Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 24, 2023

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 1111 East Putnam Avenue, Greenwich, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to pipe masts on a mechanical equipment screening enclosure on the roof of the office building. Equipment associated with the antennas is located inside the building. Cellco's existing facility was approved by the Siting Council in February of 1990 (Docket No. 120). A copy of the Council's Docket No. 120 Decision and Order approval is included in Attachment 1.

Cellco now intends to modify its facility by replacing three (3) existing antennas with three (3) new Samsung MT6407-77A antennas on the existing antenna pipe mounts. Cellco also intends to remove nine (9) remote radio heads ("RRHs") and install six (6) new RRHs adjacent to its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRHs specifications are included in <u>Attachment 2</u>. Cellco refers to this facility as its Riverside Facility.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Greenwich's Chief Elected Official and Land Use Officer.

Robinson+Cole

Melanie A. Bachman, Esq. May 24, 2023 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas will be installed on Cellco's existing antenna pipe mounts.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A Calculated Radio Frequency Emissions Report for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Mount Analysis and Structural Reinforcement Design Report (the "Structural Report"), the host building, mechanical equipment screening structure and existing mounts can support Cellco's proposed modifications. A copy of the Structural Report is included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Robinson+Cole

Melanie A. Bachman, Esq. May 24, 2023 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig gmu-

Enclosures Copy to:

Fred Camillo, Greenwich First Selectman Patrick LaRow, Director of Planning & Zoning Fountainhead Property LLC, Property Owner Aleksey Tyurin, Verizon Wiresless

ATTACHMENT 1

ORIGINAL

4145E

DOCKET NO. 120 - An application of Metro Mobile CTS of Fairfield County, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, operation, and maintenance of cellular telephone antennas and associated equipment located in the Town of Greenwich, Connecticut.

CONNECTICUT

SITING

COUNCIL

FEBRUARY 26, 1990

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications facility at the proposed site in Greenwich, Connecticut, including effects on the natural environment; ecological balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the proposed Greenwich (East) site in this application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of Fairfield County, Inc., for the construction, operation, and maintenance of a cellular telephone facility at the proposed site on 1111 East Putnam Avenue, Greenwich, Connecticut.

The Facility shall be constructed, operated, and maintained substantially as specified in the Council's record on this matter, and subject to the following conditions:

- The facility shall be constructed in accordance with applicable sections of the State of Connecticut Basic Building Code.
- The Certificate holder shall notify the Council if and when any equipment other than that listed in this application is added to this facility.
- 3. The Certificate Holder shall prepare a Development and Management Plan (D&M Plan) for this site which shall include detailed plans for the attachment of the antenna structures to the roof top facade showing mounting brackets, modifications to the facade and building structure, cable pathway from antennas to the equipment room, and the location of emergency power generation. The Certificate Holder shall consult with the building's owner in the preparation of the D&M Plan.

Docket 120 Decision and Order Page 2

- 4. The antenna bases shall be mounted no higher than 49 feet above ground level, or 144 feet above mean sea level.
- 5. The Certificate Holder shall provide a final report to the Council upon completion of construction, including the final construction costs and date of commercial operation.
- 6. If this facility does not initially provide, or permanently ceases to provide, cellular service following the completion of construction, this Decision and Order shall be void, and the antennas and all associated equipment in this application shall be dismantled and removed or reapplication for any new use shall be made to the Council and a Certificate granted before any such new use is made.
- 7. The Certificate Holder shall comply with any future radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted in this Decision and Order shall be brought into compliance with such standards.
- 8. The Certificate Holder or its successor shall provide the Council with a report of recalculated power density if and when additional channels over the proposed 90 channels, higher wattage over the proposed 100 watts per channel, or if other circumstances in operation cause change in power density above the levels originally calculated in the application.
 - 9. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the issuance of this Decision and Order, or within three years of the completion of any appeal taken to this Decision and Order.

Pursuant to Section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below. A notice of issuance shall be published in the The Advocate and Greenwich Time. By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of State Agencies.

The parties or intervenors to this proceeding are:

(Applicant)

(Its Representatives)

Metro Mobile CTS of
Fairfield County, Inc.
50 Rockland Road
South Norwalk, CT 06854
Attn: Phillip Mayberry
Vice President
and General Manager

Robinson & Cole One Commercial Plaza Hartford, CT 0613-3597 Attn: Earl W. Phillips, Esq. Docket 120 Decision and Order Page 3

(Party)

Patrick J. Pellegrino Mary G. Pellegrino 268 Milbank Avenue Greenwich, CT 06830

(Intervenor)

SNET Cellular, Inc. 227 Church Street New Haven, CT 06506 Peter H. Tyrrell, Esq. Senior Attorney SNET Cellular, Inc. 227 Church Street New Haven, CT 06506

TEF/cp

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in Docket No. 120 or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 26 day of February,

1990.	
<u>Council Members</u>	Vote Cast
<u>Iloua Deble Pond</u> Gloria Dibble Pond Chairperson	Yes
Commissioner Peter Boucher Designee: Robert A. Pulito	Yes
Commissioner Leslie Carothers Designee: Brian Emerick	Yes
Harry E. Icovey	Yes
Mortimer A. Gelston	Yes
Daniel P. Lynch, Jr.	Yes
Paulann H. Sheets	Abstain
William H. Smith	Yes
Colin C. Tait	Yes

ATTACHMENT 2

verizon

WIRELESS COMMUNICATIONS FACILITY

RIVERSIDE CT 1111 EAST PUTNAM AVE. RIVERSIDE, CT 06878

DRAWING INDEX

- T-1 TITLE SHEET
- C-1 ROOF PLAN, SOUTH BUILDING ELEVATION & NOTES
- C-2 EXIST. & NEW EQUIPMENT MOUNTING PLANS &
- S-1 STRUCTURAL REINFORCEMENT PLANS & DETAILS
- B-1 RF BILL OF MATERIALS, MECHANICAL SPECIFICATIONS & EQUIPMENT DETAILS
- N-1 NOTES & SPECIFICATIONS

SITE DIRECTIONS

START: 20 ALEXANDER DRIVE

WALLINGFORD, CONNECTICUT 06492

END: 1111 EAST PUTNAM AVE. RIVERSIDE, CT 06878

1.	HEAD SOUTH TOWARD ALEXANDER DRIVE	3/1 -
2.	TURN RIGHT	0.1 M
Э.	TURN RIGHT TOWARD ALEXANDER DRIVE	72 FT
4.	TURN RIGHT TOWARD ALEXANDER DRIVE	167 F
5.	TURN RIGHT ONTO ALEXANDER DRIVE	0.3 M
6.	TURN RIGHT ONTO BARNES INDUSTRIAL PARK ROAD	0.1 M
7.	TURN LEFT AT THE 1ST CROSS STREET ON CT-68 W.	0.4 M
8.	TURN RIGHT	0.2 M
9.	TURN RIGHT ONTO US-5 N/N COLONY ROAD	0.4 M
10.	TURN LEFT TO MERGE ONTO CT-15 S TOWARD NEW HAVEN	0.3 M
11.	MERGE ONTO CT-15 S	26.2 N
12.	TAKE EXIT 52 FOR STATE ROUTE 108 S/STATE ROUTE 8 S TOWARD	
	BRIDGEPORT	0.7 M
13.	KEEP LEFT, FOLLOW SIGNS FOR CT-8 S/BRIDGEPORT AND MERGE	
	ONTO CT-8 S	5.3 M
14.	TAKE THE EXIT ONTO I-95 S TOWARD N.Y. CITY	23.4 N
	TAKE EXIT 5 TOWARD RIVERSIDE	0.2 M
16.	TURN LEFT ONTO US-1 S. DESTINATION WILL BE ON THE RIGHT	0.3 M

LOCATION MAP

SITE INFORMATION

VZ SITE NAME: RIVERSIDE CT VZ PROJ FUZE I.D.: 16231859 VZ LOCATION CODE: 468066 VZ PROJECT CODE: 20202197021

OJECT CODE: 20202197021 LOCATION: 1111 EAST PUTNAM AVE. RIVERSIDE, CT 06878

PROJECT SCOPE: REFER TO NOTES ON DRAWING C-1 FOR SCOPE OF WORK.

MAP/BLOCK/LOT: 02/1010/S

ZONING DISTRICT: LB (LOCAL BUSINESS)

LATITUDE: 41° 2' 27.91" N (41.04108611° N)

LONGITUDE: 73° 35' 03.18" W (73.58421667° W)

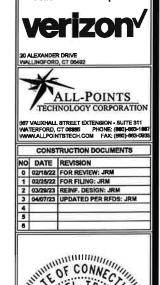
SITE COORDINATES AND GROUND ELEVATION OBTAINED FROM VERIZON RFDS & GOOGLE EARTH.

GROUND ELEVATION: 82.0'± AMSL

PROPERTY OWNER: FOUNTAINHEAD PROPERTIES 116 MASON ST.

GREENWICH, CT 06830

APPLICANT: CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS 20 ALEXANDER DRIVE


WALLINGFORD, CT 06492 LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP

RY COUNSEL: HUBINSON & COLE, LLP KENNETH C. BALDWIN, ESQ. 280 TRUMBULL STREET HARTFORD, CT 06103

ENGINEER CONTACT: ALL-POINTS TECHNOLOGY CORPORATION, P.C.

567 VAUXHALL STREET EXTENSION - SUITE 311

WATERFORD, CT 06385

Cellco Partnership d/b/a

DESIGN PROFESSIONALS OF RECORD
PROF: MICHAEL S. TRODDEN P.E.
COMP: ALL-POINTS TECHNOLOGY
CORPORATION, P.C.
ADD: SET VALUCHALL STREET EXT.

SUITE 311
WATERFORD, CT 08385
OWNER: FOUNTAINHEAD PROPERTIES
ADDRESS: 118 MASON ST.
GREENWICH, CT 08830

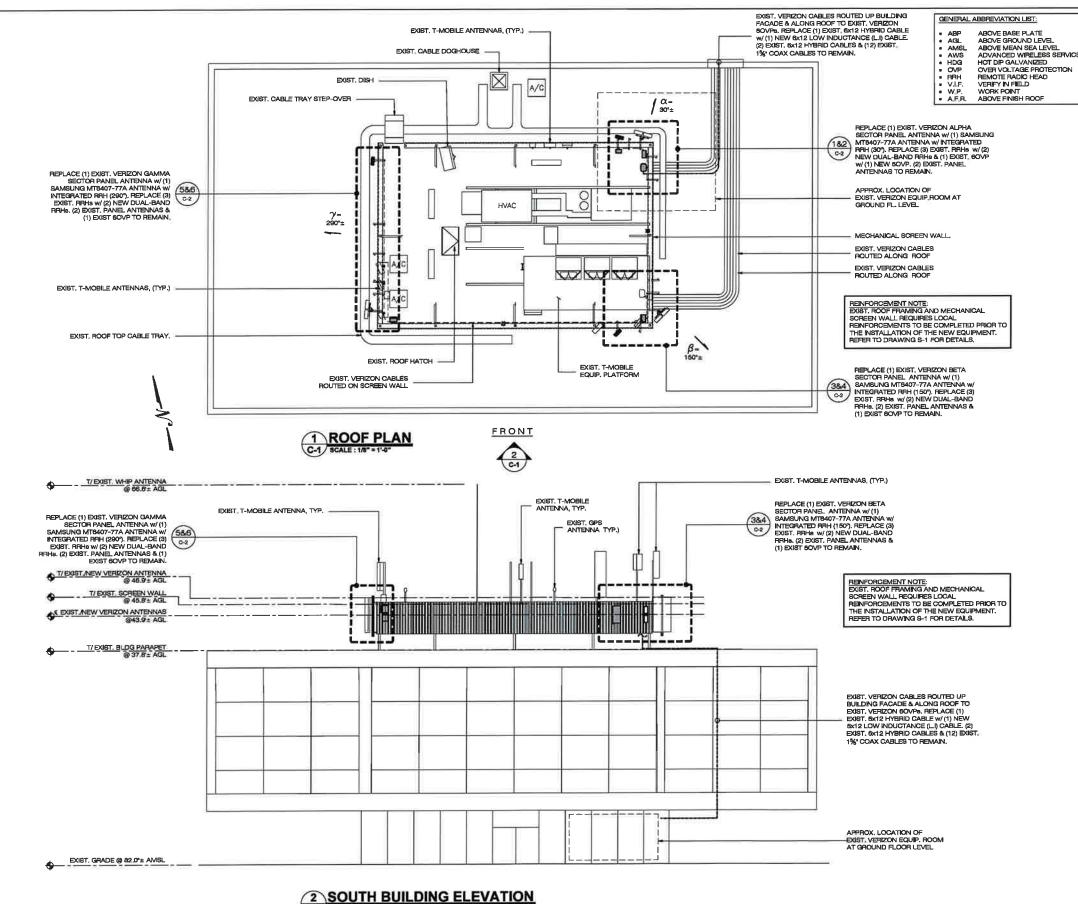
RIVERSIDE CT

SITE 1111 EAST PUTNAM AVE.
ADDRESS: RIVERSIDE, CT 06878

APT FILING NUMBER: CT141_13220

DRAWN BY: JCL

DATE: 02/18/22 CHECKED BY; JRI VZW PROJECT CODE: 20202197021


VZW LOCATION CODE: 468060 VZW FUZE ID: 16231860

SHEET TITLE:

TITLE SHEET

SHEET NUMB

T-1

NOTES:

- REFER TO MOUNT & STRUCTURAL ANALYSIS REPORT PREPARED BY ALL POINTS TECHNOLOGY CORPORATION, MARKED REV 2, DATED NOVEMBER 17, 2022 AVAILABLE UNDER SEPARATE COVER.
- REFER TO MOUNT ANALYSIS & STRUCTURAL REINFORCEMENT DESIGN REPORT PREPARED BY ALL POINTS TECHNOLOGY CORPORATION, MARKED REV 4, DATED APRIL 07, 2023 AVAILABLE UNDER SEPARATE COVER.
- BASE MAPPING OBTAINED FROM FIELD MEASUREMENTS CONDUCTED BY ALL-POINTS TECHNOLOGY CORPORATION, P.C. ON 01/19/22.
- PROJECT SCOPE INCLUDES THE FOLLOWING:
- REPLACEMENT OF (3) EXIST. PANEL ANTENNAS w/ (3) NEW
- SAMSUNG MT6407-77A ANTENNAS W/INTEGRATED RRHs.
 REPLACEMENT OF (6) EXIST. RRHs w/ (6) NEW DUAL-BAND
- REPLACEMENT OF (1) EXIST. NON (L.I.) 6x12 HYBRID CABLE W/ (1) NEW 6x12 LOW INDUCTANCE (L.I.) HYBRID FEED-LINE
- CABLE:
 REPLACEMENT OF (1) 60VP W/ (1) NEW 60VP (ALPHA ONLY).
 REMOVAL OF (3) EXIST. RRHs.
- (12) OUT OF (12) EXIST, 1% COAX CABLES TO REMAIN.
- ALL EXPOSED STEEL AND HARDWARE TO BE HOT DIP GALV. (HDG). PAINT TO MATCH EXIST. (WHERE APPLICABLE)
- CAP & WEATHERPROOF ALL UN-USED CABLE ENTRY PORTS (WHERE APPLICABLE).
- MOUNT & GROUND ALL NEW EQUIPMENT IN ACCORDANCE WITH NEC (NFPA-70), NESC AND MANUFACTURERS SPECIFICATION.
- SECURE ALL NEW ANTENNA CABLES PER MANUFACTURER RECOMMENDATIONS.
- BOND NEW ANTENNA MOUNTING PIPES TO ANTENNA SECTOR GROUND BAR W/ # 2 AWG, BCW, (WHERE APPLICABLE).
- CONTRACTOR SHALL INSTALL NEW SIDE-BY-SIDE & DUAL-MOUNT BRACKETS PER ANTENNA MOUNT MANUFACTURER RECOMMENDATIONS, INCLUDING VERIFICATION OF MINIMUM PIPE MAST DIAMETER REQUIRED TO INSTALL NEW MOUNT BRACKETS, UNLESS NOTED OTHER WISE, CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD SHOULD EXIST. PIPE MAST'S REQUIRE REPLACEMENT TO SUPPORT THE NEW MOUNT BRACKETS.
- IO. ANTENNA CONFIGURATION PLANS & ELEVATIONS SHOWN HEREIN ARE REAR ELEVATIONS (UNLESS NOTED OTHERWIS
- ANTENNA SPACING DIMENSIONS ARE TO THE CENTER OF THE EXIST, ANTENNA AND PROP. ANTENNA FACE. 12. REFER TO THE FINAL RFDS PROVIDED BY VERIZON FOR THE
- LATEST INFORMATION REGARDING EQUIPMENT MODELS. REQUIRED CABLING & DOWN-TILT INFORMATION. 13. PAINT ALL LSUB6 ANTENNAS TO MATCH EXISTING STRUCTURE
- (WHERE APPLICABLE), COORDINATE W/ LSUB6
 MANUFACTURER INSTALLATION MANUAL REQUIREMENTS.
- 4. PAINT ALL NEW NON LSUB6 ANTENNAS & APPURTENANCES TO MATCH EXIST. STRUCTURE (WHERE APPLICABLE) COORDINATE W/ VERIZON CONSTRUCTION MANAGER & BUILDING OWNER.

Celico Partnership d/b/a **erizon**^v

WALLINGFORD, CT 06490

567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 08385 PHONE: (860)-66 WWW.ALLPOINTSTECH.COM FAX: (860)-66

CONSTRUCTION DOCUMENTS

DATE REVISION 02/18/22 FOR REVIEW: JRM 1 02/25/22 FOR FILING: JRM 2 03/29/23 REINF, DESIGN: JRM 3 04/07/23 UPDATED PER RFDS: JRM

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E.

COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06308

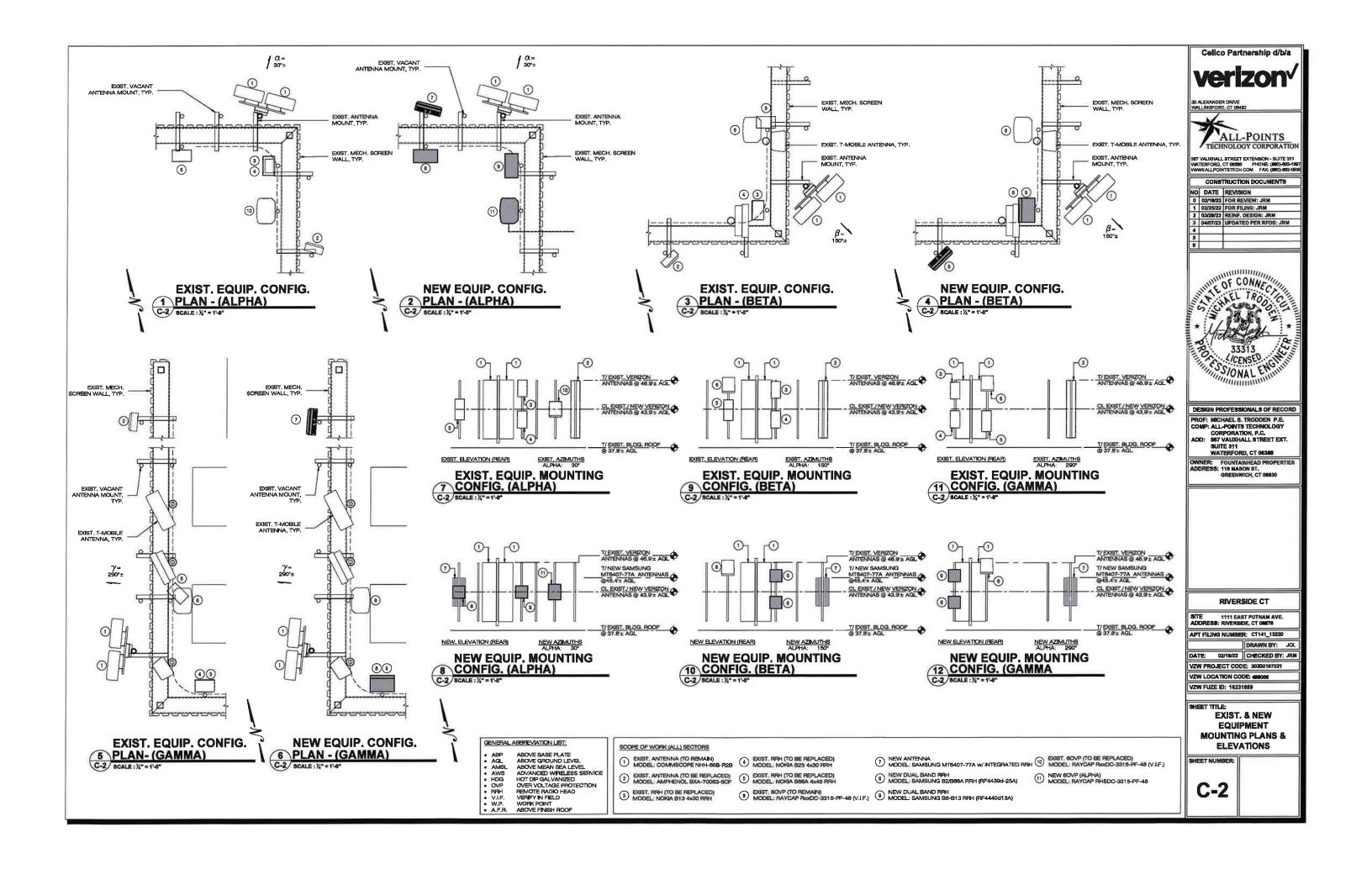
OWNER: FOUNTAINHEAD PROPERTIES ADDRESS: 118 MASON ST. GREENWICH, CT 06830

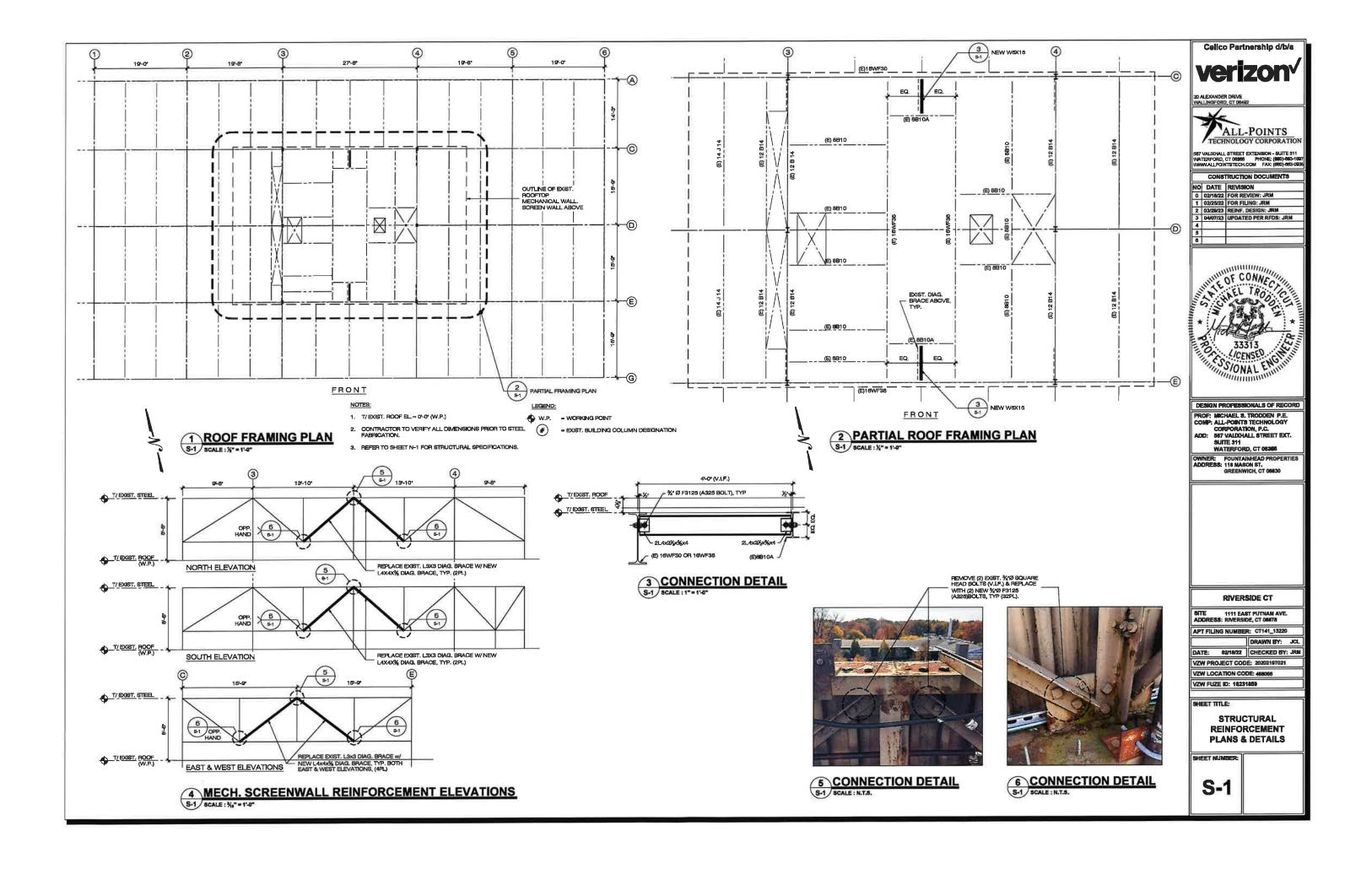
RIVERSIDE CT

1111 EAST PUTNAM AVE. ADDRESS: RIVERSIDE, CT 00678

APT FILING NUMBER: CT141_13220

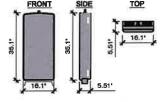
DRAWN BY: JCL

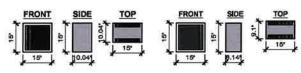

DATE: 02/18/22 CHECKED BY: JRM


VZW PROJECT CODE: 20202197021

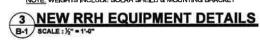
VZW LOCATION CODE: 468066 VZW FUZE ID: 16231859

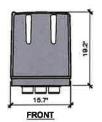
SHEET TITLE:


ROOF PLAN, SOUTH **BLDG. ELEVATION & NOTES**


EQUIPM	ENT SPECIFICATIONS							
SECTOR	ANTENNA MAKE/MODEL	QTY	AZIMUTH	EQUIPMENT STATUS	HEIGHT	WIDTH (IN)	DEPTH (IN)	WEIGHT
ALPHA	700/850/1900/2100: COMMSCOPE NHH-65B-P2B	- 1	30°	ETR	72.0	11.9	7.1	43.7
	700/850/1900/2100: COMMSCOPE NHH-658-R2B	1	30°	ETR	72.0	11.9	7.1	43.7
	SAMSUNG MT6407-77A	. 1	30°	NEW	35.1 ⁽⁵⁾	16.1 ⁽²⁾	5.51 ⁽⁵⁾	87.12
BETA	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	150°	ETR	72.0	11.9	7.1	43.7
	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	150°	ETR	72.0	11.9	7.1	43.7
	SAMSUNG MT6407-77A	1	150°	NEW	35.1 ⁽³⁾	16.1 ²⁹	5.5f ²⁹	87.12
GAMMA	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	290°	ETR	72.0	11.9	7.1	43.7
	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	290°	ETR	72.0	11.9	7.1	43.7
	SAMSUNG MT6407-77A	1	290°	NEW	35.1 ⁽⁵⁾	16.1 ⁵⁹	5.51 ⁵³	87.1
	APPURITENANCE MAKE/MODEL							
	SAMSUNG 82/866A RRH (RF4439d-25A)	3	227	NEW	15.0	15.0	10.1	97.5
	SAMSUNG 85/813 RRH (RF4440d-13A)	3		NEW	15.0	15.0	9.1	82.0
	RAYCAP RRFDC-3315-PF-48 (6OVP)	2	i e:	ETR	28,9	15.7	10.3	32.0
	RAYCAP RRFDC-3315-PF-48 (6OVP)	1	S#3	NEW	28.9	15.7	10.3	32.0

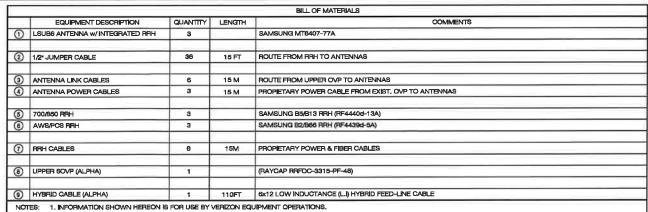
(2) WEIGHT WITHOUT MOUNTING BRACKET.
(3) ANTENNA DATA BASED ON LATEST VERIZON RFDS.
(4) EQUIPMENT CONFIGURATION INDICATED ABOVE VIEWED FROM BEHIND.
(5) NOT TO EXCEED

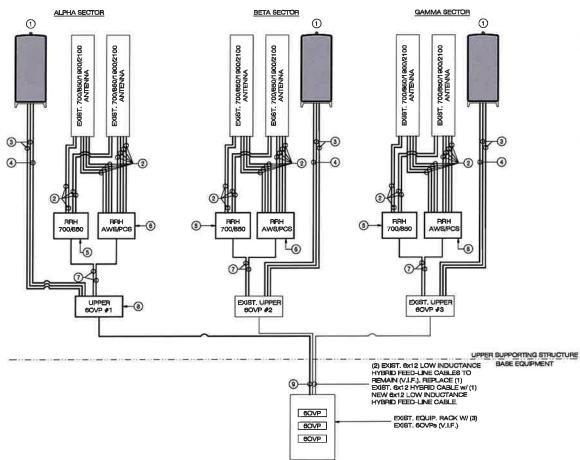

SAMSUNG MT8407-77A ANTENNA HXWXD=35.1*x18.1*x5.51* WT=87.1 Lbs (NOT TO EXCEED)



8AMSUNG DUAL LOW BAND B5/813 ('RF4440d-13A) RRH 850/700 REMOTE RADIO HEAD (RRH) HxWx0≈15.0°x15.0°x9.1° (82.0 Lbe)

NOTE: WEIGHTS INCLUDE SOLAR SHELLD & MOUNTING BRACKET

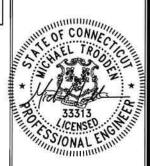




RAYCAP RHSDC-3315-PF-48 OVER VOLTAGE PROTECTION BOX (OVP) WXDXH = 15.73'x10.25'x19.18' (32.0 Lbe) (OR EQUAL)

1. INFORMATION IS BASED ON LATEST VERIZON EQUIPMENT OPERATIONS.
2. INFORMATION IS BASED ON LATEST VERIZON FIFDS.
3. **DENOTES EQUIPMENT DESIGNATED FOR LEASING ONLY* (WHERE APPLICABLE)
4. INSTALL ALARM BOARDS AT ALL OVPS WHERE REQUIRED. COORDINATE W/VERIZON EQUIPMENT ENGINEERING.
5. INSTALL UP-CONVERTIER(S) LOCATED AT BASE OVPS WHERE REQUIRED. COORDINATE W/VERIZON EQUIPMENT ENGINEERING AS NECESSARY.
6. COORDINATE ANTENNA CABLING REQUIREMENTS WITH VERIZON ENGINEERING.
7. CONTRACTOR SHALL INSTALL NEW SIDE-BY-SIDE & DUAL-MOUNT BRACKETS PER ANTENNA MOUNT MANUFACTURER RECOMMENDATIONS, INCLUDING VERIFICATION OF MINIMUM PIPE MAST DIAMETER REQUIRED TO INSTALL NEW MOUNT BRACKETS. CONTRACTOR SHALL NOTIFY ENGINEER OF RECORD SHOULD EXIST. PIPE MAST REQUIRE REPLACEMENT TO SUPPORT THE NEW MOUNT BRACKETS.

NOTE: EQUIPMENT CONFIGURATION AS VIEWED FROM BEHIND.



567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06985 PHONE: (860)-863-46 WAWWALLPOINT8TECH.COM FAX: (680)-863-08

CONSTRUCTION DOCUMENTS

DATE	REVISION	
02/18/22	FOR REVIEW: JRM	
02/25/22	FOR FILING: JRM	
03/29/23	REINF, DESIGN: JRM	
04/07/23	UPDATED PER RFDS: JRM	
	02/18/22 02/25/22 03/29/23	DATE REVISION 02/18/22 FOR REVIEW: JRM 02/28/22 FOR FILING: JRM 03/28/23 REINF. DESIGN: JRM 04/07/23 UPDATED PER RFDS: JRM

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 96385

OWNER: FOUNTAINHEAD PROPERTIES ADDRESS: 116 MASON ST. GREENWICH, CT 08830

RIVERSIDE CT

1111 EAST PUTNAM AVE. ADDRESS: RIVERSIDE, CT 06878

APT FILING NUMBER: CT141_13220

DRAWN BY: JCL DATE: 02/18/22 CHECKED BY: JRM

VZW PROJECT CODE: 20202107021 VZW LOCATION CODE: 488066

VZW FUZE ID: 16231859

RF BILL OF MATERIALS, MECHANICAL SPECIFICATIONS & **EQUIPMENT DETAILS**

B-1

DESIGN BASIS: GOVERNING CODEBIDEBION STANDARDS 2021 INTERNATIONAL BUILDING CODE (BC) AS AMENDED BY THE 2022 COMMEDITIOUT STATE BUILDING CODE ASCE 7-18 TIA-222-H RISK CATEGORY (BLDG.): || (BC 2021 TARLE 1604.5) RISK CATEGORY (MOUNTS): || (TIA-222-H, TABLE 2-1) WIND LOADS: WIND SPEED, VILT: (S-SECOND GUST) 120 MPH (2022 CBBC APPENDIX No. EXPOSURE CATEGORY O \$021 BC 562 1609 435 ICELOAD BASIC WIND SPEED (V) = 50 MPH (TIA-222-H, ANNIEX (I)) W/ ICE 3-9EC GUST DESIGN ICE THICKNESS (T) = 1.00° (TIA-222-H, ANNEX B) LIVE LOAD ROOF LIVE LOAD, (LLR) 20 P8F (ISC 2021 TABLE 1607.1) BNOW LOAD GROUND SNOW LOAD (Pt.) = 30 PSF 2022 C8B0 APPENDIX P ROOF 8NOW LOAD (Pt.) = 50 PSF AD 1604 1.1) (ASCS 7-16 EQ. 7.3-1, 6EC. 7.3-4) BEIRMIC LOAD REFER TO SECTION 1618 OF THE 2021 IBO/2022 CONNECTICUT 6T/ BUILDING CODE FOR SEISMIC CLASSIFICATION AND LOADING DETERMINATION

01 GENERAL: ABSPIEVATIONS USED IN THEBE SPECIFICATIONS INCLUDE THE

```
AGBREVATIONAL USED IN THESE DEPOSITIONIS INCLUDE THE PICTULONINAL PROJECTION ON CONTROL THE PICTULONINAL PROJECTION ON CONTROL THE PICTULONINAL PROJECTION ON CONTROL PROTECTION ON THE PICTULONINAL PROPERTY OF THE CONTROL PROTECTION ON THE PICTULONINAL PROJECTION ON THE PICTULONINAL PROPERTY ON THE PICTULONINAL PROPERTY OF THE PICTULONINAL PROPERTY ON THE PICTULONINAL PROPERTY ON THE PICTULONINAL PROPERTY ON THE PICTULONINAL PROPERTY AND PICTULONINAL PROPERTY ON THE PICTULONINAL PARTY P
```

THE BROWNER IN SERVICE OF ANY WORK, AND SAFETY IN, ON, OR ABOUT THE COMPONENT SAFETY IN, ON, OR ABOUT THE WORK APPENDING AND SAFETY IN, ON, OR ABOUT THE WORK APPENDING OF ANY WORK, AND SAFETY IN, ON, OR ABOUT THE WORK AIR

ANY REFERENCE HEREIN TO AN OR EQUAL ITEM, THAT EQUAL ITEM 9-MAIL BE PRE-APPROVED BY THE CONSTRUCTION MANAGER BEFORE

NOTALIZATION
ALL TRADES SHALL COORDINATE THEST WORK WITH ALL OTHER TRADES
AND OTHER WORK AND CONDITIONS AS A PASSIVEATE OR SEQUENCY
AND OTHER WORK AND OTHER PROPERTY OF THE P

THIS PROJECT.

ALL WORK BY ANIL, SE IN STRICT ACCOMDANCE WITH ALL APPLICABLE EDITIONS OF ALL APPLICABLE CODER AND SHALL SE ACCEPTABLE TO DAIL ALL MIMORTHES HAVING JURISOIDTION MAY, MYSTER A CONSIST DISSTRICT OF A CONSIST DISSTRICT DISSTRICT SETTINGS IN ALL SECONDAIL DEPORT OF COMPLICIT DISSTRICT OF A CONSISTENCIA DISSTRICT DISSTRICT DISSTRICT OF A CONSISTENCIA DISSTRICT D

DOCUMENTS.

OCHINATORI SHULL VIBIT THE SITE TO MANAGE AND DAN APPROVAL

OCHINATORI SHULL VIBIT THE SITE TO MANAGE AND DAN APPROVAL

OCHINATORI SHUT DISRUPTIONE, RIVINGS OLITAGIB, WORK GENERALE,

ACCIDENT COMMON AND AND AND WORK GENERALE, MANGE SHUDINGGITE

ACCIDENT MANAGEMENT PROFIT TO ALL WORK AND OBJUSTICANO

ALLONGGITE SHUD AND COLOR TO ALL WORK AND OBJUSTICANO

UPON WITTEN APPROVAL OF THE OWNER.

THE CONTRACTOR SHULL BASE SHUDING ADMINIST GENERAL BAY HAZARO

AFFECTION TRUMAT EGIFTER OR COMPREMISED STEE SECURITY.

INCREMENTAL STATES OF THE STAT

UNLINES BY HIS OPERATIONS.
ALL DISTINA AND NAY DISLIPPERT AND MATERIAL LOCATIONS,
ROLITIAL ORIENTATION, MOUNTHAL, SPECIFICATIONS AND GENERAL,
RICHARD, ORIENTATIONS MOUNTHAL BE CHRONOCHED ONDAHAMATION
ON THE RUMB. BOART CONDITIONS SHALL BE DETERMINED IN THE
FREILD PRICHT DISTIN PRIFITALISTICAL AND DETERMINED IN THE
FREILD PRICHT DISTIN PRIFITALISTICAL AND DETERMINED IN THE
CAUSE SHEDULE; COST, ORI CAUSTY SHALL SE SPECIALITY TO THE
ATTEMPOR OF THE CAUSTE OF SHAPESET PRICHTY ON WORK.

I CHANGES IN CLIALITY.

ALL NOTES IT WE WEST ENALL APPLY UNLESS GESCHOALLY NOTED OTHERWISE ON THE NOLLICED DRAWNING OFF IN SEPARATE FROJECT OPPOSITIONS OF AN APPLICABLE, ALL, SEPARATOR SHAPLE OCNICIPATION AS APPLICABLE, ALL, SEPARATOR SHAPLE IN CONTINUED IN APPLICABLE APPRICATED SELVEL BY THE OWNER, OWNERS, AND APPLICABLE.

THE WORDE "FROVIDE" OR "INSTALL" SHALL MEAN FURNISH AND INSTALL.

CONTRACTOR SHALL PROVIDE ALL CUITING AND PATCHING AS RECLIEFED FOR THE INSTALLATION OF HIS WORK. ANY PATCHING SHALL MATCH DOSTROS SUPPOLVIDION AREA IN ALL REPORCETS. ALL REMOVED IMPORTANCE OF THE PREPARES DALLY IN AN APPROVED SHE MANNER.

ALL BUSTLUB MATERIAL BHALL BE REMOVED PROM THE BITE PROMPTLY WHEN DEEMED TO BE SUPPLUS. INTERNITY CREMENT OF DESCRIPTIONS
ENTRY CONTROLTOR SHALL BE RESPONSELE FOR THE PROTECTION OF 168 WORK AND NEWLY INSTALLED OR DESTRICT WORK AND ALL COOLPANING PROTECTION OF THE STEEL ALL INSTALLUTIONS, AND ALL COOLPANING AN

REQUIRED.

EVERY CONTINUATION ISHALL BE RESPONSIBLE FOR THEIR RESPECTIVE.
FEED, PERMITE, INSPECTIONS, TESTING, CERTIFICATES, INDIAL
MANAGEMENT OF SAME REQUIRED FOR COMPLETION OF AND LEGAL
OCCUPANOTO OF THE PREMITED PRINTED.

EACH CONTRACTOR BRALL GUARANTEE ALL MATERIALS AND WORK, AND SEY THEM TO BE FREE OF GEFECTS AND MANTANED FOR A PERIOD OF ONE YEAR AFTER ACCEPTANCE OF THE INSTALLATION BY THE OWNER, AND BY MENERS.

ALL WORK SHALL BE PERFORMED BY LICENSED CONTRACTORS IN THE

SEMERATION OF THE CONTROLLED ON THE CONTROLLED AND THE CONTROLLED HOUSE OF WORK GRALLE BY IN ACCORDANCE WITH LOCAL CODES AND OF KONNACES AND BE APPROVIDE IN THE OWNER. ON THE CONTROLLED AND THE CONTROLLE

THESS-PARKENANTON ANJETY WHITE 60-OF WORN IN DISCUSTED OR NOCAMITRED WOOD STATEMENT AND TO THIS WOOD STATEMENT AND THE S NOTHER BY THE CONSTRUCTION TO REQUIRE CREATIONS.

DOST, ELECTRICAL AND MECHANICAL FIXTHERS, PIPNIQ, WRING, AND EQUIPMENT OBSTRUCTION THE WORK SHALL BE REMOVED AND/OR REJOCATED AS DESCREED BY THE CONSTRUCTION MANAGER, TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.

CO. STEEL:
THESE SHEPPOATIONS GHALL INCLIDE THE GENERAL SPECIFICATIONS
HERISM.
MOTERALS:
WIDE FLANGE
ASTM AGD, GR 50
TURNIA
ASTM AGD, GR 8
FRE ASTM AGD, GR 8
GOTTHO MITCALS
SCH 30
GOTTHO MITCALS
ASTM AGD, GR 50
GOTTHO MITCALS
ASTM AGD, GR 60
GOTTHO MITCALS
ASTM AGD, GR 60
GOTTHO MITCALS
ASTM AGD, GR 10
GOTTHO MITCALS

POWDE CHIEFLATION THAT WELDERS TO BE USED IN WORK ARE LICENSED AND HAVE SATISFACTION. IT ARE SELECT AND CAUSE TO A CONTROL IN PASSED AND CAUSING A COLLIFICATION. THE UNDER HIS PROVISIONS OF A PREPIOND OF, PARTIE AND IS OF THE AWS CODE FOR WELDING IN SULDING CONSTRUCTION. ALL BULLIONS CONSTRUCTION TO GE CONTROL OF STEEL CHIEFLED ON 10 SOFTIMA OF THE CONTROL OF STEEL.

IN PIELD PROOF TO THE FABRICATION OF STEEL.

DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM
TO THE LATERT EDITION OF ABO SPECIFICATION FOR THE CHESING
THE ASSESSMENT AND SPECIFICATION FOR THE LATER THE SHALLDWING!

NON-STRUCTURAL CONNECTIONS FOR STEEL GRANT MANY USE SET

DAMETER AUXILARIZES ASTM A 207 BOLTS UNLESS CHIESTMEN NOTES. DAMETER GALVANUZED ABINA DO JECU IS OVICE OF THE RABRICATION IN ACCORDANCE WITH ABINA A128 ZENO (HOT-DIPPED GALVANUZED) COATINGS ON IRON AND STEEL PRODUCTS WITH A COATING WEIGHT & COATING WEIGHT.

\$ CLOSE.
ALL BOLTS. ANCHORS AND MEDICAL ANCOUR HARDWAYE DOPOSED TO WEATHER SHALL BE CHANKED IN A COORDANCE WITH ASTIM AT 35 CAND COATING (POTTO-9) ON IRON, MOST STEEL HARDWAYE DISTORMANCES SIFFACES SHALL BE REPAIRED BY ST TOUGHOUS TO MANAGED SIFFACES SHALL BE REPAIRED BY TOUGHOUS OF THE COMMON STATEMENT OF THE COMMON

PARTICIPAN, OR BOUNDED OF ANY MOOREDITY PASSIONTED DAMAGED ON ORDER MATERIAL BY MOOREDITY PASSIONTED DAMAGED ON ORDERING MATERIAL OR NONCOMPONION MATERIAL ACTION SHALL REQUIRE BOOMEST REVIEW RED CUTTING OF STRUCTURAL, STELL IN NOT PERMITTED BICETT WITH THE PRIOR APPROVAL OF THE BYSINESS.

CONTRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS

CONTINUED ON TO PREMIOR ROUTE SECTION. ALL THE PROCESSION OF THE STREET SECTION OF THE SECTION OF

PROVIDED TO CONFORM TO THE REQUIREMENTS OF TYPE?

CONSTRUCTION.

CONSTRUCTION.

CONSTRUCTION.

CONSTRUCTION.

CONTROL TO CONFORM TO A SHALL CONFORM TO ASTM ASS.

ALL BOLT BY MALL BE INSMALL AND CONFORM TO ASTM ASS.

ALL BOLT BY MALL BE INSMALL AND CONFORM AND CONFORM TO ASTM ASS.

AND CONFORM TO A SMALL BE INSMALL BY THE MAD AND CONFORM TO ASS.

AND LIBER. CONFORMED AND SHALL BE PERSONED FOR BUT OFFICE. BOLT ALL DURING TO AND CONFORMED ASS.

ALL DOLTED CONSIDERIONS AS FALL BE COMPLETED WITH DOUBLE.

CONFORMED AND CONFORMED AND WILL BY THE PRODUCTIONS APPRAINANCE AND COULTY OF WILD BY AND WILL DIRE PROPERTY.

CONFORMED AND CONFORMED AND WILL BE INFORMED AND CONFORMED AND CONFORMED

ALL ARD AND GAS WELDING SHALL BE DONE BY A LICENSED AND CERTIFIED WELDER IN ACCORDANCE WITH AWS.

26 ELECTRICAL:
THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

HEREN.

ALL ELECTRICAL. CONDUCTORS:

INVALATION SHALL EE MINIMUM 800V TYPE THEM, THANH-2, OR 2014W.

AIPHW.

BRANCH CIRCUIT CONDUCTORS SHALL BE BOFT DRAWN 96% MINISHUM CONDUCTIVITY NEWERLY REFINED COPPER.

PERSONAL CONDUCTORS SHALL BE SITTED AND SOME OR AS A SECOND CONTROL OF A SECOND CONTRO ALL CONDUIT, PACEWAY, WHEWAYS, DUOTS, ETC. SHALL SELISTED AND SUITABLE FOR THE APPLICATION, ONLY THE POLLOWING CONDUITS AS APPROVED AND ISSTED FOR THE APPLICATION SHALL BE

APPROVED AND LISTED FOR THE APPLICATION SHALL BE COEPTABLE :

- ELECTRICAL METALLIO TUBING (EMT)

- COMPRESSION COULDINGS AND CONNECTORS ONLY MADE UP WHENCH TIGHT. WHENCH TIGHT.

*FLERRE METAL CONDUST (FMC) AND LIQUIDTIGHT FLEXIBLE METAL
CONDUST ALPARS.

CONDUT EARS)

FINAL COMMERCIONE TO VISHATING OR ADJUSTABLE
BOURMENT INCLUDING, BUT NOT LAMID TO LIGHT
BOURMENT INCLUDING, BUT NOT LAMID TO LIGHT
BOURMENT IS IN JUST DUTING BUT ON THE BOURMENT IN INCLUDING HERE
BOURMENT IS IN JUST DUTING BUT ON THE BOURMENT IN INCLUDING HERE
BOURMENT IN INCLUDING HERE ON COURT MANS BHALL BE
THERADED MADE UN WESCH'S TONK
FINAL PROVINCE, CONFECTIONE, AND CUPT LAMID BUT ON BOURDEDLE BO
MAY BE USED FOR BETYCER, ENTEROR BELOW GRADE, AND WET
LOCATIONS.

ILOCATIONS.

ISHALL NOT BE UBED IN CONCRETE GLABS NOR BOYOGED WITHIN A BRUDNING OF STRUCTURE.

SHETILL-CLAD COMES INCO.

S

AGAINST FINES MATERIAL.
ALL FEBERS AND BRANDL FIROURS SHALL HAVE A SEPARATE NEWERLY
ALL FEBERS AND MARKED SHOULHDING CONDUCTOR, PER APPLICABLE CODER,
THAT BOYOG ALL ENGURUPES, BOXED, ETC. CONDUCT SHALL NOT BE
URBO SA A PAULICHING OF SHOONING CONDUCTOR:

UIED AS A GROUNDING OR BONDING CORDUCTOR:

IF PORTING BEYOND GERMOR BY ORBANA, CONTRACTOR GHALL BE
VERRY THAT IT MEETS PROJECT PEDUPENDING WITHOUT
MODIFICATION, IF IT BY TO BE ADOSTOR OR REPLACED BY AS A PART OF THE
WORK, CONTRACTOR BY ALL GROEN FROM COCKRIMATE WITH, AND
GRAY APPROVAD PROMI THE LECTRICAL UITLITY. ALL ELECTRICAL
EQUIPMENT BY ALL DE AND RECEIVED AND AS APPROVAD BY THE LOCAL
UTILITY WHERE APPLICATED.

ALL FOURMENT, ENCLOSURES, ETC. SHALL BE SUTABLE FOR THE INSTALLED ENVIRONMENT, MINEMAN MEMA SR FOR ALL EXTERIOR INSTALLATIONS.
WHIN'NG DEVICES SHALL BE SPECIFICATION GRADE AND WINING DEVICE COVER PLATES SHALL BE PLASTIC WITH SNORAVING AS SPECIFIED COLOR SHALL BE NOTY. ALL DEVICES AND COVER PLATES SHALL SE OF THE SAME MANUFACTURES.

OF THE GAME MANUFACTURES.

ALL PRE-PARTS PRESENTATIONS GHALL BE SEALED USING A SUITABLE AND LISTED PIPE GRALLED DENICE OF GROUT THAT WALL MARKINGS THE PROVIDE PREVAILED PROVIDED PROVI

ECTRICAL CONTRACTOR IS RESPONSED FOR ALL FINAL PARATIONS TO ALL EQUIPMENT

TERMINATIONS TO ALL ECREPMENT, ALL ELECTRON, APPLICATIONS STATE OF SOCIAL STATEMENT AND STATEMENT OF THE SOCIAL STATEMENT OF THE SOCIAL STATEMENT, AND SOCIAL STATEMENT, SCHOOL STATEMENT, SCHOOL SOCIAL STATEMENT, SCHOOL STATEMENT, SCHOOL STATEMENT, SCHOOL STATEMENT, SCHOOL STATEMENT LABORATION, SCHOOL STATEMENT LABORATION STATEMENT AND STATEMENT AND STATEMENT SCHOOL STATEMENT AND STATEMENT SCHOOL STATEMENT AND STATEMENT SCHOOL STATEMENT AND STATEMENT SCHOOL SCHOOL STATEMENT SCHOOL STATEMENT SCHOOL SCHOOL SCHOOL STATEMENT SCHOOL RG GROUNDING: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

NETERS.

GROUND ALL BYSTEMS AND SOUPMENT IN ACCORDANCE WITH SERT INDUSTRY PRACTICE, THE REQUIREMENTS OF THE NETS 70 INTIONAL ELECTRICAL COORS AND FED. 2005B AND FED. 2005B

BYSTEM.

ALL EXAMPLEY IT BLOCKLERS DOVCES AND COULD'S BALL DE

ALL EXAMPLEY IT BLOCKLERS DOVCES AND COULD'S BALL

COULD'S THE BASTLANT ON CO'A SERVANTS CROCKED BANN

COULD'S THE BASTLANT ON CO'A SERVANTS CROCKBONNO

COULD'S THE BASTLANT AND CO'A SERVANTS CROCKBONNO

FER COOS COI IS OF THE SEZE INDICATED ON THE DRAWNINGS, SHALL SE

CONTIDATION IN LEMTH, AND SHALL SEE SONDED TO SACH SINCLOSURY

PARKED THEOLOGY.

CONTIDATION FOR CONTINUES AND LESSON SERVICES OF CONTINUES AND A CRICAL STATE OF CONTINUES AND A

PAREST THROUGH, CONDUIT SHALL NOT BE LIBED AS A SPICLADING OR
SONDING WERE OR CHECKT.

SOND ALL METALLIC CONDUITS TOGETHER THAT LINE CONNECTION TO
SONDING ALL METALLIC CONDUITS TOGETHER THAT LINE CONNECTION TO
SONDING ALL METALLIC CONDUITS TOGETHER THAT LINE CONDUITS AND TO TO
THE CONDUITS AND THAT LINE CONDUITS AND THE SIZE OF THE LINE CHECKTER STALL AND CONDUITS AND SHAPE IN
SIZED TO THE LINE CHECKTER CONDUITS AND CONDUITS AND AND
SIZED TO THE LINE CHECKTER CONDUIT SIZE. AND CHECKTER LINE SIZE OF MANDALING AND CONDUITS AND CHECKTER LINE SIZE OF MANDALING AND LINE CONDUITS CONDUITS AND CHECKTER LINE CHECKTER CONDUITS AND CHECKTER LINE CHECKTER CONDUITS AND CHECKTER LINE CHECKTER LINE CHECKTER CONDUITS AND CHECKTER LINE CHECKTER

ALL APPLICABLE CODES AND REQUIATIONS.
26 LICHTINING PROTECTION:
THESE SPECIFICATIONS BHALL INCLUDE THE GENERAL SPECIFICAT
AND THE GROUNDING SPECIFICATIONS HEREIN

AND THE GROUNDING SPECIFICATIONS HEREIN SPECIFICATIONS
THE GROUNDING SPECIFICATIONS HEREIN AND ADDRESS HEREIN
THE SPECIFICATION OF THE

ELECTRICAL, EGUIPCTENTIAL, SYSTEM FOR ALL CONDUCTIVE ELEMENTS
AND STRUCTURES
CONDUCTIVES

MIN AZ AND COMPET GREEN STRANDES FOR STONEOUS OF PAINTMAN

HAGRINGHO CONDUCTORS

MIN AZ AND COMPET GREEN STRANDES FOR STONEOUS STRUCTURES

MIN AZ AND COMPET GREEN STRANDES FOR STONEOUS STRUCTURES

MIN AZ AND COMPET GREEN STRANDES FOR STONEOUS STRUCTURES

MIN ALL ALL NORGAIND CONDUCTORS BY THE SAME HORIZONTAL

PLACE OR AD COMMENT STONEOUS ANALY FROM THE TOWNER

AND COLVENIEST MAD COMPUTED THAN AD MACHA PROBREM

THROUGH FLOORS, WALLS, CELINGA, AND SIGNAR STRUCTURES

MARC ALL CORNECTIONS OF CONTACT WITH HORIZIN WITH

BOTH SEWNO WELDINGS, MAKE ALL CHEST CONNECTION WITH

BOTH SEWNO WELDINGS, MAKE ALL CHEST CONNECTIONS WITH

CONNECTIONS, OR LISTED CONNECTION TO CONNECTION OF THE STONE

INSTALL ALL CONDUCTORS WITH A MINMAL 18 INCH SIND PROUIS

INSTALL ALL CONDUCTORS WITH A MINMAL 18 INCH SIND PROUIS

INSTALL ALL CONDUCTORS WITH A MINMAL 18 INCH SIND PROUIS

MIN OR DESCRIPTION, OR LISTED CONNECTIONS

CONNECTIONS, WHERE EXPOSED, GHALL SECONSPIED AND

PROTECTION WHAT EXPONENCE OF MALL SECONSPIED AND

PROTECTION WITH A NORMAL PALL CONDUCTORS AND THE SIND OF THE S

CUMPUTOR.

2) IPPHENT AND TOWER GROUND RINGS GHALL SEE
BORDED TO ANY CONDUCTIVE OBJECT OR STRUCTURE WITHIN 5
FRET OF EQUIPMENT GROUND RINGS AND WITHIN 20 FRET OF
TOWER GROUND RINGS.

FEST OF EGLISHMENT GROUND FINGS AND WITHIN 20 FEST OF TOWNS GROUND FINGS.

**SUTFALLED MARKAMIN IS INCHES PETCH FOUNDATIONS, FOOTINGS, AND GROUND FINGS.

**SUTFALLED MARKAMIN IS INCHES PETCH FOUNDATIONS, FOOTINGS, FOOTINGS, AND GROUND FINGS.

**SUTFALLED MARKAMIN FINANCIAL, BONDS CONNECTING THEM. AND GROUND FINGS.

**SUTFALLED MARKAMIN FINANCIAL, BONDS CONNECTING THEM. AND GROUND FINANCIAL FOOTINGS. DESCRIPT WHEN MARKAMIN FINANCIAL FOOTINGS, CONCEPT WHEN MARKAMIN FINANCIAL FOOTINGS.

**SUTFALLED MARKAMIN FINANCIAL FOOTINGS, CONCEPT WHEN MARKAMIN FINANCIAL FOOTINGS.

**SUTFALLED MARKAMIN FINANCIAL FOOTINGS, CONCEPT WHEN MARKAMIN FINANCIAL FOOTINGS.

**SUTFALLED MARKAMIN FINANCIAL FOOTINGS, CONCEPT FINANCIAL FINANCIAL FOOTINGS, CONCEPT FINANCIAL FINANCIAL FOOTINGS, CONCEPT FINANCIAL FOOTINGS, CONCEPT FINANCIAL FINANCIAL FOOTINGS, CONCEPT FINANCIAL FOOTINGS, CO

TOWER RICHARDAGE

***CACH TOWERS, CER NOWDED TO THE RINKS. SENDLE-LEGGED
TOWERS, CER NOWDEDLES, SHALL HAVE 2 SONDS ON OPPOSITE
BOBS.

***SCND TO TOWERS BASES, NOT TO VERTICAL TOWER STRUCTURE,
WAYN FROM TOWER MOUNTAIN HAPDWAYE.

***ACH SIGNO SHALL HAVE A CORRESPONDING GROUND FOO ON THE
RINKS.

***PROJ. SENDLE SHALL HAVE TO THE STRUCTURE OF THE STRUCTURE.

***ACH SIGNO SHALL HAVE A CORRESPONDING GROUND FOO ON THE
RINKS.

***PROJ. SENDLE SHALL HAVE TO THE STRUCTURE OF THE STRUCTURE.

****CACH STRUCTURE OF THE STRUCTURE OF THE STRUCTURE.

*****CACH STRUCTURE OF THE STRUCTURE OF THE STRUCTURE.

******CACH STRUCTURE OF THE STRUCTURE.

******CACH STRUCTURE.

******CACH STRUCTURE.

******CACH STRUCTURE.

******CACH STRUCTURE.

******CACH STRUCTURE.

*****CACH STRUCTURE.

****CACH STRUCTURE.

*****CACH STRUCTURE.

*****CACH STRUCTURE.

****CACH STRUCTURE.

*****CACH STRUCTURE.

****CACH STRUCTURE.

*****CACH STRUCTURE.

****CACH ST

COUND PROCES

- BEPARATION SPACE SETWEEN ANY 2 GROUND ROOS SHALL BE NO CLOSEN THAN THER DISPTH. THIS APPLIES TO ALL ROOS IN THE COMPLETE SYSTEM.

- DRIVE VIRTICALLY IN UNDUSTURBED GOL WITH THE TOP AT SAME

DEFITH AS THE IN-GROUND CONDUCTION. IF NOT POSSIBLE TO INSTALL VERTICALLY, PLACE AS CLOSE TO VERTICAL, AS POSSIBLE AND IN A DIRECTION AWAY FROM THE NAMEST ABOVE-GROUND CONDUCTIVE GLOWN (TOWER, SOLDWARM, ETC.) DOUBLE (TY. NEW DEDICATED COMMUNICATION BITTED).

AGINLE RYP. HEN DEDICATED COMMUNICATION BITTED:

"MYESTE FRABBLE WITH ENCOURT SPACE AVAILABLE, INSTALL A
MINIMAM OF 4, MICHARM TO READ FADING."

"EXCH PRODUCE LENGTH SHALL SE MIN 20 FT, MAX SO FT.

SCHEND PROMED REPRESENCE HAN FROM RINGS IN AB STRAIGHT
LINE AS POSSESSES, AWAY FROM OTHER HANG GROUNDS, RADIALS,
BONDS, AND SIMMAR.

HING TO THE OCCUMENT OF THE MANUALE AREA.
AT A MINIMUM, BOND ALL COMPOUND CONDUCTIVE FENCE CORNER
POSTS AND GATE POSTS TO THE LPGS. PREFERABLY, INSTALL A
GROUND RING THAT FOLLOWS THE FENCE LINE, BONDING ALL POSTS.
THE RING.

INSTERNAL.

THE CONTRACTION SHALL FURNISH AND INSTALL ALL TRANSMISSION CALLES, JUMPERS, CONNECTIONS, GRICUADING STRANS, ANTENAME, ALL MENDAME, ALL MENDAME, ALL MENDAME, ALL MENDAME, ALL SHALL BE REMETTED ST THE SHAPELED SHALL BE REMETTED STORY AND A SHAPELED ST AND SHAPELED STRANSMISSION OF SHAPELED STRANSMISSION OF SHAPELED AT ANTENAME AND ESTIMATED THE SHAPELED AT ANTENAME AND ESTIMATED ALL TO SERVICE CONTRACT AND VERSY ALL OF THE MATERIALS TO SER PROVIDED WITH OWNERS PROCED TO SHAPE MENDES SHAPELED SHAPELED

AFTER INSTALLATION, THE TRANSMESSION LINE SYSTEM SHALL SE PIM /
IMMED TESTED FOR INSWERINSTALLATION AND DAMAGE WITH ANTENNAS CONNECTED. CONTRACTOR SHALL GISTAN AND USE LATEST TESTING PROCEDURES PROM OWNER OR MANUFACTURES PRIOR TO BOOKKI.

CABLES AT THE ECHEMENT.
THE CONTRACTOR SHALL FURNISH AND INSTALL ALL CONNECTORS,
ABSOCIATED CABLE MOUNTING AND GROUNDING HAPDWARE, WALL
MOUNTS, STANDOFFS, AND ALL ASSOCIATED PAPERWARE TO INSTALL
ALL CABLES AND ANTENNAM TO THE MANUFACTURETS AND OWNERS

AMTIONA CARE DI SIVILE DE FOMO DELECTRIC CONSIGNI, CARLESI AS POLLOWS

SELECTRIC DEL CONTROLLO DEL CARE LE MATINE UP TO 100 FT.

1-36 DIAMETRI FOR CALLE LE MATINE UP TO 100 FT.

0 PA ANTENNAE

7.87 DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CALLE LE MATINE UP TO 200 FT.

MINISTRA DIAMETRIA FOR CONSIGNI CARLE DIAMETRIA DIAMETR L EXTERIOR CABLE CONVECTIONS SHALL BE COVERED WITH A ATERPROOF SPLICING KIT.

CONTRACTOR SHALL VEREY EXACT LENGTH AND DESCRION OF TRAVE CABLE BHALL BE FURNISHED AND INSTALLED WITHOUT BPLICES AND WITH CONNECTORS AT EACH END.

27 CABLE TRAY:
THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS CABLE TRAY SHALL BE MADE OF EITHER CORPOSION RESISTANT METAL OR WITH A CORPOSION RESISTANT FINISH.

CABLE TRAY SHALL BE OF LADDER TRAY TYPE WITH PLAT COVER CLAMPED TO BIDE RAILS. CABLE LADDER SHALL BE SIZED TO FIT ALL CABLES IN ACCORDANCE WITH NEC AND NEMA 11-15-84. TRAYS SHALL BE NEWA CLASS 12A BY PW INDUSTRIES,

CABLE LADDER TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH MANUFACTURERS SPECIFICATIONS. WORKMANSHIP SHALL CONFORM TO THESE REQUIREMENTS AND LOCAL CODES AND STANDARDS TO SUBJECT SHE SAFE AND ASSUME

A COMMON PRACTICE IS TO PLACE 4 RADIALS FROM THE TOWER AND TO THE 4 CORNERS OF THE AVAILABLE AREA. 27 ANTENNAS & CABLES: THESE BPECIFICATIONS SHALL INCLUDE THE GENERAL BPECIFICATIONS

OF CONNECTION OF 53313 ICENSED GATTER

Cellco Partnership d/b/a

verizon

ALL-POINTS

567 VALIXHALL STREET EXTENSION - SUITE 311
VANTERFORD, CT 06365 PHONE: (880)-663-08
VAWW.ALLPOINTSTECH.COM FAX: (880)-663-08

04/07/23 UPDATED PER RFDS: JRM

TECHNOLOGY CORPORATION

20 ALEXANDER DRIVE WALLINGFORD, CT 08482

NO DATE REVISION

0 02/18/22 FOR REVIEW; JRM 1 02/25/22 FOR FILING: JRM

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION, P.C. ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385

OWNER: FOUNTAINHEAD PROPERTIES

RIVERSIDE CT

SITE 1111 EAST PUTNAM AVE. ADDRESS: RIVERSIDE, CT 00078

APT FILING NUMBER: CT141_13220 DRAWN BY: JCL

DATE: 02/16/22 CHECKED BY: JRM VZW PROJECT CODE: 20202197021

VZW LOCATION CODE: 468066 VZW FLIZE ID: 18231859

SHEET TITLE:

NOTES & **SPECIFICATIONS**

SHEET NUMBER

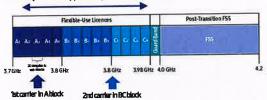
N-1

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

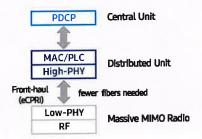
Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

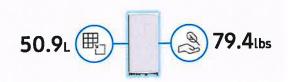
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

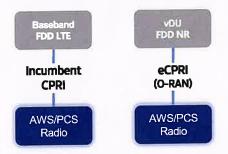
AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

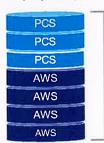
Model Code

RF4439d-25A



Points of Differentiation

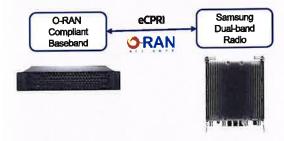
Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.



Supports up to 7 carriers

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

Same as an incumbent radio volume

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz/30MHz (B66) DL90MHz, UL70MHz/60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

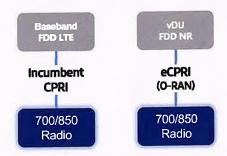
700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

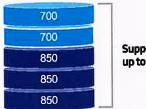
Model Code

RF4440d-13A



Points of Differentiation

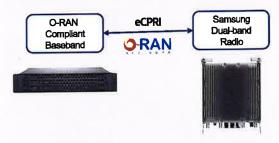
Continuous Migration


Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

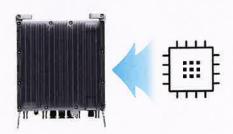
The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.



Supports up to 5 carriers

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

ATTACHMENT 3

C Squared Systems, LLC
65 Dartmouth Drive
Auburn, NH 03032
(603) 644-2800
support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Riverside CT 1111 East Putnam Ave, Riverside, CT 06878

May 23, 2023

Table of Contents

1. Introduction
2. FCC Guidelines for Evaluating RF Radiation Exposure Limits1
3. RF Exposure Prediction Methods2
4. Antenna Inventory
5. Calculation Results
6. Conclusion
7. Statement of Certification6
Attachment A: References
Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)
Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns
List of Figures
Figure 1: Graph of General Population % MPE vs. Distance
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)9
<u>List of Tables</u>
Table 1: Proposed Antenna Inventory
Table 2: Maximum Percent of General Population Exposure Values
Table 3: FCC Limits for Maximum Permissible Exposure

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 43.9' AGL on an existing rooftop located at 1111 East Putnam Ave in Riverside, CT. The coordinates of the monopole tower are 41° 02' 27.91" N, 73° 35' 3.18" W.

Verizon is proposing the following:

- 1) Install three (3) antennas, one (1) per sector to support its commercial LTE network.
- 2) Maintain six (6) multi-band antennas, two (2) per sector to support its commercial LTE network.

This report considers the planned antenna configuration for Verizon¹ and the existing antennas for T-Mobile² to derive the resulting % MPE of its proposed installation.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

Riverside CT 1 May 23, 2023

-

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 4/6/2023.

² As referenced to Radio Frequency Emissions Analysis Report prepared by EBI Consulting on behalf of T-Mobile.

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{1.6^2 \times 1.64 \times ERP}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance = $\sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		700	160	14.9	4944	NHH-65B-R2B	65			
		850	160	15	5060	Nnn-03b-R2b	60	0	5.99	43.9
	Alpha / 30°	1900	160	17.9	9866	NHH-65B-R2B	69	U		1012
	30	2100	240	18.4	16604	NIIII-03D-RZD	64			
		3700	200	25.5	70963	МТ6407-77А	(3)	0	2.92	43.9
	Beta / 150°	700	160	14.9	4944	NHH-65B-R2B	65			
		850	160	15	5060	NHH-03D-RZD	60 0	5.99	43.9	
Verizon		1900	160	17.9	9866	NHH-65B-R2B	69		3.77	15.7
		2100	240	18.4	16604	NAH-03D-RZD	64	64		
		3700	200	25.5	70963	MT6407-77A	ı, ē	0	2.92	43.9
	Gamma /	700	160	14.9	4944	NHH-65B-R2B	65	0		43.9
		850	160	15	5060		60		5.99	
		1900	160	17.9	9866	NULL CED DOD	69		3.77	1 -13.7
	290°	2100	240	18.4	16604	NHH-65B-R2B	64			
		3700	200	25.5	70963	MT6407-77A	- 4	0	2.92	43.9

Table 1: Proposed Antenna Inventory^{3 4}

³ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 4/6/2023.

⁴ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

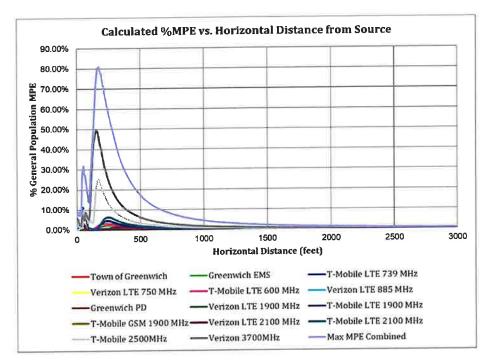


Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (82.49% of the General Population limit) is calculated to occur at a horizontal distance of 174 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 174 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm²)	Limit (mW/cm²)	% MPE
Greenwich EMS	1	4.0	55.7	174	0.000019	0.300	0.02%
Greenwich PD	1	70.0	55.7	174	0.001662	0.567	2.00%
T-Mobile 2500MHz	1	120.0	43.0	174	0.255533	1,000	25.55%
T-Mobile GSM 1900 MHz	1	120.0	43.0	174	0.010424	1.000	1.04%
T-Mobile LTE 1900 MHz	1	240.0	43.0	174	0.020847	1.000	2.08%
T-Mobile LTE 2100 MHz	3	120.0	43.0	174	0.017542	1.000	1.75%
T-Mobile LTE 600 MHz	1	160.0	43.0	174	0.009839	0.400	2.46%
T-Mobile LTE 739 MHz	1	60.0	43.0	174	0.002486	0.493	0.50%
Town of Greenwich	1	1.0	66.7	174	0.000029	1.000	0.00%
Verizon 3700MHz	1	200.0	43.9	174	0.451898	1.000	45.19%
Verizon LTE 1900 MHz	1	160.0	43.9	174	0.001175	1.000	0.12%
Verizon LTE 2100 MHz	1	240.0	43.9	174	0.001671	1.000	0.17%
Verizon LTE 750 MHz	1	120.0	43.9	174	0.005004	0.500	1.00%
Verizon LTE 885 MHz	1	120.0	43.9	174	0.003354	0.567	0.59%
*	•					Total	82.49%

Table 2: Maximum Percent of General Population Exposure Values

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be 82.49% of the FCC limit (General Population/Uncontrolled). This maximum cumulative percent of MPE value is calculated to occur 174 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya

RF Engineer 1

C Squared Systems, LLC

May 22, 2023 Date

Sehail Umani

Reviewed/Approved By: Sohail Usmani
Senior RF Engineer
C Squared Systems, LLC

May 23, 2023 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Verizon's Radio Frequency Design Sheet updated 10/21/2022

AT&T's filing, Connecticut Siting Council Notice of Exempt Modification – Antenna Add - 1111 East Putnam Ave (aka 1 Service Road) Riverside, CT, dated 9/23/2022

As referenced to Dish Wireless LLC's filing, Connecticut Siting Council Tower Share Application – 1111 East Putnam Ave., Riverside, CT, dated 11/19/2021

T-Mobile's filing, Connecticut Siting Council Notice of Exempt Modification – 1111 East Putnam Ave, Riverside, CT, dated 10/1/2020

Riverside CT 7 May 23, 2023

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

(A) Limits for Occupational/Controlled Exposure⁵

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	:#B		f/300	6
1500-100,000	=	: * (5	6

(B) Limits for General Population/Uncontrolled Exposure⁶

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500	:=:	. 	f/1500	30
1500-100,000	=	()₩)	1.0	30

f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

٠

⁵ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁶ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

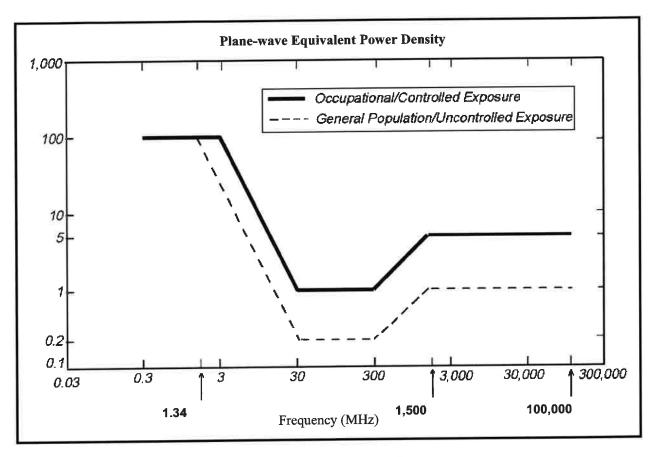


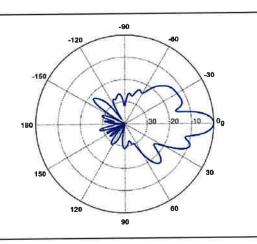
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

750 MHz

Manufacturer: COMMSCOPE

Model #: NHH-65B-R2B


Frequency Band: 698-806 MHz

Gain: 14.9 dBi

Vertical Beamwidth: 12.4° Horizontal Beamwidth: 65°

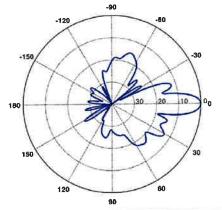
Polarization: ±45°

Dimensions (L x W x D): 71.9" x 7.1" x 11.85"

885 MHz

Manufacturer: COMMSCOPE

Model #: NHH-65B-R2B


Frequency Band: 806-896 MHz

Gain: 15 dBi

Vertical Beamwidth: 11.2° Horizontal Beamwidth: 65°

Polarization: ±45°

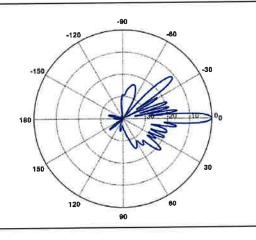
Dimensions (L x W x D): 71.9" x 7.1" x 11.85"

1900 MHz

Manufacturer: COMMSCOPE

Model #: NHH-65B-R2B

Frequency Band: 1850-1990 MHz


Gain: 17.9 dBi

Vertical Beamwidth: 5.2°

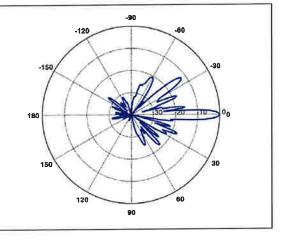
Horizontal Beamwidth: 69°

Polarization: ±45°

Dimensions (L x W x D): 71.9" x 7.1" x 11.85"

2100 MHz

Manufacturer: COMMSCOPE


Model #: NHH-65B-R2B

Frequency Band: 1920-2200 MHz

Gain: 18.4 dBi

Vertical Beamwidth: 4.9° Horizontal Beamwidth: 64° Polarization: $\pm 45^{\circ}$

Dimensions (L x W x D): 71.9" x 7.1" x 11.85"

ATTACHMENT 4

MOUNT ANALYSIS AND STRUCTURAL REINFORCEMENT DESIGN REPORT RIVERSIDE, CONNECTICUT

Prepared for Verizon Wireless

Verizon Site Ref:

468066; Riverside CT

Site Address: 1111 East Putnam Avenue, Riverside, CT 06878

FUZE ID: 16231859 Location Code: 468066 Project Code: 20202197021

APT Filing No. CT141_13220

Rev 0: February 18, 2022 Rev 1: February 25, 2022 Rev 2: November 17, 2022 Rev 3: March 29, 2023 Rev 4: April 7, 2023

Mount Analysis and Structural Reinforcement Design Report Riverside, Connecticut prepared for Verizon Wireless

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of the existing antenna mount assemblies and an evaluation of the existing host structure to support a proposed Verizon Wireless equipment modification.

Details of the existing and proposed equipment configuration are included within the table on the following page. Reference can be made to the Construction Drawings, prepared by APT, marked Rev 3, dated 04/07/2023.

We find that the existing Verizon mount assemblies meet the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard under the proposed equipment loading. Furthermore, successful completion of the reinforcements detailed within the referenced Construction Drawings dated 04/07/2023 will result in a host structure that meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with proposed and existing equipment loading.

The mount assembly component usage is summarized in the table below:

Mount Assembly Component	Usage (%)
Members (Pipe Mast)	44%
Connection (Bolts)	12%

The existing rooftop screenwall and supporting roof structure component usage is summarized in the table below:

Mount Assembly Component	Usage (%)
Mechanical Screenwall (Braces)	96%
Roof Support Structure (Beam)	94%

INTRODUCTION:

A structural analysis of the existing mount assemblies was performed by APT for the purpose of supporting the proposed Verizon Wireless equipment installation. Further, APT conducted a local evaluation of the existing host structure with the imposed carrier loading. The subject host structure is a 37.8'± office building located at 1111 East Putnam Avenue in Riverside, Connecticut.

The following information was utilized in the preparation of this analysis:

- RFDS detailing Verizon's proposed equipment changes, latest version.
- Rooftop mapping obtained from field measurements and site observations conducted by APT during January and October 2022.

Mount and Structural Reinforcement Design Analysis Riverside, Connecticut 468066 – Riverside CT April 7, 2023 ~ Rev 4 Page 2 APT Project #CT141 13220

- Mount Analysis Report as prepared by PBA Engineering, P.C. (PBA) (PBA Project No. N-552), dated April 6, 2021.
- Structural Analysis Report as prepared by PBA Engineering, P.C. (PBA) (PBA Project No. N-552), dated April 6, 2021.
- Construction Drawings as prepared by On Air Engineering, LLC (On-Air), marked Rev 2 and dated April 4, 2021.
- Partial set of Building Drawings as prepared by James A. Evans, Architect, and Werner, Jensen, & Korst, Engineers

The analysis was conducted using the following antenna inventory (proposed equipment shown in **bold** text):

Carrier	Antenna and Appurtenance Make/Model	Elevation	Status	Mount Type
Verizon	(3) Samsung MT6407-77A Panel Antennas w/ Integrated RRHs (3) Samsung B2/B66a (RF4439d-25A) RRHs, (3) Samsung B5/B13 (RF4440d-13A) RRHs, (1) Raycap RxxDC-3315-PF-48 (60VP)	90'±	P	Existing individual steel pipes flush mounted to existing building rooftop mechanical screenwall.
	(6) Commscope NHH-65B-R2B panel antennas (5) (2) Raycap RxxDC-3315-PF-48 (6OVP)		ETR	Thousand Solos III

Notes:

- 1. ETR = Existing to Remain; ERL= Existing to be Relocated; P = Proposed; F = Future; R= Reserved.
- 2. Antennas utilizing dual mount antenna brackets.
- 3. Alpha Sector only.

STRUCTURAL ANALYSIS:

The structural analysis has been prepared in accordance with the ANSI/TIA-222-H standard entitled "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures"; American Institute of Steel Construction (AISC) Manual of Steel Construction, and the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code utilizing the following criteria:

- 120 mph (3-second gust) Basic Design Wind Speed
- Risk Category: II
- Exposure Category: C
- Ground Snow Load, Pg = 30 psf
- Roof Live Load, LLr = 20 psf

ANALYSIS RESULTS:

Antenna Mount Assemblies:

The analysis of the antenna mount assemblies was conducted in accordance with the criteria outlined herein with the aforementioned proposed equipment loading. The following table summarizes the results of the analysis:

Mount Assembly Component	Usage (%)
Members (Pipe Mast)	44%
Connection (Bolts)	12%

Mount and Structural Reinforcement Design Analysis Riverside, Connecticut 468066 – Riverside CT April 7, 2023 ~ Rev 4 Page 3 APT Project #CT141_13220

Existing Screenwall & Roof Members:

The analysis of the existing rooftop mechanical screenwall and supporting roof structure were conducted in accordance with the criteria outlined herein with the aforementioned proposed equipment loading. The following table summarizes the results of the analysis after reinforcement:

Mount Assembly Component	Usage (%)
Mechanical Screenwall (Braces)	96%
Roof Support Structure (Beam)	94%

CONCLUSIONS AND RECOMMENDATIONS:

In conclusion, we find that the existing mount assemblies located at 1111 East Putnam Avenue Road in Riverside, Connecticut meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard under the proposed equipment loading. Furthermore, successful completion of the reinforcements detailed within the referenced Construction Drawings dated 04/07/2023 will result in a host structure that meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with proposed and existing equipment loading.

Sincerely,

All-Points Technology Corp., P.C.

Michael S. Trodden, P.E. Sr. Structural Engineer

Prepared by, All-Points Technology Corp., P.C.

Jeremy Vassell

Jeremy P. Vassell Project Structural Engineer Mount and Structural Reinforcement Design Analysis Riverside, Connecticut 468066 – Riverside CT April 7, 2023 ~ Rev 4 Page 4 APT Project #CT141_13220

LIMITATIONS:

This report is based on the following:

- 1. Tower/structure is properly installed and maintained.
- 2. With the exception of the anchor bolts, all members are in a non-deteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. Tower/structure is in plumb condition.
- 6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or reinforcing bracing members.
- 2. Reinforcing members in any manner.
- 3. Installing antenna mounts.
- 4. Extending tower/structure.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication, and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Design Criteria

;	Basic	Design Wind (mph)	Basic Design Wind Speeds, V (mph)	ls, V	Allow	Allowable Stress Design Wind Speeds, V _{asd} (mph)	s Design Vi, Vasd	Vind	Ground	MCE Ground Accelerations	round	Wind-Borne Debris Region ¹	nc Debris	Hurricane-
Municipality	Risk Cat. I	Risk Cat. II	Risk Cat. III	Risk Cat. IV	Risk Cat. I	Risk Cat. II	Risk Cat. III	Risk Cat. IV	$P_{\mathcal{R}}$ (psf)	S _S (g)	S _I	Risk Cat. III Occup. 1-2	Risk Cat. IV	Region
Cornwall	105	115	125	130	81	68	64	101	40	0.172	0.054			
Coventry	110	120	130	135	85	93	101	105	30	0.188	0.055			Yes
Cromwell	110	120	130	135	85	93	101	105	30	0.207	0.056			Yes
Danbury	110	120	125	130	85	93	6	101	30	0.225	0.056			Yes
Darien	110	120	130	135	85	93	101	105	30	0.250	0.057		Type B	Yes
Deep River	115	125	135	140	89	- 64	105	108	30	0.210	0.054			Yes
Derby	110	120	130	135	85	93	101	105	30	0.202	0.054			Yes
Durham	110	120	130	135	85	93	101	105	30	0.211	0.055			Yes
East Granby	110	120	125	130	85	93	62	101	35	0.173	0.054			Yes
East Haddam	115	125	135	135	68	62	105	105	30	0.214	0.056			Yes
East Hampton	110	125	130	135	85	62	101	105	30	0.210	0.056			Yes
East Hartford	110	120	130	135	85	93	101	105	30	0.191	0.055			Yes
East Haven	110	125	135	135	85	97	105	105	30	0.200	0.053	Type B	Type B	Yes
East Lyme	120	130	135	140	93	101	105	108	30	0.198	0.053	Type B	Type B	Yes
East Windsor	110	120	130	135	85	93	101	105	30	0.177	0.055			Yes
Eastford	110	120	130	135	85	93	101	105	40	0.180	0.055			Yes
Easton	110	120	130	135	85	93	101	105	30	0.218	0.055			Yes
Ellington	110	120	130	135	85	93	101	105	35	0.178	0.055			Yes
Enfield	110	120	125	130	85	93	62	101	35	0.172	0.055			Yes
Essex	115	125	135	140	68	97	105	108	30	0.207	0.054			Yes
Fairfield	110	120	130	135	85	93	101	105	30	0.219	0.055		Type B	Yes
Farmington	110	120	130	135	85	93	101	105	35	0.188	0.055			Yes
Franklin	115	125	135	140	68	97	105	108	30	0.195	0.054			Yes
Glastonbury	110	120	130	135	85	93	101	105	30	0.200	0.055			Yes
Goshen	110	115	125	130	85	68	97	101	9	0.172	0.054			
Granby	110	120	125	130	85	93	97	101	35	0.171	0.054			Yes
Greenwich	110	120	130	135	85	93	101	105	30	0.274	0.059		Type B	Yes
Griswold	120	123	135	140	93	97	105	108	30	0.189	0.054			Yes
Groton	120	130	140	140	93	101	108	108	30	0.190	0.052	Type B	Type A	Yes
Guilford	115	125	135	140	68	97	105	108	30	0.204	0.054	Type B	Type B	Yes
Haddam	115	125	135	135	68	97	105	105	30	0.214	0.055			Yes
Hamden	110	120	130	135	85	93	101	105	30	0.202	0.054			Yes

Appendix B

Mount Analysis

Project ID:

CT141_13220

Site Name:

Riverside CT

Date: Prepared By:

2/8/2022 J. Vassell

Checked By:

M. Trodden

(Based on ANSI/TIA-222-H-2018)

Site Name:	Riverside CT	
Cit A I burn	1111 East Putnam Ave	
Site Address:	Riverside, CT 06878	
Site County:	Fairfield	

Design Criteria

Risk Category =	II		Sect. 2.2 & Table 2-1
Exposure Category =	С		Section 2.6.5
Ultimate Design Wind Speed, V =	120	mph	Appendix N 2018 CT Builidng Code
Design Wind Speed with Ice, V _i =	50	mph	Fig. B-9
Design Ice Thickness, t _i =	1.00	in	Fig. B-9
Importance Factor, I =	1.00		Table 2-3

Building Information:

Antenna Centerline, z = 43.9 ft., +/-Building Height, H = 37.8 ft., +/-

Bulkhead/Parapet Height, H_{ppt} = 0.00 ft., +/- (max.)

Largest Windward Face of Structure, W_s = 48.0 ft., +/-

Wind Pressure Analysis:

$q_z = 0.00256K_zK_{zt}K_sK_eK_dV^2$	Si	ection 2.6.11.6	
<u>K, :</u>	Se	e Next Sheet	
	$z_g =$	900	Table 2-4
	α=	9.5	Table 2-4
	K _{zmin} =	0.85	Table 2-4
<u>K_{zt} :</u>	K _{zt} =	1.00	Section 2.6.6
<u>K.:</u>	K _s =	1.10	Section 2.6.7
<u>K. :</u>	K _e =	1.00	Section 2.6.8
<u>K_d :</u>	K _d =	0.95	Section 16.6
(

$$q_z' = 38.52$$
 psf
 $q_{zi}' = 6.69$ psf

$$F = q_zG_h(EPA)_A = q_zG_hK_a[(EPA)_N\cos^2(\Theta) + (EPA)_T\sin^2(\Theta)] \qquad \qquad \textit{Section 2.6.11.2}$$

$$G_h = \quad 1.00 \qquad \qquad \textit{Section 16.6}$$

$$K_a = \quad 0.90 \qquad \qquad \textit{Section 16.6}$$

(Based on ANSI/TIA-222-H-2018)

Section 16.6 Section 16.6 1,00 ۳ # چ چ

CT141_13220 Riverside CT 2/8/2022 J. Vassell M. Trodden

Project ID: Site Name: Date: Prepared By: Checked By:

Force, Ibs Force, ib Weight, Ibs 35.0 26.0 193.8 22.0 9.0 157.3 10.0 7.0 131.6 13.0 9.0 77.3 Front Wind Side Wind Force, Ibs Force, Ibs Weight, Ibs ront Wind 5Ide Wind 221.0 68.0 47.0 38.0 63.0 299.0 174.0 70.0 70.0 96.0 C,A, 4.001 1.367 1.003 0.842 1.308 C,A, 5.983 1.843 1,255 1,013 1,691 Flat Panel Side Coefficient Ca 1.46 1.37 1.20 1.20 1.20 Ca 0.76 0.70 0.70 0.70 Ratio 8.780 6.370 1.852 1.932 Aspect Ratio 5.12 2.18 0.95 1.00 1.16 Area, ft² 4.100 1.343 1.046 0.844 1.409 Area, ft² 5.276 1.953 1.433 1.203 1.868 C₂A₂ 5.444 3.280 1.414 1.890 C,A, 8.08 4,71 1,88 1.88 2,60 Flat Panel Front Coefficient G 1.36 1.20 1.20 1.20 Ca 0.76 0.70 0.70 0.70 0.70 Table 2-4 Toble 2-4 Toble 2-4 Aspect Ratio 5.12 2.18 0.95 1.00 1.16 6,050 2,180 1,000 1,259 900 $z_B = \alpha = \alpha = K_{sim} = \alpha$ Area, ft² 5.95 3.92 1.56 1.56 2.16 Area, R², 7.18 4.69 2.02 2.02 2.02 2.70 lce Wght, lbs 120.1 70.2 34.1 32.3 45.3 Wght, lbs 73.7 87.1 97.5 82.0 32.0 Dc, In 14.45 17.02 18.05 17.05 18.77 8.2 5.5 10.0 8.1 10.3 II.9 11.9 15.0 15.0 15.0 1.03 1.03 1.03 1.03 1.03 1.03 Helght, in 72.0 35.1 15.0 15.0 41.00 41.00 41.00 41.00 41.00 7,118 7,118 7,118 7,118 7,118 K, 1.064 1.064 1.064 1.064 K, 1.064 1.064 1.064 1.064 Elev. z, ft 43.9 43.9 43.9 43.9 2, ft 43.9 43.9 43.9 43.9 1.0 1.0 1.0 1.0 29999 Design Criteria: (From Previous Sheet)

q,'= 38.52 psf

q₁'= 6.69 psf

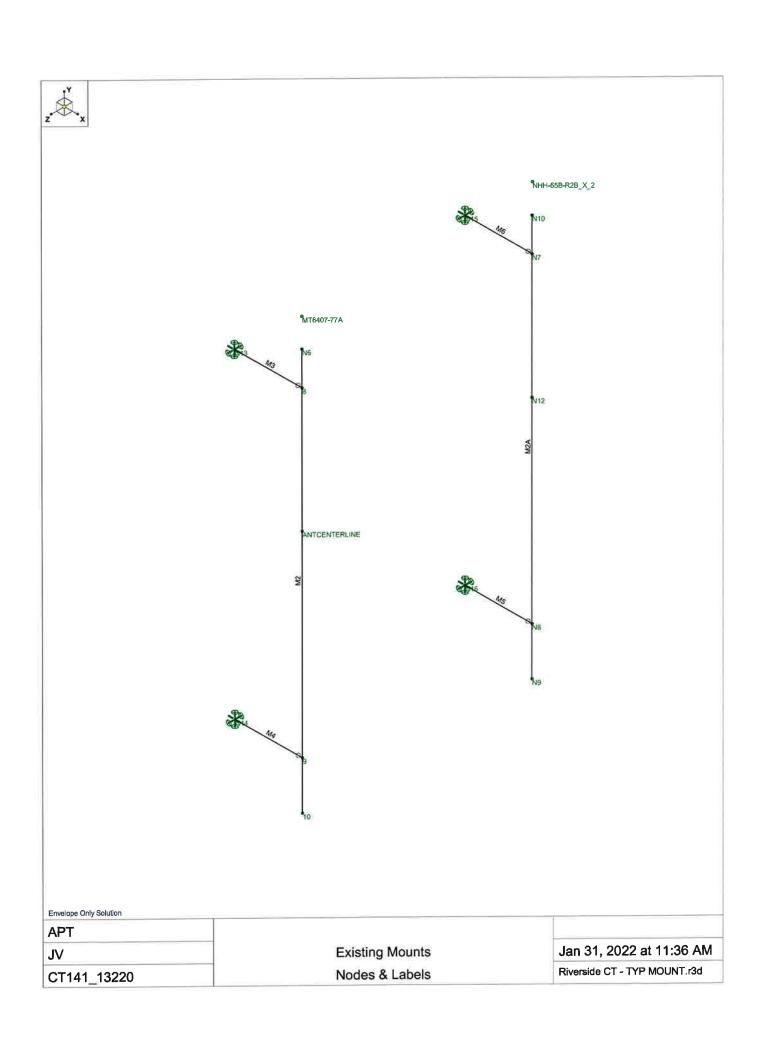
t₁ = 1.00 in Description
NHH-65B-R2B
MT6407-77A
B2/66a Samsung RRH
B5/B13 Samsung RRH
OVP Description
NHH-658-R28
MT6407-77A
82/668 Samsung RRH
B5/813 Samsung RRH
OVP $q_1' = 38.52$ $q_1' = 6.69$ $t_1 = 1.00$

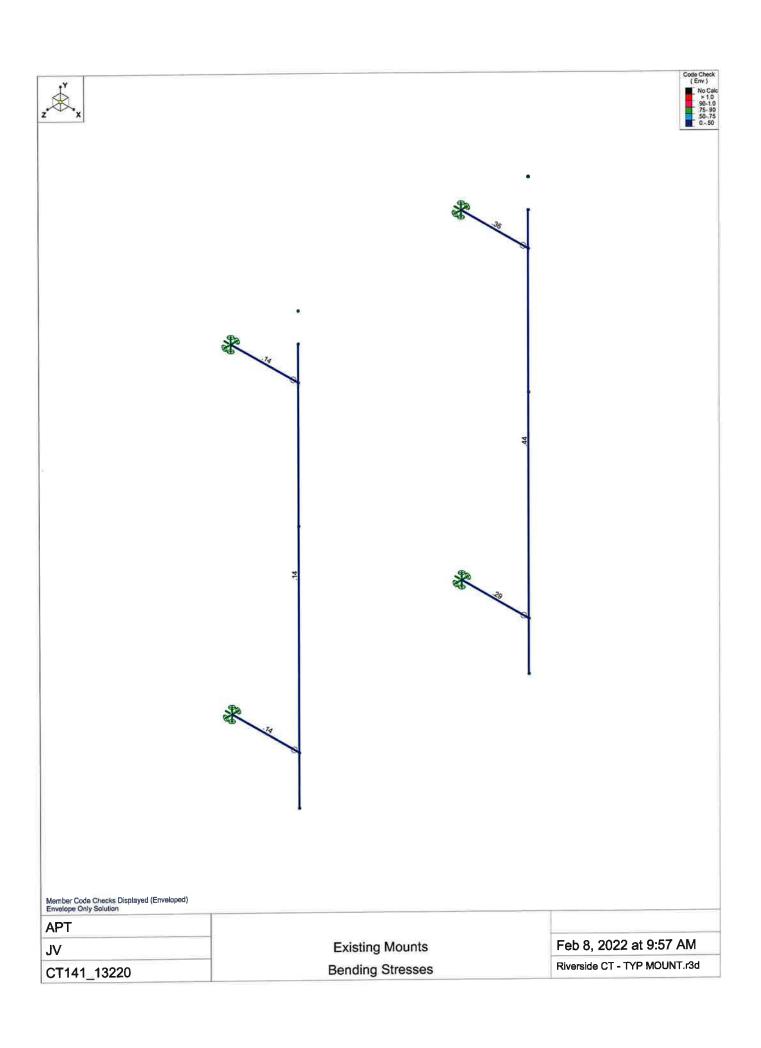
73.7 87.1 97.5 82.0 32.0

(Based on ANSI/TIA-222-H-2018)

Design Criteria: (From Previous Sheet)

 $q_a' = 38.52$ psf $q_a' = 6.69$ psf $t_1 = 1.00$ In


Section 16.6 Section 16.6 1.00 ۾ ٿي ڳ


Table 2-4
Table 2-4
Table 2-4 900 $a_g = \alpha = \alpha = \alpha$ $\alpha = \alpha = \alpha$

Wind, lbs/ft 4.87 2.84 2.00 1,20 Weight, lbs/ft 5.74 4.28 3.536 2.375 Width or Dia, in 4.56 4.43 Wind, lbs/ft 15.37 8.76 Ca 2.00 1.20 Flat or Round FLAT ROUND Weight, Ibs/ft 4.10 3.65 Thickness, In 0.250 0.154 Depth, in 2.500 2.375 Width or Dia, in 2.500 2.375 q_{zt}, psf 7.12 7.12 lce Thick., t_{lp.} in 1.03 1.03 q,, psf 41.00 41.00 K₂ 1.064 1.064 Elev. 2, ft 43.9 43.9 Description L2.5x2.5x1/4 2.0" STD

Project ID: Site Name:

CT141_13220 Riverside CT 2/8/2022 J. Vassell M. Trodden Prepared By: Checked By: Date:

Company : APT
Designer : JV
Job Number : CT141_13220
Model Name : Existing Mounts : APT

Feb 8, 2022 9:58 AM Checked By: MST

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	3	.65	.49	36000	1.5	58000	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1_
3	A500 Gr.B RND	29000	11154	3	.65	.527	42000	1.4	58000	1.3
4	A500 Gr.B Rect	29000	11154	3	.65	.527	46000	1.4	58000	1.3
5				3		.49	35000	1.6	60000	1.2
6								1 4		1.3
6 7	A53 Gr.B A1085	29000 29000	11154 11154	3 3	.65 .65	.49	50000	1.6	65000	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design			Izz [in4]	J [in4]
1	PIPE 2.0		Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
2	1.2.5x2.5x1/4	L2.5x2.5	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in] Lcomp bo	t[in] L-torq	Куу	Kzz	Cb	Function
1	M2	PIPE 2.0	84		2 =						Lateral
2	M2A	PIPE 2.0	84								Lateral
3	M3	L2.5x2.5x1/4				Lbyy					Lateral
4	M4	L2.5x2.5x1/4	14			Lbyy					Lateral
5	M5	L2.5x2.5x1/4	14			Lbyy					Lateral
6	M6	L2.5x2.5x1/4	14			Lbyy					Lateral

Basic Load Cases

	BLC Description	Category	X Gravity Y Gravity Z Gr	avity Joint	Point	Distribut	. Area(MeSurface(
1	DL	DL	-1.05	2			
2	WLX	WLX		2		2	
3	WLZ	WLZ		2		6	
4	DLi	OL1		2		6	
5	WLXi	WL+X		2		2	
6	W/L Zi	WL+Z		2		6	

Load Combinations

	Description	S	P				BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa.,	В	Fa	В	Fa
1	1.4DL	Yes	Y		DL	1.4							-	-		-	-				-		-	
2															-	-	-			-		-		
3	1.2DL + WLX	Yes	Y				WLX					-	_	_			-		-	-	-			
4	1.2DL + 0.75WLX + 0.25			_			WLX								-	-	-		-		-		-	-
5	1.2DL + 0.25WLX + 0.75	Yes	Y				WLX		W	.75	_		_	_	-		-							
6	1.2DL + WLZ	Yes	-		DL	1.2	WLZ	1					_		-	-	-	-		-	-		-	_
7	1.2DL + 0.25WL-X + 0.75				DL		WLX							_	-	-	-		-		-		-	
8	1.2DL + 0.75WL-X + 0.25	Yes	Y		DL		WLX		W	.25		-		-	-	-	-	-		-			-	
9		Yes					WLX						-	-	-		-		-			-	-	
10	1.2DL + 0.75WL-X + 0.25						WLX							-	-		-	-	-	-	-	-	-	
11	1.2DL + 0.25WL-X + 0.75	Yes	Y				WLX		W	75	_	-	-	-	-	-		-	-		\vdash	-		
12		Yes					WLZ							-	-	-	+-	-	-	-	-		-	-
13	1.2DL + 0.25WLX + 0.75				DL	1.2	WLX	.25	W	75	_	-	-	-	-	-	-			-	-	-	-	
14	1.2DL + 0.75WLX + 0.25	Yes	Y		DL	1.2	WLX	.75	W	25			1	-	-	-	+	-	-	-	-		\vdash	
15									1.20					-			-		-		-	-	-	
16	1.2DL + DLi + WLXi	Yes	Y		DL	11100	OL1		W						-	-	-	-	-	-	-	-	-	
17	1.2DL + DLi + 0.75WLXi +.	.Yes	Y		DL	1.2	OL1	1	W	.75	W	.25	1_		1				_	_	_		4	_

Company : A Designer : J Job Number : C Model Name : E

APT
JV
CT141_13220
Existing Mounts

Feb 8, 2022 9:58 AM Checked By: MST

Load Combinations (Continued)

LVU	Description			S B.	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	. B	Fa	В	Fa
18	1.2DL + DLi + 0.25WLXi +	Yes	Y	D	11:	OL1	1	W	.25	W	.75												
19	1.2DL + DLi + WLZi					OL1		W															
	1.2DL + DLi + 0.25WL-Xi	Yes	Ÿ			OL1		W	- 25	W	.75												
21	1.2DL + DLi + 0.75WL-Xi	Yes	Ÿ		1.3	OL1			75														
22	1.2DL + DLi + WL-Xi	Yes	Ÿ			OL1	1	W	-1														
23	1.2DL + DLi + 0.75WL-Xi	Yes	Y			OL1		W		W.,	25												
24	1.2DL + DLi + 0.25WL-Xi	Yes	Ÿ			OL1	1	W			75												
25	1.2DL + DLi + WL-Zi	Yes	Ÿ	D	1.3	OL1	1	W	-1														
26	1.2DL + DLi + 0.25WLXi +.	Yes	Y		1.3	OL1	1	W	.25	W.,	75												
27	1.2DL + DLi + 0.75WLXi +.	Yes	Y		1.3	OL1	1	W	.75	W	25												
28																							
29	DL	Yes	Υ	D	_ 1																_		
30																							
31	DL + 0.6WLX	Yes	Υ	D	_ 1	WLX														_	_		
32	DL + 0.6(.75WLX + 0.25W.	Yes	Y	D	_ 1				.15							1	_		-		-		
33	DL + 0.6(0.25WLX + 0.75	Yes	Y	D	_ 1				.45						-	-		-	-	-	-		
34		Yes					.6										-			-			-
35	DL + 0.6(0.25WL-X + 0.75.	.Yes	Y	D					.45	_			_	_	-	-		-			-	-	
36	DL + 0.6(0.75WL-X + 0.25.	.Yes	Y	D			45		.15								-	-		-	1	-	
37	DL + 0.6WL-X	Yes	Y	D			6			_	_	_		-	-	-				-		-	
38	DL + 0.6(0.75WL-X + 0.25.	.Yes	Y	D		_		_	15	-		-		-	-	-	-	-	-	+-	-	-	
39	DL + 0.6(0.25WL-X + 0.75.				_	WL>	(15	W.,	45		_	_	_	_	-	-	-	-		+	-		
40	DL + 0.6WL-Z				_		2 .6				_	-		-		+	-	-	-	+-	-	-	
41	DL + 0.6(0.25WLX + 0.75	. Yes	Y	D	_				45			-		-	-	-	-	-	-	-	-		
42	DL + 0.6(0.75WLX + 0.25	. Yes	Y	D	L 1	WL	4.45	W	15		-			-		-	-	+	-	-	-		-
43							1					-		-		-	-			1	-		
44	DL + 0.7DLi + 0.7WLX	iYes	Y	D		OL1	.7	W	.7	141	475	-		-	-		-	+-	-	4-	-	-	-
	DL + 0.7DLi + 0.7(0.75WL.			D	_						.175			-	-	-	-	-		-			
	DL + 0.7DLi + 0.7(0.25WL.				_	_		_		VV.,	.525			-	-	+-		-	+	+-	+-	-	
47	DL + 0.7DLi + 0.7WLZ	¡Yes	Υ	D		_	.7	W		100				\vdash	-	+	-	-		+	-		
48	DL + 0.7DLi + 0.7(0.25WL.	.Yes	Y	D			.7	VV	1/5	VV	.525	-		-	-	+-	+	-	-	+-	-	-	-
49	DL + 0.7DLi + 0.7(0.75WL.						1 .7	VV	525	VV	.175	-				+	-	\vdash			-		
50					_ 1		.7	VV	7	NA.	175				-	-	-	-		+-	-	-	+
51	DL + 0.7DLi + 0.7(0.75WL.	. Yes	Y	D	L 1	OL1	1.4	VV	175	VV	175 525			-	-	+	+				-		
	DL + 0.7DLi + 0.7(0.25WL.	. Yes	Y	D							.F.525				-	+	+-	+	-	-	-		-
53	DL + 0.7DLi + 0.7WL-Zi						-	-	7		FOE			-	-			-		+			
54	DL + 0.7DLi + 0.7(0.25WL.	.Yes	Y	D			-				525			+				-		+	-		
55	DL + 0.7DLi + 0.7(0.75WL.	.Yes	Y		<u>L 1</u>	OL,	1 .7	IVV.	1.525	۷V.,	. 175	7			_	1	1	_	4-		-	1	

Joint Reactions

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	1	N13	0	85.97	Ó	0	0	96.248
2	1	N14	0	85.574	0	0	0	95.785
3	1	N15	0	128.324	0	0	0	145.661
4	1	N16	0	127.64	0	0	0	144.862
5	1	Totals:	0	427.508	0			
6	1	COG (in):	X:455	Y: -68.991	Z: 19.261			
7	3	N13	-135.902	73.7	0	0	042	82.438
8	3	N14	-99.418	73.338	0	0	031	82.036
9	3	N15	-395.916	110.053	0	0	187	124.603
10	3	N16	-263.404	109.345	0	0	124	123.884
11	3	Totals:	-894.64	366.435	0			
12	3	COG (in):	X:455	Y: -68.991	Z: 19.261			
13	4	N13	-102.005	72.523	-22.224	0	23.267	81.076
14	4	N14	-74.485	74.515	-19.072	0	19.603	82.98

: APT : JV : CT141_13220 : Existing Mounts

Feb 8, 2022 9:58 AM Checked By: MST

Joint	Rea	ctions (Continued	1)					
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
15	4	N15	-297.015	102.802	-79.554	0	89.894	116.139
16	4	N16	-197.475	116.595	-55.242	0	61.656	131.905
17	4	Totals:	-670.98	366.435	-176.092			
18	4	COG (in):	X:455	Y: -68.991	Z: 19.261			
19	5	N13	-34.21	70.165	-66.672	0	69.914	78.361
20	5	N14	-24.62	76.872	-57.215	0	58.889	84.886
21	5	N15	-99.214	88.236	-238.663	0	270.384	99.304
22	5	N16	-65.616	131.162	-165.725	0	185.384	148.133
23	5	Totals:	-223.66	366.435	-528.275			
24	5	COG (in):	X:455	Y: -68.991	Z: 19.261			
25	6	N13	313	68.984	-88.897	0	93.252	77.009
26	6	N14	.313	78.053	-76.287	0	78.541	85.847
27	6	N15	313	80.921	-318.218	0	360.793	90.935
28	6	N16	.313	138.476	-220.966	0	247.334	156.341
29	6	Totals:	0	366.435	-704.367			
30	6	COG (in):	X:455	Y: -68.991	Z: 19.261			
31	7	N13	33.741	70.156	-66.672	0	69.964	78.402
32	7	N14	25.089	76.882	-57.215	0	58.923	84.935
33	7	N15	98.744	88.142	-238.663	0	270.806	99.525
34	7	N16	66.086	131.256	-165.725	0	185.617	148.462
35	7	Totals:	223.66	366.435	-528.275			
36	7	COG (in):	X:455	Y: -68.991	Z: 19.261			
37	8	N13	101.848	72.502	-22.224	0	23.359	81.176
38	8	N14	74.642	74.536	-19.072	0	19.668	83.096
39	8	N15	296.858	102.647	-79.554	0	90.504	116.609
40	8	N16	197.632	116.751	-55.242	0	62.012	132.518
41	8	Totals:	670.98	366.435	-176.092			
42	8	COG (in):	X:455	Y: -68.991	Z: 19.261			
43	9	N13	135.902	73.678	0	0	.042	82.557
44	9	N14	99.418	73.36	0	0	.031	82.167
45	9	N15	395.916	109.931	0	0	.187	125.101
46	9	N16	263.404	109.466	0	0	.124	124.451
47	9	Totals:	894.64	366.435	0			
48	9	COG (in):	X:455	Y: -68.991	Z: 19.261			
49	10	N13	102.005	74.859	22.224	0	-23.296	83.909
50	10	N14	74.485	72.179	19.072	0	-19.622	81.206
51	10	N15	297.015	117.245	79.554	0	-90.221	133.469
52	10	N16	197.475	102.153	55.242	0	-61.826	116.245
53	10	Totals:	670.98	366.435	176.092			
54	10	COG (in):	X:455	Y: -68.991	Z: 19.261			
55	11	N13	34.21	77.217	66.672	0	-69.943	86.624
56	11	N14	24.62	69.821	57.215	0	-58.908	79.301
57	11	N15	99.214	131.81	238.66	0	-270.709	150.301
58	11	N16	65.616	87.588	165.728	0	-185.558	100.017
59	11	Totals:	223.66	366.435	528.275			
60	11	COG (in):	X:455	Y: -68.991	Z: 19.261			
61	12	N13	.313	78.393	88.896	0	-93.252	87.987
62	12	N14	313	68.644	76.287	0	-78.541	78.356
63	12	N15	.313	139.061	318.213	0	-360.788	158.766
64	12	N16	313	80.337	220.971	0	-247.339	91.997
65	12	Totals:	0	366.435	704.367			
66	12	COG (in):	X:455	Y: -68.991	Z: 19.261			
67	13	N13	-33.741	77.218	66.672	0	-69.935	86.605
68	13	N14	-25.089	69.82	57.215	0	-58.904	79.284
69	13	N15	-98.744	131.777	238.66	0	-270.474	150.273
70	13	N16	-66.086	87.62	165.728	0	-185.45	100.062
71	13	Totals:	-223.66	366.435	528.275			W

APT
JV
CT141_13220
Existing Mounts

Feb 8, 2022 9:58 AM Checked By: MST

		ions (Continue	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
70	LC 12	Joint Label COG (in):	X:455	Y: -68.991	Z: 19.261	HIX JID IQ		
72	13	N13	-101.848	74.871	22.224	0	-23.33	83.831
73	14	N14	-74.642	72.167	19.072	0	-19.649	81.124
74	14	N15	-296.858	117.274	79.554	0	-90.174	133.192
75	14	N16	-197.632	102.124	55.242	0	-61.842	116.005
76		Totals:	-670.98	366.435	176.092			
77	14	COG (in):	X:455	Y: -68.991	Z: 19.261			
78	14	N13	-22.994	130.579	0	0	013	144.942
79	16	N14	-18.886	130.012	Ō	0	01	144.284
80	16		-52.546	264.629	0	Ö	06	301.253
81	16	N15	-37.334	263.122	ŏ	0	043	299.524
82	16	N16	-131.76	788.342	Ö		.0.10	
83	16	Totals:		Y: -68.864	Z: 15.867			
84	16	COG (in):	X:449	130.41	-5.176	0	5.2	144.749
85	17	N13	-17.27	130.41	-4.885	0	4.862	144.348
86	17	N14	-14.14		-4.865	0	12.88	300.243
87	17	N15	-39.434	263.743		0	9.66	300.437
88	17	N16	-27.976	264.008	-9.02	U	9.00	500.407
89	17	Totals:	-98.82	788.342	-30.872			
90	17	COG (in):	X:449	Y: -68.864	Z: 15.867		45.000	144.364
91	18	N13	-5.823	130.07	-15.529	0	15.628	144.477
92	18	N14	-4.647	130.521	-14.654	0	14.607	
93	18	N15	-13.211	261.969	-35.373	0	38.765	298.224
94	18	N16	-9.259	265.783	-27.059	0	29.071	302.267
95	18	Totals:	-32.94	788.342	-92.615			
96	18	COG (in):	X:449	Y: -68.864	Z: 15.867			111170
97	19	N13	099	129.901	-20.705	0	20.842	144.172
98	19	N14	.099	130.69	-19.538	0	19.48	144.541
99	19	N15	1	261.081	-47.165	0	51.711	297.216
100	19	N16	.1	266.67	-36.079	0	38.778	303.184
101	19	Totals:	0	788.342	-123.487			
102	19	COG (in):	X:449	Y: -68.864	Z: 15.867			
103	20	N13	5.674	130.069	-15.529	0	15.635	144.374
103	20	N14	4.796	130.522	-14.654	0	14.613	144.487
105	20	N15	13.062	261.959	-35.373	0	38.801	298.267
106	20	N16	9.408	265.792	-27.059	0	29.096	302.317
	20	Totals:	32.94	788.342	-92.615			
107		COG (in):	X:449	Y: -68.864	Z: 15.867			
108	20	N13	17.22	130.406	-5.176	0	5.22	144.778
109	21	N14	14.19	130.185	-4.885	0	4.878	144.379
110	21		39.385	263.717	-11.791	0	12.976	300.369
111	21	N15	28.025	264.034	-9.02	0	9.728	300.579
112	21	N16	98.82	788.342	-30.872			
113		Totals:		Y: -68.864	Z: 15.867			
114		COG (in):	X:449	130.575	0	0	.013	144.98
115	22	N13	22.994	130.016	0	Ö	.01	144.325
116	22	N14	18.886		0	0	.06	301.419
117	22	N15	52.546	264.596	0	0	.043	299.709
118	22	N16	37.334	263.155	0	U	.040	200.100
119	22	Totals:	131.76	788.342				
120	22	COG (in):	X:449	Y: -68.864	Z: 15.867	0	-5.202	145.172
121	23	N13	17.27	130.745	5.176	0		144.26
122	23	N14	14.14	129.847	4.885	0	-4.863	302.427
123	23	N15	39.434	265.483	11.791	0	-12.886	
124		N16	27.976	262.268	9.02	0	-9.664	298.792
125	23	Totals:	98.82	788.342	30.872			
126	23	COG (in):	X:449	Y: -68.864	Z: 15.867		45.000	445 550
127	24	N13	5.823	131.084	15.529	0	-15.629	145.558
128		N14	4.647	129.507	14.654	0	-14.608	144.131

: APT : JV : CT141_13220 : Existing Mounts

Feb 8, 2022 9:58 AM Checked By: MST

Joint	Read	ctions (Continued	d)					
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
129	24	N15	13.211	267.258	35.373	0	-38.771	304.446
130	24	N16	9.259	260.493	27.059	0	-29.075	296.962
131	24	Totals:	32.94	788.342	92.615			
132	24	COG (in):	X:449	Y: -68.864	Z: 15.867			
133	25	N13	.099	131.253	20.705	0	-20.842	145.75
134	25	N14	099	129.338	19.538	0	-19.48	144.068
135	25	N15	.1	268.144	47.164	0	-51.711	305.456
136	25	N16	1	259.607	36.079	0	-38.778	296.048
137	25	Totals:	0	788.342	123.487			
138	25	COG (in):	X:449	Y: -68.864	Z: 15.867			
139	26	N13	-5.674	131.085	15.529	0	-15.634	145.549
140	26	N14	-4.796	129.506	14.654	0	-14.612	144.122
141	26	N15	-13.062	267.265	35.373	0	-38.795	304.407
142	26	N16	-9.408	260.486	27.059	0	-29.092	296.919
143	26	Totals:	-32.94	788.342	92.615			
144	26	COG (in):	X:449	Y: -68.864	Z: 15.867			
145	27	N13	-17.22	130.748	5.176	0	-5.219	145.145
146	27	N14	-14.19	129.843	4.885	0	-4.877	144.23
147	27	N15	-39.385	265.507	11.791	0	-12.969	302.305
148	27	N16	-28.025	262.244	9.02	0	-9.725	298.657
149	27	Totals:	-98.82	788.342	30.872			
150	27	COG (in):	X: -,449	Y: -68.864	Z: 15.867			
151	29	N13	0	61.407	0	0	0	68.748
152	29	N14	0	61.124	0	0	0	68.418
		N15	0	91.66	0	0	0	104.043
153	29	N16	0	91.171	Ö	0	0	103.473
154	29		0	305.363	Ö			
155	29	Totals:	X:455	Y: -68.991	Z: 19.261			
156	29	COG (in):	-81.527	61.413	0	0	021	68.719
157	31	N13	-59.665	61.119	0	0	015	68.385
158	31	N14		91.691	Ö	0	094	103.919
159	31	N15	-237.481 -158.111	91.141	Ö	0	062	103.331
160	31	N16		305.363	0			,00,00
161	31	Totals:	-536.784	Y: -68.991	Z: 19.261			
162	31	COG (in):	X:455	60.708	-13.333	0	13.965	67.902
163	32	N13	-61.192	61.824	-11.445	0	11.768	68.951
164	32	N14	-44.702		-47.719	0	53.974	98.854
165	32	N15	-178.157	87.341 95.49	-33.158	0	37.038	108.15
166	32	N16	-118.537		-105.655	- 0	37.000	100.10
167	32	Totals:	-402.588	305.363				
168	32	COG (in):	X:455	Y: -68.991	Z: 19.261 -39.999	0	41.947	66.272
169	33	N13	-20.523	59.295	-34.334	0	35.342	70.089
170		N14	-14.775	63.236	-143.158	0	162.228	88.759
171	33	N15	-59.511	78.62		0	111.3	117.855
172	33	N16	-39.387	104.211	-99.474 -316.965		111.0	1.17.000
173	33	Totals:	-134.196	305.363				
174	33	COG (in):	X:455	Y: -68.991	Z: 19.261		55.944	65.459
175	34	N13	188	58.588	-53.331	0	47.132	70.661
176	34	N14	.188	63.943	<u>-45.779</u>	0	216.415	83.729
177	34	N15	188	74.248	-190.878		148.461	122.742
178	34	N16	.188	108.584	-132.632	.0	140.401	122.142
179	34	Totals:	0	305.363	-422.62			
180	34	COG (in):	X:455	Y: -68.991	Z: 19.261		44.000	66.291
181	35	N13	20.241	59.291	-39.999	0	41.968	70.111
182	35	N14	15.057	63.24	-34.334	0	35.357	
183	35	N15	59.229	78.582	-143.158	0	162.393	88.856
184	35	N16	39.669	104.25	-99.474	0	111.392	117.993
185		Totals:	134.196	305.363	-316.965			

: APT : JV : CT141_13220 : Existing Mounts

Feb 8, 2022 9:58 AM Checked By: MST

<u>Join</u>	Reac	tions (Continue	d)					
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
186	35	COG (in):	X:455	Y: -68.991	Z: 19.261		44.007	67.05
187	36	N13	61.099	60.698	-13.333	0	14.007	67.95
188	36	N14	44.795	61.834	-11.445	0	11.798	69.006
189	36	N15	178.063	87.273	-47.719	0	54.233	99.076
190	36	N16	118.631	95.559	-33.158	0	37.193	108.43
191	36	Totals:	402.588	305.363	-105.655			
192	36	COG (in):	X:455	Y: -68.991	Z: 19.261			
193	37	N13	81.527	61.402	0	0	.021	68.778
194	37	N14	59.665	61.13	0	0	.015	68.451
		N15	237.481	91.63	0	0	.094	104.168
195	37	N16	158.111	91.202	Ö	0	.062	103.615
196	37			305.363	0		100	
197	37	Totals:	536.784		Z: 19.261			
198	37	COG (in):	X:455	Y: -68.991		0	-13.975	69.591
199	38	N13	61.192	62.109	13.333	0	-11.775	67.879
200	38	N14	44.702	60.423	11.445			
201	38	N15	178.157	96.001	47.719	0	-54.092	109.198
202	38	N16	118.537	86.83	33.158	00	-37.1	98.729
203	38	Totals:	402.588	305.363	105.655			
204	38	COG (in):	X:455	Y: -68.991	Z: 19.261			
205	39	N13	20.523	63.521	39.998	0	-41.958	71.22
206	39	N14	14.775	59.011	34.334	0	-35.349	66.741
	39	N15	59.511	104.723	143.157	0	-162.346	119.292
207		N16	39.387	78.109	99.475	0	-111.362	89.024
208	39		134.196	305.363	316.965			
209	39	Totals:		Y: -68.991	Z: 19.261			
210	39	COG (in):	X:455		-53.331	0	55.944	65.459
211	40	N13	188	58.588		0	47.132	70.661
212	40	N14	.188	63.943	-45.779			83.729
213	40	N15	188	74.248	-190.878	0	216.415	
214	40	N16	.188	108.584	-132.632	0	148.461	122.742
215	40	Totals:	.0	305.363	-422.62			
216	40	COG (in):	X:455	Y: -68.991	Z: 19.261			
217	41	N13	-20.241	63.522	39.998	0	-41.958	71.209
218	41	N14	-15.057	59.009	34.334	0	-35.35	66.731
219	41	N15	-59.229	104.715	143.157	0	-162.274	119.265
220	41	N16	-39.669	78.116	99.475	0	-111.332	89.02
221	41	Totals:	-134.196	305.363	316.965			
222	41	COG (in):	X:455	Y: -68.991	Z: 19.261			
		N13	-61.099	62.115	13.333	0	-13.997	69.55
223	42	N14	-44.795	60.416	11.445	0	-11.791	67.836
224	42		-178.063	96.025	47.719	0	-54.115	109.046
225	42	N15		86.807	33.158	0	-37.132	98.583
226	42	N16	-118.631		105.655	- 0	-07.102	50.000
227		Totals:	-402.588	305.363				
228	42	COG (in):	X:455	Y: -68.991	Z: 19.261	0	007	112.462
229	44	N13	-16.09	101.23	0	0	007	
230	44	N14	-13.226	100.789	0	0	006	111.949
231	44	N15	-36.745	199.903	0	0	032	227.538
232	44	N16	-26.171	198.776	0	0	023	226.238
233	44	Totals:	-92.232	600.698	0			
234		COG (in):	X:45	Y: -68.875	Z: 16.143			
235	45	N13	-12.085	101.112	-3.623	0	3.641	112.327
236	45	N14	-9.902	100.907	-3.42	0	3.406	111.992
		N15	-27.576	199.287	-8.247	0	9.016	226.832
237	45		-19.611	199.391	-6.321	0	6.777	226.869
238	45	N16	-69.174	600.698	-21.61		J,	
239		Totals:			Z: 16.143			
240	45	COG (in):	X:45	Y: -68.875		0	10.937	112.057
241	46	N13	-4.075	100.876	-10.868	0	10.228	112.037
242	46	N14	-3.254	101.143	-10.26	0	10.220	112.00

: APT : JV : CT141_13220 : Existing Mounts

Feb 8, 2022 9:58 AM Checked By: MST

Join	Read	ctions (Continued	- A	00000000	DACHAR D	Thyrollafular Ales	292027211972201	VEVENDO CARROTTERA P
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
243	46	N15	-9.239	198.055	-24.74	0	27.114	225.422
244	46	N16	-6.49	200.624	-18.963	0	20.377	228.133
245	46	Totals:	-23.058	600.698	-64.831			
246	46	COG (in):	X:45	Y: -68.875	Z: 16.143			111.000
247	47	N13	069	100.757	-14.49	0	14.585	111.922
248	47	N14	.069	101.261	-13.68	0	13.64	112.124
249	47	N15	07	197.439	-32.986	0	36.164	224.717
250	47	N16	.07	201.24	-25.284	0	27.178	228.765
251	47	Totals:	0	600.698	-86.441			
252	47	COG (in):	X:45	Y: -68.875	Z: 16.143			
253	48	N13	3.97	100.875	-10.868	0	10.941	112.063
254	48	N14	3.359	101.144	-10.26	0	10.232	112.086
255	48	N15	9.134	198.05	-24.74	0	27.132	225.445
256	48	N16	6.595	200.628	-18.963	0	20.39	228.159
257	48	Totals:	23.058	600.698	-64.831		77.4.2	
258	48	COG (in):	X:45	Y: -68.875	Z: 16.143			
	49	N13	12.05	101.11	-3.623	0	3.652	112.343
259		N14	9.937	100.909	-3.42	0	3.414	112.009
260	49	N15	27.541	199.274	-8.247	Ö	9.066	226.899
261	49		19.646	199.405	-6.321	Ō	6.812	226.944
262	49	N16	69.174	600.698	-21.61		0.012	2201011
263	49	Totals:		Y: -68.875	Z: 16.143			
264	49	COG (in):	X:45			0	.007	112.483
265	50	N13	16.09	101.228	0	0	.006	111.971
266	50	N14	13.226	100.791		0	.032	227.626
267	50	N15	36.745	199.886	0	0	.023	226.336
268	50	N16	26.171	198.793	0	U	.023	220.330
269	50	Totals:	92.232	600.698	0			
270	50	COG (in):	X:45	Y: -68.875	Z: 16.143		0.040	440.040
271	51	N13	12.085	101.346	3.623	0	-3.642	112.618
272	51	N14	9.902	100.673	3.42	0	-3.406	111.927
273	51	N15	27.576	200.502	8.247	0	-9.019	228.331
274	51	N16	19.611	198.177	6.321	0	-6.778	225.703
275	51	Totals:	69.174	600.698	21.61			
276	51	COG (in):	X:45	Y: -68.875	Z: 16.143			
277	52	N13	4.075	101.582	10.868	0	-10.938	112.888
278	52	N14	3.254	100.436	10.26	0	-10.229	111.84
279	52	N15	9.239	201.734	24.74	0	-27.117	229.741
280	52	N16	6.49	196.945	18.963	0	-20.379	224.44
281	52	Totals:	23.058	600.698	64.83			
282	52	COG (in):	X:45	Y: -68.875	Z: 16.143			
283	53	N13	.069	101.701	14.49	0	-14.585	113.023
284		N14	069	100.318	13.68	0	-13.64	111.796
285	53	N15	.07	202.35	32.986	0	-36.164	230.447
286	53	N16	07	196.329	25.284	0	-27.178	223.809
287	53	Totals:	0	600.698	86.441			
288		COG (in):	X:45	Y: -68.875	Z: 16.143			
	53	N13	-3.97	101.583	10.868	0	-10.941	112.883
289	54	N14	-3.359	100.436	10.26	Ö	-10.231	111.835
290	54		-9.134	201.738	24.74	0	-27.129	229.72
291	54	N15	-6.595	196.941	18.963	0	-20.388	224.417
292	54	N16		600.698	64.83	U	20.000	
293	54	Totals:	-23.058					
294	54	COG (in):	X:45	Y: -68.875	Z: 16.143	0	-3.651	112.603
295	55	N13	-12.05	101.348	3.623	0	-3.414	111.911
296	55	N14	-9.937	100.671	3.42			228.266
297	55	N15	-27.541	200.515	8.247	0	-9.063 6.911	225.632
298	55	N16	-19.646	198.164	6.321	0	-6.811	223.032
299	55	Totals:	-69.174	600.698	21.61			

Company : APT
Designer : JV
Job Number : CT141_13220
Model Name : Existing Mounts

: APT

Feb 8, 2022 9:58 AM Checked By: MST

Joint Reactions (Continued)

LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
300 55	COG (in):	X:45	Y: -68.875	Z: 16.143			

Envelope Joint Reactions

	Joint		х пы	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N13	max	135.902	9	131.253	25	88.896	12	Ö	55	93.252	6	145.75	25
2	37.15	min	-135.902	3	58.588	34	-88.897	6	0	1	-93.252	12	65.459	34
3	N14	max	99.418	9	130.69	19	76.287	12	0	55	78.541	6	144.541	19
4	13.17	min	-99.418	3	59.009	41	-76.287	6	0	1	-78.541	12	66.731	41
5	N15	max	395.916	9	268.144	25	318.213	12	0	55	360.793	6	305.456	25
6	IVIO	min	-395.916	3	74.248	34	-318.218	6	0	1	-360.788	12	83.729	34
7	N16	max	263.404	9	266.67	19	220.971	12	0	55	247.334	6	303.184	19
8	IVIO	min	-263.404	_	78.109	39	-220.966	6	0	1	-247.339	12	89.02	41
9	Totals:	max	894.64	9	788.342	27	704.367	12						
10	Totals.	min	-894.64	3	305.363	29	-704.367	6						-

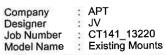
Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code	Locfin	LC	Shear .	.Loc[in]	Dir	LC	phi*Pnc	phi*Pnt [.	phi*Mn	phi*Mn	Cb Eqn
1	M2	PIPE 2.0	The State of	33.25	9	.014	7		9	17855.0	32130	1871.625	1871.625	1.5 H1-1b
2	M2A	PIPE 2.0	439	33.25	9	.040	7		9	17855.0	32130	1871.625	1871.625	1H1-1b
3	M3	L2.5x2.5x4		14	19	.011	14	v	25	36881.0	38556	1113.554	2537.388	1 H2-1
4	M4	L2.5x2.5x4		14	19	.011	14	v	19	36881.0	38556	1113.554	2537.388	1 H2-1
5	M5	L2.5x2.5x4		14	19	.022	14	v	19	36881.0	38556	1113.554	2537.388	1 H2-1
6	M6	L2.5x2.5x4		14	6	.026	14	z	6	36881.0	38556	1113.554	2537.388	1 H2-1

: APT : JV : CT141_13220 : Existing Mounts

Load Combinations

	2 COMBINATIONS		_	0		E-	DI C	E.	D	Ec	B	Fo	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
		S	Υ			1.4		га	D	1 4	J	1 0	D	, a	J		J		J		T			
1	1.4DL		1		UL	1.4						-												
2	4.001 - 140.77				D.	1.0	WLX	1	-		1											-		
3	1.2DL + WLX		Y				WLX		NA/	25														
-	1.2DL + 0.75WLX + 0.25		Y												-	-	-							
5	1.2DL + 0.25WLX + 0.75		Y				WLX		VV	./5	-		-		-				-					
6	1.2DL + WLZ		Υ		DL	1.2	WLZ	1	100		-		-		-	-	\vdash		-					-
	1.2DL + 0.25WL-X + 0.75		Y				WLX							-	-	_	-		-				-	
8	1.2DL + 0.75WL-X + 0.25		Y				WLX		W	.25					-		-		-					
9	1.2DL + WL-X		Y		DL	1.2	WLX	-1					_	_	_				-		-	-		-
10	1.2DL + 0.75WL-X + 0.25		Y				WLX					-									-			\perp
11	1.2DL + 0.25WL-X + 0.75		Y				WLX		W	75			_		_			_	_	_				
12	1.2DL + WL-Z		Y				WLZ																	
	1.2DL + 0.25WLX + 0.75		Y		DL	1.2	WLX	.25	W	75														
14	1.2DL + 0.75WLX + 0.25		Υ		DL	1.2	WLX	.75	W	25	5													
15			-																					
16	1.2DL + DLi + WLXi		Y		DL	1.2	OL1	1	W	1														
	1.2DL + DLi + 0.75WLXi +		Y		DI	12	OL1	1	W	.75	W	.25												
10	1.2DL + DLi + 0.25WLXi +		Ÿ				OL1			.25														
-			Y				OL1		W	1														
19	1.2DL + DLI + WLZI 1.2DL + DLi + 0.25WL-Xi		Y		DI.	12	OL1	1		25	W.	75												
20	1.2DL + DLi + 0.75WL-Xi		Y				OL1		-	75	-	-	_											
			Y				OL1			-1	1	.20												
22	1.2DL + DLi + WL-Xi				P.	1.2	OL1	1		75	10/	25			\vdash									
23	1.2DL + DLi + 0.75WL-Xi	-	Y							25														
	1.2DL + DLi + 0.25WL-Xi		Y				OL1		_	1 1 1 1 1	_	/-	-	-	+		-				1			
25	1.2DL + DLi + WL-Zi	-	Y		DL	1.2	OL1	1		-1		70	-		+			-						
_26	1.2DL + DLi + 0.25WLXi +		Y				OL1			.25				-	-				-	-	+			
	1.2DL + DLi + 0.75WLXi +		Y		DL	1.2	OL1	1	VV	.75	VV	25	}		-		-		-	-	-	-		
28								-	-	-	-	-	-	-	+	-	-	-	-	-	+-	-	-	-
29	DL	Yes	Y		DL	1	_	-	-	-	-		-	-	-	-			-	-	-			
30												-	-	-	+-		-	-	-	-	-		-	-
31		Yes			DL	1				_				_	-		-	-	-		-	-		_
32	DL + 0.6(.75WLX + 0.25W.	.Yes	Y		DL	1	WLX										-	-	-		-			
33		Yes.	Y		DL	1	WLX	.15	W	.45					_		_		_		_	_	_	_
34		Yes	Y		DL	1	WLZ	.6											_					
35	DL + 0.6(0.25WL-X + 0.75.	Yes	Y		DL	1	WLX	15	W	.45											_			
36	DL + 0.6(0.75WL-X + 0.25.	Yes	Y		DL	1	WLX																	
37	DL + 0.6WL-X	Yes	Y		DL	1	WLX																	
38	DL + 0.6(0.75WL-X + 0.25.	Yes	Ý		DL	1	WLX			-,15	5													
30	DL + 0.6(0.25WL-X + 0.75.	Yes	Y		DL	1	WLX																	
40	DI + 0.6WL-Z	Yes	v	1	DL	1	WLZ											1						
	DL + 0.6(0.25WLX + 0.75				DL	1	WLX	15	W	_ 45														
	DL + 0.6(0.75WLX + 0.75				bL		WLX																	
	DL + 0.0(0.73VVLA + 0.25	. 1 65	I	1	UL	1	1/	.40	1.00		+	1												
43	DI . 0 7DI . 0 714" \	1V	V	-	DI	4	OL1	. 7	W	.7	1	+												
44	DL + 0.7DLi + 0.7WLX	Tes	Y	-	DL					.525	5 \A/	174	-											
	DL + 0.7DLi + 0.7(0.75WL.	. Yes	Y	-	DL	1	OL1	.7	VV	.175	VV	E24			-					100				
46	DL + 0.7DLi + 0.7(0.25WL.	. Yes	Y		DL	1	OL1	1./	VV.	-1/3	۷۷	.023	-	-	-		-		-	-				
47	DL + 0.7DLi + 0.7WLZ	Yes	Y	-	DL	1	OL1		VV	.7	E har	FO	-				-		-					
48					DL	1	OL1		-	17					-	-	-				-		-	-
49					DL	1	OL1			52		1.17		-	-				-					1
50	DL + 0.7DLi + 0.7WL-Xi	Yes	Y		DL	1	OL1			7						-	-		-				_	-
51	DL + 0.7DLi + 0.7(0.75WL.				DL	1	OL1	.7	W	52	5W	17	5				-			_			_	
52	DL + 0.7DLi + 0.7(0.25WL.				DL	1	OL1	.7		17		52	5									-		
53	DL + 0.7DLi + 0.7WL-Zi				DL	1	OL1	.7		7														
54					DL	1	OL1		W	175	W	52	5											
55					DL	-	OL1			.525														
33			-		-	-	-		-															



APT
JV
CT141_13220
Existing Mounts

Feb 8, 2022 10:01 AM Checked By: MST

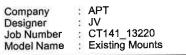
Joint Reactions (By Combination)

	LC	Joint Label	X [1b]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	29	N13	0	61.407	Ö	0	0	68.748
2	29	N14	0	61.124	0	0	0	68.418
3	29	N15	0	91.66	0	0	0	104.043
4	29	N16	0	91.171	0	0	0	103.473
5	29	Totals:	0	305.363	0			
6	29	COG (in):	X:455	Y: -68.991	Z: 19.261			
7	31	N13	-81.527	61.413	0	0	021	68.719
8	31	N14	-59.665	61.119	0	0	015	68.385
9	31	N15	-237.481	91.691	0	0	094	103.919
10	31	N16	-158.111	91.141	0	0	062	103.331
11	31	Totals:	-536.784	305.363	0			
12	31	COG (in):	X:455	Y: -68.991	Z: 19.261			
13	32	N13	-61.192	60.708	-13.333	0	13.965	67.902
14	32	N14	-44.702	61.824	-11.445	0	11.768	68.951
15	32	N15	-178.157	87.341	-47.719	0	53.974	98.854
16	32	N16	-118.537	95.49	-33.158	0	37.038	108.15
17	32	Totals:	-402.588	305.363	-105.655			5.37.70.2.19
18	32	COG (in):	X:455	Y: -68.991	Z: 19.261			
	33	N13	-20.523	59.295	-39.999	0	41.947	66.272
19	33	N14	-14.775	63.236	-34.334	0	35.342	70.089
20		N15	-59.511	78.62	-143.158	0	162.228	88.759
21	33	N16	-39.387	104.211	-99.474	0	111.3	117.855
22		Totals:	-134.196	305.363	-316.965			
23	33	COG (in):	X:455	Y: -68.991	Z: 19.261			
24	33	N13	188	58.588	-53.331	0	55.944	65.459
25	34		.188	63.943	-45.779	0	47.132	70.661
26	34	N14 N15	188	74.248	-190.878	0	216.415	83.729
27	34		.188	108.584	-132.632	0	148.461	122.742
28	34	N16	0	305.363	-422.62		1 10.101	
29	34	Totals:	X:455	Y: -68.991	Z: 19.261			
30	34	COG (in):	20.241	59.291	-39.999	0	41.968	66.291
31	35	N13	15.057	63.24	-34.334	Ö	35.357	70.111
32	35	N14	59.229	78.582	-143.158	Ö	162.393	88.856
33	35	N15	39.669	104.25	-99.474	0	111.392	117,993
34	35	N16	134.196	305.363	-316.965		111.002	
35	35	Totals:		Y: -68.991	Z: 19.261			
36	35	COG (in):	X:455	60.698	-13.333	0	14.007	67.95
37	36	N13	61.099	61.834	-11.445	0	11.798	69.006
38	36	N14	44.795		-47.719	0	54.233	99.076
39	36	N15	178.063	87.273 95.559	-33.158	0	37.193	108.43
40	36	N16	118.631	305.363	-105.655		07.100	100.10
41	36	Totals:	402.588		Z: 19.261			
42	36	COG (in):	X:455	Y: -68.991		0	.021	68.778
43	37	N13	81.527	61.402	0	0	.015	68.451
44	37	N14	59.665	61.13		0	.094	104.168
45	37	N15	237.481	91.63	0	0	.062	103.615
46	37	N16	158.111	91,202	0	U	.002	100.010
47	37	Totals:	536.784	305.363				
48	37	COG (in):	X:455	Y: -68.991	Z: 19.261	0	12 075	69.591
49	38	N13	61.192	62.109	13.333	0	-13.975 -11.775	67.879
50	38	N14	44.702	60.423	11.445			109.198
51	38	N15	178.157	96.001	47.719	.0	-54.092	98.729
52	38	N16	118.537	86.83	33.158	0	-37.1	90.729
53	38	Totals:	402.588	305.363	105.655			
54	38	COG (in):	X:455	Y: -68.991	Z: 19.261		44.050	74.00
55	39	N13	20.523	63.521	39.998	0	-41.958	71.22
56	39	N14	14.775	59.011	34.334	0	-35.349	66.741

Feb 8, 2022 10:01 AM Checked By: MST

Joint Reactions (By Combination) (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
57	39	N15	59.511	104.723	143.157	0	-162.346	119.292
58	39	N16	39.387	78.109	99.475	0	-111.362	89.024
59	39	Totals:	134.196	305.363	316.965			
60	39	COG (in):	X:455	Y: -68.991	Z: 19.261			
	40	N13	188	58.588	-53.331	0	55.944	65.459
61		N14	.188	63.943	-45.779	0	47.132	70.661
62	40		188	74.248	-190.878	0	216.415	83.729
63	40	N15	.188	108.584	-132.632	Ö	148.461	122.742
64	40	N16		305.363	-422.62		140.701	12211 12
65	40	Totals:	0	Y: -68.991	Z: 19.261			
66	40	COG (in):	X:455		39.998	0	-41.958	71.209
67	41	N13	-20.241	63.522		0	-35.35	66.731
68	41	N14	-15.057	59.009	34.334		-162.274	119.265
69	41	N15	-59.229	104.715	143.157	0		
70	41	N16	-39.669	78.116	99.475	0	-111.332	89.02
71	41	Totals:	-134.196	305.363	316.965			
72	41	COG (in):	X:455	Y: -68.991	Z: 19.261			00.55
73	42	N13	-61.099	62.115	13.333	0	-13.997	69.55
74	42	N14	-44.795	60.416	11.445	00	-11.791	67.836
75	42	N15	-178.063	96.025	47.719	0	-54.115	109.046
76	42	N16	-118.631_	86.807	33.158	0	-37.132	98.583
77	42	Totals:	-402.588	305.363	105.655			
78	42	COG (in):	X:455	Y: -68.991	Z: 19.261			
		N13	-16.09	101.23	0	0	007	112.462
79	44	N13	-13.226	100.789	0	0	006	111.949
80	44		-36.745	199.903	0	Ö	032	227.538
81	44	N15		198.776	Ö	Ö	023	226.238
82	44	N16	-26.171		0		020	ELU.LUU
83	44	Totals:	-92.232	600.698	Z: 16.143			
84	44	COG (in):	X:45	Y: -68.875		0	3.641	112.327
85	45	N13	-12.085	101.112	-3.623	0	3.406	111.992
86	45	N14	-9.902	100.907	-3.42			226.832
87	45	N15	-27.576	199.287	-8.247	0	9.016	
88	45	N16	-19.611	199.391	-6.321	0	6.777	226.869
89	45	Totals:	-69.174	600.698	-21.61			
90	45	COG (in):	X:45	Y: -68.875	Z: 16.143			
91	46	N13	-4.075	100.876	-10.868	0	10.937	112.057
92	46	N14	-3.254	101.143	-10.26	0	10.228	112.08
93	46	N15	-9.239	198.055	-24.74	0	27.114	225.422
94	46	N16	-6.49	200.624	-18.963	0	20.377	228.133
95	46	Totals:	-23.058	600.698	-64.831			
96	46	COG (in):	X:45	Y: -68.875	Z: 16.143			
97	47	N13	069	100.757	-14.49	0	14.585	111.922
			.069	101.261	-13.68	0	13.64	112.124
98	47	N14	07	197.439	-32.986	0	36.164	224.717
99	47	N15	.07	201.24	-25.284	0	27.178	228.765
100	47	N16		600.698	-86.441			
101	47	Totals:	0					
102	47	COG (in):	X:45	Y: -68.875	Z: 16.143	0	10.941	112.063
103	48	N13	3.97	100.875	-10.868			112.086
104	48	N14	3.359	101.144	-10.26	0	10.232	225.445
105	48	N15	9.134	198.05	-24.74	0	27.132	
106	48	N16	6.595	200.628	-18.963	0	20.39	228.159
107	48	Totals:	23.058	600.698	-64.831			
108	48	COG (in):	X:45	Y: -68.875	Z: 16.143			
109	49	N13	12.05	101.11	-3.623	0	3.652	112.343
110	49	N14	9.937	100.909	-3.42	0	3.414	112.009
111	49	N15	27.541	199.274	-8.247	0	9.066	226.899
		N16	19.646	199.405	-6.321	0	6.812	226.944
112	49							


: APT : JV : CT141_13220 : Existing Mounts Feb 8, 2022 10:01 AM Checked By: MST

Joint Reactions (By Combination) (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [ib-ft]	MZ [lb-ft]
114	49	COG (in):	X:45	Y: -68.875	Z: 16.143			
115	50	N13	16.09	101.228	0	0	.007	112.483
116	50	N14	13.226	100.791	0	0	.006	111.971
117	50	N15	36.745	199.886	0	0	.032	227.626
118	50	N16	26.171	198.793	0	0	.023	226.336
119	50	Totals:	92.232	600.698	0			
120	50	COG (in):	X:45	Y: -68.875	Z: 16.143			
121	51	N13	12.085	101.346	3.623	0	-3.642	112.618
122	51	N14	9.902	100.673	3.42	0	-3.406	111.927
123	51	N15	27.576	200.502	8.247	0	-9.019	228.331
124	51	N16	19.611	198.177	6.321	0	-6.778	225.703
125	51	Totals:	69.174	600.698	21.61			
126	51	COG (in):	X:45	Y: -68.875	Z: 16.143			
127	52	N13	4.075	101.582	10.868	0	-10.938	112.888
128	52	N14	3.254	100.436	10.26	0	-10.229	111.84
129	52	N15	9.239	201.734	24.74	0	-27.117	229.741
130	52	N16	6.49	196.945	18.963	0	-20.379	224.44
131	52	Totals:	23.058	600.698	64.83			
132	52	COG (in):	X:45	Y: -68.875	Z: 16.143			
133	53	N13	.069	101.701	14.49	0	-14.585	113.023
134	53	N14	069	100.318	13.68	0	-13.64	111.796
135	53	N15	.07	202.35	32.986	0	-36.164	230.447
136	53	N16	07	196.329	25.284	0	-27.178	223.809
137	53	Totals:	0	600.698	86.441			
138	53	COG (in):	X:45	Y: -68.875	Z: 16.143			
139	54	N13	-3.97	101.583	10.868	0	-10.941	112.883
140	54	N14	-3.359	100.436	10.26	0	-10.231	111.835
141	54	N15	-9.134	201.738	24.74	0	-27.129	229.72
142	54	N16	-6.595	196.941	18.963	0	-20.388	224.417
143	54	Totals:	-23.058	600.698	64.83			
144	54	COG (in):	X:45	Y: -68.875	Z: 16.143			
145	55	N13	-12.05	101.348	3.623	0	-3.651	112.603
146	55	N14	-9.937	100.671	3.42	0	-3.414	111.911
146	55	N15	-27.541	200.515	8.247	0	-9.063	228.266
148	55	N16	-19.646	198.164	6.321	0	-6.811	225.632
148	55	Totals:	-69.174	600.698	21.61			
150	55	COG (in):	X:45	Y: -68.875	Z: 16.143			

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N13	max	81.527	37	101.701	53	39.998	41	0	55	55.944	40	113.023	53
2	1110	min	-81.527	31	58.588	34	-53.331	34	0	29	-41.958	41	65.459	34
3	N14	max	59.665	37	101.261	47	34.334	41	0	55	47.132	40	112.124	47
4	INIT	min	-59.665	31	59.009	41	-45.779	34	0	29	-35.35	41	66.731	41
5	N15	max	237.481	37	202.35	53	143.157	41	0	55	216.415	40	230.447	53
6	IV 13	min	-237.481	31	74.248	34	-190.878	34	0	29	-162.346	39	83.729	34
7	N16	max	158.111	37	201.24	47	99,475	41	0	55	148.461	40	228.765	47
8	INTO	min	-158.111	31	78.109	39	-132.632	34	0	29	-111.362	39	89.02	41
9	Totals:	max	536.784	37	600.698	55	316.965	41						
10	rotais.	min	-536.784	31	305.363	29	-422.62	34						

Feb 8, 2022 10:01 AM Checked By: MST

Envelope Joint Displacements

	Joint		X [in]	LC	Y [in]	LC	Z [in]	10000	X Rotation	_	Y Rotation		Z Rotation [LC
1	8	max	Ö	31	004	41	.007	40	8.553e-4	41	1.219e-3	31	2.399e-3	31
2		min	0	37	009	47	0	41	-1.14e-3	34	-2.992e-3	The second second	-2.399e-3	37
3	9	max	0	31	004	41	.007	40	1.034e-3	40	1.219e-3	31	2.105e-3	37
4		min	0	37	009	47	0	41	-7.75e-4	39	-2.992e-3		-2.105e-3	31
5	10	max	.021	37	004	41	.008	39	1.029e-3	40	1.219e-3	31	2.1e-3	37
6		min	021	31	009	47	004	34	-7.712e-4	39	-2.992e-3		-2.1e-3	31
7	N6	max	.017	37	004	41	.006	39	8.54e-4	41	1.219e-3	31	2.397e-3	31
8		min	017	31	009	47	0	34	-1.138e-3	34	-2.992e-3	37	-2.397e-3	37
9	MT6407-77A	max	0	55	0	55	0	55	0	55	0	55	0	55
10		min	0	29	0	29	0	29	0	29	0	29	0	29
11	ANTCENTERLI	max	.048	31	004	41	.03	40	2.482e-4	41	1.219e-3	31	6.85e-4	31
12		min	048	37	009	47	017	41	-3.304e-4	34	-2.992e-3		-6.85e-4	37
13	N7	max	0	31	002	39	.021	40	4.132e-3	41	5.073e-3	31	7.404e-3	31
14		min	0	37	019	47	007	39	-5.512e-3	34	-7.764e-3	modification or	-7.404e-3	37
15	N8	max	0	31	002	39	.017	40	4.884e-3	40	5.073e-3	31	6.416e-3	37
16		min	0	37	019	47	005	39	-3.66e-3	39	-7.764e-3		-6.416e-3	
17	N9	max	.064	37	002	39	.032	41	4.879e-3	40	5.073e-3	31	6.411e-3	37
18		min	064	31	019	47	032	34	-3.656e-3	39	-7.764e-3		-6.411e-3	
19	N10	max	.052	37	002	39	.022	41	4.13e-3	41	5.073e-3	31	7.402e-3	31
20		min	052	31	-,019	47	018	34	-5.51e-3	34	-7.764e-3		-7.402e-3	
21	NHH-65B-R2B	max	0	55	0	55	0	55	0	55	0	55	0	55
22		min	0	29	0	29	0	29	0	29	0	29	0	29
23	N12	max	.147	31	002	39	.13	40	1.133e-3	41	5.073e-3	31	2.075e-3	31
24		min	147	37	019	47	089	39	-1.512e-3	34	-7.764e-3		-2.075e-3	
25	N13	max	0	55	0	55	0	55	8.553e-4	41	0	55	0	55
26		min	0	29	0	29	0	29	-1.14e-3	34	0	29	0	29
27	N14	max	0	55	0	55	0	55	1.034e-3	40	0	55	0	55
28		min	0	29	0	29	0	29	-7.75e-4	39	0	29	0	29
29	N15	max	0	55	0	55	0	55	4.132e-3	41	0	55	0	55
30		min	0	29	0	29	0	29	-5.512e-3	34	0	29	0	29
31	N16	max	0	55	0	55	0	55	4.884e-3	40	0	55	0	55
32		min	0	29	0	29	0	29	-3.66e-3	39	0	29	0	29

Project ID: Site Name: Date: CT141_13220 Riverside CT 2/8/2022 J.Vassell

Prepared By: Checked By:

M. Trodden

EXISTING CONNECTION CHECK

>> Max Re	actions per Ris	SA Output:		N15, Envelop	e	[Max Shear]				
	Fx =	395.9 lbs			Mx =	0.0 lbs-ft				
(Uplift)	Fy =	0.0 lbs			My =	360.8 lbs-ft				
	Fz =	318.2 lbs			Mz =	0.0 lbs-ft				
>> Existing	>> Existing Connection:									
		L, in		W, in						
Mer	nber Size =	4.5	x	4.5	Existi	ng STD 4.0" Pipe				
		L, in		W, in		t, in				
	Plate =	10	x	6.5	x	0.5				
_		a in			Fy =	36 ksi				
Ŀ	Bolt Spac. =	3 in			1 y -	30 K31				
	Bolt Dia =	0.625 in			Grade =	A325				
1	# of Bolts =	2								
>> Check E	xisting Bolts:	Pe	r Field I	Notes, 5/8" DIA	A A325 Bo	olts				
	Tall ≠	20700 lbs	i .		Vall =	12400 lbs				
	T _{My} =	1443.2 lbs	;							
	T _{Mz} =	0 lbs	;		$V_{Fx/Fz} =$	507.9459 lbs				
	T _{Fa} =	0.00 lbs			V _{Mx} =	0 lbs				
	Ft =	1443.2 lbs		-	Fv =	507.9459 lbs				
	>> Bolt Inter	action: .069718	+	0.041	=	0.111 < 1.0, OK				

Appendix C

Existing Screenwall and Roof Structure Evaluation

Project ID:

CT141_13220

Site Name:

Riverside CT

Date:

11/17/2022

(Based on IBC 2021/2022 CSBC & ASCE 7-16)

DEAD LO	DADING
---------	--------

For Screenwall Siding =	2.5 psf	
Roofing Membrane =	0.5 psf	
3" Rigid Insulation =	4.50 psf	Per drawings prepared by Werner Jensen & Korst
Roof Deck 22 Gauge Type B =	2.20 psf	Per drawings prepared by Werner Jensen & Korst
Hung Ceiling =	3.00 psf	Assumed
Mechanical Duct Allowance =	4.00 psf	Assumed
Misc. =	2.00 psf	
Total =	16.20 psf	
Use =	17.00 psf	

LIVE LOADING

Per Existing Building Drawings by Werner Jensen & Korst, design live load for roof areas is 30 psf.

Per IBC 2021 / 2022 CSBC, live load for ordinary roofs is 20 psf.

SNOW LOADING (Per ASCE 7-16 & CT Building Code 2022)

$p_f = 0.7C_eC_t p_g$	(ASCE 7-16, Section 7.3)	p _g =	30 psf	(CTBC Appendix P)
		$C_e =$	1.0	(ASCE 7-16, Table 7.3-1)
		C _t =	1.1	(ASCE 7-16, Table 7.3-2)
		=	1.0	(ASCE 7-16, Table 1.5-2)

$p_{fmin} =$ Calculated $p_f =$	30 psf 23.1 psf	<pre><< Per 1608.1.1 of 2022 CTBC , P , shall not be less than 30 psf</pre>
Use p _f =	30 psf	

WIND LOADING

> Wind Loads: General Requirements - Chapter 26 Location = Greenwich, CT

Risk Category =	Ш		Table 1.5-1
$V_{ult} =$	120	mph	Figures 26.5-1A - 26.5-1C
z =	37.8	ft, +/-	

$z_g =$	900		Table 26.9-1
- g	500		
k, =	1.03		Table 27.3-1
ĸ _z –	1.05		Tubic 27.5 1
l	1.00		Section 26.8
$k_{zt} =$	1.00		32LIDN 20.6
	0.05		T 11: 30 C 1
$k_d =$	0.85		Table 26.6-1
-			
a-=	32.31	psf	

> Wind Loads on Other Structures and Building Appurtenances - Chapter 29

$$q_z \times GC_r = 61.39 \text{ ps}$$

(Based on IBC 2015/2018 CSBC & ASCE 7-10)

DEAD LOADING

		<u></u>) <u>imensions, i</u>	Weigl	ht, lbs	
Equipment	Quant.	<u>Height</u>	<u>Width</u>	<u>Depth</u>	<u>Per.</u>	<u>Total</u>
NHH-65B-R2B	2	72.0	13.8	8.2	73.7	147.4
MT6407-77A	1	35.1	16.1	5.5	87.1	87.1
B5/B13 RRH	1	15.0	15.0	8.1	82.0	82.0
B2/B66 RRH	1	15.0	15.0	10.0	97.5	97.5
6OVP	1	19.8	15.7	10.3	32.0	32.0
APXVAALL24_43-U-NA20	1	95.9	24.0	8.5	149.9	149.9
AIR32	1	56.6	12.9	8.7	132.2	132.2
AIR6449	1	33.1	20.6	8.6	104.0	104.0
Ericsson RRU	1	14.9	13.2	9.3	74.0	74.0
Ericsson RRU	1	16.5	13.5	9.6	88.0	88.0

^{*}T-mobile Equipment in italics

Total (per sector) = 994.1 lbs/sector

Add 25% for misc. = 1242.63 lbs

Total Carrier Equip Weight = 3727.88 lbs

Distributed Load (Based upon 156' +/- screenwall perimeter) = 23.9 lbs/ft

Use = 30.0 lbs/ft

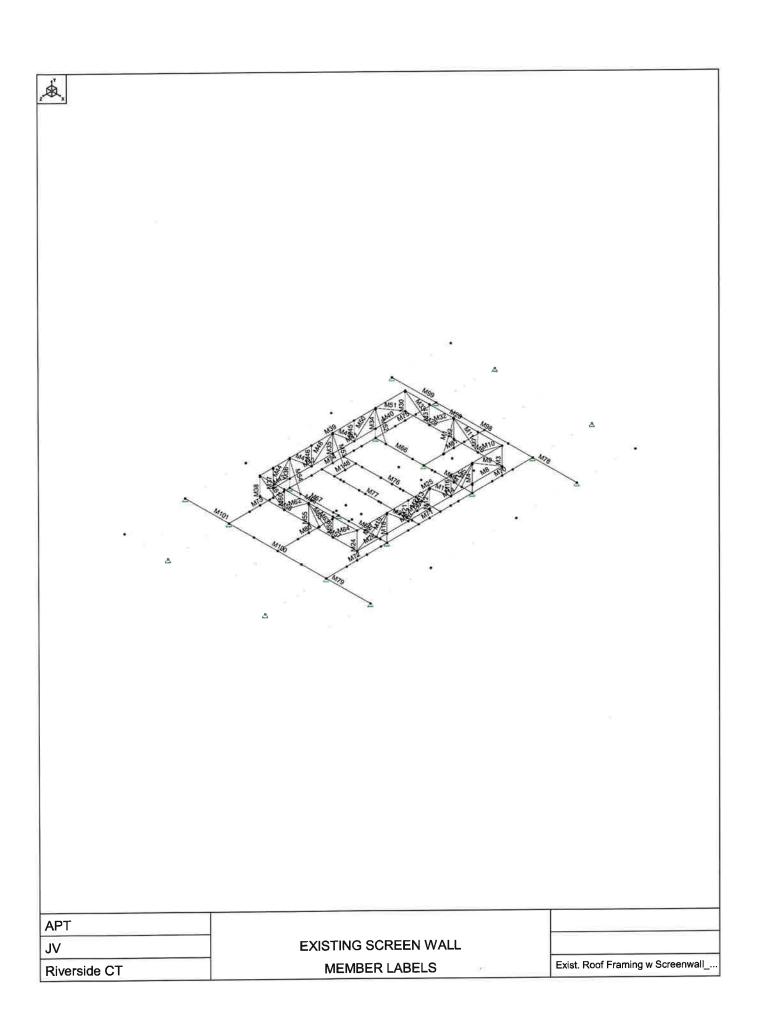
WIND LOADING

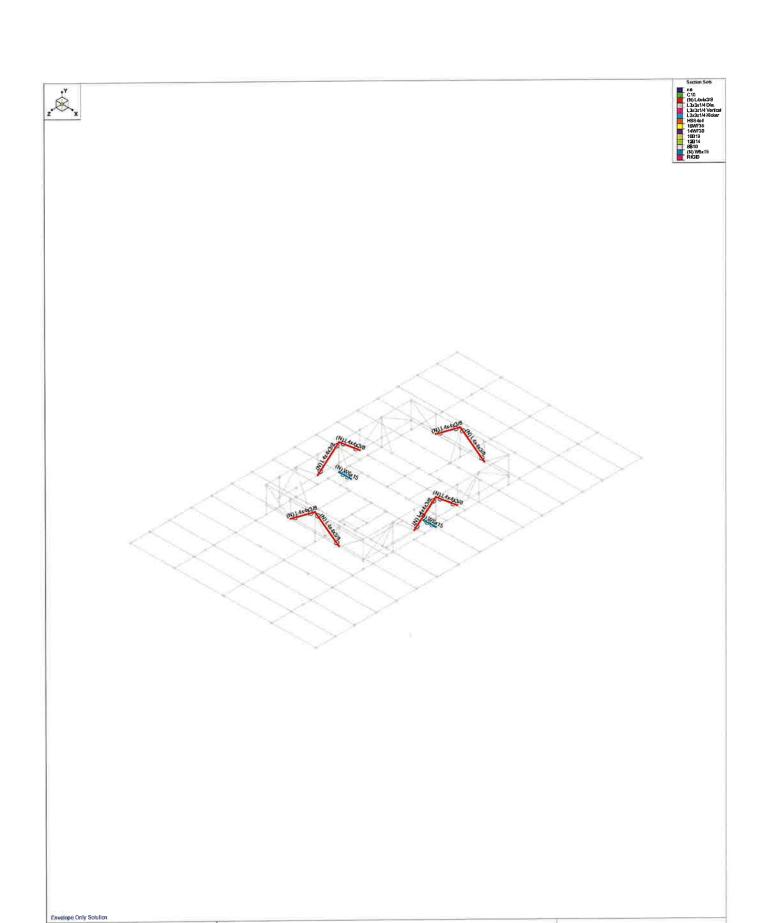
*** See Previous Sheet for Calculation***

 $q_2 = 61.39$ psf

	Wind 4	Area, ft ²		s	
	1			_	
<u>Equipment</u>	Norm.	<u>Trans.</u>	Norm.	Trans.	Avg.
NHH-65B-R2B	6.90	4.10	423.6	251.7	366.3
MT6407-77A	3.92	1.34	240.9	82.3	188.1
B5/B13 RRH	1.56	0.85	95.9	52.1	81.3
B2/B66 RRH	1.56	1.05	95.9	64.2	85.4
60VP	2.16	1.42	132.8	87.0	117.5
APXVAALL24_43-U-NA20	15.98	5.66	981.3	347.5	770.0
AIR32	5.07	3.42	311.3	209.9	277.5
AIR6449	4.74	1.98	290.7	121.4	234.3
Ericsson RRU	1.37	0.96	83.9	58.8	75.5
Ericsson RRU	1.55	1.10	95.0	67.5	85.8

^{*}T-mobile Equipment in italics

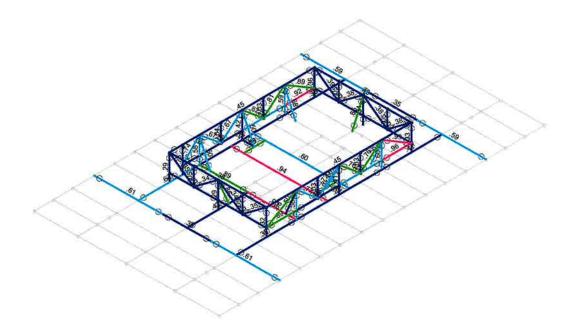

Total (per sector) = 2281.7 lbs/sector


Add 25% for misc. = 2852.13 lbs

Total Carrier Equip Wind Load = 8556.38 lbs

Distributed Load (Based upon 156' +/- screenwall perimeter) = 54.85 lbs/ft

Use = 55.0 lbs/ft



APT		
JV	EXISTING SCREEN WALL	
Riverside CT	Proposed Section Set	Exist. Roof Framing w Screenwall

Member Code Checks Displayed (Enveloped) Envelope Only Solution

APT JV Riverside CT

EXISTING SCREEN WALL **Max Bending Stresses**

Exist. Roof Framing w Screenwall_..

J۷

: JV : Riverside CT : EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
Ė	A500 Gr.B Rect	29000	11154	3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154		.65	.49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]			
1	C10	C10X15.3	Beam	Channel	A36 Gr.36	Typical	4.48	2.27	67.3	.209
2	(N) L4x4x3/8	L4X4X6	HBrace	Single Angle	A36 Gr.36	Typical	2.86	4.32	4.32	.141
3	L3x3x1/4 Dia.	L3X3X4	HBrace	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
4	L3x3x1/4 Vertical	L3X3X4	VBrace	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
5	L3x3x1/4 Kicker	L3X3X4	VBrace	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
6	L2.5x2.5x1/4	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
7	HSS6x6x1/4	HSS6X6X4	Column	SquareTube	A36 Gr.36	Typical	5.24	28.6	28.6	45.6
8	4.0" STD	PIPE 4.0	Beam	Pipe	A53 Gr.B	Typical	2.96	6.82	6.82	13.6
9	2.0" STD	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
10	HSS4x4	HSS4X4X4	Column	SquareTube	A500 Gr.B R	Typical	3.37	7.8	7.8	12.8
11	16WF36	16WFx38.7_15_H	Beam	Wide Flange	A36 Gr.36	Typical	11.39	22.9	490.8	.93
12	14WF30	14WFx32.4 1 His.	Beam	Wide Flange	A36 Gr.36	Typical	9.53	18.1	320.2	.63
13	10B19	10B19	Beam	Wide Flange	A36 Gr.36	Typical	5.533	4.278	94.619	.21
14	12B14	12B14	Beam	Wide Flange	A36 Gr.36	Typical	4.071	2.344	85.826	.061
15	8B10	8B10	Beam	Wide Flange	A36 Gr.36	Typical	2.881	2.083	29.766	.035
16	(N) W6x15	W6X15	Beam	Wide Flange	A992	Typical	4.43	9.32	29.1	.101

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torq	Куу	Kzz	Cb	Function
1	M1	L3x3x1/4 Ki				8 38 8			.8	.8		Lateral
2	M2	HSS4x4	100.75									Lateral
3	M3	HSS4x4	100.75									Lateral
4	M4	HSS4x4	100.75									Lateral
5	M5	L3x3x1/4 Ki							.8	.8		Lateral
6	M6	C10	188	Segment	Segment	Segment	Segment	Segm				Lateral
7	M7	L3x3x1/4 V	69.5									Lateral
8	M8	C10	116	Segment	Segment	Segment	Segment	Segm				Lateral
9	M9	L3x3x1/4 Dia		Seament	Segment	Segment	Segment	Segm	.865	.865		Lateral
10	M10	L3x3x1/4 Dia							.865	.865		Lateral
11	M11	(N) L4x4x3/8							.865	.865		Lateral
12	M12	HSS4x4	100.75									Lateral
13	M13	L3x3x1/4 Ki							.8	.8		Lateral
14	M14	C10	166	Seament	Segment	Segment	Segment	Segm				Lateral
15	M15	L3x3x1/4 Dia		Cogmone					.865	.865		Lateral
16	M16	L3x3x1/4 V	69.5									Lateral
17	M17	(N) L4x4x3/8							.865	.865		Lateral
18	M18	HSS4x4	100.75									Lateral
19	M19	L3x3x1/4 Ki							.8	.8		Lateral
20	M20	C10	166	Segment	Segment	Segment	Segment	Segm				Lateral
21	M21	L3x3x1/4 V		Cogmone	Cogmon							Lateral
22	M22	(N) L4x4x3/8							.865	.865		Lateral
23	M23	L3x3x1/4 Dia	American Company						.865	.865		Lateral
24	M24	HSS4x4	100.75									Lateral

Riverside CT

: Riverside CT : EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]		L-torq	Kyy	Kzz	Cb	Function
25	M25	C10	564	Seament	Segment	Segment		Segm				Lateral
26	M26	C10	116			Lbyy						Lateral
27	M27	L3x3x1/4 Dia.				2.5			.865	.865		Lateral
28	M28	C10	376	Segment	Segment	Segment	Segment	Segm				Lateral
29	M29	C10	188	Segment	Seament	Segment	Segment	Segm				Lateral
30	M30	HSS4x4	100.75	Cogmin								Lateral
31	M31	L3x3x1/4 V	69.5									Lateral
32	M32	(N) L4x4x3/8							.865	.865		Lateral
33	M33	L3x3x1/4 Dia.							.865	.865		Lateral
	M34	HSS4x4	100.75									Lateral
34	M35	HSS4x4	100.75									Lateral
35		HSS4x4	100.75									Lateral
36	M36	C10	100.75									Lateral
37	M37											Lateral
38	M38	HSS4x4	100.75	Coamont	Segment	Segment	Segment	Seam				Lateral
39	M39	C10	564	Segment	Segment	Lbyy	Ocquient					Lateral
40	M40	C10	116	Campont	Coamont	Segment	Segment	Seam				Lateral
41	M41	C10	166	Segment	Segment	Segment	Segment	Seam				Lateral
42	M42	C10	166	Segment	Segment	Lbyy	Segment	Ocgin				Lateral
43	M43	C10	65			LDVY	-		.865	.865		Lateral
44	M44	L3x3x1/4 Dia.							.005	.005		Lateral
45	M45	L3x3x1/4 V	69.5									Lateral
46	M46	L3x3x1/4 V	69.5			0 1	0	Coam	005	065		Lateral
47	M47	L3x3x1/4 Dia.		Segment	Segment	Segment	Segment	Segiii	.865	.865		Lateral
48	M48	(N) L4x4x3/8							.865	.865		Lateral
49	M49	(N) L4x4x3/8							.865	.865		Lateral
50	M50	L3x3x1/4 Dia	108.255						.865	.865		
51	M51	L3x3x1/4 Dia.	135.227						.865	.865		Lateral
52	M52	L3x3x1/4 Ki							.8	.8		Lateral
53	M53	L3x3x1/4 Ki	108.003						8_	.8	_	Lateral
54	M54	L3x3x1/4 Ki	105.079						.8	.8	-	Lateral
55	M55	HSS4x4	100.75									Lateral
56	M56	C10	376	Segment	Segment	Segment	Segment	Segm				Lateral
57	M57	C10	188	Segment	Segment	Segment	Segment	Segm				Lateral
58	M58	C10	188	Segment	Segment	Segment	Segment	Segm				Lateral
59	M59	L3x3x1/4 V	69.5									Lateral
60	M60	L3x3x1/4 V	69.5									Lateral
61	M61	L3x3x1/4 Dia							.865	.865		Lateral
62	M62	(N) L4x4x3/8							.865	.865		Lateral
63	M63	(N) L4x4x3/8							.865	.865		Lateral
64	M64	L3x3x1/4 Dia							.865	.865		Lateral
65	M65	L3x3x1/4 Ki							.8	.8		Lateral
66	M66	12B14	188	48	Segment	48	Segment	48				Lateral
67	M67	12B14	188	48		48		48				Lateral
68	M68	12B14	188	48	Segment	48	Segment	48				Lateral
69	M69	12B14	188	48		48		48				Lateral
70	M70	10B19	236	Segment	Segment	Segment	Segment	Segm				Lateral
71	M71	16WF36	332	Segment	Segment	Segment	Segment					Lateral
72	M72	10B19	236	Segment	Seament	Segment	Segment	Segm				Lateral
73	M73	10B19	236	Segment	Segment	Segment	Segment	Segm				Lateral
74	M74	16WF36	332	Segment		Segment	Segment	Segm				Lateral
75	M75	10B19	236	Segment	Segment	Segment	Segment	Segm				Lateral
		16WF36	376	48	Cognicit	48		48				Lateral
76	M76		376	48		48		48				Lateral
77	M77	16WF36	267	Segment	Segment	Segment	Segment					Lateral
78	M78	14WF30	267	24	Segment	24	Segment					Lateral
79	M79	14WF30	236	Segment	Segment	Segment	Segment	Seam				Lateral
80	M80	10B19			Total Control of the	Segment		Seam				Lateral
81	M81	10B19	236	Segment	Joeyment	Ougment	Cogmone	170				

Mar 20, 2023 11:35 AM Checked By: MST

Hot Rolled Steel Design Parameters (Continued)

	Label		Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp botfin	L-torg	Kyy	Kzz	Cb	Function
82	M82	8B10	124.04	_		Lbyy					-	Lateral
83	M83	8B10	124.04	Segment	Segment	Segment	Segment	Segm				Lateral
84	M84	8B10	124.04			Lbyy						Lateral
85	M85	8B10	124.04			Lbyy						Lateral
86	M86	12B14	188									
87	M87	12B14	188									Lateral
88	M88	MC6X6.5	188									Lateral
89	M89	MC6X6.5	188									Lateral
90	M90	MC6X6.5	188									Lateral
91	M91	MC6X6.5	188				-				-	Lateral
92	M92	MC6X6.5	188								-	Lateral
93	M93	MC6X6.5	188			- 1		0	_		-	Lateral
94	M98	14WF30	184	Segment	Segment	Segment	Segment					Lateral
95	M99	14WF30	267	Segment		Segment		Segm				Lateral
96	M100	14WF30	184	24	Segment	24	Segment					Lateral
97	M101	14WF30	267	24	Segment	24	Segment	C = ===				Lateral
98	M102	10B19	236	Segment	Segment		Segment	Segm				Lateral
99	M103	10B19	236	Seament	Seament	Segment	Segment	Segm				Lateral
100	M104	10B19	236	Segment	Segment		Segment	Segm			-	Lateral
101	M105	10B19	228	Segment	Segment	Segment	Segment			-		Lateral
102	M106	10B19	228	Segment		Segment	Segment	Segm			-	Lateral
103	M107	10B19	228	Segment	Segment	Segment	Segment	Segm			-	Lateral
104	M108	MC6X6.5	171									Lateral
105	M109	MC6X6.5	188			ļ						Lateral
106	M110	MC6X6.5	188								-	Lateral
107	M111	MC6X6.5	171								-	Lateral
108	M112	MC6X6.5	171								-	Lateral
109	M113	MC6X6.5	188							-	-	Lateral
110	M114	MC6X6.5	188									Lateral
111	M115	MC6X6.5	171								-	Lateral
112	M116	MC6X6.5	171									Lateral
113	M117	MC6X6.5	188					-			-	Lateral
114	M118	MC6X6.5	188									Lateral
115	M119	MC6X6.5	171		150			_			-	Lateral
116	M120	MC6X6.5	171									Lateral
117	M121	MC6X6.5	188						_		-	Lateral
118	M122	MC6X6.5	188						_			Lateral
119	M123	MC6X6.5	171					-		-	-	Lateral
120	M124	MC6X6.5	171									Lateral
121	M125	MC6X6.5	171							_	-	Lateral
122	M126	MC6X6.5	171									Lateral
123	M127	MC6X6.5	171					-		-	-	Lateral
124	M128	12B14	171							-		Lateral
125	M129	12B14	171				0	Cons			-	Lateral
126	M130	8B10	123.96	Segment	Segment	Segment	Segment	Segm				Lateral
127	M131	8B10	123.96	Segment	Segment	Segment	Segment	Segm		-	-	Lateral
128	M132	8B10	144.5								-	Lateral
129	M133	8B10	87			-					-	Lateral
130	M134	8B10	144.5									Lateral
131	M135	MC6X6.5	171							-		Lateral
132	M136	MC6X6.5	171								-	
133	M137	MC6X6.5	171								-	Lateral
134	M138	MC6X6.5	171									
135	M139	12B14	171									Lateral
136	M140	12B14	171							-	-	Lateral
137	M141	MC6X6.5									1	Lateral
138	M142	MC6X6.5	171								1	Laterdi

: JV : Riverside CT : EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torg	Kyy	Kzz	Cb	Function
139	M143	MC6X6.5	171						200			Lateral
140	M144	MC6X6.5	171									Lateral
141	M145	MC6X6.5	171									Lateral
142	M146	MC6X6.5	171									Lateral
143	M147	8B10	84	Seament	Segment	Segment	Segment	Segm				Lateral
144	M148	8B10	84	Seament	Seament	Segment	Segment	Segm				Lateral
145	M149	8B10	124.04	Seament	Segment	Segment	Segment	Segm				Lateral
146	M150	8B10	60	- 100								Lateral
147	M151	8B10	60									Lateral
148	M152	12B14	188									Lateral
149	M153	12B14	188									Lateral
150	M154	(N) W6x15				Lbyy						Lateral
151	M155	(N) W6x15				Lbvv						Lateral

Basic Load Cases

	BLC Description	Category	X Gravi	Y Gravi.	Z Gravity	Joint	Point	Distrib	Area(M.	.Surfac
1	DL	DL		-1.05		4			10	
2	SL	SL							6	
3	Roof LL	RLL							6	
4	DL new	OL1				8		4		
5	WLX	WLX							2	
6	WLZ	WLZ							2	
7	WLX new	OL2						4		
8	WLZ new	OL3						4		
9	Exist Design Roof Live Load									
10	BLC 1 Transient Area Loads	None						264		
11	BLC 3 Transient Area Loads	None						225		
12	BLC 2 Transient Area Loads	None						225		
13		None						33		
		None						6		

Load Combinations

	Description	SP	SB	Fa.	BLC	Fa.	BLC	Fa.	В	Fa	В	Fa.	В	Fa	В.,	Fa.	В.	Fa.	В.,	Fa	B.,	Fa.,
1	DĹ	Y Y		1											_							
2	DL + ORIG. DESIGN LL	Y Y	DL	1	LL	1				_				_								-
3								_				_							_	_	_	
4	DL New	Y Y	0	1											_						<u> </u>	
5	DL + DL New	Y Y	DL	1	OL1	1		_							_		-		_		-	
6	DL + DL New + Roof LL	Y Y	DL	1	OL1	1	RLL	1							_		-					
7	DL + DL New + SL	Y Y	DL	1	OL1	1	SL	1	_		_				_							
8	DL + DL New + 0.6WLX	Y Y	DL	1	OL1	1	WLX		0													
9	DL + DL New + 0.6WLZ	Y Y		1	OL1	1	WLZ	-	1	.6	_			_			-		1		_	
10	DL + DL New + 0.6WL-X	Y Y	DL	1	OL1	1	WLX	1	_	17.0											<u> </u>	
11	DL + DL New + 0.6WL-Z	Y Y	DL	1	OL1	1	WLZ	_	-	-	_			_		_			-			
12	DL + DLnew + 0.75Roof LL + 0.45WLX	YY	DL	1	OL1	1	RLL	-		.45	_	-										
13	DL + DLnew + 0.75Roof LL + 0.45WLZ	YY		1	OL1	1	RLL												1			
14	DL + DLnew + 0.75Roof LL + 0.45WL->	(Y Y	DL	1	OL1	1	RLL			45												
15	DL + DLnew + 0.75Roof LL + 0.45WL-2	YY	DL	1	OL1	1	RLL	.75		45							_		_			
16	DL + DLnew + 0.75SL + 0.45WL)	XYY	DL	1	OL1	1	SL	-		-	-	.45	_									
17	DL + DLnew + 0.75SL + 0.45WL2	Z Y Y	DL	1	OL1	1	SL	.75				.45	-									
18	DL + DLnew + 0.75SL + 0.45WL-X	Y Y	DL	1	OL1	1	SL	-		45	•	-										
19	DL + DLnew + 0.75SL + 0.45WL-Z	Y Y	DL	1	OL1	1	SL	.75		45	0	45			ļ							

Mar 20, 2023 11:35 AM Checked By: MST

Envelope Joint Reactions

1 2	12			LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
2		max	2247.645	10	40757.97	7	1865.33	11	0	19	0	19	0	19
		min	-1819.741	8	6358.58	4	-2050.905		0	1	0	1	0	1
3	27	max	2012.93	10	41666.09	7	2048.882	11	0	19	0	19	0	19
4		min	-2094.928	8	3082.331	4	-1890.331	9	0	1	0	1	0	1
5	45	max	1507.218	10	39814.445	7	1989.624	11	0	19	0	19	0	19
6		min	-2576.529	8	3214.939	4	-2027.386	9	0	1	0	1	0	1
7	53	max	1913.489	10	39080.16	7	2060.076	11	0	19	0	19	0	19
8		min	-1843.055	8	2160.169	4	-2007.396	9	0	1	0	1	0	1
9	79	max	710.752	10	13272.209	19	3663.578	11	0	19	0	19	0	19
10		min	-726.579	8	307.777	4	-3386.628	9	0	1	0	1	0	1
11	78	max	619.216	10	10595.399	17	3418.966	11	0	19	0	19	0	19
12		min	-796.393	8	2110.091	4	-3612.457	9	0	1	0	1	0	1
13	80	max	113.513	8	21242.729	7	478.185	11	0	19	0	19	0	19
14		min	-136.83	10	193.169	4	-549.589	9	0	1	0	1	0	1
15	81	max	111.468	8	23384.28	7	383.972	11	0	19	0	19	0	19
16		min	-120.108	10	224.62	4	-376.816	9	0	1	0	1	0	1
17	82	max	117.692	8	21648.811	7	552.864	11	0	19	0	19	0	19
18		min	-112.769	10	115.682	4	-452.984	9	0	1	0	1	0	1
19	83	max	122.657	8	21224.931	7	444.931	11	0	19	0	19	0	19
20		min	-128.616	10	171.211	4	-566.624	9	0	1	0	1	0	1
21	114		6928.979	10	15851.928	7	170.556	9	0	19	0	19	0	19
22			-5719.779		-27.981	4	-161.652	11	0	1	0	1	0	1
23	115		6814.375	10	15843.008	7	157.035	9	0	19	0	19	0	19
24	1.0		-5891.721	-	-24.706	4	-169.05	11	0	1	0	1	0	1
25	116		2015.002	8	9617.025	7	568.77	11	0	19	0	19	0	19
26	110		-2394.651		.018	4	-528.347	9	0	1	0	1	0	1
27	118	max		8	9071.234	7	543.913	11	0	19	0	19	0	19
28	110	min	-2495.53	10	.027	4	-573.872	9	0	1	0	1	0	1
29	120		2327.011	8	9070.604	7	543.913	11	0	19	0	19	0	19
30	120		-2170.547	_	018	4	-573.872	9	0	1	0	1	0	1
31	121		2236.954	8	9621.086	7	568.77	11	0	19	0	19	0	19
32	121	min	-2040.52	10	007	4	-528.347	9	0	1	0	1	0	1
33	124	max		10	15846.443	7	157.035	9	0	19	0	19	0	19
34	124		-6358.703		-24.679	4	-169.05	11	0	1	0	1	0	1
35	125	max		10	15853.122	7	170.555	9	0	19	0	19	0	19
36	120	and the latest three to be for the	-6418.138		-27.89	4	-161.651	11	0	1	0	1	0	1
	Totala	max		10	372776.117	7	18470.373	11		-				
37	Totals:		-25155.81	_	17833.333	4	-18470.373	9						

Joint Reactions

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	1	12	384.285	17249.236	-57.163	Ó	0	0
2	1	27	-172.172	21495.381	52.201	0	0	0
3	1	45	-407.963	18830.535	14.511	0	0	0
4	1	53	156.138	21314.883	16	0	0	0
5	1	79	-12.629	8113.438	128.328	0	0	0
6	1	78	-10.004	3716.102	-116.389	0	0	0
7	1	80	-3.712	8766.936	-23.725	0	0	0
8	1	81	-4.887	9705.902	2.386	0	0	0
9	1	82	1.411	8971.941	43.073	0	0	0
10	1	83	2.717	8776.04	-44.84	0	0	0
11	1	114	316.701	5964.662	4.568	0	0	0
12	1	115	311.039	5952.812	-4.944	0	0	0
13	1	116	-122.678	3727.91	16.635	0	0	0

: APT : JV

: JV : Riverside CT : EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

JUIII	Nec	actions (Contin	ucuj			CONTRACTOR OF	ON WHILE SHE	Turnish additional and
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
14	1	118	-128.852	3518.61	-15.37	0	0	0
15	1	120	110.093	3518.522	-15.37	0	0	0
16	1	121	106.804	3729.447	16.635	0	0	0
17	1	124	-262.15	5953.968	-4.944	0	0	0
18	1	125	-264,141	5964.792	4.568	0	0	0
		Totals:	0	165271.117				
19	1		X: -2.414	Y: 4.264	Z: 297.845			
20	1	COG (in):		17249.236	-57.163	0	0	0
21	2	12	384.285			0	0	0
22	2	27	-172.172	21495.381	52.201		0	0
23	2	45	-407.963	18830.535	14.511	0		0
24	2	53	156.138	21314.883	16	0	0	0
25	2	79	-12.629	8113.438	128.328	0	0	
26	2	78	-10.004	3716.102	-116.389	0	0	0
27	2	80	-3.712	8766.936	-23.725	0	0	0
28	2	81	-4.887	9705.902	2.386	0	0	0
29	2	82	1.411	8971.941	43.073	0	0	0
30	2	83	2.717	8776.04	-44.84	0	0	0
31	2	114	316.701	5964.662	4.568	0	0	0
32	2	115	311.039	5952.812	-4.944	0	0	0
33	2	116	-122.678	3727.91	16.635	0	0	0
	2	118	-128.852	3518.61	-15.37	Ö	0	0
34			110.093	3518.522	-15.37	Ö	Ö	0
35	2	120			16.635	0	Ö	0
36	2	121	106.804	3729.447		0	0	Ö
37	2	124	-262.15	5953.968	-4.944		0	0
38	2	125	-264.141	5964.792	4.568	0	U	U
39	2	Totals:	0	165271.117	0			
40	2	COG (in):	X: -2.414	Y: 4.264	Z: 297.845			
41	4	12	-136.002	6358.58	-16.673	0	0	0
42	4	27	147.357	3082.331	8.385	0	0	0
43	4	45	-135.446	3214.939	-15.092	0	0	0
44	4	53	-131.842	2160.169	8.102	0	0	0
45	4	79	5.219	307.777	17.943	0	0	0
46	4	78	-78.861	2110.091	11.32	0	0	0
		80	-7.632	193.169	-11.125	0	0	0
47	4		.543	224.62	.775	0	0	0
48	4	81			5.672	0	0	Ö
49	4	82	1.465	115.682		0	0	Ö
50	4	83	-5.199	171.211	-14.739			0
51	4	114	291.188	-27.981	45	0	0	
52	4	115	162.367	-24,706	699	0	0	0
53	4	116	-71.615	.018	2.351	0	0	0
54	4	118	-98.981	.027	1.514	0	0	0
55	4	120	-18.471	018	1.514	0	0	0
56	4	121	3.507	007	2.351	0	0	0
57	4	124	-21.407	-24.679	699	0	0	0
58	4	125	93.809	-27.89	45	0	0	0
59	4	Totals:	0	17833.333	0			
		COG (in):	X: 41.495	Y: 44.255	Z: 224.512			
60	4		199.698	23606.436	-73.812	0	0	0
61	5	12		24576.767	60.339	0	Ö	Ö
62	5	27	-55.984				0	0
63	5	45	-519.923	22045.903	-1.222	0		0
64	5	53	49.404	23474.234	8.041	0	0	
65	5	79	-8.14	8422.23	144.493	0	0	0
66	5	78	-88.687	5825.992	-102.802	0	0	0
67	5	80	-11.738	8960.961	-34.973	0	0	0
68	5	81	-4.684	9931.278	3.502	0	0	0
69	5	82	2.578	9088.275	48.927	0	0	0
70	5	83	-2.887	8948.073	-59.851	0	0	0
10	J			00.0.0				

Mar 20, 2023 11:35 AM Checked By: MST

JUILI	Ne	actions (Contin	ueu,					
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
71	5	114	600.784	5936.109	4.046	0	0	0
72	5	115	459.06	5927.662	-5.602	0	0	0
73	5	116	-188.365	3728.066	18.848	0	0	0
74	5	118	-223.298	3518.806	-13.613	0	0	0
75	5	120	76.427	3518.434	-13.613	0	0	0
76	5	121	96.64	3729.414	18.848	0	0	0
77	5	124	-249.466	5929.046	-5.602	0	0	0
78	5	125	-131,421	5936.764	4.046	0	0	0
	5	Totals:	0	183104.45	0			
79	<u> </u>		X: 1.863	Y: 8.159	Z: 290.703			
80	5	COG (in):	128.721	35039.983	-177.44	0	0	0
81	6	12	-96.994	35969.252	160.206	0	Ő	Ů Ů
82	6	27				0	0	0
83	6	45	-455.684	33891.003	-52.658	0	0	0
84	6	53	107.325	33877.595	85.564			0
85	6	79	-9.941	11436.449	237.993	0	0	
86	6	78	-88.53	8771.594	-187.566	0	0	0
87	6	80	-14.525	17148.341	-76.244	0	0	0
88	6	81	-8.899	18899.469	13.503	0	0	0
89	6	82	3.115	17461.506	105.122	0	0	0
90	6	83	737	17132.18	-117.196	0	0	0
91	6	114	664.762	12546.777	7.276	0	0	0
92	6	115	507.88	12538.022	-9.119	0	0	0
93	6	116	-205.527	7654.029	30.683	0	0	0
94	6	118	-245.413	7220.416	-24.481	0	0	0
95	6	120	101.511	7219.87	-24.481	0	0	0
96	6	121	121.291	7657.184	30.683	0	0	0
		124	-312.122	12540.768	-9.119	0	0	0
97	6	125	-196.233	12547.79	7.276	ő	Ö	0
98	6		0	309552.228				
99	6	Totals:			Z: 288.77			
100	6	COG (in):	X: 1.092	Y: 4.826	-228.484	0	0	0
101	7	12	78.605	40757.97			0	0
102	7	27	-132.027	41666.09	209.389	0		0
103	7	45	-408.15	39814.445	-78.718	0	0	
104	7	53	151.404	39080.16	124.17	0	0	0
105	7	79	-11.403	12941.032	281.369	0	0	0
106	7	78	-88.449	10241.22	-226.564	0	0	0
107	7	80	-15.93	21242.729	-97.297	0	0	0
108	7	81	-11.273	23384.28	19.399	0	0	0
109	7	82	3.115	21648.811	133.793	0	0	0
110	7	83	.337	21224.931	-146.478	0	0	0
111	7	114	688.334	15851.928	8.719	0	0	0
112	7	115	522.641	15843.008	-10.713	0	0	0
113	7	116	-210.142	9617.025	36.043	0	0	0
114	7	118	-252.796	9071.234	-29.339	0	0	0
115	7	120	110.886	9070.604	-29.339	Ö	0	0
		121	130.312	9621.086	36.043	Ö	Ö	0
116	7		-334.229	15846.443	-10.713	0	0	0
117	7	124		15853.122	8.719	0	0	0
118	7	125	-221.233			U	0	J
119	7	Totals:	0	372776.117				
120	7	COG (in):	X: .903	Y: 4.008	Z: 288.295	0		0
121	8	12	-1819.741	25998.49	-75.9	0	0	0
122	8	27	-2094.928		63.017	0	0	0
123	8	45	-2576.529	19584.424	-2.536	0	0	0
124	8	53	-1843.055		9.811	0	0	0
125	8	79	-726.579	8407.797	142.216	0	0	0
126	8	78	-796.393	5828.675	-103.087	0	0	0
127	8	80	113.513	8891.626	-32.882	0	0	0

Mar 20, 2023 11:35 AM Checked By: MST

Joint Read	ctions (Contin	ued)					
LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
128 8	81	111.468	9764.638	3.025	0	0	0
129 8	82	117.692	9152.101	52.796	0	0	0
130 8	83	122.657	9016.336	-63.398	0	0	0
131 8	114	-5719.779	5943.838	4.056	0	0	0
132 8	115	-5891.721	5937.646	-5.524	0	0	0
133 8	116	2015.002	3723.05	18.585	0	0	0
134 8	118	2045.458	3513.615	-13.648	0	0	0
135 8	120	2327.011	3524.071	-13.648	0	0	0
136 8	121	2236.954	3734.793	18.585	0	0	0
137 8	124	-6358.703	5922.64	-5.524	0	0	0
138 8	125	-6418.138	5927.569	4.057	0	0	0
139 8	Totals:	-25155.81	183104.45	0			
140 8	COG (in):	X: 1.863	Y: 8.159	Z: 290.703			
141 9	12	206.643	21666.293	-2050.905	0	0	0
142 9	27	-66.413	26519.054	-1890.331	0	0	0
142 9	45	-524.122	20140.574	-2027.386	0	0	0
	53	60.272	25336.309	-2007.396	Ö	Ö	Ŏ
	79	-8.545	6469.161	-3386.628	0	Ö	Ö
	78	-88.655	7778.222	-3612.457	0	Ö	Ö
		-10.897	8284.477	-549.589	Ö	0	0
147 9 148 9	80 81	-5.493	10651.129	-376.816	0	o l	Ö
	82	3.392	9761.686	-452.984	0	Ö	0
149 9		-3.755	8272.547	-566.624	0	o l	ŏ
150 9	83		6138.289	170.556	0	Ö	Ö
151 9	114	593.644	5726.144	157.035	Ö	0	Ŏ
152 9	115	465.025			0	0	0
153 9	116	-189.278	3726.796	-528.347 -573.872	0	0	Ö
154 9	118	-221.754	3519.781		0	0	0
155 9	120	75.818	3519.435	-573.872	0	0	0
156 9	121	98.285	3728.156	-528.347	0	0	0
157 9	124	-257.425	5727.514	157.035	0	0	0
158 9	125	-126.74	6138.883	170.555		- 0	
159 9	Totals:	0		-18470.373			
160 9	COG (in):	X: 1.863	Y: 8.159	Z: 290.703	0	0	0
161 10	12	2247.645	21218.563	-71.832	0	0	0
162 10	27	2012.93	22169.322	57.741	0	0	0
163 10	45	1507.218	24511.549	255	0		0
164 10	53	1913.489	25706.17	6.444	0	0	0
165 10	79	710.752	8432.144	146.872	0	0	0
166 10	78	619.216	5816.999	-102.474	0	0	
167 10	80	-136.83	9030.423	-37.042	0	0	0
168 10	81	-120.108	10098.14	3.995	0	0	0
169 10	82	-112.769	9024.515	45.064	0	0	0
170 10	83	-128.616	8879.916	-56.301	0	0	0
171 10	114	6928.979	5926.729	4.035	0	0	0
172 10	115	6814.375	5915.865	-5.682	0	0	0
173 10	116	-2394.651	3733.617	19.116	0	0	0
174 10	118	-2495.53	3524.509	-13.575	0	0	0
175 10	120	-2170.547	3513.257	-13.575	0	0	0
176 10	121	-2040.52	3724.475	19.116	0	0	0
177 10	124	5853.255	5933.882	-5.681	0	0	0
178 10	125	6147.522	5944.375	4.034	0	0	0
179 10	Totals:	25155.81	183104.45	0			
180 10	COG (in):	X: 1.863	Y: 8.159	Z: 290.703			
181 11	12	192.952	25546.806	1865.33	0	0	0
182 11	27	-45.321	22635.083		0	0	0
183 11	45	-515.894	23951.637	1989.624	0	0	0
184 11	53	38.335	21612.453	2060.076	0	0	0

Mar 20, 2023 11:35 AM Checked By: MST

Joint	Rea	ctions (Contin		27/27/2017			10/8 20	M27 (III. 41)
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
185	11	79	-7.735	10379.364	3663.578	0	0	
186	11	78	-88.699	3878.182	3418.966	0	0	0
187	11	80	-12.575	9634.437	478.185	0	0	0
188	11	81	-3.869	9208.409	383.972	0	0	0
189	11	82	1.765	8411.749	552.864	0	0	0
190	11	83	-2.017	9620.544	444.931	0	0	0
191	11	114	607.942	5734.776	-161.652	0	0	0
192	11	115	453.113	6130.051	-169.05	0	0	0
193	11	116	-187.469	3729.032	568.77	0	0	0
194	11	118	-224.861	3517.507	543.913	0	0	0
195	11	120	77.067	3517.11	543.913	0	0	0
196	11	121	95.025	3730.369	568.77	0	0	0
197	11	124	-241.581	6131.45	-169.05	0	0	0
198	11	125	-136.178	5735.493	-161.651	0	0	0
199	11	Totals:	0	183104.45	18470.373			
200	11	COG (in):	X: 1.863	Y: 8.159	Z: 290.703			
201	12	12	-1343.39	33977.759	-152.522	0	0	0
202	12	27	-1594.01	34932.415	136.691	0	0	0
203	12	45	-1989.741	29080.146	-40.701	0	0	0
204	12	53	-1302.932	29603.206	68.196	0	0	0
205	12	79	-548.759	10670.802	213.44	0	0	0
206	12	78	-617.853	8038.686	-167.479	0	0	0
207	12	80	81.067	15049.104	-64.28	0	0	0
208	12	81	78.988	16531.987	10.172	0	0	0
209	12	82	90.477	15416.142	93.862	0	0	0
210	12	83	93.882	15137.356	-105.411	0	0	0
211	12	114	-4128.389	10902.494	6.52	0	0	0
212	12	115	-4297.912	10895.59	-8.219	0	0	0
213	12	116	1462.381	6667.341	27.654	0	0	0
214	12	118	1474.044	6289.658	-21.938	0	0	0
215	12	120	1797.301	6300.082	-21.938	0	0	0
216	12	121	1734.36	6680.584	27.654	0	0	0
217	12	124	-4920.437	10880.928	-8.22	0	0	0
218	12	125	-4935.934	10886.003	6.521	0	0	0
219	12	Totals:	-18866.858	277940.284	0			
220	12	COG (in):	X: 1.219	Y: 5.375	Z: 289.088			
221	13	12	158.583	30729.23	-1618.592	0	0	0
222	13	27	-94.015	34574.398	-1319.856	0	0	0
223	13	45	-481.958	29503.186		0	0	0
224	13	53	100.484	32670.737		0	0	0
225	13	79	-9.758	9223.785	-2437.36	0	0	0
226		78	-88.559	9494.692	-2806.608	0	0	0
227		80	-13.198	14594.195		0	0	0
228	13	81	-8.359	17196.824		0	0	0
229	13	82	3.676	15873.465		0	0	0
	13	83	-1.926	14579.522	-490.733	0	0	0
230	13	114	645.555	11045.849		0	0	0
231	13	115	502.33	10734.129		0	0	0
232		116	-202.877	6671.03	-383.882	0	0	0
233	13 13	118	-239.649	6296.37	-443.036	Ŏ	0	0
234		120	95.561	6295.888	-443.036	0	0	0
235	13	121	117.164	6673.743	-383.882	Ö	Ö	0
236	13	124	-304.715	10736.52	114.097	0	0	0
237	13		-178.34	11046.723	131.67	0	Ö	0
238	13	125	-1/8.34	277940.284				
239	13	Totals:	X: 1.219	Y: 5.375	Z: 289.088			
240	13	COG (in):	1659.088	30387.32	-150.992	0	0	0
241	14	12	1009.000	00001.02	100.002			

Mar 20, 2023 11:35 AM Checked By: MST

JUIL	Nea	ctions (Contin	ucu/			70155 FW 54-	29/4/30/2001 5/00	V 1041 F-2004 V 9 040
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
242	14	27	1444.097	31311.714	134.21	0	0	0
243	14	45	1022.504	32781.377	-38.939	0	0	0
244	14	53	1465.707	32951.645	64.351	0	0	0
		79	530.237	10693.47	217.527	0	0	0
245	14			8029.44	-166.92	Ö	0	0
246	14	78	440.831			0	0	0
247	14	80	-108.629	15153.62	-67.345			
248	14	81	-94.151	16782.63	11.395	0	0	0
249	14	82	-84.528	15319.955	88.001	0	0	0
250	14	83	-96.535	15034.669	-100.002	0	0	0
251	14	114	5434.19	10884.88	6.501	0	0	0
252	14	115	5296.29	10874.343	-8.344	0	0	0
253	14	116	-1868.338	6678.032	28.074	0	0	0
		118	-1957.493	6300.651	-21.874	0	0	0
254	14				-21.874	0	Ö	0
255	14	120	-1603.33	6289.193		0	0	0
256	14	121	-1500.808		28.074			
257	14	124	4319.635	10893.947	-8.344	0	0	0
258	14	125	4568.091	10903.256	6.5	0	0	0
259	14	Totals:	18866.858	277940.284	0			
260	14	COG (in):	X: 1.219	Y: 5.375	Z: 289.088			
261	15	12	141.784	33633.457	1293.747	0	0	0
262	15	27	-72.084	31667.88	1612.06	0	0	0
			-469.339	32356.028	1440.748	0	0	0
263	15	45			1596.289	0	Ö	0
264	15	53	77.537	29882.473		0	0	0
265	15	79	-8.942	12145.637	2861.737			
266	15	78	-88.569	6579.855	2478.756	0	0	0
267	15	80	-14.449	15606.728	327.124	0	0	0
268	15	81	-7.195	16115.934	302.267	0	0	0
269	15	82	2.42	14860.806	476.815	0	0	0
270	15	83	621	15590.688	284.202	0	0	0
271	15	114	656.202	10742.95	-118.183	0	0	0
			493.85	11037.332	-131.126	0	0	0
272	15	115			441.173	0	0	0
273	15	116	-201.588	6673.869			0	0
274	15	118	-241.969	6293.469	397.653	0		
275	15	120	96.522	6292.946	397.653	0	0	0
276	15	121	114.761	6676.562	441.173	0	0	0
277	15	124	-292.849	11039.748	-131.125	0	0	0
278	15	125	-185.472	10743.922	-118.183	0	0	0
279	15	Totals:	0	277940.284				
280	15	COG (in):	X: 1.219	Y: 5.375	Z: 289.088			
			-1364.775		-190.663	0	0	0
281	16	12			173.443	0	Ö	0
282	16	27	-1605.382			0	0	0
283	16	45	-1946.343		-60.159			0
284	16	53	-1262.571	33504.168	97.53	0	0	
285	16	79	-549.964	11798.885	246.888	0	0	0
286	16	78	-617.078	9141.954	-197.82	0	0	0
287	16	80	80.489	18119.567	-79.951	0	0	0
288	16	81	77.148	19895.238	14.191	0	0	0
289	16	82	91.09	18556.528	115.203	0	0	0
		83	95.167	18206.795	-127.204	0	0	0
290	16			13382.621	7.657	0	Ö	0
291	16	114	-4126.742		-9.464	0	o l	0
292	16	115	-4299.632	13375.627				
293	16	116	1463.441	8138.886	31.844	0	0	0
294	16	118	1473.7	7677.056	-25.765	0	0	0
295	16	120	1812.031	7688.832	-25.765	0	0	0
296	16	121	1748.772	8154.19	31.844	0	0	0
297	16	124	-4959.724	13359.078	-9.465	0	0	0
298	16	125	-4976.487	13363.879		0	0	0
230	10	120	1010.401	10000.010				

: APT

JV Riverside CT EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

LC	Joint Label	X [lb]	Ү [іь]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
299 16	Totals:	-18866.858		Ö			7/25-4
300 16	COG (in):	X: 1.038	Y: 4.592	Z: 288.634			
301 17	12	127.183	35018.864	-1650.869	0	0	0
302 17	27	-117.253	38845.232	-1277.061	0	0	0
303 17	45	-452.724	33946.838	-1551.498	0	0	0
304 17	53	130.434	36571.226	-1411.41	0	0	0
305 17	79	-10.736	10355.721	-2406.605	0	0	0
306 17	78	-88.507	10595.399	-2839.963	0	0	0
307 17	80	-14.25	17664.738	-479.214	0	0	0
308 17	81	-10.041	20559.915	-279.592	0	0	0
309 17	82	3.771	19013.772	-276.576	0	0	0
310 17	83	-1.121	17648.812	-516.594	0	0	0
311 17	114	665.886	13524.84	132.986	0	0	0
312 17	115	516.302	13212.861	113.015	0	0	0
313 17	116	-207.562	8142.981	-380.238	0	0	0
314 17	118	-246.338	7684.78	-447.46	0	0	0
315 17	120	103.575	7684.235	-447.46	0	0	0
316 17	121	124.953	8146.374	-380.238	0	0	0
317 17	124	-324.185	13215.765	113.014	0	0	0
318 17	125	-199.388	13525.847	132.985	0	0	0
319 17	Totals:	0	325358.2	-13852.78			
320 17	COG (in):	X: 1.038	Y: 4.592	Z: 288.634			
321 18	12	1614.111	34674.073	-189.899	0	0	0
322 18	27	1411.713	35582.473	171.702	0	0	0
323 18	45	1041.096	37225.225	-58.369	0	.0	0
324 18	53	1482.362	36854.038	93.026	0	0	0
325 18	79	529.56	11823.727	251.274	0	0	0
326 18	78	440.18	9132.452	-197.212	0	0	0
327 18	80	-110.153	18224.299	-82.988	0	0	0
328 18	81	-95.713	20146.143	15.662	0	0	0
329 18	82	-84.981	18460.091	109.309	0	0	0
330 18	83	-96.208	18103.917	-121.751	0	0	0
331 18	114	5473.01	13362.588	7.637	0	0	0
332 18	115	5325.981	13351.904	-9.593	0	0	0
333 18	116	-1878.72	8150.974	32.276	0	0	0
334 18	118	-1970.453	7689.476	-25.697	0	0	0
335 18	120	-1602.079	7676.537	-25.697	0	0	0
336 18	121	-1499.687	8142.379	32.276	0	0	0
337 18	124	4320.181	13374.421	-9.592	0	0	0
338 18	125	4566.659	13383.486	7.636	0	0	0
339 18	Totals:	18866.858	325358.2	0			
340 18	COG (in):	X: 1.038	Y: 4.592	Z: 288.634			
341 19	12	107.145		1248.952	0	0	0
342 19	27	-92.296	35941.917		0	0	0
343 19	45	-436.904	36796.965	1413.264	0	0	0
344 19	53	104.25	33785.271	1622.505	0	0	0
345 19	79	-9.805	13272.209	2898.292	0	0	0
346 19	78	-88.503	7685.629	2451.36	0	0	0
347 19	80	-15.498	18677.308	315.455	0	0	0
348 19	81	-8.908	19479.591	309.5	0	0	0
349 19	82	2.494	18001.004	502.223	0	0	0
350 19	83	.185	18660.067		0	0	0
351 19	114	676.492	13221.803	-117.22	0	0	0
352 19	115	508.057	13516.205		0	0	0
353 19	116	-206.306	8146.405	445.936	0	0	0
354 19	118	-248.652	7681.279	394.413	0	0	0
355 19	120	104.551	7680.691	394.413	0	0	U

: APT J۷

: JV : Riverside CT : EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

Joint Reactions (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
356	19	121	122.573	8149.775	445.936	0	0	0
357	19	124	-312.321	13519.136	-132.541	0	0	0
358	19	125	-206.555	13222.913	-117.22	0	0	0
359	19	Totals:	0	325358.2	13852.78			
360	19	COG (in):	X: 1.038	Y: 4.592	Z: 288.634			

Envelope AISC 14th(360-10): ASD Steel Code Checks

	Member	Shape	Code	Loc[in]	LC	Shear	Loc[in]	DirLC Pnc/omPnt/om [Mnyy/o Mnzz/o Cb Eqn
1	M1	L3X3X4	.846	54.729	9	.002	0	y 10 10482.01 31041.9 1123.179 1948.352 1 H2-1
2	M2	HSS4X4X4	.311	69.266	10	.108	0	z 9 69111.692826.3 10765.4 10765.4 1 H1-1b
3	МЗ	HSS4X4X4	.335	69.266	8	.045	70.3	y 10 69111.6 92826.3 10765.4 10765.4 1.4 H1-1b
4	M4	HSS4X4X4	.604	69.266	16	.071	0	y 10 69111.692826.3 10765.4 10765.4 1 H1-1a
5	M5	L3X3X4	.585	54.729	10	.008	0	v 17 10482.01 31041.9 1123.179 1948.352 1 H2-1
6	M6	C10X15.3	.212	94	11	.030	188	y 11 38562.596574.85 3318.693 27738.7 1 H1-1b
7	M7	L3X3X4	.048	69.5	7	.002	0	y 19 14765.631041.9 1123.179 2114.686 1 H2-1
8	M8	C10X15.3	.957	58	7	.032	0	y 18 25356.596574.85 3318.693 18855.8 1 H1-1a
9	M9	L3X3X4	.927	67.613	7	.006	135	v 7 5413.75 31041.9 1123.179 1780.307 1 H2-1
10	M10	L3X3X4	.384	58.451	7	.003	116	
11	M11	L4X4X6	.378	57.234	7	.002	0	y 7 25392.26 61652.6 2926.466 5603.756 1 H2-1
12	M12	HSS4X4X4	.408	69.266	19	.127	0	y 8 69111.692826.3 10765.4 10765.4 2 H1-1a
13	M13	L3X3X4	.558	56.251	10	.006	0	y 9 9922.17 31041.9 1123.179 1931.079 1 H2-1
14	M14	C10X15.3	.529	83	16	.037	166	y 8 47208.296574.85 3318.693 28562.81H1-1a
15	M15	L3X3X4	.755	54.128	7	.003	0	y 18 8447.4 31041.9 1123.179 1929.596 1 H2-1
16	M16	L3X3X4	.029	69.5	9	.007	0	y 16 14765.631041.9 1123.179 2114.686 1 H2-1
17	M17	L4X4X6	.761	53	7	.004	0	y 18 28812.961652.6 2926.466 5709.898 1 H2-1
18	M18	HSS4X4X4	.577	69.266	16	.057	0	y 10 69111.692826.3 10765.4 10765.4 1.5 H1-1a
19	M19	L3X3X4	.497	54.729	10	.008	105	
20	M20	C10X15.3	.490	83	16	.034	0	y 8 47208.296574.85 3318.693 28562.81 H1-1a
21	M21	L3X3X4	.029	69.5	11	.006	0	y 7 14765.6 31041.9 1123.179 2114.686 1 H2-1
22	M22	L4X4X6	.721	55.255	7	.004	108	
23	M23	L3X3X4	.718	54.128	7	.003	108	y 18 8447.4 31041.9 1123.179 1929.596 1 H2-1
24	M24	HSS4X4X4	.318	69.266	8	.043	70.3	
25	M25	C10X15.3	.446	282	16	.053	282	y 8 47208.2 96574.85 3318.693 28562.8 1 H1-1b
26	M26	C10X15.3	.887	58	7	.036	0	y 10 25356.596574.85 3318.693 18855.8 1 H1-1a
27	M27	L3X3X4	.859	67.613	7	.006	135	
28	M28	C10X15.3	.428	94	19	.044	188	y 9 38562.596574.85 3318.693 27648.3 1 H1-1a
29	M29	C10X15.3	.213	94	11	.029	188	y 11 38562.5 96574.85 3318.693 27734.4 1 H1-1b
30	M30	HSS4X4X4	.355	69.266	10	.049	70.3	
31	M31	L3X3X4	.048	69.5	7	.002	0	v 19 14765.6 31041.9 1123.179 2114.686 1 H2-1
32	M32	L4X4X6	.384	59.669	7	.002	116	
33	M33	L3X3X4	.389	58.451	7	.003	0	y 7 7243.918 31041.9 1123.179 1879.89 1 H2-1
34	M34	HSS4X4X4	.590	69.266	18	.086	0	y 8 69111.692826.3 10765.4 10765.4 1H1-1a
35	M35	HSS4X4X4	.419	69.266	19	.141	0	y 10 69111.692826.3 10765.4 10765.4 2 H1-1a
36	M36	HSS4X4X4	.581	69.266	18	.061	0	y 8 69111.692826.310765.410765.41H1-1a
37	M37	C10X15.3	.276	70.315	11	.033	70.3	
38	M38	HSS4X4X4	.292	69.266	10	.043	70.3	
39	M39	C10X15.3	.454	282	18	.059	282	y 10 47208.296574.85 3318.693 28562.8 1H1-1b
40	M40	C10X15.3	.924	58	7	.030	116	y 16 25356.596574.85 3318.693 18855.8 1 H1-1a
41	M41	C10X15.3	.513	83	18	.039	166	v 10 47208.2 96574.85 3318.693 28562.8 1 H1-1a
42	M42	C10X15.3	.377	84.729	18	.033	0	y 10 47208.296574.85 3318.693 28562.8 1 H1-1a
43	M43	C10X15.3	.266	32.5	7	.034	65	v 16 62262.0 96574.85 3318.693 25010.0 1 H1-1a
44	M44	L3X3X4	.743	47.58	7	.002	95.1	y 10 10932.531041.91123.179 2008.824 1 H2-1
45	M45	L3X3X4	.029	0	9	.008	0	y 18 14765.631041.91123.179 2114.686 1 H2-1
46	M46	L3X3X4	.036	0	11	.006	0	y 18 14765.631041.91123.179 2114.686 1 H2-1
47	M47	L3X3X4	.672	54.128	7	.004	0	y 16 8447.4 31041.9 1123.179 1929.596 1 H2-1

: APT

JV Riverside CT EXISTING SCREEN WALL

Mar 20, 2023 11:35 AM Checked By: MST

Envelope AISC 14th(360-10): ASD Steel Code Checks (Continued)

	Member	Shape	Code	Loc[in]	LC	Shear	Loclin	DirLC Pnc/om Pnt/om [Mnyy/o Mnzz/o Cb Eqn
48	M48	L4X4X6	.667	53	7	.003	0	y 7 28812.961652.62926.466 5709.898 1 H2-1
49	M49	L4X4X6	.817	55.255	7	.004	108	
50	M50	L3X3X4	.807	54.128	7	.004	108	
51	M51	L3X3X4	.889	67.613	7	.007	135	. y 7 5413.75 31041.9 1123.179 1780.307 1 H2-1
52	M52	L3X3X4	.682	54.729	8	.008	105	y 17 10482.01 31041.9 1123.179 1948.352 1 H2-1
53	M53	L3X3X4	.503	56.251	8	.006	0	v 9 9922.17 31041.9 1123.179 1931.079 1 H2-1
54	M54	L3X3X4	.500	54.729	8	.009	105	
55	M55	HSS4X4X4	.290	69.266	11	.110	0	z 11 69111.692826.3 10765.4 10765.4 1 H1-1b
56	M56	C10X15.3	.377	282	7	.045	188	y 11 38562.596574.85 3318.693 26208.1 1 H1-1a
57	M57	C10X15.3	.206	94	9	.030	188	
58	M58	C10X15.3	.206	94	9	.032	188	
59	M59	L3X3X4	.048	69.5	7	.003	0	v 17 14765.6 31041.9 1123.179 2114.686 1 H2-1
60	M60	L3X3X4	.048	69.5	7	.003	0	y 7 14765.631041.91123.179 2114.686 1 H2-1
61	M61	L3X3X4	.354	58.451	7	.003	0	y 17 7243.918 31041.9 1123.179 1879.89 1 H2-1
62	M62	L4X4X6	.341	57.234	7	.003	116	
63	M63	L4X4X6	.342	59.669	7	.003	0	y 19 25392.26 61652.6. 2926.466 5603.756 1 H2-1
64	M64	L3X3X4	.354	58.451	7	.003	0	y 17 7243.918 31041.9 1123.179 1879.89 1 H2-1
65	M65	L3X3X4	.859	54.729	11	.002	105	. v 10 10482.01 31041.9 1123.179 1948.352 1 H2-1
66	M66	12B14	.724	48.958	16	.188	0	y 16 66540.187757.2 3376.96 28798.9 1 H1-1b
67	M67	12B14	.890	76.375	16	.227	0	v 16 66540.1 87757.2 3376.96 28798.9 1 H1-1b
68	M68	12B14	.843	115.542	18	.196	188	
69	M69	12B14	.901	111.625	18	.228	188	
70	M70	10B19	.410	78.667	16	.099	115	
71	M71	16WFx38.7_1	278	121.042	7	.190	166	
72	M72	10B19	.354	78.667	16	.083	120	
73	M73	10B19	.642	118	18	.320	169	
74	M74	16WFx38.7_1	.286	121.042	7	.187	166	
75	M75	10B19	.382	157.333	18	.081	115	
76	M76	16WFx38.7_1	.602	191.917	7	.127	376	
77	M77	16WFx38.7_1		188	7	.211	376	
78	M78	14WFx32.4_1	.591	169.656	7	.149	172	
79	M79	14WFx32.4_1	.609	169.656	7	.154	172	
80	M80	10B19	.433	162.25	11	.229	120	
81	M81	10B19	.509	73.75	9	.256	115	
82	M98	14WFx32.4_1		92	7	.102	184	
83	M99	14WFx32.4_1	.591	97.344	7	.149	94.5	1.
84	M100	14WFx32.4_1	.360	92	7	.105	0	y 7 195612 205437 15453.4 91976.0 1 H1-1b
85	M101	14WFx32.4_1	.609	97.344	7	.154	94.5	
86	M147	8B10	.840	42	8	.197	41.1	
87	M148	8B10	.885	42	10	.207	41.1	
88	M154	W6X15	.029	0	8	.023	48	y 7 122428 132634 10833.88 25364.1 1 H1-1b*
89	M155	W6X15	.031	0	10	.023	0	y 7 122428132634 10833.88 25364.1 1 H1-1b*

Project ID:

CT141_13220

Site Name:

Riverside CT

Date: Prepared By: 3/24/2023 J.Vassell

Checked By:

M. Trodden

BLOCK SHEAR CONNECTION CHECK

>> Max Reactions per RISA Output:

M49, LC7

[Max Member Axial]

Max Axial = 22.7 kips

>> Proposed Connection:

L, in

W, in

Member Size = 4

4

Proposed L4x4x3/8

L₁, in 7.5 W, in

L₂, in 3 t, in

Gusset Plate =

17 x

1.688 in²

3

ksi

0.375

Bolt Shear Spac. = Bolt Tension Spac. =

3 in 1.5 in Fγ = 36

Fu = 58 ksi

Bolt Dia =

0.625 in

Grade = A325

of Bolts =

2

>> Check Proposed Bolts:

5/8" DIA A325 Bolts

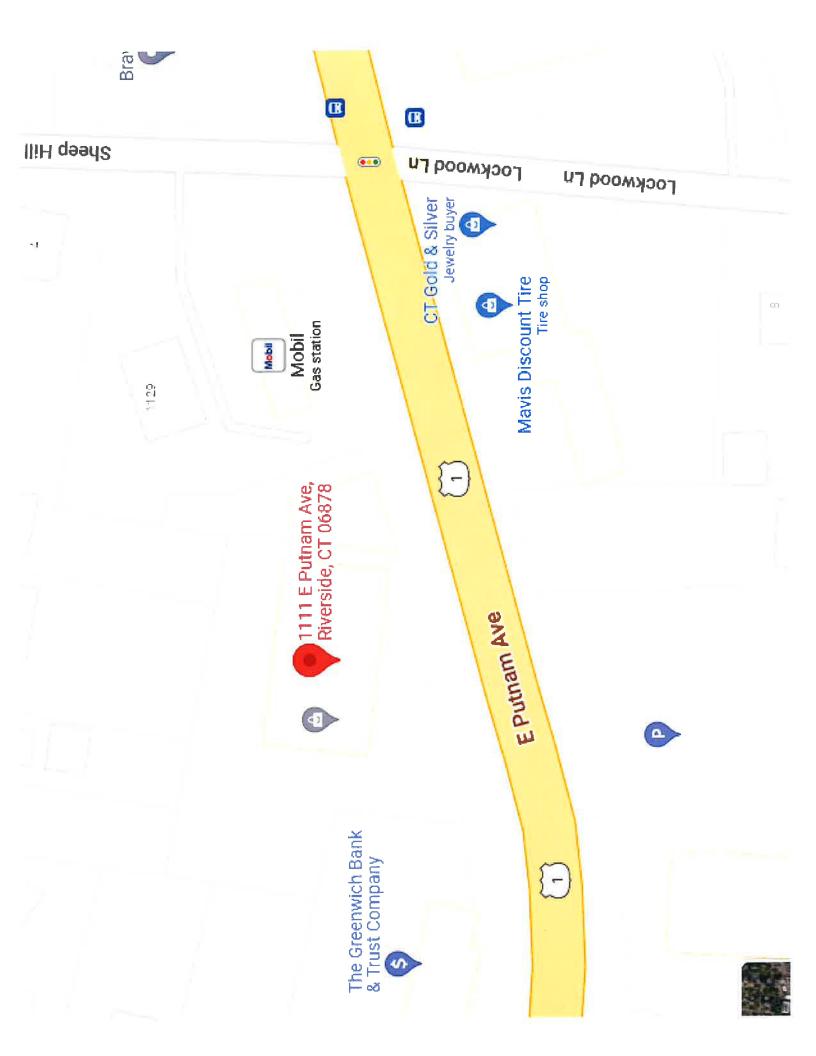
 $A_{nv} = 1.266 \text{ in}^2$

A₂₀ =

 $A_{nt} =$

0.422 in²

R_N =


30.46 kips

Per Eq. J4-5 of AISC Steel Manual 16th Ed.

>> Block Shear Interaction:

0.746 < **1.0, OK**

ATTACHMENT 5

Ö
\Box
LI
Š
田
H
\aleph
PER
SOF
\mathbb{Z}
Б
Y
IHE
臣
Z
V
T
Z
\supset
FOUN

12-1010/S

OWNERSHIP

EAST PUTNAM AVENUE 1111

TRANSFER OF OWNERSHIP Tax ID 407/054

Printed 05/29/2018 Card No. 1

BK/Pg: 3369, 199 Bi./Pg: 750, 310 jc.

FOUNTAINHERD PROPERTIES I

12/22/1399 7981/11/10

LOT NO 10 11 12 & 392-1 E PUTNAM AVE N 164

FOUNTAINHEAD PROPERTIES INC % ALLIED PROP MGNT-ATT I TORELLI :16 MASON ST GREENWICH, CT 06830

ď

Ö

ADMINISTRATIVE INFORMATION Parent Parcel Number PARCEL NIMBER 12-1010/S

Froperty Address East PUTNAM AVENUE 1111 Property Class 212 Seneral Office Neighborhood 2300 EAST PUTNAM

Greenwich, CT TEXING DISTRICT IMPORMATION in in 001 Junisdiction Corporation District Area

Section & Plat 352

Routing Number 2365K0104

Site Description Topography:

Fublic Unilities: Sewer, Electric Street or Road:

1 Primary Commercial Zoning: LB Local Business Nelghborhood: Legal Acres: 0.4993

Land Type

Adjusted Eate -or-Depth Factor -or-Sguare Feet Prod. Factor Effective Depth Table Rating Measured Soil ID Accease -or- Actual Effective Prontage Frontage

LAND DATA AND CALCULATIONS

2383600 3216400 5600000

383600

2383600 3615900 5999500

2383600 4115900 6499500

2323700 2894700 5218400

2967500 3192300 6159800

2010 Reval

10/31/2005 2005 Revised

Reason for Change

VALUACION

Assessment Year

2015 BAA

2017 List

13/01/2017

10/03/2016 2016 1585

15/01/2015 2015 Final

VALUATION RECORD

COMMERCIAI

1668520 2251480 3920000

3615900 5999500 1668520 2531130 4199650

1668520 2531130 4199650

1668520 2881130 4549650

1668520 2881130 4549650

1626590 2026290 3652880

2077250 2234610 4311860

70% Assessed

VALUATION Market

109.53 Base Rate 21749.50

Value

Influence Factor

109.59

2385600

Supplemental Cards

TRUE TAX VALUE

Est. Cost Field Visit Est. Sqft

FilingDate

Permit Number Type

BA15: Decrease Total value by \$500,000
BE14: 14-2192: Lessee - Version Wirelesse, Antennas \$21,000, nvc
DBR: Whod Office Bidg
SAN: DAY wall material: Brk, Stl, Gls
Antennas Thorne 3192,588 2015 income
STIP: 2015 Gl S 2016 GL

2385600

Supplemental Cards TOTAL LAND VALUE

2383600

IMPROVEMENT DATA

07

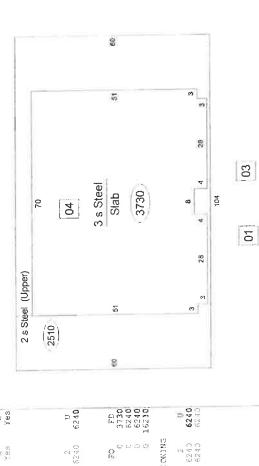
PHYSICAL CHARACTERISTICS

Built-up ROOFING

WALLS

D : C

() ()


3730

FINISH

를 보고 다

FRAMING

Frame Brick Metal Guard

HEATING AND AIR CONDITIONING

10 0000

1 U Total

Shred-it

(LCK: 150.00)

SPECIAL FEATURES	URES						SI	SUMMARY OF IMPROVEMENTS	OF	IMPR	OVEM	SLNG								
Description Value	Value	8	üse	Stry	Const	Comst Type Grade	Year Eff Const Year	Year Eff Const Year Cond		Rase Fe	Feat- Adj uros Rate	Adj Size o Rate Area	ize or Area	Size or Computed PhysobsolMarket % Area Value Depr Deyr Adj Com	Phy:	Phys Obsolk Depr Deur	(arket Ad)	arket % Adj Comp	Velue	
		ن	230025	00.0		Ava-	100	1985		00.00	x :	00'0	1		0 0	le (0 150		m	000
		55	PAVING	00.0		Good	10 00 C	1000	AV 2	00.	지 27	98.50	1000 X DE) 0.0 kg	200	10	3 3	100 100	Ä	2900
		10	NUMBER	200	(C	Good		100 t	A.	26.00	. T. :	58.50			0/2	P.	0 11			4600
		Ö	EDEFOON	3.00		Avg4	1000	1 C	AV 15	0006	Z	304200		0 334200	0.12	2)ĭ	001 00		264700
																			:36	
		Date	Data Collector/Date	/Date	•	Apprai:	Appraiser/Date	e			Neigh	Neighborhood	g	Supplemental Cards	ental	Cards	QLL E		-	4115500
		į	000000000000000000000000000000000000000			1,	3100710701	110			1000	We have seen	217	TOTAL	PIEROV.	TOTAL PEROVERENT VALUE	ALC:		7	200

4125900

Weigh 2300 av

TOS 10/01/2015

12/08/1999

ATTACHMENT 6

Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender TOTAL NO. of Pieces Received at Post Office Total No.	Affix Stamp Here Postmark with Date of Receipt.	OLD STORE
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving employee)	neopost/ 05/24/20 US POS	MAY 24 3023
USPS® Tracking Number	Address ^V (Name, Street, City, State, and ZIP Code™)	Postage Fee	e Special Handling Parcel Airlift
Firm-specific Identifier 1.	Fred Camillo, First Selectman Town of Greenwich 101 Field Point Road Greenwich, CT 06830		
2.	Patrick LaRow, Director of Planning and Zoni Town of Greenwich 101 Field Point Road Greenwich, CT 06830	ng	
3.	Fountainhead Property LLC 116 Mason Street Greenwich, CT 06830		
4.			
5.			
6.			
		_	