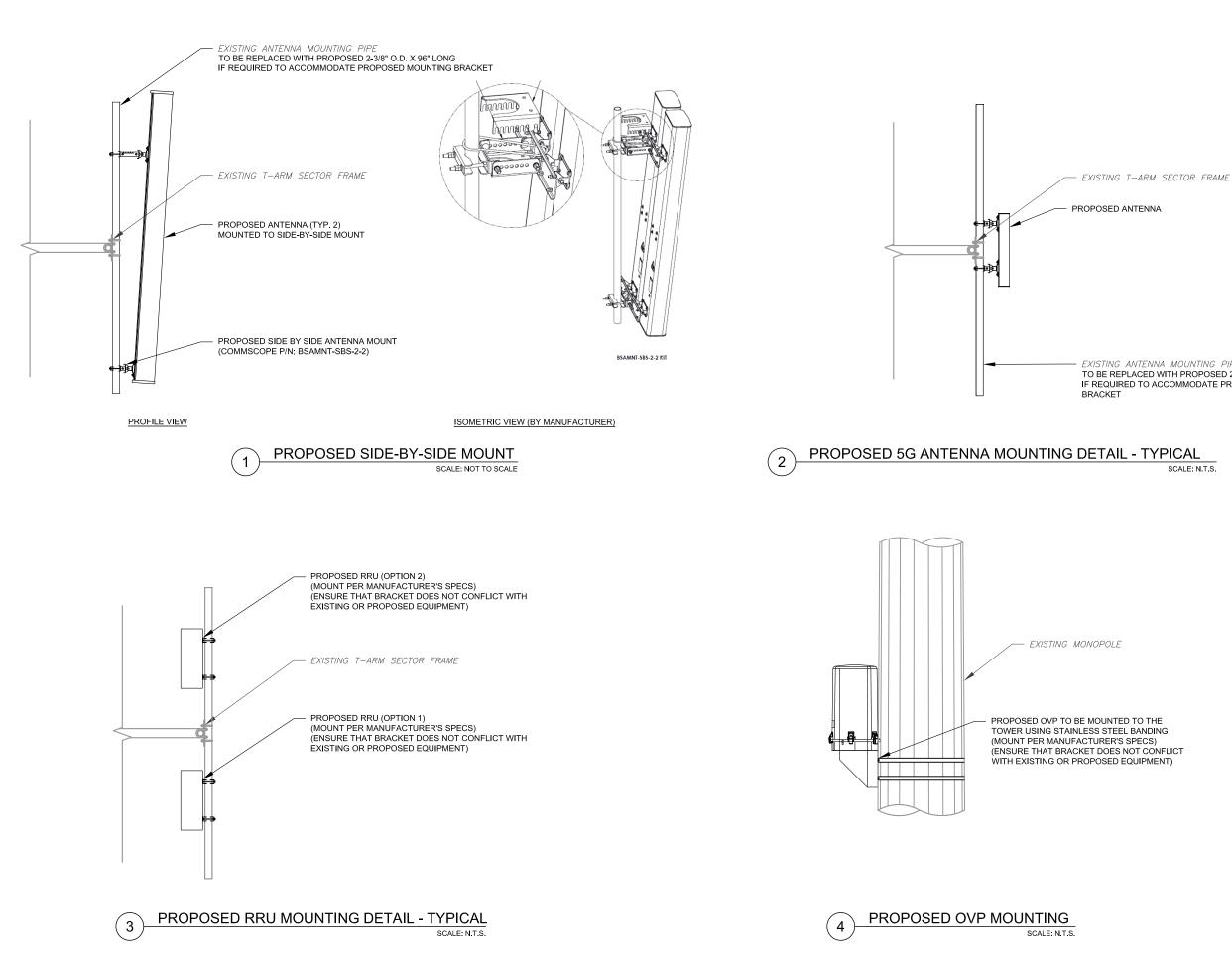
IN ACCORDANCE WITH FAA, JURISDICTION, AND/OR OTHER LOCAL REQUIREMENTS.

ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE. IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES USING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE

4. TOWER ELEVATIONS ARE MEASURED FROM TOP OF BASE PLATE TO MATCH STRUCTURAL ANALYSIS. ELEVATIONS DO NOT REFLECT TRUE ABOVE GROUND LEVEL (A.G.L.)



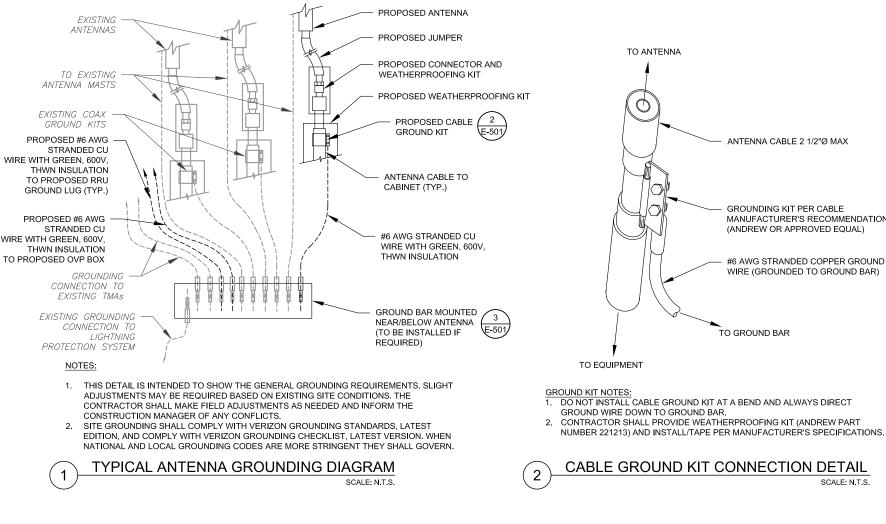


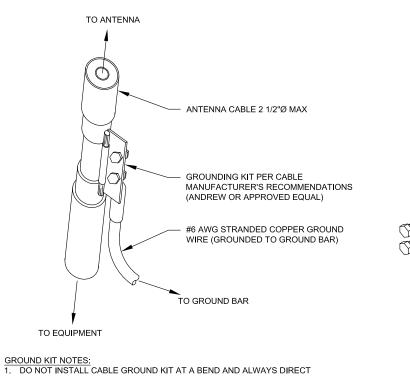

|           |        |      |     | EXIS                 | TING ANTENNA SC | HEDULE              |        |                                         |        |        | NOTES                                                                        |        |        |         |          |                      | FINAL ANTENNA SCHE | EDULE               |       | _ |
|-----------|--------|------|-----|----------------------|-----------------|---------------------|--------|-----------------------------------------|--------|--------|------------------------------------------------------------------------------|--------|--------|---------|----------|----------------------|--------------------|---------------------|-------|---|
| LO        | CATION | 1    |     | ANTEN                | NA SUMMARY      |                     |        | NON ANTENNA SUMMA                       | ARY .  |        | 1. CONFIRM WITH VERIZON REP                                                  | LC     | CATION |         |          | ANT                  | ENNA SUMMARY       |                     |       |   |
| SECTOR    | RAD    | AZ   | POS | ANTENNA              | BAND            | MECH/ELEC<br>D-TILT | STATUS | ADDITIONAL TOWER<br>MOUNTED EQUIPMENT   | STATUS | \$     | FOR APPLICABLE<br>UPDATES/REVISIONS AND<br>MOST RECENT RFDS FOR NSN          | SECTOR | RAD    | AZ      | POS      | ANTENNA              | BAND               | MECH/ELEC<br>D-TILT | STATU | s |
|           |        | 340° | A1  | LPA-80063/6CF-EDIN-X | 850 CDMA        | 2/0                 | RMN    | _                                       | _      |        | CONFIGURATION (CONFIG). GC                                                   |        |        | 340°    |          | LPA-80063/6CF-EDIN-X | 850 CDMA           | 2/0                 | RMN   |   |
| ALPHA     | 57'    | 0*   | A2  | SBNHH—1D65A          | 700/AWS         | 0/4/2               | RMV    | UHBA B13 RRH 4X30<br>UHIE B66A RRH 4X45 | RMV    | 2      | TO CAP ALL UNUSED PORTS.<br>2. CONFIRM SPACING OF<br>PROPOSED EQUIP DOES NOT |        |        | -<br>0° | A2<br>A3 | -<br>JAHH-65A-R3B    | 700/850/1900       | 0/4/4/2             | ADD   |   |
| 7127101   |        | 0°   | A3  | BXA-171063-12CF      | _               | -                   | RMV    | -                                       | -      |        | CAUSE TOWER CONFLICTS                                                        | ALPHA  | 57'    | 0°      | A3       | JAHH-65A-R3B         | 700/850/AWS        | 0/4/4/2             | ADD   |   |
|           |        | 340° | A4  | LPA-80063/6CF-EDIN-X | 850 CDMA        | 2/0                 | RMN    | -                                       | -      |        | NOR IMPEDE TOWER CLIMBING<br>PEGS.                                           |        |        | 0°      | A4       | MT6407-77A           | L-SUB6             | 0/6                 | ADD   |   |
|           |        | 80°  | B1  | LPA-80063/6CF-EDIN-X | 850 CDMA        | 2/0                 | RMN    | -                                       | -      |        |                                                                              |        |        | 340°    |          | LPA-80063/6CF-EDIN-X | 850 CDMA           | 2/0                 | RMN   |   |
| BETA      | 57'    | 90°  | B2  | SBNHH-1D45A          | 700/AWS         | 0/6/3               | RMV    | UHBA B13 RRH 4X30<br>UHIE B66A RRH 4X45 | RMV    | Г      | STATUS ABBREVIATIONS                                                         |        |        | 80°     | B1       | LPA-80063/6CF-EDIN-X | 850 CDMA           | 2/0                 | RMN   | _ |
| DLTA      | 57     | 90°  | B3  | BXA-171063-12CF      | _               | -                   | RMV    | -                                       | -      |        | RMV: TO BE REMOVED                                                           |        |        | -       | B2       | -                    | -                  | -                   | -     |   |
|           |        | 80°  | B4  | LPA-80063/6CF-EDIN-X | 850 CDMA        | 2/0                 | RMN    | -                                       | -      |        | RMN: TO REMAIN                                                               |        |        | 90°     | B3       | JAHH-45A-R3B         | 700/850/1900       | 0/6/10/3            | ADD   |   |
|           |        | 230° | C1  | LPA-80063/6CF-EDIN-X | 850 CDMA        | 2/0                 | RMN    | _                                       | -      |        | REL: TO BE RELOCATED<br>ADD: TO BE ADDED                                     | BETA   | 57'    | 90°     | В3       | JAHH-45A-R3B         | 700/850/AWS        | 0/6/10/3            | ADD   |   |
| GAMMA     | 57'    | 220° | C2  | SBNHH—1D45A          | 700/AWS         | 0/6/2               | RMV    | UHBA B13 RRH 4X30<br>UHIE B66A RRH 4X45 | RMV    |        |                                                                              |        |        | 90°     | B4       | MT6407-77A           | L-SUB6             | 0/6                 | ADD   | _ |
| GAIVIIVIA | 57     | 220° | C3  | BXA-171063-12CF      | _               | -                   | RMV    | -                                       | _      | 1_     |                                                                              |        |        | 80°     | B5       | LPA-80063/6CF-EDIN-X | 850 CDMA           | 2/0                 | RMN   |   |
|           |        | 230° | C4  | LPA-80063/6CF-EDIN-X | 850 CDMA        | 2/0                 | RMN    | _                                       |        | $\neg$ | CABLE LENGTHS FOR JUMPERS                                                    |        |        | 230°    | C1       | LPA-80063/6CF-EDIN-X | 850 CDMA           | 2/0                 | RMN   |   |
|           |        |      |     | , ,                  |                 | ,                   |        |                                         |        | -      | JUNCTION BOX TO RRU: 15'                                                     |        |        | -       | C2       | -                    | -                  | -                   | -     |   |
|           |        |      |     |                      |                 |                     |        |                                         |        |        | RRU TO ANTENNA: 10'                                                          |        |        | 220°    | C3       | JAHH-45A-R3B         | 700/850/1900       | 0/6/6/2             | ADD   |   |
|           |        |      |     |                      |                 |                     |        |                                         |        |        |                                                                              | GAMMA  | 57'    | 220°    | СЗ       | JAHH-45A-R3B         | 700/850/AWS        | 0/6/6/2             | ADD   |   |
|           |        |      |     |                      |                 |                     |        |                                         |        |        |                                                                              |        |        | 220°    | C4       | MT6407-77A           | L-SUB6             | 0/6                 | ADD   |   |
|           |        |      |     |                      |                 |                     |        |                                         |        |        |                                                                              |        |        | 230°    | C5       | LPA-80063/6CF-EDIN-X | 850 CDMA           | 2/0                 | RMN   |   |
|           |        |      |     |                      |                 |                     |        |                                         |        |        |                                                                              |        |        |         |          |                      |                    |                     |       |   |

| EXISTING FIBER DISTRIBUTION/O | VP BOX | EXISTING CABLING SUMMARY |            |        |  |  |  |  |  |
|-------------------------------|--------|--------------------------|------------|--------|--|--|--|--|--|
| MODEL NUMBER                  | STATUS | COAX                     | HYBRID     | STATUS |  |  |  |  |  |
| RC2DC-4750-PF-48              | RMV    | (16) 1–5/8"              | -          | RMN    |  |  |  |  |  |
| _                             | -      | (1) 1–5/8"               | (2) 1–5/8" | RMV    |  |  |  |  |  |

EQUIPMENT SCHEDULES 3

| FINAL FIBER DISTRIBUTION / OVI | P BOX  | FINAL CABLING SUMMARY |            |        |  |  |  |  |
|--------------------------------|--------|-----------------------|------------|--------|--|--|--|--|
| MODEL NUMBER                   | STATUS | COAX                  | HYBRID     | STATUS |  |  |  |  |
| RCMDC-6627-PF-48               | ADD    | (16) 1–5/8"           | -          | RMN    |  |  |  |  |
| -                              | -      |                       | (2) 1-5/8" | ADD    |  |  |  |  |


|               |                                                                                                                                                                                                                                                                       |                                | -                                                                                                                                                                                                                 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ER<br>VILE    | SED RRUS (TYP.)<br>TO CHART FOR<br>ED INFORMATION)<br>$\approx 80^{\circ}$<br>BETA                                                                                                                                                                                    |                                | AMERICAN TOWER®<br>AMERICAN TOWER®<br>A.T. ENGINEERING SERVICE, PLLC<br>S500 REGENCY PARKWAY<br>SUITE 100<br>CARY, NC 27518<br>PHONE: (919) 468-0112<br>CAR', NC 27518<br>PHONE: (919) 468-0112<br>CAR', NC 27518 |
| (             | PROPOSED ANTENNA (TYP)<br>REFER TO CHART FOR<br>DETAILED INFORMATION)                                                                                                                                                                                                 | 2                              | RALEIGH, NC 27615<br>(919) 657-9131           REV.         DESCRIPTION         BY         DATE           A                                                                                                        |
| $\rightarrow$ |                                                                                                                                                                                                                                                                       |                                | ATC SITE NUMBER:<br>414240<br>ATC SITE NAME:<br>BYRAM PARK CT                                                                                                                                                     |
|               |                                                                                                                                                                                                                                                                       |                                | VERIZON SITE NAME:<br>BYRAM PARK CT<br>SITE ADDRESS:<br>36 RITCH AVE WEST<br>GREENWICH, CT 06830-9992                                                                                                             |
|               |                                                                                                                                                                                                                                                                       |                                | SEAL:                                                                                                                                                                                                             |
| -             | NON ANTENNA SUMM<br>ADDITIONAL TOWER                                                                                                                                                                                                                                  | ARY<br>STATUS                  | WILLING CONNECTION                                                                                                                                                                                                |
| 1             | MOUNTED EQUIPMENT                                                                                                                                                                                                                                                     | -                              | A WILL OF CONNECTION                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                       |                                | 1 Constal in                                                                                                                                                                                                      |
|               | -                                                                                                                                                                                                                                                                     | -                              |                                                                                                                                                                                                                   |
|               | -<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X                                                                                                                                                                                                                              | ADD                            |                                                                                                                                                                                                                   |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049                                                                                                                                                                                                              | ADD                            | * PEN.0028997                                                                                                                                                                                                     |
|               | -<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X                                                                                                                                                                                                                              |                                | PENLOUZ8997                                                                                                                                                                                                       |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049                                                                                                                                                                                                              | ADD<br>-<br>-                  | PENLO228997<br>PENLO228997<br>PENLO228997<br>Og/21/21                                                                                                                                                             |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-                                                                                                                                                                                                         | ADD<br>-                       | PEN.0028997<br>OP/21/21                                                                                                                                                                                           |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                               | ADD<br>-<br>-<br>-             | PEN.0028997<br>CENSER<br>09/21/21                                                                                                                                                                                 |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>-<br>B5/B13 RRH-BR04C                                                                                                                                                                 | ADD<br>-<br>-<br>-<br>-<br>ADD |                                                                                                                                                                                                                   |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-                                                                                                                         | ADD<br>-<br>-<br>-<br>-<br>ADD |                                                                                                                                                                                                                   |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-                                                                                                                              | ADD<br>                        | og/21/21                                                                                                                                                                                                          |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>B5/B13 RRH-BR04C                                                                                      | ADD<br>                        |                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                                       | ADD<br>                        | DATE DRAWN:         09/21/21           ATC JOB NO:         13701270                                                                                                                                               |
|               |                                                                                                                                                                                                                                                                       | ADD<br>                        | DATE DRAWN: 09/21/21<br>ATC JOB NO: 13701270<br>CUSTOMER ID: BYRAM PARK CT                                                                                                                                        |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ADD<br>                        | DATE DRAWN:         09/21/21           ATC JOB NO:         13701270                                                                                                                                               |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-                                              | ADD<br>                        | DATE DRAWN: 09/21/21<br>ATC JOB NO: 13701270<br>CUSTOMER ID: BYRAM PARK CT<br>CUSTOMER #: 468044<br>ANTENNA INFORMATION                                                                                           |
|               | B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>B5/B13 RRH-BR04C<br>CBC78T-DS-43-2X<br>B2/B66A RRH-BR049<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ADD<br>                        | DATE DRAWN: 09/21/21<br>ATC JOB NO: 13701270<br>CUSTOMER ID: BYRAM PARK CT<br>CUSTOMER #: 468044<br>ANTENNA INFORMATION<br>& SCHEDULE                                                                             |




EXISTING ANTENNA MOUNTING PIPE TO BE REPLACED WITH PROPOSED 2-3/8" O.D. X 96" LONG IF REQUIRED TO ACCOMMODATE PROPOSED MOUNTING

SCALE: N.T.S.







GROUND BAR KITS COME WITH ALL HARDWARE, NUTS, BOLTS, 1 WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).

SCALE: N.T.S.

2. GROUND BAR TO BE BONDED DIRECTLY TO TOWER.

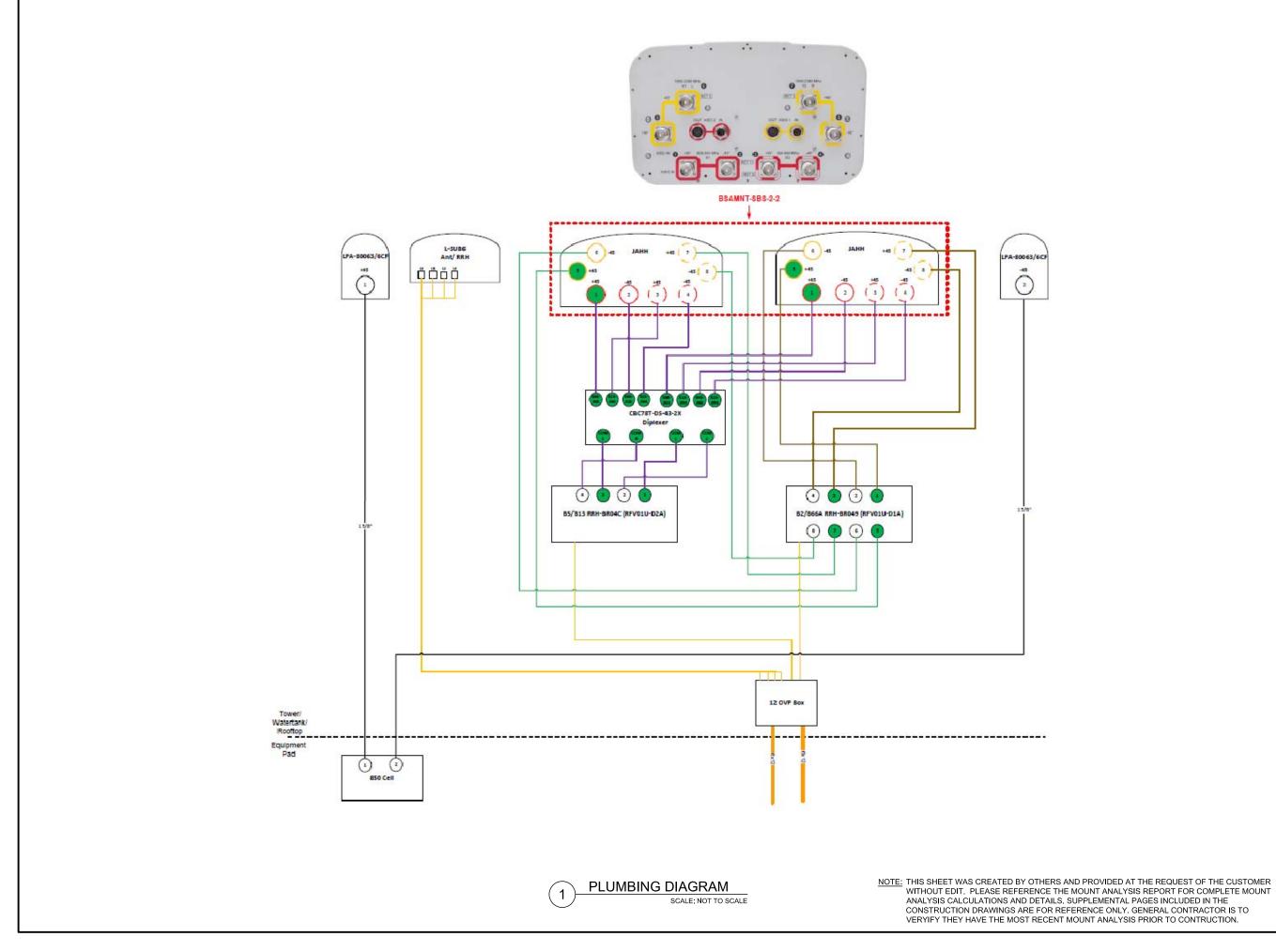
Ø

GROUND BAR NOTES:

3/8" X 1-1/2" SS BOLT

(EACH SIDE)

(EACH SIDE)


000000

0000 00000











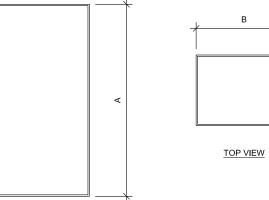
REVISION: 0

## SUPPLEMENTAL

| Band                                      | nd Sector 1 (Alpha) Color Codes                              |                                                                                             |                                                                                             |                                                                                                                                               |                         |                                                |                                           | Sector 2 (Beta) Color Codes            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                  |                                                                                         | Sector 3 (Gamma) Color Codes                       |                                        |                                                              |                                                                                             |                                                                                             |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                      |
|-------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------|
| 850 CDMA                                  | $\ge$                                                        | R                                                                                           | $\geq$                                                                                      | $\geq$                                                                                                                                        | $\geq$                  | $\ge$                                          | $\ge$                                     | $\ge$                                  | $\ge$                                                        | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | $\ge$                                                                                                                                                                                                                                                  | $\ge$                                                                                            | $\ge$                                                                                   | $\ge$                                              | $\ge$                                  | $\gg$                                                        | G                                                                                           | $\geq$                                                                                      | $\ge$                                                                                            | $\ge$            | $\ge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\geq$                             | F                                                    |
| 708                                       |                                                              | R<br>R<br>R<br>R                                                                            | P<br>R<br>R<br>R                                                                            | P<br>R<br>R                                                                                                                                   | P R                     |                                                |                                           |                                        |                                                              | B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>B<br>B<br>B                                                                            | P<br>B<br>B                                                                                                                                                                                                                                            |                                                                                                  |                                                                                         |                                                    |                                        |                                                              | G<br>G<br>G<br>G                                                                            | P<br>G<br>G<br>G                                                                            | P<br>G<br>G                                                                                      | P G              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | XXXX                                                 |
| 850 LTE                                   | MM                                                           | R<br>R<br>R<br>R                                                                            | P<br>R<br>R<br>R                                                                            | P<br>P<br>R<br>R                                                                                                                              | P<br>P<br>R             | ×<br>×                                         |                                           | MM                                     |                                                              | B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P<br>B<br>B<br>B                                                                            | P<br>P<br>B<br>B                                                                                                                                                                                                                                       | P<br>P<br>B                                                                                      | ×.                                                                                      |                                                    | XXXX                                   | XXXX                                                         | G<br>G<br>G                                                                                 | P<br>G<br>G<br>G                                                                            | P<br>P<br>G<br>G                                                                                 | P<br>P<br>G      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                      |
| 700 / 850                                 | XXXX                                                         | R<br>R<br>R<br>R                                                                            | P<br>R<br>R<br>R                                                                            | P<br>P<br>R<br>R                                                                                                                              | P<br>P<br>P<br>R        | P<br>P<br>P                                    |                                           | - M                                    |                                                              | B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P<br>B<br>B<br>B                                                                            | P<br>P<br>B<br>B                                                                                                                                                                                                                                       | P<br>P<br>P<br>B                                                                                 | P<br>P<br>P                                                                             | ₽ ₽                                                | - WW                                   | XXXX                                                         | G<br>G<br>G                                                                                 | P<br>G<br>G<br>G                                                                            | P<br>P<br>G<br>G                                                                                 | P<br>P<br>P<br>G | P<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                  |                                                      |
| AWS                                       | XXXX                                                         | R<br>R<br>R<br>R                                                                            | R<br>R<br>R                                                                                 | R                                                                                                                                             | ₩<br>R                  |                                                | MMM                                       | ŴŴ                                     | XXXX                                                         | B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>B<br>B                                                                                 | B                                                                                                                                                                                                                                                      | В                                                                                                | <ul><li>XXX</li></ul>                                                                   | <u>ww</u>                                          | XXXX                                   | XXXX                                                         | 6<br>6<br>6                                                                                 | W<br>G<br>G<br>G                                                                            | GG                                                                                               | W <b>≈</b> g     | *<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XXXX                               | A A A A                                              |
| PCS                                       | XXXX                                                         | R<br>R<br>R<br>R                                                                            | W<br>R<br>R<br>R                                                                            | W<br>W<br>R<br>R                                                                                                                              | ₩<br>₩<br>R             | ××                                             |                                           | XXXX                                   | XXXX                                                         | B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W<br>B<br>B<br>B                                                                            | W<br>W<br>B<br>B                                                                                                                                                                                                                                       | W<br>W<br>B                                                                                      | ∭≊ ≋                                                                                    | ≤₩                                                 | XXXX                                   | XXXX                                                         | G<br>G<br>G                                                                                 | G<br>G<br>G                                                                                 | W<br>W<br>G<br>G                                                                                 | ₩<br>₩<br>G      | ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                  |                                                      |
| AWS / PCS                                 |                                                              | R<br>R<br>R                                                                                 | ₩<br>R<br>R<br>R                                                                            | W<br>W<br>R<br>R                                                                                                                              | W<br>W<br>R             | W<br>W<br>W                                    | × *                                       |                                        | XXXX                                                         | B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W<br>B<br>B<br>B                                                                            | W<br>W<br>B<br>B                                                                                                                                                                                                                                       | W<br>W<br>B                                                                                      | W<br>W<br>W                                                                             | ××                                                 |                                        | XXXX                                                         | G<br>G<br>G                                                                                 | W<br>G<br>G                                                                                 | W<br>G<br>G                                                                                      | W<br>W<br>G      | W<br>W<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | × ×                                |                                                      |
| CBRS                                      | MMK                                                          | R<br>R<br>R<br>R                                                                            | Y<br>R<br>R<br>R                                                                            | Y<br>R<br>R                                                                                                                                   | N R                     | ¥<br>₩<br>¥                                    | NNN<br>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | ŴŴ                                     | XXXX                                                         | B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y<br>B<br>B<br>B                                                                            | Y<br>B<br>B                                                                                                                                                                                                                                            | У                                                                                                | <b>↓</b>                                                                                | XXXX                                               | XXXX                                   | XXXX                                                         | G<br>G<br>G                                                                                 | Y<br>G<br>G<br>G                                                                            | Y<br>G<br>G                                                                                      | ه <mark>ح</mark> | <mark>→</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XXXX                               |                                                      |
| LAA                                       | XX                                                           | R<br>R                                                                                      | R R                                                                                         | Y<br>Y                                                                                                                                        | Y                       | $\mathbb{X}$                                   | $\mathbb{X}$                              | $\mathbb{X}$                           | $\mathbb{X}$                                                 | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y<br>B                                                                                      | Y<br>Y                                                                                                                                                                                                                                                 | Y                                                                                                | $\mathbb{X}$                                                                            | X                                                  | $\mathbb{X}$                           | XX                                                           | G                                                                                           | Y<br>G                                                                                      | Y<br>Y                                                                                           | Y                | $\mathbb{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbb{X}$                       | E                                                    |
|                                           |                                                              |                                                                                             |                                                                                             |                                                                                                                                               |                         |                                                |                                           |                                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                                                                                                                                                                                                                        |                                                                                                  |                                                                                         |                                                    |                                        |                                                              |                                                                                             |                                                                                             |                                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                      |
| 1                                         |                                                              |                                                                                             | Sector                                                                                      | 4 (Delt                                                                                                                                       | a) Colo                 | r Code:                                        | <u>s</u>                                  |                                        |                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sector 5                                                                                    | i (Epsik                                                                                                                                                                                                                                               | on) Cole                                                                                         | or Code                                                                                 | <u>95</u>                                          |                                        |                                                              |                                                                                             | Sector                                                                                      | 6 (Zeta                                                                                          | ) Color          | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                      |
| 850 CDMA                                  | Gray<br>Gray                                                 | R<br>R                                                                                      | Sector<br>R                                                                                 | 4 (Delta                                                                                                                                      | a) Color                | r Code:                                        |                                           | $\mathbb{X}$                           | Gray<br>Gray                                                 | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sector 5                                                                                    | i (Epsik                                                                                                                                                                                                                                               | on) Cok                                                                                          | or Code                                                                                 | <u>s</u>                                           | W                                      | Gray                                                         | G                                                                                           |                                                                                             | 6 (Zeta                                                                                          | ) Color          | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\ge$                              | E                                                    |
| 850 CDMA<br>700                           |                                                              |                                                                                             | Sector<br>R<br>P<br>R<br>R<br>R<br>R                                                        | A (Delta                                                                                                                                      | a) Colo                 | r Code:                                        |                                           | XXXXXX                                 |                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\times$                                                                                    | P<br>B<br>B                                                                                                                                                                                                                                            | on) Cok                                                                                          |                                                                                         |                                                    | MMMM                                   |                                                              |                                                                                             | Sector<br>G<br>P<br>G<br>G<br>G<br>G                                                        | F (Zeta                                                                                          |                  | Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XXXXXXX                            |                                                      |
|                                           | Gray<br>Gray<br>Gray<br>Gray                                 | R<br>R<br>R<br>R                                                                            | R<br>P<br>R<br>R                                                                            |                                                                                                                                               | A) Color                |                                                |                                           | MMMMM                                  | Gray<br>Gray<br>Gray<br>Gray                                 | B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B<br>P<br>B<br>B                                                                            |                                                                                                                                                                                                                                                        |                                                                                                  | XXXXX                                                                                   |                                                    | MMMMMM                                 | Gray<br>Gray<br>Gray<br>Gray                                 | G<br>G<br>G                                                                                 | G<br>P<br>G<br>G                                                                            | ۰ م<br>الا                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - XMXMMM                           |                                                      |
| 700                                       | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R                                                   | R<br>P<br>R<br>R<br>R<br>R<br>P<br>R<br>R                                                   | P R R P P R                                                                                                                                   | ▓▓▓≏▫▓▓                 | - <u>XX - XXXX</u>                             |                                           | - MMMMMMM                              | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                              | P<br>B<br>B<br>P<br>P<br>B                                                                                                                                                                                                                             | MM ~ ~ / ~ ~                                                                                     |                                                                                         |                                                    | - NMMMMMMMMM                           | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6                                                        | G<br>P<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G                                              |                                                                                                  | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XX - XXXXXXXXXX                    |                                                      |
| 700<br>- 650 LTE -                        | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R                               | R<br>P<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R                               | P<br>R<br>R<br>P<br>R<br>P<br>R<br>R<br>P<br>R<br>R<br>R                                                                                      |                         | <u> - X - X - X - X - X - X - X - X - X - </u> |                                           | MM - MMMMMMMM                          | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | P<br>B<br>B<br>P<br>P<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                       |                                                                                                  |                                                                                         |                                                    | MM - MMMMMMMMM                         | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G                | P<br>G<br>G<br>P<br>P<br>P<br>G<br>G<br>C<br>P<br>P<br>G                                         |                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XXXXXX - XXX - XXXXXXXXXX          | <u> </u>                                             |
| 700<br>850 LTE<br>700 / 850               | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | P<br>R<br>R<br>P<br>P<br>R<br>R<br>P<br>P<br>R<br>R<br>V<br>W<br>R                                                                            |                         |                                                |                                           | MMMMM - MMMMMMMMMM                     | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | P<br>B<br>B<br>B<br>B<br>B<br>B<br>W<br>B<br>B<br>W<br>B<br>B<br>W<br>B                                                                                                                                                                                | P B P P B W B S                                                                                  | ≈∭≪∭∭∞∽∭°∽∽∭∭≊                                                                          | ≤ <u>\\\\\\\\\\</u> " = \\\\" = \\\\" = \\\\\\\\\\ | MMMMM-MMMMMMMMM                        | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | P G G P P G G<br>P P G G<br>P P G G<br>S G                                                       |                  | ×₩×××××××××××××××××××××××××××××××××××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ■MMMMMM - MM - MMMMMMM             | <u> </u>                                             |
| 700<br>650 LTE<br>700 / 850<br>AWS        | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | P<br>R<br>R<br>P<br>P<br>R<br>R<br>P<br>P<br>R<br>R<br>R<br>W<br>W<br>R<br>R<br>W<br>W<br>R<br>R<br>R<br>W<br>W<br>R<br>R<br>R<br>W<br>W<br>R | P P R P P R W W R W W W | <u> </u>                                       |                                           | MMMMMMM - MMMMMMMMMM                   | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B                                     | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | P<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>W<br>W<br>B<br>B<br>B<br>W<br>W<br>B<br>B<br>B<br>W<br>W<br>B<br>B<br>B<br>B<br>B<br>B<br>W<br>W<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | P<br>P<br>P<br>P<br>B<br>W<br>W<br>B<br>W<br>W<br>W<br>W<br>W                                    | S< <p>X&lt;<p>X&lt;<p>X&lt;<p>X&lt;<p>X&lt;<p>X&lt;<p>X&lt;</p></p></p></p></p></p></p> | ≤₩ <b>₹</b> ₩₩₩₩₩~₩₩₩₩₩₩₩                          | MANANANA - MANANANANANANA              | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | P G G P P G G W W G G W W G G W W G                                                              |                  | ≈≈X≈≈≈™≈™™ ⊎ ∨ v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M<                                 | <b>\                                    </b>         |
| 700<br>550 LTE<br>700 / 850<br>AWS<br>PCS | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R<br>R | P<br>R<br>R<br>P<br>R<br>R<br>P<br>P<br>R<br>R<br>R<br>R<br>R<br>W<br>W<br>R<br>R<br>R<br>W<br>W<br>W<br>W                                    |                         | <u> </u>                                       |                                           | MM=MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B                                     | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | P<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>W<br>W<br>B<br>B<br>B<br>W<br>W<br>W<br>W                                                                                                                                                       | P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>B<br>W<br>W<br>B<br>W<br>W<br>W<br>W<br>W | ╳╲╲╲╲ <sup>┍</sup> ╲╲ <sup>┍</sup> ┙ ┙ ╲╲ <sup>┍</sup> ┙ ╲╲ <sup>┍</sup> ┙ ╲            | Ms™MN ~ NN ~ MNNNN                                 | QXXX=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray<br>Gray | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G | P<br>G<br>G<br>P<br>P<br>G<br>G<br>G<br>G<br>W<br>W<br>G<br>G<br>G<br>W<br>W<br>G<br>G<br>G<br>W |                  | XXXX A MARANA MA<br>MARANA MARANA br>MARANA MARANA br>MARANA MARANA br>MARANA MARANA br>MARANA MARANA br>MARANA MARANA br>MARANA MARANA | XX ≈ XX XX XX V V VX VX XX XX × XX | <u>k k bi k a k k k k k k k k k k k k k k k k k </u> |



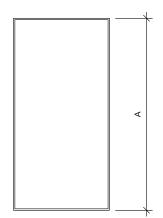
|                                                                                                                                                                     |                        |                         | gnts Keserveu.                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------------------------------------|
|                                                                                                                                                                     |                        | n<br>And II≮ ⊂ Li di ⊂F | ער און און און און און און                        |
|                                                                                                                                                                     |                        | <                       | COPYRIGHT @ ZUZT ATC IF LLC, All RIGHTS RESERVED. |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     |                        |                         |                                                   |
|                                                                                                                                                                     | SUPPLEMENT             | AL                      |                                                   |
| ED AT THE REQUEST OF THE CUSTOMER<br>ALYSIS REPORT FOR COMPLETE MOUNT<br>ITAL PAGES INCLUDED IN THE<br>VLY. GENERAL CONTRACTOR IS TO<br>LYSIS PRIOR TO CONTRUCTION. | SHEET NUMBER:<br>R-602 | REVISION:               |                                                   |


FRONT VIEW

∢

#### ANTENNA SPECIFICATIONS 1 FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

TOP VIEW


| ANTENN        | ANTENNA SPECIFICATIONS |       |      |                 |  |  |  |  |  |  |  |
|---------------|------------------------|-------|------|-----------------|--|--|--|--|--|--|--|
| ANTENNA MODEL | А                      | В     | С    | WEIGHT<br>(LBS) |  |  |  |  |  |  |  |
| JAHH-65A-R3B  | 55.0"                  | 13.8" | 8.2" | 50.7            |  |  |  |  |  |  |  |
| JAHH-45A-R3B  | 55.0"                  | 18.0" | 7.0" | 70.5            |  |  |  |  |  |  |  |
| MT6407-77A    | 35.1"                  | 16.1" | 5.5" | 81.6            |  |  |  |  |  |  |  |



FRONT VIEW

**RRU SPECIFICATIONS** 〔2〕 FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

| RRU SPECIFICATIONS           |       |       |       |      |  |  |  |  |  |  |
|------------------------------|-------|-------|-------|------|--|--|--|--|--|--|
| RRU MODEL A B C WEIGHT (LBS) |       |       |       |      |  |  |  |  |  |  |
| B2/B66A RRH-BR049            | 15.0" | 15.0" | 10.0" | 84.4 |  |  |  |  |  |  |
| B5/B13 RRH-BR04C             | 15.0" | 15.0" | 8.1"  | 70.3 |  |  |  |  |  |  |



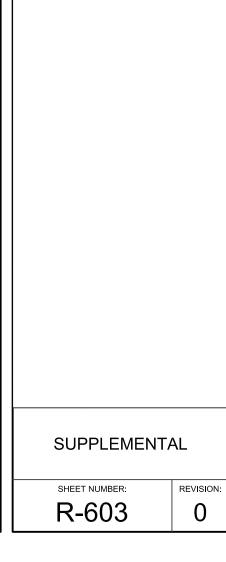
FRONT VIEW

TMA SPECIFICATIONS FOR ILLUSTRATIVE PURPOSES ONLY - NOT TO SCALE

| TMA SPECIFICATIONS |      |      |  |  |  |
|--------------------|------|------|--|--|--|
| TMA MODEL          | A    | В    |  |  |  |
| CBC78T-DS-43-2X    | 9.6" | 6.9" |  |  |  |



U


| ghts Reserved |
|---------------|
| All Ri        |
| LLC,          |
| TC IP         |
| 021 A         |
| ht © 2        |
| Copyrig       |
|               |

TOP VIEW

В

с

| с    | WEIGHT<br>(LBS) |
|------|-----------------|
| 6.4" | 20.7            |







Maser Consulting Connecticut 2000 Midlantic Drive, Suite 100 Mount Laurel, NJ 08054 856.797.0412 Greg.Dulnik@colliersengineering.com

#### Post-Mod Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10084892 Maser Consulting Connecticut Project #: 20777259A

#### July 7, 2021

468044-VZW / Byram Park CT

Greenwich, Connecticut 06830

Byram Park CT

36 Ritch Ave W

Verizon Wireless

Site Information

- - Fairfield County 41.005064° Latitude: Longitude: -73.648312"

Site ID:

Address:

Site Name:

Carrier Name:

#### Structure Information

79-Ft Monopole Tower Type: 10.00-Ft T-Frame Mount Type:

FUZE ID # 16231909

#### Analysis Results

T-Frame: 79.9% Pass

\*\*\*Contractor PMI Requirements: Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award **Requirements also Noted on Mount Modification Drawings** Requirements may also be Noted on A & E drawings

Report Prepared By: Frank Centone



| D | Channel, Solid Round, Angle, Plate | ASTM A36 (Gr. 36)   |
|---|------------------------------------|---------------------|
| o | HSS (Rectangular)                  | ASTM 500 (Gr. B-46) |
| ο | Pipe                               | ASTM A53 (Gr. B-35) |
| 0 | Threaded Rod                       | F1554 (Gr. 36)      |
| 0 | Bolts                              | ASTM A325           |
|   |                                    |                     |

|                                                                                                                                                                     | ost-Modification Analysis<br>) T-Frame                                                                                                                                                                                                                                                                    | Report                                                                                                                                                                                                                                               | Site ID: 468                                                                                     | July 7,<br>044-VZW / Byram Pa<br>Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|-----------|
| th                                                                                                                                                                  | readed rod connections i                                                                                                                                                                                                                                                                                  | in collar members if ap                                                                                                                                                                                                                              | e bolts that faster it to the<br>plicable. Local deformation<br>structure are outside the s      | mount collar/attachm<br>and interaction betw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ient and<br>ween the                                                               |                           |           |
| 38                                                                                                                                                                  | I services are performed<br>ccepted engineering prin<br>onclusion, opinions, and r                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | tructural Steel Grades h<br>ralysis:                                                                                                                                                                                                                                                                      | ave been assumed a                                                                                                                                                                                                                                   | s follows, if applicable, ur                                                                     | less otherwise note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t in this                                                                          |                           |           |
|                                                                                                                                                                     | <ul> <li>Channel, Solid Rou</li> <li>USS (Destroyaulos)</li> </ul>                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      | ASTM A36 (Gr. 36)                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | <ul> <li>HSS (Rectangular)</li> <li>Pipe</li> </ul>                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                      | ASTM 500 (Gr. B-46)<br>ASTM A53 (Gr. B-35)                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | o Threaded Rod                                                                                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                    | 1554 (Gr. 36)                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | o Bolts                                                                                                                                                                                                                                                                                                   | P                                                                                                                                                                                                                                                    | STM A325                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | ny mount modifications li<br>esign specifications.                                                                                                                                                                                                                                                        | sted under Sources of                                                                                                                                                                                                                                | Information are assumed t                                                                        | o have been installed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | per the                                                                            |                           |           |
|                                                                                                                                                                     | ncles between in-field<br>nless explicitly approve                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      | ssumptions listed above                                                                          | e may render this a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nalysis                                                                            |                           |           |
| invalid un                                                                                                                                                          | ness explicitly approve                                                                                                                                                                                                                                                                                   | d by Maser Consulting                                                                                                                                                                                                                                | g Connecticut.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
| Analysis                                                                                                                                                            | s Results:                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | Component                                                                                                                                                                                                                                                                                                 | Utilization %                                                                                                                                                                                                                                        | Bac                                                                                              | s/Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                           |           |
|                                                                                                                                                                     | Component                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | Mod Standoff                                                                                                                                                                                                                                                                                              | 27.9%                                                                                                                                                                                                                                                |                                                                                                  | iss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|                                                                                                                                                                     | Mod Face                                                                                                                                                                                                                                                                                                  | 20.3%                                                                                                                                                                                                                                                |                                                                                                  | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|                                                                                                                                                                     | Antenna Pipe                                                                                                                                                                                                                                                                                              | 71.2%                                                                                                                                                                                                                                                |                                                                                                  | ISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|                                                                                                                                                                     | Face Horizontal                                                                                                                                                                                                                                                                                           | 20.8%                                                                                                                                                                                                                                                |                                                                                                  | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|                                                                                                                                                                     | Standoff                                                                                                                                                                                                                                                                                                  | 33.6%                                                                                                                                                                                                                                                |                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |                           |           |
|                                                                                                                                                                     | Standoff Vertical                                                                                                                                                                                                                                                                                         | 0.0%                                                                                                                                                                                                                                                 |                                                                                                  | ISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
|                                                                                                                                                                     | disting Connection                                                                                                                                                                                                                                                                                        | 79.9%                                                                                                                                                                                                                                                |                                                                                                  | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
|                                                                                                                                                                     | disting Connection<br>MOD Connection                                                                                                                                                                                                                                                                      | 79.9%<br>26.4%                                                                                                                                                                                                                                       |                                                                                                  | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
| 4                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                         | 26.4%                                                                                                                                                                                                                                                | Pa                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                           |           |
| Struc                                                                                                                                                               | MOD Connection                                                                                                                                                                                                                                                                                            | 26.4%                                                                                                                                                                                                                                                | Pa                                                                                               | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                    |                           |           |
| Struc<br>Recomm                                                                                                                                                     | MOD Connection<br>ture Rating – (Controllin<br>nendation:                                                                                                                                                                                                                                                 | 26.4%                                                                                                                                                                                                                                                | Pa<br>ponents) 79.                                                                               | 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |                           |           |
| Struc<br>Recomm                                                                                                                                                     | MOD Connection<br>ture Rating – (Controllin<br><b>nendation:</b><br>ing mounts will be <b>SUFF</b>                                                                                                                                                                                                        | 26.4%                                                                                                                                                                                                                                                | Pa                                                                                               | 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cessfully                                                                          |                           |           |
| Struc<br>Struc<br>Recomm<br>The existing<br>completed                                                                                                               | MOD Connection<br>ture Rating – (Controllin<br><b>nendation:</b><br>ing mounts will be SUFF<br>i.                                                                                                                                                                                                         | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final log                                                                                                                                                                                       | onents) 79.<br>ading after the proposed n                                                        | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed                                                                                                                | MOD Connection<br>ture Rating – (Controllin<br><b>nendation:</b><br>ing mounts will be <b>SUFF</b><br>i.<br>5P rigging plan review s                                                                                                                                                                      | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with                                                                                                                                                             | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>WSI/ASS<br>Constructi                                                                                       | MOD Connection<br>ture Rating – <i>(Controllin</i><br><b>mendation:</b><br>ing mounts will be <b>SUFF</b><br>1.<br>SP rigging plan review s<br>ion Class IV site or other,                                                                                                                                | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with                                                                                                                                                             | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>WSI/ASS<br>Constructi                                                                                       | MOD Connection<br>ture Rating – <i>(Controllin</i><br><b>mendation:</b><br>ing mounts will be <b>SUFF</b><br>1.<br>SP rigging plan review s<br>ion Class IV site or other,                                                                                                                                | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with                                                                                                                                                             | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>WSI/ASS<br>Constructi<br>Attachm                                                                            | MOD Connection<br>ture Rating – <i>(Controllin</i><br><b>mendation:</b><br>ing mounts will be <b>SUFF</b><br>1.<br>SP rigging plan review s<br>ion Class IV site or other,                                                                                                                                | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with                                                                                                                                                             | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>WSI/ASS<br>Constructi<br>Attachm<br>1. M                                                                    | MOD Connection<br>iture Rating – <i>(Controllin</i><br><b>mendation:</b><br>ing mounts will be <b>SUFF</b><br>i.<br>SP rigging plan review s<br>ion Class IV site or other,<br>ments:                                                                                                                     | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with<br>, if required. Separate n                                                                                                                                | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existing<br>completed<br>WSI/ASS<br>Construction<br>Attachm<br>1. M<br>2. M                                                         | MOD Connection<br>iture Rating – <i>(Controllin</i><br>mendation:<br>ing mounts will be SUFF<br>it<br>sP rigging plan review s<br>ion Class IV site or other,<br>ments:<br>tourt Photos                                                                                                                   | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with<br>, if required. Separate n                                                                                                                                | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existing<br>completed<br>WSI/ASS<br>Construction<br>Attachm<br>1. M<br>2. M<br>3. Ar                                                | MOD Connection<br>iture Rating – <i>(Controllin</i><br><u>mendation:</u><br>ing mounts will be <b>SUFF</b><br>i.<br>SP rigging plan review s<br>ion Class IV site or other,<br><u>ments:</u><br>iount Photos<br>lount Mapping Report (fo                                                                  | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with<br>, if required. Separate m<br>or reference only)                                                                                                          | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Ne existi<br>ompleted<br>NSI/ASS<br>constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co                                                       | MOD Connection<br>iture Rating – <i>(Controllin</i><br><u>mendation:</u><br>ing mounts will be <b>SUFF</b><br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br><u>ments:</u><br>tourt Photos<br>lount Mapping Report (for<br>nalysis Calculations                                         | 26.4%<br>g Utilization of all Comp<br>ICLENT for the final los<br>ervices compliant with<br>, if required. Separate re<br>or reference only)<br>Report Deliverables                                                                                  | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>tecomm<br>he existi<br>ompleted<br>NSI/ASS<br>onstructi<br>titachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                     | MOD Connection<br>iture Rating – <i>(Controllin</i><br><u>mendation:</u><br>ing mounts will be <b>SUFF</b><br>d.<br>SP rigging plan review s<br>ion Class IV site or other,<br><u>ments:</u><br>tount Photos<br>lount Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMI               | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final loa<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>tecomm<br>he existi<br>completed<br>NSI/ASS<br>constructi<br>titachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                   | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final loa<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>tecomm<br>he existi<br>ompleted<br>NSI/ASS<br>onstructi<br>titachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                     | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final loa<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Recomm<br>The existin<br>completed<br>WSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                          | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final loa<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>Che existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final los<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final los<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final los<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  |                           |           |
| Struc<br>Struc<br>Recomm<br>Che existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final los<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  | SUPPI FMF                 | NTAI      |
| Struc<br>Struc<br>Recomm<br>Che existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26,4%<br>g Utilization of all Comp<br>ICIENT for the final los<br>ervices compliant with<br>, if required. Separate m<br>or reference only)<br>Report Deliverables<br>ams                                                                            | ading after the proposed n                                                                       | 9%<br>9modifications are suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                  | SUPPLEME                  | NTAL      |
| Struc<br>Struc<br>Recomm<br>The existing<br>completed<br>WSI/ASS<br>Construction<br>1. Mi<br>2. Mi<br>3. Arr<br>4. Co<br>5. Arr<br>6. Th                            | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26.4%<br>g Utilization of all Comp<br>iICLENT for the final loa<br>ervices compliant with<br>, if required. Separate re<br>or reference only)<br>Report Deliverables<br>ams<br>need Usage Letter                                                     | eview fees will apply.                                                                           | 9%<br>nodifications are suc<br>I/TIA 322 are availat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ve for a                                                                           | SUPPLEME                  | NTAL      |
| Struc<br>Struc<br>Recomm<br>The existing<br>Construction<br>ANSI/ASS<br>Construction<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Construction<br>5. Ar<br>6. The<br>S | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26.4%<br>g Utilization of all Comp<br>FICIENT for the final loa<br>ervices compliant with<br>, if required. Separate re<br>or reference only)<br>Report Deliverables<br>ams<br>eed Usage Letter                                                      | ading after the proposed n                                                                       | 9%<br>nodifications are such<br>I/TIA 322 are availat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NE TOT A                                                                           | SUPPLEME<br>SHEET NUMBER: | NTAL      |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar                                | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26.4%<br>Ig Utilization of all Comp<br>ICLENT for the final loa<br>ervices compliant with<br>, if required. Separate re<br>or reference only)<br>Report Deliverables<br>ams<br>weed Usage Letter<br>NOTE: THIS SHEET V<br>WITHOUT EDI<br>ANALYSIS CA | Adding after the proposed in<br>the requirements of ANS<br>eview fees will apply.                | 9%<br>nodifications are such<br>VTIA 322 are availab<br>D PROVIDED AT THE REC<br>IOUNT ANALYSIS REPOR<br>IPPLEMENTAL PAGES IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NUEST OF THE CUSTOMER<br>T FOR COMPLETE MOUNT<br>CLUDED IN THE                     | SHEET NUMBER:             | REVISION: |
| Struc<br>Struc<br>Recomm<br>The existin<br>completed<br>ANSI/ASS<br>Constructi<br>Attachm<br>1. M<br>2. M<br>3. Ar<br>4. Co<br>5. Ar<br>6. Th                       | MOD Connection<br>ture Rating – (Controllin<br>mendation:<br>ng mounts will be SUFF<br>1.<br>SP rigging plan review s<br>ion Class IV site or other,<br>nents:<br>tourt Photos<br>lourt Photos<br>lourt Mapping Report (for<br>nalysis Calculations<br>ontractor Required PMII<br>ntenna Placement Diagra | 26.4%<br>g Utilization of all Comp<br>inclent for the final loc<br>ervices compliant with<br>, if required. Separate re<br>or reference only)<br>Report Deliverables<br>ans<br>weed Usage Letter                                                     | vonents) 79.<br>ading after the proposed in<br>the requirements of ANS<br>eview fees will apply. | 9%<br>nodifications are succ<br>I/TIA 322 are availab<br>D PROVIDED AT THE REC<br>NOUNT ANALYSIS REPOR<br>NOUNT ANALYSIS | NUEST OF THE CUSTOMER<br>T FOR COMPLETE MOUNT<br>CLUDED IN THE<br>CONTRACTOR IS TO |                           |           |



## PROJECT NOTES

- . SEE MODIFICATION NOTES
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- 3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 6. THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- 7. THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS.
- 8. THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- 10. NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- 11. THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).

#### COPYRIGHT ©2021 MASER CONSULTING CONNECTICUT ALL RIGHTS RESERVED

THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF MASER CONSULTING

# verizon

# MOUNT MODIFICATION DRAWINGS EXISTING 10.00' T-ARM

# SITE NAME: BYRAM PARK CT SITE NUMBER: 468044

# 36 RITCH AVE W GREENWICH, CT 06830 FAIRFIELD COUNTY

| PROJECT INFORMATION           |                                                          |             | SHEET INDEX          |
|-------------------------------|----------------------------------------------------------|-------------|----------------------|
| SITE INFORMAT                 | ION                                                      | SHEET       | DESCRIPTION          |
|                               | 41.00507.48 N                                            | T-1         | TITLE SHEET          |
| LATITUDE:<br>LONGITUDE:       | 41.005064° N<br>73.648312° W                             | S-1         | BILL OF MATERIALS    |
| JURISDICTION:                 | FAIRFIELD COUNTY                                         | S-2         | MODIFICATION NOTES   |
| APPLICANT/LES                 | SEE                                                      | S-3         | MODIFICATION NOTES   |
| AFFLICAN 1/LEC                | SEL                                                      | S-4         | MODIFICATION DETAILS |
| COMPANY:                      | VERIZON WIRELESS                                         | S-5         | MODIFICATION DETAILS |
| CLIENT REPRES                 | FNTATIVE                                                 | S-6         | MOUNT PHOTOS         |
|                               |                                                          |             | SPECIFICATION SHEETS |
| COMPANY:                      |                                                          |             |                      |
| ADDRESS:<br>CITY, STATE, ZIP: | I 18 FLANDERS ROAD, THIRD FLOOR<br>WESTBOROUGH. MA 01581 |             |                      |
| CONTACT:                      | ANDREW CANDIELLO                                         |             |                      |
| EMAIL:                        | ANDREW.CANDIELLO@VERIZONWIRELESS.COM                     |             |                      |
| PROJECT MANA                  | GER                                                      |             |                      |
| COMPANIX                      |                                                          |             |                      |
| COMPANY:<br>CONTACT:          | MASER CONSULTING CONNECTICUT<br>GREG DULNIK              |             |                      |
| PHONE:                        | (615) 686-2575                                           |             |                      |
| E-MAIL:                       | GREG.DULNIK@COLLIERSENGINEERING.COM                      |             |                      |
|                               |                                                          | 11          |                      |
|                               |                                                          |             |                      |
| <u> </u>                      | NTRACTOR PMI REOLUREMENTS                                | <u> ا ا</u> | REFERENCED DOCUMENTS |

| CONTRACTOR PMI REQUIREMENTS                                                     |                                                            |   | REFERENCED                                                                              | DOCUMENTS                                            |
|---------------------------------------------------------------------------------|------------------------------------------------------------|---|-----------------------------------------------------------------------------------------|------------------------------------------------------|
| PMI LOCATION:<br>SMART TOOL PROJECT #:<br>VZW LOCATION CODE (PSLC):<br>FUZE ID: | HTTPS://PMI.VZWSMART.COM<br>10084892<br>468044<br>16231909 | L | FAILING MOUNT<br>SMART TOOL PROJECT #:<br>MASER CONSULTING PROJECT #:<br>ANALYSIS DATE: | ANALYSIS REPORT<br>10017683<br>20777259A<br>7/2/2021 |
| PMI REQUIREMENTS EMBEDDE                                                        | D WITHIN MOUNT MODIFICATION REPORT                         |   |                                                                                         |                                                      |

| <form><image/><form><text><text><text><text></text></text></text></text></form></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                                                                                                                                                                                                                                                              |                                                    |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | will BE kolowika couldes incomerance           Customer Loyalty through Client           w w m as e r c on s ul t i i           Office Locations:           NEW JERSEY           NEW YORK           PENNSYLVANIA           Ge           VIRGINIA           FE           NORTH CAROLINA           COLDA           TE           NORTH CAROLINA | W MEX<br>RYLAN<br>ORGIA<br>XAS<br>NNESSI<br>DLORAE | 4 2021<br>tion<br>m<br>(ICO<br>ID<br>EE<br>50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | verizo                                                                                                                                                                                                                                                                                                                                       | n                                                  |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                                                                                                                                                                                                                                                                                                                                              |                                                    |                                               |
| Image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in the image: state in                                                                                                                                                                                                                                                                                                                                                                            |     | ALLSTATES REQUIRE N<br>EACXAVATORS, DESIGNER<br>REPARING TO DISTU<br>SURFACE ANYWHERE<br>Call before you dig.<br>FOR STATE SPECIFIC DIRECT PHONE NL<br>WWW.CALLBI.I.COM                                                                                                                                                                      | OTIFICATIO<br>S, OR ANY<br>RB THE EAU<br>IN ANY ST | PERSON<br>RTH'S<br>TATE<br>IT:                |
| <image/> <text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 0 7/7/2021 CONSTRUCTION<br>REV DATE DESCRIPTION                                                                                                                                                                                                                                                                                              | FAC<br>DRAWN                                       | DH<br>CHECKED                                 |
| UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF THE RESPONSIBLE LICENSED PROFESSIONAL<br>ENGINEER, TO ALTER THIS DOCUMENT.<br>SITE NAME:<br>BYRAM PARK CT<br>468044<br>36 RITCH AVE W<br>GREENWICH, CT 06830<br>FAIRFIELD COUNTY<br>MULTE 100<br>Mount Laurel, NJ 08054<br>Phone: 856.797.0412<br>Fix: 856 | Der | Con License Horres<br>License Horres<br>T. C. O.A. H. JPC - CONSUL<br>C. C. O.A. H. JPC - CONSUL<br>Digitally signed by D                                                                                                                                                                                                                    | erek R.                                            |                                               |
| 468044<br>36 RITCH AVE W<br>GREENWICH, CT 06830<br>FAIRFIELD COUNTY<br>Middanc Drive<br>2000 Middanc Drive<br>2000 Mid                                                                                                                               |     | UNLESS THEY ARE ACTING UNDER T<br>OF THE RESPONSIBLE LICENSED PR<br>ENGINEER, TO ALTER THIS DO                                                                                                                                                                                                                                               | HE DIRE<br>OFESSIC<br>CUMENT                       | CTION<br>NAL                                  |
| SHEET NUMBER :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 468044<br>36 RITCH AVE V<br>GREENWICH, CT (                                                                                                                                                                                                                                                                                                  | W<br>06830                                         |                                               |
| SHEET NUMBER :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 2000 Mid<br>Suit<br>Mount Law<br>Phone: 85<br>SHEET TITLE:                                                                                                                                                                                                                                                                                   | lantic Driv<br>e 100<br>el, NJ 080<br>66.797.041   | e<br>054<br>2                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | SHEET NUMBER :                                                                                                                                                                                                                                                                                                                               |                                                    |                                               |

NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION.

#### **BILL OF MATERIALS** VZWSMART KITS DESCRIPTION QUANTITY MANUFACTURER PART NUMBER NOTES CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH TI STEEL' NOTES ON SHEET S-2 3 VZWSMART-SFK4 T-ARM KIT VZWSMART-PLK7 MONOPOLE COLLAR MOUNT ASSEMBLY 1 15 VZWSMART-MSK2 CROSSOVER PLATE VZWSMART OTHER REQUIRED PARTS NOTES QUANTITY MANUFACTURER PART NUMBER DESCRIPTION 120" LONG, P3.0 STD GALVANIZED 3 --3 102" LONG, P2.5 STD GALVANIZED --CROSSOVER PLATE KIT W/ SQUARE U-BOLTS AND STD. U-BOLTS 4 SITE PRO I SQCX4-K OR EOR APPROVED EQUAL, CONTACT MASER CONSULTING FOR APPROVAL OF SUBSTITUTION 36" LONG, P2.0 STD GALVANIZED 1 --

NOTE: ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE COM

| VZWSMART KITS - APPROVED VENDORS |                                        |  |  |  |  |
|----------------------------------|----------------------------------------|--|--|--|--|
|                                  | COMMSCOPE                              |  |  |  |  |
| CONTACT                          | SALVADOR ANGUIANO                      |  |  |  |  |
| PHONE                            | (817) 304-7492                         |  |  |  |  |
| EMAIL                            | SALVADOR.ANGUIANO@COMMSCOPE.COM        |  |  |  |  |
| WEBSITE                          | WWW.COMMSCOPE.COM                      |  |  |  |  |
| Ν                                | IETROSITE FABRICATORS, LLC             |  |  |  |  |
| CONTACT                          | KENT RAMEY                             |  |  |  |  |
| PHONE                            | (706) 335-7045 (O), (706) 982-9788 (M) |  |  |  |  |
| EMAIL                            | KENT@METROSITELLC.COM                  |  |  |  |  |
| WEBSITE                          | METROSITEFABRICATORS.COM               |  |  |  |  |
|                                  | PERFECTVISION                          |  |  |  |  |
| CONTACT                          | WIRELESS SALES                         |  |  |  |  |
| PHONE                            | (844) 887-6723                         |  |  |  |  |
| EMAIL                            | WWW.PERFECT-VISION.COM                 |  |  |  |  |
| WEBSITE                          | WIRELESSSALES@PERFECT-VISION.COM       |  |  |  |  |
|                                  | SABRE INDUSTRIES, INC.                 |  |  |  |  |
| CONTACT                          | ANGIE WELCH                            |  |  |  |  |
| PHONE                            | (866) 428-6937                         |  |  |  |  |
| EMAIL                            | AKWELCH@SABREINDUSTRIES.COM            |  |  |  |  |
| WEBSITE                          | WWW.SABRESITESOLUTIONS.COM             |  |  |  |  |
|                                  | SITE PRO 1                             |  |  |  |  |
| CONTACT                          | PAULA BOSWELL                          |  |  |  |  |
| PHONE                            | (972) 236-9843                         |  |  |  |  |
| EMAIL                            | PAULA.BOSWELL@VALMONT.COM              |  |  |  |  |
| WEBSITE                          | WWW.SITEPRO I.COM                      |  |  |  |  |

NOTE: WHEN SPECIFIED, VZWSMART KITS SHALL BE REQUIRED AND WILL BE VERIFIED DURING THE DESKTOP PMI

| HE 'STRUCTURAL |     | NEW PROVINCIAL COLLER SUMMARKED         SEGNAL NAME           NEW RENOWLAS COLLER SUMMARKED A DEGISION NOIL         SEGNAL NAME           NEW RENEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |     | verizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NTRACTOR       |     | EXCAVATORS DESIGNERS OR ANY PERSON PREPARATION TO DISTUBLE THE EARTHS SURFACE ANYWHENE IN ANY STATE SURFACE ANYWHENE IN ANY STATE POR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT: WWWW.CALLBIL.COM  SCALE: AS SHOWN  SCALE: AS |
|                | Des | REV DATE DESCRIPTION DRAWN CHECKED<br>BY<br>DOTELLA LATE<br>DOTELLA LATE<br>DOTELLA LATE<br>DOTELLA LATE<br>DOTELLA LATE<br>DOTELLA LATE<br>DOTELLA LATE<br>MASE CONSULATIONER<br>CT. COA IN JPC MOISI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |     | Digitally signed by Derek R. Hartzell<br>Date: 2021.07.07 08:44:05-04'00'<br>IT IS A VIOLATION OF LAW FOR ANY PERSON,<br>UNLESS THEY ARE ACTING UNDER THE DIRECTION<br>OF THE RESPONSIBLE LICENSED PROFESSIONAL<br>ENGINEER. TO ALTER THIS DOCUMENT.<br>SITE NAME:<br>BYRAM PARK CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |     | 468044<br>36 RITCH AVE W<br>GREENWICH, CT 06830<br>FAIRFIELD COUNTY<br>Milance Drive<br>Suite 100<br>Mount Laurel, NJ 08054<br>Phone: 856.797.0412<br>Fax: 856.727.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |     | SRET TITLE:<br>BILL OF MATERIALS<br>SRET NUMBER:<br>S-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### GENERAL NOTES

- I. THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE TELECOMMUNICATIONS INDUSTRY STANDARD TIA-222-H. MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
- 2. CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT DAMAGE TO EXISTING STRUCTURES. ANY DAMAGE TO EXISTING STRUCTURES AS A RESULT OF THE CONTRACTOR'S WORK OR FROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 3. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND EXISTING CONDITIONS BEFORE BEGINNING WORK, ORDERING MATERIAL, AND PREPARING OF SHOP DRAWINGS. ANY DISCREPANCIES BETWEEN FIELD CONDITIONS AND THE CONTRACT DOCUMENTS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMMEDIATELY.
- IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.
- 5. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES.
- 6. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-322 (LATEST EDITION), OSHA, AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-322 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.
- THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- 8. WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY OF THE STRUCTURE DURING ERECTION. CONTRACTOR SHALL PROVIDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL SYSTEMS AS REQUIRED TO RESIST ALL FORCES THAT MAY OCCUR DURING HANDLING AND ERECTION UNTIL THE STRUCTURE IS FULLY COMPLETED. TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S PROPERTY AFTER THEIR USE.
- 9. ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE STANDARD FOR INSTALLATION, ALTERATION AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, ANSI/TIA-322.
- 10. CONTRACTOR SHALL SECURE SITE BACK TO EXISTING CONDITION UNDER SUPERVISION OF OWNER. ALL FENCE, STONE, GEOFABRIC, GROUNDING, AND SURROUNDING GRADE SHALL BE REPLACED AND REPAIRED AS REQUIRED TO ACHIEVE OWNER APPROVAL. POSITIVE DRAINAGE AWAY FROM TOWER SITE SHALL BE MAINTAINED.
- 11. CONNECTIONS BETWEEN ITEMS SUPPORTED BY THE STRUCTURE AND THE STRUCTURE NOT SPECIFICALLY DETAILED IN THE CONTRACT DOCUMENTS ARE THE RESPONSIBILITY OF THE CONTRACTOR. SUCH CONNECTIONS SHALL BE DESIGNED, COORDINATED AND INSPECTED BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN THE STATE OF THE PROJECT. SUBMIT SIGNED AND SEALED CALCULATIONS DURING SHOP DRAWING REVIEW.
- 12. DO NOT SCALE DRAWINGS.
- 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.
- 14. ALL MATERIAL UTILIZED FOR THIS PROJECT MUST BE NEW AND FREE OF ANY DEFECTS. ANY MATERIAL SUBSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTERED SIZE AND/OR STRENGTHS, MUST BE APPROVED BY THE OWNER AND ENGINEER IN WRITING.
- 15. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.

#### DESIGN LOADS

#### WIND LOADS

- a. BASIC WIND SPEED (3 SECOND GUST), V = 116 MPH b. EXPOSURE CATEGORY C
- c. TOPOGRAPHIC CATEGORY I
- d. MEAN BASE ELEVATION (AMSL) = 50.68'

#### ICE LOADS

a. ICE WIND SPEED (3 SECOND GUST), V = 50 MPH

#### b. ICE THICKNESS = 1.00 IN

- SEISMIC LOADS
- a. SEISMIC DESIGN CATEGORY B
- b. Short term mcer ground motion,  $\mathrm{S}_\mathrm{S}$  = .277

### c. LONG TERM MCER GROUND MOTION, $\mathrm{S_{I}}$ = .060

#### STRUCTURAL STEEL

- DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.
  - a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION (15TH EDITION)
  - b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
  - c. AISC CODE OF STANDARD PRACTICE
- 2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN:

| CHANNELS, ANGLES, PLATES, ETC. | ASTM A36 (GR 36)         |
|--------------------------------|--------------------------|
| STEEL PIPE                     | ASTM A53 (GR 35)         |
| BOLTS                          | ASTM A325                |
| NUTS                           | ASTM A563                |
| LOCK WASHERS                   | LOCKING STRUCTURAL GRADE |
|                                |                          |

- 3. ALL SUBSTITUTIONS PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINEER. CONTRACTOR SHALL PROVIDE DOCUMENTATION TO ENGINEER FOR VERIFYING THE SUBSTITUTE IS SUITABLE FOR USE AND MEETS ORIGINAL DESIGN CRITERIA. DIFFERENCES FROM THE ORIGINAL DESIGN, INCLUDING MAINTENANCE, REPAIR AND REPLACEMENT, SHALL BE NOTED. ESTIMATES OF COSTS/CREDITS ASSOCIATED WITH THE SUBSTITUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS
- TO THE ENGINEER AS REQUESTED.
- 4. PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
  - a. SUBMIT SHOP DRAWINGS TO
  - GREG.DULNIK@COLLIERSENGINEERING.COM
  - b. PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL.
- 5. DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- 6. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH EXISTING STEEL. CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- ALL BOLT ASSEMBLIES FOR STRUCTURAL MEMBERS REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TIA-222-H SECTION 4.9.2 REQUIREMENTS.
- 9. WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS.
- FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GRADE. MAINTAIN AISC REQUIREMENTS FOR MINIMUM BOLT DISTANCE AND SPACING.
- 11. ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT IS AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTENING IS COMPLETED.
- 12. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- 13. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO

#### PROTECT STEEL BY ANY OTHER MEANS.

- 14. ALL EXISTING PAINTED/GALVANIZED SURFACES DAMAGED DURING REHAB INCLUDING AREAS UNDER STIFFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING (ZINGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE).
- 15. ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE.

|     |                                                                                      | Customer<br>www.<br>NEW JERS<br>NEW YOF<br>PENNSYL<br>VIRGINIA<br>FLORIDA<br>NORTH C | WN AS COLLIERS<br>Loyalty thro<br>m a s e r c o<br>Office L<br>SEY<br>RK<br>VANIA | ENGINEERING I<br>Dugh Client<br>D n s u   t i n<br>Locations:<br>NE<br>MA<br>GE<br>TE<br>CC | W MEX<br>RYLAN<br>ORGIA<br>XAS<br>NNESSI                                     | tion<br>m<br>ICO<br>ID<br>EE<br>DO |
|-----|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|
|     |                                                                                      | /e                                                                                   | ri                                                                                | <b>ZO</b>                                                                                   |                                                                              | <b>M</b>                           |
|     | Know                                                                                 |                                                                                      | ALL STAT<br>EXCAVATO<br>PREPARI<br>SURFAC<br>U dig.<br>E SPECIFIC DIRE<br>WWW.C/  | JOB NUMBER :                                                                                | OTIFICATIO<br>S, OR ANY<br>RB THE EA<br>IN ANY ST                            | PERSON<br>RTH'S<br>'ATE<br>T:      |
|     | 0<br>REV                                                                             | 7/7/2021<br>DATE                                                                     | ISSUED FOR<br>CONSTRUCT<br>DESCRIPTIC                                             | N                                                                                           | FAC<br>DRAWN<br>BY                                                           | DH<br>CHECKED<br>BY                |
| Des |                                                                                      | R. HA                                                                                | LICENSE NO<br>MASER CC<br>C.T. COA 1<br>Digitally e<br>Date 2                     | Hartz<br>MBBR: 7 Ho<br>DNSU & G<br>& IPC. 00131<br>Signed by E<br>Signed by C               | erek R.<br>08:44:0                                                           | 5-04'00'                           |
|     | UN UN                                                                                | LESS THEY<br>OF THE RES                                                              | ARE ACTIN<br>PONSIBLE L<br>ER, TO ALTI                                            | G UNDER T<br>ICENSED PR                                                                     | HE DIRE<br>OFESSIC<br>CUMENT                                                 | CTION<br>NAL                       |
|     | BYRAM PARK CT<br>468044<br>36 RITCH AVE W<br>GREENWICH, CT 06830<br>FAIRFIELD COUNTY |                                                                                      |                                                                                   |                                                                                             |                                                                              |                                    |
|     | SHEET                                                                                | TITLE :                                                                              |                                                                                   | 2000 Mid<br>Suit<br>Mount Laur<br>Phone: 85                                                 | REL OFFI<br>lantic Driv<br>ee 100<br>rel, NJ 080<br>66.797.041<br>5.722.1120 | e<br>)54                           |
|     | SHEET                                                                                | MOI                                                                                  |                                                                                   |                                                                                             | OTES                                                                         |                                    |
|     | L                                                                                    |                                                                                      | S                                                                                 | -2                                                                                          |                                                                              |                                    |

NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION.

#### MODIFICATION INSPECTION NOTES

| CONSTRUCTION         X       construction inspections         NA       contractor's certified weld inspection and nde report         X       on site cold galvanizing verification         X       GC AS-BUILT DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | MI CHECKLIST                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X       MI CHECKLIST DRAWING         X       EOR APPROVED SHOP DRAWINGS         NA       FABRICATION INSPECTION         NA       FABRICATOR CERTIFIED WELD INSPECTION         X       MATERIAL TEST REPORT (MTR)         NA       FABRICATOR NDE INSPECTION         X       PACKING SLIPS         NDDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION INSPECTIONS         X       ON SITE COLD GALVANIZING VERIFICATION         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         NDDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTIOR REDLINE OR RECORD DRAWING(S)         X       WI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS | INSPECTIONS AND TESTING                           | REPORT ITEM                                                                                                                                                                                                                                                 |
| X       EOR APPROVED SHOP DRAWINGS         NA       FABRICATION INSPECTION         NA       FABRICATOR CERTIFIED WELD INSPECTION         X       MATERIAL TEST REPORT (MTR)         NA       FABRICATOR NDE INSPECTION         X       PACKING SLIPS         ADDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION         X       CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION SECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION SECTIONS         X       CONSTRUCTION INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                    |                                                   | PRE-CONSTRUCTION                                                                                                                                                                                                                                            |
| NA       FABRICATION INSPECTION         NA       FABRICATOR CERTIFIED WELD INSPECTION         X       MATERIAL TEST REPORT (MTR)         NA       FABRICATOR NDE INSPECTION         NA       FABRICATOR NDE INSPECTION         X       PACKING SLIPS         ADDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION         X       CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION SCIENTING         X       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                      | Х                                                 | MI CHECKLIST DRAWING                                                                                                                                                                                                                                        |
| NA       FABRICATOR CERTIFIED WELD INSPECTION         X       MATERIAL TEST REPORT (MTR)         NA       FABRICATOR NDE INSPECTION         X       PACKING SLIPS         ADDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION         X       CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION SCONSTRUCTION AND NDE REPORTING         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                                               | Х                                                 | EOR APPROVED SHOP DRAWINGS                                                                                                                                                                                                                                  |
| X       MATERIAL TEST REPORT (MTR)         NA       FABRICATOR NDE INSPECTION         X       PACKING SLIPS         ADDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                 | NA                                                | FABRICATION INSPECTION                                                                                                                                                                                                                                      |
| NA       FABRICATOR NDE INSPECTION         X       PACKING SLIPS         ADDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         NA       CONSTRUCTION INSPECTIONS         X       CONSTRUCTION INSPECTIONS         X       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTING         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                | FABRICATOR CERTIFIED WELD INSPECTION                                                                                                                                                                                                                        |
| X       PACKING SLIPS         ADDITIONAL TESTING AND INSPECTIONS:       CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         NA       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       WI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Х                                                 | MATERIAL TEST REPORT (MTR)                                                                                                                                                                                                                                  |
| ADDITIONAL TESTING AND INSPECTIONS:  CONSTRUCTION  CONSTRUCTION INSPECTIONS  NA CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPOR'  X ON SITE COLD GALVANIZING VERIFICATION  X GC AS-BUILT DOCUMENTS  POST-CONSTRUCTION  X MI INSPECTOR REDLINE OR RECORD DRAWING(S)  X VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                | FABRICATOR NDE INSPECTION                                                                                                                                                                                                                                   |
| CONSTRUCTION         X       CONSTRUCTION INSPECTIONS         NA       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTION REDLINE OR RECORD DRAWING(S)         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                                                 | PACKING SLIPS                                                                                                                                                                                                                                               |
| NA       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       vzw PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                                                                                                                                                                                                                             |
| NA       CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         X       ON SITE COLD GALVANIZING VERIFICATION         X       GC AS-BUILT DOCUMENTS         ADDITIONAL TESTING AND INSPECTIONS:       POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       vzw PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | CONSTRUCTION                                                                                                                                                                                                                                                |
| X     ON SITE COLD GALVANIZING VERIFICATION       X     GC AS-BUILT DOCUMENTS       ADDITIONAL TESTING AND INSPECTIONS:     POST-CONSTRUCTION       X     MI INSPECTOR REDLINE OR RECORD DRAWING(S)       X     vzw PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                 |                                                                                                                                                                                                                                                             |
| X     GC AS-BUILT DOCUMENTS       ADDITIONAL TESTING AND INSPECTIONS:     POST-CONSTRUCTION       X     MI INSPECTOR REDLINE OR RECORD DRAWING(S)       X     VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                                                                                                                                                                                                                             |
| ADDITIONAL TESTING AND INSPECTIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                | CONSTRUCTION INSPECTIONS<br>CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT                                                                                                                                                                           |
| POST-CONSTRUCTION         X       MI INSPECTOR REDLINE OR RECORD DRAWING(S)         X       VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                | CONSTRUCTION INSPECTIONS<br>CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT                                                                                                                                                                           |
| X     MI INSPECTOR REDLINE OR RECORD DRAWING(S)       X     VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>X                                           | CONSTRUCTION INSPECTIONS<br>CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT<br>ON SITE COLD GALVANIZING VERIFICATION                                                                                                                                  |
| X     MI INSPECTOR REDLINE OR RECORD DRAWING(S)       X     VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>X<br>X                                      | CONSTRUCTION INSPECTIONS<br>CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT<br>ON SITE COLD GALVANIZING VERIFICATION<br>GC AS-BUILT DOCUMENTS                                                                                                         |
| X VZW PMI DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA<br>X<br>X                                      | CONSTRUCTION INSPECTIONS<br>CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT<br>ON SITE COLD GALVANIZING VERIFICATION<br>GC AS-BUILT DOCUMENTS                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>X<br>X                                      | CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS DNS:                                                                                                             |
| X PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>X<br>X<br>ADDITIONAL TESTING AND INSPECTION | CONSTRUCTION INSPECTIONS CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT ON SITE COLD GALVANIZING VERIFICATION GC AS-BUILT DOCUMENTS DNS: POST-CONSTRUCTION                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>X<br>X<br>ADDITIONAL TESTING AND INSPECTIC  | CONSTRUCTION INSPECTIONS         CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORT         ON SITE COLD GALVANIZING VERIFICATION         GC AS-BUILT DOCUMENTS         DNS:         POST-CONSTRUCTION         MI INSPECTOR REDLINE OR RECORD DRAWING(S) |

NOTE: X DENOTES A DOCUMENT REQUIRED FOR THE MI REPORT NA DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MI REPORT

THE MODIFICATION INSPECTION (MI) IS A VISUAL INSPECTION OF MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD (EOR)

THE MI IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR DOES THE MI INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTEGRITY RESIDES WITH THE EOR AT ALL TIMES.

TO ENSURE THAT THE REQUIREMENTS OF THE MI ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PURCHASE ORDER ( PO) IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY

#### MI INSPECTOR

THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PO FOR THE MI TO AT A MINIMUM

REVIEW THE REQUIREMENTS OF THE MI CHECKLIST

WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS

THE MI INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GC INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MI REPORT TO EOR.

#### GENERAL CONTRACTOR

THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A MINIMUM:

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE MI INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
- BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS

THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.

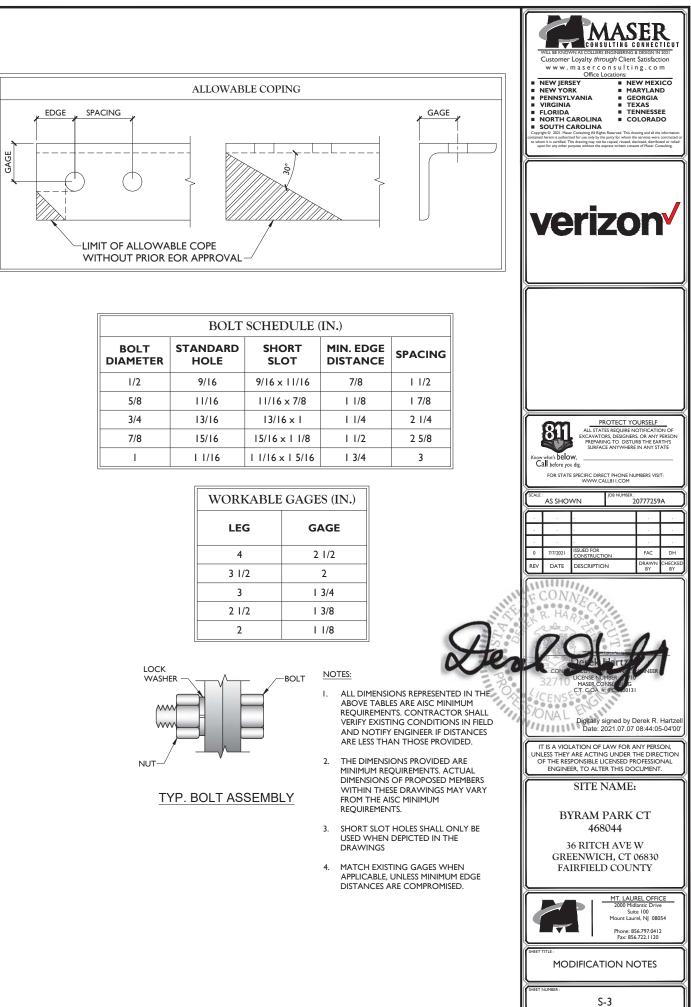
#### RECOMMENDATIONS

THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:

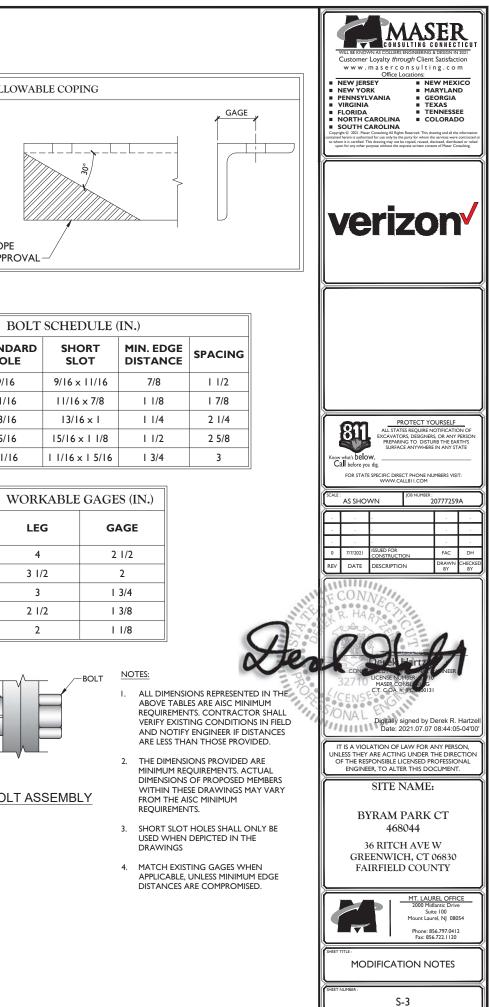
- IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.
- THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE PROJECT. WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
- IT MAY BE BENEFICIAL TO INSTALL ALL MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW THE FOUNDATION AND MI INSPECTION(S) TO
- COMMENCE WITH ONE SITE VISIT WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR ON-SITE DURING THE MI TO HAVE ANY DEFICIENCIES CORRECTED DURING THE INITIAL MI. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.

#### CORRECTION OF FAILING MI'S

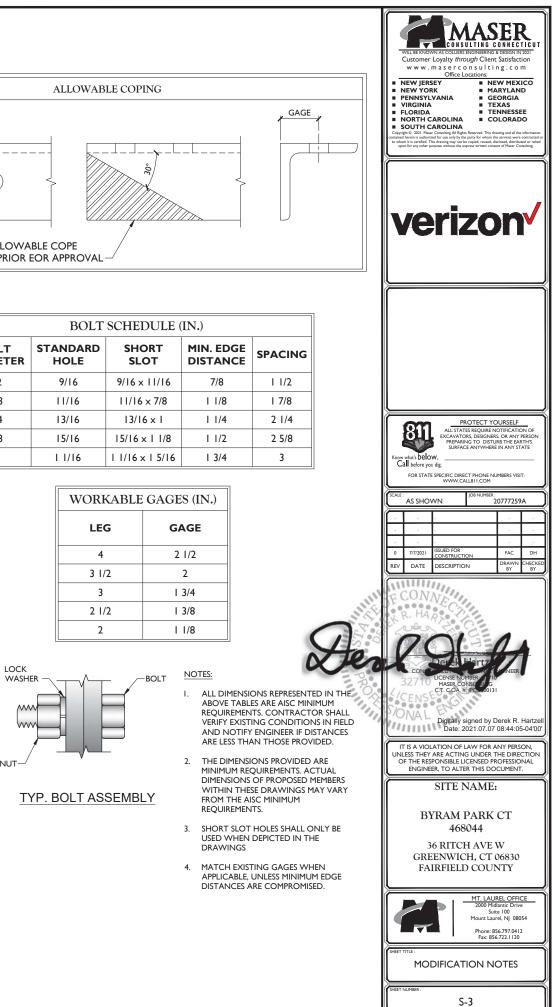
IF THE MODIFICATION INSTALLATION WOULD FAIL THE MI ("FAILED MI"), THE GC SHALL WORK WITH THE OWNER TO COORDINATE A REMEDIATION PLAN


CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENT MI

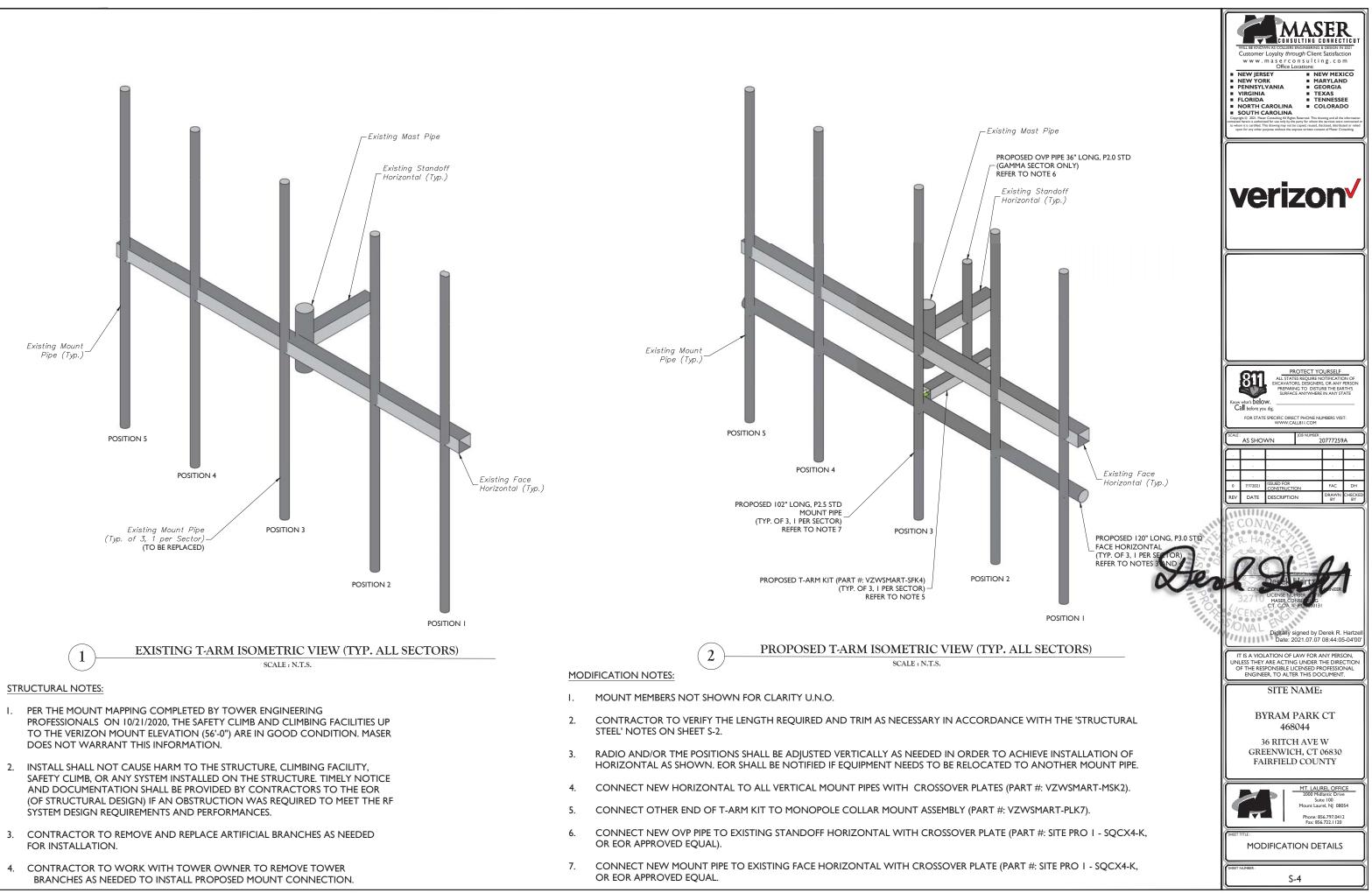
#### **REQUIRED PHOTOS**

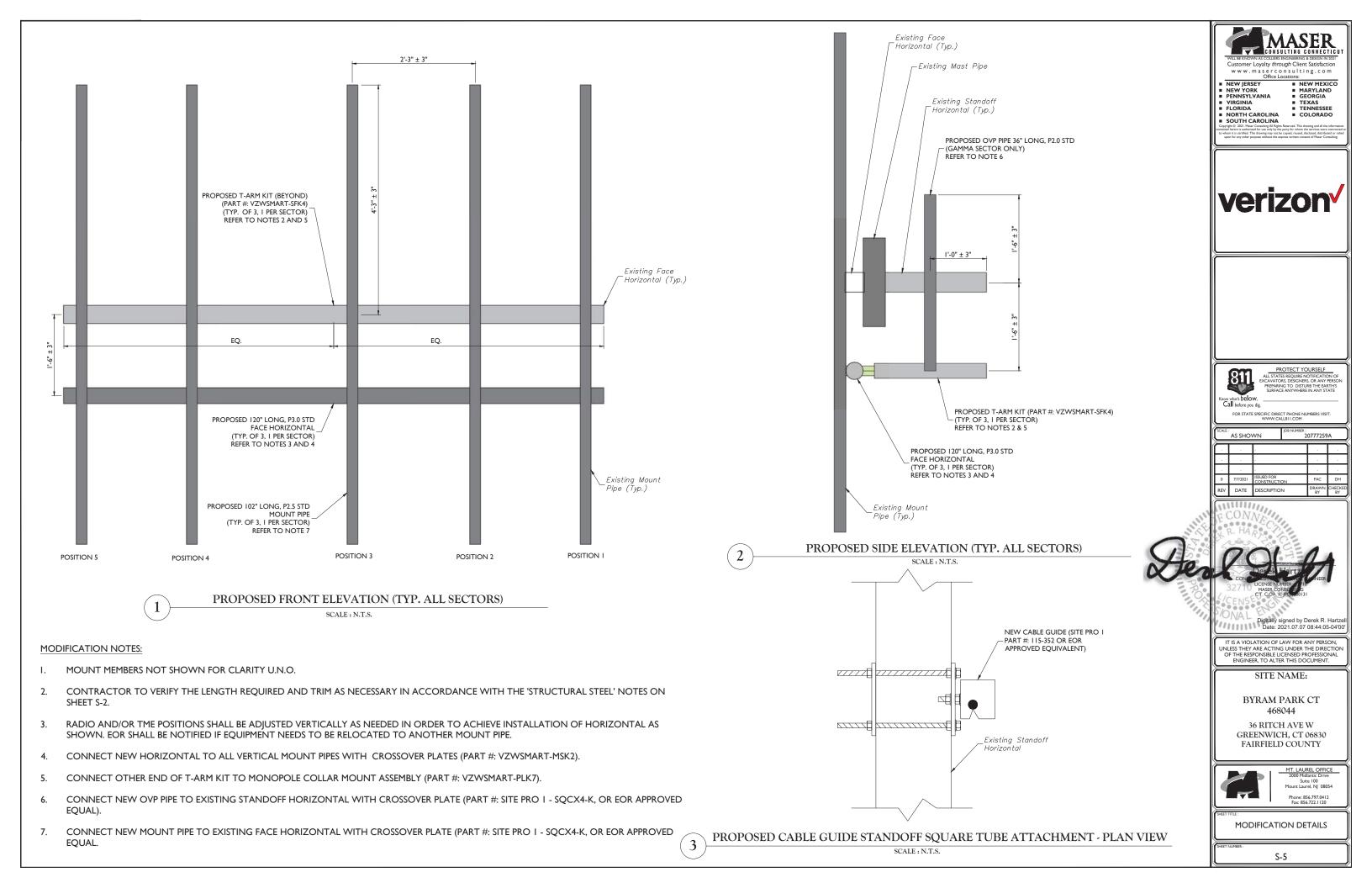

BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

- PRE-CONSTRUCTION GENERAL SITE CONDITION
- PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION
- RAW MATERIALS
- PHOTOS OF ALL CRITICAL DETAILS
- FOUNDATION MODIFICATIONS WELD PREPARATION ••
- ...
- BOLT INSTALLATION ••
- FINAL INSTALLED CONDITION
- SURFACE COATING REPAIR
   POST CONSTRUCTION PHOTOGRAPHS
- FINAL INFIELD CONDITION


PHOTOS OF ELEVATED MODIFICATIONS TAKEN ONLY FROM THE GROUND SHALL BE CONSIDERED INADEOUATE.

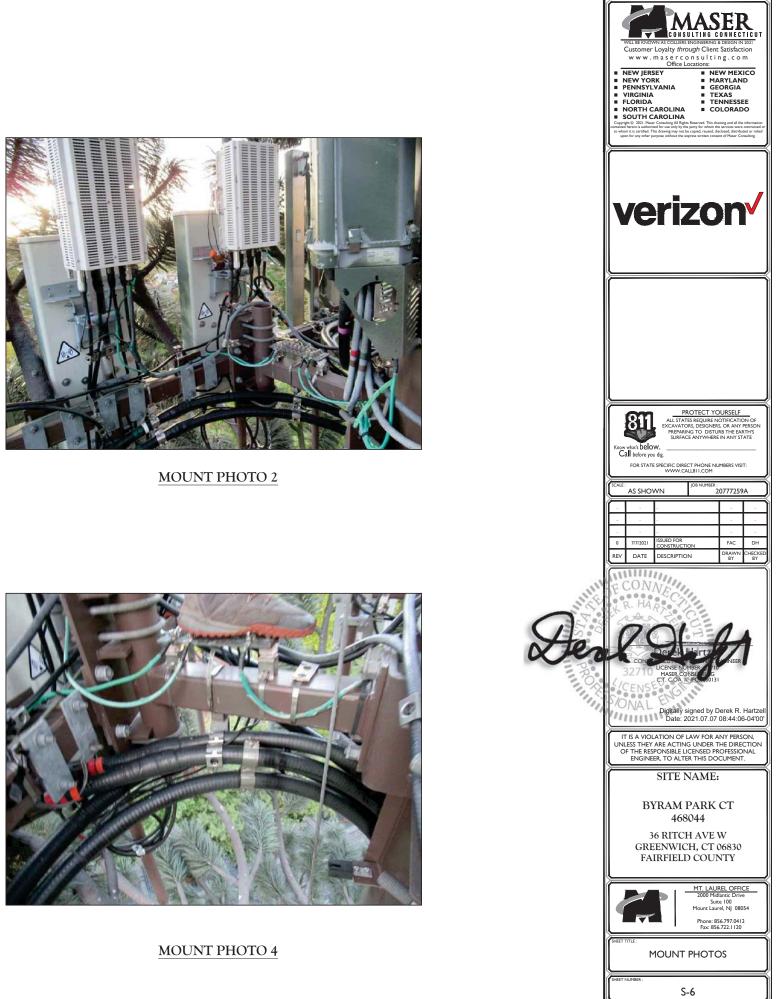



|                  | BOLT             | SCHED      |
|------------------|------------------|------------|
| BOLT<br>DIAMETER | STANDARD<br>HOLE | SHO<br>SLC |
| 1/2              | 9/16             | 9/16 x     |
| 5/8              | 11/16            | 11/16      |
| 3/4              | 13/16            | 13/16      |
| 7/8              | 15/16            | 15/16 x    |
| I                | / 6              | / 6 x      |




| LEG   |
|-------|
| 4     |
| 3 1/2 |
| 3     |
| 2 1/2 |
| 2     |

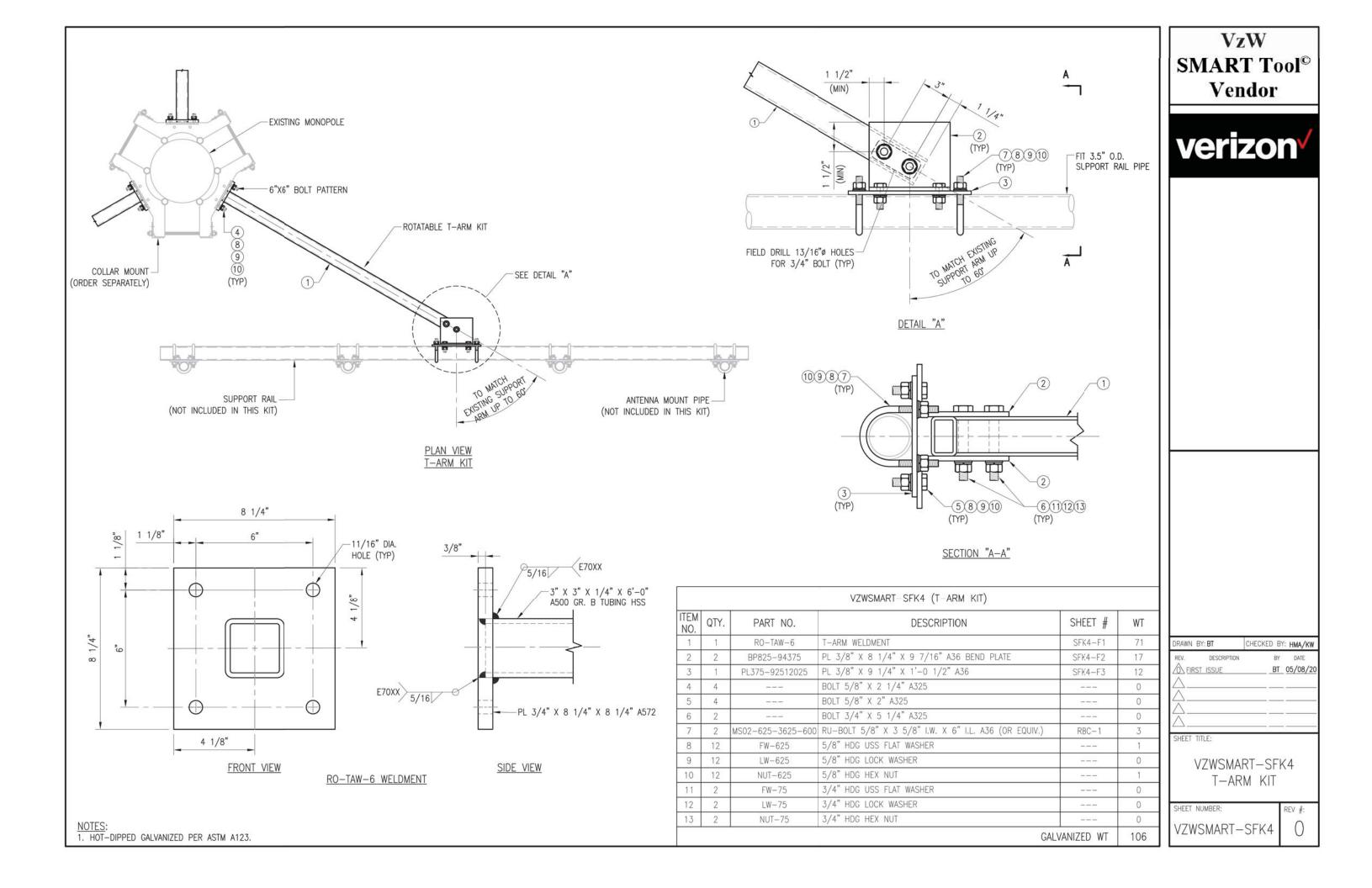


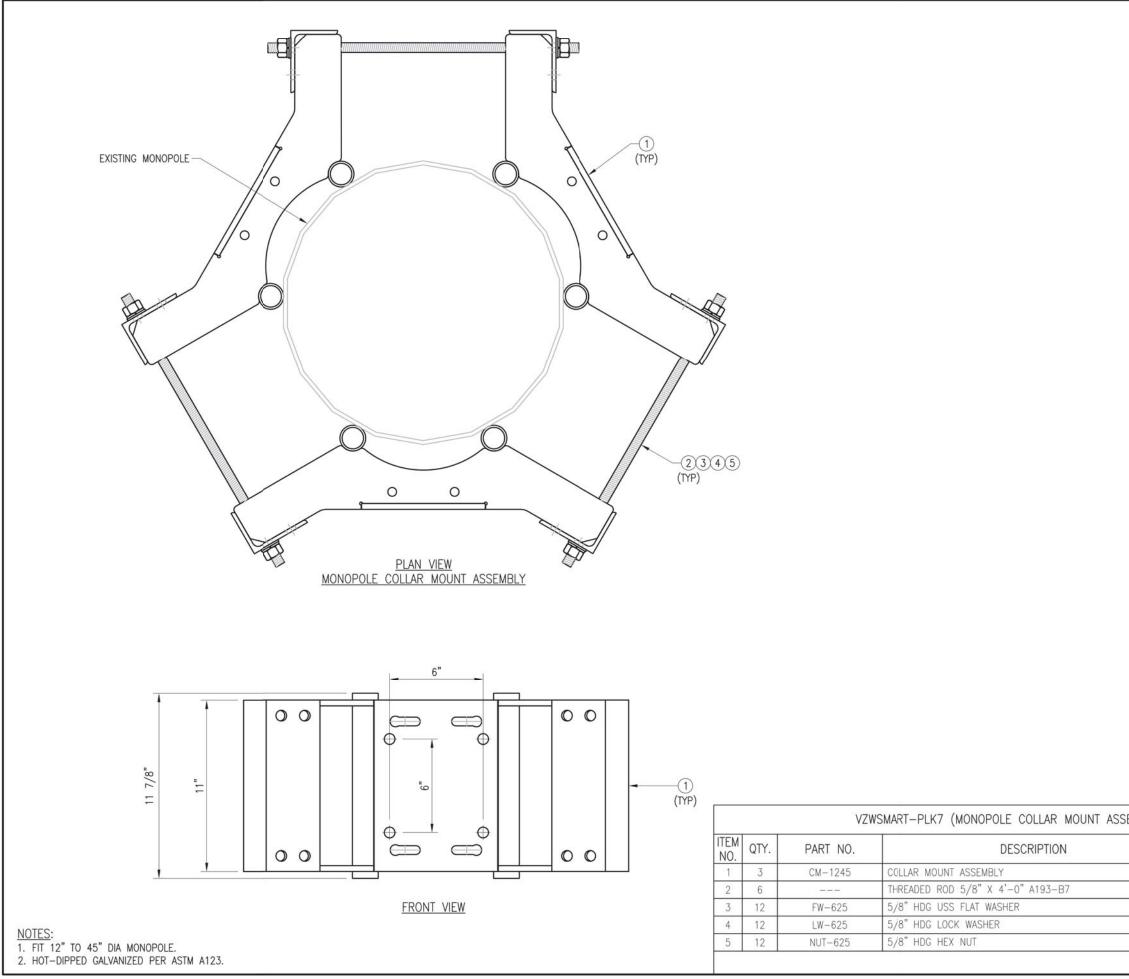

NOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTION








MOUNT PHOTO 1

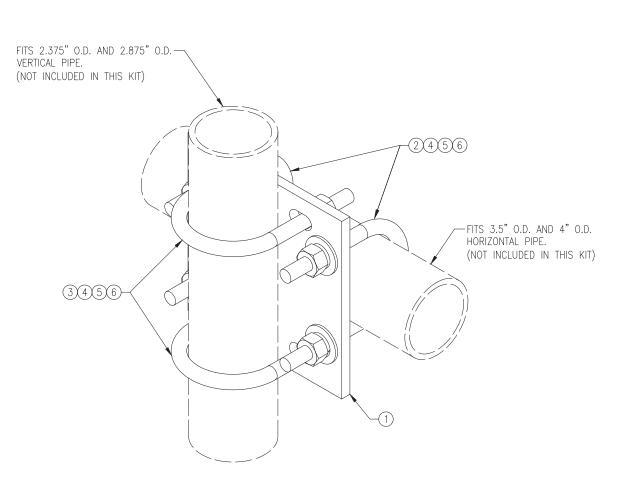


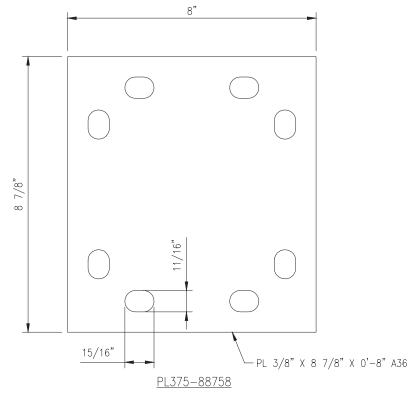





MOUNT PHOTO 3



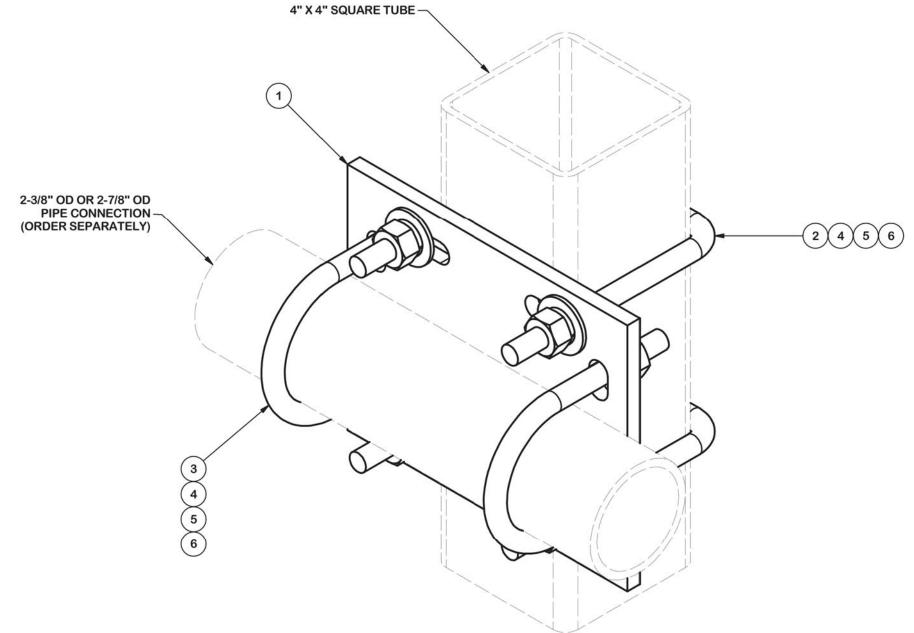




| VzW<br>SMART To<br>Vendor |                       |
|---------------------------|-----------------------|
| •                         | <br><br><br>K7<br>LAR |

| EMBLY) |
|--------|
|--------|

|     | SHEET #    | WT  |
|-----|------------|-----|
|     | PLK7-F1    | 147 |
|     |            |     |
|     |            | 1   |
|     |            | 0   |
|     |            | 1   |
| GAL | VANIZED WT | 150 |

| VZWSMART-MSK2 (CROSSOVER PLATE) |      |                   |                                                      |         |    |
|---------------------------------|------|-------------------|------------------------------------------------------|---------|----|
| ITEM<br>NO.                     | QTY. | PART NO.          | DESCRIPTION                                          | SHEET # | WT |
| 1                               | 1    | PL375-88758       | PL 3/8" X 8 3/4" X 0'-8" A36                         | MSK2-F1 | 8  |
| 2                               | 2    | MS02-625-4125-600 | RU-BOLT 5/8" X 4 1/8" I.W. X 6" I.L. A36 (OR EQUIV.) | RBC-1   | 3  |
| 3                               | 2    | MS02-625-300-500  | RU-BOLT 5/8" X 3" I.W. X 5" I.L. A36 (OR EQUIV.)     | RBC-1   | 3  |
| 4                               | 8    | FW-625            | 5/8" HDG USS FLAT WASHER                             |         | 1  |
| 5                               | 8    | LW-625            | 5/8" HDG LOCK WASHER                                 |         | 0  |
| 6                               | 8    | NUT-625           | 5/8"HDG HEX NUT                                      |         | 1  |
| GALVANIZED WT                   |      |                   |                                                      |         | 15 |








| S             | MA              | Vz<br>R'<br>'en | Т    | Γα | ool©     |
|---------------|-----------------|-----------------|------|----|----------|
| V             | 'el             |                 | 2    | D  | n⁄       |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
|               |                 |                 |      |    |          |
| DRAWN<br>REV. | BY: H.R<br>DESC |                 | CHEC |    | BY: HMA  |
| ^             | RST ISSUE       |                 |      |    | 05/08/20 |
| $\Delta$      |                 |                 |      |    |          |
| $\Delta$      |                 |                 |      | _  |          |
|               | TITLE:          |                 |      |    |          |
|               | VZWS            | 21/1/2          | D T  | MS | K2       |
| (             | CROS            |                 |      |    | ATE      |

| ITEM | QTY        | PART NO.  | PART DESCRIPTION                                    | LENGTH   | UNIT WT.    | NET WT. |
|------|------------|-----------|-----------------------------------------------------|----------|-------------|---------|
| 1    | 1          | SCX4      | CROSSOVER PLATE                                     | 8 1/2 in | 6.02        | 6.02    |
| 2    | 2          | X-SUB1418 | SQUARE U-BOLT 0.5" DIA. X 4.125" IW X 6" IL X 3" TR |          | 0.98        | 1.95    |
| 3    | 2          | X-UB1212  | 1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)           |          | 0.60        | 1.19    |
| 3    | 2          | X-UB1300  | 1/2" X 3" X 5" X 2" U-BOLT (HDG.)                   |          | 0.67        | 1.34    |
| 4    | 8          | G12FW     | 1/2" HDG USS FLATWASHER                             | 3/32 in  | 0.03        | 0.27    |
| 5    | 8          | G12LW     | 1/2" HDG LOCKWASHER                                 | 1/8 in   | 0.01        | 0.11    |
| 6    | 8          | G12NUT    | 1/2" HDG HEAVY 2H HEX NUT                           |          | 0.07        | 0.57    |
|      | 6-1 - 10.0 | 14. A.    |                                                     | đa       | TOTAL WT. # | 11.35   |



| TOLERANCE NOTES                                                                                                                                                                                                                                          | DESCRIPTION |                                      |                           |                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|---------------------------|------------------------|--|
| TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE:<br>SAWED, SHEARED AND GAS CUT EDGES (± 0.030")<br>DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES<br>LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES<br>BENDS ARE ± 1/2 DEGREE |             | CROSSOVER PL<br>W/ SQUARE U-BOLTS AN |                           |                        |  |
| ALL OTHER MACHINING (± 0.030")<br>ALL OTHER ASSEMBLY (± 0.060")                                                                                                                                                                                          | CPD NO      | ).                                   | DRAWN BY<br>CSL 9/18/2018 | ENG. APPROVA           |  |
| PROPRIETARY NOTE:<br>THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT<br>INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF<br>VALMONT INDUSTRIES IS STRICTLY PROHIBITED.    | CLASS<br>87 | SUB<br>02                            | DRAWING USAGE<br>CUSTOMER | CHECKED BY<br>BMC 11/1 |  |

| BOLTS          | Engineering<br>Support Team:<br>1-888-753-7446 | Locations:<br>New York, NY<br>Atlanta, GA<br>Los Angeles, CA<br>Plymouth, IN<br>Salem, OR<br>Dallas, TX |          |
|----------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| DVAL<br>RTY    | PART NO. SQCX4-K                               | -                                                                                                       | -<br>2 ₽ |
| γ<br>1/12/2018 | DWG. NO.<br>SQCX4-K                            |                                                                                                         | J<br>J   |