Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 25, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of Cellco Partnership d/b/a Verizon Wireless for an Order to Approve the Shared Use of an Existing Tower at 63 Woodland Street, Glastonbury, Connecticut

Dear Attorney Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, Cellco Partnership d/b/a Verizon Wireless ("Cellco") hereby requests an order from the Siting Council ("Council") to approve the shared use of an existing telecommunications tower located on a 177.10-acre parcel at 63 Woodland Street in Glastonbury (the "Property"). The Property is owned by Paul J. Cavanna. The tower is owned by Vertical Bridge Engineering LLC ("Vertical Bridge"). Cellco identifies this site as its "South Glastonbury 3 Facility".

The existing 150-foot monopole tower was approved by the Council in Docket No. 478 (Eco-Site, Inc. and T-Mobile applicants) on March 29, 2018. A copy of the Docket No. 478 Decision and Order is included in <u>Attachment 1</u>.

Cellco requests that the Council find that the proposed shared use of the existing tower satisfies the criteria of C.G.S § 16-50aa and issue an order approving this request. A copy of this filing is being sent to Glastonbury's Town Manager Richard J. Johnson and Rebecca Augur, the Town's Director of Planning and Land Use Services.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. May 25, 2022 Page 2

Background

Cellco is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. Cellco and Vertical Bridge have agreed to the proposed shared use of the Woodland Street tower pursuant to mutually acceptable terms and conditions. Likewise, Vertical Bridge and Cellco have agreed to the proposed installation of equipment on the ground within the fenced compound area. Vertical Bridge has authorized Cellco to apply for all necessary permits and approvals that may be required to share the existing tower. (*See* Attachment 2).

Cellco proposes to install nine (9) antennas and nine (9) remote radio heads ("RRHs") on the tower at a centerline height of 115 feet above ground level ("AGL"). Cellco will also install two equipment cabinets and a 50-kW diesel-fueled backup generator all within the existing fenced compound. Included in <u>Attachment 3</u> are Cellco's project plans showing the location of Cellco's proposed site improvements. <u>Attachment 4</u> contains specifications for Cellco's proposed generator, antennas and RRHs.

C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such shared use." Cellco respectfully submits that the shared use of the tower satisfies these criteria.

A. <u>Technical Feasibility</u>. The existing tower is structurally capable of supporting Cellco's antennas, RRHs, antenna platform and related equipment. The proposed shared use of this tower is, therefore, technically feasible. A Structural Analysis Report dated April 8, 2022 (with a stamp date of April 12, 2022) prepared by for Vertical Bridge confirms that the tower can support Cellco's proposed tower loading. A Mount Analysis dated April 15, 2022 was also prepared for the proposed antenna and RRH mounting system and related equipment. Copies of the Structural Analysis Report and Mount Analysis are included in <u>Attachment 5</u>.

B. <u>Legal Feasibility</u>. Under C.G.S. § 16-50aa, the Council has been authorized to issue orders approving the shared use of an existing tower, such as the existing Woodland Street tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an

Melanie A. Bachman, Esq. May 25, 2022 Page 3

order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

C. <u>Environmental Feasibility</u>. The proposed shared use of the existing tower would have minimal environmental effects, for the following reasons:

- 1. The proposed installation of nine (9) antennas and nine (9) RRHs on an antenna platform at a height of 115 feet AGL on the existing 150-foot tower would have an insignificant incremental visual impact on the area around the Property. As mentioned above, Cellco's equipment will be located within the existing fenced compound. Cellco's shared use of the existing tower would, therefore, not cause any significant change or alteration in the physical or environmental characteristics of the existing facility.
- 2. Noise associated with Cellco's proposed facility will comply with State and local noise standards. Noise associated with the backup generator is exempt from state and local noise standards.
- 3. Operation of Cellco's antennas at this site would not exceed the RF emissions standards adopted by the Federal Communications Commission ("FCC"). Included in <u>Attachment 6</u> of this filing is a cumulative power density table that demonstrates that the facility will operate well within the FCC's safety standards.
- 4. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the facility other than periodic maintenance visits to the cell site.

The proposed shared use of the existing tower would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. <u>Economic Feasibility</u>. As previously mentioned, Cellco has entered into an agreement with Vertical Bridge for the shared use of the existing tower subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

Melanie A. Bachman, Esq. May 25, 2022 Page 4

E. <u>Public Safety Concerns</u>. As discussed above, the tower is structurally capable of supporting Cellco's antennas, antenna mounting frame, RRHs and all related equipment. Cellco is not aware of any public safety concerns relative to the proposed sharing of the existing the Woodland Street tower. In fact, the provision of new and improved wireless service through Cellco's shared use of the existing tower would enhance the safety and welfare of area residents and members of the general public traveling through the Town of Glastonbury.

Conclusion

A Certificate of Mailing verifying that this filing was sent to the municipal officials, the Property owner, and Vertical Bridge is included in <u>Attachment 7</u>.

For the reasons discussed above, the proposed shared use of the existing tower at the Property satisfies the criteria stated in C.G.S. § 16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Thank you for your consideration of this matter.

Very truly yours,

King mu

Kenneth C. Baldwin

Enclosures Copy to:

Richard J. Johnson, Town Manager Rebecca Augur, Director of Planning and Land Use Services Paul Cavanna, Property Owner Vertical Bridge Engineering LLC, Tower Owner Tim Parks

DOCKET NO. 478 - Eco-Site, Inc. and T-Mobile Northeast, LLC	}	Connecticut
application for a Certificate of Environmental Compatibility and		
Public Need for the construction, maintenance, and operation of a	}	Siting
telecommunications facility located at 63 Woodland Street,		
Glastonbury, Connecticut.	}	Council
	,	

Decision and Order

March 29, 2018

Pursuant to Connecticut General Statutes §16-50p, and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment, ecological balance, public health and safety, scenic, historic, and recreational values, agriculture, forests and parks, air and water purity, and fish, aquaculture and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Eco-Site, Inc., hereinafter referred to as the Certificate Holder, for a telecommunications facility at 63 Woodland Street, Glastonbury, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed either as a monopine or monopole at a height of 150 feet above ground level (excluding faux monopine branches) to provide the proposed wireless services, sufficient to accommodate the antennas of T-Mobile Northeast, LLC, the Town of Glastonbury, and other entities, both public and private. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission. Prior to submission of the Development and Management Plan to the Council, the Certificate Holder shall consult with the Town of Glastonbury in regards to the Town's emergency communication equipment needs and the appropriateness of a monopine design based on those needs. The final tower design, either a monopole or monopine, shall be determined after this consultation.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Glastonbury for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) final site plan(s) for development of the facility that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code and include specifications for the tower, tower foundation, antennas, and equipment compound including, but not limited to, fencing, radio equipment, access road, utility line, and emergency backup power source;
 - b) construction plans for site clearing, grading, utility installation, water drainage and stormwater control, and erosion and sedimentation controls consistent with the <u>2002 Connecticut</u> <u>Guidelines for Soil Erosion and Sediment Control</u>, as amended;
 - c) schedule for deployment of T-Mobile Northeast LLC's, and the Town of Glastonbury's equipment; and
 - d) hours of construction.

Docket No. 478 Decision and Order Page 2

- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 7. Any request for extension of the time period referred to in Condition 6 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Glastonbury.
- 8. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 9. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 10. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 11. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.

- 12. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 13. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, and utility line in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 14. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 15. This Certificate may be surrendered by the Certificate Holder upon written notification and approval by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated October 26, 2017, and notice of issuance published in the <u>Hartford</u> <u>Courant</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

Eco-Site, LLC

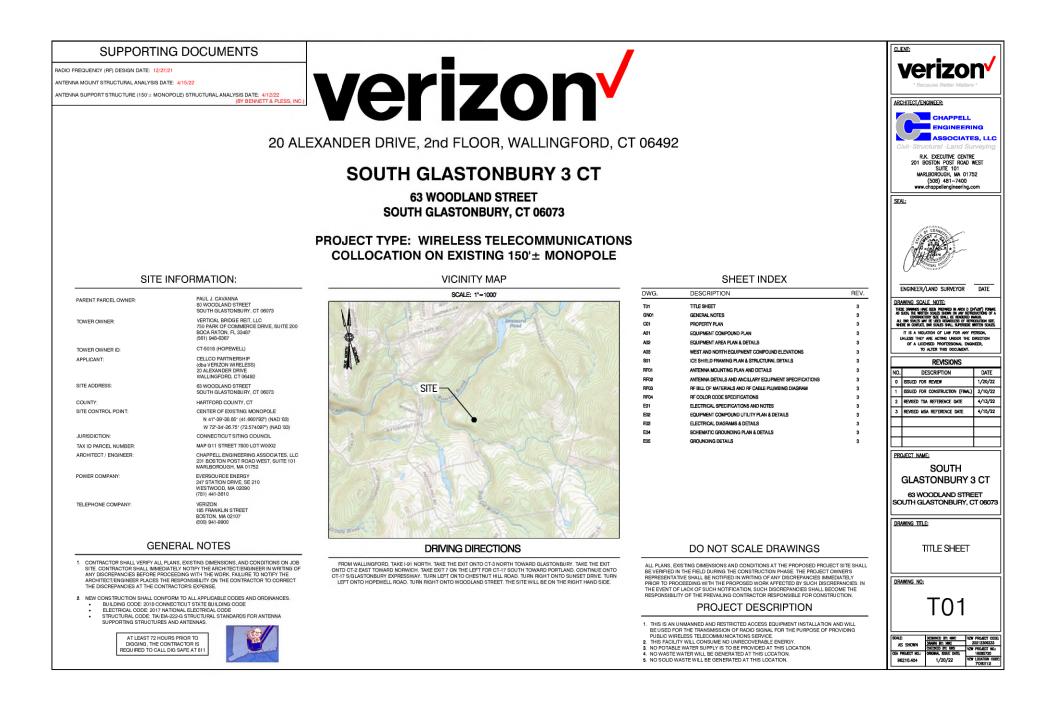
750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487 561-948-6367 VerticalBridge.com

5/25/2022 , 2022

Andrew Candiello Principal Engineer-RE/Regulatory Cellco Partnership d/b/a Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Re: Letter of Authorization - Cellco Partnership d/b/a Verizon Wireless US-CT-5018 / Hopewell with an address of 63 Woodland Street, Glastonbury, CT

Dear Mr. Candiello:


Eco-Site, LLC, a subsidiary of Vertical Bridge REIT, LLC, hereby authorizes Cellco Partnership d/b/a Verizon Wireless and/or its authorized agents, to file for all necessary permit and approval applications for the installation of antennas and related equipment at an existing telecommunications facility in Glastonbury, CT.

Sincerely,

DocuSigned by:

Tim Tuck =6DCD673D644D4BD...

Vice President - Lease Administration

GENERAL NOTES:

1. FOR THE PURPOSE OF CONSTRUCTION DRWINNSS, THE FOLLOWING DEFINITIONS SHULL APPLY: CONTRACTOR - VERZON WIRELESS SUBCONTRUCTOR - GORDLIN, CONTRACTOR (CONSTRUCTION) OWNER - VERZON WIRELESS OFM - DIGRAME. EQUIPARTIN MANUFACTURER

PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY ISOSCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.

3. All materials furnished and installed shall be in strict accordance with all applicable codes, regulations, and ordanneces, subcontractor shall issue all appropriate notices and comply with all laws, robinances, rules, regulations, and lawful orders of any public authority regrading the performance of the work.

4. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS,

5. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.

6. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR.

9. Subcontractor shall determine actual routing of conduit, power and 11 cables, grounding cables as shown on the power, grounding and telop plan drawing, subcontractor shall utilize disting trans and/or shall add near trans as decessary. Subcontractor shall contract the shall utilize disting transformer and the contractor shall add near transformer shall be decessary. Subcontractor shall contract the actual routing with the contractor.

10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.

11. Subchritektor Shill Ledily and Property order of all some distributed of the unreaded other index removed from the disting facility. Antennas removed shill be returned to the onner's designated location.

12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

13. THE SUBCONTINGTOR SHALL SUPERMISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE SUBCONTINGTOR SHALL BE SOLEY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNOLES, SEQUENCES, AND PROCEDURES FOR COORDINATING ALL PORTIONS OF THE WORK HUDGE THE CONTINGET.

14. SUBCONTRACTOR SHALL NOTIFY CHAPPELL ENGINEERING ASSOCIATES, LLC. 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACK FILLING TRENCIES, SELLING ROOF AND WALL PENETRATIONS & POST DOWNS, FINSHING NEW WALLS OR FINAL ELECTROLL CONNECTIONS FOR DEMORETING REVER.

15. CONSTRUCTION SHALL COMPLY WITH VERIZON WIRELESS NETWORK STANDARD INSTD123 TO THE MAXIMUM EXTENT FEASIBLE UNLESS PRECLUDED OR LIMITED BY DESIGN SHOWN ON THESE DRAWINGS.

16. Subcontractor shall verify all existing dimensions and conditions prior to commencing any work, all dimensions of existing construction shown on the drawnors just be verified. Subcontractor shall notify the contractor or any discremensions prior to ordering matternic or proceeding with construction.

17. THE EXEMPT CELL STIE IS IN FULL COMMERCIAL OPENITON. WY CONSTRUCTION WORK PF SUBCONTRACTOR SHALL NOT DERLIPT THE EXEMPT AND ADDRESS OF AN APPROPRIATE MANTEWARK IN NOW SUBLIL'IN LOW TRAFFIC PERIODS ATTER MINIBERT.

ILS SINCE THE COLL THE IS ACTIVE ALL ANTITY PRECAUTIVES MUST BE TWON WICH WORKING ANALID HIGH LUFUL OF LISTICINATED COMMON IN DIFFERENT SHALL DE SUNDING MORE TO STORAME, AN WAR WICH THE COLL DEPOSE THE WORKING TO ANGER, PERSONA, RF EXPOSEME MONITORS ARE TO BE WORK TO ALERT OF ANY DAMERICUS DIPOSURE LEVELS.

SITE WORK GENERAL NOTES:

1. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.

2 ALL DORTHO ACTIVE SEVEN WATER, AND ELETIRE, AND OTHER TUTLITES WHERE DENOVATIONED IN THE WORK, SMUL BE PROTECTED AT ALL THES, AND WHERE REQUIRED AND THE PROPER DESIDING OF THE WARK, SMUL BE REDARDED AN DIRECTED OF DRIVERSES, DISTRICE, CAUTION SIGNAL DE USED OF THE SURCONTRACTOR WICH DOCAMING OF DRILLING PUBLIC READAD OR INVERTIGUES, SUBCINISATIONS SMUL TRADUCE SEVENT TRANSMIRE FOR THE REVORM CERN. THIS WILL INJUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION

3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.

4. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

5. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.

8. NO FILL OR EMBANKWENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT. 7. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SWOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

8. All existing inactive sewer, water, GAS, electric and other utilities, which interfere with the execution of the work, shall be removed and/or capped, plugged or otherwise discontinued at points which will not interfere

WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF ENGINEERING, OWNER AND/OR LOCAL UTILITIES.

R. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND AND COORED BY THE TORRS, DUPLICATION DRIVING, SHALL BE GRADED TO A UNFORM SLOPE AND STABILIZED TO PREVANT EXCENT AS SPECIFIED IN THE PROJECT SPECIFICATION.

10, subcontractor shull minimize disturbance to existing site during construction. Erosion control measures, if Required during construction, shull be in conformance with the local guidelines for Erosion and Sediment control

11. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE VERIZON WIRELESS SPECIFICATION FOR SITE SIGNAGE.

CONCRETE AND REINFORCING STEEL NOTES: 1. ALL CORRETE WORK SMULL BE IN ACCORDANCE WITH THE AC 301, ACI 318, ACI 338, ASTM A184, ASTM A185 AND THE DESIN AND CONSTRUCTION SPECIFIC-IN-PLACE CONCRETE.

2. All concrete shall have a minimum compressive strength of 3000 psi at 28 days, unless noted otherwise. A Higher Strength (4000PS) may be used. All concrete work shall be in accordance with the aci 381 code Requirements

REINFORCING STEEL SHALL CONFORM TO ASTM A 615, GRADE 60, DEFORMED UNLESS NOTED OTHERMISE, WELDED WIRE FABRIC SHALL CONFORM TO ASTM A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERMISE. SPLICES SHALL BE CLASS "B" AND ALL HOOR'S SHALL BE STANDARD, UND.

4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

5. A CHAMFER 34" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

8. Installation of concrete edwarsday/medice anchor, single per unnufacturer's written recommended procedure. The anchor bolt, comel or roo single control to munificaturer's recommendation for debetwent depth or as shown on the dimembro, do recan single continuous productions demographic markets and the single control to the control of an and the single control of the control of an and the single control of the control of an and the control of the control of an and the control of the control of an and the control of the control of an and the control of the cont

7. CONCRETE CYLMIGER TEST IS NOT REQUIRED FOR SLAB ON GRAVE WHEN CONCRETE IS LESS THAN SO CUBIC VARIS (021006.26.2) IN THAT FORT THE FOLLOWING RECORDS SHALL BE PROVIDED FOT THE CONCRETE SUPPLIEB, (A) RESULTS OF CONCRETE CONCRETE TEST PERFORMED AT THE SUPPLIEB FORM. (B) CONTRIDUTION OF WINNING COMPRESSIVE STREAMTH FOR THE CONCRETE CONCRETE CONCRETE, FOR RECORDET THIS AS CUBIC VARIS THE OS SHALL PERFORMENT HE CONCRETE CONCRETE, CONCRET, CONCRETE, CONCRETE, CONCRETE, CONC

8. As an alternative to mem 7. Test chunders shall be taken initially and thereafter for every 50 yards of concrete from each different batch plant.

EQUIPMENT SHALL NOT BE PLACED ON NEW PAOS FOR SEVEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY CYLINDER TESTS THAT COMPRESSME STRENGTH HAS BEEN ATTAINED.

STRUCTURAL STEEL NOTES:

1. All steel work shall be painted or galvanzed in accordance with the drawings and verizon wireless specification 28282-000-345-GCT-00001 UNLESS Otherwise Noted. Structural steel shall be astim-a-38 UNLESS otherwise NOTED on The STC Specific Drawings. Steel design, instructural low shall be in according with the Marrien Instructure OF STEEL CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION"

2. All welding shall be performed using e700x electrodes and welding shall conform to asc and anys 01.1. Where Filler weld sizes are not shown, provide the minimum size per table 32.4 in the asc "wanlal of steel construction", 91 Homion, particle supercess shall be touched up.

3. BOLTED CONNECTIONS SHALL USE BEARING TYPE ASTM A325 BOLTS (%"") AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.

4. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE %" DIA. ASTM A 307 BOLTS UNLESS NOTED OTHERWISE

5. NETALATORIO O CONCELLE DAVISION/REDAR ANDROS SML LE LER MULLETARITÒ NETTIN ESCUNEDOD PROCEDURE TIL ANDROI NOL, DIGLI O ROS DINILI LO CONTRUI DI DI MUNICATIRISTI SUMMENDATINI DI DI DILLING ANDROI DI SUBMENT SIGNI ANTE DISMINSI, NO ISSMI SILLI E CUT INTICUT PROR CONTRUCTOR APPROVA MENI DELLING ANDROI NO DISTINUTATI NETALI, INSPECTIONI, ROMENTE, CONTRUMI DI LE POPORADE DI ORDET DI MUNIFICI MUNIFICIPATI SUMMAN Short on the lowering, how redna strain a codes, shall be performed in order to minitain manufacturer's maximum Allowable loads. All expansion/wedge anchors shall be stanless steel or hot dipped galvanized. Expansion bolts SHALL BE PROVIDED BY RAMSET/REDHEAD OR APPROVED EQUAL.

6. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR ENGINEER REVIEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL 7. ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATION

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

1. Excavate as required to remove vegetation and topsoil to expose natural subgrade and place crushed stone as Required.

2. COMPACTION CERTIFICATION: AN INSPECTION AND WRITTEN CERTIFICATION BY A QUALIFIED GEOTECHNICAL TECHNICIAN OR ENGINEER IS ACCEPTABLE.

3. As an alternate to inspection and written certification, the "undisturbed soil" base shall be compacted with "Compaction Equipment", listed below, to at least 90% modified proctor maximum density per astm d 1557 method c.

4. COMPACTED SUBBASE SHALL BE UNIFORM AND LEVELED. PROVIDE 6[™] MINIMUM CRUSHED STONE OR GRAVEL COMPACTED IN 3[™] LIFTS ABOVE COMPACTED SOIL GRAVEL SHALL BE NATURAL OR CRUSHED WITH 100X PASSING ∯1 SIEVE.

5. AG MI ALTERNATE TO TERLE 2 AND 3. THE SUBSACE SOLS WITH 5 PROSES OF A MEDIUA SEED VERSION FAILT COMPANIE (SIGN AS EXAMLE WE XX/MI SY MINOR CONSTRUCTION FAIL AND COMPANIES AND A MEDIUA SEED AND A MEDIUA SEED

COMPACTION EQUIPMENT:

1. HAND OPERATED DOUBLE DRUM, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR. CONSTRUCTION NOTES:

1. Field verification: Subcontractor Saml Field Verify Scope of Work, Verizon Wreless Antenna Platform Location and Antennas to be

2. COORDINATION OF WORK: SUBCONTRACTOR SHALL COORDINATE RF WORK AND PROCEDURES WITH CONTRACTOR.

3. CHELE LADDER RACK: SUBCONTRACTOR SHALL CHRISE AND INSTALL CABLE LADDER RACK, CABLE TRAY, AND CONDUIT AS REQUIRED TO SUPPORT CABLES TO THE NEW BE LICATION.

ELECTRICAL INSTALLATION NOTES:

1. WIRING, RACEWAY, AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC AND TELEORDIA.

2. Subcontractor shall modify existing cable tray system as required to support RF and transport cabling to the new BTS equipment. Subcontractor shall submit modifications to contractor for approval. 3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA.

4. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS.

5. EACH END OF EVERY POWER, GROUNDING, AND TI CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2 INCI PLASTIC ELECTRICAL TAPE WITH INV PROTECTION, OR EQUIL). THE IDENTIFICATION METHOD SYNLL CONFORM WITH NE'R & GSM, AND MATCH ENSITIEM INSTALLATION REQUIREMENTS.

6. POWER PHASE CONDUCTORS (I.E., HOTS) SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, ½ INCH PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). PHASE CONDUCTOR COLOR CODES SHALL CONFORM WITH THE NEC & OSHA AND MATCH EXISTING INSTALLATION REQUIREMENTS

7. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOD PLASTIC LABELS. ALL EQUIPMENT SHALL BE LABELED WITH THER VOLTAGE NATING, PLASE CONFORMATION, WIRE CONFIDUATION, POWER OR AMPLOTT RATING, AND BRANCH CRICUIT ID VIJLAGE MATING, PLASE LOARD AND CRICUIT ID'S).

8. PANEL BOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGRAVED LAMACOID PLASTIC LABELS.

9. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES

11. Supplement, Equipment Ground Wring Located Indoors Shill be Single Conductor (§6 ANC or Larger), 800 V, or resistant Thini or Thim-2 oreen nsilation, class 8 stranded copper calle rate for 80 °C (NET NID BRY) operation; listed or labeled for the location and processy system used, unless otherwise systeme?

12. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED CUTDOORS, OR BELOW GRADE, SHALL BE SINGLE CONDUCTOR 43 AWG SOLID TINNED COPPER CABLE, UNLESS OTHERWISE SPECIFIED.

13. POWER AND CONTROL WIRING, NOT IN TUBING OR COMDUIT, SWILL BE WULTH-CONDUCTOR, TYPE TO CABLE (134 ANG OR UNGRER), 600 V, OL RESISTANT THAN OR THAM-2, CLASS & STRANDED COPPER CABLE RATED FOR 80 °C (WET AND DRY) OPENATION; WITH OUTER JACKET; LISTED OR LABELED FOR THE LOCATION USED, UNLESS OTHERWISE SPECIFIED.

14. All power and grounding connections shall be crimp style, compression wire lugs and wire nuts by Thomas and betts (or equal). Lugs and wire nuts shall be rated for operation at no less than 75'c (80'c IF AVAILABLE).

15. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.

16. NEW RACEWAY OR CABLE TRAY WILL MATCH THE EXISTING INSTALLATION WHERE POSSIBLE.

17. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (LE., RIGID PVC SCHEDULE 40, OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

18. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.

19. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (INC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE

20. RIGID NONMETALLIC CONDUIT (I.E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80) SHALL BE USED UNDERRONING, DIRECT BURED, IN AREAS OF EXCVSIONAL LIGHT VEHICLE TRAFFIC OR ENCISED IN REINFORCED CONCRETE IN AREAS OF HEAVY VEHICLE TRAFFIC.

21. LIQUID-TIGHT FLEXIBLE WETALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.

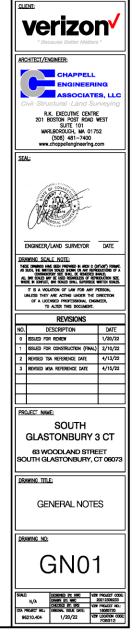
22. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED, SET SCREW FITTINGS ARE NOT ACCEPTABLE.

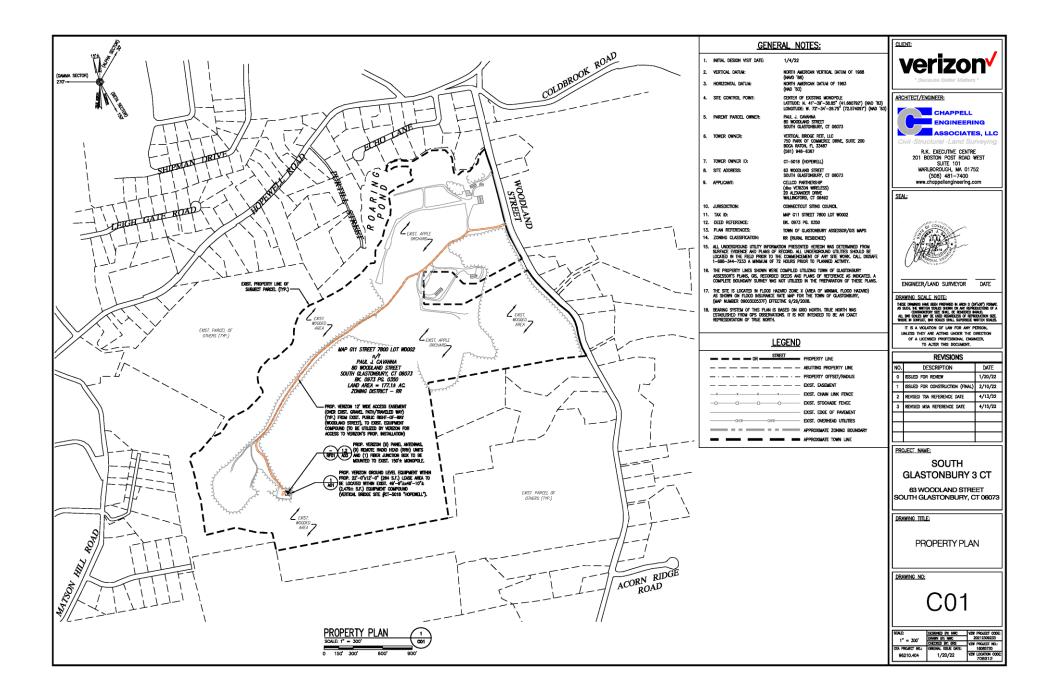
23. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEWA, UL, ANSI/TEEE, AND NEC.

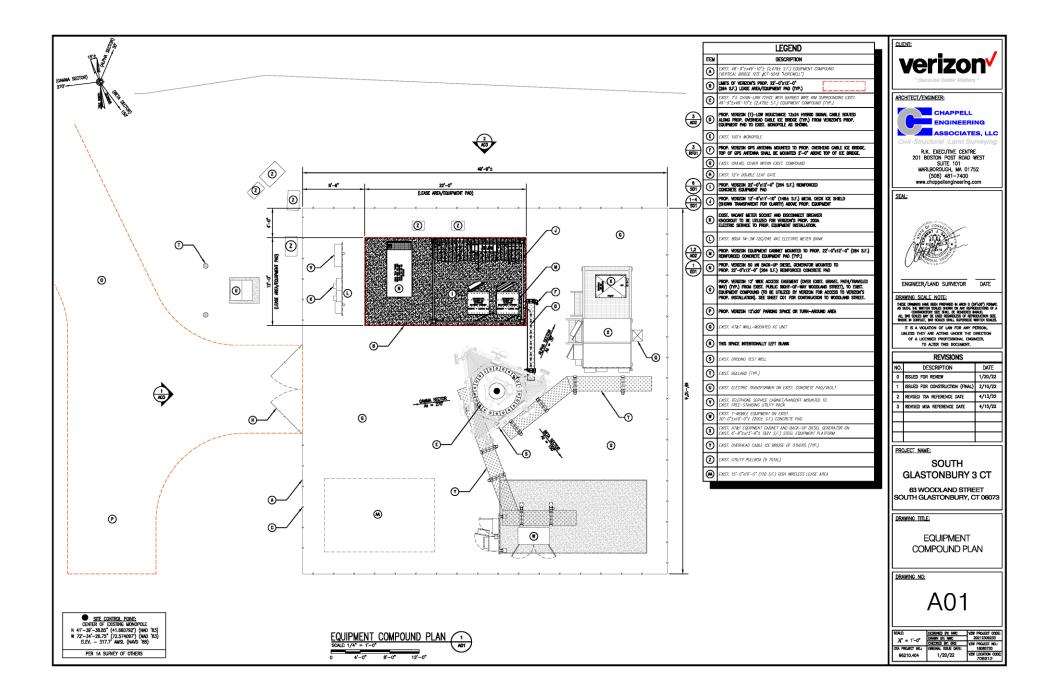
24. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXISTING INSTALLATION WHERE POSSIBLI

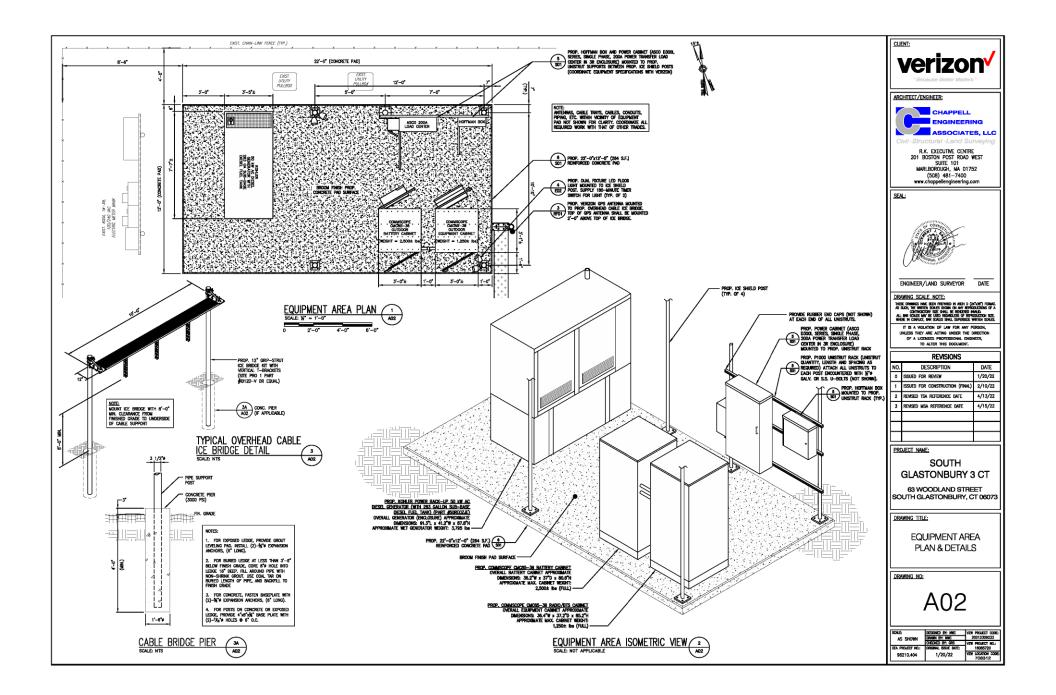
25. WHERMAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWINNARD; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.

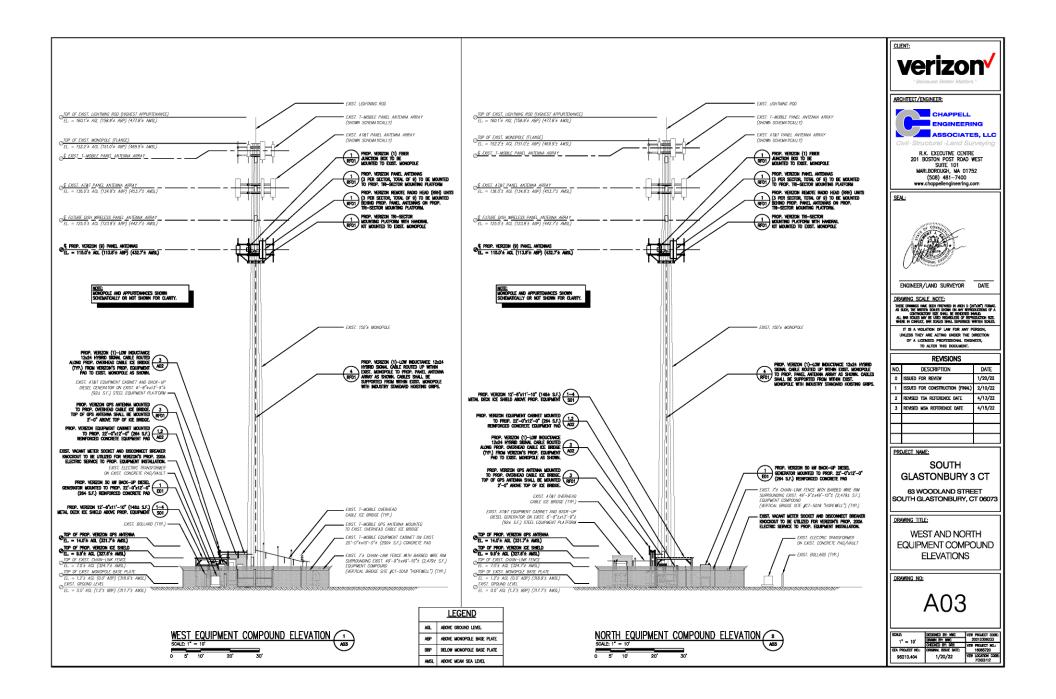
28. Equipment cabinets, terminal boxes, junction boxes, and pull boxes shall be galvanized or Byox-Coanted Sheet Steel, shall meet or exceed ul 30, and rated Nema 1 (or Better) indoors, or Nema Ri (or Better) outdoors

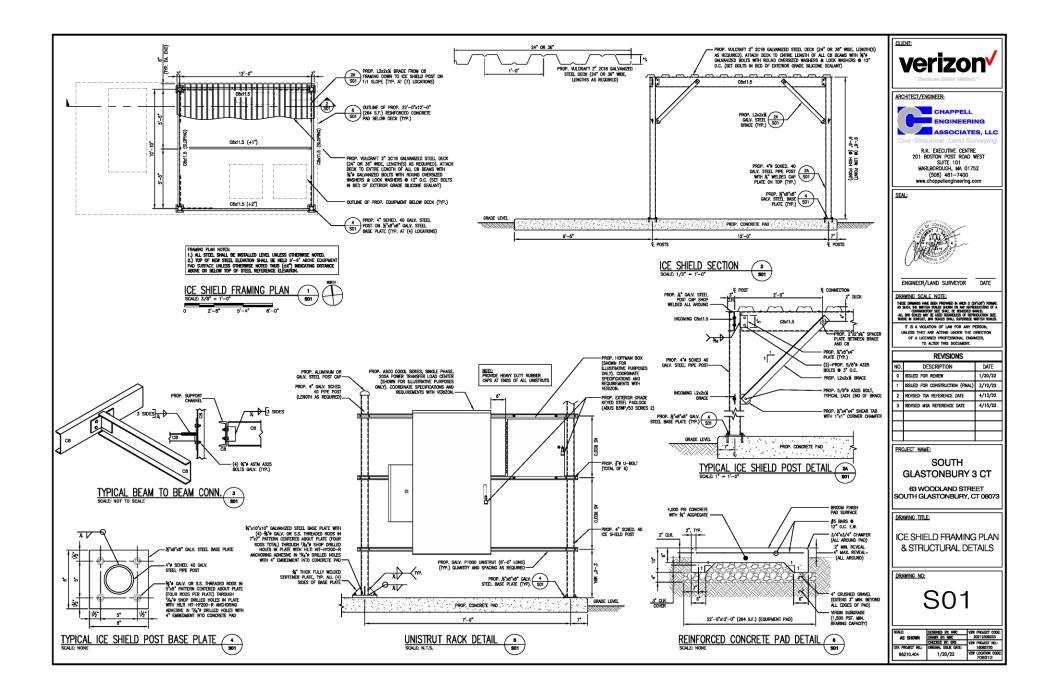

27. METAL RECEPTACLE, SMITCH, AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED, OR NON- CORRODING SHALL MEET OR EXCEED UL 5144 AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.

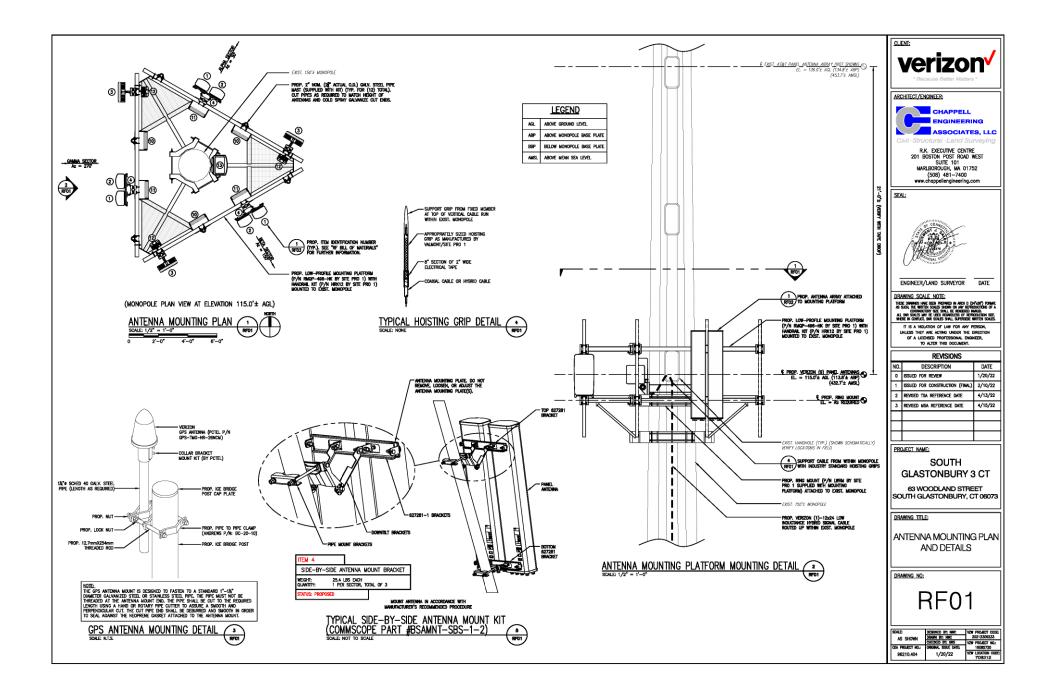

28. Nonwetallic receptacle, switch, and device boxes shall meet or exceed newa os 2; and rated newa 1 (or better) indoors, or weather protected (WP or better) outdoors.

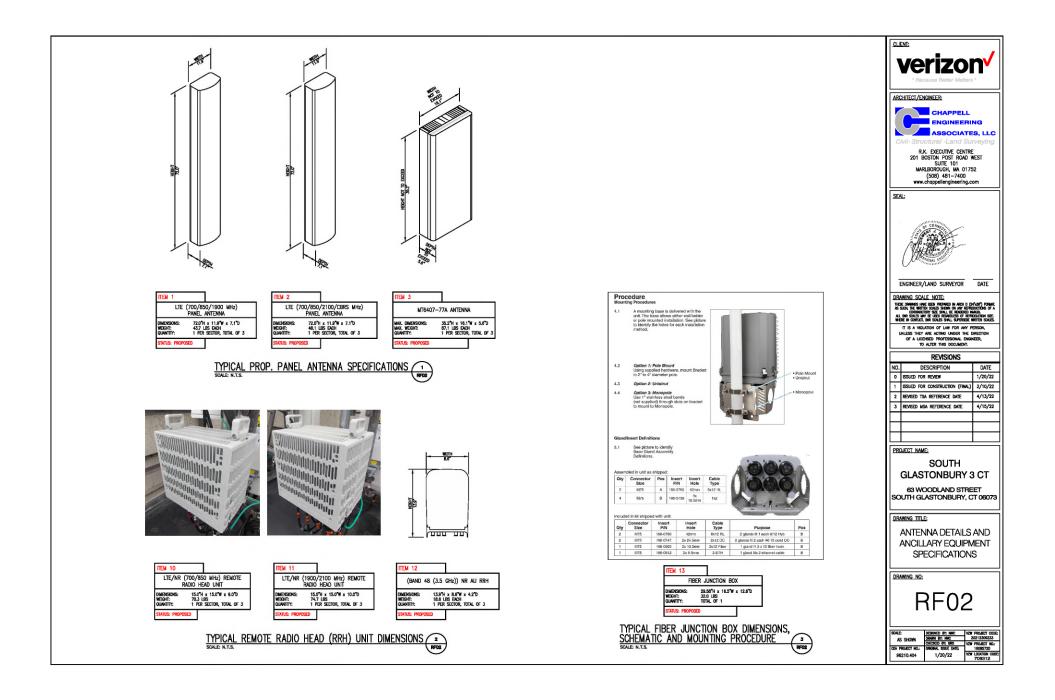

29. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

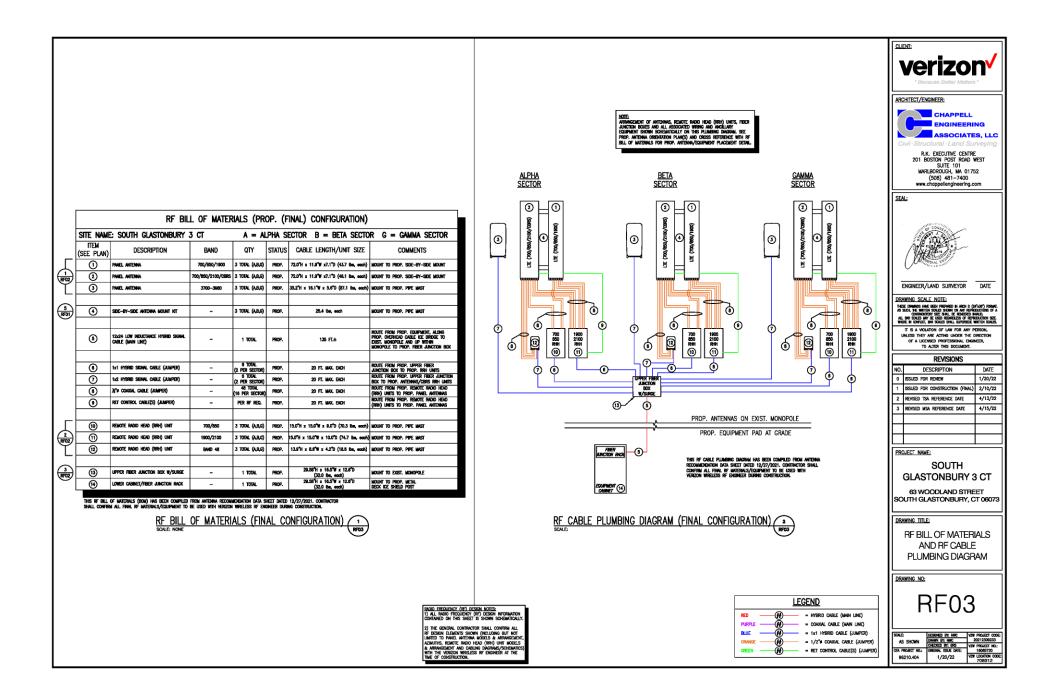

30. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY. 31. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE LOCAL CODES.

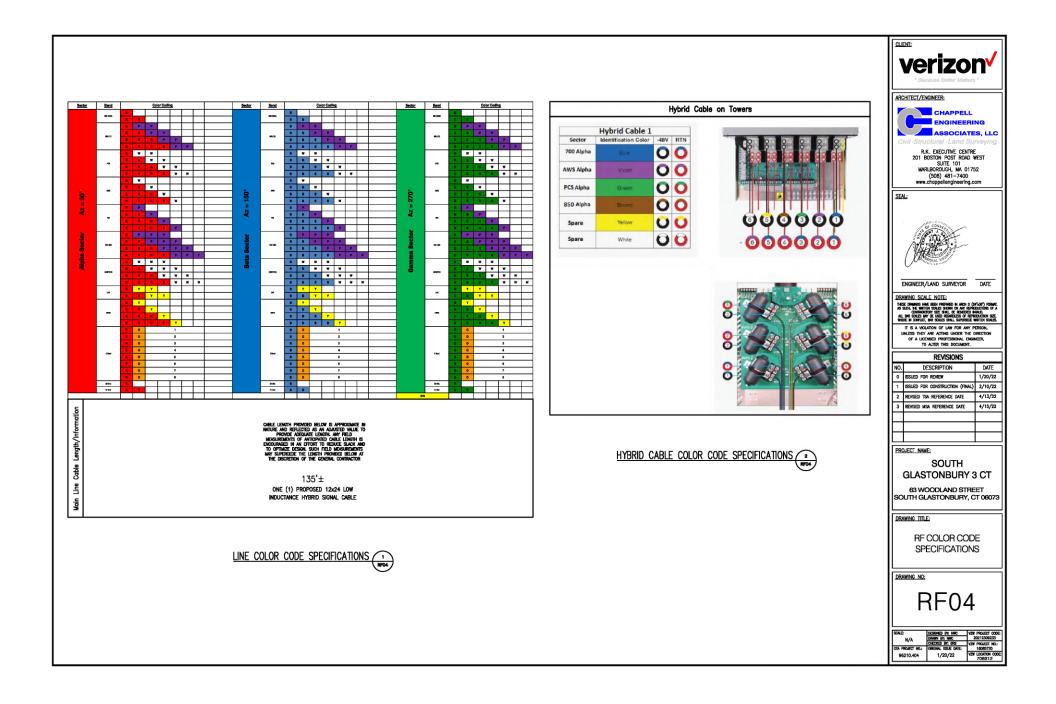

32. CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED.

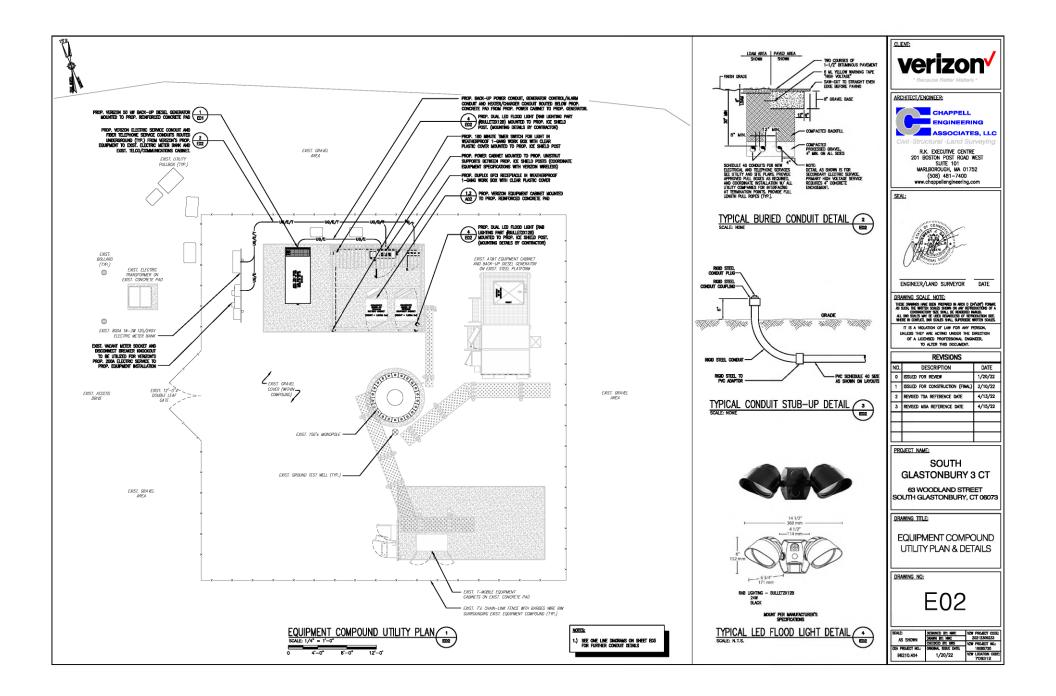


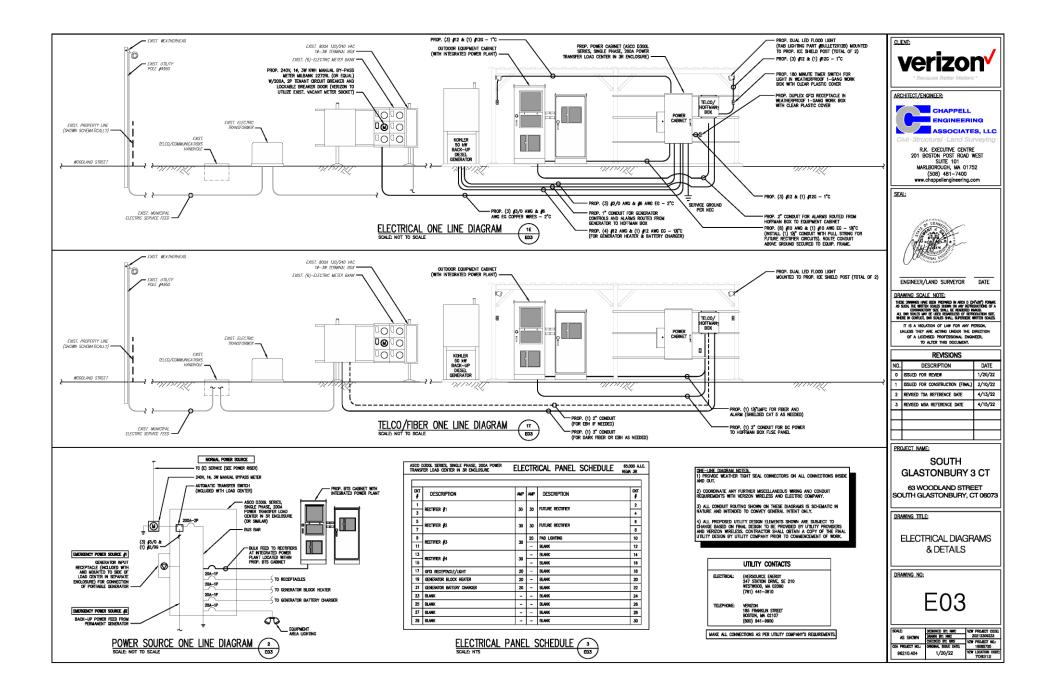


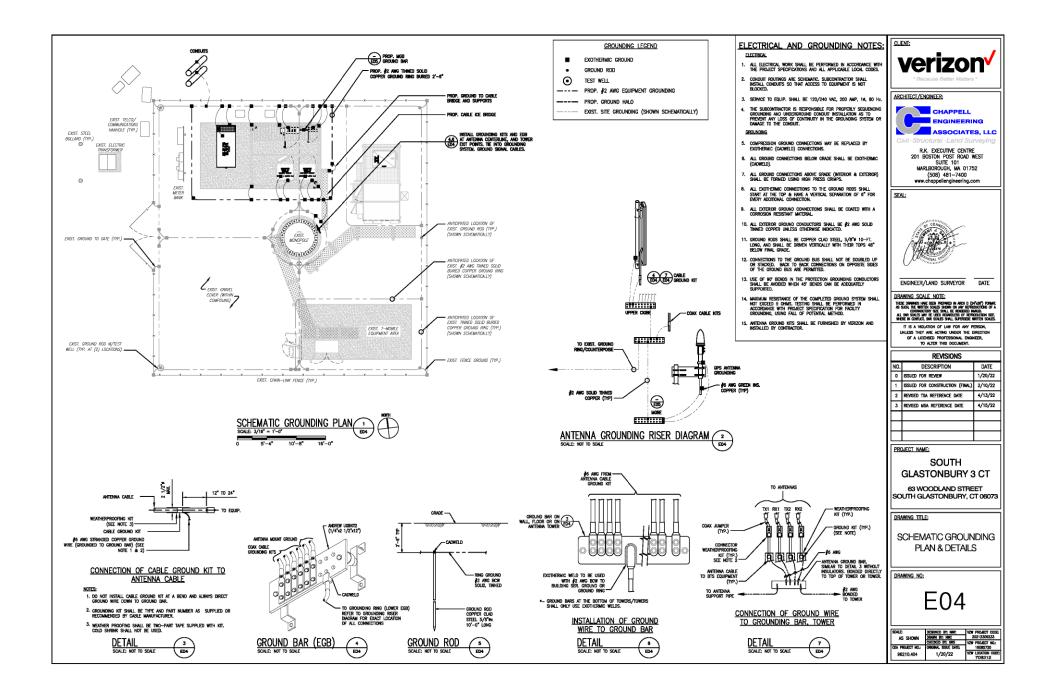


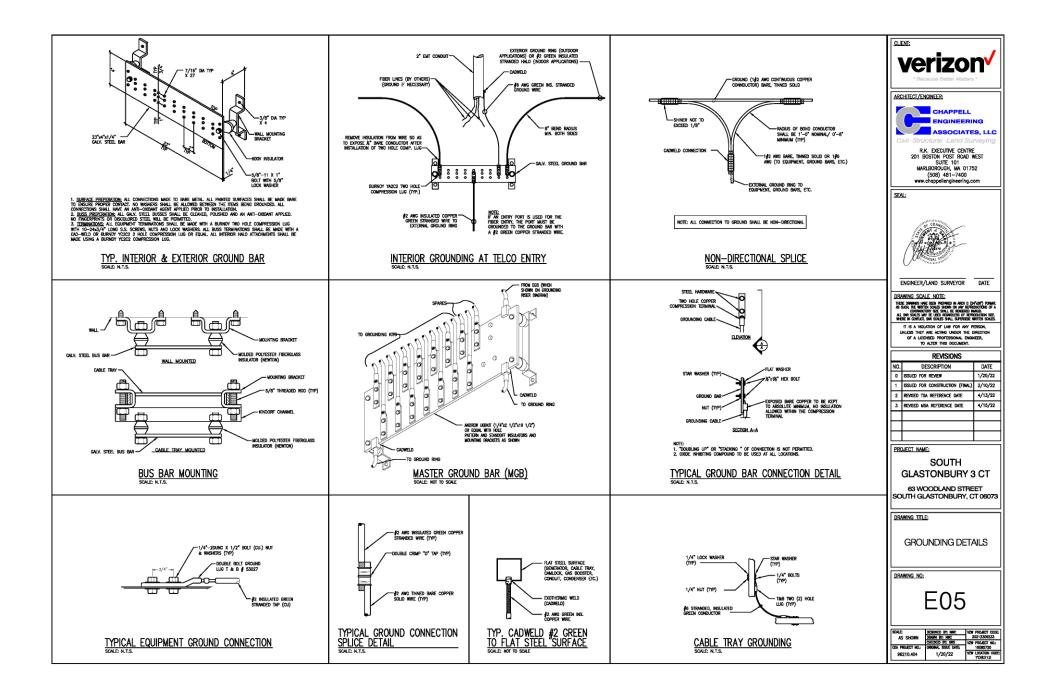


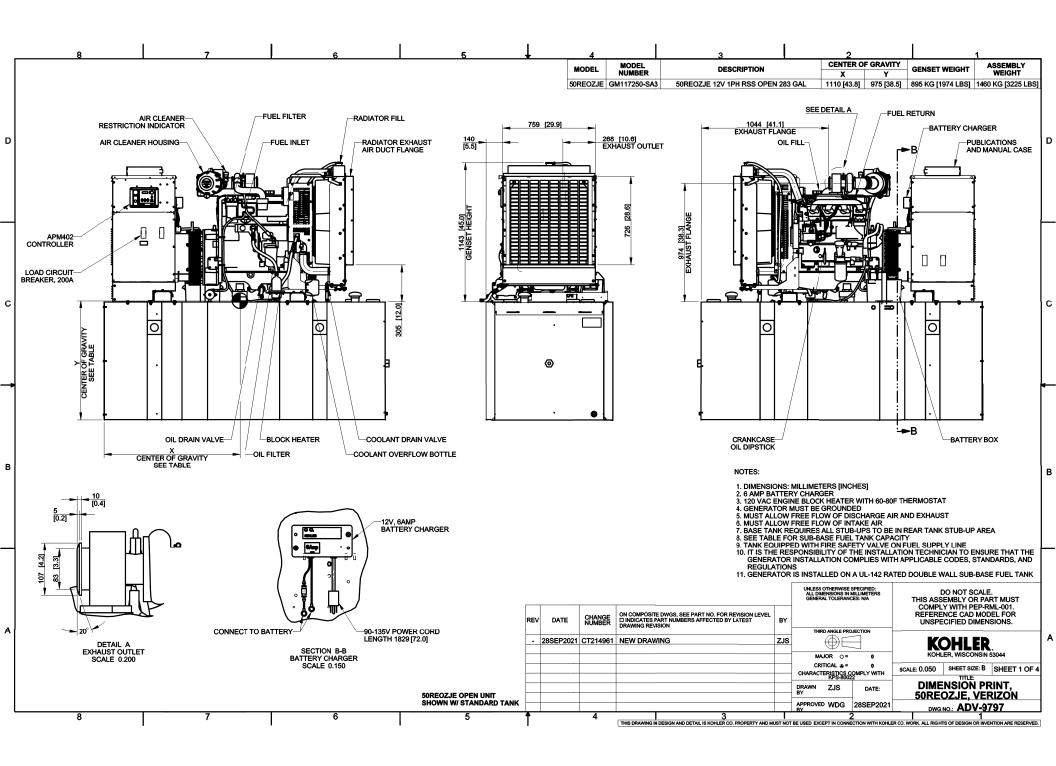


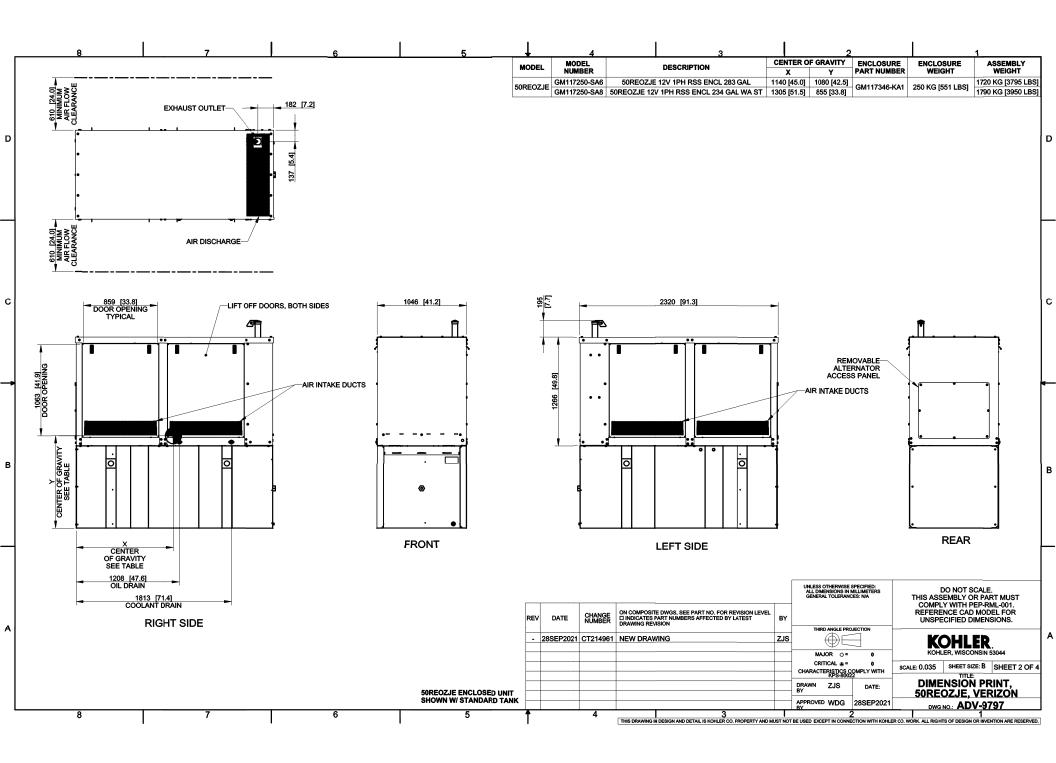


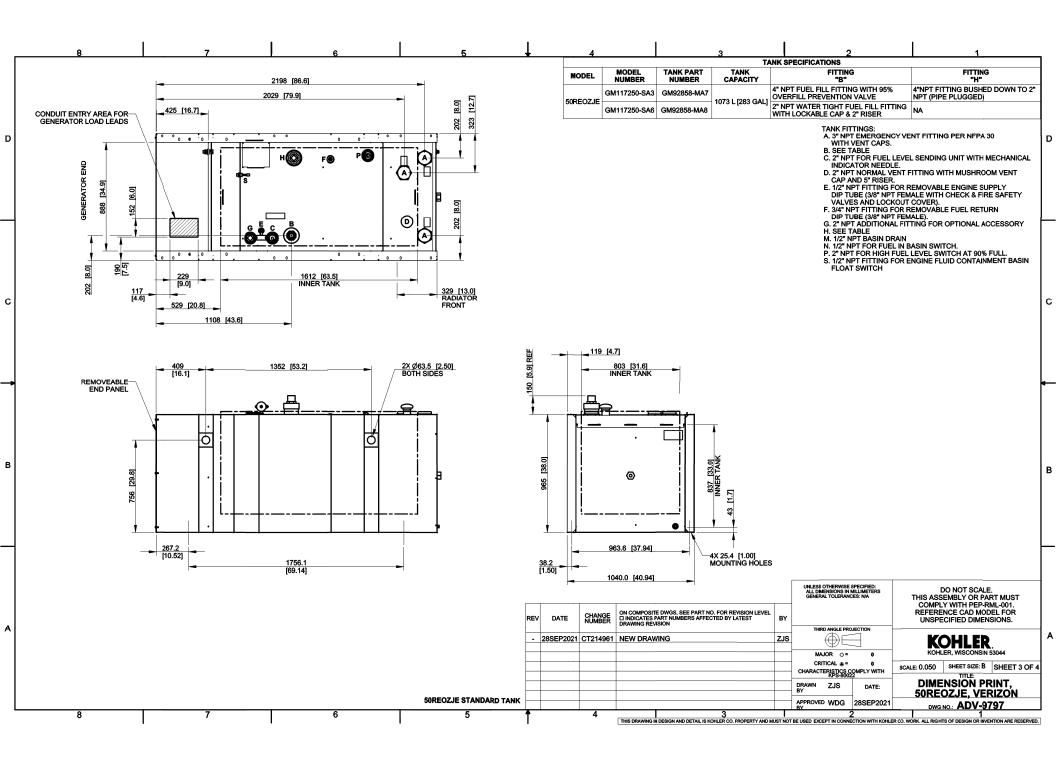


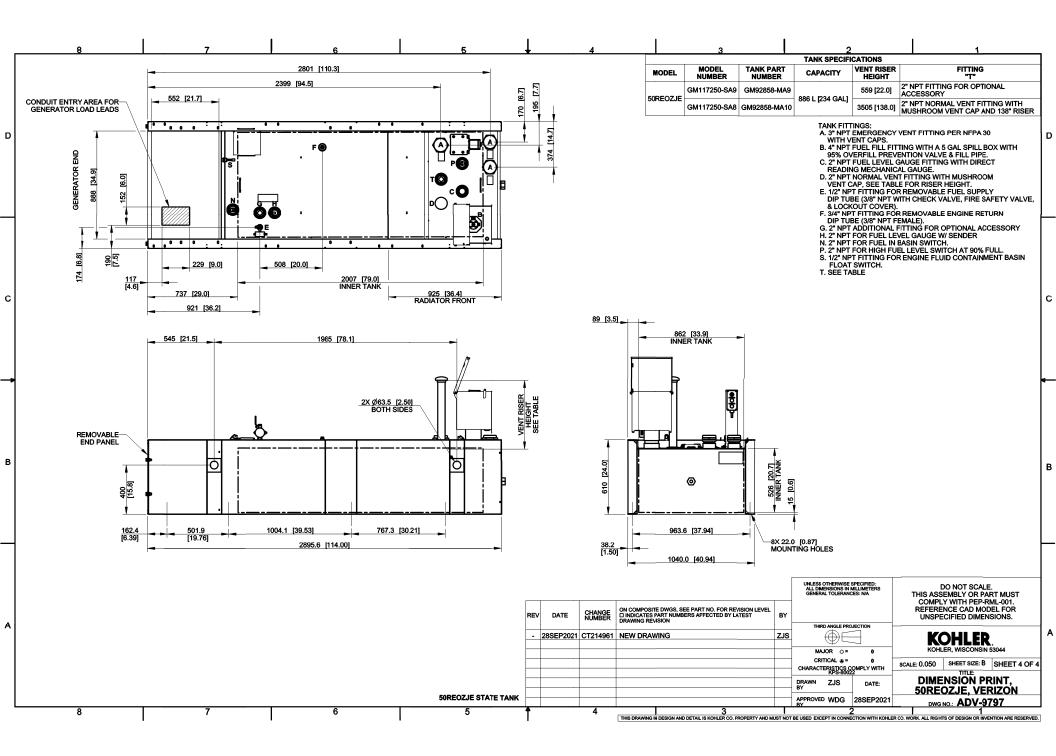





ELECTRICAL SPECIFICATIONS		GROUNDING GENERAL NOTES	LEGEND	CLIENT:
LINERS LILLIADOR, MATTERIAS, EQUIPMENT, TOLIS, AND INCREMINAS REQUIRED TO WARE READY FOR USE THE COMPLETE ELECTRICAL SYSTEMS AS SHOWN ON THE DRAWINGS, MARE ALL NEDESSARY CONNECTIONS AT "PACKAGE" DUMPLIENT.	 Electrical contractor shall as part of his work include all fittings, sleeves and minor cutting required for his work, including frees-stopping. 	 ALL EXTERIOR CONDUCTORS SHALL BE #2 AWG, SOLID, BARE, TINED COPPER, UNLESS OTHERMISE NOTED. WINNUM BEID RADIUS SHALL BE EIGHT (8) INCHES. 		
	STATE ELECTRICAL CONTINUE FOR THE WORK, INCLUDING FIRES-STOPPING. 34. THE ELECTRICAL CONTINUEDRA AT HIS OWN EXPENSE, SHALL PROVIDE HIS OWN, WHERE DIRECTED, STOPAGE AND OFFICE SPACE.	NOTED. WINNEAM BEAND RADARS SHALL BE ERRYT (8) INCHES. 2. All connections to halo ground ring and all cable tray jumpers shall be #6 arg, insulated, stranded, organizer where	ELECTRICAL SYMBOLS	verizon
. THE ELECTRICAL SYSTEMS SHALL BE SUTURE. IN EVERY WAY FOR THE SERVICE REQUIRED. ALL INTERNAL AND ALL WORK WHICH WAY BE REASONWARY MAPLED AS BEING INCIDENTAL TO THE WORK SHALL BE FURNISHED AT NO EXTRA COST.	Storade and Uppice State. 35. Five copies of Shop drawings of all equipment shall be provided to the engineer.		WETER .	" Because Better Matters "
FURNISH AND INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH THE REQUIREMENTS OF LOCAL, STATE AND NATIONAL CODES AND STANDARDS, INCLUDING BUT NOT LIMITED TO: THE DATE OF AND ADDRETITIES TATE THE INDER CODE:	36, Electrical contractor's work shall include all labor and materials, somfolding tool and transportation necessary for complete installation.	 ALL WRE-TO-WRE CONNECTIONS SHALL BE THREE-CLAMP, C TAP CONPRESSION (Tab #54740 09ANGE OR EQUINALIDIT, ALL CROWNE DWR CONNECTIONS SHALL BE THO-HOLE, LONG-BARREL TYPE CLAMPESSION LIUS (Table DE PLANALUNT). ALL OTHER CONNECTIONS TO STEEL SURFACES SHALL USE LIUG-TYPE CONNECTIONS. 	GROUND ROD/TEST (OBSERVATION) WELL	ARCHITECT/ENGINEER:
THE INTIGNAL ELECTRICAL CODE (MARIN - DATABATING - DATABA	 Electrical contractor to furnish engineer one set of mylars of "NS Bull" drawings. Electrical contractor shall provide temporary power & lighting as red'd. 	 MECHANICALLY BOND ANTENNA MOUNTS WITH #2 AWG, BARE, STRANDED CONDUCTORS. ALL GROUNDING WORK SHALL COMPLY WITH VERIZON WIRELESS STANDARDS. 	GROUND ROD CADWELD TYPE CONNECTION	CHAPPELL
THE LIFE SAFETY CODE (NFPA 101) THE STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURE AND ANTENNAS (TW/DA-222-0)	GENERAL NOTES	 ALL SHOULDERSH WARK STRLE TWIN FORCE HIM FORCE HILLS'S STRUMOUS. CONNECT SHOULD CONTROL TO DISTING FORCE HILLS'S STRUMOUS. CONSECTIVE, CONTROL TO DISTING FORCE HILLS'S STRUMOUS. CONSECTIVE, CONTROL HILL SCALES, STRUMOUS, MILL SCALE, ETC. TO ASHINE GOOD CAN BELL DRAWING CONNECTION. 	COMPRESSION TYPE CONNECTION	ENGINEERING
WITEWALS COUNTY SHULL BE NEW, UNUSED AND UNDERWRITERS' LADORATORES, INC, LISTED. CONTROLTOR SHULL BE RESPONSELE FOR PROVIDING ALL WHTERALS IN A THALEY FASHION, INCLUDING RESPONSIBILITY FOR EDTERMINE AUXAMENTLY LOSS THE FOR ALL RESEART SQUIPMENT.	1. CONTRACTOR SHALL VISIT THE SITE TO MAKE HINSELF AWARE OF THE EXISTING CONDITIONS.		GROUNDING WIRE	ASSOCIATES, L
	2. BRANCH CIRCUIT RUNS 100 FT AND OVER SHALL BE ∯10 AING CONDUCTORS.	 CONNECT TO HALO GROUND USING C-TAP (#54730). CONNECT TO ENCLOSURES USING BLUE GROUND LUGS. 	1 REPRESENTS DETAIL NUMBER	R.K. EXECUTIVE CENTRE 201 BOSTON POST ROAD WEST
Contractor simil ogtam all recessiver pennits and pay all fees for pennits and inspections, where her commercial porces senses is provided to the site, or disting service must be indefed, contractor simil and all memorganess that the electre during, small perform all of the work in accordance with the requirements of the utility, small perform utility service such contracts.	 THESE DRAWINGS ARE OVERAWANTIC ONLY. THE EVACT LOCATION, MOUNTING HIGHT, SZEC OF EQUIPHENT AND ROUTING OF RACEMANS SHALL BE COORDANTED AND DETERMINED IN THE RED. THE ELECTRICAL CONTINUETOR SHALL COORDANTE WITH THE INVAC AND PLUMBING CONTINUETORS AS 		1'X4' SURFACE MTD. FLOURESCENT LIGHTING FIXTURE	SUITE 101 MARLBOROUGH, MA 01752 (508) 481-7400
	4. THE ELECTRONAL CONTINUENDE SINUL COORDINATE WITH THE HAVE AND PLUMBING CONTINUENDES AS TO THE EXACT LOCATION OF THEIR RESPECTIVE EQUIVARIT. THE PARKET WINNIN, THE CONTROL WINNE AND ALL ELECTRONAL CONNECTIONS REQUIRED BY THIS CONTINUENT CONCENTED OPENITIE HING AND PLUMBING STREEDS IN CONFIGURATION CHIEFT THE CONTINUET DOCUMENTS.		SELF CONTAINED EMERG. LIGHTING UNIT	www.chappellengineering.com
ALL WRAND OUTSDE SWALL BE NATALLED IN HEAV-ONLOF, (SCHEDLE 40) ROD STEEL CONDUIT, HOT-OPPER QUANTEED INSIG NON OUTSDE WITH AN ADDITIONAL FACTOR-APPELE PRINKIN INSIGE AND OUTSDE, CUT DINIS SHALL BE REAMED, THREADED AND COLD GALWARZED. NO COMPRESSION FITTING WILL BE ACCEPTED.	 Interruptions to the disting electrical service for spucing connections, renovation of existing distribution, broad circuits, installation of New Electric Service, and Shall be as short as possible, and to the comprehence of the owner. 		S 20A-120V-1P TOGGLE SWITCH BE MAGNETIC DOOR SWITCH (DOOR JAMB TYPE)	SEAL:
UNDERGROUND CONDUITS SHALL BE PAC SCHEDULE 40 AND INSTALLED NOT LESS THAN 30 INCHES BELOW FINISHED GRADE.	 ALL CONDUIT SHALL BE SURFACE MOUNTED UNLESS OTHERWISE NOTED. NO INTERIOR HORIZONTAL CONDUIT SELVAT → 0 → F IN FINISHED SHALESS. OTHERWISE NOTED. 		 20A-120V QUADRAPLEX RECEPTACLE, GROUNDING TYPE, 2-OKT, NO. 	
, wreng installed in the Building that is shown to be in conduit shall be installed in EMT. EMT Fittings shall be steel compression type.	 All WRING TO BE 3/4°C, 2#12 & 1#12 GROUND, UNLESS OTHERWISE NOTED. 		20A-120V DUPLEX RECEPTACLE, GROUNDING TYPE.	OF CONNECTION
Louid Tight, flokele metal comduit shall be used for all motor terminations and for connections to experiment subject to version flokele useral conduct shall consist of a plokele correspondent solution floke. The detection determines, similare motor workst. Conducts subject the workst.	 No ex or rowex cases permitted. All writing devices and equipment shall be 20A specification grade and ul listed. 		WP = WEATHERPROOF GFI = GROUND FAULT	
	 ALL INNER DETICTS AND ENDINEED SHALL BE SECURELY SURFACE MOUNTED. ALL OUTLET AND JUNCTION BOXES SHALL BE SECURELY SURFACE MOUNTED. 		e SIMPLEX RECEPTACLE, CROUNDING TYPE. π. TL = TWIST LOCK Ο JUNCTION BOX	
 No conduit smaller than 3/4" electrical trade size shall be used, except as othermise shown on the drawnes, box sizes shall be 4" square minimum, but not less than that required by the connectionit electrical. Code. 	 ALL RECEPTACLE AND EQUIPMENT CIRCUITS SHALL BE GROUNDED USING A FULL SIZE EQUIPMENT GROUNDING CONDUCTOR RUN WITH THE CURRENT CONDUCTORS. 		P PANELBOARD 'P1'	C. waiting
. Fittings and Edposed Smitch, quillet and control station boxes and other exposed boxes 4* square small be cast or mallfable from with cadmuni-zinc Finish and cast covers with statings strategy.	 All WALL PENETRATIONS FOR TELCO, POWER, AND GROUNDING SHALL REQUIRE PVC SLEEVES. All Switches Shall be Forty-Eight (48) Inches Aft, UNLESS OTHERWISE NOTED. 		★ MOTOR - NUMERAL DENOTES HORSEPOWER ► WEATHER PROOF DISCONNECT SWITCH	ENGINEER/LAND SURVEYOR DA
Flush switch and cutlet boxes shall be not-dipped galvanized, pressed steel with inlon Cover prates, color as determined by the engineer.	14. ALL RECEPTACLES SHALL BE EXCHTEEN (18) INCHES AFF, UNLESS OTEHRWISE NOTED.		□# FUSED DISCONNECT SWITCH - '3R' & '1' - NEMA ENCLOSURE	DRAWING SCALE NOTE:
COMENT FOREX, COLON AND RELEASINGLE OF THE ENANCED. DOCEPT AS OTHERES SHORN HEAVING, LINCTON AND PLLL BOCKS LARGER THAT 4" SQLARE SHALL BE SHEET STEEL, STEEL BOCKS SHALL BE HOT-EIPHER GALVANZED, BOCKS AND COVERS SHALL BE NOT LISS THAN I A GUERE BETAL COVERS SHALL BE GASTED AND FASTINED WITH STANLESS STEEL.	 All WRING SHALL BE IN METAL RACEWAY & NO. 12 AWG COPPER MIN. UNLESS OTHERWISE NOTED. 16. WIRE COLOR SHALL BE PER STANDARD CODING BY PHASE. 		* \mathfrak{O} - Thermostat * $\mathfrak{O}_{\mathfrak{H}}$ - HI temperature alarm thermostat	THESE DAWINGS HAVE BEEN REFARED IN ARCH ID (24 ⁶ X87 ²) AS SUCK THE WITTEN SCALES SHOW ON ANY REPOLLICION CONTRIGUCTIVE SUCS SHULL BE REAVELIESS OF REPOLLICION ALL DIR SOLES MAY BE USED RECARLESS OF REPOLLICION WHERE IN COPILICI, DIR SOLES SHULL SUPERSEE WITTEN
be shell siel siel boxes shall be not-un-fur allowared, boxes and covers shall be not less than 14 gauge metal, covers shall be gasketed and fastened with stanless steel hardware.			★ ⊕- HUMIDISTAT [*] ⊕ _{MAB} - HI/LO HUMIDITY ALARM HUMIDISTAT COMBINATION SMOKE/HEAT DETECTOR WITH MINI HORN	IT IS A VIOLATION OF LAW FOR ANY PERSON
. Fittings used with liquid tight, flexible conduit shall be of the screw-in, compression type with sealing ring, fittings larger than 1-1/4" shall be furnished with integral ground ligs.	17. FOR UTLUTY BULLING, PLEASE SIDD TO: VERZONI WIELENS 20 ALEXANDER ORIVE WILLINGFORC, CT 6442		OMISINATION SMOKE/HEAT DETECTOR WITH MINI HORN SIMPLEX CAT_2028—9696 WITH FORM A & C CONTACTS p ^{1−2} HOMERUN TO PANEL	UNLESS THEY ARE ACTING UNDER THE DIRECTI OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
HANGERS, RODS, BACK PLATES, BEAM CLAMPS, ETC. SHALL BE GALVANIZED IRON OR STEEL. CONDUITS SHALL BE SUPPORTED AT LEAST EVENT. 5 FEET.			(FURNISH & INSTALLED BY MECHANICAL)	REVISIONS
EXPOSED CONDUITS SHALL BE RUN PARALLEL TO OR AT RGHT ANGLES TO WALLS. CONDUIT RUNS SHALL BE STRAGHT AND TRUE, CONDUIT SHALL BE SUPPORTED BY MEANS OF TWO-HOLE PIPE CLAMPS, BACK PLATES SHALL BE INSTALLED WHERE REQURED TO RUSE CONDUITS ROW THE SUPPORT. BLATES, BALK	1		SURGE ARRESTOR - JOSLYN CAT. NO. 1455-85	NO. DESCRIPTION D
Plates shall be installed where required to page conducts from the surface. Multiple, horizontar into shall be supported on thanget involves multistel horizontar. Murgers and threaded froms not less than 3/5 inches in dumeter. Hangers shall be attached to structural. Stell by kenns of bean clamps. Sport the inserts shall be add in correte.	Na BOO Martin State All State		AFF ABOVE FINISHED FLOOR	0 ISSUED FOR REVIEW 1/2
			* TB MOTORIZED DAMPER	1 ISSUED FOR CONSTRUCTION (FINAL) 2/1 2 REVISED TSA REFERENCE DATE 4/1
. Conduit Bedies Shall be Camefally more to prevent distortion of the Carcular Cross-Section. No conduit run Shall have more than the conductation of themes or defere begins between Fullback. Bedies in directions shall be more with bedge standard ledwes and Pullback. Bedge in Pravelle. Thus Shall be condentified.	- - -		T _{afta-afve} Exposed conduit 2∦12-3/4°C. ITE: Alarm terminal cabinet	3 REVISED MSA REFERENCE DATE 4/1
 Conduit shall not be supported from piping, piping supports, ductwork, suspended ceiling supports or mechanical equipment subject to vibration or removal. 			* EQUIPMENT FURNISHED AND INSTALLED BY OTHERS AND WIRED BY THIS CONTRACTOR	
. The ENDS of all conduits shall be tightly plugged during building construction until wires are to be pulled. Spare conduits shall be furnished with threaded caps.	AR DISCHARGE		ABBREVIATIONS	
. Conduits shall be terminated at ungasketed sheet steel boxes and enclosures with double Lock Muts and Suthale Bushings, Bushings installed on conduits containing groups wires Shall be groupsing the conduits shall be terminated at Gasketed Shet Merk Boxes and	12 1 1		AWG AMERICAN WIRE GAUGE	PROJECT NAME:
ENCLUSURES WITH CONDUIT HUBS.	DOOR OFFINIA TYPICAL	85 2320 (P1.0)	BCW BARE COPPER WIRE GPS GLOBAL POSITIONING SYSTEM	SOUTH
CONDUCTORS SHALL BE ANREALED, 89 PERCENT CONDUCTIVITY, SOFT-DAWIN COPPER. NO CONDUCTOR SMALLER THAT NO. 12 ANG SHALL BE USED, DICEPT AS OTHERNISE NOTED. WHE FOR PROFES AND LIGHTLING SHALL BE CONTENT SHALL BE ADD WHIT TYPE THAN WHE FOR POWERD			PCS PERSONAL COMMUNICATION SYSTEM	GLASTONBURY 3 C
. WHE FOR POREE AND LOATING SEMACH CIRCUITS SHALL BE 500 VOLT, TYPE THAN, WHE FOR CONTROL CIRCUITS SHALL BE 600 VOLT, TYPE THAN, ROL, IA ANG, STANAUCADE, SATAVEC FONDATIONS MON TEADERS SHALL BE TYPE XHAM, CONDUCTORS NO. 10 ANG AND SMALLER SHALL BE SOLD, NO. 8 ANG AND LANGER SHALL BE STRANDED.		PINCONAU	RWY RACEWAY TYP, TYPICAL	63 WOODLAND STREET SOUTH GLASTONBURY, CT 0
ALL CONDUCTIONS SHALL BE CAREFULLY HANDLED TO ANOID KINKS OR DAMAGE TO INSULATION. LUBRICATIONS SHALL BE USED TO FACILITATE WIRE PULLING, LUBRICANTS SHALL BE UL LISTED FOR USE WITH THE INSULATION SPECIFIC			RGS RIGID GALWANIZED STEEL	
with the insulation specafied. All equipment and maternals swall be grounded in strict accordance with the connecticut Bectrical code, and the standard requirements of vericon wireless and lucent.		╵ <u>╴┙────</u> ┧ ┝───┤	EMT ELECTRICAL METALLIC TUBING DWG DRAWING	
ELECTRICAL CODE, MO THE STANDARD REQUIREMENTS OF YORKOW WHELESS AND LUCENT. DISCOMPLET SWITHE STANLE HEAD OR 240 OKT, HEAVY-DUTY, CHAUSE, MUTCHESS INSTALLED BLACE, 2 POLE WITH EXTERNAL OPERATION ENHILE AND FULL COVER INTERLOCK. SWITCHESS INSTALLED OUTSIDE SWILL BE RUBAT THE? BE INCLOSED.			EAT INTERIOR GROUND RING (HALO) GEN GENERATOR	ELECTRICAL SPECIFICATIONS AND
Outside Samil de Heran Type 3r Enclosed. Wall Smitches Shall be Single Pole 3-way or 4-way, indicating, toggle-action, flush, quiet Type, specification grave, rated 20 Aufberg, 120-277 Volt. Color as determined by Engineer.		REAR	GR GROWTH	NOTES
TYPE, SHERRATION GARDE, NOLD 20 AMPINE, 120-277 VOLL COLOR AS DELEMINED IF ENAMPLES. GENERAL PURPOSE RECEPTACLES SHALL BE DUPLES, 2016, 3 WIRE, STANGHT BLADE, MILON FACE, GROWDING MFR. 20 AMPINE, 125 VOLL SPECIFICATION GROUE COLOR AS DETEMINED BY ENAMPLES.	CENTR - FRONT	LEFT SIDE REAR	CGBE COAX GROUND BAR EXTERNAL CIGBE COAX ISOLATED GROUND BAR EXTERNAL	DRAWING NO:
PANELS SHALL BE PER DIRECTED BY THESE DRAWINGS WITH TYPED DIRECTORIES.	- 003 HC //		MGB MASTER GROUND BAR	
CREUT REVACES SHULDE WOLED CASE, HERMA-MACHET YPF, WHI HINS SYMMETROL INTERRIPTING KINNS OF NOT LESS THAY 22:000 AMPREF FOR 20 VOL BEAKINGS, BALCASED BREAKING SHALL HAVE, PALLOCKING FROMSKIS AND EXTIRAL OPERATING HANDLE WITH FULL COVER INTELLOCK BREAKINGS SHALL BE'T MOULDE WITHINUM.	RIGHT SIDE KOHLER. 50KW DIESEL GENERATOR WITH 283 GA SU OVERALL CENERATOR (ENCLOSURE) APPROXIMATE		PVC RIGID (SCH. 40) POLYWIN'L CHLORIDE CONDUIT EBH ETHERNET BACK HAUL	E01
. Nomeplates shall be provided for all equipment indicating voltage, phase, use and source of origin, devices shall be labeled indicating voltage and benach creative. Benach conductors shall be labeled indicating branch creative. Teder conductors shall indicate phase.	DIMENSIONS: 91.3"L x 41.2"W x 87.8"H (INCLUDES APPROXIMATE MAX. IN-SERVICE WEIGHT: 3,785 lbs	SUB-BASE DIESEL TANK)		
				SCALE: DESIGNED BY: NHC VZW PROJE
 All exterior conductor/lug terminals simil have an antioxidant applied. All spring type wire conductors used in exterior boxes simil be succon filled. 	GENERATOR DE			AS SHOWN DRAWN BY: NWC 2021230 CHECKED BY: GRS V2W PROJEC







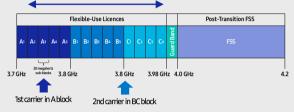
SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

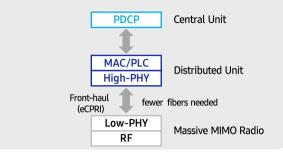
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

700/850MHZ MACRO RADIO

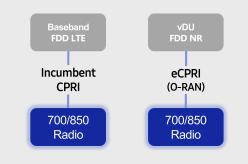
DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

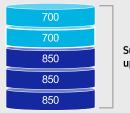
Homepage samsungnetworks.com



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

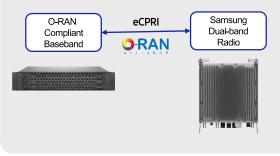

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

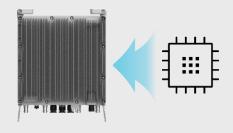
Supports up to 5 carriers


Technical Specifications

ltem	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

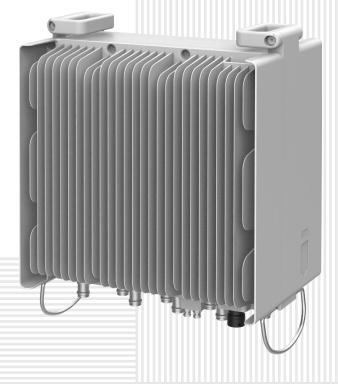

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

SAMSUNG


AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER

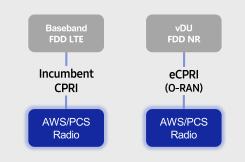
FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

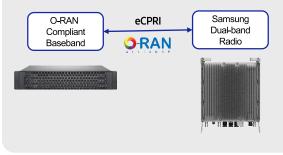
Homepage samsungnetworks.com



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

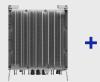
O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.


The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

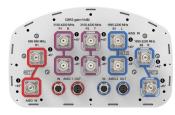
 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

ltem	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

[CBRS] Clip-on Antenna Specifications

VzW accepted IP45 in FLD, but IP55 is Samsung Spec.



Items	Clip-on Antenna, BASTA**					
Antenna Gain	12.5 \pm 0.5 dBi (Max 13 dBi)					
Horizontal BW (-3dB)	65° ± 5°					
Vertical BW (-3dB)	17° ±3°					
Electrical Tilt	8° (fixed) $\pm 2^{\circ}$					
Front-to-Back Ratio	> 25 dB					
Port-to-Port Tracking	< 3 dB					
VSWR	< 1.5					
Isolation	> 25 dB					
Ingress Protection	IP55					
Size	220(W)×313(H)×34.3(D) mm (*) (8.7 x 12.3 x 1.4 inch.)					
Weight	< 2.0 kg [Typ. 1.3 kg]					
It is required that the radio should be weatherproofed properly with JMA WPS Boot with external antenna or with Weatherproof Boot for clip-on antennas.						

Antenna includes integrated cable with connector * Design is subject to minor change

** Ant. spec. follows NGMN recommendations on Base Station Antenna Standards (BASTA). For example, 'mean ± tolerance of 86.6%' is applied to double-sided specification of statistical RF parameters.

	RH] Spec.	Item	Specification
	nnj spec.	Band	Band 48 (3.5 GHz)
		Frequency	3550~3700 MHz
		IBW	150 MHz
		OBW	80 MHz
		# of Carriers	5/10/15/20 MHz x 4 carriers
		RF Chain	4TX / 4RX
		RF Output Power	4 path x 5 W (Total: 20 W = 43 dBm)
		& EIRP	(EIRP: 47 dBm / 10 MHz)
		RX Sensitivity	Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)
		Modulation	256-QAM support (1024-QAM with 1~2dB power back-off)
		Input Dowor	-48 VDC (-38 to -57 VDC, 1 SKU),
and an in		Input Power	with clip-on AC-DC converter (Option)
Handi		Power Consumption	About 160 Watt @ 100% RF load, typical conditions
(e		Volume	Under 7L (w/o Antenna), Under 9.6L (with antenna)
		Weight	Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)
		Operating Temperature	-40°C (-40°F) ~ 55°C (131°F) (W/o solar load)
		Cooling	Natural convection
		Unwanted Emission	3GPP 36.104 Category A
			[B48] : FCC 47 CFR 96.41 e)
		Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di
		CPRI Cascade	Not supported
Port		# of Antenna Port	4
Standard Gua		External Alarm (UDA)	4
Label		RET	AISG 2.2
		TMA & built-in Bias-T I//F	Not supported
		and PIM cancellation	
		Mounting Options	Pole, wall, tower, back to back, side by side (for external ant),
			3 RRH with Clip-on Antenna on the pole
		Antenna Type	Integrated (Clip-on) antenna (Option),
Current Size: 216 x 3	07 x 105.5 mm (6.99L)		External antenna (Option)
	., excluding Port Guard)	NB-IoT	Not Supported (HW Resource reserved
	t to minor change	Consistence And I	for 1 Guard Band NB-IoT per LTE carrier)
C 7	-	Spectrum Analyzer	TX/RX Support
		External Alarm (UDA)	4
		5G NR	Support with S/W upgrade
		XRAN	Support with S/W upgrade

10-port sector antenna, 2x 698–896, 4x 1695–2200 and 4x 3100-4200 MHz, 65° HPBW, 2x RETs and 2x SBTs. Both high bands share the same electrical tilt.

- Perfect antenna to add 3.5GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x MIMO

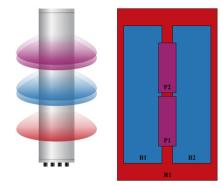
General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, mid band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	10

Remote Electrical Tilt (RET) Information

RET Hardware	CommRET v2
RET Interface	4x 8 pin connector as per IEC 60130-9 Daisy chain in: Male / Daisy chain out: Female Pin3: RS485A(AISG_B), Pin5: RS485B(AISG_A), Pin6: DC 10~30V, Pin7: DC_ Return

Page 1 of 5

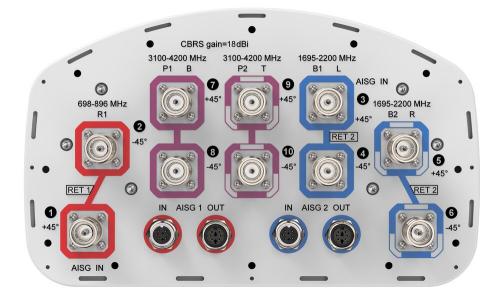

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

RET Interface, quantity	2 female 2 male
Input Voltage	10-30 Vdc
Internal RET	High band (1) Low band (1)
Power Consumption, active state, maximum	10 W
Power Consumption, idle state, maximum	2 W
Protocol	3GPP/AISG 2.0 (Single RET)
Dimensions	
Width	301 mm 11.85 in
Depth	181 mm 7.126 in
Length	1828 mm 71.969 in

Net Weight, without mounting kit

Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	AISG RET UID		
R1	698-896	1 - 2	1	AISG1	CPxxxxxxxxxxxxxR1		
B1	1695-2200	3 - 4	2	41662	CD		
B2	1695-2200	5 - 6	2	AISG2	CPxxxxxxxxxxxxxB1		
P1	3100-4200	7 - 8					
P2	3100-4200	9 - 10	N/A	NA	N/A		


23.1 kg | 50.927 lb

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2200 MHz 3100 – 4200 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	1,000 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-188	0 1850–199	0 1920–220	0 3100-355	0 3550-370	0 3700-4200
Gain, dBi	14.8	15.2	17.4	17.8	18	17.7	17.3	17.9
Beamwidth, Horizontal, degrees	65	62	66	61	64	54	64	60
Beamwidth, Vertical, degrees	13	11.6	5.5	5.2	4.9	5.7	5.3	4.9
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	4	4	4
USLS (First Lobe), dB	15	15	16	18	18	16	17	18
Front-to-Back Ratio at 180°, dB	26	29	31	28	27	30	33	29
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	28	28	28
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-140	-140	-140

Page 3 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

COMMSCOPE°

Input Power per Port at 50°C,	300	300	300	300	300	100	100	100	
maximum, watts									

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-188	0 1850–199	0 1920–220	0 3100-355	0 3550-370	0 3700-4200
Gain by all Beam Tilts, average, dBi	14.6	14.8	17	17.5	17.7	17.3	17	17.2
Gain by all Beam Tilts Tolerance, dB	±0.4	±0.4	±0.6	±0.3	±0.4	±0.6	±0.7	±0.8
Gain by Beam Tilt, average, dBi	0 ° 14.6 7 ° 14.6 14 ° 14.4	0 ° 15.0 7 ° 14.9 14 ° 14.5	0 ° 16.9 3 ° 17.0 7 ° 16.8	0 ° 17.4 3 ° 17.5 7 ° 17.4	0 ° 17.5 3 ° 17.8 7 ° 17.6			
Beamwidth, Horizontal Tolerance, degrees	±1.7	±1.3	±7.2	±3.1	±6.2	±10	±6.7	±10.5
Beamwidth, Vertical Tolerance, degrees	±0.8	±0.8	±0.2	±0.2	±0.4	±0.4	±0.3	±0.4
USLS, beampeak to 20° above beampeak, dB	18	16	14	15	17	14		
Front-to-Back Total Power at 180° ± 30°, dB	22	25	25	25	24	26	25	24
CPR at Boresight, dB	24	17	16	21	19	15	17	14
CPR at Sector, dB	12	6	11	10	8	8	9	7

Mechanical Specifications

Wind Loading @ Velocity, frontal	278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)
Wind Loading @ Velocity, lateral	230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)
Wind Loading @ Velocity, maximum	537.0 N @ 150 km/h (120.7 lbf @ 150 km/h)
Wind Loading @ Velocity, rear	287.0 N @ 150 km/h (64.5 lbf @ 150 km/h)
Wind Speed, maximum	241 km/h 149.75 mph

Packaging and Weights

Width, packed	1973 mm 77.677 in
Depth, packed	441 mm 17.362 in
Length, packed	337 mm 13.268 in
Weight, gross	35.1 kg 77.382 lb

Regulatory Compliance/Certifications

Agency

Classification

CHINA-ROHS

Above maximum concentration value

Page 4 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

Compliant/Exempted

BSAMNT-3 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 5 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 65° HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	6

Remote Electrical Tilt (RET) Information

RET Interface, quantity2 female 2 maleInput Voltage10-30 VdcInternal Bias TeePort 1 Port 3Internal RETHigh band (1) Low band (1)Power Consumption, idle state, maximum2 W	RET Interface	8-pin DIN Female 8-pin DIN Male
Internal Bias TeePort 1 Port 3Internal RETHigh band (1) Low band (1)	RET Interface, quantity	2 female 2 male
Internal RET High band (1) Low band (1)	Input Voltage	10-30 Vdc
	Internal Bias Tee	Port 1 Port 3
Power Consumption, idle state, maximum 2 W	Internal RET	High band (1) Low band (1)
	Power Consumption, idle state, maximum	2 W
Power Consumption, normal conditions, maximum 13 W	Power Consumption, normal conditions, maximum	13 W

Page 1 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

Protocol

Dimensions

301 mm 11.85 in
180 mm 7.087 in
1828 mm 71.969 in
19.8 kg 43.651 lb

Array Layout

-	Тор	Array R1 Y1
_	_	Y1 Y2
Y1	Y2	
	R1	
Left	Right	51
Bo	ttom	

View from the front of the antenna (Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance

Operating Frequency Band

50 ohm

1695 - 2360 MHz | 698 - 896 MHz

Page 2 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

3GPP/AISG 2.0 (Single RET)

301 mm 11.85 in
180 mm 7.087 in
1828 mm 71.969 in
19.8 kg 43.651 lb

AISG RET UID

ANxxxxxxxxxxxxxxxx1 ANxxxxxxxxxxxxxx2

Conns

Freq (MHz)

RET (SRET)

<u>NHH</u>

Polarization	±45°
Total Input Power, maximum	900 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	14.9	15	17.7	17.9	18.4	18.7
Beamwidth, Horizontal, degrees	65	60	71	69	64	57
Beamwidth, Vertical, degrees	12.4	11.2	5.7	5.2	4.9	4.6
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	0-7
USLS (First Lobe), dB	13	14	18	18	19	18
Front-to-Back Ratio at 180°, dB	30	29	31	30	29	31
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	300	300	300	300	300	300

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain by all Beam Tilts, average, dBi	14.5	14.5	17.3	17.7	18.1	18.5
Gain by all Beam Tilts Tolerance, dB	±0.6	±1.1	±0.4	±0.4	±0.5	±0.3
Gain by Beam Tilt, average, dBi	0 ° 14.4 7 ° 14.6 14 ° 14.3	0 ° 14.7 7 ° 14.7 14 ° 14.1	0 ° 17.2 4 ° 17.3 7 ° 17.3	0 ° 17.6 4 ° 17.7 7 ° 17.7	0 ° 18.0 4 ° 18.2 7 ° 18.1	0 ° 18.3 4 ° 18.5 7 ° 18.6
Beamwidth, Horizontal Tolerance, degrees	±2	±2.1	±3	±4.1	±6.5	±2.9
Beamwidth, Vertical Tolerance, degrees	±0.7	±0.7	±0.3	±0.2	±0.3	±0.2
USLS, beampeak to 20° above beampeak, dB	13	14	16	16	17	15
Front-to-Back Total Power at 180° ± 30°, dB	23	22	27	27	25	25
CPR at Boresight, dB	22	21	23	23	22	19

Page 3 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

COMMSCOPE°

10	7	16	13	11	4	
ations						
, frontal		0.26 m ² 2.79	99 ft²			
, lateral		0.22 m ² 2.368 ft ²				
Wind Loading @ Velocity, frontal 278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)						
Wind Loading @ Velocity, lateral 230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)						
mum		537.0 N @ 150 km/h (120.7 lbf @ 150 km/h)				
		282.0 N @ 150 km/h (63.4 lbf @ 150 km/h)				
		241 km/h 149.75 mph				
	ations , frontal , lateral al	ations , frontal , lateral al	ations 0.26 m² 2.79 , frontal 0.22 m² 2.36 al 278.0 N @ 150 al 230.0 N @ 150 mum 537.0 N @ 150 282.0 N @ 150	ations , frontal 0.26 m² 2.799 ft² , lateral 0.22 m² 2.368 ft² al 278.0 N @ 150 km/h (62.5 lbf @ al 230.0 N @ 150 km/h (51.7 lbf @ mum 537.0 N @ 150 km/h (120.7 lbf 282.0 N @ 150 km/h (63.4 lbf @	ations , frontal 0.26 m² 2.799 ft² 0.22 m² 2.368 ft² al 278.0 N @ 150 km/h (62.5 lbf @ 150 km/h) al 230.0 N @ 150 km/h (51.7 lbf @ 150 km/h) 537.0 N @ 150 km/h (120.7 lbf @ 150 km/h) 282.0 N @ 150 km/h (63.4 lbf @ 150 km/h)	

Packaging and Weights

Width, packed	409 mm 16.102 in
Depth, packed	299 mm 11.772 in
Length, packed	1952 mm 76.85 in
Weight, gross	32.3 kg 71.209 lb

Regulatory Compliance/Certifications

_

Agency	Classification
CHINA-ROHS	Below maximum concentration value
ISO 9001:2015	Designed, manufactured and/or distributed under this quality management system
ROHS	Compliant

Included Products

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 4 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

ATTACHMENT 5

Structure	: 150.0 ft Monopole Tower	
VB Site Name	: Hopewell	
VB Site Number	: US-CT-5018	
Proposed Carrier	: Verizon Wireless	
Carrier Site Name	: South Glastonbury 3 CT	
Carrier Site Number	: 708312	
Site Location	: 63 Woodland St	
	Glastonbury, CT 06073 (Hartford County)
	41.66079166, -72.57409722	
Date	: April 8, 2022	
Max Member Stress Level	: 84.1% (Tower)	
	99.4% (Base Plate - Anchor Bolts)	
	62.6% (Foundation)	
Result	: PASS	HINI OF CONNE

B&P Job No.: 22.03.006.028

Prepared For: Vertical Bridge Engineering, LLC.

4/12/2022 Prepared By: Bennett & Pless, Inc.

Atlanta | Boca Raton | Charlotte | Chattanooga | Nashville | Knoxville | Orlando 750 Park of Commerce Drive | Suite 200 | Boca Raton, FL 33487 www.bennett-pless.com

Table of Contents

Introduction	1
Existing Structural Information	1
Final Proposed Equipment Loading for Verizon Wireless	1
Design Criteria	2
Analysis Results	2
Assumptions	2
Conclusions	3
Standard Conditions	4
Disclaimer of Warranties	4
Calculations	Attached
Collocation Application	Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the loads proposed by Verizon Wireless. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Structural Analysis by Vertical Bridge dated May 20, 2021.
	Structural Analysis by Ehresmann Engineering, Inc., Job No. 102800,
	dated December 17, 2018.
Foundation Information	Structural Analysis by Vertical Bridge dated May 20, 2021.
	Structural Analysis by Ehresmann Engineering, Inc., Job No. 102800,
	dated December 17, 2018.
Geotechnical Information	FDH Velocitel., Project No. 18PGJC1600, dated April 10, 2018.
Existing Equipment Information	Vertical Bridge Collocation Application #: P-019408 dated January 11,
	2022.
Tower Reinforcement Information	Tower has not been previously reinforced.

Final Proposed Equipment Loading for Verizon Wireless

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

			Antenna/Equipment			Coax
Mount (ft).	RAD (ft.)	Qty.	Appurtenance	Appurtenance Type Qt		Size/Type
	I	1	Platform Mount	Mount		
		3	Commscope NHH-65B-R2B	Panel Antenna		
		3	Commscope NHHSS-65B-R2BT4	Panel Antenna		
		3	Samsung MT6407-77A	Panel Antenna		
115.0		3	Samsung RF4439D-25A	RRU	1	1 5/0% TTbid
115.0	115.0	3	Samsung RF4440D-13A	RRU		1 5/8" Hybrid
		3	Samsung MT6407-77A	RRU		
		3	Samsung CBRS RRH -RT4401-48A	RRU		
		3	Commscope BASMNT-SBS-1-2	Other		
		1	Commscope 12 OVP	Surge Suppr.		

Note: All equipment shown in bold is proposed.

Note: All proposed feedlines to be installed on interior of monopole shaft.

Note: All other equipment loading can be found on the tower profile attached.

Design Criteria

The tower was analyzed using tnxTower (Version 8.1.1.0) tower analysis software using the following design criteria.

Building Code	2018 Connecticut State Building Code
TIA/EIA Standard Code	ТІА-222-Н
Basic Wind Speed	125 MPH V _{ult}
Basic Wind Speed w/ Ice	50 MPH/ 1.5 in Ice
Steel Grade	See Tower profile for steel grade
Exposure Category	С
Topographic Category (height)	1 (0 ft)
Risk Category	Π
Ground Elevation	310.0 ft
Ss	0.202
Seismic Design Category	В

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads. The existing foundation, base plate, and anchor bolts were also found to be capable of supporting the proposed equipment loads. A seismic analysis was performed on this tower and was not controlling.

Assumptions

The below assumptions are true, complete and accurate.

- 1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
- 2. Foundations are considered to have been properly designed for the original design loads.
- 3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
- 4. Antenna mount loads have been estimated based on generally accepted industry standards.
- 5. The mounts for the proposed antennas have been analyzed and designed by others.
- 6. See additional assumptions contained in the report attached.
- 7. Tower is within acceptable engineering tolerance at 105%.
- 8. Foundations are within acceptable engineering tolerance at 110%.
- 9. Tower has been analyzed at Risk Category II under the condition that no emergency equipment has been part of any previous/current installation.

Conclusions

The existing tower described above **does have sufficient capacity** to support the proposed loading based on the governing Building Code. The existing tower foundation, baseplate, and anchor bolts **were also found to have sufficient capacity** to support the proposed loading.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 561-288-1187.

Sincerely,

Analysis by:

Michael Hlinka, E.I., M.S. Design Engineer

Reviewed by:

4/12/2022

Thomas F. Ireland, P.E. Principal

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and it components, or relevant information.

- Information from drawings in possession of Bennett & Pless, or generated by field inspections or measurements of the structure.

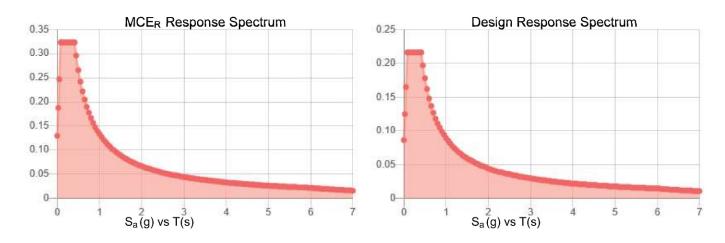
It is the responsibility of the client to ensure that the information provided to Bennett & Pless and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in a uncorroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.

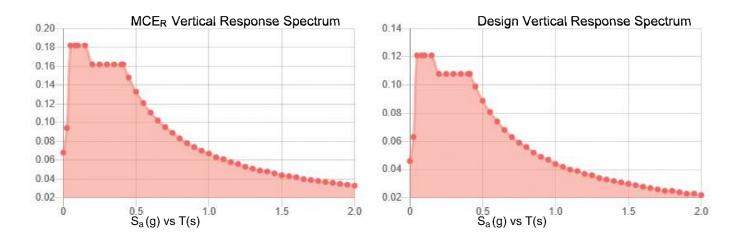
All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with ANSI/TIA/EIA-222-Revision H.

All services are performed, results obtained and recommendations made in accordance with the generally accepted engineering principles and practices. Bennett & Pless is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

Bennett & Pless Inc. makes no warranties, expressed or implied, in connection with this report, and disclaims any liability arising from the ability of the existing structure to support the design loads for which it was originally designed. Bennett & Pless Inc. will not be responsible whatsoever for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Bennett & Pless pursuant to this report will be limited to the total fee received for preparation of this report.


Attachment 1: Calculations



(/	APPEN	DIX N)	MUNIC	IPALIT	Y - SPE	CIFIC ST				ARAMETE	RS	
			<u>~</u>				Wind D	Design F	aramet	ers		
Municipality	Ground Snow Load (psf)	Spe Accele	CE ctral eration s (g)		imate D d Speed (mph)	ds, V _{ult}		ninal De I Speeds (mph)			-Borne Regions ¹	Hurricane-Prone Regions
Munic	Ground S (p	S₅	S1	Risk Cat.I	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV	Risk Cat. II & III except Occup I-2	Risk Cat III Occup I-2 & Risk Cat. IV	Hurrical Reg
East Hampton	30	0.177	0.062	120	130	140	93	101	108			Yes
East Hartford	30	0.180	0.064	115	125	135	89	97	105			Yes
East Haven	30	0.182	0.062	120	130	140	93	101	108		Туре В	Yes
East Lyme	30	0.164	0.059	125	135	145	97	105	112	Туре В	Type A	Yes
Easton	30	0.215	0.066	110	120	130	85	93	101	- 7	.,	Yes
East Windsor	35	0.177	0.064	115	125	135	89	97	105			Yes
Ellington	35	0.176	0.064	115	125	135	89	97	105			Yes
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Туре А	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Туре В	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Type A	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Туре В	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108		Туре В	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108			Yes
Hamden	30	0.185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0.172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0.175	0.065	110	120	125	85	93	97			Yes
Harwinton	35	0.183	0.065	110	120	130	85	93	101			Yes
Hebron	30	0.177	0.063	120	130	140	93	101	108			Yes
Kent	40	0.188	0.065	105	115	120	81	89	93			
Killingly	40	0.171	0.062	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledyard	30	0.163	0.059	125	135	145	97	105	112		Туре А	Yes
Lisbon	30	0.169	0.061	125	135	145	97	105	112		Туре А	Yes
Litchfield	40	0.184	0.065	110	120	125	85	93	97			Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Туре А	Yes
Madison	30	0.173	0.060	120	130	140	93	101	108		Туре В	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105			Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Туре В	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	101			Yes

Site Soil Class: Results:	D - Default (s	ee Section 11.4.3)		
S _s :	0.202	S _{D1} :	0.089	
S ₁ :	0.056	Τ _L :	6	
F _a :	1.6	PGA :	0.111	
F _v :	2.4	PGA M :	0.175	
S _{MS} :	0.323	F _{PGA} :	1.578	
S _{M1} :	0.133	l _e :	1	
S _{DS} :	0.216	C, :	0.704	
Seismic Design Category	В			

Data Accessed: Date Source: Wed May 19 2021 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

.....

Results:

Ice Thickness:	1.50 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Wed May 19 2021

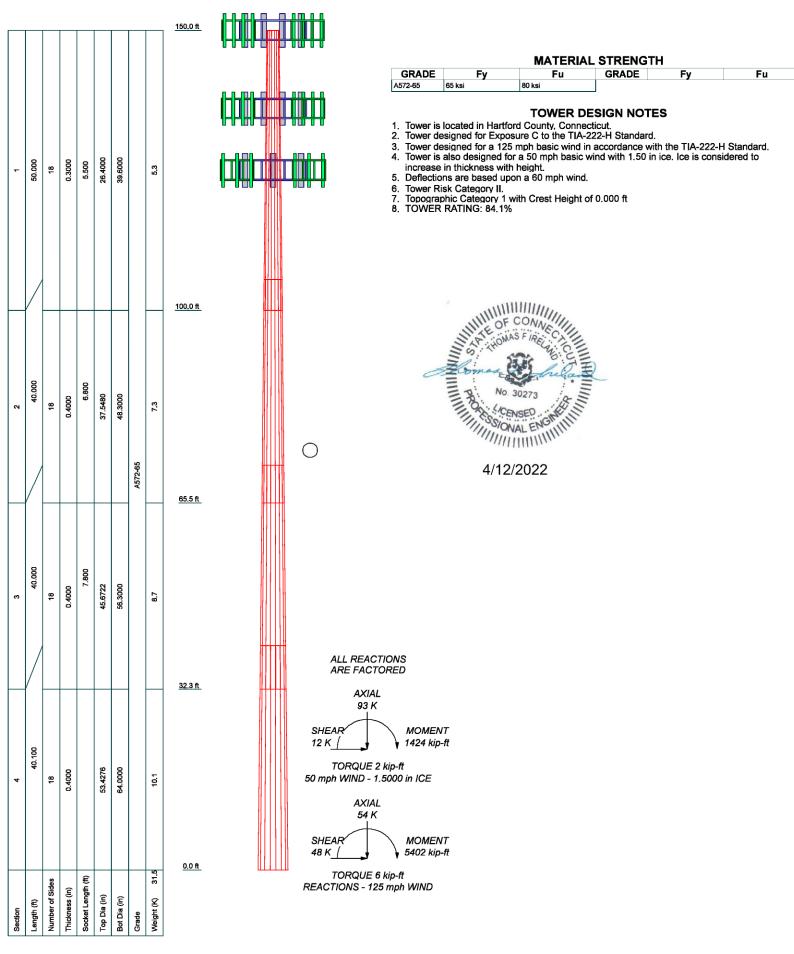
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

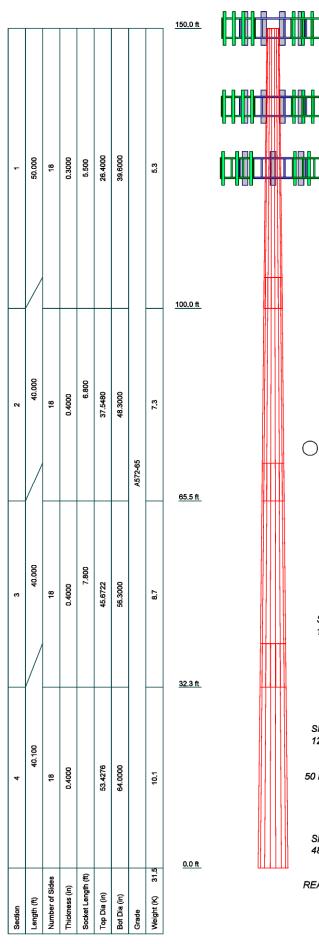
The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.



 \bigcirc

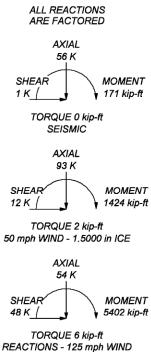

NH23 2KR001146-1_B8A-B2A w/ 150 HPA505-BULA w/Mount Pipe (ATT-E) 136 NH23 2KR001146-1_B8A-B2A w/ 150 (H3 1x13.463.364 Bab) (ATT-E) 136 NH23 2KR001146-1_B8A-B2A w/ 150 (H3 1x13.463.364 Bab) (ATT-E) 136 NH23 2KR001146-1_B8A-B2A w/ 150 (H2 1x13.463.364 Bab) (ATT-E) 136 NH24 2KR001146-1_B8A-B2A w/ 150 (H2 7TT) Pipe Mount (Dash Wireless - 125 NH24 2KR001146-1_B8A-B2A w/ 150 (H2 7TT) Pipe Mount (Dash Wireless - 125 NH24 2KR01142 150 (H2 Remaining Reserved Rights (Dash 125 125 NH24 2KR0111112 150 173 Remaining Reserved Rights (Dash 125 125 NH24 11112 150 173 Remaining Reserved Rights (Dash 125 125 NH24 11112 150 173 Remaining Reserved Rights (Dash 125 125 NH25 11184 150 (N000F RO665-20 VGF w/ Mount Pipe 125 125 NH25 11184 150 (N00F RO665-20 VGF w/ Mount Pipe 125 125 NH25 1184 150 (N00F RO665-20 VGF w/ Mount Pipe 125 125 NH25 1184 150 (N00F RO665-20 VGF	TYPE	ELEVATION	TYPE	ELEVATION
Mark Pipe 150 4/7 8 P1 4 (RUS 150 Mark Pipe 4/7 8 P1 4 (RUS 150 178 Mark Pipe 150 4/7 8 P1 4 (RUS 150 Mark Pipe 502 (RUS) (McL-LBBGA-B2 AW 150 522 (STD Pipe Mount (Dah Wireless - 125 Mark Pipe 502 (RUS) (McL-B2 AD W) 150 522 (STD Pipe Mount (Dah Wireless - 125 125 NUR-6515DS-A1M 150 522 (STD Pipe Mount (Dah Wireless - P) 125 125 APX16DWV-6EXAD W 150 173 Remaining Reserved Rights (Dah P) 125 125 APX16DWV-16DWV-SE-EX2D W 150 173 Remaining Reserved Rights (Dah P) 125 125 APX16DWV-16DWV-SE-EX2D W 150 173 Remaining Reserved Rights (Dah P) 125 125 APX16DWV-16DWV-SE-EX2D W 150 173 Remaining Reserved Rights (Dah P) 125 125 APX16DWV-16DWV-SE-EX2D W 150 173 Remaining Reserved Rights (Dah P) 125 125 RRUS 11 B12 150 173 Remaining Reserved Rights (Dah Wireless - P) 125 125 RRUS 11 B4 150 (MXD6FR0665-20, U/GF W/	AIR32 KRD901146-1 B66A-B2A w/		HPA65R-BU8A w/Mount Pipe (ATT-E)	136
JHE22 (F2001146-1_BB6A-B2A w/ Mount Pipe Mount Pipe 150 118 1x13.4x8.3x84.3x84.3x84.3x84.3x84.3x84.3x84	AIR32 KRD901146-1_B66A-B2A w/	150	(18.1x13.4x8.3x59.4lbs) (ATT-E)	
LNX-6515D-A1M 150 P) CD	AIR32 KRD901146-1_B66A-B2A w/	150		136
LBC-6315DS-A1M 150 PCF 'STD Pipe Mount (Dish Wireless - P) 125 LAX-6315DS-A1M 150 PCF 'STD Pipe Mount (Dish Wireless - P) 125 Mount Pipe 150 PSF''STD Pipe Mount (Dish Wireless - P) 125 Mount Pipe 150 137 Remaining Reserved Rights (Dish Wireless - R) 125 Mount Pipe 150 137 Remaining Reserved Rights (Dish Wireless - R) 125 RRUS 11 B12 150 Wireless - R) 125 RRUS 11 B4 150 Mont Pipe 125 RRUS 11 B4 150 More Reserved Rights (Dish Wireless - P) 125 RRUS 11 B4 150 Most Proceeds 20, VOF w/ Mount Pipe 125 BR-1300 150 Most Proceeds 20, VOF w/ Mount Pipe 125 BR-1300 150 Most 15, 750, 0067/3bb) (Dish 126 BR-1300 150 (Dish Wireless - P) 125 BR-1470 150 (2) TA00225-B005 126 BR-1300 150 (2) TA00225-B005 126 BR-1470 150 (2) TA00225-B005 126 <	Mount Pipe	150		125
Landboll Dock Min Ibb Dock STD Pipe Mount (Dish Wireless - P) 125 Mount Pipe 150 P) 137 Remaining Reserved Rights (Dish Wireless - R) 125 Mount Pipe 150 137 Remaining Reserved Rights (Dish Wireless - R) 125 Mount Pipe 150 137 Remaining Reserved Rights (Dish Wireless - R) 125 RRUS 11 B12 150 136 125 RRUS 11 B4 150 Wireless - R) 125 RRUS 11 B4 150 MX00FR065-20, V0F w/ Mount Pipe 125 RRUS 11 B4 150 MX00FR065-20, V0F w/ Mount Pipe 125 RRUS 11 B4 150 MX00FR065-20, V0F w/ Mount Pipe 125 SM 602-1 150 MX00FR065-20, V0F w/ Mount Pipe 125 SM 602-1 150 MX00FR065-20, V0F w/ Mount Pipe 125 SM 602-1 150 MX00FR065-20, V0F w/ Mount Pipe 125 SM 602-1 150 (14, 98/15, 75x0, 06x73bb) (Dish Wireless - P) 125 SM 602-1 150 (2) 7X06025-B605 (14, 98/15, 75x0, 06x73bb) (Dish Wireless - P) <	LNX-6515DS-A1M	150	8'x2" STD Pipe Mount (Dish Wireless -	125
Mount Pipe P Mount Pipe 150 1/3 Remaining Reserved Rights (Dish Weeless - R) 125 Mount Pipe 150 1/3 Remaining Reserved Rights (Dish Weeless - R) 125 RRUS 11 B12 150 Weeless - R) 125 RRUS 11 B12 150 Weeless - R) 125 RRUS 11 B12 150 Weeless - P) 125 RRUS 11 B4 150 Woeless - P) 125 RRUS 11 B4 150 MORPROBES-20, VOF w/ Mount Pipe 125 RRUS 11 B4 150 MORPROBES-20, VOF w/ Mount Pipe 125 RRUS 11 B4 150 MORPROBES-20, VOF w/ Mount Pipe 125 SM 602-1 150 (Dish Wrieless - P) 125 SM 602-1 150 (2) TA08025-B806 (14 Senta 7:53, 08/758b) (Dish 125 Vireless - P) (2) TA08025-B805 (14 Senta 7:53, 08/758b) (Dish 125 Vireless - P) (2) TA08025-B805 (14 Senta 7:53, 08/758b) (Dish 125 Vireless - P) (2) TA08025-B805 (14 Senta 7:53, 08/758b) (Dish 125 Vi			8'x2" STD Pipe Mount (Dish Wireless -	125
Nonkin Yuga 113 <th< td=""><td>Mount Pipe APX16DWV-16DWV-S-E-A20 w/</td><td>150</td><td>1/3 Remaining Reserved Rights (Dish</td><td>125</td></th<>	Mount Pipe APX16DWV-16DWV-S-E-A20 w/	150	1/3 Remaining Reserved Rights (Dish	125
Mount Pipe Wrieless - R) RRUS 11 B12 150 Virviews - R) 125 RRUS 11 B12 150 Wrieless - R) 125 RRUS 11 B4 150 Wrieless - P) 125 RRUS 11 B4 150 (Dah Wrieless - P) 125 RRUS 11 B4 150 (Dah Wrieless - P) 125 RRUS 11 B4 150 (Dah Wrieless - P) 125 SM 602-1 150 (Dah Wrieless - P) 125 SM 602-1 150 (Z) 7408225-8805 (Dash Wrieless - P) Virvieless - P) 125 126 126 173 Remaining Reserved Rights (TMO 150 (Z) 7408225-8805 125 173 Remaining Reserved Rights (TMO 150 (Z) 7408225-8805 125 173 Remaining Reserved Rights (TMO 150 (Z) 7408225-8805 125 174 Remaining Reserved Rights (TMO 150 (Z) 7408225-8805 125 173 Remaining Reserved Rights (TMO 150 (Z) 7408225-8805 125 174 Remaining Reserved Rights (TMO 150 (Z) 7408225-8805	Mount Pipe	150	1/3 Remaining Reserved Rights (Dish	125
Baseline Description Wreless - R) Control RRUS 11 B12 150 Wreless - P) 125 RRUS 11 B4 150 Wreless - P) 125 RRUS 11 B4 150 (Dish Wreless - P) 125 RRUS 11 B4 150 (Dish Wreless - P) 125 RRUS 11 B4 150 (Dish Wreless - P) 125 SM 602-1 150 (Dish Wreless - P) 125 SM 602-1 150 (Dish Wreless - P) 125 Vir Remaining Reserved Rights (TMO 150 (14.96xt 5.7x6.96x750bs) (Dish Wreless - P) Vir Remaining Reserved Rights (TMO 150 (14.96xt 5.7x6.96x750bs) (Dish Wreless - P) Vir Remaining Reserved Rights (TMO 150 (14.96xt 5.7x6.96x750bs) (Dish Wreless - P) R. Rut 13 (Dia Scielas - P) 125 Vir Remaining Reserved Rights (TMO 150 (14.96xt 5.7x6.96x750bs) (Dish Wreless - P) R. Rut 13 (Dia Scielas - P) 125 R. Rut 13 (Dia Scielas - P) 125 R. Rut 143 E30 (16.5x13.4x5.9x460bs) 136 Commacope NH1455B-R28 (Verizon)	Mount Pipe			195
RRUS 11 B12 150 Platfrom wiHandrails (LP 716) (Dish 125 RRUS 11 B4 150 MX08FRC0665-20, V0F w/ Mount Pipe 125 RRUS 11 B4 150 (Dish Wireless - P) 125 RRUS 11 B4 150 (Dish Wireless - P) 125 BR-1300 150 (Dish Wireless - P) 125 SM 602-1 150 MX08FRC065-20, V0F w/ Mount Pipe 125 SM 602-1 150 (MX08FRC065-20, V0F w/ Mount Pipe 125 SM 602-1 150 (Dish Wireless - P) 125 SM 602-1 150 (Z) TA08025-B805 125 TR Ramaining Reserved Rights (TMO 150 (Z) TA08025-B805 125 TR Ramaining Reserved Rights (TMO 150 (Z) TA08025-B805 125 TR Ramaining Reserved Rights (TMO 150 (Z) TA08025-B805 125 TR Ramaining Reserved Rights (TMO 150 (Z) TA08025-B805 125 TR Ramaining Reserved Rights (TMO 150 (Z) TA08025-B805 125 TR Ramaining Reserved Rights (TMO 150 (Z) TA08025-B805 125			Wireless - R)	
RRUS 11 B4 150 MX08FRC085-20_V0F w/ Mount Pipe 125 RRUS 11 B4 150 (Dish Wireless - P) 125 BIR-1300 150 (Dish Wireless - P) 125 SM 602-1 150 (14 sext 5.7ss.0s/37bs) (Dish Wireless - P) 125 SM 602-1 150 (14 sext 5.7ss.0s/37bs) (Dish Wireless - P) 126 Vireless - P) 126 (14 sext 5.7ss.0s/37bs) (Dish Wireless - P) 126 Vireless - P) 136 P) 125 125 Vireless - P) 138 Commscope NHH-65B-R28 (Verizon) 115 CARMID 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHHSS-65B-R28T4 115 Commscope NHHSS-65B-R28T4 115 Commscope NHHSS-65B-R28T4 115 Commscope NHHSS-65B-R28T4 115 Commscope NHHSS-65B-R28T4 115 Commscope NHHSS-65B-R28T4 115 Samsung MF4407-77A (Ver				125
RRUS 11 B4 150 (Dish Wireless - P) MX08FR0665-20, V0F w/ Mount Pipe 125 BR-1300 150 (Dish Wireless - P) SM 602-1 150 (2) TA08025-8805 SM 602-1 150 (2) TA08025-8805 SM 70 150 (2) TA08025-8050 SM 700 (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) SZ 700 (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) CATT-E) 136 Commscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 <td< td=""><td></td><td></td><td>,</td><td>125</td></td<>			,	125
IBR-1300 150 IDent Writeless - P) 123 SM 6122-1 150 MX08FRC665-20_VDF w/ Mount Pipe 125 SM 6122-1 150 (Dish Writeless - P) 125 SM 602-1 150 (Dish Writeless - P) 125 SM 602-1 150 (2) TA08025-B805 125 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 125 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 125 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 125 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 125 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 125 (R) AttR 14 RPUS 136 Commscope NH-65B-R2B (Verizon) 115 E2-700 (ATT-E) 138 Commscope NH-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NH-65B-R2B (Verizon) 115 Carmacope NH-65B-R2B (Verizon) 115 Commscope NH-65B-R2B (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs)	RRUS 11 B4		(Dish Wireless - P)	
SM 602-1 150 MX08FRO865-20, V0F w/ Mount Pipe 125 SM 602-1 150 (Dish Wireless - P) 125 SM 602-1 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 125 IX Remaining Reserved Rights (TMO 150 (2) TA08025-B605 115 IX TA15 IX Remaining Reserved Rights (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) 115				125
SM 602-1 150 (Dih Wireless - P) SM 602-1 150 (2) TA08025-8805 125 SM 602-1 150 (2) TA08025-8805 125 I/3 Remaining Reserved Rights (TMO 150 (2) TA08025-8805 125 I/3 Remaining Reserved Rights (TMO 150 (2) TA08025-8805 125 I/3 Remaining Reserved Rights (TMO 150 (2) TA08025-8805 125 I/3 Remaining Reserved Rights (TMO 150 (2) TA08025-8805 125 I/3 Remaining Reserved Rights (TMO 150 (2) TA08025-8805 125 I/4 H RRUS 136 (2) TA08025-8805 125 R010C-9161-PF-48 (Dish Wireless - P) 125 125 E2-700 (ATT-E) 136 Commacope NHH-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.3x46lbs) 136 Commacope NHH-55B-R2BT4 115 Commacope NHH-55B-85B-R2BT4 115 Commacope NHH-55B-85B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Commacope NHH-55B-85B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) </td <td></td> <td></td> <td>(</td> <td>425</td>			(425
SM 602-1 150 (2) TA08022-B605 (14.9&K15.7&00.0%75/bb) (Dish Wireless - P) 125 1/3 Remaining Reserved Rights (TMO R) 150 (2) TA08022-B605 (14.9&K15.7&00.0%75/bb) (Dish Wireless - P) 126 1/3 Remaining Reserved Rights (TMO R) 150 (2) TA08022-B605 (14.9&K15.7&00.0%75/bb) (Dish Wireless - P) 126 1/3 Remaining Reserved Rights (TMO R) 150 (2) TA08022-B605 (14.9&K15.7&00.0%75/bb) (Dish Wireless - P) 125 27.700 (ATT-E) 136 (2) TA08022-B605 (14.9&K15.7&00.0%75/bb) (Dish Wireless - P) 115 22.700 (ATT-E) 136 (2) TA08022-B605 (14.9&K15.7&00.0%75/bb) (Dish Wireless - P) 115 22.700 (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) 115 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) 115 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) (ATT-E) 136 Commscope NHH-65B-R2BT4 (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) (ATT-E) 136 Commscope NHH-526B-R2BT4 (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) (ATT-E) 136 Samsung RF4439D-25A (Ve			Dish Wireless - P)	125
1/3 Remaining Reserved Rights (TMO 150 (14,96x15,75x3,06x750b3) (Dish Wireless - P) 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 (14,96x1750b3) (Dish Wireless - P) 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 (14,96x1750b3) (Dish Wireless - P) 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 (14,96x1750b3) (Dish Wireless - P) 1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B805 (14,96x1750b3) (Dish Wireless - P) 1/4 (96x15,75x9,06x750b3) (Dish Wireless - P) 125 2.700 (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) E2-700 (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) Radio 4415 B30 (16,5x13.4x5,9x460b3) 136 Commscope NHH-65B-R2B (Verizon) Radio 4445 (15,0x13.2x9,3x74lb3) 136 Commscope NHH-85B-R2B T4 (ATT-E) 136 Commscope NHH-85B-R2BT4 115 Radio 4449 (15,0x13.2x9,3x74lb3) 136 Commscope NHH-85B-R2BT4 115 (ATT-E) 136 Commscope NHH-85B-R2BT4 115 Radio 4449 (15,0x13.2x9,3x74lb3) 136 Commscope NHH-85B-R2BT4 115 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 Radio				125
1/3 Remaining Reserved Rights (TMO 150 (2) TA08025-B605 (14,96,415,75x9,06x78(bs) (Dish Wireless - P) 125 13 Remaining Reserved Rights (TMO 150 (2) TA08025-B605 (14,96,415,75x9,06x78(bs) (Dish Wireless - P) 125 1478 B14 RRUS 136 RDIDC-9181-PF-48 (Dish Wireless - P) 125 E2-700 (ATT-E) 136 Commacope NHH-65B-R2B (Verizon) 115 E2-700 (ATT-E) 136 Commacope NHH-65B-R2B (Verizon) 115 Commacope NHH-65B-R2B (Verizon) 115 Commacope NHH-65B-R2B (Verizon) 115 Carmacope NHH-65B-R2B (Verizon) 115 Commacope NHHSS-65B-R2BT4 115 Carmacope NHHSS-65B-R2BT4 115 Commacope NHHSS-65B-R2BT4 115 Carmacope NHHSS-65B-R2BT4 115 Commacope NHHSS-65B-R2BT4 115 Carmacope NHHSS-65B-R2BT4 115 115 Commacope NHHSS-65B-R2BT4 115 Carmacope NHHSS-65B-R2BT4 115 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115	1/3 Remaining Reserved Rights (TMO		Wireless - P)	
R) (2) IA08022-9805 T25 4478 B14 RRUS 136 (14,96515,753,0687/51bs) (Dish Wireless - P) 125 E2-700 (ATT-E) 136 P) 115 125 E2-700 (ATT-E) 136 P) 115 115 E2-700 (ATT-E) 136 Commscope NH1+65B-R2B (Verizon) 115 E2-700 (ATT-E) 136 Commscope NH1+65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NH1+SS-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NH1+SS-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NH1+SS-65B-R2B T4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Commscope NH1+SS-65B-R2B T4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 843 (515.13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 843 (515.13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizo	1/3 Remaining Reserved Rights (TMO - R)		(14.96x15.75x9.06x75lbs) (Dish	125
(18. 1x13.4x8.3x59.4lbs) (ATT-E) Total E2-700 (ATT-E) 136 P) E2-700 (ATT-E) 136 Commscope NHI+65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHI+65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHI+65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHI+SS-65B-R2BT4 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHI+SS-65B-R2BT4 115 Radio 4441 (15.0x13.2x9.3x74lbs) 136 Commscope NHI+SS-65B-R2BT4 115 (ATT-E) Commscope NHI+SS-65B-R2BT4 115 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Commscope NHI+SS-65B-R2BT4 115 (ATT-E) Samsung MT6407-77A (Verizon) 115 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115	- R)		(14,96x15,75x9,06x75lbs) (Dish	125
E2-700 (ATT-E) 136 P) E2-700 (ATT-E) 136 Commscope NHH-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x468bs) 136 Commscope NHH-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x468bs) 136 Commscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Commscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung RF4439D-25A (Verizon) 115 B843 (15x13.2x11.1x75bs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 Dinknown DC (ATT-E) 136 <td< td=""><td>4478 B14 RRUS (18.1x13.4x8.3x59.4lbs) (ATT-E)</td><td></td><td>Wireless - P)</td><td>125</td></td<>	4478 B14 RRUS (18.1x13.4x8.3x59.4lbs) (ATT-E)		Wireless - P)	125
E2-700 (ATT-E) 136 Commiscope NHH-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHH-65B-R2B (Verizon) 115 Carmscope NHH-65B-R2B (Verizon) 115 Commscope NHH-65B-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHHSS-65B-R2BT4 115 (ATT-E) Commscope NHHSS-65B-R2BT4 115 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 (Verizon) 115 CATT-E) Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 MATT-E) I36 Samsung RF443D-25A (Verizon) 115 B843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF443D-25A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF444DD-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF444DD-13A (Verizon) 115	E2-700 (ATT-E)			
Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHH-SSE-R2B (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHH-SSE-R2B T4 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHHSS-65B-R2BT4 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Commscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 KATT-E) 136 Samsung RF4439D-25A (Verizon) 115 B843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E)			Commscope NHH-65B-R2B (Verizon)	115
CATT-E) Commiscope NHHSS-65B-R2BT4 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commiscope NHHSS-65B-R2BT4 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 Commiscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Commiscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Commiscope NHHSS-65B-R2BT4 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 Unknown DC (ATT-E) 136<	. ,			
Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 (Verizon) Commscope NHHSS-65B-R2BT4 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 (Verizon) 115 Radio 4415 B30 (16.5x13.4x5.9x46lbs) 136 (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4440D-13A (Verizon) 115 B843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115	(ATT-E)			
Radio 4415 B30 (16.5x13.4x5.9x468bs) 136 (Verizon) Commscope NHHSS-65B-R2BT4 (Varizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 (Verizon) Radio 4449 (15.0x13.2x9.3x74bs) 136 (Verizon) Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung RF4439D-25A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74bs) 136 Samsung RF4439D-25A (Verizon) 115 Samsung RF4439D-25A (Verizon) 115 115 115 B843 (15x13.2x11.1x75bs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon)		136	(Verizon)	
Radio 4449 (15.0x13.2x9.3x74lbs) 136 (Verizon) Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope BSAMNT-SBS-1-2 115 SM 602-1 (ATT-E) 136		136	(Verizon)	
Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 B843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 B843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Comms		136	(Verizon)	
CATT-E) Samsung MT6407-77A (Verizon) 115 Radio 4449 (15.0x13.2x9.3x74lbs) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 01xhnown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope BSAMNT-SBS-1-2 115 R) <td></td> <td>136</td> <td>- , ,</td> <td></td>		136	- , ,	
Nature Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 9843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 10rknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope BSAMNT-SBS-1-2 115 // 3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115 // 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115				
N. 1.9 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope BSAMNT-SBS-1-2 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115		136		
8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4439D-25A (Verizon) 115 8843 (15x13.2x11.1x75lbs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 SM 602 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope BSAMNT-SBS-1-2 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A </td <td></td> <td>136</td> <td>Samsung RF4439D-25A (Verizon)</td> <td>115</td>		136	Samsung RF4439D-25A (Verizon)	115
B843 (15x13.2x11.1x75ibs) (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Samsung CBRS RRH RT4401-48A 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A 115 (2) TPA65R-BU8D w/ Mount Pipe	, ,, ,	136	Samsung RF4439D-25A (Verizon)	115
Durknown DC (ATT-E) 136 Samsung RF4440D-13A (Verizon) 115 Unknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 (2) TPA65R-BUBD w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (Verizon) 115 (2) TPA65R-BUBD w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (115 115 <td></td> <td>136</td> <td></td> <td></td>		136		
Ontknown DC (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (115 115	Unknown DC (ATT-E)	136		
SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Samsung CBRS RRH RT4401-48A 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A 115	. ,	136		
SM 602-1 (ATT-E) 136 Samsung MT6407-77A (Verizon) 115 SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Samsung CBRS RRH RT4401-48A (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (Verizon) 115	· · ·		¥	
SM 602-1 (ATT-E) 136 Commscope OVP12 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (115 115				
Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (115 115				
R) (Verizon) 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe (ATT-E) 136 Samsung CBRS RRH RT4401-48A (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A (Verizon) 115			Commscope BSAMNT-SBS-1-2	
1/3 Remaining Reserved Rights (ATT - R) 136 Commscope BSAMNT-SBS-1-2 (Verizon) 115 (2) TPA65R-BU8D w/ Mount Pipe (ATT-E) 136 Samsung CBRS RRH RT4401-48A 115 (2) TPA65R-BU8D w/ Mount Pipe (ATT-E) 136 Samsung CBRS RRH RT4401-48A 115	R) 1/3 Remaining Reserved Rights (ATT -	136	Commscope BSAMNT-SBS-1-2	115
Samsung CBRS RRH RT4401-48A 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A 115 (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A 115	1/3 Remaining Reserved Rights (ATT -	136	Commscope BSAMNT-SBS-1-2	115
(ATT-E) (Verizon) (2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A 115	R)		Samsung CBRS RRH RT4401-48A	115
	(ATT-E)		Samsung CBRS RRH RT4401-48A	115
(2) TPA65R-BU8D w/ Mount Pipe 136 Samsung CBRS RRH RT4401-48A 115	. ,	136	Samsung CBRS RRH RT4401-48A	115
(ATT-E) (Verizon) HPA65R-BUBA w/Mount Pipe (ATT-E) 136 Platform w/ Handrails (Verizon) 115	(ATT-E)		· · ·	115

MATERIAL STRENGTH								
GRADE	Fy	Fu	GRADE	Fy	Fu			
A572-65	65 ksi	80 ksi						

	Bennett & Pless	^{Job:} US-CT-5018		
		Project: Monopole Structural A	Analysis	
	Boca Raton, FL 33487	Client: Vertical Bridge	^{Drawn by:} gtariq	App'd:
Experience Structural Expertise		^{Code:} TIA-222-H	Date: 04/08/22	Scale: NTS
	FAX:	Path: ziteretrend/0222.0100.fteeli2.0100eee.valuetreeek2.0100.02.0100.02.000	- 1. 1911 Hannard Manuari Hizi Manadala - Copyright & C1 Mith Habaral SA (1912) M	Dwg No. E-1

	Bennett & Pless	^{Job:} US-CT-5018		
		Project: Monopole Structural	Analysis	
	Boca Raton, FL 33487	Client: Vertical Bridge	Drawn by: gtariq	App'd:
Experience Structural Expertise		^{Code:} TIA-222-H	Date: 04/08/22	Scale: NTS
-+	FAX:	Path:	CT-2016 Hanneed Avenues (1920 Horst dat, Conviction CT-2016 Hanneed, SA, DeC122 A	Dwg No. E-1

	MATERIAL STRENGTH									
G	GRADE	Fy	Fu	GRADE	Fy	Fu				
A57	72-65	65 ksi	80 ksi							


TOWER DESIGN NOTES

MATERIAL OTRENOTU

- Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- - Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to 3. 4.
 - increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.000 ft
 Seismic calculations are in accordance with TIA-222-H.
- 9. Seismic loads do not control over wind loads.
- 10. TOWER RATING: 84.1%

	Bennett & Pless	^{Job:} US-CT-5018		
		Project: Monopole Structural Anal	ysis	
	Boca Raton, FL 33487	Client: Vertical Bridge	Drawn by: gtariq	App'd:
Experience Structural Expertise	D i	^{Code:} TIA-222-H	Date: 04/08/22	Scale: NTS
	FAX:	Path:	1. US C1 Statement Norman 121 Marsain - Cardonials C1 Statement, SA 14822 Norman	Dwg No. E-1

Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

Job		Page
	US-CT-5018	1 of 16
Project		Date
	Monopole Structural Analysis	16:51:39 04/08/22
Client	Vertical Bridge	Designed by gtariq

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Hartford County, Connecticut.

Tower base elevation above sea level: 310.000 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.000 ft. Nominal ice thickness of 1.5000 in.

Ice thickness is considered to increase with height.

Ice density of 56.000 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50.000 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- ✓ Use Code Stress Ratios
- V Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- Include Bolts In Member Capacity
- $\sqrt{\text{Leg Bolts Are At Top Of Section}}$
- ✓ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
- √ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- ✓ Assume Rigid Index Plate
- $\sqrt{}$ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- ✓ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- $\sqrt{}$ Project Wind Area of Appurt.
- ✓ Autocalc Torque Arm Areas
- Add IBC .6D+W Combination √ Sort Capacity Reports By Component
- $\sqrt{\frac{1}{1}}$ Sort Capacity Reports By Component $\sqrt{\frac{1}{1}}$ Triangulate Diamond Inner Bracing
- Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules

- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
- ✓ All Leg Panels Have Same Allowable Offset Girt At Foundation
- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Anna Tanu an	Job		Page
tnxTower		US-CT-5018	2 of 16
Bennett & Pless	Project		Date
750 Park Commerce Dr #200		Monopole Structural Analysis	16:51:39 04/08/22
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	150.000-100.00	50.000	5.500	18	26.4000	39.6000	0.3000	1.0000	A572-65
	0								(65 ksi)
L2	100.000-65.500	40.000	6.800	18	37.5480	48.3000	0.4000	1.5000	A572-65
									(65 ksi)
L3	65.500-32.300	40.000	7.800	18	45.6722	56.3000	0.4000	1.8000	A572-65
									(65 ksi)
L4	32.300-0.000	40.100		18	53.4276	64.0000	0.4000	1.8000	A572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	26.7672	24.8524	2138.8836	9.2655	13.4112	159.4849	4280.5816	12.4286	4.1888	13.963
	40.1708	37.4215	7302.0244	13.9515	20.1168	362.9814	14613.6569	18.7143	6.5120	21.707
L2	39.5698	47.1631	8222.6286	13.1875	19.0744	431.0823	16456.0768	23.5860	5.9396	14.849
	48.9865	60.8138	17628.3191	17.0045	24.5364	718.4558	35279.8341	30.4127	7.8320	19.58
L3	48.1435	57.4775	14883.2580	16.0716	23.2015	641.4794	29786.0998	28.7442	7.2639	18.16
	57.1006	70.9706	28018.1714	19.8445	28.6004	979.6426	56073.2098	35.4921	9.1344	22.836
L4	56.2721	67.3238	23917.1577	18.8248	27.1412	881.2120	47865.7861	33.6683	8.6289	21.572
	64.9194	80.7466	41264.4167	22.5780	32.5120	1269.2057	82583.1303	40.3810	10.4896	26.224

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in					in	in	in
L1				1	1	1			
150.000-100.0									
00									
L2				1	1	1			
100.000-65.50									
0									
L3				1	1	1			
65.500-32.300									
L4				1	1	1			
32.300-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	Number Per Row			Perimeter	Weight
	Leg	Shield	Torque Calculation	21	ft	rumber	1 67 160	in	in	in	klf
***			Calculation								

Feed Line/Linear Appurtenances - Entered As Area

tnxTower	Job	US-CT-5018	Page
ina i ower		3 of 16	
Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
	Client	Vertical Bridge	Designed by gtariq

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement ft	Total Number		$C_A A_A$ ft^2/ft	Weight klf
	Leg		Calculation		<i>Ji</i>			<i>Jt / Jt</i>	nıj

1.6" Hybrid	С	No	No	Inside Pole	125.000 - 0.000	1	No Ice	0.000	0.000
(Dish - P)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000
*** 5/8" DC	С	No	Ne	Inside Pole	136.000 - 0.000	6	No Ice	0.000	0.000
	C	NO	No	Inside Pole	136.000 - 0.000	6	No Ice 1/2" Ice	0.000	0.000
(ATT-E)							1/2" Ice	0.000	0.000
							2" Ice	0.000	0.000
3/8" Fiber Cables	С	No	No	Inside Pole	136.000 - 0.000	2	No Ice	0.000	0.000
(ATT-E)	C	INU	NO	inside role	150.000 - 0.000	2	1/2" Ice	0.000	0.001
(ATT-L)							1" Ice	0.000	0.001
							2" Ice	0.000	0.001
***							2 100	0.000	0.001
6X12 Hybrid	С	No	No	Inside Pole	150.000 - 0.000	3	No Ice	0.000	0.000
(TMO-E)							1/2" Ice	0.000	0.000
							1" Ice	0.000	0.000
							2" Ice	0.000	0.000

1 5/8 Hybrid Flex	С	No	No	Inside Pole	115.000 - 0.000	1	No Ice	0.000	0.001
(1.98" 1.3lbs)							1/2" Ice	0.000	0.001
(Verizon)							1" Ice	0.000	0.001
							2" Ice	0.000	0.001

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft ²	ft^2	ft^2	Κ
L1	150.000-100.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.174
L2	100.000-65.500	Λ	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.190
L3	65.500-32.300	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.183
L4	32.300-0.000	А	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.178

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	_ft ²	ft^2	_ft ²	K
L1	150.000-100.000	А	1.712	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000

Anna Tanana an	Job		Page
tnxTower		4 of 16	
Bennett & Pless 750 Park Commerce Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
		С		0.000	0.000	0.000	0.000	0.174
L2	100.000-65.500	Α	1.644	0.000	0.000	0.000	0.000	0.000
		в		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.190
L3	65.500-32.300	А	1.560	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.183
L4	32.300-0.000	А	1.397	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.178

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	150.000-100.000	0.0000	0.0000	0.0000	0.0000
L2	100.000-65.500	0.0000	0.0000	0.0000	0.0000
L3	65.500-32.300	0.0000	0.0000	0.0000	0.0000
L4	32.300-0.000	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft ft	o	ft		ft²	ft ²	K

Platfrom w/Handrails (LP	Α	None		0.0000	125.000	No Ice	26.800	26.800	1.509
716)						1/2" Ice	32.200	32.200	1.811
(Dish Wireless - P)						1" Ice	37.600	37.600	2.113
						2" Ice	48.400	48.400	2.717
MX08FRO665-20_V0F w/	Α	From Leg	3.000	0.0000	125.000	No Ice	12.964	7.767	0.083
Mount Pipe			0.000			1/2" Ice	13.668	9.053	0.178
(Dish Wireless - P)			0.000			1" Ice	14.340	10.191	0.282
						2" Ice	15.618	12.139	0.519
MX08FRO665-20_V0F w/	в	From Leg	3.000	0.0000	125.000	No Ice	12.964	7.767	0.083
Mount Pipe			0.000			1/2" Ice	13.668	9.053	0.178
(Dish Wireless - P)			0.000			1" Ice	14.340	10.191	0.282
						2" Ice	15.618	12.139	0.519
MX08FRO665-20_V0F w/	С	From Leg	3.000	0.0000	125.000	No Ice	12.964	7.767	0.083
Mount Pipe			0.000			1/2" Ice	13.668	9.053	0.178
(Dish Wireless - P)			0.000			1" Ice	14.340	10.191	0.282
						2" Ice	15.618	12.139	0.519
(2) TA08025-B605	Α	From Leg	3.000	0.0000	125.000	No Ice	1.964	1.129	0.075
(14.96x15.75x9.06x75lbs)		-	0.000			1/2" Ice	2.138	1.267	0.093

tnx

Benn 750 Park C Boca R Phone:

Town	Job	Page
xTower	US-CT-5018	5 of 16
inett & Pless Commerce Dr #200	Project Monopole Structural Analysis	Date 16:51:39 04/08/22
Raton, FL 33487 e: 561-282-2676 FAX:	Client Vertical Bridge	Designed by gtariq

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert ft	0	ft		ft^2	ft^2	K
			ft ft		Jt		ji	ji	K
(Dish Wireless - P)			0.000			1" Ice 2" Ice	2.320 2.705	1.411 1.723	0.114 0.164
(2) TA08025-B605	в	From Leg	3.000	0.0000	125.000	No Ice	1.964	1.129	0.075
(14.96x15.75x9.06x75lbs)	D	110m Leg	0.000	0.0000	125.000	1/2" Ice	2.138	1.267	0.093
(Dish Wireless - P)			0.000			1" Ice	2.320	1.411	0.114
(Distriction 1)			0.000			2" Ice	2.705	1.723	0.164
(2) TA08025-B605	С	From Leg	3.000	0.0000	125.000	No Ice	1.964	1.129	0.075
(14.96x15.75x9.06x75lbs)	0	110111 2005	0.000	010000	1201000	1/2" Ice	2.138	1.267	0.093
(Dish Wireless - P)			0.000			1" Ice	2.320	1.411	0.114
			01000			2" Ice	2.705	1.723	0.164
RDIDC-9181-PF-48	С	From Leg	3.000	0.0000	125.000	No Ice	2.561	1.342	0.022
(Dish Wireless - P)	C	110m Leg	0.000	0.0000	125.000	1/2" Ice	2.760	1.498	0.043
(Dist Whereas T)			0.000			1" Ice	2.967	1.662	0.067
			0.000			2" Ice	3.402	2.012	0.125
8'x2" STD Pipe Mount	А	From Leg	3.000	0.0000	125.000	No Ice	1.900	1.900	0.029
(Dish Wireless - P)		110m Leg	0.000	0.0000	125.000	1/2" Ice	2.728	2.728	0.044
(Dish Wheless - 1)			0.000			1" Ice	3.401	3.401	0.063
			0.000			2" Ice	4.396	4.396	0.119
8'x2" STD Pipe Mount	в	From Leg	3.000	0.0000	125.000	No Ice	1.900	1.900	0.029
(Dish Wireless - P)	D	110m Leg	0.000	0.0000	125.000	1/2" Ice	2.728	2.728	0.044
(Disit Witcless - 1)			0.000			1" Ice	3.401	3.401	0.063
			0.000			2" Ice	4.396	4.396	0.119
8'x2" STD Pipe Mount	С	From Leg	3.000	0.0000	125.000	No Ice	1.900	1.900	0.029
(Dish Wireless - P)	C	FIOII Leg	0.000	0.0000	125.000	1/2" Ice	2.728	2.728	0.029
(Disit Witeless - F)			0.000			1" Ice	3.401	3.401	0.044
			0.000			2" Ice	4.396	4.396	0.003
1/3 Remaining Reserved	А	From Leg	3.000	0.0000	125.000	No Ice	5.885	5.885	0.119
Rights	A	FIOII Leg	0.000	0.0000	125.000	1/2" Ice	6.905	6.905	0.003
(Dish Wireless - R)			0.000			172 ICe 1" Ice	7.925	7.925	0.094
(Disir wireless - K)			0.000			2" Ice	9.965	9.965	
1/2 Domaining Deserved	В	Erom Lag	3.000	0.0000	125.000	No Ice	9.963 5.885	5.885	0.188 0.063
1/3 Remaining Reserved	В	From Leg		0.0000	125.000	1/2" Ice	5.885 6.905		
Rights			0.000					6.905	0.094
(Dish Wireless - R)			0.000			1" Ice	7.925	7.925	0.126
	C	р I	2 000	0.0000	125.000	2" Ice	9.965	9.965	0.188
1/3 Remaining Reserved	С	From Leg	3.000	0.0000	125.000	No Ice 1/2" Ice	5.885	5.885	0.063
Rights			0.000				6.905	6.905	0.094
(Dish Wireless - R)			0.000			1" Ice	7.925	7.925	0.126
***						2" Ice	9.965	9.965	0.188
		гт	1 000	0.0000	126.000	NT T	10,000	10.100	0.112
(2) TPA65R-BU8D w/ Mount	А	From Leg	4.000	0.0000	136.000	No Ice	18.089	10.100	0.112
Pipe			0.000			1/2" Ice	18.722	11.522	0.232
(ATT-E)			0.000			1" Ice	19.362	12.796	0.362
	р	р. I	1.000	0.0000	126.000	2" Ice	20.662	15.017	0.658
(2) TPA65R-BU8D w/ Mount	в	From Leg	4.000	0.0000	136.000	No Ice	18.089	10.100	0.112
Pipe			0.000			1/2" Ice	18.722	11.522	0.232
(ATT-E)			0.000			1" Ice	19.362	12.796	0.362
	~					2" Ice	20.662	15.017	0.658
(2) TPA65R-BU8D w/ Mount	С	From Leg	4.000	0.0000	136.000	No Ice	18.089	10.100	0.112
Pipe			0.000			1/2" Ice	18.722	11.522	0.232
(ATT-E)			0.000			1" Ice	19.362	12.796	0.362
			·	A		2" Ice	20.662	15.017	0.658
HPA65R-BU8A w/Mount	А	From Leg	0.000	0.0000	136.000	No Ice	18.564	10.575	0.094
Pipe			0.000			1/2" Ice	19.402	12.197	0.219
(ATT-E)			0.000			1" Ice	20.251	13.843	0.355
	_	-				2" Ice	21.844	16.531	0.665
HPA65R-BU8A w/Mount	В	From Leg	0.000	0.0000	136.000	No Ice	18.564	10.575	0.094
Pipe			0.000			1/2" Ice	19.402	12.197	0.219

tnx

Ben 750 Park Boca I Phone

xTower	Јо в US-CT-5018	Page 6 of 16
nnett & Pless k Commerce Dr #200	Project Monopole Structural Analysis	Date 16:51:39 04/08/22
a Raton, FL 33487 ne: 561-282-2676 FAX:	Client Vertical Bridge	Designed by gtariq

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigl
	Leg		Vert ft ft	0	ft		ft²	ft^2	K
			ft						
(ATT-E)			0.000			1" Ice	20.251	13.843	0.35
	~					2" Ice	21.844	16.531	0.665
HPA65R-BU8A w/Mount	С	From Leg	0.000	0.0000	136.000	No Ice	18.564	10.575	0.094
Pipe			0.000			1/2" Ice	19.402	12.197	0.21
(ATT-E)			0.000			1" Ice	20.251	13.843	0.35
4470 D14 DD110		Farmer Land	2 000	0.0000	126.000	2" Ice	21.844	16.531	0.66
4478 B14 RRUS (18.1x13.4x8.3x59.4lbs)	А	From Leg	$3.000 \\ 0.000$	0.0000	136.000	No Ice 1/2" Ice	2.021 2.200	1.252 1.402	0.059 0.07
(ATT-E)			0.000			172 ICe	2.200	1.402	0.07
(ATT-E)			0.000			2" Ice	2.580	1.898	0.09
4478 B14 RRUS	в	From Leg	3.000	0.0000	136.000	No Ice	2.021	1.252	0.059
(18.1x13.4x8.3x59.4lbs)	D	110m Leg	0.000	0.0000	150.000	1/2" Ice	2.200	1.402	0.07
(ATT-E)			0.000			1" Ice	2.386	1.560	0.09
(((((((((((((((((((((((((((((((((((((((0.000			2" Ice	2.780	1.898	0.14
4478 B14 RRUS	С	From Leg	3.000	0.0000	136.000	No Ice	2.021	1.252	0.059
(18.1x13.4x8.3x59.4lbs)		8	0.000			1/2" Ice	2.200	1.402	0.07
(ATT-E)			0.000			1" Ice	2.386	1.560	0.09
						2" Ice	2.780	1.898	0.142
E2-700	Α	From Leg	3.000	0.0000	136.000	No Ice	3.083	1.243	0.052
(ATT-E)			0.000			1/2" Ice	3.301	1.392	0.075
			0.000			1" Ice	3.526	1.553	0.10
						2" Ice	3.998	1.901	0.163
E2-700	в	From Leg	3.000	0.0000	136.000	No Ice	3.083	1.243	0.052
(ATT-E)			0.000			1/2" Ice	3.301	1.392	0.075
			0.000			1" Ice	3.526	1.553	0.10
	-					2" Ice	3.998	1.901	0.163
E2-700	С	From Leg	3.000	0.0000	136.000	No Ice	3.083	1.243	0.052
(ATT-E)			0.000			1/2" Ice	3.301	1.392	0.075
			0.000			1" Ice 2" Ice	3.526 3.998	1.553 1.901	0.10 0.16
Radio 4415 B30	А	From Leg	3.000	0.0000	136.000	No Ice	0.000	0.000	0.000
(16.5x13.4x5.9x46lbs)	11	I Iom Leg	0.000	0.0000	150.000	1/2" Ice	0.000	0.000	0.000
(ATT-E)			0.000			1" Ice	0.000	0.000	0.00
(1111 E)			0.000			2" Ice	0.000	0.000	0.000
Radio 4415 B30	в	From Leg	3.000	0.0000	136.000	No Ice	0.000	0.000	0.00
(16.5x13.4x5.9x46lbs)	2	TTOM Log	0.000	010000	1001000	1/2" Ice	0.000	0.000	0.00
(ATT-E)			0.000			1" Ice	0.000	0.000	0.000
()						2" Ice	0.000	0.000	0.000
Radio 4415 B30	С	From Leg	3.000	0.0000	136.000	No Ice	0.000	0.000	0.000
(16.5x13.4x5.9x46lbs)		_	0.000			1/2" Ice	0.000	0.000	0.000
(ATT-E)			0.000			1" Ice	0.000	0.000	0.000
						2" Ice	0.000	0.000	0.000
Radio 4449	Α	From Leg	3.000	0.0000	136.000	No Ice	1.650	1.163	0.074
(15.0x13.2x9.3x74lbs)			0.000			1/2" Ice	1.810	1.301	0.090
(ATT-E)			0.000			1" Ice	1.978	1.447	0.10
	_					2" Ice	2.336	1.762	0.15
Radio 4449	В	From Leg	3.000	0.0000	136.000	No Ice	1.650	1.163	0.074
(15.0x13.2x9.3x74lbs)			0.000			1/2" Ice	1.810	1.301	0.090
(ATT-E)			0.000			1" Ice 2" Ice	1.978 2.336	1.447	0.109
Radio 4449	С	From Leg	3.000	0.0000	136.000	2" Ice No Ice	2.336	1.762 1.163	0.15: 0.074
(15.0x13.2x9.3x74lbs)	C	riom Leg	0.000	0.0000	150.000	No Ice 1/2" Ice	1.650	1.163	0.074
(15.0x15.2x9.5x74108) (ATT-E)			0.000			1" Ice	1.978	1.301	0.109
(////-=)			0.000			2" Ice	2.336	1.762	0.15
3843 (15x13.2x11.1x75lbs)	Α	From Leg	3.000	0.0000	136.000	No Ice	1.650	1.388	0.075
(ATT-E)	2 k	1 Iom Log	0.000	0.0000	120.000	1/2" Ice	1.810	1.536	0.073

tnxTower
una i unci

Ba 750 Pa Boo Pho

nxTower	dof	Page		
nx10wer	US-CT-5018	7 of 16		
Bennett & Pless Park Commerce Dr #200	Project Monopole Structural Analysis	Date 16:51:39 04/08/22		
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client Vertical Bridge	Designed by gtariq		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			Vert ft ft ft	٥	ft		ft²	ft ²	Κ
						2" Ice	2.336	2.027	0.164
8843 (15x13.2x11.1x75lbs)	В	From Leg	3.000	0.0000	136.000	No Ice	1.650	1.388	0.075
(ATT-E)			0.000			1/2" Ice	1.810	1.536	0.093
			0.000			1" Ice	1.978	1.692	0.113
	G		2 0 0 0	0.0000	124000	2" Ice	2.336	2.027	0.164
8843 (15x13.2x11.1x75lbs)	С	From Leg	3.000	0.0000	136.000	No Ice	1.650	1.388	0.075
(ATT-E)			$0.000 \\ 0.000$			1/2" Ice 1" Ice	$1.810 \\ 1.978$	1.536 1.692	0.093 0.113
			0.000			2" Ice	2.336	2.027	0.113
Unknown DC	А	From Leg	3.000	0.0000	136.000	No Ice	1.547	4.762	0.026
(ATT-E)	A	From Leg	0.000	0.0000	150.000	1/2" Ice	1.708	5.042	0.020
(ATT-E)			0.000			172 Ice	1.877	5.328	0.104
			0.000			2" Ice	2.237	5.924	0.199
Unknown DC	в	From Leg	3.000	0.0000	136.000	No Ice	1.547	4.762	0.026
(ATT-E)	Ъ	110m Leg	0.000	0.0000	150.000	1/2" Ice	1.708	5.042	0.063
(((((((((((((((((((((((((((((((((((((((0.000			1" Ice	1.877	5.328	0.104
			01000			2" Ice	2.237	5.924	0.199
Unknown DC	С	From Leg	3.000	0.0000	136.000	No Ice	1.547	4.762	0.026
(ATT-E)		5	0.000			1/2" Ice	1.708	5.042	0.063
			0.000			1" Ice	1.877	5.328	0.104
						2" Ice	2.237	5.924	0.199
SM 602-1	А	None		0.0000	136.000	No Ice	20.000	8.530	0.513
(ATT-E)						1/2" Ice	24.070	11.090	0.707
						1" Ice	28.330	13.630	0.947
						2" Ice	37.820	18.640	1.562
SM 602-1	в	None		0.0000	136.000	No Ice	20.000	8.530	0.513
(ATT-E)						1/2" Ice	24.070	11.090	0.707
						1" Ice	28.330	13.630	0.947
						2" Ice	37.820	18.640	1.562
SM 602-1	С	None		0.0000	136.000	No Ice	20.000	8.530	0.513
(ATT-E)						1/2" Ice	24.070	11.090	0.707
						1" Ice	28.330	13.630	0.947
						2" Ice	37.820	18.640	1.562
1/3 Remaining Reserved	А	From Leg	3.000	0.0000	136.000	No Ice	1.149	1.149	0.012
Rights			0.000			1/2" Ice	1.300	1.300	0.018
(ATT - R)			0.000			1" Ice	1.451	1.451	0.024
1/2 Deventing and Devenue 1	D	Para Lan	2.000	0.0000	126.000	2" Ice	1.753	1.753	0.035
1/3 Remaining Reserved	В	From Leg	3.000	0.0000	136.000	No Ice	1.149	1.149	0.012
Rights			0.000			1/2" Ice	1.300	1.300	0.018
(ATT - R)			0.000			1" Ice 2" Ice	1.451	1.451 1.753	0.024 0.035
1/3 Remaining Reserved	С	From Leg	3.000	0.0000	136.000	No Ice	1.753 1.149	1.149	0.035
Rights	C	FIOIII Leg	0.000	0.0000	130.000	1/2" Ice	1.300	1.300	0.012
(ATT - R)			0.000			172 Ice	1.451	1.300	0.018
(AII - K)			0.000			2" Ice	1.753	1.753	0.024
***						2 100	1.755	1.755	0.055
AIR32	А	From Leg	3.000	0.0000	150.000	No Ice	7.290	6.612	0.161
KRD901146-1 B66A-B2A		I Iom Leg	0.000	0.0000	120.000	1/2" Ice	8.007	7.796	0.228
w/ Mount Pipe			0.000			1" Ice	8.667	8.832	0.303
w/ would ripe			210.00			2" Ice	9.865	10.574	0.477
AIR32	в	From Leg	3.000	0.0000	150.000	No Ice	7.290	6.612	0.161
KRD901146-1 B66A-B2A		208	0.000			1/2" Ice	8.007	7.796	0.228
w/ Mount Pipe			0.000			1" Ice	8.667	8.832	0.303
I.						2" Ice	9.865	10.574	0.477
AIR32	С	From Leg	3.000	0.0000	150.000	No Ice	7.290	6.612	0.161
		0	0.000			1/2" Ice	8.007	7.796	0.228
KRD901146-1_B66A-B2A			0.000			1.2 100	01007		

<i>tnxTower</i>

Ben 750 Park Boca Phon

xTower	Job	US-CT-5018	Page 8 of 16
e nnett & Pless rk Commerce Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
a Raton, FL 33487 one: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral Vert						
			ft ft ft	٥	ft		ft ²	ft^2	Κ
			ji			2" Ice	9.865	10.574	0.477
LNX-6515DS-A1M	Α	From Leg	3.000	0.0000	150.000	No Ice	11.912	10.071	0.087
			0.000			1/2" Ice	12.733	11.692	0.179
			0.000			1" Ice	13.564	13.337	0.281
						2" Ice	15.104	16.021	0.521
LNX-6515DS-A1M	В	From Leg	3.000	0.0000	150.000	No Ice	11.912	10.071	0.087
			0.000			1/2" Ice	12.733	11.692	0.179
			0.000			1" Ice	13.564	13.337	0.281
	G	D	2 0 0 0	0.0000	1 50 000	2" Ice	15.104	16.021	0.521
LNX-6515DS-A1M	С	From Leg	3.000	0.0000	150.000	No Ice	11.912	10.071	0.087
			0.000			1/2" Ice	12.733	11.692	0.179
			0.000			1" Ice 2" Ice	13.564 15.104	13.337 16.021	0.281 0.521
PX16DWV-16DWV-S-E-A		Enom Log	3.000	0.0000	150.000	No Ice	9.055	6.507	0.083
20 w/ Mount Pipe	Α	From Leg	0.000	0.0000	130.000	1/2" Ice	9.033 9.778	7.722	0.083
20 w/ Would Fipe			0.000			1" Ice	10.449	8.776	0.137
			0.000			2" Ice	11.679	10.545	0.239
PX16DWV-16DWV-S-E-A	в	From Leg	3.000	0.0000	150.000	No Ice	9.055	6.507	0.083
20 w/ Mount Pipe	Б	110m Leg	0.000	0.0000	120.000	1/2" Ice	9.778	7.722	0.157
20 Williouni Pipe			0.000			1" Ice	10.449	8.776	0.239
			0.000			2" Ice	11.679	10.545	0.429
PX16DWV-16DWV-S-E-A	С	From Leg	3.000	0.0000	150.000	No Ice	9.055	6.507	0.083
20 w/ Mount Pipe	Ũ	110111 2008	0.000	010000	1001000	1/2" Ice	9.778	7.722	0.157
			0.000			1" Ice	10.449	8.776	0.239
						2" Ice	11.679	10.545	0.429
RRUS 11 B12	Α	From Leg	3.000	0.0000	150.000	No Ice	2.833	1.182	0.051
		C C	0.000			1/2" Ice	3.043	1.330	0.072
			0.000			1" Ice	3.259	1.485	0.095
						2" Ice	3.715	1.826	0.153
RRUS 11 B12	в	From Leg	3.000	0.0000	150.000	No Ice	2.833	1.182	0.051
			0.000			1/2" Ice	3.043	1.330	0.072
			0.000			1" Ice	3.259	1.485	0.095
						2" Ice	3.715	1.826	0.153
RRUS 11 B12	С	From Leg	3.000	0.0000	150.000	No Ice	2.833	1.182	0.051
			0.000			1/2" Ice	3.043	1.330	0.072
			0.000			1" Ice	3.259	1.485	0.095
			2 000	0.0000	150 000	2" Ice	3.715	1.826	0.153
RRUS 11 B4	Α	From Leg	3.000	0.0000	150.000	No Ice	2.784	1.187	0.051
			$0.000 \\ 0.000$			1/2" Ice 1" Ice	2.992 3.207	1.334 1.490	0.071 0.095
			0.000			2" Ice			
RRUS 11 B4	в	From Leg	3.000	0.0000	150.000	No Ice	3.658 2.784	1.833 1.187	0.153 0.051
	Б	FIOII Leg	0.000	0.0000	150.000	1/2" Ice	2.992	1.334	0.031
			0.000			1" Ice	3.207	1.490	0.095
			0.000			2" Ice	3.658	1.833	0.153
RRUS 11 B4	С	From Leg	3.000	0.0000	150.000	No Ice	2.784	1.187	0.051
RRCO II D4	C	Tiom Leg	0.000	0.0000	150.000	1/2" Ice	2.992	1.334	0.071
			0.000			1" Ice	3.207	1.490	0.095
			01000			2" Ice	3.658	1.833	0.153
IBR-1300	в	From Leg	3.000	0.0000	150.000	No Ice	0.672	0.307	0.008
	-	8	0.000			1/2" Ice	0.776	0.384	0.013
			0.000			1" Ice	0.888	0.470	0.020
						2" Ice	1.133	0.668	0.040
SM 602-1	Α	None		0.0000	150.000	No Ice	20.000	8.530	0.513
						1/2" Ice	24.070	11.090	0.707
						1" Ice	28.330	13.630	0.947
						2" Ice	37.820	18.640	1.562

tnxT	<i>`ower</i>

Be 750 Pai Boc Pho

m Toman	Job		Page
nxTower		US-CT-5018	9 of 16
Bennett & Pless Park Commerce Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
oca Raton, FL 33487 hone: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert						
			ft ft	0	ft		ft^2	ft^2	K
014 400 1			ft		1 50 000		20.000	0.700	0.510
SM 602-1	в	None		0.0000	150.000	No Ice	20.000	8.530	0.513
						1/2" Ice 1" Ice	24.070 28.330	11.090 13.630	0.707 0.947
						2" Ice	28.330	18.640	1.562
SM 602-1	С	None		0.0000	150.000	No Ice	20.000	8.530	0.513
5101 002-1	C	TAOLIC		0.0000	150.000	1/2" Ice	24.070	11.090	0.707
						1" Ice	28.330	13.630	0.947
						2" Ice	37.820	18.640	1.562
1/3 Remaining Reserved	А	From Leg	3.000	0.0000	150.000	No Ice	22.346	22.346	0.257
Rights			0.000			1/2" Ice	28.316	28.316	0.386
(TMO - R)			0.000			1" Ice	34.287	34.287	0.515
						2" Ice	46.229	46.229	0.772
1/3 Remaining Reserved	в	From Leg	3.000	0.0000	150.000	No Ice	22.346	22.346	0.257
Rights		-	0.000			1/2" Ice	28.316	28.316	0.386
(TMO - R)			0.000			1" Ice	34.287	34.287	0.515
						2" Ice	46.229	46.229	0.772
1/3 Remaining Reserved	С	From Leg	3.000	0.0000	150.000	No Ice	22.346	22.346	0.257
Rights			0.000			1/2" Ice	28.316	28.316	0.386
(TMO - R)			0.000			1" Ice	34.287	34.287	0.515
						2" Ice	46.229	46.229	0.772
***		Б I	2 0 0 0	0.0000	115 000	NT T	11 107	0.607	0.071
Commscope NHH-65B-R2B	Α	From Leg	3.000	0.0000	115.000	No Ice	11.187	8.687	0.071
(Verizon)			0.000			1/2" Ice	11.691	9.169	0.150
			0.000			1" Ice	12.202	9.658	0.236
Commercene NILLI (5D D2D	р	Enom Log	2 000	0.0000	115 000	2" Ice	13.245	10.658	0.430
Commscope NHH-65B-R2B (Verizon)	В	From Leg	$3.000 \\ 0.000$	0.0000	115.000	No Ice 1/2" Ice	11.187 11.691	8.687 9.169	$0.071 \\ 0.150$
(verizoii)			0.000			172 ICE 1" Ice	12.202	9.658	0.130
			0.000			2" Ice	13.245	10.658	0.430
Commscope NHH-65B-R2B	С	From Leg	3.000	0.0000	115.000	No Ice	11.187	8.687	0.071
(Verizon)	C	riom Leg	0.000	0.0000	115.000	1/2" Ice	11.691	9.169	0.150
((()))			0.000			1" Ice	12.202	9.658	0.236
						2" Ice	13.245	10.658	0.430
Commscope	Α	From Leg	3.000	0.0000	115.000	No Ice	8.048	5.356	0.055
NHHSS-65B-R2BT4		5	0.000			1/2" Ice	8.503	5.810	0.105
(Verizon)			0.000			1" Ice	8.966	6.270	0.161
						2" Ice	9.912	7.213	0.292
Commscope	В	From Leg	3.000	0.0000	115.000	No Ice	8.048	5.356	0.055
NHHSS-65B-R2BT4			0.000			1/2" Ice	8.503	5.810	0.105
(Verizon)			0.000			1" Ice	8.966	6.270	0.161
						2" Ice	9.912	7.213	0.292
Commscope	С	From Leg	3.000	0.0000	115.000	No Ice	8.048	5.356	0.055
NHHSS-65B-R2BT4			0.000			1/2" Ice	8.503	5.810	0.105
(Verizon)			0.000			1" Ice	8.966	6.270	0.161
						2" Ice	9.912	7.213	0.292
Samsung MT6407-77A	Α	From Leg	3.000	0.0000	115.000	No Ice	4.700	1.844	0.087
(Verizon)			0.000			1/2" Ice	4.988	2.067	0.116
			0.000			1" Ice	5.284	2.297	0.150
Samauna MT6407 774	р	Erom Las	2 000	0.0000	115 000	2" Ice No Ice	5.897	2.777	0.228
Samsung MT6407-77A	В	From Leg	$3.000 \\ 0.000$	0.0000	115.000	No Ice 1/2" Ice	4.700 4.988	1.844 2.067	0.087
(Verizon)			0.000			1/2" Ice 1" Ice	4.988 5.284	2.067	0.116
			0.000			2" Ice	5.284 5.897	2.297 2.777	0.150 0.228
Samsung MT6407-77A	С	From Leg	3.000	0.0000	115.000	No Ice	3.897 4.700	1.844	0.228
-	C	From Leg	0.000	0.0000	115.000	1/2" Ice	4.700	2.067	0.087
(Verizon)									
(Verizon)			0.000			1" Ice	5.284	2.297	0.150

Ber 750 Pari Boca Phor

ıxTower	Job	US-CT-5018	Page 10 of 16
ennett & Pless 1rk Commerce Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
ca Raton, FL 33487 one: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weig
	Leg		Lateral						
			Vert	0	0		c.7	c.7	
			ft	0	ft		ft^2	ft^2	K
			ft ft						
Samsung RF4439D-25A	А	From Leg	3.000	0.0000	115.000	No Ice	1.865	1.252	0.07
(Verizon)	11	110III Leg	0.000	0.0000	115.000	1/2" Ice	2.035	1.394	0.09
(venzon)			0.000			1" Ice	2.212	1.544	0.11
			01000			2" Ice	2.589	1.866	0.16
Samsung RF4439D-25A	в	From Leg	3.000	0.0000	115.000	No Ice	1.865	1.252	0.07
(Verizon)		U	0.000			1/2" Ice	2.035	1.394	0.09
			0.000			1" Ice	2.212	1.544	0.11
						2" Ice	2.589	1.866	0.16
Samsung RF4439D-25A	С	From Leg	3.000	0.0000	115.000	No Ice	1.865	1.252	0.07
(Verizon)			0.000			1/2" Ice	2.035	1.394	0.09
			0.000			1" Ice	2.212	1.544	0.11
a						2" Ice	2.589	1.866	0.16
Samsung RF4440D-13A	А	From Leg	3.000	0.0000	115.000	No Ice	1.865	1.128	0.07
(Verizon)			0.000			1/2" Ice	2.035	1.265	0.09
			0.000			1" Ice 2" Ice	2.212 2.589	$1.410 \\ 1.721$	0.11 0.16
Samsung RF4440D-13A	в	From Leg	3.000	0.0000	115.000	No Ice	1.865	1.121	0.10
(Verizon)	Б	FIOII Leg	0.000	0.0000	115.000	1/2" Ice	2.035	1.265	0.07
(venzon)			0.000			1" Ice	2.212	1.410	0.11
			01000			2" Ice	2.589	1.721	0.16
Samsung RF4440D-13A	С	From Leg	3.000	0.0000	115.000	No Ice	1.865	1.128	0.07
(Verizon)		C	0.000			1/2" Ice	2.035	1.265	0.09
			0.000			1" Ice	2.212	1.410	0.11
						2" Ice	2.589	1.721	0.16
Samsung MT6407-77A	А	From Leg	3.000	0.0000	115.000	No Ice	4.700	1.844	0.08
(Verizon)			0.000			1/2" Ice	4.988	2.067	0.11
			0.000			1" Ice	5.284	2.297	0.15
0) (T)(407, 77.)	D	D I	2 0 0 0	0.0000	115 000	2" Ice	5.897	2.777	0.22
Samsung MT6407-77A	В	From Leg	3.000	0.0000	115.000	No Ice	4.700	1.844	0.08
(Verizon)			$0.000 \\ 0.000$			1/2" Ice 1" Ice	4.988 5.284	2.067 2.297	0.11 0.15
			0.000			2" Ice	5.897	2.297 2.777	0.13
Samsung MT6407-77A	С	From Leg	3.000	0.0000	115.000	No Ice	4.700	1.844	0.22
(Verizon)	C	r toin Leg	0.000	0.0000	115.000	1/2" Ice	4.988	2.067	0.11
(venzon)			0.000			1" Ice	5.284	2.297	0.15
			01000			2" Ice	5.897	2.777	0.22
Commscope OVP12	С	From Leg	3.000	0.0000	115.000	No Ice	0.791	0.791	0.02
(Verizon)		C	0.000			1/2" Ice	1.274	1.274	0.03
			0.000			1" Ice	1.450	1.450	0.05
						2" Ice	1.831	1.831	0.09
Commscope	А	From Leg	3.000	0.0000	115.000	No Ice	1.320	1.320	0.07
BSAMNT-SBS-1-2			0.000			1/2" Ice	1.580	1.580	0.08
(Verizon)			0.000			1" Ice	1.840	1.840	0.09
0	D	Dana Las	2 000	0.0000	115 000	2" Ice	2.360	2.360	0.11
Commscope	В	From Leg	3.000	0.0000	115.000	No Ice	1.320	1.320	0.07
BSAMNT-SBS-1-2 (Verizon)			$0.000 \\ 0.000$			1/2" Ice 1" Ice	$1.580 \\ 1.840$	$1.580 \\ 1.840$	0.08 0.09
(venzon)			0.000			2" Ice	2.360	2.360	0.09
Commscope	С	From Leg	3.000	0.0000	115.000	No Ice	1.320	1.320	0.07
BSAMNT-SBS-1-2	\sim	riom Deg	0.000	0.0000	12.000	1/2" Ice	1.580	1.520	0.08
(Verizon)			0.000			1" Ice	1.840	1.840	0.09
						2" Ice	2.360	2.360	0.11
Samsung CBRS RRH	А	From Leg	3.000	0.0000	115.000	No Ice	3.114	2.647	0.05
RT4401-48A		-	0.000			1/2" Ice	3.960	3.594	0.08
(Verizon)			0.000			1" Ice	4.683	4.393	0.12
						2" Ice	5.862	5.670	0.21
Samsung CBRS RRH	в	From Leg	3.000	0.0000	115.000	No Ice	3.114	2.647	0.05

	Job		Page
tnxTower		US-CT-5018	11 of 16
Bennett & Pless 750 Park Commerce Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			ft ft ft	٥	ft		ft^2	ft^2	K
RT4401-48A			0.000			1/2" Ice	3.960	3.594	0.085
(Verizon)			0.000			1" Ice	4.683	4.393	0.123
						2" Ice	5.862	5.670	0.215
Samsung CBRS RRH	С	From Leg	3.000	0.0000	115.000	No Ice	3.114	2.647	0.052
RT4401-48A		0	0.000			1/2" Ice	3.960	3.594	0.085
(Verizon)			0.000			1" Ice	4.683	4.393	0.123
· · · ·						2" Ice	5.862	5.670	0.215
Platform w/ Handrails	С	From Leg	3.000	0.0000	115.000	No Ice	32.030	32.030	1.340
(Verizon)		e	0.000			1/2" Ice	38.710	38.710	1.800
. ,			0.000			1" Ice	45.390	45.390	2.260
						2" Ice	58,750	58,750	3.170

Force Totals						
Load	Vertical	Sum of	Sum of	Sum of	Sum of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	2 1
		X	Ζ	Moments, M_x	Moments, M_z	
	K	K	Κ	kip-ft	kip-ft	kip-ft
Leg Weight	31.490					
Bracing Weight	0.000					
Total Member Self-Weight	31.490			3.114	5.337	
Total Weight	44.803			3.114	5.337	
Wind 0 deg - No Ice		0.016	-48.025	-5248.923	3.524	-5.333
Wind 90 deg - No Ice		48.060	-0.016	1.301	-5251.289	3.136
Wind 180 deg - No Ice		-0.016	48.025	5255.152	7.150	5.333
Member Ice	13.659					
Total Weight Ice	82.191			6.989	11.857	
Wind 0 deg - Ice		0.003	-12.366	-1323.754	11.553	-1.455
Wind 90 deg - Ice		12.372	-0.003	6.685	-1319.734	0.859
Wind 180 deg - Ice		-0.003	12.366	1337.732	12.161	1.455
Total Weight	44.803			3.114	5.337	
Wind 0 deg - Service		0.003	-9.900	-1079.579	4.964	-1.099
Wind 90 deg - Service		9.907	-0.003	2.741	-1078.302	0.647
Wind 180 deg - Service		-0.003	9.900	1085.808	5.711	1.099

Load Combinations

Description

Comb.	
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 90 deg - No Ice
5	0.9 Dead+1.0 Wind 90 deg - No Ice
6	1.2 Dead+1.0 Wind 180 deg - No Ice
7	0.9 Dead+1.0 Wind 180 deg - No Ice
8	1.2 Dead+1.0 Ice+1.0 Temp

tnx

Ben 750 Park Boca R Phone

Tana	Job		Page
xTower		US-CT-5018	12 of 16
nnett & Pless k Commerce Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
n Raton, FL 33487 ne: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq
	•		

Comb.	Description
No.	
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
11	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
	-			Comb.	K	kip-ft	kip-ft
L1	150 - 100	Pole	Max Tension	8	0.000	-0.000	0.000
			Max. Compression	8	-47.818	13.513	-7.961
			Max. Mx	4	-18.516	-989.969	-3.546
			Max. My	6	-18.511	6.461	-999.336
			Max. Vy	4	34.871	-989.969	-3.546
			Max. Vx	6	34.840	6.461	-999.336
			Max. Torque	6			-5.631
L2	100 - 65.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	8	-59.466	13.991	-8.243
			Max. Mx	4	-27.229	-2220.283	-3.135
			Max. My	6	-27.227	7.232	-2228.599
			Max. Vy	4	39.238	-2220.283	-3.135
			Max. Vx	6	39.205	7.232	-2228.599
			Max. Torque	6			-5.622
L3	65.5 - 32.3	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	8	-73.544	14.255	-8.398
			Max. Mx	4	-38.064	-3554.350	-2.677
			Max. My	6	-38.063	7.876	-3561.606
			Max. Vy	4	43.505	-3554.350	-2.677
			Max. Vx	6	43.471	7.876	-3561.606
			Max. Torque	6			-5.611
L4	32.3 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	8	-93.179	14.253	-8.397
			Max. Mx	4	-53.737	-5395.816	-2.046
			Max. My	6	-53.737	8.552	-5401.698
			Max. Vy	4	48.090	-5395.816	-2.046
			Max. Vx	6	48.055	8.552	-5401.698
			Max. Torque	6			-5.603

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	8	93.179	-0.000	0.000
	Max. H _x	7	40.323	0.016	-48.025
	Max. H _z	3	40.323	-0.016	48.025
	Max. M _x	2	5393.891	-0.016	48.025
	Max. Mz	4	5395.816	-48.060	0.016
	Max. Torsion	2	5.600	-0.016	48.025
	Min. Vert	5	40.323	-48.060	0.016
	Min. H _x	4	53.764	-48.060	0.016
	Min. Hz	7	40.323	0.016	-48.025

T	Job		Page
tnxTower		US-CT-5018	13 of 16
Bennett & Pless	Project		Date
750 Park Commerce Dr #200		Monopole Structural Analysis	16:51:39 04/08/22
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
	Min. M _x	6	-5401.698	0.016	-48.025
	Min. Mz	11	-14.726	0.003	-12.366
	Min. Torsion	6	-5.600	0.016	-48.025

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	44.803	0.000	-0.000	3.192	5.469	-0.000
1.2 Dead+1.0 Wind 0 deg - No Ice	53.764	0.016	-48.025	-5393.891	4.833	-5.600
0.9 Dead+1.0 Wind 0 deg - No Ice	40.323	0.016	-48.025	-5356.102	3.111	-5.521
1.2 Dead+1.0 Wind 90 deg - No Ice	53.764	48.060	-0.016	2.045	-5395.816	3.293
0.9 Dead+1.0 Wind 90 deg - No Ice	40.323	48.060	-0.016	1.046	-5358.690	3.247
1.2 Dead+1.0 Wind 180 deg - No Ice	53.764	-0.016	48.025	5401.698	8.551	5.600
0.9 Dead+1.0 Wind 180 deg - No Ice	40.323	-0.016	48.025	5361.886	6.805	5.521
1.2 Dead+1.0 Ice+1.0 Temp	93.179	0.000	-0.000	8.397	14.253	-0.000
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	93.179	0.003	-12.366	-1407.274	14.083	-1.615
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	93.179	12.372	-0.003	8.165	-1402.248	0.954
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	93.179	-0.003	12.366	1424.248	14.726	1.615
Dead+Wind 0 deg - Service	44.803	0.003	-9.900	-1105.302	5.175	-1.152
Dead+Wind 90 deg - Service	44.803	9.907	-0.003	2.861	-1103.957	0.677
Dead+Wind 180 deg - Service	44.803	-0.003	9.900	1111.787	5.939	1.152

Solution Summary

	Sur	n of Applied Force.	5		Sum of Reaction	IS	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	Κ	Κ	K	K	
1	0.000	-44.803	0.000	-0.000	44.803	0.000	0.000%
2	0.016	-53.764	-48.025	-0.016	53.764	48.025	0.000%
3	0.016	-40.323	-48.025	-0.016	40.323	48.025	0.000%
4	48.060	-53.764	-0.016	-48.060	53.764	0.016	0.000%
5	48.060	-40.323	-0.016	-48.060	40.323	0.016	0.000%
6	-0.016	-53.764	48.025	0.016	53.764	-48.025	0.000%
7	-0.016	-40.323	48.025	0.016	40.323	-48.025	0.000%
8	0.000	-93.179	0.000	-0.000	93.179	0.000	0.000%
9	0.003	-93.179	-12.366	-0.003	93.179	12.366	0.000%
10	12.372	-93.179	-0.003	-12.372	93.179	0.003	0.000%
11	-0.003	-93.179	12.366	0.003	93.179	-12.366	0.000%
12	0.003	-44.803	-9.900	-0.003	44.803	9.900	0.001%
13	9.907	-44.803	-0.003	-9.907	44.803	0.003	0.001%
14	-0.003	-44.803	9.900	0.003	44.803	-9.900	0.001%

Bennett & Pless 750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676 FAX:

	Job		Page		
er		US-CT-5018			
ess Dr #200	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22		
3487 2676	Client	Vertical Bridge	Designed by gtariq		

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	_	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	7	0.00000001	0.00003330
3	Yes	7	0.0000001	0.00002331
4	Yes	7	0.00000001	0.00001959
5	Yes	6	0.0000001	0.00007440
6	Yes	7	0.00000001	0.00003388
7	Yes	7	0.0000001	0.00002370
8	Yes	5	0.0000001	0.00004138
9	Yes	8	0.0000001	0.00002297
10	Yes	7	0.0000001	0.00009912
11	Yes	8	0.0000001	0.00002349
12	Yes	5	0.0000001	0.00005838
13	Yes	5	0.0000001	0.00003742
14	Yes	5	0.0000001	0.00005920

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 100	17.586	14	1.0022	0.0029
L2	105.5 - 65.5	8.917	14	0.7892	0.0022
L3	72.3 - 32.3	4.217	14	0.5415	0.0011
L4	40.1 - 0	1.324	14	0.2946	0.0005

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	o	ft
150.000	AIR32 KRD901146-1_B66A-B2A w/ Mount Pipe	14	17.586	1.0022	0.0029	60976
136.000	(2) TPA65R-BU8D w/ Mount Pipe	14	14.695	0.9452	0.0027	21777
125.000	Platfrom w/Handrails (LP 716)	14	12.493	0.8961	0.0026	12195
115.000	Commscope NHH-65B-R2B	14	10.594	0.8452	0.0024	8710

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	150 - 100	85.263	6	4.8593	0.0140
L2	105.5 - 65.5	43.277	6	3.8278	0.0106

A	Job		Page
tnxTower		US-CT-5018	15 of 16
Bennett & Pless	Project	Monopole Structural Analysis	Date 16:51:39 04/08/22
750 Park Commerce Dr #200 Boca Raton, FL 33487 Phone: 561-282-2676	Client	Vertical Bridge	Designed by
FAX:		Voltical Dilago	gtariq

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L3	72.3 - 32.3	20.481	6	2.6295	0.0053
L4	40.1 - 0	6.434	6	1.4312	0.0023

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	în	0	0	ft
150.000	AIR32 KRD901146-1_B66A-B2A	6	85.263	4.8593	0.0140	12780
	w/ Mount Pipe					
136.000	(2) TPA65R-BU8D w/ Mount Pipe	6	71.264	4.5827	0.0133	4563
125.000	Platfrom w/Handrails (LP 716)	6	60.604	4.3448	0.0126	2553
115.000	Commscope NHH-65B-R2B	6	51.404	4.0987	0.0118	1822

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	$\mathbf{\phi} P_n$	Ratio P _u
	ft		ft	ft		in^2	Κ	K	ϕP_n
L1	150 - 100 (1)	TP39.6x26.4x0.3	50.000	150.000	134.0	36.0389	-18.511	453.637	0.041
L2	100 - 65.5 (2)	TP48.3x37.548x0.4	40.000	150.000	110.1	58.4932	-27.227	1091.020	0.025
L3	65.5 - 32.3 (3)	TP56.3x45.6722x0.4	40.000	150.000	94.2	68.3395	-38.063	1720.030	0.022
L4	32.3 - 0 (4)	TP64x53.4276x0.4	40.100	150.000	79.7	80.7466	-53.737	2581.700	0.021

Pole Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	$\mathbf{\Phi}M_{ny}$	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	150 - 100 (1)	TP39.6x26.4x0.3	999.358	1921.217	0.520	0.000	1921.217	0.000
L2	100 - 65.5 (2)	TP48.3x37.548x0.4	2228.608	3906.250	0.571	0.000	3906.250	0.000
L3	65.5 - 32.3 (3)	TP56.3x45.6722x0.4	3561.617	5065.300	0.703	0.000	5065.300	0.000
L4	32.3 - 0 (4)	TP64x53.4276x0.4	5401.708	6598.100	0.819	0.000	6598.100	0.000

	Pole Shear Design Data							
Section No.	Elevation	Size	Actual V	$\mathbf{\Phi}V_n$	Ratio V	Actual T	$\mathbf{\Phi}T_n$	Ratio T
110.	ft		K^{u}	K	ϕV_n	kip-ft	kip-ft	$\frac{1_u}{\mathbf{\phi}T_n}$
L1	150 - 100 (1)	TP39.6x26.4x0.3	34.840	632.482	0.055	5.624	2096.383	0.003

tron Tormon	Job		Page
tnxTower		US-CT-5018	16 of 16
Bennett & Pless	Project		Date
750 Park Commerce Dr #200		Monopole Structural Analysis	16:51:39 04/08/22
Boca Raton, FL 33487 Phone: 561-282-2676 FAX:	Client	Vertical Bridge	Designed by gtariq

Section No.	Elevation	Size	Actual V_u	$\mathbf{\Phi}V_n$	Ratio V_u	Actual T_u	$\mathbf{\phi}T_n$	Ratio T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L2	100 - 65.5 (2)	TP48.3x37.548x0.4	39.205	1026.560	0.038	5.613	4141.917	0.001
L3	65.5 - 32.3 (3)	TP56.3x45.6722x0.4	43.471	1199.360	0.036	5.604	5653.708	0.001
L4	32.3 - 0 (4)	TP64x53.4276x0.4	48.055	1417.100	0.034	5.600	7892.933	0.001

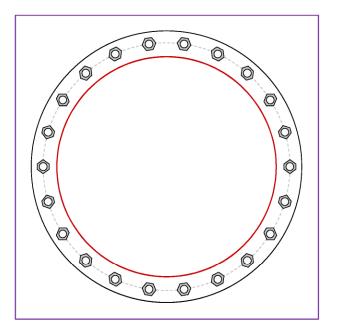
Pole Interaction Design Data

Section No.	Elevation	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	150 - 100 (1)	0.041	0.520	0.000	0.055	0.003	0.564	1.000	4.8.2 🖌
L2	100 - 65.5 (2)	0.025	0.571	0.000	0.038	0.001	0.597	1.000	4.8.2 🖌
L3	65.5 - 32.3 (3)	0.022	0.703	0.000	0.036	0.001	0.727	1.000	4.8.2 🖌
L4	32.3 - 0 (4)	0.021	0.819	0.000	0.034	0.001	0.841	1.000	4.8.2 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${}^{ heta P_{allow}}_{K}$	% Capacity	Pass Fail
L1	150 - 100	Pole	TP39.6x26.4x0.3	1	-18.511	453.637	56.4	Pass
L2	100 - 65.5	Pole	TP48.3x37.548x0.4	2	-27.227	1091.020	59.7	Pass
L3	65.5 - 32.3	Pole	TP56.3x45.6722x0.4	3	-38.063	1720.030	72.7	Pass
L4	32.3 - 0	Pole	TP64x53.4276x0.4	4	-53.737	2581.700	84.1	Pass
							Summary	
						Pole (L4)	84.1	Pass
						RATING =	84.1	Pass

Program Version 8.1.1.0 - 6/3/2021 File:Z:/Shared/Projects/2022/22.03.000 - Florida/22.03.006.xxx - VB (Ops) Towers/22.03.006.028 - US-CT-5018 Hopewell (Verizon) 152ft Monopole - Copy/SA/US-CT-5018 Hopewell_SA_040822 (Verizon).eri


Monopole Base Plate Connection

Site Info						
BU #	US-CT-5018					
Site Name						
Order #						

Analysis Considerations						
TIA-222 Revision	Н					
Grout Considered:	No					
l _{ar} (in)	1					

Applied Loads					
Moment (kip-ft)	5401.71				
Axial Force (kips)	53.74				
Shear Force (kips)	48.05				

Connection Properties

Anchor Rod Data

(22) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 72" BC

Base Plate Data

79" OD x 2" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

64" x 0.4" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary	(ur	nits of kips, kip-in)
Pu_c = 166.07	φPn_c = 268.39	Stress Rating
Vu = 2.18	φVn = 120.77	61.9%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	44.71	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	99.4 %	Pass

Pier and Pad Foundation

	US-CT-5018
Site Name:	
App. Number:	

TIA-222 Revision:

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Н Monopole Tower Type:

Superstructure Analysis Reactions		
Compression, P_{comp} :	54	kips
Base Shear, Vu_comp:	48	kips
Moment, M _u :	5402	ft-kips
Tower Height, H :	150	ft
BP Dist. Above Fdn, bp_{dist:}	0	in

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	8	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	10	
Pier Rebar Quantity, mc :	38	
Pier Tie/Spiral Size, St :	5	
Pier Tie/Spiral Quantity, mt :	8	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties		
Depth, D:	7.5	ft
Pad Width, W ₁ :	28	ft
Pad Thickness, T:	3	ft
Pad Rebar Size (Bottom dir. 2), Sp₂ :	10	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	48	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	4.5	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	105	pcf
Ultimate Gross Bearing, Qult:	30.000	ksf
Cohesion, Cu :		ksf
Friction Angle, $arphi$:	38	degrees
SPT Blow Count, N_{blows}:		
Base Friction, μ :	0.4	
Neglected Depth, N:	4.00	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	N/A	ft

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	383.67	48.00	12.5%	Pass
Bearing Pressure (ksf)	22.50	2.39	10.6%	Pass
Overturning (kip*ft)	9522.29	5786.00	60.8%	Pass
Pier Flexure (Comp.) (kip*ft)	9009.25	5642.00	62.6%	Pass
Pier Compression (kip)	35992.10	99.24	0.3%	Pass
Pad Flexure (kip*ft)	8139.63	2116.63	26.0%	Pass
Pad Shear - 1-way (kips)	1051.30	300.76	28.6%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.201	0.046	23.1%	Pass
Flexural 2-way (Comp) (kip*ft)	9891.57	3385.20	34.2%	Pass

Soil Rating:	60.8%
Structural Rating:	62.6%

<---Toggle between Gross and Net

Attachment 2: Collocation Application

COLOCATION APPLICATION US-CT-5018 Version 1 Cellco Partnership d/b/a Verizon Wireless

Vertical Bridge REIT, LLC. 750 Park of Commerce Drive Suite 200 Boca Raton, FL 33487

SUMMARY

PRIMARY INFO VERTICA		VERTICAL BRI	BRIDGE SITE INFO	
Application #:	P-019408	VB Site #:	US-CT-5018	
Application Version:	1 (Submitted: 1/11/2022 7:22:00 PM)	VB Site Name:	Hopewell	
Application Type:	Broadband	Latitude:	41.66079166	
Application Name:	Verizon Wireless	Longitude:	-72.57409722	
Lease Type:	New Lease	Structure Type:	Monopole	
Description:		Structure Height:	152.1600	
Verizon Co-Location		Site Address:	63 Woodland St -	
			Glastonbury, CT 06073	
VERTICAL BRID		/den	ROM:Joe Bascelli	
RLM: Floyd Jenkir	ns RLS: Sam Bov rerticalbridge.com SBowder	/den n@verticalbridge.com	ROM: Joe Bascelli JBascelli@verticalbridge.com (484) 288-9586	
RLM: Floyd Jenkir FJenkins@v (301) 667-00	ns RLS: Sam Bov rerticalbridge.com SBowder 069		JBascelli@verticalbridge.com	
RLM: Floyd Jenkir FJenkins@\ (301) 667-0 TENANT LEGAL	ns RLS: Sam Bov rerticalbridge.com SBowder 069	M@verticalbridge.com	JBascelli@verticalbridge.com	
RLM: Floyd Jenkir FJenkins@\ (301) 667-0 TENANT LEGAL	RLS: Sam Bov rerticalbridge.com SBowder 269 INFO Cellco Partnership d/b/a Verizon Wireless	M@verticalbridge.com	JBascelli@verticalbridge.com (484) 288-9586	
RLM: Floyd Jenkir FJenkins@v (301) 667-00 TENANT LEGAL Tenant Legal Name:	RLS: Sam Bov rerticalbridge.com SBowder 269 INFO Cellco Partnership d/b/a Verizon Wireless	APPLICANT Name:	JBascelli@verticalbridge.com (484) 288-9586 Chuck Bruttomesso	
RLM: Floyd Jenkir FJenkins@v (301) 667-0 TENANT LEGAL Tenant Legal Name: State of Registration	RLS: Sam Bov verticalbridge.com SBowder 069 INFO Cellco Partnership d/b/a Verizon Wireless a New Jersey	APPLICANT Name:	JBascelli@verticalbridge.com (484) 288-9586 Chuck Bruttomesso	
RLM: Floyd Jenkir FJenkins@v (301) 667-00 TENANT LEGAL Tenant Legal Name: State of Registration: Type of Entity:	RLS: Sam Bov SBowder 269 INFO Cellco Partnership d/b/a Verizon Wireless New Jersey d/b/a	APPLICANT Name:	JBascelli@verticalbridge.com (484) 288-9586 Chuck Bruttomesso 318 West Avenue	

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT

Qty	Equipment Type	
4	Other	
9	Panel	
12	RRU	

FINAL LINES

Гуре
l

COLOCATION APPLICATION US-CT-5018 Version 1 Cellco Partnership d/b/a Verizon Wireless

FREQUENCY & TECHNOLOGY INFO

Type of Technology: Wireless/Internet (WISP)

Is TX Frequency Licensed: Yes

TX Frequency: 746-757, 824-835, 845-846.50,1895-1902.50, 3550-3650, 1710-1730, 3700-3860, 27500-27600, 27925-28050, 37600-37700, 38000-38700, 37700-37800

Is RX Frequency Licensed: Yes

RX Frequency: 776-787, 869-880, 890-891.5, 1970-1982.50, 2110-2130, 27700-27925, 28150-28350

MOUNT & STRUCTURAL ANALYSIS

MOUNT ANALYSIS

STRUCTURAL HARD COPIES

Number of Hard Copies

Required: No

Provided by Tenant: Yes

To Be Run by VB:

Include Mount Mapping:

CONTACTS

Attention To	ttention To Name Address		Phone Number 1 Phone Numbe		ame Address Phone Number 1 Phone Number 2		Name Address Phone Number 1 Pho		Email 1	Email 2	
Chuck Bruttomesso	Chuck Bruttomesso	318 West Avenue Saratoga Sprints, NY 12866	(860) 306-8355		cbruttomesso@air osmithdevelopme nt.com	cbruttomesso@air osmithdevelopme nt.com					

PO CONTACT									
Name	Phone Number	Email							
Chuck Bruttomesso	(860) 306-8355	cbruttomesso@airosmithdevelopment.com							

LEASING CONTACT									
Name	Phone Number	Email							
Keith Murray	(203) 241-0262	keith.murray@verizonwireless.com							

RF CONTACT								
Name	Phone Number	Email						
Mark Brauer	(860) 214-8648	mark.brauer2@verizonwireless.com						

TENANT CONSTRUCTION MANAGER CONTACT							
Name	Phone Number	Email					
Bryon Morawski	(860) 604-9142	bmorawski@structureconsulting.net					

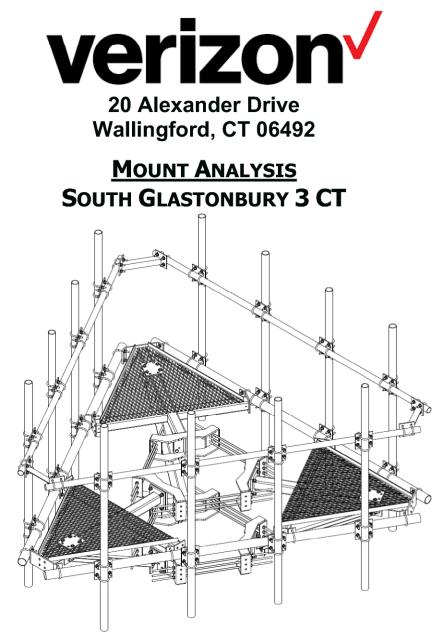
LINE & EQUIPMENT

COLOCATION APPLICATION US-CT-5018 Version 1

Cellco Partnership d/b/a Verizon Wireless

NEV	V LINE(S)											
Qty			Line Type		Line \$	Line Size(in.)Line1.625Interior			Location		Comments	
1			Hybrid		1.625				or			
NEW EQUIPMENT												
Qty	Equipment Type	RAD Height	Mount (H')	Mount T	уре	Manufacturer		del mber	Dimensions (H"xW"xD")	Weigh (Lbs.)	t Azimuth	Comments
3	Panel	115.00	115.00	Platform		Commscope		IH-65 R2B	71.97 x 43 11.85 x 7.09	43.65	30, 150, 270	
3	Panel	115.00	115.00	Platform		Commscope	NHHSS- 65B-R2 BT4		71.97 x 11.85 x 7.13	50.92	30,150, 270	
3	Panel	115.00	115.00	Platform		Samsung	MT6407 -77A		35.12 x 16.06 x 5.51	87.10	30, 150, 270	
3	RRU	115.00	115.00	Platform		Samsung	RF4439 d-25A		14.96 x 14.96 x 10.04	74.70	30,150, 270	
3	RRU	115.00	115.00	Platform		Samsung	RF4440 d-13A		14.96 x 14.96 x 9.05	70.33	30, 150, 270	
3	RRU	115.00	115.00	Platform		Samsung	MT -77	6407 'A	35.06 x 16.06 x 5.51	79.40	30, 150, 270	
1	Other	115.00	115.00	Platform		Commscope	12	OVP	29.50 x 16.50 x 12.60	32.00	30, 150, 270	
3	Other	115.00	115.00	Platform		Commscope		smnt- S-1-2	4.50 x 2.40 x 2.40	25.57	30, 150, 270	
3	RRU	115.00	115.00	Platform		Samsung	CBRS RRH - RT4401 -48A		56.00 x 24.00 x 17.50	14.50	30, 150, 270	

ADDITIONAL SITE REQUIREMENTS


Requirement Type	Total Lease Area (L x W)	Cabinet Required	Cabinet Area (L x W)	Shelter Required	Shelter Pad (L x W)	Comments
New	22.00 x 12.00		х		x	
GENERATOR		5				
Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions (L x D)			Comments
New	Diesel	50	5.00 x 8.00	Generac	Generac	
AC POWER	REQUIREMENTS					
Meter Type		Additiona	l Details	Com	ments	

COLOCATION APPLICATION US-CT-5018 Version 1 Cellco Partnership d/b/a Verizon Wireless

BACKHAUL REQUIREMENTS

Requirement Type	Cable Type	Number Of Points Of Entry	Riser Size (Inches)	Comments
New	Fiber	1	4.00	

Address: 63 Woodland Street South Glastonbury, CT 06073 Location Code: 708312

R.K. Executive Centre ■ 201 Boston Post Road West ■ Suite 101 ■ Marlborough, MA 01752

April 15, 2022

RE:

 Applicant Site Name:
 South Glastonbury 3 CT

 Applicant Location Code:
 708312

 Site Address:
 63 Woodland Street, South Glastonbury, CT 06073

To whom it may concern:

Chappell Engineering Associates, LLC has performed a structural analysis of the proposed Verizon braced low-profile antenna mounting platform being proposed at the existing 150'+/- monopole located at the above-referenced address at approximately 115 ft AGL to analyze the effect of the proposed Verizon antenna installation on the subject platform.

The proposed antenna support structure will consist of one (1) low-profile antenna frame supporting twelve (12) individual antenna pipe mounts. Our analysis has considered the following total major equipment loads indicated on the antenna design summary (included in this report) to be installed on the proposed low-profile antenna frame:

<u>Appurtenance</u>	<u>Size (HxWxD) (in)</u>	Weight	Location	<u>Status</u>
(3) NHH-65B-R2B Panel Antennas	72.0x11.9x7.1	43.7lbs	Face of Mount	Proposed
(3) NHHSS-65B-R2B R2BT4 Panel Antennas	72.0x11.9x7.1	48.1lbs	Face of Mount	Proposed
(3) MT6407-77A Panel Antennas	35.2x16.1x5.6	87lbs	Face of Mount	Proposed
(3) 700/850 mHz RRH	15.0x15.0x9.0	70.3lbs	Face of Mount	Proposed
(3) 1900/2100 mHz RRH	15.0x15.0x10.0	84.4lbs	Face of Mount	Proposed
(3) RT4401-48A RRH	13.9x8.6x4.2	18.6lbs	Face of Mount	Proposed
(1) Fiber Junction Box	29.6x16.5x12.6	32.0lbs	Face of Mount	Proposed

The proposed antennas and ancillary hardware are shown on the enclosed Lease Exhibits and RF Data Sheets.

We have modeled the entire low-profile antenna frame under both wind and wind/ice loads. Our analysis and results are included in this report.

Based upon our analysis of the antenna mounts being proposed, **we consider the proposed RMQP-496-HK lowprofile mounting frame assembly has adequate capacity** to support the proposed antenna configuration as shown on the construction drawings. Our analysis assumes the mount will be installed and maintained according to the manufacturers' recommendations.

If you have any questions regarding this matter, please do not hesitate to call.

Sincerely, CHAPPELL ENGINEERING ASSOCIATES, ILLG TITOE SSIONAL Clement J Salek, P.E. CJS/cjs

R.K. Executive Centre 201 Boston Post Road West Suite 101 Marlborough, MA 01752

Appendix A – Construction Drawings

Unanto:	ARCHIECT/ENGNER:	Civil-Structural -Land Surveying	R.K. DECUTIVE CENTRE 201 BOSTON POST ROAD WEST SJITE 101 MARLBORDICH, MN 01752 (538) 481-1400 www.choosellendineering.com	TRAT			IKAETUK	CONTROL SCALE, MULL: TREE DWARES HAVE UNDER HARD C (AVAR) FOWARC FOR DWARES HAVE UNDER HARD AND C (AVAR) FOWARC ALL WARES HAVE UNDER HARD AND AND AND AND ALL WARES HAVE UNDER HARD AND AND AND AND ALL WARES HAVE AND AND AND AND AND AND AND ALL AND AND AND AND AND AND AND AND AND ALL AND AND AND AND AND AND AND AND AND ALL AND AND AND AND AND AND AND AND AND ALL AND AND AND AND AND AND AND AND AND ALL AND	TO ALTER THIS DOCUMENT. REVISIONS NO. DESCRIPTION And And And And And And And And And And	ISSUED FOR CONSTRUCTION (FINAL) REVISED TSA REFERENCE DATE	3 REVIED MAN RETURNED DATE 4/15/22	PROJECT NAME:	GLASTONBURY 3 CT 83 WOODLAND STREET	SOUTH GLASTONBURY, CT 06073 DRAWING TITLE:	TITLE SHEET	DEAMING NG	Solution Constraint mate Constraint mate Solution Constraint mate 2021200000 Solution Constraint mate 2021200000 Solution Constraint mate 2021200000 Solution Constraint mate 2021200000 Solution Constraint mate 202100000 Solution Constraint mate 202100000
		T 06492				SHEET INDEX	DWG. DESCRIPTION REV.	Tor TTLESHEET 3 Okon GADRIAN, KOTTS Cot PROPERTY PLAN A01 EQUIPMENT, PLAN A02 EQUIPMENT, PLAN & EFFULS A02 EQUIPMENT, PLAN & EFFULS 3			EX ELECTRICOL DURING PROVINCIAS EX ELECTRICOL DURING MA BETALLS 3 EX ELECTRICOL DURING MA DETALLS 3 EX EXEMPTIC GROUNDING PLANA A BETALLS 3 SCHEMATIC GROUNDING PLANA A BETALLS 3 3	contraction of the second seco			DO NOT SCALE DRAWINGS	А. I FLARS, DV3 TIMO DAMPASIONE AND CONDITIONS AT THE PROPOSIDE PROJECT STE SHALL BEVERED IN THE FEED COMMON THE CONSTRUCTION PRESE THE FRAME-CONVERSES REVENDED IN THE FEED COMMON THE PROPOSIDE OF THE FEED PROJECT CONVERSES REVENDED TO PROJECT TO PROVE THE PROVIDED AND THE REVENDED AND THE REPORTED AND THE REVENDED AND THE REVENDED AND THE REPORTED AND THE REVENDED AND THE REV	 THIS IS AN UNMANNED AND PRESTRICTED ACCESS EQUIPARENT INSTILLATION AND WILL BE USED PORTINE TRANSMISSION OF PLOD SIGNAL. FOR THE PURPOSE OF FROVIDING PUBLIC TRAILERS TELE TRANSMISSION OF PLOD SIGNAL. THIS PACLITY MALL CONSUME NOT NOT BE REPORT. AN OPTIGATE MATERIDATIVE IS OTHER THIS INFORMATION. AN OWASTE WILL BE GENERATED AT THIS LOCATION. AN ONSOLD WASTE WILL BE GENERATED AT THIS LOCATION.
		20 ALEXANDER DRIVE, 2nd FLOOR, WALLINGFORD, CT 06492	SOUTH GLASTONBURY 3 CT	63 WOODLAND STREET SOUTH GLASTONBURY, CT 06073	PROJECT TYPE: WIRELESS TELECOMMUNICATIONS COLLOCATION ON EXISTING 150'± MONOPOLE	VICINITY MAP	SCALE: 1"=1000			SIE	シークバー				DRIVING DIRECTIONS	FROM MULTIARGORD TAKES IN CONTRY HARE TREE CITY OF CLARGENT UNDER ADARCHMENT, NEW THE ENT OF CLARGENT CONTROL CLARGENT CLARGENT CONTROL CLARGENT CLARGEN	
SUPPORTING DOCUMENTS	ANTERINA SUPPORT STRUCT UNE (139 2 MUNUPULS) STRUCT UNAL ANALYSIS UND 2 41 222	20 ALEX			÷	SITE INFORMATION:	PARENT PARCEL OWNER- PAUL J. CAVANNA	TOWER OWNER: TO THE COMPANY OF THE TO THE TO THE TOWER OWNER: TO THE TOWER OWNER: TO THE TOWER OWNER	TOWEN OWNER ID: CT5018 (PAPEWELL) APPLCANT: CELLOD PATTHEBAIN (cab VPRCOM WIRELSS) CALEMORT POINTE WALLINGEPOINTE WALLINGEPOINTE	SITE ADPRESS: 85 WOODLAND STREET SOUTH GLASTONLIPH, CT 06073 COUNTY, CT 06073	SITE CONTROL POINT. CENTER OF EXISTING MONOPOLE N 47:-39:-38: 57: (14:16:27:19:40:35) W 77:-39: 75: (25:14:19:19:19:10:35) UHREDETION: CONNEL	TAX ID PARCEL NUMBER. MAP GIT STREET 7800 LOT W0002 ARCHITECT / ENGINEER: CHAPPELL ENGINEERING ASSOCIATES, LLC CHAPPELL ENGINEERING ASSOCIATES, LLC MARLEPODUIA, MOT722	POWER COMPANY: EVERSOUNCE ENERGY 247 STATON BMIE SE 210 WESTWOOD. MA 02080 (78) 441-9610	TELEPHONE COMPANY: DEPIGON 168 FRANKLIN STREET BOOTH, MA OZIOT 600 94 4980	GENERAL NOTES	 continuencions stutu tampeti auto assimilia putellationals auto contrimaciones stutu. Interface Autorestications and contributions studies in voltamente autorestication expensional and an expensional and ana expensional and an expensional and an expensional and an e	STRUCTURAL CODE. TVLENZEG STRUCTURAL STANDARDS FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS. ATTENT POUNE PROFINE ATTENT POUNE PROFINE AND ANTENNAS AND ANTENNAS AND ANTENNAS

GENERAL NOTES:

I. FOR THE PURPOSE OF CONSTRUCTION DRAWINGS, THE FOLLOWING DETWITIONS SWLL JOPLY: ORTHOGORY, - VERSIAN HARLESS, ONTRACTOR (CONSTRUCTION) SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) subcontractor - general contractor (orner - Verizon Wireless dem - original equipment manufactures)

2. Procr 70 The subarssion of Bros. The Bilding Subcontraction sym. UNIT The Call Stift To Funlinger With The Substring Constitution and To Configuration and the Call Stift To Funlinger University with Disservery To Number To The Artification of Configuration.

3. All witeras financial and installable state in Strikt accordance with all approximate codes, regulations, regulations, and and taken all state all appropriate introface and all all approximates. Subjection Sciences States, and a contrological and all approximates of any public antionative experiments of the projection and all approximates of any public and all approximates of any public approximates of any public approximate and any public approximates of approximates of any public approximates of any public approximates of any public approximates of approxi

4. All work carried out simil camply with all applicable manicipal, and utility compary specifications and local application.

6. Unless noted otherwise. The work small instance flavily imaterials, equipment, appurtenances, and labor Vecessary to complete all installations as indicated on the drawnos. 5. DRWINKS PRONDED HERE ARE NOT TO BE SOMED AND ARE INTENDED TO SHOW OUTLINE ONLY.

recompanying unless spectrolity stated otherwise. In accordance with lawuracturer's

B. IF THE SPECIFIED EQUIPATION FOR APPROVAL BY THE CONTRACTOR SWALL PROPOSE AN ALTERVATIFE INSTALLATION FOR APPROVAL BY THE CONTRACTOR.

8. SECONTRACTOR SHALL DETEMBRE ACTIVE ROUTING OF CONDIT, FONET AND TI DELES, ROUNDING CARLES AS SYCHN IN THE POPEL, GROUNDING AND TECTO PAND INDURG. SUBCOMPACION SHALL TINTE EDSIMIN TRANS AND/OF SHALL ADD VANDARS AS RECESSING SECONTRACTOR SHALL DATED THE ACTIVE RIMIT THE CONTRACTOR.

ILI, THE SUBCONTRACTOR SWILL PROTECT EXEMPIONEMENTS, EVIEBADITS, CARRES, LANDSCHPING AND STRUCTURES, ANY DAMAGED PART SWILL BE REPARED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.

11: Sibontinactior shull leave the property dispose of all scale material such as cavar, oreles and Derdi tilles frauged from the distance faculty, mitennes reaved same be returned to the omners desimite Location

11. The SaecontingCipe SML Supervise and Dreat The Project Description and Proper The SaecontingCipe SML BE CRUEN RESOURCE TO ALL CONTRUCTION MEMORY, REFIRED FOR TRANSLOCE AND PROCEDURES FOR DOCIMINENT ALL PROFILE OF THE WORK UNDER THE CONTRUCT. 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

subcompactors shall notify camped diameterio associates, LLC. 48 hours in advance of poliring concrete Back filling theorets, scalar foro and Wall. Prefinitors & Post downs, pashing new Walls or final tritical concernois for a biokerbing renew.

13. construction suml comply with version wreless network statured Antidits to the Maxmum extent feasible. Jaless preculded or lumited by design syonn on these downors.

6. SUBCONTRACTOR SHALL VERTY ALL DUSTING DIMENSIONAR AND CONDITIONS PROR TO COMMENCING ANY WORK, ALL MEDIBERIOS OF PEDISING CONSTRUCTIONS SOMIN ON THE ROMANNE DIMENSIONE SHALL INFORMATION CONTRACTOR of ANY DOSCHWARES PROR TO GREEPER ANTERAL OF PROCEEDING ANTI ADVINCTION.

1) The EDERNG CLI BE IS A FLL CARRENUL CERTISMA MA CONSTITUCION MEM IS TREADONTICULOR SALL NOT DESIRT TE RESTIN REAML OFFICIALS, ANY WING ON EDERNE SUBMERTING MEM IS TREADONTICULOR SALL NO ASSO, WHE SHOLD BE SOFEDULED FOR AN APPROPRIATE MANITURANCE WINDOW USJALLY IN LUM THATCE FUBOOS AFTER MINIMUM.

IL SAIGS THE FOLL SIE ALONG, ALL STATT PRECURDING ANS ET REVEN UNEN MARINE MAND HAN LUSES OF EXISTEMBACKER SAMATINE EXPERIENT SANULA RESTRICTION FROM TO FERSIMING ANY INVESTIGATION DEVEST. IN MISSIES TO DAVEST: POSSAWL IN" EXPERIENT SANULATION FOR TO REVEN TO ALTICIT OF ANY INVESTIGATION EXOSTING PARTS.

SITE WORK GENERAL NOTES:

I. THE SUBCONTRACTOR SHALL CONTACT UTLITY LOCATING SERVICES PROR TO THE START OF CONSTRUCTION.

2. ALL DEFINE AFRE, WIET, BAC, TLETRA, AND ONEY UTURS' MEET BOOMFRED. IN THE WORK, SPALL ER FORDER TA ALL, MARK, NOM PRE REARDER TO THE PROPERT VECTORY OF IN WARK, LEW ALL BLACKLOTH SPACED TO BAGNIZE, DEFINE SALLD BE (SED THE REARD FOR THE REARD STATE) AND THE BACKLOTH SPACED AFB AN UTLESS, SPACEMENT SALL THE SARDER STATE THREAD FOR THE REAL ALL BLACK AND AFB AND AFFER AFF

4. If increasedry, rubbish, strupps, debars, strokes, stones and other repuse shall be removed from the site and Disposed of Legally. 3. All site work shall be as indicated on the drawings and project specifications

5. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.

er ng fill or fillawinanti materia. Siwil be placed on frozen growid, frozen materials, snow or ice siwil not

VPELISION. VPELISION

B. ALL DESTING MOTHE SAREY, MATRY, GAS, ELETING: AND OTHER UNLIES, MACH ANDERDE WHI. THE DESTURM OF THE WASK, SALE THE READERD MOTHER CAPITE, DURADOL OF DAMESTARY OF THE WASK, SALEST D'ILE APPROVL OF DAMESTARY, OWNER AND/OF LUCAL UTLIES. B. THE ARENG OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND MOT COMERED BY THE TOWER, EQUIPMENT OR DYNEWIX, SHALL BE GAUDED TO A UNITORAL SLIPE AND STABILIZED TO PREVENT ENCOCIM AS SPECIFIED IN THE PROJECT SECREPTIONED. (i. Subchitrarciar shull manuze distrubbance to ensting stie durange construction. Boson control mescares, f Regulato durange construction, S-ML is: n conformance with the local quidelings for encand and sedingar control.

SIGNOE.

CONCRETE AND REINFORCING STEEL NOTES: AL concrete ways way it is in concorrect with the concrete ways will also and the test and construction streamont for dost-ap-tock concrete:

A. ALL CONCRETE SMLI, HAVE A MINIMUM COMPRESSIVE SITEBARTH OF 2000 PSI AT 28 DAYS, UNLESS NOTD OTHERNEE. A IGHER STREPHIL (4000PS), MAY BE USED, ALL CONCRETE WORK SMLI. BE IN ACCORDANCE WITH THE ALL 281 CODE.

r. Reinforcing steel sum conform to astim a firs, gauge qq, detorned unless noted othermer, meller mare frager Nors such the to say in the unless them were frager unless noted othermere. Spuces shull be cluss "p" and all the estimates of the same steel were frager unless noted othermere.

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON

Amonecast to be advect partial and a monecast to be advect partial and a monecast to be advect partial and a more advecting the advecting advectin

COMMERS 1/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

I. INSTLATOR OF CONCETT EPONEROV/PEDCE ANCHOR, SHALL BE FPS. NUMFICATORET'S INTELN RECOMMENDED PROCEDURE. THE ANCHOR OLIVIDE ON ROLE NO. 2019 CALID BURGHOUSTICARS STREATEMENDED FOR EARDER TO FILLAR A STARIN FOR INSTRAME, RECENTED FOR DEAD SHALL BE STREATER PAPERIAL RESULTARIANT RECOMMENDED FOR EARDER FOR INSTRAME RECENTED FOR INSTRAME RESULTARIANT SECREMENDENT OF REAL RECOMMEND. EXHIBITION RESULTATION FOR EXAMPLIANT FOR RECOMMENDICARS. RECENTED FOR RECOMMENDICARS AND RECENT RECENTED FOR PROFILE AND RESTLATION RESULTATION RECENT RESULTARIANT RECOMMENDICARS. RECENTED FOR RECOMMENDICARS AND RECOMMEND. EXHIBITION RECENT RESULTARIANT RECOMMENDICARS AND REVENCE R

oncrete from such different brich plant.

9. Equipment Swill Not be funced on New Paus FDR SINEN DAYS AFTER PAU IS POURED, UNLESS IT IS VERIFED BY CHUNDER TESTS THAT COURTESINE STREAMIN HAS BEEN ATTAINED.

STRUCTURAL STEEL NOTES:

1. ALT TELL WARE SAULT ER HAND OR AUXACED NACIONARY WITH REAMMES AND YEARD WHEELSE STREAMMES AND SEAS-00-59-56-56-50001 NALESS OTHERMISE NOTIL, STRUCTURE, STRL, EX. AND. 45-40 NALESS OTHERMISE NOTIO THE STEL SERENCE DAMMES, THE LESSAN AUXALIAN AND DAMES SAULT ER NACIONARIZE WITH THE AUXIONAL WATTING OF TELL CARRENTION (465) "WAVEL OF STRUCTURE)."

2. All NELDING SWILL BE PREVENDED LISING FUNCTIONES AND NELDING SWILL DRIVEN TO ASC AND ANS D1.1, NH-DBE, CLUB SWILL DRIVEND NG NELDING SWILL DRIVEND SWILD SWILL DRIVEND SWILL DRIVE

oted otherwise. I bolid otherwise summary is bolid (4,4) and some field are bolid (4,4) and summary of the bolid unless

NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5 DIA. ASTM A 307 BOLTS UNLESS NOTED OTHERMISE.

CONTRACTOR SHULL SUBMIT SHOP DRAWINGS FOR ENGINEER REVEW & APPROVAL ON PROJECTS REQUIRING STRUCTURAL STEEL

. All structural steel work shall be done in accordance with also specifications.

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

dicharte as required to relacive veretation and topsoil. To dopose initianle subgrade and place crushed stone as Quired.

compaction certification: An inspection and watten certification by a qualified geotechnical technican or excineer Accessingle.

AS AN ALTERVITE TO INSPECTION AND WATTEN CERTIFICATION. THE "UNDISTUBBLED SOL" BASE SAVIL BE COMPACTED WITH COMPACTION EQUIPMENT", LISTED BELOW, TO AT LEVET 90X MODIFIED PROCTOR MICHAUN DENSITY PER ASIN D 1557 METHOD C.

. Coupacted subbace shull be uneven and leveled. Promoe 6° minimum crushed stone or gavael compacted in 3° fifts above compared shull be interval or crushed with 100% passing β 1 seve.

s, es al altente to tens 2 ano 3, tes subrenes cals fini e preses of a lactual actor haite companying des ter area ano acuido de inde contint Salanta andara acuida ter alter socia de la lactual de statida daves: acuonestas socials e ferondo na esplota fini a fili-conte de navia 1, ano confrend de

COMPACTION EQUIPMENT:

HAND OPERATED DOUBLE DRUM, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR. CONSTRUCTION NOTES: etal vertentanion. Discontacting swill peld verify score of work, verizion wreless antenna platorna location and antenns to be Discontacting swill peld verify score of work, verizion wreless antenna, platorna location and antennas to be

coordination of work: Ibcontractor simil coordinate re work and procedures with contractor.

core hock force and: bioconforcer and: 1 he was location.

FLECTRICAL INSTALLATION NOTES:

. Wring, Ruceway, and Support Methods and Materials Shall comply with the requirements of the Mec No telegraph.

verizon

CLENT

2. Subcontractor sull modely existing cable trans system as required to support by and transport saling to the rew ets equipment, subcontractor shall submit modelications to contractor for approval

In all creating swall be seqregated and manafam manafam cable separation as required by the Nec and I. CABLES SHULL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNCS.

5. Each dug of Pietr Poiers, Grounding, and T1 conductor and caller svall al labeled with color-color becauting of electronal table (2) and and 12 kert Parcel electronal and the finit of precision, or acual the double of electronal with here & dsall, and where a call, and the resultion requirements.

6. PONER PARSE CONDUCTORS (LE, HOTS) SHUL BE LUBELED WITH COLOR-CORD INSLUTION OR ELEMBOLI. TAPE (M. BRAND, X MAN PLANCE LEITIONE, VEY WITH UN RENEEDIDAN, OR LEILUM, PANSE CONDUCTOR COLOR SHUL CONVENTIAM WITH HE REZ. & CISH, MO WATCH ESIZINE RESULTIONED STATE SHUL CONVENTIAM WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTIONED STATE CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTIONED STATE CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTIONED STATE CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTIONED STATE CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTIONED STATE CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTIONED STATE CONVENTIANT STATEMENT OF CONVENTIANT OF CONVENTION OF CONVENTIANT CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE, RESULTION OF CONVENTION OF CONVENTIANT CONVENTIANT WITH HE REZ. & CISH, MO WATCH ESIZINE RESULTION OF CONVENTION OF CONVENTION CONVENTIANT OF CONVENTIANT OF CONVENTION OF CONVENTION OF CONVENTION OF CONVENTION CONVENTION OF CO

ASSOCIATES, LLC

ENGINEERING

CHAPPELL

ARCHITECT/ENGINEER:

R.K. EXECUTINE CENTRE 201 BOSTON POST ROAD WEST SUITE 101 MARLERGUGH, MA 01752 (508) 481-7400 www.chappellengineering.com

A. ALL ELETINGAL CONFORMENTS SAUL BE CLARK INSTEAD INFINITIONANDOR PARTIN LUBBLES. ALL SURPERT SAUL EL UBELDIN TITT THEN NOLIZE RUNK, PANSE CONFIDENTION, INF. CONFIDUNDIN, PONER OR ADMINISTIC PONIE, ADMINISTIC SARCH TO NUELEDS (LL'I-INGLI BENOD AD CACHTI D'S).

B. PANEL BOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH ENGANED LANACOD PLASTIC LABELS.

I. ALL THE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.

SEAL:

In persons, control, was character frontow similar on it there or counce shuff a state constrained (A) was de vident), foot v. d. descriment only on Physical Sciences (2) and the state of the state

11. SUPPLIARINI, EUPINENT GROUND WARK, LOUTE) NKOORS SHUL JE SINGE CONDUCTING (ÅR JING DG JARGE) 2017, OL TESSTINT FINN ON TIMM-2. BREISN NGSJUTON, CUSS 5 STRNAUDD CAPTIC OKLE AND DR ADD (MET XN) DEV) UPSAUTOR, LISTED OR JABELD FOR THE LUCKTON AND NACEWN SYSTEM LISTEL, INLESS OFFENNES. SECTERD.

12. Supplemental equivability of the source of the sources, or below groot, shall be single conductor for two sourd threed ordere, unless otherwise specified.

11. Portes and control, report, and in Trendo or conduit, swill, de Millin-Conduztor, the tro care (d) and or lakeost), god y car reserving the name-2, cases a strandod control obter and the or strategies to her of desaurcher, with outer adapter, losses or the cadina used, lakeos one-sections.

14, AL POWER AND GROANONG CONNECTIONS SHALL BE CAME STILE, COMPRESSION WEE LLIKS AND WITE MITS BY THANS AND BETTS (OF EQUUL). LLIKS AND WIFE MITS SHALL BE RATED FOR OPENVION AT NO LESS THAN 75°C (SOFC F MANABALE).

DRAWING SCALE NOTE: THE PRIMER AND REPORT AND PARTY TRANS THE PRIMER AND REPORT AND PARTY TRANS ALL WE AND REPORT AND A PART AND A PARTY TRANS ALL AD COMPARING THE AND AND AND A PART AND A PART ALL AD COMPARING THE AND AND A PART A

IT IS A VOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LUCENEED PROFESSIONLE, DAGINEER, TO ALTER THIS DOCUMENT,

REVISIONS DESCRIPTION

DATE

ENGINEER/LAND SURVEYOR

15. Racenny and cable tran similiae listed or labeled for electrical use in accordance with mean, ul Mis/Refe, and Nec.

16. NEW PACEWAY OR CABLE TRAY WILL MATCH THE EQUING INSTALATION WHERE POSSIBLE.

18. Electricul Metalue (1947), electricul mometallo (1947), or roid nomietallo comunt (1940) Pro, schedule 40) shull be used for concelled indoor locations. 17. Electricola metallo: Tubino (Ent) or rigid nonmetallo conduit (le, rigid pyc schedule 40, or rigid pyc Schedule 80 for locations subject to physical davage) svall be used for dotor locations.

19. GALWANIZED STEEL NTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE

20. RIGID HOMMETALLIC COMPUTE (LE, RICID PCC SCHEDULE 40 OR RIGID PCC SCHEDULE 60) SHALL BE USED UNDERSEQUED, DRECT REPERT, IN AREAS OF COCSUSIONL, LIGHT VEHICLE TRAFFIC OR FINORED IN READINCED MONDERET IN AREAS OF HEAVY VEHICLE TRAFFIC.

2/10/22 4/15/22

ISSUED FOR CONSTRUCTION (FINAL) REVISED MISA REFERENCE DATE

ISSUED FOR REVIEW

90 -

4/13/22

REVISED TSA REFERENCE DATE

21. LIQUID-TIGHT FLOORE METALLIC COMUNT (LIQUID-TITE FLIDI) SHALL BE USED NODORS AND OUTDOORS, WHERE VIEWTIDN OCCURS OR FLOORLITY IS NEEDED.

22. Conduit and them fittings shall be theraded or compression-the and approved for the location Lised. Set sorem fittings are not acceptable.

cabinets, boxes, non wreawns shall be listed or labeled for electrical use in accordance with near, Ansi/fee, and reg. ಷತ

24. CABINETS, BOXES, AND WIREWAYS TO MATCH THE EXCEPTING INSTALLATION WHERE POSSIBLE.

25. Wreiwys suul be poor-conted (ann) and include a hinged coher, deskred to sinng open domining suul be pardit type E (or equil); and anto neuro nam 1 (or better) noodes, or neur 37 (or better) Ditdoors

or, doughent chanets, texning, bolcs, Junction Boxcs, and Pull Boxes Saul ie: Calvanets of Egypt-courd Sheet stera, and meet or Exceed ul, 30, and Rate Nami I (or ester) indones, or Nami ar (or estering) outdoors: Or Nami

63 WOODLAND STIREET SOUTH GLASTONBURY, CT 06073

RAWING TITLE:

GLASTONBURY 3 CT

SOUTH

PROJECT NAME:

77. MERI, REEPTAGE, SMICH, AND DEVICE ROLES SAUL. IR: GALWARZID, POOR-GAIRID, OR NOH- CORRONAG, SAUL MEET OR DOLEDU, 6.1 MAN DIRAM (S. 1). AND RAIDI ALM. 1 (OR BETTER) NODORS, DR WEIGHER PROTEID (NG MR BETTE) OUTDOORS.

Nonwernlic Redeptingle, Switch, and Dence Bodes Symle weit or Exceed NEM os 2; and Rated NEM. I Bettern Indones, or Weather Protected (NP or Better) Outdoors.

23. The subcontractor symle active and obtain necessary authorization from the contractor before compacing work on the ac power distribution panels.

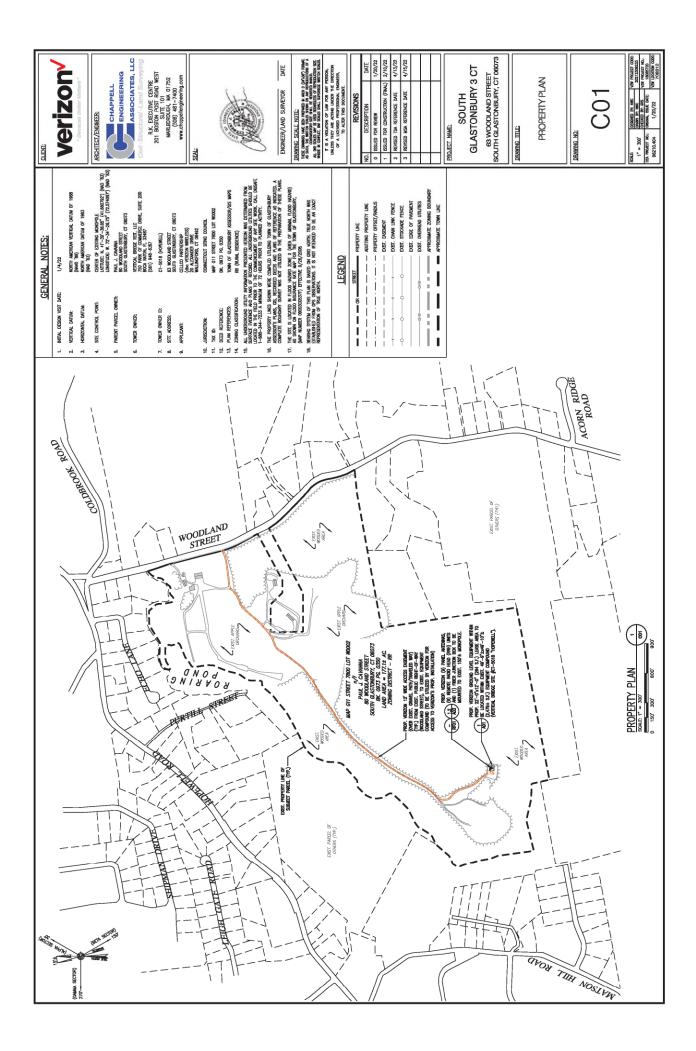
GENERAL NOTES

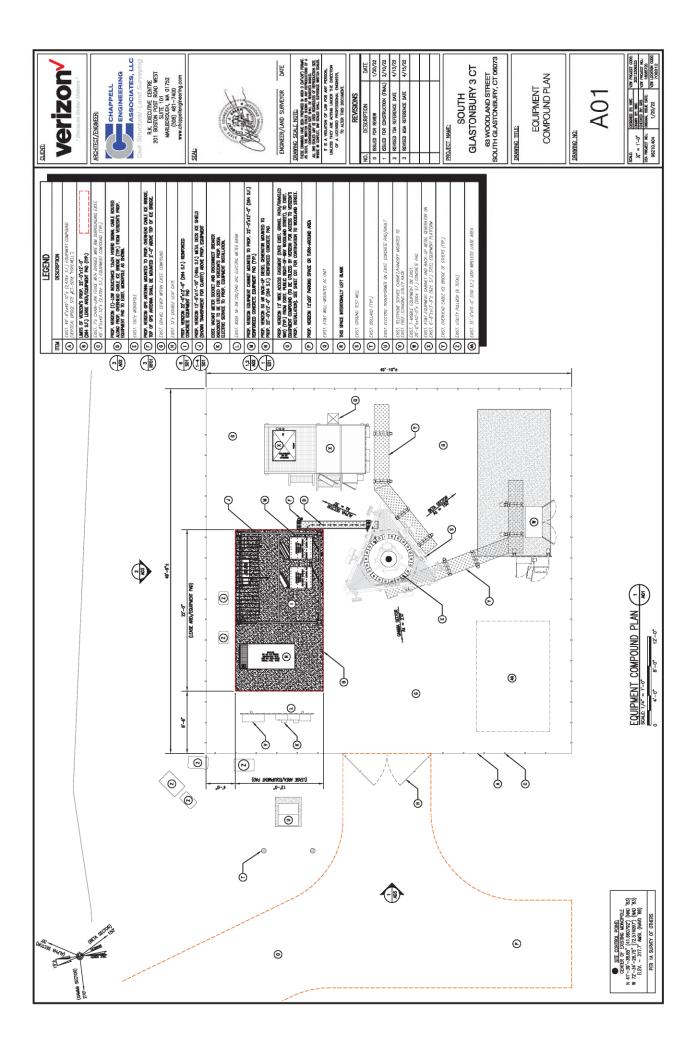
20. The subcontructor shall provide necessary taccing on the brewers, caller and distribution panels In accordance with the applicable godes and standards to safeduard against life and property.

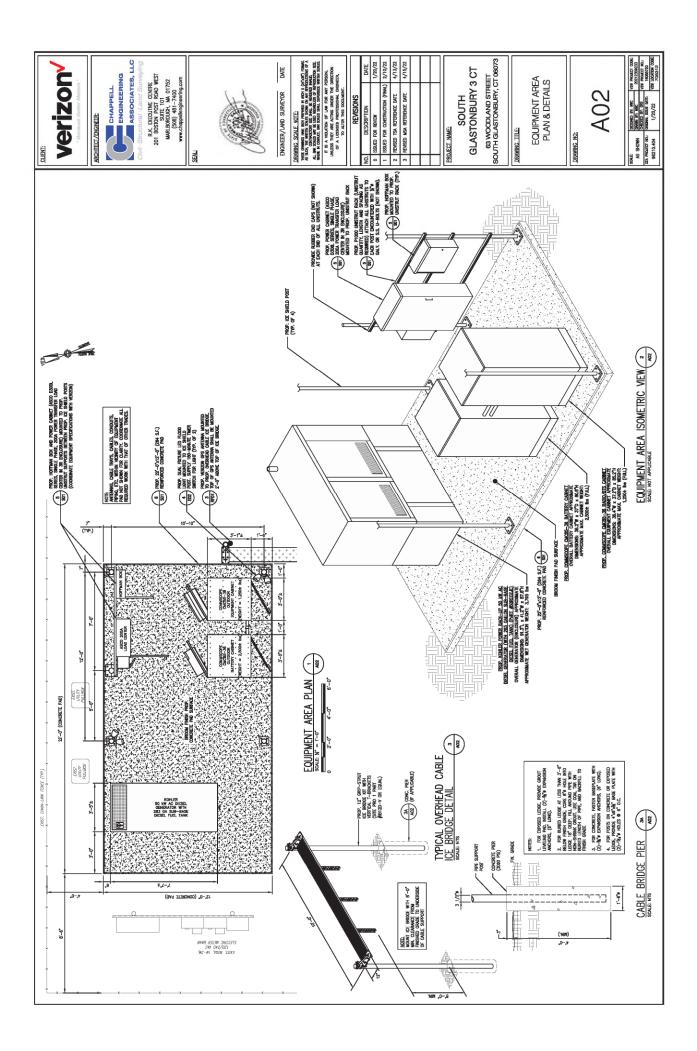
PERSONAL DOIS: ALL DECTRONAL WASH SWALL BE PERSONALE WITH THE PROJECT SPECIFICATIONS, NED ALL ALL DECTRONAL WASH SAVELY AND ALL DECTRONAL WASH

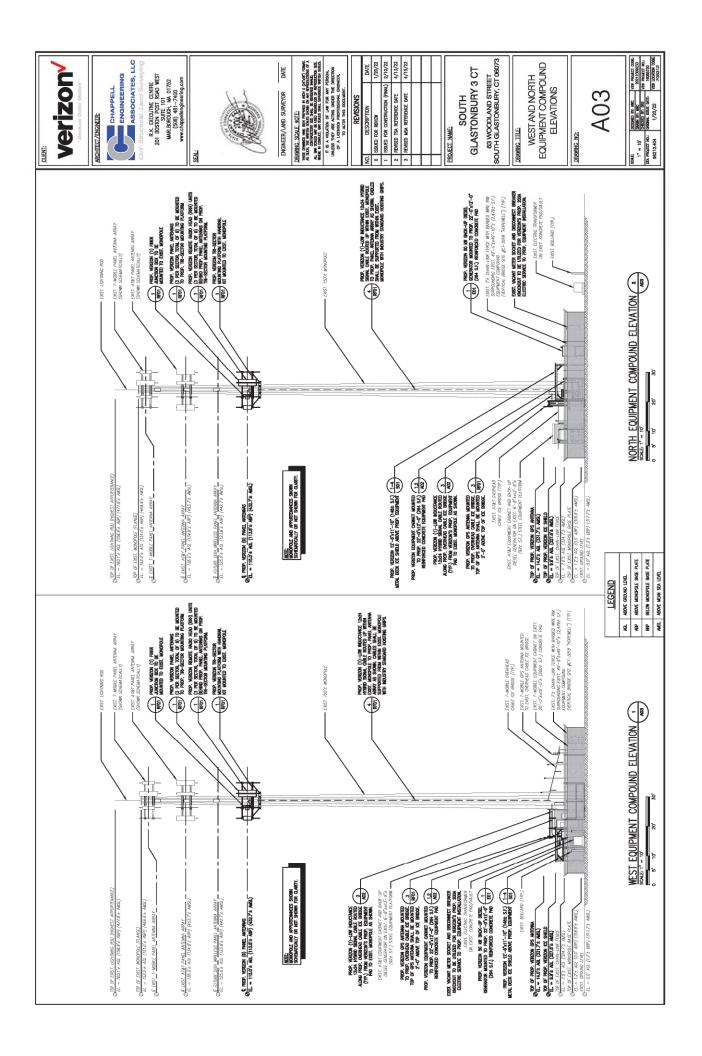
DRAWING NO: 22. Conduit routings are schematic. Subcontractor shall install conduits so that access to equipment is
 SGME:
 0039400 Fit Mile
 Var Micular door

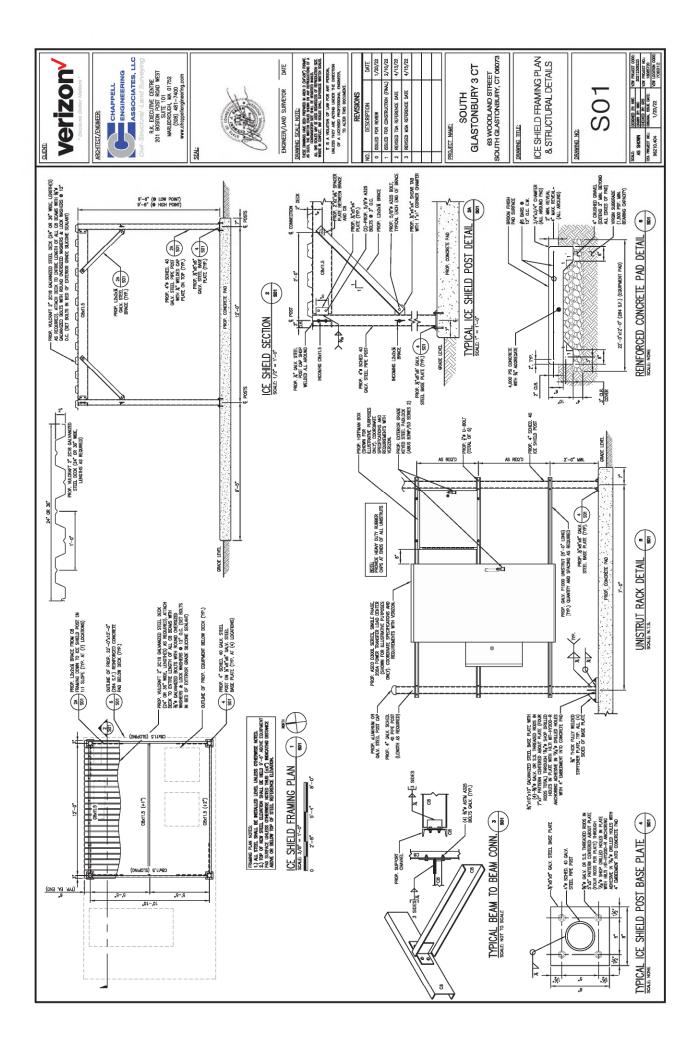
 N/A
 0039400 Fit Mile
 2001302033

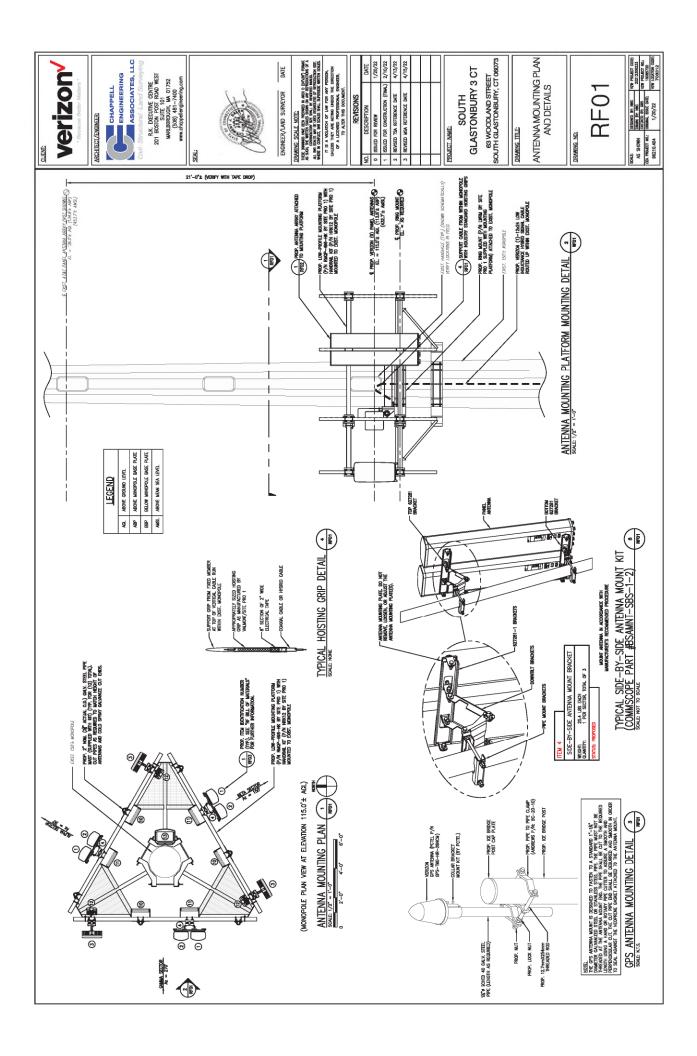

 NA
 00400 Fit Mile
 200130203

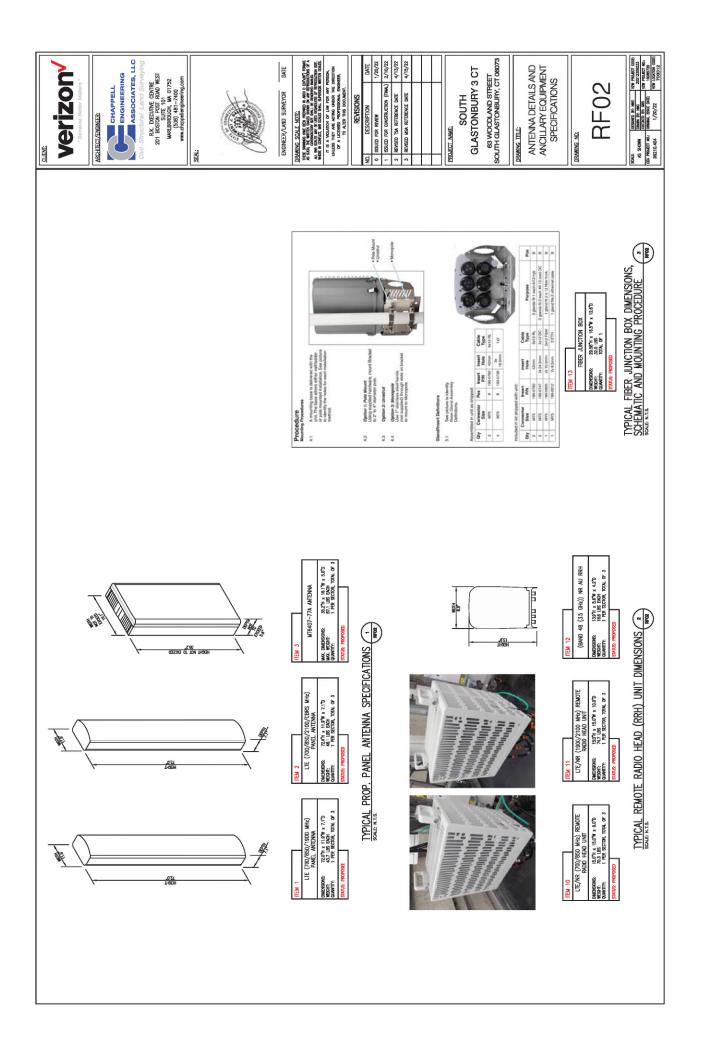

 CROWID Fit Mile
 665
 Vor Miletar Mile

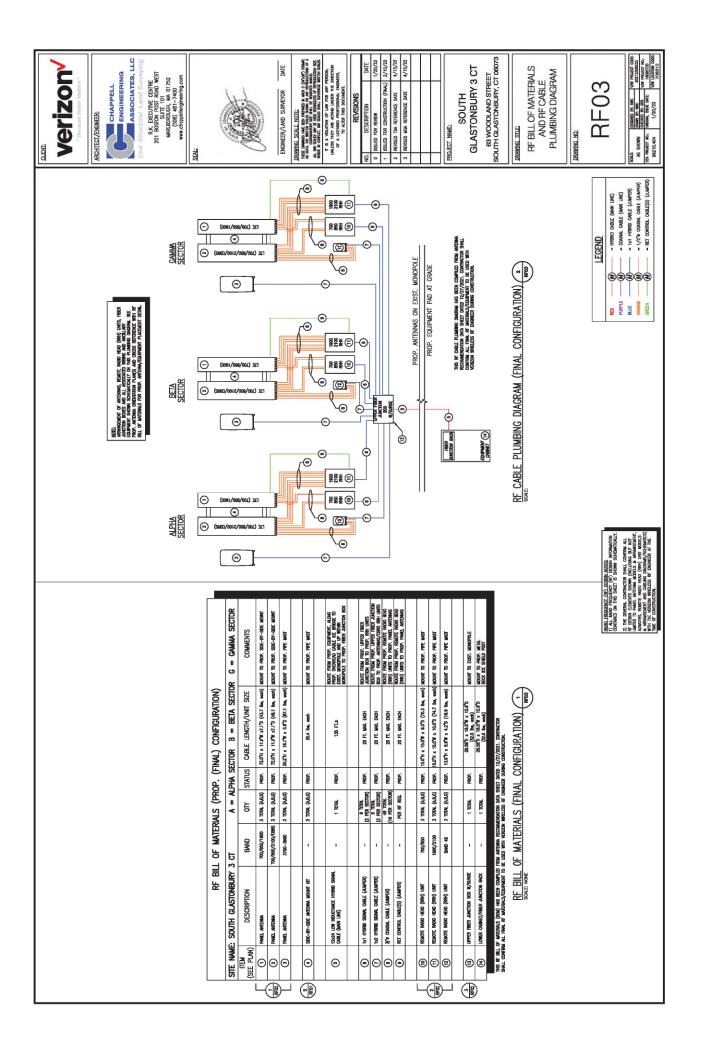

 CR Miletar Mile
 665
 Vor Miletar Miletar

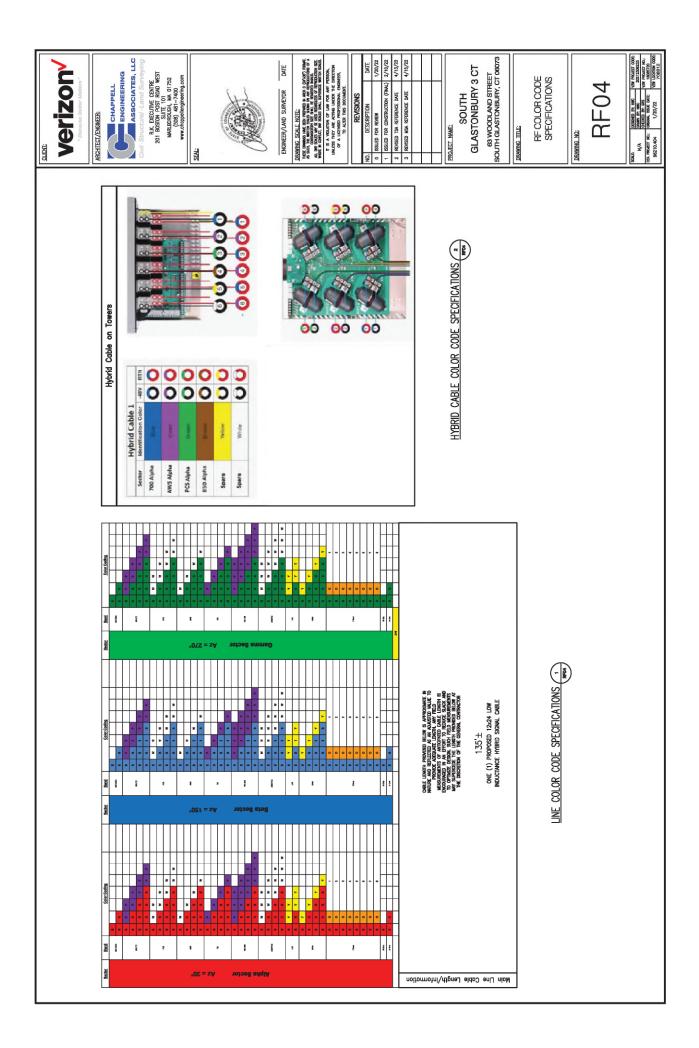

 S6210.404
 1/20/22
 Var Money more door

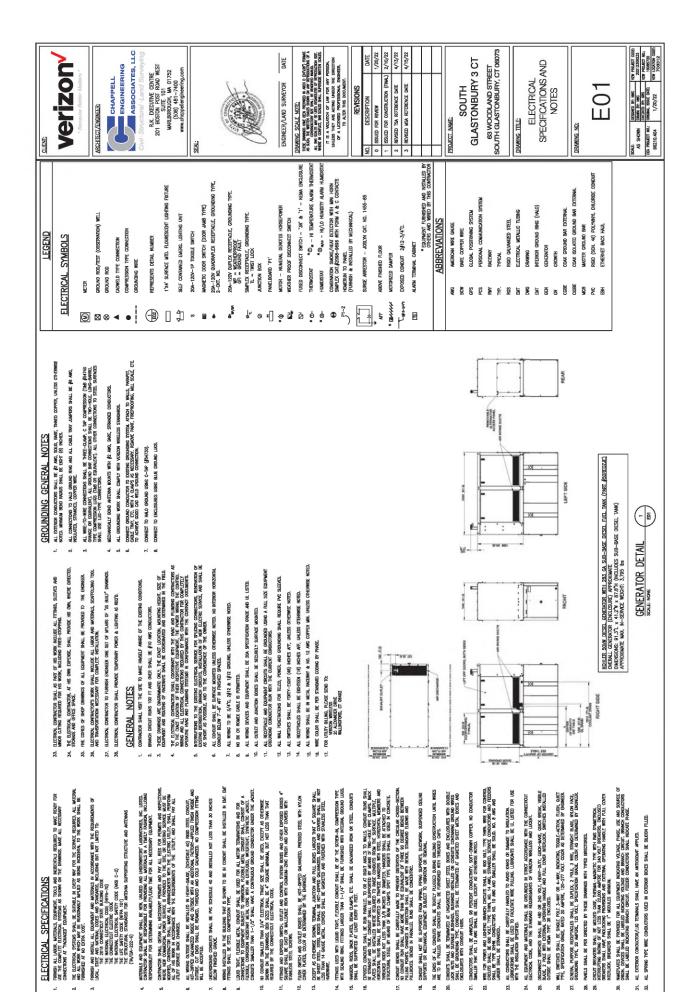

GN01

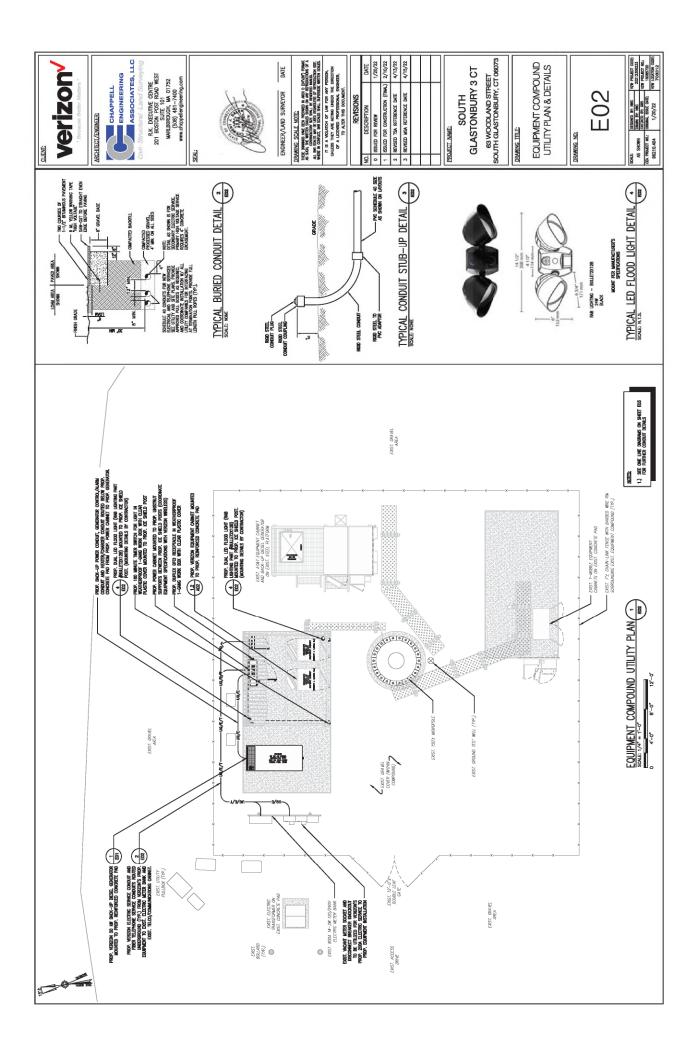


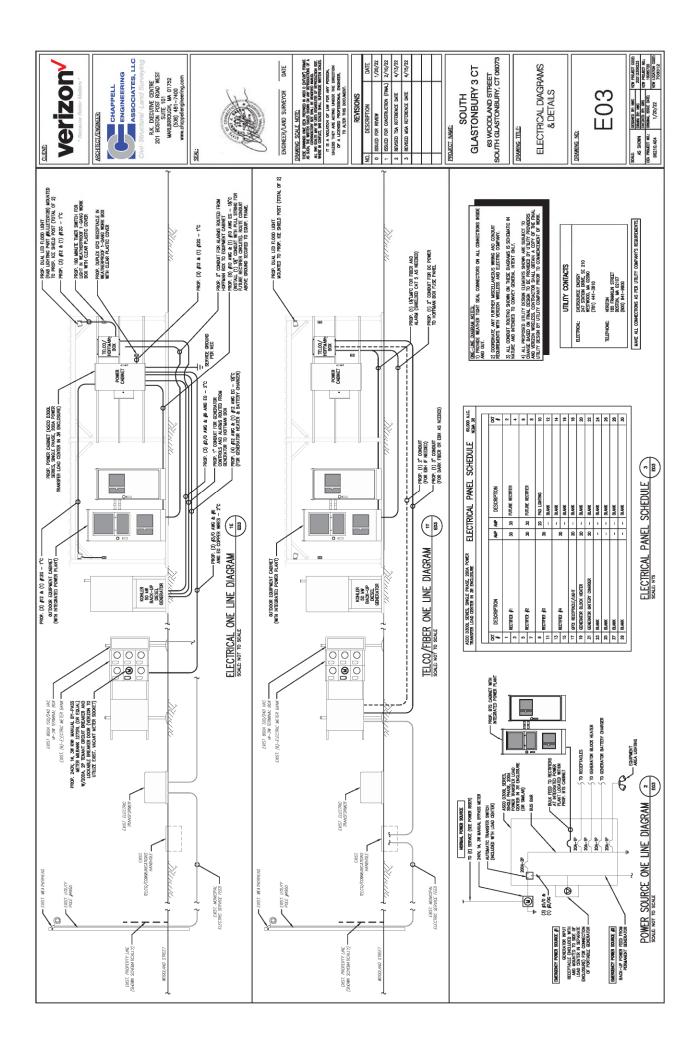


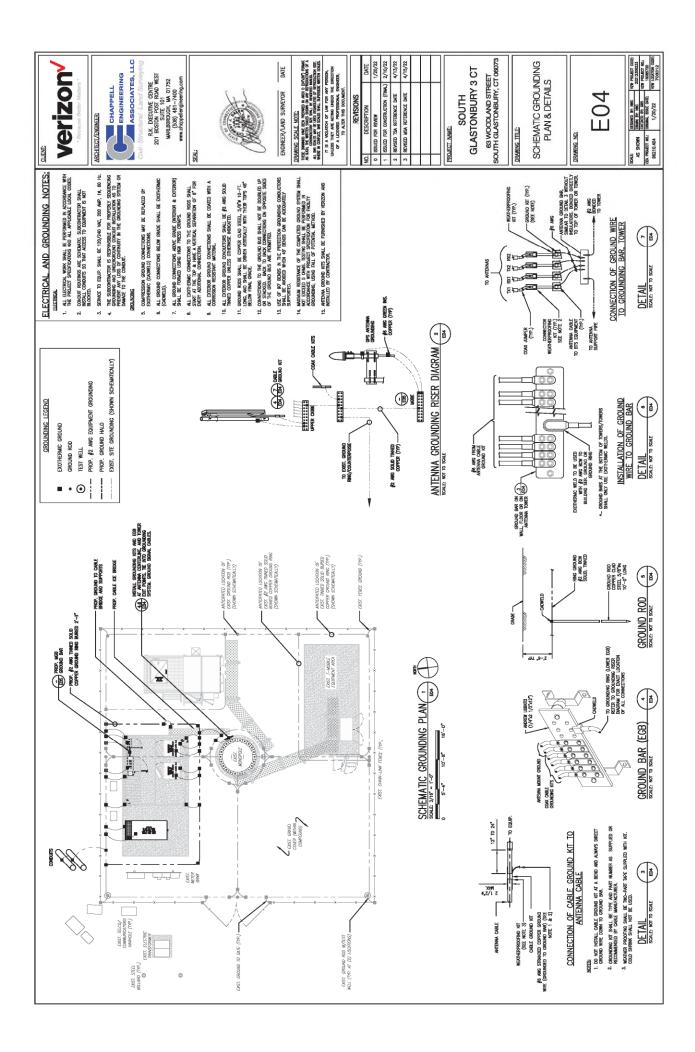


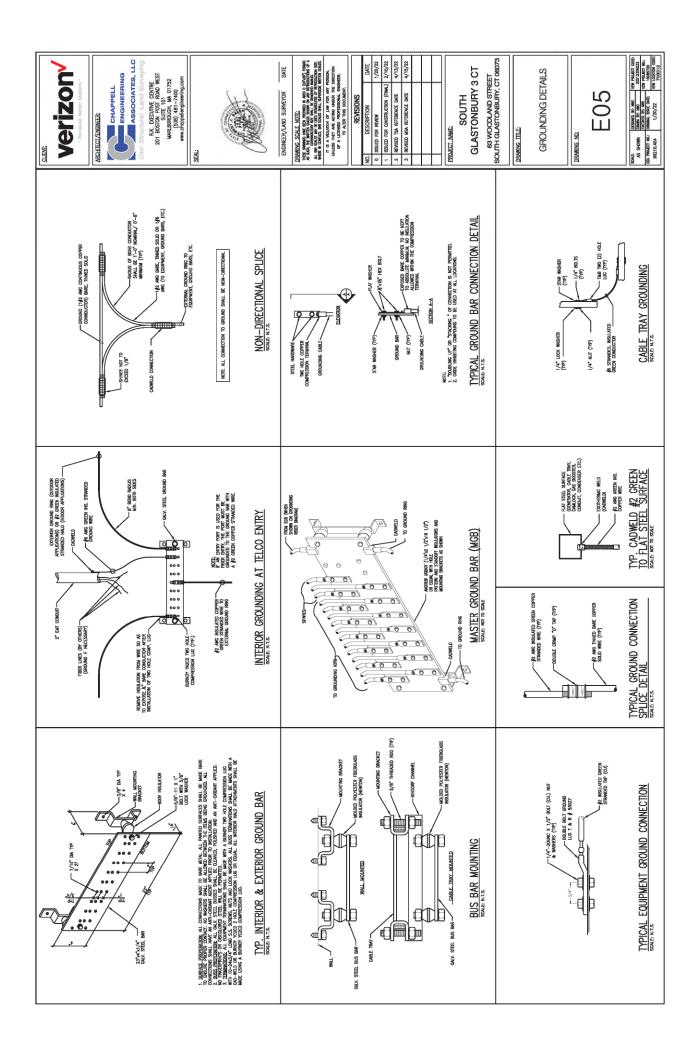




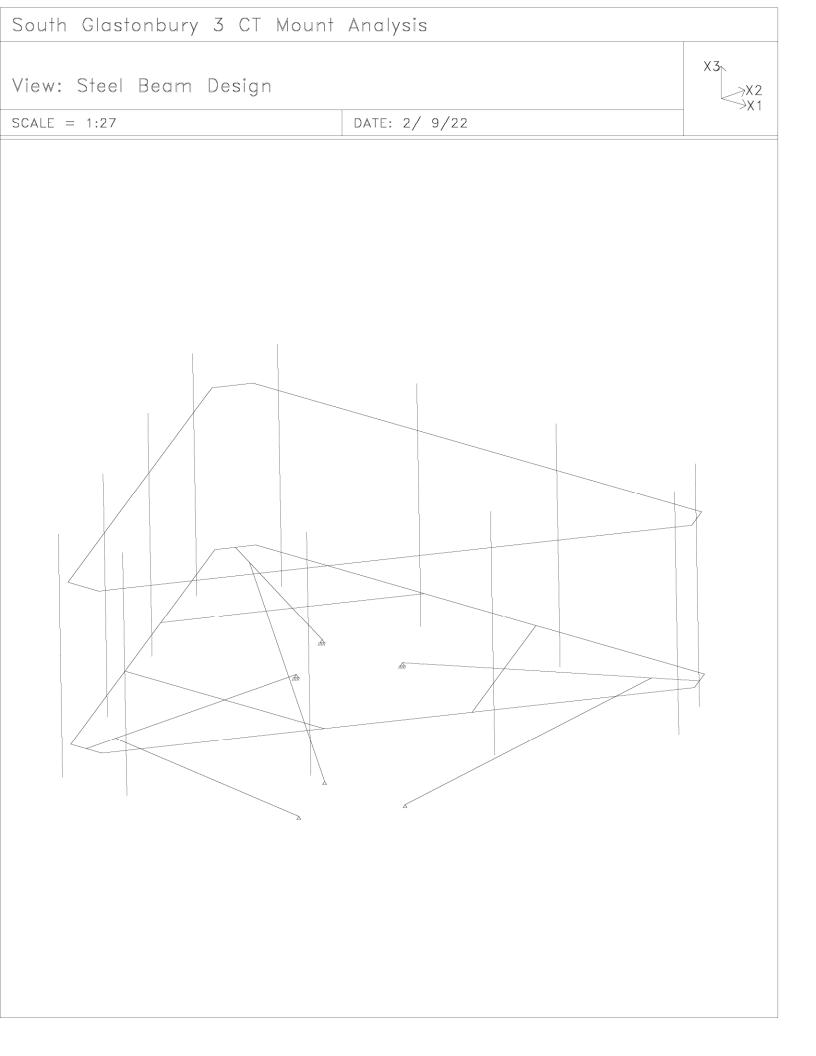





17.


ы

ad ai



Appendix B – Mount Analysis

South Glastonbury 3 CT Mount Analysis

Prepared by:

Page: 1 **Date:** 2/ 9/22

Strap 2017.00

Load no. 1: Front No Ice (units - kips ft.)	
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS	
/ BEAM LOADS / JOINT LOADS / JOINT LOADS / JOINT LOADS / JOINT LOADS	
FX2 0.073 FX3 -0.045 N 70 26 FX2 0.025 FX3 -0.045 N 84 54 76 38 FX2 0.047 FX3 -0.023 N 132 FX2 0.047 FX3 -0.023 N 133 135 FX2 0.22 FX3 -0.045 N 28 27	
FX2 0.143 FX3 -0.045 N 48 47 64 63 FX2 0.57 FX3 -0.084 N 126 131 127 136 125 134 / END	
FORCE SUMMATION	
FX1=0. kip FX2=4.819 kip FX3=-1.113 kip	

Load no. 2: Side No Ice (units - kips ft.)
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS
/ BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS / JOINT LOADS
/ JOINT LOADS FX1 0.025 FX3 -0.044 N 70 26 76 38 84 54 FX1 0.047 FX3 -0.023 N 132 135 133 FX1 0.143 FX3 -0.045 N 28 27 48 47 64 63 FX1 0.057 FX3 -0.084 N 126 127 125
FX1 0.057 FX3 -0.084 N 131 136 134 / END
FORCE SUMMATION
FX1=1.491 kip FX2=0. kip FX3=-1.107 kip

South Glastonbury 3 CT Mount Analysis

Prepared by:

Page: 2 Date: 2/ 9/22

Load no. 3: Front Ice (units - kips ft.)
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / JOINT LOADS / JOINT LOADS
FX2 0.021 FX3 -0.075 N 70 26 FX2 0.01 FX3 -0.075 N 76 38 84 54 FX2 0.016 FX3 -0.049 N 132 135 133 FX2 0.065 FX3 -0.156 N 28 27 48 47 64 63 FX2 0.02 FX3 -0.123 N 126 127 125 134 131 136
/ END
FORCE SUMMATION
FX1=0. kip FX2=0.64 kip FX3=-2.271 kip

Load no. 4: Side Ice (units - kips ft.)
/ JOINT LOADS / BEAM LOADS / JOINT LOADS / BEAM LOADS / JOINT LOADS
/ BEAM LOADS / JOINT LOADS / JOINT LOADS / JOINT LOADS FX1 0.01 FX3 -0.075 N 70 26 38 76 84 54
FX1 0.01 FX3 -0.049 N 132 135 133 FX1 0.048 FX3 -0.156 N 28 27 48 47 64 63 FX1 0.014 FX3 -0.123 N 126 127 125 134 131 136 / END
FORCE SUMMATION
FX1=0.462 kip FX2=0. kip FX3=-2.271 kip

South Glastonbury 3 CT Mount Analysis

Prepared by:

Page: 3 Date: 2/ 9/22

	Load no. 5: Selfweight (units - kips ft.)
S / /	BEAM LOADS ELF X3 -1. B 1 TO 138 142 TO 150 GLOBAL LOADS GLOBAL LOADS GLOBAL LOADS
0 D 3	DIST FX3 -0.003 PLANE -7.25 4.763 01.805 4.763 05.028 -0.818 . PT -0.5 0.866 BEAMS DIST FX3 -0.003 PLANE 1.805 4.763 0. 7.25 4.763 0. 7.75 3.897 0. PT .223 5.581 BEAMS DIST FX3 -0.003 PLANE -3.222 -3.945 0. 3.222 -3.945 0. 0.5 -8.66
	. PT 2.722 4.715 BEAMS END
F	ORCE SUMMATION
	X1=0. kip X2=0. kin

FX2=0. kip FX3=-1.4597 kip

Load no.	6: Front Frame	Ice (units -	kips ft.)
----------	----------------	--------------	-----------

/ BEAM LOADS

DIST GL FX2 -0.002 B 1 4 5 13 TO 35 BY 2 49 TO 51 55 56 63 64 66 71 TO 74 76 TO 81 83 TO 88 90 TO 115 117 133 TO 135 142 TO 150 / END

FORCE SUMMATION

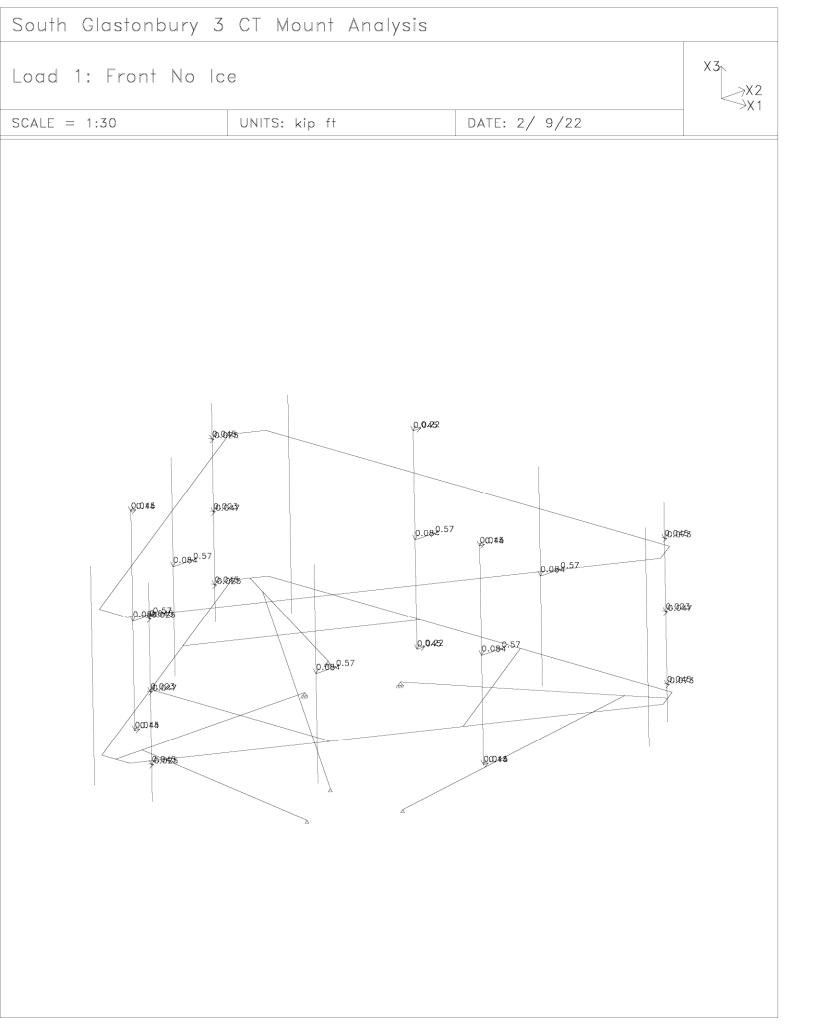
FX1=0. kip FX2=-0.3127 kip FX3=0. kip

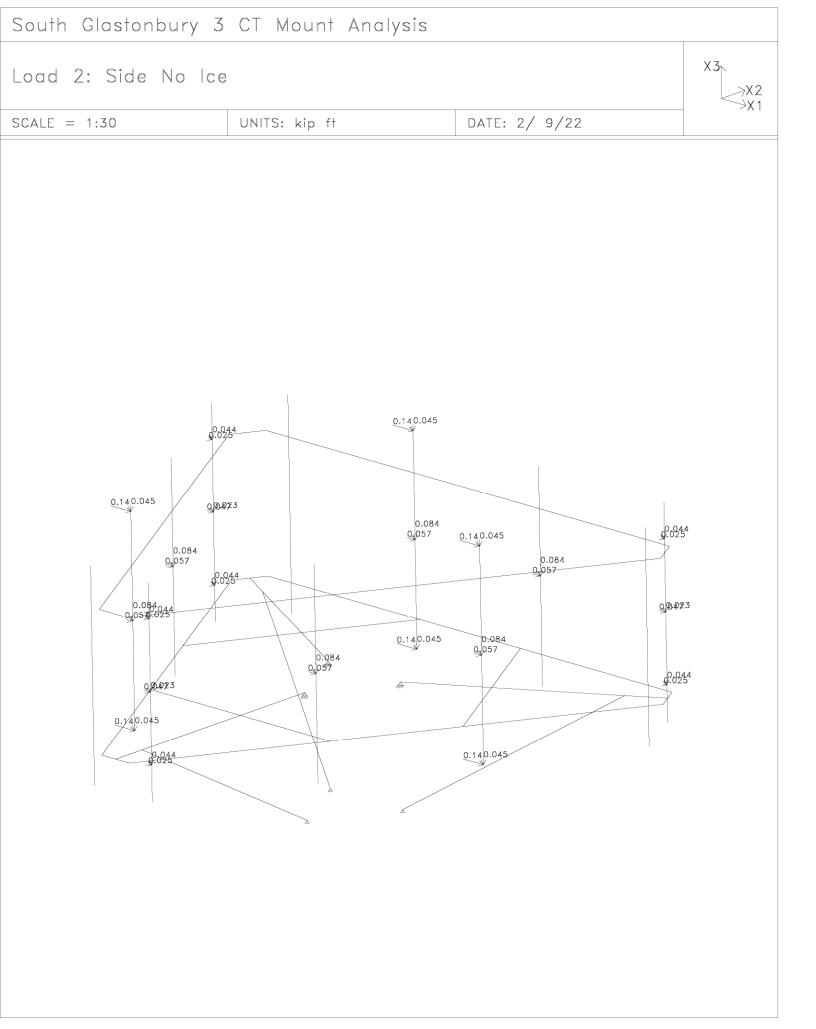
Load no. 7: Side Frame Ice (units - kips ft.)	
/ BEAM LOADS / BEAM LOADS DIST GL FX1 -0.002 B 4 5 13 TO 35 BY 2 50 51 63 64 66 71 72 TO 78 BY 2 79 TO 81 83 TO 88 90 91 93 94 TO 100 BY 2 101 TO 115 117 133 TO 135 142 TO 150	
/ END	
FORCE SUMMATION	
FX1=-0.2564 kip FX2=0. kip FX3=0. kip	

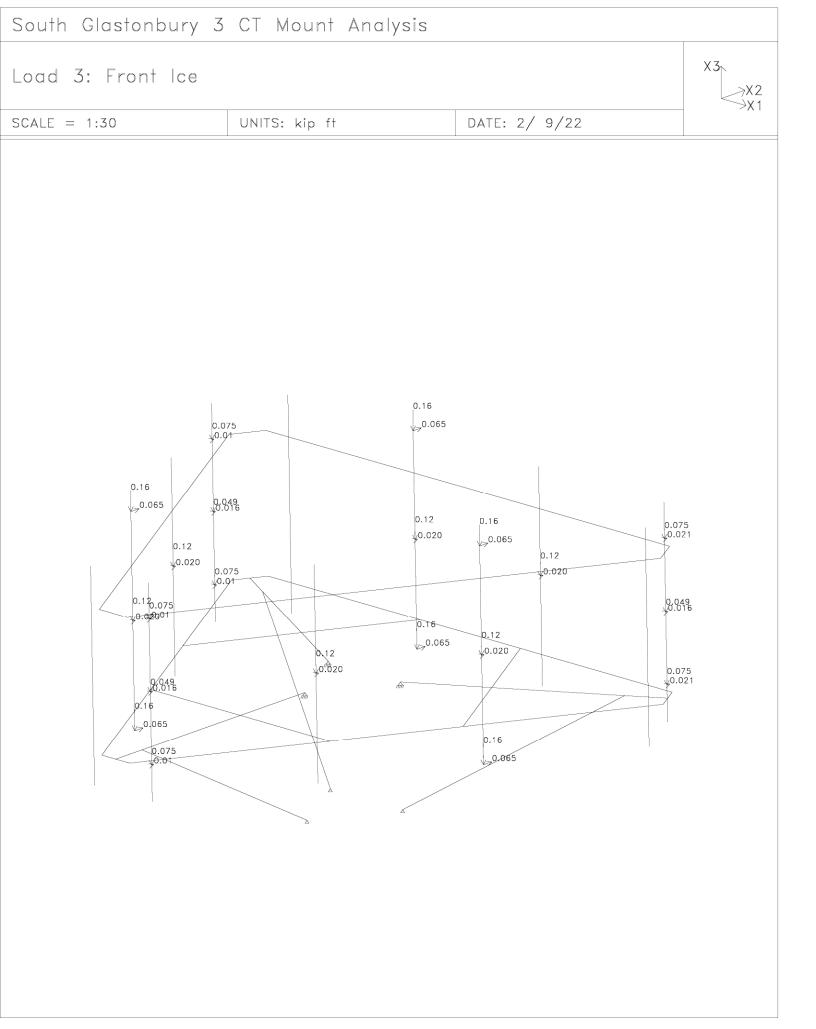
South Glastonbury 3 CT Mount Analysis

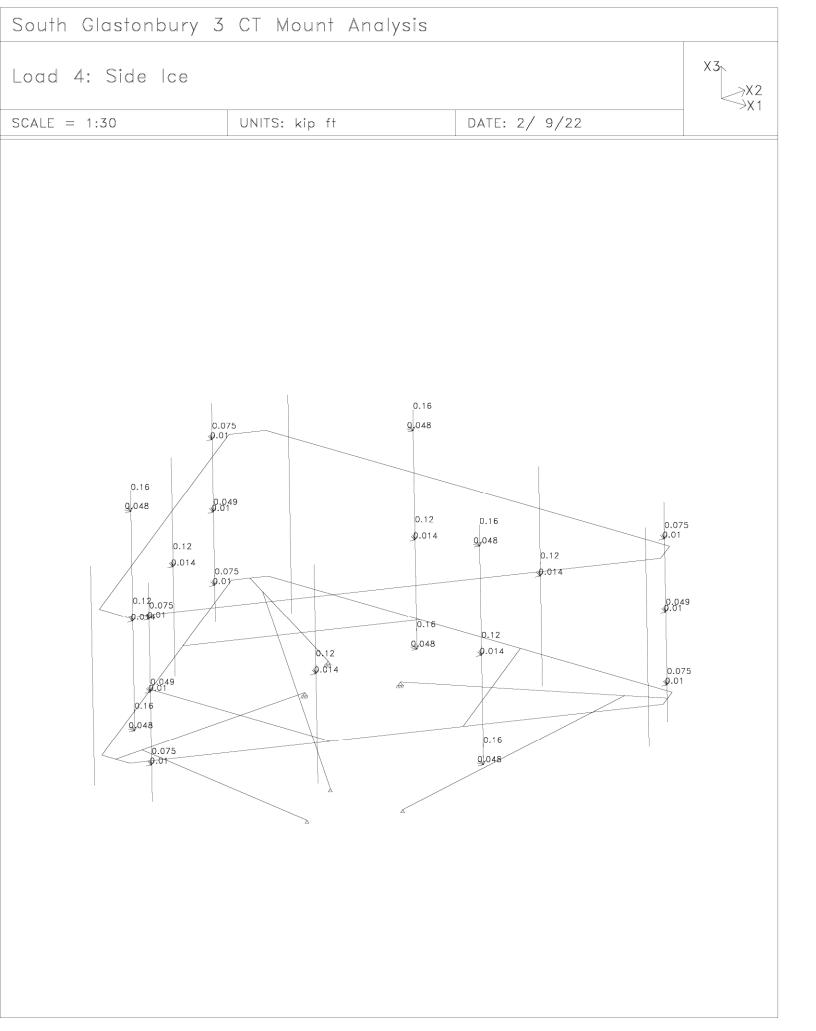
Prepared by:

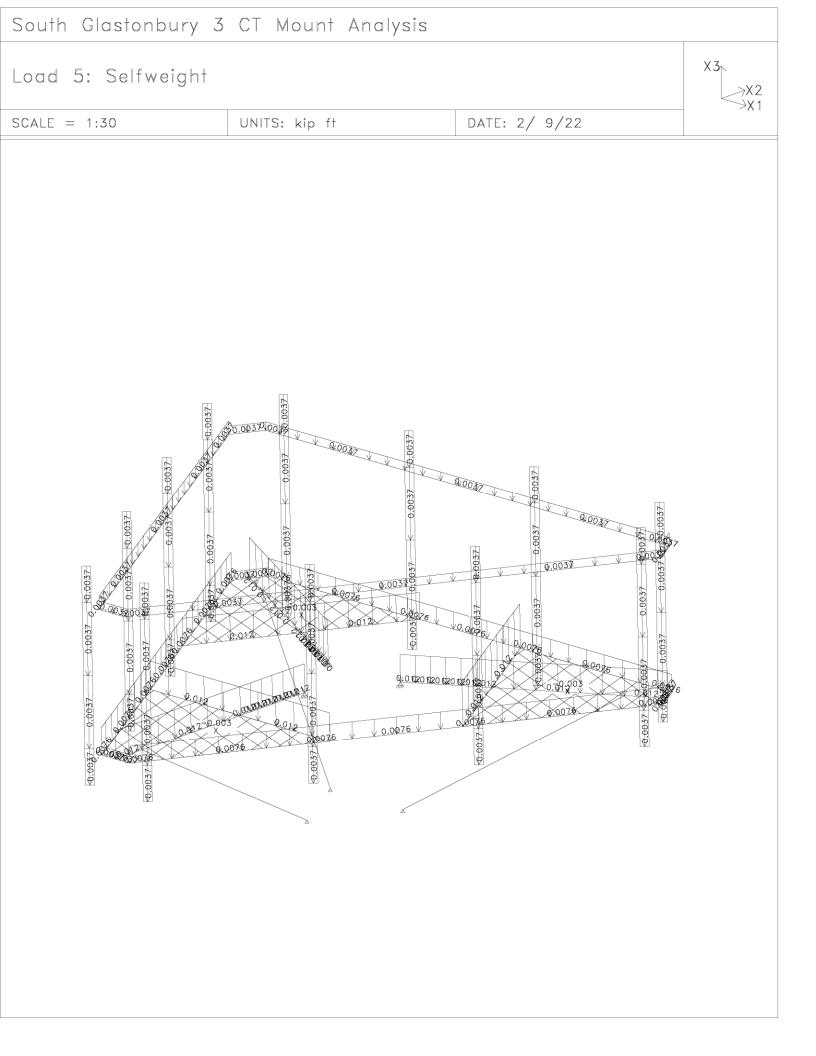
Load no. 8: Front Frame No Ice (units - kips ft.)

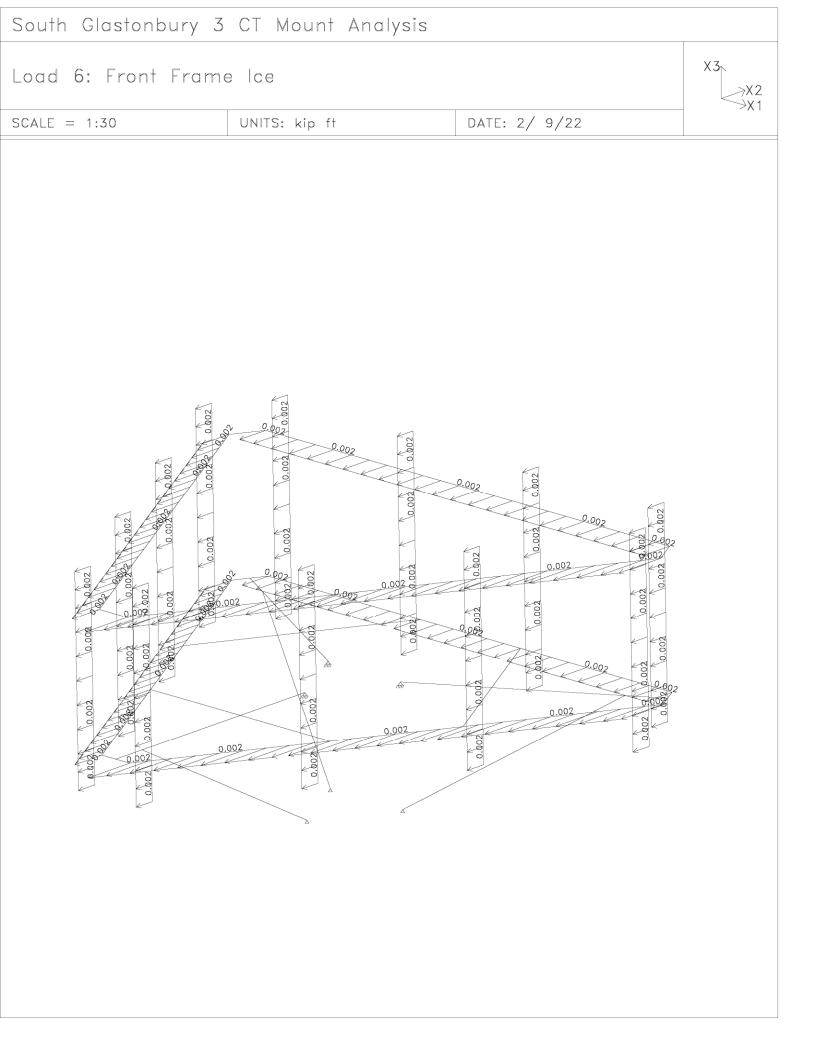

/ BEAM LOADS / BEAM LOADS DIST GL FX2 -0.005 B 1 4 5 13 TO 35 BY 2 49 TO 51 55 56 63 64 66 71 TO 74 76 TO 81 83 TO 88 90 TO 115 117 133 TO 135 142 TO 150 / END

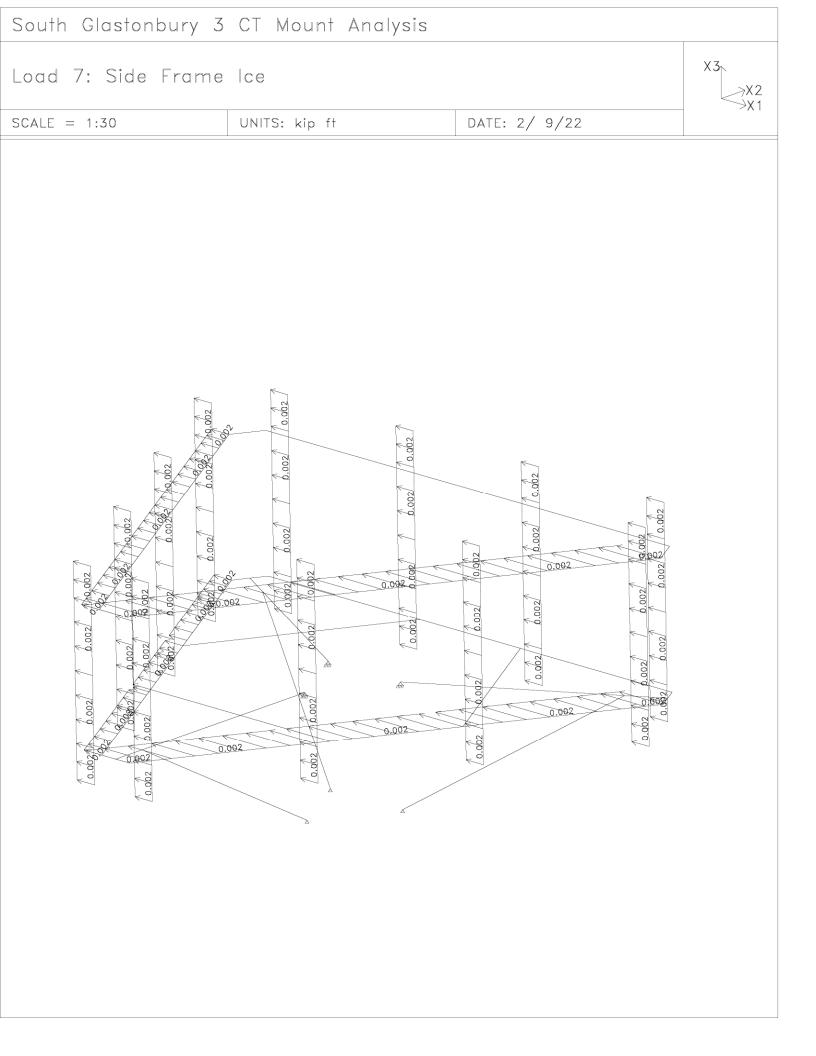

FORCE SUMMATION

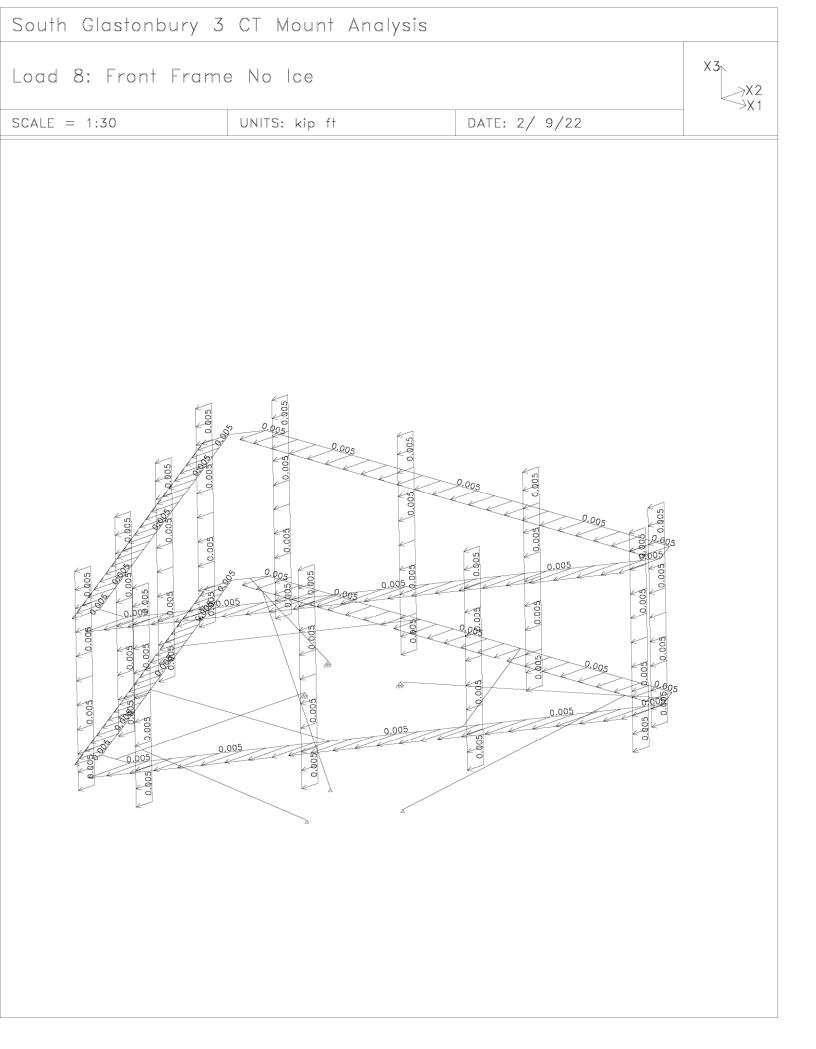

FX1=0. kip FX2=-0.7817 kip FX3=0. kip

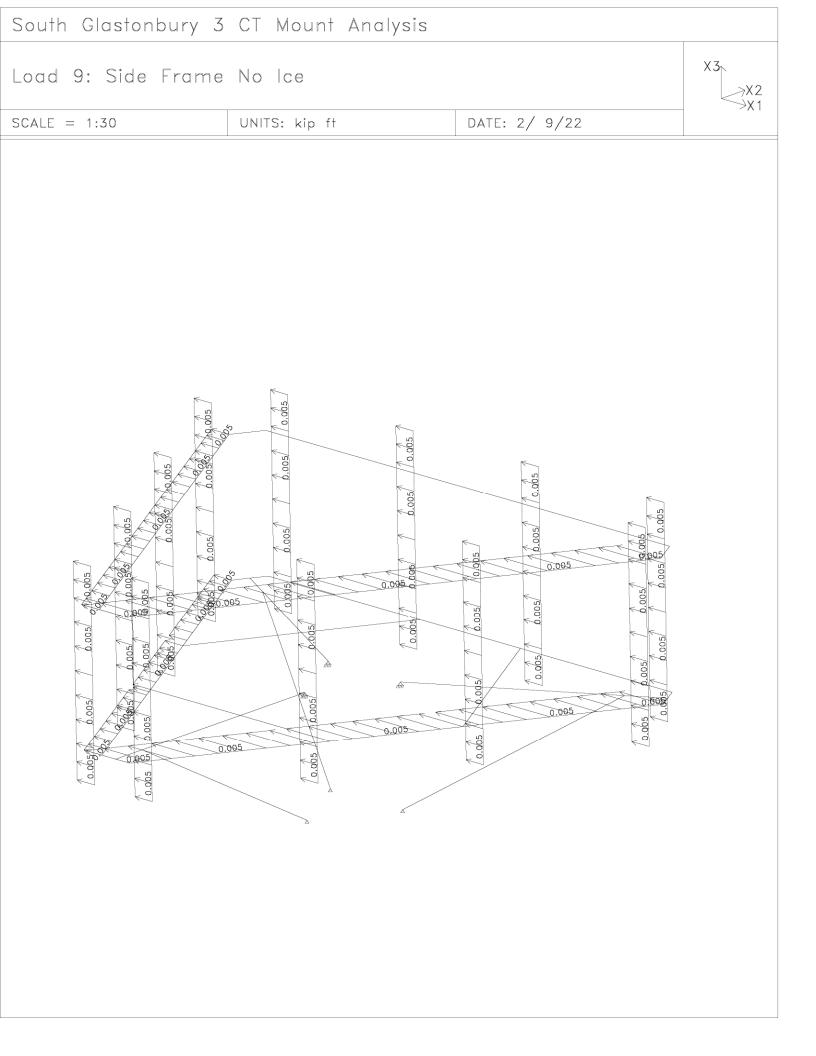

Load no. 9: Side Frame No Ice (units - kip	os fL)
/ BEAM LOADS / BEAM LOADS / BEAM LOADS DIST GL FX1 -0.005 B 4 5 13 TO 35 BY 2 50 51 63 64 66 71 72 TO 78 E 79 TO 81 83 TO 88 90 91 93 94 TO 100 BY 2 101 TO 115 117 133 TO 1	
142 TO 150 / END STATIC	
FORCE SUMMATION	
FX1=-0.6411 kip FX2=0. kip FX3=0. kip	


Page: 4 Date: 2/ 9/22



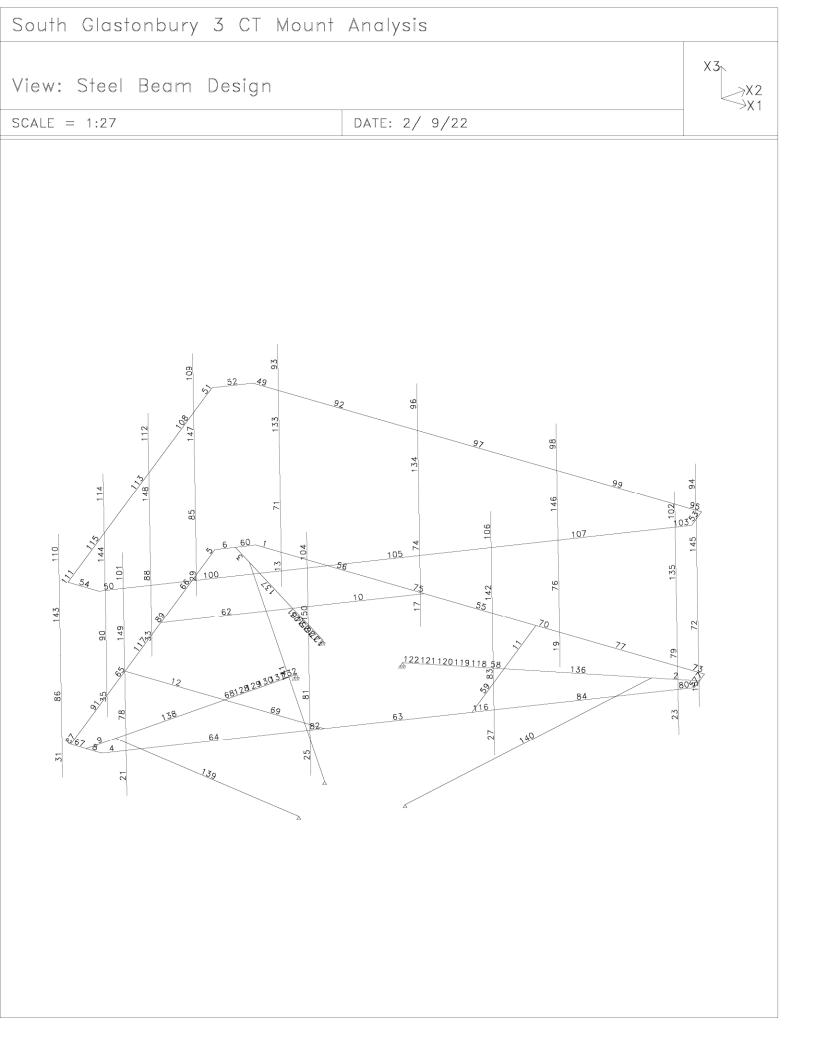






Prepared by:

Results Summary Table

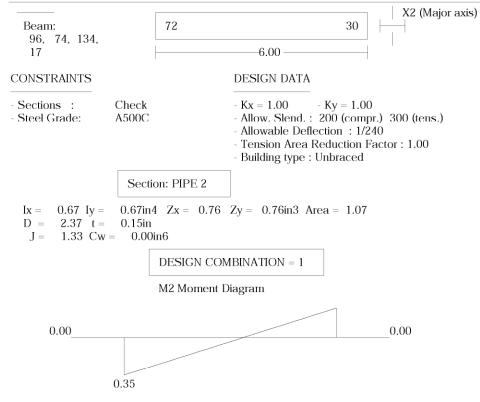

	Results Summary Table										
							С	АРАС	ITY		
Beam	Section	Com	Defl L/	Slen	Axial	Dir	Shear	Mom	LTB	Combined Axial+Mom	
	PIPE 3	1		150	0.01		0.02	0.13	0.13	0.20	
						MI	0.03	0.07	0.00		
2	TS 4x4x1/4	1	2962	57	0.02		0.03 0.03	0.08 0.20	0.08 0.00	0.27	
3	TS 4x4x1/4	1	3294	57	0.02		0.03	0.08	0.08	0.26	
							0.03	0.19	0.00		
6	PIPE 2	1	7444	8	-0.01		0.04 0.01	$\begin{array}{c} 0.14 \\ 0.04 \end{array}$	$\begin{array}{c} 0.14 \\ 0.00 \end{array}$	0.18	
7	PIPE 2	1	9999	8	0.00	MJ	0.05	0.14	0.14	0.17	
o	PIPE 2	1	9999	8	0.01		0.01 0.04	$0.03 \\ 0.12$	$0.00 \\ 0.12$	0.18	
0	111122	1	3333	0	0.01		0.04	0.12	0.00	0.10	
9	TS 4x4x1/4	4	3861	45	-0.01		0.03	0.07	0.07	0.08	
10	TS 4x4x1/4	3	9999	26	0.01		0.00 0.00	0.03 0.00	$\begin{array}{c} 0.00\\ 0.00 \end{array}$	0.01	
11		4	99999	26	0.01		0.00	0.00	0.00	0.01	
12	TS 4x4x1/4	1	9999	26	0.00	MI	0.00	0.00	0.00	0.00	
49	PIPE 2	1	403	201	-0.06		0.02	0.16	0.16	0.38	***
52	PIPE 2	1	9999	15	0.00		0.01 0.02	$\begin{array}{c} 0.18 \\ 0.06 \end{array}$	$0.00 \\ 0.06$	0.06	
	PIPE 2	1	9999	15	0.00		0.02	0.00	0.00	0.00	
	PIPE 2	2		15	0.00		0.00	0.01	0.01	0.01	
57	PIPE 2	1	6219	8	-0.01		0.03	0.15	0.15	0.17	
	TTTTTTTTTTTTT			0.0	0.00		0.01	0.03	0.00	0.00	
	TS 4x4x1/4 PIPE 2	1	9999 4173	26 8	0.00 -0.01	MI MJ	0.00 0.04	0.00 0.26	$0.00 \\ 0.26$	$0.00 \\ 0.30$	
00	111 L 2	1	1175	0	0.01		0.04	0.04	0.00	0.00	
62	TS 4x4x1/4	1	9999	26	0.00		0.00	0.00	0.00	0.00	
67	PIPE 2	1	9999	8	0.01		0.03	0.10	0.10	0.16	
60	TS 4x4x1/4	1	9999	26	0.00		0.04 0.00	0.13 0.00	$0.00 \\ 0.00$	0.00	
	PIPE 3	4		150	0.00		0.00	0.00	0.00	0.00	
			0.10	100	0101		0.01	0.06	0.00		
87	PIPE 3	4	645	150	0.01		0.02	0.13	0.13	0.16	
93	PIPE 2	1	177	88	-0.02		0.01 0.01	0.04 0.20	0.00 0.20	0.25	***
					0.01	MI	0.00	0.04	0.00	0.20	
94	PIPE 2	1	157	88	-0.03		0.01	0.19	0.19	0.27	***
96	PIPE 2	1	87	69	-0.01		0.00	0.07	0.00	0.51	***
30	111122	1	07	03	-0.01		0.01	0.13	0.13	0.51	
98	PIPE 2	1	92	91	0.00			0.14	0.14	0.45	***
101	PIPE 2	1	427	86	-0.01		0.03 0.01	$\begin{array}{c} 0.31 \\ 0.13 \end{array}$	0.00 0.13	0.27	
101	111 11 2	1	767	00	-0.01		0.01	0.13	0.00	0.21	
102	PIPE 2	1	193	91	-0.01		0.01	0.08	0.08	0.28	***
100	DIDE 0			005	0.05		0.02	0.26	0.00	0.00	***
103	PIPE 2	4	680	205	-0.05		0.02 0.01	$\begin{array}{c} 0.16 \\ 0.06 \end{array}$	$\begin{array}{c} 0.16 \\ 0.00 \end{array}$	0.23	ጥጥጥ
104	PIPE 2	1	225	68	0.00			0.08	0.08	0.28	***
							0.03	0.24	0.00		
106	PIPE 2	1	175	68	-0.01	MJ	0.01 0.03	$0.09 \\ 0.33$	0.09	0.39	***
109	PIPE 2	1	227	91	-0.01	MJ		0.33	$\begin{array}{c} 0.00\\ 0.07 \end{array}$	0.28	***
						MI	0.02	0.25	0.00		
110	PIPE 2	1	411	87	-0.01	MJ MI		0.14	0.14	0.29	
111	PIPE 2	3	686	209	-0.06		0.01	0.15	0.00	0.21	***
111			000	203	0.00	MI		0.15	0.10	0.21	
112	PIPE 2	1	195	66	0.00	MJ	0.00	0.05	0.05	0.35	***
114	PIPE 2	1	214	74	-0.01		0.03 0.01	0.30 0.12	0.00 0.12	0.31	***
114			513	1-1	0.01		0.01		0.12 0.00	0.01	

Prepared by:

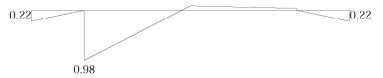
Code: AISC-LRFD

Strap 2017.00

	Results Summary Table										
	CAPACITY										
	Defl Dir Combined										
Beam	Section	Com	L/	Slen	Axial		Shear	Mom	LTB	Axial+Mom	
139	2L 3x3x1/4	4	9999	91	-0.05	MI	0.00	0.00	0.00	0.05	
140	2L 3x3x1/4	4	9999	90	-0.05	MI	0.00	0.00	0.00	0.05	
141	2L 3x3x1/4	3	9999	90	-0.05	MI	0.00	0.00	0.00	0.05	



South Glastonbury 3 CT Mount Analysis


Prepared by:

Detailed Results Table for Beam 96 - 17

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Max. AXIAL Force = 0.09 (tens.), -0.05 (compr.) Max. SHEAR Force = 0.15 M3 Moment Diagram

Max. AXIAL Force = 0.09 (tens.), -0.05 (compr.) Max. SHEAR Force = 0.54

SECTION CLASSIFICATION: *** COMPACT ***

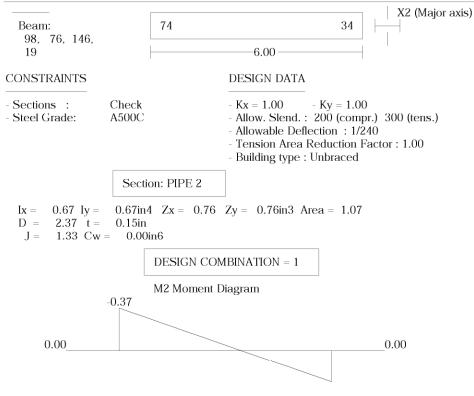
Limiting Ratios:Compact Non-Compactd/t= 15.46<</td>45.071.7

(Fy=46.0 R=-0.002)

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rcl} Vu &=& 0.54 \\ Vn &=& 17.81 \end{array}$	0.03
M3 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	M = 0.98 Mn = 2.92	0.37
V3 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rcl} Vu &=& 0.15 \\ Vn &=& 17.81 \end{array}$	0.01

Code: AISC-LRFD

Prepared by:


Detailed Results Table for Beam 96 - 17

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

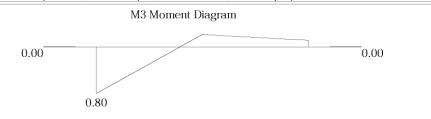
DESIGN	EQUATION	FACTORS	VALUES	RESULT
M2 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	M = 0.35 Mn = 2.92	0.13
Deflection	$\frac{\text{defl.}}{L / 240} < 1.00$		defl = 0.82553	2.75
Axial Force (D1-1)	$\frac{Pu}{0.90AgFy} < 1.00$	(kL/r)x =31 (kL/r)y =31	$\begin{array}{rrrr} Pu &=& 0.09 \\ Ag &=& 1.07 \\ Fy &=& 46.00 \end{array}$	0.00
Combined Forces (compress.) (H1-1b)	$\frac{Pu}{2\phi Pn} + \frac{Mux}{\phi Mnx} + \frac{Muy}{\phi Mny} \\ < 1.00$	$\begin{array}{rrrr} Cmx = & 1.00 \\ Cmy = & 1.00 \\ Pex = & 321.36 \\ Pey = & 321.36 \end{array}$	$\begin{array}{rrrr} Mux = & 0.35 \\ Muy = & 0.98 \\ B1x = & 1.00 \\ B1y = & 1.00 \end{array}$	0.51

Detailed Results Table for Beam 98 - 19

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Max. AXIAL Force = 0.16 (tens.), 0.00 (compr.) Max. SHEAR Force = 0.16

Strap 2017.00


Code: AISC-LRFD

South Glastonbury 3 CT Mount Analysis

Prepared by:

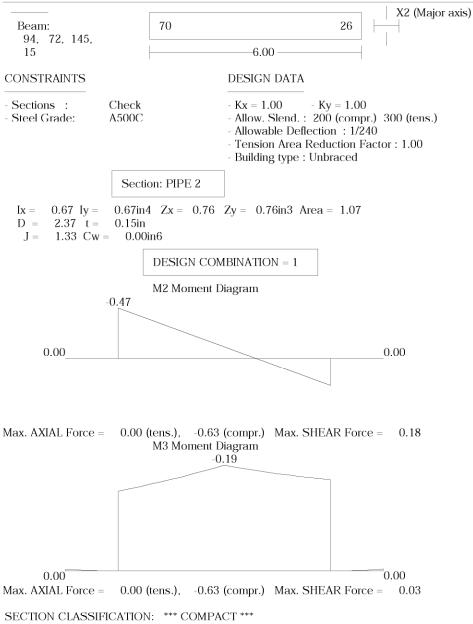
Detailed Results Table for Beam 98 - 19

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Max. AXIAL Force = 0.16 (tens.), 0.00 (compr.) Max. SHEAR Force = 0.51

SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratio d/t= 15.46	s: Compact Non-0 < 45.0	Compact 71.7	(Fy= 46.0 R	= -0.003)
DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rcl} Vu &=& 0.51 \\ Vn &=& 17.81 \end{array}$	0.03
M3 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	M = 0.80 Mn = 2.92	0.31
V3 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rrrr} Vu &=& 0.16 \\ Vn &=& 17.81 \end{array}$	0.01
M2 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	$\begin{array}{rrrr} M & = & 0.37 \\ Mn & = & 2.92 \end{array}$	0.14
Deflection	$\frac{\text{defl.}}{L / 240} < 1.00$		defl = 0.78578	2.62
Axial Force (D1-1)	$\frac{Pu}{0.90AgFy} < 1.00$	(kL/r)x =91 (kL/r)y =91	$\begin{array}{rrrr} Pu &=& 0.16\\ Ag &=& 1.07\\ Fy &=& 46.00 \end{array}$	0.00
Combined Forces (compress.) (H1-1b)	$\frac{Pu}{2\phi Pn} + \frac{Mux}{\phi Mnx} + \frac{Muy}{\phi Mny} < 1.00$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} Mux = & 0.37 \\ Muy = & 0.80 \\ B1x = & 1.00 \\ B1y = & 1.00 \end{array}$	0.45


Code: AISC-LRFD

South Glastonbury 3 CT Mount Analysis

Prepared by:

Detailed Results Table for Beam 94 - 15

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

 Limiting Ratios:
 Compact Non-Compact

 d/t=15.46 <</td>
 45.0 71.7 (Fy= 46.0 R = 0.013)

DESIGN	EQUATION	FACTORS	VALUES	RESULT
M3 Moment (A-F1-1) without LTB	M 0.9Mn < 1.00	Z = 0.76	M = 0.19 Mn = 2.92	0.07
V3 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rrrr} Vu &=& 0.18 \\ Vn &=& 17.81 \end{array}$	0.01
M2 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	$\begin{array}{rcl} M & = & 0.47 \\ Mn & = & 2.92 \end{array}$	0.18

Strap 2017.00

Code: AISC-LRFD

Prepared by:

Strap 2017.00

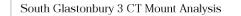
Code: AISC-LRFD

Date: 2/ 9/22

Detailed Results Table for Beam 94 - 15

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Deflection	$\frac{\text{defl.}}{L / 240} < 1.00$		defl = 0.45714	1.52
Axial Force (E2-1)	$\frac{Pu}{0.85 AgFcr} < 1.00$	(kL/r)x = 88 (k1/r)y = 88 $\lambda c = 1.11$	$\begin{array}{rcl} Pu &=& 0.63 \\ Ag &=& 1.07 \\ Fcr &=& 27.37 \end{array}$	0.03
Combined Forces (compress.) (H1-1b)	$\frac{Pu}{2\phi Pn} + \frac{Mux}{\phi Mnx} + \frac{Muy}{\phi Mny} \\ < 1.00$	$\begin{array}{rrrr} Cmx = & 1.00 \\ Cmy = & 1.00 \\ Pex = & 39.88 \\ Pey = & 39.88 \end{array}$	$\begin{array}{rrrr} Mux = & 0.48 \\ Muy = & 0.20 \\ B1x = & 1.02 \\ B1y = & 1.02 \end{array}$	0.27


Detailed Results Table for Beam 2 - 122

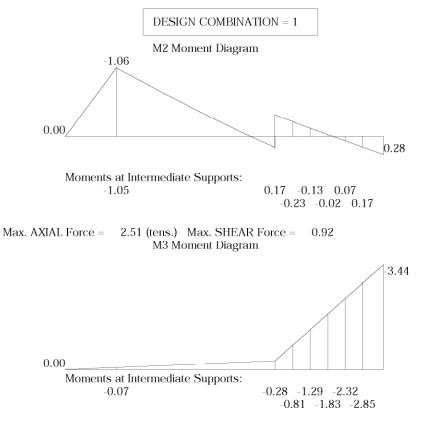
Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Beam: 2, 136,	58		3				4	X2 (Major a
118, 119, 1 121, 122 CONSTRAINT	20,	-		DES	–7.16 — Sign da	ТА		I
- Sections : - Steel Grade: NTERMEDIAT		Check A500B PPORTS		- All - All - Te	owable I	d. : 200 Deflectior ea Reduc	(compr.) 1 :1/240 ction Fact	
L =	1.17	4.71	5.12	5.50	5.92	6.29	6.71	
LatTors.								

 $h = 4.00 \ b = 4.00 in t = 0.25 in$

 $J = 13.50 \ Cw = 0.00in6$

Prepared by:


Strap 2017.00

Code: AISC-LRFD

Date: 2/ 9/22

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Max. AXIAL Force = 2.51 (tens.) Max. SHEAR Force = 1.29

SECTION CLASSIFICATION: *** COMPACT ***

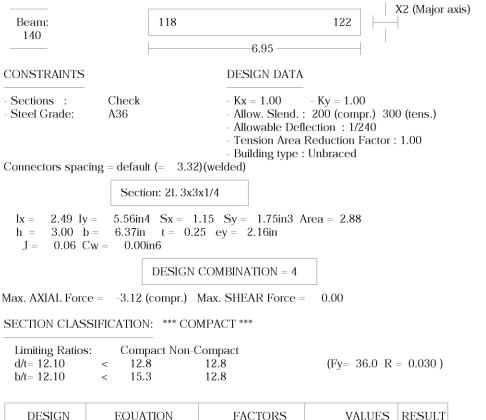
Limiting Ratios: Compact Non-Compact d/t= 13.13 35.2 < 28.1 b/t= 13.13 <

35.2 35.2

(Fy=46.0 R=-0.015)

DESIGN	EQUATION	FACTORS	VALUES	RESULT
DESIGN	EQUATION	PACIORS	VALUES	RESULI
V2 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 1.79	$\begin{array}{rrrr} Vu &=& 1.29 \\ Vn &=& 49.60 \end{array}$	0.03
M3 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 4.97	M = 3.44 Mn = 19.07	0.20
V3 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 1.79	$\begin{array}{rrrr} Vu &=& 0.92 \\ Vn &=& 49.60 \end{array}$	0.02
M2 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 4.97	$\begin{array}{rrrr} M & = & 1.06 \\ Mn & = & 19.07 \end{array}$	0.06
Deflection	$\frac{\text{defl.}}{L / 240} < 1.00$		defl = 0.02900	0.08
Axial Force (D1-1)	$\frac{Pu}{0.90AgFy} < 1.00$	(kL/r)x =28 (kL/r)y =57	$\begin{array}{rrrr} Pu &=& 2.51 \\ Ag &=& 3.59 \\ Fy &=& 46.00 \end{array}$	0.02

Prepared by:


Detailed Results Table for Beam 2 - 122

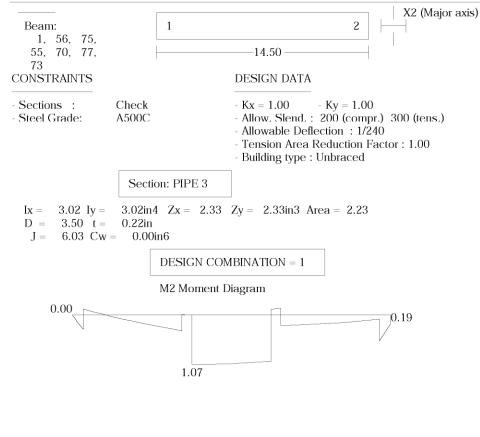
Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

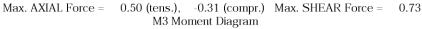
DESIGN	EQUATION	FACTORS	VALUES	RESULT
Lateral Torsional Buckling	M 		M = 1.06 Mn = 19.07 ange	0.06
Combined Forces (tension) (H1-1b)	$\frac{Pu}{2\phi Pn} + \frac{Mux}{\phi Mnx} + \frac{Muy}{\phi Mny} \\ < 1.00$		$\begin{array}{rll} Mux = & 1.06\\ Muy = & 3.44 \end{array}$	0.27

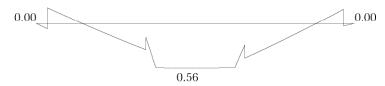
Detailed Results Table for Beam 140

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Code: AISC-LRFD


DESIGN	EQUATION	FACTORS	VALUES	RESULT
Axial Force (E2-1)	$\frac{\mathrm{Pu}}{\mathrm{0.85AgFcr}} < 1.00$	(kL/r)x = 90 (kL/r)y = 66 $\lambda c = 1.01$	$\begin{array}{rrrr} Pu &=& 3.12\\ Ag &=& 2.88\\ Fcr &=& 23.54 \end{array}$	0.05


South Glastonbury 3 CT Mount Analysis


Prepared by:

Detailed Results Table for Beam 1 - 73

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Max. AXIAL Force = 0.50 (tens.), -0.31 (compr.) Max. SHEAR Force = 0.85

SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios: Compact Non-Compact d/t= 16.16 < 45.0 71.7

(Fy=46.0 R=-0.005)

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 1.34	$\begin{array}{rcl} Vu &=& 0.85 \\ Vn &=& 36.95 \end{array}$	0.03
M3 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 2.33	M = 0.56 Mn = 8.95	0.07
V3 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 1.34	$\begin{array}{rcl} Vu &=& 0.73 \\ Vn &=& 36.95 \end{array}$	0.02

Code: AISC-LRFD

Prepared by:

Detailed Results Table for Beam 1 - 73

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

DESIGN	EQUATION	FACTORS	VALUES	RESULT
M2 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 2.33	$\begin{array}{rrrr} M & = & 1.07 \\ Mn & = & 8.95 \end{array}$	0.13
Deflection	$\frac{\text{defl.}}{L / 240} < 1.00$		defl = 0.33567	0.46
Axial Force (D1-1)	$\frac{\text{Pu}}{0.90\text{AgFy}} < 1.00$	(kL/r)x =60 (kL/r)y =60	$\begin{array}{rrrr} Pu &=& 0.50 \\ Ag &=& 2.23 \\ Fy &=& 46.00 \end{array}$	0.01
Combined Forces (compress.) (H1-1b)	$\frac{Pu}{2\phi Pn} + \frac{Mux}{\phi Mnx} + \frac{Muy}{\phi Mny} \\ < 1.00$	$\begin{array}{rll} Cmx = & 1.00 \\ Cmy = & 1.00 \\ Pex = & 178.01 \\ Pey = & 178.01 \end{array}$	$\begin{array}{rrrr} Mux = & 1.07 \\ Muy = & 0.56 \\ B1x = & 1.00 \\ B1y = & 1.00 \end{array}$	0.20

Detailed Results Table for Beam 49 - 95

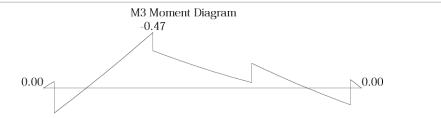
Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch X2 (Major axis) 91 92 Beam: 49, 92, 97, -14.5099, 95 CONSTRAINTS DESIGN DATA Check -Kx = 1.00- Ky = 1.00Sections : Steel Grade: A500C - Allow. Slend. : 200 (compr.) 300 (tens.) Allowable Deflection : 1/240 Tension Area Reduction Factor : 1.00 Building type : Unbraced Section: PIPE 2 0.67 Iy = 0.67 in 4 Zx = 0.76 Zy = 0.76 in 3 Area = 1.07Ix =2.37 t = 0.15in D = J = 1.33 Cw = 0.00in6 DESIGN COMBINATION = 1 M2 Moment Diagram -0.43 0.00 0.00

Max. AXIAL Force = 0.08 (tens.), -0.26 (compr.) Max. SHEAR Force = 0.35

Code: AISC-LRFD

South Glastonbury 3 CT Mount Analysis

Prepared by:


by:

Code: AISC-LRFD

Date: 2/ 9/22

Moments: kips*foot , Forces: kips , Stresses: ksi , Section prop.: inch

Max. AXIAL Force = 0.08 (tens.), -0.26 (compr.) Max. SHEAR Force = 0.16

SECTION CLASSIFICATION: *** COMPACT ***

Limiting Ratios: Compact Non-Compact d/t= 15.46 < 45.0 71.7

(Fy=46.0 R = 0.005)

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rrrr} Vu &=& 0.16 \\ Vn &=& 17.81 \end{array}$	0.01
M3 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	M = 0.47 Mn = 2.92	0.18
V3 Shear (F2-1)	Vu/(.9*Vn)<1.00 Vn=0.6*Fy*Av	Av = 0.64	$\begin{array}{rrrr} Vu &=& 0.35 \\ Vn &=& 17.81 \end{array}$	0.02
M2 Moment (A-F1-1) without LTB	$\frac{M}{0.9Mn} < 1.00$	Z = 0.76	$\begin{array}{rrrr} M & = & 0.43 \\ Mn & = & 2.92 \end{array}$	0.16
Deflection	$\frac{\text{defl.}}{L / 240} < 1.00$		defl = 0.43143	0.60
Axial Force (E2-1)	$\frac{Pu}{0.85 AgFcr} < 1.00$	(kL/r)x = 192 (kL/r)y = 192 $\lambda c = 2.43$	$\begin{array}{rrrr} Pu &=& 0.26 \\ Ag &=& 1.07 \\ Fcr &=& 6.83 \end{array}$	0.04
Combined Forces (compress.) (H1-1b)	$\frac{Pu}{2\phi Pn} + \frac{Mux}{\phi Mnx} + \frac{Muy}{\phi Mny} \\ < 1.00$	$\begin{array}{rrrr} Cmx = & 1.00 \\ Cmy = & 1.00 \\ Pex = & 8.38 \\ Pey = & 8.38 \end{array}$	$\begin{array}{rrrr} Mux = & 0.45 \\ Muy = & 0.49 \\ B1x = & 1.03 \\ B1y = & 1.03 \end{array}$	0.38

ATTACHMENT 6

	General	Power	Density					
Site Name: South Glastonbury	3							
Tower Height: Verizon @ 115ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*DISH	4	224	125	600	0.0228	0.4000	0.57%	
*DISH	4	543	125	1900	0.0552	1.0000	0.55%	
*DISH	4	543	125	2100	0.0552	1.0000	0.55%	
*AT&T	1	1730	136	722	0.0368	0.4813	0.76%	
*AT&T	1	3541	136	739	0.0753	0.4927	1.53%	
*AT&T	1	3541	136	763	0.0753	0.5087	1.48%	
*AT&T	1	4257	136	885	0.0906	0.5900	1.54%	
*AT&T	1	6297	136	1900	0.1340	1.0000	1.34%	
*AT&T	1	9890	136	2100	0.2105	1.0000	2.10%	
*AT&T	1	6153	136	2300	0.1309	1.0000	1.31%	
*T-Mobile	2	3928	143	2100	0.1505	1.0000	1.51%	
*T-Mobile	2	3421	143	1900	0.1311	1	1.31%	
*T-Mobile	1	419	143	700	0.008	0.4667	0.17%	
*T-Mobile	2	2281	143	2100	0.0874	1	0.87%	
*T-Mobile	2	2281	143	2100	0.0874	1	0.87%	
VZW 700	4	689	115	751	0.0075	0.5007	1.50%	
VZW Cellular	4	700	115	869	0.0076	0.5793	1.31%	
VZW PCS	4	1500	115	1980	0.0163	1.0000	1.63%	
VZW AWS	4	1496	115	2125	0.0163	1.0000	1.63%	
VZW CBAND	4	6531	115	3730	0.0710	1.0000	7.10%	
VZW CBRS	2	12	115	3625	0.0001	1.0000	0.01%	
								29.64%
* Source: Siting Council								

ATTACHMENT 7

SOUTH GLASTONBURY 3 Certificate of Mailing — Firm

ame and Address of Sender	TOTAL NO. of Pieces Listed by Sender of Pieces Received at Post Office™	Affix Stamp He Postmark with Da			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving employee)	_	neopost [#] 05/26/202 US POST	2 AGE \$003. ZIP 06 041L122	103
USPS [®] Tracking Number	Address	Postage	Fee	Special Handling	Parcel Airlift
Firm-specific Identifier	(Name, Street, City, State, and ZIP Code™)	Tostage	100	opeoial mananing	
	Richard J. Johnson, Town Manger	_			
	Town of Glastonbury	4			
	2155 Main Street	-			
	Glastonbury, CT 06033				
	Rebecca Augur, Director of Planning and Land	Use Services			
	Town of Glastonbury				
	2155 Main Street				
	Glastonbury, CT 06033		TATEHO	10-	
	Paul Cavanna		03	1.8	
	80 Woodland Street		0	12	
	South Glastonbury, CT 06073		MAY 25	0000	
	Vertical Bridge Engineering LLC			22 8	
	750 Park of Commerce Drive, #200			~ ~	
	Boca Raton, FL 33487	-	Nu	11	
	Boca Raton, TL 55487	-	USPS		
		-			
		-			
		1			
		-			

PS Form 3665, January 2017 (Page ____ of ____) PSN 7530-17-000-5549