

Northeast Site Solutions Denise Sabo
4 Angela's Way, Burlington CT 06013
denise@northeastsitesolutions.com
September 30, 2021

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051
RE: Tower Share Application
63 Woodland Street, Glastonbury CT 06033
Latitude: 41.6608
Longitude: -72.5741
Site\#: Dish Wireless - BOBDL00104A; Vertical Bridge/Eco-Site: US-CT-5018/Hopewell

Dear Ms. Bachman:
This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 63 Woodland Street, Glastonbury, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/19005G MHz antenna and six (6) RRUs, at the 125 -foot level of the existing 150 -foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7×5 lease area. Included are plans by Infinigy, dated September 1, 2021 Exhibit C. Also included is a structural analysis prepared by Vertical Bridge Engineering, LLC, dated May 20, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the Connecticut Siting Council, Docket No. 478 on March 29, 2018. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Town Manager Richard J. Johnson for the Town of Glastonbury, Rebecca Augur, Director of Planning \& Land Use Services for the Town of Glastonbury, as well as the property owner Paul J Cavanna and Vertical Bridge REIT, LLC tower owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 150 -feet; Dish Wireless LLC proposed antennas will be located at a center line height of 125 -feet.
2.The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.
3.The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4.The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 16.47% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Manchester. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 125 -foot level of the existing 150 -foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Manchester.

Sincerely,

Denise sabo

Denise Sabo

Mobile: 203-435-3640
Fax: 413-521-0558
Office: Angela's Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

Attachments
Cc: Town Manager, Richard J. Johnson
Town of Glastonbury
$2^{\text {nd }}$ FLoor
2155 Main Street Glastonbury CT 06073

Rebecca Augur, Director of Planning \& Land Use Services
Town of Glastonbury
$3^{\text {rd }}$ Floor
2155 Main Street Glastonbury CT 06073

Paul J Cavanna
80 Woodland Street
S Glastonbury CT 06073

Vertical Bridge, REIT, LLC, Tower Owner
750 Park of Commerce Drive, Suite 200
Boca Raton, FL 33487

Exhibit A

Original Facility Approval

DOCKET NO. 478 - Eco-Site, Inc. and T-Mobile Northeast, LLC application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of a telecommunications facility located at 63 Woodland Street, Glastonbury, Connecticut.
\} \}

Connecticut
Siting
Council
March 29, 2018

Decision and Order

Pursuant to Connecticut General Statutes $\$ 16-50$ p, and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment, ecological balance, public health and safety, scenic, historic, and recreational values, agriculture, forests and parks, air and water purity, and fish, aquaculture and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes $\mathbb{S} 16-50 \mathrm{k}$, be issued to Eco-Site, Inc., hereinafter referred to as the Certificate Holder, for a telecommunications facility at 63 Woodland Street, Glastonbury, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed either as a monopine or monopole at a height of 150 feet above ground level (excluding faux monopine branches) to provide the proposed wireless services, sufficient to accommodate the antennas of T-Mobile Northeast, LLC, the Town of Glastonbury, and other entities, both public and private. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission. Prior to submission of the Development and Management Plan to the Council, the Certificate Holder shall consult with the Town of Glastonbury in regards to the Town's emergency communication equipment needs and the appropriateness of a monopine design based on those needs. The final tower design, either a monopole or monopine, shall be determined after this consultation.
2. The Certificate Holder shall prepare a Development and Management (D\&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D\&M Plan shall be served on the Town of Glastonbury for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
a) final site plan(s) for development of the facility that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code and include specifications for the tower, tower foundation, antennas, and equipment compound including, but not limited to, fencing, radio equipment, access road, utility line, and emergency backup power source;
b) construction plans for site clearing, grading, utility installation, water drainage and stormwater control, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended;
c) schedule for deployment of T-Mobile Northeast LLC's, and the Town of Glastonbury's equipment; and
d) hours of construction.
3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
4. Upon the establishment of any new federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
6. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
7. Any request for extension of the time period referred to in Condition 6 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Glastonbury.
8. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
9. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
10. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
11. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. $\$ 16-50 \mathrm{v}$.
12. This Certificate may be transferred in accordance with Conn. Gen. Stat. $\S 16-50 \mathrm{k}(\mathrm{b})$, provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. $\$ 16-50 \mathrm{v}(\mathrm{b})(2)$ that may be associated with this facility.
13. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, and utility line in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
14. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
15. This Certificate may be surrendered by the Certificate Holder upon written notification and approval by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated October 26, 2017, and notice of issuance published in the Hartford Courant.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

Exhibit B

Property Card

Building Intormation				Building ID	1451
Year Constructed : 1800		Number of Rooms :	7		
Building Type :	Residential	Number of Bedrooms :	04		
Style :	Century+	Number of Bathrooms :	1		
Occupany :	Single Family	Number of Half-Baths :	0		
Stories:	2	Exterior Wall :	Vinyl		
Building Zone:	RR	Interior Wall :	Drywall		
Roof Type :	Gable	Interior Floor:	Carpet		
Roof Material :	Asphalt Shingl	Interior Floor \#2 :	No entry		
Est. Gross S.F. :	2614	Air Conditioning Type :	None		
Est. Living S.F. :	1628	Heat Type :	Hot Water		
		Fuel Type :	Oil		

1C

Subarea Type	Est. Gross S.F.	Est. Living S.F.	Outbuilding Type	Est. Gross S.F.	Comments
First Floor	814	814	Barn 1story	375.00	
Porch, Enclosed	32	0	Barn 1story	960.00	
Porch, Open	140	0	Barn 1story	4000.00	
Upper Story, Finished	814	814	Barn w/Loft	1250.00	
Slab	264	0	Lean-to	864.00	
Basement	550	0	Patio-Concrete	66.00	
First Floor	762	762	Shed-Wood/Comp	117.00	

[^0]| GIS TOWn of Glastonbury GIS Parcel Report | Report Generated | $9 / 28 / 20219: 50: 38 \mathrm{Am}$ | | |
| :--- | :---: | :---: | :---: | :---: |
| Porch, Open | 25 | 0 | Shed-Wood/Comp | 48.00 |
| Basement | 762 | 0 | Shed-Wood/Comp | 176.00 |
| First Floor | 1514 | 1514 | Shed-Wood/Comp | 192.00 |
| Attic, Unfinished | 1514 | 0 | Wood Deck | 192.00 |
| Basement | 1514 | 0 | | |

This data \& map is a user generated static output from an Internet mapping site and is for reference only. Data that appears on this form may or may not be accurate, current, or otherwise reliable. Any questions on the data provided above should be directed to the Town of Glastonbury Property Assessment Office 860-652-7600.

Exhibit C

Construction Drawings

5701 SOUTH SANTA FE DRVE
LITLEOON, CO 80120
(((贵))) NSS
INFINIGYZ

OF CONN $=1$ "

CONSTRUCTION

A\&E PROUECT NUMEER
2039-Z5555C

BOBDLO0104A
63 WOODLAND ST
GLASTONBURY, CT 06073 GLASTONBURY, CT 06073

SHEET TTTL
RFinging
plumbing diagram
SHEET NUMEER

No SCALE

ITE ACTIVTY REQUIREMENTS:

NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRRRR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE
WRELESS, LLC. AND TOWER OWNER NOC \& THE DISH WIRELESS, LCI AND TOWER OWNER CONSTRUCTION MANAGER.
2. "LOoK UP" - DISH WIRELESS, LlC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLMBING FACIUTY SHALL BE CONSIDERED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHM OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REEINORCEMENTS, AND/OR EQUIPMENT INSTALAATIONS SHAL
NOT COMPROMISE THE INTEGRITY OR FUNCTONAL USE OF THE SAEETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACUIU ON

3. PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISOICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT
IS NOT LIMTED TO, BULING, ELECTRICAL, MECHANLCAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. ATTER ONSIE ACTVIIIES

 PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING
THE REQUIRED INVOLVEMENT OF A QUALIFED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) iN THE REQUIRED INVOLVEMENT OF A QUALIFED ENGINE
ACCORDANCE WTH ANSITTA-322 (LATEST EDTION).
5. ALL STE WORK TO COMPLY WTH DISH WIRELESS, LlC. AND TOWER OWNER INSTALLATON STANDARDS FOR CONSTRUCTION
ACTVIIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 STTANDARD

 AND ORDINANCES. CONTRACTOR SHALL ISSUE AL APPROPRATE NOTICES AND COMPLY WITH ALL LALSS, OROINANCES, REULLLSS.
REGULTIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED

9. THE CONTRACTOR SHALL CONTACT UTLITY LOCATING SERVICES INCLUDING PRVATE LOCATES SERVICES PRIOR TO THE START
OF CONSTRUCTION.

 FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY
11 ALL SITE WORK SHALL
LATEST APPROVED REVIION.
12. CONTRACTOR SHALL KEEP THE STEE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
TTE WORK IF NCESARY, RUBEISH, STUMPS, DEBRIS, STCKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
13. AL EXISTING INACTVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTLLTIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WTH
THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTLITES. 14. THE CONTRACTOR SHALL PROVIDE STEE SIIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE
REQURED BY LOCAL JURISDICTON AND SIGNAGE REQURED ON INDIIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
15. THE STtE SHALL be graded to Cause surface water to flow away from the carrier's equipment and tower areas. Th. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLICATION. 17. THE AREAS OF THE OWNERS PROPERT DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRVVWA, SALL BE GALDE TO A UNIFORM LLOPE, AND STABILZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTON DRAWINGS AND/OR PRONECT SPECIFICATIONS.
 19. THE CONTRACTOR SHALL PROTECC EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 20. CONTRACTOR SHALL LEGALY AND PROCERIY EXPENSE TO THE SATISFACTION OF OWNER COXIAL CABLES AND OTHER TEES 20. CONTRACTOR SHALL LEGALLY AND PRORERLY DISPOSE OF ALL SCRAP MATERIALL SUCH AS COXXIAL CABLES AND OTH
REMOVED FROM THE EXASTING FACLLITY. ANTENNAS AND RADIOS REMOVED SHALL EE RETURNED TO THE OWNER'S DESIGNATED
LOCATION.
,
21. Contractor shall leave premises in clean condition. trash and debris should be removed from site on a dally
basis 22. NO FIL OR EMBANKMENT MATERAL SHALL be placed on frozen ground. Frozen materials, snow or ice shall not
BE PLACED in ANY FIL OR EMBANKMENT.

general notes

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH WIRELESS, LLC.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALYY
EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINERS IN THIS OR SIMLAR LOCALIIES. IT IS ASSUMED THAT TH
 OF THE ATM
CONDITON OR ELEMENT IS (OR CAN BE) EXPLCITTLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INOUSTRY ACCEPTED CONDITION OR ELEMENT IS (OR CAN BE EXPLCITYY SHOWN ON TTESE DRAWING
STANDARD GOOD PRACTICE FOR MISELLAEOUS WORK NOT EXPLICILY SHOWN.

 STEE VSTIS BY THE ENGINEER OR HIS REPRESENTA
OBSERVATION OF THE FINSHED STRUCTURE ONLY.

NOTTS AND DETALLS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TTPICAL DETALLS

 THE CON
GREATER,
RECORD.
5. SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBLITY OF THE CONTRACTOR TO
 FABRRCATION OR CUTING OF ANY NEW OR EXIISTNG CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE
DISRERPANCIES AND/OR CONFLLCTS WTH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTFIED AS SOON AS
POSSIBLE.
 7. AL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLATIONS
AND OROINANESS. CONTRACTOR SHALL ISSUE ALL APPROPRATE NOTICES AND COMPLY WTHH ALL LAWS, ORDINANCES, RULES,
 REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORIT REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
OUT SHAL COOPLY WTH AL APLCALE MUNCIPAL AND UTLITY COMPANY SPECIFCATIONS AND LOCAL UURISICTIONAL CODES,
ORDINANCES AND APLLCABLE REGULATIONS.
8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MAT
NECESSARY TO COMPLETE ALL INSTALATONS AS INDICATED ON THE DRAWINGS.
9. THL CIESS SPECIFICALALY STATED OTHERTISE.
 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEEORE SUBMTTING BIDS, TO DETERMINE THE BEST ROUTING of ALL
CONOTS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNING PLAN DRAWINGS.

HE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY REPAIRED AT CONTRACTOR'S EXPENSE TO THE 13. CONTRACTOR SHAL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERRALS SUCH AS COAAIAL CABLES AND OTHER ITEMS
REMOVED FROM THE EXISTING FACLITTY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNEP'S DESGNTED 14.
basis.
CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a dally

((蚁))

 INFINIGY8
 FROM ZERO TO INFIIIGG
 | |
| :---: |

 RFDS REV \#: N/A

CONSTRUCTION DOCUMENTS

AKE PROJECT NUMB

63 WOODLAND ST
SHEET TTLLE
general notes

ations. And reinforcing steel

1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
AND CONSTRUCTON SPECIFCATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO bE 1000
psf.
3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF FRCCOD. MORE THAN 90 MINTES SHALL ELLPSE FROM BATCH TIME TO TIME OF PLACEN
TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90^{\prime} AT TIME OF PLACEMENT.
4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAN AR ENTRANING ADMIXTURES. AMOUNT OF AR ENTRANMENT TO BE
BASED ON SIZ OF AGGREGATE AND FF CLASS EXPOSURE (VERY SEVERE) CEMENT USED TO BE TPE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TPPE II PORTLAND CEMENT WITH
5. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alibs. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS,
SPLLCES SHALL BE CLASS "B" TENSION SPLCEES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE
UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:
\#4 BARS AND SMALLER 40 ks
\#5 bars and larger 60 ksi
${ }^{6 .} \stackrel{\text { THE }}{\text { DRAWINGS: }}$
LOLING MINMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON

- concrete cast against and permanently exposed to earth $3^{\prime \prime}$
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- \#g bars and larger $\mathbf{2}^{\prime \prime}$
- \#5 bars and smaller 1-1/2"
- concrete not exposed to earth or weather:
- slab and walls $3 / 4^{-}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edee or a $3 / 4^{\prime \prime}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise,

Electrical instalation notes:

1. ALL ELECTTICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIIICATIONS, NEC AND ALL APPLCABLE
2. CONDUIT ROUTINGS ARE SCHEMATC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATIONAL ELLCTRICAL COOE.
 CURRENT TO WHICH THEY ARE SUBJECTED, 22,OOO ALC MNMUM. VERIFY AVALLABLE SHORT CIRCUIT CURRENT DDES NOT EXCEED TH
RATING OF ELECTRICL EQUPMENT IN ACCORDANE WTTH ARTCLE 110.24 NEC OR THE MOST CURRNT ADOPTED CODE PRE THE COVERNING JURISDICTION.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WTH COLOR-CODED INSULATION OR ELLCCTRICAL TAPE ((3M BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WTH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFIGURATIN, WIRE CONFIGURATON, POWER OR AMPACIY RATNG AND BRANCH CIRUIT ID (D's).
panel boards (id numbers) shall be clearly labeled with plastic labels.
7. TIE WRAPS ARE Not allowed.
8. AL POWER AND EQUIPMENT GROUND WIRRG IN TUBING OR CONDUIT SHALL BE SIIGGLE COPPER CONDUCTOR (\#14 OR LARGER)
WITH TPPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SIIGGLE COPPER CONOUCTOR (\#G OR LARGER) WTTH
TOPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE PPECIFED. 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL be MULTI-CONDUCTOR, TYPE SOOW CORD (\#14 OR LARGER) UNLESS 11. P POWER AND
OTHERWISE SPECFIFED.
 13. ALP POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STILE, COMPRESSION WRE LUGS AND WRE NUTS BY THOMAS AND
BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVAIIABLE).
9. raceway and cable tray shall be listed or labeled for electrical use in accordance with nema, ul, ansi/ieee and NEC. 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUTT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LOCATIONS.
10. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT. 18. LIQUD-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TTTE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBRATION
OCCURS OR FLEXIBLITY IS NEEDED. 19. CONDUUT AND TUBING FFITINGS SHALL BE THREADED OR COMPRESSION-TPPE AND APPROVED FOR THE LOCATION USED. SET
SCREW FITINGS ARE NOT ACEPTABLE. 20. Cabinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the
11. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
12. SLOTtED WiRIng duct shall be pvc and include cover (panduit tppe e or equal).
13. CONDUTS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE
DEVICES (i.e. POWDER-ACTUATED) FOR ATACHING HANGERS TO STRUCTURE WIL NOT BE PERMITED. CLOSELY FOLLOW THE LINES DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITED. CLOSELY FOLLOW THE LINES O
THE STRUCTURE, MANTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUTTS IN TIGHT ENVELOPES CHANGES IN DIPECTON

14. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATONS AND NEMA 3 (OR BETER) FOR SETEELL SHALL MEET OR
EXTERIOR LOCATIONS.
15. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 AA AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
16. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED ITIR) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETER) FOR EXTERIOR LOCATIONS.
THE CONTRACTOR SHALL NOTIIY AND OBTAIN NECESSAAY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND
TOWER OWNER BEFORE COMANCING WORK ON THE AC PWER DISTRBUITIN PANEIS
${ }^{28}$ 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE RREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE BREAERERT,
PROPRT.
17. Install lamicoid label on the meter center to show "oish wireless, llc."
18. all empty/SPare conduits that are installed are to have a metered mule tape pull cord installed.

5701 SOUTH SANTA FE DRVE
LTTLEEON, CO 80120

(((虫))

INFINIGY\&
from zero to infinigy
The solulions are endiess

 Ni		
RCD	ss	CJW

GROUNDING NOTES

1．ALL GROUND ELECTRODE SYSTEMS（INCLUDING TELECOMMUNICATION，RADIO，LIGHTNING PROTECTION AND AC POWER GES＇S）SHALL
BE BONDED TOGETHER AT OR BELOW GRADE，BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WTH THE NEC．
THE CONTRACTOR SHALL PERFORM IEEE FALL－OF－POTENTAL RESISTANCE TO EARTT TESTING（PER IEEE 1100 AND 81）FOR GROUND ELLCTRODE SYSTEMS．THE CONTRACTO
ACHIVVE A TEST RESULT OF 5 OHMS OR LESS．
3．THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS．
4．METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTH \＃
5．METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR．STRANDED COPPER CONDUCTORS
WTH GEEN INSULTION，SIZED IN ACCORDANCE WTH THE NEC，SHALL BE FURNISHED AND INSTALED WTH THE POWER CIRCUTS TO BTS
EQUPMENT
6．EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WRES，\＃6 STRANDED COPPER OR LARGER FOR INDOOR BTS；\＃2 BARE SOLI TINED COPPER FOR OUTDOOR BTS，
7．CONNECTIONS TOTHE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED．
dictors between equpment／ground baps and the ground ping shal be \＃2 soud tined
9．ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS．
10．USE of 90° bends in the protection grounding conductors shall be avoided when 45° bend can be adequately
11．EXOTHERMIC WELDS SHALL be USED FOR ALL GROUNDING CONNECTIONS below grade．
12．ALL GROUND CONNECTIONS ABOVE GRADE（INTERIOR AND EXTERIOR）SHALL BE FORMED USING HIGH PRESS CRIMPS．
13．COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS．
14.
BAR．

15．APPROVED ANTIOXIDANT COATINGS（i．e．CONDUCTVE GEL OR PASTE）SHALL bE USED ON ALL COMPRESSION AND BOLTED GROUND
CONNECTIONS．
16．ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERALL
17．MISCELLANEOUS ELECTRICAL AND NON－ELECTRICAL METAL BOXES，FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18．BOND ALL METALLIC OBJECTS WTHIN 6 ft OF MAIN GROUND RING WTH（1）\＃2 BARE SOLID TINNED COPPER GROUND
COND
19．GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
THROUGH MEIALIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR，SUCH AS METALLC CONOUTS，METAL SUPPORT CLPS

20．ALL GROUNDS THAT TRANSTION FROM BELOW GRADE TO ABOVE GRADE MUST BE \＃2 BARE SOLID TINNED COPPER IN $3 / 4^{\prime \prime}$ NON－METALLLC，FLEXIBLE CONDUTT FROM $24^{4 \prime}$ BELOW GRADE TO WTTHIN $3^{\prime \prime}$ TO $6^{\prime \prime \prime}$ OF CAD－WELD TERMINATION POINT．THE EXPOSED END Of The CONDUT MUST be sealed with silicone caulk．（add transitioning ground standard detall as well）．
BULILINGS WHERE THE MAIN GROUNING CONDCTORS ARE REQURED TO BE ROUTED TO GRADE，THE CONTRACTOR SHALL ROUTE
TWO GROUNDING CONDUCTORS FROM THE ROOFTOP，TOWERS，AND WATER TOWERS GROUNDING RING，TO THE EXISTING GROUNDING NS GROUNDING CONDUCTORS FROM THE ROOFTOP，TOWERS，AND WATER TOWERS GROUNDING RING，TO THE EXISTING GROUNDING
SYSTEM，THE GROUNOING CONDCTORS SHALL NOT BE SMALLER THAN $2 / 0$ COPPER．ROOTOO GROUNOING RING SHALL BE BONDED TO THE EXISTNG GROUNDING SYSTEM，THE BULLDING STEEL COLUMNS，LIGHTNING PROTECTION SYSTEM，AND BUULDING MAIN WATER LINE （FERROUS OR NONFERROUS METAL PIPING ONLY）．DO NOT ATACH GROUNOING TO FIRE SPRINKLER SYSTEM PIPES，

5701 SOUTH SANTA FE DRVE
LTTLETON，CO 80120

Exhibit D

Structural Analysis Report

DISH Wireless LLC

Structural Analysis Report

VERTICAL BRIDGE ENGINEERING, LLC

Table of Contents

Introduction 1
Existing Structural Information 1
Final Proposed Equipment Loading for DISH Wireless 1
Design Criteria 2
Analysis Results 2
Assumptions 2
Conclusions 3
Standard Conditions 4
Disclaimer of Warranties 4
Calculations Attached
Collocation Application Attached

Introduction

We have completed our structural analysis of the proposed equipment installation on the foregoing tower to determine its ability to support the new loads proposed by DISH Wireless. The objective of the analysis was to determine if the tower meets the current structural codes and standards with the proposed equipment installation.

Existing Structural Information

The following documents for the existing structure were made available for our structural analysis.

Tower Information	Ehresmann Engineering, Inc., Job No. 102800, dated 12/17/2018
Foundation Information	Ehresmann Engineering, Inc., Job No. 102800, dated 12/17/2018
Geotechnical Information	FDH Velocitel., Project No. 18PGJC1600, dated 04/10/2018
Existing Equipment Information	Vertical Bridge Collocation Application Version 2.
Tower Reinforcement Information	Tower has not been previously reinforced.

Final Proposed Equipment Loading for DISH Wireless

The following proposed loading was obtained from the Vertical Bridge Collocation Application:

Antenna/Equipment					Coax	
Mount (ft)	RAD (ft)	Qty.	Antenna	Type	Qty.	Size/Type
125.0	-	1	Platform with Handrails	Mount	1	1.6" Hybrid
	125.0	6	Fujitsu TA08025-B605	RRU		
		3	JMA MX08FRO665-20_V0F	Panel		
		1	Raycap RDIDC-9181-PF-48	DC Box		

[^1]
Design Criteria

The tower was analyzed using tnxTower (Version 8.0.9.0) tower analysis software using the following design criteria.

State	Connecticut
City/County Building Code	Hartford County (IBC 2018)
TIA/EIA Standard Code	TIA-222-H
Basic Wind Speed	119 MPH (Vult)
Basic Wind Speed w/ Ice	$50 \mathrm{MPH} \mathrm{w} / 1.50 "$ Ice
Steel Grade	65 ksi Pole $/ 50 \mathrm{ksi}$ Base Plate /
	A615-75 Anchor Bolts
Exposure Category	C
Topographic Category (height)	$1(0.0 \mathrm{ft})$
Risk Category	II
$\mathbf{S}_{\mathbf{s}}$	0.202
Seismic Design Category	B

Analysis Results

Based on the foregoing information, our structural analysis determined that the existing tower is structurally capable of supporting the proposed equipment loads without modification. The existing tower base plate, anchor rods, and foundation have also been evaluated and were found to be structurally capable of supporting the proposed equipment loads. A seismic analysis has been performed on this tower and does not control.

Assumptions

The below assumptions are true, complete, and accurate.

1. The existing tower has been maintained to manufacturer's specifications and is in good condition.
2. Foundations are considered to have been properly designed for the original design loads.
3. All member connections are considered to have been designed to meet the load carrying capacity of the connected member.
4. Antenna mount loads have been estimated based on generally accepted industry standards.
5. The mounts for the proposed antennas have been analyzed and designed by others.
6. See additional assumptions contained in the report attached.
7. Tower is within acceptable engineering tolerance at 105%.
8. Foundations are within acceptable engineering tolerance at 110%.

Conclusions

The existing tower described above has sufficient capacity to support the proposed loading based on the governing Building Code. The existing tower base plate, anchor rods, and foundation have also been evaluated and are acceptable. A seismic analysis has been performed on this tower and does not control.

We appreciate the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance, please call us anytime at 561-948-6367.

Sincerely,
Analysis by:
Reviewed by:

05/20/2021

Gertha Wesh
Design Engineer II

Michael T. De Boer, P.E.
Vice President of Structural Engineering

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but not necessarily limited, to:

- Information supplied by the client regarding the structure itself, the antenna and transmission line loading on the structure and its components, or relevant information.
- Information from drawings in possession of Vertical Bridge Engineering, LLC, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Vertical Bridge Engineering, LLC and used in the performance of our engineering services is correct and complete. In the absence of information contrary, we consider that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated; and we, therefore consider that their capacity has not significantly changed from the original design condition.
All services will be performed to the codes and standards specified by the client, and we do not imply to meet any other code and standard requirements unless explicitly agreed to in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes and standards, the client shall specify the exact requirements. In the absence of information to the contrary, all work will be performed in accordance with the revision of ANSI/TIA/EIA-222-H requested.

All services are performed, results obtained, and recommendations made in accordance with the generally accepted engineering principles and practices. Vertical Bridge Engineering LLC, is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

Disclaimer of Warranties

The engineering services by Vertical Bridge Engineering, LLC in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size, and capacity of its members. Vertical Bridge Engineering, LLC does not analyze the fabrication, including welding, except as may be expressly included in this report.

The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines. Any mention of structural modifications are reasonable estimates and should not be used a precise construction document. Precise modification drawings are obtainable from Vertical Bridge Engineering, LLC but are beyond the scope of this report.

Vertical Bridge Engineering, LLC makes no warranties, express or implied, in connection with this report and disclaims any liability arising from material, fabrication and erection of this tower, or installation and compliance with legal and permitting requirements of the proposed equipment. Vertical Bridge Engineering, LLC will not be responsible whatsoever for or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of Vertical Bridge Engineering, LLC pursuant to this report will be limited to the total fee received for preparation of this report.

Attachment 1:
 Calculations

150.0 ft
DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
AIR32 KRD901146-1_B66A-B2A w/ Mount Pipe	150	SM 602-1 (ATT-E)	136
		SM 602-1 (ATT-E)	136
AIR32 KRD901146-1_B66A-B2A w/ Mount Pipe	150	SM 602-1 (ATT-E)	136
AIR32 KRD901146-1_B66A-B2A w/ Mount Pipe	150	1/3 Remaining Reserved Rights (ATT R)	136
		1/3 Remaining Reserved Rights (ATT -R)	136
LNX-6515DS-A1M	150	1/3 Remaining Reserved Rights (ATT(-R)	136
LNX-6515DS-A1M	150		
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	150	(2) TPA65R-BU8D w/ Mount Pipe (ATT-E)	136
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	150	(2) TPA65R-BU8D w/ Mount Pipe (ATT-E)	136
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	150	(2) TPA65R-BU8D w/ Mount Pipe (ATT-E)	136
RRUS 11 B12	150	HPA65R-BU8A w/Mount Pipe (ATT-E)	136
RRUS 11 B12	150	HPA65R-BU8A w/Mount Pipe (ATT-E)	136
RRUS 11 B12	150	HPA65R-BU8A w/Mount Pipe (ATT-E)	136
RRUS 11 B4	150	4478 B14 RRUS(18.1×13.4×8.3×59.4lbs) (ATT-E)	136
RRUS 11 B4	150		
RRUS 11 B4	150	4478 B14 RRUS(18.1×13.4×8.3x59.4lbs) (ATT-E)	136
IBR-1300	150		
SM 602-1	150	$8^{\prime} \times 2^{\prime \prime}$ STD Pipe Mount (Dish Wireless P)	125
SM 602-1	150	$8^{\prime} \times 2$ " STD Pipe Mount (Dish Wireless P)	125
SM 602-1	150		
1/3 Remaining Reserved Rights (TMO -R)	150	8'x2" STD Pipe Mount (Dish Wireless - P)	125
1/3 Remaining Reserved Rights (TMO - R)	150	1/3 Remaining Reserved Rights (Dish Wireless - R)	125
1/3 Remaining Reserved Rights (TMO $-R)$	150	1/3 Remaining Reserved Rights (Dish Wireless - R)	125
4478 B14 RRUS (18.1 $13.4 \times 8.3 \times 59.4 \mathrm{lbs})$ (ATT-E)	136	1/3 Remaining Reserved Rights (Dish Wireless - R)	125
E2-700 (ATT-E)	136	Platfrom w/Handrails (LP 716) (Dish Wireless - P)	125
E2-700 (ATT-E)	136		
E2-700 (ATT-E)	136	MX08FRO665-20_V0F w/ Mount Pipe (Dish Wireless - P)	125
Radio 4415 B30	136		
(16.5 $\times 13.4 \times 5.9 \times 46 \mathrm{lbs}$) (ATT-E)		MX08FRO665-20_V0F w/ Mount Pipe (Dish Wireless - P)	125
Radio 4415 B30	136		
(16.5x13.4×5.9x46lbs) (ATT-E)		MX08FRO665-20_V0F w/ Mount Pipe (Dish Wireless - P)	125
Radio 4415 B30	136		
(16.5x13.4×5.9x46lbs) (ATT-E)		(2) TA08025-B605 (14.96x15.75x9.06x751bs) (Dish Wireless - P)	125
$\begin{aligned} & \text { Radio } 4449 \text { (} 15.0 \times 13.2 \times 9.3 \times 74 \mathrm{lbs}) \\ & \text { (ATT-E) } \end{aligned}$	136		
Radio 4449 (15.0×13.2x9.3x74lbs) (ATT-E)	136	(2) TA08025-B605 (14.96x15.75x9.06x75lbs) (Dish Wireless - P)	125
Radio 4449 (15.0×13.2×9.3×74Ibs) (ATT-E)	136	(2) TA08025-B605$(14.96 \times 15.75 \times 9.06 \times 75 \mathrm{bs})$ (DishWireless - P)	125
8843 (15x13.2×11.1×75Ibs) (ATT-E)	136		
8843 ($15 \times 13.2 \times 11.1 \times 75 \mathrm{lbs}$) (ATT-E)	136	RDIDC-9181-PF-48 (Dish Wireless P)	125
8843 ($15 \times 13.2 \times 11.1 \times 75 \mathrm{lbs}$) (ATT-E)	136		
Unknown DC (ATT-E)	136		
Unknown DC (ATT-E)	136		
Unknown DC (ATT-E)	136		

ALL REACTIO ARE FACTOR	MATERIAL STRENGTH					
	GRADE	Fy	Fu	GRADE	Fy	Fu
AXIAL	A572-65	65 ksi	80 ksi			
85 K						
TOWER DESIGN NOTES						
SHEAR $11 \mathrm{~K}$	1. Tower is 2. Tower 3. Tower	located in signed for signed for	County, Co re C to the mph basic w	ut. -H Standa cordance		

TORQUE 0 kir 4 . Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase 50 mph WIND - 1.50 in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.

AXIAL	6. Tower Risk Category II.
50 K	7. Topographic Category 1 with Crest Height of 0.000 ft
8. TOWER RATING: 69.5%	

TORQUE 0 kip-ft
REACTIONS - 119 mph WIND

Vertical Bridge Engineering, LLC
750 Park of Commerce Drive, Suite 200

Boca Raton, FL 33487
Phone: 561-948-6367

US-CT-5018
Project: Monopole Structural Analysis

Cl
C
C
P

Client: DISH	Drawn by: GWesh	App'd:
de: TIA-222-H	Date: 05/20/21	ale: NTS

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{array}{ll} \hline \text { Page } & \\ & 1 \text { of } 19 \end{array}$
	Project	Monopole Structural Analysis	$\begin{aligned} & \text { Date } \\ & \text { 10:10:22 05/20/21 } \end{aligned}$
	Client	DISH	Designed by GWesh

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Tower base elevation above sea level: 310.000 ft .
Basic wind speed of 119 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.000 ft .
Nominal ice thickness of 1.5000 in.
Ice thickness is considered to increase with height.
Ice density of 56.000 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity
$\sqrt{ }$ Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
$\sqrt{ }$ SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
$\sqrt{ }$ Retension Guys To Initial Tension Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
$\sqrt{ }$ Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component
$\sqrt{ }$ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

[^2]| tnxTower
 Vertical Bridge Engineering, LLC
 750 Park of Commerce Drive, Suite 200
 Boca Raton, FL 33487
 Phone: 561-948-6367 FAX: | Job | US-CT-5018 | Page
 2 of 19 |
| :---: | :---: | :---: | :---: |
| | Project | Monopole Structural Analysis | $\begin{aligned} & \text { Date } \\ & \text { 10:10:22 05/20/21 } \end{aligned}$ |
| | Client | DISH | Designed by GWesh |

$\left.\begin{array}{cccccccccc}\hline \text { Section } & \text { Elevation } & \begin{array}{c}\text { Section } \\ \text { Length } \\ f t\end{array} & \begin{array}{c}\text { Splice } \\ \text { Length } \\ f t\end{array} & \begin{array}{c}\text { Number } \\ \text { of } \\ \text { Sides }\end{array} & \begin{array}{c}\text { Top } \\ \text { Diameter } \\ \text { in }\end{array} & \begin{array}{c}\text { Bottom } \\ \text { Diameter } \\ \text { in }\end{array} & \begin{array}{c}\text { Wall } \\ \text { Thickness } \\ \text { in }\end{array} & \begin{array}{c}\text { Bend } \\ \text { Radius }\end{array} \\ \text { Lt } & \text { ft } & \text { ft }\end{array} \begin{array}{c}\text { Pole Grade }\end{array}\right]$

Tapered Pole Properties

Section	Tip Dia. in	Area in 2	I $i n^{4}$	r in	C in	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	
L1	26.7672	24.8524	2138.8836	9.2655	13.4112	159.4849	4280.5816	12.4286	4.1888	
	40.1708	37.4215	7302.0244	13.9515	20.1168	362.9814	14613.6569	18.7143	6.5120	13.963
L2	39.5698	47.1631	8222.6286	13.1875	19.0744	431.0823	16456.0768	23.5860	5.9396	14.849
	48.9865	60.8138	17628.3191	17.0045	24.5364	718.4558	35279.8341	30.4127	7.8320	19.58
L3	48.1435	57.4775	14883.2580	16.0716	23.2015	641.4794	29786.0998	28.7442	7.2639	18.16
	57.1006	70.9706	28018.1714	19.8445	28.6004	979.6426	56073.2098	35.4921	9.1344	22.836
L4	56.2721	67.3238	23917.1577	18.8248	27.1412	881.2120	47865.7861	33.6683	8.6289	21.572
	64.9194	80.7466	41264.4167	22.5780	32.5120	1269.2057	82583.1303	40.3810	10.4896	26.224

Tower Elevation ft	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
150.000-100.0									
00									
L2				1	1	1			
100.000-65.50									
0									
L3				1	1	1			
65.500-32.300									
L4				1	1	1			
32.300-0.000									

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number	Number Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight $k l f$

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ f t^{2} / f t \end{gathered}$	Weight klf
$\begin{gathered} * * * \\ \text { 1.6" Hybrid } \\ (\text { Dish - P) } \end{gathered}$	C	No	No	Inside Pole	125.000-0.000	1	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$
$\begin{gathered} * * * \\ 5 / 8^{\prime \prime} \text { DC } \\ \text { (ATT-E) } \end{gathered}$	C	No	No	Inside Pole	136.000-0.000	6	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$
3/8" Fiber Cables (ATT-E)	C	No	No	Inside Pole	136.000-0.000	2	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \\ & 0.001 \\ & 0.001 \end{aligned}$
6X12 Hybrid (TMO-E)	C	No	No	Inside Pole	150.000-0.000	3	No Ice 1/2" Ice 1" Ice 2" Ice	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight
K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{150.000-100.000} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.154

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{100.000-65.500} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.145

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{65.500-32.300} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.139

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{32.300-0.000} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.136

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation \(f t\) \& \begin{tabular}{l}
Face or \\
Leg
\end{tabular} \& Ice Thickness in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight
K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{150.000-100.000} \& A \& \multirow[t]{3}{*}{1.712} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.154

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{100.000-65.500} \& A \& \multirow[t]{3}{*}{1.644} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.145

\hline L3 \& 65.500-32.300 \& A \& 1.560 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.000

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & \\ & \\ & 4 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

Tower Section	Tower Elevation $f t$	Face or	Ice Thickness	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
	$f t$	Leg	in	$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$	K
		B		0.000	0.000	0.000	0.000	0.000
L4		C		0.000	0.000	0.000	0.000	0.139
	$32.300-0.000$	A	1.397	0.000	0.000	0.000	0.000	0.000
		B		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.136

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$150.000-100.000$	0.0000	0.0000	0.0000	0.0000
L2	$100.000-65.500$	0.0000	0.0000	0.0000	0.0000
L3	$65.500-32.300$	0.0000	0.0000	0.0000	0.0000
L4	$32.300-0.000$	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{4}{*}{$$
\begin{gathered}
\text { LP } 716 \\
\text { (Dish Wireless - P) }
\end{gathered}
$$} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 26.800 \& 26.800 \& 1.509

\hline \& \& \& \& \& \& 1/2" Ice \& 32.200 \& 32.200 \& 1.811

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 37.600 \& 37.600 \& 2.113

\hline \& \& \& \& \& \& 2" Ice \& 48.400 \& 48.400 \& 2.717

\hline \multirow[t]{4}{*}{MX08FRO665-20_V0F w/ Mount Pipe (Dish Wireless - P)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 12.964 \& 7.767 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.668 \& 9.053 \& 0.178

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.340 \& 10.191 \& 0.282

\hline \& \& \& \& \& \& 2" Ice \& 15.618 \& 12.139 \& 0.519

\hline \multirow[t]{4}{*}{MX08FRO665-20 V0F w/ Mount Pipe (Dish Wireless - P)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 12.964 \& 7.767 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.668 \& 9.053 \& 0.178

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.340 \& 10.191 \& 0.282

\hline \& \& \& \& \& \& 2" Ice \& 15.618 \& 12.139 \& 0.519

\hline \multirow[t]{4}{*}{MX08FRO665-20_V0F w/ Mount Pipe (Dish Wireless - P)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 12.964 \& 7.767 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 13.668 \& 9.053 \& 0.178

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.340 \& 10.191 \& 0.282

\hline \& \& \& \& \& \& 2" Ice \& 15.618 \& 12.139 \& 0.519

\hline (2) TA08025-B605 \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 1.964 \& 1.129 \& 0.075

\hline (14.96x15.75x9.06x75lbs) \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.138 \& 1.267 \& 0.093

\hline \multirow[t]{2}{*}{(Dish Wireless - P)} \& \& \& 0.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.320 \& 1.411 \& 0.114

\hline \& \& \& \& \& \& 2" Ice \& 2.705 \& 1.723 \& 0.164

\hline (2) TA08025-B605 \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.000 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{125.000} \& No Ice \& 1.964 \& 1.129 \& 0.075

\hline (14.96x15.75x9.06x75lbs) \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.138 \& 1.267 \& 0.093

\hline (Dish Wireless - P) \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.320 \& 1.411 \& 0.114

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \text { of } 19 \end{array}$
	Project	Monopole Structural Analysis	Date $10: 10: 22 \text { 05/20/21 }$
	Client	DISH	Designed by GWesh

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow{5}{*}{(2) TA08025-B605 (14.96x15.75x9.06x75lbs) (Dish Wireless - P)} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{125.000} \& 2" Ice \& 2.705 \& 1.723 \& 0.164

\hline \& \& \& 3.000 \& \& \& No Ice \& 1.964 \& 1.129 \& 0.075

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.138 \& 1.267 \& 0.093

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.320 \& 1.411 \& 0.114

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{125.000} \& 2" Ice \& 2.705 \& 1.723 \& 0.164

\hline \multirow[t]{4}{*}{| RDIDC-9181-PF-48 |
| :--- |
| (Dish Wireless - P) |} \& \& \& 3.000 \& \& \& No Ice \& 2.561 \& 1.342 \& 0.022

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.760 \& 1.498 \& 0.043

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 2.967 \& 1.662 \& 0.067

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{125.000} \& 2" Ice \& 3.402 \& 2.012 \& 0.125

\hline \multirow[t]{4}{*}{8'x2" STD Pipe Mount (Dish Wireless - P)} \& \& \& 3.000 \& \& \& No Ice \& 1.900 \& 1.900 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.728 \& 2.728 \& 0.044

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.401 \& 3.401 \& 0.063

\hline \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{125.000} \& $2^{\prime \prime}$ Ice \& 4.396 \& 4.396 \& 0.119

\hline \multirow[t]{4}{*}{8'x2" STD Pipe Mount (Dish Wireless - P)} \& \& \& 3.000 \& \& \& No Ice \& 1.900 \& 1.900 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.728 \& 2.728 \& 0.044

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.401 \& 3.401 \& 0.063

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{125.000} \& 2" Ice \& 4.396 \& 4.396 \& 0.119

\hline \multirow[t]{4}{*}{8'x2" STD Pipe Mount (Dish Wireless - P)} \& \& \& 3.000 \& \& \& No Ice \& 1.900 \& 1.900 \& 0.029

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.728 \& 2.728 \& 0.044

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 3.401 \& 3.401 \& 0.063

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{125.000} \& 2" Ice \& 4.396 \& 4.396 \& 0.119

\hline \multirow[t]{4}{*}{1/3 Remaining Reserved Rights (Dish Wireless - R)} \& \& \& 3.000 \& \& \& No Ice \& 5.885 \& 5.885 \& 0.063

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 6.905 \& 6.905 \& 0.094

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.925 \& 7.925 \& 0.126

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{125.000} \& 2 " Ice \& 9.965 \& 9.965 \& 0.188

\hline \multirow[t]{4}{*}{1/3 Remaining Reserved Rights (Dish Wireless - R)} \& \multirow[t]{4}{*}{B} \& \& 3.000 \& \& \& No Ice \& 5.885 \& 5.885 \& 0.063

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 6.905 \& 6.905 \& 0.094

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 7.925 \& 7.925 \& 0.126

\hline \& \& \& \& \& \& 2" Ice \& 9.965 \& 9.965 \& 0.188

\hline \multirow[t]{4}{*}{1/3 Remaining Reserved Rights (Dish Wireless - R)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{125.000} \& No Ice \& 5.885 \& 5.885 \& 0.063

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 6.905 \& 6.905 \& 0.094

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.925 \& 7.925 \& 0.126

\hline \& \& \& \& \& \& 2" Ice \& 9.965 \& 9.965 \& 0.188

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{(2) TPA65R-BU8D w/ Mount Pipe (ATT-E)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.000} \& No Ice \& 18.089 \& 10.100 \& 0.112

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 18.722 \& 11.522 \& 0.232

\hline \& \& \& 0.000 \& \& \& $1{ }^{1 \prime}$ Ice \& 19.362 \& 12.796 \& 0.362

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 20.662 \& 15.017 \& 0.658

\hline \multirow[t]{4}{*}{(2) TPA65R-BU8D w/ Mount Pipe (ATT-E)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.000} \& No Ice \& 18.089 \& 10.100 \& 0.112

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 18.722 \& 11.522 \& 0.232

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 19.362 \& 12.796 \& 0.362

\hline \& \& \& \& \& \& 2 " Ice \& 20.662 \& 15.017 \& 0.658

\hline \multirow[t]{4}{*}{(2) TPA65R-BU8D w/ Mount Pipe (ATT-E)} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.000} \& No Ice \& 18.089 \& 10.100 \& 0.112

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 18.722 \& 11.522 \& 0.232

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 19.362 \& 12.796 \& 0.362

\hline \& \& \& \& \& \& 2" Ice \& 20.662 \& 15.017 \& 0.658

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { HPA65R-BU8A w/Mount } \\
& \text { Pipe } \\
& \text { (ATT-E) }
\end{aligned}
$$} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 0.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.000} \& No Ice \& 18.564 \& 10.575 \& 0.094

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 19.402 \& 12.197 \& 0.219

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 20.251 \& 13.843 \& 0.355

\hline \& \& \& \& \& \& 2" Ice \& 21.844 \& 16.531 \& 0.665

\hline \multirow[t]{4}{*}{$$
\begin{gathered}
\text { HPA65R-BU8A w/Mount } \\
\text { Pipe } \\
\text { (ATT-E) }
\end{gathered}
$$} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 0.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.000} \& No Ice \& 18.564 \& 10.575 \& 0.094

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 19.402 \& 12.197 \& 0.219

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 20.251 \& 13.843 \& 0.355

\hline \& \& \& \& \& \& 2" Ice \& 21.844 \& 16.531 \& 0.665

\hline \multirow[t]{3}{*}{HPA65R-BU8A w/Mount Pipe (ATT-E)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.000 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{136.000} \& No Ice \& 18.564 \& 10.575 \& 0.094

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 19.402 \& 12.197 \& 0.219

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 20.251 \& 13.843 \& 0.355

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{array}{ll} \hline \text { Page } & \\ & 6 \text { of } 19 \end{array}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

Description	Face or Leg	Offset Type		Azimuth Adjustment 0	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
$\begin{gathered} 4478 \text { B14 RRUS } \\ (18.1 \times 13.4 \times 8.3 \times 59.4 \mathrm{lbs}) \\ \text { (ATT-E) } \end{gathered}$	A	From Leg		0.0000	136.000	2" Ice	21.844	16.531	0.665
			3.000			No Ice	2.021	1.252	0.059
			0.000			1/2" Ice	2.200	1.402	0.077
			0.000			$1{ }^{\prime \prime}$ Ice	2.386	1.560	0.097
		From Leg		0.0000	136.000	$2{ }^{\prime \prime}$ Ice	2.780	1.898	0.147
4478 B14 RRUS	B		3.000			No Ice	2.021	1.252	0.059
(18.1x13.4x8.3x59.4lbs)			0.000			1/2" Ice	2.200	1.402	0.077
(ATT-E)			0.000			$1^{\prime \prime}$ Ice	2.386	1.560	0.097
	C	From Leg		0.0000	136.000	$2{ }^{\prime \prime}$ Ice	2.780	1.898	0.147
4478 B14 RRUS			3.000			No Ice	2.021	1.252	0.059
(18.1x13.4x8.3x59.4lbs)			0.000			1/2" Ice	2.200	1.402	0.077
(ATT-E)			0.000			$1{ }^{\prime \prime}$ Ice	2.386	1.560	0.097
	A	From Leg		0.0000	136.000	$2{ }^{\prime \prime}$ Ice	2.780	1.898	0.147
$\begin{gathered} \text { E2-700 } \\ \text { (ATT-E) } \end{gathered}$			3.000			No Ice	3.083	1.243	0.052
			0.000			1/2" Ice	3.301	1.392	0.075
			0.000			$1^{\prime \prime}$ Ice	3.526	1.553	0.101
	B	From Leg		0.0000	136.000	$2{ }^{\prime \prime}$ Ice	3.998	1.901	0.163
E2-700			3.000			No Ice	3.083	1.243	0.052
(ATT-E)			0.000			1/2" Ice	3.301	1.392	0.075
			0.000			$1^{\prime \prime}$ Ice	3.526	1.553	0.101
$\begin{gathered} \text { E2-700 } \\ \text { (ATT-E) } \end{gathered}$	C	From Leg		0.0000	136.000	$2^{\prime \prime}$ Ice	3.998	1.901	0.163
			3.000			No Ice	3.083	1.243	0.052
			0.000			1/2" Ice	3.301	1.392	0.075
			0.000			$1{ }^{\prime \prime}$ Ice	3.526	1.553	0.101
$\begin{gathered} \text { Radio } 4415 \mathrm{~B} 30 \\ (16.5 \times 13.4 \times 5.9 \times 46 \mathrm{lbs}) \\ (\text { ATT-E) } \end{gathered}$	A	From Leg		0.0000	136.000	$2{ }^{\prime \prime}$ Ice	3.998	1.901	0.163
			3.000			No Ice	0.000	0.000	0.000
			0.000			1/2" Ice	0.000	0.000	0.000
			0.000			$1^{\prime \prime}$ Ice	0.000	0.000	0.000
	B	From Leg		0.0000	136.000	2 " Ice	0.000	0.000	0.000
Radio 4415 B30			3.000			No Ice	0.000	0.000	0.000
(16.5x13.4x5.9x46lbs)			0.000			1/2" Ice	0.000	0.000	0.000
(ATT-E)			0.000			$1{ }^{\prime \prime}$ Ice	0.000	0.000	0.000
	C	From Leg		0.0000	136.000	2 " Ice	0.000	0.000	0.000
Radio 4415 B30			3.000			No Ice	0.000	0.000	0.000
(16.5x13.4x5.9x46lbs)			0.000			1/2" Ice	0.000	0.000	0.000
(ATT-E)			0.000			$1^{\prime \prime}$ Ice	0.000	0.000	0.000
	A	From Leg		0.0000	136.000	$2{ }^{\prime \prime}$ Ice	0.000	0.000	0.000
Radio 4449			3.000			No Ice	1.650	1.163	0.074
(15.0x13.2×9.3×74lbs)			0.000			1/2" Ice	1.810	1.301	0.090
(ATT-E)			0.000			$1^{\prime \prime}$ Ice	1.978	1.447	0.109
$\begin{gathered} \text { Radio } 4449 \\ (15.0 \times 13.2 \times 9.3 \times 74 \mathrm{lbs}) \\ \text { (ATT-E) } \end{gathered}$	B	From Leg		0.0000	136.000	2 " Ice	2.336	1.762	0.155
						No Ice	1.650	1.163	0.074
			0.000			1/2" Ice	1.810	1.301	0.090
			0.000			$1{ }^{\prime \prime}$ Ice	1.978	1.447	0.109
	C	From Leg		0.0000	136.000	2 " Ice	2.336	1.762	0.155
$\begin{gathered} \text { Radio } 4449 \\ (15.0 \times 13.2 \times 9.3 \times 74 \mathrm{lbs}) \\ \text { (ATT-E) } \end{gathered}$			3.000			No Ice	1.650	1.163	0.074
			0.000			1/2" Ice	1.810	1.301	0.090
			0.000			1 " Ice	1.978	1.447	0.109
	A	From Leg		0.0000	136.000	2 " Ice	2.336	1.762	0.155
$\begin{aligned} & 8843 \text { (} 15 \times 13.2 \times 11.1 \times 75 \mathrm{lbs}) \\ & \text { (ATT-E) } \end{aligned}$			3.000			No Ice	1.650	1.388	0.075
			0.000			1/2" Ice	1.810	1.536	0.093
			0.000			$1^{\prime \prime}$ Ice	1.978	1.692	0.113
	B	From Leg		0.0000	136.000	2" Ice	2.336	2.027	0.164
$\begin{gathered} 8843(15 \times 13.2 \times 11.1 \times 75 \mathrm{lbs}) \\ \text { (ATT-E) } \end{gathered}$			3.000			No Ice	1.650	1.388	0.075
			0.000			1/2" Ice	1.810	1.536	0.093
			0.000			$1{ }^{\prime \prime}$ Ice	1.978	1.692	0.113
						2 " Ice	2.336	2.027	0.164

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{array}{ll} \hline \text { Page } \\ & 7 \text { of } 19 \end{array}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& 8843 \text { (15x13.2x11.1x75lbs)} \\
& \text { (ATT-E) }
\end{aligned}
$$} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.650 \& 1.388 \& 0.075

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.810 \& 1.536 \& 0.093

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.978 \& 1.692 \& 0.113

\hline \& \& \& \& \& \& 2" Ice \& 2.336 \& 2.027 \& 0.164

\hline \multirow[t]{4}{*}{| Unknown DC |
| :--- |
| (ATT-E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.547 \& 4.762 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.708 \& 5.042 \& 0.063

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.877 \& 5.328 \& 0.104

\hline \& \& \& \& \& \& 2" Ice \& 2.237 \& 5.924 \& 0.199

\hline \multirow[t]{4}{*}{| Unknown DC |
| :--- |
| (ATT-E) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.547 \& 4.762 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.708 \& 5.042 \& 0.063

\hline \& \& \& 0.000 \& \& \& 1" Ice \& 1.877 \& 5.328 \& 0.104

\hline \& \& \& \& \& \& 2" Ice \& 2.237 \& 5.924 \& 0.199

\hline \multirow[t]{4}{*}{| Unknown DC |
| :--- |
| (ATT-E) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.547 \& 4.762 \& 0.026

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 1.708 \& 5.042 \& 0.063

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.877 \& 5.328 \& 0.104

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 2.237 \& 5.924 \& 0.199

\hline \multirow[t]{4}{*}{| SM 602-1 |
| :--- |
| (ATT-E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& 0.0000 \& 136.000 \& No Ice \& 20.000 \& 8.530 \& 0.513

\hline \& \& \& \& \& \& 1/2" Ice \& 24.070 \& 11.090 \& 0.707

\hline \& \& \& \& \& \& 1" Ice \& 28.330 \& 13.630 \& 0.947

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 37.820 \& 18.640 \& 1.562

\hline \multirow[t]{4}{*}{| SM 602-1 |
| :--- |
| (ATT-E) |} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{None} \& \& 0.0000 \& 136.000 \& No Ice \& 20.000 \& 8.530 \& 0.513

\hline \& \& \& \& \& \& 1/2" Ice \& 24.070 \& 11.090 \& 0.707

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 28.330 \& 13.630 \& 0.947

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 37.820 \& 18.640 \& 1.562

\hline \multirow[t]{4}{*}{| SM 602-1 |
| :--- |
| (ATT-E) |} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& 0.0000 \& 136.000 \& No Ice \& 20.000 \& 8.530 \& 0.513

\hline \& \& \& \& \& \& 1/2' Ice \& 24.070 \& 11.090 \& 0.707

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 28.330 \& 13.630 \& 0.947

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 37.820 \& 18.640 \& 1.562

\hline \multirow[t]{4}{*}{1/3 Remaining Reserved Rights (ATT - R)} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.149 \& 1.149 \& 0.012

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.300 \& 1.300 \& 0.018

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.451 \& 1.451 \& 0.024

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 1.753 \& 1.753 \& 0.035

\hline \multirow[t]{4}{*}{1/3 Remaining Reserved Rights (ATT - R)} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.149 \& 1.149 \& 0.012

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.300 \& 1.300 \& 0.018

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.451 \& 1.451 \& 0.024

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 1.753 \& 1.753 \& 0.035

\hline \multirow[t]{4}{*}{1/3 Remaining Reserved Rights (ATT - R)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 3.000 \& 0.0000 \& 136.000 \& No Ice \& 1.149 \& 1.149 \& 0.012

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 1.300 \& 1.300 \& 0.018

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.451 \& 1.451 \& 0.024

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 1.753 \& 1.753 \& 0.035

\hline \multicolumn{8}{|l|}{***} \& \&

\hline AIR32 \& A \& From Leg \& 3.000 \& 0.0000 \& 150.000 \& No Ice \& 7.290 \& 6.612 \& 0.161

\hline KRD901146-1_B66A-B2A \& \& \& 0.000 \& \& \& 1/2' Ice \& 8.007 \& 7.796 \& 0.228

\hline \multirow[t]{2}{*}{w/ Mount Pipe} \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.667 \& 8.832 \& 0.303

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 9.865 \& 10.574 \& 0.477

\hline AIR32 \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 150.000 \& No Ice \& 7.290 \& 6.612 \& 0.161

\hline KRD901146-1_B66A-B2A \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.007 \& 7.796 \& 0.228

\hline \multirow[t]{2}{*}{w/ Mount Pipe} \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.667 \& 8.832 \& 0.303

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 9.865 \& 10.574 \& 0.477

\hline AIR32 \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 150.000 \& No Ice \& 7.290 \& 6.612 \& 0.161

\hline KRD901146-1_B66A-B2A \& \& \& 0.000 \& \& \& 1/2" Ice \& 8.007 \& 7.796 \& 0.228

\hline w/ Mount Pipe \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.667 \& 8.832 \& 0.303

\hline \& \& \& \& \& \& 2 " Ice \& 9.865 \& 10.574 \& 0.477

\hline \multirow[t]{4}{*}{LNX-6515DS-A1M} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& 0.0000 \& 150.000 \& No Ice \& 11.912 \& 10.071 \& 0.087

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 12.733 \& 11.692 \& 0.179

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.564 \& 13.337 \& 0.281

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 15.104 \& 16.021 \& 0.521

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{array}{ll} \hline \text { Page } & \\ & 8 \text { of } 19 \end{array}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{4}{*}{LNX-6515DS-A1M} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 11.912 \& 10.071 \& 0.087

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 12.733 \& 11.692 \& 0.179

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.564 \& 13.337 \& 0.281

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 15.104 \& 16.021 \& 0.521

\hline \multirow[t]{4}{*}{LNX-6515DS-A1M} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 11.912 \& 10.071 \& 0.087

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 12.733 \& 11.692 \& 0.179

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 13.564 \& 13.337 \& 0.281

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 15.104 \& 16.021 \& 0.521

\hline \multirow[t]{4}{*}{APX16DWV-16DWV-S-E-A $20 \mathrm{w} /$ Mount Pipe} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 9.055 \& 6.507 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 9.778 \& 7.722 \& 0.157

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.449 \& 8.776 \& 0.239

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 11.679 \& 10.545 \& 0.429

\hline \multirow[t]{4}{*}{APX16DWV-16DWV-S-E-A 20 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 9.055 \& 6.507 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 9.778 \& 7.722 \& 0.157

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.449 \& 8.776 \& 0.239

\hline \& \& \& \& \& \& 2 " Ice \& 11.679 \& 10.545 \& 0.429

\hline \multirow[t]{4}{*}{APX16DWV-16DWV-S-E-A 20 w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 9.055 \& 6.507 \& 0.083

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 9.778 \& 7.722 \& 0.157

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 10.449 \& 8.776 \& 0.239

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 11.679 \& 10.545 \& 0.429

\hline \multirow[t]{4}{*}{RRUS 11 B12} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& $$
3.000
$$ \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 2.833 \& 1.182 \& 0.051

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.043 \& 1.330 \& 0.072

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.259 \& 1.485 \& 0.095

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.715 \& 1.826 \& 0.153

\hline \multirow[t]{4}{*}{RRUS 11 B12} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 2.833 \& 1.182 \& 0.051

\hline \& \& \& 0.000 \& \& \& 1/2' Ice \& 3.043 \& 1.330 \& 0.072

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.259 \& 1.485 \& 0.095

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.715 \& 1.826 \& 0.153

\hline \multirow[t]{4}{*}{RRUS 11 B 12} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 2.833 \& 1.182 \& 0.051

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 3.043 \& 1.330 \& 0.072

\hline \& \& \& 0.000 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.259 \& 1.485 \& 0.095

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.715 \& 1.826 \& 0.153

\hline \multirow[t]{4}{*}{RRUS 11 B4} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 2.784 \& 1.187 \& 0.051

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.992 \& 1.334 \& 0.071

\hline \& \& \& 0.000 \& \& \& 1 " Ice \& 3.207 \& 1.490 \& 0.095

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.658 \& 1.833 \& 0.153

\hline \multirow[t]{4}{*}{RRUS 11 B4} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 2.784 \& 1.187 \& 0.051

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.992 \& 1.334 \& 0.071

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.207 \& 1.490 \& 0.095

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 3.658 \& 1.833 \& 0.153

\hline \multirow[t]{4}{*}{RRUS 11 B4} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.000 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 2.784 \& 1.187 \& 0.051

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 2.992 \& 1.334 \& 0.071

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 3.207 \& 1.490 \& 0.095

\hline \& \& \& \& \& \& 2 " Ice \& 3.658 \& 1.833 \& 0.153

\hline \multirow[t]{4}{*}{IBR-1300} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 0.672 \& 0.307 \& 0.008

\hline \& \& \& 0.000 \& \& \& 1/2" Ice \& 0.776 \& 0.384 \& 0.013

\hline \& \& \& 0.000 \& \& \& $1^{\prime \prime}$ Ice \& 0.888 \& 0.470 \& 0.020

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.133 \& 0.668 \& 0.040

\hline \multirow[t]{4}{*}{SM 602-1} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 20.000 \& 8.530 \& 0.513

\hline \& \& \& \& \& \& 1/2' Ice \& 24.070 \& 11.090 \& 0.707

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 28.330 \& 13.630 \& 0.947

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 37.820 \& 18.640 \& 1.562

\hline \multirow[t]{4}{*}{SM 602-1} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{150.000} \& No Ice \& 20.000 \& 8.530 \& 0.513

\hline \& \& \& \& \& \& 1/2" Ice \& 24.070 \& 11.090 \& 0.707

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 28.330 \& 13.630 \& 0.947

\hline \& \& \& \& \& \& 2 " Ice \& 37.820 \& 18.640 \& 1.562

\hline SM 602-1 \& C \& None \& \& 0.0000 \& 150.000 \& No Ice \& 20.000 \& 8.530 \& 0.513

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.100
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \(q_{z}\)

$k s f$ \& A_{G}

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{array}{r}
\text { Leg } \\
\%
\end{array}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline L1 \& 123.592 \& 1.323 \& 0.045 \& 139.454 \& A \& 0.000 \& 139.454 \& 139.454 \& 100.00 \& 0.000 \& 0.000

\hline 150.000-100.0 \& \& \& \& \& B \& 0.000 \& 139.454 \& \& 100.00 \& 0.000 \& 0.000

\hline 00 \& \& \& \& \& C \& 0.000 \& 139.454 \& \& 100.00 \& 0.000 \& 0.000

\hline L2 \& 82.328 \& 1.215 \& 0.041 \& 127.300 \& A \& 0.000 \& 127.300 \& 127.300 \& 100.00 \& 0.000 \& 0.000

\hline 100.000-65.50 \& \& \& \& \& B \& 0.000 \& 127.300 \& \& 100.00 \& 0.000 \& 0.000

\hline 0 \& \& \& \& \& C \& 0.000 \& 127.300 \& \& 100.00 \& 0.000 \& 0.000

\hline L3 \& 48.729 \& 1.088 \& 0.037 \& 145.588 \& A \& 0.000 \& 145.588 \& 145.588 \& 100.00 \& 0.000 \& 0.000

\hline 65.500-32.300 \& \& \& \& \& B \& 0.000 \& 145.588 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 145.588 \& \& 100.00 \& 0.000 \& 0.000

\hline L4 \& 16.164 \& 0.862 \& 0.030 \& 163.104 \& A \& 0.000 \& 163.104 \& 163.104 \& 100.00 \& 0.000 \& 0.000

\hline 32.300-0.000 \& \& \& \& \& B \& 0.000 \& 163.104 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& C \& 0.000 \& 163.104 \& \& 100.00 \& 0.000 \& 0.000

\hline
\end{tabular}

Tower Pressure - With Ice

$$
G_{H}=1.100
$$

Section Elevation $f t$	ft	K_{Z}	q_{z} ksf	t_{Z} in	A_{G} $f t^{2}$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	$\overline{A_{F}}$ $f t^{2}$	A_{R} $f t^{2}$	$A_{l e g}$ $f t^{2}$	$\begin{gathered} \text { Leg } \\ \% \end{gathered}$	$\begin{gathered} \hline C_{A} A_{A} \\ \text { In } \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$	$C_{A} A_{A}$ Out Face $f t^{2}$
L1	123.592	1.323	0.008	1.7117	153.719	A	0.000	153.719	153.719	100.00	0.000	0.000

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & 10 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	$\begin{aligned} & \text { Date } \\ & \text { 10:10:22 05/20/21 } \end{aligned}$
	Client	DISH	Designed by GWesh

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \(q_{z}\)
\(k s f\) \& \(t_{Z}\)
in \& \(A_{G}\)

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
L e g \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline 150.000-100.000 \& \& \& \& \& \& B \& 0.000 \& 153.719 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 153.719 \& \& 100.00 \& 0.000 \& 0.000

\hline L2 \& 82.328 \& 1.215 \& 0.007 \& 1.6436 \& 137.142 \& A \& 0.000 \& 137.142 \& 137.142 \& 100.00 \& 0.000 \& 0.000

\hline 100.000-65.500 \& \& \& \& \& \& B \& 0.000 \& 137.142 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 137.142 \& \& 100.00 \& 0.000 \& 0.000

\hline \& 48.729 \& 1.088 \& 0.007 \& 1.5596 \& 154.682 \& A \& 0.000 \& 154.682 \& 154.682 \& 100.00 \& 0.000 \& 0.000

\hline 65.500-32.300 \& \& \& \& \& \& B \& 0.000 \& 154.682 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 154.682 \& \& 100.00 \& 0.000 \& 0.000

\hline L4 32.300-0.000 \& 16.164 \& 0.862 \& 0.005 \& 1.3967 \& 171.500 \& A \& 0.000 \& 171.500 \& 171.500 \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 171.500 \& \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 0.000 \& 171.500 \& \& 100.00 \& 0.000 \& 0.000

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.100
$$

$\left.\begin{array}{|r|c|c|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Section } \\ \text { Elevation }\end{array} & z & K_{Z} & q_{z} & A_{G} & F & A_{F} & A_{R} & A_{\text {leg }} & \begin{array}{c}\text { Leg } \\ \% \\ \%\end{array} & \begin{array}{c}C_{A} A_{A} \\ \text { In }\end{array} & \begin{array}{c}C_{A} A_{A} \\ \text { Out } \\ \text { Face }\end{array} \\ \text { Face }\end{array}\right]$

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section \\
Elevation \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
K
\end{tabular} \& Self Weight K \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(k s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w

$k l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 0.154 \& 5.298 \& A \& 1 \& 0.73 \& 0.045 \& 1 \& 1 \& 139.454 \& 5.040 \& 0.101 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline 00 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline L2 \& 0.145 \& 7.348 \& A \& 1 \& 0.73 \& 0.041 \& 1 \& 1 \& 127.300 \& 4.223 \& 0.122 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline $$
0
$$ \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline L3 \& 0.139 \& 8.742 \& A \& 1 \& 0.73 \& 0.037 \& 1 \& 1 \& 145.588 \& 4.315 \& 0.130 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline L4 \& 0.136 \& 10.102 \& A \& 1 \& 0.73 \& 0.030 \& 1 \& 1 \& 163.104 \& 3.981 \& 0.123 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline Sum Weight: \& 0.574 \& 31.490 \& \& \& \& \& \& OTM \& 1245.225 \& 17.559 \& \&

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } 11 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

Section Elevation ft	Add Weight	Self Weight K	F a c c e	e	C_{F}	q_{z} ksf	D_{F}	D_{R}	A_{E} $f t^{2}$	F K	${ }^{w}$	Ctrl. Face
									kip-ft			

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& Add Weight
\[
K
\] \& Self Weight
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
\(k s f\)
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w

$k l f$ \& Ctrl. Face

\hline L1 \& 0.154 \& 5.298 \& A \& 1 \& 0.73 \& 0.045 \& 1 \& 1 \& 139.454 \& 5.040 \& 0.101 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline 00 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline L2 \& 0.145 \& 7.348 \& A \& 1 \& 0.73 \& 0.041 \& 1 \& 1 \& 127.300 \& 4.223 \& 0.122 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline 0 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline L3 \& 0.139 \& 8.742 \& A \& 1 \& 0.73 \& 0.037 \& 1 \& 1 \& 145.588 \& 4.315 \& 0.130 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline L4 \& 0.136 \& 10.102 \& A \& 1 \& 0.73 \& 0.030 \& 1 \& 1 \& 163.104 \& 3.981 \& 0.123 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline Sum Weight: \& 0.574 \& 31.490 \& \& \& \& \& \& OTM \& 1245.225 \& 17.559 \& \&

\hline \& \& \& \& \& \& \& \& \& kip-ft \& \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& Add Weight
\[
K
\] \& \begin{tabular}{l}
Self Weight \\
K
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\)
\(e\) \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
ksf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w

$k l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 0.154 \& 5.298 \& A \& 1 \& 0.73 \& 0.045 \& 1 \& 1 \& 139.454 \& 5.040 \& 0.101 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline 00 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline L2 \& 0.145 \& 7.348 \& A \& 1 \& 0.73 \& 0.041 \& 1 \& 1 \& 127.300 \& 4.223 \& 0.122 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline 0 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline L3 \& 0.139 \& 8.742 \& A \& 1 \& 0.73 \& 0.037 \& 1 \& 1 \& 145.588 \& 4.315 \& 0.130 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline L4 \& 0.136 \& 10.102 \& A \& 1 \& 0.73 \& 0.030 \& 1 \& 1 \& 163.104 \& 3.981 \& 0.123 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline Sum Weight: \& 0.574 \& 31.490 \& \& \& \& \& \& OTM \& 1245.225 \& 17.559 \& \&

\hline \& \& \& \& \& \& \& \& \& kip-ft \& \& \&

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } 12 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

Tower Forces - With Ice - Wind Normal To Face

Section Elevation $f t$	Add Weight K	Self Weight K	F a c e	e	C_{F}	q_{z} $k s f$	D_{F}	D_{R}	$\overline{A_{E}}$ $f t^{2}$	F K	w $k l f$	Ctrl. Face
L1	0.154	8.965	A	1	1.2	0.008	1	1	153.719	1.612	0.032	C
150.000-100.0			B	1	1.2		1	1	153.719			
00			C	1	1.2		1	1	153.719			
L2	0.145	10.520	A	1	1.2	0.007	1	1	136.750	1.317	0.038	C
100.000-65.50			B	1	1.2		1	1	136.750			
0			C	1	1.2		1	1	136.750			
L3	0.139	12.158	A	1	1.2	0.007	1	1	154.218	1.326	0.040	C
65.500-32.300			B	1	1.2		1	1	154.218			
			C	1	1.2		1	1	154.218			
L4	0.136	13.507	A	1	1.2	0.005	1	1	170.622	1.209	0.037	C
32.300-0.000			B	1	1.2		1	1	170.622			
			C	1	1.2		1	1	170.622			
Sum Weight:	0.574	45.149						OTM	$\begin{array}{r} 391.830 \\ \text { kip-ft } \end{array}$	5.464		

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& Add Weight \& Self Weight K \& \(F\)
\(a\)
\(c\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(q_{z}\) \(k s f\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w
$k l f$ \& Ctrl. Face

\hline L1 \& 0.154 \& 8.965 \& A \& 1 \& 1.2 \& 0.008 \& 1 \& 1 \& 153.719 \& 1.612 \& 0.032 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 153.719 \& \& \&

\hline 00 \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 153.719 \& \& \&

\hline L2 \& 0.145 \& 10.520 \& A \& 1 \& 1.2 \& 0.007 \& 1 \& 1 \& 136.750 \& 1.317 \& 0.038 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 136.750 \& \& \&

\hline 0 \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 136.750 \& \& \&

\hline L3 \& 0.139 \& 12.158 \& A \& 1 \& 1.2 \& 0.007 \& 1 \& 1 \& 154.218 \& 1.326 \& 0.040 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 154.218 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 154.218 \& \& \&

\hline L4 \& 0.136 \& 13.507 \& A \& 1 \& 1.2 \& 0.005 \& 1 \& 1 \& 170.622 \& 1.209 \& 0.037 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 170.622 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 170.622 \& \& \&

\hline Sum Weight: \& 0.574 \& 45.149 \& \& \& \& \& \& OTM \& $$
\begin{array}{r}
391.830 \\
\text { kip-ft }
\end{array}
$$ \& 5.464 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
K
\end{tabular} \& Self Weight
\(\qquad\) K \& \[
\begin{aligned}
\& \hline F \\
\& a \\
\& c \\
\& e
\end{aligned}
\] \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
ksf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w

$k l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 0.154 \& 8.965 \& A \& 1 \& 1.2 \& 0.008 \& 1 \& 1 \& 153.719 \& 1.612 \& 0.032 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 153.719 \& \& \&

\hline 00 \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 153.719 \& \& \&

\hline L2 \& 0.145 \& 10.520 \& A \& 1 \& 1.2 \& 0.007 \& 1 \& 1 \& 136.750 \& 1.317 \& 0.038 \& C

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & 13 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\qquad \& Self Weight
\qquad \& F
a
c
c
e \& e \& C_{F} \& q_{z} $k s f$ \& D_{F} \& D_{R} \& A_{E}

$f t^{2}$ \& F
K \& w

$k l f$ \& | Ctrl. |
| :--- |
| Face |

\hline 100.000-65.50 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 136.750 \& \& \&

\hline 0 \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 136.750 \& \& \&

\hline L3 \& 0.139 \& 12.158 \& A \& 1 \& 1.2 \& 0.007 \& 1 \& 1 \& 154.218 \& 1.326 \& 0.040 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 154.218 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 154.218 \& \& \&

\hline L4 \& 0.136 \& 13.507 \& A \& 1 \& 1.2 \& 0.005 \& 1 \& 1 \& 170.622 \& 1.209 \& 0.037 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 1.2 \& \& 1 \& 1 \& 170.622 \& \& \&

\hline \& \& \& C \& 1 \& 1.2 \& \& 1 \& 1 \& 170.622 \& \& \&

\hline Sum Weight: \& 0.574 \& 45.149 \& \& \& \& \& \& OTM \& $$
391.830
$$ \& 5.464 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\(\qquad\)
\[
K
\] \& \begin{tabular}{l}
Self Weight
\(\qquad\) \\
K
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
ksf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w

$k l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 0.154 \& 5.298 \& A \& 1 \& 0.73 \& 0.010 \& 1 \& 1 \& 139.454 \& 1.146 \& 0.023 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline 00 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline L2 \& 0.145 \& 7.348 \& A \& 1 \& 0.73 \& 0.009 \& 1 \& 1 \& 127.300 \& 0.961 \& 0.028 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline 0 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline L3 \& 0.139 \& 8.742 \& A \& 1 \& 0.73 \& 0.008 \& 1 \& 1 \& 145.588 \& 0.981 \& 0.030 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline L4 \& 0.136 \& 10.102 \& A \& 1 \& 0.73 \& 0.007 \& 1 \& 1 \& 163.104 \& 0.906 \& 0.028 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline Sum Weight: \& 0.574 \& 31.490 \& \& \& \& \& \& OTM \& $$
\begin{array}{r}
283.238 \\
\text { kip-ft }
\end{array}
$$ \& 3.994 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& \begin{tabular}{l}
Add \\
Weight \\
K
\end{tabular} \& Self Weight K \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\[
q_{z}
\] \\
ksf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w

$k l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 \& 0.154 \& 5.298 \& A \& 1 \& 0.73 \& 0.010 \& 1 \& 1 \& 139.454 \& 1.146 \& 0.023 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline 00 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline L2 \& 0.145 \& 7.348 \& A \& 1 \& 0.73 \& 0.009 \& 1 \& 1 \& 127.300 \& 0.961 \& 0.028 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline $$
0
$$ \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline L3 \& 0.139 \& 8.742 \& A \& 1 \& 0.73 \& 0.008 \& 1 \& 1 \& 145.588 \& 0.981 \& 0.030 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline L4 \& 0.136 \& 10.102 \& A \& 1 \& 0.73 \& 0.007 \& 1 \& 1 \& 163.104 \& 0.906 \& 0.028 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline
\end{tabular}

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & \\ & 14 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

Section Elevation ft	Add Weight K	Self Weight K	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	q_{z} $k s f$	D_{F}	D_{R}	A_{E} $f t^{2}$	F K	w $k l f$	Ctrl. Face
Sum Weight:	0.574	31.490	C	1	0.73		1	$\begin{array}{r} 1 \\ \text { OTM } \end{array}$	163.104 283.238 kip-ft	3.994		

Tower Forces - Service - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\] \& Add Weight K \& Self Weight K \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \begin{tabular}{l}
\(q_{z}\) \\
ksf
\end{tabular} \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
K \& w
$k l f$ \& Ctrl. Face

\hline L1 \& 0.154 \& 5.298 \& A \& 1 \& 0.73 \& 0.010 \& 1 \& 1 \& 139.454 \& 1.146 \& 0.023 \& C

\hline 150.000-100.0 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline 00 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 139.454 \& \& \&

\hline L2 \& 0.145 \& 7.348 \& A \& 1 \& 0.73 \& 0.009 \& 1 \& 1 \& 127.300 \& 0.961 \& 0.028 \& C

\hline 100.000-65.50 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline 0 \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 127.300 \& \& \&

\hline L3 \& 0.139 \& 8.742 \& A \& 1 \& 0.73 \& 0.008 \& 1 \& 1 \& 145.588 \& 0.981 \& 0.030 \& C

\hline 65.500-32.300 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 145.588 \& \& \&

\hline L4 \& 0.136 \& 10.102 \& A \& 1 \& 0.73 \& 0.007 \& 1 \& 1 \& 163.104 \& 0.906 \& 0.028 \& C

\hline 32.300-0.000 \& \& \& B \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline \& \& \& C \& 1 \& 0.73 \& \& 1 \& 1 \& 163.104 \& \& \&

\hline Sum Weight: \& 0.574 \& 31.490 \& \& \& \& \& \& OTM \& $$
\begin{array}{r}
283.238 \\
\text { kip- } \mathrm{ft}
\end{array}
$$ \& 3.994 \& \&

\hline
\end{tabular}

Force Totals

Load Case	Vertical Forces K	Sum of Forces X K	Sum of Forces Z K	Sum of Overturning Moments, M_{x} kip-ft	Sum of Overturning Moments, M_{z} kip-ft	Sum of Torques $k i p-f t$
Leg Weight	31.490					
Bracing Weight	0.000					
Total Member Self-Weight	31.490			0.065	0.055	
Total Weight	41.578			0.065	0.055	
Wind 0 deg - No Ice		0.014	-39.657	-4341.758	-1.588	-0.157
Wind 90 deg - No Ice		39.689	-0.014	-1.579	-4345.926	0.143
Wind 180 deg - No Ice		-0.014	39.657	4341.887	1.698	0.157
Member Ice	13.659					
Total Weight Ice	74.196			0.309	0.286	
Wind 0 deg - Ice		0.003	-11.466	-1235.932	-0.017	-0.035
Wind 90 deg - Ice		11.473	-0.003	0.005	-1236.802	0.039
Wind 180 deg - Ice		-0.003	11.466	1236.550	0.590	0.035
Total Weight	41.578			0.065	0.055	
Wind 0 deg - Service		0.003	-9.020	-987.524	-0.319	-0.036
Wind 90 deg - Service		9.028	-0.003	-0.309	-988.479	0.032
Wind 180 deg - Service		-0.003	9.020	987.653	0.429	0.036

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & \\ & 15 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	Date 10:10:22 05/20/21
	Client	DISH	Designed by GWesh

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 90 deg - No Ice	
5	0.9 Dead+1.0 Wind 90 deg - No Ice	
6	1.2 Dead+1.0 Wind 180 deg - No Ice	
7	0.9 Dead+1.0 Wind 180 deg - No Ice	
8	1.2 Dead+1.0 Ice+1.0 Temp	
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
11	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp	
12	Dead+Wind 0 deg - Service	
13	Dead+Wind 90 deg - Service	
14	Dead+Wind 180 deg - Service	

Maximum Member Forces							
Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	150-100	Pole	Max Tension	13	0.000	0.000	0.000
			Max. Compression	8	-39.336	0.297	-0.322
			Max. Mx	4	-15.584	-889.242	0.052
			Max. My	6	-15.587	0.190	-888.554
			Max. Vy	4	27.458	-889.242	0.052
			Max. Vx	6	27.425	0.190	-888.554
			Max. Torque	7			-0.154
L2	100-65.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	8	-50.938	0.297	-0.322
			Max. Mx	4	-24.069	-1867.185	0.540
			Max. My	6	-24.071	0.685	-1865.413
			Max. Vy	4	31.460	-1867.185	0.540
			Max. Vx	6	31.427	0.685	-1865.413
			Max. Torque	7			-0.153
L3	65.5-32.3	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	8	-64.966	0.297	-0.322
			Max. Mx	4	-34.613	-2945.175	1.014
			Max. My	6	-34.615	1.162	-2942.354
			Max. Vy	4	35.406	-2945.175	1.014
			Max. Vx	6	35.374	1.162	-2942.354
			Max. Torque	7			-0.153
L4	32.3-0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	8	-84.539	0.297	-0.322
			Max. Mx	4	-49.875	-4455.377	1.600
			Max. My	6	-49.875	1.749	-4451.266
			Max. Vy	4	39.710	-4455.377	1.600
			Max. Vx	6	39.679	1.749	-4451.266
			Max. Torque	7			-0.153

Maximum Reactions

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } 16 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, } Z \\ K \end{gathered}$
Pole	Max. Vert	8	84.539	0.000	0.000
	Max. H_{x}	7	37.420	0.014	-39.656
	Max. H_{z}	3	37.420	-0.014	39.656
	Max. M_{x}	2	4451.104	-0.014	39.656
	Max. M_{z}	4	4455.377	-39.688	0.014
	Max. Torsion	3	0.153	-0.014	39.656
	Min. Vert	5	37.420	-39.688	0.014
	Min. H_{x}	5	37.420	-39.688	0.014
	Min. H_{z}	7	37.420	0.014	-39.656
	Min. M_{x}	6	-4451.266	0.014	-39.656
	Min. M_{z}	6	-1.749	0.014	-39.656
	Min. Torsion	7	-0.153	0.014	-39.656

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear $_{x}$ K	Shear ${ }_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	41.578	0.000	0.000	0.065	0.055	0.000
1.2 Dead+1.0 Wind 0 deg - No	49.893	0.014	-39.656	-4451.104	-1.613	-0.151
Ice						
0.9 Dead+1.0 Wind 0 deg - No	37.420	0.014	-39.656	-4422.307	-1.620	-0.153
Ice						
1.2 Dead+1.0 Wind 90 deg - No	49.893	39.688	-0.014	-1.600	-4455.377	0.142
Ice						
0.9 Dead+1.0 Wind 90 deg - No	37.420	39.688	-0.014	-1.611	-4426.548	0.142
Ice						
1.2 Dead+1.0 Wind 180 deg -	49.893	-0.014	39.656	4451.266	1.749	0.152
No Ice						
0.9 Dead+1.0 Wind 180 deg -	37.420	-0.014	39.656	4422.426	1.721	0.153
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	84.539	0.000	0.000	0.322	0.297	0.000
1.2 Dead+1.0 Wind 0 deg+1.0	84.539	0.003	-11.466	-1306.226	0.010	-0.029
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	84.539	11.473	-0.003	0.039	-1307.152	0.039
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	84.539	-0.003	11.466	1306.941	0.648	0.029
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	41.578	0.003	-9.019	-1008.649	-0.324	-0.035
Dead+Wind 90 deg - Service	41.578	9.026	-0.003	-0.314	-1009.626	0.032
Dead+Wind 180 deg - Service	41.578	-0.003	9.019	1008.783	0.438	0.035

Solution Summary

Load	Sum of Applied Forces			Sum of Reactions			\% Error
	PX	PY	$P Z$	PX	PY	PZ	
Comb.	K	K	K	K	K	K	
1	0.000	-41.578	0.000	0.000	41.578	0.000	0.000\%
2	0.014	-49.893	-39.657	-0.014	49.893	39.656	0.002\%
3	0.014	-37.420	-39.657	-0.014	37.420	39.656	0.002\%
4	39.689	-49.893	-0.014	-39.688	49.893	0.014	0.002\%
5	39.689	-37.420	-0.014	-39.688	37.420	0.014	0.002\%
6	-0.014	-49.893	39.657	0.014	49.893	-39.656	0.002\%

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } \\ & \\ & 17 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

	Sum of Applied Forces					Sum of Reactions				$P Z$	\% Error
Load	$P X$	$P Y$	R	$P Z$	$P X$	$P Y$	K				
Comb.	K	K	K	K	K	K					
7	-0.014	-37.420	39.657	0.014	37.420	-39.656	0.002%				
8	0.000	-84.539	0.000	0.000	84.539	0.000	0.000%				
9	0.003	-84.539	-11.466	-0.003	84.539	11.466	0.000%				
10	11.473	-84.539	-0.003	-11.473	84.539	0.003	0.000%				
11	-0.003	-84.539	11.466	0.003	84.539	-11.466	0.000%				
12	0.003	-41.578	-9.020	-0.003	41.578	9.019	0.003%				
13	9.028	-41.578	-0.003	-9.026	41.578	0.003	0.003%				
14	-0.003	-41.578	9.020	0.003	41.578	-9.019	0.003%				

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00005723
3	Yes	5	0.00000001	0.00004805
4	Yes	5	0.00000001	0.00005695
5	Yes	5	0.00000001	0.00004780
6	Yes	5	0.00000001	0.00006041
7	Yes	5	0.00000001	0.00005040
8	Yes	4	0.00000001	0.00000001
9	Yes	7	0.00000001	0.00008491
10	Yes	7	0.00000001	0.00008498
11	Yes	7	0.00000001	0.00008501
12	Yes	4	0.00000001	0.00009667
13	Yes	4	0.00000001	0.00009674
14	Yes	4	0.00000001	0.00009676

Maximum Tower Deflections - Service Wind

Section No.	Elevation $f t$	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
L1	150-100	16.222	13	0.9439	0.0001
L2	105.5-65.5	8.129	13	0.7247	0.0001
L3	72.3-32.3	3.833	13	0.4929	0.0000
L4	40.1-0	1.203	13	0.2675	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
150.000	AIR32 KRD901146-1_B66A-B2A w/ Mount Pipe	13	16.222	0.9439	0.0001	61020
136.000	(2) TPA65R-BU8D w/ Mount Pipe	13	13.512	0.8827	0.0001	21792
125.000	LP 716	13	11.453	0.8313	0.0001	12203

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{aligned} & \text { Page } 18 \text { of } 19 \end{aligned}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	(wist
	$f t$	71.591	4	0	\circ
L1	$150-100$	35.882	4	4.1677	0.0005
L2	$105.5-65.5$	16.919	4	2.1999	0.0003
L3	$72.3-32.3$	5.308	4	1.1811	0.0001
L4	$40.1-0$				0.0001

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
150.000	AIR32 KRD901146-1_B66A-B2A w/ Mount Pipe	4	71.591	4.1677	0.0005	13946
136.000	(2) TPA65R-BU8D w/ Mount Pipe	4	59.635	3.8976	0.0004	4979
125.000	LP 716	4	50.551	3.6706	0.0004	2787

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
L1	150-100 (1)	TP39.6x26.4x0.3	50.000	150.000	134.0	36.0389	-15.584	453.637	0.034
L2	100-65.5 (2)	TP48.3x37.548x0.4	40.000	150.000	110.1	58.4932	-24.069	1091.020	0.022
L3	65.5-32.3 (3)	TP56.3x45.6722x0.4	40.000	150.000	94.2	68.3395	-34.613	1720.030	0.020
L4	32.3-0 (4)	TP64x53.4276x0.4	40.100	150.000	79.7	80.7466	-49.875	2581.700	0.019

Pole Bending Design Data

Section	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio No.			
$M_{u x}$								

tnxTower Vertical Bridge Engineering, LLC 750 Park of Commerce Drive, Suite 200 Boca Raton, FL 33487 Phone: 561-948-6367 FAX:	Job	US-CT-5018	$\begin{array}{\|l\|l\|} \hline \text { Page } \\ & \\ \hline \end{array}$
	Project	Monopole Structural Analysis	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:10:22 05/20/21 } \end{array}$
	Client	DISH	Designed by GWesh

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$
	$f t$		K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	150-100 (1)	TP39.6x26.4x0.3	27.458	632.482	0.043	0.142	2096.383	0.000
L2	100-65.5 (2)	TP48.3x37.548x0.4	31.460	1026.560	0.031	0.142	4141.917	0.000
L3	65.5-32.3 (3)	TP56.3x45.6722x0.4	35.406	1199.360	0.030	0.142	5653.708	0.000
L4	32.3-0 (4)	TP64x53.4276x0.4	39.710	1417.100	0.028	0.142	7892.933	0.000

Pole Interaction Design Data									
Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	$\begin{gathered} \text { Ratio } \\ V_{u} \end{gathered}$	$\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	150-100 (1)	0.034	0.463	0.000	0.043	0.000	$\begin{gathered} 0.499 \\ \end{gathered}$	1.000	4.8.2
L2	100-65.5 (2)	0.022	0.478	0.000	0.031	0.000	0.501	1.000	$4.8 .2$
L3	65.5-32.3 (3)	0.020	0.581	0.000	0.030	0.000	0.602	1.000	4.8.2
L4	32.3-0 (4)	0.019	0.675	0.000	0.028	0.000	0.695	1.000	4.8.2

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
L1	150-100	Pole	TP39.6x26.4x0.3	1	-15.584	453.637	49.9	Pass
L2	100-65.5	Pole	TP48.3x 37.548×0.4	2	-24.069	1091.020	50.1	Pass
L3	65.5-32.3	Pole	TP56.3x45.6722x0.4	3	-34.613	1720.030	60.2	Pass
L4	32.3-0	Pole	TP64x53.4276x0.4	4	-49.875	2581.700	69.5	Pass
						Pole (L4) RATING =	$\begin{gathered} \text { Summary } \\ 69.5 \\ \mathbf{6 9 . 5} \end{gathered}$	$\begin{aligned} & \text { Pass } \\ & \text { Pass } \end{aligned}$

Program Version 8.0.9.0-4/12/2021 File:C:/Users/gwesh/Documents/SA/US-CT-5018/tnx Files/US-CT-5018_SA_051921_DISH.eri

Monopole Base Plate Connection

Site Info	
BU \#	US-CT-5018
Site Name	
Order \#	

Connection Properties

Analysis Results

Anchor Rod Data

(22) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 72" BC

Base Plate Data
79" OD x 2" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)
Stiffener Data
N/A

Pole Data
64" x 0.4" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary		(units of kips, kip-in)
$\mathrm{Pu} _\mathrm{c}=137.22$	$\phi \mathrm{Pn} _\mathrm{c}=268.39$	Stress Rating
$\mathrm{Vu}=1.81$	$\phi \mathrm{Vn}=120.77$	$\mathbf{5 1 . 2 \%}$
$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass

Base Plate Summary		
Max Stress (ksi):	36.95	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	$\mathbf{8 2 . 1 \%}$	Pass

Drilled Pier Foundation

BU \# :	US-CT-5018	
Site Name:		
Order Number:		
TIA-222 Revison:	H	
Tower Type:	Monopole	
Applied Loads		
Comp.		
Moment (kip-ft)	4455	
Axial Force (kips)	50	
Shear Force (kips)	40	

Report File: \square

| Material Properties | |
| ---: | ---: | ---: |
| Concrete Strength, f'c: | 4.5 ksi |
| Rebar Strength, Fy: | 60 ksi |
| Tie Yield Strength, Fyt: | 60 ksi |

Pier Design Data		
Depth	24	ft
Ext. Above Grade	0.5	ft
Pier Section 1		
From 0.5' above grade to 24 ' below grad		
Pier Diameter	8	ft
Rebar Quantity	38	
Rebar Size	10	
Clear Cover to Ties	3	in
Tie Size	5	
Tie Spacing	12	in

Embedded Pole Inputs

Analysis Results		
Soil Lateral Check	Compression	Uplift
$\mathrm{D}_{\mathrm{v}=0}$ (ft from TOC)	7.90	-
Soil Safety Factor	5.49	-
Max Moment (kip-ft)	4917.17	-
Rating	24.2\%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	933.05	-
End Bearing (kips)	2365.56	-
Weight of Concrete (kips)	168.97	-
Total Capacity (kips)	3298.61	-
Axial (kips)	218.97	-
Rating	6.6\%	-
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	7.45	-
Critical Moment (kip-ft)	4915.53	-
Critical Moment Capacity	9124.40	-
Rating	53.9\%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	19.49	-
Critical Shear (kip)	876.04	-
Critical Shear Capacity	1050.65	-
Rating	83.4\%	-
Soil Interaction Rating	24.2\%	
Structural Foundation Rating	83.4\%	

Pier and Pad Foundation

BU \# : US-CT-5018
Site Name: App. Number: \qquad

TIA-222 Revision:	H
Tower Type:	Monopole

Top \& Bot. Pad Rein. Different?:	\square
Block Foundation?:	\square
Rectangular Pad?:	\square

Superstructure Analysis Reactions			
Compression, $\mathbf{P}_{\text {comp }}:$			
Base Shear, Vu_comp:	40	kips	
		kips	
Moment, $\mathbf{M}_{\mathbf{u}}:$	4455	ft -kips	
Tower Height, $\mathbf{H}:$	150	ft	
BP Dist. Above Fdn, $\mathbf{b p}_{\text {dist }}:$	0	in	

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	382.77	40.00	$\mathbf{1 0 . 5 \%}$	Pass
Bearing Pressure (ksf)	22.50	2.14	$\mathbf{9 . 5 \%}$	Pass
Overturning (kip*ft)	9475.38	4775.00	$\mathbf{5 0 . 4 \%}$	Pass
Pier Flexure (Comp.) (kip*ft)	8998.47	4655.00	$\mathbf{5 1 . 7 \%}$	Pass
Pier Compression (kip)	35992.10	95.24	$\mathbf{0 . 3 \%}$	Pass
Pad Flexure (kip*f)	8139.63	1585.81	$\mathbf{1 9 . 5 \%}$	Pass
Pad Shear - 1-way (kips)	1051.30	226.69	$\mathbf{2 1 . 6 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.201	0.039	$\mathbf{1 9 . 6 \%}$	Pass
Flexural 2-way (Comp) (kip*f)	9891.57	2793.00	$\mathbf{2 8 . 2} \%$	Pass

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	8	ft	
Ext. Above Grade, E:	0.5	ft	
Pier Rebar Size, Sc:	10		
Pier Rebar Quantity, mc:	38		
Pier Tie/Spiral Size, St:	5		
Pier Tie/Spiral Quantity, mt:	8		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, $\mathbf{c} \mathbf{c}_{\text {pier: }}:$	3	in	

2-way (Comp) (kip 1)

Pad Properties		
Depth, D:	7.5	ft
Pad Width, $\mathbf{W}_{1}:$	28	ft
Pad Thickness, T:	3	ft
Pad Rebar Size (Bottom dir. 2), $\mathbf{S p}_{\mathbf{2}}:$	10	
Pad Rebar Quantity (Bottom dir. 2), $\mathbf{m p}_{\mathbf{2}}:$	48	
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	5	ksi
Dry Concrete Density, ठc:	150	pcf

Soil Properties				
Total Soil Unit Weight, \mathbf{y}	105	pcf		
Ultimate Gross Bearing, Qult:	30.000	ksf		
Cohesion, $\mathbf{C u}:$		ksf		
Friction Angle, $\boldsymbol{\phi}:$	38	degrees		
SPT Blow Count, $\mathbf{N}_{\text {blows }}:$				
Base Friction, $\boldsymbol{\mu}:$	0.4			
Neglected Depth, $\mathbf{N}:$	4.00	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw:	N / A	ft		

$\begin{gathered} \text { BU: } \\ \text { WO: } \\ \text { Order: } \end{gathered}$		Structure: Rev:	A
	US-CT-2018		
Location			
Lat: $\begin{aligned} & \text { Decimal Degrees } \\ & \text { Long: } \\ &\end{aligned}$	Deg	Min	Sec
Code and Site Parameters			
Seismic Design Code: Site Soil: Risk Category:	TIA-222-H	Default	
	D (Default)		
	11		
USGS Seismic Reference	0.2020		
	0.0560		
	6		
Seismic Design Category Determination			
Importance Factor, I_{e} :	1		
Acceleration-based site coefficient, F_{a} :	1.6000		
Velocity-based site coefficient, F_{v} :	2.4000		
Design spectral response acceleration short period, S_{DS} : Design spectral response acceleration 1 s period, $\mathrm{S}_{\mathrm{D} 1}$:	0.2155		
	0.0896		
$\begin{aligned} & \text { Seismic Design Category Based on } \mathrm{S}_{\mathrm{DS}}: \\ & \text { Seismic Design Category Based on } \mathrm{S}_{\mathrm{D} 1}: \\ & \text { Seismic Design Category Based on } \mathrm{S}_{1}: \end{aligned}$	B		
	B		
	N/A		
Controlling Seismic Design Category:	B		

BU:	US-CT-2018
WO:	
Otructure:	
Order:	\square

Address:

No Address at This Location

ASCE 7 Hazards Report

Wind

Results:

Wind Speed:	119 Vmph
10 -year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	90 Vmph
100 -year MRI	98 Vmph

Data Source:
Date Accessed:

Standard: ASCE/SEI 7-16 Elevation: 310.29 ft (NAVD 88)
Risk Category: II
Soil Class: D - Default (see
Section 11.4.3)

Latitude: 41.660792
Longitude: -72.574097

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:

D - Default (see Section 11.4.3)
Results:

$\mathrm{S}_{\mathrm{S}}:$	0.202	$\mathrm{~S}_{\mathrm{D} 1}:$	0.089
$\mathrm{~S}_{1}:$	0.056	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.6	$\mathrm{PGA}:$	0.111
$\mathrm{~F}_{\mathrm{V}}:$	2.4	$\mathrm{PGA}_{\mathrm{M}}:$	0.175
$\mathrm{~S}_{\mathrm{MS}}:$	0.323	$\mathrm{~F}_{\mathrm{PGA}}:$	1.578
$\mathrm{~S}_{\mathrm{M} 1}:$	0.133	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	0.216	$\mathrm{C}_{\mathrm{V}}:$	0.704

Seismic Design Category
B

Data Accessed:
Date Source:

Wed May 192021
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results:

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
1.50 in .

15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Wed May 192021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Attachment 2: Collocation Application

COLOCATION APPLICATION
US-CT-5018
Vertical Bridge REIT, LLC. 750 Park of Commerce Drive

SUMMARY

PRIMARY INFO

Application \#: P-006914
Application Version: 2 (Submitted: 3/3/2021 10:12:00 PM)
Application Type: Broadband
Application Name: DISH Wireless BOBDL00104A
Lease Type: New Lease

Description:

Dish proposes to place 3 antennas, 6 RRUs, 1 junction box(s), and 1 cable(s) at the 125 foot RAD. Dish will require a $5^{\prime} \times 7^{\prime}$ lease area for ground equipment

VERTICAL BRIDGE SITE INFO
VB Site \#:
VB Site Name:

Latitude: $\quad 41.66079166$
Longitude: -72.57409722
Structure Type: Monopole
Structure Height:
152.1600

Site Address: 63 Woodland St -
Glastonbury, CT 06073

VERTICAL BRIDGE DEAL TEAM

RLM: Floyd Jenkins FJenkins@verticalbridge.com (301) 667-0069

RLS: Sam Bowden
SBowden@verticalbridge.com

ROM:Joe Bascelli
JBascelli@verticalbridge.com (484) 288-9586

TENANT LEGAL INFO

Tenant Legal Name:	DISH Wireless L.L.C.
State of Registration:	Colorado
Type of Entity:	LLC
Carrier NOC \#:	2039274317
Tenant Site \#:	BOBDL00104A
Tenant Site Name:	BOBDL00104A

APPLICANT

Name:	Mai Conaway
Address	1053 Farmington Avenue

Farmington, CT 06032
Phone Number:: (410) 409-3822
Email Address: mai@northeastsitesolutions.com

FINAL LEASED RIGHTS CONFIGURATION TOTALS

This is a summary of your remaining existing equipment plus the new equipment.

FINAL EQUIPMENT

Qty	Equipment Type
1	Junction Box
3	Panel
6	RRU

FINAL LINES

Qty	Line Type
1	Hybrid

FREQUENCY \& TECHNOLOGY INFO

Type of Technology:	Broadband Wireless
Is TX Frequency Licensed:	Yes
TX Frequency:	82.1884683
Is RX Frequency Licensed:	Yes
RX Frequency:	9085.919815

MOUNT \& STRUCTURAL ANALYSIS

MOUNT ANALYSIS

Provided by Tenant: No
To Be Run by VB: Yes
Include Mount Mapping: Yes

STRUCTURAL HARD COPIES

```
Required: No
```

Number of Hard Copies

CONTACTS

INVOICE CONTACT

Attention To	Name	Address	Phone Number 1	Phone Number 2	Email 1	Email 2
Real Estate	Jeanne Cottrell	5701 South Sante Fe Blvd Littleton, CO 80120	$(203) 927-4317$		jean.cottrell@dish .$c o m$	

PO CONTACT		
Name	Phone Number	Email
Jeanne Cottrell	$(203) 927-4317$	jean.cottrell@dish.com

LEASING CONTACT

Name	Phone Number	Email
Mai Conaway	$(410) 409-3822$	mai@northeastsitesolutions.com

RF CONTACT		
Name	Phone Number	Email
Jared Robinson	$(978) 855-5870$	jared.robinson@dish.com

TENANT CONSTRUCTION MANAGER CONTACT

Name	Phone Number	Email
Javier Soto	$(617) 839-6514$	javier.soto@dish.com

LINE \& EQUIPMENT

NEW LINE(S)						
Qty	Line Type	Line Size(in.)	Line Location	Comments		
1	Hybrid	1.6	Interior			

NEW EQUIPMENT										
Qty	Equipment Type	RAD Height	Mount (H')	Mount Type	Manufacturer	Model Number	Dimensions (H"xW"xD")	Weight (Lbs.)	Azimuth	Comments 3
Panel	125.00	125.00	Platform	JMA	MX08F RO665- $20 _V 0 F$	$72.00 \times$ 20.00×8.00	54.00	$0,120,24$ 0		
1	Junction Box	125.00	125.00	Platform	Raycap	RDIDC- $9181-P F$ -48	$16.00 \times$ 14.00×8.00	21.85	na	
6	RRU	125.00	125.00	Platform	Fujitsu	TA0802 $5-B 605$	$15.75 \times$ 14.96×9.06	74.95	0,120, 240	

NEW EQUIPMENT CABINET(S)						
Quantity of Cabinets	Cabinet Dimensions (H x W x D)	Manufacturer	Comments			
1	$32.00 \times 32.00 \times 74.00$	Charles(Amphenol) -H/EX				

ADDITIONAL SITE REQUIREMENTS

GROUND \& INTERIOR SPACE REQUIREMENTS

Requirement Type	Total Lease Area $(\mathrm{Lx}$ W)	Cabinet Required	Cabinet Area (L x W)	Shelter Required	Shelter Pad (L x W)	Comments
New	5.00×7.00	No	x		x	

GENERATOR REQUIREMENTS

Requirement Type	Fuel Type	Kilowatt Size	Pad Dimensions $(L \times$ D $)$	Generator Manufacturer	Fuel Tank Manufacturer	Comments
Not Required			x			

AC POWER REQUIREMENTS

Meter Type	Additional Details	Comments
New Tenant Meter		

BACKHAUL REQUIREMENTS					
Requirement Type	Cable Type	Number Of Points Of Entry	Riser Size (Inches)	Comments	
New	Fiber	1			

Exhibit E

Mount Analysis

FROM ZERO TO INFINIGY

Mount Analysis Report

July 30, 2021

Dish Wireless Site Number	BOBDL00104A
Infinigy Job Number	2039-Z5555C
Client	Crown Castle
Carrier	Dish Wireless
	63 Woodland Street,
Site Location	Glastonbury, CT 06073
	41.6608 N NAD83
	72.5741 W NAD83
Mount Centerline EL.	125 ft
Mount Classification	Platform
Structural Usage Ratio	$\mathbf{6 6 \%}$
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA and ASCE code requirements. The proposed platform for the proposed carrier is therefore deemed adequate to support the final loading configuration as listed in this report.

Dmitriy Albul, P.E.
Engineering Consultant to Infinigy

Contents

Introduction 3
Supporting Documentation 3
Analysis Code Requirements 3
Conclusion. 3
Final Configuration Loading 4
Structure Usages 4
Assumptions and Limitations 4
Calculations Appended

Introduction

Infinigy Engineering has been requested to perform a mount analysis of proposed antenna mount from the Dish Wireless equipment. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA3D Version 19.0.3 analysis software.

Supporting Documentation

Platform Drawings	SiteProl Assembly Drawings No. SNP8HR-3XX
Construction Drawings	Infinigy Engineering PLLC, Job No. 2039-Z5555C, dated June 7, 2021
RF Design Sheet	Dish Wireless, dated February 15, 2021

Analysis Code Requirements

Wind Speed	125 mph (3-second Gust, Vult.)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ " ice
TIA Revision	ANSI/TIA-222-G
TIA Revision	2018 Connecticut Building Code (2015 IBC)
Structure Class	II
Exposure Category	C
Topographic Method	Method 2
Topographic Category	1
Spectral Response	Ss $=0.181, \mathrm{~S}_{1}=0.064$
Site Class	$\mathrm{D}-$ Stiff Soil (Assumed)
HMSL	310.29 ft.

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The proposed platform is therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Dmitriy Albul, P.E.
Professional Engineer | Engineering Consultant to Infinigy
1033 Watervliet Shaker Road, Albany, NY 12205
(O) (518) 690-0790 | (M) (518) 699-4428
www.infinigy.com

Final Configuration Loading

$\begin{array}{\|c} \hline \text { Mount } \\ \text { CL } \\ \text { (ft) } \\ \hline \end{array}$	Rad. HT (ft)	Vert. O/S (ft)	Horiz. O/S (ft)*	Qty	Appurtenance	Carrier
125.0	125.0	(4	3	JMA MX08FRO665-20	Dish Wireless
			4	3	Fujitsu TA08025-B605	
			4	3	Fujitsu TA08025-B604	
			-	1	Raycap RDIDC-9181-PF-48	

Structure Usages

Plates	66%	Pass
Cross Arms	55%	Pass
Mount Pipes	52%	Pass
Arms	40%	Pass
Connections	33%	Pass
Handrails	22%	Pass
Frame Rails	18%	Pass
Rating	$\underline{\mathbf{6 6 \%}} \mathbf{0}$	Pass

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

INFINIGY8

FROM ZERO TO INFINIGY

the solutions are endless
Date: 7/30/2021 Site Name: BOBDLOO104A Project Engineer: DVA Project No: 2039--25555C Customer: Northeast Site Solutions Carrier: Dish Wireless
Building Code: 2015 ASCE Standard: ASCE 7-10 TIA Standard: G- Mount Type: Platform Mount Centerline: 125 Superstructure Height: 150 Structure Type: Tower

Factors		
Gh:	1.000	
$K_{z \text { min }}$:	0.850	
K_{z} :	1.326	
K_{d} :	0.950	
$K_{z t}$:	1.000	
Ka:	0.900	
I wind:	1.000	
lice:	1.000	
q_{z} :	30.24	psf
Surface Wind Pressure:	0.00	psf

Run Seismic? Yes Site Soil: (Defautt) Short-Period Accel. (Ss): 0.1800 1-Second Accel. (S1): 0.0630 Short-Period Design (SDS): 0.1920 1-Second Design (SD1): 0.1010 Short-Period Coeff. (Fa): 1.6000 1-Second Coeff. (Fv): 2.4000 Cs 0.0960 Cs min 0.0300 Amplification Factor (ap): 1.00 Response Mod. (Rp): 2.50 Overstrength (Ro): 1.00 Service Wind: 30.0 Lm (man live load)) 500.0 Lv (man live load) $=$ 250.0

PLAN VIEW

Table 1. Equipment Specifications and Wind Pressure

Manufacturer	Model	Elevation	Pipe Label	Weight (lb)	Height (in)	Width (in)	Depth (in)	$E P A_{N}$	$E P A_{\text {T }}$	$E P A_{N w / i c e}$	$E P A_{\text {T w/ ice }}$	q_{2} :	$q_{\text {zice: }}$	$q_{\text {zlive }}$:
JMA	MX08FRO665-20	125	4, 74, 42	54.00	72	20	8	8.01	3.21	9.08	4.15	30.24	8.07	2.90
Fujitsu	TA08025-B605	125	4, 74, 42	74.90	14.9	15.7	9	1.84	1.08	3.10	2.11	30.24	8.07	2.90
Fujitsu	TA08025-B604	125	4, 74, 42	63.90	14.9	15.7	7.8	1.84	0.95	3.10	1.94	30.24	8.07	2.90
Raycap	RDIDC-9181-PF-48	125	125	21.82	18.98	14.39	8.15	2.18	1.28	3.55	2.44	30.24	8.07	2.90

Manufacturer	Model	Wind Load ($F_{\text {A }}$), lb		Wind Load lce Case ($F_{\text {A }}$) , Ib			Wind Load Service Case ($F_{\text {A }}$),		Seismic Load,
JMA	MX08FRO665-20	218	87	66	30	408	21	8	5.2
Fujitsu	TA08025-B605	50	29	23	15	72	5		7.2
Fujitsu	TA08025-B604	50	26	23	14	70	5	2	6.1
Raycap	RDIDC-9181-PF-48	59	35	26	18	85	6	3	2.1

Member Name	Member Shape	$\begin{gathered} \text { Wind load } \\ \text { (plf) } \end{gathered}$	Wind Load Ice (plf)	$\begin{aligned} & \text { Weight Ice } \\ & \text { (plf) } \end{aligned}$	Bending Check	Shear Check	Total Capacity	Controlling Capacity
Arm	HSS4x4x4	20.16	5.38	2.04	40\%	18\%	40\%	66\%
Arm 2	HSS4.5x4.5x	22.68	6.05	2.16	7\%	16\%	16\%	
Cross Arm	L4×4x4	20.16	5.38	2.04	55\%	12\%	55\%	
Frame Rail	PIPE_3.0	10.59	2.82	1.92	12\%	18\%	18\%	
Handrail	PIPE_2.5	8.71	2.32	1.77	15\%	22\%	22\%	
Mount Pipe	PIPE_2.0	7.20	1.92	1.65	52\%	22\%	52\%	
Plate	6"x0.375" Plate	30.24	8.07	2.51	61\%	66\%	66\%	
Angle	L3 $\times 3 \times 3$	15.12	4.03	1.80	34\%	4\%	34\%	

Model Settings
Solution
\quad Members
Number of Reported Sections
Number of Internal Sections
Member Area Load Mesh Size $\left(\mathrm{in}^{2}\right)$
Consider Shear Deformation
Consider Torsional Warping

Wall Panels

Approximate Mesh Size (in)	12
Transfer Forces Between Intersecting Wood Walls	Yes
Increase Wood Wall Nailing Capacity for Wind Loads	Yes
Include P-Delta for Walls	Yes
Optimize Masonry and Wood Walls	Yes
Maximum Number of Iterations	3

Processor Core Utilization

Single	No
Multiple (Optimum)	Yes
Maximum	No

Axis

Vertical Global Axis

Global Axis corresponding to vertical direction	Y
Convert Existing Data	Yes

Default Member Orientation

Default Global Plane for z-axis	XZ

Plate Axis

Plate Local Axis Orientation	Nodal

Codes

Hot Rolled Steel	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (Iterative)
Notional Annex	None
Connections	AISC 14th (360-10): LRFD
Cold Formed Steel	AISI S100-12: LRFD
Stiffness Adjustment	Yes (Iterative)
Wood	AWC NDS-12: ASD
Temperature	< 100F
Concrete	ACI 318-11
Masonry	ACI 530-11: Strength
Aluminum	AAADM1-10: LRFD
Structure Type	Building
Stiffness Adjustment	Yes (Iterative)
Stainless	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (Iterative)

Concrete

Column Design

Analysis Methodology	Exact Integration Method
Parme Beta Factor	0.65

Compression Stress Block	Rectangular Stress Block
Analyze using Cracked Sections	Yes
Leave room for horizontal rebar splices (2*d bar spacing)	No

Model Settings (Continued)

List forces which were ignored for design in the Detail Report	Yes

Rebar

Column Min Steel	1
Column Max Steel	8
Rebar Material Spec	ASTM A615
Warn if beam-column framing arrangement is not understood	No

Shear Reinforcement

Number of Shear Regions	4
Region 2 \& 3 Spacing Increase Increment (in)	4

Seismic

RISA-3D Seismic Load Options

Code	ASCE 7-10
Risk Category	I or II
Drift Cat	Other
Base Elevation (ft)	
Include the weight of the structure in base shear calcs	Yes

Site Parameters

$\mathrm{S}_{1}(\mathrm{~g})$	1
$\mathrm{SD}(\mathrm{g})$	1
$\mathrm{SD}(\mathrm{g})$	1
$\mathrm{~T}_{\mathrm{L}}(\mathrm{sec})$	5

Structure Characteristics

$\mathrm{T} Z(\mathrm{sec})$	
$\mathrm{T} X(\mathrm{sec})$	
$\mathrm{C}_{\mathrm{t}} \mathrm{X}$	0.02
$\mathrm{C}_{\mathbf{t}}$ Exp. Z	0.75
$\mathrm{C}_{\mathbf{t}}$ Exp. X	0.75
$\mathrm{R} Z$	3
$\mathrm{R} X$	3
$\Omega_{0} Z$	1
$\Omega_{0} X$	1
$\mathrm{C}_{\mathrm{d}} Z$	4
$\mathrm{C}_{\mathrm{d}} X$	4
ρZ	1
ρX	1

\qquad
\qquad

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
1	M1	N1	N2		Arm	Beam	Tube	A500 Gr.B Rect	Typical
2	M2	N5	N6		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
3	M3	N7	N8		Handrail	HBrace	Pipe	A53 Gr.B	Typical
4	M4	N10	N11		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
5	M5	N4	N3		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
6	M6	N15	N35	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
7	M7	N33	N13	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
8	M8	N12	N34	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
9	M9	N36	N14	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
10	M10	N18	N20		Plate	Beam	BAR	A36 Gr. 36	Typical
11	M11	N17	N19		Plate	Beam	BAR	A36 Gr. 36	Typical
12	M12	N21	N22		Plate	Beam	BAR	A36 Gr. 36	Typical
13	M13	N23	N24		Plate	Beam	BAR	A36 Gr. 36	Typical
14	M14	N28	N25	90	Angle	HBrace	Single Angle	A36 Gr. 36	Typical
15	M15	N26	N27		Plate	Beam	BAR	A36 Gr. 36	Typical
16	M16	N29	N30		Plate	Beam	BAR	A36 Gr. 36	Typical
17	M17	N31	N9		RIGID	None	None	RIGID	Typical
18	M18	N32	N16		RIGID	None	None	RIGID	Typical
19	M19	N4	N35		RIGID	None	None	RIGID	Typical
20	M20	N4	N33		RIGID	None	None	RIGID	Typical
21	M21	N3	N34		RIGID	None	None	RIGID	Typical
22	M22	N36	N3		RIGID	None	None	RIGID	Typical
23	M23	N19	N37		Plate	Beam	BAR	A36 Gr. 36	Typical
24	M24	N22	N38		Plate	Beam	BAR	A36 Gr. 36	Typical
25	M25	N39	N41		RIGID	None	None	RIGID	Typical
26	M26	N40	N42		RIGID	None	None	RIGID	Typical
27	M27	N27	N43		Plate	Beam	BAR	A36 Gr. 36	Typical
28	M28	N44	N45		RIGID	None	None	RIGID	Typical
29	M29	N20	N46		Plate	Beam	BAR	A36 Gr. 36	Typical
30	M30	N24	N47		Plate	Beam	BAR	A36 Gr. 36	Typical
31	M31	N48	N50		RIGID	None	None	RIGID	Typical
32	M32	N49	N51		RIGID	None	None	RIGID	Typical
33	M33	N30	N52		Plate	Beam	BAR	A36 Gr. 36	Typical
34	M34	N53	N54		RIGID	None	None	RIGID	Typical
35	M35	N56	N57		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
36	M36	N59	N55		RIGID	None	None	RIGID	Typical
37	M37	N60	N58		RIGID	None	None	RIGID	Typical
38	M38	N62	N63		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
39	M39	N65	N61		RIGID	None	None	RIGID	Typical
40	M40	N66	N64		RIGID	None	None	RIGID	Typical
41	M41	N67	N68		Arm	Beam	Tube	A500 Gr.B Rect	Typical
42	M42	N72	N73		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
43	M43	N70	N69		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
44	M44	N77	N97	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
45	M45	N95	N75	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
46	M46	N74	N96	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
47	M47	N98	N76	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
48	M48	N80	N82		Plate	Beam	BAR	A36 Gr. 36	Typical
49	M49	N79	N81		Plate	Beam	BAR	A36 Gr. 36	Typical
50	M50	N83	N84		Plate	Beam	BAR	A36 Gr. 36	Typical
51	M51	N85	N86		Plate	Beam	BAR	A36 Gr. 36	Typical
52	M52	N90	N87	90	Angle	HBrace	Single Angle	A36 Gr. 36	Typical
53	M53	N88	N89		Plate	Beam	BAR	A36 Gr. 36	Typical
54	M54	N91	N92		Plate	Beam	BAR	A36 Gr. 36	Typical
55	M55	N93	N71		RIGID	None	None	RIGID	Typical
56	M56	N94	N78		RIGID	None	None	RIGID	Typical
57	M57	N70	N97		RIGID	None	None	RIGID	Typical
58	M58	N70	N95		RIGID	None	None	RIGID	Typical

\qquad
\qquad

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
59	M59	N69	N96		RIGID	None	None	RIGID	Typical
60	M60	N98	N69		RIGID	None	None	RIGID	Typical
61	M61	N81	N99		Plate	Beam	BAR	A36 Gr. 36	Typical
62	M62	N84	N100		Plate	Beam	BAR	A36 Gr. 36	Typical
63	M63	N101	N103		RIGID	None	None	RIGID	Typical
64	M64	N102	N104		RIGID	None	None	RIGID	Typical
65	M65	N89	N105		Plate	Beam	BAR	A36 Gr. 36	Typical
66	M66	N106	N107		RIGID	None	None	RIGID	Typical
67	M67	N82	N108		Plate	Beam	BAR	A36 Gr. 36	Typical
68	M68	N86	N109		Plate	Beam	BAR	A36 Gr. 36	Typical
69	M69	N110	N112		RIGID	None	None	RIGID	Typical
70	M70	N111	N113		RIGID	None	None	RIGID	Typical
71	M71	N92	N114		Plate	Beam	BAR	A36 Gr. 36	Typical
72	M72	N115	N116		RIGID	None	None	RIGID	Typical
73	M73	N117	N118		Arm	Beam	Tube	A500 Gr.B Rect	Typical
74	M74	N122	N123		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
75	M75	N120	N119		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
76	M76	N127	N147	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
77	M77	N145	N125	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
78	M78	N124	N146	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
79	M79	N148	N126	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
80	M80	N130	N132		Plate	Beam	BAR	A36 Gr. 36	Typical
81	M81	N129	N131		Plate	Beam	BAR	A36 Gr. 36	Typical
82	M82	N133	N134		Plate	Beam	BAR	A36 Gr. 36	Typical
83	M83	N135	N136		Plate	Beam	BAR	A36 Gr. 36	Typical
84	M84	N140	N137	90	Angle	HBrace	Single Angle	A36 Gr. 36	Typical
85	M85	N138	N139		Plate	Beam	BAR	A36 Gr. 36	Typical
86	M86	N141	N142		Plate	Beam	BAR	A36 Gr. 36	Typical
87	M87	N143	N121		RIGID	None	None	RIGID	Typical
88	M88	N144	N128		RIGID	None	None	RIGID	Typical
89	M89	N120	N147		RIGID	None	None	RIGID	Typical
90	M90	N120	N145		RIGID	None	None	RIGID	Typical
91	M91	N119	N146		RIGID	None	None	RIGID	Typical
92	M92	N148	N119		RIGID	None	None	RIGID	Typical
93	M93	N131	N149		Plate	Beam	BAR	A36 Gr. 36	Typical
94	M94	N134	N150		Plate	Beam	BAR	A36 Gr. 36	Typical
95	M95	N151	N153		RIGID	None	None	RIGID	Typical
96	M96	N152	N154		RIGID	None	None	RIGID	Typical
97	M97	N139	N155		Plate	Beam	BAR	A36 Gr. 36	Typical
98	M98	N156	N157		RIGID	None	None	RIGID	Typical
99	M99	N132	N158		Plate	Beam	BAR	A36 Gr. 36	Typical
100	M100	N136	N159		Plate	Beam	BAR	A36 Gr. 36	Typical
101	M101	N160	N162		RIGID	None	None	RIGID	Typical
102	M102	N161	N163		RIGID	None	None	RIGID	Typical
103	M103	N142	N164		Plate	Beam	BAR	A36 Gr. 36	Typical
104	M104	N165	N166		RIGID	None	None	RIGID	Typical
105	M105	N167	N168		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
106	M106	N169	N170		Handrail	HBrace	Pipe	A53 Gr.B	Typical
107	M107	N172	N173		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
108	M108	N175	N171		RIGID	None	None	RIGID	Typical
109	M109	N176	N174		RIGID	None	None	RIGID	Typical
110	M110	N178	N179		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
111	M111	N181	N177		RIGID	None	None	RIGID	Typical
112	M112	N182	N180		RIGID	None	None	RIGID	Typical
113	M113	N183	N184		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
114	M114	N185	N186		Handrail	HBrace	Pipe	A53 Gr.B	Typical
115	M115	N188	N189		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
116	M116	N191	N187		RIGID	None	None	RIGID	Typical

FROM ZERO TO INFINIGY the solutions are endless

Company
Designer Job Number Model Name

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By : \qquad
\qquad

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
117	M117	N192	N190		RIGID	None	None	RIGID	Typical
118	M118	N194	N195		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
119	M119	N197	N193		RIGID	None	None	RIGID	Typical
120	M120	N198	N196		RIGID	None	None	RIGID	Typical
121	M121	N199	N200		RIGID	None	None	RIGID	Typical
122	M122	N201	N199		RIGID	None	None	RIGID	Typical
123	M123	N200	N202		RIGID	None	None	RIGID	Typical
124	M124	N201	N203		RIGID	None	None	RIGID	Typical
125	M125	N204	N205		Mount Pipe	Column	Pipe	A53 Gr.B	Typical

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [$1 \mathrm{e}^{50} \mathrm{~F}^{-1}$]	Density [$\left.\mathrm{lb} / \mathrm{ft}^{3}\right]$	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	490	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	0.3	0.65	490	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	0.3	0.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	490	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	490	50	1.4	65	1.3

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
1	Self Weight	DL		-1		20		3
2	Wind Load AZI 0	WLX				40	258	
3	Wind Load AZI 30	None				40	258	
4	Wind Load AZI 60	None				40	258	
5	Wind Load AZI 90	WLZ				40	258	
6	Wind Load AZI 120	None				40	258	
7	Wind Load AZI 150	None				40	258	
8	Wind Load AZI 180	None				40	258	
9	Wind Load AZI 210	None				40	258	
10	Wind Load AZI 240	None				40	258	
11	Wind Load AZI 270	None				40	258	
12	Wind Load AZI 300	None				40	258	
13	Wind Load AZI 330	None				40	258	
14	Ice Weight	OL1				20	125	3
15	Ice Wind Load AZI 0	OL2				40	258	
16	Ice Wind Load AZI 30	None				40	258	
17	Ice Wind Load AZI 60	None				40	258	
18	Ice Wind Load AZI 90	OL3				40	258	
19	Ice Wind Load AZI 120	None				40	258	
20	Ice Wind Load AZI 150	None				40	258	
21	Ice Wind Load AZI 180	None				40	258	
22	Ice Wind Load AZI 210	None				40	258	
23	Ice Wind Load AZI 240	None				40	258	
24	Ice Wind Load AZI 270	None				40	258	
25	Ice Wind Load AZI 300	None				40	258	
26	Ice Wind Load AZI 330	None				40	258	
27	Seismic Load X	ELX			-0.096	20		
28	Seismic Load Z	ELZ	-0.096			20		
29	Service Live Loads	LL						
30	Maintenance Load 1	LL				1		
31	Maintenance Load 2	LL				1		
32	Maintenance Load 3	LL				1		
33	Maintenance Load 4	LL				1		
34	Maintenance Load 5	LL				1		
35	Maintenance Load 6	LL				1		

the solutions are endless
Company
Designer Job Number Model Name

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By :

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
36	Maintenance Load 7	LL				1		
37	Maintenance Load 8	LL				1		
38	Maintenance Load 9	LL				1		
39	Maintenance Load 10	LL				1		
40	Maintenance Load 11	LL				1		
41	Maintenance Load 12	LL				1		
42	Maintenance Load 13	LL				1		
43	Maintenance Load 14	LL				1		
44	Maintenance Load 15	LL						
45	Maintenance Load 16	LL				1		
46	Maintenance Load 17	LL				1		
47	Maintenance Load 18	LL				1		
52	BLC 1 Transient Area Loads	None					141	
53	BLC 14 Transient Area Loads	None					141	

Load Combinations

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	1	1.4				
2	1.2DL + 1.6WL AZI 0	Yes	Y	1	1.2	2	1.6		
3	1.2DL + 1.6WL AZI 30	Yes	Y	1	1.2	3	1.6		
4	1.2DL + 1.6WL AZI 60	Yes	Y	1	1.2	4	1.6		
5	1.2DL + 1.6WL AZI 90	Yes	Y	1	1.2	5	1.6		
6	1.2DL + 1.6WL AZI 120	Yes	Y	1	1.2	6	1.6		
7	1.2DL + 1.6WL AZI 150	Yes	Y	1	1.2	7	1.6		
8	1.2DL + 1.6WL AZI 180	Yes	Y	1	1.2	8	1.6		
9	1.2DL + 1.6WL AZI 210	Yes	Y	1	1.2	9	1.6		
10	1.2DL + 1.6WL AZI 240	Yes	Y	1	1.2	10	1.6		
11	1.2DL + 1.6WL AZI 270	Yes	Y	1	1.2	11	1.6		
12	1.2DL + 1.6WL AZI 300	Yes	Y	1	1.2	12	1.6		
13	1.2DL + 1.6WL AZI 330	Yes	Y	1	1.2	13	1.6		
14	0.9DL + 1.6WL AZI 0	Yes	Y	1	0.9	2	1.6		
15	0.9DL + 1.6WL AZI 30	Yes	Y	1	0.9	3	1.6		
16	0.9DL + 1.6WL AZI 60	Yes	Y	1	0.9	4	1.6		
17	0.9DL + 1.6WL AZI 90	Yes	Y	1	0.9	5	1.6		
18	0.9DL + 1.6WL AZI 120	Yes	Y	1	0.9	6	1.6		
19	0.9DL + 1.6WL AZI 150	Yes	Y	1	0.9	7	1.6		
20	0.9DL + 1.6WL AZI 180	Yes	Y	1	0.9	8	1.6		
21	0.9DL + 1.6WL AZI 210	Yes	Y	1	0.9	9	1.6		
22	0.9DL + 1.6WL AZI 240	Yes	Y	1	0.9	10	1.6		
23	0.9DL + 1.6WL AZI 270	Yes	Y	1	0.9	11	1.6		
24	0.9DL + 1.6WL AZI 300	Yes	Y	1	0.9	12	1.6		
25	0.9DL + 1.6WL AZI 330	Yes	Y	1	0.9	13	1.6		
26	1.2D + 1.0Di	Yes	Y	1	1.2	14	1		
27	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 0	Yes	Y	1	1.2	14	1	15	1
28	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 30	Yes	Y	1	1.2	14	1	16	1
29	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} \mathrm{AZI} 60$	Yes	Y	1	1.2	14	1	17	1
30	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 90	Yes	Y	1	1.2	14	1	18	1
31	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 120	Yes	Y	1	1.2	14	1	19	1
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	14	1	20	1
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Y	1	1.2	14	1	21	1
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Y	1	1.2	14	1	22	1
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Y	1	1.2	14	1	23	1
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Y	1	1.2	14	1	24	1
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Y	1	1.2	14	1	25	1
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Y	1	1.2	14	1	26	1
39	(1.2 + 0.2Sds) DL + 1.0E AZI 0	Yes	Y	1	1.238	27	1	28	
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	1.238	27	0.866	28	0.5
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	1.238	27	0.5	28	0.866

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By

Description		Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.238	27		28	1
43	$(1.2+0.2$ Sds) DL + 1.0E AZI 120	Yes	Y	1	1.238	27	-0.5	28	0.866
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	1.238	27	-0.866	28	0.5
45	(1.2 + 0.2Sds) DL + 1.0E AZI 180	Yes	Y	1	1.238	27	-1	28	
46	(1.2 + 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	1.238	27	-0.866	28	-0.5
47	(1.2 + 0.2Sds) DL + 1.0E AZI 240	Yes	Y	1	1.238	27	-0.5	28	-0.866
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	1.238	27		28	-1
49	$(1.2+0.2$ Sds) DL + 1.0E AZI 300	Yes	Y	1	1.238	27	0.5	28	-0.866
50	$(1.2+0.2$ Sds) DL + 1.0E AZI 330	Yes	Y	1	1.238	27	0.866	28	-0.5
51	(0.9-0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	0.862	27	1	28	
52	(0.9-0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.862	27	0.866	28	0.5
53	(0.9-0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	0.862	27	0.5	28	0.866
54	(0.9-0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.862	27		28	1
55	(0.9-0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.862	27	-0.5	28	0.866
56	(0.9-0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	0.862	27	-0.866	28	0.5
57	(0.9-0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.862	27	-1	28	
58	(0.9-0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.862	27	-0.866	28	-0.5
59	(0.9-0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.862	27	-0.5	28	-0.866
60	(0.9-0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	0.862	27		28	-1
61	(0.9-0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	0.862	27	0.5	28	-0.866
62	(0.9-0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	0.862	27	0.866	28	-0.5
63	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1	2	0.096	29	1.5
64	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 30	Yes	Y	1	1	3	0.096	29	1.5
65	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 60	Yes	Y	1	1	4	0.096	29	1.5
66	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1	5	0.096	29	1.5
67	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 120	Yes	Y	1	1	6	0.096	29	1.5
68	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1	7	0.096	29	1.5
69	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1	8	0.096	29	1.5
70	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1	9	0.096	29	1.5
71	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1	10	0.096	29	1.5
72	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1	11	0.096	29	1.5
73	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1	12	0.096	29	1.5
74	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1	13	0.096	29	1.5
75	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 0	Yes	Y	1	1.2	34	1.5	2	0.154
76	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	34	1.5	3	0.154
77	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	34	1.5	4	0.154
78	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	34	1.5	5	0.154
79	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	34	1.5	6	0.154
80	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	34	1.5	7	0.154
81	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	34	1.5	8	0.154
82	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	34	1.5	9	0.154
83	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	34	1.5	10	0.154
84	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	34	1.5	11	0.154
85	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	34	1.5	12	0.154
86	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	34	1.5	13	0.154
87	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 0$	Yes	Y	1	1.2	35	1.5	2	0.154
88	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	35	1.5	3	0.154
89	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	35	1.5	4	0.154
90	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	35	1.5	5	0.154
91	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	35	1.5	6	0.154
92	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	35	1.5	7	0.154
93	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	35	1.5	8	0.154
94	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	35	1.5	9	0.154
95	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	35	1.5	10	0.154
96	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	35	1.5	11	0.154
97	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	35	1.5	12	0.154
98	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	35	1.5	13	0.154
99	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	36	1.5	2	0.154

Company Designer Job Number Model Name

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By

Description		Solve	PDelta Y	$\frac{\text { BLC }}{1}$	$\begin{gathered} \text { Factor } \\ \hline 1.2 \end{gathered}$	$\frac{\text { BLC }}{36}$	$\begin{gathered} \text { Factor } \\ \hline 1.5 \end{gathered}$	$\begin{gathered} \text { BLC } \\ \hline \end{gathered}$	$\begin{gathered} \text { Factor } \\ \hline 0.154 \\ \hline \end{gathered}$
100	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 30	Yes							
101	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	36	1.5	4	0.154
102	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	36	1.5	5	0.154
103	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	36	1.5	6	0.154
104	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	36	1.5	7	0.154
105	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	36	1.5	8	0.154
106	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	36	1.5	9	0.154
107	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	36	1.5	10	0.154
108	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	36	1.5	11	0.154
109	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	36	1.5	12	0.154
110	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	36	1.5	13	0.154
111	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 0$	Yes	Y	1	1.2	37	1.5	2	0.154
112	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	37	1.5	3	0.154
113	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	37	1.5	4	0.154
114	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	37	1.5	5	0.154
115	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	37	1.5	6	0.154
116	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	37	1.5	7	0.154
117	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	37	1.5	8	0.154
118	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	37	1.5	9	0.154
119	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	37	1.5	10	0.154
120	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	37	1.5	11	0.154
121	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	37	1.5	12	0.154
122	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	37	1.5	13	0.154
123	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 5+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	38	1.5	2	0.154
124	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	38	1.5	3	0.154
125	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	38	1.5	4	0.154
126	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	38	1.5	5	0.154
127	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	38	1.5	6	0.154
128	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	38	1.5	7	0.154
129	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	38	1.5	8	0.154
130	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	38	1.5	9	0.154
131	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	38	1.5	10	0.154
132	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	38	1.5	11	0.154
133	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	38	1.5	12	0.154
134	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	38	1.5	13	0.154
135	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	39	1.5	2	0.154
136	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	39	1.5	3	0.154
137	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	39	1.5	4	0.154
138	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	39	1.5	5	0.154
139	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	39	1.5	6	0.154
140	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	39	1.5	7	0.154
141	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	39	1.5	8	0.154
142	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	39	1.5	9	0.154
143	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	39	1.5	10	0.154
144	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	39	1.5	11	0.154
145	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	39	1.5	12	0.154
146	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	39	1.5	13	0.154
147	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	40	1.5	2	0.154
148	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	40	1.5	3	0.154
149	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	40	1.5	4	0.154
150	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	40	1.5	5	0.154
151	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	40	1.5	6	0.154
152	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	40	1.5	7	0.154
153	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	40	1.5	8	0.154
154	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	40	1.5	9	0.154
155	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	40	1.5	10	0.154
156	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	40	1.5	11	0.154
157	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	40	1.5	12	0.154

Company Designer Job Number Model Name

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
158	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	40	1.5	13	0.154
159	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	41	1.5	2	0.154
160	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 30	Yes	Y	1	1.2	41	1.5	3	0.154
161	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 60$	Yes	Y	1	1.2	41	1.5	4	0.154
162	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	41	1.5	5	0.154
163	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	41	1.5	6	0.154
164	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	41	1.5	7	0.154
165	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	41	1.5	8	0.154
166	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	41	1.5	9	0.154
167	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1.2	41	1.5	10	0.154
168	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	41	1.5	11	0.154
169	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	41	1.5	12	0.154
170	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	41	1.5	13	0.154
171	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	42	1.5	2	0.154
172	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	42	1.5	3	0.154
173	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	42	1.5	4	0.154
174	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	42	1.5	5	0.154
175	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	42	1.5	6	0.154
176	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	42	1.5	7	0.154
177	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	42	1.5	8	0.154
178	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	42	1.5	9	0.154
179	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1.2	42	1.5	10	0.154
180	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	42	1.5	11	0.154
181	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	42	1.5	12	0.154
182	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 9+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	42	1.5	13	0.154
183	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	43	1.5	2	0.154
184	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	43	1.5	3	0.154
185	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	43	1.5	4	0.154
186	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	43	1.5	5	0.154
187	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	43	1.5	6	0.154
188	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	43	1.5	7	0.154
189	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	43	1.5	8	0.154
190	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	43	1.5	9	0.154
191	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 240	Yes	Y	1	1.2	43	1.5	10	0.154
192	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	43	1.5	11	0.154
193	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	43	1.5	12	0.154
194	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	43	1.5	13	0.154
195	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	44	1.5	2	0.154
196	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	44	1.5	3	0.154
197	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	44	1.5	4	0.154
198	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	44	1.5	5	0.154
199	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	44	1.5	6	0.154
200	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	44	1.5	7	0.154
201	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	44	1.5	8	0.154
202	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	44	1.5	9	0.154
203	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	44	1.5	10	0.154
204	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	44	1.5	11	0.154
205	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	44	1.5	12	0.154
206	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	44	1.5	13	0.154
207	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	45	1.5	2	0.154
208	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	45	1.5	3	0.154
209	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	45	1.5	4	0.154
210	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	45	1.5	5	0.154
211	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 120	Yes	Y	1	1.2	45	1.5	6	0.154
212	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	45	1.5	7	0.154
213	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	45	1.5	8	0.154
214	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	45	1.5	9	0.154
215	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12$ + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	45	1.5	10	0.154

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By

Description		Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
216	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	45	1.5	11	0.154
217	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	45	1.5	12	0.154
218	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	45	1.5	13	0.154
219	1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	46	1.5	2	0.154
220	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	46	1.5	3	0.154
221	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	46	1.5	4	0.154
222	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	46	1.5	5	0.154
223	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 120	Yes	Y	1	1.2	46	1.5	6	0.154
224	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1.2	46	1.5	7	0.154
225	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	46	1.5	8	0.154
226	1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	46	1.5	9	0.154
227	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 240	Yes	Y	1	1.2	46	1.5	10	0.154
228	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	46	1.5	11	0.154
229	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 13+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	46	1.5	12	0.154
230	1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	46	1.5	13	0.154
231	1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	47	1.5	2	0.154
232	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	47	1.5	3	0.154
233	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14$ + 1.6 SWL (30 mph) AZI 60	Yes	Y	1	1.2	47	1.5	4	0.154
234	1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	47	1.5	5	0.154
235	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14+1.6 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1.2	47	1.5	6	0.154
236	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	47	1.5	7	0.154
237	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	47	1.5	8	0.154
238	1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	47	1.5	9	0.154
239	1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	47	1.5	10	0.154
240	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 270	Yes	Y	1	1.2	47	1.5	11	0.154
241	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	47	1.5	12	0.154
242	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 14+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 330	Yes	Y	1	1.2	47	1.5	13	0.154
243	1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	48	1.5	2	0.154
244	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	48	1.5	3	0.154
245	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	48	1.5	4	0.154
246	1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	48	1.5	5	0.154
247	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 120	Yes	Y	1	1.2	48	1.5	6	0.154
248	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	48	1.5	7	0.154
249	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	48	1.5	8	0.154
250	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	48	1.5	9	0.154
251	1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	48	1.5	10	0.154
252	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 270	Yes	Y	1	1.2	48	1.5	11	0.154
253	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	48	1.5	12	0.154
254	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 15+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 330$	Yes	Y	1	1.2	48	1.5	13	0.154
255	1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	49	1.5	2	0.154
256	1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	49	1.5	3	0.154
257	1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	49	1.5	4	0.154
258	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	49	1.5	5	0.154
259	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16$ + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	49	1.5	6	0.154
260	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16$ + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	49	1.5	7	0.154
261	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16+1.6 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1.2	49	1.5	8	0.154
262	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16+1.6 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1.2	49	1.5	9	0.154
263	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16$ + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	49	1.5	10	0.154
264	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16$ + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	49	1.5	11	0.154
265	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	49	1.5	12	0.154
266	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 16+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	49	1.5	13	0.154
267	1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	50	1.5	2	0.154
268	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	50	1.5	3	0.154
269	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	50	1.5	4	0.154
270	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	50	1.5	5	0.154
271	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 120	Yes	Y	1	1.2	50	1.5	6	0.154
272	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17$ + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	50	1.5	7	0.154
273	1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	50	1.5	8	0.154

Company Designer
Job Number Model Name

Infinigy Engineering, PLLC
DVA
2039-Z5555C
BOBDL00104A

7/28/2021
12:53:50 AM
Checked By

Description		Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
274	1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	50	1.5	9	0.154
275	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17+1.6 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1.2	50	1.5	10	0.154
276	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17$ + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	50	1.5	11	0.154
277	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	50	1.5	12	0.154
278	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 17+1.6 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1.2	50	1.5	13	0.154
279	1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	51	1.5	2	0.154
280	1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	51	1.5	3	0.154
281	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	51	1.5	4	0.154
282	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	51	1.5	5	0.154
283	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	51	1.5	6	0.154
284	1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	51	1.5	7	0.154
285	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	51	1.5	8	0.154
286	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	51	1.5	9	0.154
287	1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	51	1.5	10	0.154
288	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 270	Yes	Y	1	1.2	51	1.5	11	0.154
289	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	51	1.5	12	0.154
290	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 18$ + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	51	1.5	13	0.154

Envelope Node Reactions

Node Label			X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [lb-in]	LC
1	N1	max	1329.767	25	1722.877	27	1293.144	6	23174.84	108	27189.445	6	21079.197	20
2		min	-1456.606	8	-198.177	20	-1294.11	12	-23162.683	90	-27467.341	12	-66649.248	2
3	N67	max	1662.784	2	1857.939	35	1528.917	5	19245.927	16	35008.981	13	34968.491	143
4		min	-1571.738	20	-164.019	16	-1380.866	24	-59380.677	10	-28600.827	6	-10983.775	16
5	N117	max	1565.311	2	1723.589	31	1279.79	16	66885.017	127	27704.97	10	34602.146	209
6		min	-1474.269	20	-218.015	24	-1487.207	12	-19286.117	24	-27447.646	4	-11147.264	24
7	Totals:	max	4478.45	14	4876.205	35	3923.808	16						
8		min	-4478.457	20	1679.354	52	-4140.921	24						

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

Member													Cb Eqn
1	M12	6"x0.375" Plate	0.602	2.036	2	0.664	2.036	y	11062722.329	72900	6834.391	109350	$2.529 \mathrm{H} 1-1 \mathrm{~b}$
2	M83	6"x0.375" Plate	0.605	2.036	6	0.661	2.036	v	12762722.329	72900	6834.391	109350	$2.527 \mathrm{H} 1-1 \mathrm{~b}$
3	M13	6"x0.375" Plate	0.602	2.036	2	0.661	2.036	y	8762722.329	72900	6834.391	109350	$2.527 \mathrm{H} 1-1 \mathrm{~b}$
4	M82	6 "x0.375" Plate	0.597	2.036	6	0.516	2.036	y	662722.329	72900	6834.391	109350	$2.527 \mathrm{H} 1-1 \mathrm{~b}$
5	M51	6"x0.375" Plate	0.595	2.036	10	0.515	2.036	y	1062722.329	72900	6834.391	109350	$2.525 \mathrm{H} 1-1 \mathrm{~b}$
6	M50	6"x0.375" Plate	0.604	2.036	10	0.515	2.036	y	1062722.329	72900	6834.391	109350	$2.528 \mathrm{H} 1-1 \mathrm{~b}$
7	M81	6"x0.375" Plate	0.372	2.036	10	0.353	2.036	y	3762722.329	72900	6834.391	109350	$2.19 \mathrm{H} 1-1 \mathrm{~b}$
8	M49	6"x0.375" Plate	0.367	2.036	2	0.352	2.036	y	2962722.329	72900	6834.391	109350	2.187H1-1b
9	M80	6"x0.375" Plate	0.374	2.036	13	0.351	2.036	y	3762722.329	72900	6834.391	109350	2.24 H1-1b
10	M10	6"x0.375" Plate	0.365	2.036	10	0.351	2.036	y	3362722.329	72900	6834.391	109350	2.187H1-1b
11	M11	6"x0.375" Plate	0.365	2.036	6	0.351	2.036	y	3362722.329	72900	6834.391	109350	2.187H1-1b
12	M48	6"x0.375" Plate	0.371	2.036	6	0.35	2.036	y	2962722.329	72900	6834.391	109350	$2.188 \mathrm{H} 1-1 \mathrm{~b}$
13	M24	6"x0.375" Plate	0.304	0	2	0.347	0	y	11071110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
14	M100	6"x0.375" Plate	0.305	0	6	0.345	0	y	12771110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
15	M30	6"x0.375" Plate	0.304	0	2	0.345	0	y	8771110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
16	M94	6"x0.375" Plate	0.301	0	6	0.265	0	y	671110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
17	M62	6"x0.375" Plate	0.305	0	10	0.264	0	y	1071110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
18	M68	6"x0.375" Plate	0.3	0	10	0.264	0	y	1071110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
19	M42	PIPE_2.0	0.386	30	13	0.22	38		1314916.096	32130	22459.5	22459.5	3 H1-1b
20	M106	PIPE_2.5	0.152	90	13	0.219	6		1330038.461	50715	43155	43155	$1.782 \mathrm{H} 1-1 \mathrm{~b}$
21	M110	PIPE_2.0	0.483	30	25	0.212	30		1314916.096	32130	22459.5	22459.5	3 H1-1b
22	M107	PIPE_2.0	0.516	30	13	0.211	30		1314916.096	32130	22459.5	22459.5	$2.556 \mathrm{H} 1-1 \mathrm{~b}$
23	M3	PIPE_2.5	0.139	90	6	0.207	6		1030038.461	50715	43155	43155	$1.792 \mathrm{H} 1-1 \mathrm{~b}$
24	M114	PIPE_2.5	0.139	6	2	0.207	90		1030038.461	50715	43155	43155	$1.792 \mathrm{H} 1-1 \mathrm{~b}$
25	M115	PIPE_2.0	0.456	30	9	0.202	30		414916.096	32130	22459.5	22459.5	3 H1-1b
26	M38	PIPE_2.0	0.454	30	10	0.202	30		414916.096	32130	22459.5	22459.5	3 H1-1b

Infinigy Engineering, PLLC
DVA
2039-Z5555C

7/28/2021
12:53:50 AM
Checked By

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks (Continued)

Member		Shape	Code CheckLoc[in]		LC Shear CheckLoc[in]D			$\begin{aligned} & \text { DirLC phi*Pnc [lb]pl } \\ & \hline 1214916.096 \end{aligned}$		$\begin{gathered} \text { phi*Pnt [lb] } \\ 32130 \end{gathered}$	phi*Mn y-y [lb-in] phi*Mn z-z [lb-in] 22459.5 22459.5		$\begin{array}{c\|c} \hline \mathrm{Cb} & \text { Eqn } \\ \hline 3 & \mathrm{H} 1-1 \mathrm{~b} \\ \hline \end{array}$
27	M35	PIPE_2.0	0.454	30	6	0.202	30						
28	M118	PIPE_2.0	0.457	30	3	0.202	30		814916.096	32130	22459.5	22459.5	$2.216 \mathrm{H} 1-1 \mathrm{~b}$
29	M74	PIPE_2.0	0.342	30	8	0.195	38		314916.096	32130	22459.5	22459.5	$3 \mathrm{H} 1-1 \mathrm{~b}$
30	M4	PIPE_2.0	0.35	30	12	0.193	38		1214916.096	32130	22459.5	22459.5	$2.263 \mathrm{H} 1-1 \mathrm{~b}$
31	M1	HSS4X4X4	0.395	0	13	0.184	0	y	109133649.326	139518	194166	194166	$1.659 \mathrm{H} 1-1 \mathrm{~b}$
32	M73	HSS4X4X4	0.383	0	4	0.184	0	y 1	129133649.326	139518	194166	194166	$1.703 \mathrm{H} 1-1 \mathrm{~b}$
33	M105	PIPE_3.0	0.121	90	13	0.175	90		1360482.561	65205	68985	68985	$1.767 \mathrm{H} 1-1 \mathrm{~b}$
34	M93	6"x0.375" Plate	0.154	0	12	0.167	0	y	3771110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
35	M99	6"x0.375" Plate	0.157	0	13	0.166	0	v	3771110.261	72900	6834.391	109350	$1.35 \mathrm{H1-1b}$
36	M61	6"x0.375" Plate	0.153	0	4	0.166	0	v	2971110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
37	M29	6"x0.375" Plate	0.154	0	8	0.166	0	y	3371110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
38	M23	6"x0.375" Plate	0.154	0	8	0.166	0	y	3371110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
39	M67	6"x0.375" Plate	0.154	0	4	0.166	0	y	2971110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
40	M5	HSS4.5X4.5X3	0.069	20	2	0.159	8.958	y	109120246.398	121302	194994	194994	$1.494 \mathrm{H} 1-1 \mathrm{~b}$
41	M75	HSS4.5X4.5X3	0.069	20	6	0.158	8.958	y	129120246.398	121302	194994	194994	$1.494 \mathrm{H} 1-1 \mathrm{~b}$
42	M113	PIPE_3.0	0.114	48	75	0.157	6		360482.561	65205	68985	68985	1 H1-1b
43	M2	PIPE_3.0	0.112	90	6	0.157	90		660482.561	65205	68985	68985	$1.786 \mathrm{H} 1-1 \mathrm{~b}$
44	M41	HSS4X 4 X4	0.397	0	12	0.131	12.017	z	13133649.326	139518	194166	194166	$1.717 \mathrm{H} 1-1 \mathrm{~b}$
45	M7	L4X4X4	0.549	0	110	0.124	0	z	10954411.715	62532	37651.159	80578.632	$1.5 \mathrm{H} 2-1$
46	M6	L4X4X4	0.547	24.375	89	0.123	24.375	z	8954411.715	62532	37651.159	80578.632	1.5 H2-1
47	M76	L4X4X4	0.547	24.375	129	0.123	24.375	z	12954411.715	62532	37651.159	80578.632	$1.5 \mathrm{H} 2-1$
48	M43	HSS4.5X4.5X3	0.069	20	10	0.098	8.958	z	13120246.398	121302	194994	194994	$1.494 \mathrm{H} 1-1 \mathrm{~b}$
49	M44	L4X4X4	0.368	24.375	12	0.089	24.375	z	1254411.715	62532	37651.159	80578.632	$1.469 \mathrm{H} 2-1$
50	M77	L4X4X4	0.363	0	4	0.089	24.375	z	1054411.715	62532	37651.159	80578.632	$1.468 \mathrm{H} 2-1$
51	M45	L4X4X4	0.362	0	8	0.088	24.375	z	254411.715	62532	37651.159	80578.632	$1.467 \mathrm{H} 2-1$
52	M8	L4X4X4	0.378	36.125	30	0.055	36.125	z	10951466.784	62532	37651.159	80578.632	$1.5 \mathrm{H} 2-1$
53	M79	L4X4X4	0.379	0	28	0.054	0	z 1	12951466.784	62532	37651.159	80578.632	1.5 H2-1
54	M9	L4X4X4	0.379	0	36	0.054	0	z	8951466.784	62532	37651.159	80578.632	1.5 H2-1
55	M47	L4X4X4	0.377	0	32	0.037	3.01	y	1351466.784	62532	37651.159	80578.632	1.5 H2-1
56	M46	L4X4X4	0.38	36.125	38	0.036	36.125	z	22551466.784	62532	37651.159	80578.632	1.5 H2-1
57	M78	L4X4X4	0.38	36.125	34	0.036	36.125	z 2	20951466.784	62532	37651.159	80578.632	1.5 H2-1
58	M84	L3X3X3	0.34	27.5	12	0.036	55	z 1	13021109.581	35316	15841.16	29030.935	$1.018 \mathrm{H} 2-1$
59	M14	L3X3X3	0.334	27.5	8	0.035	0	z 1	10821109.581	35316	15841.16	29033.525	$1.018 \mathrm{H} 2-1$
60	M52	L3X3X3	0.334	27.5	4	0.033	0	y	1321109.581	35316	15841.16	29033.512	$1.018 \mathrm{H} 2-1$
61	M15	6"x0.375" Plate	0.555	1.557	2	0.022	5.75	y	1362722.329	72900	6834.391	109350	$2.198 \mathrm{H} 1-1 \mathrm{~b}$
62	M53	6"x0.375" Plate	0.555	1.557	10	0.022	5.75	z	1062722.329	72900	6834.391	109350	$2.197 \mathrm{H} 1-1 \mathrm{~b}$
63	M86	6"x0.375" Plate	0.555	1.557	6	0.022	5.75	z	662722.329	72900	6834.391	109350	2.196H1-1b
64	M54	6"x0.375" Plate	0.555	1.557	10	0.022	5.75	z	1062722.329	72900	6834.391	109350	$2.202 \mathrm{H} 1-1 \mathrm{~b}$
65	M85	6"x0.375" Plate	0.555	1.557	6	0.022	5.75	z	662722.329	72900	6834.391	109350	$2.203 \mathrm{H} 1-1 \mathrm{~b}$
66	M16	6"x0.375" Plate	0.555	1.557	2	0.022	5.75	z	262722.329	72900	6834.391	109350	$2.201 \mathrm{H} 1-1 \mathrm{~b}$
67	M65	6"x0.375" Plate	0.14	0	10	0.015	0	z	1071110.261	72900	6834.391	109350	$1.349 \mathrm{H} 1-1 \mathrm{~b}$
68	M71	6"x0.375" Plate	0.14	0	10	0.015	0	z	1071110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
69	M103	6"x0.375" Plate	0.14	0	6	0.015	0	z	671110.261	72900	6834.391	109350	$1.349 \mathrm{H} 1-1 \mathrm{~b}$
70	M97	6"x0.375" Plate	0.14	0	6	0.015	0	z	671110.261	72900	6834.391	109350	$1.35 \mathrm{H1-1b}$
71	M27	6"x0.375" Plate	0.14	0	2	0.015	0	z	271110.261	72900	6834.391	109350	$1.349 \mathrm{H} 1-1 \mathrm{~b}$
72	M33	6"x0.375" Plate	0.14	0	2	0.015	0	z	271110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
73	M125	PIPE_2.0	0.059	18	10	0.011	18		1026521.424	32130	22459.5	22459.5	$2.401 \mathrm{H} 1-1 \mathrm{~b}$

FROM ZERO TO INFINIGY
the solutions are endless

BOLT CONNECTION CALCULATION

BOLT PROPERTIES

Date:	$7 / 28 / 2021$
Site:	BOBDL00104A
Engineer:	DVA
Infinigy Job No:	$2039-Z 5555 C$
Connection Location:	Arm to Collar

Bolt Capacity Equation
Connection Type
Bolt Size, d
Threads per Inch, n
Steel Grade
Bolt Ultimate Tensile Stress, $\mathbf{F}_{\mathbf{u}}$
Threads Exclusion
Shear Plane

TIA-222-H
Steel
$5 / 8$
11
A325
120
N
1

in
ksi
$i n^{2}$
$i n^{2}$
lbs
lbs

INFINIGY8

FROM ZERO TO INFINIGY the solutions are endless

BOLT CONNECTION CALCULATION

BOLT GROUP CHECK

Date:	7/28/2021
Site:	BOBDL00104A
Engineer:	DVA
Infinigy Job No:	$2039-Z 5555 C$
Connection Location:	Arm to Collar

Loads Properties					
Controlling LC:	13				
Load Point Number:	N1				
X-Coordinate (in.)	4.00				
Y-Coordinate (in.)	4.00				
Z-Coordinate (in.)	0.00				
Shear Load, Px (lbs)	-695.000	0	0	0	0
Shear Load, Py (lbs)	1455.000	0	0	0	0
Axial Load, Pz (lbs)	1305.000	0	0	0	0
Moment, Mx (lb-in)	62199.000	0	0	0	0
Moment, My (lb-in)	-13585.000	0	0	0	0
Moment, Mz (lb-in)	6724.000	0	0	0	0

Member Properties		
Start Coordinates: Dimentions:	\boldsymbol{X}	\boldsymbol{Y}
	0.0	0.0
	8.0	8.0

Number of Bolts

	4	
No.	Bolt Type	Xo (in)
1	Main Type	1.0
2	Main Type	7.0
3	Main Type	1.0
4	Main Type	7.0
Bolt Group Properties:		
Xc $=$	4.00	in.
$\mathrm{Yc}=$	4.00	in.
Ic. $\mathrm{y}=$	11.04	in.^2
Ic. $\mathrm{x}=$	11.04	in.^2
lc. $\mathrm{xy}=$	22.09	in.^2

Bolt Loads

Loads Shear 787.83 | 787.83 | Tensio |
| ---: | ---: |
| 461.55 | 0.0% |
| 652.65 | 21.5% |
| 135.32 | 32.7% |

Loads at Center of Gravity of Bolt Group:

$\mathrm{Pz}=$	1305.00
$P \mathrm{x}=$	-695.00
$P y=$	1455.00
$\mathrm{Mx}=$	62199.00
$\mathrm{My}=$	-13585.00
$\mathrm{Mz}=$	6724.00

PARTS LIST

ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	3	X-LWRM	RING MOUNT WELDMENT		68.81	206.42
2	3	X-SNP-ST8	SNB8 TELESCOPING ARM FOR GRATING		60.39	181.16
3	3	X-SNPC	CORNER GRATING WELDMENT		194.33	582.99
4	3	P396	3" SCH. 40 PIPE (3.5" O.D. $\times 0.216 "$ WALL) A500	96.000 in	60.75	182.25
5	3	P3096	2-7/8" OD X 96" Sch 40 Galvanized Pipe		46.45	139.36
6	3	X-SNP-HRA	CORNER BRACKET FOR SNPX PLATFORMS		25.95	77.86
7	3	X-SNPP1G	CLAMP PLATE	7.250 in	2.03	6.10
8	9	X-SP219	SMALL SUPPORT CROSS PLATE	8.250 in	8.61	77.50
9	9	SCX2	CROSSOVER PLATE	7.000 in	4.80	43.17
10	9	G58R-48	5/8" $\times 48$ " THREADED ROD (HDG.)		0.55	4.94
10	9	G58R-24	$5 / 8$ " $\times 24$ " THREADED ROD (HDG.)		0.55	4.94
11	12	A58234	5/8" $\times 2$-3/4" HDG A325 HEX BOLT	2.75	0.36	4.27
12	30	A58FW	5/8" HDG A325 FLATWASHER		0.03	1.02
13	30	G58LW	5/8" HDG LOCKWASHER		0.03	0.78
14	18	A58NUT	5/8" HDG A325 HEX NUT		0.13	2.34
15	12	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	1.56
16	12	X-UB1358	1/2" $\times 3$-5/8" $\times 5-1 / 2^{\prime \prime} \times 3$ " U-BOLT (HDG.)		0.73	8.78
17	24	X-UB1300	1/2" $\times 3$ " $\times 5$ " $\times 2$ " U-BOLT (HDG.)		0.73	17.56
18	36	X-UB1212	1/2" $\times 2-1 / 2^{\prime \prime} \times 4-1 / 2^{\prime \prime} \times 2$ " U-BOLT (HDG.)		0.73	26.34
19	6	G12065	$1 / 2^{\prime \prime} \times 6-1 / 2$ " HDG HEX BOLT GR5 FULL THREAD	7-1/2	0.41	2.46
20	18	X-UB1306	1/2" $\times 3-5 / 8$ " $\times 6$ " $\times 3$ " U-BOLT (HDG.)		0.73	13.17
21	186	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	13.32
22	180	G12FW	1/2" HDG USS FLATWASHER		0.03	6.13
23	186	G12LW	1/2" HDG LOCKWASHER		0.01	2.59
24	9	A	2" SCH. 40 PIPE (2.375" O.D. x 0.154" WALL) A500	B	C	D

$15{ }^{x} 2_{2}$
$13 x^{2}$
$12 x^{2}$
11
$21 x 2$
23
$x 2$
22
$x 2$

C

21
19
7
${ }^{22} x^{x 2} x 2$
(21) $x 2$

21
23
23
22
20
$x 2$
DETAIL C

2-3/8" O.D. VERTICAL MOUNTING PIPES					
ASSEMBLY NO.	PART NO. "A"	LENGTH "B"	UNIT WEIGHT "C	NET WEIGHT "D"	TOTAL WEIGHT
SNP8HR-372	P272	6^{\prime} '0"	23.07	207.63	1717.07
SNP8HR-384	P284	$7^{\prime}-0 "$	26.91	242.19	1751.63
SNP8HR-396	P296	$8^{\prime}-0 "$	30.76	276.84	1786.28
SNP8HR-3126	P2126	$10^{\prime}-6 "$	40.75	366.75	1876.19

TOLERANCE NOTES	
tolerances on dimensions, unless otherwise noted are: SAWED, SHEARED AND GAS CUT EDGES ($\pm 0.030^{\prime \prime}$) DRILLED AND GAS CUT HOLES ($\pm 0.030^{\prime \prime}$) - NO CONING OF HOLES LASER CUT EDGES AND HOLES ($\pm 0.010^{\prime \prime}$) - NO CONING OF HOLES BENDS ARE $\pm 1 / 2$ DEGREE ALL OTHER MACHINING ($\pm 0.030^{\prime \prime}$) ALL OTHER ASSEMBLY ($\pm \mathbf{0 . 0 6 0 ")}$	
PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THI INDUSTRIES AND CONSIDERED A TRADE SECRE	PROPRIETARY INFORMATION OF VALMONT SCLOSURE WITHOUT THE CONSENT OF

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOBDL00104A
63 Woodland Street
Glastonbury, Connecticut 06033
September I, 202 I
EBI Project Number: 6221004688

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 6 . 4 7 \%}$

environmental | engineering | due diligence

September I, 202I

Dish Wireless

Emissions Analysis for Site: BOBDL00 I04A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 63 Woodland Street in Glastonbury, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the $1900 \mathrm{MHz}(\mathrm{PCS}), 2100 \mathrm{MHz}(\mathrm{AWS})$ and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.
environmental | engineering | due diligence
Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 63 Woodland Street in Glastonbury, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 4 n 7 I channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 4 n 70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) 4 n 66 channels (AWS Band -2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative
environmental | engineering | due diligence
estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector A, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline of the proposed antennas is 125 feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
9) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

Dish Wireless Site Inventory and Power Data

$\left.\begin{array}{|r|c|r|r|r|}\hline \text { Sector: } & \text { A } & \text { Sector: } & \text { B } & \text { Sector: }\end{array}\right]$ C
environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
Dish Wireless (Max at Sector A):	1.67%
AT\&T	10.06%
T-Mobile	4.74%
Site Total MPE \%:	16.47%

Dish Wireless MPE \% Per Sector	
Dish Wireless Sector A Total:	1.67%
Dish Wireless Sector B Total:	1.67%
Dish Wireless Sector C Total:	1.67%
Site Total MPE \%:	
16.47%	

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
Dish Wireless $600 \mathrm{MHz} \mathrm{n7I}$	4	223.68	125.0	2.27	$600 \mathrm{MHz} \mathrm{n71}$	400	0.57\%
Dish Wireless $1900 \mathrm{MHz} \mathrm{n70}$	4	542.70	125.0	5.51	$1900 \mathrm{MHz} \mathrm{n70}$	1000	0.55\%
Dish Wireless 2190 MHz n 66	4	542.70	125.0	5.51	$2190 \mathrm{MHz} \mathrm{n66}$	1000	0.55\%
						Total:	1.67\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (\%)
Sector A:	1.67%
Sector B:	1.67%
Sector C:	1.67%
Dish Wireless Maximum MPE \% (Sector A):	1.67%
Site Total:	
16.47%	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 6 . 4 7 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

Eco-Site, LLC - Letter of Authorization

CT - CONNECTICUT SITING COUNCIL
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Tower Share Application

Eco-Site, LLC - telecommunications site at:
63 WOODLAND ST., GLASTONBURY, CT 06073

Eco-Site, LLC, a Delaware limited liability company, d/b/a Vertical Bridge ("Eco Site") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Eco Site ID/Name: US-CT-5018/Hopewell
Customer Site ID: BOBDL00104A / ECO - Woodland St
Site Address: 63 WOODLAND ST., GLASTONBURY, CT 06073

Eco-Site, LLC

Name: ${ }^{\text {Tim }}{ }^{\text {Túlk }}$
Title: Vice President - Lease Administration

Exhibit H

Recipient Mailings

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage ${ }^{B}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {Tm }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# : 9405503699300019758694			
Trans. \#: Print Date:	544897384	Priority Mail(8) Postage:	\$7.95
	: 09/30/2021		\$7.95
Ship Date:	: 10/01/2021		
Defivery Date:	Date: 10/04/2021		
From: $\begin{array}{ll}\text { CH } \\ & \mathrm{NO} \\ & 10 \\ & \mathrm{FA}\end{array}$	CHUCK REGULBUTO		
	NORTHEAST SITE SOLUTIONS		
	1053 FARMINGTON AVE STE G		
	FARMINGTON CT 06032-1574		
To: VER	VERTICAL BRIDGE, REIT, LLC, TOWER OWNER		
	750 PARK OF COMMERCE DR		
	STE 200		
	BOCA RATON FL 33487-3650		
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking (8) servic on Prierity Mall service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.			

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only ance. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage ${ }^{(1)}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{T M}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# : 9405503699300019740842				
Trans. \#: Print Dat Ship Dat Expected Delivery		544895944	Priority Mail® Postage:	\$7.95
		09/30/2021	Total:	\$7.95
		10/01/2021		
	Date:	10/02/2021		
From:	CHU	K REGULBU		
	NOR	HEAST SITE	OLUTIONS	
	1053	FARMINGTO	AVE STE G	
	FAR	IINGTON CT	032-1574	
To:	RICH	ARD J JOHN		
	TOW	N MANAGER	OWN OF GLASTONBUR	
	2155	MAIN ST		
	\# 2			
	GLA	TONBURY	06033-2282	
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.				

Cut on dotted line.

Instructions

1. Each Click-N-Ship© label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®^{\circledR}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {tm }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# :

 9405503699300019740859| Trans. \#: | | 544895944 | Priority Mail® Postage: Total: | $\frac{\$ 7.95}{\$ 7.95}$ |
| :---: | :---: | :---: | :---: | :---: |
| Print Date: | | 09/30/2021 | | |
| Ship Date: Expected | | 10/01/2021 | | |
| Delivery Date: | | 10/02/2021 | | |
| From: | CHUCK REGULBUTO | | | |
| | NORTHEAST SITE SOLUTIONS | | | |
| | 1053 FARMINGTON AVE STE G | | | |
| | FARMINGTON CT 06032-1574 | | | |
| To: | REBECCA AUGUR | | | |
| | DIRECTOR OF PLANNING \& LAND USE SERVICES | | | |
| | 2155 MAIN ST | | | |
| | \# 3 | | | |
| | GLASTONBURY CT 06033-2282 | | | |
| * Retail Pricing Priarity Mail rates apply. There is no fee for USPS Tracking(®) service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. | | | | | on Prority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date

	9405503699300019740866				$\begin{array}{\|l\|} \hline \boldsymbol{0} \\ \mathbf{N} \\ \mathbf{\omega} \\ \hline \end{array}$					

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage ${ }^{\text {® }}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \#:

 9405503699300019740866| Trans.\#: | | 544895944 | Priority Mail® Postage: | \$7.95 |
| :---: | :---: | :---: | :---: | :---: |
| | | 09/30/2021 | | \$7.95 |
| Expected $10102 / 2021$ | | | | |
| Delivery Date: 10/02/2021 | | | | |
| From: | CHUCK REGULBUTO | | | |
| | NORTHEAST SITE SOLUTIONS | | | |
| | 1053 FARMINGTON AVE STE G | | | |
| | FARMINGTON CT 06032-1574 | | | |
| To: | PAUL J CAVANNA | | | |
| | 80 WOODLAND ST | | | |
| | S GLASTONBURY CT 06073-2715 | | | |
| * Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking(B) service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date. | | | | |

[^0]: This data \& map is a user generated static output from an Internet mapping site and is for reference only. Data that appears on this form may or may not be accurate, current, or otherwise reliable. Any questions on the data provided above should be directed to the Town of Glastonbury Property Assessment Office 860-652-7600.

[^1]: Note: Proposed equipment shown in bold.
 Note: Other existing loading can be found on the tower profile attached.
 Note: All proposed feedlines for DISH Wireless are to be placed inside the monopole tower.
 Note: The remainder of $\mathbf{8 , 5 0 0} \mathbf{s q}$. in. for DISH Wireless have been included in this analysis.

[^2]: Use ASCE 10 X-Brace Ly Rules
 $\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression
 $\sqrt{ }$ All Leg Panels Have Same Allowable Offset Girt At Foundation
 $\sqrt{ }$ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
 $\sqrt{ }$ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

