

August 27, 2013
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051
Attn: Ms. Melanie Bachman, Executive Director

Re: 5 Perryridge Road - Greenwich, CT

Dear Ms. Bachman,

On behalf of Sprint Nextel Corporation ("Sprint"), enclosed for filing are One (1) original and two (2) copies of Sprint's Notice of Exempt Modification for Proposed Modifications to an Existing Telecommunications Facility located at the above-referenced site.

I also enclose herewith a check in the amount of $\$ 625.00$ representing the fee for the Notice of Exempt Modification.

If you have any questions, please feel free to contact me.
Thank you,
By: :F.Sagristano
Name: Paul F. Sagristano
Vertical Development LLC, an authorized representative of Sprint Nextel
Vertical Development LLC
20 Commercial Street
Branford, CT 06405
Phone - 917-841-0247
Fax - 401-633-6202
psagristano@verticaldevelopmentllc.com

CC: Mr. Peter Tesei, First Selectman
Greenwich Town Hall
101 Field Point Road
Greenwich, CT 06830

Greenwich Hospital, (Yale New Haven Health System) Property Owner
c/o Stephen Carbery VP Facilities
Yale New Haven Health System
789 Howard St.
New Haven, CT 06519

Notice of Exempt Modification 5 Perryridge Road, Greenwich, CT

Sprint Nextel Corporation ("Sprint") submits this Notice of Exempt Modification to the Connecticut Siting Council ("Council") pursuant to Sections 16-50j-73 and 16-50j72(b) of the Regulations of Connecticut State Agencies ("Regulations") in connection with Sprint's planned modification of antennas and associated equipment on an existing 164' Monopole tower located @ 5 Perryridge Road Greenwich, CT. More particularly, Sprint plans to upgrade this site by adding 4G LTE technology to its facilities. The proposed modifications will not increase the tower height, extend the boundaries of the tower site, cause a significant adverse change or alteration in the physical or environmental characteristics of the site, increase noise levels at the tower site boundary by six (6) decibels, add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996, as amended, and the State Department of Energy and Environmental Protection, pursuant to Section 22a-162 of the Connecticut General Statutes, or impair the structural integrity of the facility, as determined in a certification provided by a professional engineer licensed in Connecticut.

To better meet the growing voice and data demands of its wireless customers, Sprint is upgrading their network nationwide to include 4G technology, which will provide faster service and better overall performance. Pursuant to the 4G upgrade at this site, Sprint will add antennas, install RRUs (Remote Radio Units) and install related equipment to its equipment area within the fenced tower compound.

The 164' Monopole located @ 5Perryridge Road Greenwich, CT (lat. $41^{\circ} .03419$ N , long. $73^{\circ} .63082 \mathrm{~W}$, is owned by Greenwich Hospital. It is located on a 7.3274 acre parcel. Sprint currently has three (3) antennas, one (1) antenna on each on three (3) sectors) with a centerline of $155^{\prime} 6^{\prime \prime}$ installed on the tower. Sprint's base station equipment is located inside a building adjacent to the base of the tower. A site plan depicting this is attached.

Sprint plans to add three (3) RFS APXVTM-14-C-I20 panel antennas, one (1) per sector, all with a centerline of 155' 6". Connected to each new RFS antenna will be one (1) ALU TD RRH 8×20 RRH which will be located behind the antenna. The height of the tower will not be increased. Sprint also plans to install a new 2500 MHz 9929 Growth Cabinet which is to be installed within the existing equipment building. The compound's boundaries will not be extended. The proposed modifications will not cause a significant adverse change or alteration in the physical or environmental characteristics of the site, since it is already a telecommunications installation and the modifications will be compatible with this. Other than brief, construction-related noise, these modifications will not increase noise levels at the tower site boundary by six (6) decibels.

The proposed modifications will not add radio frequency sending or receiving capability which increases the total radio frequency electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996, as amended, and the State Department of Energy and Environmental Protection, pursuant to Section 22a-162 of the Connecticut General Statutes. A radio frequency emissions analysis prepared by EBI Consulting indicates that the proposed final configuration (including other carriers on the tower) will emit 90.29\% of the allowable FCC established general public limit sampled at the ground level (see the 3rd page of Emissions Analysis Report - Evaluation of Human Exposure Potential to Non-lonizing Emissions, August 23, 2014). Emission values for the Sprint antennas have been calculated from the sample point, which is the top of a six foot person standing at the base of the tower. Emissions values for additional carriers were based upon values listed in Connecticut Siting Council active database (see page 5 of Radio Frequency Emissions Analysis Report - Evaluation of Human Exposure Potential to Non-Ionizing Emissions, August 23, 2014). The information used in the report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1 (see the second page of Radio Frequency Emissions Analysis Report - Evaluation of Human Exposure Potential to Non-lonizing Emissions, August 23, 2014).

The proposed modifications will not impair the structural integrity of the facility. Sprint commissioned Infinigy Engineering to perform a structural analysis of the tower to verify that it can support the proposed loading. The structure and foundation were found to be of "Sufficient Capacity" with the proposed modifications (see the first page of Post-Mod Tower Analysis Report, June 12, 2014). The tower is rated at 47.2% of its capacity with the proposed modifications (see the first page of Post-Mod Tower Analysis Report, June 12, 2014).

In conclusion, Sprint's proposed modifications do not constitute a modification subject to the Council's review because Sprint will not change the height of the tower, will not extend the boundaries of the compound, will not cause a significant adverse change or alteration in the physical or environmental characteristics of the site, will not increase the noise levels at the site, will not increase the total radio frequency electromagnetic radiation power density at the site to levels above applicable standards, and will not impair the structural integrity of the facility. Therefore, Sprint respectfully requests that the Council acknowledge that this Notice of Exempt Modification meets the Council's exemption criteria.
environmental | engineering | due diligence

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT43XC855

Greenwich Hospital
5 Perryridge Road
Greenwich, CT 06830
August 23, 2014

EBI Project Number: 62144365

August 23, 2014

Sprint
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495
Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site:
CT43XC855-Greenwich Hospital
Site Total: $\underline{\mathbf{9 0} .29 \%}$ - MPE \% in full compliance
EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 5 Perryridge Road, Greenwich, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the cellular band (850 MHz Band) is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz and 2500 MHz bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 5 Perryridge Road, Greenwich, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

1) 3 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the RFS APXVSPP18-C-A20, POWERWAVE P40-16-XLPP-RR-A and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz . The POWERWAVE P40-16-XLPP-RR-A has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz . The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline for the proposed antennas is $\mathbf{1 5 5}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Site Composite MPE \%	
Carrier	MPE \%
Sprint	2.53%
Verizon Wireless	34.38%
AT\&T	26.02%
MW to Bruce	6.85%
MW to PD	0.17%
MW to Putnam	6.85%
Trunked system	2.04%
Mutual Aid	1.13%
CMED	0.77%
FirePaging	1.15%
SP Hotine	1.49%
Clearwire	0.78%
T-Mobie	0.17%
Nextel	5.96%
Total Site MPE \%	$\mathbf{9 0 . 2 9 \%}$

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are $\mathbf{2 . 5 3 \%}$ ($\mathbf{0 . 8 4 \%}$ from sector $\mathbf{1 , 0 . 8 4 \%}$ from sector $\mathbf{2}$ and $\mathbf{0 . 8 4 \%}$ from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{9 0 . 2 9 \%}$ of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting
21 B Street
Burlington, MA 01803

Tower Analysis Report

June 12, 2014

Site Name	Greenwich Hospital - CT43XC855
Infinigy Job Number	$333-000$
Client	Sprint
Proposed Carrier	Sprint
	5 Perryridge Dr., Greenwich, CT 06830
Site Location	Fairfield County
	$41^{\circ} 2^{\prime} 2.04^{\prime \prime}$ N NAD83
	$73^{\circ} 37^{\prime} 50.8794^{\prime \prime}$ W NAD83
Structure Type	164^{\prime} Monopole
Structural Usage Ratio	$\mathbf{4 7 . 2 \%}$
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The tower and foundations are therefore deemed adequate to support the existing and proposed loading as listed in this report.

Maxwell R. Becker, E.I.T. Structural Engineer I

Contents

Introduction. 3
Supporting Documentation 3
Analysis Code Requirements 3
Conclusion 3
Existing and Reserved Loading. 4
Proposed Loading 4
Structure Usages 4
Foundation Reactions 5
Deflection, Twist, and Sway 5
Assumptions and Limitations 5
Calculations Appended

Introduction

Infinigy Engineering has been requested to perform a structural analysis on the existing 164^{\prime} Monopole. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The tower was analyzed using tnxTower version 6.1.3.1 tower analysis software.

Supporting Documentation

Construction Drawings	Infinigy Engineering, Job \# 333-000, dated October 01, 2013
Previous Analysis	Salient Associates Site \# CT43XC855, dated January 18, 2013

Analysis Code Requirements

Wind Speed	100 mph (3-Second Gust)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 3/4" ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	$2003 \mathrm{IBC} \mathrm{w} / 2005$ CT Supplement \& 2009 CT Amendment
Structure Class	2
Exposure Category	B
Topographic Category	1
Calculated Crest Height	0 ft

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The tower and foundations are therefore deemed adequate to support the existing and proposed loading as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Maxwell R. Becker, E.I.T.
Structural Engineer I | Infinigy
1033 Watervliet Shaker Road, Albany, NY 12205
(O) (518) 690-0790 | (M) (518) 221-4665
mbecker@infinigy.com | www.infinigy.com

Existing and Reserved Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	Coax\& Lines	Carrier
165.0	1	Camera	Platform	(6) 1-5/8"	Town of Greenwich
	1	GPS			
	3	RFS BMR12			
	1	Celwave PD1142-1			
	1	Celwave PD620-3			
	1	Celwave ALR8-0			
160.0	2	4 ft . STD Dish	Pipes	(3) 1-5/8"	
	1	Andrew VP2-180A	Pipe		
155.0	1	GPS	Platform	(1) 2-1/4" (2) $1 / 2^{\prime \prime}$	Clearwire
	3	Commscope LLPX310R			
	2	Dragonwave 24" Dish			
	2	RFS APXVSPP18-C			
	1	Powerwave P4-16-XLPP-RR-A		(1) $1 / 2$ "	Sprint
152.0	3	Alcatel-Lucent 800 MHz RRH		(3) $1-1 / 4$ "	
	3	Alcatel-Lucent 1900 MHz RRH		Hybriflex	
145.0	6	RFS APX16PV-16PVL-C	Platform	(12) 1-5/8"	T-Mobile
	6	Ericsson KRY 11271			
135.0	6	Powerwave 7770.00	Platform	(12) 1-5/8"	AT\&T
	4	Powerwave LGP 21401 TMA			
	2	Powerwave LGP 17201 TMA			
125.0	6	Decibel DB844G45ZAXY	Platform	(18) 1-5/8"	Verizon Wireless
	3	LNX-6514DS-T0M			
115.0	12	Decibel DB846G90A-XY	Platform	(12) 1-5/8"	Nextel

Proposed Loading

Mount Height (ft)	Qty.	Appurtenance	Mount Type	 Lines	Carrier
155.5	3	RFS APXVTM14-C-120	Platform	(3) 1-1/4" Fiber	Sprint
	3	Alcatel Lucent TD-RRH8X20			

Structure Usages

Pole (T5)	35.5	Pass
Base Plate	47.2	Pass
RATING $=$	$\mathbf{4 7 . 2}$	Pass

Foundation Reactions

Reaction Data	Design Reactions	Analysis Reactions	Result
Moment (kip)	--	4760.9	--
Shear (kip)	--	41.5	--
Axial (kip)	--	136.3	--

The existing foundation was not evaluated because no information was made available at the time of this analysis.

Deflection, Twist, and Sway

Antenna Elevation (ft)	Deflection (in)	Twist $\left({ }^{\circ}\right)$	Sway $\left({ }^{\circ}\right)$
155.5	5.71	0.00	0.29

*Per ANSI/TIA-222-G Section 2.8 .2 maximum serviceability structural deflection limit is 3% of structure height.
*Per ANSI/TIA-222-G Section 2.8.2 maximum serviceability structural twist and sway limit is 4 degrees.
*Per ANSI/TIA-222-G Section 2.8.3 deflection, Twist, and sway values were calculated using a basic 3-second gust wind speed of 60 mph .
*It is the responsibility of the client to ensure their proposed and/or existing equipment will meet ANSI/TIA-222-G Annex D or other appropriate microwave signal degradation limits based on the provided values above.

Assumptions and Limitations

All engineering services are completed assuming all information provided to Infinigy Engineering is current and correct. If actual conditions differ from those described in this report we should be notified immediately to complete a revised evaluation.

It is the responsibility of the client to ensure that the information provided to Infinigy Engineering is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the design drawings and specifications that have been supplied.

All calculations are completed in accordance with generally accepted engineering principles and practices. Infinigy Engineering is not responsible the conclusions, opinions, and recommendations made by others based on the information we supply.

This report is an evaluation of the tower structure only and does not reflect adequacy of any existing antenna mounts, mount connections, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Angle Low Profile Platform (Town of Greenwich)	165	1900 MHz RRH (Sprint)	152
BMR12-A (Town of Greenwich)	165	1900 MHz RRH (Sprint)	152
BMR12-A (Town of Greenwich)	165	1900 MHz RRH (Sprint)	152
BMR12-A (Town of Greenwich)	165	800 MHz RRH (Sprint)	152
GPS (Town of Greenwich)	165	800 MHz RRH (Sprint)	152
ALR8 (Town of Greenwich)	165	(2) KRY11271/2 (T-Mobile)	145
PD1142-1 (Town of Greenwich)	165	Angle Low Profile Platform (T-Mobile)	145
PD620 (Town of Greenwich)	165	(2) APX16PV-16PVL (T-Mobile)	145
Camera (Town of Greenwich)	165	(2) APX16PV-16PVL (T-Mobile)	145
Dish Pipe Mount (Town of Greenwich)	160	(2) APX16PV-16PVL (T-Mobile)	145
Dish Pipe Mount (Town of Greenwich)	160	(2) KRY11271/2 (T-Mobile)	145
Dish Pipe Mount (Town of Greenwich)	160	(2) KRY11271/2 (T-Mobile)	145
4' Std. Dish (Town of Greenwhich)	160	(2) LGP21401 (ATI)	135
4' Std. Dish (Town of Greenwhich)	160	(2) LGP17201 (ATI)	135
VP2-180A (Town of Greenwhich)	160	(2) 7700.00 (ATI)	135
APXVTM14-C-120 (Sprint)	155.5	(2) 7700.00 (ATI)	135
APXVTM14-C-120 (Sprint)	155.5	(2) 7700.00 (ATI)	135
APXVTM14-C-120 (Sprint)	155.5	(2) LGP21401 (ATI)	135
TD-RRH8X20 (Sprint)	155.5	Angle Low Profile Platform (ATI)	135
TD-RRH8X20 (Sprint)	155.5	DB844G45ZAXY (Verizon Wireless)	125
TD-RRH8X20 (Sprint)	155.5	DB844G45ZAXY (Verizon Wireless)	125
DB980F90E-M (Sprint)	155	LNX-6514DS-VTM (Verizon Wireless)	125
DB980F90E-M (Sprint)	155	LNX-6514DS-VTM (Verizon Wireless)	125
DB950F65T2E-M (Sprint)	155	LNX-6514DS-VTM (Verizon Wireless)	125
LLPX310R (Sprint)	155	Angle Low Profile Platform (Verizon	125
LLPX310R (Sprint)	155	Wireless)	
LLPX310R (Sprint)	DB844G45ZAXY (Verizon Wireless)	125	
P40-16-XLPP-RR-A (Sprint)	155	DB844G45ZAXY (Verizon Wireless)	125
Angle Low Profile Platform (Sprint)	155	DB844G45ZAXY (Verizon Wireless)	125
APXVSPP18-C-A20 (Sprint)	155	DB844G45ZAXY (Verizon Wireless)	125
APXVSPP18-C-A20 (Sprint)	155	(4) DB846G90A-XY (Nextel)	115
A-ANT-23G-24 (Sprint)	155	(4) DB846G90A-XY (Nextel)	115
A-ANT-23G-24 (Sprint)	155	(4) DB846G90A-XY (Nextel)	115
800 MHz RRH (Sprint)	152	Angle Low Profile Platform (Nextel)	115

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 100 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 80%

ALL REACTIONS ARE FACTORED

TORQUE 5458 lb -ft
50 mph WIND - 0.7500 in ICE

TORQUE 21038 lb-ft
REACTIONS - 100 mph WIND

Infinigy Engineering 2255 Sewell Mill Road, Suite 130 Marietta, GA 30062	1ob: 333-000		
	Project: Greenwich Hospital		
	Client: Sprint	Drawn by: MBecker	App'd:
Phone: (678) 444-4463	Code: TIA-222-G	Date: 06/09/14	Scale: NTS
FAX: (678)444-4472	Path:		${ }^{\text {No. }}$

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job	333-000	$\begin{array}{ll} \hline \text { Page } \\ & \\ \end{array}$
	Project	Greenwich Hospital	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Tower Input Data

There is a pole section.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Basic wind speed of 100 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
$\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
$\sqrt{ }$ Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component
$\sqrt{ }$ Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
$\sqrt{ }$ All Leg Panels Have Same Allowable Offset Girt At Foundation
$\sqrt{ }$ Consider Feedline Torque
$\sqrt{ }$ Include Angle Block Shear Check Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	164.00-131.50	32.50	0.00	18	47.0000	53.4200	0.3125	1.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	131.50-119.29	12.21	6.00	18	53.4200	56.1500	0.3750	1.5000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job 333-000		Page
			2 of 13
	Greenwich Hospital		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \\ \hline \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Section	Elevation $f t$	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L3	119.29-78.79	46.50	8.42	18	54.0585	62.9700	0.4375	1.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	78.79-39.88	47.33	9.25	18	60.4813	69.6600	0.5625	2.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	39.88-0.00	49.13		18	66.7412	76.0000	0.5625	2.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Monopole Base Plate Data

Base Plate Data	
Base plate is square	
Base plate is grouted	A615-75
Anchor bolt grade	2.2500 in
Anchor bott size	30
Number of bolts	48.0000 in
Embedment length	3 ksi
f_{c}	2.0000 in
Grout space	A 36
Base plate grade	3.0000 in

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job	333-000	$\begin{array}{ll} \text { Page } \\ & \\ & \\ \text { of } 13 \end{array}$
	Project	Greenwich Hospital	Date $14: 11: 52 \text { 06/09/14 }$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Base Plate Data	
Bolt circle diameter	86.0000 in
Outer diameter	92.0000 in
Inner diameter	74.5000 in
Base plate type	Plain Plate

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number	Number Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
$\begin{aligned} & * * * \\ & * * * \end{aligned}$										

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Allow Shield \& Component Type \& Placement
ft \& Total Number \& \& $C_{A} A_{A}$

$f t^{2} / f t$ \& Weight
plf

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{164.00-4.50} \& \multirow[t]{3}{*}{6} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{160.00-4.50} \& \multirow[t]{3}{*}{3} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{1/2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{154.00-4.50} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 0.25

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.25

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.25

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{114.00-4.50} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$11 / 4$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{154.00-4.50} \& \multirow[t]{3}{*}{3} \& No Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.66

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{124.00-6.00} \& \multirow[t]{3}{*}{6} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{124.00-6.00} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{134.00-8.00} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{144.00-10.00} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$15 / 8$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{154.00-4.50} \& \multirow[t]{3}{*}{6} \& No Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.04

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 1.04

\hline \multirow[t]{3}{*}{$21 / 4$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{154.00-4.50} \& \multirow[t]{3}{*}{1} \& No Ice \& 0.00 \& 1.16

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.16

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 1.16

\hline \multirow[t]{3}{*}{1/2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{154.00-4.50} \& \multirow[t]{3}{*}{2} \& No Ice \& 0.00 \& 0.25

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.25

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.25

\hline \multicolumn{9}{|l|}{***}

\hline *** \& \& \& \& \& \& \& \&

\hline *** \& \& \& \& \& \& \& \&

\hline
\end{tabular}

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job		$\text { Page } 4 \text { of } 13$
	Project	Greenwich Hospital	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Allow Shield \& Component Type \& Placement
ft \& Total Number \& \& $C_{A} A_{A}$

$f t^{2} / f t$ \& Weight
plf

\hline \multirow[t]{3}{*}{$11 / 4$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{155.50-4.50} \& \multirow[t]{3}{*}{3} \& No Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.66

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.66

\hline \multirow[t]{3}{*}{1-1/4" Hybrid} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{Inside Pole} \& \multirow[t]{3}{*}{155.50-4.50} \& \multirow[t]{3}{*}{3} \& No Ice \& 0.00 \& 0.83

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.83

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.83

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight
lb

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{164.00-131.50} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 227.93

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 244.92

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 341.50

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{131.50-119.29} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 182.47

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 219.87

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 283.26

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{119.29-78.79} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 915.71

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 884.52

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1378.98

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{78.79-39.88} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 879.76

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 849.79

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1388.27

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{39.88-0.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 781.22

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 694.70

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1218.64

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& \(A_{R}\)
\(f t^{2}\) \& \(A_{F}\)

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& | Weight |
| :--- |
| $l b$ |

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{164.00-131.50} \& A \& \multirow[t]{3}{*}{1.742} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 227.93

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 244.92

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 341.50

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{131.50-119.29} \& A \& \multirow[t]{3}{*}{1.714} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 182.47

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 219.87

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 283.26

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{119.29-78.79} \& A \& \multirow[t]{3}{*}{1.674} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 915.71

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 884.52

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1378.98

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{78.79-39.88} \& A \& \multirow[t]{3}{*}{1.591} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 879.76

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 849.79

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1388.27

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{39.88-0.00} \& A \& \multirow[t]{3}{*}{1.424} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 781.22

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 694.70

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 1218.64

\hline
\end{tabular}

Feed Line Center of Pressure

tnxTOWer	Job	Page	
	Project	Client	Greenwich Hospital

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice	$C P_{Z}$ Ice
			in	in	in
ft	in	in	0.0000	0.0000	0.0000
L1	$164.00-131.50$	0.0000	0.0000	0.0000	0.0000
L3	$131.50-119.29$	0.0000	0.0000	0.0000	0.0000
L4	$119.29-78.79$	0.0000	0.0000	0.0000	0.0000
L5	$78.79-39.88$	0.0000	0.0000	0.0000	0.0000

Shielding Factor Ka

Tower				
Section	Feed Line			
Record No.		\quad Description	Feed Line	K_{a}
:---:	:---:			
Segment Elev.	No Ice		K_{a}	
:---:				
Ice				

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (Town of Greenwich)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 37.10 \& 37.10 \& 1900.00

\hline \multirow[t]{3}{*}{| BMR12-A |
| :--- |
| (Town of Greenwich) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 13.25 \& 13.25 \& 92.00

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 15.31 \& 15.31 \& 180.53

\hline \& \& \& 5.00 \& \& \& $1{ }^{1 /}$ Ice \& 17.39 \& 17.39 \& 282.10

\hline \multirow[t]{3}{*}{| BMR12-A |
| :--- |
| (Town of Greenwich) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 13.25 \& 13.25 \& 92.00

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 15.31 \& 15.31 \& 180.53

\hline \& \& \& 5.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 17.39 \& 17.39 \& 282.10

\hline \multirow[t]{3}{*}{| BMR12-A |
| :--- |
| (Town of Greenwich) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 13.25 \& 13.25 \& 92.00

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 15.31 \& 15.31 \& 180.53

\hline \& \& \& 5.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 17.39 \& 17.39 \& 282.10

\hline \multirow[t]{3}{*}{| GPS |
| :--- |
| (Town of Greenwich) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 0.50 \& 0.50 \& 10.00

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 0.63 \& 0.63 \& 15.96

\hline \& \& \& 3.00 \& \& \& 1" Ice \& 0.78 \& 0.78 \& 23.49

\hline \multirow[t]{3}{*}{| ALR8 |
| :--- |
| (Town of Greenwich) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 8.10 \& 8.10 \& 70.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.29 \& 9.29 \& 80.00

\hline \& \& \& 5.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.48 \& 10.48 \& 90.00

\hline \multirow[t]{3}{*}{PD1142-1
(Town of Greenwich)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 1.86 \& 1.86 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.76 \& 3.76 \& 27.21

\hline \& \& \& 5.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.67 \& 5.67 \& 56.16

\hline \multirow[t]{3}{*}{PD620
(Town of Greenwich)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& No Ice \& 4.27 \& 4.27 \& 53.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.68 \& 7.68 \& 95.00

\hline \& \& \& 10.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 11.09 \& 11.09 \& 137.00

\hline \multirow[t]{3}{*}{| Camera |
| :--- |
| (Town of Greenwich) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{165.00} \& No Ice \& 1.40 \& 2.80 \& 15.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.56 \& 3.04 \& 39.92

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.73 \& 3.28 \& 68.15

\hline \multicolumn{6}{|l|}{***} \& \& \& \&

\hline \multirow[t]{3}{*}{Dish Pipe Mount (Town of Greenwich)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.09 \& 2.09 \& 54.66

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.46 \& 2.46 \& 80.59

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.85 \& 2.85 \& 110.49

\hline \multirow[t]{3}{*}{Dish Pipe Mount (Town of Greenwich)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.09 \& 2.09 \& 54.66

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.46 \& 2.46 \& 80.59

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.85 \& 2.85 \& 110.49

\hline
\end{tabular}

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job	333-000	Page 6 of 13
	Project	Greenwich Hospital	Date 14:11:52 06/09/14
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

tnxTower	Job	333-000	Page
			7 of 13
Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Project	Greenwich Hospital	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
ft \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

ft \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.27 \& 3.94 \& 93.66

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.75 \& 4.58 \& 147.19

\hline \multirow[t]{3}{*}{(2) APX16PV-16PVL (T-Mobile)} \& C \& From Leg \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 6.80 \& 3.31 \& 46.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.27 \& 3.94 \& 93.66

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.75 \& 4.58 \& 147.19

\hline \multirow[t]{3}{*}{| (2) KRY11271/2 |
| :--- |
| (T-Mobile) |} \& A \& From Leg \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.93 \& 0.68 \& 25.16

\hline \multirow[t]{3}{*}{| (2) KRY11271/2 |
| :--- |
| (T-Mobile) |} \& B \& From Leg \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.93 \& 0.68 \& 25.16

\hline \multirow[t]{3}{*}{(2) KRY11271/2 (T-Mobile)} \& C \& From Leg \& 4.00 \& 0.0000 \& 145.00 \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.93 \& 0.68 \& 25.16

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (T-Mobile)} \& C \& From Leg \& 0.00 \& 0.0000 \& 145.00 \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 37.10 \& 37.10 \& 1900.00

\hline \multirow[t]{2}{*}{(2) $77 * * *$} \& \& \& \& \& \& \& \& \&

\hline \& A \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 1.58 \& 0.82 \& 22.00

\hline \multirow[t]{2}{*}{(AT\&T)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.79 \& 1.00 \& 31.66

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.02 \& 1.19 \& 43.84

\hline \multirow[t]{3}{*}{| (2) 7700.00 |
| :--- |
| (AT\&T) |} \& B \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 1.58 \& 0.82 \& 22.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.79 \& 1.00 \& 31.66

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.02 \& 1.19 \& 43.84

\hline \multirow[t]{3}{*}{| (2) 7700.00 |
| :--- |
| (AT\&T) |} \& C \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 1.58 \& 0.82 \& 22.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.79 \& 1.00 \& 31.66

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.02 \& 1.19 \& 43.84

\hline \multirow[t]{3}{*}{| (2) LGP21401 |
| :--- |
| (AT\&T) |} \& A \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 0.95 \& 0.37 \& 17.50

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.09 \& 0.48 \& 23.31

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.24 \& 0.60 \& 30.86

\hline \multirow[t]{3}{*}{| (2) LGP21401 |
| :--- |
| (AT\&T) |} \& C \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 0.95 \& 0.37 \& 17.50

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.09 \& 0.48 \& 23.31

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.24 \& 0.60 \& 30.86

\hline \multirow[t]{3}{*}{| (2) LGP17201 |
| :--- |
| (AT\&T) |} \& B \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 1.95 \& 0.50 \& 31.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.13 \& 0.62 \& 41.95

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.33 \& 0.75 \& 55.17

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (AT\&T)} \& C \& From Leg \& 4.00 \& 0.0000 \& 135.00 \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 37.10 \& 37.10 \& 1900.00

\hline \multirow[t]{2}{*}{DB844G457AXY} \& \& \& \& \& \& \& \& \&

\hline \& A \& From Leg \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 7.00 \& 3.97 \& 21.00

\hline \multirow[t]{2}{*}{(Verizon Wireless)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 4.34 \& 64.04

\hline \& \& \& 6.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.83 \& 4.72 \& 111.90

\hline \multirow[t]{3}{*}{| DB844G45ZAXY |
| :--- |
| (Verizon Wireless) |} \& B \& From Leg \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 7.00 \& 3.97 \& 21.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 4.34 \& 64.04

\hline \& \& \& 6.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.83 \& 4.72 \& 111.90

\hline \multirow[t]{3}{*}{| DB844G45ZAXY |
| :--- |
| (Verizon Wireless) |} \& C \& From Leg \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 7.00 \& 3.97 \& 21.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 4.34 \& 64.04

\hline \& \& \& 6.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.83 \& 4.72 \& 111.90

\hline \multirow[t]{3}{*}{| DB844G45ZAXY |
| :--- |
| (Verizon Wireless) |} \& A \& From Leg \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 7.00 \& 3.97 \& 21.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 4.34 \& 64.04

\hline \& \& \& -6.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.83 \& 4.72 \& 111.90

\hline \multirow[t]{3}{*}{| DB844G45ZAXY |
| :--- |
| (Verizon Wireless) |} \& B \& From Leg \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 7.00 \& 3.97 \& 21.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 4.34 \& 64.04

\hline \& \& \& -6.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.83 \& 4.72 \& 111.90

\hline \multirow[t]{2}{*}{| DB844G45ZAXY |
| :--- |
| (Verizon Wireless) |} \& C \& From Leg \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 7.00 \& 3.97 \& 21.00

\hline \& \& \& 0.00 \& \& \& $1 / 2$ Ice \& 7.41 \& 4.34 \& 64.04

\hline
\end{tabular}

tnxTower	Job	333-000	Page
			8 of 13
Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Project	Greenwich Hospital	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
ft \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow{4}{*}{| LNX-6514DS-VTM |
| :--- |
| (Verizon Wireless) |} \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& -6.00 \& \& \& 1" Ice \& 7.83 \& 4.72 \& 111.90

\hline \& \& \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 8.41 \& 5.88 \& 38.30

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.96 \& 6.34 \& 91.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.52 \& 6.81 \& 149.94

\hline \multirow[t]{3}{*}{| LNX-6514DS-VTM |
| :--- |
| (Verizon Wireless) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 8.41 \& 5.88 \& 38.30

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.96 \& 6.34 \& 91.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.52 \& 6.81 \& 149.94

\hline \multirow[t]{3}{*}{| LNX-6514DS-VTM |
| :--- |
| (Verizon Wireless) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 125.00 \& No Ice \& 8.41 \& 5.88 \& 38.30

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.96 \& 6.34 \& 91.03

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.52 \& 6.81 \& 149.94

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (Verizon Wireless)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 0.00 \& 0.0000 \& 125.00 \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 37.10 \& 37.10 \& 1900.00

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (Nextel)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& 0.0000 \& 115.00 \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 37.10 \& 37.10 \& 1900.00

\hline \multirow[t]{3}{*}{(4) DB846G90A-XY (Nextel)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 115.00 \& No Ice \& 4.99 \& 5.87 \& 15.40

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.44 \& 6.32 \& 53.75

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 5.90 \& 6.79 \& 97.91

\hline \multirow[t]{3}{*}{(4) DB846G90A-XY (Nextel)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 115.00 \& No Ice \& 4.99 \& 5.87 \& 15.40

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.44 \& 6.32 \& 53.75

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 5.90 \& 6.79 \& 97.91

\hline \multirow[t]{3}{*}{(4) DB846G90A-XY (Nextel)} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{From Leg} \& 4.00 \& 0.0000 \& 115.00 \& No Ice \& 4.99 \& 5.87 \& 15.40

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.44 \& 6.32 \& 53.75

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 5.90 \& 6.79 \& 97.91

\hline *** \& \& \& \& \& \& \& \& \&

\hline *** \& \& \& \& \& \& \& \& \&

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| APXVTM14-C-120 |
| :--- |
| (Sprint) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 155.50 \& No Ice \& 6.53 \& 3.38 \& 52.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.96 \& 3.72 \& 90.49

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.40 \& 4.07 \& 132.96

\hline \multirow[t]{3}{*}{| APXVTM14-C-120 |
| :--- |
| (Sprint) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 155.50 \& No Ice \& 6.53 \& 3.38 \& 52.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.96 \& 3.72 \& 90.49

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 7.40 \& 4.07 \& 132.96

\hline \multirow[t]{3}{*}{| APXVTM14-C-120 |
| :--- |
| (Sprint) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 155.50 \& No Ice \& 6.53 \& 3.38 \& 52.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.96 \& 3.72 \& 90.49

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 7.40 \& 4.07 \& 132.96

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { TD-RRH8X20 } \\
& \text { (Sprint) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 155.50 \& No Ice \& 4.32 \& 1.41 \& 66.14

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.60 \& 1.61 \& 90.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.89 \& 1.83 \& 117.36

\hline \multirow[t]{3}{*}{TD-RRH8X20 (Sprint)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 155.50 \& No Ice \& 4.32 \& 1.41 \& 66.14

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.60 \& 1.61 \& 90.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 4.89 \& 1.83 \& 117.36

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { TD-RRH8X20 } \\
& \text { (Sprint) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& 0.0000 \& 155.50 \& No Ice \& 4.32 \& 1.41 \& 66.14

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.60 \& 1.61 \& 90.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.89 \& 1.83 \& 117.36

\hline
\end{tabular}

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job		Page 9 of 13
	Greenwich Hospital		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Dish } \\
\& \text { Type }
\end{aligned}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert ft
\end{tabular} \& Azimuth Adjustment \& \begin{tabular}{l}
\(3 d B\) \\
Beam \\
Width \\
。
\end{tabular} \& Elevation \& \begin{tabular}{l}
Outside Diameter \\
ft
\end{tabular} \& \& \begin{tabular}{l}
Aperture \\
Area \\
\(f t^{2}\)
\end{tabular} \& Weight

$l b$

\hline 4' Std. Dish \& A \& Paraboloid w/o \& From \& 1.00 \& 0.0000 \& \& 160.00 \& 4.00 \& No Ice \& 12.57 \& 190.00

\hline (Town of \& \& Radome \& Leg \& 0.00 \& \& \& \& \& 1/2" Ice \& 13.10 \& 260.00

\hline Greenwhich) \& \& \& \& 0.00 \& \& \& \& \& 1" Ice \& 13.62 \& 320.00

\hline 4' Std. Dish \& B \& Paraboloid w/o \& From \& 1.00 \& 0.0000 \& \& 160.00 \& 4.00 \& No Ice \& 12.57 \& 190.00

\hline (Town of \& \& Radome \& Leg \& 0.00 \& \& \& \& \& 1/2" Ice \& 13.10 \& 260.00

\hline Greenwhich) \& \& \& \& 0.00 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.62 \& 320.00

\hline VP2-180A \& C \& Paraboloid w/o \& From \& 1.00 \& 0.0000 \& \& 160.00 \& 2.50 \& No Ice \& 4.91 \& 64.00

\hline (Town of \& \& Radome \& Leg \& 0.00 \& \& \& \& \& 1/2" Ice \& 5.24 \& 90.90

\hline $\underset{* * *}{\text { Greenwhich }}$ \& \& \& \& 0.00 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.57 \& 117.80

\hline \multirow[t]{3}{*}{| A-ANT-23G-24 |
| :--- |
| (Sprint) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{Paraboloid w/Radome} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{2.17} \& No Ice \& 3.72 \& 12.30

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 4.01 \& 32.88

\hline \& \& \& \& -6.50 \& \& \& \& \& 1" Ice \& 4.30 \& 53.47

\hline \multirow[t]{3}{*}{| A-ANT-23G-24 |
| :--- |
| (Sprint) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{Paraboloid w/Radome} \& From \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{2.17} \& No Ice \& 3.72 \& 12.30

\hline \& \& \& Leg \& 0.00 \& \& \& \& \& 1/2" Ice \& 4.01 \& 32.88

\hline \& \& \& \& 6.50 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.30 \& 53.47

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind $90 \mathrm{deg}+1.0$ Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job	333-000	$\begin{aligned} & \text { Page } \\ & \\ & 10 \text { of } 13 \end{aligned}$
	Project	Greenwich Hospital	Date $14: 11: 52 \text { 06/09/14 }$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Comb. No.		Description
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice +1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg +1.0 Ice +1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice +1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
165.00	Angle Low Profile Platform	47	6.363	0.3033	0.0047	272990
161.50	A-ANT-23G-24	47	6.205	0.3022	0.0046	272990
160.00	4' Std. Dish	47	6.109	0.3016	0.0046	272990
155.50	APXVTM14-C-120	47	5.824	0.2995	0.0045	160583
155.00	Angle Low Profile Platform	47	5.793	0.2993	0.0045	151661
152.00	1900 MHz RRH	47	5.604	0.2977	0.0044	113746
148.50	A-ANT-23G-24	47	5.384	0.2957	0.0043	88061
145.00	(2) APX16PV-16PVL	47	5.167	0.2935	0.0042	71839
135.00	(2) 7700.00	47	4.557	0.2848	0.0038	47101
125.00	DB844G45ZAXY	47	3.973	0.2721	0.0033	41110
115.00	Angle Low Profile Platform	47	3.418	0.2562	0.0029	38002

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	$f t$	$164-131.5$	30.496	18	1.4316
L1	$131.5-119.29$	20.965	18	1.3357	0.0233
L2				0.0181	

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job	333-000	$\begin{aligned} & \text { Page } \\ & \\ & 11 \text { of } 13 \end{aligned}$
	Project	Greenwich Hospital	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in in	Tilt	Twist 。	Radius of Curvature $f t$
165.00	Angle Low Profile Platform	18	30.496	1.4316	0.0233	63256
161.50	A-ANT-23G-24	18	29.746	1.4270	0.0230	63256
160.00	4' Std. Dish	18	29.297	1.4243	0.0228	63256
155.50	APXVTM14-C-120	18	27.950	1.4155	0.0222	37209
155.00	Angle Low Profile Platform	18	27.801	1.4145	0.0222	35142
152.00	1900 MHz RRH	18	26.908	1.4080	0.0218	26356
148.50	A-ANT-23G-24	18	25.870	1.3995	0.0213	20405
145.00	(2) APX16PV-16PVL	18	24.840	1.3898	0.0207	16646
135.00	(2) 7700.00	18	21.952	1.3528	0.0189	10912
125.00	DB844G45ZAXY	18	19.172	1.2976	0.0165	9308
115.00	Angle Low Profile Platform	18	16.522	1.2265	0.0142	8443

Base Plate Design Data

Plate Thickness	Number of Anchor Bolts	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling Condition	Ratio
		Size	Allowable	Allowable	Allowable	Allowable		
			Ratio	Ratio	Ratio	Ratio		
			Bolt	Bolt	Plate	Stiffener		
			Tension	Compression	Stress	Stress		
in		in	$l b$	$l b$	ksi	ksi		
3.0000	30	2.2500	86580.37	92882.78	25.935		Plate	0.80
			223654.40	371266.30	32.400			1
			0.39	0.25	0.80			

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	$l b$	$l b$	ϕP_{n}
L1	164-131.5 (1)	TP53.42x47x0.3125	32.50	164.00	104.4	52.6760	-17514.80	1092120.00	0.016
L2	$\begin{gathered} 131.5-119.29 \\ \text { (2) } \end{gathered}$	TP56.15x53.42x0.375	12.21	164.00	101.8	64.7894	-19548.00	1411180.00	0.014
L3	$\begin{gathered} 119.29-78.79 \\ \text { (3) } \end{gathered}$	TP62.97x54.0585x0.4375	46.50	164.00	91.0	84.5934	-40955.70	2300840.00	0.018
L4	78.79-39.88	TP69.66x60.4813x0.5625	47.33	164.00	82.4	120.162	-65357.30	3896170.00	0.017

tnxTower Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Job	333-000	$\begin{aligned} & \text { Page } \\ & \\ & 12 \text { of } 13 \end{aligned}$
	Project	Greenwich Hospital	Date $14: 11: 52 \text { 06/09/14 }$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Section No.	Elevation ft	Size	ft	$\begin{gathered} L_{u} \\ f t \end{gathered}$	Kl/r	A $i n^{2}$	P_{u} lb	ϕP_{n} lb	$\begin{gathered} \hline \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \end{gathered}$
L5	$\begin{gathered} (4) \\ 39.88-0(5) \end{gathered}$	TP76x66.7412x0.5625	49.13	164.00	73.5	$\begin{gathered} 0 \\ 134.684 \\ 0 \end{gathered}$	-99818.40	5041620.00	0.020

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
$f t$			$l b-f t$	$l b-f t$	$\phi M_{n x}$	$l b-f t$	$l b-f t$	$\phi M_{n y}$
L1	164-131.5 (1)	TP53.42x47x0.3125	420606.67	3531850.00	0.119	0.00	3531850.00	0.000
L2	$\begin{gathered} 131.5-119.29 \\ (2) \end{gathered}$	TP56.15x53.42x0.375	538480.00	4783283.33	0.113	0.00	4783283.33	0.000
L3	119.29-78.79 (3)	TP62.97x54.0585x0.4375	1606866.67	7104258.00	0.226	0.00	7104258.00	0.000
L4	$78.79-39.88$ (4)	TP69.66x60.4813x0.5625	2904400.00	11742749.33	0.247	0.00	11742749.33	0.000
L5	39.88-0 (5)	TP76x66.7412x0.5625	4840125.00	14202666.67	0.341	0.00	14202666.67	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
$f t$			$l b$	$l b$	ϕV_{n}	$l b-f t$	$l b-f t$	ϕT_{n}
L1	164-131.5 (1)	TP53.42x47x0.3125	18550.60	1613880.00	0.011	391.61	7072341.33	0.000
L2	$131.5-119.29$ (2)	TP56.15x53.42x0.375	19420.50	2134620.00	0.009	391.61	9578250.00	0.000
L3	$119.29-78.79$ (3)	TP62.97x54.0585x0.4375	31456.70	2833690.00	0.011	391.57	14225916.00	0.000
L4	$78.79-39.88$ (4)	TP69.66x60.4813x0.5625	36529.30	4244460.00	0.009	391.49	23514165.33	0.000
L5	39.88-0 (5)	TP76x66.7412x0.5625	41952.30	4576000.00	0.009	18087.58	28440082.67	0.001

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
ft		${ }_{\phi} P_{n}$	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}		Ratio	
L1	164-131.5 (1)	0.016	0.119	0.000	0.011	0.000	${ }^{0.135}$	1.000	4.8.2
L2	$\begin{aligned} & 131.5-119.29 \\ & \text { (2) } \end{aligned}$	0.014	0.113	0.000	0.009	0.000	${ }^{0.127}$	1.000	4.8.2
L3	$\begin{aligned} & 119.29-78.79 \\ & \text { (3) } \end{aligned}$	0.018	0.226	0.000	0.011	0.000	0.244	1.000	4.8.2
L4	$78.79-39.88$ (4)	0.017	0.247	0.000	0.009	0.000	${ }^{0.264}$	1.000	4.8.2

tnxTower	Job		$\begin{array}{\|l\|l\|} \hline \text { Page } \\ & \\ \hline \end{array}$
		333-000	
Infinigy Engineering 2255 Sewell Mill Road, Suite 130	Project	Greenwich Hospital	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:11:52 06/09/14 } \\ \hline \end{array}$
Marietta, GA 30062 Phone: (678) 444-4463 FAX: (678)444-4472	Client	Sprint	Designed by MBecker

Section No.	Elevation $f t$	Ratio $\frac{P_{u}}{\phi P_{n}}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ M_{u x} \end{array} \\ \hline \phi M_{n x} \end{gathered}$	Ratio $M_{u y}$ $\phi M_{n y}$	Ratio V_{u} ϕV_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \phi T_{n} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L5	39.88-0 (5)	0.020	0.341	0.000	0.009	0.001	0.361	1.000	4.8.2

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \phi P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	164-131.5	Pole	TP53.42x47x0.3125	1	-17514.80	1092120.00	13.5	Pass
L2	131.5-119.29	Pole	TP56.15x53.42x0.375	2	-19548.00	1411180.00	12.7	Pass
L3	119.29-78.79	Pole	TP62.97x54.0585x0.4375	3	-40955.70	2300840.00	24.4	Pass
L4	78.79-39.88	Pole	TP69.66x60.4813x0.5625	4	-65357.30	3896170.00	26.4	Pass
L5	39.88-0	Pole	TP76x66.7412x0.5625	5	-99818.40	5041620.00	36.1	Pass
						Summary		
						Pole (L5)	36.1	Pass
						Base Plate	80.0	Pass
						RATING =	80.0	Pass

THESE OUTLINE SPECIILCATIONS IN CONUUNCTION WITH THE SPRINT STANDARD CONSTRUCTION SPECIFICATIONS, INCLUOING CONTRACT DOCUMENTS
ANO THE CONSTRUCTION DRAWINGS DESCRBE THE WORK TO BE PERFORMED BY THE CONTRACTOR.

SECTION 01100 - SCOPE OF WORK

1.2 related documents:
A. THE RECQUREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS

1.3 PRECEDENCEE SHOULD CONFLLTSS OCCUR BETWEEN THE STANAARD CONSTRUCTION
SPECFICCATONS FOR WRELESS SITES INCLUONG THE STANOARO CONSTRUCTON DETALS

. 4 NATIONALIY RECOGNIZED CODES AND STANDARDS:

1. GR-63-CORE NEBS REQuirements: phrsical Protection
2. GR-78-CORE GENERCR REOUREMENTS FOR THE PHVSICAL DESIGN AND
3. GR-1089 CORE, ELECTROMAGNETC COMPATBLIUTY AND ELECTRICAL SAEET
 INCLLDING NFPA 70
(LIFE SAFETY COOE).
4. AMERICAN SOCIETY FOR TESTING OF MATERILLS (ASTM)
5. Institute of electronic and electrical engineers (ieee)
6. AMERICAN CONCRETE INSTTUTE (ACI)
7. American wire producers association (awpa)
8. CONCRETE REINFORCING STEEL INSTTUTE (CRSI)
9. AMERICAN ASSOCIATION of STATE HIGHWAY AND TRANSPORTATION OFFICILLS
10. portland cement association (pCA)
11. NATIONAL CONCRETE MASONRY ASSOCIATION (NCMA)
12. BRICK INDUSTRY ASSOCITION (BAA)
13. AMERICAN WELING SOCIETY (AWS)
14. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA
15. SHEET METAL AND AR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION
(SMACNA)
16. DOOR AND HARDWARE INSTTUTE (OHI)
17. occupational safect and heaith act (osha)
18. APPLCABEE BULLDNG COOES INCLUDING UNIFORM BUILDNG CODE, SOUTHERM
1.5 defintions:
A. Work: THE SUM of tasks and responsibuties IDentified in the contract
b. COMPANY: SPRINT CORPORATION

E. THIRD PARTV VENOR OR AGENCY: VENOOR OR AGENCY ENGAGED SEPARTELY

ACCOMPLISH SPECIFICC TASKS RELATED TO BUT NOT NCLLDEED IN THE WORK
. OFCl: OUNER FURNISHED, CONTRACTOR INSTALLED EQUPMEN
G. CONSTRUCTION MANAGER - AL PROJECTS RELATED COMMUNCATION TO FLOw

 KNRK. NO COMPENSATION WILL

14 METHODS OF PROCEDURE (MOPS) FOR CONSTRUCTION: CONTRACTOR SHALL
PERFORM WORK AS DESCRIED IN THE FOLOWING INSTALATION ANO COMMSSINNG
MOPS

15 USE OF ELECTRONIC PROJECT MANAGEMENT SYSTEMS:
PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION

3. 3 TESTING REOUREMENTS FFR TIESTING BY THIS CONTRACTOR SHALL BE AS INDICATED

SECTION 01200 - COMPANY FURNISHED MATERIAL AND EQUIPMENT ART 1 - GENERAL

1.2 ReLated documents:
A. THE REOQUREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
SPECIFICATON.
B. SPRIN "STANDARD CONSTRUCTION DEEALS FOR MIRELESS STES" ARE INCLUDED IN PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 RECEIPT OF MATERIL AND EQUIPMENT:

B. THE CONTRACTOR IS RESPONSILEE FOR SPRINT PRovioed MATERAL AND
EQUIPMENT AND UPON RECEITT SHALL:

1 ACCEPT delmeries as shipped and take receipt.
2. verrir completeness and conotion of all delveries.
3. TASE RESPONSIBLIT FOR EQUUPMENT AND PROVIDE INSURANCE PROTECTION

5. PRovide secure and necessary weather protected warehousina
6. COORDINATE SAFE AND SECURE TRANSPORTATION OF MATERIAL AND
3.2 Delverables:
A. COMCLETE: SHIPPING AND RECEIPT DOCUMENTATION IN ACCORDANCE WTH COMPANr
PACICE.
B. If APPLLCABEE, COMPLETE LOST/STTLEN/DAMAGED DOCUMENTATION REPPRTT AS
c. UPLOAD DOCUMENTATION INTO SPRINT STIE MANAGEMENT SYSTEM (SMS) AND/OR SECTION 01300 - CELL SITE CONSTRUCTION CO.

1.2 RELATED DOCUMENTS:
A. THE REQUREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
B. SPRIN "STANDARD Constructor degals for mineless sites Are included in
. 3 Notice to proceed
A. NO WORK SHAL COMMENCE PRIOR TO COMPAN'S WRITEN NOTICE TO PROCEED
ANO THE ISSUANCE OF THE WORK OREER.

PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION

3.1 FUNCTIONAL REQUIREMENTS:
A. THE ACTVMTIES DEECRRBED IN THIS PARAGRAPH REPRESENT MINMUM ACTIONS AND

c. Manage and conouct all field construction service reated actuties

Sprint

658 Spinit Parkway
verland Park, Kansas 662
INFINIGY:

wив мneer z33-000

CONTINUE FROM SP-1

1. Perform any required site environmental mitiation.
2. PREPARE GROUND STIES; PRovot oe-grubgng; and rough and final
3. MANAGE ANO Conouct All Actuties for instalation of UTLITIES
4. INSTAL UNDERGROUND FACLITIES INCLUOING UNDERGROUND PowER AND
5. Install above ground grounding syttems.
6. INSTALL ABOVE GROUND GROUNOING STSEMS.
7. INSTALL "H-FRAMES", cabinets and Shelters as indicated.
8. INSTALL ROADS, ACCESS WATs, CURBS AND DRAANS AS INOICated.
9. ACCOMPLSH REQUIRED MOOIFCATION OF EXISTNG FACLITIES.
10. PROVIDE ANTENNA SUPPORT STRUCTURE FOUNDATIONS.
11. Provide slabs and equipment platrorms.
12. INSTALL COMPOUND FENCING, SIGHT SHIELLING, LANOSCAPING AND ACCESS
13. PERFORM Inspection and materill testing as required hereinatter.
14. CONOUCT SITE RESISTANCE TO EARTH TESTING AS REQUIRED HEREINAFTER
15. INSTALL FIXED GENERATOR SETS AND OTHER STANDBY POWER SOLUTIONS.
16. INSTALL TOWERS, ANTENNA SUPPORT STRUCTURES AND PLATFORMS ON

17. PERRORN, DOCUMENT, AND CLOSE OUT ANY CONSTRUCTION CONTROL
18. PRRFORM AATENNAL AND COOX SWEEP TESTING AND MAKE ANY AND ALL
 PLACED "ON ARR."
3.2 GENERAL REQUIREMENTS FOR CINL CONSTRUCTION:

B. EQUipment roons shall at all times be maintaned "broom cleana and
c. CONTRACTOR SHALL TARE ALL REASONABLE PRECAUTIONS TO DISCOVER AND

e. conouct testing as required herein.
3.3 delinerables:
A. CONTRACTOR SHALL REMEW, APPROVE, AND SUBMIT TO SPRINT SHO DRAWNGS,
B. PROVIDE DOCUMENTATION INCLLDDNG, BUT NOT LIMTED TO. THE FOLLOWING.
DCOUMENTAION SHALL BE FORWARDED IN ORIGNAL FORMAT AND/OR UPLOADED

> 1. ALL CORRESPONDENCE AND PRELMINARY CONSTRUCTION REPORTS.
2. PROJECT PROGRESS REPORTS.
3. CIVL Construction start date (populate fill in sms andor forward
4. ELECTRCCLL SERYCE COMPLETION DATE (POPULATE FELLD IN SMS ANO/OR
FORWARD NOTIFCAGOON).
5. LINES AND ANTENNA INSTALL DATE (POPULATE FIELD IN SMS ANO/OR
FORWARD NOTIFCATON).
6. Power install date (populate fiel in sms and/or forward
7. TELLO Readr date (populate fielo in sms and/or forward
8. PpC (OR SHELTER) INSTALL DATE (POPULATE FIELD IN SMS AND/OR FORWARD
NOTFCGATIN).
9. TOWER CONSTRPCTION START DATE (POPULATE FIELD IN SMS AND/OR
10. TOWER CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR
11. BTS AND RaOD EGUIPMENT DELINERD AT STte date (populate field in
SMS AND/OR ForWARD Notrication).
12. NETWORK OPERATONS HANDOFF CHECKLIST (HOC WALK) COMPLLETE (UPLOAD
13. CVIL CONSTRUCTION COMPLETE DATE (POPULATE FIELD IN SMS AND/OR
FORWARD NOTFICATION).
14. Stie construction progress photos unloaded into sms.

SECTION 01400 - SUBMITTALS \& TESTS
 1.2 RELTED DOCUMENTS:
A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
 1.3 submitals:
A. THE WORK IN ALL ASPECTS SHALL COMPLY WTH THE CONSTRUCTION DRAWINGS
b. SUBmt the following to compant representative for approval. 1. CONCRETE MX-DESIGNS FOR TOWER FOUNDATIONS, ANCHORS PIERS, AND
CONCEEEE PANING.
2. CONcrett break tests as specified herein.
3. SPECIAL FINISHES FOR INTERIOR SPACES, IF ANY.
4. ALL Equipment and materals so identified on the construction
5. Chemical grounoling design
D. ALTERNATES: AT THE COMPAN'S REQUEST, ANY ALTERNATNES TO THE MATERALS

1.4 TESTS AND INSPECTIONS:
A. THE CONTRACTOR SHALL BE RESPONSBLEE FOR ALL CONSTRUCTION TESTS,
B. Contractor shall accomplish testing incluoing but not lmited to the

1. COAX SWEEPS AND FIBER TESTS PER TS-0200 REV 4 ANTENNA LINE
2. AGL. AIMUUTH AND DOWWNLL USING EEECTRONCC COMMMECIAL

c. REOURED CLOSEOUT DOCUMENTATION INCLUDES, BUT IS NOT LIMTED TO THE

3. SCANABLE BARCODE PHOTOGRAPHS OF TOWER TOP AND INACCESSIILLE
4. AlL AVAILABLE JURISOICTIONAL INoormation
5. pdf scan of redines produced in fieLo
6. ELECTRONC AS BUIT DEAWNGS IN AUTOCAD AN PDF FORMATS. AN FIEL
 WIL NOT BE ACCEP NED COHANGES SHAL
IDENTIELED AS THE AS-BULT CONOTION.
7. LIEN WAVERS

Sprint

$\begin{array}{c}6580 \text { Spint Parkway } \\ \text { Overland Park, Kansas } 66251\end{array}$

8. RELNAL PAMMENT APPLLCATION
9. Construction and commissioning checklist complete wit no deficient
10. ALL POST NTP TASKS INCLUDING DOCUMENT UPLOADS COMPLEEED in STEERRA
(SPRINT DOCUMENT REPOSTORY OF RECORD).
1.5 Commissioning: Perform all commissioning as reaured by applicable
MOPs
1.6 Integration: Perform all integration actutites as reoured by applcable
mops

PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTION
3.1 Requirements for testina:
A. THIRD PARTY TESTING AGENCY:

3. EXPERIENCE IN SOILS, CONCRETE, MASONRY, AGGREGATE, AND ASPHALT
4. EXPERENENE IN SOILS, CONCRETE MASONRY, AGGREGATE, AND ASPHALT
3.2 REQUIRED TESTS:
A. CoNTOACTIO: SHALL ACCOMPLISH TESTING INCLUODG BUT NOT LIMTED TO THE

1. CONCRETE CYLINDER BREAK TESTS FOR THE TOWER AND ANCHOR
FOUNOATIONS AS SPECIFED IN SECTION: PORTANO CEMENT CONCRETE PAVING.
2. ASPHALT ROADNAY COMPACTED THICNNESS, SURFACE SMOOTHNESS, AND
3. FiEL oualir conntol testing as specified in section: portand cement
4. TEETING REQUIRED UNDER SECTION: AGGREGATE BASE FOR ACCESS ROADS,
5. Structural backfil compaction tests for the tower foundation.
6. SITE RESIITANCE TO EARTH TESTNG PER EXHBTI: CELL STIE GROUNOING
7. ANTENNA AND COAX SWEEP TESTS PER EXHIITT: ANTENNA TRANSMISSION LINE
8. GROUNDING At ANTENNA MASTS FOR GPS AND antennas
9. ALL OTHER TESTS REQUIRED by COMPANY OR JURISOICTION.
3.3 REQUIRED INSPECTIONS
A. SCHEDULE INSPECTIONS WTH COMPANY REPRESENTATVE.
B. CONDUCT INSPECTONS INCLUDING BUT Not LIMTED to the FOLLowing:

10. PRE- AND POST-CONSTRUCTION ROOFTOP AND STRUCTURAL INSPECTIONS ON
11. TOWER ERECTION SECTION STACKING AND PLATTORM ATTACHMENT DOCUMENTED
12. ANTENNA AZIMUTH ADOWN TLT AND PER SUNLIGHT TOOL SUNSIGHT

INFINIGY\%

јog мuner 333 -000

HOSPITAL

CT43XC855

SPRINT SPECIFICATIONS
SP-2
7. VERIFICATION DOCUMENTED WTH THE ANTENNA CHECKLIST REPORT, BY A\&E,
STEE DEVELOPMENT REP, OR RF REP.

9. COAA SWEEP AND FIBER TESTING DOCUMENTS SUBMITED VA SMS FOR RF
10. SCAN-ABEE RARCOOE PHOTOGRAPHS OF TOWER TOP AND INACCESSIBLE
11. AlL AVallable jurisolctional information
12. PDF SCAN of redlines produced in fieLo

D. CONSTRUCTION INPECTIONS AND CORRECTVE MEAURES SHALL RE DOCUMENTED

A. THE FOLLOWING TEST AND Inspection reports shall be provided as

1. CONCRETE MIX AND CYIINDER BREAK REPORTS.
2. STRUCTURAL BACKFIL COMPACTION REPORTS.
3. SIte resistance to earth test
4. antenna azimuth and down tlit verification

5. COAX CABLE SWEEP TESTS PER COMPANY'S "ANTENNA LINE ACCEPTANCE
b. reguried closeout documentation includes the following
 BACKGLILGM SHHWN
INOICATING DEPT.
6. CONDUIS, CONDUCTORS AND GROUNOING: PHOTOGRAPHS SHOWNG TYICAL THPACAL
TPPACING:
St
7. CONCRETE FORMS AND REINFORCING: CONCRETE FORMING TITMER AND

8. TOWER ANTENNAS AND MANLINE: INSPECTION AND PHOTOGRAPHS OF SECTION ATACHMENT POINT: PHOOOGRAPHS OF TOWER TP GROUNDNG: PHOTOS

TOWER/MONOPOLE.
9. ROOF TOPS: PRE-CONSTRUCTION AND POST-CONSTRUCTION VIUAL INSPECTION
俗
10. SITE LAYOUT- PHOTOGRAPHS OF THE OVERAL COMPOUND, INCLUDING

11. any and all submitals by the jurisolction or companr.

SECTION 01400 - SUBMITTALS \& TESTS
Nan

. 2 RELATED DOCuments:
A. THE REQUIREMENTS OF THIS SECTION APPLY TO ALL SECTIONS IN THIS
B. SPRNT "STANOARD CONSTRUCTION DETALLS FOR WIRELESS STIES" ARE INCLUDED in PART 2 - PRODUCTS (NOT USED)
PART 3 - EXECUTIO
. 1 WEEKLY REPORTS:

 3.2 PROJECT CONFERENCE CALLS:
 MILESTONE PROJECTIONS,
NEEESARYY
3.3 PROUECT TRACKING IN SMS:
A. CoNTRACCROR SHAAL RROVIDE SCHEDLLE UPDATES AND PROJECTONS IN THE SMS
SYSTEM OM A WEEKLY BASI. 3.4 Adoitional reporting:
A. ADOITONAL RR ALTERNATE REPORTING REOURRMENTS MAY BE ADDED TO THE
REPORT AS DEEERMNED TO BE REASONABLY NECESSARY BY COMPANY. 3.5 PROJECT PHOTOGRAPHS:
 1. ISHELTER AND TOWER OVERVEW.

1. ISHELTER AND TOWER OVERVEW.
2. TOWER FOUNDATION(S) - FORMS AND STEEL BEFORE POUR (EACH ANCHOR
ON GUYED TOWERS).
3. TOWER FOUNOATION(S) POUR WTH VBRATOR IN USE (EACH ANCHOR ON
GUUED TOWERS).
4. Tower stel as being installed into hole (show anchor steel on
GuYed towers).
5. Photos of tower secton stacking.
6. Concrete testing / Samples.
7. PLacing of anchor bolts in tower foundation.
8. BULLDING/WATER TANK FROM ROAD FOR TENANT IMPROVEMENTS OR COMMENTS.
9. Shelter foundation--forms and steel before pouring.
10. Shelter foundation pour with vibator in use.
11. coax cable entry into shelter.
12. PLATFORM MECHANICAL CONNECTONS To TOWER/MONOPOLE

13. Photos of tower top coax line color cooing and color cooing at
grouno level.
14. photos of all approprate company or regulatory signage.
15. PHOTOS OF EQUPMENT BOLT DOWN INSIDE SHELTER.

16. ELECTRICAL TRENCH(S) wTH ELECTRICAL / CONOUT BEFORE BACKFLL.
17. ELECTRICAL TRENCH(S) wTH FOLL-BACKED TAPE BEFORE FURTHER BACKFILL 20. TELCO TRENCH WTH TELEPHONE / CONOUIT BEFORE BACKFIL.
18. TELCO TRENCH WIH FOLL-BACKED TAPE BEFORE FURTHER BACKFLLL.
19. SHELTER GROUND-RING TRENCH WTTH GROUND-WRE before backFIL (show
20. TOWER GROUND-RING TRENCH WTHH GROUND-WIRE BEFORE BACKFILL (SHOW
ALL CLDS AND BEND RAOIII.
21. FENCE GROUND-RNG TRENCH WTH GROUND-WRE BEFORE BACKFILL (SHow 25. Al BTS Ground connccions.
22. ALL GRound test wells.

Sprint
658 Spint. Parkway
overiand Pakk, Kansas 66251
27. antenna ground bar and equipment ground bar.
28. ADDITIONAL GROUNOING POINTS on towers above 200'.
29. hVac units including condensers on splt systems.
30. GPS ANTENNAS.
31. CABLE TRAY AND/OR WavEGUIDE bRIDGE.
32. Dochouse/cable Ext from roof.
33. EACH SECTOR OF ANTENNAS; ONE PHOTOGRAPH LOOKING AT THE SECTOR AND
34. master bus bar.
35. telco board and nu.
36. ELECTRICAL DISTRBUTION WALL.
37. CABLE ENTRY with surge suppression.
38. ENTRANCE TO EQUIPMENT ROOM.
39. COAX WEATHERPROOFING-TOP AND BOTTOM OF TOWER
40. Coax grounding -top and bottom of tower.
41. antenna and mast grounoing.
42. LANOSCAPING - WHERE APPLCABLE.

INFINIGY\%

Faxt 5 S18) 80000793
wo Nuver 3 33-000

ALU 2.5 ALU SCENARIO 1

RAN WIRING DIAGRAM

