Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

October 11, 2022

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 175 Dickinson Street, Glastonbury, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Town of Glastonbury ("Town") in August of 2000. Cellco's use of the tower was approved by the Siting Council ("Council") in December of 2000 (TS-VER-054-001214). A copy of the Town's approval and Council's TS-VER-054-001214 approval are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing (3) new Samsung MT6407-77A antennas, three (3) new NHH-65B-R2B antennas, and three (3) new NHHSS-65B-R2BT4 antennas on the existing antenna platform. Cellco also intends install nine (9) new remote radio heads ("RRHs") behind its antennas. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antennas and RRHs are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Glastonbury's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Robinson & Cole LLP

Melanie A. Bachman, Esq. October 11, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on Cellco's existing antenna platform.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Cellco's general power density calculation and a cumulative Maximum Permissible Exposure table, including Cellco's proposed facility modifications, are included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and mount assemblies, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. October 11, 2022 Page 3

Sincerely,

Kunie mu

Kenneth C. Baldwin

Enclosures

Copy to:

Richard Johnson, Glastonbury Town Manager Jonathan Mullen, Glastonbury Planner Randall Chapman and Karrie-Lynne Bronzi, Property Owners Alex Tyurin, Verizon Wireless

ATTACHMENT 1

YOL. 1370 PAGE 146

3

 \sim

1012

2155 MAIN STREET · P.O. BOX 6523 · GLASTONBURY, CONNECTICUT 06033-6523

DATE:August 15, 2000RE:Assessors Lot N3 Dickenson RoadOWNER:Donald Chapman, Ronald Bronzi and Beverly BronziZONE:RR

Town of Glastonbury

5086

SBA, Inc., and Sprint PCS 80 Eastern Boulevard Glastonbury, CT 06033

Dear Applicant(s):

Following a Public Hearing of your application on August 9, 2000, the following resolution was passed by the Zoning Board of Appeals:

The Board granted a special exception as provided for in Section 4.2.1 to construct a 180' monopole tower and the installation and operation of antennas and associated equipment for wireless communication system at assessors Lot N3 Dickenson Road as it meets all the requirements of Section 13.9.

The approval will become effective when it is recorded by the property owner in the Town Clerk's Office but to satisfy the provisions of Section 13.10 of the Glastonbury Building Zone Regulations concerning expiration, this approval shall become null and void two years from August 10, 2000, unless substantial construction on a building or structure or use is established on a lot.

This decision is based upon and subject to the representations made and evidence produced by the applicant(s) at the Public Hearing.

Glastonbury Zoning Board of Appeals For the Secretary

Edward P. Pietrycha Building Official and Zoning Enforcement Officer

dml

cc: Wendell G. Davis, Jr., Cranmore, FitzGerald & Meaney, 49 Wethersfield Avenue, Hartford, CT.

GLASTONBURY, CT RECEIVED 2000 AUG 22 AM 9: 32 VOL December 22, 2000

Sandy M. Carter Verizon Wireless 20 Alexander Drive P.O. Box 5029 Wallingford, CT 06492

RE: **TS-VER-054-001214** - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 175 Dickinson Road, Glastonbury, Connecticut.

Dear Ms. Carter:

At a public meeting held December 19, 2000, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

The proposed shared use is to be implemented as specified in your letter dated December 14, 2000.

Thank you for your attention and cooperation.

Very truly yours,

Mortimer A. Gelston Chairman

MAG/laf

 c: Honorable Kurt P. Cavanaugh, Chairman Town Council, Town of Glastonbury Richard J. Johnson, Town Manager, Town of Glastonbury Ester McNany, SBA, Inc. Julie M. Cashin, Esq., Hurwitz & Sagarin LLC

ATTACHMENT 2

	B2/B6BA 320W	B5/B13 320W	ENGINEER	NOB + C TOTALLY COMMITTED. NB-C EXCIDENCIO SEMICIES, USA MARKAN M
LUCENT * UHBC B13 TROU 2/40 SHELTER 3 21.60° 12″ 9.0″ 56.7 LBS * TO BE REMOVED	₩EGHT - 90.0 LBS	WEIGHT = 74.5 LBS	APPLCANT	Verizon 118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581
SAMSUNG RF44384-25A MONOPOLE 3 15.00" 12.00" 90.0 LBS SAMSUNG CBRS RRH-RT4401-48A MONOPOLE 3 13.8" 8.6" 5.6" 22.0 LBS PROPOSED DISTRIBUTION EQUIPMENT SPECIFICATIONS MONOFILE # MONOFILE #			SITE INFORMATION	E GLASTONBURY 2 CT 175 DICKINSON ROAD GLASTONBURY, CT 06033 TOWN OF GLASTONBURY HARTFORD COUNTY
RAYCAP RC3DC-3315-PF-48 (OVP6) MONOPOLE 2 28.93* 15.73* 10.3* 32.0 LBS EXISTING ANTENNA MAST	B2/B66A RF4439D-25A (REMOTE RADIO HEAD)	A B5/B13 RF4440D-13A (REMOTE RADIO HEAD)	DESIGN RECORD	P PANL 000 C80 0 1000522 FANL 000 C80 REV DATE DESCRIPTION EY
	PROPOSED CBBS RRH (SEE SCHEDULE) MOUNTING PROPOSED MOUNTING BRANE BE BANDED ON TO MOUNTING PIPE		PROFESSIONAL STAMP	SAUSS SAUSS SICONAL SAUSS SAUSS SICONAL CHILING
			ENGINEER	
3 RRH MOUNTING DETAIL A-4 NTS EBORI MEW	SIDE VIEW 11-48A RRH 6 CBRS RRH MOUNTING DETAILS NTS	$\begin{array}{c c} \hline & 15.73^{\bullet} & \hline & 10.3^{\bullet} & \hline \\ \hline & BRONE & SIDE \\ \hline \\ $	SHEET NUMBER	& DETAILS

VERIZON WIRELESS CONTRACTOR SCOPE OF WORK

- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL THE PROPOSED CABLE JUMPER (WITH LC TO LC CONNECTORS) FROM THE PROPOSED FIBER TRAYS TO THE PROPOSED MAIN DISTRIBUTION BOX (BOTTOM).
- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL ALL MOUNTING HARDWARE AND 1/2" ANTENNA JUMPER CABLES AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED MAIN DISTRIBUTION BOXES (TOP) IN ALPHA AND BETA SECTORS ON THE BACK SIDE OF ANTENNA PIPE.
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL (2) RUNS OF 6/12 HYBRID CABLE FROM THE PROPOSED MAIN DISTRIBUTION BOXES (BOTTOM) TO THE MAIN DISTRIBUTION BOXES (TOP) FOLLOWING THE PATH OF THE EXISTING CABLES.
- VERIZON WIRELESS CONTRACTOR IS TO MAKE ALL ALARM CONNECTIONS TO THE DISTRIBUTION BOXES AND LEAVE A 40' COIL FOR OTHERS TO PUNCH INTO ALARM BLOCK.
- VERIZON WIRELESS CONTRACTOR IS TO SEAL ALL DISTRIBUTION BOXES AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL 1/2" ANTENNA JUMPERS FROM EACH PROPOSED REMOTE RADIO HEAD UNIT (RRH) TO THE PROPOSED ANTENNAS IN ALL SECTORS (48 TOTAL 1/2" ANTENNA JUMPERS).
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED REMOTE RADIO HEAD UNITS IN ALL SECTORS ON THE ANTENNA PIPE.
- VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL REMOTE RADIO HEAD UNITS (RRH) AND DISTRIBUTION BOXES TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION
- VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL PROPOSED ANTENNAS TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO COMPLETE THE INSTALLATION OF THE PROPOSED ANTENNAS AND HYBRIFLEX CABLE SYSTEM.
- VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING OPTICAL SWEEP TESTS; OTDR AND OPTICAL LOSS. RECOMMENDED UNITS - ANRITSU MT9090, JDSU, EXFO FTB-1/FTB-720 OTDR.
- VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING ANTENNA SYSTEM SWEEP TESTS: SYSTEM VZWR / dB RL.
- VERIZON WIRELESS CONTRACTOR IS TO PROVIDE ALL CLOSE OUT DOCUMENTS AS REQUIRED BY VERIZON WIRELESS.

SAMSUNG RRH

- DUAL RRH B2/B66A RFV01DU-D1A HELIAX 1/1 HYBRID CABLE CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT AND (1) EXTRA PAIR OF FIBER CONNECTED TO L1 SECONDARY PORT.
- DUAL RRH B5/B13 RFV01DU-D2A HELIAX 1/1 HYBRID CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT.

INTEGRATED ANTENNA

• MT6407-77A 1/1 HYBRID CABLE MUST BE CONNECTED TO OPT1 PORT AND (2) EXTRA FIBER CABLE TO THE SECONDARY OPT2 PORT.

MOP FOR RET INSTALLS

- ANTENNA CREW
- REVIEW ANTENNA SCHEDULE WITH CELL TECH
- FOR EACH SECTOR. LAY ANTENNAS OUT ON THE GROUND AS THEY WILL BE INSTALLED ACCORDING TO THE 2 ANTENNA SCHEDULE
- 3. LABELED EACH ANTENNA WITH FACE AND POSITION WITH A SHARPIE (EX:"ALPHA-4")
- LABEL ALL MOTORS WITH SHARPIE WITH BAND AND TECHNOLOGY (EX:"700LTE", "AWSLTE", "PCSLTE", "850VOICE", 4 ETC)
- 5. CONNECT ALL AISG CABLES (INCLUDING JUMPERS THAT WILL BE USED IN FINAL ASSEMBLY) PER THE ANTENNA SCHEDULE.
 - A. WHEN DAISY CHAINING IS INEVITABLE, AS A GENERAL RULE ...
 - I. KEEP LOW AND HIGH BANDS ON SEPARATE AISG CHAINS AS MUCH AS POSSIBLE
 - II. MINIMIZE AMOUNT OF MOTORS PER CHAIN AS MUCH AS POSSIBLE (MAX IS 6)

- WITH THE 6-DIGIT ENB NUMBER IN THE FILENAME (EX: RET DEPLOYMENT FORM_0981234.XLSX") 7. GIVE A SOFTCOPY OF THE RET DEPLOYMENT FORM TO VZW CELL TECH AND GC/CONSULTANT (EITHER BY EMAIL
- OR USB STICK)
- 8. USING THE SAME LAPTOP WHICH HAS THE RET DEPLOYMENT FORM OPENED, CONNECT THE CONTROL MODULE AND PROVISION EACH MOTOR RESPECTIVELY
 - NOTE: CREWS MUST USE SOFTWARE THAT IS SPECIFIC TO THE MOTOR TYPE BEING PROVISIONED (IE- JMA SOFTWARE SHOULD ONLY BE SUED FOR JMA MOTORS)
- A. COPY AND PASTE "RET FRIENDLY NAME" FROM SPREADSHEET (COLUMN A) TO THE "SECTOR ID" FIELD OF EACH MOTOR
- B. POPULATE "SET RET TILT"
- C. POPULATE "MECHANICAL TILT"
- CALIBRATE ALL MOTORS
- 10. DISCONNECT NECESSARY AISG JUMPERS TO TRANSPORT ANTENNAS SAFELY TO ASSEMBLY
- 11. INSTALL ANTENNAS ACCORDING TO THE ANTENNA SCHEDULE, USING THE SHARPIE LABELS AS REFERENCE
- 12. RECONNECT ALL AISG JUMPERS
- 13. BEFORE PLUGGING INTO EACH RRH, CONNECT MAIN AISG CABLE INTO CONTROLLER TO ENSURE ALL MOTORS ARE STILL SEEN IN THE DAISY CHAIN
- 14. PLUG AISG INTO RRH AND NOTIFY VZW TECH OF COMPLETION

VZW TECH (USER HELP GUIDE: \\WIN-VZWNET\NORTHEAST\PAPM_IMPLEMENTATION\SYSTEM

- PERFORMANCE\USERS\MOSERGA\RET\)
- 15. POWER ON RADIO EQUIPMENT AND RUN ANY NECESSARY WOS
- 16. "DISCOVER" THE RETS
 - A. LOG INTO SAM
 - I. VERIFY RET LICENSE ALLOCATION IN SAM
 - ENBEQUIPMENT>ENB>ACTIVATIONSERVICE>ISAISGALLOWED=CHECKED B. LOG INTO NEM LOCAL

 - I. GO TO TREE VIEW AND HIGHLIGHT RET SUBUNIT II. ENABLE BUS SCAN
 - CONFIGURATION> ENABLE AISG BUS SCAN
 - III. ALLOCATE CONFIG RIGHTS
 - CONFIGURATION>ALLOCATION CONFIGURATION RIGHTS IV. VERIFY CORRECT NUMBER OF RETS ARE DISCOVERED
- 17. "COMMISSION" THE RETS
 - A. LOG INTO NEM LOCAL
 - I. STILL IN TREE VIEW, RIGHT CLICK ON "HW MODULES"
 - II. SELECT "CREATE RET MO"
 - II. RELEASE CONFIG RIGHTS
 - CONFIGURATION>RELEASE CONFIGURATION RIGHTS
- IV. VERIFY RETSUBUNIT:SECTORNAME, ELECTRICAL TILT, AND MECHANICAL TILT ARE POPULATED 18. "PROVISION" THE RETS
 - A. LOG INTO SAM
 - I. OPEN UP THE ENB PROPERTIES AND COMPLETE A FULL RESYNC
 - II. IN THE SEARCH TEXTBOX, SEARCH FOR "RETSUBUNIT"
 - III. VERIFY ALL RETS ARE ACCOUNTED FOR AND "RETSUBUNIT:SECTORNAME", "ANTENNAELECTICALTILT", AND "RETSUBUNIT: MECHANICALTILT" ARE ACCURATE

verizor 118 FLANDERS ROAD FLOOR 3

WESTBOROUGH, MA 01581

TOTALLY COMMITTED.

NB+C ENGINEERING SERVICES, LLC.

CHELMSPORD, MA 01024

E GLASTONBURY 2 CT 175 DICKINSON ROAD GLASTONBURY, CT 06033 TOWN OF GLASTONBURY HARTFORD COUNTY

DESIGN RECORD

REVISIONS 0 10/05/22 FINAL CDs C80 REV DATE DESCRIPTION BY CONN

ICENSE

DANIEL J. CORNING, P.E. PROFESSIONAL ENGINEER LIC #34055

SCOPE OF

WORK

A-5

/ONAL

POST-MODIFICATION INSPECTION (PMI) REQUIREMENT POST-MODIFICATION INSPECTION (PMI) REQUIREMENT CONT. 1. PMI REQUIRED FOR ALL SITES, REFER TO VERIZON NSTD-446 SECTIONS 1.5 AND 2.3 FOR 6H. VERIFICATION THAT THE INSTALL HAS NOT CAUSED DAMAGE TO OR UNPLANNED OBSTRUCTION OF TOTALLY COMMITTED. MORE INFORMATION. THE FOLLOWING: NB+C ENGINEERING SERVICES, LLC. ___ CLIMBING FACILITIES 2. REFER TO THE MOUNT ANALYSIS BY MASER CONSULTING DATED 08/24/2022 FOR SAFETY CLIMB IF PRESENT, INCLUDING PHOTOS ABOVE AND BELOW THE MOUNT. ___ ADDITIONAL DETAILS. LIGHTING SYSTEM OTHER INSTALLED SYSTEMS ON THE STRUCTURE. ___ GENERAL CONTRACTOR SHALL PROVIDE THE BELOW DOCUMENTATION TO THE ENGINEER OF .3 CONTRACTOR SHALL ENSURE THE SAFETY CLIMB IS SUPPORTED AND NOT ADVERSELY AFFECTED RECORD VIA EMAIL TO VZWMOUNTSONBCLLC.COM, DROPBOX, OR OTHER FILESHARE METHOD. ____ BY THE INSTALLATION OF NEW COMPONENTS. THIS MAY INVOLVE THE INSTALLATION OF WIRE ROPE PROVIDE HIGH RESOLUTION PHOTOS (DO NOT COMPRESS). GUIDES OR OTHER ITEMS TO PROTECT THE WIRE ROPE. ENGINEER OF RECORD WILL CONDUCT A REVIEW OF THE PROVIDED DOCUMENTS TO 4. 118 FLANDERS ROAD PPP 1 PREPARE A PMI REPORT. ENGINEER OF RECORD WILL NOTIFY GENERAL CONTRACTOR IF 6I, OTHER ITEMS DETERMINED BY THE STRUCTURAL ENGINEER TO ENSURE THE MOUNT WILL PERFORM AS ANY ADDITIONAL DOCUMENTATION IS REQUIRED TO COMPLETE THE PMI. DESIGNED. PHOTOS OF RELEVANT MEASUREMENTS, WITH SUFFICIENT DETAILS TO CONFIRM CONNECTION WESTBOROUGH, MA 01581 DETAILS, PLACEMENT OF EQUIPMENT, WALL ANCHOR DETAILS, BALLAST QUANTITIES, STRUCTURAL 5. PMI DOCUMENTATION SHALL BE SUFFICIENT TO CONFIRM THE UPGRADE WAS BUILT AS MODIFICATIONS ETC. DIAMETERS AND THICKNESSES OF BOLTS/THREADED RODS/ANGLES/TUBES ETC DESIGNED, INCLUDING EQUIPMENT CHANGES AND STRUCTURAL MODIFICATIONS, AND IS IN SHALL HAVE PHOTOS CONFIRMING CALIPER MEASUREMENTS. ADDITION TO ANY OTHER REQUIRED CLOSEOUT PACKAGE DOCUMENTATION. ___ CONFIRMATION THAT ALL HARDWARE WAS PROPERLY INSTALLED. AND EXISTING HARDWARE WAS E GLASTONBURY 2 CT INSPECTED FOR ANY ISSUES. REQUIRED DOCUMENTATION FOR PMI INCLUDES THE FOLLOWING AT A MINIMUM. REFER TO 175 DICKINSON ROAD 6. THE MOUNT ANALYSIS FOR POSSIBLE ADDITIONAL INFORMATION. IF STRUCTURAL --- FOR BALLAST SLEDS, DOCUMENTATION OF THE WEIGHT OF BALLAST IN EACH SECTOR. GLASTONBURY, CT 06033 TOWN OF GLASTONBURY FOR WALL ANCHORS, PHOTOS AND MEASUREMENTS OF OUTSIDE AND INSIDE OF CONNECTIONS. MODIFICATIONS ARE REQUIRED, REFER TO THE MODIFICATION DRAWINGS FOR POSSIBLE ____ HARTFORD COUNTY DOCUMENTATION OF ADHESIVE USED, SIZE AND LENGTH OF ANCHORS, EFFECTIVE EMBEDMENT DEPTH OF ADDITIONAL REQUIREMENTS. THE ANCHORS, GROUTING OF HOLLOW WALLS, SPACING AND EDGE DISTANCE MEASUREMENTS, AND ANY 6A. PROVIDE PRE-AND-POST CONSTRUCTION PHOTOS OF EACH SECTOR FROM THE MOUNT THROUGH-BOLTS OR BACKING PLATES. ELEVATION AND THE GROUND. CONTRACTOR IS RESPONSIBLE FOR ENSURING THE PHOTOS --- FOR STUD WELD CONNECTIONS, DOCUMENTATION TO CONFIRM SURFACE PREPARATION, STUD REVISIONS PROVIDED PROVIDE POSITIVE CONFIRMATION THAT THE MODIFICATION/UPGRADE WAS WELD SIZE, GRADE, LENGTH, AND SPACING. COMPLETED IN ACCORDANCE WITH THESE CONSTRUCTION DRAWINGS AND ANY FOR FABRICATED PARTS, SHOP DRAWINGS TO BE APPROVED BY THE ENGINEER OF RECORD STRUCTURAL/MOUNT MODIFICATION DRAWINGS. CONTRACTOR SHALL RELAY ANY DATA THAT DESIGN RECORD PRIOR TO CONSTRUCTION. CAN IMPACT THE PERFORMANCE OF THE MOUNT OR MOUNT MODIFICATION, INCLUDING SAFETY FOR WELDED PARTS, CERTIFIED WELD INSPECTION. ISSUES. PHOTOS SHALL HAVE A DATE/TIME STAMP IN THE PHOTO. REFER TO THE MOUNT FOR BOLTED PARTS, BOLT INSTALLATION AND TORQUE. ANALYSIS FOR FILE STRUCTURE SCHEDÚLE OF PHOTOS. PROVIDE PHOTOS OF THE GATE SIGNS AND CARRIER SHELTER TO IDENTIFY THE TOWER OWNER, SITE NAME, SITE NUMBER, 7. CONTRACTOR SHALL PROVIDE, IN ADDITION TO THE ABOVE, AS-BUILT CDS WITH REDLINES IDENTIFYING ETC. 0 10/05/22 ANY CHANGES. THE AS-BUILTS SHALL THE CONTRACTOR'S NAME, PREPARER'S SIGNATURE, AND DATE, REV DATE 6B. VERIFICATION OF THE MEMBER CONNECTIONS, BRACING, AND RELEVANT DIMENSIONS. 8. IF THE MODIFICATION INSTALLATION WOULD FAIL THE PMI ("FAILED PMI"), THE CONTRACTOR SHALL WORK WITH THE ENGINEER OF RECORD TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS: 6C. VERIFICATION OF THE ANTENNA AND OTHER EQUIPMENT CONFIGURATION (PHOTOS OF 8A. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL MODEL NUMBERS/TAGS FOR ALL EQUIPMENT, AS WELL AS THE FEEDLINE CONFIGURATION). CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENTAL PMI. TAKE PHOTOS OF THE BACK SIDE OF EACH SECTOR AS WELL AS CLOSE-UPS OF ALL EQUIPMENT. PHOTOS SHOULD CONFIRM THE HORIZONTAL AND VERTICAL POSITIONING OF THE ANTENNAS AND EQUIPMENT AND SHALL HAVE TAPE MEASURES IN THE PHOTOS TO CONFIRM. 8B. OR, WITH THE EOR'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT/UPGRADE USING THE AS-BUILT CONDITION. 6D. FOR TIE-BACKS, STRUTS, MOUNT PIPES, PHOTOS TO CONFIRM THE ANGLES AND LOCATION OF ATTACHMENT POINT AT BOTH ENDS OF MEMBER, AS WELL AS DIMENSIONS, 9. NOTE: IF LOADING IS DIFFERENT THAN THAT SHOWN IN THESE CONSTRUCTION DRAWINGS OR THICKNESS, AND LENGTHS OF THE MEMBERS. REFER TO THE CHECKLIST IN THE MOUNT STRUCTURAL/MOUNT MODIFICATION DRAWINGS, CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD ANALYSIS FOR ADDITIONAL INFORMATION. IMMEDIATELY FOR RESOLUTION. 10. THE ENGINEERING FIRM PERFORMING AN ANALYSIS SHALL PROVIDE A CONTRACTOR'S PHOTO LOG AND DANIEL J. CORNING, P.E. 6E. MOUNT ATTACHMENT TO THE SUPPORTING STRUCTURE, INCLUDING ANY KICKERS OR PROFESSIONAL ENGINEER LIC #3405 CHECKLIST TO BE COMPLETED BY THE INSTALLING CONTRACTOR. THE CONTRACTOR SHALL THEN SUPPORTS, OR TIEBACKS, PROVIDE POST-INSTALLATION INFORMATION TO THE STRUCTURAL ENGINEER. THE STRUCTURAL ENGINEER SHALL REVIEW THE DOCUMENTS FOR ANY DEFICIENCIES THAT CAN BE DETERMINED FROM THE 6F. MATERIALS USED (TYPE, STRENGTH, DIMENSIONS, ETC). PROVIDE BILL OF MATERIALS AND DESKTOP REVIEW OF THE DATA. THE ENGINEERING FIRM SHALL THEN PROVIDE DOCUMENTATION TO MATERIAL SPEC TO CONFIRM MATERIAL GRADES AND SIZES. PROVIDE DOCUMENTATION FOR VZW THAT THE SITE IS COMPLETED, AND THE PMI REPORT IS APPROVED. GALVANIZATION OF MEMBERS WHETHER HOT-DIPPED OR COLD-GALVANIZED. IF MATERIALS DIFFER FROM THOSE SPECIFIED ON THESE DRAWINGS, PROVIDE DOCUMENTATION THAT THE REQUIREMENTS "EQUIVALENT" MATERIAL HAS THE SAME SPECIFICATIONS.

6G. MOUNT ORIENTATION/AZIMUTH AND ELEVATION. PROVIDE TAPE DROP PHOTOS OF ANTENNA CENTERLINE(S) AND MOUNT ATTACHMENT POINTS TO THE SUPPORTING STRUCTURE. IF THERE ARE MULTIPLE RAD CENTERS, PROVIDE PHOTOS OF ALL ELEVATIONS.

GN-1

PMI

CHELMSPORD, MA 01824

FLOOR 3

FINAL CDs

DESCRIPTION

CONN

CENS

/ONAL

C8G

BY

www.colliersengineering.			TION I - VZWSMART KITS	SECT					
Capitght © 2022. Callies: Engineering & Codip #18ghts Research. The information national forein is a statisticated for use only by the party for w constrained or no whom it is contribut. The damaing may are the nois distributed or relied upon for any offer purpose with outlie enginess with	WEIGHT (LBS.)	UNIT WEIGHT (LBS.)	QUANTITY MANUFACTURER PART NUMBER DESCRIPTION NOTES						
Doing Business as	291	291	CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL STEEL' NOTES ON SHEET SGN-1.	KICKER KIT	VZWSMART-PLK5		1		
	150	150		MONOPOLE COLLAR MOUNT ASSEMBLY	VZWSMART-PLK7		I		
	87	29		96" LONG, PIPE 2 SCH40 (2.375"OD X 0.154" THK)	VZWSMART-P40-238X096		3		
_	180	15		CROSSOVER PLATE	VZWSMART-MSK2		12		
verizo	90	30		SUPPORT RAIL CORNER BRACKET	VZWSMART-PLK3	VZWSMART	3		
						-			
						-			
<u> </u>									
						-			
			2 - OTHER REQUIRED PARTS	SECTION					
	WEIGHT (LBS.)	UNIT WEIGHT (LBS.)	NOTES	DESCRIPTION	PART NUMBER	MANUFACTURER	QUANTITY		
	234	78	GALVANIZED	162" LONG, PIPE 2 1/2 SCH40	-		3		
	45	15	GALVANIZED. CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE 'STRUCTURAL STEEL' NOTES ON SHEET SGN-I.	30" LONG, L3x3x1/4	-	-	3		
PROTECT YOUR	72	12	GALVANIZED	8" LONG HSS3x2x1/4	-		6		
ALL STATES REQUIRE NOT EXCAVATORS, DESIGNERS, O PREPARING TO DISTURB	-	-	GALVANIZED	J429 GR-I U-BOLTS	-	-	-		
Know what's below.									
POR STATE SPECIFIC DIRECT PHONE NUMB WWW.CALLETI.COM									
AS SHOWN 227									
0 08/24/22 ISSUED FCR									
Lev Date Description			REQUIRED SAFETY CLIMB PARTS	SECTION 3 -					
REV DATE DESCRIPTION							OUTANITITY		
	WEIGHT (LBS.)	UNIT WEIGHT (LBS.)	NOTES	DESCRIPTION	PART NUMBER	MANUFACTURER	QUANTIT		
	WEIGHT (LBS.)	UNIT WEIGHT (LBS.)	NOTES OR EOR APPROVED EQUAL, CONTACT MASER CONSULTING FOR APPROVAL OF SUBSTITUTION.	DESCRIPTION ROUTING BRACKET	PART NUMBER	PERFECT VISION			

NOTES:

- I. THE MANUFACTURERS LISTED ARE THE APPROVED VENDORS FOR THE VZW MOUNT KITS. EACH MANUFACTURER WILL BE AWARE OF WHICH KITS HAVE BEEN THROUGH THE VZW APPROVAL PROCESS AND THEY ARE IN TURN APPROVED TO SELL. PLEASE NOTE THAT THE MATERIAL UTILIZED ON THE MOUNT MODIFICATIONS WILL BE REVIEWED AS A PART OF THE DESKTOP PMI COMPLETED BY THE SMART TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.
- 2. ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR.

VZWSMART KITS - APPROVED VENDORS

SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR. VZWSMART KITS - APPROVED VENDORS							17 GLAS	75 DICKINSON RD. STONBURY, CT 06033	
COMMSCOPE PERFECTVISION			SITE PRO 1		BETTER METAL, LLC		HA	ARTFORD COUNTY	
CONTACT	SALVADOR ANGUIANO	CONTACT	WIRELESS SALES	CONTACT	PAULA BOSWELL	CONTACT	DAVID STANSBERRY		
PHONE	(817) 304-7492	PHONE	(844) 887-6723	PHONE	(972) 236-9843	PHONE	(615) 535-0990 (O), (615) 631-2520 (M)	Collier	STAM FORD 1055 Washington Boulevard
EMAIL	salvador.anguiano@commscope.com	EMAIL	WWW.PERFECT-VISION.COM	EMAIL	PAULA.BOSWELL@VALMONT.COM	EMAIL	DLS@BETTERMETAL.COM	Conners	Stamford, CT 08901
WEBSITE	WWW.COMMSCOPE.COM	WEBSITE	WIRELESSSALES@PERFECT-VISION.COM	WEBSITE	WWW.SITEPROI.COM	WEBSITE	WWW.BETTERMETAL.COM	Engineerin & Design	COLLERS ENGINEERING A DESIGN CT. P.C. DOING BUSINESS AS MASER CONSULTING
METROSITE FABRICATORS, LLC SABRE INDUSTRIES, INC.			NEWAVE			SHEET TITLE :			
CONTACT	KENT RAMEY	CONTACT	ANGIE WELCH	CONTACT	NEWAVE SALES TEAM			BI	LL OF MATERIALS
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)	PHONE	(866) 428-6937	PHONE	(971) 239-4762				
EMAIL	KENT@METROSITELLC.COM	EMAIL	AKWELCH@SABREINDUSTRIES.COM	EMAIL	SALES@NEWAVETC.COM			SHEET MURIER:	Ĭ
WEBSITE	METROSITEFABRICATORS.COM	WEBSITE	WWW.SABRESITESOLUTIONS.COM	WEBSITE	WWW.NEWAVETC.COM				SBOM-1

COLLIERS ENGINEERING & DESIGN CT, P.C. C.T. JPC.0000131

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

E GLASTONBURY 2 CT 468152

GENERAL NOTES

- THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE TELECOMMUNICATIONS INDUSTRY STANDARD TIA-222-H. MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES
- CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT DAMAGE TO EXISTING STRUCTURES. ANY DAMAGE TO EXISTING STRUCTURES AS A RESULT OF THE CONTRACTOR'S WORK OR FROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER
- CONTRACTOR SHALL VERIEVALL DIMENSIONS AND EXISTING CONDITIONS BEFORE BEGINNING WORK, ORDERING MATERIAL, AND PREPARING OF SHOP DRAWINGS. ANY DISCREPANCIES BETWEEN FIELD CONDITIONS AND THE CONTRACT DOCUMENTS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMMEDIATELY.
- IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS TECHNIQUES, SEQUENCES, AND PROCEDURES,
- 6. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-322 (LATEST EDITION), OSHA, AND GENERAL INDUSTRY STANDARDS, ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-322 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.
- THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING. MAINTAINING AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY OF THE STRUCTURE DURING ERECTION. CONTRACTOR SHALL PROVIDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL SYSTEMS AS REQUIRED TO RESIST ALL FORCES THAT MAY OCCUR DURING HANDLING AND ERECTION UNTIL THE STRUCTURE IS FULLY COMPLETED. TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S PROPERTY AFTER THEIR USE.
- ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE STANDARD FOR INSTALLATION, ALTERATION AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, ANSI/TIA-322.
- 10 CONTRACTOR SHALL SECURE SITE BACK TO EXISTING CONDITION UNDER SUPERVISION OF OWNER, ALL FENCE, STONE, GEOFABRIC, GROUNDING, AND SURROUNDING GRADE SHALL BE REPLACED AND REPAIRED AS REQUIRED TO ACHIEVE OWNER APPROVAL POSITIVE DRAINAGE AWAY FROM TOWER SITE SHALL BE MAINTAINED.
- II. CONNECTIONS BETWEEN ITEMS SUPPORTED BY THE STRUCTURE AND THE STRUCTURE NOT SPECIFICALLY DETAILED IN THE CONTRACT DOCUMENTS ARE THE RESPONSIBILITY OF THE CONTRACTOR, SUCH CONNECTIONS SHALL BE DESIGNED, COORDINATED AND INSPECTED BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN THE STATE OF THE PROJECT. SUBMIT SIGNED AND SEALED CALCULATIONS DURING SHOP DRAWING REVIEW.
- 12. DO NOT SCALE DRAWINGS.
- 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.
- 14 ALL MATERIAL UTILIZED FOR THIS PROJECT MUST BE NEW AND FREE OF ANY DEFECTS. ANY MATERIAL SUBSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTERED SIZE AND/OR STRENGTHS, MUST BE APPROVED BY THE OWNER AND ENGINEER IN WRITING.
- 15. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF

STRUCTURAL STEEL

- DESIGN DETAILING FARRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS
- a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION (15TH EDITION)
- b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
- 6 AISC CODE OF STANDARD PRACTICE

.

2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN

CHANNELS, ANGLES, PLATES, ETC.	ASTM A36 (GR 36)
STEEL PIPE	ASTM A53 (GR 35)
BOLTS	ASTM A325
NUTS	ASTM A563
LOCK WASHERS	LOCKING STRUCTURA

3. ALL SUBSTITUTIONS PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINEER CONTRACTOR SHALL PROVIDE DOCUMENTATION TO ENGINEER FOR VERIFYING THE SUBSTITUTE IS SUITABLE FOR USE AND MEETS ORIGINAL DESIGN CRITERIA. DIFFERENCES FROM THE ORIGINAL DESIGN, INCLUDING MAINTENANCE, REPAIR AND REPLACEMENT, SHALL BE NOTED. ESTIMATES OF COSTS/CREDITS ASSOCIATED WITH THE SUBSTITUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED.

GRADE

- 4 PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
 - a. SUBMIT SHOP DRAWINGS TO
 - PETER.ALBANO@COLLIERSENGINEERING.COM
 - b. PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL.
- 5 DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- 6. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- 7. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH EXISTING STEEL CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- 8. ALL BOLT ASSEMBLIES FOR STRUCTURAL MEMBERS REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TIA-222-H SECTION 4.9.2 REQUIREMENTS.
- WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS
- 10. FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GRADE. MAINTAIN AISC REQUIREMENTS FOR MINIMUM BOLT DISTANCE AND SPACING.
- 11. ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT IS AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTENING IS COMPLETED
- 12. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED
- 13. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION, CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- 14. ALL EXISTING PAINTED/GALVANIZED SURFACES DAMAGED DURING REHAB INCLUDING AREAS LINDER STIFFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING (ZINGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE).
- 15. ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE

BOLT SCHEDULE (IN.)						
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT	MIN. EDGE DISTANCE	SPACING		
1/2	9/16	9/16 x 11/16	7/8	/2		
5/8	11/16	/ 6 x 7/8	/8	7/8		
3/4	13/16	3/ 6 x	1.1/4	2 1/4		
7/8	15/16	5/ 6 x /8	/2	2 5/8		
1	1 1/16	/ 6 x 5/ 6	3/4	3		

TYP. BOLT ASSEMBLY

- ALL DIMENSIONS REPRESENTED IN THE ABOVE TABLES ARE AISC MINIMUM REQUIREMENTS. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED.
- THE DIMENSIONS PROVIDED ARE 2 MINIMUM REQUIREMENTS ACTUAL DIMENSIONS OF PROPOSED MEMBERS WITHIN THESE DRAWINGS MAY VARY FROM THE AISC MINIMUM REQUIREMENTS.
- 3. SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS
- 4. MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED.

LOCK

Call AS SHOWN DATE

SGN-L

OT SCALE DRAWINGS FOR COM

Colliers Engineering & Design

*: 227770144

DRAWN CHECK

verizon

MOUNT PHOTO 1

MOUNT PHOTO 2

MOUNT PHOTO 4

MOUNT PHOTO 3

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 65° HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	6

Remote Electrical Tilt (RET) Information

RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	2 female 2 male
Input Voltage	10-30 Vdc
Internal Bias Tee	Port 1 Port 3
Internal RET	High band (1) Low band (1)
Power Consumption, idle state, maximum	2 W
Power Consumption, normal conditions, maximum	13 W

Page 1 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

Protocol

Dimensions

Width	301 mm 11.85 in
Depth	180 mm 7.087 in
Length	1828 mm 71.969 ir
Net Weight, without mounting kit	19.8 kg 43.651 lb

Array Layout

Тор						
	iop	RI				
		Y1				
		¥2				
¥1	N2					
11	12					
	R1					
Loft	Pight					
Len	night					
Bo	ttom					

View from the front of the antenna (Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance

Operating Frequency Band

50 ohm

1695 - 2360 MHz | 698 - 896 MHz

Page 2 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

3GPP/AISG 2.0 (Single RET)

301 mm 11.85 in
180 mm 7.087 in
1828 mm 71.969 in
19.8 kg 43.651 lb
19.8 kg 43.651 lb

AISG RET UID

ANxxxxxxxxxxxxxxxx1 ANxxxxxxxxxxxxxx2

Conns

Freq (MHz)

RET (SRET)

<u>NHH</u>

Polarization	±45°
Total Input Power, maximum	900 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	14.9	15	17.7	17.9	18.4	18.7
Beamwidth, Horizontal, degrees	65	60	71	69	64	57
Beamwidth, Vertical, degrees	12.4	11.2	5.7	5.2	4.9	4.6
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	0-7
USLS (First Lobe), dB	13	14	18	18	19	18
Front-to-Back Ratio at 180°, dB	30	29	31	30	29	31
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	300	300	300	300	300	300

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain by all Beam Tilts, average, dBi	14.5	14.5	17.3	17.7	18.1	18.5
Gain by all Beam Tilts Tolerance, dB	±0.6	±1.1	±0.4	±0.4	±0.5	±0.3
Gain by Beam Tilt, average, dBi	0 ° 14.4 7 ° 14.6 14 ° 14.3	0 ° 14.7 7 ° 14.7 14 ° 14.1	0 ° 17.2 4 ° 17.3 7 ° 17.3	0 ° 17.6 4 ° 17.7 7 ° 17.7	0 ° 18.0 4 ° 18.2 7 ° 18.1	0 ° 18.3 4 ° 18.5 7 ° 18.6
Beamwidth, Horizontal Tolerance, degrees	±2	±2.1	±3	±4.1	±6.5	±2.9
Beamwidth, Vertical Tolerance, degrees	±0.7	±0.7	±0.3	±0.2	±0.3	±0.2
USLS, beampeak to 20° above beampeak, dB	13	14	16	16	17	15
Front-to-Back Total Power at 180° ± 30°, dB	23	22	27	27	25	25
CPR at Boresight, dB	22	21	23	23	22	19

Page 3 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

COMMSCOPE°

CPR at Sector, dB	10	7	16	13	11	4			
Mechanical Specifications									
Effective Projective Area (EPA)	0.26 m² 2.7	0.26 m² 2.799 ft²							
Effective Projective Area (EPA)), lateral		0.22 m ² 2.3	68 ft²					
Wind Loading @ Velocity, front	al		278.0 N @ 150	km/h (62.5 lbf (@ 150 km/h)				
Wind Loading @ Velocity, later	al		230.0 N @ 150	km/h (51.7 lbf (@ 150 km/h)				
Wind Loading @ Velocity, maxi	mum		537.0 N @ 150	km/h (120.7 lbf	@ 150 km/h)				
Wind Loading @ Velocity, rear			282.0 N @ 150	km/h (63.4 lbf (@ 150 km/h)				
Wind Speed, maximum			241 km/h 1	49.75 mph					

Packaging and Weights

Width, packed	409 mm 16.102 in
Depth, packed	299 mm 11.772 in
Length, packed	1952 mm 76.85 in
Weight, gross	32.3 kg 71.209 lb

Regulatory Compliance/Certifications

_

Agency	Classification
CHINA-ROHS	Below maximum concentration value
ISO 9001:2015	Designed, manufactured and/or distributed under this quality management system
ROHS	Compliant

Included Products

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 4 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

NHHSS-65B-R2BT4

10-port sector antenna, 2x 698–896, 4x 1695–2200 and 4x 3100-4200 MHz, 65° HPBW, 2x RETs and 2x SBTs. Both high bands share the same electrical tilt.

- Perfect antenna to add 3.5GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, mid band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	10

Remote Electrical Tilt (RET) Information

RET Hardware	CommRET v2
RET Interface	4x 8 pin connector as per IEC 60130-9 Daisy chain in: Male / Daisy chain out: Female Pin3: RS485A(AISG_B), Pin5: RS485B(AISG_A), Pin6: DC 10~30V, Pin7: DC_ Return

Page 1 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

NHHSS-65B-R2BT4

RET Interface, quantity	2 female 2 male
Input Voltage	10-30 Vdc
Internal RET	High band (1) Low band (1)
Power Consumption, active state, maximum	10 W
Power Consumption, idle state, maximum	2 W
Protocol	3GPP/AISG 2.0 (Single RET)
Dimensions	
Width	301 mm 11.85 in
Depth	181 mm 7.126 in
Length	1828 mm 71.969 in

Net Weight, without mounting kit

Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	AISG RET UID		
R1	698-896	1 - 2	1	AISG1	CPxxxxxxxxxxxxxxR1		
B1	1695-2200	3 - 4			60 D.		
B2	1695-2200	5 - 6	2	AISG2	CPXXXXXXXXXXXXXXXXXXXXX		
P1	3100-4200	7 - 8					
P2	3100-4200	9 - 10	N/A	NA	N/A		

23.1 kg | 50.927 lb

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

NHHSS-65B-R2BT4

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2200 MHz 3100 – 4200 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	1,000 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	3100-3550	3550-3700	3700-4200
Gain, dBi	14.8	15.2	17.4	17.8	18	17.7	17.3	17.9
Beamwidth, Horizontal, degrees	65	62	66	61	64	54	64	60
Beamwidth, Vertical, degrees	13	11.6	5.5	5.2	4.9	5.7	5.3	4.9
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	4	4	4
USLS (First Lobe), dB	15	15	16	18	18	16	17	18
Front-to-Back Ratio at 180°, dB	26	29	31	28	27	30	33	29
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	28	28	28
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-140	-140	-140

Page 3 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

COMMSCOPE°
NHHSS-65B-R2BT4

Input Power per Port at 50°C,	300	300	300	300	300	100	100	100	
maximum, watts									

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	3100-3550	3550-3700	3700-4200
Gain by all Beam Tilts, average, dBi	14.6	14.8	17	17.5	17.7	17.3	17	17.2
Gain by all Beam Tilts Tolerance, dB	±0.4	±0.4	±0.6	±0.3	±0.4	±0.6	±0.7	±0.8
Gain by Beam Tilt, average, dBi	0 ° 14.6 7 ° 14.6 14 ° 14.4	0 ° 15.0 7 ° 14.9 14 ° 14.5	0 ° 16.9 3 ° 17.0 7 ° 16.8	0 ° 17.4 3 ° 17.5 7 ° 17.4	0 ° 17.5 3 ° 17.8 7 ° 17.6			
Beamwidth, Horizontal Tolerance, degrees	±1.7	±1.3	±7.2	±3.1	±6.2	±10	±6.7	±10.5
Beamwidth, Vertical Tolerance, degrees	±0.8	±0.8	±0.2	±0.2	±0.4	±0.4	±0.3	±0.4
USLS, beampeak to 20° above beampeak, dB	18	16	14	15	17	14		
Front-to-Back Total Power at 180° ± 30°, dB	22	25	25	25	24	26	25	24
CPR at Boresight, dB	24	17	16	21	19	15	17	14
CPR at Sector, dB	12	6	11	10	8	8	9	7

Mechanical Specifications

Wind Loading @ Velocity, frontal	278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)
Wind Loading @ Velocity, lateral	230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)
Wind Loading @ Velocity, maximum	537.0 N @ 150 km/h (120.7 lbf @ 150 km/h)
Wind Loading @ Velocity, rear	287.0 N @ 150 km/h (64.5 lbf @ 150 km/h)
Wind Speed, maximum	241 km/h 149.75 mph

Packaging and Weights

Width, packed	1973 mm 77.677 in
Depth, packed	441 mm 17.362 in
Length, packed	337 mm 13.268 in
Weight, gross	35.1 kg 77.382 lb

Regulatory Compliance/Certifications

Agency

Classification

CHINA-ROHS

Above maximum concentration value

Page 4 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

NHHSS-65B-R2BT4

Compliant/Exempted

BSAMNT-3 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 5 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

Homepage samsungnetworks.com

Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

Supports up to 5 carriers

Technical Specifications

ltem	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

SAMSUNG

AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER

FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

ltem	Specification	
Tech	LTE/NR	
Brand	B25(PCS), B66(AWS)	
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz	
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W	
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz	
Installation	Pole, Wall	
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb	

Specifications

Item	RT4401-48A
Air Technology	LTE
Band	Band 48 (3.5 GHz)
Operating Frequency (MHz)	3550 to 3700
RF Chain	4TX/4RX
Input Power	-48 V DC (-38 to -57 V DC, 1 SKU), with clip-on AC-DC converter (Option)
Dimension (W × D × H) (mm)	8.55 in. (217.4) × 4.15 in. (105.5) × 13.91 in. (353.5) * RRH only 11.39 in. (289.4) × 5.45 in. (138.5) × 16.16 in. (410.5) * with Clip-on antenna, AC-DC power unit
Cooling	Natural convection
Unwanted Emission	3GPP 36.104 Category A
	[B48]: FCC 47 CFR 96.41 e)
Spectrum Analyzer	TX/RX Support
Antenna Type	Integrated (Clip-on) antenna (Option), External antenna (Option)
Operating Humidity	5 to 100 [%] (RH), condensing, not to exceed 30 g/m ³ absolute humidity
Altitude	-60 to 1,800 m
Earthquake	Telcordia Earthquake Risk Zone4 (Telcordia GR-63- CORE)
Vibration in Use	Office Vibration
Transportation Vibration	Transportation Vibration
Noise	Fanless (natural convection cooling)
Wind Resistance	Telcordia GR-487-CORE, Section 3.34
EMC	FCC Title 47, CFR Part 96
Safety	UL 60950-1 2nd ED

The table below outlines the main specifications of the RRH.

14

Table 1. Specifications

SAMSUNG

Item	RT4401-48A	
	UL 62368-1	
	UL 60950-22	
RF	FCC Title 47, CFR Part 96	

The table below outlines the AC/DC power unit specifications of the RRH system.

ATTACHMENT 3

Site Name: *E GLASTONBURY 2 CT* Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW 700	751	4	710	2840	167	0.0037	0.5007	0.73%
VZW Cellular	869	4	679	2716	167	0.0035	0.5793	0.60%
VZW PCS	1980	4	1422	5688	167	0.0073	1.0000	0.73%
VZW AWS	2125	4	1496	5984	167	0.0077	1.0000	0.77%
VZW CBAND	3730	4	6531	26124	167	0.0337	1.0000	3.37%
VZW CBRS	3625	4	12	48	167	0.0001	1.0000	0.01%
Total Percentage of Maximum Permissible Exposure						6.22%		

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992 **Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings

MHz = Megahertz mW/cm² = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

CUMULATIVE MPE TABLE

Carrier	MPE %
Dish	1.19 %
Voice Stream	0.23 %
Metro PSC	0.34 %
Sprint	2.41 %
AT&T	5.60 %
T-Mobile	6.79 %
*Verizon Wireless	6.22 %
Site Total	22.78 %

*See attached Verizon Wireless General Power Density table.

Note: MPE percentages for the carriers in the above table was compiled from the EBI Consulting Radio Frequency Emissions Analysis Report, dated May 10, 2022 submitted by T-Mobile on May 16, 2022 (EM-T-Mobile-054-220518).

ATTACHMENT 4

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 176 ft SUMMIT Monopole Customer Name: SBA Communications Corp Customer Site Number: CT02216-S Customer Site Name: Glastonbury Carrier Name: Verizon (App#: 202323, V1) Carrier Site ID / Name: 468152 / East Glastonbury 2_CT Site Location: 175 Dickenson Road Glastonbury, Connecticut Hartford County Latitude: 41.655897 Longitude: -72.523255

<u>Analysis Result:</u> Max Structural Usage: 76.4% [Pass] Max Foundation Usage: 61.0% [Pass] Additional Usage Caused by Mount Modification: +2.5%

Report Prepared By: Younus Alkarawi

(«щ») ES

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 176 ft SUMMIT Monopole Customer Name: SBA Communications Corp Customer Site Number: CT02216-S Customer Site Name: Glastonbury Carrier Name: Verizon (App#: 202323, V1) Carrier Site ID / Name: 468152 / East Glastonbury 2_CT Site Location: 175 Dickenson Road Glastonbury, Connecticut Hartford County Latitude: 41.655897 Longitude: -72.523255

<u>Analysis Result:</u> Max Structural Usage: 76.4% [Pass] Max Foundation Usage: 61.0% [Pass] Additional Usage Caused by Mount Modification: +2.5%

Report Prepared By: Younus Alkarawi

Introduction

The purpose of this report is to summarize the analysis results on the 176 ft SUMMIT Monopole to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Paul J. Ford and Company, Job #29200-887 dated June 19, 2000
Foundation Drawing	Paul J. Ford and Company, Job #29200-887 dated June 19, 2000
Geotechnical Report	FDH Engineering, Project #1204838EG1 dated August 13, 2012
Modification Drawings	N/A
Mount Analysis	Maser Consulting Connecticut: 22777014A, Dated 08/24/2022;
	MMD by Maser Consulting # 22777014A, Dated 08/24/2022

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the TIA-222-G-2. In accordance with this standard, the structure was analyzed using **TESPoles**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	Ultimate Design Wind Speed V _{ult} = 125.0mph (3-Sec. Gust)/ Nominal Design Wind Speed V _{asd} = 97.0 mph (3-Sec. Gust)
Wind Speed with Ice:	50 mph (3-Sec. Gust) with 1" radial ice concurrent
Operational Wind Speed:	60 mph + 0" Radial ice
Standard/Codes:	TIA-222-G-2 / 2015 IBC / 2018 Connecticut State Building Code
Exposure Category:	В
Structure Class:	II
Topographic Category:	1
Crest Height:	0 ft
Seismic Parameters:	$S_S = 0.179, S_1 = 0.063$

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

ltems	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1		3	Ericsson AIR6419 B41 Panel			
2		3	RFS APXVAALL24_43-U-NA20 Panel	(1) Low profile platform		
3		6	Allen Telecom FE15501P77/75 TMA	w/HRK & reinforcement	(9) 1 5/8" Coax	
4	177.0	3	Ericsson KRY 112 144/1 TMA	kit	(1) 1-5/8" Fiber	T-Mobile
5		3	Ericsson KRY 112 489/2 TMA	Sitepro	(2) 1.9" Fiber	
6		3	Ericsson 4449 B71 + B85 RRU	RMQP-4096-HK		
7		3	Ericsson 4460 B25 + B66 RRU			
-		3	RRH2X60-AWS			
-		3	RRH2X60-700]	(6) 1 5/8"	
-	107.0	6	SBNHH-1D65B - Panel		(2) 1 5/8"	Vorizon
-	167.0	4	LPA-80063-4CF-EDIN-5 - Panel	(1) Low Profile Platform	Hybrid	venzon
-		2	APL868013 - Panel			
-		1	DB-T16Z-8AB-0Z			
17		3	ALU 1900 Mhz	(1) Low Profile Platform		
18		6	ALU 800 Mhz	w/		
19		3	ALU TD-RRH8x20-25	Mount Reinforcement	(4) 1 1/4" Fiber	Sprint
20	157.0	3	RFS APXVTM14-C-I20 - Panel	kit:		Nextel
21		3	Commscope NNVV-65B-R4 - Panel	(1) Sitepro PRK-1245L (1) Sitepro HRK14-U (1) Sitepro PRK-SFS-H-L		
22		3	JMA Wireless MX08FRO665-21 - Panel	(1) Platform w/Handrail		
23	1/70	3	Fujitsu TA08025-B605 RRU	Commscope	(1) 1.6" Hybrid	Dish
24	147.0	3	Fujitsu TA08025-B604 RRU	MC-PK8-DSH		Wireless
25		1	Raycap RDIDC-9181-PF-48			
26		3	KMW HPA-65R-BU6AA Panel			
27		3	CCI DMP65R-BU6DA Panel			
28		3	Powerwave 7770 Panel		(12) 1 5 (0!)	
29		6	Powerwave LGP21401 TMA	(1) [D	(12) 1 5/8	
30	127.0	3	Ericsson 4449 B5/B12 RRU	(1) LP Diatformw/bandrail	(2) I DC	AT 8.T
31	137.0	3	Ericsson RRUS 8843 B2 B66A RRU	Handrail SitePro 1.HRK14	(1) 1/2" Fiber	AI&I
32		9	Powerwave LGP21903 Diplexer			
33		12	Powerwave 7020.00 RET			
34		1	Raycap DC6-48-60-18-8F			
35		3	Smart Bias T 1001940			

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

ltems	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
8		3	Commscope NHH-65B-R2B - Panel			
9		3	Commscope NHHSS-65B-R2BT4 - Panel	Modified Low Profile Platform W/ (1)		
10		3	Samsung MT6407-77A - Panel	VZWSMART-PLK5 (Kicker kit),		
11		2	Antel LPA 80063-4CF-EDIN-5 - Panel	(1) VZWSWART-PLK7 (Collar mount) (2) VZWSWART-PLK7 (Collar	(2) 1 5/8° Uubrid	
12	167.0	1	RFS APL868013 - Panel		(6) 1 5/8"	Verizon
13	107.0	3	Samsung B2/B66A RRH ORAN (RF4439d-25A)	SCH40 (2.375"OD X 0.154"	HybridFlex	Venzon
14		3	Samsung B5/B13 RRH ORAN (RF4440d-13A)	(Crossover plate) & (3)		
15		3	Samsung CBRS RRH - RT4401-48A	BAIL CORNER BRACKET)		
16		2	Raycap DB-B1-6C-12AB-0Z-OVP			

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate	
Max. Usage:	69.9%	61.4%	76.4%	
Pass/Fail	Pass	Pass	Pass	

Foundations

	Moment (Kip-Ft)	Shear (Kips)
Original Design Reactions	5100.0	38.0
Analysis Reactions	4861.4	35.2
Factored Reactions*	6885.0	51.3
% of Design Reactions	70.6%	68.6%

* Per section 15.5.1 of the TIA-222-G standard, factored reactions were obtained by multiplying a 1.35 factor to the original design reactions.

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Operational Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 1.6860 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222 Standard under the design basic wind speed as specified in the Analysis Criteria.

Standard Conditions

- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions**, **LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

					S	tructure:	СТ0221	6-S-	SBA		
Type:		Tapered	1			Bas	se Shape:	18 \$	Sided	9/12/2022	(((H)))
Site Na	ame:	Glaston	bury				Taper:	0.19	9702		
Height	t:	176.00 ((ft)								IES
Base F	=lev:	0.00 (ft)								Page: 2	Tawar Engineering Solutions
20001											Tower Engineering Solutions
			Chaft	Drener	4100					v	
	onath	Tan	Bottom	Thick	leint			176'-0"	176'-0"		
Sea	(ft)	(in)	(in)	(in)	Type	Taper	Grade (ksi)		· · · · · · · · · · · · ·		1 t
1	49.00	46.90	56.55	0.500	,	0.19702	65	167'-0"		RUALA	
2	49.00	39.35	49.00	0.438	Slip	0.19702	65			ышёшя	
3	49.00	31.48	41.13	0.375	Slip	0.19702	65	457'.0"		alla la	
4	44.75	24.00	32.82	0.250	Slip	0.19702	65	191-9			44'-9"
		Dis	screte /	Appurte	nance	S		147'.0"		nhin	(65 KSI)
Attach	For	rce				0		147-0			
Llev (ft)	Elev 17	(ft) Qty	/ Descr	101100 E1550107	7/75	Carrier T. Mobilo					1
176.00	177	7.00	1 RMQP	-496-HK	1115	T-Mobile		137'-0"	135'-6"		
176.00	177	7.00	3 KRY 1	12 489/2		T-Mobile			131'-3"		51"
176.00	177	7.00	3 KRY 1	12 89/4		T-Mobile					
176.00	179	9.50	1 Lightni	ng Rod							
176.00	17	7.00	3 AIR 64	19 B41	11 NA20	I-Mobile					
176.00	173	7.00	3 4449 B	371 + B85	-U-NA20	T-Mobile					49'-0"
176.00	177	7.00	3 4460 B	25 + B66		T-Mobile					3/8" Thick
167.00	167	7.00	1 Low Pr	ofile		Verizon					(65 K 51)
167.00	167	7.00	3 Comm	scope		Verizon					
167.00	167	7.00	3 Comma	scope	7 77 4	Verizon					1
167.00	167	7.00	3 B2/B66	SA RRH OF	RAN	Verizon			91'-9"	ar in Status	<u>└──</u> _↑
167.00	167	7.00	3 B5/B13	BRRH OR	٨N	Verizon			86'-6"		63" 176'-0"
167.00	167	7.00	3 CBRS	RRH - RT4	401-48A	Verizon					
167.00	167	7.00	2 Rayca	р		Verizon					
167.00	167	7.00	1 KICKE			Verizon					
167.00	167	7.00	1 SUPPO			Verizon					49'-0"
167.00	167	7.00	2 LPA-80	0063-4CF-E	EDIN-5	Verizon					7/16" Thick (65 KSI)
167.00	167	7.00	1 APL86	8013		Verizon					
157.00	157	7.00	3 RFS A	PXVTM14-	C-120	Sprint Nextel					
157.00	15	7.00	3 Commi 1 Sitepro	SCOPE	si .	Sprint Nextel			49'-0"		
157.00	15	7.00	1 Sitepro	HRK14-U		Sprint Nextel			121.0"		
157.00	157	7.00	1 Sitepro	PRK-SFS	-H-L	Sprint Nextel			42 -7"	1	f
157.00	157	7.00	1 Low Pr	ofile Platfo	rm	Sprint Nextel					'
157.00	157	7.00	3 ALU 19	900 Mhz		Sprint Nextel					
157.00	15	7.00	3 ALU 80	D-RRH8x2	0-25	Sprint Nextel					
147.00	147	7.00	3 MX08F	RO665-21		Dish Wireles	S				45'-0" 1/2" Thick
147.00	147	7.00	1 MC-PK	(8-DSH		Dish Wireles	s				(65 K SI)
147.00	147	7.00	3 TA080	25-B605		Dish Wireles	s				
147.00	147	7.00	3 IA080	25-B604	18	Dish Wireles	S				
137.00	14	7.00	1 HRK14	-9101-PF-4	10	AT&T	3				
137.00	137	7.00	3 DMP65	5R-BU6DA		AT&T			0'0"		I I
137.00	137	7.00	3 4449 B	85/B12		AT&T					Х
137.00	137	7.00	1 LP Pla	tform-Roun	d	AT&T		7			
137.00	137	7.00	3 B2 B66	0A 8843		AI&I		E and the second se			
137.00	13	7.00	3 7770.0	0-00-10-8F		AT&T					
137.00	137	7.00	6 LGP21	401		AT&T					
137.00	137	7.00	6 LGP21	903		AT&T					

Structure: CT02216-S-SB/ Type: Tapered Base Shape: 18 Sided Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) Base Elev: 0.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 smart Bias T 1001940 AT&T 137.00 137.00 3 smart Bias T 1001940 AT&T Elev Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Coax TAT 0.00 167.00 Inside 15/8" Coax AT&T 0.00 167.00 Inside 15/8" Coax AT&T 0.00	Structure: CT02216-S-SB/ Type: Tapered Base Shape: 18 Sided Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) Taper: 0.19702 Base Elev: 0.00 (ft) AT&T Structure:	Structure: CT02216-S-SE/ Type: Tapered Base Shape: 18 Side Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) Taper: 0.19702 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 137.00 Smart Bias T 1001940 AT&T 137.00 137.00 1s/6" Coax T-Mobile T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 176.00 Outside Safety Cable Outside Safety Cable 0.00 167.00 Inside 15/8" Hybrid Verizon Outside Safety Cable 0.00 167.00 Inside 15/8" Coax AT&T Outside Safety Hybrid 0.00 167.00 Inside 15/8" Coax <th></th>															
Type: Tapered Base Shape: 18 Sider Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) 0.19702 Base Elev: 0.00 (ft) 0.19702 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev Form (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1.5%" Fiber T-Mobile 0.00 177.00 Inside 1.5%" Fiber T-Mobile 0.00 177.00 Inside 1.5%" Hybrid Verizon 0.00 167.00 Inside 1.5%" Hybrid Verizon 0.00 167.00 Inside 1.5%" Coax AT&T 0.00 137.00 Inside 1.5%" Coax AT&T	Type: Tapered Base Shape: 18 Sider Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) Taper: 0.19702 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 137.00 Smart Bias T 1001940 AT&T 137.00 137.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Floer T-Mobile 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T 0.00	Type: Tapered Base Shape: 18 Sider Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) Taper: 0.19702 Base Elev: 0.00 (ft) Taper: 0.19702 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 1side 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Floer T-Mobile 0.00 177.00 Inside 15/8" Floer T-Mobile 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 11/4" Floer Sprint Nextel 0.00 137.00 Inside 15/8" Coax AT&T 0.00	Structure: CT02216-S-SBA														
Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft) .	Site Name: Glastonbury Taper: 0.19702 Height: 176.00 (ft)	Site Name: Glastonbury: Taper: 0.19702 Heigh: 176.00 (ft) Base Elev: 0.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) Placement Description Carrier 0.00 177.00 Inside 1 5/8' Coax 0.00 177.00 Inside 1 5/8' Fiber 7.000 10side 1 5/8' Fiber T-Mobile 0.00 177.00 Inside 1 5/8' Hybrid 0.00 177.00 Inside 1 5/8' Hybrid 0.00 176.00 Outside Safety Cable 0.00 176.00 Outside 15/8' Hybrid Verizon 0.00 167.00 Inside 1 5/8' Coax AT&T 0.00 137.00 Inside 1 1/4' Fiber Sprint Nextel 0.00 137.00 Inside 1 1/4' Fiber Sprint Nextel 0.00 137.00 Inside 1 1/4' Siber AT&T 0.00 137.00 Inside 1 5/8' Coax AT&T 0.00 137.00 Inside 1 Si'' Siber At&T	Тур	e:	Тар	pered					Base Shape:	18 Sided			9/12/2		
Height: 176.00 (ft) Base Elev: 0.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Hybrid Verizon 0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 137.00 Inside 1 5/8" Hybrid Verizon 0.00 137.00 Inside 1 5/8" Second AT&T 0.00 137.00 Inside 1 5/8" Second AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Second AT&T	Height: 176.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 137.00 Inside 15/8" Hybrid Verizon 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 16/8" Hybrid Verizon 0.00	Height: 176.00 (ft) Base Elev: 0.00 (ft) 137.00 137.00 0 12 7020 AT&T 137.00 137.00 0 12 7020 AT&T 137.00 137.00 0 3 Smart Bias T 1001940 AT&T 137.00 137.00 0 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 176.00 Outside Safety Cable T-Mobile 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 16" Hybrid Verizon 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 16" Hybrid Verizon 0.00 137.00 Inside 1 16" Hybrid Verizon 0.00 137.00 Inside 1 16" Hybrid Verizon	Site	Name:	Gla	stonbur	v				Taper:	0.19702					
House (ky) Base Elev: 0.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 12 7020 AT&T Linear Appurtenances Elev Elev From (ft) Carrier 0.00 177.00 Inside 15/8° Coax T-Mobile 0.00 177.00 Inside 15/8° Fiber T-Mobile 0.00 177.00 Inside 15/8° Fiber T-Mobile 0.00 177.00 Inside 15/8° Hybrid Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8° Hybrid Dish Wireless 0.00 137.00 Inside 15/8° Coax AT&T 0.00 137.00 Inside 15/8° Coax AT&T 0.00 137.00 Inside 15/8° Coax AT&T 0.00 137.	House (N) House (N) Base Elev: 0.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Flex Verizon 0.00 157.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T 130.00<	Base Elev: 0.00 (ft) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8' Coax T-Mobile 0.00 177.00 Inside 19/8' Fiber T-Mobile 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8' Hybrid Verizon 0.00 167.00 Inside 16/8' Hybrid Dish Wireless 0.00 137.00 Inside 17/2' Fiber AT&T 137.00 Inside 17/2' Fiber AT&T 137.00 Inside	Hei	aht:	176	S 00 (ft)	,										
Base Elev: 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev Form (ft) Placement Description Carrier 0.00 177.00 Inside 1.5/8° Coax T-Mobile 0.00 177.00 Inside 1.5/8° Coax T-Mobile 0.00 177.00 Inside 1.5/8° Hybrid Verizon 0.00 176.00 Outside Step bolts (ladder) 0.00 0.00 167.00 Inside 1.5/8° Hybrid Verizon 0.00 167.00 Inside 1.5/8° Coax AT&T 0.00 137.00 Inside 1.5/8° Coax AT&T 0.00 137.00 Inside 1.5/8° Coax AT&T 0.00 137.00 Inside 1.5/8° Coax AT&T <td colspat<="" td=""><td>Dase Elev. 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1.5/8" Coax T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Step bolts (ladder) Verizon 0.00 187.00 Inside 1.5/8" Hybrid Verizon 0.00 137.00 Inside 1.5/8" Coax AT&T 0.00 137.00 Inside 1.5/8" Coax AT&T 24 2.25" 18.1 7.50 Cluster</td><td>Dase Field 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Flex From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8' Fiber T-Mobile Tobile 0.00 177.00 Inside 15/8' Hybrid Verizon Verizon 0.00 176.00 Outside Step Hybrid Verizon Verizon 0.00 167.00 Inside 1/4' Fiber Spint Nextel Verizon 0.00 137.00 Inside 1/2'' Fiber AT&T 0.00 137.00 Inside 1/2'' Fiber AT&T 0.00 137.00 Inside 1/2'' Fiber AT&T 14</td><td>Ber</td><td></td><td>0.0</td><td>0 (ft)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Page:</td></td>	<td>Dase Elev. 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1.5/8" Coax T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Step bolts (ladder) Verizon 0.00 187.00 Inside 1.5/8" Hybrid Verizon 0.00 137.00 Inside 1.5/8" Coax AT&T 0.00 137.00 Inside 1.5/8" Coax AT&T 24 2.25" 18.1 7.50 Cluster</td> <td>Dase Field 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Flex From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8' Fiber T-Mobile Tobile 0.00 177.00 Inside 15/8' Hybrid Verizon Verizon 0.00 176.00 Outside Step Hybrid Verizon Verizon 0.00 167.00 Inside 1/4' Fiber Spint Nextel Verizon 0.00 137.00 Inside 1/2'' Fiber AT&T 0.00 137.00 Inside 1/2'' Fiber AT&T 0.00 137.00 Inside 1/2'' Fiber AT&T 14</td> <td>Ber</td> <td></td> <td>0.0</td> <td>0 (ft)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Page:</td>	Dase Elev. 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1.5/8" Coax T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Step bolts (ladder) Verizon 0.00 187.00 Inside 1.5/8" Hybrid Verizon 0.00 137.00 Inside 1.5/8" Coax AT&T 0.00 137.00 Inside 1.5/8" Coax AT&T 24 2.25" 18.1 7.50 Cluster	Dase Field 0.00 (II) 137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Flex From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8' Fiber T-Mobile Tobile 0.00 177.00 Inside 15/8' Hybrid Verizon Verizon 0.00 176.00 Outside Step Hybrid Verizon Verizon 0.00 167.00 Inside 1/4' Fiber Spint Nextel Verizon 0.00 137.00 Inside 1/2'' Fiber AT&T 0.00 137.00 Inside 1/2'' Fiber AT&T 0.00 137.00 Inside 1/2'' Fiber AT&T 14	Ber		0.0	0 (ft)									Page:	
137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Line = Xppurtenances Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 16" Coax AT&T 0.00 137.00 Inside 16" Coax AT&T 0.00 137.00 Inside 16" Coax AT&T	137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances From (ft) T0 (ft) Placement Description Carrier 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Hybrid Verizon 0.00 176.00 Outside Step bolts (ladder) Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 137.00 Inside 1 5/8" Coax AT&T 120 100 Inside 1 5/8" Coax	137.00 137.00 3 HPA-65R-BUU-H6 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Elev Elev Elev Carrier 0.00 177.00 Inside 1 5/8° Fiber T-Mobile 0.00 177.00 Inside 1 5/8° Fiber T-Mobile 0.00 177.00 Inside 1 5/8° Fiber T-Mobile 0.00 177.00 Inside 1 5/8° Hybrid Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 1 5/8° Hybrid Verizon 0.00 137.00 Inside 1 5/8° Coax AT&T 0.00 137.00 Inside 1 5/8° Coax AT&T 0.00 137.00 Inside 1 5/8° Coax AT&T Caterizon 0.01 137.00 Inside 1 5/8° Coax AT&T	Das	se Elev.	0.0	0 (11)											
137.00 137.00 3 IPA-bSR-B0U-Hb AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 12 7020 AT&T 137.00 137.00 137.00 2 7020 AT&T 137.00 137.00 137.00 Smart Bias T 1001940 AT&T Linear Appurtenances From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Floer T-Mobile 0.00 177.00 Inside 15/8" Hybrid Klader) Voltaide 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Flex Verizon 0.00 157.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 16/8" Coax	137.00 137.00 3 MPA-6SR-B0U-Hb At &t 137.00 137.00 137.00 137.00 AT&T 137.00 137.00 137.00 137.00 AT&T 137.00 137.00 137.00 137.00 AT&T 137.00 137.00 Israer AT&T 137.00 137.00 Israer AT&T 137.00 Israer AT&T AT&T 137.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Hybrid Fiex Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Fiex Verizon 0.00 157.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T Corrace Grade Grade	137.00 137.00 3 HPA-bBR-B0U-Hb AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T 137.00 137.00 3 Smart Bias T 1001940 AT&T Elev Elev Elev Form (ft) Placement Description Carrier 0.00 177.00 Inside 1.5/8° Coax T-Mobile	107				104.05										
137.00 137.00 12 7020 AT&T Internation of the second s	137.00 137.00 12 7020 Artar 137.00 137.00 137.00 Artar Linear Appurtenances Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside Safety Cable Tobile 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 16/8" Hybrid Verizon 0.00 167.00 Inside 16/8" Hybrid Verizon 0.00 137.00 Inside 16/8" Coax AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 24 2.25" 18J 75.0 Cluster Morent Shear Axial Morent Shear Axial <td>137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T Grade Moment Moment Moment Archor Bolts Specifications</td> <td>137</td> <td>.00 13</td> <td>87.00</td> <td>12 7</td> <td>1PA-65</td> <td>R-BUU-H6</td> <td>/</td> <td>AIAI</td> <td></td> <td></td> <td></td> <td></td> <td></td>	137.00 137.00 3 Smart Bias T 1001940 AT&T Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax AT&T Grade Moment Moment Moment Archor Bolts Specifications	137	.00 13	87.00	12 7	1PA-65	R-BUU-H6	/	AIAI							
177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 15/8" Hybrid Verizon 0.00 176.00 Outside Step bolts (ladder) Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 16/8" Coax AT&T 0.00 137.00 Inside 16/8" Coax AT&T 0.00 137.00 Inside 1/2" Fiber AT&T <th <="" cols<="" td=""><td>Linear Appurtenances Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 1.5/8" Fiber T-Mobile 0.00 177.00 Inside 1.5/8" Hybrid Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 1.5/8" Hybrid Verizon 0.00 167.00 Inside 1.6/8" Hybrid Verizon 0.00 167.00 Inside 1.6/8" Coax AT&T 0.00 137.00 Inside 1.6/8" Coax AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Carate Grade Michor Bolts Moment Shear <</td><td>Inter Inter I</td><td>137</td><td>00 13</td><td>37.00</td><td>3 5</td><td>Smart B</td><td>ias T 100194</td><td>ر ۱0 /</td><td>AT&T</td><td></td><td></td><td></td><td></td><td></td></th>	<td>Linear Appurtenances Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 1.5/8" Fiber T-Mobile 0.00 177.00 Inside 1.5/8" Hybrid Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 1.5/8" Hybrid Verizon 0.00 167.00 Inside 1.6/8" Hybrid Verizon 0.00 167.00 Inside 1.6/8" Coax AT&T 0.00 137.00 Inside 1.6/8" Coax AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Carate Grade Michor Bolts Moment Shear <</td> <td>Inter Inter I</td> <td>137</td> <td>00 13</td> <td>37.00</td> <td>3 5</td> <td>Smart B</td> <td>ias T 100194</td> <td>ر ۱0 /</td> <td>AT&T</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Linear Appurtenances Linear Appurtenances Elev Elev From (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 1.5/8" Fiber T-Mobile 0.00 177.00 Inside 1.5/8" Hybrid Verizon 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 1.5/8" Hybrid Verizon 0.00 167.00 Inside 1.6/8" Hybrid Verizon 0.00 167.00 Inside 1.6/8" Coax AT&T 0.00 137.00 Inside 1.6/8" Coax AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Carate Grade Michor Bolts Moment Shear <	Inter I	137	00 13	37.00	3 5	Smart B	ias T 100194	ر ۱0 /	AT&T						
Linear Appurcemances Elev Ferm (ft) To (ft) Placement Description Carrier 0.00 177.00 Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 176.00 Outside Stefty Cable ToMobile 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 6/4" Fiber Sprint Nextel 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 2/2" Fiber AT&T 0.00 137.00 Inside 1 2/2" Fiber AT&T 24 2.25" 18.J 75.0 Cluster Cluster Grade (Kis	Linear Appurtenances Elev Form (t) To (t) Placement Description Carrier 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 19" Fiber T-Mobile 0.00 177.00 Inside 19" Fiber T-Mobile 0.00 177.00 Outside Stepty Cable T-Mobile 0.00 176.00 Outside Stepty Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon 0.00 167.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 15/8" Coax<	Linear AppurenancesElevElevFlacementDescriptionCarrier0.00177.00Inside15/8" CoaxT-Mobile0.00177.00Inside15/8" FiberT-Mobile0.00177.00Inside15/8" FiberT-Mobile0.00177.00Inside15/8" FiberT-Mobile0.00176.00OutsideSafety Cable0.00176.00OutsideSafety Cable0.00167.00Inside15/8" HybridVerizon0.00167.00Inside15/8" HybridVerizon0.00157.00Inside15/8" CoaxAT&T0.00137.00Inside16" HybridDish Wireless0.00137.00Inside1/4" FiberAT&T0.00137.00Inside1/2" FiberAT&TOctaveGradeMorentVeriations(ksi)Archor BoltsOctaveArchor BoltsOctaveOctaveMorentSpecifications (in)(ksi)GradeOutsideSpecifications (in)(kisi)Archor BoltsInterventOutsideSpecifications (in)(Kisi) <th< td=""><td></td><td></td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
Liev Liev Placement Description Carrier 0.00 177.00 Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 157.00 Inside 1 5/8" Hybrid Verizon 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 24 2	Liev Liev Placement Description Carrier 0.00 177.00 Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Outside Safety Cable T-Mobile 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Coax AT&T 0.00 167.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 0.00	Liev Liev Placement Description Carrier 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 176.00 Outside Stefty Cable T-Mobile 0.00 176.00 Outside Stefty Cable Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 24 2.25" 18J 75.0 Cluster Cluster <td colspan="2" td="" temotemote-<=""><td></td><td></td><td></td><td>Line</td><td>ar Ap</td><td>opurtena</td><td>nces</td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td>Line</td> <td>ar Ap</td> <td>opurtena</td> <td>nces</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Line	ar Ap	opurtena	nces						
Indir Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Coax T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 177.00 Inside 1 5/8" Fiber T-Mobile 0.00 176.00 Outside Safety Cable ToMobile 0.00 176.00 Outside Step bolts (ladder) ToMobile 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" HybridFlex Verizon 0.00 157.00 Inside 1 5/8" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T Grade Cty Specifications Grade (in) (in) Grade (ksi) Jonoo 66.0	Instruct Formula Formula Formula Formula 0.00 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 176.00 Outside Step bolts (ladder) 0.00 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Coax AT&T 0.00 147.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 7 DC AT&T 0.00 137.00 Inside 1 2/2" Fiber AT&T Crade Qty Specifications Grade (in) (in) (ksi) Geemetry 3.0000 <td>Initial 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 19" Fiber T-Mobile 0.00 177.00 Inside 19" Fiber T-Mobile 0.00 176.00 Outside Safety Cable </td> <td>Ele</td> <td>ev Ele</td> <td>ev (ft)</td> <td>Placeme</td> <td>nt De</td> <td>scription</td> <td>(</td> <td>Carrier</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Initial 177.00 Inside 15/8" Coax T-Mobile 0.00 177.00 Inside 15/8" Fiber T-Mobile 0.00 177.00 Inside 19" Fiber T-Mobile 0.00 177.00 Inside 19" Fiber T-Mobile 0.00 176.00 Outside Safety Cable	Ele	ev Ele	ev (ft)	Placeme	nt De	scription	(Carrier							
	0.00 177.00 Inside 1.5/8" Fiber T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Safety Cable Image: Caster Cable 0.00 176.00 Outside Step bolts (ladder) Image: Caster Cable 0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 167.00 Inside 1 5/8" Hybrid Coster Verizon 0.00 137.00 Inside 1 5/8" Goax AT&T 0.00 137.00 Inside 1 5/8" Coster AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 24 2.25" 18J 75.0 Cluster Image: Caster Cast	0.00 177.00 Inside 1.5/8" Fiber T-Mobile 0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Safety Cable T-Mobile 0.00 176.00 Outside Safety Cable Verizon 0.00 167.00 Inside 15/8" Hybrid Verizon Verizon 0.00 167.00 Inside 15/8" HybridFlex Verizon 0.00 167.00 Inside 16/8" Hybrid Verizon 0.00 157.00 Inside 1/8" Fiber Spritt Nextel 0.00 137.00 Inside 1/8" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Cat AT&T 0.00 137.00 Inside 1/2" Cat AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 24 2	0.0	0 177	7.00	Inside	1 5/8	B" Coax	-	T-Mobile	9						
0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Safety Cable	0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Safety Cable 0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" HybridFlex Verizon 0.00 157.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 2/8" Coax AT&T 0.00 137.00 Inside 1 2/8" Coax AT&T 0.00 137.00 Inside 1 2/2" Fiber AT&T Crade Qty Specifications (ksi) Arrangement Z4 2.25" 18J 75.0 Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Specifications (in) (Kisi) Geometry 3.0000 66.0<	0.00 177.00 Inside 1.9" Fiber T-Mobile 0.00 176.00 Outside Safety Cable	0.0	0 177	7.00	Inside	1 5/8	3" Fiber	1	T-Mobile	9						
0.00 176.00 Outside Safety Cable 0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 147.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 24 2.25" 18J 75.0 Cluster Cluster Thickness Specifications Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Clippe Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.0W 97 mph Wind 4861.4 35.2	0.00 176.00 Outside Safety Cable 0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Hax Verizon 0.00 167.00 Inside 1 5/8" Hybrid Hax Verizon 0.00 167.00 Inside 1 5/8" Hybrid Hax Verizon 0.00 157.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 '/2" Fiber AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T Crade Qty Specifications (ksi) Arrangement Z255" 18J 75.0 Cluster Thickness Specifications Grade (Kisi) (in) (kisi) Geometry 3.0000 3.0000 66.0	0.00 176.00 Outside Safety Cable 0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 157.00 Inside 1 5/8" Hybrid Dish Wireless 0.00 147.00 Inside 1 5/8" Goax AT&T 0.00 137.00 Inside 1 5/8" Goax AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Moment (in) Moment (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment (FT-Kips) Moment (Kips) Mit 1.2D + 1.6W 97 mph Wind 4861.4 35.2 51.1 1.2D + 1.0W	0.0	0 177	7.00	Inside	1.9"	Fiber	1	T-Mobile	e						
0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 157.00 Inside 1 5/8" Hybrid Verizon 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 147.00 Inside 1.6" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Load Case (FT-Kips) (kips)	0.00 176.00 Outside Issep bolts (ladder) Verizon 0.00 167.00 Inside Isse 1 5/8" Hybrid Verizon 0.00 167.00 Inside Isse 1 5/8" Hybrid Verizon 0.00 157.00 Inside Isse 1 5/8" Hybrid Verizon 0.00 147.00 Inside Isse 1 5/8" Coax AT&T 0.00 137.00 Inside Isse AT&T T 24 2.25" 18J 75.0 Cluster E Thickness Specifications (in) Grade (iss) Geometry Isse 3.0000 66.0 50.0 Clipted E Load <td>0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 147.00 Inside 1 6" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 'DC AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T Outside State Relate Grade Qty Specifications (ksi) Arrangement 24 2.25" 18.J 75.0 Cluster Thickness Specifications (ksi) Grade (in) (in) (kisi) Geometry 3.0000 66.0 50.0 Clipped Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5</td> <td>0.0</td> <td>0 176</td> <td>6.00</td> <td>Outside</td> <td>Safe</td> <td>ety Cable</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.00 176.00 Outside Step bolts (ladder) 0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 167.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 147.00 Inside 1 6" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 'DC AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T Outside State Relate Grade Qty Specifications (ksi) Arrangement 24 2.25" 18.J 75.0 Cluster Thickness Specifications (ksi) Grade (in) (in) (kisi) Geometry 3.0000 66.0 50.0 Clipped Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5	0.0	0 176	6.00	Outside	Safe	ety Cable									
0.00 167.00 Inside 1 5/8" Hybrid Flex Verizon 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 %" DC AT&T 0.00 137.00 Inside 1 %" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipted Moment Shear Load Case (FT-Kips) (Kips) 0.9D + 1.6W 97 mph Wind 4861.4 35.2 68.2	0.00 167.00 Inside 1 5/8" Hybrid Verizon 0.00 157.00 Inside 1 5/8" HybridFlex Verizon 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 "DC AT&T 0.00 137.00 Inside 1 "DC AT&T 0.00 137.00 Inside 1 "Z" Fiber AT&T 0.00 137.00 Inside 1 Z" Fiber AT&T 0.00 137.00 Inside 1 Z" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster	0.00 167.00 Inside 1 5/8" HybridFlex Verizon 0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 137.00 Inside 1 5/8" HybridFlex Verizon 0.00 137.00 Inside 1 5/8" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T 0.00 137.00 Inside 1 7/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement Z25" 18J 75.0 Cluster Thickness Specifications Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2	0.0	0 176	5.00 7.00	Outside	Step	bolts (ladde	er)	larizon							
0.00 161.00 Indice 10/4" Fiber Sprint Nextel 0.00 147.00 Inside 1.6" Hybrid Dish Wireless 0.00 137.00 Inside 1.5/8" Coax AT&T 0.00 137.00 Inside 1.5/8" Coax AT&T 0.00 137.00 Inside 1.7" DC AT&T 0.00 137.00 Inside 1.7" DC AT&T 0.00 137.00 Inside 1.7" Fiber AT&T 0.00 137.00 Inside 1.7" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 51	0.00 157.00 Inside 1 1/4" Fiber Somit Nextel 0.00 147.00 Inside 1.6" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 1/2" Fiber AT&T 0.00 137.00 Inside 1 1/2" Fiber AT&T 0.00 137.00 Inside 1 /2" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Load Case Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5	0.00 157.00 Inside 1 1/4" Fiber Sprint Nextel 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1 1/2" Fiber AT&T 0.00 137.00 Inside 1 1/2" Fiber AT&T One to the second of t	0.0	0 167	7.00	Inside	1 5/8	s HybridEley	< \	Verizon							
0.00 147.00 Inside 1.6" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement Z4 Specifications (ksi) Arrangement Moment Shear Axial Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) (Kips) 112	0.00 147.00 Inside 1.6" Hybrid Dish Wireless 0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Out on the term of the term of the term of t	0.00 147.00 Inside 1.6" Hybrid Dish Wireless 0.00 137.00 Inside 15/8" Coax AT&T 0.00 137.00 Inside 1"DC AT&T 0.00 137.00 Inside 1"DC AT&T 0.00 137.00 Inside 1"DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications (ksi) Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.	0.0	0 157	7.00	Inside	1 1/4	4" Fiber		Sprint N	lextel						
0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T OLIS OLISS OLISS <td col<="" td=""><td>0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications Grade (in) (in) Grade Moment Shear Axial (in) (in) Grade Moment Shear Axial (in) (in) Grade (in) (in) Grade Specifications Grade (in) (in) (ksi) Geometry Specifications (Kips) (Kips) (Kips) (Kips) (Kips) (Kips) (Kips) (Kips)</td><td>0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Image: Specifications Thickness Specifications Grade (in) (in) (ksi) Geometry Image: Specifications 3.0000 66.0 50.0 Clipped Image: Specifications Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 420.7 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8</td><td>0.0</td><td>0 147</td><td>7.00</td><td>Inside</td><td>1.6"</td><td>Hybrid</td><td>[</td><td>Dish Wi</td><td>reless</td><td></td><td></td><td></td><td></td></td>	<td>0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications Grade (in) (in) Grade Moment Shear Axial (in) (in) Grade Moment Shear Axial (in) (in) Grade (in) (in) Grade Specifications Grade (in) (in) (ksi) Geometry Specifications (Kips) (Kips) (Kips) (Kips) (Kips) (Kips) (Kips) (Kips)</td> <td>0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Image: Specifications Thickness Specifications Grade (in) (in) (ksi) Geometry Image: Specifications 3.0000 66.0 50.0 Clipped Image: Specifications Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 420.7 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8</td> <td>0.0</td> <td>0 147</td> <td>7.00</td> <td>Inside</td> <td>1.6"</td> <td>Hybrid</td> <td>[</td> <td>Dish Wi</td> <td>reless</td> <td></td> <td></td> <td></td> <td></td>	0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications Grade (in) (in) Grade Moment Shear Axial (in) (in) Grade Moment Shear Axial (in) (in) Grade (in) (in) Grade Specifications Grade (in) (in) (ksi) Geometry Specifications (Kips) (Kips) (Kips) (Kips) (Kips) (Kips) (Kips) (Kips)	0.00 137.00 Inside 1 5/8" Coax AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Image: Specifications Thickness Specifications Grade (in) (in) (ksi) Geometry Image: Specifications 3.0000 66.0 50.0 Clipped Image: Specifications Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 420.7 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	0.0	0 147	7.00	Inside	1.6"	Hybrid	[Dish Wi	reless					
0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Specifications Grade (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (Krips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4	0.00 137.00 Inside 1" DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Archor Bolts Grade Qty Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 Specifications Moment Shear Axial (in) (kisi) Grade Moment Shear Axial (FT-Kips) (Kips) (0.00 137.00 Inside 1"DC AT&T 0.00 137.00 Inside 1/2" Fiber AT&T Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4776.1 35.2 68.2 0.9D + 1.0W 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 420.7 3.0 68.2 0.9D + 1.0W 60 mph Wind 1151.3 8.4 56.8	0.0	0 137	7.00	Inside	1 5/8	B" Coax	/	AT&T							
0.00 137.00 Inside 1/2" Fiber AT&T AT&T Art Bolts Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Load Case Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 51.1 1.2D + 1.0W 97 mph Wind 4861.4 35.2 51.1 1.2D + 1.0Di + 1.0W 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 68.2 0.9D + 1.0E 420.7 3.0 51.2 Atta 151.3	0.00 137.00 Inside 1/2" Fiber AT&T Archor Bolts Grade Grade Qty Specifications (ksi) Arrangement 24 2.25" 18.J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 428.8 3.0 68.2 Atial Atial Colspan="4">Atial Atial Atial Atial </td <td>0.00 137.00 Inside 1/2" Fiber AT&T Anchor Bolts Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry (in) (in) (ksi) Geometry 3.0000 66.0 Source transtant Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 Atta 420.7 3.0 68.2 0.9D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 Italia 8.4 56.8</td> <td>0.0</td> <td>0 137</td> <td>7.00</td> <td>Inside</td> <td>1" D</td> <td>С</td> <td>1</td> <td>AT&T</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.00 137.00 Inside 1/2" Fiber AT&T Anchor Bolts Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry (in) (in) (ksi) Geometry 3.0000 66.0 Source transtant Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 Atta 420.7 3.0 68.2 0.9D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 Italia 8.4 56.8	0.0	0 137	7.00	Inside	1" D	С	1	AT&T							
Archor Bolts Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Distribution of the set of the s	Anchor Bolts Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications (in) Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Steet colspan="4">Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 3.0 68.2 0.9D + 1.6W 97 mph Wind 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Archor Bolts Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Intickment Specifications Specifications Grade (in) (in) Grade Specifications Grade (in) (in) Grade (in) 66.0 50.0 Cliptet Noment Shear Axial Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 420.7 3.0 68.2 0.9D 9.0D + 1.0E 420.7 3.0 51.2 1.0D 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	0.0	0 137	7.00	Inside	1/2"	Fiber		AT&T							
Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Thickness Specifications (in) Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (FT-Kips) Kips) Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Grade Qty Specifications (ksi) Arrangement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (FT-Kips) (Kips) (Kips) Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Qty Specifications (ksi) Arrangement 24 2.25" 18.J 75.0 Cluster Base Plate Thickness Specifications Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0W 97 mph Wind 428.8 3.0 68.2 0.9D + 1.0W 60 mph Wind 1151.3 8.4 56.8					Anch	nor Bolts									
Arrangement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 68.2 0.9D + 1.0E 420.7 3.0 68.2 0.9D + 1.0E 420.7 3.0 68.2 0.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Oty Opecinications (ks) Analgement 24 2.25" 18J 75.0 Cluster Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (FT-Kips) (Kips) (Kips) Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Output Specifications (ksi) Cluster Base Plate Thickness Specifications Grade (in) (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (FT-Kips) (Kips) (Kips) Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Otv	Specific	ation	Gr Gr	ade	Arrangem	ont								
Base Plate Thickness (in) Specifications (in) Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Reactions Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Base Plate Thickness Specifications Grade (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Reactions Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Base Plate Thickness (in) Specifications (in) Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Reactions Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	24	2.25"	18J	7	5.0	Cluster	ent								
Base Plate Thickness (in) (in) Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Reactions (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Base Plate Thickness (in) Specifications (in) Grade (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (FT-Kips) Load Case (FT-Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 1582.9 10.8 117.5 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 420.7 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Base Plate Thickness (in) (in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Moment Shear Axial (Kips) (Kips) Load Case (FT-Kips) (Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8		2.20	100	· ·	D										
Thickness (in)Specifications (in)Grade (ksi) 3.0000 66.0 50.0 $Clipped$ ReactionsMomentShearAxialLoad Case(FT-Kips)(Kips) $1.2D + 1.6W 97$ mph Wind 4861.4 35.2 68.2 $0.9D + 1.6W 97$ mph Wind 4776.1 35.2 51.1 $1.2D + 1.0Di + 1.0Wi 50$ mph Wind 1582.9 10.8 117.5 $1.2D + 1.0E$ 420.7 3.0 51.2 $0.9D + 1.0E$ 420.7 3.0 51.2 $1.0D + 1.0W 60$ mph Wind 1151.3 8.4 56.8	Thickness (in)Specifications (in)Grade (ksi) 3.0000 66.0 50.0 $Clipped$ ReactionsMoment (FT-Kips)Shear (Kips)Axial (Kips) $1.2D + 1.6W 97$ mph Wind 4861.4 35.2 68.2 $0.9D + 1.6W 97$ mph Wind 4776.1 35.2 51.1 $1.2D + 1.0W 50$ mph Wind 1582.9 10.8 117.5 $1.2D + 1.0E$ 420.7 3.0 68.2 $0.9D + 1.0E$ 420.7 3.0 51.2	Thickness (in)Specifications (in)Grade (ksi)Geometry 3.0000 66.0 50.0 $Clipped$ ReactionsMomentShear (Kips)Axial (Kips)Load Case(FT-Kips)(Kips) $1.2D + 1.6W$ 97 mph Wind 4861.4 35.2 68.2 $0.9D + 1.6W$ 97 mph Wind 4776.1 35.2 51.1 $1.2D + 1.0Di + 1.0Wi$ 50 mph Wind 1582.9 10.8 117.5 $1.2D + 1.0E$ 420.7 3.0 51.2 $0.9D + 1.0E$ 420.7 3.0 51.2 $1.0D + 1.0W$ 60 mph Wind 1151.3 8.4 56.8					Bas	se Plate									
(in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Reactions Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	(in) (in) (ksi) Geometry 3.0000 66.0 50.0 Clipped Reactions Load Case Moment Shear Axial 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Ui + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	(in)(in)(ksi)Geometry3.000066.050.0ClippedReactionsLoad CaseMomentShearAxial(Load Case(FT-Kips)(Kips)(Kips)1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	Thick	mess S	Speci	fications	G	rade									
3.0000 66.0 50.0 Clipped Reactions Load Case Moment (FT-Kips) Shear (Kips) Axial (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	3.0000 66.0 50.0 Clipped Reactions Load Case Moment (FT-Kips) Shear (Kips) Axial (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	3.0000 66.0 50.0 Clipped Reactions Load Case Moment (FT-Kips) Shear (Kips) Axial (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	(i	n)		(in)	(ksi) G	eometry	/							
ReactionsLoad CaseMoment (FT-Kips)Shear (Kips)Axial (Kips)1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	Reactions Moment Shear Axial Load Case (FT-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	ReactionsLoad CaseMomentShearAxial1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	3.0	000	6	66.0	5	50.0	Clipped								
Moment Load CaseMoment (FT-Kips)Shear (Kips)Axial (Kips)1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	MomentShearAxialLoad Case(FT-Kips)(Kips)(Kips)1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	MomentShearAxialLoad Case(FT-Kips)(Kips)(Kips)1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8					Rea	actions									
Load Case(H1-Kips)(Kips)(Kips)1.2D + 1.6W 97 mph Wind4861.435.268.20.9D + 1.6W 97 mph Wind4776.135.251.11.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	Load Case (F1-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Load Case (F1-Kips) (Kips) (Kips) 1.2D + 1.6W 97 mph Wind 4861.4 35.2 68.2 0.9D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	Lood	Casa				Momen	t She	ear	Axial (Kina)						
1.2D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	1.2D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	1.2D + 1.6W 97 mph Wind 4776.1 35.2 51.1 1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	1 2D 4	- 1 6W/ 97 r	mph V	Vind		4861.4	35	2	(Kips) 68.2						
1.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	1.2D + 1.0Di + 1.0Wi 50 mph Wind1582.910.8117.51.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	1.2D + 1.0Di + 1.0Wi 50 mph Wind 1582.9 10.8 117.5 1.2D + 1.0E 428.8 3.0 68.2 0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	0.9D +	+ 1.6W 97 i	mph V	Vind		4776.1	35.	2	51.1						
1.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	1.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	1.2D + 1.0E428.83.068.20.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	1.2D -	+ 1.0Di + 1.	.0Wi 5	50 mph Wi	nd	1582.9	10.	8	117.5						
0.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	0.9D + 1.0E420.73.051.21.0D + 1.0W 60 mph Wind1151.38.456.8	0.9D + 1.0E 420.7 3.0 51.2 1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	1.2D +	+ 1.0E				428.8	3.0)	68.2						
1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	1.0D + 1.0W 60 mph Wind 1151.3 8.4 56.8	0.9D +	+ 1.0E				420.7	3.0)	51.2						
			1.0D +	+ 1.0W 60 i	mph V	Vind		1151.3	8.4	ļ	56.8						

	Shaft Properties												
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44111.53						
Site Name:	Glastonbury			Exposure:	В		derate ab						
Height:	176.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 5	Tower Engineering Solutions						

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (Ib)
1	18	49.000	0.5000	65		0.00	13,554
2	18	49.000	0.4375	65	Slip	75.00	10,126
3	18	49.000	0.3750	65	Slip	63.00	7,131
4	18	44.750	0.2500	65	Slip	51.00	3,402
					Total Sha	aft Weight:	34,213

			Bo	ttom					Т				
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper
1	56.55	0.00	88.95	35305.41	18.53	113.10	46.90	49.00	73.63	20024.4	15.13	93.79	0.197017
2	49.00	42.75	67.44	20095.24	18.34	112.01	39.35	91.75	54.03	10335.8	14.45	89.94	0.197017
3	41.13	86.50	48.51	10181.58	17.93	109.69	31.48	135.50	37.02	4525.14	13.39	83.94	0.197017
4	32.82	131.2	25.84	3462.57	21.74	131.27	24.00	176.00	18.84	1343.00	15.52	96.00	0.197017

	Load Summary												
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.00.53						
Site Name:	Glastonbury			Exposure:	В		de Hand						
Height:	176.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 6	Tower Engineering Solutions						

Discrete Appurtenances

			No Ice			lce					
No.	Elev (ft)	Description	Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (Ib)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
1	176.00	MHA FE15501P77/75	6	11.00	0.93	0.65	37.10	1.886	0.65	0.00	1.00
2	176.00	RMQP-496-HK	1	2449.00	46.00	1.00	5923.32	89.506	1.00	0.00	1.00
3	176.00	KRY 112 489/2	3	15.40	0.65	0.67	39.27	1.479	0.67	0.00	1.00
4	176.00	KRY 112 89/4	3	15.40	0.65	0.67	39.27	1.479	0.67	0.00	1.00
5	176.00	Lightning Rod	1	35.00	1.05	1.00	77.56	4.266	1.00	0.00	3.50
6	176.00	AIR 6419 B41	3	133.20	6.53	0.70	369.66	8.003	0.70	0.00	1.00
7	176.00	APXVAALL24 43-U-NA20	3	122.80	20.24	0.73	728.19	22.848	0.73	0.00	1.00
8	176.00	4449 B71 + B85	3	73.20	1.97	0.67	151.43	2.741	0.67	0.00	1.00
9	176.00	4460 B25 + B66	3	72.00	1.64	0.67	135.47	2.313	0.67	0.00	1.00
10	167.00	Low Profile Platform-Round	1	1500.00	22.00	1.00	3264.05	45.803	1.00	0.00	0.00
11	167.00	Commscope NHH-65B-R2B	3	43.70	8.08	0.83	333.76	9.863	0.83	0.00	0.00
12	167.00	Commscope NHHSS-65B-R2BT4	3	50.70	8.19	0.85	343.65	9.984	0.85	0.00	0.00
13	167.00	Samsung MT6407-77A	3	79.40	4.69	0.70	252.52	5.988	0.70	0.00	0.00
14	167.00	B2/B66A RRH ORAN	3	84.40	1.87	0.67	196.49	2.669	0.67	0.00	0.00
15	167.00	B5/B13 RRH ORAN	3	70.30	1.87	0.67	172.34	2.669	0.67	0.00	0.00
16	167.00	CBRS RRH - RT4401-48A	3	18.60	0.99	0.67	55.93	1.558	0.67	0.00	0.00
17	167.00	Raycap DB-B1-6C-12AB-0Z-OVP	2	32.00	3.78	0.90	213.95	4.909	0.90	0.00	0.00
18	167.00	KICKER KIT	1	146.00	5.33	1.00	420.72	12.852	1.00	0.00	0.00
19	167.00	MONOPOLE COLLAR MOUNT	1	150.60	2.50	1.00	433.98	6.028	1.00	0.00	0.00
20	167.00	SUPPORT RAIL CORNER	1	430.00	8.75	1.00	1117.75	20.275	1.00	0.00	0.00
21	167.00	LPA-80063-4CF-EDIN-5	2	20.00	6.15	0.93	266.55	8.702	0.93	0.00	0.00
22	167.00	APL868013	1	6.30	2.86	1.00	163.90	4.061	1.00	0.00	0.00
23	157.00	RFS APXVTM14-C-I20	3	56.20	6.34	0.77	286.02	7.864	0.77	0.00	0.00
24	157.00	Commscope NNVV-65B-R4	3	77.40	12.27	0.75	459.89	14.220	0.75	0.00	0.00
25	157.00	Sitepro PRK-1245L	1	464.91	9.50	1.00	899.62	22.824	1.00	0.00	0.00
26	157.00	Sitepro HRK14-U	1	302.36	8.13	1.00	782.98	18.773	1.00	0.00	0.00
27	157.00	Sitepro PRK-SFS-H-L	1	230.00	6.70	1.00	660.12	16.097	1.00	0.00	0.00
28	157.00	Low Profile Platform	1	1500.00	22.00	1.00	3253.19	45.656	1.00	0.00	0.00
29	157.00	ALU 1900 Mhz	3	60.00	2.77	0.67	171.76	4.469	0.67	0.00	0.00
30	157.00	ALU 800 Mhz	6	53.00	2.49	0.67	152.06	4.022	0.67	0.00	0.00
31	157.00	ALU TD-RRH8x20-25	3	70.00	4.05	0.67	228.65	5.168	0.67	0.00	0.00
32	147.00	MX08FRO665-21	3	64.50	12.49	0.74	451.55	14,439	0.74	0.00	0.00
33	147.00	MC-PK8-DSH	1	1727.00	37.59	1.00	3972.90	00.441	1.00	0.00	0.00
34	147.00	TA08025-B605	3	75.00	1.96	0.67	144.60	2.707	0.67	0.00	0.00
35	147.00	TA08025-B604	3	63.90	1.96	0.67	131.27	2.707	0.67	0.00	0.00
36	147.00	RDIDC-9181-PF-48	1	21.90	2.01	1.00	92.75	2.766	1.00	0.00	0.00
37	137.00	HRK14	1	302.36	8.13	1.00	776.48	18.628	1.00	0.00	0.00
38	137.00	DMP65R-BU6DA	3	79.40	12.71	0.72	468.58	14.644	0.72	0.00	0.00
39	137.00	4449 B5/B12	3	71.00	1.97	0.67	141.53	2.693	0.67	0.00	0.00
40	137.00	LP Platform-Round	1	1500.00	22.00	1.00	3229.47	45.336	1.00	0.00	0.00
41	137.00	B2 B66A 8843	3	70.00	1.64	0.67	130.76	2.322	0.67	0.00	0.00
42	137.00	DC6-48-60-18-8F	1	32.80	1.47	1.00	117.06	2.395	1.00	0.00	0.00
43	137.00	7770.00	3	35.00	5.50	0.73	226.86	6.937	0.73	0.00	0.00
44	137.00	LGP21401	6	19.00	1.29	0.67	63.51	2.394	0.67	0.00	0.00
45	137.00	LGP21903	6	5.00	0.27	0.67	15.12	0.795	0.67	3.00	0.00
46	137.00	HPA-65R-BUU-H6	3	51.00	9.66	0.85	396.24	11.499	0.85	0.00	0.00
47	137.00	7020	12	2.20	0.40	0.67	15.71	1.040	0.67	0.00	0.00
48	137.00	Smart Bias T 1001940	3	2.00	0.09	0.67	4.64	0.400	0.67	5.70	0.00
-		Totals:	131	16,120.13			46,123.23				

Discrete Appurtenances

				No Ice				lce			
	Elev			Weight	CaAa	CaAa	Weight	CaAa	CaAa	Hor. Ecc.	Vert Ecc
No.	(ft)	Description	Qty	(lb)	(sf)	Factor	(Ib)	(sf)	Factor	(ft)	(ft)

Linear Appurtenances

Elev. (ft)	Top Elev. (ft)	Description	Exposed Width	Exposed	
0.00	177.00	(9) 1 5/8" Coax	0.00	Inside	
0.00	177.00	(1) 1 5/8" Fiber	0.00	Inside	
0.00	177.00	(2) 1.9" Fiber	0.00	Inside	
0.00	176.00	(1) Safety Cable	0.38	Outside	
0.00	176.00	(1) Step bolts (ladder)	0.63	Outside	
0.00	167.00	(2) 1 5/8" Hybrid	0.00	Inside	
0.00	167.00	(6) 1 5/8" HybridFlex	0.00	Inside	
0.00	157.00	(4) 1 1/4" Fiber	0.00	Inside	
0.00	147.00	(1) 1.6" Hybrid	0.00	Inside	
0.00	137.00	(12) 1 5/8" Coax	0.00	Inside	
0.00	137.00	(2) 1" DC	0.00	Inside	
0.00	137.00	(1) 1/2" Fiber	0.00	Inside	

	Shaft Section Properties														
Structure:	Structure: CT02216-S-SBA Code: TIA-222-G 9/12/2022														
Site Name:	Glastonbury			Exposure:	В		((allow)								
Height:	176.00 (ft)			Crest Height:	0.00		EC								
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil										
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 8	Tower Engineering Solutions								
Increment Len	gth: 5 (ft)														

Elev	Description	Thick	Dia	Area	lx (in A4)	W/t	D/t Botio	Fpy	S (in A2)	Weight
(11)	Description	0.5000	(III) 56 550	(III-2)	25205 4	19.52	112 10	70.6	(III-3) 1220	(dl)
5.00		0.5000	50.550	00.940	22476 4	10.00	113.10	79.0	1496	1500 1
10.00		0.5000	55.505	07.300	21711 0	17.04	100.16	80.0	1144	1472 5
10.00		0.5000	54.560	00.022	31711.8	17.84	109.10	80.4	1144.	1473.5
15.00		0.5000	53.595	04.200	30010.2	17.49	107.19	80.8	1002.	1440.9
20.00		0.5000	52.610	82.695	28370.6	17.14	105.22	81.2	1062.	1420.3
25.00		0.5000	51.625	81.132	26791.9	10.79	103.25	81.6	1022.	1393.7
30.00		0.5000	50.639	79.569	25272.8	16.45	101.28	82.1	983.0	1367.1
35.00		0.5000	49.654	78.005	23812.3	16.10	99.31	82.5	944.6	1340.5
40.00		0.5000	48.669	76.442	22409.2	15.75	97.34	82.5	906.9	1313.9
42.75	Bot - Section 2	0.5000	48.128	75.582	21001.5	15.50	96.26	82.5	886.5	711.3
45.00	Tage Opering 1	0.5000	47.684	74.879	21062.3	15.41	95.37	82.5	870.0	1089.9
49.00	Top - Section 1	0.4375	47.771	65.726	18605.1	17.84	109.19	0.0	0.0	1912.7
50.00		0.4375	47.574	65.453	183/3.8	17.76	108.74	80.5	760.7	223.2
55.00		0.4375	46.589	64.085	1/245.7	17.37	106.49	81.0	729.1	1102.0
60.00		0.4375	45.604	62.717	16164.8	16.97	104.24	81.4	698.2	1078.7
65.00		0.4375	44.619	61.349	15130.1	16.57	101.99	81.9	667.9	1055.4
70.00		0.4375	43.634	59.981	14140.4	16.18	99.73	82.4	638.3	1032.2
75.00		0.4375	42.649	58.613	13194.9	15.78	97.48	82.5	609.4	1008.9
80.00		0.4375	41.664	57.246	12292.5	15.38	95.23	82.5	581.1	985.6
85.00		0.4375	40.679	55.878	11432.2	14.98	92.98	82.5	553.5	962.3
86.50	Bot - Section 3	0.4375	40.383	55.467	11182.2	14.87	92.30	82.5	545.4	284.2
90.00		0.4375	39.693	54.510	10613.0	14.59	90.73	82.5	526.6	1227.8
91.75	Top - Section 2	0.3750	40.099	47.279	9425.9	17.44	106.93	0.0	0.0	605.9
95.00		0.3750	39.458	46.517	8977.4	17.14	105.22	81.2	448.1	518.7
100.00		0.3750	38.473	45.345	8315.6	16.68	102.60	81.8	425.7	781.5
105.00		0.3750	37.488	44.172	7687.1	16.22	99.97	82.3	403.9	761.5
110.00		0.3750	36.503	43.000	7091.1	15.75	97.34	82.5	382.6	741.6
115.00		0.3750	35.518	41.827	6526.7	15.29	94.71	82.5	361.9	721.6
120.00		0.3750	34.533	40.655	5993.1	14.83	92.09	82.5	341.8	701.7
125.00		0.3750	33.548	39.483	5489.4	14.36	89.46	82.5	322.3	681.7
130.00		0.3750	32.563	38.310	5014.7	13.90	86.83	82.5	303.3	661.8
131.25	Bot - Section 4	0.3750	32.317	38.017	4900.5	13.78	86.18	82.5	298.7	162.3
135.00		0.3750	31.578	37.138	4568.3	13.44	84.21	82.5	284.9	805.5
135.50	Top - Section 3	0.2500	31.979	25.176	3202.3	21.14	127.92	0.0	0.0	106.0
137.00		0.2500	31.684	24.942	3113.6	20.94	126.73	76.8	193.6	127.9
140.00		0.2500	31.093	24.473	2941.3	20.52	124.37	77.3	186.3	252.2
145.00		0.2500	30.108	23.691	2668.4	19.82	120.43	78.1	174.6	409.7
147.00		0.2500	29.713	23.378	2564.1	19.55	118.85	78.4	170.0	160.2
150.00		0.2500	29.122	22.909	2412.9	19.13	116.49	78.9	163.2	236.3
155.00		0.2500	28.137	22.128	2174.2	18.43	112.55	79.7	152.2	383.1
157.00		0.2500	27.743	21.815	2083.4	18.16	110.97	80.0	147.9	149.5
160.00		0.2500	27.152	21.346	1951.9	17.74	108.61	80.5	141.6	220.3
165.00		0.2500	26.167	20.565	1745.2	17.05	104.67	81.4	131.4	356.5
167.00		0.2500	25.773	20.252	1666.8	16.77	103.09	81.7	127.4	138.9
170.00		0.2500	25.182	19.783	1553.7	16.35	100.73	82.2	121.5	204.3
175.00		0.2500	24.197	19.001	1376.7	15.66	96.79	82.5	112.1	329.9
176.00		0.2500	24.000	18.845	1343.0	15.52	96.00	82.5	110.2	64.4
										34212.9

	Wind Loading - Shaft													
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.bb							
Site Name:	Glastonbury			Exposure:	В		((cHr)))							
Height:	176.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 9	Tower Engineering Solutions							
Load Case	: 1.2D + 1.6W 97	mph Wind				¥ 4 II	erations 26							

Load Case:	1.2D + 1.6W 97	' mph Wind
Dead	Load Factor	1.20
Wind	Load Factor	1.60

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0 70	16.018	17 62	388 35	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	16.018	17.62	381.58	0.650	0.000	5.00	23,718	15.42	434.6	0.0	1800.1
10.00		1.00	0.70	16.018	17.62	374.82	0.650	0.000	5.00	23.301	15.15	427.0	0.0	1768.1
15.00		1.00	0.70	16.018	17.62	368.05	0.650	0.000	5.00	22.884	14.87	419.3	0.0	1736.2
20.00		1.00	0.70	16.018	17.62	361.29	0.650	0.000	5.00	22.467	14.60	411.7	0.0	1704.3
25.00		1.00	0.70	16.018	17.62	354.52	0.650	0.000	5.00	22.050	14.33	404.1	0.0	1672.4
30.00		1.00	0.70	16.031	17.63	347.90	0.650	0.000	5.00	21.634	14.06	396.8	0.0	1640.5
35.00		1.00	0.73	16.753	18.43	348.73	0.650	0.000	5.00	21.217	13.79	406.6	0.0	1608.6
40.00		1.00	0.76	17.405	19.15	348.40	0.650	0.000	5.00	20.800	13.52	414.2	0.0	1576.6
42.75 Bot -	- Section 2	1.00	0.78	17.739	19.51	347.81	0.650	0.000	2.75	11.262	7.32	228.5	0.0	853.6
45.00		1.00	0.79	18.000	19.80	347.14	0.650	0.000	2.25	9.288	6.04	191.3	0.0	1307.9
49.00 Top	- Section 1	1.00	0.81	18.444	20.29	345.58	0.650	0.000	4.00	16.303	10.60	344.0	0.0	2295.3
50.00		1.00	0.81	18.551	20.41	351.59	0.650	0.000	1.00	4.034	2.62	85.6	0.0	267.8
55.00		1.00	0.83	19.063	20.97	349.03	0.650	0.000	5.00	19.920	12.95	434.4	0.0	1322.4
60.00		1.00	0.85	19.543	21.50	345.92	0.650	0.000	5.00	19.503	12.68	436.0	0.0	1294.4
65.00		1.00	0.87	19.995	21.99	342.34	0.650	0.000	5.00	19.086	12.41	436.6	0.0	1266.5
70.00		1.00	0.89	20.422	22.46	338.35	0.650	0.000	5.00	18.670	12.14	436.2	0.0	1238.6
75.00		1.00	0.91	20.829	22.91	333.98	0.650	0.000	5.00	18.253	11.86	434.9	0.0	1210.7
80.00		1.00	0.93	21.217	23.34	329.29	0.650	0.000	5.00	17.836	11.59	432.9	0.0	1182.7
85.00		1.00	0.94	21.587	23.75	324.30	0.650	0.000	5.00	17.419	11.32	430.2	0.0	1154.8
86.50 Bot -	- Section 3	1.00	0.95	21.696	23.87	322.75	0.650	0.000	1.50	5.145	3.34	127.7	0.0	341.0
90.00		1.00	0.96	21.943	24.14	319.04	0.650	0.000	3.50	12.080	7.85	303.2	0.0	1473.3
91.75 Top	- Section 2	1.00	0.96	22.064	24.27	317.14	0.650	0.000	1.75	5.963	3.88	150.5	0.0	727.1
95.00		1.00	0.97	22.284	24.51	319.61	0.650	0.000	3.25	10.940	7.11	278.9	0.0	622.4
100.00		1.00	0.99	22.613	24.87	313.93	0.650	0.000	5.00	16.486	10.72	426.5	0.0	937.8
105.00		1.00	1.00	22.931	25.22	308.03	0.650	0.000	5.00	16.069	10.45	421.5	0.0	913.8
110.00		1.00	1.02	23.238	25.56	301.93	0.650	0.000	5.00	15.653	10.17	416.1	0.0	889.9
115.00		1.00	1.03	23.535	25.89	295.66	0.650	0.000	5.00	15.236	9.90	410.2	0.0	865.9
120.00		1.00	1.04	23.823	26.20	289.21	0.650	0.000	5.00	14.819	9.63	403.9	0.0	842.0
125.00		1.00	1.05	24.102	26.51	282.60	0.650	0.000	5.00	14.402	9.36	397.1	0.0	818.1
130.00		1.00	1.07	24.374	26.81	275.85	0.650	0.000	5.00	13.986	9.09	390.0	0.0	794.1
131.25 Bot -	- Section 4	1.00	1.07	24.440	26.88	274.13	0.650	0.000	1.25	3.431	2.23	95.9	0.0	194.8
135.00		1.00	1.08	24.638	27.10	268.95	0.650	0.000	3.75	10.296	6.69	290.2	0.0	966.6
135.50 Top	- Section 3	1.00	1.08	24.664	27.13	268.25	0.650	0.000	0.50	1.355	0.88	38.2	0.0	127.2
137.00 App	urtenance(s)	1.00	1.08	24.742	27.22	270.42	0.650	0.000	1.50	4.040	2.63	114.4	0.0	153.5
140.00		1.00	1.09	24.895	27.38	266.20	0.650	0.000	3.00	7.968	5.18	226.9	0.0	302.7
145.00		1.00	1.10	25.146	27.66	259.06	0.650	0.000	5.00	12.947	8.42	372.4	0.0	491.7
147.00 App	urtenance(s)	1.00	1.10	25.245	27.77	256.17	0.650	0.000	2.00	5.062	3.29	146.2	0.0	192.2
150.00		1.00	1.11	25.391	27.93	251.80	0.650	0.000	3.00	7.468	4.85	216.9	0.0	283.5
155.00		1.00	1.12	25.630	28.19	244.42	0.650	0.000	5.00	12.113	7.87	355.2	0.0	459.8
157.00 App	urtenance(s)	1.00	1.12	25.724	28.30	241.44	0.650	0.000	2.00	4.729	3.07	139.2	0.0	179.4
160.00		1.00	1.13	25.863	28.45	236.94	0.650	0.000	3.00	6.968	4.53	206.2	0.0	264.4
165.00		1.00	1.14	26.092	28.70	229.35	0.650	0.000	5.00	11.280	7.33	336.7	0.0	427.8
167.00 App	urtenance(s)	1.00	1.14	26.182	28.80	226.28	0.650	0.000	2.00	4.395	2.86	131.6	0.0	166.7
170.00		1.00	1.15	26.315	28.95	221.66	0.650	0.000	3.00	6.468	4.20	194.7	0.0	245.2
175.00		1.00	1.16	26.534	29.19	213.87	0.650	0.000	5.00	10.446	6.79	317.1	0.0	395.9
176.00 App	urtenance(s)	1.00	1.16	26.577	29.24	212.30	0.650	0.000	1.00	2.039	1.33	62.0	0.0	77.3

 $\label{eq:copyright} Copyright @ 2022 \ by \ Tower \ Engineering \ Solutions, \ LLC. \ All \ rights \ reserved.$

Wind Loading - Shaft														
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.bb							
Site Name:	Glastonbury			Exposure:	В		((HI))							
Height:	176.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 10	Tower Engineering Solutions							
				Tota	ls: 176.00	14,174.3	41,055.5							

Discrete Appurtenance Forces

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.5N
Site Name:	Glastonbury			Exposure:	В		((itter))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 11	Tower Engineering Solutions

Load Case: 1.2D + 1.6W 97 mph Wind

Dead Load Factor1.20Wind Load Factor1.60

Z

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (Ib-ft)	Mom Z (Ib-ft)
1	176.00	KRY 112 489/2	3	26.620	29.282	0.50	0.75	0.98	55.44	0.000	1.000	45.91	0.00	45.91
2	176.00	MHA FE15501P77/75	6	26.620	29.282	0.49	0.75	2.72	79.20	0.000	1.000	127.45	0.00	127.45
3	176.00	Lightning Rod	1	26.727	29.400	1.00	1.00	1.05	42.00	0.000	3.500	49.39	0.00	172.87
4	176.00	RMQP-496-HK	1	26.620	29.282	1.00	1.00	46.00	2938.80	0.000	1.000	2155.19	0.00	2155.19
5	176.00	4460 B25 + B66	3	26.620	29.282	0.50	0.75	2.47	259.20	0.000	1.000	115.83	0.00	115.83
6	176.00	KRY 112 89/4	3	26.620	29.282	0.50	0.75	0.98	55.44	0.000	1.000	45.91	0.00	45.91
7	176.00	AIR 6419 B41	3	26.620	29.282	0.52	0.75	10.28	479.52	0.000	1.000	481.86	0.00	481.86
8	176.00	APXVAALL24 43-U-NA20	3	26.620	29.282	0.55	0.75	33.24	442.08	0.000	1.000	1557.56	0.00	1557.56
9	176.00	4449 B71 + B85	3	26.620	29.282	0.50	0.75	2.97	263.52	0.000	1.000	139.14	0.00	139.14
10	167.00	Commscope	3	26.182	28.800	0.64	0.75	15.66	182.52	0.000	0.000	721.77	0.00	0.00
11	167.00	Commscope	3	26.182	28.800	0.62	0.75	15.09	157.32	0.000	0.000	695.32	0.00	0.00
12	167.00	APL868013	1	26.182	28.800	1.00	1.00	2.86	7.56	0.000	0.000	131.79	0.00	0.00
13	167.00	Samsung MT6407-77A	3	26.182	28.800	0.52	0.75	7.39	285.84	0.000	0.000	340.38	0.00	0.00
14	167.00	LPA-80063-4CF-EDIN-5	2	26.182	28.800	0.84	0.90	10.30	48.00	0.000	0.000	474.40	0.00	0.00
15	167.00	Low Profile	1	26.182	28.800	1.00	1.00	22.00	1800.00	0.000	0.000	1013.76	0.00	0.00
16	167.00	KICKER KIT	1	26.182	28.800	1.00	1.00	5.33	175.20	0.000	0.000	245.61	0.00	0.00
17	167.00	B2/B66A RRH ORAN	3	26.182	28.800	0.50	0.75	2.82	303.84	0.000	0.000	129.90	0.00	0.00
18	167.00	B5/B13 RRH ORAN	3	26.182	28.800	0.50	0.75	2.82	253.08	0.000	0.000	129.90	0.00	0.00
19	167.00	CBRS RRH - RT4401-48A	3	26.182	28.800	0.50	0.75	1.49	66.96	0.000	0.000	68.77	0.00	0.00
20	167.00	Raycap	2	26.182	28.800	0.81	0.90	6.12	76.80	0.000	0.000	282.17	0.00	0.00
21	167.00	MONOPOLE COLLAR	1	26.182	28.800	1.00	1.00	2.50	180.72	0.000	0.000	115.20	0.00	0.00
22	167.00	SUPPORT RAIL CORNER	1	26.182	28.800	1.00	1.00	8.75	516.00	0.000	0.000	403.20	0.00	0.00
23	157.00	ALU TD-RRH8x20-25	3	25.724	28.296	0.54	0.80	6.51	252.00	0.000	0.000	294.84	0.00	0.00
24	157.00	ALU 800 Mhz	6	25.724	28.296	0.54	0.80	8.01	381.60	0.000	0.000	362.55	0.00	0.00
25	157.00	ALU 1900 Mhz	3	25.724	28.296	0.54	0.80	4.45	216.00	0.000	0.000	201.66	0.00	0.00
26	157.00	Sitepro PRK-1245L	1	25.724	28.296	1.00	1.00	9.50	557.89	0.000	0.000	430.10	0.00	0.00
27	157.00	RFS APXVTM14-C-I20	3	25.724	28.296	0.62	0.80	11.72	202.32	0.000	0.000	530.45	0.00	0.00
28	157.00	Commscope	3	25.724	28.296	0.60	0.80	22.09	278.64	0.000	0.000	999.92	0.00	0.00
29	157.00	Low Profile Platform	1	25.724	28.296	1.00	1.00	22.00	1800.00	0.000	0.000	996.03	0.00	0.00
30	157.00	Sitepro HRK14-U	1	25.724	28.296	1.00	1.00	8.13	362.83	0.000	0.000	368.08	0.00	0.00
31	157.00	Sitepro PRK-SFS-H-L	1	25.724	28.296	1.00	1.00	6.70	276.00	0.000	0.000	303.34	0.00	0.00
32	147.00	RDIDC-9181-PF-48	1	25.245	27.769	1.00	1.00	2.01	26.28	0.000	0.000	89.31	0.00	0.00
33	147.00	TA08025-B604	3	25.245	27.769	0.50	0.75	2.95	230.04	0.000	0.000	131.28	0.00	0.00
34	147.00	TA08025-B605	3	25.245	27.769	0.50	0.75	2.95	270.00	0.000	0.000	131.28	0.00	0.00
35	147.00	MC-PK8-DSH	1	25.245	27.769	1.00	1.00	37.59	2072.40	0.000	0.000	1670.15	0.00	0.00
36	147.00	MX08FRO665-21	3	25.245	27.769	0.55	0.75	20.80	232.20	0.000	0.000	923.97	0.00	0.00
37	137.00	B2 B66A 8843	3	24.742	27.216	0.50	0.75	2.47	252.00	0.000	0.000	107.66	0.00	0.00
38	137.00	4449 B5/B12	3	24.742	27.216	0.50	0.75	2.97	255.60	0.000	0.000	129.32	0.00	0.00
39	137.00	DC6-48-60-18-8F	1	24.742	27.216	1.00	1.00	1.47	39.36	0.000	0.000	64.01	0.00	0.00
40	137.00	7770.00	3	24.742	27.216	0.55	0.75	9.03	126.00	0.000	0.000	393.38	0.00	0.00
41	137.00	DMP65R-BU6DA	3	24.742	27.216	0.54	0.75	20.59	285.84	0.000	0.000	896.61	0.00	0.00
42	137.00	HRK14	1	24.742	27.216	1.00	1.00	8.13	362.83	0.000	0.000	354.02	0.00	0.00
43	137.00	LP Platform-Round	1	24.742	27.216	1.00	1.00	22.00	1800.00	0.000	0.000	958.00	0.00	0.00
44	137.00	LGP21401	6	24.742	27.216	0.50	0.75	3.89	136.80	0.000	0.000	169.36	0.00	0.00
45	137.00	LGP21903	6	24.742	27.216	0.50	0.75	0.81	36.00	4.341	0.000	35.45	96.16	0.00
46	137.00	HPA-65R-BUU-H6	3	24.742	27.216	0.64	0.75	18.47	183.60	0.000	0.000	804.49	0.00	0.00
47	137.00	7020	12	24.742	27.216	0.50	0.75	2.41	31.68	0.000	0.000	105.03	0.00	0.00

	Discrete Appurtenance Forces													
Structure:	CT02216-S-SBA			Co	de:		TIA-222-G	;	9/12/20)22				
Site Name:	Glastonbury			Ex	posure		В				(#))			
Height:	176.00 (ft)			Cre	est Heig	ght:	0.00				F	C		
Base Elev:	0.000 (ft)			Sit	e Class	:	D - Stiff So	oil		. I.		S		
Gh: 1.1 Topography: 1		Str	uct Cla	ss:	П		Page:	12	Fower Engineeri	ng Solutions				
48 137.00 Sn	nart Bias T 1001940	3	24.742 27.216	0.50	0.75	0.14	7.20	7.041	0.000	5.91	26.00	0.00		
				Totals:		19,344.16		20,9	926.58					

		Tot	tal App	lied Force Su	ummary		
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53
Site Name:	Glastonbury			Exposure:	В		((thu)
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 13	Tower Engineering Solutions

Load Case: 1.2D + 1.6W 97 mph Wind

Dead Load Factor Wind Load Factor

Ξ

1.20 1.60

26

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib-ft)
0.00		0.00	0.00	0.00	0.00
5.00		434 61	2045.30	0.00	0.00
10.00		426.97	2013 39	0.00	0.00
15.00		410.37	1081 /7	0.00	0.00
20.00		411 70	1949 55	0.00	0.00
25.00		404.06	1917 64	0.00	0.00
30.00		396.76	1885 72	0.00	0.00
35.00		406.64	1853.80	0.00	0.00
40.00		414 15	1821.80	0.00	0.00
40.00		229.55	099.42	0.00	0.00
42.75		101.25	1410.00	0.00	0.00
45.00		191.25	1410.20	0.00	0.00
49.00		343.98	2491.46	0.00	0.00
50.00		10.00	316.87	0.00	0.00
55.00		434.41	1567.60	0.00	0.00
60.00		436.03	1539.67	0.00	0.00
65.00		436.58	1511.75	0.00	0.00
70.00		436.18	1483.82	0.00	0.00
75.00		434.94	1455.89	0.00	0.00
80.00		432.91	1427.97	0.00	0.00
85.00		430.19	1400.04	0.00	0.00
86.50		127.68	414.57	0.00	0.00
90.00		303.24	1644.98	0.00	0.00
91.75		150.52	812.96	0.00	0.00
95.00		278.89	781.79	0.00	0.00
100.00		426.49	1183.00	0.00	0.00
105.00		421.55	1159.06	0.00	0.00
110.00		416.11	1135.12	0.00	0.00
115.00		410.21	1111.18	0.00	0.00
120.00		403.87	1087.25	0.00	0.00
125.00		397.11	1063.31	0.00	0.00
130.00		389.96	1039.37	0.00	0.00
131.25		95.94	256 10	0.00	0.00
135.00		290.20	1150 53	0.00	0.00
135.00		38.24	151 71	0.00	0.00
133.50	(15) attachments	JO.24	27/2 07	100.00	0.00
140.00	(45) allachments	4137.59	3/43.9/	122.10	0.00
140.00		220.93	401.42	0.00	0.00
145.00		372.44	656.27	0.00	0.00
147.00	(11) attachments	3092.18	3088.96	0.00	0.00
150.00		216.92	378.67	0.00	0.00
155.00		355.16	618.35	0.00	0.00
157.00	(22) attachments	4626.12	4570.16	0.00	0.00
160.00		206.16	350.02	0.00	0.00
165.00		336.68	570.60	0.00	0.00
167.00	(27) attachments	4883.80	4277.61	0.00	0.00
170.00		194.71	299.19	0.00	0.00
175.00		317.09	485.88	0.00	0.00
176.00	(26) attachments	4780.24	4710.46	0.00	4841.72
	Total Ap	plied Force Summary			
------------	-----------------------------	----------------------------	--------------------------------------		
Structure:	CT02216-S-SBA	Code: TIA-222-G	9/12/2022		
Site Name:	Glastonbury	Exposure: B	daana oo		
Height:	176.00 (ft)	Crest Height: 0.00	EC		
Base Elev:	0.000 (ft)	Site Class: D - Stiff Soil			
Gh:	1.1 Topography: 1	Struct Class:	Page: 14 Tower Engineering Solutions		
	Totals: 35,100.90 68,213.02	122.16 4,841.72			

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.00.53
Site Name:	Glastonbury			Exposure:	В		(cution)
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 15	Tower Engineering Solutions

Load Case: 1.2D + 1.6W 97 mph Wind

Dead Load Factor Wind Load Factor

1.20 1.60

erations

z

26

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
5.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	16.018	0.00	1.64
5.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	16.018	0.00	6.24
10.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	16.018	0.00	1.64
10.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	16.018	0.00	6.24
15.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	16.018	0.00	1.64
15.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	16.018	0.00	6.24
20.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	16.018	0.00	1.64
20.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	16.018	0.00	6.24
25.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	16.018	0.00	1.64
25.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	16.018	0.00	6.24
30.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	16.031	0.00	1.64
30.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	16.031	0.00	6.24
35.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.020	0.000	16.753	0.00	1.64
35.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.020	0.000	16.753	0.00	6.24
40.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.020	0.000	17.405	0.00	1.64
40.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.020	0.000	17.405	0.00	6.24
42.75	Safety Cable	Yes	2.75	0.000	0.38	0.09	0.00	0.021	0.000	17.739	0.00	0.90
42.75	Step bolts (ladder)	Yes	2.75	0.000	0.63	0.14	0.00	0.021	0.000	17.739	0.00	3.43
45.00	Safety Cable	Yes	2.25	0.000	0.38	0.07	0.00	0.021	0.000	18.000	0.00	0.74
45.00	Step bolts (ladder)	Yes	2.25	0.000	0.63	0.12	0.00	0.021	0.000	18.000	0.00	2.81
49.00	Safety Cable	Yes	4.00	0.000	0.38	0.13	0.00	0.021	0.000	18.444	0.00	1.31
49.00	Step bolts (ladder)	Yes	4.00	0.000	0.63	0.21	0.00	0.021	0.000	18.444	0.00	4.99
50.00	Safety Cable	Yes	1.00	0.000	0.38	0.03	0.00	0.021	0.000	18.551	0.00	0.33
50.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.05	0.00	0.021	0.000	18.551	0.00	1.25
55.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.021	0.000	19.063	0.00	1.64
55.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.021	0.000	19.063	0.00	6.24
60.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.022	0.000	19.543	0.00	1.64
60.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.022	0.000	19.543	0.00	6.24
65.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.022	0.000	19.995	0.00	1.64
65.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.022	0.000	19.995	0.00	6.24
70.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.023	0.000	20.422	0.00	1.64
70.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.023	0.000	20.422	0.00	6.24
75.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.023	0.000	20.829	0.00	1.64
75.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.023	0.000	20.829	0.00	6.24
80.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.024	0.000	21.217	0.00	1.64
80.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.024	0.000	21.217	0.00	6.24
85.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.024	0.000	21.587	0.00	1.64
85.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.024	0.000	21.587	0.00	6.24
86.50	Safety Cable	Yes	1.50	0.000	0.38	0.05	0.00	0.025	0.000	21.696	0.00	0.49
86.50	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.08	0.00	0.025	0.000	21.696	0.00	1.87
90.00	Safety Cable	Yes	3.50	0.000	0.38	0.11	0.00	0.025	0.000	21.943	0.00	1.15
90.00	Step bolts (ladder)	Yes	3.50	0.000	0.63	0.18	0.00	0.025	0.000	21.943	0.00	4.37
91.75	Safety Cable	Yes	1.75	0.000	0.38	0.06	0.00	0.025	0.000	22.064	0.00	0.57
91.75	Step bolts (ladder)	Yes	1.75	0.000	0.63	0.09	0.00	0.025	0.000	22.064	0.00	2.18
95.00	Safety Cable	Yes	3.25	0.000	0.38	0.10	0.00	0.025	0.000	22.284	0.00	1.06
95.00	Step bolts (ladder)	Yes	3.25	0.000	0.63	0.17	0.00	0.025	0.000	22.284	0.00	4.06
100.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.026	0.000	22.613	0.00	1.64

 $\label{eq:copyright} \verb"Copyright" "Copyright" \verb"Copyright" "Copyright" "Copyright"" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyr$

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53
Site Name:	Glastonbury			Exposure:	В		(cultur))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 16	Tower Engineering Solutions

Load Case: 1.2D + 1.6W 97 mph Wind

Dead Load Factor Wind Load Factor

1.20 1.60

¥	Iterations	
×		

z

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
100.00	Stop bolts (ladder)	Voc	5.00	0.000	0.62	0.26	0.00	0.026	0.000	22 612	0.00	6.24
100.00	Step boils (ladder)	Yes	5.00	0.000	0.03	0.20	0.00	0.026	0.000	22.013	0.00	1.64
105.00	Salety Cable	Yes	5.00	0.000	0.36	0.10	0.00	0.020	0.000	22.931	0.00	6.04
105.00	Step boils (ladder)	Yes	5.00	0.000	0.03	0.26	0.00	0.026	0.000	22.931	0.00	0.24
110.00	Step balta (ladder)	Yes	5.00	0.000	0.30	0.10	0.00	0.027	0.000	23.230	0.00	6.24
115.00	Step boils (ladder)	Yes	5.00	0.000	0.63	0.20	0.00	0.027	0.000	23.238	0.00	0.24
115.00	Salety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.028	0.000	23.535	0.00	1.64
115.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.028	0.000	23.535	0.00	6.24
120.00	Salety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.028	0.000	23.823	0.00	1.64
120.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.028	0.000	23.823	0.00	6.24
125.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.029	0.000	24.102	0.00	1.64
125.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.029	0.000	24.102	0.00	6.24
130.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.030	0.000	24.374	0.00	1.64
130.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.030	0.000	24.374	0.00	6.24
131.25	Safety Cable	Yes	1.25	0.000	0.38	0.04	0.00	0.031	0.000	24.440	0.00	0.41
131.25	Step bolts (ladder)	Yes	1.25	0.000	0.63	0.07	0.00	0.031	0.000	24.440	0.00	1.56
135.00	Safety Cable	Yes	3.75	0.000	0.38	0.12	0.00	0.031	0.000	24.638	0.00	1.23
135.00	Step bolts (ladder)	Yes	3.75	0.000	0.63	0.20	0.00	0.031	0.000	24.638	0.00	4.68
135.50	Safety Cable	Yes	0.50	0.000	0.38	0.02	0.00	0.032	0.000	24.664	0.00	0.16
135.50	Step bolts (ladder)	Yes	0.50	0.000	0.63	0.03	0.00	0.032	0.000	24.664	0.00	0.62
137.00	Safety Cable	Yes	1.50	0.000	0.38	0.05	0.00	0.031	0.000	24.742	0.00	0.49
137.00	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.08	0.00	0.031	0.000	24.742	0.00	1.87
140.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.032	0.000	24.895	0.00	0.98
140.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.032	0.000	24.895	0.00	3.74
145.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.033	0.000	25.146	0.00	1.64
145.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.033	0.000	25.146	0.00	6.24
147.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.033	0.000	25.245	0.00	0.66
147.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.033	0.000	25.245	0.00	2.50
150.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.034	0.000	25.391	0.00	0.98
150.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.034	0.000	25.391	0.00	3.74
155.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.035	0.000	25.630	0.00	1.64
155.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.035	0.000	25.630	0.00	6.24
157.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.036	0.000	25.724	0.00	0.66
157.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.036	0.000	25.724	0.00	2.50
160.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.036	0.000	25.863	0.00	0.98
160.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.036	0.000	25.863	0.00	3.74
165.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.037	0.000	26.092	0.00	1.64
165.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.037	0.000	26.092	0.00	6.24
167.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.038	0.000	26.182	0.00	0.66
167.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.038	0.000	26.182	0.00	2.50
170.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.039	0.000	26.315	0.00	0.98
170.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.039	0.000	26.315	0.00	3.74
175.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.040	0.000	26.534	0.00	1.64
175.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.040	0.000	26.534	0.00	6.24
176.00	Safety Cable	Yes	1.00	0.000	0.38	0.03	0.00	0.041	0.000	26.577	0.00	0.33
176.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.05	0.00	0.041	0.000	26.577	0.00	1.25
									То	tals:	0.0	277.3

		Calc	ulated Force	es		
Structure:	CT02216-S-SBA		Code:	TIA-222-G	9/12/2022	44.000.55
Site Name:	Glastonbury		Exposure:	В		((H))
Height:	176.00 (ft)		Crest Height:	0.00		EC
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil		
Gh:	1.1	Topography: 1	Struct Class:	11	Page: 17	Tower Engineering Solutions
Load Case:	1.2D + 1.6W 97	mph Wind			×4 I	terations 26
Dea	d Load Factor	1.20			×	
Win	d Load Factor	1.60			Z	

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-68.15	-35.22	-0.12	-4861.4	0.00	4861.42	6372.54	3186.27	14661.2	7341.49	0.00	0.000	0.000	0.673
5.00	-65.99	-35.00	-0.12	-4685.3	0.00	4685.34	6292.68	3146.34	14220.7	7120.95	0.10	-0.192	0.000	0.669
10.00	-63.86	-34.78	-0.12	-4510.3	0.00	4510.34	6211.66	3105.83	13784.2	6902.39	0.41	-0.388	0.000	0.664
15.00	-61.76	-34.56	-0.12	-4336.4	0.00	4336.42	6129.50	3064.75	13351.9	6685.89	0.92	-0.586	0.000	0.659
20.00	-59.70	-34.34	-0.12	-4163.6	0.00	4163.60	6046.18	3023.09	12923.8	6471.51	1.64	-0.788	0.000	0.653
25.00	-57.66	-34.11	-0.12	-3991.9	0.00	3991.90	5961.72	2980.86	12500.0	6259.33	2.58	-0.992	0.000	0.648
30.00	-55.66	-33.89	-0.12	-3821.3	0.00	3821.33	5876.11	2938.05	12080.8	6049.42	3.73	-1.199	0.000	0.641
35.00	-53.69	-33.63	-0.12	-3651.9	0.00	3651.91	5789.35	2894.67	11666.3	5841.84	5.10	-1.410	0.000	0.635
40.00	-51.79	-33.32	-0.12	-3483.7	0.00	3483.74	5679.25	2839.63	11212.8	5614.75	6.69	-1.623	0.000	0.630
42.75	-50.74	-33.16	-0.12	-3392.1	0.00	3392.10	5615.38	2807.69	10960.7	5488.51	7.66	-1.743	0.000	0.627
45.00	-49.25	-33.05	-0.12	-3317.4	0.00	3317.49	5563.11	2781.56	10756.6	5386.29	8.50	-1.842	0.000	0.625
49.00	-46.71	-32.71	-0.12	-3185.3	0.00	3185.31	4756.80	2378.40	9239.06	4626.40	10.12	-2.018	0.000	0.699
50.00	-46.32	-32.73	-0.12	-3152.6	0.00	3152.60	4742.51	2371.25	9172.60	4593.12	10.55	-2.063	0.000	0.696
55.00	-44.63	-32.42	-0.12	-2988.9	0.00	2988.98	4670.33	2335.16	8842.49	4427.82	12.83	-2.301	0.000	0.685
60.00	-42.98	-32.10	-0.12	-2826.8	0.00	2826.89	4597.00	2298.50	8516.13	4264.39	15.37	-2.540	0.000	0.672
65.00	-41.35	-31.77	-0.12	-2666.4	0.00	2666.40	4522.52	2261.26	8193.68	4102.93	18.16	-2.782	0.000	0.659
70.00	-39.76	-31.43	-0.12	-2507.5	0.00	2507.57	4446.89	2223.45	7875.26	3943.48	21.20	-3.025	0.000	0.645
75.00	-38.20	-31.08	-0.12	-2350.4	0.00	2350.44	4354.69	2177.34	7534.33	3772.77	24.50	-3.270	0.000	0.632
80.00	-36.67	-30.72	-0.12	-2195.0	-0.01	2195.07	4253.06	2126.53	7185.02	3597.85	28.06	-3.515	0.000	0.619
85.00	-35.21	-30.30	-0.12	-2041.5	-0.01	2041.50	4151.43	2075.72	6843.99	3427.08	31.87	-3.760	0.000	0.604
86.50	-34.74	-30.22	-0.12	-1996.0	-0.01	1996.06	4120.95	2060.47	6743.30	3376.66	33.06	-3.835	0.000	0.600
90.00	-33.05	-29.88	-0.12	-1890.3	-0.01	1890.30	4049.81	2024.90	6511.26	3260.47	35.93	-4.008	0.000	0.588
91.75	-32.19	-29.74	-0.12	-1838.0	-0.01	1838.02	3441.70	1720.85	5608.94	2808.64	37.42	-4.096	0.000	0.664
95.00	-31.32	-29.52	-0.12	-1741.3	-0.01	1741.37	3401.05	1700.53	5452.51	2730.31	40.26	-4.256	0.000	0.647
100.00	-30.04	-29.14	-0.12	-1593.7	-0.01	1593.77	3337.56	1668.78	5214.58	2611.16	44.85	-4.520	0.000	0.620
105.00	-28.79	-28.76	-0.12	-1448.0	-0.01	1448.07	3272.92	1636.46	4980.08	2493.74	49.72	-4.780	0.000	0.590
110.00	-27.57	-28.37	-0.12	-1304.2	-0.01	1304.28	3194.68	1597.34	4730.71	2368.87	54.86	-5.035	0.000	0.560
115.00	-26.38	-27.97	-0.12	-1162.4	-0.01	1162.45	3107.57	1553.79	4474.96	2240.81	60.26	-5.282	0.000	0.528
120.00	-25.23	-27.57	-0.12	-1022.6	-0.01	1022.60	3020.47	1510.23	4226.32	2116.30	65.91	-5.520	0.000	0.492
125.00	-24.10	-27.16	-0.12	-884.76	-0.01	884.76	2933.36	1466.68	3984.78	1995.35	71.81	-5.747	0.000	0.452
130.00	-23.05	-26.72	-0.12	-748.95	-0.01	748.95	2846.25	1423.13	3750.35	1877.96	77.93	-5.958	0.000	0.407
131.25	-22.76	-26.64	-0.12	-715.55	-0.01	715.55	2824.47	1412.24	3692.86	1849.17	79.50	-6.010	0.000	0.395
135.00	-21.61	-26.26	-0.12	-615.66	-0.01	615.66	2759.14	1379.57	3523.03	1764.13	84.27	-6.155	0.000	0.357
135.50	-21.44	-26.22	-0.12	-602.54	-0.01	602.54	1734.08	867.04	2260.78	1132.07	84.92	-6.174	0.000	0.546
137.00	-18.13	-21.73	0.00	-563.21	0.00	563.21	1723.43	861.72	2225.81	1114.56	86.86	-6.229	0.000	0.516
140.00	-17.69	-21.52	0.00	-498.02	0.00	498.02	1701.83	850.91	2156.25	1079.73	90.82	-6.375	0.000	0.472
145.00	-17.02	-21.12	0.00	-390.43	0.00	390.43	1664.90	832.45	2041.54	1022.29	97.60	-6.590	0.000	0.393
147.00	-14.28	-17.71	0.00	-348.20	0.00	348.20	1649.80	824.90	1996.11	999.54	100.37	-6.668	0.000	0.357
150.00	-13.89	-17.48	0.00	-295.07	0.00	295.07	1626.81	813.41	1928.48	965.67	104.59	-6.775	0.000	0.315
155.00	-13.29	-17.08	0.00	-207.05	0.00	207.65	1007.00	793.79	1817.22	909.90	111.75	-0.924	0.000	0.237
157.00	-9.31	-11.94	0.00	107.07	0.00	173.50	15/1.5/	785.79	1773.24	007.94	114.00	-0.973	0.000	0.202
160.00	-8.97	-11.71	0.00	-137.67	0.00	137.67	1547.20	773.60	1707.88	855.21	119.05	-7.037	0.000	0.167
167.00	-0.43	-11.31	0.00	-79.13	0.00	79.13 EG E4	1409 74	744.07	1600.62	790.20	120.44	-7.110	0.000	0.105
170.00	-4.79	-5.93	0.00	-30.31	0.00	20.01	1400.74	731 50	100.33	749.00	129.42	7 162	0.000	0.076
175.00	-4.52	-5.71	0.00	-30.71	0.00	10 17	1/11 70	705.95	1385 55	602 80	1/1 /0	-7.105	0.000	0.000
176.00	0.00	-3.33	0.00	_/ Q/	0.00	10.17	1400.00	700.00	1362.55	682.20	147.00	-7.100	0.000	0.010
170.00	0.00	-4.70	0.00	-4.04	0.00	4.04	1400.09	100.04	1002.10	002.00	142.50	-1.101	0.000	0.007

			Cal	culated Force	es	
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022
Site Name:	Glastonbury			Exposure:	В	de da sta
Height:	176.00 (ft)			Crest Height:	0.00	IEC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil	
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 18 Tower Engineering Solutions

			Wind	Loading - SI	naft		
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.XX
Site Name:	Glastonbury			Exposure:	В		((cHan))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 19	Tower Engineering Solutions
Load Case	: 0.9D + 1.6W 97	mph Wind				×4 I	erations 26

Load Case: 0.9D + 1.6W 97 mph Wind Dead Load Factor 0.90 Wind Load Factor 1.60

1		
L	X	

Elev				qz	qzGh	с		lce Thick	Tributary	Aa	CfAa	Wind Force X	Dead Load Ice	Tot Dead Load
(ft)	Description	Kzt	Kz	(psf)	(psf)	(mph-ft)	Cf	(in)	(ft)	(sf)	(sf)	(lb)	(lb)	(Ib)
0.00		1.00	0.70	16.018	17.62	388.35	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	16.018	17.62	381.58	0.650	0.000	5.00	23.718	15.42	434.6	0.0	1350.0
10.00		1.00	0.70	16.018	17.62	374.82	0.650	0.000	5.00	23.301	15.15	427.0	0.0	1326.1
15.00		1.00	0.70	16.018	17.62	368.05	0.650	0.000	5.00	22.884	14.87	419.3	0.0	1302.2
20.00		1.00	0.70	16.018	17.62	361.29	0.650	0.000	5.00	22.467	14.60	411.7	0.0	1278.2
25.00		1.00	0.70	16.018	17.62	354.52	0.650	0.000	5.00	22.050	14.33	404.1	0.0	1254.3
30.00		1.00	0.70	16.031	17.63	347.90	0.650	0.000	5.00	21.634	14.06	396.8	0.0	1230.4
35.00		1.00	0.73	16.753	18.43	348.73	0.650	0.000	5.00	21.217	13.79	406.6	0.0	1206.4
40.00		1.00	0.76	17.405	19.15	348.40	0.650	0.000	5.00	20.800	13.52	414.2	0.0	1182.5
42.75 Bot	- Section 2	1.00	0.78	17.739	19.51	347.81	0.650	0.000	2.75	11.262	7.32	228.5	0.0	640.2
45.00		1.00	0.79	18.000	19.80	347.14	0.650	0.000	2.25	9.288	6.04	191.3	0.0	980.9
49.00 Top	- Section 1	1.00	0.81	18.444	20.29	345.58	0.650	0.000	4.00	16.303	10.60	344.0	0.0	1721.5
50.00		1.00	0.81	18.551	20.41	351.59	0.650	0.000	1.00	4.034	2.62	85.6	0.0	200.9
55.00		1.00	0.83	19.063	20.97	349.03	0.650	0.000	5.00	19.920	12.95	434.4	0.0	991.8
60.00		1.00	0.85	19.543	21.50	345.92	0.650	0.000	5.00	19.503	12.68	436.0	0.0	970.8
65.00		1.00	0.87	19.995	21.99	342.34	0.650	0.000	5.00	19.086	12.41	430.0	0.0	949.9
70.00		1.00	0.89	20.422	22.46	338.35	0.650	0.000	5.00	18.670	12.14	436.2	0.0	928.9
75.00		1.00	0.91	20.829	22.91	333.98	0.650	0.000	5.00	18.253	11.80	434.9	0.0	908.0
80.00		1.00	0.93	21.217	23.34	329.29	0.050	0.000	5.00	17.030	11.09	432.9	0.0	007.0
00.00 86.50 Rot	Section 3	1.00	0.94	21.007	23.75	324.30	0.050	0.000	5.00 1.50	5 145	3.34	430.2	0.0	255.7
00.00 DOL	- Section 5	1.00	0.95	21.090	23.07	310.04	0.650	0.000	3.50	12 080	7.85	303.2	0.0	1105.0
91.75 Top	- Section 2	1.00	0.00	22.064	24.14	317.14	0.650	0.000	1 75	5 963	3.88	150.5	0.0	545.3
95.00		1.00	0.30	22.004	24.27	319.61	0.650	0.000	3.25	10.900	7 11	278.9	0.0	466.8
100.00		1.00	0.99	22.204	24.87	313.93	0.650	0.000	5.00	16 486	10.72	426.5	0.0	703.3
105.00		1.00	1.00	22.931	25.22	308.03	0.650	0.000	5.00	16.069	10.12	421.5	0.0	685.4
110.00		1.00	1.02	23 238	25.56	301.93	0.650	0.000	5.00	15 653	10.17	416.1	0.0	667.4
115.00		1.00	1.03	23.535	25.89	295.66	0.650	0.000	5.00	15.236	9.90	410.2	0.0	649.5
120.00		1.00	1.04	23.823	26.20	289.21	0.650	0.000	5.00	14.819	9.63	403.9	0.0	631.5
125.00		1.00	1.05	24.102	26.51	282.60	0.650	0.000	5.00	14.402	9.36	397.1	0.0	613.6
130.00		1.00	1.07	24.374	26.81	275.85	0.650	0.000	5.00	13.986	9.09	390.0	0.0	595.6
131.25 Bot	- Section 4	1.00	1.07	24.440	26.88	274.13	0.650	0.000	1.25	3.431	2.23	95.9	0.0	146.1
135.00		1.00	1.08	24.638	27.10	268.95	0.650	0.000	3.75	10.296	6.69	290.2	0.0	724.9
135.50 Top	- Section 3	1.00	1.08	24.664	27.13	268.25	0.650	0.000	0.50	1.355	0.88	38.2	0.0	95.4
137.00 App	urtenance(s)	1.00	1.08	24.742	27.22	270.42	0.650	0.000	1.50	4.040	2.63	114.4	0.0	115.1
140.00		1.00	1.09	24.895	27.38	266.20	0.650	0.000	3.00	7.968	5.18	226.9	0.0	227.0
145.00		1.00	1.10	25.146	27.66	259.06	0.650	0.000	5.00	12.947	8.42	372.4	0.0	368.8
147.00 App	urtenance(s)	1.00	1.10	25.245	27.77	256.17	0.650	0.000	2.00	5.062	3.29	146.2	0.0	144.2
150.00		1.00	1.11	25.391	27.93	251.80	0.650	0.000	3.00	7.468	4.85	216.9	0.0	212.6
155.00		1.00	1.12	25.630	28.19	244.42	0.650	0.000	5.00	12.113	7.87	355.2	0.0	344.8
157.00 App	urtenance(s)	1.00	1.12	25.724	28.30	241.44	0.650	0.000	2.00	4.729	3.07	139.2	0.0	134.6
160.00		1.00	1.13	25.863	28.45	236.94	0.650	0.000	3.00	6.968	4.53	206.2	0.0	198.3
165.00		1.00	1.14	26.092	28.70	229.35	0.650	0.000	5.00	11.280	7.33	336.7	0.0	320.9
167.00 App	urtenance(s)	1.00	1.14	26.182	28.80	226.28	0.650	0.000	2.00	4.395	2.86	131.6	0.0	125.0
170.00		1.00	1.15	26.315	28.95	221.66	0.650	0.000	3.00	6.468	4.20	194.7	0.0	183.9
175.00		1.00	1.16	26.534	29.19	213.87	0.650	0.000	5.00	10.446	6.79	317.1	0.0	296.9
176.00 App	urtenance(s)	1.00	1.16	26.577	29.24	212.30	0.650	0.000	1.00	2.039	1.33	62.0	0.0	58.0

	Wind Loading - Shaft									
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.bb			
Site Name:	Glastonbury			Exposure:	В		((HI))			
Height:	176.00 (ft)			Crest Height:	0.00		EC			
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil					
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 20	Tower Engineering Solutions			
				Tota	s: 176.00	14,174.3	30,791.6			

Discrete Appurtenance Forces

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53
Site Name:	Glastonbury			Exposure:	В		((thu)
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 21	Tower Engineering Solutions

Load Case: 0.9D + 1.6W 97 mph Wind

Dead Load Factor0.90Wind Load Factor1.60

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	176.00	KRY 112 489/2	3	26.620	29.282	0.50	0.75	0.98	41.58	0.000	1.000	45.91	0.00	45.91
2	176.00	MHA FE15501P77/75	6	26.620	29.282	0.49	0.75	2.72	59.40	0.000	1.000	127.45	0.00	127.45
3	176.00	Lightning Rod	1	26.727	29.400	1.00	1.00	1.05	31.50	0.000	3.500	49.39	0.00	172.87
4	176.00	RMQP-496-HK	1	26.620	29.282	1.00	1.00	46.00	2204.10	0.000	1.000	2155.19	0.00	2155.19
5	176.00	4460 B25 + B66	3	26.620	29.282	0.50	0.75	2.47	194.40	0.000	1.000	115.83	0.00	115.83
6	176.00	KRY 112 89/4	3	26.620	29.282	0.50	0.75	0.98	41.58	0.000	1.000	45.91	0.00	45.91
7	176.00	AIR 6419 B41	3	26.620	29.282	0.52	0.75	10.28	359.64	0.000	1.000	481.86	0.00	481.86
8	176.00	APXVAALL24_43-U-NA20	3	26.620	29.282	0.55	0.75	33.24	331.56	0.000	1.000	1557.56	0.00	1557.56
9	176.00	4449 B71 + B85	3	26.620	29.282	0.50	0.75	2.97	197.64	0.000	1.000	139.14	0.00	139.14
10	167.00	Commscope	3	26.182	28.800	0.64	0.75	15.66	136.89	0.000	0.000	721.77	0.00	0.00
11	167.00	Commscope	3	26.182	28.800	0.62	0.75	15.09	117.99	0.000	0.000	695.32	0.00	0.00
12	167.00	APL868013	1	26.182	28.800	1.00	1.00	2.86	5.67	0.000	0.000	131.79	0.00	0.00
13	167.00	Samsung MT6407-77A	3	26.182	28.800	0.52	0.75	7.39	214.38	0.000	0.000	340.38	0.00	0.00
14	167.00	LPA-80063-4CF-EDIN-5	2	26.182	28.800	0.84	0.90	10.30	36.00	0.000	0.000	474.40	0.00	0.00
15	167.00	Low Profile	1	26.182	28.800	1.00	1.00	22.00	1350.00	0.000	0.000	1013.76	0.00	0.00
16	167.00	KICKER KIT	1	26.182	28.800	1.00	1.00	5.33	131.40	0.000	0.000	245.61	0.00	0.00
17	167.00	B2/B66A RRH ORAN	3	26.182	28.800	0.50	0.75	2.82	227.88	0.000	0.000	129.90	0.00	0.00
18	167.00	B5/B13 RRH ORAN	3	26.182	28.800	0.50	0.75	2.82	189.81	0.000	0.000	129.90	0.00	0.00
19	167.00	CBRS RRH - RT4401-48A	3	26.182	28.800	0.50	0.75	1.49	50.22	0.000	0.000	68.77	0.00	0.00
20	167.00	Raycap	2	26.182	28.800	0.81	0.90	6.12	57.60	0.000	0.000	282.17	0.00	0.00
21	167.00	MONOPOLE COLLAR	1	26.182	28.800	1.00	1.00	2.50	135.54	0.000	0.000	115.20	0.00	0.00
22	167.00	SUPPORT RAIL CORNER	1	26.182	28.800	1.00	1.00	8.75	387.00	0.000	0.000	403.20	0.00	0.00
23	157.00	ALU TD-RRH8x20-25	3	25.724	28.296	0.54	0.80	6.51	189.00	0.000	0.000	294.84	0.00	0.00
24	157.00	ALU 800 Mhz	6	25.724	28.296	0.54	0.80	8.01	286.20	0.000	0.000	362.55	0.00	0.00
25	157.00	ALU 1900 Mhz	3	25.724	28.296	0.54	0.80	4.45	162.00	0.000	0.000	201.66	0.00	0.00
26	157.00	Sitepro PRK-1245L	1	25.724	28.296	1.00	1.00	9.50	418.42	0.000	0.000	430.10	0.00	0.00
27	157.00	RFS APXVTM14-C-I20	3	25.724	28.296	0.62	0.80	11.72	151.74	0.000	0.000	530.45	0.00	0.00
28	157.00	Commscope	3	25.724	28.296	0.60	0.80	22.09	208.98	0.000	0.000	999.92	0.00	0.00
29	157.00	Low Profile Platform	1	25.724	28.296	1.00	1.00	22.00	1350.00	0.000	0.000	996.03	0.00	0.00
30	157.00	Sitepro HRK14-U	1	25.724	28.296	1.00	1.00	8.13	272.12	0.000	0.000	368.08	0.00	0.00
31	157.00	Sitepro PRK-SFS-H-L	1	25.724	28.296	1.00	1.00	6.70	207.00	0.000	0.000	303.34	0.00	0.00
32	147.00	RDIDC-9181-PF-48	1	25.245	27.769	1.00	1.00	2.01	19.71	0.000	0.000	89.31	0.00	0.00
33	147.00	TA08025-B604	3	25.245	27.769	0.50	0.75	2.95	172.53	0.000	0.000	131.28	0.00	0.00
34	147.00	TA08025-B605	3	25.245	27.769	0.50	0.75	2.95	202.50	0.000	0.000	131.28	0.00	0.00
35	147.00	MC-PK8-DSH	1	25.245	27.769	1.00	1.00	37.59	1554.30	0.000	0.000	1670.15	0.00	0.00
36	147.00	MX08FRO665-21	3	25.245	27.769	0.55	0.75	20.80	174.15	0.000	0.000	923.97	0.00	0.00
37	137.00	B2 B66A 8843	3	24.742	27.216	0.50	0.75	2.47	189.00	0.000	0.000	107.66	0.00	0.00
38	137.00	4449 B5/B12	3	24.742	27.216	0.50	0.75	2.97	191.70	0.000	0.000	129.32	0.00	0.00
39	137.00	DC6-48-60-18-8F	1	24.742	27.216	1.00	1.00	1.47	29.52	0.000	0.000	64.01	0.00	0.00
40	137.00	7770.00	3	24.742	27.216	0.55	0.75	9.03	94.50	0.000	0.000	393.38	0.00	0.00
41	137.00	DMP65R-BU6DA	3	24.742	27.216	0.54	0.75	20.59	214.38	0.000	0.000	896.61	0.00	0.00
42	137.00	HRK14	1	24.742	27.216	1.00	1.00	8.13	272.12	0.000	0.000	354.02	0.00	0.00
43	137.00	LP Platform-Round	1	24.742	27.216	1.00	1.00	22.00	1350.00	0.000	0.000	958.00	0.00	0.00
44	137.00	LGP21401	6	24.742	27.216	0.50	0.75	3.89	102.60	0.000	0.000	169.36	0.00	0.00
45	137.00	LGP21903	6	24.742	27.216	0.50	0.75	0.81	27.00	4.341	0.000	35.45	96.16	0.00
46	137.00	HPA-65R-BUU-H6	3	24.742	27.216	0.64	0.75	18.47	137.70	0.000	0.000	804.49	0.00	0.00
47	137.00	7020	12	24.742	27.216	0.50	0.75	2.41	23.76	0.000	0.000	105.03	0.00	0.00

	Discrete Appurtenance Forces											
Structure:	CT02216-S-SBA			Co	de:		TIA-222-G		9/12/20)22		
Site Name:	Glastonbury			Ex	posure		В				(H))	
Height:	176.00 (ft)			Cre	est Heig	ght:	0.00				E	C
Base Elev:	0.000 (ft)			Sit	e Class	:	D - Stiff Sc	bil		- I.		S
Gh:	1.1	Торо	graphy: 1	Str	uct Cla	ss:	II		Page:	22	Tower Engineeri	ng Solutions
48 137.00 Sn	nart Bias T 1001940	3	24.742 27.216	0.50	0.75	0.14	5.40	7.041	0.000	5.91	26.00	0.00
					Totals:		14,508.12		20,9	926.58		

	Total Applied Force Summary								
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53		
Site Name:	Glastonbury			Exposure:	В		((th))		
Height:	176.00 (ft)			Crest Height:	0.00		EC		
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil				
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 23	Tower Engineering Solutions		

Load Case: 0.9D + 1.6W 97 mph Wind

Ξ

Dead Load Factor Wind Load Factor

0.90 1.60

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib-ft)
0.00		0.00	0.00	0.00	0.00
5.00		434.61	1533.98	0.00	0.00
10.00		426.97	1510.04	0.00	0.00
15.00		419.34	1486.10	0.00	0.00
20.00		411.70	1462.17	0.00	0.00
25.00		404.06	1438.23	0.00	0.00
30.00		396.76	1414.29	0.00	0.00
35.00		406.64	1390.35	0.00	0.00
40.00		414.15	1366.41	0.00	0.00
42.75		228.55	741.32	0.00	0.00
45.00		191.25	1063.71	0.00	0.00
49.00		343.98	1868.60	0.00	0.00
50.00		85.61	237.65	0.00	0.00
55.00		434.41	1175.70	0.00	0.00
60.00		436.03	1154.76	0.00	0.00
65.00		436.58	1133.81	0.00	0.00
70.00		436.18	1112.87	0.00	0.00
75.00		434 94	1091 92	0.00	0.00
80.00		432.91	1070.97	0.00	0.00
85.00		430 19	1050.03	0.00	0.00
86.50		127.68	310.92	0.00	0.00
90.00		303.24	1233 73	0.00	0.00
91 75		150.52	609.72	0.00	0.00
95.00		278.89	586 34	0.00	0.00
100.00		426.49	887.25	0.00	0.00
105.00		121.45	860.30	0.00	0.00
110.00		421.00	851.24	0.00	0.00
115.00		410.11	922.20	0.00	0.00
120.00		410.21	033.39	0.00	0.00
120.00		403.87	015.44	0.00	0.00
125.00		397.11	770 50	0.00	0.00
130.00		389.96	102.02	0.00	0.00
131.25		95.94	192.08	0.00	0.00
135.00		290.20	862.90	0.00	0.00
135.50		38.24	113.78	0.00	0.00
137.00	(45) attachments	4137.59	2807.98	122.16	0.00
140.00		226.93	301.07	0.00	0.00
145.00		372.44	492.20	0.00	0.00
147.00	(11) attachments	3092.18	2316.72	0.00	0.00
150.00		216.92	284.00	0.00	0.00
155.00		355.16	463.77	0.00	0.00
157.00	(22) attachments	4626.12	3427.62	0.00	0.00
160.00		206.16	262.51	0.00	0.00
165.00		336.68	427.95	0.00	0.00
167.00	(27) attachments	4883.80	3208.21	0.00	0.00
170.00		194.71	224.39	0.00	0.00
175.00		317.09	364.41	0.00	0.00
176.00	(26) attachments	4780.24	3532.85	0.00	4841.72

	Total Applied Force Summary									
Structure:	CT02216-	-S-SBA		Code:		TIA-222-G	9/12/2022	44.000 N		
Site Name:	Glastonbu	ıry		Expos	sure:	В		((itti))		
Height:	176.00 (ft))		Crest	Height:	0.00		EC		
Base Elev:	0.000 (ft)			Site C	lass:	D - Stiff Soil				
Gh:	1.1	Тор	ography: 1	Struc	t Class:	11	Page: 24	Tower Engineering Solutions		
	Totals:	35,100.90	51,159.77	122.16	4,841.72	2				

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.00.53
Site Name:	Glastonbury			Exposure:	В		((allow)
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 25	Tower Engineering Solutions

Load Case: 0.9D + 1.6W 97 mph Wind

Dead Load Factor Wind Load Factor

0.90 1.60

26

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
5.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	16.018	0.00	1.23
5.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	16.018	0.00	4.68
10.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	16.018	0.00	1.23
10.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	16.018	0.00	4.68
15.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	16.018	0.00	1.23
15.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	16.018	0.00	4.68
20.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	16.018	0.00	1.23
20.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	16.018	0.00	4.68
25.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	16.018	0.00	1.23
25.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	16.018	0.00	4.68
30.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	16.031	0.00	1.23
30.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	16.031	0.00	4.68
35.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.020	0.000	16.753	0.00	1.23
35.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.020	0.000	16.753	0.00	4.68
40.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.020	0.000	17.405	0.00	1.23
40.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.020	0.000	17.405	0.00	4.68
42.75	Safety Cable	Yes	2.75	0.000	0.38	0.09	0.00	0.021	0.000	17.739	0.00	0.68
42.75	Step bolts (ladder)	Yes	2.75	0.000	0.63	0.14	0.00	0.021	0.000	17.739	0.00	2.57
45.00	Safety Cable	Yes	2.25	0.000	0.38	0.07	0.00	0.021	0.000	18.000	0.00	0.55
45.00	Step bolts (ladder)	Yes	2.25	0.000	0.63	0.12	0.00	0.021	0.000	18.000	0.00	2.11
49.00	Safety Cable	Yes	4.00	0.000	0.38	0.13	0.00	0.021	0.000	18.444	0.00	0.98
49.00	Step bolts (ladder)	Yes	4.00	0.000	0.63	0.21	0.00	0.021	0.000	18.444	0.00	3.74
50.00	Safety Cable	Yes	1.00	0.000	0.38	0.03	0.00	0.021	0.000	18.551	0.00	0.25
50.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.05	0.00	0.021	0.000	18.551	0.00	0.94
55.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.021	0.000	19.063	0.00	1.23
55.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.021	0.000	19.063	0.00	4.68
60.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.022	0.000	19.543	0.00	1.23
60.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.022	0.000	19.543	0.00	4.68
65.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.022	0.000	19.995	0.00	1.23
65.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.022	0.000	19.995	0.00	4.68
70.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.023	0.000	20.422	0.00	1.23
70.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.023	0.000	20.422	0.00	4.68
75.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.023	0.000	20.829	0.00	1.23
75.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.023	0.000	20.829	0.00	4.68
80.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.024	0.000	21.217	0.00	1.23
80.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.024	0.000	21.217	0.00	4.68
85.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.024	0.000	21.587	0.00	1.23
85.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.024	0.000	21.587	0.00	4.68
86.50	Safety Cable	Yes	1.50	0.000	0.38	0.05	0.00	0.025	0.000	21.696	0.00	0.37
86.50	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.08	0.00	0.025	0.000	21.696	0.00	1.40
90.00	Safety Cable	Yes	3.50	0.000	0.38	0.11	0.00	0.025	0.000	21.943	0.00	0.86
90.00	Step bolts (ladder)	Yes	3.50	0.000	0.63	0.18	0.00	0.025	0.000	21.943	0.00	3.28
91.75	Safety Cable	Yes	1.75	0.000	0.38	0.06	0.00	0.025	0.000	22.064	0.00	0.43
91.75	Step bolts (ladder)	Yes	1.75	0.000	0.63	0.09	0.00	0.025	0.000	22.064	0.00	1.64
95.00	Safety Cable	Yes	3.25	0.000	0.38	0.10	0.00	0.025	0.000	22.284	0.00	0.80
95.00	Step bolts (ladder)	Yes	3.25	0.000	0.63	0.17	0.00	0.025	0.000	22.284	0.00	3.04
100.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.026	0.000	22.613	0.00	1.23

 $\label{eq:copyright} \verb"Copyright" "Copyright" \verb"Copyright" "Copyright" "Copyright"" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyr$

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44,000.53
Site Name:	Glastonbury			Exposure:	В		(add and
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 26	Tower Engineering Solutions

Load Case: 0.9D + 1.6W 97 mph Wind

Dead Load Factor Wind Load Factor

0.90 1.60

¥	Iterations
Z X	

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	FX (lb)	Dead Load (Ib)
100.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.026	0.000	22.613	0.00	4.68
105.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.026	0.000	22.931	0.00	1.23
105.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.026	0.000	22.931	0.00	4.68
110.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.027	0.000	23.238	0.00	1.23
110.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.027	0.000	23.238	0.00	4.68
115.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.028	0.000	23,535	0.00	1.23
115.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.028	0.000	23,535	0.00	4.68
120.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.028	0.000	23.823	0.00	1.23
120.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.028	0.000	23.823	0.00	4.68
125.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.029	0.000	24.102	0.00	1.23
125.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.029	0.000	24.102	0.00	4.68
130.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.030	0.000	24.374	0.00	1.23
130.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.030	0.000	24.374	0.00	4.68
131.25	Safety Cable	Yes	1.25	0.000	0.38	0.04	0.00	0.031	0.000	24,440	0.00	0.31
131.25	Step bolts (ladder)	Yes	1.25	0.000	0.63	0.07	0.00	0.031	0.000	24,440	0.00	1.17
135.00	Safety Cable	Yes	3.75	0.000	0.38	0.12	0.00	0.031	0.000	24.638	0.00	0.92
135.00	Step bolts (ladder)	Yes	3.75	0.000	0.63	0.20	0.00	0.031	0.000	24.638	0.00	3.51
135.50	Safety Cable	Yes	0.50	0.000	0.38	0.02	0.00	0.032	0.000	24.664	0.00	0.12
135.50	Step bolts (ladder)	Yes	0.50	0.000	0.63	0.03	0.00	0.032	0.000	24.664	0.00	0.47
137.00	Safety Cable	Yes	1.50	0.000	0.38	0.05	0.00	0.031	0.000	24,742	0.00	0.37
137.00	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.08	0.00	0.031	0.000	24.742	0.00	1.40
140.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.032	0.000	24.895	0.00	0.74
140.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.032	0.000	24.895	0.00	2.81
145.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.033	0.000	25.146	0.00	1.23
145.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.033	0.000	25.146	0.00	4.68
147.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.033	0.000	25.245	0.00	0.49
147.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.033	0.000	25.245	0.00	1.87
150.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.034	0.000	25.391	0.00	0.74
150.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.034	0.000	25.391	0.00	2.81
155.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.035	0.000	25.630	0.00	1.23
155.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.035	0.000	25.630	0.00	4.68
157.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.036	0.000	25.724	0.00	0.49
157.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.036	0.000	25.724	0.00	1.87
160.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.036	0.000	25.863	0.00	0.74
160.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.036	0.000	25.863	0.00	2.81
165.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.037	0.000	26.092	0.00	1.23
165.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.037	0.000	26.092	0.00	4.68
167.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.038	0.000	26.182	0.00	0.49
167.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.038	0.000	26.182	0.00	1.87
170.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.039	0.000	26.315	0.00	0.74
170.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.039	0.000	26.315	0.00	2.81
175.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.040	0.000	26.534	0.00	1.23
175.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.040	0.000	26.534	0.00	4.68
176.00	Safety Cable	Yes	1.00	0.000	0.38	0.03	0.00	0.041	0.000	26.577	0.00	0.25
176.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.05	0.00	0.041	0.000	26.577	0.00	0.94
									То	tals:	0.0	208.0

Calculated Forces												
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53					
Site Name:	Glastonbury			Exposure:	В		((itter))					
Height:	176.00 (ft)			Crest Height:	0.00		EC					
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil							
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 27	Tower Engineering Solution					
Load Case:	0.9D + 1.6W 97	mph Wind				× P	terations 26					
Dea	d Load Factor	0.90				×						
Win	d Load Factor	1.60				Z						

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-51.10	-35.19	-0.12	-4776.0	0.00	4776.07	6372.54	3186.27	14661.2	7341.49	0.00	0.000	0.000	0.659
5.00	-49.45	-34.91	-0.12	-4600.1	0.00	4600.14	6292.68	3146.34	14220.7	7120.95	0.10	-0.189	0.000	0.654
10.00	-47.83	-34.64	-0.12	-4425.5	0.00	4425.57	6211.66	3105.83	13784.2	6902.39	0.40	-0.381	0.000	0.649
15.00	-46.23	-34.37	-0.12	-4252.3	0.00	4252.38	6129.50	3064.75	13351.9	6685.89	0.90	-0.575	0.000	0.644
20.00	-44.65	-34.09	-0.12	-4080.5	0.00	4080.54	6046.18	3023.09	12923.8	6471.51	1.61	-0.773	0.000	0.638
25.00	-43.10	-33.82	-0.12	-3910.0	0.00	3910.08	5961.72	2980.86	12500.0	6259.33	2.53	-0.973	0.000	0.632
30.00	-41.58	-33.54	-0.12	-3740.9	0.00	3740.98	5876.11	2938.05	12080.8	6049.42	3.66	-1.176	0.000	0.626
35.00	-40.07	-33.25	-0.12	-3573.2	0.00	3573.26	5789.35	2894.67	11666.3	5841.84	5.00	-1.382	0.000	0.619
40.00	-38.63	-32.91	-0.12	-3407.0	0.00	3407.00	5679.25	2839.63	11212.8	5614.75	6.56	-1.591	0.000	0.614
42.75	-37.83	-32.73	-0.12	-3316.5	0.00	3316.50	5615.38	2807.69	10960.7	5488.51	7.51	-1.708	0.000	0.611
45.00	-36.70	-32.60	-0.12	-3242.8	0.00	3242.85	5563.11	2781.56	10756.6	5386.29	8.34	-1.805	0.000	0.609
49.00	-34.78	-32.26	-0.12	-3112.4	0.00	3112.46	4756.80	2378.40	9239.06	4626.40	9.92	-1.977	0.000	0.680
50.00	-34.47	-32.25	-0.12	-3080.2	0.00	3080.21	4742.51	2371.25	9172.60	4593.12	10.34	-2.021	0.000	0.678
55.00	-33.18	-31.90	-0.12	-2918.9	0.00	2918.98	4670.33	2335.16	8842.49	4427.82	12.58	-2.253	0.000	0.667
60.00	-31.91	-31.55	-0.12	-2759.4	0.00	2759.47	4597.00	2298.50	8516.13	4264.39	15.07	-2.487	0.000	0.654
65.00	-30.67	-31.19	-0.12	-2601.7	0.00	2601.72	4522.52	2261.26	8193.68	4102.93	17.80	-2.723	0.000	0.641
70.00	-29.45	-30.82	-0.12	-2445.7	0.00	2445.77	4446.89	2223.45	7875.26	3943.48	20.77	-2.960	0.000	0.627
75.00	-28.26	-30.45	-0.12	-2291.6	0.00	2291.66	4354.69	2177.34	7534.33	3772.77	24.00	-3.198	0.000	0.614
80.00	-27.09	-30.07	-0.12	-2139.4	0.00	2139.43	4253.06	2126.53	7185.02	3597.85	27.48	-3.437	0.000	0.601
85.00	-25.99	-29.64	-0.12	-1989.1	0.00	1989.11	4151.43	2075.72	6843.99	3427.08	31.20	-3.676	0.000	0.587
86.50	-25.63	-29.55	-0.12	-1944.6	0.00	1944.64	4120.95	2060.47	6743.30	3376.66	32.37	-3.750	0.000	0.582
90.00	-24.35	-29.22	-0.12	-1841.2	0.00	1841.23	4049.81	2024.90	6511.26	3260.47	35.18	-3.918	0.000	0.571
91.75	-23.69	-29.08	-0.12	-1790.1	-0.01	1790.10	3441.70	1720.85	5608.94	2808.64	36.63	-4.003	0.000	0.645
95.00	-23.02	-28.84	-0.12	-1695.6	-0.01	1695.60	3401.05	1700.53	5452.51	2730.31	39.41	-4.159	0.000	0.628
100.00	-22.04	-28.45	-0.12	-1551.4	-0.01	1551.41	3337.56	1668.78	5214.58	2611.16	43.90	-4.417	0.000	0.601
105.00	-21.09	-28.05	-0.12	-1409.1	-0.01	1409.18	3272.92	1636.46	4980.08	2493.74	48.66	-4.670	0.000	0.572
110.00	-20.16	-27.65	-0.12	-1268.9	-0.01	1268.94	3194.68	1597.34	4730.71	2368.87	53.67	-4.918	0.000	0.542
115.00	-19.25	-27.25	-0.12	-1130.7	-0.01	1130.70	3107.57	1553.79	4474.96	2240.81	58.95	-5.158	0.000	0.511
120.00	-18.37	-26.84	-0.12	-994.46	-0.01	994.46	3020.47	1510.23	4226.32	2116.30	64.47	-5.390	0.000	0.476
125.00	-17.52	-26.44	-0.12	-860.25	-0.01	860.25	2933.36	1466.68	3984.78	1995.35	70.22	-5.610	0.000	0.437
130.00	-16.72	-26.01	-0.12	-728.07	-0.01	728.07	2846.25	1423.13	3750.35	1877.96	76.20	-5.816	0.000	0.394
131.25	-16.50	-25.92	-0.12	-695.56	-0.01	695.56	2824.47	1412.24	3692.86	1849.17	77.73	-5.866	0.000	0.382
135.00	-15.63	-25.56	-0.12	-598.36	-0.01	598.36	2759.14	1379.57	3523.03	1764.13	82.39	-6.007	0.000	0.345
135.50	-15.51	-25.52	-0.12	-585.58	-0.01	585.58	1734.08	867.04	2260.78	1132.07	83.02	-6.025	0.000	0.527
137.00	-13.12	-21.14	0.00	-547.29	0.00	547.29	1723.43	861.72	2225.81	1114.56	84.92	-6.079	0.000	0.499
140.00	-12.78	-20.92	0.00	-483.89	0.00	483.89	1701.83	850.91	2156.25	1079.73	88.77	-6.220	0.000	0.456
145.00	-12.28	-20.52	0.00	-379.30	0.00	379.30	1664.90	832.45	2041.54	1022.29	95.39	-6.429	0.000	0.379
147.00	-10.30	-17.21	0.00	-338.25	0.00	338.25	1649.80	824.90	1996.11	999.54	98.10	-6.505	0.000	0.345
150.00	-10.00	-16.98	0.00	-286.64	0.00	286.64	1626.81	813.41	1928.48	965.67	102.21	-6.609	0.000	0.303
155.00	-9.56	-16.59	0.00	-201.74	0.00	201.74	1587.58	793.79	1817.22	909.96	109.20	-6.753	0.000	0.228
157.00	-6.69	-11.60	0.00	-168.56	0.00	168.56	1571.57	785.79	1773.24	887.94	112.03	-6.802	0.000	0.194
160.00	-6.44	-11.37	0.00	-133.77	0.00	133.77	1547.20	773.60	1707.88	855.21	116.32	-6.864	0.000	0.161
165.00	-6.04	-10.99	0.00	-76.92	0.00	76.92	1505.67	752.84	1600.62	801.50	123.53	-6.941	0.000	0.100
167.00	-3.45	-5.75	0.00	-54.95	0.00	54.95	1488.74	744.37	1558.33	780.32	126.44	-6.962	0.000	0.073
170.00	-3.25	-5.53	0.00	-37.69	0.00	37.69	1462.99	731.50	1495.57	748.90	130.81	-6.986	0.000	0.053
175.00	-2.92	-5.18	0.00	-10.02	0.00	10.02	1411.70	705.85	1385.55	693.80	138.12	-7.008	0.000	0.017
176.00	0.00	-4.78	0.00	-4.84	0.00	4.84	1400.09	700.04	1362.73	682.38	139.59	-7.009	0.000	0.007

	Calculated Forces													
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022								
Site Name:	Glastonbury			Exposure:	В	dee ute sob								
Height:	176.00 (ft)			Crest Height:	0.00	EC								
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 28 Tower Engineering Solutions								

	Wind Loading - Shaft												
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	4						
Site Name:	Glastonbury			Exposure:	В		((H))						
Height:	176.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 29	Tower Engineering Solutions						
Load Case	: 1.2D + 1.0Di + 1	1.0Wi 50 mph W	'ind			×	terations 27						
Dea	d Load Factor	1.20				×							
Win	nd Load Factor	1.00				Z							

Load Case: 1.2D + 1.0Di +	1.0Wi 50 mph Wind
Dead Load Factor	1.20
Wind Load Factor	1.00

						- 22		lce				Wind	Dead	Tot Dead
Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Force X (Ib)	Load Ice (Ib)	Load (Ib)
0.00		1.00	0.70	4.256	4.68	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	4.256	4.68	0.00	1.200	1.656	5.00	25.098	30.12	141.0	593.6	2393.6
10.00		1.00	0.70	4.256	4.68	0.00	1.200	1.775	5.00	24.780	29.74	139.2	626.5	2394.7
15.00		1.00	0.70	4.256	4.68	0.00	1.200	1.848	5.00	24.424	29.31	137.2	641.9	2378.1
20.00		1.00	0.70	4.256	4.68	0.00	1.200	1.902	5.00	24.053	28.86	135.1	649.5	2353.8
25.00		1.00	0.70	4.256	4.68	0.00	1.200	1.945	5.00	23.671	28.41	133.0	652.7	2325.1
30.00		1.00	0.70	4.260	4.69	0.00	1.200	1.981	5.00	23.285	27.94	130.9	652.9	2293.4
35.00		1.00	0.73	4.451	4.90	0.00	1.200	2.012	5.00	22.893	27.47	134.5	651.0	2259.5
40.00		1.00	0.76	4.625	5.09	0.00	1.200	2.039	5.00	22.499	27.00	137.3	647.5	2224.1
42.75 Bot	- Section 2	1.00	0.78	4.713	5.18	0.00	1.200	2.052	2.75	12.203	14.64	75.9	354.8	1208.3
45.00		1.00	0.79	4.783	5.26	0.00	1.200	2.063	2.25	10.061	12.07	63.5	294.3	1602.2
49.00 Top	- Section 1	1.00	0.81	4.901	5.39	0.00	1.200	2.081	4.00	17.690	21.23	114.4	519.7	2814.9
50.00		1.00	0.81	4.929	5.42	0.00	1.200	2.085	1.00	4.381	5.26	28.5	129.7	397.5
55.00		1.00	0.83	5.065	5.57	0.00	1.200	2.105	5.00	21.674	26.01	144.9	641.9	1964.2
60.00		1.00	0.85	5.193	5.71	0.00	1.200	2.123	5.00	21.273	25.53	145.8	634.6	1929.0
65.00		1.00	0.87	5.313	5.84	0.00	1.200	2.140	5.00	20.870	25.04	146.4	626.7	1893.2
70.00		1.00	0.89	5.426	5.97	0.00	1.200	2.156	5.00	20.466	24.56	146.6	618.3	1856.9
75.00		1.00	0.91	5.534	6.09	0.00	1.200	2.171	5.00	20.062	24.07	146.6	609.4	1820.0
80.00		1.00	0.93	5.637	6.20	0.00	1.200	2.185	5.00	19.657	23.59	146.3	600.0	1782.7
85.00		1.00	0.94	5.736	6.31	0.00	1.200	2.198	5.00	19.251	23.10	145.8	590.3	1745.1
86.50 Bot	- Section 3	1.00	0.95	5.765	6.34	0.00	1.200	2.202	1.50	5.695	6.83	43.3	176.2	517.2
90.00		1.00	0.96	5.830	6.41	0.00	1.200	2.211	3.50	13.370	16.04	102.9	413.4	1886.7
91.75 Top	o - Section 2	1.00	0.96	5.862	6.45	0.00	1.200	2.215	1.75	6.610	7.93	51.1	205.4	932.6
95.00		1.00	0.97	5.921	6.51	0.00	1.200	2.223	3.25	12.144	14.57	94.9	377.1	999.5
100.00		1.00	0.99	6.008	6.61	0.00	1.200	2.234	5.00	18.348	22.02	145.5	569.5	1507.3
105.00		1.00	1.00	6.093	6.70	0.00	1.200	2.245	5.00	17.941	21.53	144.3	558.6	1472.4
110.00		1.00	1.02	6.174	6.79	0.00	1.200	2.256	5.00	17.533	21.04	142.9	547.4	1437.3
115.00		1.00	1.03	6.253	6.88	0.00	1.200	2.266	5.00	17.124	20.55	141.3	536.0	1402.0
120.00		1.00	1.04	6.330	6.96	0.00	1.200	2.276	5.00	16.715	20.06	139.7	524.4	1366.4
125.00		1.00	1.05	6.404	7.04	0.00	1.200	2.285	5.00	16.306	19.57	137.8	512.6	1330.7
130.00		1.00	1.07	6.476	7.12	0.00	1.200	2.294	5.00	15.897	19.08	135.9	500.6	1294.7
131.25 Bot	- Section 4	1.00	1.07	6.494	7.14	0.00	1.200	2.296	1.25	3.910	4.69	33.5	124.4	319.2
135.00		1.00	1.08	6.546	7.20	0.00	1.200	2.303	3.75	11.735	14.08	101.4	371.7	1338.3
135.50 Top	o - Section 3	1.00	1.08	6.553	7.21	0.00	1.200	2.303	0.50	1.547	1.86	13.4	49.4	176.6
137.00 App	ourtenance(s)	1.00	1.08	6.574	7.23	0.00	1.200	2.306	1.50	4.617	5.54	40.1	147.2	300.7
140.00		1.00	1.09	6.615	7.28	0.00	1.200	2.311	3.00	9.124	10.95	79.7	289.9	592.6
145.00		1.00	1.10	6.681	7.35	0.00	1.200	2.319	5.00	14.879	17.86	131.2	470.7	962.4
147.00 App	ourtenance(s)	1.00	1.10	6.708	7.38	0.00	1.200	2.322	2.00	5.836	7.00	51.7	186.3	378.5
150.00		1.00	1.11	6.746	7.42	0.00	1.200	2.327	3.00	8.631	10.36	76.9	274.9	558.4
155.00		1.00	1.12	6.810	7.49	0.00	1.200	2.335	5.00	14.059	16.87	126.4	445.3	905.0
157.00 App	ourtenance(s)	1.00	1.12	6.835	7.52	0.00	1.200	2.338	2.00	5.508	6.61	49.7	176.1	355.5
160.00		1.00	1.13	6.872	7.56	0.00	1.200	2.342	3.00	8.139	9.77	73.8	259.4	523.8
165.00		1.00	1.14	6.933	7.63	0.00	1.200	2.349	5.00	13.237	15.88	121.1	419.3	847.1
167.00 App	ourtenance(s)	1.00	1.14	6.957	7.65	0.00	1.200	2.352	2.00	5.179	6.21	47.6	165.6	332.3
170.00		1.00	1.15	6.992	7.69	0.00	1.200	2.356	3.00	7.646	9.17	70.6	243.7	488.9
175.00		1.00	1.16	7.050	7.76	0.00	1.200	2.363	5.00	12.415	14.90	115.5	392.8	788.7
176.00 App	ourtenance(s)	1.00	1.16	7.062	7.77	0.00	1.200	2.364	1.00	2.433	2.92	22.7	78.0	155.3

Wind Loading - Shaft													
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	4						
Site Name:	Glastonbury			Exposure:	В		((·#)))						
Height:	176.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		LS						
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 30	Tower Engineering Solutions						
				Tota	s: 176.00	4,827.9	60,806.5						

Discrete Appurtenance Forces

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.55
Site Name:	Glastonbury			Exposure:	В		((thu))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 31	Tower Engineering Solutions

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor1.20Wind Load Factor1.00

¥ 4	Iterations	27
2		

No.	Elev (ft)	Description	Qtv	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	176.00	KRY 112 489/2	3	7 073	7 780	0.50	0.75	2.23	112.06	0.000	1 000	17.35	0.00	17.35
2	176.00	MHA FE15501P77/75	6	7.073	7.780	0.49	0.75	5.52	202.82	0.000	1.000	42.92	0.00	42.92
3	176.00	Liahtnina Rod	1	7.102	7.812	1.00	1.00	4.27	75.56	0.000	3.500	33.32	0.00	116.63
4	176.00	RMQP-496-HK	1	7.073	7.780	1.00	1.00	89.51	5623.12	0.000	1.000	696.40	0.00	696.40
5	176.00	4460 B25 + B66	3	7.073	7.780	0.50	0.75	3.49	413.60	0.000	1.000	27.13	0.00	27.13
6	176.00	KRY 112 89/4	3	7.073	7.780	0.50	0.75	2.23	112.06	0.000	1.000	17.35	0.00	17.35
7	176.00	AIR 6419 B41	3	7.073	7.780	0.52	0.75	12.61	1188.91	0.000	1.000	98.07	0.00	98.07
8	176.00	APXVAALL24_43-U-NA20	3	7.073	7.780	0.55	0.75	37.53	2258.25	0.000	1.000	291.99	0.00	291.99
9	176.00	4449 B71 + B85	3	7.073	7.780	0.50	0.75	4.13	323.01	0.000	1.000	32.15	0.00	32.15
10	167.00	Commscope	3	6.957	7.652	0.64	0.75	19.09	1061.38	0.000	0.000	146.12	0.00	0.00
11	167.00	Commscope	3	6.957	7.652	0.62	0.75	18.42	1027.51	0.000	0.000	140.95	0.00	0.00
12	167.00	APL868013	1	6.957	7.652	1.00	1.00	4.06	165.16	0.000	0.000	31.08	0.00	0.00
13	167.00	Samsung MT6407-77A	3	6.957	7.652	0.52	0.75	9.43	805.19	0.000	0.000	72.16	0.00	0.00
14	167.00	LPA-80063-4CF-EDIN-5	2	6.957	7.652	0.84	0.90	14.57	436.31	0.000	0.000	111.47	0.00	0.00
15	167.00	Low Profile	1	6.957	7.652	1.00	1.00	45.80	3264.05	0.000	0.000	350.49	0.00	0.00
16	167.00	KICKER KIT	1	6.957	7.652	1.00	1.00	12.85	385.92	0.000	0.000	98.35	0.00	0.00
17	167.00	B2/B66A RRH ORAN	3	6.957	7.652	0.50	0.75	4.02	640.12	0.000	0.000	30.78	0.00	0.00
18	167.00	B5/B13 RRH ORAN	3	6.957	7.652	0.50	0.75	4.02	559.21	0.000	0.000	30.78	0.00	0.00
19	167.00	CBRS RRH - RT4401-48A	3	6.957	7.652	0.50	0.75	2.35	160.34	0.000	0.000	17.97	0.00	0.00
20	167.00	Raycap	2	6.957	7.652	0.81	0.90	7.95	440.69	0.000	0.000	60.85	0.00	0.00
21	167.00	MONOPOLE COLLAR	1	6.957	7.652	1.00	1.00	6.03	397.80	0.000	0.000	46.13	0.00	0.00
22	167.00	SUPPORT RAIL CORNER	1	6.957	7.652	1.00	1.00	20.28	1633.75	0.000	0.000	155.15	0.00	0.00
23	157.00	ALU ID-RRH8x20-25	3	6.835	7.518	0.54	0.80	8.31	727.95	0.000	0.000	62.47	0.00	0.00
24	157.00	ALU 800 Mhz	6	6.835	7.518	0.54	0.80	12.93	849.39	0.000	0.000	97.25	0.00	0.00
25	157.00	ALU 1900 Mnz	3	6.835	7.518	0.54	0.80	7.19	4/9.5/	0.000	0.000	54.03	0.00	0.00
26	157.00	Sitepro PRK-1245L	1	0.835	7.518	1.00	1.00	22.82	897.51	0.000	0.000	171.60	0.00	0.00
27	157.00	RFS APXVTM14-C-I2U	3	0.835	7.518	0.62	0.80	14.53	4000.70	0.000	0.000	109.26	0.00	0.00
28	157.00	Commscope	3	0.030	7.518	1.00	1.00	25.60	1228.70	0.000	0.000	192.45	0.00	0.00
29	157.00	Sitepre HPK14 U	1	0.030	7.518	1.00	1.00	45.00	3233.19	0.000	0.000	343.20	0.00	0.00
30	157.00	Sitepro PPK-SES-H-I	1	6.835	7.518	1.00	1.00	16.10	605.12	0.000	0.000	121.02	0.00	0.00
32	147.00		1	6 708	7.378	1.00	1.00	2 77	84.43	0.000	0.000	20.41	0.00	0.00
33	147.00	T408025-B604	3	6 708	7 378	0.50	0.75	4.08	395.85	0.000	0.000	30.10	0.00	0.00
34	147.00	TA08025-B605	3	6 708	7.378	0.50	0.75	4.08	440.99	0.000	0.000	30.10	0.00	0.00
35	147.00	MC-PK8-DSH	1	6 708	7 378	1.00	1 00	100.44	3945.30	0.000	0.000	741.09	0.00	0.00
36	147.00	MX08FRO665-21	3	6.708	7.378	0.55	0.75	24.04	1191.74	0.000	0.000	177.38	0.00	0.00
37	137.00	B2 B66A 8843	3	6.574	7.231	0.50	0.75	3.50	400.37	0.000	0.000	25.32	0.00	0.00
38	137.00	4449 B5/B12	3	6.574	7.231	0.50	0.75	4.06	426.40	0.000	0.000	29.36	0.00	0.00
39	137.00	DC6-48-60-18-8F	1	6.574	7.231	1.00	1.00	2.39	106.92	0.000	0.000	17.32	0.00	0.00
40	137.00	7770.00	3	6.574	7.231	0.55	0.75	11.39	701.59	0.000	0.000	82.40	0.00	0.00
41	137.00	DMP65R-BU6DA	3	6.574	7.231	0.54	0.75	23.72	1251.49	0.000	0.000	171.56	0.00	0.00
42	137.00	HRK14	1	6.574	7.231	1.00	1.00	18.63	1139.31	0.000	0.000	134.71	0.00	0.00
43	137.00	LP Platform-Round	1	6.574	7.231	1.00	1.00	45.34	3229.47	0.000	0.000	327.84	0.00	0.00
44	137.00	LGP21401	6	6.574	7.231	0.50	0.75	7.22	390.68	0.000	0.000	52.20	0.00	0.00
45	137.00	LGP21903	6	6.574	7.231	0.50	0.75	2.40	79.34	4.341	0.000	17.34	75.28	0.00
46	137.00	HPA-65R-BUU-H6	3	6.574	7.231	0.64	0.75	21.99	1219.31	0.000	0.000	159.03	0.00	0.00
47	137.00	7020	12	6.574	7.231	0.50	0.75	6.27	159.06	0.000	0.000	45.34	0.00	0.00

 $\label{eq:copyright} \verb"Copyright" "Copyright" \verb"Copyright" "Copyright" "Copyright"" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyr$

	Discrete Appurtenance Forces													
Structure:	CT02216-S-SBA				Co	de:		TIA-222-G	i	9/12/202	22			
Site Name:	Glastonbury				Ex	oosure:		В			- 10	ሞንን		
Height:	176.00 (ft)				Cre	est Heig	ght:	0.00				E	C	
Base Elev:	0.000 (ft)				Sit	e Class	:	D - Stiff So	oil				S	
Gh:	1.1	Торс	graphy	: 1	Str	uct Cla	ss:	II		Page: 3	32 ^T	ower Engineeri	ng Solutions	
48 137.00 Sn	nart Bias T 1001940	3	6.574	7.231	0.50	0.75	0.60	8.22	7.041	0.000	4.36	30.69	0.00	
						Totals:		46,536.29		5,9	07.32			

Total Applied Force Summary											
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53				
Site Name:	Glastonbury			Exposure:	В		((th))				
Height:	176.00 (ft)			Crest Height:	0.00		EC				
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil						
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 33	Tower Engineering Solutions				

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Dead Load Factor 1.20

Wind Load Factor 1.00

Iterations

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (lb-ft)	Moment MZ (Ib-ft)	
0.00		0.00	0.00	0.00	0.00	
5.00		141.00	2679.05	0.00	0.00	
10.00		139.21	2685.52	0.00	0.00	
15.00		137.21	2672.50	0.00	0.00	
20.00		135.13	2650.88	0.00	0.00	
25.00		132.98	2624.32	0.00	0.00	
30.00		130.92	2594.47	0.00	0.00	
35.00		134.52	2562.28	0.00	0.00	
40.00		137 34	2528.31	0.00	0.00	
42 75		75.92	1376.01	0.00	0.00	
45.00		63.52	1739 71	0.00	0.00	
49.00		114 43	3060.10	0.00	0.00	
50.00		28.51	458.83	0.00	0.00	
55.00		144 91	2271 99	0.00	0.00	
60.00		145.80	2237.83	0.00	0.00	
65.00		146 35	2207.00	0.00	0.00	
70.00		146.60	2202.97	0.00	0.00	
70.00		140.00	2107.51	0.00	0.00	
75.00 80.00		140.00	2131.50	0.00	0.00	
80.00		146.27	2095.02	0.00	0.00	
85.00		145.76	2058.12	0.00	0.00	
86.50		43.34	611.16	0.00	0.00	
90.00		102.89	2106.35	0.00	0.00	
91.75		51.15	1042.47	0.00	0.00	
95.00		94.91	1203.92	0.00	0.00	
100.00		145.52	1822.46	0.00	0.00	
105.00		144.29	1788.23	0.00	0.00	
110.00		142.89	1753.74	0.00	0.00	
115.00		141.35	1718.99	0.00	0.00	
120.00		139.66	1684.00	0.00	0.00	
125.00		137.84	1648.78	0.00	0.00	
130.00		135.90	1613.37	0.00	0.00	
131.25		33.51	398.88	0.00	0.00	
135.00		101.41	1577.68	0.00	0.00	
135.50		13.38	208.54	0.00	0.00	
137.00	(45) attachments	1106.83	9508.65	105.96	0.00	
140.00		79.66	736.04	0.00	0.00	
145.00		131.23	1201.96	0.00	0.00	
147.00	(11) attachments	1050.77	6532.69	0.00	0.00	
150.00		76.87	698.78	0.00	0.00	
155.00		126.37	1139.53	0.00	0.00	
157.00	(22) attachments	1342.18	10528.37	0.00	0.00	
160.00		73.83	655.24	0.00	0.00	
165.00		121.14	1066.67	0.00	0.00	
167.00	(27) attachments	1339.84	11397.60	0.00	0.00	
170.00		70.57	589.18	0.00	0.00	
175.00		115.54	956.31	0.00	0.00	
176.00	(26) attachments	1279.37	10498.20	0.00	1339.99	
	(,					

	Total Applied Force Summary											
Structure:	CT02216-S-SBA	Code: TIA-222-G	9/12/2022									
Site Name:	Glastonbury	Exposure: B	daenie ssb									
Height:	176.00 (ft)	Crest Height: 0.00	EC									
Base Elev:	0.000 (ft)	Site Class: D - Stiff Soil										
Gh:	1.1 Topography: 1	Struct Class: II	Page: 34 Tower Engineering Solutions									
	Totals: 10,735.17 117,484.6 9	105.96 1,339.99										

Structure: CT02216-S-SBA Code: TIA-222-G 9/12/2022 ((H)) Site Name: Glastonbury Exposure: в Height: 176.00 (ft) Crest Height: 0.00 Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Tower Engineering Solutions Gh: Page: 35 1.1 Topography: 1 Struct Class: ||

Iterations

X

27

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Dead Load Factor 1.20

1.00

Wind Load Factor

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Са	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
5.00	Safety Cable	Yes	5.00	0.000	0.38	1.54	0.00	0.018	0.000	4.256	0.00	20.86
5.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.64	0.00	0.018	0.000	4.256	0.00	27.18
10.00	Safety Cable	Yes	5.00	0.000	0.38	1.64	0.00	0.018	0.000	4.256	0.00	23.53
10.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.74	0.00	0.018	0.000	4.256	0.00	29.96
15.00	Safety Cable	Yes	5.00	0.000	0.38	1.70	0.00	0.018	0.000	4.256	0.00	25.26
15.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.80	0.00	0.018	0.000	4.256	0.00	31.77
20.00	Safety Cable	Yes	5.00	0.000	0.38	1.74	0.00	0.019	0.000	4.256	0.00	26.58
20.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.85	0.00	0.019	0.000	4.256	0.00	33.13
25.00	Safety Cable	Yes	5.00	0.000	0.38	1.78	0.00	0.019	0.000	4.256	0.00	27.65
25.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.88	0.00	0.019	0.000	4.256	0.00	34.25
30.00	Safety Cable	Yes	5.00	0.000	0.38	1.81	0.00	0.019	0.000	4.260	0.00	28.56
30.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.91	0.00	0.019	0.000	4.260	0.00	35.19
35.00	Safety Cable	Yes	5.00	0.000	0.38	1.83	0.00	0.020	0.000	4.451	0.00	29.35
35.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.94	0.00	0.020	0.000	4.451	0.00	36.02
40.00	Safety Cable	Yes	5.00	0.000	0.38	1.86	0.00	0.020	0.000	4.625	0.00	30.06
40.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	1.96	0.00	0.020	0.000	4.625	0.00	36.75
42.75	Safety Cable	Yes	2.75	0.000	0.38	1.03	0.00	0.021	0.000	4.713	0.00	16.73
42.75	Step bolts (ladder)	Yes	2.75	0.000	0.63	1.09	0.00	0.021	0.000	4.713	0.00	20.42
45.00	Safety Cable	Yes	2.25	0.000	0.38	0.84	0.00	0.021	0.000	4.783	0.00	13.82
45.00	Step bolts (ladder)	Yes	2.25	0.000	0.63	0.89	0.00	0.021	0.000	4.783	0.00	16.84
49.00	Safety Cable	Yes	4.00	0.000	0.38	1.51	0.00	0.021	0.000	4.901	0.00	24.94
49.00	Step bolts (ladder)	Yes	4.00	0.000	0.63	1.60	0.00	0.021	0.000	4.901	0.00	30.32
50.00	Safety Cable	Yes	1.00	0.000	0.38	0.38	0.00	0.021	0.000	4.929	0.00	6.26
50.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.40	0.00	0.021	0.000	4.929	0.00	7.60
55.00	Safety Cable	Yes	5.00	0.000	0.38	1.91	0.00	0.021	0.000	5.065	0.00	31.83
55.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.02	0.00	0.021	0.000	5.065	0.00	38.58
60.00	Safety Cable	Yes	5.00	0.000	0.38	1.93	0.00	0.022	0.000	5.193	0.00	32.33
60.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.03	0.00	0.022	0.000	5.193	0.00	39.10
65.00	Safety Cable	Yes	5.00	0.000	0.38	1.94	0.00	0.022	0.000	5.313	0.00	32.80
65.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.05	0.00	0.022	0.000	5.313	0.00	39.59
70.00	Safety Cable	Yes	5.00	0.000	0.38	1.96	0.00	0.023	0.000	5.426	0.00	33.24
70.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.06	0.00	0.023	0.000	5.426	0.00	40.04
75.00	Safety Cable	Yes	5.00	0.000	0.38	1.97	0.00	0.023	0.000	5.534	0.00	33.66
75.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.07	0.00	0.023	0.000	5.534	0.00	40.47
80.00	Safety Cable	Yes	5.00	0.000	0.38	1.98	0.00	0.024	0.000	5.637	0.00	34.05
80.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.08	0.00	0.024	0.000	5.637	0.00	40.88
85.00	Safety Cable	Yes	5.00	0.000	0.38	1.99	0.00	0.024	0.000	5.736	0.00	34.43
85.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.09	0.00	0.024	0.000	5.736	0.00	41.27
86.50	Safety Cable	Yes	1.50	0.000	0.38	0.60	0.00	0.025	0.000	5.765	0.00	10.36
86.50	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.63	0.00	0.025	0.000	5.765	0.00	12.42
90.00	Safety Cable	Yes	3.50	0.000	0.38	1.40	0.00	0.025	0.000	5.830	0.00	24.35
90.00	Step bolts (ladder)	Yes	3.50	0.000	0.63	1.47	0.00	0.025	0.000	5.830	0.00	29.15
91.75	Safety Cable	Yes	1.75	0.000	0.38	0.70	0.00	0.025	0.000	5.862	0.00	12.22
91.75	Step bolts (ladder)	Yes	1.75	0.000	0.63	0.74	0.00	0.025	0.000	5.862	0.00	14.62
95.00	Safety Cable	Yes	3.25	0.000	0.38	1.31	0.00	0.025	0.000	5.921	0.00	22.83
95.00	Step bolts (ladder)	Yes	3.25	0.000	0.63	1.37	0.00	0.025	0.000	5.921	0.00	27.30
100.00	Safety Cable	Voc	5.00	0.000	0.38	2.02	0.00	0.026	0.000	6 008	0.00	35/6

Copyright © 2022 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT02216-S-SBA Code: TIA-222-G 9/12/2022 ((H)) Site Name: Glastonbury Exposure: в Height: 176.00 (ft) Crest Height: 0.00 Base Elev: 0.000 (ft) Site Class: D - Stiff Soil Tower Engineering Solutions Page: 36 Gh: 1.1 Topography: 1 Struct Class: ||

Iterations

X

27

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Dead Load Factor 1.20

1.00

Wind Load Factor

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
100.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.12	0.00	0.026	0.000	6.008	0.00	42.33
105.00	Safety Cable	Yes	5.00	0.000	0.38	2.03	0.00	0.026	0.000	6.093	0.00	35.77
105.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.13	0.00	0.026	0.000	6.093	0.00	42.66
110.00	Safety Cable	Yes	5.00	0.000	0.38	2.04	0.00	0.027	0.000	6.174	0.00	36.07
110.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.14	0.00	0.027	0.000	6.174	0.00	42.97
115.00	Safety Cable	Yes	5.00	0.000	0.38	2.05	0.00	0.028	0.000	6.253	0.00	36.37
115.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.15	0.00	0.028	0.000	6.253	0.00	43.28
120.00	Safety Cable	Yes	5.00	0.000	0.38	2.05	0.00	0.028	0.000	6.330	0.00	36.65
120.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.16	0.00	0.028	0.000	6.330	0.00	43.57
125.00	Safety Cable	Yes	5.00	0.000	0.38	2.06	0.00	0.029	0.000	6 404	0.00	36.92
125.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2 17	0.00	0.029	0.000	6 404	0.00	43.85
130.00	Safety Cable	Yes	5.00	0.000	0.38	2.07	0.00	0.030	0.000	6 4 7 6	0.00	37.19
130.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	2.07	0.00	0.030	0.000	6 476	0.00	44 12
131 25	Safety Cable	Yes	1 25	0.000	0.38	0.52	0.00	0.031	0.000	6 4 9 4	0.00	9.31
131.25	Step bolts (ladder)	Yes	1.25	0.000	0.63	0.54	0.00	0.031	0.000	6 4 9 4	0.00	11.05
135.00	Safety Cable	Yes	3.75	0.000	0.38	1.56	0.00	0.001	0.000	6 546	0.00	28.08
135.00	Step bolts (ladder)	Yes	3 75	0.000	0.63	1.64	0.00	0.001	0.000	6 546	0.00	33.29
135 50	Safety Cable	Ves	0.50	0.000	0.38	0.21	0.00	0.001	0.000	6 5 5 3	0.00	3 75
135.50	Step holts (ladder)	Ves	0.50	0.000	0.50	0.21	0.00	0.032	0.000	6 553	0.00	4 44
137.00	Safety Cable	Ves	1 50	0.000	0.00	0.22	0.00	0.032	0.000	6 574	0.00	11.26
137.00	Step bolts (ladder)	Ves	1.50	0.000	0.63	0.66	0.00	0.001	0.000	6 574	0.00	13.35
140.00	Safety Cable	Ves	3.00	0.000	0.00	1 25	0.00	0.001	0.000	6.615	0.00	22.61
140.00	Step holts (ladder)	Ves	3.00	0.000	0.63	1 31	0.00	0.002	0.000	6.615	0.00	26.79
145.00	Safety Cable	Ves	5.00	0.000	0.00	2.00	0.00	0.032	0.000	6.681	0.00	37.93
145.00	Step bolts (ladder)	Vos	5.00	0.000	0.50	2.03	0.00	0.000	0.000	6.681	0.00	44.89
147.00	Safety Cable	Ves	2.00	0.000	0.00	0.94	0.00	0.000	0.000	6 708	0.00	15.21
147.00	Step bolts (ladder)	Ves	2.00	0.000	0.50	0.04	0.00	0.033	0.000	6 708	0.00	18.00
150.00	Step boils (ladder)	Ves	2.00	0.000	0.03	1.26	0.00	0.033	0.000	6746	0.00	22.00
150.00	Step bolts (ladder)	Ves	3.00	0.000	0.50	1.20	0.00	0.034	0.000	6746	0.00	22.90
155.00	Safety Cable	Ves	5.00	0.000	0.03	2 10	0.00	0.034	0.000	6.810	0.00	27.00
155.00	Step bolts (ladder)	Ves	5.00	0.000	0.50	2.10	0.00	0.035	0.000	6.810	0.00	45.37
157.00	Safety Cable	Ves	2.00	0.000	0.00	0.84	0.00	0.035	0.000	6.835	0.00	15 39
157.00	Step holts (ladder)	Ves	2.00	0.000	0.50	0.04	0.00	0.030	0.000	6.835	0.00	18.19
160.00	Safety Cable	Ves	2.00	0.000	0.00	1.00	0.00	0.030	0.000	6.872	0.00	23.17
160.00	Step bolts (ladder)	Ves	3.00	0.000	0.50	1.27	0.00	0.030	0.000	6.872	0.00	27.36
165.00	Step boils (ladder)	Vos	5.00	0.000	0.03	2.12	0.00	0.030	0.000	6.022	0.00	29.94
165.00	Stop bolts (laddor)	Vos	5.00	0.000	0.38	2.12	0.00	0.037	0.000	6.033	0.00	45.82
167.00	Step boils (ladder)	Vec	2.00	0.000	0.03	0.95	0.00	0.037	0.000	6.953	0.00	45.65
167.00	Stop bolts (laddor)	Vos	2.00	0.000	0.58	0.85	0.00	0.038	0.000	6.957	0.00	19.37
170.00	Safety Cablo	Voc	2.00	0.000	0.00	1.09	0.00	0.030	0.000	6 002	0.00	23 /2
170.00	Stop bolts (laddor)	Vec	2.00	0.000	0.30	1.27	0.00	0.039	0.000	6.002	0.00	23.43
175.00	Step boils (lauder)	Vee	3.00 E.00	0.000	0.00	1.04	0.00	0.039	0.000	7.050	0.00	21.03
175.00	Salety Caple	res	5.00	0.000	0.38	2.13	0.00	0.040	0.000	7.050	0.00	39.20
175.00	Step boils (ladder)	res	5.00	0.000	0.03	2.23	0.00	0.040	0.000	7.050	0.00	40.20
170.00	Salety Cable	res	1.00	0.000	0.38	0.43	0.00	0.041	0.000	7.062	0.00	0.00
170.00	Step poils (ladder)	res	1.00	0.000	0.03	0.45	0.00	0.041	0.000 To t	- ^{۲.00}	<u> </u>	9.20 2,605.9

Calculated Forces										
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.xX			
Site Name:	Glastonbury			Exposure:	В		(autor)			
Height:	176.00 (ft)			Crest Height:	0.00		EC			
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil					
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 37	Tower Engineering Solutions			

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor1.20Wind Load Factor1.00

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation Sway	Rotation Twist	Stress
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
0.00	-117.4	-10.80	-0.11	-1582.9	0.00	1582.91	6372.54	3186.27	14661.2	7341.49	0.00	0.000	0.000	0.234
5.00	-114.7	-10.78	-0.11	-1528.9	0.00	1528.91	6292.68	3146.34	14220.7	7120.95	0.03	-0.063	0.000	0.233
10.00	-112.0	-10.77	-0.11	-1474.9	0.00	1474.99	6211.66	3105.83	13784.2	6902.39	0.13	-0.127	0.000	0.232
15.00	-109.4	-10.75	-0.11	-1421.1	0.00	1421.15	6129.50	3064.75	13351.9	6685.89	0.30	-0.191	0.000	0.230
20.00	-106.7	-10.73	-0.11	-1367.4	0.00	1367.42	6046.18	3023.09	12923.8	6471.51	0.54	-0.258	0.000	0.229
25.00	-104.1	-10.70	-0.11	-1313.7	0.00	1313.79	5961.72	2980.86	12500.0	6259.33	0.84	-0.325	0.000	0.227
30.00	-101.5	-10.68	-0.11	-1260.2	0.00	1260.27	5876.11	2938.05	12080.8	6049.42	1.22	-0.393	0.000	0.226
35.00	-98.93	-10.65	-0.11	-1206.8	0.00	1206.88	5789.35	2894.67	11666.3	5841.84	1.67	-0.463	0.000	0.224
40.00	-96.39	-10.58	-0.11	-1153.6	0.00	1153.66	5679.25	2839.63	11212.8	5614.75	2.19	-0.533	0.000	0.222
42.75	-95.01	-10.55	-0.11	-1124.5	0.00	1124.57	5615.38	2807.69	10960.7	5488.51	2.51	-0.573	0.000	0.222
45.00	-93.26	-10.54	-0.11	-1100.8	0.00	1100.84	5563.11	2781.56	10756.6	5386.29	2.79	-0.606	0.000	0.221
49.00	-90.20	-10.45	-0.11	-1058.6	0.00	1058.67	4756.80	2378.40	9239.06	4626.40	3.32	-0.664	0.000	0.248
50.00	-89.73	-10.49	-0.11	-1048.2	0.00	1048.22	4742.51	2371.25	9172.60	4593.12	3.46	-0.679	0.000	0.247
55.00	-87.44	-10.44	-0.11	-995.76	0.00	995.76	4670.33	2335.16	8842.49	4427.82	4.21	-0.758	0.000	0.244
60.00	-85.19	-10.38	-0.11	-943.56	0.00	943.56	4597.00	2298.50	8516.13	4264.39	5.05	-0.838	0.000	0.240
65.00	-82.98	-10.32	-0.11	-891.65	0.00	891.65	4522.52	2261.26	8193.68	4102.93	5.97	-0.919	0.000	0.236
70.00	-80.80	-10.25	-0.11	-840.05	0.00	840.05	4446.89	2223.45	7875.26	3943.48	6.98	-1.000	0.000	0.231
75.00	-78.66	-10.18	-0.11	-788.80	0.00	788.80	4354.69	2177.34	7534.33	3772.77	8.07	-1.082	0.000	0.227
80.00	-76.55	-10.10	-0.11	-737.90	0.00	737.90	4253.06	2126.53	7185.02	3597.85	9.25	-1.165	0.000	0.223
85.00	-74.49	-9.98	-0.11	-687.39	0.00	687.39	4151.43	2075.72	6843.99	3427.08	10.51	-1.247	0.000	0.219
86.50	-73.87	-9.98	-0.11	-672.42	0.00	672.42	4120.95	2060.47	6743.30	3376.66	10.91	-1.272	0.000	0.217
90.00	-71.76	-9.88	-0.11	-637.49	0.00	637.49	4049.81	2024.90	6511.26	3260.47	11.86	-1.331	0.000	0.213
91.75	-70.71	-9.86	-0.11	-620.19	0.00	620.19	3441.70	1720.85	5608.94	2808.64	12.35	-1.360	0.000	0.241
95.00	-69.50	-9.82	-0.11	-588.14	0.00	588.14	3401.05	1700.53	5452.51	2730.31	13.30	-1.414	0.000	0.236
100.00	-67.66	-9.74	-0.11	-539.03	0.00	539.03	3337.56	1668.78	5214.58	2611.16	14.83	-1.504	0.000	0.227
105.00	-65.86	-9.64	-0.11	-490.34	0.00	490.34	3272.92	1636.46	4980.08	2493.74	16.45	-1.592	0.000	0.217
110.00	-64.10	-9.55	-0.11	-442.12	0.00	442.12	3194.68	1597.34	4730.71	2368.87	18.16	-1.678	0.000	0.207
115.00	-62.37	-9.44	-0.11	-394.39	0.00	394.39	3107.57	1553.79	4474.96	2240.81	19.96	-1.762	0.000	0.196
120.00	-60.68	-9.33	-0.11	-347.17	0.00	347.17	3020.47	1510.23	4226.32	2116.30	21.85	-1.843	0.000	0.184
125.00	-59.03	-9.22	-0.11	-300.50	0.00	300.50	2933.36	1466.68	3984.78	1995.35	23.82	-1.919	0.000	0.171
130.00	-57.41	-9.07	-0.11	-254.40	0.00	254.40	2846.25	1423.13	3750.35	1877.96	25.87	-1.991	0.000	0.156
131.25	-57.01	-9.06	-0.11	-243.06	0.00	243.06	2824.47	1412.24	3692.86	1849.17	26.40	-2.009	0.000	0.152
135.00	-55.43	-8.93	-0.11	-209.09	0.00	209.09	2759.14	1379.57	3523.03	1764.13	28.00	-2.058	0.000	0.139
135.50	-55.22	-8.92	-0.11	-204.63	0.00	204.63	1734.08	867.04	2260.78	1132.07	28.21	-2.065	0.000	0.213
137.00	-45.76	-7.50	0.00	-191.25	0.00	191.25	1723.43	861.72	2225.81	1114.56	28.86	-2.083	0.000	0.198
140.00	-45.01	-7.44	0.00	-168.76	0.00	168.76	1701.83	850.91	2156.25	1079.73	30.19	-2.133	0.000	0.183
145.00	-43.81	-7.30	0.00	-131.57	0.00	131.57	1664.90	832.45	2041.54	1022.29	32.46	-2.205	0.000	0.155
147.00	-37.32	-6.02	0.00	-116.97	0.00	116.97	1649.80	824.90	1996.11	999.54	33.39	-2.232	0.000	0.140
150.00	-36.62	-5.94	0.00	-98.93	0.00	98.93	1626.81	813.41	1928.48	965.67	34.81	-2.268	0.000	0.125
155.00	-35.49	-5.79	0.00	-09.23	0.00	69.23 E7.CE	1587.58	793.79	1817.22	909.96	37.21	-2.317	0.000	0.098
157.00	-25.02	-4.03	0.00	-57.05	0.00	57.05	15/1.5/	785.79	1773.24	007.94	38.18	-2.334	0.000	0.081
160.00	-24.37	-3.94	0.00	-45.57	0.00	45.57	1547.20	773.00	1707.88	800.21	39.00	-2.300	0.000	0.069
167.00	-23.30	-3.78	0.00	-25.88	0.00	25.88	1409.74	744.27	1600.62	790.20	42.14	-2.381	0.000	0.048
170.00	-11.97	-1.97	0.00	10.33	0.00	10.33	1460.74	724 50	1008.33	749.00	43.14	-2.300	0.000	0.032
170.00	10.44	-1.87	0.00	-12.43	0.00	12.43	1402.99	705.05	1493.37	748.90 602.90	44.04	-2.390	0.000	0.024
175.00	-10.44	-1.72	0.00	-3.06	0.00	3.06	1411.70	700.04	1305.55	693.80	47.15	-2.403	0.000	0.012
176.00	0.00	-1.28	0.00	-1.34	0.00	1.34	1400.09	700.04	1362.73	082.38	47.65	-2.404	0.000	0.002

Calculated Forces											
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022					
Site Name:	Glastonbury			Exposure:	В	da ula sta					
Height:	176.00 (ft)			Crest Height:	0.00	EC					
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil						
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 38 Tower Engineering Solutions					

Seismic Segment Forces (Factored)									
Structure: CT02216-S-SBA Code: TIA-222-G 9/12/20	22								
Site Name: Glastonbury Exposure: B	(((#1)))								
Height: 176.00 (ft) Crest Height: 0.00	EC								
Base Elev: 0.000 (ft) Site Class: D - Stiff Soil									
Gh: 1.1 Topography: 1 Struct Class: II Page:	39 Tower Engineering Solutions								
Xa									
Load Case: 1.2D + 1.0E	Iterations 24								
Dead Load Factor 1.20 Seismic Load Factor 1.00 Sd1 0.10	S1 0.06								
Wind Load Factor 0.00 Structure Frequency (f1) 0.26 SA 0.03 Seismic Importa	ance Factor 1.00								
Top Lateral									
Elev Wz Fs (ft) Description (lb) a b c (lb)	R: 1.50								
0.00 0.00 0.00 0.00 0.00 0.00 5.00 1500.0 0.00 0.00 0.02 29.44									
10.00 1473.4 0.01 0.05 0.03 41.68									
15.00 1446.8 0.01 0.06 0.03 47.38									
20.00 1420.2 0.02 0.07 0.04 49.94 25.00 1202.6 0.04 0.07 0.04 50.02									
30.00 1367.0 0.05 0.07 0.04 51.23									
35.00 1340.4 0.07 0.07 0.04 51.29									
40.00 1313.8 0.10 0.07 0.04 51.33									
42.75 Bot - Section 2 711.29 0.11 0.07 0.04 28.12									
45.00 Top - Section 1 1912.7 0.15 0.07 0.03 77.58									
50.00 223.19 0.15 0.07 0.03 9.08									
55.00 1101.9 0.18 0.06 0.03 45.42									
60.00 1078.7 0.22 0.06 0.02 44.34 65.00 40.55.4 0.02 0.05 0.02 40.02									
65.00 1055.4 0.26 0.02 42.08 70.00 1032.1 0.30 0.05 0.01 38.02									
75.00 1008.8 0.34 0.03 0.01 31.56									
80.00 985.61 0.39 0.02 0.01 22.23									
85.00 962.33 0.44 0.00 0.01 10.17									
90.00 1227.7 0.49 -0.01 0.01 -4.54									
91.75 Top - Section 2 605.94 0.51 -0.02 0.01 -5.38									
95.00 518.65 0.55 -0.03 0.01 -9.46									
100.00 781.47 0.61 -0.06 0.02 -24.06 105.00 761.52 0.67 0.08 0.02 20.22									
10.00 741.57 0.74 -0.10 0.04 -33.18									
115.00 721.62 0.81 -0.11 0.06 -32.87									
120.00 701.67 0.88 -0.12 0.08 -29.80									
125.00 681.73 0.95 -0.12 0.11 -24.33 130.00 661.78 1.03 -0.10 0.15 -16.78									
131.25 Bot - Section 4 162.33 1.05 -0.09 0.16 -3.61									
135.00 805.50 1.11 -0.06 0.19 -9.29									
135.50 Top - Section 3 105.99 1.12 -0.06 0.20 -1.06									
137.00 Appurtenance(s) 3058.6 1.15 -0.04 0.22 -15.39									
145.00 409.73 1.28 0.10 0.32 10.89									
147.00 Appurtenance(s) 2519.2 1.32 0.15 0.35 90.43									
150.00 236.26 1.37 0.23 0.40 12.04									
155.00 Appurtenance(c) 3755.6 1.50 0.51 0.55 342.61									
160.00 220.30 1.56 0.67 0.62 24.39									
165.00 356.53 1.66 0.98 0.76 52.15									
167.00 Appurtenance(s) 3517.0 1.70 1.13 0.82 568.33									
20434 176 138 0.92 37.95									

	Seismic Segment Forces (Factored)										
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44,000.53				
Site Name:	Glastonbury			Exposure:	В		de Hand				
Height:	176.00 (ft)			Crest Heig	ht: 0.00		EC				
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil						
Gh:	1.1	Topogra	phy: 1	Struct Clas	ss: II	Page: 40	Tower Engineering Solutions				
176.00 Appurt	enance(s)		3910.3	1.89 1.98	1.14 932.03						
		Totals:	50,333.1		2,705.3	Total Wind	35,100.9				

Calculated Forces														
Struc	ture:	CT022	216-S-S	BA			Code:	TIA	∖-222-G		9/12	2/2022	(
Site N	lame:	Glasto	nbury				Exposure	: В					(atta)	
Heigh	nt:	176.00) (ft)				Crest Hei	ght: 0.0	00				F	C
Base	Elev:	0.000	(ft)				Site Class	s: D-	Stiff Soi	l -				N
Gh:		1.1		Торо	graphy:	1	Struct Cla	ass: II			Pa	ge: 41	Tower Engineer	ing Solutions
Load	Case:	: 1.2D ·	+ 1.0E								¥	lt	erations	24
Gu	ust Res	sponse	Factor	r 1.10				\$	Sds 0.1	9		X	Ss	0.18
	Dea	d Load	Facto	r 1.20	Seismic	Load Fa	ctor	1.00	Sd1 0.1	0 7			S1	0.06
	Win	d Load	I Facto	r 0.00	Structu	re Freque	ncy (f1)	0.26	SA 0.0	3 Seis	mic Imp	ortance	e Factor	1.00
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips) (1	Mu MX it-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-68.21	-2.95	0.00	-428.76	0.00	428.76	6372.54	3186.27	14661.2	7341.49		0.00	0.00	0.069
5.00	-66.17	-2.94	0.00	-413.99	0.00	413.99	6292.68	3146.34	14220.7	7120.95		0.01	-0.02	0.069
15.00	-64.15	-2.92	0.00	-399.26	0.00	399.26	6129.50	3064.75	13784.2	6685.89		0.04	-0.03	0.068
20.00	-60.22	-2.86	0.00	-370.19	0.00	370.19	6046.18	3023.09	12923.8	6471.51		0.15	-0.07	0.067
25.00	-58.30	-2.82	0.00	-355.90	0.00	355.90	5961.72	2980.86	12500.0	6259.33		0.23	-0.09	0.067
30.00	-56.41	-2.79	0.00	-341.78	0.00	341.78	5876.11	2938.05	12080.8	6049.42		0.33	-0.11	0.066
40.00	-52.74	-2.73	0.00	-327.84	0.00	327.04	5679.25	2839.63	11212.8	5614.75		0.45	-0.13	0.065
42.75	-51.75	-2.69	0.00	-306.63	0.00	306.63	5615.38	2807.69	10960.7	5488.51		0.68	-0.16	0.065
45.00	-50.33	-2.65	0.00	-300.59	0.00	300.59	5563.11	2781.56	10756.6	5386.29		0.75	-0.16	0.065
49.00	-47.84	-2.57	0.00	-289.98	0.00	289.98	4756.80	2378.40	9239.06	4626.40		0.90	-0.18	0.073
50.00	-47.52	-2.58	0.00	-287.41	0.00	287.41	4/42.51	2371.25	9172.60	4593.12		0.94	-0.18	0.073
60.00	-43.93	-2.54	0.00	-261.82	0.00	261.82	4070.33	2298.50	8516.13	4427.02		1.14	-0.21	0.072
65.00	-42.90	-2.48	0.00	-249.28	0.00	249.28	4522.52	2261.26	8193.68	4102.93		1.62	-0.25	0.070
70.00	-41.41	-2.45	0.00	-236.89	0.00	236.89	4446.89	2223.45	7875.26	3943.48		1.90	-0.27	0.069
75.00	-39.96	-2.43	0.00	-224.65	0.00	224.65	4354.69	2177.34	7534.33	3772.77		2.19	-0.30	0.069
80.00	-38.53	-2.41	0.00	-212.51	0.00	212.51	4253.06	2126.53	7185.02	3597.85		2.52	-0.32	0.068
86.50	-36.71	-2.40	0.00	-196.84	0.00	196.84	4120.95	2060.47	6743.30	3376.66		2.98	-0.34	0.067
90.00	-35.07	-2.41	0.00	-188.41	0.00	188.41	4049.81	2024.90	6511.26	3260.47		3.24	-0.37	0.066
91.75	-34.25	-2.41	0.00	-184.20	0.00	184.20	3441.70	1720.85	5608.94	2808.64		3.38	-0.38	0.076
95.00	-33.47	-2.42	0.00	-176.37	0.00	176.37	3401.05	1700.53	5452.51	2730.31		3.64	-0.39	0.074
100.00	-32.29	-2.42	0.00	-164.30	0.00	164.30	3337.56	1668.78	5214.58	2611.16		4.07	-0.42	0.073
110.00	-29.99	-2.43	0.00	-140.04	0.00	140.04	3194.68	1597.34	4980.08	2368.87		5.00	-0.45	0.069
115.00	-28.88	-2.44	0.00	-127.88	0.00	127.88	3107.57	1553.79	4474.96	2240.81		5.52	-0.50	0.066
120.00	-27.79	-2.44	0.00	-115.69	0.00	115.69	3020.47	1510.23	4226.32	2116.30		6.06	-0.53	0.064
125.00	-26.73	-2.44	0.00	-103.49	0.00	103.49	2933.36	1466.68	3984.78	1995.35		6.62	-0.55	0.061
130.00	-25.69	-2.44	0.00	-91.28	0.00	91.28	2846.25	1423.13	3750.35	1877.96		7.22	-0.58	0.058
131.25	-23.43	-2.44	0.00	-00.23	0.00	79.07	2759 14	1379.57	3523.03	1764 13		7.84	-0.59	0.057
135.50	-24.13	-2.43	0.00	-77.86	0.00	77.86	1734.08	867.04	2260.78	1132.07		7.90	-0.61	0.083
137.00	-20.38	-2.40	0.00	-74.21	0.00	74.21	1723.43	861.72	2225.81	1114.56		8.09	-0.61	0.078
140.00	-19.98	-2.40	0.00	-67.01	0.00	67.01	1701.83	850.91	2156.25	1079.73		8.48	-0.63	0.074
145.00	-19.32	-2.39	0.00	-54.99	0.00	54.99	1664.90	832.45	2041.54	1022.29		9.16	-0.66	0.065
147.00	-15.86	-2.27	0.00	-50.21	0.00	50.21 43.41	1626.81	813 41	1996.11	965.67		9.44	-0.67	0.060
155.00	-15.24	-2.22	0.00	-32.12	0.00	32.12	1587.58	793.79	1817.22	909.96	1	0.61	-0.71	0.045
157.00	-10.67	-1.83	0.00	-27.67	0.00	27.67	1571.57	785.79	1773.24	887.94	1	0.91	-0.72	0.038
160.00	-10.32	-1.80	0.00	-22.20	0.00	22.20	1547.20	773.60	1707.88	855.21		11.36	-0.73	0.033
165.00	-9.75	-1.74	0.00	-13.21	0.00	13.21	1505.67	752.84	1600.62	801.50	1	2.13	-0.74	0.023
167.00	-5.48	-1.12	0.00	-9.72	0.00	9.72	1488.74	721 50	1558.33	749.00	1	2.45	-0.75	0.016
175.00	-4.70	-0.99	0.00	-0.37	0.00	0.37	1402.99	705.85	1385 55	693.80	1	3.70	-0.75	0.002
176.00	0.00	-0.93	0.00	0.00	0.00	0.00	1400.09	700.04	1362.73	682.38	1	3.86	-0.75	0.000

Calculated Forces											
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022					
Site Name:	Glastonbury			Exposure:	В	derkent					
Height:	176.00 (ft)			Crest Height:	0.00	IES					
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil						
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 42 Tower Engineering Solutions					

				Seismic S	egmen	t For	ces ((Facto	red)			
Struc	ture:	CT02216-S-SBA			Coo	de:		TIA-222	2-G	9/12/2022	4	
Site N	lame:	Glastonbury			Exp	osure	e:	В			((ithu))	
Heigh	nt:	176.00 (ft)			Cre	st He	ight:	0.00				C
Base	Elev:	0.000 (ft)			Site	Clas	s:	D - Stiff	Soil			<u> </u>
Gh:		1.1	Торс	graphy: 1	Str	uct Cl	ass:	П		Page: 43	Tower Engineeri	ng Solutions
Load	Case	: 0.9D + 1.0E								¥	terations	24
Gu	ust Re	sponse Factor	1.10					Sds	0.19	x	Ss	0.18
	Dea	d Load Factor	0.90	Seismic Load	Factor		1.00	Sd1	0.10	2	S1	0.06
	Win	d Load Factor	0.00	Structure Fre	quency	(f1)	0.26	SA	0.03	Seismic Important	e Factor	1.00
Top Elev (ft)		Description		Wz (lb)	а	b	С	Late Fs (Ib	ral ;)		F	R: 1.50
0.00				0.00	0.00	0.00	0.00	0.	.00			
10.00				1473.4	0.00	0.03	0.02	29. 41.	.44			
15.00				1446.8	0.01	0.06	0.03	47	.38			
20.00				1420.2	0.02	0.07	0.04	49.	.94			
25.00				1393.6	0.04	0.07	0.04	50.	.93 23			
35.00				1340.4	0.03	0.07	0.04	51.	29			
40.00				1313.8	0.10	0.07	0.04	51.	.33			
42.75	Bot - S	ection 2		711.29	0.11	0.07	0.04	28.	.12			
45.00	Ton - S	Section 1		1089.9	0.12	0.07	0.03	43.	.50 58			
50.00	TOP C			223.19	0.15	0.07	0.03	9.	.08			
55.00				1101.9	0.18	0.06	0.03	45.	42			
60.00				1078.7	0.22	0.06	0.02	44.	.34			
55.00 70.00				1055.4	0.26	0.05	0.02	42.	.08 02			
75.00				1008.8	0.34	0.03	0.01	31.	.56			
80.00				985.61	0.39	0.02	0.01	22.	.23			
85.00	Det S	action 2		962.33	0.44	0.00	0.01	10.	.17			
90.00	DUL - 31	ection 5		1227.7	0.48	-0.01	0.01	-4.	.63 .54			
91.75	Top - S	Section 2		605.94	0.51	-0.02	0.01	-5.	.38			
95.00				518.65	0.55	-0.03	0.01	-9.	46			
100.00				781.47	0.61	-0.06	0.02	-24.	.06			
110.00				741.57	0.74	-0.10	0.02	-33.	.18			
115.00				721.62	0.81	-0.11	0.06	-32	.87			
120.00				701.67	0.88	-0.12	0.08	-29	.80			
125.00				681.73 661.78	0.95	-0.12	0.11	-24.	.33 78			
131.25	Bot - Se	ection 4		162.33	1.05	-0.09	0.16	-3.	.61			
135.00				805.50	1.11	-0.06	0.19	-9.	29			
135.50	Top - S	Section 3		105.99	1.12	-0.06	0.20	-1.	.06			
137.00	Appurte	enance(s)		252 22	1.15	-0.04	0.22	-15.	.39 45			
145.00				409.73	1.28	0.10	0.32	10.	.89			
147.00	Appurte	enance(s)		2519.2	1.32	0.15	0.35	90.	43			
150.00				236.26	1.37	0.23	0.40	12.	04			
157.00	Appurte	enance(s)		3755.6	1.50	0.42	0.50	342	61			
160.00	- in the second			220.30	1.56	0.67	0.62	24.	39			
165.00				356.53	1.66	0.98	0.76	52.	15			
167.00	Appurte	enance(s)		3517.0	1.70	1.13	0.82	568.	33 95			
175.00				329.93	1.87	1.87	1.10	75.	.61			

	Seismic Segment Forces (Factored)											
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44,000.53					
Site Name:	Glastonbury			Exposure:	В		de Hand					
Height:	176.00 (ft)			Crest Heigh	t: 0.00		EC					
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil							
Gh:	1.1	Topogra	phy: 1	Struct Class	s:	Page: 44	Tower Engineering Solutions					
176.00 Appurt	enance(s)		3910.3	1.89 1.98 1	14 932.03							
		Totals:	50,333.1		2,705.3	Total Wind	35,100.9					

	Calculated Forces													
Struc	ture:	CT022	216-S-S	BA			Code:	TIA	א-222-G		9/12	2/2022	(
Site N	lame:	Glasto	nbury				Exposure	: В					(atta)	
Heigh	nt:	176.00) (ft)				Crest Hei	ght: 0.0	00				F	C
Base	Elev:	0.000	(ft)				Site Class	s: D-	Stiff Soi	I				\mathbf{S}
Gh:		1.1		Торс	graphy:	1	Struct Cla	ass: II			Pa	ige: 45	Tower Engineer	ing Solutions
Load Case: 0.9D + 1.0E												erations	24	
Gi	ust Res	sponse	Facto	r 1.10				\$	Sds 0.1	19		x	Ss	0.18
	Dea	d Load	Facto	r 0.90	Seismic	Load Fa	ctor	1.00	Sd1 0.1	10 2			S1	0.06
	Win	d Load	I Facto	r 0.00	Structu	re Freque	ncy (f1)	0.26	SA 0.0	3 Seis	mic Imp	ortance	e Factor	1.00
Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation Sway	Rotation Twist	Stress
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips) (1	t-kips)	(ft-kips)	(kips) 6372 54	(kips) 3186.27	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
5.00	-49.62	-2.94	0.00	-405.91	0.00	405.91	6292.68	3146.34	14220.7	7120.95		0.00	-0.02	0.065
10.00	-48.11	-2.91	0.00	-391.22	0.00	391.22	6211.66	3105.83	13784.2	6902.39		0.04	-0.03	0.064
15.00	-46.63	-2.87	0.00	-376.68	0.00	376.68	6129.50	3064.75	13351.9	6685.89		0.08	-0.05	0.064
20.00	-45.16	-2.84	0.00	-362.31	0.00	362.31	6046.18 5061.72	3023.09	12923.8	6471.51		0.14	-0.07	0.063
30.00	-43.72	-2.60	0.00	-346.12	0.00	334.12	5876.11	2960.66	12080.8	6049.42		0.32	-0.09	0.063
35.00	-40.92	-2.72	0.00	-320.34	0.00	320.34	5789.35	2894.67	11666.3	5841.84		0.44	-0.12	0.062
40.00	-39.55	-2.67	0.00	-306.76	0.00	306.76	5679.25	2839.63	11212.8	5614.75		0.58	-0.14	0.062
42.75	-38.81	-2.65	0.00	-299.41	0.00	299.41	5615.38	2807.69	10960.7	5488.51		0.67	-0.15	0.061
45.00	-37.75	-2.61	0.00	-293.45	0.00	293.45	5563.11	2781.56	10756.6	5386.29		0.74	-0.16	0.061
49.00	-35.88	-2.53	0.00	-283.00	0.00	283.00	4756.80	2378.40	9239.06	4626.40		0.88	-0.18	0.069
55.00	-34.46	-2.50	0.00	-267.81	0.00	267.81	4670.33	2335.16	8842.49	4427.82		1.12	-0.20	0.068
60.00	-33.31	-2.46	0.00	-255.33	0.00	255.33	4597.00	2298.50	8516.13	4264.39		1.34	-0.22	0.067
65.00	-32.17	-2.43	0.00	-243.04	0.00	243.04	4522.52	2261.26	8193.68	4102.93		1.59	-0.25	0.066
70.00	-31.06	-2.39	0.00	-230.91	0.00	230.91	4446.89	2223.45	7875.26	3943.48		1.85	-0.27	0.066
75.00	-29.97	-2.37	0.00	-218.94	0.00	218.94	4354.69	2177.34	7534.33	3772.77		2.15	-0.29	0.065
85.00	-20.09	-2.35	0.00	-207.09	0.00	207.09	4253.00	2120.53	6843.99	3427.08		2.40	-0.31	0.064
86.50	-27.53	-2.35	0.00	-191.81	0.00	191.81	4120.95	2060.47	6743.30	3376.66		2.91	-0.34	0.063
90.00	-26.30	-2.34	0.00	-183.60	0.00	183.60	4049.81	2024.90	6511.26	3260.47		3.17	-0.36	0.063
91.75	-25.69	-2.35	0.00	-179.49	0.00	179.49	3441.70	1720.85	5608.94	2808.64		3.30	-0.37	0.071
95.00	-25.10	-2.35	0.00	-171.87	0.00	171.87	3401.05	1700.53	5452.51	2730.31		3.56	-0.38	0.070
100.00	-24.21	-2.36	0.00	-160.11	0.00	160.11	3337.56	1658.78	5214.58	2611.16		3.97	-0.41	0.069
110.00	-23.34	-2.30	0.00	-146.52	0.00	136.52	3194 68	1597.34	4980.08	2368 87		4.42	-0.44	0.067
115.00	-21.65	-2.37	0.00	-124.70	0.00	124.70	3107.57	1553.79	4474.96	2240.81		5.39	-0.49	0.063
120.00	-20.84	-2.37	0.00	-112.86	0.00	112.86	3020.47	1510.23	4226.32	2116.30		5.92	-0.52	0.060
125.00	-20.04	-2.37	0.00	-101.01	0.00	101.01	2933.36	1466.68	3984.78	1995.35		6.47	-0.54	0.057
130.00	-19.26	-2.37	0.00	-89.15	0.00	89.15	2846.25	1423.13	3750.35	1877.96		7.05	-0.57	0.054
131.25	-19.07	-2.37	0.00	-86.19	0.00	86.19	2824.47	1412.24	3692.86	1849.17		7.20	-0.57	0.053
135.00	-18.09	-2.37	0.00	-76.12	0.00	76.12	1734.08	867.04	2260 78	1132.07		7.00	-0.59	0.050
137.00	-15.28	-2.34	0.00	-72.57	0.00	72.57	1723.43	861.72	2225.81	1114.56		7.90	-0.60	0.074
140.00	-14.98	-2.34	0.00	-65.55	0.00	65.55	1701.83	850.91	2156.25	1079.73		8.29	-0.62	0.070
145.00	-14.49	-2.33	0.00	-53.84	0.00	53.84	1664.90	832.45	2041.54	1022.29		8.95	-0.65	0.061
147.00	-12.17	-2.22	0.00	-49.18	0.00	49.18	1649.80	824.90	1996.11	999.54		9.22	-0.66	0.057
150.00	-11.89	-2.21	0.00	-42.53	0.00	42.53	1626.81	813.41	1928.48	965.67		9.64	-0.67	0.051
155.00	-11.42	-2.17	0.00	-31.50	0.00	31.50	1571.58	785.79	1773.24	909.96 887 Q/	1	10.30	-0.69	0.042
160.00	-7.74	-1.76	0.00	-21.79	0.00	21.79	1547.20	773.60	1707.88	855.21		11.10	-0.71	0.030
165.00	-7.31	-1.71	0.00	-12.97	0.00	12.97	1505.67	752.84	1600.62	801.50		11.85	-0.73	0.021
167.00	-4.11	-1.10	0.00	-9.56	0.00	9.56	1488.74	744.37	1558.33	780.32	1	2.15	-0.73	0.015
170.00	-3.88	-1.06	0.00	-6.26	0.00	6.26	1462.99	731.50	1495.57	748.90	1	2.61	-0.73	0.011
175.00	-3.52	-0.98	0.00	-0.98	0.00	0.98	1411.70	705.85	1385.55	693.80	1	3.38	-0.74	0.004
176.00	0.00	-0.93	0.00	0.00	0.00	0.00	1400.09	700.04	1362.73	682.38	1	3.54	-0.74	0.000

Calculated Forces													
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022							
Site Name:	Glastonbury			Exposure:	В	dee He one							
Height:	176.00 (ft)			Crest Height:	0.00		7						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil)						
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 46	Solutions						

	Wind Loading - Shaft												
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53						
Site Name:	Glastonbury			Exposure:	В		((cHan))						
Height:	176.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil								
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 47	Tower Engineering Solutions						
Load Case: 1.0D + 1.0W 60 mph Wind													

Load Case: 1.0D + 1.0W 60 mph Wind Dead Load Factor 1.00

Wind Load Factor 1.00

*1	Iterations
×	
2	

Elev (ft) [Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.70	6.129	6.74	240.22	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.70	6.129	6.74	236.03	0.650	0.000	5.00	23.718	15.42	103.9	0.0	1500.1
10.00		1.00	0.70	6.129	6.74	231.85	0.650	0.000	5.00	23.301	15.15	102.1	0.0	1473.5
15.00		1.00	0.70	6.129	6.74	227.66	0.650	0.000	5.00	22.884	14.87	100.3	0.0	1446.9
20.00		1.00	0.70	6.129	6.74	223.48	0.650	0.000	5.00	22.467	14.60	98.5	0.0	1420.3
25.00		1.00	0.70	6.129	6.74	219.29	0.650	0.000	5.00	22.050	14.33	96.6	0.0	1393.7
30.00		1.00	0.70	6.134	6.75	215.20	0.650	0.000	5.00	21.634	14.06	94.9	0.0	1367.1
35.00		1.00	0.73	6.410	7.05	215.71	0.650	0.000	5.00	21.217	13.79	97.2	0.0	1340.5
40.00		1.00	0.76	6.659	7.33	215.50	0.650	0.000	5.00	20.800	13.52	99.0	0.0	1313.9
42.75 Bot - S	ection 2	1.00	0.78	6.787	7.47	215.14	0.650	0.000	2.75	11.262	7.32	54.7	0.0	711.3
45.00		1.00	0.79	6.887	7.58	214.72	0.650	0.000	2.25	9.288	6.04	45.7	0.0	1089.9
49.00 Top - S	Section 1	1.00	0.81	7.057	7.76	213.76	0.650	0.000	4.00	16.303	10.60	82.3	0.0	1912.7
50.00		1.00	0.81	7.098	7.81	217.48	0.650	0.000	1.00	4.034	2.62	20.5	0.0	223.2
55.00		1.00	0.83	7.294	8.02	215.89	0.650	0.000	5.00	19.920	12.95	103.9	0.0	1102.0
60.00		1.00	0.85	7.477	8.22	213.97	0.650	0.000	5.00	19.503	12.68	104.3	0.0	1078.7
65.00		1.00	0.87	7.650	8.42	211.76	0.650	0.000	5.00	19.086	12.41	104.4	0.0	1055.4
70.00		1.00	0.89	7.814	8.60	209.29	0.650	0.000	5.00	18.670	12.14	104.3	0.0	1032.2
75.00		1.00	0.91	7.969	8.77	206.59	0.650	0.000	5.00	18.253	11.86	104.0	0.0	1008.9
80.00		1.00	0.93	8.118	8.93	203.69	0.650	0.000	5.00	17.836	11.59	103.5	0.0	985.6
85.00		1.00	0.94	8.260	9.09	200.60	0.650	0.000	5.00	17.419	11.32	102.9	0.0	962.3
86.50 Bot - S	ection 3	1.00	0.95	8.301	9.13	199.64	0.650	0.000	1.50	5.145	3.34	30.5	0.0	284.2
90.00		1.00	0.96	8.396	9.24	197.35	0.650	0.000	3.50	12.080	7.85	72.5	0.0	1227.8
91.75 Top - S	Section 2	1.00	0.96	8.442	9.29	196.17	0.650	0.000	1.75	5.963	3.88	36.0	0.0	605.9
95.00		1.00	0.97	8.526	9.38	197.70	0.650	0.000	3.25	10.940	7.11	66.7	0.0	518.7
100.00		1.00	0.99	8.652	9.52	194.18	0.650	0.000	5.00	16.486	10.72	102.0	0.0	781.5
105.00		1.00	1.00	8.774	9.65	190.53	0.650	0.000	5.00	16.069	10.45	100.8	0.0	761.5
110.00		1.00	1.02	8.891	9.78	186.76	0.650	0.000	5.00	15.653	10.17	99.5	0.0	741.6
115.00		1.00	1.03	9.005	9.91	182.88	0.650	0.000	5.00	15.236	9.90	98.1	0.0	721.6
120.00		1.00	1.04	9.115	10.03	178.89	0.650	0.000	5.00	14.819	9.63	96.6	0.0	701.7
125.00		1.00	1.05	9.222	10.14	174.81	0.650	0.000	5.00	14.402	9.36	95.0	0.0	681.7
130.00		1.00	1.07	9.326	10.26	170.63	0.650	0.000	5.00	13.986	9.09	93.3	0.0	661.8
131.25 Bot - S	ection 4	1.00	1.07	9.351	10.29	169.57	0.650	0.000	1.25	3.431	2.23	22.9	0.0	162.3
135.00		1.00	1.08	9.427	10.37	166.36	0.650	0.000	3.75	10.296	6.69	69.4	0.0	805.5
135.50 Top - S	Section 3	1.00	1.08	9.437	10.38	165.93	0.650	0.000	0.50	1.355	0.88	9.1	0.0	106.0
137.00 Appurt	enance(s)	1.00	1.08	9.466	10.41	167.27	0.650	0.000	1.50	4.040	2.63	27.3	0.0	127.9
140.00		1.00	1.09	9.525	10.48	164.66	0.650	0.000	3.00	7.968	5.18	54.3	0.0	252.2
145.00		1.00	1.10	9.621	10.58	160.24	0.650	0.000	5.00	12.947	8.42	89.1	0.0	409.7
147.00 Appurt	enance(s)	1.00	1.10	9.659	10.62	158.45	0.650	0.000	2.00	5.062	3.29	35.0	0.0	160.2
150.00		1.00	1.11	9.715	10.69	155.75	0.650	0.000	3.00	7.468	4.85	51.9	0.0	236.3
155.00		1.00	1.12	9.806	10.79	151.19	0.650	0.000	5.00	12.113	7.87	84.9	0.0	383.1
157.00 Appurt	enance(s)	1.00	1.12	9.842	10.83	149.35	0.650	0.000	2.00	4.729	3.07	33.3	0.0	149.5
160.00		1.00	1.13	9.896	10.89	146.56	0.650	0.000	3.00	6.968	4.53	49.3	0.0	220.3
165.00		1.00	1.14	9.983	10.98	141.86	0.650	0.000	5.00	11.280	7.33	80.5	0.0	356.5
167.00 Appurt	enance(s)	1.00	1.14	10.017	11.02	139.97	0.650	0.000	2.00	4.395	2.86	31.5	0.0	138.9
170.00		1.00	1.15	10.069	11.08	137.11	0.650	0.000	3.00	6.468	4.20	46.6	0.0	204.3
175.00		1.00	1.16	10.152	11.17	132.29	0.650	0.000	5.00	10.446	6.79	75.8	0.0	329.9
176.00 Appurt	enance(s)	1.00	1.16	10.169	11.19	131.32	0.650	0.000	1.00	2.039	1.33	14.8	0.0	64.4

	Wind Loading - Shaft													
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	4							
Site Name:	Glastonbury			Exposure:	В		((ithis))							
Height:	176.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil									
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 48	Tower Engineering Solutions							
				Tota	ls: 176.00	3,389.5	34,212.9							

Discrete Appurtenance Forces

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53
Site Name:	Glastonbury			Exposure:	В		((thu))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 49	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor1.00Wind Load Factor1.00

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (Ib-ft)	Mom Z (Ib-ft)
1	176.00	KRY 112 489/2	3	10.185	11.204	0.50	0.75	0.98	46.20	0.000	1.000	10.98	0.00	10.98
2	176.00	MHA FE15501P77/75	6	10.185	11.204	0.49	0.75	2.72	66.00	0.000	1.000	30.48	0.00	30.48
3	176.00	Lightning Rod	1	10.226	11.249	1.00	1.00	1.05	35.00	0.000	3.500	11.81	0.00	41.34
4	176.00	RMQP-496-HK	1	10.185	11.204	1.00	1.00	46.00	2449.00	0.000	1.000	515.38	0.00	515.38
5	176.00	4460 B25 + B66	3	10.185	11.204	0.50	0.75	2.47	216.00	0.000	1.000	27.70	0.00	27.70
6	176.00	KRY 112 89/4	3	10.185	11.204	0.50	0.75	0.98	46.20	0.000	1.000	10.98	0.00	10.98
7	176.00	AIR 6419 B41	3	10.185	11.204	0.52	0.75	10.28	399.60	0.000	1.000	115.23	0.00	115.23
8	176.00	APXVAALL24_43-U-NA20	3	10.185	11.204	0.55	0.75	33.24	368.40	0.000	1.000	372.46	0.00	372.46
9	176.00	4449 B71 + B85	3	10.185	11.204	0.50	0.75	2.97	219.60	0.000	1.000	33.27	0.00	33.27
10	167.00	Commscope	3	10.017	11.019	0.64	0.75	15.66	152.10	0.000	0.000	172.60	0.00	0.00
11	167.00	Commscope	3	10.017	11.019	0.62	0.75	15.09	131.10	0.000	0.000	166.27	0.00	0.00
12	167.00	APL868013	1	10.017	11.019	1.00	1.00	2.86	6.30	0.000	0.000	31.51	0.00	0.00
13	167.00	Samsung MT6407-77A	3	10.017	11.019	0.52	0.75	7.39	238.20	0.000	0.000	81.40	0.00	0.00
14	167.00	LPA-80063-4CF-EDIN-5	2	10.017	11.019	0.84	0.90	10.30	40.00	0.000	0.000	113.44	0.00	0.00
15	167.00	Low Profile	1	10.017	11.019	1.00	1.00	22.00	1500.00	0.000	0.000	242.42	0.00	0.00
16	167.00	KICKER KIT	1	10.017	11.019	1.00	1.00	5.33	146.00	0.000	0.000	58.73	0.00	0.00
17	167.00	B2/B66A RRH ORAN	3	10.017	11.019	0.50	0.75	2.82	253.20	0.000	0.000	31.06	0.00	0.00
18	167.00	B5/B13 RRH ORAN	3	10.017	11.019	0.50	0.75	2.82	210.90	0.000	0.000	31.06	0.00	0.00
19	167.00	CBRS RRH - RT4401-48A	3	10.017	11.019	0.50	0.75	1.49	55.80	0.000	0.000	16.45	0.00	0.00
20	167.00	Raycap	2	10.017	11.019	0.81	0.90	6.12	64.00	0.000	0.000	67.48	0.00	0.00
21	167.00	MONOPOLE COLLAR	1	10.017	11.019	1.00	1.00	2.50	150.60	0.000	0.000	27.55	0.00	0.00
22	167.00	SUPPORT RAIL CORNER	1	10.017	11.019	1.00	1.00	8.75	430.00	0.000	0.000	96.42	0.00	0.00
23	157.00	ALU TD-RRH8x20-25	3	9.842	10.827	0.54	0.80	6.51	210.00	0.000	0.000	70.51	0.00	0.00
24	157.00	ALU 800 Mhz	6	9.842	10.827	0.54	0.80	8.01	318.00	0.000	0.000	86.70	0.00	0.00
25	157.00	ALU 1900 Mhz	3	9.842	10.827	0.54	0.80	4.45	180.00	0.000	0.000	48.22	0.00	0.00
26	157.00	Sitepro PRK-1245L	1	9.842	10.827	1.00	1.00	9.50	464.91	0.000	0.000	102.85	0.00	0.00
27	157.00	RFS APXVTM14-C-I20	3	9.842	10.827	0.62	0.80	11.72	168.60	0.000	0.000	126.85	0.00	0.00
28	157.00	Commscope	3	9.842	10.827	0.60	0.80	22.09	232.20	0.000	0.000	239.11	0.00	0.00
29	157.00	Low Profile Platform	1	9.842	10.827	1.00	1.00	22.00	1500.00	0.000	0.000	238.18	0.00	0.00
30	157.00	Sitepro HRK14-U	1	9.842	10.827	1.00	1.00	8.13	302.36	0.000	0.000	88.02	0.00	0.00
31	157.00	Sitepro PRK-SFS-H-L	1	9.842	10.827	1.00	1.00	6.70	230.00	0.000	0.000	72.54	0.00	0.00
32	147.00	RDIDC-9181-PF-48	1	9.659	10.625	1.00	1.00	2.01	21.90	0.000	0.000	21.36	0.00	0.00
33	147.00	TA08025-B604	3	9.659	10.625	0.50	0.75	2.95	191.70	0.000	0.000	31.39	0.00	0.00
34	147.00	TA08025-B605	3	9.659	10.625	0.50	0.75	2.95	225.00	0.000	0.000	31.39	0.00	0.00
35	147.00	MC-PK8-DSH	1	9.659	10.625	1.00	1.00	37.59	1727.00	0.000	0.000	399.39	0.00	0.00
36	147.00	MX08FRO665-21	3	9.659	10.625	0.55	0.75	20.80	193.50	0.000	0.000	220.95	0.00	0.00
37	137.00	B2 B66A 8843	3	9.466	10.413	0.50	0.75	2.47	210.00	0.000	0.000	25.74	0.00	0.00
38	137.00	4449 B5/B12	3	9.466	10.413	0.50	0.75	2.97	213.00	0.000	0.000	30.92	0.00	0.00
39	137.00	DC6-48-60-18-8F	1	9.466	10.413	1.00	1.00	1.47	32.80	0.000	0.000	15.31	0.00	0.00
40	137.00	7770.00	3	9.466	10.413	0.55	0.75	9.03	105.00	0.000	0.000	94.07	0.00	0.00
41	137.00	DMP65R-BU6DA	3	9.466	10.413	0.54	0.75	20.59	238.20	0.000	0.000	214.41	0.00	0.00
42	137.00	HRK14	1	9.466	10.413	1.00	1.00	8.13	302.36	0.000	0.000	84.66	0.00	0.00
43	137.00	LP Platform-Round	1	9.466	10.413	1.00	1.00	22.00	1500.00	0.000	0.000	229.09	0.00	0.00
44	137.00	LGP21401	6	9.466	10.413	0.50	0.75	3.89	114.00	0.000	0.000	40.50	0.00	0.00
45	137.00	LGP21903	6	9.466	10.413	0.50	0.75	0.81	30.00	4.341	0.000	8.48	36.79	0.00
46	137.00	HPA-65R-BUU-H6	3	9.466	10.413	0.64	0.75	18.47	153.00	0.000	0.000	192.38	0.00	0.00
47	137.00	7020	12	9.466	10.413	0.50	0.75	2.41	26.40	0.000	0.000	25.12	0.00	0.00
			Di	screte	Арр	urtena	nce	Forces						
--------------	---------------------	------	--------	--------	------	----------	------	-------------	-------	--------	--------	-----------------	--------------	
Structure:	CT02216-S-SBA				Co	de:		TIA-222-0	3	9/12/2	022			
Site Name:	Glastonbury				Ex	posure		В				(Hu)		
Height:	176.00 (ft)				Cre	est Heig	ght:	0.00				E	C	
Base Elev:	0.000 (ft)				Sit	e Class	:	D - Stiff S	oil				S	
Gh:	1.1	Торо	graphy	: 1	Str	uct Cla	ss:	П		Page	: 50	Tower Engineeri	ng Solutions	
48 137.00 Sn	nart Bias T 1001940	3	9.466	10.413	0.50	0.75	0.14	6.00	7.041	0.000	1.41	9.95	0.00	
						Totals:		16,120.13		5,	004.23			

		Tot	al App	lied Force Su	ummary		
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.53
Site Name:	Glastonbury			Exposure:	В		((chin))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 51	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Ξ

Dead Load Factor Wind Load Factor

ctor 1.00 ctor 1.00

25

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
5.00 133.93 1704.42 0.00 0.00 10.00 102.10 1677.82 0.00 0.00 15.00 100.28 1651.23 0.00 0.00 20.00 98.45 1624.63 0.00 0.00 25.00 96.62 158.03 0.00 0.00 30.00 94.88 1571.43 0.00 0.00 30.00 97.24 1544.84 0.00 0.00 40.00 99.04 1518.24 0.00 0.00 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 55.00 103.88 1306.33 0.00 0.00 60.00 104.40 1259.79 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 86.50 30.53 345.47 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 67.47 0.00 0.00 91.00 100.81 965.88 0.00 0.00 115.00 98.09 925.99 0.00 0.00 120.00 96.58 966.04 0.00 0.00 130.00 94.96 886.09 0.00 0.00
10.00102.101677.820.000.0015.00100.281651.230.000.0020.0098.451624.630.000.0025.0096.621598.030.000.0030.0094.881571.430.000.0040.0099.041518.240.000.0042.7554.65823.690.000.0045.0045.731181.900.000.0049.0082.262076.220.000.0055.00103.881306.330.000.0060.00104.271283.060.000.0065.00104.401259.790.000.0070.00104.311236.520.000.0085.00102.871186.700.000.0085.00102.871186.700.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0091.7536.00677.470.000.0091.7536.00677.470.000.0010.0099.51945.940.000.0011.0099.51945.940.000.00125.0094.96886.090.000.00125.0094.96886.090.000.00132.5069.40958.770.000.00
15.00100.281651.230.000.0020.0098.451624.630.000.0025.0096.621598.030.000.0030.0094.881571.430.000.0035.0097.241544.840.000.0040.0099.041518.240.000.0042.7554.65823.690.000.0045.0045.731181.900.000.0045.0020.47264.060.000.0050.0020.47264.060.000.0055.00103.881306.330.000.0060.00104.271283.060.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0085.00102.871166.700.000.0085.0030.53345.470.000.0090.0072.511370.810.000.0095.0066.69651.490.000.0095.0066.69651.490.000.0010.00101.99985.830.000.00105.00100.81965.880.000.00105.0098.09925.990.000.00115.0098.69966.440.000.00125.0094.96886.090.000.00135.0069.40958.770.000.00
20.00 98.45 1624.63 0.00 0.00 25.00 96.62 1598.03 0.00 0.00 30.00 94.88 1571.43 0.00 0.00 35.00 97.24 1544.84 0.00 0.00 40.00 99.04 1518.24 0.00 0.00 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 65.00 104.40 1259.79 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 80.00 103.52 1189.97 0.00 0.00 85.00 102.87 1166.70 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75
25.00 96.62 158.03 0.00 0.00 30.00 94.88 1571.43 0.00 0.00 35.00 97.24 1544.84 0.00 0.00 40.00 99.04 1518.24 0.00 0.00 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 55.00 103.88 1306.33 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 65.00 104.40 1259.79 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 85.00 102.87 1166.70 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 677.47 0.00 0.00 95.00 66.69 651.49 0.00 0.00 95.00
30.00 94.88 1571.43 0.00 0.00 35.00 97.24 1544.84 0.00 0.00 40.00 99.04 1518.24 0.00 0.00 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 55.00 103.88 1306.33 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 65.00 104.40 1259.79 0.00 0.00 70.00 104.31 1236.52 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 80.00 102.87 1166.70 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 677.47 0.00 0.00 95.00 66.69 651.49 0.00 0.00 91.75 36.00 677.47 0.00 0.00 100.00 101.99 985.83 0.00 0.00 115.00 98.09 925.99 0.00 0.00 120.00 96.58 906.04 0.00 0.00 135.00 69.40 958.77 0.00 0.00
35.00 97.24 1544.84 0.00 0.00 40.00 99.04 1518.24 0.00 0.00 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 55.00 103.88 1306.33 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 70.00 104.40 1259.79 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 80.00 103.52 1189.97 0.00 0.00 85.00 102.87 1166.70 0.00 0.00 86.50 30.53 345.47 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 67.47 0.00 0.00 91.00
40.00 99.04 1518.24 0.00 0.00 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 55.00 103.88 1306.33 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 65.00 104.40 1259.79 0.00 0.00 70.00 104.31 1236.52 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 80.00 103.52 1189.97 0.00 0.00 85.00 102.87 1166.70 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 677.47 0.00 0.00 100.00 101.99 985.83 0.00 0.00 105.00 </td
110 101 101 101 101 42.75 54.65 823.69 0.00 0.00 45.00 45.73 1181.90 0.00 0.00 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 50.00 103.88 1306.33 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 65.00 104.40 1259.79 0.00 0.00 70.00 104.31 1236.52 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 80.00 102.87 1166.70 0.00 0.00 85.00 102.87 1166.70 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 677.47 0.00 0.00 100.00 101.99 985.83 0.00 0.00 105.00
45.0045.731181.900.000.0049.0082.262076.220.000.0050.0020.47264.060.000.0055.00103.881306.330.000.0060.00104.271283.060.000.0065.00104.401259.790.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00110.0099.51945.940.000.00120.0096.58906.040.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
100 101 101 101 101 49.00 82.26 2076.22 0.00 0.00 50.00 20.47 264.06 0.00 0.00 55.00 103.88 1306.33 0.00 0.00 60.00 104.27 1283.06 0.00 0.00 65.00 104.40 1259.79 0.00 0.00 70.00 104.31 1236.52 0.00 0.00 75.00 104.01 1213.24 0.00 0.00 80.00 103.52 1189.97 0.00 0.00 85.00 102.87 1166.70 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 677.47 0.00 0.00 91.75 36.00 677.47 0.00 0.00 100.00 101.99 985.83 0.00 0.00 100.00 100.81 965.88 0.00 0.00 110.00
10:0020.47264.060.000.0055.00103.881306.330.000.0060.00104.271283.060.000.0065.00104.401259.790.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
11.1.112.1.112.1.112.1.100.000.0055.00103.881306.330.000.0060.00104.271283.060.000.0065.00104.401259.790.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00
10000100000100000000060.00104.271283.060.000.0065.00104.401259.790.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00125.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00135.0069.40958.770.000.00
65.00104.17120.000.000.0065.00104.401259.790.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00135.0069.40958.770.000.00
101.00104.101235.130.000.0070.00104.311236.520.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
10.00104.011230.320.000.0075.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
73.00104.011213.240.000.0080.00103.521189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
60.00103.321189.970.000.0085.00102.871166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
65.00102.671166.700.000.0086.5030.53345.470.000.0090.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
86.50 30.53 345.47 0.00 0.00 90.00 72.51 1370.81 0.00 0.00 91.75 36.00 677.47 0.00 0.00 95.00 66.69 651.49 0.00 0.00 100.00 101.99 985.83 0.00 0.00 105.00 100.81 965.88 0.00 0.00 115.00 99.51 945.94 0.00 0.00 115.00 98.09 925.99 0.00 0.00 120.00 96.58 906.04 0.00 0.00 125.00 94.96 886.09 0.00 0.00 130.00 93.25 866.14 0.00 0.00 131.25 22.94 213.42 0.00 0.00 135.00 69.40 958.77 0.00 0.00
90.0072.511370.810.000.0091.7536.00677.470.000.0095.0066.69651.490.000.00100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
91.75 36.00 677.47 0.00 0.00 95.00 66.69 651.49 0.00 0.00 100.00 101.99 985.83 0.00 0.00 105.00 100.81 965.88 0.00 0.00 110.00 99.51 945.94 0.00 0.00 115.00 98.09 925.99 0.00 0.00 120.00 96.58 906.04 0.00 0.00 125.00 94.96 886.09 0.00 0.00 130.00 93.25 866.14 0.00 0.00 131.25 22.94 213.42 0.00 0.00
95.0066.69651.490.000.00100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
100.00101.99985.830.000.00105.00100.81965.880.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
105.00100.81965.880.000.00110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
110.0099.51945.940.000.00115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
115.0098.09925.990.000.00120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
120.0096.58906.040.000.00125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
125.0094.96886.090.000.00130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
130.0093.25866.140.000.00131.2522.94213.420.000.00135.0069.40958.770.000.00
131.2522.94213.420.000.00135.0069.40958.770.000.00
135.00 69.40 958.77 0.00 0.00
135.50 9.14 126.42 0.00 0.00
137.00 (45) attachments 989.43 3119.97 46.74 0.00
140.00 54.27 334.52 0.00 0.00
145.00 89.06 546.89 0.00 0.00
147.00 (11) attachments 739.44 2574.13 0.00 0.00
150.00 51.87 315.56 0.00 0.00
155.00 84.93 515.29 0.00 0.00
157.00 (22) attachments 1106.26 3808.46 0.00 0.00
160.00 49.30 291.68 0.00 0.00
165.00 80.51 475.50 0.00 0.00
167.00 (27) attachments 1167.88 3564.68 0.00 0.00
170 00 46 56 249 32 0 00 0.00
175.00 75.83 404.90 0.00 0.00
176.00 (26) attachments 1143.11 3925.38 0.00 1157.81

			Total	Applie	d Forc	e Summary		
Structure:	CT02216-S-	-SBA		C	ode:	TIA-222-G	9/12/2022	44.000.53
Site Name:	Glastonbury	/		E	xposure	: В		dectars)
Height:	176.00 (ft)			С	rest Hei	ght: 0.00		EC
Base Elev:	0.000 (ft)			Si	ite Class	: D - Stiff So	bil	
Gh:	1.1	Тор	ography: 1	S	truct Cla	ss: II	Page: 52	Tower Engineering Solutions
	- Totals:	8,393.77	56,844.19	46.7	4 1,	157.81		

Linear Appurtenance Segment Forces (Factored)

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.00.53
Site Name:	Glastonbury			Exposure:	В		(collerable)
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 53	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor Wind Load Factor

ctor 1.00

Z

25

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
5.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	6.129	0.00	1.37
5.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	6.129	0.00	5.20
10.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	6.129	0.00	1.37
10.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	6.129	0.00	5.20
15.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.018	0.000	6.129	0.00	1.37
15.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.018	0.000	6.129	0.00	5.20
20.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	6.129	0.00	1.37
20.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	6.129	0.00	5.20
25.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	6.129	0.00	1.37
25.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	6.129	0.00	5.20
30.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.019	0.000	6.134	0.00	1.37
30.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.019	0.000	6.134	0.00	5.20
35.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.020	0.000	6.410	0.00	1.37
35.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.020	0.000	6.410	0.00	5.20
40.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.020	0.000	6.659	0.00	1.37
40.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.020	0.000	6.659	0.00	5.20
42.75	Safety Cable	Yes	2.75	0.000	0.38	0.09	0.00	0.021	0.000	6.787	0.00	0.75
42.75	Step bolts (ladder)	Yes	2.75	0.000	0.63	0.14	0.00	0.021	0.000	6.787	0.00	2.86
45.00	Safety Cable	Yes	2.25	0.000	0.38	0.07	0.00	0.021	0.000	6.887	0.00	0.61
45.00	Step bolts (ladder)	Yes	2.25	0.000	0.63	0.12	0.00	0.021	0.000	6.887	0.00	2.34
49.00	Safety Cable	Yes	4.00	0.000	0.38	0.13	0.00	0.021	0.000	7.057	0.00	1.09
49.00	Step bolts (ladder)	Yes	4.00	0.000	0.63	0.21	0.00	0.021	0.000	7.057	0.00	4.16
50.00	Safety Cable	Yes	1.00	0.000	0.38	0.03	0.00	0.021	0.000	7.098	0.00	0.27
50.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.05	0.00	0.021	0.000	7.098	0.00	1.04
55.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.021	0.000	7.294	0.00	1.37
55.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.021	0.000	7.294	0.00	5.20
60.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.022	0.000	7.477	0.00	1.37
60.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.022	0.000	7.477	0.00	5.20
65.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.022	0.000	7.650	0.00	1.37
65.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.022	0.000	7.650	0.00	5.20
70.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.023	0.000	7.814	0.00	1.37
70.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.023	0.000	7.814	0.00	5.20
75.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.023	0.000	7.969	0.00	1.37
75.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.023	0.000	7.969	0.00	5.20
80.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.024	0.000	8.118	0.00	1.37
80.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.024	0.000	8.118	0.00	5.20
85.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.024	0.000	8.260	0.00	1.37
85.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.024	0.000	8.260	0.00	5.20
86.50	Safety Cable	Yes	1.50	0.000	0.38	0.05	0.00	0.025	0.000	8.301	0.00	0.41
86.50	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.08	0.00	0.025	0.000	8.301	0.00	1.56
90.00	Safety Cable	Yes	3.50	0.000	0.38	0.11	0.00	0.025	0.000	8.396	0.00	0.96
90.00	Step bolts (ladder)	Yes	3.50	0.000	0.63	0.18	0.00	0.025	0.000	8.396	0.00	3.64
91.75	Safety Cable	Yes	1.75	0.000	0.38	0.06	0.00	0.025	0.000	8.442	0.00	0.48
91.75	Step bolts (ladder)	Yes	1.75	0.000	0.63	0.09	0.00	0.025	0.000	8.442	0.00	1.82
95.00	Safety Cable	Yes	3.25	0.000	0.38	0.10	0.00	0.025	0.000	8.526	0.00	0.89
95.00	Step bolts (ladder)	Yes	3.25	0.000	0.63	0.17	0.00	0.025	0.000	8.526	0.00	3.38
100.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.026	0.000	8.652	0.00	1.37

 $\label{eq:copyright} \verb"Copyright" "Copyright" \verb"Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright" "Copyright" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright" "Copyright"" "Copyright"""$

Linear Appurtenance Segment Forces (Factored)

Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.55
Site Name:	Glastonbury			Exposure:	В		((atta))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 54	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor Wind Load Factor

tor 1.00 tor 1.00

25

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	FX (Ib)	Dead Load (Ib)
100.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.026	0.000	8 652	0.00	5.20
105.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.026	0.000	8.774	0.00	1.37
105.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.026	0.000	8.774	0.00	5.20
110.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.027	0.000	8.891	0.00	1.37
110.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.027	0.000	8.891	0.00	5.20
115.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.028	0.000	9.005	0.00	1.37
115.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.028	0.000	9.005	0.00	5.20
120.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.028	0.000	9.115	0.00	1.37
120.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.028	0.000	9.115	0.00	5.20
125.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.029	0.000	9.222	0.00	1.37
125.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.029	0.000	9.222	0.00	5.20
130.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.030	0.000	9.326	0.00	1.37
130.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.030	0.000	9.326	0.00	5.20
131.25	Safety Cable	Yes	1.25	0.000	0.38	0.04	0.00	0.031	0.000	9.351	0.00	0.34
131.25	Step bolts (ladder)	Yes	1.25	0.000	0.63	0.07	0.00	0.031	0.000	9.351	0.00	1.30
135.00	Safety Cable	Yes	3.75	0.000	0.38	0.12	0.00	0.031	0.000	9.427	0.00	1.02
135.00	Step bolts (ladder)	Yes	3.75	0.000	0.63	0.20	0.00	0.031	0.000	9.427	0.00	3.90
135.50	Safety Cable	Yes	0.50	0.000	0.38	0.02	0.00	0.032	0.000	9.437	0.00	0.14
135.50	Step bolts (ladder)	Yes	0.50	0.000	0.63	0.03	0.00	0.032	0.000	9.437	0.00	0.52
137.00	Safety Cable	Yes	1.50	0.000	0.38	0.05	0.00	0.031	0.000	9.466	0.00	0.41
137.00	Step bolts (ladder)	Yes	1.50	0.000	0.63	0.08	0.00	0.031	0.000	9.466	0.00	1.56
140.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.032	0.000	9.525	0.00	0.82
140.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.032	0.000	9.525	0.00	3.12
145.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.033	0.000	9.621	0.00	1.37
145.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.033	0.000	9.621	0.00	5.20
147.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.033	0.000	9.659	0.00	0.55
147.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.033	0.000	9.659	0.00	2.08
150.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.034	0.000	9.715	0.00	0.82
150.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.034	0.000	9.715	0.00	3.12
155.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.035	0.000	9.806	0.00	1.37
155.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.035	0.000	9.806	0.00	5.20
157.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.036	0.000	9.842	0.00	0.55
157.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.036	0.000	9.842	0.00	2.08
160.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.036	0.000	9.896	0.00	0.82
160.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.036	0.000	9.896	0.00	3.12
165.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.037	0.000	9.983	0.00	1.37
165.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.037	0.000	9.983	0.00	5.20
167.00	Safety Cable	Yes	2.00	0.000	0.38	0.06	0.00	0.038	0.000	10.017	0.00	0.55
167.00	Step bolts (ladder)	Yes	2.00	0.000	0.63	0.10	0.00	0.038	0.000	10.017	0.00	2.08
170.00	Safety Cable	Yes	3.00	0.000	0.38	0.10	0.00	0.039	0.000	10.069	0.00	0.82
170.00	Step bolts (ladder)	Yes	3.00	0.000	0.63	0.16	0.00	0.039	0.000	10.069	0.00	3.12
175.00	Safety Cable	Yes	5.00	0.000	0.38	0.16	0.00	0.040	0.000	10.152	0.00	1.37
175.00	Step bolts (ladder)	Yes	5.00	0.000	0.63	0.26	0.00	0.040	0.000	10.152	0.00	5.20
176.00	Safety Cable	Yes	1.00	0.000	0.38	0.03	0.00	0.041	0.000	10.169	0.00	0.27
176.00	Step bolts (ladder)	Yes	1.00	0.000	0.63	0.05	0.00	0.041	0.000	10.169	0.00	1.04
									То	tals:	0.0	231.1

						Calc	ulated Fo	orces						
Struc	ture:	CT022	216-S-S	SBA			Code:	TIA	-222-G		9/1	2/2022	(
Site N	lame:	Glasto	onbury				Exposure:	В					((H))	
Heigh	nt:	176.0	0 (ft)				Crest Heid	aht: 0.0	0					C
Base	Flov:	0 000	(ft)				Site Class	• D-	Stiff Soil					S
Ch:	LIEV.	1 1	(11)	То	nography	1	Struct Cla				De	000 55	Tower Engineer	ring Solutions
- Gn.		1.1		10	pograpny.	1	Struct Cla	55. II			Γ¢	iye. 55		
Load	Case:	1.0D	+ 1.0W	60 mph	Wind						Y	lte x	erations	25
	Win		d Facto	r 1.0						7				
	vviii	u Lua	aracio	1 1.0	.0						×			
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-56.84	-8.42	-0.05	-1151.3	0.00	1151.32	6372.54	3186.27	14661.2	7341.49	0.00	0.000	0.000	0.166
5.00	-55.13	-8.36	-0.05	-1109.2	0.00	1109.24	6292.68	3146.34	14220.7	7120.95	0.02	-0.046	0.000	0.165
10.00	-53.45	-8.30	-0.05	-1067.4	0.00	1067.46	6211.66	3105.83	13784.2	6902.39	0.10	-0.092	0.000	0.163
20.00	-50.16	-0.23	-0.05	-1025.9	0.00	984.82	6046.18	3023.09	12923.8	6471.51	0.22	-0.139	0.000	0.162
25.00	-48.55	-8.11	-0.05	-943.95	0.00	943.95	5961.72	2980.86	12500.0	6259.33	0.61	-0.235	0.000	0.159
30.00	-46.97	-8.05	-0.05	-903.39	0.00	903.39	5876.11	2938.05	12080.8	6049.42	0.88	-0.284	0.000	0.157
35.00	-45.42	-7.98	-0.05	-863.14	0.00	863.14	5789.35	2894.67	11666.3	5841.84	1.21	-0.334	0.000	0.156
40.00	-43.90	-7.91	-0.05	-823.22	0.00	823.22	5679.25	2839.63	11212.8	5614.75	1.58	-0.384	0.000	0.154
42.75	-43.07	-7.83	-0.05	-783 78	0.00	783 78	5563 11	2781.56	10960.7	5386.29	2.01	-0.412	0.000	0.154
49.00	-39.81	-7.75	-0.05	-752.44	0.00	752.44	4756.80	2378.40	9239.06	4626.40	2.39	-0.477	0.000	0.171
50.00	-39.54	-7.75	-0.05	-744.69	0.00	744.69	4742.51	2371.25	9172.60	4593.12	2.50	-0.488	0.000	0.170
55.00	-38.23	-7.68	-0.05	-705.92	0.00	705.92	4670.33	2335.16	8842.49	4427.82	3.04	-0.544	0.000	0.168
60.00	-36.94	-7.60	-0.05	-667.54	0.00	667.54	4597.00	2298.50	8516.13	4264.39	3.64	-0.601	0.000	0.165
70.00	-35.67	-7.51	-0.05	-629.56	0.00	629.50 501.00	4522.52	2201.20	7875.26	3943.48	4.30	-0.058	0.000	0.161
75.00	-33.21	-7.34	-0.05	-554.85	0.00	554.85	4354.69	2177.34	7534.33	3772.77	5.80	-0.773	0.000	0.155
80.00	-32.01	-7.25	-0.05	-518.14	0.00	518.14	4253.06	2126.53	7185.02	3597.85	6.64	-0.831	0.000	0.152
85.00	-30.84	-7.15	-0.05	-481.87	0.00	481.87	4151.43	2075.72	6843.99	3427.08	7.54	-0.888	0.000	0.148
86.50	-30.50	-7.13	-0.05	-471.14	0.00	471.14	4120.95	2060.47	6743.30	3376.66	7.82	-0.906	0.000	0.147
90.00	-29.12	-7.06	-0.05	-446.17	0.00	446.17	4049.81	2024.90	5608.94	3260.47	8.50	-0.947	0.000	0.144
95.00	-20.44	-6.97	-0.05	-411.00	0.00	411.00	3401.05	1720.03	5452.51	2730.31	9.52	-1.006	0.000	0.159
100.00	-26.79	-6.88	-0.05	-376.15	0.00	376.15	3337.56	1668.78	5214.58	2611.16	10.61	-1.068	0.000	0.152
105.00	-25.82	-6.79	-0.05	-341.76	0.00	341.76	3272.92	1636.46	4980.08	2493.74	11.76	-1.129	0.000	0.145
110.00	-24.87	-6.69	-0.05	-307.83	0.00	307.83	3194.68	1597.34	4730.71	2368.87	12.98	-1.189	0.000	0.138
115.00	-23.94	-6.60	-0.05	-274.37	0.00	274.37	3107.57	1553.79	4474.96	2240.81	14.25	-1.248	0.000	0.130
120.00	-23.03	-6.50	-0.05	-241.37	0.00	241.37	3020.47	1510.23	4226.32	2116.30	15.59	-1.304	0.000	0.122
130.00	-21.28	-6.31	-0.05	-176.80	0.00	176.80	2846.25	1423.13	3750.35	1877.96	18.43	-1.407	0.000	0.102
131.25	-21.06	-6.29	-0.05	-168.92	0.00	168.92	2824.47	1412.24	3692.86	1849.17	18.80	-1.420	0.000	0.099
135.00	-20.10	-6.20	-0.05	-145.34	0.00	145.34	2759.14	1379.57	3523.03	1764.13	19.93	-1.454	0.000	0.090
135.50	-19.97	-6.19	-0.05	-142.24	0.00	142.24	1734.08	867.04	2260.78	1132.07	20.09	-1.458	0.000	0.137
137.00	-16.88	-5.13	0.00	-132.96	0.00	132.96	1723.43	861.72	2225.81	1114.56	20.55	-1.471	0.000	0.129
140.00	-16.54	-5.08	0.00	-117.57	0.00	117.57	1701.83	850.91	2156.25	1079.73	21.48	-1.506	0.000	0.119
145.00	-15.99	-4.98	0.00	-92.18	0.00	92.18 82.21	1649.90	824 00	2041.54	999 54	23.09	-1.556	0.000	0.100
150.00	-13.44	-4.13	0.00	-69.67	0.00	69.67	1626.81	813 41	1928 48	965 67	23.74	-1.600	0.000	0.080
155.00	-12.61	-4.03	0.00	-49.03	0.00	49.03	1587.58	793.79	1817.22	909.96	26.44	-1.635	0.000	0.062
157.00	-8.83	-2.82	0.00	-40.97	0.00	40.97	1571.57	785.79	1773.24	887.94	27.12	-1.647	0.000	0.052
160.00	-8.54	-2.76	0.00	-32.51	0.00	32.51	1547.20	773.60	1707.88	855.21	28.16	-1.662	0.000	0.044
165.00	-8.07	-2.67	0.00	-18.69	0.00	18.69	1505.67	752.84	1600.62	801.50	29.92	-1.681	0.000	0.029
167.00	-4.54	-1.40	0.00	-13.35	0.00	13.35	1488.74	744.37	1558.33	780.32	30.62	-1.686	0.000	0.020
175.00	-4.29	-1.35	0.00	-9.15	0.00	9.15	1402.99	705.85	1385.57	693.80	33.46	-1.692	0.000	0.015

0.000 0.002

176.00 0.00 -1.14 0.00 -1.16 0.00 1.16 1400.09 700.04 1362.73 682.38 33.81 -1.697

			Cal	culated Force	es	
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022
Site Name:	Glastonbury			Exposure:	В	dee un set
Height:	176.00 (ft)			Crest Height:	0.00	EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil	
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 56 Tower Engineering Solutions

			Final A	nalysis Sum	mary		
Structure:	CT02216-S-SBA			Code:	TIA-222-G	9/12/2022	44.000.5N
Site Name:	Glastonbury			Exposure:	В		((cHr))
Height:	176.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	D - Stiff Soil		
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 57	Tower Engineering Solutions

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)
1.2D + 1.6W 97 mph Wind	35.2	0.00	68.15	0.00	0.12	4861.42
0.9D + 1.6W 97 mph Wind	35.2	0.00	51.10	0.00	0.12	4776.07
1.2D + 1.0Di + 1.0Wi 50 mph Wind	10.8	0.00	117.48	0.00	0.11	1582.91
1.2D + 1.0E	3.0	0.00	68.21	0.00	0.00	428.76
0.9D + 1.0E	3.0	0.00	51.16	0.00	0.00	420.67
1.0D + 1.0W 60 mph Wind	8.4	0.00	56.84	0.00	0.05	1151.32

Max Stresses

Load Case	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	t phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.2D + 1.6W 97 mph Wind	-46.71	-32.71	-0.12	-3185.3	0.00	-3185.3	4756.80	2378.4	9239.06	4626.40	49.00	0.699
0.9D + 1.6W 97 mph Wind	-34.78	-32.26	-0.12	-3112.4	0.00	-3112.4	4756.80	2378.4	9239.06	4626.40	49.00	0.680
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-90.20	-10.45	-0.11	-1058.6	0.00	-1058.6	4756.80	2378.4	9239.06	4626.40	49.00	0.248
1.2D + 1.0E	-24.13	-2.43	0.00	-77.86	0.00	-77.86	1734.08	867.04	2260.78	1132.07	135.50	0.083
0.9D + 1.0E	-18.09	-2.37	0.00	-76.12	0.00	-76.12	1734.08	867.04	2260.78	1132.07	135.50	0.078
1.0D + 1.0W 60 mph Wind	-39.81	-7.75	-0.05	-752.44	0.00	-752.44	4756.80	2378.4	9239.06	4626.40	49.00	0.171

Base Plate Summary								
Structure:	CT02216-S-SB		Code:	TIA-222-G	9/12/2022	44.000.bb		
Site Name:	Glastonbury		Exposure:	В		((HI))		
Height:	176.00 (ft)		Crest Height:	0.00		EC		
Base Elev:	0.000 (ft)		Site Class:	D - Stiff Soil				
Gh:	1.1	Topography: 1	Struct Class:	П	Page: 58	Tower Engineering Solutions		

Reactions		Base Pla	ate	Anchor Bolts		
Original De	sign	Yield (ksi):	50.00	Bolt Circle:	64.00	
Moment (kip-ft):	5100.00	Width (in):	66.00	Number Bolts:	24.00	
Axial (kip):	47.00	Style:	Clipped	Bolt Type:	2.25" 18J	
Shear (kip):	38.00	Polygon Sides:	0.00	Bolt Diameter (in):	2.25	
Analysis (1 2D	+ 1.6\W/)	Clip Length (in):	16.00	Yield (ksi):	75.00	
Moment (kin-ft):	4861 42	Effective Len (in):	7.55	Ultimate (ksi):	100.00	
Axial (kin):	68 15	Moment (kip-in):	584.13	Arrangement:	Clustered	
Shear (kin):	35.22	Allow Stress (ksi):	67.50	Cluster Dist (in):	6.00	
	00.22	Applied Stress (ksi):	51.30	Start Angle (deg):	45.00	
		Stress Ratio:	0.76	Compres	sion	
				Force (kip):	156.81	
				Allowable (kip):	260.00	
				Ratio:	0.61	
				Tensio	n	
				Force (kip):	147.02	
				Allowable (kip):	260.00	
				Ratio:	0.58	

		-					
		Pier Fo	Date				
			Jana	ation Design 10		9/12/2022	
		Customer Name:	Verizor	1	EIA/TIA Standard:	TIA-222-G	
		Site Name:			Structure Height (Ft.):	176	
	_	Site Number:	CT0221	6-S-SBA	Engineer Name:	H. You	
Tower Engineering Solution	ons	Engr. Number:	134073		Engineer Login ID:		
Foundation Info Obtained from:	Dra	wings/Calculations					
Structure Type:		Monopole			8 ft.		
Analysis or Design?		Analysis		0.50 ft.			
Base Reactions (Factored):				* //			
Axial Load (Kips):	68.2	Shear Force (Kips):	35.2				
Uplift Force (Kips):	0.0	Moment (Kips-ft):	4861.4	26.5 ft.	(28)) #11 rebar	
Foundation Commetrics							
Foundation Geometries:				· <u> </u>	(2	6) #5 ties	
Diameter of Pier (ft.):	8.0	Depth of Base B. G. S. :	28.5	ft.		28.5 ft.	
Pier Height A. G. (ft.):	0.50						
Material Properties and Reabr Info:	_				8.0 ft.		
Concrete Strength (psi):	3000	Steel Elastic Modulus:	29000	ksi	r 1		
Vertical bar yield (ksi)	60	Tie steel yield strength:	40	ksi (28) #11 reba	ar 💦	-8 ft. φ Pier	
Vertical Rebar Size #:	11	Tie / Stirrup Size #:	5			(26) #5 ties	
Qty. of Vertical Rebars:	28	Tie Spacing:	18.0	in.			
Concrete Cover (in.):	4	Concrete unit weight:	150.0	pcf			
Soil Design Parameters:					Monopole Pier Foundation		
Water Table B.G.S. (ft):	26.5	Unit weight of water:	62.4	psf			
Ratio of Uplift/Axial Skin Friction:	1.0	Pullout failure Angle:	30	(°)			
Skin Frictions are to be obtained from	n:	Soil Report					

Depth of L	ayers (ft)	γsoil	¢	Cohesion	Ultimate Skin	Ultimate	Soil			
Тор	Bottom	(pcf)	(°)	(psf)	Friction (psf)	Bearing (psf)	Types			
0.0	4.0	120	34	0	0	0	Sand			
4.0	9.0	120	33	0	0	0	Sand			
9.0	19.0	120	34	0	0	0	Sand			
19.0	26.5	125	36	0	0	0	Sand			
26.5	29.0	125	36	0	0	3000	Sand			
29.0	34.0									

Soil weight Increase Factor for bouyant soils (1.0 to 1.15): 1.1

Foundation Analysis and Design:

0.75	Soil Bearing Strength Reduction Factor:	0.75	
13917	Dry Soil Weight from Conical Failure:	1690	Kips
32	Buoyant Soil Weight from Conical Failure (Ki	0	Kips
1357	Total Dry Concrete Weight:	203.6	Kips
100.5	Total Buoyant Concrete Weight:	8.81	Kips
212.4	Total Effective Soil Weight:	1689.2	Kips
120.3			
	0.75 13917 32 1357 100.5 212.4 120.3	 0.75 Soil Bearing Strength Reduction Factor: 13917 Dry Soil Weight from Conical Failure: 32 Buoyant Soil Weight from Conical Failure (Ki 1357 Total Dry Concrete Weight: 100.5 Total Buoyant Concrete Weight: 212.4 Total Effective Soil Weight: 120.3 	0.75Soil Bearing Strength Reduction Factor:0.7513917Dry Soil Weight from Conical Failure:169032Buoyant Soil Weight from Conical Failure (Ki01357Total Dry Concrete Weight:203.6100.5Total Buoyant Concrete Weight:8.81212.4Total Effective Soil Weight:1689.2120.3Solution Strength

TES Engr. Number:	134073	Page 2/2 Date: 9	/12/2022		
Check Soil Capacities:					
				Usage	
Allowable Foundation Overturning Resistance (kips-ft.):	14889.9	> Design Factored Moment (kips-ft):	5571	0.37	OK!
Factor of Safety of Passive Soil Resistance against Moment:	2.67	ОК!			
Check the capacities of Reinforceing Concrete:					
Strength reduction factor (Flexure and axial tension):	0.90	Strength reduction factor (Shear):	0.75		
Strength reduction factor (Axial compresion):	0.65	Wind Load Factor on Concrete Design:	1.00		
Reinforcing Concrete Pier:				Usage	
Vertical Steel Rebar Area (sq. in./each):	1.56	Tie / Stirrup Area (sq. in./each):	0.31		
Calculated Moment Capacity (Mn,Kips-Ft):	8183.2	> Design Factored Moment (Mu, K-Ft):	4971.9	0.61	OK!
Calculated Shear Capacity (Kips):	1274.2	> Design Factored Shear (Kips):	406.1	0.32	OK!
Calculated Tension Capacity (Tn, Kips):	2358.7	> Design Factored Tension (Tu Kips):	0.0	0.00	OK!
Calculated Compression Capacity (Pn, Kips):	9540	> Design Factored Axial Load (Pu Kips):	68.2	0.01	OK!
Moment & Axial Strength Combination:	0.61	OK! Max. Allowable Tie/Stirrup Spacing:	12.00	in.	
Pier Reinforcement Ratio:	0.006	Reinforcement Ratio is satisfied per ACI			

Maser Consulting Connecticut 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@colliersengineering.com

Post-Modification Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10160182 Maser Consulting Connecticut: 22777014A

August 24, 2022

Site Information

Site ID: Site Name: Carrier Name: Address: 468152-VZW / E GLASTONBURY 2 CT E GLASTONBURY 2 CT Verizon Wireless 175 Dickinson Rd. Glastonbury, Connecticut 06033 Hartford County 41.655900° -72.523275°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: 200-Ft Monopole 14.00-Ft Platform

FUZE ID # 2559329

Analysis Results

Platform: 87.0% Pass w/ Modifications*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Cody Sherman

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 323805, dated April 27, 2022
Mount Mapping Report	Tower Engineering Professionals, Site #: 468152, dated June 28, 2022
Previous Mount Analysis	Maser Consulting Project #: 22777014A, dated August 8, 2022
Mount Modification Drawings	Maser Consulting Project #: 22777014A, dated August 24, 2022

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	119 mph 50 mph 1.50 in II C 1 N/A N/A 0.983
Seismic Parameters:	Ss: S1:	0.203 g 0.056 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status					
		3	Commscope	NHH-65B-R2B						
		3	Commscope	NHHSS-65B-R2BT4						
		3	Samsung	MT6407-77A						
	167.00	167.00	167.00	167.00			3	Samsung	RF4440d-13A	Added
164.00					3	Samsung	RF4439d-25A			
		3	Samsung	CBRS RRH - RT4401-48A						
		2	Raycap	DB-B1-6C-12AB-0Z						
		2	Antel	LPA-80063-4CF-EDIN-4	Potainod					
		1	RFS	APL868013	Retaineu					

The following equipment has been considered for the analysis of the mounts:

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
0	HSS (Rectangular)	ASTM 500 (Gr. B-46)
0	Pipe	ASTM A53 (Gr. B-35)
0	Threaded Rod	F1554 (Gr. 36)
0	Bolts	ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Proposed Support Rail	39.0%	Pass
Proposed Support Rail Angle	69.0%	Pass
Proposed Kicker	11.0%	Pass
Face Horizontal	87.0%	Pass
Standoff Horizontal	31.0%	Pass
Grating Angle	42.0%	Pass
Mount Pipes	68.0%	Pass
Mount Connection	31.6%	Pass

Structure Rating – (Controlling Utilization of all Components) 88.0%

BASELINE mount weight per SBA agreement: 1476.68 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: 1149.00 lbs

The weights listed above include 3 sectors.

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Ice	Mount Pipe	s Excluded	Mount Pipe	es Included
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	20.5	20.5	35.3	35.3
0.5	24.8	24.8	45.8	45.8
1	28.8	28.8	56.1	56.1

Notes:

- (EPA)a values listed above may be used in the absence of more precise information

- (EPA)a values in the table above include 3 sector(s).

- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts will be **SUFFICIENT** for the final loading configuration (attachment 2) after the modifications detailed in attachment 3 are successfully completed.

Contractor shall re-route the existing safety climb wire rope, so that it is no longer trapped between the mount collar and the pole.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Contractor Required PMI Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Modification Drawings
- 4. Mount Photos
- 5. Mount Mapping Report (for reference only)
- 6. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u> For additional questions and support, please reach out to pmisupport@colliersengineering.com

PSLC #: 468152 SMART Project #: 10160182 Fuze Project ID: 2559329

<u>Purpose</u> – to upload the proper documentation to the SMART Tool in order to allow the SMART Tool engineering vendor to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

- If installation of the modification will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the post-modification passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo shall be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation of the modifications.
 - Photos of the mount after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed
- <u>Photos taken at Mount Elevation</u>
 - Photos showing the safety climb wire rope above and below the mount prior to modification.
 - o Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation of modifications. Each entire sector must be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed modification per the modification drawings; pictures shall also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the distances (relative distance between collars) of the installed modifications from the appropriate reference locations shown in the modification drawings.
- Photos showing the installed modifications onto the tower (i.e. ring/collar mounts, tiebacks, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, an elevation measurement shall be provided before the elevation change.

Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by the SMART Tool vendor.
 - o If the materials are as specified on the drawings
 - The contractor shall provide the packing list, or the materials certifications for the materials utilized to perform the mount modification
 - Commscope, Metrosite, Perfect Vision, Sabre, and Site Pro have all agreed to support Verizon vendors with the necessary material certifications
 - o If seeking permission to use an equivalent
 - It is required that the SMART Tool engineering vendor approval of such is included in the contractor submission package. There may be an additional charge for approval if the equivalent submission doesn't meet specifications as prescribed in the drawings.

 \Box All hardware has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified on the SMART Tool engineering vendor Mount Modification Drawings and included in the material certification folder is a packing list or invoice for these materials.

OR

□ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

Antenna & Equipment Placement and Geometry Confirmation:

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

 \Box The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

Comme	ents:	
Contra mount	actor shall re-ro t collar and the	oute the existing safety climb wire rope guide, so that it is no longer trapped between the pole.
<u>Was th</u>	<u>le mount mod</u>	<u>lification completed in conjunction with the equipment change / installation?</u>
	□ Yes	□ No
Special	Instructions	/ Validation as required from the MA or Mod Drawings:
<mark>lssue:</mark>		
<mark>Respor</mark>	<mark>ıse:</mark>	
Special	Instruction C	Confirmation:
	□ The contrac	ctor has read and acknowledges the above special instructions.
Comme	ents:	
<u>Contra</u>	<mark>ctor certifies (</mark>	that the climbing facility / safety climb was not damaged prior to starting work:
	□ Yes	□ No
Contra	ctor certifies I	no new damage created during the current installation:
	🗆 Yes	□ No
<u>Contra</u>	<mark>ctor to certify</mark>	the condition of the safety climb and verify no damage when leaving the site:
	□ Safety Clim	nb in Good Condition 🛛 Safety Climb Damaged

Comments:

Certifying Individual:

Company:	
Employee Name:	
Contact Phone:	
Email:	
Date:	

Structure: 468152-VZW - E GLASTONBURY 2 CT

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A8	APL868013	48	6	156	1	а	Front	15	0	Retained	06/28/2022
R9	RF4439d-25A	15	15	156	1	а	Behind	33	0	Added	
A1	NHH-65B-R2B	72	11.9	108	2	а	Front	39	8	Added	
A2	NHHSS-65B-R2BT4	72	11.9	108	2	а	Front	39	-8	Added	
R4	RF4440d-13A	15	15	108	2	а	Behind	12	0	Added	
R5	CBRS RRH - RT4401-48A	13.9	8.6	108	2	а	Behind	48	0	Added	
A6	DB-B1-6C-12AB-0Z	29.5	16.5	36	3	а	Behind	3	0	Added	
R3	MT6407-77A	35.1	16.1	12	4	а	Front	15	0	Added	

Structure: 468152-VZW - E GLASTONBURY 2 CT

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A7	LPA-80063-4CF-EDIN-4	47.4	15.2	156	1	а	Front	15	0	Retained	06/28/2022
R9	RF4439d-25A	15	15	156	1	а	Behind	33	0	Added	
A1	NHH-65B-R2B	72	11.9	108	2	а	Front	39	8	Added	
A2	NHHSS-65B-R2BT4	72	11.9	108	2	а	Front	39	-8	Added	
R4	RF4440d-13A	15	15	108	2	а	Behind	12	0	Added	
R5	CBRS RRH - RT4401-48A	13.9	8.6	108	2	а	Behind	48	0	Added	
A6	DB-B1-6C-12AB-0Z	29.5	16.5	36	3	а	Behind	3	0	Added	
R3	MT6407-77A	35.1	16.1	12	4	а	Front	15	0	Added	

Structure: 468152-VZW - E GLASTONBURY 2 CT

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A7	LPA-80063-4CF-EDIN-4	47.4	15.2	156	1	а	Front	15	0	Retained	06/28/2022
R9	RF4439d-25A	15	15	156	1	а	Behind	33	0	Added	
A1	NHH-65B-R2B	72	11.9	108	2	а	Front	39	8	Added	
A2	NHHSS-65B-R2BT4	72	11.9	108	2	а	Front	39	-8	Added	
R4	RF4440d-13A	15	15	108	2	а	Behind	12	0	Added	
R5	CBRS RRH - RT4401-48A	13.9	8.6	108	2	а	Behind	48	0	Added	
R3	MT6407-77A	35.1	16.1	12	4	а	Front	15	0	Added	

Fugure of the second se	verizon				• •		COLLIERS ENGINE RENIG & DESGN CT, P.C. C.T. [PC.0000131	IT IS A VIDIATION OF LAW FOR ANY FERSION UNLESS THE ARE ANNO UNDER THE DIRECTION OF THE RESPONSELE LUCENSES PROFESSIONL FIGHERER TID ALTER THIS DOCUMENT.	SITE NAME:	E GLASTONBURY 2 CT 468152	175 DICKINSON RD. GLASTONBURY, CT 06033 HARTFORD COUNTY	Callers 1055 Vasting on Bouteard	Bamford, CT 0901 Engineering Phone. 203.324.0800 & Design counserpretament accord. CP 0. bowellopersist Amale or CAAATHA	TITLE SHEET	SILTIALARIE: STT-1
						SHEET INDEX	SHEET DESCRIPTION	31-1 111.LESHEEL SBOM-1 BILL OF MATERIALS SSRM-1 GENREAL NOTTES	SCF-I CUMBING FACILITY DETAIL SS-I MODIFICATION DETAILS	55-2 GEOMETRY VERIFICATION SKETCHES 55-3 MOUNT PHOTOS	SPECIFICATION SPIELS				
	RAWINGS)RM	3A ER: CT02216	ONBURY 2 CT : 468152). 6033 I'Y	° N 5° W	PROJECT INFORMATION	APPLICANT/LESSEE	COMPANY: VERIZON WIRELES CLIENT REDRESENTATIVE	COMPANY: VERIZON WIRELESS	PROJECT MANAGER COMPANY: COLLIERS ENGINEERING & DESIGN	CONTACT: PETER ALBANO PHONE 856.797.0412 E-MAIL: PETER ALBANO@COLLIERSENGINEERING.COM		CONTRACTOR PMI REQUIREMENTS	VIENDER 1000 1000 1000 1000 1000 1000 1000 10	ANALYSIS DATE 8/24/2022 PMI REQUIREMENTS EMBEDDED WITHIN MOUNT MODIFICATION REPORT
verizon	MOUNT MODIFICATION D EXISTING 14' PLATFC	TOWER OWNER: SI FOWER OWNER SITE NUMB	RRIER SITE NAME: E GLAST CARRIER SITE NUMBER FUZE ID: 2559329	175 DICKINSON RI GLASTONBURY, CT 0 HARTFORD COUN	LATITUDE: 41.6559 LONGITUDE: 72.52327	DESIGN CRITERIA	SUDD LOADS	BASIC WIND SPEED (3 SECOND GUST), V = 119 MPH EXPOSINE CATEGORY C TOPOGRAPHIC CATEGORY NUA	MEAN BASE ELEVATION (ANSL) = 462.99 TOF LOADS	IN A DATA AND AND A DATA AND A DATA AND A DATA AND A A DATA AND AND AND AND AND AND AND AND AND AN	SEISMIC LOADS SEISMIC DEXIGN CATEGORY B	SHORT TERM MCER GROUND MOTION, 5, = .203 LONG TERM MCER GROUND MOTION, 5, = .056			
		L	CAI									CODVBICHT @1013	COLLIERS ENGINEERING & DESIGN	ALL KIGHIS KESEKVED THIS DAAMNG AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR LOW ONLY BY THE MART FOR WHOM THE WORK WAS CONTRACTED OR TO WARD THE CARTERINE THE DAMNING	MAY NOT RE COPIEJ. RUJASIL STELOZEU DISPUEZI DO VARLEU UPON RA ANY OTHER NURASIS WITHOUT THE ROPRES WRITTEN LOONSENT OF COLLIER'S BYGINERING & DESIGN.

ANUTACTUREN SECTION I - VZWSMAT KITS QUMTITY MANUFACTUREN PART NUHER DESCRIPTION SECTION I - VZWSMAT KITS 1 VZWSMAT AUS VZMSMAT AUS CONTRACTOR TO VERITY THE LENGTH REQUIRED AND TRIV NO 1 VZMSMAT AUS NONOPOLE COLLAR HOURT SERVELY CONTRACTOR TO VERITY THE LENGTH REQUIRED AND TRIV NO 12 VZMSMAT FASC POONOPOLE COLLAR HOURT SERVELY NO SectioN 10 SERVELY NO 13 VZMSMAT FASC CONSCIENT AND TRIV NO SectioN 10 SERVELY NO 13 VZMSMAT FASC CONSCIENT AND TRIV SUPORITI ALL CONVERT BUACKET NO NO 14 VZMSMAT FASC CONSCIENT AND TRIV CONSCIENT AND TRIV NO NO 15 VZMSMAT FASC CONSCIENT AND TRIV CONSCIENCE CONSCIENT AND TRIV NO 16 VZMSMAT FASC CONSCIENT AND TRIV CONSCIENT AND TRIV NO NO 17 VZMSMAT FASC CONSCIENT AND TRIVELY CONSCIENT AND TRIVENT AND TRIV NO 18 NO NO	NOTES UNIT WEIGHT (I NOTES UNIT WAGNEWTH THE STRUCTURAL 231 150 150 150 30		
QUANTITY MANUFACTURER PART NUMBER DESCRIPTION	NOTES UNIT WEIGHT (1 RED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL 291 150 26 29 30		www.colliersengineering.com
International Contraction state Contraction state Contraction state 1 VZWSMAT-BUZ NONOPOLE COLLAR MOUNT ASSENT Section Son Select Solution 12 VZWSMAT-BUZ NONOPOLE COLLAR MOUNT ASSENT Section Son Select Solution 12 VZWSMAT-BUZ Section Son Select Solution Section Son Select Solution 13 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Section Solution 14 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Second Full 15 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Support Full 15 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Support Full 16 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Support Full 16 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Support Full 17 VZWSMAT-PUZ VZWSMAT-PUZ Support Full Support Full 16 MUL PUZ PUZ Support Full Support Full 17 MUL PUZ PUZ PUZ Support Full	RED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL 291 150 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	BS.) WEIGHT (LBS.)	symboli Jamesi styletti rejosi zijimwigai sulla. C.C. Surgiying. re stimmi wa si regi et diversi va biotechi carrent biotechi monteri di Jamesi pilete altare per geneta alt. Battino i a mode su a transmo Jamesi mengeshi mini-sengung spileter biotechi biotechi biotechi Jamesi mengeshi mini-sengung spileter biotechi biotechi biotechi andro ordan a usefuendu altaregung spileter pileteri.
I VZWSMART-NGV MONOPOLE COLLAR MOUNT ASSENBLY NONOPOLE 3 VZWSMART-NGV.280006 % E/ONG, PRE2 SCH0 (2.375O) X (ISF THK) YZWSMART-NGV.280006 12 VZWSMART-NSL2 SCHONG, PRE2 SCH0 (2.375O) X (ISF THK) YZWSMART-NGV.280006 3 VZWSMART-NSL2 CROSSOVER PLATE CROSSOVER PLATE 13 VZWSMART-NGV.28006 SUPORT BALCE NO 14 VZWSMART-NGV.2800 SUPORT BALCE NO 15 VZWSMART-NGV.29 SUPORT BALCE NO 16 VZWSMART-NGV.29 SUPORT BALCE NO 17 VZWSMART-NGV.29 SUPORT BALCE NO 18 NO NO NO 19 NO NO NO 19 NO NO NO 10	150	291	Doing Business as Amazer
3 VZWSHART-R0.28KOG 66 LONG, FPE 2 SCH 0(.137 SOD X LIJF THG) 57 LONG, FPE 2 SCH 0(.137 SOD X LIJF THG) 12 VZWSHART-R0.28KOG 67 LONG, FPE 2 SCH 0(.137 SOD X LIJF THG) 2000 SUB RATE 13 VZWSHART-R0.28KOG 69 LONG, FPE 2 SCH 0(.137 SOD X LIJF THG) 2000 SUB RATE 14 VZWSHART-R0.3 SUPPORT RALL CONRIR BLACKET 2000 SUB RALE 14 VZWSHART-R0.3 SUPPORT RALL CONRIR BLACKET 2000 SUB RALE 14 VZWSHART-R0.3 SUPPORT RALL CONRIR BLACKET 2000 SUB RALE 14 VZWSHART-R0.3 SUPPORT RALL CONRIR BLACKET 2000 SUB RALE 14 VZWSHART-R0.3 SUPPORT RALL CONRIR BLACKET 2000 SUB RALE 15 VZWSHART-R0.3 SUPPORT RALE 2000 SUB RALE	29 15 30	150	
12 VZWSHART-KKZ VZWSHART-KKZ VZMSSHART-KKZ VZMSSHART-KZMART-KZMART-KZMART-KZMART-KZMART-KZMART-	15 30	87	
3 VZWSHART-PLU3 SUPPORT RALL CONRIS BACKET I 1 VZWSHART-PLU3 VZWSHART-PLU3 SUPPORT RALL CONRIS BACKET 1 I I I	90	180	•
Model SECTION 2 OTHER REQUIRED PARTS QUANTITY MANUFACTURER PART NUMBER DESCRIPTION MO 3 0 0 0 0 DESCRIPTION DESCRIPTION MO 3 0 0 0 DESCRIPTION DE		96	verizon
Image: Second Se			
Advite SECTION SECTION CTHER REQUIRED PARTS QUANTITY MANUFACTURER PART NUMBER DESCRIPTION PART NUMER 3 U U U U U 3 U U U U U 3 U U U U U 4 U U U U U 3 U U U U U U 4 U U U U U U U 3 U<			
SECTION 2. OTHER REQURED PARTS OUNNTITY MAULFACTURER PART NUMBER DESCRIPTION NC 3 - - - - - NC 3 - - - - - - - NC 3 -			
QUANTITY MANUFACTURER PART NUMBER DESCRIPTION DESCRIPTION NO 3 N 3 N 3 . <t< td=""><td></td><td>_</td><td></td></t<>		_	
3 . . 162° LONG, FIRE 2 12, SCH40 GALVANIZED 3 3 4 6 	NOTES UNIT WEIGHT (L	BS.) WEIGHT (LBS.)	
3 - - 3'' LONG, LXX1/4 GALVANIZED CONTRACTOR TO VERET THE LNGTH REQUIR 6 · · · B'' LONG, HSSA24/4 GALVANIZED CONTRACTOR ON SHEET SON!, LNGTH REQUIR · · · · · B'' LONG, HSSA24/4 GALVANIZED · · · · · J43'S GR. I U-BOLTS GALVANIZED	78	234	
6 · · B"LONG HSSAZI14 GALVANZED ·	ENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE	45	
	12	72	PROTECT YOURSELF
		-	ALL STATES REQUIRE NOT HEAR AND A DETAIN THE ANT RE RECAMPTORE DESTANCES DESTARE THE EAST OF THE ANT RE RELEASED OF ANT RECAMPLE AND
			Econ whech below. Call before you de
			FOR STATE SPECIFIC DRECT PHONE NUMBERS VISIT. WWW. CALLINT. COM
			Soul: AS SHOWN JOB MARKER: 22777014
			B9/24/22 ISSLED FOR ON ON ON ON ON ON
SECTION 3 - REQUIRED SAFETY CLIMB PARTS			REV DATE DESCRIPTION DRAWN
QUANTITY MANUFACTURER PART NUMBER DESCRIPTION NO	NOTES UNIT WEIGHT (L	BS.) WEIGHT (LBS.)	
I PERFECT VISION PV-SCRB.RM-U ROUTING BRACKET OR EOR APPROVED EQUAL CONTACT MASER	DNTACT MASER CONSULTING FOR APPROVAL OF SUBSTITUTION.		
I PRFECT VISION PV.CHX.CG.BO ROUTING BRACKET OR EOR APPROVED EQUAL, CONTACT MASER	ONTACT MASER CONSULTING FOR APPROVAL OF SUBSTITUTION.		
	10	DTAL: 1149	

AFRONGLERON AND ALL REAVARE OF WHICH KITS HAVE BEEN THROUGH THE YZW EACH TANNEY THROUGH THE YZW EACH THANUHACTURER WILL BE RAWARE OF WHICH KITS HAVE BEEN THROUGH THE YZW AFROVAL PROCESS AND THEY ARE IN TURIA APPROVED TO SELF PLAST THE MATERIAL UTILIZED ON THE MOUNT MODIFICATIONS WILL BE REVIEWED AS A PART OF THE DESKTOP PMI COMPLETED BY THE SMART TOOL VENDON. IT WILL BE REQUIRED THAT THE YZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.

Ч

DESKTOP PMI COP VZW KITS SPECIFIE	MPLETED BY THE SMART TOOL VENDOR. IT V ED ARE UTILIZED IN THE MODIFICATIONS.	VILL BE REQUIRED THAT	TTHE				SITE NAME: E GLASTONBURY 2 CT
2. ALL MATERIALS RE SHEET ARE ASSUMI	EQUIRED FOR THE DESIGNED MODIFICATION. IED TO BE PROVIDED BY THE CONTRACTOR.	IS BUT NOT LISTED IN TI	HIS VZWSMART KITS - AF	PPROVED VENDORS			468152 175 DICKNSON RD. GLASTONBURY, CT 06033
	COMMSCOPE		PERFECTVISION	SITE PRO 1		BETTER METAL, LLC	HARTFORD COUNTY
CONTACT	SALVADOR ANGUIANO	CONTACT	WIRELESS SALES	CONTACT PAULA BOSWELL	CONTACT	DAVID STANSBERRY	
PHONE	(817) 304-7492	PHONE	(844) 887-6723	PHONE (972) 236-9843	PHONE	(615) 535-0990 (O), (615) 631-2520 (M)	STAMFORD 1055 Washin gton Boulevard
EMAIL	SALVADORANGUIANO@COMMSCOPE.COM	EMAIL	WWW.PERFECT-VISION.COM	EMAIL PAULABOSWELL@VALMONT.COM	EMAIL	DLS@BETTERMETAL.COM	Stamford, CT 00901
WEBSITE	WWW.COMMSCOPE.COM	WEBSITE	WIRELESSSALES@PERFECT-VISION.COM	WEBSITE WWW.SITEPROI.COM	WEBSITE	WWW.BETTERMETAL.COM	Engineering Prome 2013/4000 & Design couling reveal the CP C
METRC	DSITE FABRICATORS, LLC	SAL	BRE INDUSTRIES, INC.	NEWAVE			. 31.u. 1.1865
CONTACT	KENT RAMEY	CONTACT	ANGIE WELCH	CONTACT NEWAVE SALES TEAM			BILL OF MATERIALS
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)	PHONE	(866) 428-6937	PHONE (971) 239-4762			
EMAIL	KENT@METROSITELLC.COM	EMAIL	AKWELCH@SABREINDUSTRIES.COM	EMAIL SALES@NEWAVETC.COM			SHEET PAUNUER:
WEBSITE	METROSITEFABRICATORS.COM	WEBSITE	WWW SABRESITESOLUTIONS COM	WEBSITE WWW.NEWAVETC.COM			SBOM-I

orig and dis the restorement securitation SER

COLLERS ENGINE RING & DESGN CT, P.C. C.T. PC0000131	IT IS A VIDIATION OF LAW FOR ANY FERSIN, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL.
--	---

SITE NAME:

	Colliers Engineering & Design	www.colliersengineering.com apguatottatates toopsaign tages and the average of a tw	constant or to when a to constant the standy two werks updat much factured defined order operation to other spectra stands defined order operation for the stands and the stand defined order operation for the stands and the stands of the sta	Doing Business as									HROTECT YOUNSELF	ALLSTATES REQUIRE NOTECATION OF EXCANTORS, DESIGNERS, OR ANY FERSON RIEPARNET OF DETURE THE EMPHS SURNOR ANY/WHERE IN ANY STATE	Econ which Delow. Call Indone you die	FOR STATE SPECIFIC DRECT PHONE NUMBERS WSIT: WWW CALLENT COM	Soue: AS SHOWN POR NAMER: 22777014A		0 89/24/22 ISSUEDFOR CMS TH CONSTRUCTION CMS TH PARTY DEFORMANCE DIM/WIN CHECKED							COLLERS ENGINEERING & DESIGN CT, P.C. C.T. (PC.000131	IT IS A VIDLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DRECTION OF THE RESONMENT OF THIS TOPOLIAMINT FUSIONER TI AT THIS THIS COLLIMENT	SITE NAME:	E GLASTONBURY 2 CT	468152	175 DICKINSON RD. GLASTONBURY, CT 06033 HARTFORD COUNTY	CTAMICORD	Colliers 1055 Via5ring for Boulevard Samford Francis Branker 2013 Action Branker 2013 Action & Design	MODIFICATION NOTES
		BOLT SCHEDULE (IN.) BOLT STANDARD SHORT MIN. EDGE SPACING	DIAMETER HOLE SLOT DISTANCE 1/2 9/16 9/16 7/8 1/12	5/8 11/16 11/16×718 11/18 17/8	3/4 13/16 13/16×1 11/4 21/4 7/8 15/16×1 1/8 11/2 25/8	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>			4 2.12	3 1/2 2	2 21 2 13/8	2 11/8	10 A M							3. SHORTSLOTHOLESSHALLONLY BE	USED WHEN DEPICTED IN THE DRAWINGS	4. MATCH EXSTING GAGES WHEN ADDITION ADDITION ADDITION ADDITIONAL ADDITIONA	DITALCES ARE COMPONED.				ALLOWABLE COPING	EDGE _ SPACING GAGE _					LIMIT OF ALLOWABLE COPE WITHOUT PRIOR EOR APPROVAL	
STRUCTURAL STEEL	 DESIGN, DETALLING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONDENT OT THE FOLLOWING DESIGLATIONS EXCEPT AS SECTION 11 VIDIOT ATED IN THE CONTRACT DOCTIMENTS 	a melecian instanti e of state construction (also) manual of a steel construction (15TH EDITION)	6. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS	c. ASC CODE OF 51 ANDARD PRACTICE 2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS	OTHERWISE SHOWN:	CHANNELS, ANGLES, PLATES, ETC ASTM A36 (CR 36) STELL PIPE BOLTS ASTM A31 (CR 33)	NUTS ASTM 4563 LOCK WASHERS LOCKING STRUCTURAL GRADE	 ALL SUBSTITUTIONS PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINEER. CONTRACTOR SHALL PROVIDE 	DOCUMENT ATION TO RAVINEER POR VERLIVING IT RE JUBITITID LE IS SUITERE FOR USE AND MEETS ONGINAL DESIGN CRITERIA. DIFFERENCES FROM THE ORIGINAL DESIGN, INCLUDING MAINTENANCE, REPAIR AND	REPLACENT: JAIL BE NOTED ESTIMATES OF CONSTGREDIA SASOCATED WITH THE SUBSTITUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE PROVIDED TO THE BNGINER. CONTRACTOR	SHALL ROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED.	 REOVIDE STRUCTURAL STEEL SHOP DRAVVINGS TO ENGINEER FOR APPROVE FIRENCATION a SUBMIT SHOP DRAVINGS TO 	PETER ALBANO@COLLIERSENGINEERING.COM	6. PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL	5. DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS	OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.	 GALVANIZED ASTM 4325 BOLTS SHALL NOT BE REUSED. ALL NEW CTEEL GLATH RE LIVER ENDEDING ALVANIZED FOR FILLI, WEATURED 	 All near 31 etc. 31-AL use for 1 de Dirred Valvanized fon fort went near PROFECTION IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH ESTING STEEL CONTRACTOR SHALL OBTAN WITTER PERMISSION TO 	PROTECT STEEL BY ANY OTHER MEANS.	 ALL BOLL ASSETIBLIES FOR STRUCTURAL PIETIBLES REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TAL 373-14 SECTION 4 93 5 ECH INEMENT. 	9. WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS.	Fabricator shall design connections to resist loads and forces where shown on drawings and as outlined in specifications.	 FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GRADE MAINTAIN AISC REQUIREMENTS FOR MINIMUM BOLT 	DISTANCE AND SPACING. 11. ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH	SUCH THAT THE END OF THE BOLT IS AT FLUSH WITH THE FACE OF THE NUT, IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT, AFTRE TIGHTENNIG IS COMPLETED.	12. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.	 ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION CONTRACTOR SHALL 0BTAIN WRITTEN PERMISSION TO BROTECT FIEL IN A MY COTHER MEANS 	14. ALL EXISTING PAINTED/GALVANIZED SURFACES DAMAGED DURING REHAB	INCLUDING AREAS UNDER STRFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REARED BY COLD GALVANIZING (ZINGA) OR ZINC COTE), AND REPAITED TO MATCH THE BYSTING FINISH (F. APPLCABLE).	15. ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT	DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE.			
GENERAL NOTES	 THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVENING PROVISIONS OF THE TELECOMMUNICATIONS IN IDUSTRY STANDARD TRA. 273-14 MARTERIAL & MID SERVICES BROWINGED & THE 	CONTRACTOR SHALL CONTORNAL TO THE ABOVE HETTORIDUE CODES CONTRACTOR SHALL CONTORNAL TO THE ABOVE HETTORIED CODES 2. CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT	DAMAGE TO BKITING STRUCTIDER ANY DAMAGE TO SKITING STRUCTINES AS A RESULT OF THE CONTRACTOR'S WORK OR ROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPARED AT THE	CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER. 3. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND EXISTING CONDITIONS	BEFORE BEGINNING WORK, ORDERING MATERIAL, AND PREPARING OF SHOP DRAWINGS ANY DISCREPANCIES BEFUREN FIELD CONDITIONS AND THE CONTRACT FORCI IMENTS CHAIL FE BROLIGENT TO THE IMMEDIATE	ATTENTION OF THE REVIEWED IN THE INVOLVEMENT OF THE INFORMATIC ATTENTION OF THE REVIEWER. IF THE CONTRACTOR DISCOVERS ANY BUSTING CONDITIONS THAT READ OT REPRESENTED ON THE REFERENCES.	OR ANI COMPLICIES FRAIL WOOLD IN REVERSE WITH THEIRS ALCATION OF THE MODIFICATIONS, DNTFY THE REVENERSE IMMEDIATELY A TTX ASKIMENTIATION ANY STRUCTURE IN MODIFICATION MODES SECTION ON	4. II Is ASSURED THAT AN IS INCULURATE MOUTHLATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.	 THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLIETY REPONSIBLE FOR ALL CONTRUCTION METHODS, MEANS, PROJECT AND PROPERTING TO A CONTRUCTION OF THE PROPERTING AND A CONTRACT AND A CONTR	I ECHINOLISI, SECURING, AND FROCEDORES 6. ALL CONSTRUCTION MEANS AND METHODS, INCLUDING BUT NOT LIMITED 7.D. ERECTION PLANS, RIGGING FLANS, CLIMBING PLANS, AND RESCUE PLANS	SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREN AND SHALL MEET	ANS/IND-221 (ALIS EDITION), ONA, ANU GERENAL INDOX INF STANDARDS, ALL RIGGING PLANS SHALL ADHERE TO ANS/TIA.322 (IATEST EDITON) INCLUDIAN THE REQUERD INVOLVEMENT OF A QUALIFIED REINERGE FOR CLASS AN CONSTRUCTIONI	THE CONTRACTOR IS SOLELY REPONSIBLE FOR INITIATING, MAINTAINING,	and supervising all safety programs in accordance with applicable safety codes	 WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS 	STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY	OF THE STRUCTURE DURING ERECTION. CONTRACTOR SHALL PROVIDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL	SYSTEMS AS REQUIRED TO RESIST ALL FORCES THAT MAY OCCUR DURING HANDLING AND RECTION UNTIL THE STRUCTURE IS FULLY COMPLETED.	TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S MODENDA SEATH 31 THIN JUET	9. ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED	IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE STANDARD FOR INSTALLATION, ALTERATION AND MAINTENANCE OF ANTENNA	SUPPORTING STRUCTURES AND ANTENNAS, ANS/TTA-322. 10 CONTRACTOR SHALL SECURE SITE RACK TO EXISTING CONDITION LINDER.	SUPERVISION OF OWNER ALL FENCE, STONE, GEOFABRIC, GROUNDING, SUPERVISION OF OWNER ALL FENCE, STONE, GEOFABRIC, GROUNDING, AND SURROUNDING GRADE SHALL BE REPLACED AND REPARED AS	REQUIRED TO ACHIEVE OWNER APPROVAL POSITIVE DRAINAGE AWAY FROM TOWER SITE SHALL BE MAINTAINED.	 CONNECTIONS BETWEEN TERNS SUPPORTED BY THE STRUCTURE AND THE STRUCTURE NOT SPECIFICALLY DETAILED IN THE CONTRACT DOCUMENTS ARE THE RESPONSIBILITY OF THE CONTRACTOR, SUCH CONNECTIONS 	SHALL BE DESIGNED, COORDINATED AND INSPECTED BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN THE STATE OF THE PROJECT. SUBMIT	SIGNED AND SEALED CALCULATIONS DURING SHOP DRAWING REVIEW. 12. DO NOT SCALE DRAWINGS.	13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE	14. ALL MATERIAL UTILIZED FOR THIS PROJECT MUST BE NEW AND FREE OF ANY DEFECTS. ANY MATERIAL JUBSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALL'ERED SIZE ANLOOR STRENGTHS, MUST BE APPROVED BY THE OWNER.	AND ENGINEER IN WRITING.	 THE MOUNT UNDER NO GIRCUMSTANCES SHOULD BE USED AS A THE OFF POINT. 			

IOTE: DO NOT SCALE DRAWINGS FOR CONSTRUCTIO SGN-I

VzW SMART Tool [©] Verizon	DRAWN BY:HIR DRAWN BY:HIR REV. DRECKED BY: HIM REV.			SUPPORT RAIL CORNER	SHEET NUMBER:	VZWSMART-PLK3 0
		SHEET # WT	PLK3-F1 9 PLK3-F1 9	RBC-1 5	- 0	4LVANIZED WT 30
	STM A123.	NSMARTPLK3 (SUPPORT RAIL CORNER BRACKET)	CORNER BENT PLATE BRACKET CORNER BENT PLATE BRACKET	I RU-BOLT 5/8" X 3" I.W. X 5" I.L. A36 (OR EQUIV.) BOLT 5/8" X 2" A325	2/8 HUG USS FLAI WASHER 5/8" HDG LOCK WASHER	5/8" HDG HEX NUT 64
	N <u>otes</u> . 1. Hot-dipped calvanized per <i>i</i>	VZ ITEM QTY. PART NO.	7 1 CBP-L 2 1 CBP-R	3 4 MS02-625-300-500 4 8	5 16 FW-625 6 16 LW-625	7 16 NUT-625
The second secon						

VzW SMART Tool [©] Vendor	verizon				DRAWN BY: BT CHECKED BY: HIM/KW	REV. DESCRIPTION BY DATE		ZA SHEET TITLE:	VZWSMART	STANDARD ANGLE	SHEET NUMBER:	VZWSMART-ANGLE U
		E		Also Used In:	VZWSMART-PLK2	VZWSMART-PLK5 VZWSMART-SFK3,-SFK3-SL, -PLK6, & -PLK8						
RD ANGLE LENG				dard Angle Hole Gage	1-3/4"	1-3/4" 1-3/8"	1-5/16" 1-5/16"	1-1/2"	1-1/2"	2"	2-1/2"	2-1/2"
STANDA	· · · · · · · · · · · · · · · · · · ·	STANDA	민	MART Stan h Hole Style	V I	C B	<u>а</u> а	D	D		D	D
				VZWS	.96	96" 4"96"	4" 120" 4" 240"	120"	240"	120" 240"	120"	120"
1 1/8"			- <u></u>	Size	L 3" X 3" X 1/4"	L 3"X 3" X 3/16" L 2-1/2" X 2-1/2" X 1/	L 2-1/2" X 2-1/2" X 1/ L 2-1/2" X 2-1/2" X 1/	L 3" X 3" X 1/4"	L 3" X 3" X 1/4"	L 4" X 4" X 1/4" L 4" X 4" X 1/4"	L 5" X 3" X 3/8"	L 5" X 5" X 3/8"
		SEE NO		VZWSMART Number	A-PLK2-01	A-PLK5-01 A-SFK3-01	A-L25X25X4X120 A-L25X25X4X240	A-L30X30X4X120	A-L30X30X4X240	A-L40X40X4X120 A-L40X40X4X240	A-L50X30X6X120	A-L50X50X6X120
1 1/8" STANDARD ANGLE LENGTH	HOLE SINCE "A"	STANDARD ANGLE LENGTH	HOFE SIVE *				NUTE: ADREATER SAMET AT VENTORS ARE ALLAWED TO SUBSTIMITE AT THERE DISCRETION	ANGLES LESTED ON THIS PAGE FOR CUSTON LENGTH COMPONENTS OF MATCHING SZE. SUBSTITUTIONS SAMIL MEET THE ORIGINAL STRUCTURAL INTENT.	UNTES.	1. ALL MOLE GRADE A36 OR BETTER 2. HOT-DIPPED GAUNNIZED PER ASTM A123.	3. ALL FIOLES ARE 11/10. UML UNUO 4. ALLES MAY OR MANDE PRESENT, DEPEND UPON MANUFACTURE DISCRETION. 5. ALL FIELD CLIT AND PRILIF. DIREACES SHALL BE REPARED WITH A MUNIMUM OF TWO	COATS OF ZING OR ZING COTE PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.

VzW SMART Tool [©] Vendor Verizon													DRAWN BY: BT CHECKED BY: HMA //W	REV. DESCRIPTION BY DATE				SHEET TITLE:	VZWSMART	STANDARD PIPE	SHEET NUMBER:	VZWSMART-PIPE 0
STANDARD PIPE LENGTH			VZWSMART Standard Pipe	ART Number Size Length Danson Dimension Dimension Dimension	-238X048 PIPE 2 SCH40 (2.5/5 ° OU x 0.154 ° THK) 48	-238X072 PIPE 2 SCH40 (2.375° OD x 0.154" THK) 72" 238X006 DIDE 2 SCH40 (2.375° OD x 0.154" THK) 72" 238X006 DIDE 2 SCH40 /2 375" COL-0 154" THK) 64"	-230X0200 FIFL 2 SOLH40 (2.375" OD X 0.154" THK) 120"	-238X126 PIPE 2 SCH40 (2.375" OD x 0.154" THK) 126"	-238X150 PIPE 2 SCH40 (2.375" OD x 0.154" THK) 150"	-238X174 PIPE 2 SCH40 (2.375" OD x 0.154" THK) 174"	-278X048 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 48"	-278X072 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 72" -278X096 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 96"	-278X120 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 120"	-278X126 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 126"	-278X150 PIPE 2.5 SCH40 (2.875° OD x 0.203° THK) 150°	-278X174 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 174"	-312X048 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 48"	-312X072 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 72"	-312X126 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 126"	-312X150 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 150"	-312X174 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 174"	
	- J J J J J J J J J J	EEE NOTE "3" & "4" (TYP)									I			H	H		APPROVED SMART KIT VENDORS ARE ALLOWED TO SUBSTITUTE AT THEIR DISCRETION PPES LISTED ON THIS PAGE FOR CUSTOM LEWSTH COMPONENTS OF LAYTCHING SZF.	SUBSTITUTIONS SHALL MEET THE ORIGINAL STRUCTURAL INTENT.	1 Satura	1 ULLES 1. LUE IPIE GRADE A53-B OR BETTER. 1. LATE IPIES OF A114447ED FOR A414	2. RUL PUTPTPU WALKEU PER ASIM AL23. 3. ALL HOLES ARE 11/16" DIA. UNO 4. LAURE MAY DIA VIA VIA VIA CONTRACTORIA LIPON VIAILIEVATILE RICOGETIAN	4. HOLES MAI OR MAY INV DE FRASENI, ULFERN UTEN WAVERAUME DISACTIONE DISACTION. ALL FIELD CUT AND DRILLED SUFFACES SHALL BE REPAIRED WITH A MINIMUM OF TWO COATS OF ZINCA OR ZINC COTE PER ASTN A780 AND MANUFACTURER'S RECOMMENDATIONS.

V4.1 Undated on FCC # Antenna Mount Mapping Form (PATENT PENDING) 1222500 SBA 6/28/2022 Tower Owner: Mapping Date: Site Name: E GLASTONBURY 2 CT Monopole Tower Type: Site Number or ID: 468152 Tower Height (Ft.): TEP Mount Elevation (Ft.): 174 Mapping Contractor This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication nodification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements. Mount Pipe Configuration and Geometries [Unit = Inches] PI Vertica Vertical Horizontal PZ Horizonta Sector / Offset Sector / Offset Mount Pipe Size & Length Offset "C1 Mount Pipe Size & Length Offset "C1, P3 0 Position Dimension Position Dimension D C2, C3, etc C2, C3, etc. PL 12.00 24 0 RFS A1 P2.375"Øx0.154"TH. 72" LONG 51.00 12.00 C1 P2.375"Øx0.154"TH, 72" LONG 54.00 P2.375"Øx0.154"TH, 72" LONG P2.375"Øx0.154"TH, 72" LONG 60.00 46.00 Res A2 46.00 C2 60.00 P2.375"Øx0.154"TH, 72" LONG P2.375"Øx0.154"TH, 72" LONG 51.00 51.00 132.00 C3 132.00 A3 A4 P2.375"Øx0.154"TH, 72" LONG P2.375"Øx0.154"TH, 72" LONG 51.00 156.00 C4 54.00 156.00 A5 C5 6 PI A6 C6 23 Ó B1 P2.375"Øx0.154"TH, 72" LONG 51.00 12.00 D1 2F B2 P2.375"Øx0.154"TH, 72" LONG 46.00 60.00 D2 P2.375"Øx0.154"TH. 72" LONG **B3** 51.00 132.00 D3 PZ B4 P2.375"Øx0.154"TH, 72" LONG 51.00 156.00 D4 **B5** D5 D6 0 B6 PL Distance from top of bottom support rail to lowest tip of ant./eqpt. of Carrier above. (N/A if > 10 ft.) : P3 Distance from top of bottom support rail to highest tip of ant./eqpt. of Carrier below. (N/A if > 10 ft.) Please enter additional infomation or comments below otal Coax (12) FH 1-5/8, (1) FH 1/2 PI Py Note: Laser measurement is centerline of antennas Tower Face Width at Mount Elev. (ft.): Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.): 34 Mounting Locations Photos of SECTOR B SECTOR C Enter antenna model. If not labeled, enter "Unknown". [Units are inches and degrees] antennas FACE B Horiz. Items Vertical LEG B LEG C Coax Antenna Offset "h" Antenna Antenna Models if Width Depth Height Photo Distances"b1a, b2a Engle C Size and Center-(Use "-" i Azimuth FROE Numbers Ants. Known (in.) (in.) (in.) Ant. is Qty line (Ft.) b_{3a}, b_{1b}...." (Inches) (Degrees) behind) Sector A Ant_{1a} Ant_{1b} Amphenol LPA-80063 15.00 9.00 48.00 177 9.00 5.00 73 SECTOR LEG A Ant, Ant_{2a} -1.00 RFS FD9R6004/2C-3L 6.50 1.50 5.80 176 83 4 Horizonta Offset "h" Ant_{2b} BXA-70063-6CF-EDIN 11.30 6.00 71.00 177 9.00 5.00 85 Ant₂₀ Ant_{3a} RFS FD9R6004/2C-3L 6.50 1.50 5.80 176 -1.00 87 Antah 6.00 3.00 48.00 177 -1.00 BXA-171065-8BF-EDI 5.00 87 Antia 20 Ant_{2a} RG Ant3a 1ª Ant4a a Antsa Ant₃ Ant2b Antse Ant_{4b} Antsы Ant16 8 f) Q 4 5 Ant_{4a} Ant_{4b} BXA-70063-6CF-EDIN 11.30 6.00 71.00 177 9.00 5.00 95 20 30 10 ŝ Ant $\mathsf{Ant}_{\mathsf{5a}}$ Ant_{5b} Ant_{5c} Ant on Anta Ants Anta Ants Antic C1 Standoff C2 Ant on

Standoff

Ant on Tower Ant on

Tower

C3

C4

Antenna Layout (Looking Out From Tower)

Mou	int Azimuth	(Degree	e)	Tower Leg Azimuth (Deg	ree)						Sector E				
	for Each Sec	tor		for Each Sector		Ant _{1a}									
Sector A:	5.00	Deg	Leg A:		Deg	Ant _{1b}	Amphenol LPA-80063	15.00	9.00	48.00		177	9.00	125.00	101
Sector B:	125.00	Deg	Leg B:		Deg	Ant _{1c}									
Sector C:	245.00	Deg	Leg C.		Deg	Anta	RES ED9R6004/2C-31	6.50	1.50	5.80		176	-1.00		109
Sector Di		Dog	Log Di		Dog	Ant.	BXA-70063-6CE-EDIN	11 30	6.00	71.00		177	9.00	125.00	107
Sector D.		Deg	Leg D.		Deg	Ant	DAA-70003-0CF-EDIN	11.50	0.00	71.00		1//	5.00	125.00	107
		Climb	oing Fac	cility Information		Ant _{2c}									
Location:	5.00	Deg		Other		Ant _{3a}	RFS FD9R6004/2C-3L	6.50	1.50	5.80		176	-1.00		111
	Corros	ion Typ	e:	Good condition.		Ant _{3b}	BXA-171065-8BF-EDI	6.00	3.00	48.00		177	-1.00	125.00	112
Climbing	Ac	cess:		Climbing path was unobstruct	ed.	Ant _{3c}									
Facility	Con	dition:		Good condition.		Ant _{4a}			1						
						Ant	Amphanol LPA-80063	15.00	9.00	48.00		177	9.00	125.00	120
						Ant	inipiteitor er it oooos	10.00	5.00	10.00		211	5.00	125.00	120
						Ant 4c		-			-				
						Ant _{5a}									
				1777		Ant _{5b}						_			
			12			Ant _{5c}									
		2 and	14-	FEET		Ant on									
		19 Se	Charles -			Standoff									
	100					Ant on Standoff									
		-	Server Contract			Ant on									
						Tower									
						Ant on									
		->		h		Tower									
			SD								Sector C				
			-	The second states		Ant _{1a}									
				and the second second		Ant _{1b}	Amphenol LPA-80063	15.00	9.00	48.00		177	9.00	245.00	122
						Antia									
						Ant	RES ED986004/2C-21	6.50	1.50	5.80		176	-1.00		124
						Ant	N/3 70000 CCF FDIN	11.20	1.50	71.00		170	-1.00	245.00	124
						Ant _{2b}	BXA-70063-6CF-EDIN	11.30	6.00	/1.00		1//	9.00	245.00	129
						Ant _{2c}									
	a a	m	Π.			Ant _{3a}	RFS FD9R6004/2C-3L	6.50	1.50	5.80		176	-1.00		138
ſ	4 4		Шď	r ¹		Ant _{3b}	BXA-171065-8BF-EDI	6.00	3.00	48.00		177	-1.00	245.00	134
						Ant _{3c}									
_		ЦЦ	Ш			Ant _{4a}									
1		ΠŤ	ΠĻ	THP OF EQUIPMENT		Ant _{4h}	Amphenol LPA-80063	15.00	9.00	48.00		177	9.00	245.00	142
						Ant.		20100	5.00				0.00		
r			Ш.	DISTANCE FROM 1	P OF MAIN	Ant									
-				0F ANT/2017. 0 (N/A IF > 10 FT	GARRIER ABOVE	Antsa									
						Ant _{5b}									
		TEE				Ant _{5c}									
EXISTING PLATFORM-	ч_ т		1	PLATENN MEMBE OF ANT_FORM TO D	CARRIER DELOW.	Ant on									
				THP OF EDUIPMENT)	Antion									
["ነ ሰ					Standoff									
						Ant on									
						Tower									
						Ant on									
-		띵				Tower									
		FOR PLAT	ORMS								Sector D)			
ſ	1 Г			. Ē		Ant _{1a}									
c)		Ant _{1b}									
						Ant _{1c}									
c		╞══╬╧		m		Anta									
	. T		T	TIP OF EQUIPMENT		Ant									
						Ant									
Г		1 K		DISTANCE FROM SUPPORT RAL	TOP OF BOTTOM O LOWEST TIP OF	Antze									
4				ANI_/EQPT. OF (N/A IF > 10	T.)	Ant _{3a}									
٦			1			Ant _{3b}									
-	<i></i> ,	F	4			Ant _{3c}									
EXISTING SECTOR FRA	ш мис Ч	-	7	DISTANCE FROM SUPPORT RAL	TOP OF BOTTOM O HIGHEST TIP OF	Ant _{4a}									
MO	UNŤ	K	r	ANT./EQPT. OF (N/A IF > 10	DWIRER BELOW. T.]	Ant _{4b}									
	, "д	, `	L	TP. OF EQUIPMENT		Ant _{4c}									
						Antes									
c		 -	╡╞	1		Ant									
		I.		L		Ant									
Ľ,	J					Ant _{5c}									
		<u> </u>		" J		Ant on Standoff									
						Antion									
						Standoff									
						Ant on									
						Tower									
						Ant on									
						Tower									

	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Description of Issue	Photo #
1		
2		
3		
4		
5		
6		
7		
8		

Mapping Notes

1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)

2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.

3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.

4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

6. Please measure and report the size and length of all existing antenna mounting pipes.

7. Please measure and report the antenna information for all sectors.

8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

Standard Conditions

		A		Updated on 12-17-2021 FCC #
SMART Tool®		Antenna Mount Mappir	ng Form (PATENT PENDING)	1222500
Vorden	Tower Owner:		Mapping Date:	6/28/2022
vendor	Site Number or ID:	468152	Tower Height (Ft.):	worldpole
min	Mapping Contractor:	TEP	Mount Elevation (Ft.):	174
This antenna mapping form is the property of modification or disclosure by any method is	prohibited except by express written permission	n of TES. All means and methods are the respons	n nature and is to be used only for the specific customer it was intended for. Reproduction, ibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FC	transmission, publication, C, FAA and other safety
requirements that may apply. TES is not war	rantying the usability of the safety climb as it m	ust be assessed prior to each use in compliance	with OSHA requirements.	
		Please Insert Sketches of the	Antenna Mount	
3 - 1 - + +			and the second	
	r Calut	it is a li	A CALL AND A	1
	e. VIIIor	MONT CT.	flewned	- -
			a sold generation of the	
			Nah.	
	VEW M	M(
			Combo . 477.7.	
			Comoo : 17 0-	
			7-8-77	
CallerG	174		1.0.00	
Contract				
ille die 1	1 - 0 -			
STRAK MALL	INT 4.177	$x_1, x_2, x_3, x_4, x_5, x_5, x_5, x_5, x_5, x_5, x_5, x_5$		
	1.2 200 201	(DSIA) NOI		· •
Coax:	12 LOPP	(1)-18 8.14		
	Mata a state a			1
· A A.				
A Face AT	5.5			- E
				- I.
Caller 11	Ann	L0 -1	a construction of the second	
COMM- W	ייווין	1	(3) 3/4 TR.	
	A A A A A A A A		HEIGHT AND TH OF COLLA	R
		54:11-	17 "	
		4"4 5"+1/2	TO TANK 12 TH	
	2 2 2 2 2 7 7 7	1211	4"17 7"+0	
		07	4	
1 1 1 1 1 1 1 1 1			1	
		1+55 9x9x7-		
		165 6100	41. JUL 2 11	
		May Ome	P Trux Turk C	
				* 1
				~
1. 1. 1. 1. 1. A.	a sub- a series a			
COMPY MITH	ant Arm	Plac	a series in the left of the series of the	
		LE Fac	e 16 x 5 x 218	
	er	den en e		
	8 _ IL TAIL	XILTH		
· · · · · ·	1			
1	16			
1				
N	a ser a la trade de la composición de la			
K	10			
1 L 16	10			
)			1

Please Insert Sketches of the Antenna Mount, cont'd Ma 201-00 6M AN V View C 0 385 С 2.55 L

z x		
Project No. 10160182	468152-VZW_MT_LO_H	SK - 1 Aug 22, 2022 at 9:16 AM 468152-VZW_MT_LO_H.r3d

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					105			
2	Antenna Di	None					105			
3	Antenna Wo (0 Deg)	None					105			
4	Antenna Wo (30 Deg)	None					105			
5	Antenna Wo (60 Deg)	None					105			
6	Antenna Wo (90 Deg)	None					105			
7	Antenna Wo (120 Deg)	None					105			
8	Antenna Wo (150 Deg)	None					105			
9	Antenna Wo (180 Deg)	None					105			
10	Antenna Wo (210 Deg)	None					105			
11	Antenna Wo (240 Deg)	None					105			
12	Antenna Wo (270 Deg)	None					105			
13	Antenna Wo (300 Deg)	None					105			
14	Antenna Wo (330 Deg)	None					105			
15	Antenna Wi (0 Deg)	None					105			
16	Antenna Wi (30 Deg)	None					105			
17	Antenna Wi (60 Deg)	None					105			
18	Antenna Wi (90 Deg)	None					105			
19	Antenna Wi (120 Deg)	None					105			
20	Antenna Wi (150 Deg)	None					105			
21	Antenna Wi (180 Deg)	None					105			
22	Antenna Wi (210 Deg)	None					105			
23	Antenna Wi (240 Deg)	None					105			
24	Antenna Wi (270 Deg)	None					105			
25	Antenna Wi (300 Deg)	None					105			
26	Antenna Wi (330 Deg)	None					105			
27	Antenna Wm (0 Deg)	None					105			
28	Antenna Wm (30 Deg)	None					105			
29	Antenna Wm (60 Deg)	None					105			
30	Antenna Wm (90 Deg)	None					105			
31	Antenna Wm (120 Deg)	None					105			
32	Antenna Wm (150 Deg)	None					105			
33	Antenna Wm (180 Deg)	None					105			
34	Antenna Wm (210 Deg)	None					105			
35	Antenna Wm (240 Deg)	None					105			
36	Antenna Wm (270 Deg)	None					105			
37	Antenna Wm (300 Deg)	None					105			
38	Antenna Wm (330 Deg)	None					105			
39	Structure D	None		-1					3	
40	Structure Di	None						36	3	
41	Structure Wo (0 Dea)	None						72	-	
42	Structure Wo (30 Dea)	None						72		
43	Structure Wo (60 Dea)	None						72		
44	Structure Wo (90 Deg)	None						72		
45	Structure Wo (120 D	None						72		
46	Structure Wo (150 D	None						72		
47	Structure Wo (180 D	None						72		
48	Structure Wo (210 D	None						72		
40	Structure Wo (240 D	None						72		
50	Structure Wo (270 D	None						72		
51	Structure Wo (300 D	None						72		
52	Structure Wo (330 D	None						72		
52	Structure Will (0 Deg)	None						72		
		NULLE						12		1

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
54	Structure Wi (30 Deg)	None						72		
55	Structure Wi (60 Deg)	None						72		
56	Structure Wi (90 Deg)	None						72		
57	Structure Wi (120 De	None						72		
58	Structure Wi (150 De	None						72		
59	Structure Wi (180 De	None						72		
60	Structure Wi (210 De	None						72		
61	Structure Wi (240 De	None						72		
62	Structure Wi (270 De	None						72		
63	Structure Wi (300 De	None						72		
64	Structure Wi (330 De	None						72		
65	Structure Wm (0 Deg)	None						72		
66	Structure Wm (30 De	None						72		
67	Structure Wm (60 De	None						72		
68	Structure Wm (90 De	None						72		
69	Structure Wm (120 D	None						72		
70	Structure Wm (150 D	None						72		
71	Structure Wm (180 D	None						72		
72	Structure Wm (210 D	None						72		
73	Structure Wm (240 D	None						72		
74	Structure Wm (270 D	None						72		
75	Structure Wm (300 D	None						72		
76	Structure Wm (330 D	None						72		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					105			
82	Antenna Eh (0 Deg)	None					70			
83	Antenna Eh (90 Deg)	None					70			
84	Structure Ev	ELY		043					3	
85	Structure Eh (0 Deg)	ELZ			108				3	
86	Structure Eh (90 Deg)	ELX	.108						3	
87	BLC 39 Transient Are	None						30		
88	BLC 40 Transient Are	None						30		
89	BLC 84 Transient Are	None						30		
90	BLC 85 Transient Are	None						30		
91	BLC 86 Transient Are	None						30		

Load Combinations

	Description	Sol	PDe	.s	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Y		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Y		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Y		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Y		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Y		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Y		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210 Deg)	Yes	Y		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes	Y		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)	Yes	Y		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)	Yes	Y		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)	Yes	Y		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (.	Yes	Y		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (.	Yes	Y		1	1.2	39	1.2	2	1	40	1	16	1	54	1								

Aug 24, 2022 1:22 PM Checked By:___

Load Combinations (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Description	SolF	PDe.	.S E	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLCF	a Bl	.CFa	<u>BL</u>	CFa	BLC	Fa
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1.2D + 1.0Di + 1.0Wi (Yes	Υ		1	1.2	39	1.2	2	1	40	1	17	1	55	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	18	1	56	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	22	1	60	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	23	1	61	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	24	1	62	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	25	1	63	1							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	1.2D + 1.0Di + 1.0Wi (Yes	Y		1	1.2	39	1.2	2	1	40	1	26	1	64	1							
26 1.20 + 1.5Lm1 + 1.0 Yes Y 1 1.2 39 1.2 77 1.5 28 1.66 1 27 1.20 + 1.5Lm1 + 1.0 Yes Y 1 1.2 39 1.2 77 1.5 29 1 67 1 28 1.20 + 1.5Lm1 + 1.0 Yes Y 1 1.2 39 1.2 77 1.5 31 1.69 1 1.2 1.2 1.2 1.7 1.5 31 1.69 1 1.2 1.2 1.2 1.7 1.5 33 1.7 1 1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.5 31 1.7 1 1.2	25	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	27	1	65	1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	28	1	66	1									
28 1.20 + 1.5Lm1 + 10 Yes Y 1 1.2 39 1.2 77 1.5 30 1 68 1 29 1.20 + 1.5Lm1 + 10 Yes Y 1 1.2 39 1.2 77 1.5 31 1 69 1 31 1.20 + 1.5Lm1 + 10 Yes Y 1 1.2 39 1.2 77 1.5 33 1 71 1 1.1.2 1.2 1.2 1.2 1.2 1.1.1 <td>27</td> <td>1.2D + 1.5Lm1 + 1.0</td> <td>Yes</td> <td>Y</td> <td></td> <td>1</td> <td>1.2</td> <td>39</td> <td>1.2</td> <td>77</td> <td>1.5</td> <td>29</td> <td>1</td> <td>67</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	27	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	29	1	67	1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	30	1	68	1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	31	1	69	1									
31 12D + 1.5Lm1 + 1.0 Yes Y 1 1.2 39 1.2 77 1.5 33 1 71 1	30	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	32	1	70	1									
32 12D + 1.5Lm1 + 1.0 Yes Y 1 1.2 39 1.2 77 1.5 34 1 72 1 1 33 1.2D + 1.5Lm1 + 1.0 Yes Y 1 1.2 39 1.2 77 1.5 35 1 73 1 </td <td>31</td> <td>1.2D + 1.5Lm1 + 1.0</td> <td>Yes</td> <td>Υ</td> <td></td> <td>1</td> <td>1.2</td> <td>39</td> <td>1.2</td> <td>77</td> <td>1.5</td> <td>33</td> <td>1</td> <td>71</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	31	1.2D + 1.5Lm1 + 1.0	Yes	Υ		1	1.2	39	1.2	77	1.5	33	1	71	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	34	1	72	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	35	1	73	1									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	36	1	74	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	37	1	75	1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1.2D + 1.5Lm1 + 1.0	Yes	Y		1	1.2	39	1.2	77	1.5	38	1	76	1									
38 $1.2D + 1.5Lm2 + 1.0$ Yes Y 1 1.2 39 1.2 78 1.5 28 1 66 1 1 1.2 39 1.2 78 1.5 29 1 67 1 1 1.2 39 1.2 78 1.5 29 1 67 1 1 1.2 39 1.2 78 1.5 30 1 68 1 41 $1.2D + 1.5Lm2 + 1.0$ Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 1.2 39 1.2 78 1.5 34 1 72 1 1.2 39 1.2 78 1.5 34 1 72 1 1.2 39 1.2 78 1.5 36 1 74 1 1.2 1.2 39 1.2 78 1.5 36 1 74 1 1.2 1.2 39 1.2	37	1.2D + 1.5Lm2 + 1.0	Yes	Ŷ		1	1.2	39	1.2	78	1.5	27	1	65	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	1.2D + 1.5Lm2 + 1.0	Yes	Y		1	1.2	39	1.2	78	1.5	28	1	66	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	1.2	39	1.2	78	1.5	29	1	67	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	1.2D + 1.5Lm2 + 1.0	Yes	Y		1	1.2	39	1.2	78	1.5	30	1	68	1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	1.2	39	1.2	78	1.5	31	1	69	1									
43 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1 44 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1 45 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 46 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 47 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 48 1.2D + 1.5Lw1 Yes Y 1 1.2 39 1.2 79 1.5 39 1.2 79 1.5 50 1.2D + 1.0Ew + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 866 83 .5 ELZ 1 ELX	42	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	1.2	39	1.2	78	1.5	32	1	70	1									
44 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 45 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 46 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 47 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1 48 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1 49 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 80 1.5 5 5 51 1.4D Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 1.66 83 .5 ELZ 866	43	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	12	39	12	78	1.5	33	1	71	1							-		
41 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 46 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 47 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 48 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1 49 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 79 1.5	44	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	12	39	1.2	78	1.5	34	1	72	1									
46 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 47 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 37 1 75 1 48 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 37 1 75 1 49 1.2D + 1.5Lw1 Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1 50 1.2D + 1.5Lw1 Yes Y 1 1.2 39 1.2 80 1.5 - <td>45</td> <td>1.2D + 1.5Lm2 + 1.0</td> <td>Yes</td> <td>Ý</td> <td></td> <td>1</td> <td>1.2</td> <td>39</td> <td>1.2</td> <td>78</td> <td>1.5</td> <td>35</td> <td>1</td> <td>73</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>	45	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	1.2	39	1.2	78	1.5	35	1	73	1					-		-		
47 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 37 1 75 1 48 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 37 1 75 1 49 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 76 1 50 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 79 1.5 76 1 76 1 50 1.2D + 1.5Lv2 Yes Y 1 1.2 39 1.2 80 1.5 76 1 76 1 76 1 76 1 76 1 76 1 76 1 76 1 76 1 77 1 78 17 17 17 1 76 1 76 1 76 1 77 1 77 1 77 1 77 78 17 <td< td=""><td>46</td><td>1.2D + 1.5Lm2 + 1.0</td><td>Yes</td><td>Ý</td><td></td><td>1</td><td>1.2</td><td>39</td><td>1.2</td><td>78</td><td>1.5</td><td>36</td><td>1</td><td>74</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	46	1.2D + 1.5Lm2 + 1.0	Yes	Ý		1	1.2	39	1.2	78	1.5	36	1	74	1									
48 1.2D + 1.5Lm2 + 1.0 Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1 49 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1 50 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 70 1.5	40	$1.2D + 1.5I m^2 + 1.0$	Ves	Ý		1	1.2	30	1.2	78	1.5	37	1	75	1							-		
49 1.2D + 1.5Lv1 Yes Y 1 1.2 39 1.2 79 1.5 50 1.2D + 1.5Lv2 Yes Y 1 1.2 39 1.2 79 1.5 51 1.4D Yes Y 1 1.2 39 1.2 80 1.5 51 1.4D Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 1 83 ELZ 1 ELX 52 1.2D + 1.0Eh Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 1 83 ELZ 1 ELX 53 1.2D + 1.0Eh + 1.0Eh Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELZ .5 ELX .5 54 1.2D + 1.0Eh + 1.0Eh Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELZ <	18	$1.2D + 1.5I m^2 + 1.0$	Vac	Ý		1	1.2	30	1.2	78	1.5	38	1	76	1									
49 1.2D + 1.3LV1 1es 1 1.2 39 1.2 79 1.3 50 1.2D + 1.5Lv2 Yes Y 1 1.2 39 1.2 80 1.5 Image: state	40	1.2D + 1.5L v1	Voc	$\overline{\mathbf{v}}$		1	1.2	30	1.2	70	1.5	50		10								-		_
50 1.2D + 1.0Lv2 1es 1 1.2 39 1.2 60 1.3 1.4	50	1.2D + 1.5LvT	Voc	\mathbf{v}		1	1.2	30	1.2	80	1.5											-		
51 1.4D 165 1 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 39 1.4 1.82 1.83 ELZ 1 ELX 53 1.2D + 1.0Ev + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 .86 83 .5 ELZ .5 ELX .5 54 1.2D + 1.0Ev + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELZ .5 ELX .5 ELX 1 1 1.4 39 1.2 81 1 ELY 1 82 .5 83 .66 ELX .5 ELX 1 1 1.2 1.2 1.2 <td>50</td> <td>1.2D + 1.5LV2</td> <td>Voc</td> <td>$\overline{\mathbf{v}}$</td> <td></td> <td>1</td> <td>1.2</td> <td>39</td> <td>1.2</td> <td>00</td> <td>1.0</td> <td></td>	50	1.2D + 1.5LV2	Voc	$\overline{\mathbf{v}}$		1	1.2	39	1.2	00	1.0													
52 1.20 + 1.0EV + 1.0EL Tes 1 1.2 39 1.2 81 1 EL1 1 62 1 63 EL2 1 EL5 1 EL5 1 1.2 39 1.2 81 1 EL1 1 62 1 63 EL2 1 EL5 1 EL5 1 EL5 1 1.2 1 1.2 39 1.2 81 1 ELY 1 82 .866 83 .5 ELZ .5 ELX .5 1 54 1.2D + 1.0Ev + 1.0Eh Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELZ .5 ELX .1 56 1.2D + 1.0Ev + 1.0Eh Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELZ .5 ELX .1 56 1.2D + 1.0Ev + 1.0Eh Yes Y 1 1.2 39 1.2 81	51	1.4D	Vee			1	1.4	20	1.4	01	1	EI V	1	02	1	02		EL Z	1 EI	x		-		
53 1.2D + 1.0EV + 1.0EL Tes Y 1 1.2 39 1.2 81 1 ELY 1 82 .000 63 .5 ELZ .000 ELX .5 54 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .866 ELZ .5 ELX .866 55 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .83 1 ELZ .5 ELX .1 56 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELZ .5 ELX 1 56 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .66 ELZ .5 ELX .5 58 1.2D + 1.0EV + 1.0EL Yes Y 1	52	1.2D + 1.0Ev + 1.0Eh	Vee			1	1.2	20	1.2	01	1		1	02	1	00	5			-^ V E		-		_
54 1.2D + 1.0EV + 1.0EHYeS Y 1 1.2 39 1.2 81 1 ELT 1 82 .5 83 .500 ELZ .5 ELX .000 55 1.2D + 1.0EV + 1.0EHYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 1 ELZ .5 ELX 1 56 1.2D + 1.0EV + 1.0EhYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .66 ELX 1 56 1.2D + 1.0EV + 1.0EhYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .66 ELX .5 58 1.2D + 1.0EV + 1.0EhYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 -1 83 ELZ .1 ELX .5 58 1.2D + 1.0EV + 1.0EhYeS Y 1 1.2 39 1.2 81 1 <t< td=""><td>55</td><td>1.2D + 1.0EV + 1.0EH</td><td>Vee</td><td>T V</td><td></td><td>1</td><td>1.2</td><td>39</td><td>1.2</td><td>01</td><td>1</td><td></td><td>1</td><td>02</td><td>.000</td><td>00</td><td>C.</td><td></td><td></td><td>.^ .C</td><td>)</td><td></td><td></td><td></td></t<>	55	1.2D + 1.0EV + 1.0EH	Vee	T V		1	1.2	39	1.2	01	1		1	02	.000	00	C.			.^ .C)			
55 1.20 + 1.0EV + 1.0EL Tes 1 1.2 39 1.2 01 1 ELT 1 02 03 1 ELZ ELX 1 56 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .866 ELZ 5 ELX 1 866 1 57 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 .866 ELZ 5 ELX .866 1 58 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -1 83 ELZ -1 ELX .5 58 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 5 ELZ866 ELX 5 60 1.2D + 1.0EV + 1.0EL Yes Y 1 1	54	1.20 + 1.020 + 1.021	Voc	T V		1	1.2	39	1.2	01	1	EL I	1	02	.o	03	.000	ELZ	.3 EI EI	A .00	0		-	
50 1.22 + 1.0EV + 1.0EL Tes 1 1.2 39 1.2 01 1 ELT 1 02 5 05 0.00 ELZ5 ELX .000 57 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 866 83 .5 ELZ866 ELX .5 58 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 866 83 .5 ELZ866 ELX .5 59 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 5 ELZ866 ELZ5 6 60 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 5 ELZ866 ELX5 60 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82	55	1.20 + 1.020 + 1.0211	Voc			1	1.2	30	1.2	0 I Q1	1	FIV	1	02	5	00	1		5 5	X 86	6			
57 1.20 + 1.0EV + 1.0EL Tes T 1 1.2 39 1.2 01 1 ELT 1 82 .00 83 .5 ELZ000 ELA5 58 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -1 83 ELZ -1 ELX 59 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 ELZ866 ELX5 60 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 -5 ELZ866 ELX5 60 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 -5 83 -5 ELZ866 ELX5 61 1.2D + 1.0EV + 1.0EL Yes Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 -1	50	1.20 + 1.020 + 1.0211	Ves	T V		1	1.2	20	1.2	01	1	EL I	1	02	0 - 866	03	.000			X .00	:		-	
50 1.20 + 1.0EV + 1.0EHYeS Y 1 1.2 39 1.2 01 1 ELT 1 82 -1 83 ELZ -1 ELX -1	5/	1 2D + 1 0Ev + 1 0Eh	Ves	ĭ V		1	1.2	39	1.2	01	4		4	02	000	03	с.			.^ .5 V)	-		
59 1.20 + 1.0EV + 1.0EHYes Y 1 1.2 39 1.2 81 1 ELY 1 82 500 83 5 ELZ000 ELX 5 60 1.2D + 1.0EV + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 5 ELZ000 ELX 5 61 1.2D + 1.0EV + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 5 83 5 ELX866 61 1.2D + 1.0EV + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 83 -1 ELZ ELX -1 62 1.2D + 1.0EV + 1.0EhYes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 -866 ELZ .5 ELX1 62 1.2D + 1.0EV + 1.0EhYes Y 1 1.2 30 1.2 81 1 ELY 1 82	58	1.20 + 1.02V + 1.02N	Vez	Y V		1	1.2	39	1.2	01	4		4	02	-1	03	-			~ , \	-			
60 1.20 + 1.0EV + 1.0EHYes Y 1 1.2 39 1.2 81 1 ELT 1 82 5 83 5 ELX5	59	1.20 + 1.0EV + 1.0EN	res	Y		1	1.2	39	1.2	01	1		1	82	000	83	5			·^:	2			
b1 1.20 + 1.0EV + 1.0EHYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 83 -1 ELZ ELX -1 62 1.2D + 1.0EV + 1.0EHYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 -1 ELZ ELX -1 62 1.2D + 1.0EV + 1.0EHYeS Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 -866 ELZ .5 ELX -1 63 1.2D + 1.0EV + 1.0EH Yes Y 1 1.2 30 1.2 81 1 ELY 1 82 .5 83 -866 ELZ .5 ELX -1	60	1.20 + 1.0EV + 1.0EN	res	Y		1	1.2	39	1.2	81	1	ELY		82	5	83	000		.5 El	. <u>_</u> 86	00			
b2 1.2D + 1.0EV + 1.0ENYes Y 1 1.2 39 1.2 81 1 ELY 1 82 .5 83 .566 ELX866 63 1.2D + 1.0EV + 1.0Eb Yos Y 1 1.2 20 1.2 84 1 ELY 1 82 .5 83 .566 ELX866	61	1.20 + 1.0EV + 1.0Eh	res	Y		1	1.2	39	1.2	81	1	ELY	1	82	-	83	-1		EL	-X -1	20	-		
	62	1.2D + 1.0EV + 1.0Eh	res	Y		1	1.2	39	1.2	81	1	ELY	1	82	.5	83	866		.5 El	.x86	- -			
	63	1.20 + 1.0Ev + 1.0Eh	res	Y		1	1.2	39	1.2	81	1	ELY	1	82	.866	83	5			.×{	2			
64 U.9D - 1.0EV + 1.0En (Yes Y 19 399 81 -1 ELY -1 82 1 83 ELZ 1 ELX	64	0.9D - 1.0EV + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	1	83	-							
65 U.9D - 1.0EV + 1.0En (Yes Y 19 399 81 -1 ELY -1 82 .866 835 ELZ .866 ELX5	65	0.9D - 1.0EV + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	.5	ELZ .	566 El	.× .5		_		
66 0.9D - 1.0Ev + 1.0Eh (Yes Y 19 399 81 -1 ELY -1 825 83 .866 ELZ5 ELX .866	66	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5 El	.X .86	66			
67 0.9D - 1.0Ev + 1.0Eh (Yes Y 1 .9 39 .9 81 -1 ELY -1 82 83 1 ELZ ELX 1	67	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82		83	1	ELZ	EL	X 1		_		
68 0.9D - 1.0Ev + 1.0Eh (Yes Y 19 399 81 -1 ELY -1 825 83 .866 ELZ5 ELX .866	68	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	5	83	.866	ELZ -	.5 El	.X .86	66			
69 0.9D - 1.0Ev + 1.0Eh (Yes Y 1 .9 39 .9 81 -1 ELY -1 82866 83 .5 ELZ866 ELX .5	69	0.9D - 1.0Ev + 1.0Eh (Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	866	83	.5	ELZ	866EI	.× .5	5			
70 0.9D - 1.0Ev + 1.0Eh (Yes Y 1 .9 39 .9 81 -1 ELY -1 82 -1 83 ELZ -1 ELX	70	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	-1	83		ELZ	-1 El	X				
71 0.9D - 1.0Ev + 1.0Eh (Yes Y 1 .9 39 .9 81 -1 ELY -1 82 866 83 5 ELZ 866 ELX 5	71	0.9D - 1.0Ev + 1.0Eh (Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	866	83	5	ELZ	866EI	X{	5			

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\Rev 0\Risa\468152-VZW_MT_LO_H.r3d]

Load Combinations (Continued)

	Description	Sol	PDe	S	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa								
72	0.9D - 1.0Ev + 1.0Eh (.	Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	5	83	866	ELZ	5	ELX	866	6			
73	0.9D - 1.0Ev + 1.0Eh (.	Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82		83	-1	ELZ		ELX	-1				
74	0.9D - 1.0Ev + 1.0Eh (.	Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	866	ELZ	.5	ELX	866	;			
75	0.9D - 1.0Ev + 1.0Eh (.	Yes	Y		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	CP	0.	0	-0.	0	
2	N2	0.	0	1.095417	0	
3	N10	-0.	0	-4.291667	0	
4	N11	-0.	0	-4.833334	0	
5	N12	-0.	0	-6.333334	0	
6	N13	-0.	0	-7.833334	0	
7	N14	-0.	0	-8.291667	0	
8	N15	-3.716693	0	2.145833	0	
9	N16	-7.180794	0	4.145833	0	
10	N17	3.716693	0	2.145833	0	
11	N18	7.180794	0	4.145833	0	
12	N15A	0.	0	2.145833	0	
13	N16A	0.	0	4.145833	0	
14	N15B	-4.18579	0	2.416667	0	
15	N16B	-5.484828	0	3.166667	0	
16	N17A	-6.783866	0	3.916667	0	
17	N18A	4.18579	0	2.416667	0	
18	N19	5.484828	0	3.166667	0	
19	N20	6.783866	0	3.916667	0	
20	N21	-6.180794	0	4.145833	0	
21	<u>N26</u>	-6.180794	0	4.395833	0	
22	N29	-6.180794	4.25	4.395833	0	
23	<u>N30</u>	-6.180794	-1.75	4.395833	0	
24	N67	3.597461	0	-2.060682	0	
25	N77	0.948658	0	-0.547709	0	
26	N78	1.858346	0	-1.072917	0	
27	N91	-3.583333	0	-2.085151	0	
28	N109	-0.948659	0	-0.547708	0	
29	N110	-1.858346	0	-1.072917	0	
30	N108A	3.590397	0	-2.072917	0	
31	N110A	-3.590397	0	-2.072917	0	
32	N119B	1.425334	0	-0.822917	0	
33	N51	-4.180794	0	4.145833	0	
34	N53	-4.180794	0	4.395833	0	
35	N55	-4.180794	4.25	4.395833	0	
30		-4.180794	-1.75	4.395833	0	
37	N5/A	1.819206	0	4.145833	0	
38	N59	1.819206	0	4.395833	0	
39		1.819206	0.20	4.395833	0	
40	N62	T.819206	-1.75	4.395833	0	
41	NG5	5.019200	0	4.140003	0	
42		5.810206	4.25	4.393033	0	
43	NICO	5.810206	4.20	4.393033	0	
44		6 680704	-1.75	4.390033	0	
40	N71	6 8073	0	3 154909	0	
40	N/1	6.8073	4.25	3 15/1808	0	
47	N73	6.8073	-1 75	3 15/1808	0	
40	11/4	0.0975	-1.75	0.104000	U	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
49	N75	5.680794	0	1.547757	0	
50	N77A	5.8973	0	1.422757	0	
51	N79	5.8973	4.25	1.422757	0	
52	<u>N80</u>	5.8973	-1.75	1.422757	0	
53	N81	2.680794	0	-3.648395	0	
54	N83	2.8973	0	-3.773395	0	
55	N85A	2.8973	6.25	-3.773395	0	
56	N86	2.8973	-1.75	-3.773395	0	
5/	<u>N87</u>	0.680794	0	-7.112497	0	
58	N89	0.8973	1.05	-7.237497	0	
59	NO2	0.8973	4.25	-7.237497	0	
61	N02	0.8973	-1.75	7.425641	0	
62	NO5	-0.5	0	7.420041	0	
62		-0.716506	4.25	7.550641	0	
64		-0.716506	4.20	7.550641	0	
65		-0.710500	-1.75	5 602501	0	
66	N101	-1.5	0	-5.095591	0	
67	N103	-1.716506	4.25	-5.818501	0	
68	N103	-1.716506	-1.75	-5.818501	0	
69	N104	-1.710500	-1.75	-0.407438	0	
70	N103	-4.3	0	-0.497438	0	
70	N1094	-4.716506	6.25	-0.622438	0	
72	N110B	-4 716506	-1 75	-0.622438	0	
73	N111	-6.5	0	2 966663	0	
74	N113	-6 716506	0	2.841663	0	
75	N115B	-6 716506	4 25	2.041000	0	
76	N116B	-6 716506	-1 75	2.841663	0	
77	N77B	-6 680794	3	4 145833	0	
78	N78A	6 680794	3	4 145833	0	
79	N79A	0	3	4 145833	0	
80	N80A	-6,180794	3	4.145833	0	
81	N81A	-6.180794	3	4.395833	0	
82	N82	-4.180794	3	4.145833	0	
83	N83A	-4.180794	3	4.395833	0	
84	N84	1.819206	3	4.145833	0	
85	N85	1.819206	3	4.395833	0	
86	N86A	5.819206	3	4.145833	0	
87	N87A	5.819206	3	4.395833	0	
88	N88	-4.680794	3	4.145833	0	
89	N89A	4.680794	3	4.145833	0	
90	N90	6.680794	3	3.895833	0	
91	N91B	-4.680794	3	3.895833	0	
92	N92A	4.680794	3	3.895833	0	
93	N93A	6.930794	3	3.712821	0	
94	N94	0.25	3	-7.858654	0	
95	N95A	3.590397	3	-2.072917	0	
96	N96	6.680794	3	3.279808	0	
97	N97A	6.8973	3	3.154808	0	
98	N98A	5.680794	3	1.547757	0	
99	N99A	5.8973	3	1.422757	0	
100	N100	2.680794	3	-3.648395	0	
101	N101A	2.8973	3	-3.773395	0	
102	N102	0.680794	3	-7.112497	0	
103	N103A	0.8973	3	-7.237497	0	
104	N104A	5.930794	3	1.98077	0	
105	N105A	1.25	3	-6.126603	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
106	N106	0.033494	3	-7.733654	0	
107	N107A	5.714288	3	2.10577	0	
108	N108	1.033494	3	-6.001603	0	
109	N109B	-0.25	3	-7.858654	0	
110	N110C	-6.930794	3	3.712821	0	
111	N111A	-3.590397	3	-2.072917	0	
112	N112	-0.5	3	-7.425641	0	
113	N113A	-0.716506	3	-7.550641	0	
114	N114	-1.5	3	-5.693591	0	
115	N115	-1.716506	3	-5.818591	0	
116	N116	-4.5	3	-0.497438	0	
117	N117	-4.716506	3	-0.622438	0	
118	N118	-6.5	3	2.966663	0	
119	N119	-6.716506	3	2.841663	0	
120	N120	-1.25	3	-6.126603	0	
121	N121	-5.930794	3	1.98077	0	
122	N122	-6.714288	3	3.837821	0	
123	N123	-1.033494	3	-6.001603	0	
124	N124	-5.714288	3	2.10577	0	
125	N125	-0.	0	-6.583334	0	
126	N129	-0.	-3	-1.095417	0	
127	N130	-0.948658	-3	0.547709	0	
128	N128	-5.701334	0	3.291667	0	
129	N130A	5.701334	0	3.291667	0	
130	N131	0.948659	-3	0.547708	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Mount Pipe	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
2	Support Rail	PIPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
3	Bottom Corner Plate	L15X6.5X6	Beam	Single Angle	A36 Gr.36	Typical	7.922	24.473	192.705	.363
4	Standoff_2	HSS4.5X4.5X3	Beam	Tube	A500 Gr.B	Typical	2.93	9.02	9.02	14.4
5	Cross Members	L3X3X4	Beam	Channel	A36 Gr.36	Typical	1.44	1.23	1.23	.031
6	Face Horizontal	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
7	Standoff 1	HSS4X4X4	Beam	Tube	A500 Gr.B	Typical	3.37	7.8	7.8	12.8
8	Grating Angle	LL3x3x4x0	Beam	Double Angle (No	A36 Gr.36	Typical	2.88	4.5	2.46	.063
9	Top Corner Plate	L2.5x2.5x4	Beam	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
10	Mod Rail	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
11	Mod Angle	L3X3X4	Beam	Pipe	A36 Gr.36	Typical	1.44	1.23	1.23	.031
12	Mod Kicker	LL3x3x3x6	Beam	Pipe	A36 Gr.36	Typical	2.18	4.97	1.9	.027

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E.	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3

Aug 24, 2022 1:22 PM Checked By:___

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N2	N15A			Standoff 1	Beam	Tube	A500 Gr.B	Typical
2	M2	N15A	N16A			Standoff_2	Beam	Tube	A500 Gr.B	Typical
3	M5	N14	N10		180	Grating Angle	Beam	Double Angle (. A36 Gr.36	Typical
4	M6	N16	N15		180	Grating Angle	Beam	Double Angle (. A36 Gr.36	Typical
5	M7	N18	N17		180	Grating Angle	Beam	Double Angle (. A36 Gr.36	Typical
6	M6A	N17	N15		270	Cross Members	Beam	Channel	A36 Gr.36	Typical
7	M7A	N16	N18		270	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
8	M10	N21	N26			RIGID	None	None	RIGID	Typical
9	MP4A	N29	N30		120	Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
10	M23A	N10	N17		270	Cross Members	Beam	Channel	A36 Gr.36	Typical
11	M24	N18	N14		270	Face Horizontal	Beam	Sinale Anale	A36 Gr.36	Typical
12	M38	N77	N78			Standoff 1	Beam	Tube	A500 Gr.B	Typical
13	M39A	N15	N10		270	Cross Members	Beam	Channel	A36 Gr.36	Typical
14	M40	N14	N16		270	Face Horizontal	Beam	Single Angle	A36 Gr.36	Typical
15	M54	N109	N110			Standoff 1	Beam	Tube	A500 Gr.B	Typical
16	M55	N78	N108A			Standoff 2	Beam	Tube	A500 Gr.B	Typical
17	M56	N110	N110A			Standoff 2	Beam	Tube	A500 Gr.B	Typical
18	M26	N51	N53			RIGID	None	None	RIGID	Typical
19	MP3A	N55	N56A		120	Mount Pine	Beam	Pipe	A53 Gr B	Typical
20	M29	N57A	N59		120	RIGID	None	None	RIGID	Typical
21	MP2A	N61	N62		120	Mount Pine	Beam	Pine	A53 Gr B	Typical
22	M32	N63	N65		120	RIGID	None	None	RIGID	Typical
23	MP1A	N674	N68		120	Mount Pine	Ream	Pine	A53 Gr B	Typical
24	M35	N69	N71		120	RIGID	None	None	RIGID	Typical
25	MP4C	N73	N74		120	Mount Pine	Room	Pine	A53 Gr B	Typical
20	M38A	N75	NIZZA		120	PICID	None	None	RIGID	Typical
20	MD3C	N70	NRO		120	Mount Pino	Room	Pipo	A53 Cr B	Typical
21	M41	N81	N83		120		Nono	Nono	AJJ GI.D	Typical
20	MP2C	N85A	N86		120	Mount Pino	Room	Pipo	A53 Gr B	Typical
20	MAA	NOJA NO7	NRO		120		Nono	None	AJJ GI.D	Typical
30	MD1C		NO3		120	Mount Pino	Room	Pipo	A53 Gr B	Typical
22	MAT	NO2	NOE		120		Nono	Nono	AJJ GILD	Typical
22		N07	NOS		120	KIGID Mount Dino	Ream	Dipo		Typical
24	MEO	NOO	N101		120		Nono	None	ASS GLB	Typical
34		N1402	N101		120	KIGID Mount Dino	Ream	Dine		Typical
30	NF3D	N105	N104		120	Nount Pipe	Nene	Pipe	ADJ GLB	Typical
30	IVIDO MIDOD	NI100A			100	RIGID Maunt Dina	Deare	Dine	KIGID	Typical
37	MP2B	NIU9A	NITUB		120	Mount Pipe	Beam	Pipe	A53 Gr.B	Typical
38	M56A	NTTT	N113		400	RIGID	None	INONE	RIGID	Typical
39		NITOD	NITOD		120	Mad Dail	Beam	Pipe	A53 Gr.B	Typical
40	IVI4UA				270	NIOU Kall	Deam	Pipe	ADJ GLB	Typical
41	IVI41A	NOOA	NOTA			RIGID	None	None	RIGID	Typical
42	NI42	N82	N83A			RIGID	None	None	RIGID	Typical
43	IVI43	IN84				RIGID	None	None	RIGID	Typical
44	W44A	NöbA				RIGID	None	None	RIGID	Typical
45	M45	1N88	N91B			RIGID	None	None	RIGID	Typical
46	M46	N89A	N92A		070	RIGID	None	None	RIGID	Typical
47	M4/A	N93A	N94		270	Mod Rail	Beam	Pipe	A53 Gr.B	Typical
48	M48	N96	N97A			RIGID	None	None	RIGID	Typical
49	M49	N98A	N99A			RIGID	None	None	RIGID	Typical
50	M50A	N100	N101A			RIGID	None	None	RIGID	Typical
51	M51	N102	N103A			RIGID	None	None	RIGID	Typical
52	M52	N104A	N107A			RIGID	None	None	RIGID	Typical
53	M53A	N105A	N108			RIGID	None	None	RIGID	Typical
54	M54A	N109B	N110C		270	Mod Rail	Beam	Pipe	A53 Gr.B	Typical
55	M55A	N112	N113A			RIGID	None	None	RIGID	Typical
56	M56B	N114	N115			RIGID	None	None	RIGID	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
57	M57	N116	N117			RIGID	None	None	RIGID	Typical
58	M58	N118	N119			RIGID	None	None	RIGID	Typical
59	M59	N120	N123			RIGID	None	None	RIGID	Typical
60	M60	N121	N124			RIGID	None	None	RIGID	Typical
61	M61	N123	N108		90	Mod Angle	Beam	Pipe	A36 Gr.36	Typical
62	M62	N91B	N124		90	Mod Angle	Beam	Pipe	A36 Gr.36	Typical
63	M63	N107A	N92A		90	Mod Angle	Beam	Pipe	A36 Gr.36	Typical
64	M64	N125	N129			Mod Kicker	Beam	Pipe	A36 Gr.36	Typical
65	M65	N128	N130			Mod Kicker	Beam	Pipe	A36 Gr.36	Typical
66	M66	N130A	N131			Mod Kicker	Beam	Pipe	A36 Gr.36	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1						Yes		,		None
2	M2						Yes				None
3	M5						Yes				None
4	M6						Yes				None
5	M7						Yes				None
6	M6A						Yes				None
7	M7A						Yes				None
8	M10						Yes	** NA **			None
9	MP4A						Yes				None
10	M23A						Yes				None
11	M24						Yes				None
12	M38						Yes				None
13	M39A						Yes				None
14	M40						Yes				None
15	M54						Yes				None
16	M55						Yes				None
17	M56						Yes				None
18	M26						Yes	** NA **			None
19	MP3A						Yes				None
20	M29						Yes	** NA **			None
21	MP2A						Yes				None
22	M32						Yes	** NA **			None
23	MP1A						Yes				None
24	M35						Yes	** NA **			None
25	MP4C						Yes				None
26	M38A						Yes	** NA **			None
27	MP3C						Yes				None
28	M41						Yes	** NA **			None
29	MP2C						Yes				None
30	M44						Yes	** NA **			None
31	MP1C						Yes				None
32	M47						Yes	** NA **			None
33	MP4B						Yes				None
34	M50						Yes	** NA **			None
35	MP3B						Yes				None
36	M53						Yes	** NA **			None
37	MP2B						Yes				None
38	M56A						Yes	** NA **			None
39	MP1B						Yes				None
40	M40A						Yes				None
41	M41A						Yes	** NA **			None
42	M42						Yes	** NA **			None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
43	M43						Yes	** NA **		None
44	M44A						Yes	** NA **		None
45	M45	00000X					Yes	** NA **		None
46	M46	00000X					Yes	** NA **		None
47	M47A						Yes			None
48	M48						Yes	** NA **		None
49	M49						Yes	** NA **		None
50	M50A						Yes	** NA **		None
51	M51						Yes	** NA **		None
52	M52	00000X					Yes	** NA **		None
53	M53A	00000X					Yes	** NA **		None
54	M54A						Yes			None
55	M55A						Yes	** NA **		None
56	M56B						Yes	** NA **		None
57	M57						Yes	** NA **		None
58	M58						Yes	** NA **		None
59	M59	00000X					Yes	** NA **		None
60	M60	00000X					Yes	** NA **		None
61	M61						Yes	Default		None
62	M62						Yes	Default		None
63	M63						Yes	Default		None
64	M64	BenPIN	BenPIN				Yes			None
65	M65	BenPIN	BenPIN				Yes			None
66	M66	BenPIN	BenPIN				Yes			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Y	-21.85	.5
2	MP2A	My	011	.5
3	MP2A	Mz	.015	.5
4	MP2A	Y	-21.85	6
5	MP2A	My	011	6
6	MP2A	Mz	.015	6
7	MP2B	Y	-21.85	.5
8	MP2B	My	007	.5
9	MP2B	Mz	017	.5
10	MP2B	Y	-21.85	6
11	MP2B	My	007	6
12	MP2B	Mz	017	6
13	MP2C	Y	-21.85	.5
14	MP2C	My	.018	.5
15	MP2C	Mz	.002	.5
16	MP2C	Y	-21.85	6
17	MP2C	My	.018	6
18	MP2C	Mz	.002	6
19	MP2A	Y	-32.3	.5
20	MP2A	My	016	.5
21	MP2A	Mz	022	.5
22	MP2A	Y	-32.3	6
23	MP2A	My	016	6
24	MP2A	Mz	022	6
25	MP2B	Y	-32.3	.5
26	MP2B	My	.027	.5
27	MP2B	Mz	003	.5
28	MP2B	Y	-32.3	6

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2B	My	.027	6
30	MP2B	Mz	003	6
31	MP2C	Y	-32.3	.5
32	MP2C	My	011	.5
33	MP2C	Mz	.025	.5
34	MP2C	Y	-32.3	6
35	MP2C	My	011	6
36	MP2C	Mz	.025	6
37	MP4A	Y	-43.55	.25
38	MP4A	Mv	022	.25
39	MP4A	Mz	0	.25
40	MP4A	Y	-43.55	2.25
41	MP4A	My	022	2.25
42	MP4A	Mz	0	2.25
43	MP4B	Y	-43.55	.25
44	MP4B	My	.011	.25
45	MP4B	Mz	019	.25
46	MP4B	Y	-43.55	2.25
47	MP4B	My	.011	2.25
48	MP4B	Mz	019	2.25
49	MP4C	Y	-43.55	.25
50	MP4C	My	.011	.25
51	MP4C	Mz	.019	.25
52	MP4C	Y	-43.55	2.25
53	MP4C	My	.011	2.25
54	MP4C	Mz	.019	2.25
55	MP2A	Y	-70.3	1
56	MP2A	My	.035	1
57	MP2A	Mz	0	1
58	MP2B	Y	-70.3	1
59	MP2B	My	018	1
60	MP2B	Mz	.03	1
61	MP2C	Y	-70.3	1
62	MP2C	My	018	1
63	MP2C	Mz	03	1
64	MP2A	Y	-18.7	4
65	MP2A	My	.009	4
66	MP2A	Mz	0	4
67	MP2B	Y	-18.7	4
68	MP2B	My	005	4
69	MP2B	Mz	.008	4
70	MP2C	Y	-18.7	4
71	MP2C	My	005	4
72	MP2C	Mz	008	4
73	MP3A	Y	-32	.25
74	MP3A	My	.016	.25
75	MP3A	Mz	0	.25
76	MP3B	Y	-32	.25
77	MP3B	My	008	.25
78	MP3B	Mz	.014	.25
79	MP1B	Y	-10	.25
80	MP1B	My	.003	.25
81	MP1B	Mz	004	.25
82	MP1B	Y	-10	2.25
83	MP1B	My	.003	2.25
84	MP1B	Mz	004	2.25
85	MP1C	Y	-10	.25

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
86	MP1C	My	.003	.25
87	MP1C	Mz	.004	.25
88	MP1C	Y	-10	2.25
89	MP1C	My	.003	2.25
90	MP1C	Mz	.004	2.25
91	MP1A	Y	-3.15	.25
92	MP1A	My	002	.25
93	MP1A	Mz	0	.25
94	MP1A	Y	-3.15	2.25
95	MP1A	My	002	2.25
96	MP1A	Mz	0	2.25
97	MP1A	Y	-74.7	2.75
98	MP1A	My	.037	2.75
99	MP1A	Mz	0	2.75
100	MP1B	Y	-74.7	2.75
101	MP1B	My	019	2.75
102	MP1B	Mz	.032	2.75
103	MP1C	Y	-74.7	2.75
104	MP1C	My	019	2.75
105	MP1C	Mz	032	2.75

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Y	-97.62	.5
2	MP2A	My	049	.5
3	MP2A	Mz	.065	.5
4	MP2A	Y	-97.62	6
5	MP2A	My	049	6
6	MP2A	Mz	.065	6
7	MP2B	Y	-97.62	.5
8	MP2B	My	032	.5
9	MP2B	Mz	075	.5
10	MP2B	Y	-97.62	6
11	MP2B	My	032	6
12	MP2B	Mz	075	6
13	MP2C	Y	-97.62	.5
14	MP2C	My	.081	.5
15	MP2C	Mz	.01	.5
16	MP2C	Y	-97.62	6
17	MP2C	My	.081	6
18	MP2C	Mz	.01	6
19	MP2A	Y	-97.62	.5
20	MP2A	My	049	.5
21	MP2A	Mz	065	.5
22	MP2A	Y	-97.62	6
23	MP2A	My	049	6
24	MP2A	Mz	065	6
25	MP2B	Y	-97.62	.5
26	MP2B	My	.081	.5
27	MP2B	Mz	01	.5
28	MP2B	Y	-97.62	6
29	MP2B	My	.081	6
30	MP2B	Mz	01	6
31	MP2C	Y	-97.62	.5
32	MP2C	My	032	.5
33	MP2C	Mz	.075	.5

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP2C	Y	-97.62	6
35	MP2C	My	032	6
36	MP2C	Mz	.075	6
37	MP4A	Y	-57.637	.25
38	MP4A	My	029	.25
39	MP4A	Mz	0	.25
40	MP4A	Y	-57.637	2.25
41	MP4A	My	029	2.25
42	MP4A	Mz	0	2.25
43	MP4B	Y	-57.637	.25
44	MP4B	My	.014	.25
45	MP4B	Mz	025	.25
46	MP4B	Y	-57.637	2.25
47	MP4B	My	.014	2.25
48	MP4B	Mz	025	2.25
49	MP4C	Y	-57.637	.25
50	MP4C	My	.014	.25
51	MP4C	Mz	.025	.25
52	MP4C	Y	-57.637	2.25
53	MP4C	My	.014	2.25
54	MP4C	Mz	.025	2.25
55	MP2A	Y	-69.921	1
56	MP2A	My	.035	1
57	MP2A	Mz	0	1
58	MP2B	Y	-69.921	1
59	MP2B	My	017	1
60	MP2B	Mz	.03	1
61	MP2C	Y	-69.921	1
62	MP2C	My	017	1
63	MP2C	Mz	03	1
64	MP2A	Y	-33.598	4
65	MP2A	My	.017	4
66	MP2A	Mz	0	4
67	MP2B	Y	-33.598	4
68	MP2B	My	008	4
69	MP2B	Mz	.015	4
70	MP2C	Y	-33.598	4
71	MP2C	My	008	4
72	MP2C	Mz	015	4
73	MP3A	Y	-140.942	.25
74	MP3A	My	.07	.25
75	MP3A	Mz	0	.25
76	MP3B	Y	-140.942	.25
77	MP3B	My	035	.25
78	MP3B	Mz	.061	.25
79	MP1B	Y	-100.603	.25
80	MP1B	My	.025	.25
81	MP1B	Mz	044	.25
82	MP1B	Y	-100.603	2.25
83	MP1B	My	.025	2.25
84	MP1B	Mz	044	2.25
85	MP1C	Y	-100.603	.25
86	MP1C	My	.025	.25
87	MP1C	Mz	.044	.25
88	MP1C	Y	-100.603	2.25
89	MP1C	My	.025	2.25
90	MP1C	Mz	.044	2.25

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
91	MP1A	Y	-51.243	.25
92	MP1A	My	026	.25
93	MP1A	Mz	0	.25
94	MP1A	Y	-51.243	2.25
95	MP1A	My	026	2.25
96	MP1A	Mz	0	2.25
97	MP1A	Y	-73.286	2.75
98	MP1A	My	.037	2.75
99	MP1A	Mz	0	2.75
100	MP1B	Y	-73.286	2.75
101	MP1B	My	018	2.75
102	MP1B	Mz	.032	2.75
103	MP1C	Y	-73.286	2.75
104	MP1C	My	018	2.75
105	MP1C	Mz	032	2.75

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A	Z	-116.232	.5
3	MP2A	Mx	077	.5
4	MP2A	X	0	6
5	MP2A	Z	-116.232	6
6	MP2A	Mx	077	6
7	MP2B	Х	0	.5
8	MP2B	Z	-66.464	.5
9	MP2B	Mx	.051	.5
10	MP2B	X	0	6
11	MP2B	Z	-66.464	6
12	MP2B	Mx	.051	6
13	MP2C	X	0	.5
14	MP2C	Z	-66.464	.5
15	MP2C	Mx	007	.5
16	MP2C	Х	0	6
17	MP2C	Z	-66.464	6
18	MP2C	Mx	007	6
19	MP2A	Х	0	.5
20	MP2A	Z	-172.314	.5
21	MP2A	Mx	.115	.5
22	MP2A	Х	0	6
23	MP2A	Z	-172.314	6
24	MP2A	Mx	.115	6
25	MP2B	Х	0	.5
26	MP2B	Z	-128.834	.5
27	MP2B	Mx	.013	.5
28	MP2B	Х	0	6
29	MP2B	Z	-128.834	6
30	MP2B	Mx	.013	6
31	MP2C	Х	0	.5
32	MP2C	Z	-128.834	.5
33	MP2C	Mx	099	.5
34	MP2C	X	0	6
35	MP2C	Z	-128.834	6
36	MP2C	Mx	099	6
37	MP4A	Х	0	.25
38	MP4A	Z	-83.909	.25

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
39	MP4A	Mx	0	.25
40	MP4A	X	0	2.25
41	MP4A	Z	-83.909	2.25
42	MP4A	Mx	0	2.25
43	MP4B	X	0	.25
44	MP4B	Z	-42.65	.25
45	MP4B	Mx	.018	.25
46	MP4B	X	0	2.25
47	MP4B	Z	-42.65	2.25
48	MP4B	Mx	.018	2.25
49	MP4C	X	0	.25
50	MP4C	Z	-42.65	.25
51	MP4C	Mx	018	.25
52	MP4C	X	0	2.25
53	MP4C	Z	-42.65	2.25
54	MP4C	Mx	018	2.25
55	MP2A	X	0	1
56	MP2A	Z	-66.357	1
57	MP2A	Mx	0	1
58	MP2B	X	0	1
59	MP2B	Z	-46.771	1
60	MP2B	Mx	02	1
61	MP2C	X	0	1
62	MP2C	Z	-46.771	1
63	MP2C	Mx	.02	1
64	MP2A	X	0	4
65	MP2A	Z	-30.824	4
66	MP2A	Mx	0	4
67	MP2B	X	0	4
68	MP2B	Z	-18.623	4
69	MP2B	Mx	008	4
70	MP2C	X	0	4
71	MP2C	Z	-18.623	4
72	MP2C	Mx	.008	4
73	MP3A	X	0	.25
74	MP3A	Z	-135.711	.25
75	MP3A	Mx	0	.25
76	MP3B	X	0	.25
77	MP3B	Z	-111.308	.25
78	MP3B	Mx	048	.25
79	MP1B	X	0	.25
80	MP1B	Z	-119.999	.25
81	MP1B	Mx	.052	.25
82	MP1B	Х	0	2.25
83	MP1B	Z	-119.999	2.25
84	MP1B	Mx	.052	2.25
85	MP1C	X	0	.25
86	MP1C	Z	-119.999	.25
87	MP1C	Mx	052	.25
88	MP1C	X	0	2.25
89	MP1C	Z	-119.999	2.25
90	MP1C	Mx	052	2.25
91	MP1A	X	0	.25
92	MP1A	Z	-61.22	.25
93	MP1A	Mx	0	.25
94	MP1A	X	Ô	2.25
95	MP1A	Z	-61.22	2.25
	0D \/			
RISA-	version 17.0.4	[\	1111	IVIT LO H. ISU Page 17

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
96	MP1A	Mx	0	2.25
97	MP1A	Х	0	2.75
98	MP1A	Z	-66.357	2.75
99	MP1A	Mx	0	2.75
100	MP1B	Х	0	2.75
101	MP1B	Z	-49.982	2.75
102	MP1B	Mx	022	2.75
103	MP1C	Х	0	2.75
104	MP1C	Z	-49.982	2.75
105	MP1C	Mx	.022	2.75

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	49.821	.5
2	MP2A	Z	-86.293	.5
3	MP2A	Mx	082	.5
4	MP2A	X	49.821	6
5	MP2A	Z	-86.293	6
6	MP2A	Mx	082	6
7	MP2B	X	24.937	.5
8	MP2B	Z	-43.193	.5
9	MP2B	Mx	.025	.5
10	MP2B	X	24.937	6
11	MP2B	Z	-43.193	6
12	MP2B	Mx	.025	6
13	MP2C	X	49.821	.5
14	MP2C	Z	-86.293	.5
15	MP2C	Mx	.033	.5
16	MP2C	X	49.821	6
17	MP2C	Z	-86.293	6
18	MP2C	Mx	.033	6
19	MP2A	X	78.91	.5
20	MP2A	Z	-136.677	.5
21	MP2A	Mx	.052	.5
22	MP2A	X	78.91	6
23	MP2A	Z	-136.677	6
24	MP2A	Mx	.052	6
25	MP2B	X	57.17	.5
26	MP2B	Z	-99.022	.5
27	MP2B	Mx	.057	.5
28	MP2B	X	57.17	6
29	MP2B	Z	-99.022	6
30	MP2B	Mx	.057	6
31	MP2C	X	78.91	.5
32	MP2C	Z	-136.677	.5
33	MP2C	Mx	131	.5
34	MP2C	X	78.91	6
35	MP2C	Z	-136.677	6
36	MP2C	Mx	131	6
37	MP4A	X	35.078	.25
38	MP4A	Z	-60.757	.25
39	MP4A	Mx	018	.25
40	MP4A	X	35.078	2.25
41	MP4A	Z	-60.757	2.25
42	MP4A	Mx	018	2.25
43	MP4B	X	14.449	.25

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
44	MP4B	Z	-25.026	.25
45	MP4B	Mx	.014	.25
46	MP4B	X	14.449	2.25
47	MP4B	Z	-25.026	2.25
48	MP4B	Mx	.014	2.25
49	MP4C	Х	35.078	.25
50	MP4C	Z	-60.757	.25
51	MP4C	Mx	018	.25
52	MP4C	Х	35.078	2.25
53	MP4C	Z	-60.757	2.25
54	MP4C	Mx	018	2.25
55	MP2A	X	29.914	1
56	MP2A	7	-51 813	1
57	MP2A	Mx	015	1
58	MP2B	X	20 121	1
59	MP2B	7	-34 851	1
60	MP2B	Mx	- 02	1
61	MP2C	X	29.91/	1
62	MP2C	7	-51 813	1
63	MP2C	My	015	1
64	MP20	X	13 378	1
65	MP2A	7	-23 172	4
66	MD2A	My	007	4
67	MP2R	X	7 278	4
68	MD2B	7	-12.606	4
69	MP2B	My	- 007	4
70	MP2C	X	13 378	4
70	MP2C	7	-23 172	4
72	MP2C	My	-20.172	4
72	MD3A		63 788	25
73	MD3A	7	-110 484	.25
74	MP3A		032	.25
76	MD3R	V V	51 597	.25
70	MD3B	7	-80.352	.25
78	MD3B		-05.552	.25
70			032 58.050	.25
80		7	100 561	.25
91		My	-100.301	.25
01			59,050	.20
02		7	100 561	2.25
84	MD1R		-100.001	2.20
85	MD1C	IVIX Y	62.881	2.23
86	MP1C	7	_110.645	.20
97		<u> </u>	-110.045	.25
07			032	.20
80		7	110 645	2.25
09	MP1C		-110.045	2.20
90			032	2.20
91		~ 7	52.029	.20
92			-016	.20
93			010	2.25
94		7	52.029	2.20
90			-30.310	2.20
07	MD1A		010	2.25
08	MD1A	~ 7	_52 7/	2.75
90	MD1A		-52.74	2.75
100	MD1R		22.262	2.75
100		Λ	22.202	2.10

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
101	MP1B	Z	-38.558	2.75
102	MP1B	Mx	022	2.75
103	MP1C	Х	30.449	2.75
104	MP1C	Z	-52.74	2.75
105	MP1C	Mx	.015	2.75

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	57.559	.5
2	MP2A	Z	-33.232	.5
3	MP2A	Mx	051	.5
4	MP2A	X	57.559	6
5	MP2A	Z	-33.232	6
6	MP2A	Mx	051	6
7	MP2B	Х	57.559	.5
8	MP2B	Z	-33.232	.5
9	MP2B	Mx	.007	.5
10	MP2B	X	57.559	6
11	MP2B	Z	-33.232	6
12	MP2B	Mx	.007	6
13	MP2C	Х	100.66	.5
14	MP2C	Z	-58.116	.5
15	MP2C	Mx	.077	.5
16	MP2C	X	100.66	6
17	MP2C	Z	-58.116	6
18	MP2C	Mx	.077	6
19	MP2A	Х	111.574	.5
20	MP2A	Z	-64.417	.5
21	MP2A	Mx	013	.5
22	MP2A	Х	111.574	6
23	MP2A	Z	-64.417	6
24	MP2A	Mx	013	6
25	MP2B	X	111.574	.5
26	MP2B	Z	-64.417	.5
27	MP2B	Mx	.099	.5
28	MP2B	X	111.574	6
29	MP2B	Z	-64.417	6
30	MP2B	Mx	.099	6
31	MP2C	Х	149.228	.5
32	MP2C	Z	-86.157	.5
33	MP2C	Mx	115	.5
34	MP2C	X	149.228	6
35	MP2C	Z	-86.157	6
36	MP2C	Mx	115	6
37	MP4A	X	36.936	.25
38	MP4A	Z	-21.325	.25
39	MP4A	Mx	018	.25
40	MP4A	X	36.936	2.25
41	MP4A	Z	-21.325	2.25
42	MP4A	Mx	018	2.25
43	MP4B	X	36.936	.25
44	MP4B	Z	-21.325	.25
45	MP4B	Mx	.018	.25
46	MP4B	X	36.936	2.25
47	MP4B	Z	-21.325	2.25
48	MP4B	Mx	.018	2.25

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
49	MP4C	X	72.668	.25
50	MP4C	Z	-41.955	.25
51	MP4C	Mx	0	.25
52	MP4C	X	72.668	2.25
53	MP4C	Z	-41.955	2.25
54	MP4C	Mx	0	2.25
55	MP2A	X	40.505	1
56	MP2A	Z	-23.385	1
57	MP2A	Mx	.02	1
58	MP2B	X	40,505	1
59	MP2B	Z	-23.385	1
60	MP2B	Mx	02	1
61	MP2C	Х	57.467	1
62	MP2C	Z	-33.178	1
63	MP2C	Mx	0	1
64	MP2A	Х	16.128	4
65	MP2A	Z	-9.311	4
66	MP2A	Mx	.008	4
67	MP2B	X	16.128	4
68	MP2B	Z	-9.311	4
69	MP2B	Mx	008	4
70	MP2C	X	26.694	4
71	MP2C	Z	-15.412	4
72	MP2C	Mx	0	4
73	MP3A	X	96.396	.25
74	MP3A	Z	-55.654	.25
75	MP3A	Mx	.048	.25
76	MP3B	X	96.396	.25
77	MP3B	Z	-55.654	.25
78	MP3B	Mx	048	.25
79	MP1B	X	103.922	.25
80	MP1B	Z	-59.999	.25
81	MP1B	Mx	.052	.25
82	MP1B	X	103.922	2.25
83	MP1B	Z	-59.999	2.25
84	MP1B	Mx	.052	2.25
85	MP1C	X	114.007	.25
86	MP1C	Z	-65.822	.25
87	MP1C	Mx	0	.25
88	MP1C	X	114.007	2.25
89	MP1C	Z	-65.822	2.25
90	MP1C	Mx	0	2.25
91	MP1A	X	63.512	.25
92	MP1A	Z	-36.669	.25
93	MP1A	Mx	032	.25
94	MP1A	X	63.512	2.25
95	MP1A	Z	-36.669	2.25
96	MP1A	Mx	032	2.25
97	MP1A	X	43.285	2.75
98	MP1A	Z	-24.991	2.75
99	MP1A	Mx	.022	2.75
100	MP1B	X	43.285	2.75
101	MP1B	Z	-24.991	2.75
102	MP1B	Mx	022	2.75
103	MP1C	X	57.467	2.75
104	MP1C	Z	-33.178	2.75
105	MP1C	Mx	0	2.75

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]		
1	MP2A	X	49.875	.5		
2	MP2A	Z	0	.5		
3	MP2A	Mx	025	.5		
4	MP2A	X	49.875	6		
5	MP2A	Z	0	6		
6	MP2A	Mx	025	6		
7	MP2B	Х	99.642	.5		
8	MP2B	Z	0	.5		
9	MP2B	Mx	033	.5		
10	MP2B	X	99.642	6		
11	MP2B	7	0	6		
12	MP2B	Mx	- 033	6		
13	MP2C	X	99.642	5		
14	MP2C	7	0			
15	MP2C	My	082			
16	MP2C		.002			
17	MP2C	7	99.042	6		
10	MP2C		082	0		
10	MP2C		.082	<u> </u>		
19	MPZA	X	114.341	.5		
20	MP2A	<u> </u>	0	.5		
21	MP2A	MX	057	.5		
22	MP2A	X	114.341	6		
23	MP2A	Z	0	6		
24	MP2A	Mx	057	6		
25	MP2B	X	157.821	.5		
26	MP2B	Z	0	.5		
27	MP2B	Mx	.131	.5		
28	MP2B	X	157.821	6		
29	MP2B	Z	0	6		
30	MP2B	Mx	.131	6		
31	MP2C	X	157.821	.5		
32	MP2C	Z	0	.5		
33	MP2C	Mx	052	.5		
34	MP2C	Х	157.821	6		
35	MP2C	Z	0	6		
36	MP2C	Mx	052	6		
37	MP4A	X	28.897	25		
38	MP4A	7	0	25		
39	MP4A	Mx	- 014	25		
40	MP4A	X	28.897	2.25		
40	MP4A	7	0	2.25		
12	MP/A		- 014	2.25		
42	MD4P		70 156	2.25		
43		~ 7	10.150	.20		
44			010	.20		
40			.010	.20		
40		X 7	70.156	2.20		
47			040	2.25		
48	MP4B	IVIX	.018	2.25		
49	MP4C	X	70.156	.25		
50	MP4C		0	.25		
51	MP4C	MX	.018	.25		
52	MP4C	X	/0.156	2.25		
53	MP4C	Z	0	2.25		
54	MP4C	Mx	.018	2.25		
55	MP2A	X	40.242	1		
56	MP2A	Z	0	1		
57	MP2A	Mx	.02	1		
RIS	RISA-3D Version 17.0.4 [\\\\\\\\\\Rev 0\Risa\468152-VZW MT LO H.r3d] Page 22					

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	59.828	1
59	MP2B	Z	0	1
60	MP2B	Mx	015	1
61	MP2C	X	59.828	1
62	MP2C	Z	0	1
63	MP2C	Mx	015	1
64	MP2A	X	14.556	4
65	MP2A	Z	0	4
66	MP2A	Mx	.007	4
67	MP2B	X	26.757	4
68	MP2B	Z	0	4
69	MP2B	Mx	007	4
70	MP2C	Х	26.757	4
71	MP2C	Z	0	4
72	MP2C	Mx	007	4
73	MP3A	X	103.174	.25
74	MP3A	Z	0	.25
75	MP3A	Mx	.052	.25
76	MP3B	X	127.576	.25
77	MP3B	Z	0	.25
78	MP3B	Mx	032	.25
79	MP1B	Х	127.762	.25
80	MP1B	Z	0	.25
81	MP1B	Mx	.032	.25
82	MP1B	X	127.762	2.25
83	MP1B	Z	0	2.25
84	MP1B	Mx	.032	2.25
85	MP1C	X	127.762	.25
86	MP1C	Z	0	.25
87	MP1C	Mx	.032	.25
88	MP1C	X	127.762	2.25
89	MP1C	Z	0	2.25
90	MP1C	Mx	.032	2.25
91	MP1A	X	77.377	.25
92	MP1A	Z	0	.25
93	MP1A	Mx	039	.25
94	MP1A	X	77.377	2.25
95	MP1A	Z	0	2.25
96	MP1A	Mx	039	2.25
97	MP1A	X	44.523	2.75
98	MP1A	Z	0	2.75
99	MP1A	Mx	.022	2.75
100	MP1B	X	60.898	2.75
101	MP1B	Z	0	2.75
102	MP1B	Mx	015	2.75
103	MP1C	X	60.898	2.75
104	MP1C	Z	0	2.75
105	MP1C	Mx	015	2.75

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	57.559	.5
2	MP2A	Z	33.232	.5
3	MP2A	Mx	007	.5
4	MP2A	X	57.559	6
5	MP2A	Z	33.232	6

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP2A	Mx	007	6
7	MP2B	X	100.66	.5
8	MP2B	Z	58.116	.5
9	MP2B	Mx	077	.5
10	MP2B	Х	100.66	6
11	MP2B	Z	58.116	6
12	MP2B	Mx	077	6
13	MP2C	X	57.559	.5
14	MP2C	Z	33.232	.5
15	MP2C	Mx	.051	.5
16	MP2C	X	57.559	6
17	MP2C	Z	33.232	6
18	MP2C	Mx	.051	6
19	MP2A	X	111.574	.5
20	MP2A	Z	64.417	.5
21	MP2A	Mx	099	.5
22	MP2A	X	111.574	6
23	MP2A	7	64 417	6
24	MP2A	Mx	- 099	6
25	MP2B	X	149 228	5
26	MP2B	7	86 157	5
27	MP2B	Mx	115	
28	MP2B	X	149 228	6
29	MP2B	7	86 157	6
30	MP2B	Mx	115	6
31	MP2C	X	111 574	5
32	MP2C	7	64 417	
33	MP2C	Mx	013	
34	MP2C	X	111 574	
35	MP2C	7	64 417	6
36	MP2C	Mx	013	6
37	MP4A	X	36,936	25
38	MP4A	7	21.325	25
39	MP4A	Mx	- 018	25
40	MP4A	X	36,936	2 25
40	MP4A	7	21.325	2.25
42	MP4A	Mx	- 018	2.25
43	MP4R	X	72 668	25
40	MP4B	7	41 955	25
45	MP4B	My		25
46	MP4B	X	72 668	2 25
47	MP4B	7	41 955	2.25
48	MP4B	Mx	0	2.25
49	MP4C	X	36,936	25
50	MP4C	7	21.325	25
51	MP4C	Mx	018	25
52	MP4C	X	36,936	2 25
53	MP4C	7	21.325	2.25
54	MP4C	Mx	018	2.25
55	MP2A	X	40,505	1
56	MP2A	7	23 385	1
57	MP2A	Mx	02	1
58	MP2R	X	57 467	1
59	MP2B	7	33 178	1
60	MP2B	Mx	0	1
61	MP2C	X	40,505	1
62	MP2C	7	23.385	1
02		4	20.000	

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 0\Risa\468152-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP2C	Mx	- 02	1
64	MP2A	X	16.128	4
65	MP2A	Z	9.311	4
66	MP2A	Mx	.008	4
67	MP2B	X	26.694	4
68	MP2B	Z	15.412	4
69	MP2B	Mx	0	4
70	MP2C	X	16.128	4
71	MP2C	Z	9.311	4
72	MP2C	Mx	008	4
73	MP3A	X	96.396	.25
74	MP3A	Z	55.654	.25
75	MP3A	Mx	.048	.25
76	MP3B	X	117.529	.25
77	MP3B	Z	67.855	.25
78	MP3B	Mx	0	.25
79	MP1B	X	114.007	.25
80	MP1B	Z	65.822	.25
81	MP1B	Mx	0	.25
82	MP1B	X	114.007	2.25
83	MP1B	Z	65.822	2.25
84	MP1B	Mx	0	2.25
85	MP1C	X	103.922	.25
86	MP1C	Z	59.999	.25
87	MP1C	Mx	.052	.25
88	MP1C	X	103.922	2.25
89	MP1C	Z	59.999	2.25
90	MP1C	Mx	.052	2.25
91	MP1A	X	63.512	.25
92	MP1A	Z	36.669	.25
93	MP1A	Mx	032	.25
94	MP1A	X	63.512	2.25
95	MP1A	Z	36.669	2.25
96	MP1A	Mx	032	2.25
97	MP1A	X	43.285	2.75
98	MP1A	Z	24.991	2.75
99	MP1A	Mx	.022	2.75
100	MP1B	X	57.467	2.75
101	MP1B	Z	33.178	2.75
102	MP1B	Mx	0	2.75
103	MP1C	X	43.285	2.75
104	MP1C	Z	24.991	2.75
105	MP1C	Mx	022	2.75

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	49.821	.5
2	MP2A	Z	86.293	.5
3	MP2A	Mx	.033	.5
4	MP2A	Х	49.821	6
5	MP2A	Z	86.293	6
6	MP2A	Mx	.033	6
7	MP2B	Х	49.821	.5
8	MP2B	Z	86.293	.5
9	MP2B	Mx	082	.5
10	MP2B	X	49.821	6

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP2B	Z	86.293	6
12	MP2B	Mx	082	6
13	MP2C	X	24.937	.5
14	MP2C	Z	43.193	.5
15	MP2C	Mx	.025	.5
16	MP2C	Х	24.937	6
17	MP2C	Z	43.193	6
18	MP2C	Mx	.025	6
19	MP2A	X	78.91	5
20	MP2A	7	136 677	5
21	MP2A	Mx	- 131	
22	MP2A	X	78.91	
22	MD2A	7	136.677	6
23	MD2A		121	6
24	MD2D		131	5
20	MD2D	~ ~	126.677	
20			052	
21	IVIEZD MDDD	IVIX	.002	C.
28	IVIP2B	X 7	10.91	0
29	MP2B	2	136.677	6
30	MP2B		.052	6
31	MP2C	<u> </u>	57.17	.5
32	MP2C	Z	99.022	.5
33	MP2C	Mx	.057	.5
34	MP2C	X	57.17	6
35	MP2C	Z	99.022	6
36	MP2C	Mx	.057	6
37	MP4A	X	35.078	.25
38	MP4A	Z	60.757	.25
39	MP4A	Mx	018	.25
40	MP4A	X	35.078	2.25
41	MP4A	Z	60.757	2.25
42	MP4A	Mx	018	2.25
43	MP4B	Х	35.078	.25
44	MP4B	Z	60.757	.25
45	MP4B	Mx	018	.25
46	MP4B	Х	35.078	2.25
47	MP4B	7	60 757	2.25
48	MP4B	Mx	- 018	2.25
49	MP4C	X	14 449	25
50	MP4C	7	25.026	25
51	MP4C	Mx	014	25
52	MP4C	X	14 449	2.25
53	MP/C	7	25.026	2.25
54	MP4C		014	2.25
55			20.014	2.20
56		7	23.314 51.912	1
57			015	1
57	MDOD		.010	
50	IVIP2B	× 7	29.914	
59	IVIP2B		51.813	
00	MP2B	IVIX	.015	
01	MP2C	X	20.121	1
62	MP2C	<u> </u>	34.851	1
63	MP2C	Mx	02	1
64	MP2A	X	13.378	4
65	MP2A	Z	23.172	4
66	MP2A	Mx	.007	4
67	MP2B	<u> </u>	13.378	4
RISA-3D Version 17.0.4 [\\\\\\\\Rev 0\Risa\468152-VZW MT LO H.r3d] Page 26				

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2B	Z	23.172	4
69	MP2B	Mx	.007	4
70	MP2C	X	7.278	4
71	MP2C	Z	12.606	4
72	MP2C	Mx	007	4
73	MP3A	Х	63.788	.25
74	MP3A	Z	110.484	.25
75	MP3A	Mx	.032	.25
76	MP3B	X	63.788	.25
77	MP3B	Z	110.484	.25
78	MP3B	Mx	.032	.25
79	MP1B	Х	63.881	.25
80	MP1B	Z	110.645	.25
81	MP1B	Mx	032	.25
82	MP1B	X	63.881	2.25
83	MP1B	Z	110.645	2.25
84	MP1B	Mx	032	2.25
85	MP1C	X	58.059	.25
86	MP1C	Z	100.561	.25
87	MP1C	Mx	.058	.25
88	MP1C	X	58.059	2.25
89	MP1C	Z	100.561	2.25
90	MP1C	Mx	.058	2.25
91	MP1A	X	32.629	.25
92	MP1A	Z	56.516	.25
93	MP1A	Mx	016	.25
94	MP1A	X	32.629	2.25
95	MP1A	Z	56.516	2.25
96	MP1A	Mx	016	2.25
97	MP1A	X	30.449	2.75
98	MP1A	Z	52.74	2.75
99	MP1A	Mx	.015	2.75
100	MP1B	X	30.449	2.75
101	MP1B	Z	52.74	2.75
102	MP1B	Mx	.015	2.75
103	MP1C	X	22.262	2.75
104	MP1C	Z	38.558	2.75
105	MP1C	Mx	022	2.75

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A	Z	116.232	.5
3	MP2A	Mx	.077	.5
4	MP2A	X	0	6
5	MP2A	Z	116.232	6
6	MP2A	Mx	.077	6
7	MP2B	X	0	.5
8	MP2B	Z	66.464	.5
9	MP2B	Mx	051	.5
10	MP2B	X	0	6
11	MP2B	Z	66.464	6
12	MP2B	Mx	051	6
13	MP2C	X	0	.5
14	MP2C	Z	66.464	.5
15	MP2C	Mx	.007	.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP2C	X	0	6
17	MP2C	Z	66.464	6
18	MP2C	Mx	.007	6
19	MP2A	Х	0	.5
20	MP2A	Z	172.314	.5
21	MP2A	Mx	115	.5
22	MP2A	Х	0	6
23	MP2A	Z	172,314	6
24	MP2A	Mx	- 115	6
25	MP2B	X	0	5
26	MP2B	7	128 834	5
27	MP2B	My	- 013	.0
28	MP2B	Y	015	.0
20		7	129.924	6
29			012	6
30	MD2C		013	5
22	MP2C	~ 7	100.024	.5
32	MP2C		120.034	.5
33	MP2C	IVIX	.099	.5
34	MP2C	X	0	6
35	MP2C		128.834	6
36	MP2C	Mx	.099	6
37	MP4A	<u>X</u>	0	.25
38	MP4A	Z	83.909	.25
39	MP4A	Mx	0	.25
40	MP4A	X	0	2.25
41	MP4A	Z	83.909	2.25
42	MP4A	Mx	0	2.25
43	MP4B	X	0	.25
44	MP4B	Z	42.65	.25
45	MP4B	Mx	018	.25
46	MP4B	Х	0	2.25
47	MP4B	Z	42.65	2.25
48	MP4B	Mx	018	2.25
49	MP4C	Х	0	.25
50	MP4C	Z	42.65	.25
51	MP4C	Mx	.018	.25
52	MP4C	X	0	2.25
53	MP4C	7	42.65	2.25
54	MP4C	Mx	018	2.25
55	MP2A	X	0	1
56	MP2A	7	66 357	1
57	MP2A	My	0	1
58	MP2R	X	0	1
50	MD2B	7	16 771	1
60	MD2R		0.77	1
61	MD2C		.02	1
62	MD2C	7		1
02	MP2C		40.771	
03	IVIP20	IVIX	02	
04	IVIPZA		0	4
60	MP2A		30.824	4
00	MP2A	IVIX	0	4
6/	MP2B	X	0	4
68	MP2B		18.623	4
69	MP2B	Mx	.008	4
70	MP2C	X	0	4
71	MP2C	Z	18.623	4
72	MP2C	Mx	008	4
RISA-	3D Version 17.0.4	[\\\\\\\	\\\\Rev 0\Risa\468152-VZW	MT_LO_H.r3d] Page 28

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP3A	X	0	.25
74	MP3A	Z	135.711	.25
75	MP3A	Mx	0	.25
76	MP3B	Х	0	.25
77	MP3B	Z	111.308	.25
78	MP3B	Mx	.048	.25
79	MP1B	Х	0	.25
80	MP1B	Z	119.999	.25
81	MP1B	Mx	052	.25
82	MP1B	X	0	2.25
83	MP1B	Z	119.999	2.25
84	MP1B	Mx	052	2.25
85	MP1C	Х	0	.25
86	MP1C	Z	119.999	.25
87	MP1C	Mx	.052	.25
88	MP1C	X	0	2.25
89	MP1C	Z	119.999	2.25
90	MP1C	Mx	.052	2.25
91	MP1A	Х	0	.25
92	MP1A	Z	61.22	.25
93	MP1A	Mx	0	.25
94	MP1A	X	0	2.25
95	MP1A	Z	61.22	2.25
96	MP1A	Mx	0	2.25
97	MP1A	X	0	2.75
98	MP1A	Z	66.357	2.75
99	MP1A	Mx	0	2.75
100	MP1B	X	0	2.75
101	MP1B	Z	49.982	2.75
102	MP1B	Mx	.022	2.75
103	MP1C	X	0	2.75
104	MP1C	Z	49.982	2.75
105	MP1C	Mx	022	2.75

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-49.821	.5
2	MP2A	Z	86.293	.5
3	MP2A	Mx	.082	.5
4	MP2A	X	-49.821	6
5	MP2A	Z	86.293	6
6	MP2A	Mx	.082	6
7	MP2B	X	-24.937	.5
8	MP2B	Z	43.193	.5
9	MP2B	Mx	025	.5
10	MP2B	X	-24.937	6
11	MP2B	Z	43.193	6
12	MP2B	Mx	025	6
13	MP2C	X	-49.821	.5
14	MP2C	Z	86.293	.5
15	MP2C	Mx	033	.5
16	MP2C	X	-49.821	6
17	MP2C	Z	86.293	6
18	MP2C	Mx	033	6
19	MP2A	X	-78.91	.5
20	MP2A	Z	136.677	.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP2A	Mx	052	.5
22	MP2A	X	-78.91	6
23	MP2A	Z	136.677	6
24	MP2A	Mx	052	6
25	MP2B	X	-57.17	.5
26	MP2B	Z	99.022	.5
27	MP2B	Mx	057	.5
28	MP2B	X	-57.17	6
29	MP2B	Z	99.022	6
30	MP2B	Mx	057	6
31	MP2C	X	-78.91	.5
32	MP2C	Z	136.677	.5
33	MP2C	Mx	.131	.5
34	MP2C	X	-78.91	6
35	MP2C	Z	136.677	6
36	MP2C	Mx	.131	6
37	MP4A	X	-35.078	.25
38	MP4A	Z	60.757	.25
39	MP4A	Mx	.018	.25
40	MP4A	X	-35.078	2.25
41	MP4A	Z	60.757	2.25
42	MP4A	Mx	.018	2.25
43	MP4B	X	-14.449	.25
44	MP4B	Z	25.026	.25
45	MP4B	Mx	014	.25
46	MP4B	X	-14.449	2.25
47	MP4B	Z	25.026	2.25
48	MP4B	Mx	014	2.25
49	MP4C	X	-35.078	.25
50	MP4C	Z	60.757	.25
51	MP4C	Mx	.018	.25
52	MP4C	X	-35.078	2.25
53	MP4C	Z	60.757	2.25
54	MP4C	Mx	.018	2.25
55	MP2A	X	-29.914	11
56	MP2A	Z	51.813	1
57	MP2A	Mx	015	1
58	MP2B	X	-20.121	1
59	MP2B	Z	34.851	1
60	MP2B	Mx	.02	1
61	MP2C	X	-29.914	1
62	MP2C	Z	51.813	1
63	MP2C	Mx	015	1
64	MP2A	X	-13.378	4
65	MP2A	Z	23.172	4
66	MP2A	MX	007	4
67	MP2B	X	-7.278	4
68	MP2B	Z	12.606	4
69	MP2B	MX	.007	4
70	MP2C	X	-13.378	4
/1	MP2C		23.172	4
72	MP2C	MIX	007	4
73	MP3A	X	-03.788	.25
74	MP3A		110.484	.25
15	MP3A	IVIX	032	.25
76	MP3B	X	-51.587	.25
	MP3B		89.352	.25

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP3B	Mx	.052	.25
79	MP1B	X	-58.059	.25
80	MP1B	Z	100.561	.25
81	MP1B	Mx	058	.25
82	MP1B	X	-58.059	2.25
83	MP1B	Z	100.561	2.25
84	MP1B	Mx	058	2.25
85	MP1C	X	-63.881	.25
86	MP1C	Z	110.645	.25
87	MP1C	Mx	.032	.25
88	MP1C	X	-63.881	2.25
89	MP1C	Z	110.645	2.25
90	MP1C	Mx	.032	2.25
91	MP1A	Х	-32.629	.25
92	MP1A	Z	56.516	.25
93	MP1A	Mx	.016	.25
94	MP1A	X	-32.629	2.25
95	MP1A	Z	56.516	2.25
96	MP1A	Mx	.016	2.25
97	MP1A	X	-30.449	2.75
98	MP1A	Z	52.74	2.75
99	MP1A	Mx	015	2.75
100	MP1B	X	-22.262	2.75
101	MP1B	Z	38.558	2.75
102	MP1B	Mx	.022	2.75
103	MP1C	X	-30.449	2.75
104	MP1C	Z	52.74	2.75
105	MP1C	Mx	015	2.75

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-57.559	.5
2	MP2A	Z	33.232	.5
3	MP2A	Mx	.051	.5
4	MP2A	Х	-57.559	6
5	MP2A	Z	33.232	6
6	MP2A	Mx	.051	6
7	MP2B	Х	-57.559	.5
8	MP2B	Z	33.232	.5
9	MP2B	Mx	007	.5
10	MP2B	Х	-57.559	6
11	MP2B	Z	33.232	6
12	MP2B	Mx	007	6
13	MP2C	Х	-100.66	.5
14	MP2C	Z	58.116	.5
15	MP2C	Mx	077	.5
16	MP2C	Х	-100.66	6
17	MP2C	Z	58.116	6
18	MP2C	Mx	077	6
19	MP2A	X	-111.574	.5
20	MP2A	Z	64.417	.5
21	MP2A	Mx	.013	.5
22	MP2A	X	-111.574	6
23	MP2A	Z	64.417	6
24	MP2A	Mx	.013	6
25	MP2B	X	-111.574	.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

26 MP2B Z 64.417 .5 27 MP2B X -111.574 .6 29 MP2B X -099 .6 30 MP2B X -149.220 .5 32 MP2C X -149.220 .5 33 MP2C X -149.220 .5 34 MP2C X -149.220 .6 35 MP2C X -149.228 .6 36 MP2C X -149.228 .6 36 MP2C X -149.289 .25 38 MP4A X -36.936 .25 39 MP4A X -36.936 .25 40 MP4A X -36.936 .25 44 MP4B X -36.936 .25 44 MP4B X -36.936 .25 45 MP4B X -36.936 .25 46		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	MP2B	Z	64.417	.5
28 MP2B X 111.574 6 29 MP2B Z 64.417 6 30 MP2B Mx -099 6 31 MP2C Z 86.157 .5 34 MP2C X -149.228 .6 35 MP2C X -149.228 .6 34 MP2C X -149.228 .6 35 MP2C X -149.228 .6 36 MP2C X -149.228 .6 37 MP4A X -36.936 .25 38 MP4A Z 21.325 .225 40 MP4A X -36.936 .25 41 MP4A X .26.936 .25 42 MP4A X .26.936 .25 44 MP4B X .26.936 .225 45 MP4B X .26.936 .225 46	27	MP2B	Mx	099	.5
29 MP2B Z 64.417 6 30 MP2B Mx .099 6 31 MP2C X .149.229 .5 33 MP2C Mx .115 .5 34 MP2C X .149.220 6 35 MP2C Z 86.157 6 36 MP2C X .149.220 6 36 MP2C X .149.220 25 36 MP2C X .149.220 .25 38 MP4A X .36.936 .225 40 MP4A X .36.936 .225 41 MP4A X .36.936 .225 42 MP4A MX .018 .225 43 MP4B X .36.936 .225 44 MP4B X .36.936 .225 45 MP4B X .72.668 .225 50	28	MP2B	X	-111.574	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29	MP2B	Z	64.417	6
	30	MP2B	Mx	099	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	MP2C	X	-149.228	.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	MP2C	Z	86.157	.5
34 MP2C X 149.228 6 35 MP2C X 86.157 6 36 MP2C Mx 115 6 37 MP4A X -36.936 .25 38 MP4A Z 21.325 .25 39 MP4A X -36.936 .25 41 MP4A Z 21.325 .225 41 MP4A Z 21.325 .225 42 MP4B X -36.936 .25 43 MP4B X -36.936 .225 44 MP4B X -36.936 .225 45 MP4B MX -018 .225 46 MP4B X -36.936 .225 50 MP4C X -72.668 .225 51 MP4C MX 0 .225 52 MP4C X -40.505 1 56	33	MP2C	Mx	.115	.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	MP2C	X	-149.228	6
36 MP2C Mx .115 6 37 MP4A X -36.936 .25 38 MP4A Z 21.325 .25 39 MP4A MX .018 .25 40 MP4A X .36.936 .225 41 MP4A X .36.936 .225 42 MP4A MX .018 .225 43 MP4B Z .21.325 .25 44 MP4B Z .21.325 .25 45 MP4B MX .018 .225 46 MP4B X .36.936 .225 47 MP4B Z .21.325 .225 48 MP4B MX .018 .225 50 MP4C X .426 .25 51 MP4C X .72.668 .225 53 MP4C X .40.505 1 56	35	MP2C	Z	86.157	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36	MP2C	Mx	.115	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	MP4A	X	-36.936	.25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	MP4A	Z	21.325	.25
	39	MP4A	Mx	.018	.25
	40	MP4A	X	-36.936	2.25
42 MPA Mx 018 2.25 43 MPAB X -36.936 .25 44 MPAB Z 21.325 .25 45 MPAB X -36.936 .25 46 MPAB X -36.936 .225 47 MPAB X -36.936 .225 48 MPAB X -018 .225 49 MP4C X -72.668 .25 50 MP4C X -72.668 .25 51 MP4C X -72.668 .225 53 MP4C Z 41.955 .225 54 MP4C X -00 .25 55 MP2A X -40.505 1 56 MP2A Z .23.385 1 57 MP2A X -40.505 1 58 MP2B X -02 1 60 MP2A<	41	MP4A	Z	21.325	2.25
43 MP4B X -36.936 25 44 MP4B Z 21.325 .25 45 MP4B Mx -018 .25 46 MP4B X -36.936 .225 47 MP4B Z .21.325 .225 48 MP4B X -018 .225 49 MP4C X -72.668 .225 50 MP4C Z 41.955 .25 51 MP4C X -72.668 .225 53 MP4C X -72.668 .225 54 MP4C Mx 0 .225 54 MP4C Mx .02 1 56 MP2A X -40.505 1 57 MP2A Mx 02 1 58 MP2B Z .23.385 1 60 MP2B MX .02 1 61	42	MP4A	Mx	.018	2.25
	43	MP4B	X	-36.936	.25
45 MP4B Mx 018 25 46 MP4B X -36.936 2.25 47 MP4B Z 21.325 2.25 48 MP4B Mx 018 2.25 49 MP4C X -72.668 25 50 MP4C Z 41.955 .25 51 MP4C X -72.668 2.25 53 MP4C X -72.668 2.25 54 MP4C X -72.668 2.25 55 MP4C X -40.505 1 56 MP2A X -40.505 1 57 MP2A Mx -0.2 1 58 MP2B Z 23.385 1 60 MP2B X -40.505 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1	44	MP4B	Z	21.325	.25
46 MP4B X -36.936 2.25 47 MP4B Z 21.325 2.25 48 MP4B Mx -018 2.25 49 MP4C X -72.668 25 50 MP4C Z 41.955 25 51 MP4C X -72.668 2.25 53 MP4C Z 41.955 2.25 54 MP4C X -72.668 2.25 55 MP2A X -40.505 1 56 MP2A Z 23.385 1 57 MP2A MX -0.02 1 58 MP2B X -40.505 1 59 MP2B X -40.505 1 61 MP2C X -57.467 1 62 MP2C X -57.467 1 63 MP2A X -16.128 4 66 MP2A<	45	MP4B	Mx	018	.25
47 MP4B Z 21.325 2.26 48 MP4B Mx 018 2.25 49 MP4C X -72.668 2.25 50 MP4C Z 41.955 25 51 MP4C Mx 0 .25 52 MP4C X -72.668 2.25 53 MP4C X -72.668 2.25 54 MP4C X -40.505 1 56 MP2A X -40.505 1 57 MP2A X -40.505 1 58 MP2B X -40.505 1 58 MP2B X -40.505 1 60 MP2B Mx -02 1 61 MP2C X -57.467 1 62 MP2A Z 9.311 4 66 MP2A Z 9.311 4 66 MP2A	46	MP4B	X	-36 936	2.25
48 MP4B Mx 018 2.26 49 MP4C X -72.668 .25 50 MP4C Z 41955 .25 51 MP4C X -72.668 .225 52 MP4C X -72.668 .225 53 MP4C Z 41.955 .225 54 MP4C X -72.668 .225 55 MP4C X -40.505 1 56 MP2A X .40.505 1 58 MP2B X .40.505 1 59 MP2B X .40.505 1 60 MP2B Mx .02 1 61 MP2C X .57.467 1 62 MP2C X .467 1 63 MP2A Z .9.311 4 66 MP2A X .16.128 4 66	47	MP4B	7	21.325	2.25
49 MP4C X -72.668 .25 50 MP4C Z 41.955 .25 51 MP4C Mx 0 .25 52 MP4C X -72.668 .225 53 MP4C Z 41.955 .2.25 54 MP4C Mx 0 .225 55 MP2A Z .23.385 1 56 MP2A Z .23.385 1 57 MP2A Mx 02 1 58 MP2B Z .23.385 1 60 MP2B Z .23.385 1 61 MP2C X -57.467 1 62 MP2C Z .33.178 1 63 MP2C Mx .00 1 64 MP2A X -16.128 4 66 MP2A Z .9.311 4 66 MP2A <td< td=""><td>48</td><td>MP4B</td><td>Mx</td><td>- 018</td><td>2.25</td></td<>	48	MP4B	Mx	- 018	2.25
50 MP4C Z 41.955 .25 51 MP4C Mx 0 .25 52 MP4C X .72.668 .225 53 MP4C Z .41.955 .25 54 MP4C X .72.668 .225 54 MP4C X .40.505 .1 56 MP2A X .40.505 .1 56 MP2A X .40.505 .1 58 MP2B X .40.505 .1 59 MP2B X .40.505 .1 61 MP2C X .57.467 .1 62 MP2C Z .33.178 .1 63 MP2A X .16.128 .4 65 MP2A Z .9.311 .4 66 MP2B X .16.128 .4 68 MP2B Z .9.311 .4 68 MP2B	49	MP4C	X	-72 668	25
bit MP4C Mx 0	50	MP4C	7	41 955	25
52 MP4C X -72.668 2.25 53 MP4C Z 41.955 2.25 54 MP4C Mx 0 2.25 55 MP2A X -40.505 1 56 MP2A Z 23.385 1 57 MP2A Mx -02 1 58 MP2B X -40.505 1 59 MP2B Mx -02 1 61 MP2C X -57.467 1 62 MP2C X -67.467 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A Mx -008 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B X	51	MP4C	Mx	0	25
32 MI P4C X P1.000 2.25 53 MP4C Z 41.955 2.25 54 MP4C Mx 0 2.25 55 MP2A X -40.505 1 56 MP2A Z 23.385 1 57 MP2A Mx 02 1 58 MP2B Z 23.385 1 60 MP2B Z 23.385 1 60 MP2B MX .02 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 66 MP2A Z 9.311 4 66 MP2B Z 9.311 4 68 MP2B Z 9.311 4 69	52	MP4C	X	-72 668	2.25
50 MI 40 Z 41.303 Z_{25} 54 MIP4C Mx 0 Z_{25} 55 MP2A X -40.505 1 56 MP2A Z 23.385 1 57 MP2A Mx 02 1 58 MP2B X -40.505 1 60 MP2B Z 23.385 1 60 MP2B X -57.467 1 61 MP2C X -57.467 1 62 MP2C X -57.467 1 63 MP2C X -16.128 4 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A X -16.128 4 68 MP2B X -16.128 4 68 MP2B X -26.694 4 71 MP2C	53	MD4C	7	-12.000	2.25
JH Mix June Ju	54	MP4C	My	41.955	2.25
30 MT2A A 40.000 1 56 MP2A Z 23.385 1 57 MP2A Mx 02 1 58 MP2B Z 23.385 1 59 MP2B Z 23.385 1 60 MP2B Mx .02 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2B X -16.128 4 68 MP2B Z 9.311 4 68 MP2B X -26.694 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A Z 55.654 .25 <	55	MD2A		-40.505	1
30 MP2A $4x$ 02 1 57 MP2A Mx 02 1 58 MP2B X -40.505 1 59 MP2B Z 23.385 1 60 MP2B Mx $.02$ 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B X -16.128 4 68 MP2B X -26.694 4 70 MP2C Z 15.412 4 72 MP2C Mx 0 4 <t< td=""><td>55</td><td>MD2A</td><td>~ 7</td><td>-40.505</td><td>1</td></t<>	55	MD2A	~ 7	-40.505	1
J MP2A MX -0.02 1 58 MP2B X -40.505 1 59 MP2B Z 23.385 1 60 MP2B Mx 02 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A X -16.128 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A Z 55	57				1
30 MP2B X -40.303 1 59 MP2B Z 23.385 1 60 MP2B Mx .02 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1 63 MP2C X -16.128 4 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2B X -16.128 4 66 MP2B X -0.08 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 73 MP3A X -96.396 .25 74 MP3A Z	59	MD2D		02	1
39 MP2B Z 2.333 1 60 MP2B Mx .02 1 61 MP2C X -57.467 1 62 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A X -16.128 4 66 MP2A X -16.128 4 66 MP2A X -16.128 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B X -26.694 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X <td< td=""><td>50</td><td></td><td>7</td><td>-40.505</td><td>1</td></td<>	50		7	-40.505	1
oo MP2b Mix	59	MD2D		23.300	1
61 MP2C X 57.467 1 62 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A X -16.128 4 66 MP2A X -16.128 4 66 MP2B Z 9.311 4 66 MP2B X -16.128 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B X -26.694 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 75 MP3A Z	60	MP2B		.02	
b2 MP2C Z 33.178 1 63 MP2C Mx 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A X -16.128 4 66 MP2A Mx 008 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A Z 55.654 .25 74 MP3A Z 55.654 .25 76 MP3B X -96.396 .25 78 MP3B X -103.922 .25 80 MP1B X	61	MP2C	× 7	-57.467	
63 MP2C MX 0 1 64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A Mx 008 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X	62	MP2C		33.178	1
64 MP2A X -16.128 4 65 MP2A Z 9.311 4 66 MP2A Mx 008 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B X -16.128 4 70 MP2B X -008 4 71 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A X -96.396 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B	63	MP2C	IVIX	0	1
65 MP2A Z 9.311 4 66 MP2A Mx 008 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B X -26.694 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B <	64	MP2A	X 7	-16.128	4
bb MH 2A MX 008 4 67 MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C MX 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A X -96.396 .25 75 MP3A X -96.396 .25 75 MP3A X -96.396 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B X -90.392 .25 79 MP1B X -103.922 .25 80 MP1B	65	MP2A	<u> </u>	9.311	4
o/ MP2B X -16.128 4 68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A X -96.396 .25 76 MP3B X -96.396 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B X -048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B X 052 .25 82 MP1B	66	MP2A	IVIX	008	4
68 MP2B Z 9.311 4 69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 76 MP3B X 048 .25 76 MP3B X 048 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B	6/	MP2B	X	-16.128	4
69 MP2B Mx .008 4 70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B X -96.396 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25 <td>68</td> <td>MP2B</td> <td>Z</td> <td>9.311</td> <td>4</td>	68	MP2B	Z	9.311	4
70 MP2C X -26.694 4 71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 76 MP3B X -96.396 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B X -96.396 .25 78 MP3B X .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	69	MP2B	Mx	.008	4
71 MP2C Z 15.412 4 72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 76 MP3B X -96.396 .25 77 MP3B X -96.396 .25 78 MP3B X -96.396 .25 78 MP3B X -96.396 .25 78 MP3B X .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	70	MP2C	X	-26.694	4
72 MP2C Mx 0 4 73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 76 MP3B X 048 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	71	MP2C	Z	15.412	4
73 MP3A X -96.396 .25 74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Z 55.654 .25 79 MP1B X -048 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	72	MP2C	Mx	0	4
74 MP3A Z 55.654 .25 75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 .25	73	MP3A	X	-96.396	.25
75 MP3A Mx 048 .25 76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	74	MP3A	Z	55.654	.25
76 MP3B X -96.396 .25 77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	75	MP3A	Mx	048	.25
77 MP3B Z 55.654 .25 78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	76	MP3B	Х	-96.396	.25
78 MP3B Mx .048 .25 79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	77	MP3B	Z	55.654	.25
79 MP1B X -103.922 .25 80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	78	MP3B	Mx	.048	.25
80 MP1B Z 59.999 .25 81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	79	MP1B	X	-103.922	.25
81 MP1B Mx 052 .25 82 MP1B X -103.922 2.25	80	MP1B	Z	59.999	.25
82 MP1B X -103.922 2.25	81	MP1B	Mx	052	.25
	82	MP1B	X	-103.922	2.25

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	MP1B	Z	59.999	2.25
84	MP1B	Mx	052	2.25
85	MP1C	Х	-114.007	.25
86	MP1C	Z	65.822	.25
87	MP1C	Mx	0	.25
88	MP1C	Х	-114.007	2.25
89	MP1C	Z	65.822	2.25
90	MP1C	Mx	0	2.25
91	MP1A	Х	-63.512	.25
92	MP1A	Z	36.669	.25
93	MP1A	Mx	.032	.25
94	MP1A	Х	-63.512	2.25
95	MP1A	Z	36.669	2.25
96	MP1A	Mx	.032	2.25
97	MP1A	Х	-43.285	2.75
98	MP1A	Z	24.991	2.75
99	MP1A	Mx	022	2.75
100	MP1B	X	-43.285	2.75
101	MP1B	Z	24.991	2.75
102	MP1B	Mx	.022	2.75
103	MP1C	Х	-57.467	2.75
104	MP1C	Z	33.178	2.75
105	MP1C	Mx	0	2.75

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-49.875	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	.025	.5
4	MP2A	Х	-49.875	6
5	MP2A	Z	0	6
6	MP2A	Mx	.025	6
7	MP2B	Х	-99.642	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	.033	.5
10	MP2B	X	-99.642	6
11	MP2B	Z	0	6
12	MP2B	Mx	.033	6
13	MP2C	Х	-99.642	.5
14	MP2C	Z	0	.5
15	MP2C	Mx	082	.5
16	MP2C	X	-99.642	6
17	MP2C	Z	0	6
18	MP2C	Mx	082	6
19	MP2A	Х	-114.341	.5
20	MP2A	Z	0	.5
21	MP2A	Mx	.057	.5
22	MP2A	X	-114.341	6
23	MP2A	Z	0	6
24	MP2A	Mx	.057	6
25	MP2B	X	-157.821	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	131	.5
28	MP2B	X	-157.821	6
29	MP2B	Z	0	6
30	MP2B	Mx	131	6

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2C	X	-157.821	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	.052	.5
34	MP2C	X	-157.821	6
35	MP2C	Z	0	6
36	MP2C	Mx	.052	6
37	MP4A	X	-28.897	.25
38	MP4A	Z	0	.25
39	MP4A	Mx	.014	.25
40	MP4A	X	-28.897	2.25
41	MP4A	Z	0	2.25
42	MP4A	Mx	.014	2.25
43	MP4B	X	-70.156	.25
44	MP4B	Z	0	.25
45	MP4B	Mx	018	.25
46	MP4B	Х	-70.156	2.25
47	MP4B	Z	0	2.25
48	MP4B	Mx	018	2.25
49	MP4C	X	-70,156	.25
50	MP4C	Z	0	.25
51	MP4C	Mx	- 018	25
52	MP4C	X	-70 156	2.25
53	MP4C	7	0	2.25
54	MP4C	Mx	- 018	2.25
55	MP2A	X	-40 242	1
56	MP2A	7	0	1
57	MP2A	My	- 02	1
58	MD2R	VIA V	50.828	1
50	MD2B	7	-59.620	1
60	MD2D		015	1
61			50 929	1
62	MP2C	7	-59.620	1
62	MP2C		015	1
64	MP20		14 550	1
04		∧ 	-14.550	4
60	MP2A		007	4
66	MP2A		007	4
67	MP2B	X	-26.757	4
68	MP2B	<u> </u>	0	4
69	MP2B	MX	.007	4
70	MP2C	X	-26./5/	4
/1	MP2C		0	4
72	MP2C	MX	.007	4
73	MP3A	X	-103.174	.25
74	MP3A	Z	0	.25
75	MP3A	Mx	052	.25
76	MP3B	X	-127.576	.25
77	MP3B	Z	0	.25
78	MP3B	Mx	.032	.25
79	MP1B	X	-127.762	.25
80	MP1B	Z	0	.25
81	MP1B	Mx	032	.25
82	MP1B	X	-127.762	2.25
83	MP1B	Z	0	2.25
84	MP1B	Mx	032	2.25
85	MP1C	X	-127.762	.25
86	MP1C	Z	0	.25
87	MP1C	Mx	032	.25

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP1C	X	-127.762	2.25
89	MP1C	Z	0	2.25
90	MP1C	Mx	032	2.25
91	MP1A	Х	-77.377	.25
92	MP1A	Z	0	.25
93	MP1A	Mx	.039	.25
94	MP1A	X	-77.377	2.25
95	MP1A	Z	0	2.25
96	MP1A	Mx	.039	2.25
97	MP1A	Х	-44.523	2.75
98	MP1A	Z	0	2.75
99	MP1A	Mx	022	2.75
100	MP1B	Х	-60.898	2.75
101	MP1B	Z	0	2.75
102	MP1B	Mx	.015	2.75
103	MP1C	X	-60.898	2.75
104	MP1C	Z	0	2.75
105	MP1C	Mx	.015	2.75

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-57.559	.5
2	MP2A	Z	-33.232	.5
3	MP2A	Mx	.007	.5
4	MP2A	X	-57.559	6
5	MP2A	Z	-33.232	6
6	MP2A	Mx	.007	6
7	MP2B	X	-100.66	.5
8	MP2B	Z	-58.116	.5
9	MP2B	Mx	.077	.5
10	MP2B	Х	-100.66	6
11	MP2B	Z	-58.116	6
12	MP2B	Mx	.077	6
13	MP2C	Х	-57.559	.5
14	MP2C	Z	-33.232	.5
15	MP2C	Mx	051	.5
16	MP2C	Х	-57.559	6
17	MP2C	Z	-33.232	6
18	MP2C	Mx	051	6
19	MP2A	X	-111.574	.5
20	MP2A	Z	-64.417	.5
21	MP2A	Mx	.099	.5
22	MP2A	X	-111.574	6
23	MP2A	Z	-64.417	6
24	MP2A	Mx	.099	6
25	MP2B	X	-149.228	.5
26	MP2B	Z	-86.157	.5
27	MP2B	Mx	115	.5
28	MP2B	X	-149.228	6
29	MP2B	Z	-86.157	6
30	MP2B	Mx	115	6
31	MP2C	X	-111.574	.5
32	MP2C	Z	-64.417	.5
33	MP2C	Mx	013	.5
34	MP2C	X	-111.574	6
35	MP2C	Z	-64.417	6

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP2C	Mx	013	6
37	MP4A	X	-36.936	.25
38	MP4A	Z	-21.325	.25
39	MP4A	Mx	.018	.25
40	MP4A	X	-36.936	2.25
41	MP4A	Z	-21.325	2.25
42	MP4A	Mx	.018	2.25
43	MP4B	X	-72.668	.25
44	MP4B	Z	-41.955	.25
45	MP4B	Mx	0	.25
46	MP4B	X	-72.668	2.25
47	MP4B	Z	-41.955	2.25
48	MP4B	Mx	0	2.25
49	MP4C	X	-36.936	.25
50	MP4C	Z	-21.325	.25
51	MP4C	Mx	018	.25
52	MP4C	X	-36.936	2.25
53	MP4C	Z	-21.325	2.25
54	MP4C	Mx	018	2.25
55	MP2A	X	-40.505	1
56	MP2A	Z	-23.385	1
57	MP2A	Mx	02	1
58	MP2B	Х	-57.467	1
59	MP2B	Z	-33.178	1
60	MP2B	Mx	0	1
61	MP2C	X	-40.505	1
62	MP2C	Z	-23.385	1
63	MP2C	Mx	.02	1
64	MP2A	X	-16.128	4
65	MP2A	Z	-9.311	4
66	MP2A	Mx	008	4
67	MP2B	X	-26.694	4
68	MP2B	Z	-15.412	4
69	MP2B	Mx	0	4
70	MP2C	X	-16.128	4
71	MP2C	Z	-9.311	4
72	MP2C	Mx	.008	4
73	MP3A	X	-96.396	.25
74	MP3A	Z	-55.654	.25
75	MP3A	Mx	048	.25
76	MP3B	X	-117.529	.25
77	MP3B	Z	-67.855	.25
78	MP3B	Mx	0	.25
79	MP1B	X	-114.007	.25
80	MP1B	Z	-65.822	.25
81	MP1B	Mx	0	.25
82	MP1B	X	-114.007	2.25
83	MP1B	Z	-65.822	2.25
84	MP1B	Mx	0	2.25
85	MP1C	X	-103.922	.25
86	MP1C		-59.999	.25
87	MP1C	MX	052	.25
88	MP1C	X	-103.922	2.25
89	MP1C	<u> </u>	-59.999	2.25
90	MP1C	MX	052	2.25
91	MP1A	X	-63.512	.25
92	MP1A	Z	-36.669	.25

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
93	MP1A	Mx	.032	.25
94	MP1A	Х	-63.512	2.25
95	MP1A	Z	-36.669	2.25
96	MP1A	Mx	.032	2.25
97	MP1A	Х	-43.285	2.75
98	MP1A	Z	-24.991	2.75
99	MP1A	Mx	022	2.75
100	MP1B	Х	-57.467	2.75
101	MP1B	Z	-33.178	2.75
102	MP1B	Mx	0	2.75
103	MP1C	Х	-43.285	2.75
104	MP1C	Z	-24.991	2.75
105	MP1C	Mx	.022	2.75

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-49.821	.5
2	MP2A	Z	-86.293	.5
3	MP2A	Mx	033	.5
4	MP2A	X	-49.821	6
5	MP2A	Z	-86.293	6
6	MP2A	Mx	033	6
7	MP2B	Х	-49.821	.5
8	MP2B	Z	-86.293	.5
9	MP2B	Mx	.082	.5
10	MP2B	X	-49.821	6
11	MP2B	Z	-86.293	6
12	MP2B	Mx	.082	6
13	MP2C	Х	-24.937	.5
14	MP2C	Z	-43.193	.5
15	MP2C	Mx	025	.5
16	MP2C	X	-24.937	6
17	MP2C	Z	-43.193	6
18	MP2C	Mx	025	6
19	MP2A	Х	-78.91	.5
20	MP2A	Z	-136.677	.5
21	MP2A	Mx	.131	.5
22	MP2A	X	-78.91	6
23	MP2A	Z	-136.677	6
24	MP2A	Mx	.131	6
25	MP2B	X	-78.91	.5
26	MP2B	Z	-136.677	.5
27	MP2B	Mx	052	.5
28	MP2B	Х	-78.91	6
29	MP2B	Z	-136.677	6
30	MP2B	Mx	052	6
31	MP2C	Х	-57.17	.5
32	MP2C	Z	-99.022	.5
33	MP2C	Mx	057	.5
34	MP2C	X	-57.17	6
35	MP2C	Z	-99.022	6
36	MP2C	Mx	057	6
37	MP4A	X	-35.078	.25
38	MP4A	Z	-60.757	.25
39	MP4A	Mx	.018	.25
40	MP4A	X	-35.078	2.25

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP4A	Z	-60.757	2.25
42	MP4A	Mx	.018	2.25
43	MP4B	X	-35.078	.25
44	MP4B	Z	-60.757	.25
45	MP4B	Mx	.018	.25
46	MP4B	X	-35.078	2.25
47	MP4B	Z	-60.757	2.25
48	MP4B	Mx	.018	2.25
49	MP4C	X	-14.449	.25
50	MP4C	Z	-25.026	.25
51	MP4C	Mx	014	.25
52	MP4C	X	-14.449	2.25
53	MP4C	Z	-25.026	2.25
54	MP4C	Mx	014	2.25
55	MP2A	Х	-29.914	1
56	MP2A	Z	-51.813	1
57	MP2A	Mx	015	1
58	MP2B	Х	-29.914	1
59	MP2B	Z	-51.813	1
60	MP2B	Mx	015	1
61	MP2C	X	-20.121	1
62	MP2C	Z	-34.851	1
63	MP2C	Mx	.02	1
64	MP2A	X	-13.378	4
65	MP2A	Z	-23.172	4
66	MP2A	Mx	- 007	4
67	MP2B	X	-13.378	4
68	MP2B	7	-23 172	4
69	MP2B	My	- 007	<u> </u>
70	MP2C	X	-7 278	4
70	MP2C	7	-12.606	4
72	MP2C	My	007	4
73	MP3A	X	-63 788	25
74	MP3A	7	-110 /8/	25
75	MD3A	My	- 032	.25
76	MD3R		-63 788	.25
70	MD2D	7	110 484	.25
79	MD2D	My	-110.404	.25
70			032	.25
79		~ 7	-03.001	.25
<u>81</u>	MD1D		-110.045	.23
82			_63 991	2.25
02		7	-03.001	2.20
03			-110.040	2.20
04			.032	2.20
00	MD10	7	-00.009	.20
00	MP1C		-100.561	.20
0/	IVIP1C	IVIX	050	.20
88	MP1C	X	-58.059	2.25
89	MP1C		-100.561	2.25
90	MP1C	IVIX	058	2.25
91	MP1A	X	-32.629	.25
92	MP1A	2	-56.516	.25
93	MP1A	IVIX	.016	.25
94	MP1A	X	-32.629	2.25
95	MP1A	Ζ	-56.516	2.25
96	MP1A	Mx	.016	2.25
97	MP1A	X	-30.449	2.75

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP1A	Z	-52.74	2.75
99	MP1A	Mx	015	2.75
100	MP1B	X	-30.449	2.75
101	MP1B	Z	-52.74	2.75
102	MP1B	Mx	015	2.75
103	MP1C	X	-22.262	2.75
104	MP1C	Z	-38.558	2.75
105	MP1C	Mx	.022	2.75

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

1 MP2A X 0 .5 2 MP2A Z -35.463 .5 3 MP2A Mx 024 .5 4 MP2A X 0 6 5 MP2A Z -35.463 6 6 MP2A Z -35.463 6 6 MP2A X 0 .5 8 MP2B Z -27.584 .5 9 MP2B X 0 6 11 MP2B Z -27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C X 0 .5 16 MP2C X 0 .5 16 MP2A X 0 .5 20 MP2A X 0 .5 21 MP2A X 0 .5 </th <th></th>	
2 MP2A Z $-35,463$.5 3 MP2A Mx 024 .5 4 MP2A X 0 6 5 MP2A Z $-35,463$ 6 6 MP2A X 0 .5 8 MP2B X 0 .5 8 MP2B X 0 .5 9 MP2B X 0 6 11 MP2B X 0 6 12 MP2B X 0 .5 14 MP2C Z -27.584 .5 15 MP2C X 0 .5 16 MP2C X 0 .5 18 MP2C X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 .5 22 MP2A Z -35.463 .6	
3 MP2A Mx 024 .5 4 MP2A X 0 6 5 MP2A Z .35.463 6 6 MP2A Z .35.463 6 6 MP2A X 0 .5 8 MP2B X 0 .5 9 MP2B X 021 .5 10 MP2B Z .27.584 .5 9 MP2B X 0 6 11 MP2B Z .27.584 .6 12 MP2B Mx .021 .6 13 MP2C X 0 .5 14 MP2C Z .27.584 .5 15 MP2C Mx .003 .5 16 MP2C X 0 .5 19 MP2A X 0 .5 20 MP2A Z .35.463 <	
4 MP2A X 0 6 5 MP2A Z -35.463 6 6 MP2A Mx -024 6 7 MP2B X 0 .5 8 MP2B Z -27.584 .5 9 MP2B Mx .021 .5 10 MP2B X 0 6 11 MP2B Z -27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z -27.584 .5 15 MP2C X 0 6 17 MP2C Z -27.584 6 18 MP2C X 0 .5 20 MP2A Z -35.463 .5 21 MP2A Z -35.463 .5 22 MP2A Z -35.463 6 23 MP2A Z -27.584 .5 2	
5 MP2A Z -35.463 6 6 MP2A Mx 024 6 7 MP2B X 0 .5 8 MP2B Z -27.584 .5 9 MP2B Mx .021 .5 10 MP2B X 0 6 11 MP2B Z -27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z -27.584 .5 15 MP2C Mx .003 .5 16 MP2C X 0 6 17 MP2C Z -27.584 6 18 MP2C Mx .003 .5 20 MP2A Z -35.463 .5 21 MP2A Z -35.463 .5 22 MP2A X 0 .5 23 MP2A Z -27.584 .5	
6 MP2A Mx 024 6 7 MP2B X 0 .5 8 MP2B Z -27.584 .5 9 MP2B Mx .021 .5 10 MP2B X 0 6 11 MP2B Z -27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z -27.584 .5 15 MP2C X 0 6 17 MP2C Z -27.584 6 18 MP2C X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 .5 22 MP2A X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 <td></td>	
7 MP2B X 0 .5 8 MP2B Z -27.584 .5 9 MP2B Mx .021 .5 10 MP2B X 0 6 11 MP2B Z -27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z -27.584 .5 15 MP2C X 0 6 15 MP2C X 0 6 16 MP2C X 0 6 17 MP2C Z -27.584 6 18 MP2C Mx .003 6 19 MP2A X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 .6 23 MP2A Z -27.584 .	
8 MP2B Z -27.584 .5 9 MP2B Mx .021 .5 10 MP2B X 0 6 11 MP2B Z .27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z .27.584 .5 15 MP2C X 0 .5 16 MP2C Z .27.584 .5 16 MP2C X 0 6 17 MP2C Z .27.584 6 18 MP2C Mx .003 .5 20 MP2A Z .35.463 .5 21 MP2A X 0 .5 22 MP2A X 0 .5 22 MP2A X 0 .5 23 MP2A X 0	
9 MP2B Mx .021 .5 10 MP2B X 0 6 11 MP2B Z -27.584 6 12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z -27.584 .5 15 MP2C Mx 003 .5 16 MP2C Z -27.584 6 17 MP2C Z -27.584 6 18 MP2C X 0 6 19 MP2A X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 6 23 MP2A Z -35.463 6 24 MP2A X 0 .5 26 MP2B X 0 .5 26 MP2B X 0 <td< td=""><td></td></td<>	
10MP2BX0611MP2BZ-27.584612MP2BMx.021613MP2CX0.514MP2CZ-27.584.515MP2CMx003.516MP2CZ-27.584617MP2CZ-27.584618MP2CX0619MP2AZ-27.584620MP2AZ-35.463.521MP2AZ-35.463.522MP2AZ-35.463623MP2AZ-35.463624MP2AX0625MP2BZ-27.584.526MP2BZ-27.584.527MP2BX0628MP2BZ-27.584.529MP2BX0630MP2BMx.003631MP2CX0.532MP2CZ-27.584.532MP2CX0.532MP2CX0.532MP2CX0.533MP2CX0.534MP2CX0.535MP2BMx.003.534MP2CX0.535MP2BMx<	
11MP2BZ -27.584 612MP2BMx021613MP2CX0.514MP2CZ -27.584 .515MP2CMx 003 .516MP2CX0617MP2CZ -27.584 618MP2CX0619MP2AX0.520MP2AZ -35.463 .521MP2AX0623MP2AZ -35.463 624MP2AX0625MP2AZ -27.584 .526MP2BZ -27.584 .527MP2BMx.003.528MP2BX0629MP2BZ -27.584 630MP2BMx.003631MP2CX0.532MP2CZ -27.584 .532MP2CX0.5	
12 MP2B Mx .021 6 13 MP2C X 0 .5 14 MP2C Z -27.584 .5 15 MP2C Mx 003 .5 16 MP2C Z -27.584 .6 17 MP2C Z -27.584 .6 18 MP2C X 0 .5 20 MP2A X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 .6 23 MP2A Z -35.463 .6 24 MP2A X 0 .6 23 MP2A Z -35.463 .6 24 MP2A X 0 .5 26 MP2B X 0 .5 26 MP2B X 0 .5 28 MP2B X .00	
13MP2CX0.514MP2CZ.27.584.515MP2CMx003.516MP2CX0617MP2CZ.27.584618MP2CMx003619MP2AX0.520MP2AZ-35.463.521MP2AX0623MP2AZ-35.463624MP2AX0625MP2BX0.526MP2BZ-27.584.527MP2BX0629MP2BZ-27.584.529MP2BZ-27.584630MP2BMx.003.532MP2CX0.532MP2CX0.532MP2CX0.532MP2CX0.5	
14 MP2C Z -27.584 .5 15 MP2C Mx 003 .5 16 MP2C X 0 6 17 MP2C Z -27.584 6 18 MP2C Mx -003 6 19 MP2A X 0 .5 20 MP2A Z -35.463 .5 21 MP2A X 0 6 23 MP2A X 0 6 23 MP2A Z -35.463 6 24 MP2A Z -35.463 6 23 MP2A Z -35.463 6 24 MP2A Z -35.463 6 25 MP2B X 0 .5 26 MP2B X 0 .5 27 MP2B Mx .003 .5 28 MP2B X 0	
15MP2CMx 003 .516MP2CX0617MP2CZ -27.584 618MP2CMx 003 619MP2AX0.520MP2AZ -35.463 .521MP2AMx.024.522MP2AX0623MP2AZ -35.463 624MP2AX0625MP2BX0.526MP2BZ -27.584 .527MP2BMx.003.528MP2BZ -27.584 630MP2BMx.003631MP2CX0.532MP2CZ -27.584 .532MP2CX0.5	
16MP2CX0617MP2CZ-27.584618MP2CMx003619MP2AX0.520MP2AZ-35.463.521MP2AX0622MP2AZ-35.463623MP2AZ-35.463624MP2AZ-35.463625MP2AZ-35.463626MP2BX0.527MP2BX0.528MP2BX0629MP2BZ-27.584630MP2BMx.003631MP2CX0.532MP2CZ-27.584.533MP2CX0.534MP2CX.003.535MP2BMx.003.534MP2CX.003.535MP2CX.003.534MP2CX.003.535MP2C.5.5.534MP2C.5.535MP2C.5.536MP2C.5.537MP2C.5.538MP2C.5.539MP2C.5.530MP2C.5.531MP2C.5.5 </td <td></td>	
17MP2CZ -27.584 618MP2CMx 003 619MP2AX0.520MP2AZ -35.463 .521MP2AMx.024.522MP2AX0623MP2AZ -35.463 624MP2AX0625MP2BX0.526MP2BZ -27.584 .527MP2BMx.003.528MP2BZ -27.584 630MP2BMx.003631MP2CX0.532MP2CZ -27.584 .533MP2CX0.534MP2CX.003.535MP2CX.003.534MP2CX.003.535MP2CX.0.534MP2CX.0.535MP2C.5.534MP2C.5.535MP2C.5.536MP2C.5.537MP2C.5.538MP2C.5.539MP2C.5.530MP2C.5.531MP2C.5.532MP2C.5.533MP2C.5.534 <t< td=""><td></td></t<>	
18MP2CMx 003 619MP2AX0.520MP2AZ -35.463 .521MP2AMx.024.522MP2AX0623MP2AZ -35.463 624MP2AX0.526MP2BX0.527MP2BX0.528MP2BX0629MP2BZ -27.584 .530MP2BX0.531MP2CX0.532MP2CZ -27.584 .5	
19MP2AX0.520MP2AZ-35.463.521MP2AMx.024.522MP2AX0623MP2AZ-35.463624MP2AMx.024625MP2BX0.526MP2BZ-27.584.527MP2BMx.003.528MP2BZ-27.584630MP2BMx.003631MP2CX0.532MP2CZ-27.584.532MP2CX0.5	
20MP2AZ -35.463 .521MP2AMx.024.522MP2AX0623MP2AZ -35.463 624MP2AMx.024625MP2BX0.526MP2BZ -27.584 .527MP2BMx.003.528MP2BZ -27.584 630MP2BZ 0 631MP2CX0.532MP2CZ -27.584 .534MP2CX0.535MP2CX.003.536MP2BMx.003.537MP2CX.5.5	
21 MP2A Mx .024 .5 22 MP2A X 0 6 23 MP2A Z -35.463 6 24 MP2A Mx .024 6 25 MP2B X 0 .5 26 MP2B Z -27.584 .5 27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Z -27.584 6 30 MP2B X 0 .5 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
22 MP2A X 0 6 23 MP2A Z -35.463 6 24 MP2A Mx .024 6 25 MP2B X 0 .5 26 MP2B Z -27.584 .5 27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Z -27.584 6 30 MP2B X 0 .5 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
23 MP2A Z -35.463 6 24 MP2A Mx .024 6 25 MP2B X 0 .5 26 MP2B Z -27.584 .5 27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Z -27.584 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
24 MP2A Mx .024 6 25 MP2B X 0 .5 26 MP2B Z -27.584 .5 27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
25 MP2B X 0 .5 26 MP2B Z -27.584 .5 27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
26 MP2B Z -27.584 .5 27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
27 MP2B Mx .003 .5 28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
28 MP2B X 0 6 29 MP2B Z -27.584 6 30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
29 MP2B Z -27.584 6 30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
30 MP2B Mx .003 6 31 MP2C X 0 .5 32 MP2C Z -27.584 .5	
31 MP2C X 0 .5 32 MP2C Z -27.584 .5 32 MP2C Z -27.584 .5	
32 MP2C Z -27.584 .5	
22 MD2C My 001	
33 IVIF2C IVIXU21 .5	
34 MP2C X 0 6	
35 MP2C Z -27.584 6	
36 MP2C Mx021 6	
37 MP4A X 0 .25	
38 MP4A Z -21.336 .25	
39 MP4A Mx 0 .25	
40 MP4A X 0 2.25	
41 MP4A Z -21.336 2.25	
42 MP4A Mx 0 2.25	
43 MP4B X 0 .25	
44 MP4B Z -12.456 .25	
45 MP4B Mx .005 .25	

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]	
46	MP4B	X	0	2.25	
47	MP4B		-12.456	2.25	
48	MP4B	IVIX	.005	2.25	
49	MP4C	X	0	.25	
50	MP4C	Ζ.	-12.456	.25	
51	MP4C	IVIX	005	.25	
52	MP4C	X	0	2.25	
53	MP4C		-12.456	2.25	
54	MP4C		005	2.20	
55	MP2A	× 7	10 500	1	
50	MP2A		-18.508	1	
57	MP2A		0	1	
50		∧ 	12 755	1	
60			-13.755	1	
61			000	1	
62	MP2C	~ 7	13 755	1	
62	MP2C	<u> </u>	-13.755	1	
64	MP20		.000	1	
65	MP2A	7	-10,896	4	
66	MD2A		-10.090	4	
67	MP2R		0	4	
68	MP2B	7	-7.58	4	
69	MP2B	Mx	- 003		
70	MP2C	X	005	4	
71	MP2C	7	-7.58		
72	MP2C	Mx	003	4	
73	MP3A	X	0	25	
74	MP3A	7	-37 064	25	
75	MP3A	Mx	0	25	
76	MP3B	X	0	25	
77	MP3B	7	-31 251	25	
78	MP3B	Mx	- 014	25	
79	MP1B	X	0	25	
80	MP1B	Z	-25.036	.25	
81	MP1B	Mx	.011	.25	
82	MP1B	X	0	2.25	
83	MP1B	Z	-25,036	2.25	
84	MP1B	Mx	.011	2.25	
85	MP1C	X	0	.25	
86	MP1C	Z	-25.036	.25	
87	MP1C	Mx	011	.25	
88	MP1C	Х	0	2.25	
89	MP1C	Z	-25.036	2.25	
90	MP1C	Mx	011	2.25	
91	MP1A	Х	0	.25	
92	MP1A	Z	-14.112	.25	
93	MP1A	Mx	0	.25	
94	MP1A	X	0	2.25	
95	MP1A	Z	-14.112	2.25	
96	MP1A	Mx	0	2.25	
97	MP1A	X	0	2.75	
98	MP1A	Z	-18.508	2.75	
99	MP1A	Mx	0	2.75	
100	MP1B	Х	0	2.75	
101	MP1B	Z	-14.48	2.75	
102	MP1B	Mx	006	2.75	
RISA-3D Version 17.0.4 [\\\\\\\\Rev 0\Risa\468152-VZW_MT_LO_H.r3d] Page 40					

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	MP1C	Х	0	2.75
104	MP1C	Z	-14.48	2.75
105	MP1C	Mx	.006	2.75

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	16.418	.5
2	MP2A	Z	-28.438	.5
3	MP2A	Mx	027	.5
4	MP2A	X	16.418	6
5	MP2A	Z	-28.438	6
6	MP2A	Mx	027	6
7	MP2B	X	12.479	.5
8	MP2B	Z	-21.614	.5
9	MP2B	Mx	.012	.5
10	MP2B	X	12.479	6
11	MP2B	Z	-21.614	6
12	MP2B	Mx	.012	6
13	MP2C	X	16.418	.5
14	MP2C	Z	-28.438	.5
15	MP2C	Mx	.011	.5
16	MP2C	X	16.418	6
17	MP2C	Z	-28.438	6
18	MP2C	Mx	.011	6
19	MP2A	X	16.418	.5
20	MP2A	Z	-28.438	.5
21	MP2A	Mx	.011	.5
22	MP2A	X	16.418	6
23	MP2A	Z	-28.438	6
24	MP2A	Mx	.011	6
25	MP2B	X	12.479	.5
26	MP2B	Z	-21.614	.5
27	MP2B	Mx	.012	.5
28	MP2B	X	12.479	6
29	MP2B	Z	-21.614	6
30	MP2B	Mx	.012	6
31	MP2C	X	16.418	.5
32	MP2C	Z	-28.438	.5
33	MP2C	Mx	027	.5
34	MP2C	X	16.418	6
35	MP2C	Z	-28.438	6
36	MP2C	Mx	027	6
37	MP4A	X	9.188	.25
38	MP4A	Z	-15.914	.25
39	MP4A	Mx	005	.25
40	MP4A	X	9.188	2.25
41	MP4A	Z	-15.914	2.25
42	MP4A	Mx	005	2.25
43	MP4B	X	4.748	.25
44	MP4B	Z	-8.224	.25
45	MP4B	Mx	.005	.25
46	MP4B	X	4.748	2.25
47	MP4B	Z	-8.224	2.25
48	MP4B	Mx	.005	2.25
49	MP4C	X	9.188	.25
50	MP4C	Z	-15.914	.25

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP4C	Mx	005	.25
52	MP4C	X	9.188	2.25
53	MP4C	Z	-15.914	2.25
54	MP4C	Mx	005	2.25
55	MP2A	X	8.462	1
56	MP2A	Z	-14.657	1
57	MP2A	Mx	.004	1
58	MP2B	X	6.085	1
59	MP2B	Z	-10.54	1
60	MP2B	Mx	006	1
61	MP2C	X	8.462	1
62	MP2C	Z	-14.657	1
63	MP2C	Mx	004	1
64	MP2A	X	4 895	4
65	MP2A	7	-8 479	4
66	MP2A	My	002	4
67	MP2R	X	3 237	4
68	MD2B	7	-5 607	1
60	MD2B	My	- 003	4
70	MP2C		4.895	4
70	MP2C	7	9.470	4
72	MP2C		-0.479	4
72			17.562	
73	MD2A	7	20.42	.25
74	MPSA		-30.42	.25
75	MDOD		.009	.25
70	MP3B		14.007	.20
70	MP3B		-25.386	.20
78	MP3B		015	.25
79	MP1B	X	12.161	.25
80	MP1B	<u> </u>	-21.063	.25
81	MP1B	MX	.012	.25
82	MP1B	X	12.161	2.25
83	MP1B	<u> </u>	-21.063	2.25
84	MP1B	MX	.012	2.25
85	MP1C	<u> </u>	13.233	.25
86	MP1C	<u> </u>	-22.92	.25
8/	MP1C	Mx	007	.25
88	MP1C	<u> </u>	13.233	2.25
89	MP1C	Z	-22.92	2.25
90	MP1C	Mx	007	2.25
91	MP1A	X	1.426	.25
92	MP1A		-12.861	.25
93	MP1A	Mx	004	.25
94	MP1A	X	7.426	2.25
95	MP1A	Z	-12.861	2.25
96	MP1A	Mx	004	2.25
97	MP1A	X	8.583	2.75
98	MP1A	Z	-14.866	2.75
99	MP1A	Mx	.004	2.75
100	MP1B	X	6.569	2.75
101	MP1B	Z	-11.378	2.75
102	MP1B	Mx	007	2.75
103	MP1C	X	8.583	2.75
104	MP1C	Z	-14.866	2.75
105	MP1C	Mx	.004	2.75

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	23.889	.5
2	MP2A	Z	-13.792	.5
3	MP2A	Mx	021	.5
4	MP2A	X	23.889	6
5	MP2A	Z	-13.792	6
6	MP2A	Mx	021	6
7	MP2B	X	23.889	.5
8	MP2B	Z	-13.792	.5
9	MP2B	Mx	.003	.5
10	MP2B	X	23.889	6
11	MP2B	Z	-13.792	6
12	MP2B	Mx	.003	6
13	MP2C	Х	30.712	.5
14	MP2C	Z	-17.732	.5
15	MP2C	Mx	.024	.5
16	MP2C	Х	30,712	6
17	MP2C	Z	-17.732	6
18	MP2C	Mx	.024	6
19	MP2A	X	23.889	.5
20	MP2A	Z	-13.792	.5
21	MP2A	Mx	003	.5
22	MP2A	Х	23.889	6
23	MP2A	Z	-13.792	6
24	MP2A	Mx	003	6
25	MP2B	X	23.889	.5
26	MP2B	Z	-13.792	.5
27	MP2B	Mx	.021	.5
28	MP2B	X	23.889	6
29	MP2B	Z	-13.792	6
30	MP2B	Mx	.021	6
31	MP2C	X	30.712	.5
32	MP2C	Z	-17.732	.5
33	MP2C	Mx	024	.5
34	MP2C	X	30.712	6
35	MP2C	Z	-17.732	6
36	MP2C	Mx	024	6
37	MP4A	Х	10.787	.25
38	MP4A	Z	-6.228	.25
39	MP4A	Mx	005	.25
40	MP4A	X	10.787	2.25
41	MP4A	Z	-6.228	2.25
42	MP4A	Mx	005	2.25
43	MP4B	X	10.787	.25
44	MP4B	Z	-6.228	.25
45	MP4B	Mx	.005	.25
46	MP4B	X	10.787	2.25
47	MP4B	Z	-6.228	2.25
48	MP4B	Mx	.005	2.25
49	MP4C	X	18.478	.25
50	MP4C	Z	-10.668	.25
51	MP4C	Mx	0	.25
52	MP4C	X	18.478	2.25
53	MP4C	Z	-10.668	2.25
54	MP4C	Mx	0	2.25
55	MP2A	X	11.912	1
56	MP2A	Z	-6.878	1
57	MP2A	Mx	.006	1

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	11.912	1
59	MP2B	Z	-6.878	1
60	MP2B	Mx	006	1
61	MP2C	X	16.029	1
62	MP2C	Z	-9.254	1
63	MP2C	Mx	0	1
64	MP2A	X	6.564	4
65	MP2A	Z	-3.79	4
66	MP2A	Mx	.003	4
67	MP2B	X	6.564	4
68	MP2B	Z	-3.79	4
69	MP2B	Mx	003	4
70	MP2C	X	9.436	4
71	MP2C	Z	-5.448	4
72	MP2C	Mx	0	4
73	MP3A	X	27.064	.25
74	MP3A	Z	-15.626	.25
75	MP3A	Mx	.014	.25
76	MP3B	X	27.064	.25
77	MP3B	Z	-15.626	.25
78	MP3B	Mx	014	.25
79	MP1B	X	21.682	.25
80	MP1B	Z	-12.518	.25
81	MP1B	Mx	.011	.25
82	MP1B	X	21.682	2.25
83	MP1B	Z	-12.518	2.25
84	MP1B	Mx	.011	2.25
85	MP1C	X	23.54	.25
86	MP1C	Z	-13.591	.25
87	MP1C	Mx	0	.25
88	MP1C	X	23.54	2.25
89	MP1C	Z	-13.591	2.25
90	MP1C	Mx	0	2.25
91	MP1A	X	14.141	.25
92	MP1A	Z	-8.164	.25
93	MP1A	Mx	007	.25
94	MP1A	X	14.141	2.25
95	MP1A	Z	-8.164	2.25
96	MP1A	Mx	007	2.25
97	MP1A	X	12.54	2.75
98	MP1A	Z	-7.24	2.75
99	MP1A	Mx	.006	2.75
100	MP1B	X	12.54	2.75
101	MP1B	Z	-7.24	2.75
102	MP1B	Mx	006	2.75
103	MP1C	X	16.029	2.75
104	MP1C	Z	-9.254	2.75
105	MP1C	Mx	0	2.75

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	24.958	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	012	.5
4	MP2A	Х	24.958	6
5	MP2A	Z	0	6

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP2A	Mx	012	6
7	MP2B	X	32.837	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	011	.5
10	MP2B	Х	32.837	6
11	MP2B	Z	0	6
12	MP2B	Mx	011	6
13	MP2C	Х	32.837	.5
14	MP2C	Z	0	.5
15	MP2C	Mx	.027	.5
16	MP2C	X	32.837	6
17	MP2C	7	0	6
18	MP2C	Mx	027	6
19	MP24	X	24.958	5
20	MP2A	7	0	.0
21	MP2A	My	_ 012	.0
22	MP2A		24.058	
22	MD2A		24.930	6
23	MD2A		012	6
24	MD2D		012	0
20	NIP2B		32.837	.0
20	MP2B		0	.5
21	MP2B	IVIX	.027	.0
28	MP2B	X 7	32.837	6
29	MP2B	<u> </u>	0	6
30	MP2B	Mx	.027	6
31	MP2C	<u> </u>	32.837	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	011	.5
34	MP2C	X	32.837	6
35	MP2C	Z	0	6
36	MP2C	Mx	011	6
37	MP4A	X	9.496	.25
38	MP4A	Z	0	.25
39	MP4A	Mx	005	.25
40	MP4A	X	9.496	2.25
41	MP4A	Z	0	2.25
42	MP4A	Mx	005	2.25
43	MP4B	Х	18.376	.25
44	MP4B	Z	0	.25
45	MP4B	Mx	.005	.25
46	MP4B	Х	18.376	2.25
47	MP4B	Z	0	2.25
48	MP4B	Mx	.005	2.25
49	MP4C	X	18,376	.25
50	MP4C	7	0	.25
51	MP4C	Mx	005	25
52	MP4C	X	18 376	2.25
53	MP4C	7	0	2.25
54	MP4C	My	005	2.25
55	MD2A	Y	10 171	1
56	MD2A	7	0	1
57	MD2A		0006	1
57	MDOD		.000	
50	MD2D	7	10.924	
59			004	
00	MP20	IVIX	004	
61	MP2C	Χ 7	16.924	1
62	MP2C	Ζ	0	1
RISA	-3D Version 17.0.4	NNNNNN	\\\\Rev 0\Risa\468152-VZW	MT LO H.r3d] Page 45

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP2C	Mx	004	1
64	MP2A	X	6.474	4
65	MP2A	Z	0	4
66	MP2A	Mx	.003	4
67	MP2B	Х	9.79	4
68	MP2B	Z	0	4
69	MP2B	Mx	002	4
70	MP2C	X	9.79	4
71	MP2C	Z	0	4
72	MP2C	Mx	002	4
73	MP3A	Х	29.313	.25
74	MP3A	Z	0	.25
75	MP3A	Mx	.015	.25
76	MP3B	X	35.126	.25
77	MP3B	Z	0	.25
78	MP3B	Mx	009	.25
79	MP1B	Х	26.466	.25
80	MP1B	Z	0	.25
81	MP1B	Mx	.007	.25
82	MP1B	X	26.466	2.25
83	MP1B	Z	0	2.25
84	MP1B	Mx	.007	2.25
85	MP1C	Х	26.466	.25
86	MP1C	Z	0	.25
87	MP1C	Mx	.007	.25
88	MP1C	X	26.466	2.25
89	MP1C	Z	0	2.25
90	MP1C	Mx	.007	2.25
91	MP1A	X	17.067	.25
92	MP1A	Z	0	.25
93	MP1A	Mx	009	.25
94	MP1A	X	17.067	2.25
95	MP1A	Z	0	2.25
96	MP1A	Mx	009	2.25
97	MP1A	Х	13.138	2.75
98	MP1A	Z	0	2.75
99	MP1A	Mx	.007	2.75
100	MP1B	X	17.166	2.75
101	MP1B	Z	0	2.75
102	MP1B	Mx	004	2.75
103	MP1C	X	17.166	2.75
104	MP1C	Z	0	2.75
105	MP1C	Mx	004	2.75

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	23.889	.5
2	MP2A	Z	13.792	.5
3	MP2A	Mx	003	.5
4	MP2A	X	23.889	6
5	MP2A	Z	13.792	6
6	MP2A	Mx	003	6
7	MP2B	Х	30.712	.5
8	MP2B	Z	17.732	.5
9	MP2B	Mx	024	.5
10	MP2B	X	30.712	6

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP2B	Z	17.732	6
12	MP2B	Mx	024	6
13	MP2C	X	23.889	.5
14	MP2C	Z	13.792	.5
15	MP2C	Mx	.021	.5
16	MP2C	X	23.889	6
17	MP2C	Z	13.792	6
18	MP2C	Mx	.021	6
19	MP2A	Х	23.889	.5
20	MP2A	Z	13.792	.5
21	MP2A	Mx	021	.5
22	MP2A	Х	23.889	6
23	MP2A	Z	13.792	6
24	MP2A	Mx	021	6
25	MP2B	Х	30.712	.5
26	MP2B	Z	17.732	.5
27	MP2B	Mx	.024	.5
28	MP2B	Х	30.712	6
29	MP2B	Z	17.732	6
30	MP2B	Mx	.024	6
31	MP2C	Х	23.889	.5
32	MP2C	Z	13.792	.5
33	MP2C	Mx	.003	.5
34	MP2C	Х	23.889	6
35	MP2C	Z	13.792	6
36	MP2C	Mx	.003	6
37	MP4A	X	10.787	.25
38	MP4A	Z	6.228	.25
39	MP4A	Mx	005	.25
40	MP4A	Х	10.787	2.25
41	MP4A	Z	6.228	2.25
42	MP4A	Mx	005	2.25
43	MP4B	Х	18.478	.25
44	MP4B	Z	10.668	.25
45	MP4B	Mx	0	.25
46	MP4B	X	18.478	2.25
47	MP4B	Z	10.668	2.25
48	MP4B	Mx	0	2.25
49	MP4C	X	10,787	.25
50	MP4C	Z	6.228	.25
51	MP4C	Mx	.005	.25
52	MP4C	Х	10.787	2.25
53	MP4C	Z	6.228	2.25
54	MP4C	Mx	.005	2.25
55	MP2A	X	11.912	1
56	MP2A	Z	6.878	1
57	MP2A	Mx	.006	1
58	MP2B	X	16.029	1
59	MP2B	Z	9,254	1
60	MP2B	Mx	0	1
61	MP2C	X	11.912	1
62	MP2C	Z	6.878	1
63	MP2C	Mx	006	1
64	MP2A	X	6.564	4
65	MP2A	7	3,79	4
66	MP2A	Mx	.003	4
67	MP2B	X	9 436	4
			007.00	-т

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\...\Rev 0\Risa\468152-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2B	Z	5.448	4
69	MP2B	Mx	0	4
70	MP2C	X	6.564	4
71	MP2C	Z	3.79	4
72	MP2C	Mx	003	4
73	MP3A	X	27.064	.25
74	MP3A	Z	15.626	.25
75	MP3A	Mx	.014	.25
76	MP3B	X	32.098	.25
77	MP3B	Z	18.532	.25
78	MP3B	Mx	0	.25
79	MP1B	X	23.54	.25
80	MP1B	Z	13.591	.25
81	MP1B	Mx	0	.25
82	MP1B	X	23.54	2.25
83	MP1B	Z	13.591	2.25
84	MP1B	Mx	0	2.25
85	MP1C	X	21.682	.25
86	MP1C	Z	12.518	.25
87	MP1C	Mx	.011	.25
88	MP1C	X	21.682	2.25
89	MP1C	Z	12.518	2.25
90	MP1C	Mx	.011	2.25
91	MP1A	X	14.141	.25
92	MP1A	Z	8.164	.25
93	MP1A	Mx	007	.25
94	MP1A	X	14.141	2.25
95	MP1A	Z	8.164	2.25
96	MP1A	Mx	007	2.25
97	MP1A	X	12.54	2.75
98	MP1A	Z	7.24	2.75
99	MP1A	Mx	.006	2.75
100	MP1B	X	16.029	2.75
101	MP1B	Z	9.254	2.75
102	MP1B	Mx	0	2.75
103	MP1C	X	12.54	2.75
104	MP1C	Z	7.24	2.75
105	MP1C	Mx	006	2.75

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	16.418	.5
2	MP2A	Z	28.438	.5
3	MP2A	Mx	.011	.5
4	MP2A	Х	16.418	6
5	MP2A	Z	28.438	6
6	MP2A	Mx	.011	6
7	MP2B	Х	16.418	.5
8	MP2B	Z	28.438	.5
9	MP2B	Mx	027	.5
10	MP2B	X	16.418	6
11	MP2B	Z	28.438	6
12	MP2B	Mx	027	6
13	MP2C	X	12.479	.5
14	MP2C	Z	21.614	.5
15	MP2C	Mx	.012	.5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP2C	X	12.479	6
17	MP2C	Z	21.614	6
18	MP2C	Mx	.012	6
19	MP2A	Х	16.418	.5
20	MP2A	Z	28.438	.5
21	MP2A	Mx	027	.5
22	MP2A	X	16.418	6
23	MP2A	7	28 438	6
24	MP2A	Mx	- 027	6
25	MP2B	X	16.418	5
26	MP2B	7	28.438	
27	MP2B	My	011	
28	MD2B	V V	16.418	
20	MD2D	7	20 429	6
29			011	6
30	MD2C		12,470	0
20	MP2C	7	12.479	.0
32	MP2C		21.014	.5
33	MP2C	IVIX	.012	.0
34	MP2C	Χ 7	12.479	0
35	MP2C	<u> </u>	21.614	6
36	MP2C	MX	.012	6
37	MP4A	X	9.188	.25
38	MP4A	Z	15.914	.25
39	MP4A	Mx	005	.25
40	MP4A	X	9.188	2.25
41	MP4A	Z	15.914	2.25
42	MP4A	Mx	005	2.25
43	MP4B	X	9.188	.25
44	MP4B	Z	15.914	.25
45	MP4B	Mx	005	.25
46	MP4B	X	9.188	2.25
47	MP4B	Z	15.914	2.25
48	MP4B	Mx	005	2.25
49	MP4C	X	4.748	.25
50	MP4C	Z	8.224	.25
51	MP4C	Mx	.005	.25
52	MP4C	X	4.748	2.25
53	MP4C	Z	8.224	2.25
54	MP4C	Mx	.005	2.25
55	MP2A	X	8.462	1
56	MP2A	Z	14.657	1
57	MP2A	Mx	.004	1
58	MP2B	Х	8.462	1
59	MP2B	Z	14.657	1
60	MP2B	Mx	.004	1
61	MP2C	X	6.085	1
62	MP2C	Z	10.54	1
63	MP2C	Mx	006	1
64	MP2A	X	4.895	4
65	MP2A	Z	8.479	4
66	MP2A	Mx	.002	4
67	MP2B	X	4 895	4
68	MP2B	7	8 479	4
69	MP2R	Mx	002	Δ
70	MP2C	X	3 237	4
71	MP2C	7	5 607	4
72	MP2C	Mx	- 003	4
			000	T

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 0\Risa\468152-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP3A	X	17.563	.25
74	MP3A	Z	30.42	.25
75	MP3A	Mx	.009	.25
76	MP3B	Х	17.563	.25
77	MP3B	Z	30.42	.25
78	MP3B	Mx	.009	.25
79	MP1B	X	13.233	.25
80	MP1B	Z	22.92	.25
81	MP1B	Mx	007	.25
82	MP1B	X	13.233	2.25
83	MP1B	Z	22.92	2.25
84	MP1B	Mx	007	2.25
85	MP1C	Х	12.161	.25
86	MP1C	Z	21.063	.25
87	MP1C	Mx	.012	.25
88	MP1C	X	12.161	2.25
89	MP1C	Z	21.063	2.25
90	MP1C	Mx	.012	2.25
91	MP1A	X	7.426	.25
92	MP1A	Z	12.861	.25
93	MP1A	Mx	004	.25
94	MP1A	X	7.426	2.25
95	MP1A	Z	12.861	2.25
96	MP1A	Mx	004	2.25
97	MP1A	X	8.583	2.75
98	MP1A	Z	14.866	2.75
99	MP1A	Mx	.004	2.75
100	MP1B	X	8.583	2.75
101	MP1B	Z	14.866	2.75
102	MP1B	Mx	.004	2.75
103	MP1C	X	6.569	2.75
104	MP1C	Z	11.378	2.75
105	MP1C	Mx	007	2.75

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A	Z	35.463	.5
3	MP2A	Mx	.024	.5
4	MP2A	X	0	6
5	MP2A	Z	35.463	6
6	MP2A	Mx	.024	6
7	MP2B	X	0	.5
8	MP2B	Z	27.584	.5
9	MP2B	Mx	021	.5
10	MP2B	X	0	6
11	MP2B	Z	27.584	6
12	MP2B	Mx	021	6
13	MP2C	X	0	.5
14	MP2C	Z	27.584	.5
15	MP2C	Mx	.003	.5
16	MP2C	X	0	6
17	MP2C	Z	27.584	6
18	MP2C	Mx	.003	6
19	MP2A	X	0	.5
20	MP2A	Z	35.463	.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP2A	Mx	024	.5
22	MP2A	X	0	6
23	MP2A	Z	35.463	6
24	MP2A	Mx	024	6
25	MP2B	Х	0	.5
26	MP2B	Z	27.584	.5
27	MP2B	Mx	003	.5
28	MP2B	Х	0	6
29	MP2B	Z	27.584	6
30	MP2B	Mx	003	6
31	MP2C	Х	0	.5
32	MP2C	Z	27.584	.5
33	MP2C	Mx	.021	.5
34	MP2C	X	0	6
35	MP2C	Z	27.584	6
36	MP2C	Mx	.021	6
37	MP4A	Х	0	.25
38	MP4A	Z	21.336	.25
39	MP4A	Mx	0	.25
40	MP4A	X	0	2.25
41	MP4A	Z	21.336	2.25
42	MP4A	Mx	0	2.25
43	MP4B	X	0	.25
44	MP4B	Z	12.456	.25
45	MP4B	Mx	005	.25
46	MP4B	X	0	2.25
47	MP4B	Z	12.456	2.25
48	MP4B	Mx	005	2.25
49	MP4C	Х	0	.25
50	MP4C	Z	12.456	.25
51	MP4C	Mx	.005	.25
52	MP4C	Х	0	2.25
53	MP4C	Z	12.456	2.25
54	MP4C	Mx	.005	2.25
55	MP2A	Х	0	1
56	MP2A	Z	18.508	1
57	MP2A	Mx	0	1
58	MP2B	Х	0	1
59	MP2B	Z	13.755	1
60	MP2B	Mx	.006	1
61	MP2C	Х	0	1
62	MP2C	Z	13.755	1
63	MP2C	Mx	006	1
64	MP2A	X	0	4
65	MP2A	Z	10.896	4
66	MP2A	Mx	0	4
67	MP2B	Х	0	4
68	MP2B	Z	7.58	4
69	MP2B	Mx	.003	4
70	MP2C	X	0	4
71	MP2C	Z	7.58	4
72	MP2C	Mx	003	4
73	MP3A	X	0	.25
74	MP3A	Z	37.064	.25
75	MP3A	Mx	0	.25
76	MP3B	Х	0	.25
77	MP3B	Z	31.251	.25

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP3B	Mx	.014	.25
79	MP1B	X	0	.25
80	MP1B	Z	25.036	.25
81	MP1B	Mx	011	.25
82	MP1B	X	0	2.25
83	MP1B	Z	25.036	2.25
84	MP1B	Mx	011	2.25
85	MP1C	Х	0	.25
86	MP1C	Z	25.036	.25
87	MP1C	Mx	.011	.25
88	MP1C	Х	0	2.25
89	MP1C	Z	25.036	2.25
90	MP1C	Mx	.011	2.25
91	MP1A	Х	0	.25
92	MP1A	Z	14.112	.25
93	MP1A	Mx	0	.25
94	MP1A	X	0	2.25
95	MP1A	Z	14.112	2.25
96	MP1A	Mx	0	2.25
97	MP1A	X	0	2.75
98	MP1A	Z	18.508	2.75
99	MP1A	Mx	0	2.75
100	MP1B	X	0	2.75
101	MP1B	Z	14.48	2.75
102	MP1B	Mx	.006	2.75
103	MP1C	X	0	2.75
104	MP1C	Z	14.48	2.75
105	MP1C	Mx	006	2.75

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	-16.418	.5
2	MP2A	Z	28.438	.5
3	MP2A	Mx	.027	.5
4	MP2A	Х	-16.418	6
5	MP2A	Z	28.438	6
6	MP2A	Mx	.027	6
7	MP2B	Х	-12.479	.5
8	MP2B	Z	21.614	.5
9	MP2B	Mx	012	.5
10	MP2B	Х	-12.479	6
11	MP2B	Z	21.614	6
12	MP2B	Mx	012	6
13	MP2C	Х	-16.418	.5
14	MP2C	Z	28.438	.5
15	MP2C	Mx	011	.5
16	MP2C	Х	-16.418	6
17	MP2C	Z	28.438	6
18	MP2C	Mx	011	6
19	MP2A	X	-16.418	.5
20	MP2A	Z	28.438	.5
21	MP2A	Mx	011	.5
22	MP2A	X	-16.418	6
23	MP2A	Z	28.438	6
24	MP2A	Mx	011	6
25	MP2B	X	-12.479	.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP2B	Z	21.614	.5
27	MP2B	Mx	012	.5
28	MP2B	X	-12.479	6
29	MP2B	Z	21.614	6
30	MP2B	Mx	012	6
31	MP2C	X	-16.418	.5
32	MP2C	Z	28.438	.5
33	MP2C	Mx	.027	.5
34	MP2C	Х	-16.418	6
35	MP2C	Z	28.438	6
36	MP2C	Mx	.027	6
37	MP4A	Х	-9.188	.25
38	MP4A	Z	15.914	.25
39	MP4A	Mx	.005	.25
40	MP4A	Х	-9.188	2.25
41	MP4A	Z	15.914	2.25
42	MP4A	Mx	.005	2.25
43	MP4B	Х	-4.748	.25
44	MP4B	Z	8.224	.25
45	MP4B	Mx	005	.25
46	MP4B	Х	-4.748	2.25
47	MP4B	Z	8.224	2.25
48	MP4B	Mx	005	2.25
49	MP4C	X	-9.188	.25
50	MP4C	Z	15.914	.25
51	MP4C	Mx	.005	.25
52	MP4C	Х	-9.188	2.25
53	MP4C	Z	15.914	2.25
54	MP4C	Mx	.005	2.25
55	MP2A	Х	-8.462	1
56	MP2A	Z	14.657	1
57	MP2A	Mx	004	1
58	MP2B	X	-6.085	1
59	MP2B	Z	10.54	1
60	MP2B	Mx	.006	1
61	MP2C	Х	-8.462	1
62	MP2C	Z	14.657	1
63	MP2C	Mx	004	1
64	MP2A	X	-4.895	4
65	MP2A	Z	8.479	4
66	MP2A	Mx	002	4
67	MP2B	X	-3.237	4
68	MP2B	Z	5.607	4
69	MP2B	Mx	.003	4
70	MP2C	Х	-4.895	4
71	MP2C	Z	8.479	4
72	MP2C	Mx	002	4
73	MP3A	X	-17.563	.25
74	MP3A	Z	30.42	.25
75	MP3A	Mx	009	.25
76	MP3B	Х	-14.657	.25
77	MP3B	Z	25.386	.25
78	MP3B	Mx	.015	.25
79	MP1B	X	-12.161	.25
80	MP1B	Z	21.063	.25
81	MP1B	Mx	012	.25
82	MP1B	X	-12.161	2.25

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	MP1B	Z	21.063	2.25
84	MP1B	Mx	012	2.25
85	MP1C	Х	-13.233	.25
86	MP1C	Z	22.92	.25
87	MP1C	Mx	.007	.25
88	MP1C	X	-13.233	2.25
89	MP1C	Z	22.92	2.25
90	MP1C	Mx	.007	2.25
91	MP1A	X	-7.426	.25
92	MP1A	Z	12.861	.25
93	MP1A	Mx	.004	.25
94	MP1A	X	-7.426	2.25
95	MP1A	Z	12.861	2.25
96	MP1A	Mx	.004	2.25
97	MP1A	X	-8.583	2.75
98	MP1A	Z	14.866	2.75
99	MP1A	Mx	004	2.75
100	MP1B	X	-6.569	2.75
101	MP1B	Z	11.378	2.75
102	MP1B	Mx	.007	2.75
103	MP1C	X	-8.583	2.75
104	MP1C	Z	14.866	2.75
105	MP1C	Mx	004	2.75

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-23.889	.5
2	MP2A	Z	13.792	.5
3	MP2A	Mx	.021	.5
4	MP2A	X	-23.889	6
5	MP2A	Z	13.792	6
6	MP2A	Mx	.021	6
7	MP2B	X	-23.889	.5
8	MP2B	Z	13.792	.5
9	MP2B	Mx	003	.5
10	MP2B	X	-23.889	6
11	MP2B	Z	13.792	6
12	MP2B	Mx	003	6
13	MP2C	X	-30.712	.5
14	MP2C	Z	17.732	.5
15	MP2C	Mx	024	.5
16	MP2C	X	-30.712	6
17	MP2C	Z	17.732	6
18	MP2C	Mx	024	6
19	MP2A	X	-23.889	.5
20	MP2A	Z	13.792	.5
21	MP2A	Mx	.003	.5
22	MP2A	X	-23.889	6
23	MP2A	Z	13.792	6
24	MP2A	Mx	.003	6
25	MP2B	X	-23.889	.5
26	MP2B	Z	13.792	.5
27	MP2B	Mx	021	.5
28	MP2B	X	-23.889	6
29	MP2B	Z	13.792	6
30	MP2B	Mx	021	6

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

31 MP2C X -30.712 .5 32 MP2C X .024 .5 33 MP2C X .30.712 .6 35 MP2C Z .17.732 .6 36 MP2C Z .17.732 .25 39 MP4A X -10.787 .25 41 MP4A Z .6.228 .25 42 MP4B X -10.787 .25 44 MP4B X -10.787 .225 45 MP4B X -10.787 .225 50 MP4C X -18.478 .225 51 MP4C X -18.478 .225 52		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
32 MP2C Z 17,732 .5 33 MP2C X -30,712 6 35 MP2C X -30,712 6 36 MP2C X -30,712 6 36 MP2C X -10,787 .25 38 MP4A X -10,787 .25 39 MP4A X -10,787 .25 40 MP4A X -10,787 .25 41 MP4A X -10,787 .25 42 MP4A X -10,787 .25 44 MP4B Z .6,228 .225 44 MP4B Z .6,228 .225 45 MP4B X -10,787 .25 46 MP4B X -10,787 .25 47 MP4B X -10,787 .25 50 MP4C X -18,478 .25 51	31	MP2C	Х	-30.712	.5
33 MP2C Mx 024 5 34 MP2C Z 17,732 6 35 MP2C Z 17,732 6 36 MP2C X -10,767 .25 38 MP4A X -10,767 .25 39 MP4A X -10,767 .25 41 MP4A X -10,767 .25 41 MP4A Z 6,228 .25 42 MP4A MX -005 .225 43 MP4B X -10,787 .25 44 MP4B X -10,787 .25 45 MP4B X -0065 .225 46 MP4B X -005 .225 47 MP4B X -005 .225 48 MP4C X -18,478 .225 50 MP4C X -18,478 .225 51 MP4C X -11,478 .25 52 MP4C X -11,	32	MP2C	Z	17.732	.5
34 MP2C X -30.712 6 35 MP2C Z 17.732 6 36 MP2C Mx 0.024 6 37 MP4A X -10.787 .25 38 MP4A X -6.28 .25 39 MP4A X -10.787 .25 40 MP4A X -10.787 .25 41 MP4A X -10.787 .25 42 MP4A X -10.787 .25 44 MP4B Z .6.28 .225 45 MP4B X -10.787 .25 46 MP4B X -0.05 .25 47 MP4B X -0.787 .25 48 MP4B X -10.787 .25 50 MP4C X -18.478 .25 51 MP4C X -18.478 .25 52	33	MP2C	Mx	.024	.5
35 MP2C Z 17.732 6 36 MP2C Mk 0.024 6 37 MP4A X -10.787 .25 39 MP4A X -10.787 .25 40 MP4A X -10.787 .225 41 MP4A X -10.787 .225 41 MP4A Z .6.228 .225 43 MP4B X -10.787 .225 44 MP4B X -10.787 .225 45 MP4B X -10.787 .225 46 MP4B X -10.787 .225 47 MP4B Z .6.228 .225 48 MP4C X -18.478 .225 59 MP4C X -18.478 .225 51 MP4C Mx 0 .25 52 MP4C Mx 0 .25 53	34	MP2C	X	-30.712	6
36 MP2C Mk .024 6 37 MP4A X -10.787 .25 38 MP4A Z 6.228 .25 39 MP4A X -10.787 .25 40 MP4A X -10.787 .25 41 MP4A X -10.787 .25 42 MP4A MX -005 .25 43 MP4B X -10.787 .25 44 MP4B X -10.787 .25 45 MP4B MX -0.05 .25 46 MP4B X -10.787 .25 47 MP4B MX -0.05 .225 50 MP4C X -18.478 .225 51 MP4C MX 0 .25 52 MP4C X -11.912 1 53 MP4C Z 6.678 1 54 MP4C<	35	MP2C	Z	17.732	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36	MP2C	Mx	.024	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	MP4A	X	-10.787	.25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	38	MP4A	Z	6.228	.25
	39	MP4A	Mx	.005	.25
	40	MP4A	Х	-10.787	2.25
42 MP4A Mx .005 2.25 43 MP4B X -10.787 .25 44 MP4B Z 6.228 .25 46 MP4B X -10.787 .2.25 46 MP4B X -10.787 .2.25 47 MP4B Mx 005 .2.25 48 MP4B Mx 005 .2.25 49 MP4C X -18.478 .25 50 MP4C Z 10.668 .25 51 MP4C Mx 0 .225 53 MP4C Z 10.668 .225 54 MP4C Mx 0 .225 55 MP2A X -11.912 1 56 MP2A X -11.912 1 57 MP2A Mx -006 1 58 MP2B Z 6.878 1 61 MP2A	41	MP4A	Z	6.228	2.25
43 MP4B X -10.787 25 44 MP4B X -6.228 25 46 MP4B Mx -10.787 2.25 46 MP4B X -10.787 2.25 47 MP4B Z 6.228 2.25 48 MP4B Z 6.228 2.25 49 MP4C X -18.478 .25 50 MP4C X -18.478 .25 51 MP4C Mx 0 .255 53 MP4C X -18.478 .225 54 MP4C Mx 0 .225 55 MP2A X -11.912 1 56 MP2A Z 6.878 1 57 MP2A Mx -006 1 58 MP2B X -11.912 1 60 MP2B X -16.029 1 61 MP2A	42	MP4A	Mx	.005	2.25
44 MP4B Z 6.228 25 45 MP4B Mx -005 25 46 MP4B X -10.787 2.25 47 MP4B Z 6.228 2.25 48 MP4B Mx -005 2.25 49 MP4C X -18.478 .25 50 MP4C Z 10.668 .255 51 MP4C Z 10.668 .225 53 MP4C Z 10.668 .225 54 MP4C Z 10.668 .225 55 MP2A X -11.912 1 56 MP2A X -11.912 1 57 MP2A Mx -0.06 1 58 MP2B Z 6.878 1 60 MP2C X -16.029 1 64 MP2C X -6.564 4 65 MP2A	43	MP4B	Х	-10.787	.25
45 MP4B Mx 005 .25 46 MP4B X -10.787 .225 47 MP4B Z .6.228 .225 48 MP4B X -10.787 .225 49 MP4C X -18.478 .25 50 MP4C X -18.478 .25 51 MP4C X -18.478 .25 52 MP4C X -18.478 .225 53 MP4C Z 10.668 .225 54 MP4C X -11.912 1	44	MP4B	Z	6.228	.25
46 MP4B X -10.787 2.25 47 MP4B Z 6.288 2.25 48 MP4C X -18.478 .25 50 MP4C Z 10.668 .25 51 MP4C X -18.478 .25 52 MP4C X -18.478 .225 53 MP4C X -11.84.78 .225 54 MP4C X -11.912 1 56 MP2A X -11.912 1 56 MP2A X -11.912 1 57 MP2A Mx -0.066 1 58 MP2B Z 6.878 1 60 MP2B X -11.912 1 61 MP2C Z 9.254 1 63 MP2C Z 9.254 1 64 MP2A X -6.564 4 66 MP2A </td <td>45</td> <td>MP4B</td> <td>Mx</td> <td>005</td> <td>.25</td>	45	MP4B	Mx	005	.25
47 MP4B Z 6.228 2.25 48 MP4B Mx 005 2.25 49 MP4C X 18.478 .25 50 MP4C X 18.478 .25 51 MP4C MX 0 .25 52 MP4C X 18.478 .225 53 MP4C X 18.478 .225 54 MP4C Mx 0 .225 54 MP4C Mx 0 .225 55 MP2A Z 6.688 .225 56 MP2A Z 6.878 1 57 MP2A Z 6.878 1 59 MP2B Z 6.878 1 61 MP2C X -16.029 1 62 MP2C Mx 006 1 63 MP2A Z 3.79 4 66 MP2A <	46	MP4B	Х	-10.787	2.25
48 MP4B Mx 005 2.25 49 MP4C X -18.478 .25 50 MP4C Z 10.668 .25 51 MP4C X -18.478 .25 52 MP4C X -18.478 .225 53 MP4C X -11.8478 .225 54 MP4C X -11.912 1 56 MP2A X -11.912 1 56 MP2A X -11.912 1 57 MP2A Mx -006 1 58 MP2B X -11.912 1 59 MP2B Mx 0.066 1 61 MP2C X -16.029 1 62 MP2C Mx 0 1 63 MP2C Mx -003 4 66 MP2A Z 3.79 4 66 MP2A	47	MP4B	Z	6.228	2.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	48	MP4B	Mx	005	2.25
50 MP4C Z 10.668 .25 51 MP4C Mx 0 .25 52 MP4C X .18.478 .2.25 53 MP4C Z 10.668 .2.25 54 MP4C MX 0 .225 55 MP2A X .11.912 1 56 MP2A X .11.912 1 56 MP2A X .11.912 1 56 MP2A Mx .006 1 57 MP2A Mx .10.029 1 60 MP2B X .16.029 1 61 MP2C Z .9.254 1 63 MP2A X .6.664 4 66 MP2A Z .3.79 4 66 MP2A Z .3.79 4 68 MP2B Z .3.79 4 69 MP2B MX	49	MP4C	X	-18.478	.25
51 MP4C Mx 0	50	MP4C	Z	10.668	.25
52 MP4C X -18.478 2.25 53 MP4C Z 10.668 2.25 55 MP2A X -11.912 1 56 MP2A Z 6.878 1 57 MP2A Z 6.878 1 57 MP2A Mx 006 1 58 MP2B X -11.912 1 60 MP2B X -11.912 1 60 MP2B X -11.912 1 61 MP2C X -16.029 1 62 MP2C Z 9.379 4 63 MP2A X -6.564 4 64 MP2A X -6.564 4 66 MP2A X -6.564 4 68 MP2B Z 3.79 4 70 MP2B X -6.564 4 71 MP2C X <td>51</td> <td>MP4C</td> <td>Mx</td> <td>0</td> <td>25</td>	51	MP4C	Mx	0	25
53 MP4C Z 10.668 2.25 54 MP4C Mx 0 2.25 55 MP2A X -11.912 1 56 MP2A Z 6.878 1 57 MP2A Mx -0.06 1 58 MP2B Z 6.878 1 60 MP2B X -11.912 1 61 MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 66 MP2A X -6.564 4 66 MP2A X -6.564 4 67 MP2B Z 3.79 4 68 MP2B Z 3.79 4 70 MP2A X -6.564 4 71 MP2B Z <td< td=""><td>52</td><td>MP4C</td><td>X</td><td>-18 478</td><td>2.25</td></td<>	52	MP4C	X	-18 478	2.25
S4 MP4C Mx 0 2.25 55 MP2A X -11.912 1 56 MP2A Z 6.878 1 57 MP2A X -11.912 1 58 MP2B X -006 1 59 MP2B Z 6.878 1 60 MP2B X -16.029 1 61 MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A X -6.564 4 67 MP2B X -6.564 4 68 MP2B X -6.564 4 70 MP2B X -9.436 4 71 MP2C X -9	53	MP4C	7	10.668	2.25
55 MP2A X -11.912 1 56 MP2A Z 6.878 1 57 MP2A X -0.06 1 58 MP2B X -11.912 1 59 MP2B Z 6.878 1 60 MP2B X -16.029 1 61 MP2C Z 9.254 1 63 MP2C X -16.029 1 64 MP2A X 6.564 4 65 MP2A Z 3.79 4 66 MP2A X -6.564 4 66 MP2A X -6.564 4 69 MP2B Z 3.79 4 68 MP2B Z 3.79 4 69 MP2B X -0.3 4 70 MP2C X -9.436 4 72 MP2C Mx 0	54	MP4C	Mx	0	2.25
box M 11.312 1 56 MP2A Z 6.878 1 57 MP2A Mx 006 1 58 MP2B X -11.912 1 59 MP2B Z 6.878 1 60 MP2B Z 6.878 1 61 MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C X -6.664 4 64 MP2A X -6.654 4 66 MP2A X -6.654 4 66 MP2B X -6.654 4 68 MP2B Z 3.79 4 69 MP2B X -6.654 4 70 MP2C X -9.436 4 71 MP2C X -9.436 4 72 MP2C Mx -0 <	55	MP2A	X	-11 912	1
box m L/m L 0.010 1 57 MP2A Mx 006 1 58 MP2B Z 6.878 1 60 MP2B Mx .006 1 61 MP2C X 16.029 1 62 MP2C Z 9.254 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 66 MP2A Z 3.79 4 66 MP2A X -6.564 4 68 MP2B X -6.564 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C X -9.436 4 71 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A X -	56	MP2A	7	6.878	1
37 $MLZR$ MX -1000 1 58 MP2B Z 6.878 1 60 MP2B Mx $.006$ 1 61 MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C X -6.664 4 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A X -6.564 4 68 MP2B X -6.664 4 68 MP2B X -6.264 4 70 MP2B X -6.264 4 70 MP2B X -9.436 4 71 MP2C X -9.436 4 71 MP2C X -9.255 7 74 MP3A Z 15.626 .25 76	57	MP2A	My	- 006	1
30 MP2D X -11.912 1 59 MP2B Z 6.878 1 60 MP2B Mx 006 1 61 MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A X -6.564 4 68 MP2B Z 3.79 4 69 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 71 MP2C Z 15.626 .25 74 MP3A X -27.064 .25 75 MP3A X -21.682 .25 <	58	MD2R	NIA V	000	1
35 MP2D Z 0.010 1 60 MP2B Mx 0.06 1 61 MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A Mx -0.03 4 66 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A Z 15.626 .25 75 MP3A Z 15.626 .25 76 MP3B X -21.68	50	MD2R	7	6.878	1
OO MP2D MX	60	MD2D		0.076	1
of MP2C X -16.029 1 62 MP2C Z 9.254 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A Mx -003 4 67 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 71 MP2C Z 5.448 4 71 MP2C X -9.436 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3B Z 15.626 .25 76 MP3B X -21.682 .25 79 MP1B X -21.682 .25 <td>61</td> <td></td> <td></td> <td>16.020</td> <td>1</td>	61			16.020	1
02 MF2C Z 5.94 1 63 MP2C Mx 0 1 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A X -6.564 4 67 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3B X -27.064 .25 76 MP3B X -21.682 .25 78 MP3B Mx .014 .25 79 MP1B X <t< td=""><td>62</td><td>MP2C</td><td>7</td><td>-10.029</td><td>1</td></t<>	62	MP2C	7	-10.029	1
03 MP20 MX 0 1 64 MP2A X -6.564 4 65 MP2A Z 3.79 4 66 MP2A Mx 003 4 67 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C X -9.436 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 76 MP3B X -27.064 .25 76 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z	62	MP2C		9.254	1
04 MP2A A -0.034 4 65 MP2A Z 3.79 4 66 MP2A Mx 003 4 67 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B X -27.064 .25 77 MP3B Mx .014 .25 78 MP3B Mx .014 .25 79 MP1B X .21.682 .25 81 MP1B Mx<	64			6 564	1
65 MP2A Z 3.79 4 66 MP2A Mx -0.03 4 67 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B X 27.064 .25 77 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X 21.682 .25 80 MP1B Z 12.518 .25 81 MP1B X </td <td>65</td> <td></td> <td>~ 7</td> <td>-0.304</td> <td>4</td>	65		~ 7	-0.304	4
OO MPZA MX 003 4 67 MP2B X -6.564 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B Z 15.626 .25 77 MP3B Z .25 .25 78 MP3B Mx .014 .25 79 MP1B X 21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx .011 .25 83 MP1B Z <td>66</td> <td></td> <td></td> <td>002</td> <td>4</td>	66			002	4
67 MP2B X -6.364 4 68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3B X -27.064 .25 76 MP3B X -27.064 .25 76 MP3B X -27.064 .25 77 MP3B X -27.064 .25 78 MP3B X -27.064 .25 79 MP1B X -21.682 .25 80 MP1B X -21.682 .25 <td< td=""><td>67</td><td></td><td></td><td>003</td><td>4</td></td<>	67			003	4
68 MP2B Z 3.79 4 69 MP2B Mx .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C X -9.436 4 73 MP2C Z 5.448 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A X 014 .25 76 MP3B X 27.064 .25 77 MP3B Z 15.626 .25 78 MP3B X 21.682 .25 79 MP1B X 011 .25 81 MP1B X 011 .25 82 MP1B X 21.682 .2.25 83 MP1B X .21682 .2.25 84 MP1B	60	MP2B	× 7	-0.304	4
69 MP2B MX .003 4 70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B X -27.064 .25 77 MP3B Z 15.626 .25 78 MP3B X -27.064 .25 79 MP1B X -21.682 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B X -21.682 2.25 83 MP1B Z 12.518 2.25 83 MP1B X -21.682 2.25 84 MP1B <td>68</td> <td>MP2B</td> <td></td> <td>3.79</td> <td>4</td>	68	MP2B		3.79	4
70 MP2C X -9.436 4 71 MP2C Z 5.448 4 72 MP2C Mx 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx -014 .25 76 MP3B X -27.064 .25 76 MP3B X -27.064 .25 76 MP3B X -27.064 .25 77 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B Z .12.518 .225 84 MP1B <td>69</td> <td>MP2B</td> <td>MIX</td> <td>.003</td> <td>4</td>	69	MP2B	MIX	.003	4
11MP2C 2 5.448 4 72 MP2CMx0 4 73 MP3AX -27.064 .25 74 MP3AZ 15.626 .25 75 MP3AMx 014 .25 76 MP3BX -27.064 .25 76 MP3BX -27.064 .25 78 MP3BZ15.626.25 78 MP3BZ.25 79 MP1BX.21.682.25 80 MP1BZ12.518.25 81 MP1BMx.011.25 82 MP1BX.21.682.225 83 MP1BX.21.682.225 84 MP1BMx.011.225 85 MP1CX.23.54.25 86 MP1CZ13.591.25	70	MP2C	X	-9.436	4
12 MP2C Mix 0 4 73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B X -27.064 .25 76 MP3B Z 15.626 .25 77 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 .225 83 MP1B Z 12.518 .225 84 MP1B Mx 011 .225 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	71	MP20		5.448	4
73 MP3A X -27.064 .25 74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B X -27.064 .25 77 MP3B Z 15.626 .25 78 MP3B X .21.682 .25 79 MP1B X .21.682 .25 80 MP1B Z 12.518 .25 81 MP1B X .011 .25 82 MP1B X .21.682 .2.25 83 MP1B Z .011 .25 84 MP1B X .21.682 .2.25 84 MP1B Mx .011 .2.25 85 MP1C X .23.54 .25 86 MP1C Z .13.591 .25	72	MP2C	IVIX	07.004	4
74 MP3A Z 15.626 .25 75 MP3A Mx 014 .25 76 MP3B X -27.064 .25 77 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx .011 .25 82 MP1B X -21.682 .25 83 MP1B X .21.682 .25 84 MP1B X .21.682 .225 84 MP1B Mx .011 .225 85 MP1C X .23.54 .25 86 MP1C X .23.54 .25 86 MP1C X .23.54 .25	73	MP3A	X	-27.064	.25
75 MP3A MX 014 .25 76 MP3B X -27.064 .25 77 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx .011 .25 82 MP1B X -21.682 .25 83 MP1B X 21.518 .25 84 MP1B X -21.682 2.25 84 MP1B X -21.682 2.25 84 MP1B Mx 011 .25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	74	MP3A		15.626	.25
76 MP3B X -27.064 .25 77 MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B X 011 .25 84 MP1B X 011 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	<i>/5</i>	MP3A	MX	014	.25
// MP3B Z 15.626 .25 78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B X -21.682 2.25 84 MP1B X 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	76	MP3B	X	-27.064	.25
78 MP3B Mx .014 .25 79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B Z 12.518 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	17	MP3B	Z	15.626	.25
79 MP1B X -21.682 .25 80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B Z 12.518 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C X -23.54 .25	78	MP3B	Mx	.014	.25
80 MP1B Z 12.518 .25 81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B Z 12.518 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	79	MP1B	X	-21.682	.25
81 MP1B Mx 011 .25 82 MP1B X -21.682 2.25 83 MP1B Z 12.518 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	80	MP1B	Z	12.518	.25
82 MP1B X -21.682 2.25 83 MP1B Z 12.518 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	81	MP1B	Mx	011	.25
83 MP1B Z 12.518 2.25 84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	82	MP1B	X	-21.682	2.25
84 MP1B Mx 011 2.25 85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	83	MP1B	Z	12.518	2.25
85 MP1C X -23.54 .25 86 MP1C Z 13.591 .25	84	MP1B	Mx	011	2.25
86 MP1C Z 13.591 .25	85	MP1C	X	-23.54	.25
	86	MP1C	Z	13.591	.25
<u>87 MP1C Mx 0 .25</u>	87	MP1C	Mx	0	.25

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP1C	X	-23.54	2.25
89	MP1C	Z	13.591	2.25
90	MP1C	Mx	0	2.25
91	MP1A	X	-14.141	.25
92	MP1A	Z	8.164	.25
93	MP1A	Mx	.007	.25
94	MP1A	X	-14.141	2.25
95	MP1A	Z	8.164	2.25
96	MP1A	Mx	.007	2.25
97	MP1A	X	-12.54	2.75
98	MP1A	Z	7.24	2.75
99	MP1A	Mx	006	2.75
100	MP1B	X	-12.54	2.75
101	MP1B	Z	7.24	2.75
102	MP1B	Mx	.006	2.75
103	MP1C	X	-16.029	2.75
104	MP1C	Z	9.254	2.75
105	MP1C	Mx	0	2.75

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-24.958	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	.012	.5
4	MP2A	X	-24.958	6
5	MP2A	Z	0	6
6	MP2A	Mx	.012	6
7	MP2B	X	-32.837	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	.011	.5
10	MP2B	X	-32.837	6
11	MP2B	Z	0	6
12	MP2B	Mx	.011	6
13	MP2C	X	-32.837	.5
14	MP2C	Z	0	.5
15	MP2C	Mx	027	.5
16	MP2C	X	-32.837	6
17	MP2C	Z	0	6
18	MP2C	Mx	027	6
19	MP2A	X	-24.958	.5
20	MP2A	Z	0	.5
21	MP2A	Mx	.012	.5
22	MP2A	X	-24.958	6
23	MP2A	Z	0	6
24	MP2A	Mx	.012	6
25	MP2B	X	-32.837	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	027	.5
28	MP2B	X	-32.837	6
29	MP2B	Z	0	6
30	MP2B	Mx	027	6
31	MP2C	X	-32.837	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	.011	.5
34	MP2C	X	-32.837	6
35	MP2C	Z	0	6

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP2C	Mx	.011	6
37	MP4A	X	-9.496	.25
38	MP4A	Z	0	.25
39	MP4A	Mx	.005	.25
40	MP4A	X	-9.496	2.25
41	MP4A	Z	0	2.25
42	MP4A	Mx	.005	2.25
43	MP4B	Х	-18.376	.25
44	MP4B	Z	0	.25
45	MP4B	Mx	005	.25
46	MP4B	Х	-18.376	2.25
47	MP4B	Z	0	2.25
48	MP4B	Mx	005	2.25
49	MP4C	X	-18.376	.25
50	MP4C	Z	0	.25
51	MP4C	Mx	005	.25
52	MP4C	X	-18.376	2.25
53	MP4C	Z	0	2.25
54	MP4C	Mx	- 005	2.25
55	MP2A	X	-12 171	1
56	MP2A	7	0	1
57	MP2A	Mx	- 006	1
58	MP2B	X	-16 924	1
59	MP2B	7	0	1
60	MP2B	Mx	004	1
61	MP2C	X	-16 924	1
62	MP2C	7	0	1
63	MP2C	My	004	1
64	MP2A	X	-6 474	4
65	MP2A	7	-0.474	4
66	MP2A		- 003	4
67	MP2R	Y X	005	4
68	MD2B	7	-5.75	4
60	MD2B	<u> </u>	002	4
70	MP2C	IVIA V	_0.70	4
70	MP2C	7	-5.75	4
72	MP2C		002	4
72	MD2A		.002	25
73	MD2A	7	-29.515	.25
74	MD2A		015	.20
75	MD2P		010	.20
70	MD2D	7	-55.120	.20
79	MD2D		000	.20
70	MD1D		.009	.20
00		7	-20.400	.20
01			007	.20
01		IVIX	007	.20
82	MP1B	× 7	-20.400	2.20
83	MP1B	<u> </u>	0	2.25
04	MP16	IVIX	007	2.20
85	MP1C	X	-20.400	.25
80	MP1C		007	.25
87	MP1C	IVIX	007	.25
88	MP1C	X	-26.466	2.25
89	MP1C	<u> </u>	0	2.25
90	MP1C	IVIX	007	2.25
91	MP1A	X	-17.067	.25
92	MP1A	Z	0	.25

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
93	MP1A	Mx	.009	.25
94	MP1A	Х	-17.067	2.25
95	MP1A	Z	0	2.25
96	MP1A	Mx	.009	2.25
97	MP1A	Х	-13.138	2.75
98	MP1A	Z	0	2.75
99	MP1A	Mx	007	2.75
100	MP1B	Х	-17.166	2.75
101	MP1B	Z	0	2.75
102	MP1B	Mx	.004	2.75
103	MP1C	Х	-17.166	2.75
104	MP1C	Z	0	2.75
105	MP1C	Mx	.004	2.75

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-23.889	.5
2	MP2A	Z	-13.792	.5
3	MP2A	Mx	.003	.5
4	MP2A	X	-23.889	6
5	MP2A	Z	-13.792	6
6	MP2A	Mx	.003	6
7	MP2B	X	-30.712	.5
8	MP2B	Z	-17.732	.5
9	MP2B	Mx	.024	.5
10	MP2B	X	-30.712	6
11	MP2B	Z	-17.732	6
12	MP2B	Mx	.024	6
13	MP2C	X	-23.889	.5
14	MP2C	Z	-13.792	.5
15	MP2C	Mx	021	.5
16	MP2C	X	-23.889	6
17	MP2C	Z	-13.792	6
18	MP2C	Mx	021	6
19	MP2A	X	-23.889	.5
20	MP2A	Z	-13.792	.5
21	MP2A	Mx	.021	.5
22	MP2A	X	-23.889	6
23	MP2A	Z	-13.792	6
24	MP2A	Mx	.021	6
25	MP2B	X	-30.712	.5
26	MP2B	Z	-17.732	.5
27	MP2B	Mx	024	.5
28	MP2B	X	-30.712	6
29	MP2B	Z	-17.732	6
30	MP2B	Mx	024	6
31	MP2C	X	-23.889	.5
32	MP2C	Z	-13.792	.5
33	MP2C	Mx	003	.5
34	MP2C	X	-23.889	6
35	MP2C	Z	-13.792	6
36	MP2C	Mx	003	6
37	MP4A	X	-10.787	.25
38	MP4A	Z	-6.228	.25
39	MP4A	Mx	.005	.25
40	MP4A	X	-10.787	2.25

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

41MP4AZ-6.2282.2542MP4AMx.0052.2543MP4BX-18.478.2544MP4BZ.10.668.2545MP4BMx0.2546MP4BX.18.4782.2547MP4BZ.10.6682.2548MP4BMx02.2549MP4CX.10.787.2550MP4CZ.6.228.2551MP4CMx.005.2552MP4CX.10.7872.2553MP4CZ.6.228.22554MP4CMx.005.2555MP2AX.11.912156MP2AZ.6.878157MP2AX.16.029158MP2BZ.9.254160MP2BMx0161MP2CZ.6.878163MP2CZ.6.878164MP2AX.0061	
42MP4AMx.0052.2543MP4BX-18.478.2544MP4BZ-10.668.2545MP4BMx0.2546MP4BX-18.4782.2547MP4BZ-10.6682.2548MP4BMx02.2549MP4CX-10.787.2550MP4CZ-6.228.2551MP4CMx005.2552MP4CX-10.7872.2553MP4CZ-6.2282.2554MP4CMx0052.2555MP2AX-11.912156MP2AZ-6.878157MP2AMx006158MP2BZ-9.254160MP2BMx0161MP2CX-11.912162MP2CZ-6.878163MP2CMx.006164MP2AX-6.5644	
43MP4BX-18.478.2544MP4BZ-10.668.2545MP4BMx0.2546MP4BX-18.4782.2547MP4BZ-10.6682.2548MP4BMx02.2549MP4CX-10.787.2550MP4CZ-6.228.2551MP4CMx005.2552MP4CZ-6.228.22553MP4CZ-6.282.2554MP4CMx0052.2555MP2AX-11.912156MP2AZ-6.878157MP2AMx006158MP2BZ-9.254160MP2BMx0161MP2CX-11.912162MP2CZ-6.878164MP2AX-16.5644	
44MP4BZ-10.668.2545MP4BMx0.2546MP4BX-18.4782.2547MP4BZ-10.6682.2548MP4BMx02.2549MP4CX-10.787.2550MP4CZ-6.228.2551MP4CMx005.2552MP4CZ-6.2282.2553MP4CZ-6.2282.2554MP4CMx0052.2555MP4CZ-6.878156MP2AZ-6.878157MP2AMx006158MP2BZ-9.254160MP2BMx0161MP2CX-11.912163MP2CMx.006164MP2AX-6.5644	
45 MP4B Mx 0 .25 46 MP4B X -18.478 2.25 47 MP4B Z -10.668 2.25 48 MP4B Mx 0 2.25 49 MP4C X -10.787 .25 50 MP4C Z -6.228 .25 51 MP4C Mx 005 .25 52 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B Z -9.254 1 60 MP2	
46 MP4B X -18.478 2.25 47 MP4B Z -10.668 2.25 48 MP4B Mx 0 2.25 49 MP4C X -10.787 .25 50 MP4C Z -6.228 .25 51 MP4C Mx -005 .25 52 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 54 MP4C X -10.787 2.25 54 MP4C X -10.787 2.25 54 MP4C X -10.787 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C<	
47MP4BZ-10.6682.2548MP4BMx02.2549MP4CX-10.787.2550MP4CZ-6.228.2551MP4CMx005.2552MP4CX-10.7872.2553MP4CZ-6.2282.2554MP4CMx0052.2555MP4CZ-6.2282.2554MP4CMx0052.2555MP2AX-11.912156MP2AZ-6.878157MP2AMx006158MP2BZ-9.254160MP2BMx0161MP2CX-11.912162MP2CZ-6.878163MP2AX-16.029164MP2AX-16.5644	
48 MP4B Mx 0 2.25 49 MP4C X -10.787 .25 50 MP4C Z -6.228 .25 51 MP4C Mx 005 .25 52 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 53 MP4C X -10.787 2.25 54 MP4C X -10.787 2.25 54 MP4C X -10.787 2.25 55 MP4C X -10.787 2.25 54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx -0.06 1 58 MP2B Z -9.254 1 60 <	
49 MP4C X -10.787 .25 50 MP4C Z -6.228 .25 51 MP4C Mx 005 .25 52 MP4C X -10.787 2.25 53 MP4C Z -6.228 2.25 53 MP4C Z -6.228 2.25 54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
50 MP4C Z -6.228 .25 51 MP4C Mx 005 .25 52 MP4C X -10.787 2.25 53 MP4C Z -6.228 2.25 54 MP4C Mx 005 2.25 54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
51 MP4C Mx 005 .25 52 MP4C X -10.787 2.25 53 MP4C Z -6.228 2.25 54 MP4C Mx 005 2.25 55 MP4A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C X -11.912 1 64 MP2A X -6.564 4	
52 MP4C X -10.787 2.25 53 MP4C Z -6.228 2.25 54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C X -11.912 1 63 MP2C X -11.912 1 64 MP2A X -6.564 4	
53 MP4C Z -6.228 2.25 54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C X -11.912 1 63 MP2C X -11.912 1 64 MP2A X -6.564 4	
54 MP4C Mx 005 2.25 55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C X -11.912 1 64 MP2A X -6.564 4	
55 MP2A X -11.912 1 56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C X -11.912 1 64 MP2A X -6.564 4	
56 MP2A Z -6.878 1 57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
57 MP2A Mx 006 1 58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
58 MP2B X -16.029 1 59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
59 MP2B Z -9.254 1 60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
60 MP2B Mx 0 1 61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
61 MP2C X -11.912 1 62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
62 MP2C Z -6.878 1 63 MP2C Mx .006 1 64 MP2A X -6.564 4	
63 MP2C Mx .006 1 64 MP2A X -6.564 4	
64 MP2A X -6.564 4	
65 MP2A 7 -379 4	
66 MP2A My - 003 4	
67 MP2B X -9436 4	
68 MP2B 7 548 4	
70 MP2C Y 6564 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
72 MP20 Wix .003 4 72 MP20 V 27.064 25	
73 MF3A A -27.004 .23	
74 MP3A Z -13.020 .23 75 MD3A My 014 25	
75 MIPSA MIX014 .25	
70 MP3D A -32.090 .23 77 MD3D 7 19.532 35	
77 MP3B Z -18.53Z .25	
78 MP3B MX U .25	
79 MP1B X -23.34 .25	
80 MP1B Z -13.591 .25	
01 IMPTB MIX 0 .25 00 MD4D X 00.54 0.05	
02 MP1B X -23.54 2.25	
δ3 MP1B ∠ -13.591 2.25 84 MD4D Mt 0 0 0	
84 MP1B MX 0 2.25	
85 MP1C X -21.682 .25	
86 MP1C Z -12.518 .25	
87 MP1C Mx011 .25	
88 MP1C X -21.682 2.25	
89 MP1C Z -12.518 2.25	
90 MP1C Mx011 2.25	
91 MP1A X -14.141 .25	
92 MP1A Z -8.164 .25	
93 MP1A Mx .007 .25	
94 MP1A X -14.141 2.25	
95 MP1A Z -8.164 2.25	
96 MP1A Mx .007 2.25	
97 MP1A X -12.54 2.75	

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP1A	Z	-7.24	2.75
99	MP1A	Mx	006	2.75
100	MP1B	Х	-16.029	2.75
101	MP1B	Z	-9.254	2.75
102	MP1B	Mx	0	2.75
103	MP1C	X	-12.54	2.75
104	MP1C	Z	-7.24	2.75
105	MP1C	Mx	.006	2.75

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-16.418	.5
2	MP2A	Z	-28.438	.5
3	MP2A	Mx	011	.5
4	MP2A	X	-16.418	6
5	MP2A	Z	-28.438	6
6	MP2A	Mx	011	6
7	MP2B	X	-16.418	.5
8	MP2B	Z	-28.438	.5
9	MP2B	Mx	.027	.5
10	MP2B	X	-16.418	6
11	MP2B	Z	-28.438	6
12	MP2B	Mx	.027	6
13	MP2C	Х	-12.479	.5
14	MP2C	Z	-21.614	.5
15	MP2C	Mx	012	.5
16	MP2C	X	-12.479	6
17	MP2C	Z	-21.614	6
18	MP2C	Mx	012	6
19	MP2A	Х	-16.418	.5
20	MP2A	Z	-28.438	.5
21	MP2A	Mx	.027	.5
22	MP2A	X	-16.418	6
23	MP2A	Z	-28.438	6
24	MP2A	Mx	.027	6
25	MP2B	X	-16.418	.5
26	MP2B	Z	-28.438	.5
27	MP2B	Mx	011	.5
28	MP2B	X	-16.418	6
29	MP2B	Z	-28.438	6
30	MP2B	Mx	011	6
31	MP2C	X	-12.479	.5
32	MP2C	Z	-21.614	.5
33	MP2C	Mx	012	.5
34	MP2C	X	-12.479	6
35	MP2C	Z	-21.614	6
36	MP2C	Mx	012	6
37	MP4A	Х	-9.188	.25
38	MP4A	Z	-15.914	.25
39	MP4A	Mx	.005	.25
40	MP4A	X	-9.188	2.25
41	MP4A	Z	-15.914	2.25
42	MP4A	Mx	.005	2.25
43	MP4B	X	-9.188	.25
44	MP4B	Z	-15.914	.25
45	MP4B	Mx	.005	.25

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP4B	Х	-9.188	2.25
47	MP4B	Z	-15.914	2.25
48	MP4B	Mx	.005	2.25
49	MP4C	X	-4.748	.25
50	MP4C	Z	-8.224	.25
51	MP4C	Mx	005	.25
52	MP4C	Х	-4.748	2.25
53	MP4C	Z	-8.224	2.25
54	MP4C	Mx	005	2.25
55	MP2A	X	-8.462	1
56	MP2A	Z	-14.657	1
57	MP2A	Mx	- 004	1
58	MP2B	X	-8 462	1
59	MP2B	7	-14 657	1
60	MP2B	Mx	- 004	1
61	MP2C	X	-6 085	1
62	MP2C	7	-10 54	1
63	MP2C	My	006	1
64	MP2A	X	_4 895	4
65	MP2A	7	_8 470	4
66	MP2A	My	-0.475	4
67	MP2R	X	002	4
68	MD2B	7	-9.035	4
69	MP2B	My	-0.473	4
70	MP2C	Y	_3 237	4
70	MP2C	7	-5.237	4
72	MP2C	My	-0.007	4
72	MP3A	Y	-17 563	25
74	MP3A	7	-30.42	25
75	MP3A	My	-009	.25
76	MP3R	Y Y	-17 563	.25
77	MP3B	7	-17.505	.25
78	MP3B	My	-00.42	25
79	MP1B	X	-13 233	25
80	MP1B	7	_22.92	25
81	MP1B	Mx	007	25
82	MP1B	X	-13 233	2.25
83	MP1B	7		2.25
84	MP1B	My	007	2.25
85	MP1C	X	-12 161	25
86	MP1C	7	-21.063	25
87	MP1C	Mx	- 012	25
88	MP1C	X	-12 161	2.25
89	MP1C	7	-21.063	2.25
90	MP1C	Mx	- 012	2.25
91	MP1A	X	-7 426	25
92	MP1A	7	-12 861	25
93	MP1A	Mx	004	25
94	MP1A	X	-7 426	2 25
95	MP1A	7	-12.861	2.25
96	MP1A	Mx	.004	2.25
97	MP1A	X	-8,583	2.75
98	MP1A	7	-14,866	2.75
99	MP1A	Mx	004	2.75
100	MP1B	X	-8,583	2.75
101	MP1B	7	-14,866	2.75
102	MP1B	Mx	004	2.75
102		IVIA	.007	2.10

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	MP1C	X	-6.569	2.75
104	MP1C	Z	-11.378	2.75
105	MP1C	Mx	.007	2.75

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	.5
2	MP2A	Z	-7.387	.5
3	MP2A	Mx	005	.5
4	MP2A	X	0	6
5	MP2A	Z	-7.387	6
6	MP2A	Mx	005	6
7	MP2B	X	0	.5
8	MP2B	Z	-4.224	.5
9	MP2B	Mx	.003	.5
10	MP2B	X	0	6
11	MP2B	Z	-4.224	6
12	MP2B	Mx	.003	6
13	MP2C	X	0	.5
14	MP2C	Z	-4.224	.5
15	MP2C	Mx	000421	.5
16	MP2C	X	0	6
17	MP2C	Z	-4.224	6
18	MP2C	Mx	000421	6
19	MP2A	X	0	.5
20	MP2A	7	-10.951	5
21	MP2A	Mx	007	5
22	MP2A	X	0	6
23	MP2A	7	-10 951	6
24	MP2A	Mx	007	6
25	MP2B	X	0	5
26	MP2B	7	-8 188	5
27	MP2B	Mx	000816	
28	MP2B	X	0	6
29	MP2B	7	-8 188	6
30	MP2B	Mx	000816	6
31	MP2C	X	0	5
32	MP2C	7	-8 188	
33	MP2C	Mx	- 006	
34	MP2C	X	0	
35	MP2C	7	-8 188	6
36	MP2C	Mx	006	6
37	MP4A	X	0	25
38	MP4A	7	-5 333	25
39	MP4A	Mx	0	25
40	MP4A	X	0	2.25
41	MP4A	7	-5 333	2.25
42	MP4A	Mx	0	2.25
43	MP4B	X	Õ	.25
44	MP4B	Z	-2.711	.25
45	MP4B	Mx	.001	.25
46	MP4B	X	0	2.25
47	MP4B	Z	-2.711	2.25
48	MP4B	Mx	.001	2.25
49	MP4C	X	0	.25
50	MP4C	7	-2.711	.25

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP4C	Mx	001	.25
52	MP4C	X	0	2.25
53	MP4C	Z	-2.711	2.25
54	MP4C	Mx	001	2.25
55	MP2A	Х	0	1
56	MP2A	Z	-4.217	1
57	MP2A	Mx	0	1
58	MP2B	X	0	1
59	MP2B	Z	-2.973	1
60	MP2B	Mx	001	1
61	MP2C	X	0	1
62	MP2C	Z	-2.973	1
63	MP2C	Mx	.001	1
64	MP2A	X	0	4
65	MP2A	7	-1 959	4
66	MP2A	Mx	0	4
67	MP2B	X	0	4
68	MP2B	7	-1 184	4
69	MP2B	Mx	- 000513	4
70	MP2C	Y	000313	1
70	MP2C	7	_1 18/	4
72	MP2C		000513	4
72			.000313	25
73	MD3A	7	8.625	.25
74	MD2A		-0.025	.25
75	MD2D		0	.25
70	MD2D		7.074	.25
70	MP3B		-7.074	.25
78	MP3B		003	.25
79	MP1B	X	0	.25
80	MP1B	2	-7.627	.25
81	MP1B	IVIX	.003	.25
82	MP1B	X 7	0	2.25
83	MP1B		-7.627	2.25
84	MP1B		.003	2.25
85	MP1C	X	0	.25
86	MP1C	<u> </u>	-7.627	.25
87	MP1C	MX	003	.25
88	MP1C	X	0	2.25
89	MP1C	<u> </u>	-7.627	2.25
90	MP1C	MX	003	2.25
91	MP1A	X	0	.25
92	MP1A	<u> </u>	-3.891	.25
93	MP1A	Mx	0	.25
94	MP1A	X	0	2.25
95	MP1A	Z	-3.891	2.25
96	MP1A	Mx	0	2.25
97	MP1A	X	0	2.75
98	MP1A	Z	-4.217	2.75
99	MP1A	Mx	0	2.75
100	MP1B	X	0	2.75
101	MP1B	Z	-3.177	2.75
102	MP1B	Mx	001	2.75
103	MP1C	X	0	2.75
104	MP1C	Z	-3.177	2.75
105	MP1C	Mx	.001	2.75

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	3.166	.5
2	MP2A	Z	-5.484	.5
3	MP2A	Mx	005	.5
4	MP2A	X	3.166	6
5	MP2A	Z	-5.484	6
6	MP2A	Mx	005	6
7	MP2B	X	1.585	.5
8	MP2B	Z	-2.745	.5
9	MP2B	Mx	.002	.5
10	MP2B	X	1.585	6
11	MP2B	Z	-2.745	6
12	MP2B	Mx	.002	6
13	MP2C	X	3.166	.5
14	MP2C	Z	-5.484	.5
15	MP2C	Mx	.002	.5
16	MP2C	Х	3,166	6
17	MP2C	Z	-5.484	6
18	MP2C	Mx	.002	6
19	MP2A	X	5.015	.5
20	MP2A	Z	-8,686	.5
21	MP2A	Mx	003	5
22	MP2A	X	5 015	6
23	MP2A	7	-8 686	6
24	MP2A	Mx	003	6
25	MP2B	X	3 633	5
26	MP2B	7	-6 293	
27	MP2B	My	004	.5
28	MD2B	Y	3 633	
20	MD2B	7	-6 203	6
20	MD2B		-0.235	6
21	MD2C		5.015	5
22	MP2C	7	0.010	.5
32	MP2C		-0.000	.5
33	MP2C		000	.5
25	MD2C	7	0.010	6
30	MD2C		-0.000	0
30			006	0
37	MP4A		2.229	.20
30			-3.001	.25
39	MP4A	IVIX	001	.20
40	MP4A	X 7	2.229	2.25
41	MP4A	<u> </u>	-3.801	2.25
42	IVIP4A	IVIX	001	2.20
43	IVIP4B	X 7	.918	.25
44	IVIP4B		-1.591	.25
45	IVIP4B	IVIX	.000918	.25
46	MP4B	X	.918	2.25
4/	MP4B	<u> </u>	-1.591	2.25
48	MP4B	MX	.000918	2.25
49	MP4C	X	2.229	.25
50	MP4C		-3.861	.25
51	MP4C	IVIX	001	.25
52	MP4C	X	2.229	2.25
53	MP4C		-3.861	2.25
54	MP4C	Mx	001	2.25
55	MP2A	X	1.901	1
56	MP2A	Z	-3.293	1
57	MP2A	Mx	.000951	1
RISA-	3D Version 17.0.4	[\\\\\\	\\\\\Rev 0\Risa\468152-VZW	MT_LO_H.r3d] Page 64

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP2B	X	1.279	1
59	MP2B	Z	-2.215	1
60	MP2B	Mx	001	1
61	MP2C	X	1.901	1
62	MP2C	Z	-3.293	1
63	MP2C	Mx	.000951	1
64	MP2A	X	.85	4
65	MP2A	Z	-1.473	4
66	MP2A	Mx	.000425	4
67	MP2B	X	.463	4
68	MP2B	Z	801	4
69	MP2B	Mx	000463	4
70	MP2C	X	.85	4
71	MP2C	Z	-1.473	4
72	MP2C	Mx	.000425	4
73	MP3A	Х	4.054	.25
74	MP3A	Z	-7.022	.25
75	MP3A	Mx	.002	.25
76	MP3B	X	3.279	.25
77	MP3B	Z	-5.679	.25
78	MP3B	Mx	003	.25
79	MP1B	Х	3.69	.25
80	MP1B	Z	-6.391	.25
81	MP1B	Mx	.004	.25
82	MP1B	X	3.69	2.25
83	MP1B	Z	-6.391	2.25
84	MP1B	Mx	.004	2.25
85	MP1C	X	4.06	.25
86	MP1C	Z	-7.032	.25
87	MP1C	Mx	002	.25
88	MP1C	X	4.06	2.25
89	MP1C	Z	-7.032	2.25
90	MP1C	Mx	002	2.25
91	MP1A	X	2.074	.25
92	MP1A	Z	-3.592	.25
93	MP1A	Mx	001	.25
94	MP1A	X	2.074	2.25
95	MP1A	Z	-3.592	2.25
96	MP1A	Mx	001	2.25
97	MP1A	X	1.935	2.75
98	MP1A	Z	-3.352	2.75
99	MP1A	Mx	.000967	2.75
100	MP1B	X	1.415	2.75
101	MP1B	Z	-2.451	2.75
102	MP1B	Mx	001	2.75
103	MP1C	X	1.935	2.75
104	MP1C	Z	-3.352	2.75
105	MP1C	Mx	.000968	2.75

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	3.658	.5
2	MP2A	Z	-2.112	.5
3	MP2A	Mx	003	.5
4	MP2A	X	3.658	6
5	MP2A	Z	-2.112	6

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP2A	Mx	003	6
7	MP2B	X	3.658	.5
8	MP2B	Z	-2.112	.5
9	MP2B	Mx	.000421	.5
10	MP2B	Х	3.658	6
11	MP2B	Z	-2.112	6
12	MP2B	Mx	.000421	6
13	MP2C	X	6.397	.5
14	MP2C	Z	-3.694	.5
15	MP2C	Mx	.005	.5
16	MP2C	Х	6.397	6
17	MP2C	Z	-3.694	6
18	MP2C	Mx	.005	6
19	MP2A	Х	7.091	.5
20	MP2A	Z	-4.094	.5
21	MP2A	Mx	000816	.5
22	MP2A	X	7.091	6
23	MP2A	Z	-4.094	6
24	MP2A	Mx	000816	6
25	MP2B	Х	7.091	.5
26	MP2B	Z	-4.094	.5
27	MP2B	Mx	.006	.5
28	MP2B	X	7.091	6
29	MP2B	Z	-4.094	6
30	MP2B	Mx	.006	6
31	MP2C	Х	9.484	.5
32	MP2C	Z	-5.476	.5
33	MP2C	Mx	007	.5
34	MP2C	Х	9.484	6
35	MP2C	Z	-5.476	6
36	MP2C	Mx	007	6
37	MP4A	Х	2.347	.25
38	MP4A	Z	-1.355	.25
39	MP4A	Mx	001	.25
40	MP4A	Х	2.347	2.25
41	MP4A	Z	-1.355	2.25
42	MP4A	Mx	001	2.25
43	MP4B	Х	2.347	.25
44	MP4B	Z	-1.355	.25
45	MP4B	Mx	.001	.25
46	MP4B	Х	2.347	2.25
47	MP4B	Z	-1.355	2.25
48	MP4B	Mx	.001	2.25
49	MP4C	Х	4.618	.25
50	MP4C	Z	-2.666	.25
51	MP4C	Mx	0	.25
52	MP4C	X	4.618	2.25
53	MP4C	Z	-2.666	2.25
54	MP4C	Mx	0	2.25
55	MP2A	X	2.574	1
56	MP2A	Z	-1.486	1
57	MP2A	Mx	.001	1
58	MP2B	X	2.574	1
59	MP2B	Z	-1.486	1
60	MP2B	Mx	001	1
61	MP2C	X	3.652	1
62	MP2C	7	-2 109	1
02	1011 20	2	2.100	

RISA-3D Version 17.0.4 [\...\...\...\...\...\...\Rev 0\Risa\468152-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP2C	Mx	0	1
64	MP2A	X	1.025	4
65	MP2A	Z	592	4
66	MP2A	Mx	.000512	4
67	MP2B	Х	1.025	4
68	MP2B	Z	592	4
69	MP2B	Mx	000513	4
70	MP2C	Х	1.697	4
71	MP2C	Z	98	4
72	MP2C	Mx	0	4
73	MP3A	Х	6.126	.25
74	MP3A	Z	-3.537	.25
75	MP3A	Mx	.003	.25
76	MP3B	Х	6.126	.25
77	MP3B	Z	-3.537	.25
78	MP3B	Mx	003	.25
79	MP1B	Х	6.605	.25
80	MP1B	Z	-3.813	.25
81	MP1B	Mx	.003	.25
82	MP1B	Х	6.605	2.25
83	MP1B	Z	-3.813	2.25
84	MP1B	Mx	.003	2.25
85	MP1C	X	7.246	.25
86	MP1C	Z	-4.183	.25
87	MP1C	Mx	0	.25
88	MP1C	Х	7.246	2.25
89	MP1C	Z	-4.183	2.25
90	MP1C	Mx	0	2.25
91	MP1A	Х	4.037	.25
92	MP1A	Z	-2.33	.25
93	MP1A	Mx	002	.25
94	MP1A	Х	4.037	2.25
95	MP1A	Z	-2.33	2.25
96	MP1A	Mx	002	2.25
97	MP1A	Х	2.751	2.75
98	MP1A	Z	-1.588	2.75
99	MP1A	Mx	.001	2.75
100	MP1B	X	2.751	2.75
101	MP1B	Z	-1.588	2.75
102	MP1B	Mx	001	2.75
103	MP1C	X	3.652	2.75
104	MP1C	Z	-2.109	2.75
105	MP1C	Mx	0	2.75

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	3.17	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	002	.5
4	MP2A	X	3.17	6
5	MP2A	Z	0	6
6	MP2A	Mx	002	6
7	MP2B	Х	6.333	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	002	.5
10	MP2B	X	6.333	6

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

11 MP2B Z 0 6 12 MP2C X 6.333 .5 14 MP2C Z 0 .5 15 MP2C X 6.333 .6 16 MP2C X 6.333 .6 17 MP2C Z 0 .5 18 MP2C Z 0 .5 20 MP2A X 7.267 .5 20 MP2A X 7.267 .6 21 MP2A X 7.267 .6 23 MP2A Z 0 .5 24 MP2A Mx .004 .6 25 MP2B Z 0 .5 26 MP2B X 1003 .6 30 MP2B Mx .008 .5 31 MP2C X 1003 .6 33 MP2C Z .0		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12 MP2B Mx -002 6 13 MP2C Z 0 .5 14 MP2C Z 0 .5 15 MP2C X 6.333 .6 16 MP2C X 6.333 .6 17 MP2C Z 0 .6 18 MP2C X 7.267 .5 20 MP2A Z 0 .6 21 MP2A Z 0 .5 22 MP2A Z 0 .6 24 MP2A Z 0 .6 25 MP2B X 10.03 .5 26 MP2B Z 0 .6 30 MP2B Z 0 .6 31 MP2C X 10.03 .5 32 MP2C Z 0 .6 33 MP2C X 10.03 .5	11	MP2B	Z	0	6
13 MP2C X 6.333 .5 14 MP2C Z 0 .5 15 MP2C X 6.333 6 17 MP2C Z 0 6 18 MP2C Z 0 6 19 MP2A X 7.267 .5 20 MP2A X 7.267 .6 21 MP2A X 7.267 .6 23 MP2A Z 0 .5 24 MP2A MX .004 .6 25 MP2B X 10.03 .6 26 MP2B X 10.03 .6 30 MP2B Z 0 .5 31 MP2C X 10.03 .6 33 MP2C X 10.03 .6 34 MP2C X 10.03 .6 35 MP2A .0 .25 </td <td>12</td> <td>MP2B</td> <td>Mx</td> <td>002</td> <td>6</td>	12	MP2B	Mx	002	6
14 MP2C Z 0 .5 15 MP2C X 6.333 6 17 MP2C Z 0 6 18 MP2C X 7.267 .5 20 MP2A Z 0 .5 21 MP2A Z 0 .6 23 MP2A Z 0 .6 24 MP2A X 7.267 .6 23 MP2A Z 0 .6 24 MP2A X 10.03 .5 26 MP2B Z 0 .6 30 MP2B Z 0 .6 31 MP2C X 10.03 .5 32 MP2C Z 0 .6 33 MP2C X 10.03 .5 34 MP2C X 10.33 .5 33 MP2C X 1.337 .25	13	MP2C	X	6.333	.5
15 MP2C Mx .005 .5 16 MP2C Z 0 6 17 MP2C Z 0 6 18 MP2C X 7.267 .5 20 MP2A X 7.267 .5 21 MP2A X 7.267 .6 23 MP2A Z 0 .6 24 MP2A X 7.004 .6 25 MP2B X 10.03 .5 26 MP2B X 10.03 .6 29 MP2B X 10.03 .5 31 MP2C X 10.03 .5 32 MP2C X 10.03 .6 34 MP2C X 10.03 .5 33 MP2C X 10.03 .6 36 MP2C X 10.03 .6 37 MP4A X .003 <td>14</td> <td>MP2C</td> <td>Z</td> <td>0</td> <td>.5</td>	14	MP2C	Z	0	.5
16 MP2C X 6.333 6 17 MP2C Z 0 6 18 MP2C Mx 005 6 19 MP2A Z 0 5 20 MP2A Z 0 5 21 MP2A X 7.267 6 23 MP2A X 0 6 24 MP2A Z 0 6 25 MP2B X 10.03 6 26 MP2B X 10.03 6 27 MP2B Mx .008 .5 28 MP2B X 10.03 6 30 MP2C X 10.03 .5 31 MP2C X 10.03 .6 33 MP2C Mx .003 .6 34 MP2C X 1.0.3 .6 36 MP2C X 1.0.3 .6<	15	MP2C	Mx	.005	.5
17 MP2C Z 0 6 18 MP2A X 7.267 5 20 MP2A X 7.267 5 21 MP2A X 7.267 6 22 MP2A X 7.267 6 23 MP2A Z 0 6 24 MP2A X 7.267 6 23 MP2A Z 0 6 24 MP2A MX -0.04 6 25 MP2B X 10.03 .5 26 MP2B Z 0 6 30 MP2B MX .008 6 31 MP2C X 10.03 .5 34 MP2C X 10.03 6 35 MP2C X 10.03 6 36 MP2C X 10.33 25 38 MP4A Z 0 .2	16	MP2C	X	6.333	6
18 MP2C Mk .005 6 19 MP2A Z 0 .5 20 MP2A Z 0 .5 21 MP2A X 7.267 .6 23 MP2A X 7.267 .6 24 MP2A X .004 .6 23 MP2A X .003 .6 24 MP2A X .003 .6 25 MP2B X .008 .5 26 MP2B X .10.03 .6 27 MP2B X .10.03 .6 30 MP2C X .10.03 .6 31 MP2C X .10.03 .6 33 MP2C Mx .003 .6 34 MP2C X .10.3 .6 36 MP2C Z .0 .25 39 MP4A X .1837	17	MP2C	Z	0	6
	18	MP2C	Mx	.005	6
	19	MP2A	X	7.267	.5
1 MP2A Mx 004 .5 22 MP2A X 7.267 6 23 MP2A Z 0 6 24 MP2A Z 0 6 25 MP2B X 10.03 .5 26 MP2B Z 0 .5 27 MP2B Mx .008 .5 28 MP2B Z 0 6 30 MP2B Z 0 6 31 MP2C X 10.03 .5 32 MP2C X 10.03 .6 33 MP2C X 10.03 .6 34 MP2C X 10.03 .6 35 MP2C X 10.03 .6 36 MP2C Mx .003 .6 37 MP4A X 1.837 .225 40 MP4A X 1.837	20	MP2A	Z	0	.5
22 MP2A X $7,267$ 6 23 MP2A Z 0 6 24 MP2A Z 0 6 25 MP2B X 10.03 .5 26 MP2B Z 0 .5 27 MP2B X 10.03 6 30 MP2B X 10.03 6 30 MP2B X 10.03 .5 31 MP2C X 10.03 .5 32 MP2C X 10.03 6 33 MP2C X 10.03 6 34 MP2C X 1.03 6 37 MP4A X 1.837 .25 38 MP4A X 1.837 .25 40 MP4A X 1.837 .225 44 MP4A X 4.459 .25 44 MP4B	21	MP2A	Mx	004	.5
23 MP2A Z 0 6 24 MP2A Mx -004 6 25 MP2B X 10.03 .5 26 MP2B Z 0 .5 27 MP2B MX .008 .5 28 MP2B Z 0 6 30 MP2B Z 0 .5 31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C X 10.03 .6 34 MP2C X 10.03 .6 36 MP2C Z 0 .6 36 MP2C Mx 003 .6 36 MP2C Mx .003 .6 36 MP2C Mx .025 .25 39 MP4A X 1.837 .225 40 MP4A X 4.459	22	MP2A	X	7.267	6
24 MP2A Mx 004 6 25 MP2B X 10.03 .5 26 MP2B Z 0 .5 27 MP2B X 10.03 .6 28 MP2B X 10.03 .6 29 MP2B Z 0 .6 30 MP2B Mx .008 .6 31 MP2C X 10.03 .5 32 MP2C X 10.03 .5 34 MP2C X 10.03 .6 55 MP2C Z 0 .5 34 MP2C X 10.03 .6 55 MP3A X 1.837 .25 38 MP4A Z 0 .25 40 MP4A X 1.837 .25 41 MP4A X 4.459 .25 42 MP4A Mx .0	23	MP2A	Z	0	6
25 MP2B X 10.03 .5 26 MP2B Z 0 .5 27 MP2B Mx .008 .5 28 MP2B Z 0 .6 30 MP2B Z 0 .6 31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C X 10.03 .5 34 MP2C X 10.03 .6 35 MP2C X 10.03 .6 36 MP2C Mx .003 .6 36 MP2C Mx .003 .6 37 MP4A Z 0 .25 39 MP4A Z 0 .25 40 MP4A Z 0 .225 41 MP4A Z 0 .225 44 MP4B X .4459	24	MP2A	Mx	004	6
16 MP2B Z 0 5 27 MP2B Mx .008 .5 28 MP2B X 10.03 .6 30 MP2B Z 0 .6 31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C Z 0 .5 34 MP2C X 10.03 .6 35 MP2C Z 0 .5 36 MP2C Z 0 .6 37 MP4A X 1.837 .25 38 MP4A Z 0 .225 40 MP4A X 1.837 .225 41 MP4A X 1.837 .225 42 MP4A X 4.459 .225 43 MP4B X 4.459 .225 44 MP4B X 4.459 <td>25</td> <td>MP2B</td> <td>X</td> <td>10.03</td> <td>.5</td>	25	MP2B	X	10.03	.5
27 MP2B Mx 008 5 28 MP2B Z 0 6 30 MP2B Z 0 6 31 MP2C X 10.03 5 32 MP2C Z 0 5 33 MP2C X 10.03 5 34 MP2C Z 0 6 35 MP2C Z 0 6 36 MP2C Mx -003 6 36 MP2C Mx -033 6 37 MP4A Z 0 .25 38 MP4A Z 0 .25 40 MP4A Z 0 .25 41 MP4A Z 0 .25 42 MP4A Z 0 .25 44 MP4B X .4459 .25 44 MP4B Mx .001 .25 </td <td>26</td> <td>MP2B</td> <td>Z</td> <td>0</td> <td>.5</td>	26	MP2B	Z	0	.5
28 MP2B X 10.03 6 29 MP2B Z 0 6 30 MP2B Mx .008 6 31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C Z 0 .6 34 MP2C Z 0 .6 35 MP2C Z 0 .6 36 MP2C Z 0 .6 37 MP4A X 1.837 .25 38 MP4A Z 0 .25 40 MP4A X 1.837 .225 41 MP4A X 1.837 .225 42 MP4A Mx .001 .25 44 MP4B X 4.459 .25 44 MP4B X 4.459 .25 54 MP4B Mx .001	27	MP2B	Mx	.008	.5
29 MP2B Z 0 6 30 MP2B Mx .008 6 31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C Mx 003 .5 34 MP2C X 10.03 6 36 MP2C X 10.03 6 36 MP2C X 1.837 .25 38 MP4A X 1.837 .25 40 MP4A Z 0 .25 41 MP4A Z 0 .25 41 MP4A X 4.459 .25 44 MP4B X 4.459 .25 44 MP4B X 4.459 .25 45 MP4B Mx .001 .25 46 MP4B X 4.459 .25 50 MP4C X 4.4	28	MP2B	X	10.03	6
30 MP2B Mx .008 6 31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C X 10.03 .5 34 MP2C X 10.03 .5 34 MP2C X 10.03 .6 35 MP2C Z 0 .6 36 MP2C X 10.03 .6 36 MP2C X .003 .6 36 MP2C X .003 .6 37 MP4A X .1837 .25 38 MP4A Z 0 .25 40 MP4A Mx .000918 .2.25 41 MP4A Mx .001 .25 42 MP4B X 4.459 .2.25 43 MP4B X 4.459 .2.25 45 MP4B X	29	MP2B	Z	0	6
31 MP2C X 10.03 .5 32 MP2C Z 0 .5 33 MP2C Mx 003 .5 34 MP2C X 10.03 6 35 MP2C Z 0 6 36 MP2C X 1.837 .25 38 MP4A X 1.837 .25 39 MP4A Z 0 .25 40 MP4A Z 0 .25 41 MP4A X 1.837 .225 42 MP4A MX 00918 .225 43 MP4B Z 0 .25 44 MP4B Z 0 .25 44 MP4B MX .001 .25 45 MP4B MX .001 .25 46 MP4B MX .001 .25 50 MP4C MX .	30	MP2B	Mx	.008	6
32 MP2C Z 0 .5 33 MP2C X 10.03 .5 34 MP2C X 10.03 .6 35 MP2C Z 0 .6 36 MP2C X .003 .6 36 MP2C Mx .003 .6 37 MP4A X .1.837 .25 38 MP4A Z 0 .25 39 MP4A X .1.837 .2.25 41 MP4A X 0 .225 43 MP4B Z 0 .25 44 MP4B Z 0 .25 45 MP4B X .4459 .25 46 MP4B Z 0 .225 47 MP4B Z 0 .225 51 MP4C X .4459 .225 52 MP4C X .4459 <td>31</td> <td>MP2C</td> <td>X</td> <td>10.03</td> <td>.5</td>	31	MP2C	X	10.03	.5
33 MP2C Mx 003 .5 34 MP2C X 10.03 6 35 MP2C Z 0 6 36 MP2C X 1.837 .25 38 MP4A X 1.837 .25 39 MP4A X 1.837 .225 41 MP4A X 1.837 .225 41 MP4A X 1.837 .225 41 MP4A X .001 .25 42 MP4A X .4459 .225 43 MP4B X .01 .25 44 MP4B Z 0 .25 45 MP4B Mx .001 .25 46 MP4B X .4459 .225 47 MP4B Mx .001 .225 49 MP4C X .4459 .255 50 MP4C X<	32	MP2C	Z	0	.5
34 MP2C X 10.03 6 35 MP2C Z 0 6 36 MP2C Mx 003 6 37 MP4A X 1.837 .25 38 MP4A X 1.837 .25 39 MP4A X 1.837 .25 40 MP4A X 1.837 .25 41 MP4A X 1.837 .25 42 MP4A X 1.837 .25 44 MP4B Z 0 .25 43 MP4B X .4459 .25 44 MP4B Z 0 .25 45 MP4B X .459 .225 46 MP4B X .4459 .25 50 MP4C X .4459 .25 51 MP4C X .4459 .25 52 MP4C X	33	MP2C	Mx	003	.5
35 MP2C Z 0 6 36 MP2C Mx 003 6 37 MP4A X 1.837 .25 38 MP4A Z 0 .25 39 MP4A Mx 000918 .25 40 MP4A X 1.837 .225 41 MP4A X 1.837 .225 41 MP4A X 0 .225 42 MP4A Mx 000918 .225 43 MP4B X .4459 .25 44 MP4B X .001 .25 45 MP4B X .001 .25 46 MP4B X .001 .25 47 MP4B X .001 .25 50 MP4C X .4459 .25 51 MP4C Mx .001 .25 52 MP4C Mx<	34	MP2C	X	10.03	6
36 MP2C Mx 003 6 37 MP4A X 1.837 .25 38 MP4A Z 0 .25 39 MP4A Mx 000918 .25 40 MP4A X 1.837 .2.25 41 MP4A X 1.837 .2.25 42 MP4A X 1.837 .2.25 43 MP4B X .4459 .2.25 44 MP4B Z 0 .25 44 MP4B X .4459 .25 45 MP4B X .4459 .225 46 MP4B X .4459 .25 46 MP4B X .4459 .25 50 MP4C X .4459 .25 51 MP4C X .4459 .25 52 MP4C X .459 .225 53 MP4C	35	MP2C	Z	0	6
37 MP4A X 1.837 .25 38 MP4A Z 0 .25 39 MP4A Mx 000918 .25 40 MP4A X 1.837 2.25 41 MP4A Z 0 2.25 41 MP4A Z 0 2.25 43 MP4B X 4.459 .25 43 MP4B X 0.01 .25 44 MP4B Z 0 .25 46 MP4B Mx .001 .25 46 MP4B X 4.459 .25 47 MP4B Mx .001 .25 48 MP4C X 4.459 .25 50 MP4C X 4.459 .25 51 MP4C Mx .001 .25 52 MP4C X 2.56 .25 53 MP4C X <td>36</td> <td>MP2C</td> <td>Mx</td> <td>003</td> <td>6</td>	36	MP2C	Mx	003	6
38 MP4A Z 0 .25 39 MP4A Mx 000918 .25 40 MP4A X 1.837 2.25 41 MP4A Z 0 2.25 42 MP4A Mx 000918 2.25 43 MP4B X 4.459 .25 44 MP4B Z 0 .25 45 MP4B Mx .001 .25 46 MP4B X 4.459 .25 48 MP4B Mx .001 .225 48 MP4C X 4.459 .25 50 MP4C X 4.459 .25 51 MP4C X 4.459 .25 52 MP4C X 4.459 .25 53 MP4C Z 0 .25 54 MP4C X .2558 1 56 MP2A Z<	37	MP4A	X	1.837	.25
39MP4AMx000918.2540MP4AX1.8372.2541MP4AZ02.2542MP4AMx0009182.2543MP4BX4.459.2544MP4BZ0.2545MP4BX4.459.2546MP4BX4.459.22547MP4BZ0.2548MP4BX4.459.22549MP4CX4.459.2550MP4CZ0.2551MP4CX4.459.2552MP4CX4.459.2553MP4CZ0.2554MP4CX4.459.22555MP4CX4.459.22555MP4CX4.459.22555MP4CX.001.22555MP2AX.2558156MP2AZ0158MP2BX.3.802160MP2BX.00951161MP2CX.3.802162MP2CZ0164MP2AX.925465MP2AZ0466MP2AX.000463466MP2AX.000463466MP2AX.0004634	38	MP4A	Z	0	.25
40MP4AX1.8372.2541MP4AZ02.2542MP4AMx0009182.2543MP4BX4.459.2544MP4BZ0.2545MP4BMx.001.2546MP4BX4.459.22547MP4BZ02.2548MP4BMx.001.25549MP4CX4.459.2550MP4CZ0.2551MP4CX4.459.2552MP4CZ0.2553MP4CZ0.2554MP4CX4.4592.2555MP4CZ0.22554MP4CMx.001.22555MP2AZ0156MP2AZ0157MP2AMx.001158MP2BZ0160MP2BMx.000951161MP2CZ0163MP2CZ0164MP2AX.925465MP2AZ0466MP2AX.000463467MP2BX1.7014	39	MP4A	Mx	000918	.25
41 MP4A Z 0 2.25 42 MP4A Mx 000918 2.25 43 MP4B X 4.459 .25 44 MP4B Z 0 .25 45 MP4B Mx .001 .25 46 MP4B X 4.459 2.25 47 MP4B Z 0 .25 48 MP4B X 4.459 .25 49 MP4C X 4.459 .25 50 MP4C X 4.459 .25 51 MP4C Mx .001 .25 52 MP4C X 4.459 .225 53 MP4C X .459 .225 54 MP4C Mx .001 .225 55 MP2A Z 0 1 56 MP2A Z 0 1 57 MP2A Mx	40	MP4A	X	1.837	2.25
42MP4AMx 000918 2.2543MP4BX4.459.2544MP4BZ0.2545MP4BMx.001.2546MP4BX4.4592.2547MP4BZ02.2548MP4BMx.0012.2549MP4CX4.459.2550MP4CZ0.2551MP4CMx.001.2552MP4CX4.459.2553MP4CZ0.2554MP4CMx.001.22555MP2AX2.558156MP2AZ0157MP2AX3.802158MP2BZ0160MP2BMx000951161MP2CX3.802163MP2CZ0164MP2AX.925465MP2AX.000951164MP2AX.925465MP2AX.000463466MP2AMx.000463467MP2BX1.7014	41	MP4A	Z	0	2.25
43MP4BX4.459.2544MP4BZ0.2545MP4BMx.001.2546MP4BX4.459.22547MP4BZ0.22548MP4BMx.001.22549MP4CX4.459.2550MP4CX4.459.2551MP4CX4.459.2552MP4CX4.459.22553MP4CZ0.2554MP4CX4.459.22555MP4CZ0.22554MP4CX.001.22555MP2AZ0156MP2AZ0157MP2AMx.001158MP2BX3.802160MP2BMx.000951161MP2CX3.802163MP2AZ0164MP2AX.925465MP2AZ0466MP2AX.00463467MP2BX1.7014	42	MP4A	Mx	000918	2.25
44MP4BZ0.2545MP4BMx.001.2546MP4BX4.459.2.2547MP4BZ0.2.2548MP4CX4.459.2549MP4CX4.459.2550MP4CZ0.2551MP4CMx.001.2552MP4CZ0.2553MP4CZ0.2554MP4CMx.001.2555MP2AZ0.22554MP4CMx.001.22555MP2AZ0156MP2AZ0157MP2AX3.802159MP2BZ0160MP2BMx000951161MP2CX3.802163MP2AZ0164MP2AX.925465MP2AZ0466MP2AX.00463467MP2BX1.7014	43	MP4B	X	4.459	.25
45MP4BMx.001.2546MP4BX4.4592.2547MP4BZ02.2548MP4BMx.0012.2549MP4CX4.459.2550MP4CZ0.2551MP4CMx.001.2552MP4CX4.459.2553MP4CZ0.2554MP4CMx.001.2555MP4CZ0.22554MP4CMx.0012.2555MP2AZ0156MP2AZ0158MP2BX3.802159MP2BZ0160MP2BMx000951161MP2CZ0163MP2AZ0465MP2AZ0466MP2AX.925467MP2BX1.7014	44	MP4B	Z	0	.25
46MP4BX4.4592.2547MP4BZ02.2548MP4BMx.0012.2549MP4CX4.459.2550MP4CZ0.2551MP4CMx.001.2552MP4CZ0.2553MP4CZ0.22554MP4CMx.001.22555MP2AX2.558156MP2AZ0157MP2AMx.001158MP2BZ0159MP2BZ0160MP2BMx.000951161MP2CZ0163MP2CZ0464MP2AX.925465MP2AZ0466MP2AMx.000463467MP2BX1.7014	45	MP4B	Mx	.001	.25
47MP4BZ02.2548MP4BMx.0012.2549MP4CX4.459.2550MP4CZ0.2551MP4CMx.001.2552MP4CX4.4592.2553MP4CZ02.2554MP4CMx.0012.2555MP2AX2.558156MP2AZ0157MP2AMx.001158MP2BX3.802160MP2BMx000951161MP2CZ0162MP2AZ0163MP2AX.925465MP2AZ0466MP2AX.000463467MP2BX1.7014	46	MP4B	X	4.459	2.25
48 MP4B Mx .001 2.25 49 MP4C X 4.459 .25 50 MP4C Z 0 .25 51 MP4C Mx .001 .25 52 MP4C X 4.459 .25 53 MP4C X 4.459 .25 53 MP4C Z 0 .25 54 MP4C Mx .001 .225 54 MP4C Mx .001 2.25 55 MP2A X 2.558 1 56 MP2A Z 0 1 57 MP2A Mx .001 1 58 MP2B X 3.802 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C X .	47	MP4B	Z	0	2.25
49MP4CX 4.459 .2550MP4CZ0.2551MP4CMx.001.2552MP4CX 4.459 .22553MP4CZ0.22554MP4CMx.001.22555MP2AX.2558156MP2AZ0157MP2AMx.001158MP2BX3.802159MP2BZ0160MP2BMx000951161MP2CX3.802163MP2CZ0164MP2AX.925465MP2AZ0466MP2AMx.000463467MP2BX1.7014	48	MP4B	Mx	.001	2.25
50MP4CZ0.25 51 MP4CMx.001.25 52 MP4CX4.4592.25 53 MP4CZ02.25 54 MP4CMx.0012.25 55 MP2AX2.5581 56 MP2AZ01 57 MP2AMx.0011 58 MP2BX3.8021 59 MP2BZ01 60 MP2BMx.0009511 61 MP2CX3.8021 62 MP2CZ01 63 MP2AX.9254 65 MP2AZ04 66 MP2AX.0004634 67 MP2BX1.7014	49	MP4C	Х	4.459	.25
51 MP4C Mx .001 .25 52 MP4C X 4.459 2.25 53 MP4C Z 0 2.25 54 MP4C Mx .001 2.25 55 MP2A X 2.558 1 56 MP2A Z 0 1 57 MP2A Mx .001 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C X 3.802 1 64 MP2A X .925 4 65 MP2A Z 0 4 65 MP2A Z 0 4 66 MP2A Z 0 4	50	MP4C	Z	0	.25
52 MP4C X 4.459 2.25 53 MP4C Z 0 2.25 54 MP4C Mx .001 2.25 55 MP2A X 2.558 1 56 MP2A Z 0 1 57 MP2A Z 0 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C X 3.802 1 64 MP2C X 3.802 1 63 MP2C A -000951 1 63 MP2A Z 0 4 65 MP2A Z 0 4 66 MP2A Z 0 4 <td>51</td> <td>MP4C</td> <td>Mx</td> <td>.001</td> <td>.25</td>	51	MP4C	Mx	.001	.25
53 MP4C Z 0 2.25 54 MP4C Mx .001 2.25 55 MP2A X 2.558 1 56 MP2A Z 0 1 57 MP2A Mx .001 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C X 3.802 1 63 MP2C X 3.802 1 64 MP2C X 3.802 1 63 MP2C Z 0 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701	52	MP4C	X	4.459	2.25
54 MP4C Mx .001 2.25 55 MP2A X 2.558 1 56 MP2A Z 0 1 57 MP2A Mx .001 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C X 3.802 1 63 MP2C X 3.802 1 64 MP2C X 3.802 1 63 MP2C Z 0 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A X .000463 4 67 MP2B X 1.701 4	53	MP4C	Z	0	2.25
55 MP2A X 2.558 1 56 MP2A Z 0 1 57 MP2A Mx .001 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C X 3.802 1 63 MP2C X 3.802 1 64 MP2C X 3.802 1 63 MP2C Z 0 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A X .000463 4 67 MP2B X 1.701 4	54	MP4C	Mx	.001	2.25
56 MP2A Z 0 1 57 MP2A Mx .001 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C Z 0 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A X .000463 4 67 MP2B X 1.701 4	55	MP2A	X	2.558	1
57 MP2A Mx .001 1 58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C Z 0 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A X .000463 4 67 MP2B X 1.701 4	56	MP2A	Z	0	1
58 MP2B X 3.802 1 59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C Z 0 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A X .000463 4 67 MP2B X 1.701 4	57	MP2A	Mx	.001	1
59 MP2B Z 0 1 60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C Mx 000951 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	58	MP2B	X	3.802	1
60 MP2B Mx 000951 1 61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C Mx 000951 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	59	MP2B	Z	0	1
61 MP2C X 3.802 1 62 MP2C Z 0 1 63 MP2C Mx 000951 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	60	MP2B	Mx	000951	1
62 MP2C Z 0 1 63 MP2C Mx 000951 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	61	MP2C	X	3.802	1
63 MP2C Mx 000951 1 64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	62	MP2C	Z	0	1
64 MP2A X .925 4 65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	63	MP2C	Mx	000951	1
65 MP2A Z 0 4 66 MP2A Mx .000463 4 67 MP2B X 1.701 4	64	MP2A	X	.925	4
66 MP2A Mx .000463 4 67 MP2B X 1.701 4	65	MP2A	Z	0	4
67 MP2B X 1.701 4	66	MP2A	Mx	.000463	4
	67	MP2B	X	1.701	4

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2B	Z	0	4
69	MP2B	Mx	000425	4
70	MP2C	X	1.701	4
71	MP2C	Z	0	4
72	MP2C	Mx	000425	4
73	MP3A	X	6.557	.25
74	MP3A	Z	0	.25
75	MP3A	Mx	.003	.25
76	MP3B	X	8.108	.25
77	MP3B	Z	0	.25
78	MP3B	Mx	002	.25
79	MP1B	Х	8.12	.25
80	MP1B	Z	0	.25
81	MP1B	Mx	.002	.25
82	MP1B	Х	8.12	2.25
83	MP1B	Z	0	2.25
84	MP1B	Mx	.002	2.25
85	MP1C	X	8.12	.25
86	MP1C	Z	0	.25
87	MP1C	Mx	.002	.25
88	MP1C	X	8.12	2.25
89	MP1C	Z	0	2.25
90	MP1C	Mx	.002	2.25
91	MP1A	X	4.918	.25
92	MP1A	Z	0	.25
93	MP1A	Mx	002	.25
94	MP1A	X	4.918	2.25
95	MP1A	Z	0	2.25
96	MP1A	Mx	002	2.25
97	MP1A	X	2.83	2.75
98	MP1A	Z	0	2.75
99	MP1A	Mx	.001	2.75
100	MP1B	X	3.87	2.75
101	MP1B	Z	0	2.75
102	MP1B	Mx	000967	2.75
103	MP1C	X	3.87	2.75
104	MP1C	Z	0	2.75
105	MP1C	Mx	000967	2.75

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	3.658	.5
2	MP2A	Z	2.112	.5
3	MP2A	Mx	000421	.5
4	MP2A	Х	3.658	6
5	MP2A	Z	2.112	6
6	MP2A	Mx	000421	6
7	MP2B	Х	6.397	.5
8	MP2B	Z	3.694	.5
9	MP2B	Mx	005	.5
10	MP2B	X	6.397	6
11	MP2B	Z	3.694	6
12	MP2B	Mx	005	6
13	MP2C	Х	3.658	.5
14	MP2C	Z	2.112	.5
15	MP2C	Mx	.003	.5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP2C	X	3.658	6
17	MP2C	Z	2.112	6
18	MP2C	Mx	.003	6
19	MP2A	Х	7.091	.5
20	MP2A	Z	4.094	.5
21	MP2A	Mx	006	.5
22	MP2A	Х	7.091	6
23	MP2A	Z	4.094	6
24	MP2A	Mx	006	6
25	MP2B	X	9.484	.5
26	MP2B	Z	5.476	.5
27	MP2B	Mx	.007	.5
28	MP2B	X	9.484	6
29	MP2B	Z	5.476	6
30	MP2B	Mx	.007	6
31	MP2C	X	7.091	.5
32	MP2C	Z	4.094	.5
33	MP2C	Mx	.000816	.5
34	MP2C	X	7.091	6
35	MP2C	Z	4.094	6
36	MP2C	Mx	.000816	6
37	MP4A	X	2 347	25
38	MP4A	Z	1.355	.25
39	MP4A	Mx	- 001	.25
40	MP4A	X	2.347	2.25
41	MP4A	Z	1.355	2.25
42	MP4A	Mx	- 001	2.25
43	MP4B	X	4.618	.25
44	MP4B	Z	2,666	.25
45	MP4B	Mx	0	25
46	MP4B	X	4 618	2 25
47	MP4B	Z	2,666	2.25
48	MP4B	Mx	0	2.25
49	MP4C	X	2.347	.25
50	MP4C	Z	1.355	.25
51	MP4C	Mx	001	25
52	MP4C	X	2 347	2.25
53	MP4C	7	1 355	2.25
54	MP4C	Mx	001	2.25
55	MP2A	X	2 574	1
56	MP2A	Z	1.486	1
57	MP2A	Mx	.001	1
58	MP2B	X	3.652	1
59	MP2B	Z	2.109	1
60	MP2B	Mx	0	1
61	MP2C	X	2.574	1
62	MP2C	Z	1.486	1
63	MP2C	Mx	- 001	1
64	MP2A	X	1.025	4
65	MP2A	Z	.592	4
66	MP2A	Mx	.000512	4
67	MP2B	X	1.697	4
68	MP2B	Z	.98	4
69	MP2B	Mx	0	4
70	MP2C	X	1.025	4
71	MP2C	Z	.592	4
72	MP2C	Mx	000513	4

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP3A	X	6.126	.25
74	MP3A	Z	3.537	.25
75	MP3A	Mx	.003	.25
76	MP3B	Х	7.47	.25
77	MP3B	Z	4.313	.25
78	MP3B	Mx	0	.25
79	MP1B	Х	7.246	.25
80	MP1B	Z	4.183	.25
81	MP1B	Mx	0	.25
82	MP1B	Х	7.246	2.25
83	MP1B	Z	4.183	2.25
84	MP1B	Mx	0	2.25
85	MP1C	Х	6.605	.25
86	MP1C	Z	3.813	.25
87	MP1C	Mx	.003	.25
88	MP1C	X	6.605	2.25
89	MP1C	Z	3.813	2.25
90	MP1C	Mx	.003	2.25
91	MP1A	X	4.037	.25
92	MP1A	Z	2.33	.25
93	MP1A	Mx	002	.25
94	MP1A	X	4.037	2.25
95	MP1A	Z	2.33	2.25
96	MP1A	Mx	002	2.25
97	MP1A	X	2.751	2.75
98	MP1A	Z	1.588	2.75
99	MP1A	Mx	.001	2.75
100	MP1B	X	3.652	2.75
101	MP1B	Z	2.109	2.75
102	MP1B	Mx	0	2.75
103	MP1C	X	2.751	2.75
104	MP1C	Z	1.588	2.75
105	MP1C	Mx	001	2.75

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	3.166	.5
2	MP2A	Z	5.484	.5
3	MP2A	Mx	.002	.5
4	MP2A	X	3.166	6
5	MP2A	Z	5.484	6
6	MP2A	Mx	.002	6
7	MP2B	X	3.166	.5
8	MP2B	Z	5.484	.5
9	MP2B	Mx	005	.5
10	MP2B	X	3.166	6
11	MP2B	Z	5.484	6
12	MP2B	Mx	005	6
13	MP2C	X	1.585	.5
14	MP2C	Z	2.745	.5
15	MP2C	Mx	.002	.5
16	MP2C	X	1.585	6
17	MP2C	Z	2.745	6
18	MP2C	Mx	.002	6
19	MP2A	X	5.015	.5
20	MP2A	Z	8.686	.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

21 MP2A Mx -008 .5 22 MP2A Z 8.686 .6 23 MP2A Z 8.686 .6 24 MP2A Mx -008 .6 25 MP2B X 5.015 .5 26 MP2B X 5.015 .6 29 MP2B X 5.015 .6 30 MP2B X .5.015 .6 31 MP2C X .3633 .5 32 MP2C X .3633 .6 34 MP2C X .3633 .6 36 MP2C X .3633 .6 36 MP2C X .3633 .6 37 MP4A X .2229 .25 38 MP4A X .2229 .25 40 MP4A X .2229 .25 41 MP4A X		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
22 MP2A X 5.015 6 23 MP2A X 5.015 5.5 24 MP2A Mx -0.08 6 25 MP2B X 5.015 5.5 26 MP2B X 5.015 6 27 MP2B Mx 0.03 .5 28 MP2B X 5.015 6 29 MP2B X 3.633 .5 32 MP2C Z 6.293 6 34 MP2C X 3.633 .6 35 MP2C X 3.633 .6 36 MP2C X 3.633 .6 36 MP2C X 3.633 .6 37 MP4A X 2.229 .25 38 MP4A Z 3.861 .2.25 40 MP4A X 2.229 .25 41 MP4B X	21	MP2A	Mx	008	.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22	MP2A	X	5.015	6
24 MP2A Mx 008 6 25 MP2B X 5.015 .5 26 MP2B Z 8.686 .5 27 MP2B X 5.015 .6 28 MP2B Z 8.686 .6 30 MP2C Z 8.633 .5 31 MP2C Z 6.293 .5 33 MP2C X 3.633 .6 34 MP2C X 3.633 .6 35 MP2C Z 6.293 .5 34 MP2C X 3.633 .6 36 MP2C Mx .004 .6 37 MP4A X 2.229 .22 40 MP4A X 2.229 .22 41 MP4A X 2.229 .25 42 MP4B X .229 .25 43 MP4B X	23	MP2A	Z	8.686	6
25 MP2B X 5.015 .5 26 MP2B Z 8.686 .5 27 MP2B X 5.015 6 28 MP2B Z 8.686 6 30 MP2B X 5.015 6 31 MP2C X 3.633 .5 32 MP2C Z 6.293 .5 33 MP2C X 3.633 .6 35 MP2C Z 6.293 .6 36 MP2C Z 3.861 .25 38 MP4A X 2.229 .25 38 MP4A Z 3.861 .25 40 MP4A X 2.229 .25 41 MP4A Z 3.861 .225 42 MP4B X 2.229 .25 43 MP4B X 2.229 .25 44 MP4B X	24	MP2A	Mx	008	6
26 MP2B Z 8.686 .5 27 MP2B X 5.015 6 28 MP2B Z 8.686 6 30 MP2B X 3.633 .5 31 MP2C X 3.633 .5 33 MP2C X 3.633 .6 34 MP2C X 3.633 .6 35 MP2C Z 6.293 .6 36 MP2C X 3.633 .6 36 MP2C X 3.633 .6 37 MP4A X 2.229 .22 41 MP4A Z 3.861 .25 40 MP4A X 2.229 .22 41 MP4A Z 3.861 .25 43 MP4B Z 3.861 .25 44 MP4B X .229 .25 45 MP4B X	25	MP2B	X	5.015	.5
27 MP2B Mx 003 .5 28 MP2B X 5015 6 30 MP2B X 3633 .5 31 MP2C X 3633 .5 32 MP2C Z 6.293 .5 33 MP2C X 3633 6 34 MP2C X 3.633 6 35 MP2C Z 6.293 6 36 MP2C X 3.861 .25 38 MP4A X 2.229 .25 38 MP4A X 2.229 .25 40 MP4A X 2.229 .25 41 MP4B Z 3.861 .225 42 MP4A MX .001 .25 44 MP4B Z 3.861 .25 45 MP4B X .2.29 .25 46 MP4B X	26	MP2B	Z	8.686	.5
28 MP2B X 5.015 6 29 MP2B Z 8.686 6 30 MP2C X 3.633 .5 31 MP2C Z 6.293 .5 33 MP2C X 3.633 .6 34 MP2C X 3.633 .6 36 MP2C X 3.633 .6 36 MP2C X 3.633 .6 36 MP2C X 3.611 .25 39 MP4A X 2.229 .25 41 MP4A Z 3.861 .225 42 MP4A MX .001 .225 43 MP4B X .229 .25 44 MP4B X .229 .25 45 MP4B MX .001 .25 46 MP4B X .229 .25 50 MP4C X	27	MP2B	Mx	.003	.5
29 MP2B Z 8.686 6 30 MP2B Mx .003 6 31 MP2C X 3.633 .5 32 MP2C Z 6.293 .5 33 MP2C X 3.633 6 34 MP2C Z 6.293 6 36 MP2C Z 6.293 6 36 MP2C Mx .004 6 37 MP4A X 2.29 .25 38 MP4A Z 3.861 .25 39 MP4A X 2.229 .25 41 MP4A X 2.229 .25 42 MP4A Mx .001 .25 43 MP4B Z 3.861 .25 44 MP4B Z 3.861 .25 45 MP4B X .229 .25 46 MP4B X	28	MP2B	X	5.015	6
30 MP2B Mx 003 6 31 MP2C X 3.633 .5 32 MP2C Z 6.293 .5 33 MP2C X 3.633 .6 34 MP2C X 3.633 .6 35 MP2C Z .6.293 .6 36 MP2C Mx .004 .6 37 MP4A X 2.229 .25 39 MP4A X 2.229 .225 41 MP4A X 2.229 .225 42 MP4A Mx .001 .225 43 MP4B X .229 .25 44 MP4B X .229 .25 45 MP4B Mx .001 .25 46 MP4B X .229 .25 50 MP4C X .918 .25 51 MP4C X <td>29</td> <td>MP2B</td> <td>Z</td> <td>8.686</td> <td>6</td>	29	MP2B	Z	8.686	6
31 MP2C X 3.633 .5 32 MP2C Z 6.293 .5 33 MP2C Mx 004 .5 34 MP2C Z 6.293 .6 35 MP2C Z 6.293 .6 36 MP2C Z 6.293 .6 36 MP2C MX .004 .6 37 MP4A X .2229 .25 38 MP4A Z .3.861 .25 40 MP4A X .2229 .25 41 MP4A Z .3.861 .225 43 MP4B Z .3.861 .25 44 MP4B Z .3.861 .25 45 MP4B X .229 .25 46 MP4B X .229 .25 47 MP4B Z .3.861 .25 50 MP4C X	30	MP2B	Mx	.003	6
32 MP2C Z 6.293 .5 33 MP2C Nx .004 .5 34 MP2C X 3.633 6 35 MP2C Z 6.293 6 36 MP2C Mx .004 6 37 MP4A X 2.229 .25 38 MP4A Z 3.861 .25 40 MP4A X .229 .25 41 MP4A X .229 .25 42 MP4A X .229 .25 43 MP4B X .229 .25 44 MP4B X .229 .25 45 MP4B Mx .001 .25 46 MP4B X .229 .25 50 MP4C Z .1591 .25 51 MP4C X .918 .25 52 MP4C X	31	MP2C	X	3.633	.5
33 MP2C Mx .004 .5 34 MP2C X 3633 6 35 MP2C Z 6.293 6 36 MP2C Mx .004 6 37 MP4A X 2.229 .25 38 MP4A Z 3.861 .25 40 MP4A X 2.229 .225 41 MP4A X .2.29 .25 42 MP4A Mx .001 .2.25 43 MP4B X .2.29 .25 44 MP4B Z .3.661 .2.25 45 MP4B MX .001 .25 46 MP4B Z .3.61 .2.25 47 MP4B Z .3.61 .2.25 50 MP4C X .918 .2.25 51 MP4C MX .000918 .25 52 MP4C	32	MP2C	Z	6.293	.5
34 MP2C X 3.633 6 35 MP2C Z 6.293 6 36 MP2C Mx .004 6 37 MP4A X 2.229 .25 38 MP4A Z 3.861 .25 40 MP4A MX 001 .25 40 MP4A X 2.229 .25 41 MP4A X 2.229 .25 42 MP4A Mx 001 .25 43 MP4B X 2.229 .25 44 MP4B X 2.229 .25 44 MP4B X .229 .25 45 MP4B X .229 .25 46 MP4B X .229 .25 50 MP4C X .918 .25 51 MP4C X .918 .25 52 MP4C <	33	MP2C	Mx	.004	.5
35 MP2C Z 6.293 6 36 MP2C Mx 004 6 37 MP4A X 2.229 .25 38 MP4A Z 3.861 .25 40 MP4A Mx .001 .25 41 MP4A X 2.229 .25 41 MP4A Z .3681 .225 41 MP4A Z .3681 .225 43 MP4B Z .3681 .225 43 MP4B Z .3861 .25 45 MP4B Z .3861 .25 46 MP4B X .209 .25 47 MP4B Z .3861 .225 48 MP4C X .918 .25 50 MP4C X .918 .225 51 MP4C Mx .000918 .225 52 MP2A	34	MP2C	X	3.633	6
36 MP2C Mx .004 6 37 MP4A X 2.229 .25 38 MP4A Z 3.861 .25 39 MP4A Mx 001 .25 40 MP4A X 2.229 .225 41 MP4A X .229 .25 42 MP4A Mx 001 .25 43 MP4B X .229 .25 44 MP4B X .229 .25 44 MP4B X .229 .25 44 MP4B X .229 .25 45 MP4B Mx .001 .25 46 MP4B X .229 .25 47 MP4B Mx .001 .25 50 MP4C Z .3861 .25 51 MP4C Z .1591 .225 52 MP4C	35	MP2C	Z	6.293	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36	MP2C	Mx	.004	6
38 MP4A Z 3.861 .25 39 MP4A Mx .001 .25 40 MP4A X 2.229 .225 41 MP4A Z .3861 .225 42 MP4A Mx .001 .225 43 MP4B X .2229 .25 44 MP4B Z .3.861 .225 45 MP4B X .2229 .25 46 MP4B X .201 .25 47 MP4B X .229 .225 48 MP4B X .229 .225 49 MP4C X .918 .25 50 MP4C X .918 .25 51 MP4C X .918 .225 53 MP4C Z .1.591 .2.25 54 MP4A X .100918 .225 55 MP2A	37	MP4A	X	2.229	.25
39MP4AMx001.2540MP4AX2.2292.2541MP4AZ3.8612.2542MP4AMx0012.2543MP4BX2.229.2544MP4BZ3.861.2545MP4BX2.2292.2546MP4BX2.2292.2547MP4BZ3.8612.2548MP4BX2.2292.2549MP4CX.918.2550MP4CZ1.591.2551MP4CMx.00018.2552MP4CX.918.22553MP4CX.00918.2554MP4CMx.0009182.2555MP2AX.1.901156MP2AZ3.283157MP2AX.1.901158MP2BZ3.293160MP2BZ3.293161MP2CZ2.215163MP2AX.601164MP2AX.85465MP2AZ.1473466MP2AX.85467MP2BX.85468MP2BX.463469MP2BX.663470MP2CX.663 <td< td=""><td>38</td><td>MP4A</td><td>Z</td><td>3.861</td><td>.25</td></td<>	38	MP4A	Z	3.861	.25
40 MP4A X 2.229 2.25 41 MP4A Z 3.861 2.25 42 MP4A Mx 001 2.25 43 MP4B X 2.229 .25 44 MP4B Z 3.861 .25 45 MP4B X 2.229 .25 46 MP4B X 2.229 .25 46 MP4B X .229 .25 46 MP4B X .225 .25 47 MP4B Z .3.861 .2.25 48 MP4B Mx .001 .2.25 50 MP4C X .918 .25 51 MP4C X .918 .2.25 53 MP4C X .1.991 .1 56 MP2A X .1.991 .1 56 MP2A X .1.901 .1 58 MP2B	39	MP4A	Mx	001	.25
41MP4AZ 3.861 2.25 42MP4AMx001 2.25 43MP4BX 2.229 2.5 44MP4BZ 3.861 25 45MP4BMx001 25 46MP4BX 2.29 2.25 47MP4BZ 3.861 2.25 48MP4BMx001 2.25 49MP4CX.918.2550MP4CZ1.591.2551MP4CMx.000918.2552MP4CX.918.22553MP4CZ.918.22554MP4CMx.000918.22555MP2AZ.3.293.156MP2AZ.3.293.157MP2AMx.000951.158MP2BZ.3.293.160MP2BMx.000951.161MP2CX.1279.162MP2CZ.2.1473.464MP2AX.85.466MP2AZ.1.473.467MP2BX.86.468MP2BX.85.469MP2BX.85.470MP2CX.463.471MP2CX.463.473MP3AX.000425.473	40	MP4A	X	2.229	2.25
42MP4AMx0012.2543MP4BX2.229.2544MP4BZ3.861.2545MP4BMx001.2546MP4BX2.2292.2547MP4BZ3.8612.2548MP4BMx0012.2549MP4CX.918.2550MP4CZ1.591.2551MP4CX.918.2552MP4CX.9182.2553MP4CZ1.591.22554MP4CX.9182.2555MP4CX1.901156MP2AX1.901157MP2AX1.901158MP2BX1.901160MP2BX1.279161MP2CX1.279162MP2CZ2.215163MP2AX.85464MP2AX.85465MP2AZ1.473466MP2AZ1.473467MP2BX.85468MP2BZ1.473469MP2BX.86470MP2CX.86471MP2CZ.801472MP2CX.6004634	41	MP4A	Z	3.861	2.25
43 MP4B X 2.229 .25 44 MP4B Z 3.861 .25 45 MP4B Mx 001 .25 46 MP4B X 2.229 2.25 47 MP4B Z 3.861 2.25 48 MP4B Mx 001 2.25 49 MP4C X .918 .25 50 MP4C Z 1.591 .25 51 MP4C Mx .000918 .225 53 MP4C Z 1.591 2.25 54 MP4C Mx .000918 2.25 55 MP2A Z 3.293 1 56 MP2A Z 3.293 1 57 MP2A X 1.901 1 58 MP2B Z 3.293 1 60 MP2B Z 2.215 1 63 MP2C	42	MP4A	Mx	001	2.25
44MP4BZ 3.861 25 45MP4BMx001.2546MP4BX 2.229 2.25 47MP4BZ 3.861 2.25 48MP4BMx001 2.25 49MP4CX.918.2550MP4CZ1.591.2551MP4CX.918.22552MP4CZ1.591.2553MP4CZ1.591.22554MP4CX.918.22555MP2AX1.901156MP2AZ3.293157MP2AX1.901158MP2BX1.901160MP2BX1.279161MP2CX1.279162MP2CZ2.215163MP2AX.85466MP2AZ1.473466MP2AZ1.473466MP2AZ1.473468MP2BZ1.473469MP2BZ1.473469MP2BZ1.473470MP2CX.863471MP2CZ.801472MP2CX.600463473MP3AX4.054.2574MP3AZ7.022 <t< td=""><td>43</td><td>MP4B</td><td>X</td><td>2.229</td><td>.25</td></t<>	43	MP4B	X	2.229	.25
45MP4BMx001.2546MP4BX2.2292.2547MP4BZ3.8612.2548MP4BMx0012.2549MP4CX.918.2550MP4CZ1.591.2551MP4CX.918.2552MP4CZ1.5912.2553MP4CZ1.5912.2554MP4CMx.0009182.2555MP2AX1.901156MP2AZ3.293157MP2AX1.901158MP2BX1.901160MP2BX1.279161MP2CX1.279162MP2AZ3.293464MP2AX.85465MP2AZ1.473466MP2AX.85466MP2AX.85467MP2BX.85468MP2BZ1.473469MP2BX.85470MP2CX.463471MP2CZ.801472MP2AX.25.2574MP3AX.000463473MP3AX.000463474MP3AZ7.022.25 <td>44</td> <td>MP4B</td> <td>Z</td> <td>3.861</td> <td>.25</td>	44	MP4B	Z	3.861	.25
46MP4BX2.2292.2547MP4BZ3.8612.2548MP4BMx0012.2549MP4CX.918.2550MP4CZ1.591.2551MP4CMx.000918.2552MP4CX.9182.2553MP4CZ1.5912.2554MP4CMx.0009182.2555MP2AX1.901156MP2AZ3.293157MP2BX1.901158MP2BX1.901159MP2BZ3.293160MP2BMx.000951161MP2CX1.279162MP2AZ2.215163MP2AX.85464MP2AX.85465MP2AZ1.473466MP2AX.85467MP2BX.85468MP2BZ1.473469MP2BX.85470MP2CX.463471MP2CZ.801472MP3AX.000463473MP3AZ7.022.25	45	MP4B	Mx	001	.25
47MP4BZ 3.861 2.25 48MP4BMx 001 2.25 49MP4CX $.918$ $.25$ 50MP4CZ 1.591 $.25$ 51MP4CMx $.000918$ $.225$ 52MP4CZ $.1591$ 2.25 53MP4CZ $.1591$ 2.25 54MP4CMx $.000918$ 2.25 55MP2AX $.1901$ 156MP2AZ 3.293 157MP2AMx $.000951$ 158MP2BZ 3.293 160MP2BMx $.000951$ 161MP2CX 1.279 162MP2CZ 2.215 163MP2AX $.85$ 465MP2AX $.85$ 466MP2AX $.85$ 466MP2AX $.85$ 467MP2BZ 1.473 468MP2BZ 1.473 468MP2BZ 1.473 469MP2BMx $.000425$ 470MP2CX $.463$ 471MP2CZ $.801$ 472MP2CMx $.000463$ 473MP3AX 4.054 $.255$	46	MP4B	X	2.229	2.25
48MP4BMx0012.2549MP4CX.918.2550MP4CZ1.591.2551MP4CMx.000918.2552MP4CZ1.5912.2553MP4CZ1.5912.2554MP4CMx.0009182.2555MP2AX1.901156MP2AZ3.293157MP2BX1.901158MP2BX1.901159MP2BZ3.293160MP2BX1.901161MP2CX1.279162MP2CZ2.215163MP2AX.855464MP2AX.85465MP2AZ1.473466MP2AX.85467MP2BX.85468MP2BZ.1473469MP2BMx.000425470MP2CZ.801471MP2CZ.801472MP2CMx.000463473MP3AX4.064.2574MP3AZ7.022.25	47	MP4B	Z	3.861	2.25
49 MP4C X .918 .25 50 MP4C Z 1.591 .25 51 MP4C X .000918 .25 52 MP4C X .918 .225 53 MP4C Z 1.591 .225 54 MP4C Mx .000918 .225 55 MP4C X 1.901 1 56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B Z 3.293 1 60 MP2B Z 3.293 1 61 MP2C X 1.901 1 62 MP2C X 1.279 1 63 MP2C X .2179 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X	48	MP4B	Mx	001	2.25
50MP4CZ1.591.2551MP4CMx.000918.2552MP4CX.9182.2553MP4CZ1.5912.2554MP4CMx.0009182.2555MP2AX1.901156MP2AZ3.293157MP2AMx.000951158MP2BX1.901159MP2BZ3.293160MP2BMx.000951161MP2CX1.279162MP2AZ2.215163MP2AX.855465MP2AZ1.473466MP2AX.85467MP2BX.85468MP2BZ1.473469MP2BX.85470MP2BX.85471MP2CZ.801472MP2CX.463473MP3AX.000463474MP3AZ7.022.25	49	MP4C	X	.918	.25
51 MP4C Mx .000918 .25 52 MP4C X .918 2.25 53 MP4C Z 1.591 2.25 54 MP4C Mx .000918 2.25 55 MP2A X 1.901 1 56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C X .85 4 65 MP2A Z 1.473 4 66 MP2A Z 1.473 4 66 MP2A X .85 4 67 MP2B X	50	MP4C	Z	1.591	.25
52 MP4C X .918 2.25 53 MP4C Z 1.591 2.25 54 MP4C Mx .000918 2.25 55 MP2A X 1.901 1 56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B Z 3.293 1 60 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B X 1.279 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 68 MP2B Z <td< td=""><td>51</td><td>MP4C</td><td>Mx</td><td>.000918</td><td>.25</td></td<>	51	MP4C	Mx	.000918	.25
53 MP4C Z 1.591 2.25 54 MP4C Mx .000918 2.25 55 MP2A X 1.901 1 56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B Z 3.293 1 59 MP2B Z 3.293 1 60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B X	52	MP4C	X	.918	2.25
54 MP4C Mx .000918 2.25 55 MP2A X 1.901 1 56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 67 MP2B X .85 4 68 MP2B X .85 4 69 MP2B Mx .000425 4 70 MP2C X .4	53	MP4C	Z	1.591	2.25
55 MP2A X 1.901 1 56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B Z 3.293 1 61 MP2C X 1.279 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2A X .85 4 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 68 MP2B Z 1.473	54	MP4C	Mx	.000918	2.25
56 MP2A Z 3.293 1 57 MP2A Mx .000951 1 58 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B X 1.901 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B X .85 4 70 MP2C X .463 4 71 MP2C Z .801 4 71 MP2C Z .801	55	MP2A	X	1.901	1
57 MP2A Mx .000951 1 58 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .855 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 66 MP2A Z 1.473 4 68 MP2B X .85 4 69 MP2B X .85 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx .000463 4 73 MP3A Z 7.022 <td>56</td> <td>MP2A</td> <td>Z</td> <td>3.293</td> <td>1</td>	56	MP2A	Z	3.293	1
58 MP2B X 1.901 1 59 MP2B Z 3.293 1 60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 66 MP2A X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B X .85 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Z .801 4 73 MP3A X 4.054	57	MP2A	Mx	.000951	1
59 MP2B Z 3.293 1 60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A X .85 4 66 MP2A X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B X .85 4 70 MP2B X .463 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054	58	MP2B	X	1.901	1
60 MP2B Mx .000951 1 61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A Z 1.473 4 66 MP2A Z 1.473 4 66 MP2B X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022	59	MP2B	Z	3.293	1
61 MP2C X 1.279 1 62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A Z 1.473 4 66 MP2A X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B X .85 4 70 MP2B Mx .000425 4 71 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25 <td>60</td> <td>MP2B</td> <td>Mx</td> <td>.000951</td> <td>1</td>	60	MP2B	Mx	.000951	1
62 MP2C Z 2.215 1 63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A Mx .000425 4 66 MP2B X .85 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B X .85 4 70 MP2B X .463 4 71 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	61	MP2C	X	1.279	1
63 MP2C Mx 001 1 64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A Mx .000425 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C X .25 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	62	MP2C	Z	2.215	1
64 MP2A X .85 4 65 MP2A Z 1.473 4 66 MP2A Mx .000425 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	63	MP2C	Mx	001	1
65 MP2A Z 1.473 4 66 MP2A Mx .000425 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2B Mx .000425 4 71 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C X .4054 .25 74 MP3A Z 7.022 .25	64	MP2A	X	.85	4
66 MP2A Mx .000425 4 67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	65	MP2A	Z	1.473	4
67 MP2B X .85 4 68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	66	MP2A	Mx	.000425	4
68 MP2B Z 1.473 4 69 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	67	MP2B	X	.85	4
69 MP2B Mx .000425 4 70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	68	MP2B	Z	1.473	4
70 MP2C X .463 4 71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	69	MP2B	Mx	.000425	4
71 MP2C Z .801 4 72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	70	MP2C	X	.463	4
72 MP2C Mx 000463 4 73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	71	MP2C	Z	.801	4
73 MP3A X 4.054 .25 74 MP3A Z 7.022 .25	72	MP2C	Mx	000463	4
74 MP3A Z 7.022 .25	73	MP3A	X	4.054	.25
	74	MP3A	Z	7.022	.25
75 MP3A Mx .002 .25	75	MP3A	Mx	.002	.25
76 MP3B X 4.054 .25	76	MP3B	X	4.054	.25
77 MP3B Z 7.022 .25	77	MP3B	Z	7.022	.25

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP3B	Mx	.002	.25
79	MP1B	X	4.06	.25
80	MP1B	Z	7.032	.25
81	MP1B	Mx	002	.25
82	MP1B	X	4.06	2.25
83	MP1B	Z	7.032	2.25
84	MP1B	Mx	002	2.25
85	MP1C	X	3.69	.25
86	MP1C	Z	6.391	.25
87	MP1C	Mx	.004	.25
88	MP1C	X	3.69	2.25
89	MP1C	Z	6.391	2.25
90	MP1C	Mx	.004	2.25
91	MP1A	Х	2.074	.25
92	MP1A	Z	3.592	.25
93	MP1A	Mx	001	.25
94	MP1A	X	2.074	2.25
95	MP1A	Z	3.592	2.25
96	MP1A	Mx	001	2.25
97	MP1A	X	1.935	2.75
98	MP1A	Z	3.352	2.75
99	MP1A	Mx	.000967	2.75
100	MP1B	X	1.935	2.75
101	MP1B	Z	3.352	2.75
102	MP1B	Mx	.000968	2.75
103	MP1C	X	1.415	2.75
104	MP1C	Z	2.451	2.75
105	MP1C	Mx	001	2.75

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Х	0	.5
2	MP2A	Z	7.387	.5
3	MP2A	Mx	.005	.5
4	MP2A	Х	0	6
5	MP2A	Z	7.387	6
6	MP2A	Mx	.005	6
7	MP2B	Х	0	.5
8	MP2B	Z	4.224	.5
9	MP2B	Mx	003	.5
10	MP2B	X	0	6
11	MP2B	Z	4.224	6
12	MP2B	Mx	003	6
13	MP2C	Х	0	.5
14	MP2C	Z	4.224	.5
15	MP2C	Mx	.000421	.5
16	MP2C	Х	0	6
17	MP2C	Z	4.224	6
18	MP2C	Mx	.000421	6
19	MP2A	X	0	.5
20	MP2A	Z	10.951	.5
21	MP2A	Mx	007	.5
22	MP2A	X	0	6
23	MP2A	Z	10.951	6
24	MP2A	Mx	007	6
25	MP2B	X	0	.5

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP2B	Z	8.188	.5
27	MP2B	Mx	000816	.5
28	MP2B	Х	0	6
29	MP2B	Z	8.188	6
30	MP2B	Mx	000816	6
31	MP2C	X	0	.5
32	MP2C	Z	8,188	.5
33	MP2C	Mx	006	5
34	MP2C	X	.000	.0
35	MP2C	7	8 188	6
36	MP2C	My	0.100	6
27	MD4A		.000	25
20		7	5 222	.25
30			0.333	.20
39		IVIX	0	.20
40	MP4A	× 7	5 000	2.20
41	MP4A	2	5.333	2.25
42	MP4A	NX	0	2.25
43	MP4B	X	0	.25
44	MP4B	Z	2.711	.25
45	MP4B	Mx	001	.25
46	MP4B	X	0	2.25
47	MP4B	Z	2.711	2.25
48	MP4B	Mx	001	2.25
49	MP4C	X	0	.25
50	MP4C	Z	2.711	.25
51	MP4C	Mx	.001	.25
52	MP4C	Х	0	2.25
53	MP4C	Z	2.711	2.25
54	MP4C	Mx	.001	2.25
55	MP2A	X	0	1
56	MP2A	7	4 217	1
57	MP2A	Mx	0	1
58	MP2B	X	0	1
59	MP2B	7	2 973	1
60	MP2B	My	001	1
61	MP2C		.001	1
62	MP2C	7	2.072	1
62	MD2C		2.973	1
64	MP20	IVIX	001	4
04	MP2A	× 7	1.050	4
00			1.959	4
00	MP2A	IVIX	0	4
67	MP2B	X	0	4
68	MP2B	<u> </u>	1.184	4
69	MP2B	Mx	.000513	4
70	MP2C	X	0	4
71	MP2C	Z	1.184	4
72	MP2C	Mx	000513	4
73	MP3A	Χ	0	.25
74	MP3A	Z	8.625	.25
75	MP3A	Mx	0	.25
76	MP3B	X	0	.25
77	MP3B	Z	7.074	.25
78	MP3B	Mx	.003	.25
79	MP1B	X	0	.25
80	MP1B	Z	7.627	.25
81	MP1B	Mx	003	.25
82	MP1B	Х	0	2.25

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	MP1B	Z	7.627	2.25
84	MP1B	Mx	003	2.25
85	MP1C	Х	0	.25
86	MP1C	Z	7.627	.25
87	MP1C	Mx	.003	.25
88	MP1C	Х	0	2.25
89	MP1C	Z	7.627	2.25
90	MP1C	Mx	.003	2.25
91	MP1A	Х	0	.25
92	MP1A	Z	3.891	.25
93	MP1A	Mx	0	.25
94	MP1A	X	0	2.25
95	MP1A	Z	3.891	2.25
96	MP1A	Mx	0	2.25
97	MP1A	X	0	2.75
98	MP1A	Z	4.217	2.75
99	MP1A	Mx	0	2.75
100	MP1B	X	0	2.75
101	MP1B	Z	3.177	2.75
102	MP1B	Mx	.001	2.75
103	MP1C	X	0	2.75
104	MP1C	Z	3.177	2.75
105	MP1C	Mx	001	2.75

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.166	.5
2	MP2A	Z	5.484	.5
3	MP2A	Mx	.005	.5
4	MP2A	X	-3.166	6
5	MP2A	Z	5.484	6
6	MP2A	Mx	.005	6
7	MP2B	X	-1.585	.5
8	MP2B	Z	2.745	.5
9	MP2B	Mx	002	.5
10	MP2B	X	-1.585	6
11	MP2B	Z	2.745	6
12	MP2B	Mx	002	6
13	MP2C	X	-3.166	.5
14	MP2C	Z	5.484	.5
15	MP2C	Mx	002	.5
16	MP2C	X	-3.166	6
17	MP2C	Z	5.484	6
18	MP2C	Mx	002	6
19	MP2A	Х	-5.015	.5
20	MP2A	Z	8.686	.5
21	MP2A	Mx	003	.5
22	MP2A	X	-5.015	6
23	MP2A	Z	8.686	6
24	MP2A	Mx	003	6
25	MP2B	X	-3.633	.5
26	MP2B	Z	6.293	.5
27	MP2B	Mx	004	.5
28	MP2B	X	-3.633	6
29	MP2B	Z	6.293	6
30	MP2B	Mx	004	6

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2C	X	-5.015	.5
32	MP2C	Z	8.686	.5
33	MP2C	Mx	.008	.5
34	MP2C	X	-5.015	6
35	MP2C	Z	8.686	6
36	MP2C	Mx	.008	6
37	MP4A	X	-2.229	.25
38	MP4A	Z	3.861	.25
39	MP4A	Mx	.001	.25
40	MP4A	X	-2.229	2.25
41	MP4A	Z	3.861	2.25
42	MP4A	Mx	.001	2.25
43	MP4B	X	918	.25
44	MP4B	Z	1.591	.25
45	MP4B	Mx	000918	.25
46	MP4B	X	918	2.25
47	MP4B	Z	1.591	2.25
48	MP4B	Mx	000918	2.25
49	MP4C	X	-2.229	.25
50	MP4C	Z	3.861	.25
51	MP4C	Mx	.001	.25
52	MP4C	X	-2.229	2.25
53	MP4C	Z	3.861	2.25
54	MP4C	Mx	.001	2.25
55	MP2A	X	-1.901	1
56	MP2A	Z	3.293	1
57	MP2A	Mx	000951	1
58	MP2B	X	-1.279	1
59	MP2B	Z	2.215	1
60	MP2B	Mx	.001	1
61	MP2C	X	-1.901	1
62	MP2C	Z	3.293	1
63	MP2C	Mx	000951	1
64	MP2A	X	85	4
65	MP2A	Z	1.473	4
66	MP2A	Mx	000425	4
67	MP2B	X	463	4
68	MP2B	Z	.801	4
69	MP2B	Mx	.000463	4
70	MP2C	X	85	4
71	MP2C	Z	1.473	4
72	MP2C	Mx	000425	4
73	MP3A	X	-4.054	.25
74	MP3A	Z	7.022	.25
75	MP3A	Mx	002	.25
76	MP3B	X	-3.279	.25
77	MP3B	Z	5.679	.25
78	MP3B	Mx	.003	.25
79	MP1B	X	-3.69	.25
80	MP1B	Z	6.391	.25
81	MP1B	Mx	004	.25
82	MP1B	X	-3.69	2.25
83	MP1B	Z	6.391	2.25
84	MP1B	Mx	004	2.25
85	MP1C	X	-4.06	.25
86	MP1C	Z	7.032	.25
87	<u>MP1C</u>	Mx	.002	.25

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP1C	X	-4.06	2.25
89	MP1C	Z	7.032	2.25
90	MP1C	Mx	.002	2.25
91	MP1A	X	-2.074	.25
92	MP1A	Z	3.592	.25
93	MP1A	Mx	.001	.25
94	MP1A	X	-2.074	2.25
95	MP1A	Z	3.592	2.25
96	MP1A	Mx	.001	2.25
97	MP1A	X	-1.935	2.75
98	MP1A	Z	3.352	2.75
99	MP1A	Mx	000967	2.75
100	MP1B	X	-1.415	2.75
101	MP1B	Z	2.451	2.75
102	MP1B	Mx	.001	2.75
103	MP1C	X	-1.935	2.75
104	MP1C	Z	3.352	2.75
105	MP1C	Mx	000968	2.75

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.658	.5
2	MP2A	Z	2.112	.5
3	MP2A	Mx	.003	.5
4	MP2A	X	-3.658	6
5	MP2A	Z	2.112	6
6	MP2A	Mx	.003	6
7	MP2B	X	-3.658	.5
8	MP2B	Z	2.112	.5
9	MP2B	Mx	000421	.5
10	MP2B	X	-3.658	6
11	MP2B	Z	2.112	6
12	MP2B	Mx	000421	6
13	MP2C	X	-6.397	.5
14	MP2C	Z	3.694	.5
15	MP2C	Mx	005	.5
16	MP2C	X	-6.397	6
17	MP2C	Z	3.694	6
18	MP2C	Mx	005	6
19	MP2A	X	-7.091	.5
20	MP2A	Z	4.094	.5
21	MP2A	Mx	.000816	.5
22	MP2A	X	-7.091	6
23	MP2A	Z	4.094	6
24	MP2A	Mx	.000816	6
25	MP2B	X	-7.091	.5
26	MP2B	Z	4.094	.5
27	MP2B	Mx	006	.5
28	MP2B	X	-7.091	6
29	MP2B	Z	4.094	6
30	MP2B	Mx	006	6
31	MP2C	X	-9.484	.5
32	MP2C	Z	5.476	.5
33	MP2C	Mx	.007	.5
34	MP2C	X	-9.484	6
35	MP2C	Z	5.476	6

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP2C	Mx	.007	6
37	MP4A	X	-2.347	.25
38	MP4A	Z	1.355	.25
39	MP4A	Mx	.001	.25
40	MP4A	Х	-2.347	2.25
41	MP4A	Z	1.355	2.25
42	MP4A	Mx	.001	2.25
43	MP4B	X	-2.347	25
44	MP4B	7	1 355	25
45	MP4B	Mx	- 001	25
46	MP4B	X	-2 347	2.25
40	MD4B	7	1 355	2.20
47	MD4B		- 001	2.25
40	MP4C		4.619	2.20
49	MP4C	7	-4.010	.25
50	MD4C		2.000	.25
51	MP4C	IVIX	1 010	.25
52	MP4C	× 7	-4.018	2.20
53			2.000	2.20
54		IVIX	0 574	2.25
55	MPZA	X	-2.5/4	1
56	MP2A	2	1.486	1
57	MP2A	MX	001	1
58	MP2B	X	-2.574	1
59	MP2B	Z	1.486	1
60	MP2B	Mx	.001	1
61	MP2C	X	-3.652	1
62	MP2C	Z	2.109	1
63	MP2C	Mx	0	1
64	MP2A	X	-1.025	4
65	MP2A	Z	.592	4
66	MP2A	Mx	000512	4
67	MP2B	X	-1.025	4
68	MP2B	Z	.592	4
69	MP2B	Mx	.000513	4
70	MP2C	X	-1.697	4
71	MP2C	Z	.98	4
72	MP2C	Mx	0	4
73	MP3A	X	-6.126	.25
74	MP3A	Z	3.537	.25
75	MP3A	Mx	003	.25
76	MP3B	X	-6.126	.25
77	MP3B	Z	3.537	.25
78	MP3B	Mx	.003	.25
79	MP1B	X	-6.605	.25
80	MP1B	Z	3.813	.25
81	MP1B	Mx	003	.25
82	MP1B	X	-6.605	2.25
83	MP1B	Z	3.813	2.25
84	MP1B	Mx	003	2.25
85	MP1C	X	-7.246	.25
86	MP1C	Z	4.183	.25
87	MP1C	Mx	0	.25
88	MP1C	X	-7.246	2.25
89	MP1C	Z	4.183	2.25
90	MP1C	Mx	0	2.25
91	MP1A	X	-4.037	.25
92	MP1A	Z	2.33	.25

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
93	MP1A	Mx	.002	.25
94	MP1A	Х	-4.037	2.25
95	MP1A	Z	2.33	2.25
96	MP1A	Mx	.002	2.25
97	MP1A	Х	-2.751	2.75
98	MP1A	Z	1.588	2.75
99	MP1A	Mx	001	2.75
100	MP1B	Х	-2.751	2.75
101	MP1B	Z	1.588	2.75
102	MP1B	Mx	.001	2.75
103	MP1C	Х	-3.652	2.75
104	MP1C	Z	2.109	2.75
105	MP1C	Mx	0	2.75

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.17	.5
2	MP2A	Z	0	.5
3	MP2A	Mx	.002	.5
4	MP2A	X	-3.17	6
5	MP2A	Z	0	6
6	MP2A	Mx	.002	6
7	MP2B	X	-6.333	.5
8	MP2B	Z	0	.5
9	MP2B	Mx	.002	.5
10	MP2B	X	-6.333	6
11	MP2B	Z	0	6
12	MP2B	Mx	.002	6
13	MP2C	X	-6.333	.5
14	MP2C	Z	0	.5
15	MP2C	Mx	005	.5
16	MP2C	X	-6.333	6
17	MP2C	Z	0	6
18	MP2C	Mx	005	6
19	MP2A	X	-7.267	.5
20	MP2A	Z	0	.5
21	MP2A	Mx	.004	.5
22	MP2A	X	-7.267	6
23	MP2A	Z	0	6
24	MP2A	Mx	.004	6
25	MP2B	X	-10.03	.5
26	MP2B	Z	0	.5
27	MP2B	Mx	008	.5
28	MP2B	X	-10.03	6
29	MP2B	Z	0	6
30	MP2B	Mx	008	6
31	MP2C	X	-10.03	.5
32	MP2C	Z	0	.5
33	MP2C	Mx	.003	.5
34	MP2C	X	-10.03	6
35	MP2C	Z	0	6
36	MP2C	Mx	.003	6
37	MP4A	X	-1.837	.25
38	MP4A	Z	0	.25
39	MP4A	Mx	.000918	.25
40	MP4A	X	-1.837	2.25

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP4A	Z	0	2.25
42	MP4A	Mx	.000918	2.25
43	MP4B	X	-4.459	.25
44	MP4B	Z	0	.25
45	MP4B	Mx	001	.25
46	MP4B	X	-4.459	2.25
47	MP4B	Z	0	2.25
48	MP4B	Mx	001	2.25
49	MP4C	X	-4.459	.25
50	MP4C	Z	0	.25
51	MP4C	Mx	001	.25
52	MP4C	X	-4.459	2.25
53	MP4C	Z	0	2.25
54	MP4C	Mx	001	2.25
55	MP2A	X	-2.558	1
56	MP2A	Z	0	1
57	MP2A	Mx	001	1
58	MP2B	X	-3.802	1
59	MP2B	Z	0	1
60	MP2B	Mx	.000951	1
61	MP2C	X	-3.802	1
62	MP2C	Z	0	1
63	MP2C	Mx	.000951	1
64	MP2A	X	- 925	4
65	MP2A	7	0	4
66	MP2A	Mx	- 000463	4
67	MP2B	X	-1 701	4
68	MP2B	7	0	4
69	MP2B	Mx	000425	<u> </u>
70	MP2C	X	-1 701	4
70	MP2C	7	0	4
72	MP2C	Mx	000425	4
73	MP3A	X	-6 557	25
74	MP3A	7	0	25
75	MD3A	My	- 003	.25
76	MD3R	X	-8.108	.25
70	MD3B	7	-0.100	.25
79	MD2D		002	.25
70	MD1P		.002	.25
79		7	-0.12	.20
Q1			002	.20
82			UUZ 9.10	2.25
02		7	-0.12	2.23
03			002	2.20
04	MD10		002	2.20
00	MD10	∧ 7	-0.12	.20
80	MP1C		0	.20
87	MP1C	IVIX	002	.20
88	MPTC	λ 7	-8.12	2.25
89	MP1C		000	2.20
90	MP1C	IVIX	002	2.25
91	MP1A	λ 7	-4.918	.25
92	MP1A		0	.25
93	MP1A	IVIX	.002	.25
94	MP1A	X	-4.918	2.25
95	MP1A	Z	0	2.25
96	MP1A	Mx	.002	2.25
97	MP1A	X	-2.83	2.75

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP1A	Z	0	2.75
99	MP1A	Mx	001	2.75
100	MP1B	Х	-3.87	2.75
101	MP1B	Z	0	2.75
102	MP1B	Mx	.000967	2.75
103	MP1C	Х	-3.87	2.75
104	MP1C	Z	0	2.75
105	MP1C	Mx	.000967	2.75

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.658	.5
2	MP2A	Z	-2.112	.5
3	MP2A	Mx	.000421	.5
4	MP2A	X	-3.658	6
5	MP2A	Z	-2.112	6
6	MP2A	Mx	.000421	6
7	MP2B	X	-6.397	.5
8	MP2B	Z	-3.694	.5
9	MP2B	Mx	.005	.5
10	MP2B	X	-6.397	6
11	MP2B	Z	-3.694	6
12	MP2B	Mx	.005	6
13	MP2C	X	-3.658	.5
14	MP2C	Z	-2.112	.5
15	MP2C	Mx	003	.5
16	MP2C	X	-3.658	6
17	MP2C	Z	-2.112	6
18	MP2C	Mx	003	6
19	MP2A	Χ	-7.091	.5
20	MP2A	Z	-4.094	.5
21	MP2A	Mx	.006	.5
22	MP2A	X	-7.091	6
23	MP2A	Ζ	-4.094	6
24	MP2A	Mx	.006	6
25	MP2B	X	-9.484	.5
26	MP2B	Z	-5.476	.5
27	MP2B	Mx	007	.5
28	MP2B	X	-9.484	6
29	MP2B	Z	-5.476	6
30	MP2B	Mx	007	6
31	MP2C	X	-7.091	.5
32	MP2C	Z	-4.094	.5
33	MP2C	Mx	000816	.5
34	MP2C	X	-7.091	6
35	MP2C	Z	-4.094	6
36	MP2C	Mx	000816	6
37	MP4A	<u> </u>	-2.347	.25
38	MP4A	Z	-1.355	.25
39	MP4A	Mx	.001	.25
40	MP4A	X	-2.347	2.25
41	MP4A	Z	-1.355	2.25
42	MP4A	Mx	.001	2.25
43	MP4B	X	-4.618	.25
44	MP4B	<u>∠</u>	-2.666	.25
45	MP4B	IVIX	U	.25

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP4B	X	-4.618	2.25
47	MP4B	Z	-2.666	2.25
48	MP4B	Mx	0	2.25
49	MP4C	Х	-2.347	.25
50	MP4C	Z	-1.355	.25
51	MP4C	Mx	001	.25
52	MP4C	X	-2.347	2.25
53	MP4C	Z	-1.355	2.25
54	MP4C	Mx	001	2.25
55	MP2A	X	-2.574	1
56	MP2A	Z	-1.486	1
57	MP2A	Mx	001	1
58	MP2B	X	-3.652	1
59	MP2B	Z	-2.109	1
60	MP2B	Mx	0	1
61	MP2C	X	-2.574	1
62	MP2C	Z	-1.486	1
63	MP2C	Mx	.001	1
64	MP2A	X	-1.025	4
65	MP2A	Z	- 592	4
66	MP2A	Mx	000512	4
67	MP2B	X	-1.697	4
68	MP2B	Z	98	4
69	MP2B	Mx	0	4
70	MP2C	X	-1.025	4
71	MP2C	Z	- 592	4
72	MP2C	Mx	.000513	4
73	MP3A	X	-6.126	.25
74	MP3A	Z	-3.537	.25
75	MP3A	Mx	003	.25
76	MP3B	X	-7.47	.25
77	MP3B	Z	-4.313	.25
78	MP3B	Mx	0	.25
79	MP1B	X	-7.246	.25
80	MP1B	Z	-4.183	.25
81	MP1B	Mx	0	.25
82	MP1B	X	-7.246	2.25
83	MP1B	Z	-4.183	2.25
84	MP1B	Mx	0	2.25
85	MP1C	X	-6.605	.25
86	MP1C	Z	-3.813	.25
87	MP1C	Mx	003	.25
88	MP1C	X	-6.605	2.25
89	MP1C	Z	-3.813	2.25
90	MP1C	Mx	003	2.25
91	MP1A	Х	-4.037	.25
92	MP1A	Z	-2.33	.25
93	MP1A	Mx	.002	.25
94	MP1A	X	-4.037	2.25
95	MP1A	Z	-2.33	2.25
96	MP1A	Mx	.002	2.25
97	MP1A	Х	-2.751	2.75
98	MP1A	Z	-1.588	2.75
99	MP1A	Mx	001	2.75
100	MP1B	X	-3.652	2.75
101	MP1B	Z	-2.109	2.75
102	MP1B	Mx	0	2.75

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	MP1C	Х	-2.751	2.75
104	MP1C	Z	-1.588	2.75
105	MP1C	Mx	.001	2.75

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-3.166	.5
2	MP2A	Z	-5.484	.5
3	MP2A	Mx	002	.5
4	MP2A	X	-3.166	6
5	MP2A	Z	-5.484	6
6	MP2A	Mx	002	6
7	MP2B	X	-3.166	.5
8	MP2B	Z	-5.484	.5
9	MP2B	Mx	.005	.5
10	MP2B	X	-3.166	6
11	MP2B	Z	-5.484	6
12	MP2B	Mx	.005	6
13	MP2C	Х	-1.585	.5
14	MP2C	Z	-2.745	.5
15	MP2C	Mx	002	.5
16	MP2C	X	-1.585	6
17	MP2C	Z	-2.745	6
18	MP2C	Mx	002	6
19	MP2A	X	-5.015	.5
20	MP2A	Z	-8.686	.5
21	MP2A	Mx	.008	.5
22	MP2A	X	-5.015	6
23	MP2A	7	-8.686	6
24	MP2A	Mx	008	6
25	MP2B	X	-5.015	5
26	MP2B	Z	-8.686	.5
27	MP2B	Mx	003	.5
28	MP2B	X	-5.015	6
29	MP2B	Z	-8.686	6
30	MP2B	Mx	003	6
31	MP2C	X	-3.633	.5
32	MP2C	Z	-6.293	.5
33	MP2C	Mx	004	.5
34	MP2C	X	-3.633	6
35	MP2C	Z	-6.293	6
36	MP2C	Mx	004	6
37	MP4A	X	-2.229	.25
38	MP4A	Z	-3.861	.25
39	MP4A	Mx	.001	.25
40	MP4A	X	-2.229	2.25
41	MP4A	Z	-3.861	2.25
42	MP4A	Mx	.001	2.25
43	MP4B	Х	-2.229	.25
44	MP4B	Z	-3.861	.25
45	MP4B	Mx	.001	.25
46	MP4B	X	-2.229	2.25
47	MP4B	Z	-3.861	2.25
48	MP4B	Mx	.001	2.25
49	MP4C	Х	918	.25
50	MP4C	Z	-1.591	.25
·				

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP4C	Mx	000918	.25
52	MP4C	Х	918	2.25
53	MP4C	Z	-1.591	2.25
54	MP4C	Mx	000918	2.25
55	MP2A	X	-1.901	1
56	MP2A	Z	-3.293	1
57	MP2A	Mx	- 000951	1
58	MP2B	X	-1 901	1
59	MP2B	7	-3 293	1
60	MP2B	Mx	- 000951	1
61	MP2C	X	-1 279	1
62	MP2C	7	-2 215	1
63	MP2C	My	001	1
64	MP20	Y	- 85	1
65	MP2A	7	-1.473	4
66	MD2A		- 000425	4
67	MD2R		000423	4
68	MD2D	7	1 472	4
60	MD2D		-1.475	4
70			000425	4
70	MP2C		403	4
71	MP2C		001	4
72	MD24		.000403	4
73	MD2A		-4.054	.25
74	MD2A		-7.022	.25
75	MP3A	IVIX	002	.20
70	MP3B	× 7	-4.054	.25
70	MP3B		-7.022	.25
78	MP3B		002	.25
79	MP1B	X	-4.06	.25
80	MP1B	<u> </u>	-7.032	.25
81	MP1B	MIX	.002	.25
82	MP1B	X	-4.06	2.25
83	MP1B	<u> </u>	-7.032	2.25
84	MP1B	NX	.002	2.25
85	MP1C	X	-3.69	.25
86	MP1C	<u> </u>	-6.391	.25
8/	MP1C	MX	004	.25
88	MP1C	<u> </u>	-3.69	2.25
89	MP1C		-6.391	2.25
90	MP1C	Mx	004	2.25
91	MP1A	X	-2.074	.25
92	MP1A		-3.592	.25
93	MP1A	Mx	.001	.25
94	MP1A	X	-2.074	2.25
95	MP1A	Z	-3.592	2.25
96	MP1A	Mx	.001	2.25
97	MP1A	X	-1.935	2.75
98	MP1A	Z	-3.352	2.75
99	MP1A	Mx	000967	2.75
100	MP1B	X	-1.935	2.75
101	MP1B	Z	-3.352	2.75
102	MP1B	Mx	000968	2.75
103	MP1C	X	-1.415	2.75
104	MP1C	Z	-2.451	2.75
105	MP1C	Mx	.001	2.75

Memb	Member Point Loads (BLC 77 : Lm1)					
	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft.%]		
1	M10	Y	-500	0		
				· · · · · · · · · · · · · · · · · · ·		
Memb	oer Point Loads (B	SLC 78 : Lm2)				
	Member Label	Direction	Magnitude[]b k-ft]	Location[ft %]		
1	M29	Y	-500	0		
		•		· ·		
Memb	oer Point Loads (B	SLC 79 : Lv1)				
	Member Label	Direction	Magnitude[]b k-ft]	Location[ft %]		
1	M7A	Y	-250	%50		
Memb	oer Point Loads (B	SLC 80 : Lv2)				
	Member Label	Direction	Magnitude[]b k-ft]	Location[ft %]		
1	MICHIDEL LADEL	Y	-250	%100		
		•		,,,,,,,		
Memb	oer Point Loads (B	LC 81 : Antenna	a Ev)			
	Member Label	Direction	Magnitude[]b k_ft]	Location[ft %]		
1	MP2A	Y	946	.5		
2	MP2A	Mv	000473	.5		
3	MP2A	Mz	.000631	.5		
4	MP2A	Y	946	6		
5	MP2A	My	000473	6		
6	MP2A	Mz	.000631	6		
7	MP2B	Y	946	.5		
8	MP2B	My	00031	.5		
9	MP2B	Mz	000725	.5		
10	MP2B	Y	946	6		
12	MD2P		00031	6		
12			000725	5		
14	MP2C	My	000783			
15	MP2C	Mz	9.4e-5	.5		
16	MP2C	Y	946	6		
17	MP2C	My	.000783	6		
18	MP2C	Mz	9.4e-5	6		
19	MP2A	Y	-1.399	.5		
20	MP2A	My	000699	.5		
21	MP2A	Mz	000933	.5		
22	MP2A	Y	-1.399	6		
23	MP2A	My Na	000699	6		
24	MP2A	IVIZ	000933	6		
20	MD2B	I NAV	-1.399	.5		
20	MP2B	Mz	- 000139			
28	MP2B	Y	-1 399			
29	MP2B	Mv	001	6		
30	MP2B	Mz	000139	6		
31	MP2C	Y	-1.399	.5		
32	MP2C	My	000458	.5		
33	MP2C	Mz	.001	.5		
34	MP2C	Y	-1.399	6		
35	MP2C	My	000458	6		
36	MP2C	Mz	.001	6		
37	MP4A	Y NA	-1.886	.25		
38		IVIY	000943	.25		
39	MP4A	IVIZ	U	.25		

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
40	MP4A	Y	-1.886	2.25
41	MP4A	My	000943	2.25
42	MP4A	Mz	0	2.25
43	MP4B	Y	-1.886	.25
44	MP4B	My	.000472	.25
45	MP4B	Mz	000817	.25
46	MP4B	Y	-1.886	2.25
47	MP4B	My	.000472	2.25
48	MP4B	Mz	000817	2.25
49	MP4C	Y	-1.886	.25
50	MP4C	Mv	.000472	.25
51	MP4C	Mz	.000817	.25
52	MP4C	Y	-1.886	2.25
53	MP4C	My	000472	2.25
54	MP4C	Mz	000817	2.25
55	MP2A	Y	-3 044	1
56	MP2A	My	002	1
57	MP2A	Mz	.002	1
58	MD2R		3.044	1
50		N/by	-5.044	1
60			000761	1
60	MP2D		.001	1
62	MP2C	Y NAV	-3.044	1
62	MP2C		000761	1
63	MP2C	IVIZ	001	1
64	MP2A	Y	81	4
65	MP2A	IVIY	.000405	4
66	MP2A	Mz	0	4
67	MP2B	Y	81	4
68	MP2B	My	000202	4
69	MP2B	Mz	.000351	4
70	MP2C	Y	81	4
71	MP2C	My	000202	4
72	MP2C	Mz	000351	4
73	MP3A	Y	-1.386	.25
74	MP3A	My	.000693	.25
75	MP3A	Mz	0	.25
76	MP3B	Y	-1.386	.25
77	MP3B	Mv	000346	.25
78	MP3B	Mz	.0006	.25
79	MP1B	Y	433	.25
80	MP1B	Mv	.000108	.25
81	MP1B	Mz	000188	.25
82	MP1B	Y	433	2.25
83	MP1B	Mv	000108	2.25
84	MP1B	Mz	- 000188	2.25
85	MP1C	V	- 433	25
86	MP1C	My	000108	.20
87	MP1C	N/-z	000100	.25
88	MP1C		_ 433	2.25
80	MD1C	Mix	000108	2.25
00	MP1C		000100	2.25
90			.000100	2.20
91		ľ NA z	130 6.9o F	.20
92		IVIY	-0.00-0	.20
93		IVIZ	U 100	.20
94	MP1A	Y NAL -	130	2.25
95	MP1A	IVIY	-0.86-5	2.25
96	MP1A	IVIZ	0	2.25
RISA	-3D Version 17.0.4	<u>[\\\\\</u>	\\\\Rev 0\Risa\468152-VZW	MT LO H.r3d] Page 86

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
97	MP1A	Y	-3.235	2.75
98	MP1A	My	.002	2.75
99	MP1A	Mz	0	2.75
100	MP1B	Y	-3.235	2.75
101	MP1B	My	000809	2.75
102	MP1B	Mz	.001	2.75
103	MP1C	Y	-3.235	2.75
104	MP1C	My	000809	2.75
105	MP1C	Mz	001	2.75

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Z	-2.366	.5
2	MP2A	Mx	002	.5
3	MP2A	Z	-2.366	6
4	MP2A	Mx	002	6
5	MP2B	Z	-2.366	.5
6	MP2B	Mx	.002	.5
7	MP2B	Z	-2.366	6
8	MP2B	Mx	.002	6
9	MP2C	Z	-2.366	.5
10	MP2C	Mx	000236	.5
11	MP2C	Z	-2.366	6
12	MP2C	Mx	000236	6
13	MP2A	Z	-3.497	.5
14	MP2A	Mx	.002	.5
15	MP2A	Z	-3.497	6
16	MP2A	Mx	.002	6
17	MP2B	Z	-3.497	.5
18	MP2B	Mx	.000349	.5
19	MP2B	Z	-3.497	6
20	MP2B	Mx	.000349	6
21	MP2C	Z	-3.497	.5
22	MP2C	Mx	003	.5
23	MP2C	Z	-3.497	6
24	MP2C	Mx	003	6
25	MP4A	Z	-4.715	.25
26	MP4A	Mx	0	.25
27	MP4A	Z	-4.715	2.25
28	MP4A	Mx	0	2.25
29	MP4B	Z	-4.715	.25
30	MP4B	Mx	.002	.25
31	MP4B	Z	-4.715	2.25
32	MP4B	Mx	.002	2.25
33	MP4C	Z	-4.715	.25
34	MP4C	Mx	002	.25
35	MP4C	Z	-4.715	2.25
36	MP4C	Mx	002	2.25
37	MP2A	Z	-7.611	1
38	MP2A	Mx	0	1
39	MP2B	Z	-7.611	1
40	MP2B	Mx	003	1
41	MP2C	Z	-7.611	1
42	MP2C	Mx	.003	1
43	MP2A	Z	-2.025	4
44	MP2A	Mx	0	4

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
45	MP2B	Z	-2.025	4
46	MP2B	Mx	000877	4
47	MP2C	Z	-2.025	4
48	MP2C	Mx	.000877	4
49	MP3A	Z	-3.465	.25
50	MP3A	Mx	0	.25
51	MP3B	Z	-3.465	.25
52	MP3B	Mx	002	.25
53	MP1B	Z	-1.083	.25
54	MP1B	Mx	.000469	.25
55	MP1B	Z	-1.083	2.25
56	MP1B	Mx	.000469	2.25
57	MP1C	Z	-1.083	.25
58	MP1C	Mx	000469	.25
59	MP1C	Z	-1.083	2.25
60	MP1C	Mx	000469	2.25
61	MP1A	Z	341	.25
62	MP1A	Mx	0	.25
63	MP1A	Z	341	2.25
64	MP1A	Mx	0	2.25
65	MP1A	Z	-8.088	2.75
66	MP1A	Mx	0	2.75
67	MP1B	Z	-8.088	2.75
68	MP1B	Mx	004	2.75
69	MP1C	Z	-8.088	2.75
70	MP1C	Mx	004	2 75

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.366	.5
2	MP2A	Mx	001	.5
3	MP2A	X	2.366	6
4	MP2A	Mx	001	6
5	MP2B	X	2.366	.5
6	MP2B	Mx	000774	.5
7	MP2B	X	2.366	6
8	MP2B	Mx	000774	6
9	MP2C	X	2.366	.5
10	MP2C	Mx	.002	.5
11	MP2C	X	2.366	6
12	MP2C	Mx	.002	6
13	MP2A	X	3.497	.5
14	MP2A	Mx	002	.5
15	MP2A	X	3.497	6
16	MP2A	Mx	002	6
17	MP2B	X	3.497	.5
18	MP2B	Mx	.003	.5
19	MP2B	Х	3.497	6
20	MP2B	Mx	.003	6
21	MP2C	X	3.497	.5
22	MP2C	Mx	001	.5
23	MP2C	X	3.497	6
24	MP2C	Mx	001	6
25	MP4A	X	4.715	.25
26	MP4A	Mx	002	.25
27	MP4A	X	4.715	2.25

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
28	MP4A	Mx	002	2.25
29	MP4B	X	4.715	.25
30	MP4B	Mx	.001	.25
31	MP4B	X	4.715	2.25
32	MP4B	Mx	.001	2.25
33	MP4C	X	4.715	.25
34	MP4C	Mx	.001	.25
35	MP4C	X	4.715	2.25
36	MP4C	Mx	.001	2.25
37	MP2A	X	7.611	1
38	MP2A	Mx	.004	1
39	MP2B	Х	7.611	1
40	MP2B	Mx	002	1
41	MP2C	Х	7.611	1
42	MP2C	Mx	002	1
43	MP2A	Х	2.025	4
44	MP2A	Mx	.001	4
45	MP2B	X	2.025	4
46	MP2B	Mx	000506	4
47	MP2C	Х	2.025	4
48	MP2C	Mx	000506	4
49	MP3A	X	3.465	.25
50	MP3A	Mx	.002	.25
51	MP3B	X	3.465	.25
52	MP3B	Mx	000866	.25
53	MP1B	X	1.083	.25
54	MP1B	Mx	.000271	.25
55	MP1B	X	1.083	2.25
56	MP1B	Mx	.000271	2.25
57	MP1C	X	1.083	.25
58	MP1C	Mx	.000271	.25
59	MP1C	X	1.083	2.25
60	MP1C	Mx	.000271	2.25
61	MP1A	X	.341	.25
62	MP1A	Mx	000171	.25
63	MP1A	X	.341	2.25
64	MP1A	Mx	000171	2.25
65	MP1A	X	8.088	2.75
66	MP1A	Mx	.004	2.75
67	MP1B	X	8.088	2.75
68	MP1B	Mx	002	2.75
69	MP1C	X	8.088	2.75
70	MP1C	Mx	002	2.75

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Y	-15.958	-15.958	0	%100
2	M2	Y	-17.479	-17.479	0	%100
3	M5	Y	-16.696	-16.696	0	%100
4	M6	Y	-16.696	-16.696	0	%100
5	M7	Y	-16.696	-16.696	0	%100
6	M6A	Y	-12.915	-12.915	0	%100
7	M7A	Y	-12.915	-12.915	0	%100
8	MP4A	Y	-8.897	-8.897	0	%100
9	M23A	Y	-12.915	-12.915	0	%100

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
10	M24	Y	-12.915	-12.915	0	%100
11	M38	Y	-15.958	-15.958	0	%100
12	M39A	Y	-12.915	-12.915	0	%100
13	M40	Y	-12.915	-12.915	0	%100
14	M54	Y	-15.958	-15.958	0	%100
15	M55	Y	-17.479	-17.479	0	%100
16	M56	Y	-17.479	-17.479	0	%100
17	MP3A	Y	-8.897	-8.897	0	%100
18	MP2A	Y	-8.897	-8.897	0	%100
19	MP1A	Y	-8.897	-8.897	0	%100
20	MP4C	Y	-8.897	-8.897	0	%100
21	MP3C	Y	-8.897	-8.897	0	%100
22	MP2C	Y	-8.897	-8.897	0	%100
23	MP1C	Y	-8.897	-8.897	0	%100
24	MP4B	Y	-8.897	-8.897	0	%100
25	MP3B	Y	-8.897	-8.897	0	%100
26	MP2B	Y	-8.897	-8.897	0	%100
27	MP1B	Y	-8.897	-8.897	0	%100
28	M40A	Y	-9.973	-9.973	0	%100
29	M47A	Y	-9.973	-9.973	0	%100
30	M54A	Y	-9.973	-9.973	0	%100
31	M61	Y	-12.915	-12.915	0	%100
32	M62	Y	-12.915	-12.915	0	%100
33	M63	Y	-12.915	-12.915	0	%100
34	M64	Y	-18.309	-18.309	0	%100
35	M65	Y	-18.309	-18.309	0	%100
36	M66	Y	-18 309	-18 309	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	-13.646	-13.646	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	-13.646	-13.646	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	-21.405	-21.405	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	-21.405	-21.405	0	%100
15	MP4A	Х	0	0	0	%100
16	MP4A	Z	-10.168	-10.168	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	-5.351	-5.351	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	-5.351	-5.351	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	-9.175	-9.175	0	%100
23	M39A	Х	0	0	0	%100
24	M39A	Z	-5.351	-5.351	0	%100
25	M40	Х	0	0	0	%100
26	M40	Z	-5.351	-5.351	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Χ	0	0	0	%100
28	M54	Z	-9.175	-9.175	0	%100
29	M55	Χ	0	0	0	%100
30	M55	Z	-11.951	-11.951	0	%100
31	M56	Х	0	0	0	%100
32	M56	Z	-11.951	-11.951	0	%100
33	MP3A	Х	0	0	0	%100
34	MP3A	Z	-10.168	-10.168	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	-10.168	-10.168	0	%100
37	MP1A	X	0	0	0	%100
38	MP1A	Z	-10.168	-10.168	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	-10.168	-10.168	0	%100
41	MP3C	Χ	0	0	0	%100
42	MP3C	Z	-10.168	-10.168	0	%100
43	MP2C	Х	0	0	0	%100
44	MP2C	Z	-10.168	-10.168	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	-10.168	-10.168	0	%100
47	MP4B	Х	0	0	0	%100
48	MP4B	Z	-10.168	-10.168	0	%100
49	MP3B	Х	0	0	0	%100
50	MP3B	Z	-10.168	-10.168	0	%100
51	MP2B	Х	0	0	0	%100
52	MP2B	Z	-10.168	-10.168	0	%100
53	MP1B	Х	0	0	0	%100
54	MP1B	Z	-10.168	-10.168	0	%100
55	M40A	X	0	0	0	%100
56	M40A	Z	-12.308	-12.308	0	%100
57	M47A	X	0	0	0	%100
58	M47A	Z	-3.077	-3.077	0	%100
59	M54A	X	0	0	0	%100
60	M54A	Z	-3.077	-3.077	0	%100
61	M61	Χ	0	0	0	%100
62	M61	Z	-15.436	-15.436	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	-3.859	-3.859	0	%100
65	M63	Х	0	0	0	%100
66	M63	Z	-3.859	-3.859	0	%100
67	M64	X	0	0	0	%100
68	M64	Z	-8.517	-8.517	0	%100
69	M65	X	0	0	0	%100
70	M65	Z	-18.183	-18.183	0	%100
71	M66	X	0	0	0	%100
72	M66	Z	-18.183	-18.183	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.529	1.529	0	%100
2	M1	Z	-2.649	-2.649	0	%100
3	M2	Х	1.992	1.992	0	%100
4	M2	Z	-3.45	-3.45	0	%100
5	M5	Х	2.274	2.274	0	%100
6	M5	Z	-3.939	-3.939	0	%100
7	M6	Х	2.274	2.274	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	-3.939	-3.939	0	%100
9	M7	X	9.097	9.097	0	%100
10	M7	Z	-15.757	-15.757	0	%100
11	M6A	X	8.027	8.027	0	%100
12	M6A	Z	-13.903	-13.903	0	%100
13	M7A	Х	8.027	8.027	0	%100
14	M7A	Z	-13.903	-13.903	0	%100
15	MP4A	Х	5.084	5.084	0	%100
16	MP4A	Z	-8.805	-8.805	0	%100
17	M23A	Х	8.027	8.027	0	%100
18	M23A	Z	-13,903	-13,903	0	%100
19	M24	X	8.027	8.027	0	%100
20	M24	Z	-13,903	-13,903	0	%100
21	M38	x	1 529	1 529	0	%100
22	M38	7	-2 649	-2 649	0	%100
23	M39A	x	0	0	0	%100
24	M39A	7	0	0	0	%100
25	M40	×	0	0	0	%100
26	M40	7	0	0	0	%100
27	M54	×	6 1 1 7	6 1 1 7	0	%100
28	M54	7	-10 594	-10 594	0	%100
20	M55	× ×	1 002	1 002	0	%100
30	M55	7	-3.45	-3.45	0	%100
31	M55	× ×	7 968	7 968	0	%100
32	M50	7	13.00	12.9	0	%100
32	MD3A	×	5 084	5 084	0	%100
34	MD3A	7	9,004	9,004	0	%100
25	MP2A	×	-0.000	-0.000	0	%100 9/ 100
26	MD2A	7	9.004	9.905	0	%100 %100
37	MP1A	× ×	-0.000	-0.000	0	%100
30	MP1A	7	-8.805	-8.805	0	%100
30	MP4C	× ×	-0.00J 5.084	-0.000	0	%100
40	MP4C	7	_8 805	-8.805	0	%100
40	MP3C	X	5.084	5.084	0	%100
41	MP3C	7	-8.805	-8.805	0	%100
42	MP2C	×	5.084	-0.000	0	%100
43	MP2C	7	-8.805	-8.805	0	%100
44	MP1C	×	5.084	-0.000	0	%100
40	MP1C	7	-8.805	-8.805	0	%100
40	MP4B	× ×	5.084	-0.000	0	%100
48	MP4R	7	-8 805	-8 805	0	%100
40	MP3R	×	5 08/	5 084	0	%100
50	MP3R	7	-8 805	-8 805	0	%100
51	MP2R	×	5 08/	5 084	0	%100
52	MP2R	7	-8 805	-8 805	0	%100
52	MP1R	×	5 08/	5 08/	0	%100
54	MD1B	7	_8 805	_8 805	0	%100
55	MADA	× ×	4 616	4.616	0	%100
56	M40A	7	-7.99/	-7 994	0	%100
57	M40A	×	4 616	4 616	0	%100
58	M47A	7	-7 00/	_7 00/	0	%100
50	M54A	X	0	0	0	%100
60	M54A	7	0	0	0	%100
61	M61	×	5 780	5 780	0	%100
62	M61	7	-10.026	-10.026	0	%100
63	M62	X	5 780	5 780	0	%100
64	M62	7	_10.026	-10.026	0	%100
04	IVIOZ	2	-10.020	-10.020	0	70100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	0	0	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	5.87	5.87	0	%100
68	M64	Z	-10.167	-10.167	0	%100
69	M65	X	5.87	5.87	0	%100
70	M65	Z	-10.167	-10.167	0	%100
71	M66	X	10.703	10.703	0	%100
72	M66	Z	-18.538	-18.538	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	7.946	7.946	0	%100
2	M1	Z	-4.587	-4.587	0	%100
3	M2	Х	10.35	10.35	0	%100
4	M2	Z	-5.976	-5.976	0	%100
5	M5	Х	11.818	11.818	0	%100
6	M5	Z	-6.823	-6.823	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	11.818	11.818	0	%100
10	M7	Z	-6.823	-6.823	0	%100
11	M6A	X	4.634	4.634	0	%100
12	M6A	Z	-2.676	-2.676	0	%100
13	M7A	Х	4.634	4.634	0	%100
14	M7A	Z	-2.676	-2.676	0	%100
15	MP4A	X	8.805	8.805	0	%100
16	MP4A	Z	-5.084	-5.084	0	%100
17	M23A	Х	18.538	18.538	0	%100
18	M23A	Z	-10.703	-10.703	0	%100
19	M24	Х	18.538	18.538	0	%100
20	M24	Z	-10.703	-10.703	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	0	0	0	%100
23	M39A	X	4.634	4.634	0	%100
24	M39A	Z	-2.676	-2.676	0	%100
25	M40	X	4.634	4.634	0	%100
26	M40	Z	-2.676	-2.676	0	%100
27	M54	X	7.946	7.946	0	%100
28	M54	Z	-4.587	-4.587	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	0	0	0	%100
31	M56	X	10.35	10.35	0	%100
32	M56	Z	-5.976	-5.976	0	%100
33	MP3A	X	8.805	8.805	0	%100
34	MP3A	Z	-5.084	-5.084	0	%100
35	MP2A	X	8.805	8.805	0	%100
36	MP2A	Z	-5.084	-5.084	0	%100
37	MP1A	X	8.805	8.805	0	%100
38	MP1A	Z	-5.084	-5.084	0	%100
39	MP4C	X	8.805	8.805	0	%100
40	MP4C	Z	-5.084	-5.084	0	%100
41	MP3C	X	8.805	8.805	0	%100
42	MP3C	Z	-5.084	-5.084	0	%100
43	MP2C	X	8.805	8.805	0	%100
44	MP2C	Z	-5.084	-5.084	0	%100
45	MP1C	X	8.805	8.805	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	-5.084	-5.084	0	%100
47	MP4B	X	8.805	8.805	0	%100
48	MP4B	Z	-5.084	-5.084	0	%100
49	MP3B	Х	8.805	8.805	0	%100
50	MP3B	Z	-5.084	-5.084	0	%100
51	MP2B	Х	8.805	8.805	0	%100
52	MP2B	Z	-5.084	-5.084	0	%100
53	MP1B	Х	8.805	8.805	0	%100
54	MP1B	Z	-5.084	-5.084	0	%100
55	M40A	Х	2.665	2.665	0	%100
56	M40A	Z	-1.539	-1.539	0	%100
57	M47A	Х	10.659	10.659	0	%100
58	M47A	Z	-6.154	-6.154	0	%100
59	M54A	Х	2.665	2.665	0	%100
60	M54A	Z	-1.539	-1.539	0	%100
61	M61	Х	3.342	3.342	0	%100
62	M61	Z	-1.93	-1.93	0	%100
63	M62	Х	13.368	13.368	0	%100
64	M62	Z	-7.718	-7.718	0	%100
65	M63	Х	3.342	3.342	0	%100
66	M63	Z	-1.93	-1.93	0	%100
67	M64	Х	15.747	15.747	0	%100
68	M64	Z	-9.092	-9.092	0	%100
69	M65	X	7.376	7.376	0	%100
70	M65	Z	-4.259	-4.259	0	%100
71	M66	X	15.747	15.747	0	%100
72	M66	7	-9 092	-9.092	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	12.233	12.233	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	15.935	15.935	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	18.195	18.195	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	4.549	4.549	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	4.549	4.549	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	0	0	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	0	0	0	%100
15	MP4A	Х	10.168	10.168	0	%100
16	MP4A	Z	0	0	0	%100
17	M23A	Х	16.054	16.054	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	16.054	16.054	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	3.058	3.058	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	16.054	16.054	0	%100
24	M39A	Z	0	0	0	%100
25	M40	X	16.054	16.054	0	%100
26	M40	Z	0	0	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Χ	3.058	3.058	0	%100
28	M54	Z	0	0	0	%100
29	M55	Χ	3.984	3.984	0	%100
30	M55	Z	0	0	0	%100
31	M56	Х	3.984	3.984	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	X	10.168	10.168	0	%100
34	MP3A	Z	0	0	0	%100
35	MP2A	X	10.168	10.168	0	%100
36	MP2A	Z	0	0	0	%100
37	MP1A	X	10.168	10.168	0	%100
38	MP1A	Z	0	0	0	%100
39	MP4C	Х	10.168	10.168	0	%100
40	MP4C	Z	0	0	0	%100
41	MP3C	Χ	10.168	10.168	0	%100
42	MP3C	Z	0	0	0	%100
43	MP2C	Х	10.168	10.168	0	%100
44	MP2C	Z	0	0	0	%100
45	MP1C	Х	10.168	10.168	0	%100
46	MP1C	Z	0	0	0	%100
47	MP4B	Х	10.168	10.168	0	%100
48	MP4B	Z	0	0	0	%100
49	MP3B	Х	10.168	10.168	0	%100
50	MP3B	Z	0	0	0	%100
51	MP2B	Х	10.168	10.168	0	%100
52	MP2B	Z	0	0	0	%100
53	MP1B	Х	10.168	10.168	0	%100
54	MP1B	Z	0	0	0	%100
55	M40A	Х	0	0	0	%100
56	M40A	Z	0	0	0	%100
57	M47A	X	9.231	9.231	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	X	9.231	9.231	0	%100
60	M54A	Z	0	0	0	%100
61	M61	Х	0	0	0	%100
62	M61	Z	0	0	0	%100
63	M62	Х	11.577	11.577	0	%100
64	M62	Z	0	0	0	%100
65	M63	X	11.577	11.577	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	21.405	21.405	0	%100
68	M64	Z	0	0	0	%100
69	M65	Χ	11.739	11.739	0	%100
70	M65	Z	0	0	0	%100
71	M66	X	11.739	11.739	0	%100
72	M66	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	7.946	7.946	0	%100
2	M1	Z	4.587	4.587	0	%100
3	M2	Х	10.35	10.35	0	%100
4	M2	Z	5.976	5.976	0	%100
5	M5	Х	11.818	11.818	0	%100
6	M5	Z	6.823	6.823	0	%100
7	M6	X	11.818	11.818	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	6.823	6.823	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	4.634	4.634	0	%100
12	M6A	Z	2.676	2.676	0	%100
13	M7A	x	4.634	4.634	0	%100
14	M7A	Z	2.676	2,676	0	%100
15	MP4A	x	8 805	8 805	0	%100
16	MP4A	7	5.084	5.084	Ő	%100
17	M23A	x	4 634	4 634	0	%100
18	M23A	7	2.676	2.676	0	%100
10	M24	X	4.634	4.634	0	%100
20	M24	7	2.676	2.676	0	%100
20	M29	×	2.070	2.070	0	%100
21	IVI30	7	1.940	1.940	0	%100
22	N30	Z V	4.007	4.007	0	%100 9/ 100
23	Maga	~ ~	10.000	10.000	0	⁷⁰ 100
24	INIS9A	Z	10.703	10.703	0	%100
25	IVI4U	⊼	10.000	10.000	0	%100
26	IVI4U	Z	10.703	10.703	0	%100
21	IVI54	X	0	0	0	%100
28	M54	<u> </u>	0	0	0	%100
29	M55	X	10.35	10.35	0	%100
30	M55	Z	5.976	5.976	0	%100
31	M56	X	0	0	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	<u> </u>	8.805	8.805	0	%100
34	MP3A	Z	5.084	5.084	0	%100
35	MP2A	X	8.805	8.805	0	%100
36	MP2A	Z	5.084	5.084	0	%100
37	MP1A	X	8.805	8.805	0	%100
38	MP1A	Z	5.084	5.084	0	%100
39	MP4C	X	8.805	8.805	0	%100
40	MP4C	Z	5.084	5.084	0	%100
41	MP3C	X	8.805	8.805	0	%100
42	MP3C	Z	5.084	5.084	0	%100
43	MP2C	X	8.805	8.805	0	%100
44	MP2C	Z	5.084	5.084	0	%100
45	MP1C	X	8.805	8.805	0	%100
46	MP1C	Z	5.084	5.084	0	%100
47	MP4B	Х	8.805	8.805	0	%100
48	MP4B	Z	5.084	5.084	0	%100
49	MP3B	Х	8.805	8.805	0	%100
50	MP3B	Z	5.084	5.084	0	%100
51	MP2B	Х	8.805	8.805	0	%100
52	MP2B	Z	5.084	5.084	0	%100
53	MP1B	X	8.805	8.805	0	%100
54	MP1B	Z	5.084	5.084	0	%100
55	M40A	x	2,665	2,665	0	%100
56	M40A	Z	1.539	1.539	õ	%100
57	M47A	x	2.665	2.665	0	%100
58	M47A	7	1 539	1 539	Ő	%100
59	M54A	X	10.659	10.659	0	%100
60	Μ54Δ	7	6 154	6 154	0	%100
61	M61	X	3 3/2	3 3/2	0	%100
62	M61	7	1.02	1.03	0	%100
63	M62	×	3 242	3 340	0	%100
64	M62	7	1.03	1 02	0	%100
04	IVIOZ	2	1.90	1.90	U	70100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	X	13.368	13.368	0	%100
66	M63	Z	7.718	7.718	0	%100
67	M64	Х	15.747	15.747	0	%100
68	M64	Z	9.092	9.092	0	%100
69	M65	X	15.747	15.747	0	%100
70	M65	Z	9.092	9.092	0	%100
71	M66	X	7.376	7.376	0	%100
72	M66	Z	4.259	4.259	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.529	1.529	0	%100
2	M1	Z	2.649	2.649	0	%100
3	M2	X	1.992	1.992	0	%100
4	M2	Z	3.45	3.45	0	%100
5	M5	Х	2.274	2.274	0	%100
6	M5	Z	3.939	3.939	0	%100
7	M6	X	9.097	9.097	0	%100
8	M6	Z	15.757	15.757	0	%100
9	M7	Х	2.274	2.274	0	%100
10	M7	Z	3.939	3.939	0	%100
11	M6A	X	8.027	8.027	0	%100
12	M6A	Z	13.903	13.903	0	%100
13	M7A	Х	8.027	8.027	0	%100
14	M7A	Z	13.903	13.903	0	%100
15	MP4A	Х	5.084	5.084	0	%100
16	MP4A	Z	8.805	8.805	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	6.117	6.117	0	%100
22	M38	Z	10.594	10.594	0	%100
23	M39A	X	8.027	8.027	0	%100
24	M39A	Z	13.903	13.903	0	%100
25	M40	X	8.027	8.027	0	%100
26	M40	Z	13.903	13.903	0	%100
27	M54	X	1.529	1.529	0	%100
28	M54	Z	2.649	2.649	0	%100
29	M55	X	7.968	7.968	0	%100
30	M55	Z	13.8	13.8	0	%100
31	M56	X	1.992	1.992	0	%100
32	M56	Z	3.45	3.45	0	%100
33	MP3A	X	5.084	5.084	0	%100
34	MP3A	Z	8.805	8.805	0	%100
35	MP2A	X	5.084	5.084	0	%100
36	MP2A	Z	8.805	8.805	0	%100
37	MP1A	X	5.084	5.084	0	%100
38	MP1A	Z	8.805	8.805	0	%100
39	MP4C	X	5.084	5.084	0	%100
40	MP4C	Z	8.805	8.805	0	%100
41	MP3C	X	5.084	5.084	0	%100
42	MP3C	Z	8.805	8.805	0	%100
43	MP2C	X	5.084	5.084	0	%100
44	MP2C	Z	8.805	8.805	0	%100
45	MP1C	X	5.084	5.084	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	8.805	8.805	0	%100
47	MP4B	Х	5.084	5.084	0	%100
48	MP4B	Z	8.805	8.805	0	%100
49	MP3B	Х	5.084	5.084	0	%100
50	MP3B	Z	8.805	8.805	0	%100
51	MP2B	Х	5.084	5.084	0	%100
52	MP2B	Z	8.805	8.805	0	%100
53	MP1B	Х	5.084	5.084	0	%100
54	MP1B	Z	8.805	8.805	0	%100
55	M40A	Х	4.616	4.616	0	%100
56	M40A	Z	7.994	7.994	0	%100
57	M47A	Х	0	0	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	4.616	4.616	0	%100
60	M54A	Z	7.994	7.994	0	%100
61	M61	X	5.789	5.789	0	%100
62	M61	Z	10.026	10.026	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	0	0	0	%100
65	M63	Х	5.789	5.789	0	%100
66	M63	Z	10.026	10.026	0	%100
67	M64	X	5.87	5.87	0	%100
68	M64	Z	10.167	10.167	0	%100
69	M65	X	10.703	10.703	0	%100
70	M65	Z	18.538	18.538	0	%100
71	M66	X	5.87	5.87	0	%100
72	M66	7	10 167	10 167	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	13.646	13.646	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	13.646	13.646	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	21.405	21.405	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	21.405	21.405	0	%100
15	MP4A	Х	0	0	0	%100
16	MP4A	Z	10.168	10.168	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	5.351	5.351	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	5.351	5.351	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	9.175	9.175	0	%100
23	M39A	Х	0	0	0	%100
24	M39A	Z	5.351	5.351	0	%100
25	M40	Х	0	0	0	%100
26	M40	Z	5.351	5.351	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	X	0	0	0	%100
28	M54	Z	9.175	9.175	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	11.951	11.951	0	%100
31	M56	X	0	0	0	%100
32	M56	Z	11.951	11.951	0	%100
33	MP3A	X	0	0	0	%100
34	MP3A	Z	10.168	10.168	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	10.168	10.168	0	%100
37	MP1A	X	0	0	0	%100
38	MP1A	Z	10.168	10.168	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	10.168	10.168	0	%100
41	MP3C	X	0	0	0	%100
42	MP3C	Z	10.168	10.168	0	%100
43	MP2C	X	0	0	0	%100
44	MP2C	Z	10.168	10.168	0	%100
45	MP1C	X	0	0	0	%100
46	MP1C	Z	10.168	10.168	0	%100
47	MP4B	Х	0	0	0	%100
48	MP4B	Z	10.168	10.168	0	%100
49	MP3B	X	0	0	0	%100
50	MP3B	Z	10.168	10.168	0	%100
51	MP2B	Χ	0	0	0	%100
52	MP2B	Z	10.168	10.168	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	10.168	10.168	0	%100
55	M40A	Χ	0	0	0	%100
56	M40A	Z	12.308	12.308	0	%100
57	M47A	X	0	0	0	%100
58	M47A	Z	3.077	3.077	0	%100
59	M54A	Χ	0	0	0	%100
60	M54A	Z	3.077	3.077	0	%100
61	M61	Χ	0	0	0	%100
62	M61	Z	15.436	15.436	0	%100
63	M62	X	0	0	0	%100
64	M62	Z	3.859	3.859	0	%100
65	M63	X	0	0	0	%100
66	M63	Z	3.859	3.859	0	%100
67	M64	X	0	0	0	%100
68	M64	Z	8.517	8.517	0	%100
69	M65	X	0	0	0	%100
70	M65	Z	18.183	18.183	0	%100
71	M66	X	0	0	0	%100
72	M66	Z	18.183	18.183	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-1.529	-1.529	0	%100
2	M1	Z	2.649	2.649	0	%100
3	M2	Х	-1.992	-1.992	0	%100
4	M2	Z	3.45	3.45	0	%100
5	M5	Х	-2.274	-2.274	0	%100
6	M5	Z	3.939	3.939	0	%100
7	M6	Х	-2.274	-2.274	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	3.939	3.939	0	%100
9	M7	X	-9.097	-9.097	0	%100
10	M7	Z	15.757	15.757	0	%100
11	M6A	X	-8.027	-8.027	0	%100
12	M6A	Z	13.903	13.903	0	%100
13	M7A	X	-8.027	-8.027	0	%100
14	M7A	Z	13.903	13.903	0	%100
15	MP4A	Х	-5.084	-5.084	0	%100
16	MP4A	Z	8.805	8.805	0	%100
17	M23A	Х	-8.027	-8.027	0	%100
18	M23A	Z	13,903	13.903	0	%100
19	M24	X	-8.027	-8.027	0	%100
20	M24	Z	13,903	13,903	0	%100
21	M38	x	-1 529	-1 529	0	%100
22	M38	7	2 649	2 649	0	%100
23	M39A	x	0	0	0	%100
24	M39A	7	0 O	Ő	Ő	%100
25	M40	X	0	0	0	%100
26	M40	7	0	0	0	%100
27	M54	X	-6 117	-6 117	0	%100
28	M54	7	10.59/	10.59/	0	%100
20	M55	× ×	_1 002	_1.002	0	%100
20	M55	7	3.45	-1.332	0	%100
30	M55	×	7.068	7.068	0	%100
32	M50	7	12.9	-7.500	0	%100
32	MD3A	× ×	5.084	5.084	0	%100
24	MD3A	7	-5.004	-5.004	0	%100
35	MP2A	× ×	5.000	5.000	0	%100
36	MD2A	7	9,805	9.805	0	%100
37	MD1A	× ×	5.084	5.084	0	%100
30	MD1A	7	8 805	9,805	0	%100
30	MP4C	X	-5.084	-5.084	0	%100
40	MP4C	7	8 805	8 805	0	%100
40	MP3C	X	-5.084	-5.084	0	%100
41	MP3C	7	8 805	8 805	0	%100
42	MP2C	× ×	-5.084	-5.084	0	%100
43	MP2C	7	9,905	9.905	0	%100
44	MP1C	× ×	-5.084	-5.084	0	%100
40	MP1C	7	-5.004	-5.004	0	%100
40	MP4P	<u> </u>	5.000	5.000	0	%100
47	MD/R	7	8 805	8 805	0	%100
40	MD3R	X	-5 084	-5.08/	0	%100
50	MP3R	7	8 805	8 805	0	%100
51	MP2R	×	-5 08/	-5.08/	0	%100
52	MP2R	7	8 805	8 805	0	%100
52	MP1R	×	-5 08/	-5.084	0	%100
54	MP1R	7	8 805	8 805	0	%100
55	MANA	X	-4 616	-4 616	0	%100
56	M40A	7	7 994	7 994	0	%100
57	M47A	X	-4 616	-4 616	0	%100
58	M47A	7	7 994	7 994	0	%100
59	M54A	X	0	0	0	%100
60	M54A	7	0	0	0	%100
61	M61	X	-5 789	-5 789	0	%100
62	M61	7	10.026	10.026	0	%100
63	M62	X	-5 789	-5 789	0	%100
64	M62	7	10.026	10.026	0	%100
	WIOZ	_	10.020	10.020	0	70100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	X	0	0	0	%100
66	M63	Z	0	0	0	%100
67	M64	Х	-5.87	-5.87	0	%100
68	M64	Z	10.167	10.167	0	%100
69	M65	Х	-5.87	-5.87	0	%100
70	M65	Z	10.167	10.167	0	%100
71	M66	Х	-10.703	-10.703	0	%100
72	M66	Z	18.538	18.538	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-7.946	-7.946	0	%100
2	M1	Z	4.587	4.587	0	%100
3	M2	X	-10.35	-10.35	0	%100
4	M2	Z	5.976	5.976	0	%100
5	M5	X	-11.818	-11.818	0	%100
6	M5	Z	6.823	6.823	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	-11.818	-11.818	0	%100
10	M7	Z	6.823	6.823	0	%100
11	M6A	X	-4.634	-4.634	0	%100
12	M6A	Z	2.676	2.676	0	%100
13	M7A	X	-4.634	-4.634	0	%100
14	M7A	Z	2.676	2.676	0	%100
15	MP4A	X	-8.805	-8.805	0	%100
16	MP4A	Z	5.084	5.084	0	%100
17	M23A	X	-18.538	-18.538	0	%100
18	M23A	Z	10.703	10.703	0	%100
19	M24	X	-18.538	-18.538	0	%100
20	M24	Z	10.703	10.703	0	%100
21	M38	X	0	0	0	%100
22	M38	Z	0	0	0	%100
23	M39A	X	-4.634	-4.634	0	%100
24	M39A	Z	2.676	2.676	0	%100
25	M40	X	-4.634	-4.634	0	%100
26	M40	Z	2.676	2.676	0	%100
27	M54	X	-7.946	-7.946	0	%100
28	M54	Z	4.587	4.587	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	0	0	0	%100
31	M56	X	-10.35	-10.35	0	%100
32	M56	Z	5.976	5.976	0	%100
33	MP3A	X	-8.805	-8.805	0	%100
34	MP3A	Z	5.084	5.084	0	%100
35	MP2A	X	-8.805	-8.805	0	%100
36	MP2A	Z	5.084	5.084	0	%100
37	MP1A	X	-8.805	-8.805	0	%100
38	MP1A	Z	5.084	5.084	0	%100
39	MP4C	X	-8.805	-8.805	0	%100
40	MP4C	Z	5.084	5.084	0	%100
41	MP3C	X	-8.805	-8.805	0	%100
42	MP3C	Z	5.084	5.084	0	%100
43	MP2C	X	-8.805	-8.805	0	%100
44	MP2C	Z	5.084	5.084	0	%100
45	MP1C	X	-8.805	-8.805	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	5.084	5.084	0	%100
47	MP4B	X	-8.805	-8.805	0	%100
48	MP4B	Z	5.084	5.084	0	%100
49	MP3B	Х	-8.805	-8.805	0	%100
50	MP3B	Z	5.084	5.084	0	%100
51	MP2B	Х	-8.805	-8.805	0	%100
52	MP2B	Z	5.084	5.084	0	%100
53	MP1B	Х	-8.805	-8.805	0	%100
54	MP1B	Z	5.084	5.084	0	%100
55	M40A	Х	-2.665	-2.665	0	%100
56	M40A	Z	1.539	1.539	0	%100
57	M47A	Х	-10.659	-10.659	0	%100
58	M47A	Z	6.154	6.154	0	%100
59	M54A	Х	-2.665	-2.665	0	%100
60	M54A	Z	1.539	1.539	0	%100
61	M61	Х	-3.342	-3.342	0	%100
62	M61	Z	1.93	1.93	0	%100
63	M62	Х	-13.368	-13.368	0	%100
64	M62	Z	7.718	7.718	0	%100
65	M63	Х	-3.342	-3.342	0	%100
66	M63	Z	1.93	1.93	0	%100
67	M64	Х	-15.747	-15.747	0	%100
68	M64	Z	9.092	9.092	0	%100
69	M65	Х	-7.376	-7.376	0	%100
70	M65	Z	4.259	4.259	0	%100
71	M66	Х	-15.747	-15.747	0	%100
72	M66	7	9 092	9 092	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-12.233	-12.233	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	-15.935	-15.935	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	-18.195	-18.195	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	-4.549	-4.549	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	-4.549	-4.549	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	0	0	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	0	0	0	%100
15	MP4A	Х	-10.168	-10.168	0	%100
16	MP4A	Z	0	0	0	%100
17	M23A	Х	-16.054	-16.054	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	-16.054	-16.054	0	%100
20	M24	Z	0	0	0	%100
21	M38	X	-3.058	-3.058	0	%100
22	M38	Z	0	0	0	%100
23	M39A	X	-16.054	-16.054	0	%100
24	M39A	Z	0	0	0	%100
25	M40	X	-16.054	-16.054	0	%100
26	M40	Z	0	0	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Χ	-3.058	-3.058	0	%100
28	M54	Z	0	0	0	%100
29	M55	Х	-3.984	-3.984	0	%100
30	M55	Z	0	0	0	%100
31	M56	Х	-3.984	-3.984	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	Х	-10.168	-10.168	0	%100
34	MP3A	Z	0	0	0	%100
35	MP2A	Х	-10.168	-10.168	0	%100
36	MP2A	Z	0	0	0	%100
37	MP1A	Х	-10.168	-10.168	0	%100
38	MP1A	Z	0	0	0	%100
39	MP4C	Х	-10.168	-10.168	0	%100
40	MP4C	Z	0	0	0	%100
41	MP3C	Х	-10.168	-10.168	0	%100
42	MP3C	Z	0	0	0	%100
43	MP2C	Х	-10.168	-10.168	0	%100
44	MP2C	Z	0	0	0	%100
45	MP1C	Х	-10.168	-10.168	0	%100
46	MP1C	Z	0	0	0	%100
47	MP4B	X	-10.168	-10,168	0	%100
48	MP4B	Z	0	0	0	%100
49	MP3B	X	-10.168	-10.168	0	%100
50	MP3B	Z	0	0	0	%100
51	MP2B	Х	-10.168	-10.168	0	%100
52	MP2B	Z	0	0	0	%100
53	MP1B	X	-10.168	-10.168	0	%100
54	MP1B	Z	0	0	0	%100
55	M40A	X	0	0	0	%100
56	M40A	Z	0	0	0	%100
57	M47A	X	-9.231	-9.231	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	X	-9.231	-9.231	0	%100
60	M54A	Z	0	0	0	%100
61	M61	X	0	0	0	%100
62	M61	Z	0	0	0	%100
63	M62	x	-11.577	-11.577	0	%100
64	M62	Z	0	0	0	%100
65	M63	x	-11 577	-11 577	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	-21.405	-21,405	Õ	%100
68	M64	Z	0	0	0	%100
69	M65	x	-11,739	-11,739	Ő	%100
70	M65	7	0	0	Ő	%100
71	M66	x	-11,739	-11,739	Ő	%100
72	M66	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-7.946	-7.946	0	%100
2	M1	Z	-4.587	-4.587	0	%100
3	M2	Х	-10.35	-10.35	0	%100
4	M2	Z	-5.976	-5.976	0	%100
5	M5	Х	-11.818	-11.818	0	%100
6	M5	Z	-6.823	-6.823	0	%100
7	M6	Х	-11.818	-11.818	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	-6.823	-6.823	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	-4.634	-4.634	0	%100
12	M6A	Z	-2.676	-2.676	0	%100
13	M7A	X	-4.634	-4.634	0	%100
14	M7A	Z	-2.676	-2.676	0	%100
15	MP4A	x	-8.805	-8.805	0	%100
16	MP4A	7	-5.084	-5.084	Ő	%100
17	M23A	x	-4 634	-4 634	0	%100
18	M23A	7	-2 676	-2.676	0	%100
10	M24	X	-4.634	-2.070	0	%100
20	M24	7	-2.676	-2.676	0	%100
20	M29	×	-2.070	7.046	0	%100
21	M29	7	-7.940	-7.940	0	%100
22	N30	Z V	-4.007	-4.007	0	%100 9/ 100
23	Maga	~ 7	-10.000	-10.000	0	⁷⁰ 100
24	INIS9A M40		-10.703	-10.703	0	%100
25	IVI40	X 	-10.038	-18.538	0	%100
26	IVI40		-10.703	-10.703	0	%100
21	IVI54	X	0	0	0	%100
28	M54	<u> </u>	0	0	0	%100
29	M55	X	-10.35	-10.35	0	%100
30	M55	<u> </u>	-5.976	-5.976	0	%100
31	M56	X	0	0	0	%100
32	M56	<u> </u>	0	0	0	%100
33	MP3A	X	-8.805	-8.805	0	%100
34	MP3A	Z	-5.084	-5.084	0	%100
35	MP2A	X	-8.805	-8.805	0	%100
36	MP2A	Z	-5.084	-5.084	0	%100
37	MP1A	X	-8.805	-8.805	0	%100
38	MP1A	Z	-5.084	-5.084	0	%100
39	MP4C	X	-8.805	-8.805	0	%100
40	MP4C	Z	-5.084	-5.084	0	%100
41	MP3C	X	-8.805	-8.805	0	%100
42	MP3C	Z	-5.084	-5.084	0	%100
43	MP2C	X	-8.805	-8.805	0	%100
44	MP2C	Z	-5.084	-5.084	0	%100
45	MP1C	X	-8.805	-8.805	0	%100
46	MP1C	Z	-5.084	-5.084	0	%100
47	MP4B	X	-8.805	-8.805	0	%100
48	MP4B	Z	-5.084	-5.084	0	%100
49	MP3B	X	-8.805	-8.805	0	%100
50	MP3B	Z	-5.084	-5.084	0	%100
51	MP2B	Х	-8.805	-8.805	0	%100
52	MP2B	Z	-5.084	-5.084	0	%100
53	MP1B	Х	-8.805	-8.805	0	%100
54	MP1B	Z	-5.084	-5.084	0	%100
55	M40A	X	-2.665	-2.665	0	%100
56	M40A	Z	-1.539	-1.539	0	%100
57	M47A	x	-2.665	-2.665	0	%100
58	M47A	Z	-1.539	-1.539	0	%100
59	M54A	x	-10 659	-10.659	0	%100
60	M54A	7	-6 154	-6 154	Ő	%100
61	M61	X	-3 342	-3.342	0	%100
62	M61	7	-1 93	-1 93	0	%100
63	M62	X	-3 342	-3.342	0	%100
64	M62	7	_1.03	-1.03	0	%100
04	IVIOZ	۷.	-1.90	-1.90	U	/0100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	-13.368	-13.368	0	%100
66	M63	Z	-7.718	-7.718	0	%100
67	M64	Х	-15.747	-15.747	0	%100
68	M64	Z	-9.092	-9.092	0	%100
69	M65	Х	-15.747	-15.747	0	%100
70	M65	Z	-9.092	-9.092	0	%100
71	M66	Х	-7.376	-7.376	0	%100
72	M66	Z	-4.259	-4.259	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-1.529	-1.529	0	%100
2	M1	Z	-2.649	-2.649	0	%100
3	M2	X	-1.992	-1.992	0	%100
4	M2	Z	-3.45	-3.45	0	%100
5	M5	X	-2.274	-2.274	0	%100
6	M5	Z	-3.939	-3.939	0	%100
7	M6	Х	-9.097	-9.097	0	%100
8	M6	Z	-15.757	-15.757	0	%100
9	M7	X	-2.274	-2.274	0	%100
10	M7	Z	-3.939	-3.939	0	%100
11	M6A	X	-8.027	-8.027	0	%100
12	M6A	Z	-13.903	-13.903	0	%100
13	M7A	X	-8.027	-8.027	0	%100
14	M7A	Z	-13.903	-13.903	0	%100
15	MP4A	Х	-5.084	-5.084	0	%100
16	MP4A	Z	-8.805	-8.805	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	0	0	0	%100
21	M38	X	-6.117	-6.117	0	%100
22	M38	Z	-10.594	-10.594	0	%100
23	M39A	X	-8.027	-8.027	0	%100
24	M39A	Z	-13.903	-13.903	0	%100
25	M40	X	-8.027	-8.027	0	%100
26	M40	Z	-13.903	-13.903	0	%100
27	M54	X	-1.529	-1.529	0	%100
28	M54	Z	-2.649	-2.649	0	%100
29	M55	X	-7.968	-7.968	0	%100
30	M55	Z	-13.8	-13.8	0	%100
31	M56	X	-1.992	-1.992	0	%100
32	M56	Z	-3.45	-3.45	0	%100
33	MP3A	X	-5.084	-5.084	0	%100
34	MP3A	Z	-8.805	-8.805	0	%100
35	MP2A	X	-5.084	-5.084	0	%100
36	MP2A	Z	-8.805	-8.805	0	%100
37	MP1A	X	-5.084	-5.084	0	%100
38	MP1A	Z	-8.805	-8.805	0	%100
39	MP4C	X	-5.084	-5.084	0	%100
40	MP4C	Z	-8.805	-8.805	0	%100
41	MP3C	X	-5.084	-5.084	0	%100
42	MP3C	Z	-8.805	-8.805	0	%100
43	MP2C	X	-5.084	-5.084	0	%100
44	MP2C	Z	-8.805	-8.805	0	%100
45	MP1C	X	-5.084	-5.084	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	-8.805	-8.805	0	%100
47	MP4B	Х	-5.084	-5.084	0	%100
48	MP4B	Z	-8.805	-8.805	0	%100
49	MP3B	Х	-5.084	-5.084	0	%100
50	MP3B	Z	-8.805	-8.805	0	%100
51	MP2B	Х	-5.084	-5.084	0	%100
52	MP2B	Z	-8.805	-8.805	0	%100
53	MP1B	Х	-5.084	-5.084	0	%100
54	MP1B	Z	-8.805	-8.805	0	%100
55	M40A	Х	-4.616	-4.616	0	%100
56	M40A	Z	-7.994	-7.994	0	%100
57	M47A	Х	0	0	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	-4.616	-4.616	0	%100
60	M54A	Z	-7.994	-7.994	0	%100
61	M61	Х	-5.789	-5.789	0	%100
62	M61	Z	-10.026	-10.026	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	0	0	0	%100
65	M63	Х	-5.789	-5.789	0	%100
66	M63	Z	-10.026	-10.026	0	%100
67	M64	Х	-5.87	-5.87	0	%100
68	M64	Z	-10.167	-10.167	0	%100
69	M65	X	-10.703	-10.703	0	%100
70	M65	Z	-18.538	-18.538	0	%100
71	M66	X	-5.87	-5.87	0	%100
72	M66	7	-10 167	-10 167	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	-3.985	-3.985	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	-3.985	-3.985	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	-6.441	-6.441	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	-6.441	-6.441	0	%100
15	MP4A	Х	0	0	0	%100
16	MP4A	Z	-4.232	-4.232	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	-1.61	-1.61	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	-1.61	-1.61	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	-2.824	-2.824	0	%100
23	M39A	Х	0	0	0	%100
24	M39A	Z	-1.61	-1.61	0	%100
25	M40	Х	0	0	0	%100
26	M40	Z	-1.61	-1.61	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Х	0	0	0	%100
28	M54	Z	-2.824	-2.824	0	%100
29	M55	Х	0	0	0	%100
30	M55	Z	-3.434	-3.434	0	%100
31	M56	Х	0	0	0	%100
32	M56	Z	-3.434	-3.434	0	%100
33	MP3A	Х	0	0	0	%100
34	MP3A	Z	-4.232	-4.232	0	%100
35	MP2A	Х	0	0	0	%100
36	MP2A	Z	-4.457	-4.457	0	%100
37	MP1A	Х	0	0	0	%100
38	MP1A	Z	-4.232	-4.232	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	-4.232	-4.232	0	%100
41	MP3C	X	0	0	0	%100
42	MP3C	Z	-4.232	-4.232	0	%100
43	MP2C	Х	0	0	0	%100
44	MP2C	Z	-4.457	-4.457	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	-4.232	-4.232	0	%100
47	MP4B	X	0	0	0	%100
48	MP4B	Z	-4.232	-4.232	0	%100
49	MP3B	X	0	0	0	%100
50	MP3B	Z	-4.232	-4.232	0	%100
51	MP2B	Х	0	0	0	%100
52	MP2B	Z	-4.457	-4.457	0	%100
53	MP1B	Х	0	0	0	%100
54	MP1B	Z	-4.232	-4.232	0	%100
55	M40A	Х	0	0	0	%100
56	M40A	Z	-4.835	-4.835	0	%100
57	M47A	Х	0	0	0	%100
58	M47A	Z	-1.209	-1.209	0	%100
59	M54A	Х	0	0	0	%100
60	M54A	Z	-1.209	-1.209	0	%100
61	M61	Х	0	0	0	%100
62	M61	Z	-4.502	-4.502	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	-1.125	-1.125	0	%100
65	M63	Х	0	0	0	%100
66	M63	Z	-1.125	-1.125	0	%100
67	M64	Х	0	0	0	%100
68	M64	Z	-2.074	-2.074	0	%100
69	M65	Х	0	0	0	%100
70	M65	Z	-5.213	-5.213	0	%100
71	M66	Х	0	0	0	%100
72	M66	Z	-5.213	-5.213	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

4		olar Magintado	[ib/it,End Magnitude[ib/it,r	Start Location[11,76]	End Location[π,%]
1	M1 X	.471	.471	0	%100
2	V1 Z	815	815	0	%100
3	M2 X	.572	.572	0	%100
4	M2 Z	·.991	991	0	%100
5	M5 X	.664	.664	0	%100
6	M5 Z	·1.15	-1.15	0	%100
7	V16 X	.664	.664	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	-1.15	-1.15	0	%100
9	M7	X	2.657	2.657	0	%100
10	M7	Z	-4.601	-4.601	0	%100
11	M6A	Х	2.415	2.415	0	%100
12	M6A	Z	-4.183	-4.183	0	%100
13	M7A	X	2.415	2.415	0	%100
14	M7A	Z	-4.183	-4,183	0	%100
15	MP4A	x	2 116	2 116	0	%100
16	MP4A	7	-3 665	-3 665	0	%100
17	M23A	x	2 415	2 415	0	%100
18	M23A	7	-4 183	-4 183	0	%100
19	M24	x	2 415	2 4 1 5	0	%100
20	M24	7	-4 183	-4 183	0	%100
20	M38	X	/71	471	0	%100
22	M38	7	- 815	- 815	0	%100
22	M30A	×	010	013	0	%100
20	M30A	7	0	0	0	%100
24	MAO	×	0	0	0	%100
20	M40	7	0	0	0	%100
20	M54	×	1 202	1,992	0	%100
21	N/54	7	2.261	2.261	0	9/ 100
20	N55	<u> </u>	-3.201	-5.201	0	9/ 100
29	IVISS MEE	~ 7	.072	.072	0	70 TOO
30	IVIDD MEC		991	991	0	%100
20	IVIDO MEC	7	2.209	2.209	0	%100
32		<u> </u>	-3.900	-3.903	0	%100
33	MD2A	~ ~	2.110	2.110	0	%100
34	MP3A	<u> </u>	-3.000	-3.000	0	%100
30	MP2A	<u> </u>	2.228	2.228	0	%100
30		<u> </u>	-3.80	-3.80	0	%100
37		7	2.110	2.110	0	%100
30	MPIA	<u> </u>	-3.000	-3.000	0	%100
39	MP4C	~ ~ ~	2.110	2.110	0	%100
40	MP4C	<u> </u>	-3.000	-3.000	0	%100
41	MP3C	~ ~ ~	2.110	2.110	0	%100
42	MP3C	<u> </u>	-3.000	-3.000	0	%100
43	MP2C	× 7	2.228	2.228	0	%100
44	MP2C	<u> </u>	-3.80	-3.80	0	%100
45	MP1C	X 7	2.110	2.116	0	%100
46	MP1C	<u> </u>	-3.665	-3.665	0	%100
4/	MP4B	X 7	2.116	2.116	0	%100
48	MP4B	<u> </u>	-3.005	-3.005	0	%100
49	MP3B	X	2.116	2.116	0	%100
50	MP3B	Z	-3.665	-3.665	0	%100
51	MP2B	X	2.228	2.228	0	%100
52	MP2B		-3.86	-3.86	0	%100
53	MP1B	X	2.116	2.116	0	%100
54	MP1B	Z	-3.665	-3.665	0	%100
55	M40A	<u> </u>	1.813	1.813	0	%100
56	M40A	Z	-3.14	-3.14	0	%100
57	M47A	X	1.813	1.813	0	%100
58	M47A	Z	-3.14	-3.14	0	%100
59	M54A	X	0	0	0	%100
60	M54A	Z	0	0	0	%100
61	M61	X	1.688	1.688	0	%100
62	M61	Z	-2.924	-2.924	0	%100
63	M62	X	1.688	1.688	0	%100
64	M62	Z	-2.924	-2.924	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	0	0	0	%100
66	M63	Z	0	0	0	%100
67	M64	Х	1.56	1.56	0	%100
68	M64	Z	-2.702	-2.702	0	%100
69	M65	Х	1.56	1.56	0	%100
70	M65	Z	-2.702	-2.702	0	%100
71	M66	Х	3.129	3.129	0	%100
72	M66	Z	-5.42	-5.42	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	%100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100 %100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%100 %100 %100 %100 %100 %100 %100 %100
3 M2 X 2.974 2.974 0 4 M2 Z -1.717 -1.717 0 5 M5 X 3.451 3.451 0 6 M5 Z -1.992 -1.992 0 7 M6 X 0 0 0 8 M6 Z 0 0 0 9 M7 X 3.451 3.451 0 10 M7 Z -1.992 -1.992 0	%100 %100 %100 %100 %100 %100 %100 %100
4 M2 Z -1.717 -1.717 0 5 M5 X 3.451 3.451 0 6 M5 Z -1.992 -1.992 0 7 M6 X 0 0 0 8 M6 Z 0 0 0 9 M7 X 3.451 3.451 0 10 M7 Z -1.992 -1.992 0	%100 %100 %100 %100 %100 %100 %100
5 M5 X 3.451 3.451 0 6 M5 Z -1.992 -1.992 0 7 M6 X 0 0 0 8 M6 Z 0 0 0 9 M7 X 3.451 3.451 0 10 M7 Z -1.992 -1.992 0	%100 %100 %100 %100 %100 %100
6 M5 Z -1.992 -1.992 0 7 M6 X 0 0 0 8 M6 Z 0 0 0 9 M7 X 3.451 3.451 0 10 M7 Z -1.992 -1.992 0	%100 %100 %100 %100 %100
7 M6 X 0 0 0 8 M6 Z 0 0 0 9 M7 X 3.451 3.451 0 10 M7 Z -1.992 -1.992 0 11 M6A X 1.304 1.204 0	%100 %100 %100 %100
8 M6 Z 0	%100 %100
9 M7 X 3.451 3.451 0 10 M7 Z -1.992 -1.992 0 11 M60 X 1.394 1.394 0	%100
10 M7 Z -1.992 -1.992 0	0/ 100
11 M6A X 1304 1304 0	%100
	%100
12 M6A Z805805 0	%100
13 M7A X 1.394 1.394 0	%100
14 M7A Z805805 0	%100
15 MP4A X 3.665 3.665 0	%100
16 MP4A Z -2.116 -2.116 0	%100
17 M23A X 5.578 5.578 0	%100
18 M23A Z -3.22 -3.22 0	%100
19 M24 X 5.578 5.578 0	%100
20 M24 Z -3.22 -3.22 0	%100
21 M38 X 0 0 0	%100
22 M38 Z 0 0 0	%100
23 M39A X 1.394 1.394 0	%100
24 M39A Z805805 0	%100
25 M40 X 1.394 1.394 0	%100
26 M40 Z805805 0	%100
27 M54 X 2.446 2.446 0	%100
28 M54 Z -1.412 -1.412 0	%100
29 M55 X 0 0 0	%100
30 M55 Z 0 0 0	%100
31 M56 X 2.974 2.974 0	%100
32 M56 Z -1.717 -1.717 0	%100
33 MP3A X 3.665 3.665 0	%100
34 MP3A Z -2.116 -2.116 0	%100
35 MP2A X 3.86 3.86 0	%100
36 MP2A Z -2.228 -2.228 0	%100
37 MP1A X 3.665 3.665 0	%100
38 MP1A Z -2.116 -2.116 0	%100
39 MP4C X 3.665 3.665 0	%100
40 MP4C Z -2.116 -2.116 0	%100
41 MP3C X 3.665 3.665 0	%100
42 MP3C Z -2.116 -2.116 0	%100
43 MP2C X 3.86 3.86 0	%100
44 MP2C Z -2.228 -2.228 0	%100
45 MP1C X 3.665 3.665 0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	-2.116	-2.116	0	%100
47	MP4B	Х	3.665	3.665	0	%100
48	MP4B	Z	-2.116	-2.116	0	%100
49	MP3B	Х	3.665	3.665	0	%100
50	MP3B	Z	-2.116	-2.116	0	%100
51	MP2B	Х	3.86	3.86	0	%100
52	MP2B	Z	-2.228	-2.228	0	%100
53	MP1B	Х	3.665	3.665	0	%100
54	MP1B	Z	-2.116	-2.116	0	%100
55	M40A	Х	1.047	1.047	0	%100
56	M40A	Z	604	604	0	%100
57	M47A	Х	4.187	4.187	0	%100
58	M47A	Z	-2.417	-2.417	0	%100
59	M54A	Х	1.047	1.047	0	%100
60	M54A	Z	604	604	0	%100
61	M61	Х	.975	.975	0	%100
62	M61	Z	563	563	0	%100
63	M62	Х	3.899	3.899	0	%100
64	M62	Z	-2.251	-2.251	0	%100
65	M63	Х	.975	.975	0	%100
66	M63	Z	563	563	0	%100
67	M64	Х	4.514	4.514	0	%100
68	M64	Z	-2.606	-2.606	0	%100
69	M65	X	1.796	1.796	0	%100
70	M65	Z	-1.037	-1.037	0	%100
71	M66	X	4.514	4.514	0	%100
72	M66	7	-2 606	-2 606	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	3.765	3.765	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	4.579	4.579	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	5.313	5.313	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	1.328	1.328	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	1.328	1.328	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	0	0	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	0	0	0	%100
15	MP4A	Х	4.232	4.232	0	%100
16	MP4A	Z	0	0	0	%100
17	M23A	Х	4.83	4.83	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	4.83	4.83	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	.941	.941	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	4.83	4.83	0	%100
24	M39A	Z	0	0	0	%100
25	M40	Х	4.83	4.83	0	%100
26	M40	Z	0	0	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Х	.941	.941	0	%100
28	M54	Z	0	0	0	%100
29	M55	Х	1.145	1.145	0	%100
30	M55	Z	0	0	0	%100
31	M56	Х	1.145	1.145	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	Х	4.232	4.232	0	%100
34	MP3A	Z	0	0	0	%100
35	MP2A	Х	4.457	4.457	0	%100
36	MP2A	Z	0	0	0	%100
37	MP1A	Х	4.232	4.232	0	%100
38	MP1A	Z	0	0	0	%100
39	MP4C	Х	4.232	4.232	0	%100
40	MP4C	Z	0	0	0	%100
41	MP3C	Х	4.232	4.232	0	%100
42	MP3C	Z	0	0	0	%100
43	MP2C	Х	4.457	4.457	0	%100
44	MP2C	Z	0	0	0	%100
45	MP1C	Х	4.232	4.232	0	%100
46	MP1C	Z	0	0	0	%100
47	MP4B	Х	4.232	4.232	0	%100
48	MP4B	Z	0	0	0	%100
49	MP3B	Х	4.232	4.232	0	%100
50	MP3B	Z	0	0	0	%100
51	MP2B	Х	4.457	4.457	0	%100
52	MP2B	Z	0	0	0	%100
53	MP1B	Х	4.232	4.232	0	%100
54	MP1B	Z	0	0	0	%100
55	M40A	Х	0	0	0	%100
56	M40A	Z	0	0	0	%100
57	M47A	X	3.626	3.626	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	3.626	3.626	0	%100
60	M54A	Z	0	0	0	%100
61	M61	Х	0	0	0	%100
62	M61	Z	0	0	0	%100
63	M62	Х	3.376	3.376	0	%100
64	M62	Z	0	0	0	%100
65	M63	X	3.376	3.376	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	6.259	6.259	0	%100
68	M64	Z	0	0	0	%100
69	M65	X	3.12	3.12	0	%100
70	M65	Z	0	0	0	%100
71	M66	X	3.12	3.12	0	%100
72	M66	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.446	2.446	0	%100
2	M1	Z	1.412	1.412	0	%100
3	M2	Х	2.974	2.974	0	%100
4	M2	Z	1.717	1.717	0	%100
5	M5	Х	3.451	3.451	0	%100
6	M5	Z	1.992	1.992	0	%100
7	M6	Х	3.451	3.451	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	1.992	1.992	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	1.394	1.394	0	%100
12	M6A	Z	.805	.805	0	%100
13	M7A	X	1.394	1.394	0	%100
14	M7A	Z	.805	.805	0	%100
15	MP4A	x	3 665	3 665	0	%100
16	MP4A	7	2 116	2 116	0	%100
17	M23A	x	1 394	1 394	0	%100
18	M23A	7	805	805	0	%100
19	M24	x	1 394	1 394	0	%100
20	M24	7	805	805	0	%100
20	M24	X	2.446	2.446	0	%100
22	M38	7	1 /12	1 /12	0	%100
22	M39A	X	5 578	5 578	0	%100
24	MQQA	7	3.070	3.070	0	%100
24	MAO	Z V	5.22	5.22	0	%100
20	M40	7	2.070	3.070	0	%100
20	ME4	Z V	0.22	0	0	%100
21	M54	~ 7	0	0	0	%100
20	N55	Z V	2.074	2.074	0	9/ 100
29	IVISS NASE	~ 7	2.974	2.974	0	70 TOO
30	MEC	Z V	1.717	1.717	0	%100
20	IVIDO MEC	~ 7	0	0	0	%100
32		<u> </u>	2.665	0	0	%100
33	MD2A	~ 7	3.003	3.003	0	%100
34	MD2A	Z X	2.110	2.110	0	%100
30	MP2A	<u> </u>	3.60	3.80	0	%100
30		<u> </u>	2.228	2.228	0	%100
37		<u> </u>	3.000	3.000	0	%100
30	MPIA	<u> </u>	2.110	2.110	0	%100
39	MP4C	~ 7	3.003	3.003	0	⁷⁰¹⁰⁰
40	MP4C	<u> </u>	2.110	2.110	0	%100
41	MP3C	<u> </u>	3.000	3.000	0	%100
42	MP3C	<u> </u>	2.110	2.110	0	%100
43	MP2C	<u> </u>	3.80	3.80	0	%100
44	MP2C	<u> </u>	2.228	2.228	0	%100
45	MP1C	X	3.665	3.665	0	%100
46	MP1C		2.116	2.116	0	%100
4/	MP4B	X 7	3.665	3.665	0	%100
48	MP4B	<u> </u>	2.116	2.116	0	%100
49	MP3B	X	3.005	3.005	0	%100
50	MP3B	Z	2.116	2.116	0	%100
51	MP2B	X	3.86	3.86	0	%100
52	MP2B	Z	2.228	2.228	0	%100
53	MP1B	X	3.665	3.665	0	%100
54	MP1B	<u> </u>	2.116	2.116	0	%100
55	M40A	X	1.047	1.047	0	%100
56	M40A	<u> </u>	.604	.604	0	%100
5/	M4/A	X	1.047	1.047	0	%100
58	M4/A	<u> </u>	.604	.604	0	%100
59	M54A	X	4.187	4.187	0	%100
60	M54A	Z	2.417	2.417	0	%100
61	M61	X	.975	.975	0	%100
62	M61	Ζ	.563	.563	0	%100
63	M62	X	.975	.975	0	%100
64	M62	Z	.563	.563	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	3.899	3.899	0	%100
66	M63	Z	2.251	2.251	0	%100
67	M64	Х	4.514	4.514	0	%100
68	M64	Z	2.606	2.606	0	%100
69	M65	Х	4.514	4.514	0	%100
70	M65	Z	2.606	2.606	0	%100
71	M66	Х	1.796	1.796	0	%100
72	M66	Z	1.037	1.037	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.471	.471	0	%100
2	M1	Z	.815	.815	0	%100
3	M2	X	.572	.572	0	%100
4	M2	Z	.991	.991	0	%100
5	M5	X	.664	.664	0	%100
6	M5	Z	1.15	1.15	0	%100
7	M6	Х	2.657	2.657	0	%100
8	M6	Z	4.601	4.601	0	%100
9	M7	Х	.664	.664	0	%100
10	M7	Z	1.15	1.15	0	%100
11	M6A	X	2.415	2.415	0	%100
12	M6A	Z	4.183	4.183	0	%100
13	M7A	X	2.415	2.415	0	%100
14	M7A	Z	4.183	4.183	0	%100
15	MP4A	X	2.116	2.116	0	%100
16	MP4A	Z	3.665	3.665	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	0	0	0	%100
19	M24	X	0	0	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	1.883	1.883	0	%100
22	M38	Z	3.261	3.261	0	%100
23	M39A	X	2.415	2.415	0	%100
24	M39A	Z	4.183	4.183	0	%100
25	M40	X	2.415	2.415	0	%100
26	M40	Z	4.183	4.183	0	%100
27	M54	X	.471	.471	0	%100
28	M54	Z	.815	.815	0	%100
29	M55	X	2.289	2.289	0	%100
30	M55	Z	3.965	3.965	0	%100
31	M56	Х	.572	.572	0	%100
32	M56	Z	.991	.991	0	%100
33	MP3A	Х	2.116	2.116	0	%100
34	MP3A	Z	3.665	3.665	0	%100
35	MP2A	Х	2.228	2.228	0	%100
36	MP2A	Z	3.86	3.86	0	%100
37	MP1A	Х	2.116	2.116	0	%100
38	MP1A	Z	3.665	3.665	0	%100
39	MP4C	X	2.116	2.116	0	%100
40	MP4C	Z	3.665	3.665	0	%100
41	MP3C	X	2.116	2.116	0	%100
42	MP3C	Z	3.665	3.665	0	%100
43	MP2C	Х	2.228	2.228	0	%100
44	MP2C	Z	3.86	3.86	0	%100
45	MP1C	X	2.116	2.116	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	3.665	3.665	0	%100
47	MP4B	Х	2.116	2.116	0	%100
48	MP4B	Z	3.665	3.665	0	%100
49	MP3B	Х	2.116	2.116	0	%100
50	MP3B	Z	3.665	3.665	0	%100
51	MP2B	Х	2.228	2.228	0	%100
52	MP2B	Z	3.86	3.86	0	%100
53	MP1B	Х	2.116	2.116	0	%100
54	MP1B	Z	3.665	3.665	0	%100
55	M40A	X	1.813	1.813	0	%100
56	M40A	Z	3.14	3.14	0	%100
57	M47A	X	0	0	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	1.813	1.813	0	%100
60	M54A	Z	3.14	3.14	0	%100
61	M61	X	1.688	1.688	0	%100
62	M61	Z	2.924	2.924	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	0	0	0	%100
65	M63	X	1.688	1.688	0	%100
66	M63	Z	2.924	2.924	0	%100
67	M64	Х	1.56	1.56	0	%100
68	M64	Z	2.702	2.702	0	%100
69	M65	X	3.129	3.129	0	%100
70	M65	Z	5.42	5.42	0	%100
71	M66	X	1.56	1.56	0	%100
72	M66	7	2 702	2 702	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	3.985	3.985	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	3.985	3.985	0	%100
11	M6A	X	0	0	0	%100
12	M6A	Z	6.441	6.441	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	6.441	6.441	0	%100
15	MP4A	Х	0	0	0	%100
16	MP4A	Z	4.232	4.232	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	1.61	1.61	0	%100
19	M24	X	0	0	0	%100
20	M24	Z	1.61	1.61	0	%100
21	M38	X	0	0	0	%100
22	M38	Z	2.824	2.824	0	%100
23	M39A	X	0	0	0	%100
24	M39A	Z	1.61	1.61	0	%100
25	M40	X	0	0	0	%100
26	M40	Z	1.61	1.61	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	X	0	0	0	%100
28	M54	Z	2.824	2.824	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	3.434	3.434	0	%100
31	M56	Х	0	0	0	%100
32	M56	Z	3.434	3.434	0	%100
33	MP3A	Х	0	0	0	%100
34	MP3A	Z	4.232	4.232	0	%100
35	MP2A	Х	0	0	0	%100
36	MP2A	Z	4.457	4.457	0	%100
37	MP1A	Х	0	0	0	%100
38	MP1A	Z	4.232	4.232	0	%100
39	MP4C	Х	0	0	0	%100
40	MP4C	Z	4.232	4.232	0	%100
41	MP3C	Х	0	0	0	%100
42	MP3C	Z	4.232	4.232	0	%100
43	MP2C	Х	0	0	0	%100
44	MP2C	Z	4.457	4.457	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	4.232	4.232	0	%100
47	MP4B	Х	0	0	0	%100
48	MP4B	Z	4.232	4.232	0	%100
49	MP3B	Х	0	0	0	%100
50	MP3B	Z	4.232	4.232	0	%100
51	MP2B	Х	0	0	0	%100
52	MP2B	Z	4.457	4.457	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	4.232	4.232	0	%100
55	M40A	X	0	0	0	%100
56	M40A	Z	4.835	4.835	0	%100
57	M47A	X	0	0	0	%100
58	M47A	Z	1.209	1.209	0	%100
59	M54A	Х	0	0	0	%100
60	M54A	Z	1.209	1,209	0	%100
61	M61	X	0	0	0	%100
62	M61	Z	4,502	4,502	0	%100
63	M62	X	0	0	0	%100
64	M62	Z	1,125	1,125	0	%100
65	M63	x	0	0	0	%100
66	M63	Z	1,125	1,125	Ő	%100
67	M64	X	0	0	0	%100
68	M64	Z	2.074	2.074	0	%100
69	M65	x	0	0	Õ	%100
70	M65	7	5,213	5,213	Ő	%100
71	M66	x	0	0	0	%100
72	M66	Z	5.213	5.213	Ő	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	471	471	0	%100
2	M1	Z	.815	.815	0	%100
3	M2	Х	572	572	0	%100
4	M2	Z	.991	.991	0	%100
5	M5	Х	664	664	0	%100
6	M5	Z	1.15	1.15	0	%100
7	M6	Х	664	664	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	1.15	1.15	0	%100
9	M7	X	-2.657	-2.657	0	%100
10	M7	Z	4.601	4.601	0	%100
11	M6A	Х	-2.415	-2.415	0	%100
12	M6A	Z	4.183	4.183	0	%100
13	M7A	Х	-2.415	-2.415	0	%100
14	M7A	Z	4,183	4,183	0	%100
15	MP4A	x	-2.116	-2.116	0	%100
16	MP4A	7	3 665	3 665	0	%100
17	M23A	x	-2 415	-2 415	0	%100
18	M23A	7	4 183	4 183	0	%100
19	M24	x	-2 415	-2 415	0	%100
20	M24	7	4 183	4 183	0	%100
20	M24	X	- 471	- 471	0	%100
22	M38	7	815	815	0	%100
22	M30A	×	.010	.013	0	%100
20	M39A	7	0	0	0	%100
24	MAO	×	0	0	0	%100
20	M40	7	0	0	0	%100
20	ME4	×	1 992	1 992	0	%100
21	NI04	~ 7	-1.003	-1.003	0	% TUU 9/ 100
20	N154	<u> </u>	5.201	5.201	0	%100
29	MIDD	<u> </u>	572	572	0	%100
30	MISS	<u> </u>	.991	.991	0	%100
31	MD6	X 7	-2.289	-2.289	0	%100
32	MD0		3.965	3.905	0	%100
33	MP3A	X	-2.116	-2.116	0	%100
34	MP3A	<u> </u>	3.665	3.665	0	%100
35	MP2A	X	-2.228	-2.228	0	%100
36	MP2A	Z	3.86	3.86	0	%100
37	MP1A	X	-2.116	-2.116	0	%100
38	MP1A	<u> </u>	3.665	3.665	0	%100
39	MP4C	<u> </u>	-2.116	-2.116	0	%100
40	MP4C	Z	3.665	3.665	0	%100
41	MP3C	<u> </u>	-2.116	-2.116	0	%100
42	MP3C	Z	3.665	3.665	0	%100
43	MP2C	<u> </u>	-2.228	-2.228	0	%100
44	MP2C	Z	3.86	3.86	0	%100
45	MP1C	X	-2.116	-2.116	0	%100
46	MP1C	Z	3.665	3.665	0	%100
47	MP4B	X	-2.116	-2.116	0	%100
48	MP4B	Z	3.665	3.665	0	%100
49	MP3B	X	-2.116	-2.116	0	%100
50	MP3B	Z	3.665	3.665	0	%100
51	MP2B	X	-2.228	-2.228	0	%100
52	MP2B	Z	3.86	3.86	0	%100
53	MP1B	X	-2.116	-2.116	0	%100
54	MP1B	Z	3.665	3.665	0	%100
55	M40A	X	-1.813	-1.813	0	%100
56	M40A	Z	3.14	3.14	0	%100
57	M47A	Х	-1.813	-1.813	0	%100
58	M47A	Z	3.14	3.14	0	%100
59	M54A	Х	0	0	0	%100
60	M54A	Z	0	0	0	%100
61	M61	X	-1.688	-1.688	0	%100
62	M61	Z	2.924	2.924	0	%100
63	M62	X	-1.688	-1.688	0	%100
64	M62	Z	2.924	2.924	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	0	0	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	-1.56	-1.56	0	%100
68	M64	Z	2.702	2.702	0	%100
69	M65	Х	-1.56	-1.56	0	%100
70	M65	Z	2.702	2.702	0	%100
71	M66	X	-3.129	-3.129	0	%100
72	M66	Z	5.42	5.42	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-2.446	-2.446	0	%100
2	M1	Z	1.412	1.412	0	%100
3	M2	X	-2.974	-2.974	0	%100
4	M2	Z	1.717	1.717	0	%100
5	M5	X	-3.451	-3.451	0	%100
6	M5	Z	1.992	1.992	0	%100
7	M6	X	0	0	0	%100
8	M6	Z	0	0	0	%100
9	M7	X	-3.451	-3.451	0	%100
10	M7	Z	1.992	1.992	0	%100
11	M6A	X	-1.394	-1.394	0	%100
12	M6A	Z	.805	.805	0	%100
13	M7A	X	-1.394	-1.394	0	%100
14	M7A	Z	.805	.805	0	%100
15	MP4A	X	-3.665	-3.665	0	%100
16	MP4A	Z	2.116	2.116	0	%100
17	M23A	X	-5.578	-5.578	0	%100
18	M23A	Z	3.22	3.22	0	%100
19	M24	Х	-5.578	-5.578	0	%100
20	M24	Z	3.22	3.22	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	-1.394	-1.394	0	%100
24	M39A	Z	.805	.805	0	%100
25	M40	X	-1.394	-1.394	0	%100
26	M40	Z	.805	.805	0	%100
27	M54	X	-2.446	-2.446	0	%100
28	M54	Z	1.412	1.412	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	0	0	0	%100
31	M56	X	-2.974	-2.974	0	%100
32	M56	Z	1.717	1.717	0	%100
33	MP3A	X	-3.665	-3.665	0	%100
34	MP3A	Z	2.116	2.116	0	%100
35	MP2A	X	-3.86	-3.86	0	%100
36	MP2A	Z	2.228	2.228	0	%100
37	MP1A	X	-3.665	-3.665	0	%100
38	MP1A	Z	2.116	2.116	0	%100
39	MP4C	X	-3.665	-3.665	0	%100
40	MP4C	Z	2.116	2.116	0	%100
41	MP3C	X	-3.665	-3.665	0	%100
42	MP3C	Z	2.116	2.116	0	%100
43	MP2C	Χ	-3.86	-3.86	0	%100
44	MP2C	Z	2.228	2.228	0	%100
45	MP1C	X	-3.665	-3.665	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	2.116	2.116	0	%100
47	MP4B	Х	-3.665	-3.665	0	%100
48	MP4B	Z	2.116	2.116	0	%100
49	MP3B	Х	-3.665	-3.665	0	%100
50	MP3B	Z	2.116	2.116	0	%100
51	MP2B	Х	-3.86	-3.86	0	%100
52	MP2B	Z	2.228	2.228	0	%100
53	MP1B	Х	-3.665	-3.665	0	%100
54	MP1B	Z	2.116	2.116	0	%100
55	M40A	Х	-1.047	-1.047	0	%100
56	M40A	Z	.604	.604	0	%100
57	M47A	Х	-4.187	-4.187	0	%100
58	M47A	Z	2.417	2.417	0	%100
59	M54A	Х	-1.047	-1.047	0	%100
60	M54A	Z	.604	.604	0	%100
61	M61	Х	975	975	0	%100
62	M61	Z	.563	.563	0	%100
63	M62	Х	-3.899	-3.899	0	%100
64	M62	Z	2.251	2.251	0	%100
65	M63	Х	975	975	0	%100
66	M63	Z	.563	.563	0	%100
67	M64	X	-4.514	-4.514	0	%100
68	M64	Z	2.606	2.606	0	%100
69	M65	X	-1.796	-1.796	0	%100
70	M65	Z	1.037	1.037	0	%100
71	M66	X	-4.514	-4.514	0	%100
72	M66	7	2 606	2 606	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-3.765	-3.765	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	-4.579	-4.579	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	-5.313	-5.313	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	-1.328	-1.328	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	-1.328	-1.328	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	0	0	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	0	0	0	%100
15	MP4A	Х	-4.232	-4.232	0	%100
16	MP4A	Z	0	0	0	%100
17	M23A	Х	-4.83	-4.83	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	-4.83	-4.83	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	941	941	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	-4.83	-4.83	0	%100
24	M39A	Z	0	0	0	%100
25	M40	Х	-4.83	-4.83	0	%100
26	M40	Z	0	0	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Х	941	941	0	%100
28	M54	Z	0	0	0	%100
29	M55	Х	-1.145	-1.145	0	%100
30	M55	Z	0	0	0	%100
31	M56	Х	-1.145	-1.145	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	Х	-4.232	-4.232	0	%100
34	MP3A	Z	0	0	0	%100
35	MP2A	Х	-4.457	-4.457	0	%100
36	MP2A	Z	0	0	0	%100
37	MP1A	Х	-4.232	-4.232	0	%100
38	MP1A	Z	0	0	0	%100
39	MP4C	Х	-4.232	-4.232	0	%100
40	MP4C	Z	0	0	0	%100
41	MP3C	Х	-4.232	-4.232	0	%100
42	MP3C	Z	0	0	0	%100
43	MP2C	Х	-4.457	-4.457	0	%100
44	MP2C	Z	0	0	0	%100
45	MP1C	Х	-4.232	-4.232	0	%100
46	MP1C	Z	0	0	0	%100
47	MP4B	Х	-4.232	-4.232	0	%100
48	MP4B	Z	0	0	0	%100
49	MP3B	Х	-4.232	-4.232	0	%100
50	MP3B	Z	0	0	0	%100
51	MP2B	Х	-4.457	-4.457	0	%100
52	MP2B	Z	0	0	0	%100
53	MP1B	Х	-4.232	-4.232	0	%100
54	MP1B	Z	0	0	0	%100
55	M40A	Х	0	0	0	%100
56	M40A	Z	0	0	0	%100
57	M47A	Х	-3.626	-3.626	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	-3.626	-3.626	0	%100
60	M54A	Z	0	0	0	%100
61	M61	Х	0	0	0	%100
62	M61	Z	0	0	0	%100
63	M62	Х	-3.376	-3.376	0	%100
64	M62	Z	0	0	0	%100
65	M63	Х	-3.376	-3.376	0	%100
66	M63	Z	0	0	0	%100
67	M64	Х	-6.259	-6.259	0	%100
68	M64	Z	0	0	0	%100
69	M65	Х	-3.12	-3.12	0	%100
70	M65	Z	0	0	0	%100
71	M66	X	-3.12	-3.12	0	%100
72	M66	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	-2.446	-2.446	0	%100
2	M1	Z	-1.412	-1.412	0	%100
3	M2	Х	-2.974	-2.974	0	%100
4	M2	Z	-1.717	-1.717	0	%100
5	M5	Х	-3.451	-3.451	0	%100
6	M5	Z	-1.992	-1.992	0	%100
7	M6	Х	-3.451	-3.451	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

8	Member Label	Direction 7	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
q	MZ	X	0	0	0	%100
10	MZ	7	0	0	0	%100
11	M6A	X	-1 394	-1 394	0	%100
12	M6A	7	- 805	- 805	0	%100
13	MZA	X	-1 394	-1 394	0	%100
14	M7A	Z	- 805	- 805	0	%100
15	MP4A	x	-3 665	-3 665	0	%100
16	MP4A	Z	-2.116	-2.116	0	%100
17	M23A	x	-1.394	-1.394	0	%100
18	M23A	Z	805	805	0	%100
19	M24	X	-1.394	-1.394	0	%100
20	M24	Z	805	805	0	%100
21	M38	X	-2.446	-2.446	0	%100
22	M38	Z	-1.412	-1.412	0	%100
23	M39A	Х	-5.578	-5.578	0	%100
24	M39A	Z	-3.22	-3.22	0	%100
25	M40	Х	-5.578	-5.578	0	%100
26	M40	Z	-3.22	-3.22	0	%100
27	M54	X	0	0	0	%100
28	M54	Z	0	0	0	%100
29	M55	X	-2.974	-2.974	0	%100
30	M55	Z	-1.717	-1.717	0	%100
31	M56	Χ	0	0	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	X	-3.665	-3.665	0	%100
34	MP3A	Z	-2.116	-2.116	0	%100
35	MP2A	Χ	-3.86	-3.86	0	%100
36	MP2A	Z	-2.228	-2.228	0	%100
37	MP1A	X	-3.665	-3.665	0	%100
38	MP1A	Z	-2.116	-2.116	0	%100
39	MP4C	X	-3.665	-3.665	0	%100
40	MP4C	Z	-2.116	-2.116	0	%100
41	MP3C	<u>X</u>	-3.665	-3.665	0	%100
42	MP3C	Z	-2.116	-2.116	0	%100
43	MP2C	<u> </u>	-3.86	-3.86	0	%100
44	MP2C	<u> </u>	-2.228	-2.228	0	%100
45	MP1C	X	-3.665	-3.665	0	%100
46	MP1C		-2.116	-2.116	0	%100
4/	MP4B	X	-3.665	-3.665	0	%100
48	MP4B	<u> </u>	-2.110	-2.110	0	%100
49	MD2D	7	-3.005	-3.000	0	% TUU % 100
50	MESE		-2.110	-2.110	0	%100
51	MD2P	~ 7	-0.00	-3.00	0	% TUU % 100
52		Z V	-2.220	-2.220	0	%100
53		~ 7	-3.005	-3.005	0	9/ 100
55	MADA	Z V	-2.110	-2.110	0	%100
56	MANA	7	-1.047	- 604	0	%100
57	M40A	X	-1 047	-1 047	0	%100
58	M47A	7	- 604	- 604	0	%100
59	M54A	×	-4 187	-4 187	0	%100
60	M54A	7	-2 417	-2 417	0	%100
61	M61	×	- 975	- 975	0	%100
62	M61	7	- 563	- 563	Ő	%100
63	M62	x	975	975	0	%100
64	M62	Z	563	563	0	%100

Page 120

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	X	-3.899	-3.899	0	%100
66	M63	Z	-2.251	-2.251	0	%100
67	M64	Х	-4.514	-4.514	0	%100
68	M64	Z	-2.606	-2.606	0	%100
69	M65	Х	-4.514	-4.514	0	%100
70	M65	Z	-2.606	-2.606	0	%100
71	M66	X	-1.796	-1.796	0	%100
72	M66	Z	-1.037	-1.037	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	471	471	0	%100
2	M1	Z	815	815	0	%100
3	M2	X	572	572	0	%100
4	M2	Z	991	991	0	%100
5	M5	X	664	664	0	%100
6	M5	Z	-1.15	-1.15	0	%100
7	M6	Х	-2.657	-2.657	0	%100
8	M6	Z	-4.601	-4.601	0	%100
9	M7	X	664	664	0	%100
10	M7	Z	-1.15	-1.15	0	%100
11	M6A	X	-2.415	-2.415	0	%100
12	M6A	Z	-4.183	-4.183	0	%100
13	M7A	Х	-2.415	-2.415	0	%100
14	M7A	Z	-4.183	-4.183	0	%100
15	MP4A	Х	-2.116	-2.116	0	%100
16	MP4A	Z	-3.665	-3.665	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	0	0	0	%100
19	M24	X	0	0	0	%100
20	M24	Z	0	0	0	%100
21	M38	X	-1.883	-1.883	0	%100
22	M38	Z	-3.261	-3.261	0	%100
23	M39A	X	-2.415	-2.415	0	%100
24	M39A	Z	-4.183	-4.183	0	%100
25	M40	x	-2.415	-2.415	0	%100
26	M40	Z	-4,183	-4,183	0	%100
27	M54	X	- 471	- 471	0	%100
28	M54	Z	815	815	0	%100
29	M55	X	-2.289	-2.289	0	%100
30	M55	Z	-3.965	-3.965	0	%100
31	M56	X	572	572	0	%100
32	M56	Z	991	991	0	%100
33	MP3A	X	-2.116	-2.116	0	%100
34	MP3A	Z	-3.665	-3.665	0	%100
35	MP2A	X	-2.228	-2.228	0	%100
36	MP2A	Z	-3.86	-3.86	0	%100
37	MP1A	X	-2.116	-2,116	0	%100
38	MP1A	Z	-3.665	-3.665	0	%100
39	MP4C	X	-2.116	-2.116	0	%100
40	MP4C	Z	-3.665	-3.665	0	%100
41	MP3C	X	-2.116	-2.116	Õ	%100
42	MP3C	Z	-3.665	-3.665	0	%100
43	MP2C	X	-2.228	-2.228	0	%100
44	MP2C	Z	-3.86	-3.86	0	%100
45	MP1C	x	-2,116	-2,116	0	%100
10			2.110	2.110	v	70100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	-3.665	-3.665	0	%100
47	MP4B	Х	-2.116	-2.116	0	%100
48	MP4B	Z	-3.665	-3.665	0	%100
49	MP3B	Х	-2.116	-2.116	0	%100
50	MP3B	Z	-3.665	-3.665	0	%100
51	MP2B	Х	-2.228	-2.228	0	%100
52	MP2B	Z	-3.86	-3.86	0	%100
53	MP1B	Х	-2.116	-2.116	0	%100
54	MP1B	Z	-3.665	-3.665	0	%100
55	M40A	Х	-1.813	-1.813	0	%100
56	M40A	Z	-3.14	-3.14	0	%100
57	M47A	Х	0	0	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	-1.813	-1.813	0	%100
60	M54A	Z	-3.14	-3.14	0	%100
61	M61	Х	-1.688	-1.688	0	%100
62	M61	Z	-2.924	-2.924	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	0	0	0	%100
65	M63	Х	-1.688	-1.688	0	%100
66	M63	Z	-2.924	-2.924	0	%100
67	M64	Х	-1.56	-1.56	0	%100
68	M64	Z	-2.702	-2.702	0	%100
69	M65	Х	-3.129	-3.129	0	%100
70	M65	Z	-5.42	-5.42	0	%100
71	M66	X	-1.56	-1.56	0	%100
72	M66	7	-2 702	-2 702	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	867	867	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	867	867	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	-1.36	-1.36	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	-1.36	-1.36	0	%100
15	MP4A	Х	0	0	0	%100
16	MP4A	Z	646	646	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	34	34	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	34	34	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	583	583	0	%100
23	M39A	Х	0	0	0	%100
24	M39A	Z	34	34	0	%100
25	M40	Х	0	0	0	%100
26	M40	Z	34	34	0	%100

Page 123

<u>Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Х	0	0	0	%100
28	M54	Z	583	583	0	%100
29	M55	Х	0	0	0	%100
30	M55	Z	76	76	0	%100
31	M56	Х	0	0	0	%100
32	M56	Z	76	76	0	%100
33	MP3A	Х	0	0	0	%100
34	MP3A	Z	646	646	0	%100
35	MP2A	Х	0	0	0	%100
36	MP2A	Z	646	646	0	%100
37	MP1A	Х	0	0	0	%100
38	MP1A	Z	646	646	0	%100
39	MP4C	Х	0	0	0	%100
40	MP4C	Z	646	646	0	%100
41	MP3C	Х	0	0	0	%100
42	MP3C	Z	646	646	0	%100
43	MP2C	Х	0	0	0	%100
44	MP2C	Z	646	646	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	646	646	0	%100
47	MP4B	Х	0	0	0	%100
48	MP4B	Z	646	646	0	%100
49	MP3B	Х	0	0	0	%100
50	MP3B	Z	646	646	0	%100
51	MP2B	Х	0	0	0	%100
52	MP2B	Z	646	646	0	%100
53	MP1B	Х	0	0	0	%100
54	MP1B	Z	646	646	0	%100
55	M40A	Х	0	0	0	%100
56	M40A	Z	782	782	0	%100
57	M47A	Х	0	0	0	%100
58	M47A	Z	196	196	0	%100
59	M54A	Х	0	0	0	%100
60	M54A	Z	196	196	0	%100
61	M61	Х	0	0	0	%100
62	M61	Z	981	981	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	245	245	0	%100
65	M63	Х	0	0	0	%100
66	M63	Z	245	245	0	%100
67	M64	X	0	0	0	%100
68	M64	Z	541	541	0	%100
69	M65	Х	0	0	0	%100
70	M65	Z	-1.156	-1.156	0	%100
71	M66	X	0	0	0	%100
72	M66	Z	-1.156	-1.156	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.097	.097	0	%100
2	M1	Z	168	168	0	%100
3	M2	Х	.127	.127	0	%100
4	M2	Z	219	219	0	%100
5	M5	Х	.145	.145	0	%100
6	M5	Z	25	25	0	%100
7	M6	Х	.145	.145	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	25	25	0	%100
9	M7	X	.578	.578	0	%100
10	M7	Z	-1.001	-1.001	0	%100
11	M6A	Х	.51	.51	0	%100
12	M6A	Z	884	884	0	%100
13	M7A	X	.51	.51	0	%100
14	M7A	7	- 884	- 884	Ő	%100
15	MP4A	X	323	323	0	%100
16	MP4A	7	- 56	- 56	0	%100
17	M23A	× ×	00	00	0	%100
10	MODA	7		.01	0	%100
10	M24		004	004	0	2/0100 0/ 100
19	10124	~ ~	.01	.01	0	%100
20	M20	<u> </u>	884	884	0	%100
21	M38	X	.097	.097	0	%100
22	M38	<u> </u>	168	168	0	%100
23	M39A	<u> </u>	0	0	0	%100
24	M39A	Z	0	0	0	%100
25	M40	X	0	0	0	%100
26	M40	Z	0	0	0	%100
27	M54	X	.389	.389	0	%100
28	M54	Z	673	673	0	%100
29	M55	X	.127	.127	0	%100
30	M55	Z	219	219	0	%100
31	M56	Х	.506	.506	0	%100
32	M56	Z	877	877	0	%100
33	MP3A	x	.323	.323	0	%100
34	MP3A	7	- 56	- 56	0	%100
35	MP2A	X	323	323	0	%100
36	MP2A	7	- 56	- 56	0	%100
37	MD1A	× ×	222	00	0	%100
20	MD1A	7	.525	.525	0	%100
20		Z V	00	00	0	%100
39		~ 7	.323	.323	0	9/ 100
40	MP4C		00	00	0	%100
41	MP3C	× 7	.323	.323	0	%100
42	MP3C	<u> </u>	56	56	0	%100
43	MP2C	X	.323	.323	0	%100
44	MP2C	Z	56	56	0	%100
45	MP1C	X	.323	.323	0	%100
46	MP1C	Z	56	56	0	%100
47	MP4B	X	.323	.323	0	%100
48	MP4B	Z	56	56	0	%100
49	MP3B	Χ	.323	.323	0	%100
50	MP3B	Z	56	56	0	%100
51	MP2B	X	.323	.323	0	%100
52	MP2B	Z	56	56	0	%100
53	MP1B	Х	.323	.323	0	%100
54	MP1B	Z	56	56	0	%100
55	M40A	x	.293	.293	0	%100
56	M40A	7	- 508	508	Õ	%100
57	M47A	X	293	293	0	%100
58	Μ47Δ	7	- 508	- 508	0	%100
50	M54A	×	000	000	0	%100
60	M54A	7	0	0	0	%100
61	M61		360	360	0	%100
60		~ ~ ~	.300	.300	0	0/100
62			03/	037	0	%100
03		× 7	.308	.308	0	%100
04	ΙνιόΖ	Z	037	037	U	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	0	0	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	.373	.373	0	%100
68	M64	Z	646	646	0	%100
69	M65	Х	.373	.373	0	%100
70	M65	Z	646	646	0	%100
71	M66	X	.68	.68	0	%100
72	M66	Z	-1.178	-1.178	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	.505	.505	0	%100
2	M1	Z	292	292	0	%100
3	M2	X	.658	.658	0	%100
4	M2	Z	38	38	0	%100
5	M5	Х	.751	.751	0	%100
6	M5	Z	434	434	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	.751	.751	0	%100
10	M7	Z	434	434	0	%100
11	M6A	Х	.295	.295	0	%100
12	M6A	Z	17	17	0	%100
13	M7A	Х	.295	.295	0	%100
14	M7A	Z	17	17	0	%100
15	MP4A	Х	.56	.56	0	%100
16	MP4A	Z	323	323	0	%100
17	M23A	Х	1.178	1.178	0	%100
18	M23A	Z	68	68	0	%100
19	M24	Х	1.178	1.178	0	%100
20	M24	Z	68	68	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	.295	.295	0	%100
24	M39A	Z	17	17	0	%100
25	M40	X	.295	.295	0	%100
26	M40	Z	17	17	0	%100
27	M54	X	.505	.505	0	%100
28	M54	Z	292	292	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	0	0	0	%100
31	M56	X	.658	.658	0	%100
32	M56	Z	38	38	0	%100
33	MP3A	Х	.56	.56	0	%100
34	MP3A	Z	323	323	0	%100
35	MP2A	X	.56	.56	0	%100
36	MP2A	Z	323	323	0	%100
37	MP1A	Х	.56	.56	0	%100
38	MP1A	Z	323	323	0	%100
39	MP4C	Х	.56	.56	0	%100
40	MP4C	Z	323	323	0	%100
41	MP3C	X	.56	.56	0	%100
42	MP3C	Z	323	323	0	%100
43	MP2C	Х	.56	.56	0	%100
44	MP2C	Z	323	323	0	%100
45	MP1C	X	.56	.56	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	323	323	0	%100
47	MP4B	Х	.56	.56	0	%100
48	MP4B	Z	323	323	0	%100
49	MP3B	Х	.56	.56	0	%100
50	MP3B	Z	323	323	0	%100
51	MP2B	Х	.56	.56	0	%100
52	MP2B	Z	323	323	0	%100
53	MP1B	Х	.56	.56	0	%100
54	MP1B	Z	323	323	0	%100
55	M40A	Х	.169	.169	0	%100
56	M40A	Z	098	098	0	%100
57	M47A	Х	.677	.677	0	%100
58	M47A	Z	391	391	0	%100
59	M54A	Х	.169	.169	0	%100
60	M54A	Z	098	098	0	%100
61	M61	Х	.212	.212	0	%100
62	M61	Z	123	123	0	%100
63	M62	Х	.85	.85	0	%100
64	M62	Z	491	491	0	%100
65	M63	Х	.212	.212	0	%100
66	M63	Z	123	123	0	%100
67	M64	Х	1.001	1.001	0	%100
68	M64	Z	578	578	0	%100
69	M65	X	.469	.469	0	%100
70	M65	Z	271	271	0	%100
71	M66	X	1.001	1.001	0	%100
72	M66	7	- 578	- 578	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.777	.777	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	1.013	1.013	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	1.156	1.156	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	.289	.289	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	.289	.289	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	0	0	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	0	0	0	%100
15	MP4A	Х	.646	.646	0	%100
16	MP4A	Z	0	0	0	%100
17	M23A	Х	1.02	1.02	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	1.02	1.02	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	.194	.194	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	1.02	1.02	0	%100
24	M39A	Z	0	0	0	%100
25	M40	Х	1.02	1.02	0	%100
26	M40	Z	0	0	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	Х	.194	.194	0	%100
28	M54	Z	0	0	0	%100
29	M55	Х	.253	.253	0	%100
30	M55	Z	0	0	0	%100
31	M56	Х	.253	.253	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	Х	.646	.646	0	%100
34	MP3A	Z	0	0	0	%100
35	MP2A	Х	.646	.646	0	%100
36	MP2A	Z	0	0	0	%100
37	MP1A	Х	.646	.646	0	%100
38	MP1A	Z	0	0	0	%100
39	MP4C	Х	.646	.646	0	%100
40	MP4C	Z	0	0	0	%100
41	MP3C	Х	.646	.646	0	%100
42	MP3C	Z	0	0	0	%100
43	MP2C	Х	.646	.646	0	%100
44	MP2C	Z	0	0	0	%100
45	MP1C	Х	.646	.646	0	%100
46	MP1C	Z	0	0	0	%100
47	MP4B	Х	.646	.646	0	%100
48	MP4B	Z	0	0	0	%100
49	MP3B	Х	.646	.646	0	%100
50	MP3B	Z	0	0	0	%100
51	MP2B	Х	.646	.646	0	%100
52	MP2B	Z	0	0	0	%100
53	MP1B	X	.646	.646	0	%100
54	MP1B	Z	0	0	0	%100
55	M40A	X	0	0	0	%100
56	M40A	Z	0	0	0	%100
57	M47A	X	.587	.587	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	.587	.587	0	%100
60	M54A	Z	0	0	0	%100
61	M61	X	0	0	0	%100
62	M61	Z	0	0	0	%100
63	M62	X	.736	.736	0	%100
64	M62	Z	0	0	0	%100
65	M63	×	.736	.736	0	%100
66	M63	Z	0	0	Õ	%100
67	M64	X	1.36	1.36	0	%100
68	M64	Z	0	0	0	%100
69	M65	X	.746	.746	0	%100
70	M65	7	0	0	0	%100
71	M66	×	.746	.746	0	%100
72	M66	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.505	.505	0	%100
2	M1	Z	.292	.292	0	%100
3	M2	Х	.658	.658	0	%100
4	M2	Z	.38	.38	0	%100
5	M5	Х	.751	.751	0	%100
6	M5	Z	.434	.434	0	%100
7	M6	Х	.751	.751	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

0	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
0	N17	X	.434	.434	0	%100
10	MZ	7	0	0	0	%100
11	M6A	X	295	295	0	%100
12	M6A	7	17	17	0	%100
13	MZA	X	295	295	0	%100
14	M7A	7	17	17	Ő	%100
15	MP4A	x	56	56	0	%100
16	MP4A	Z	.323	.323	0	%100
17	M23A	x	.295	.295	0	%100
18	M23A	Z	.17	.17	0	%100
19	M24	X	.295	.295	0	%100
20	M24	Z	.17	.17	0	%100
21	M38	X	.505	.505	0	%100
22	M38	Z	.292	.292	0	%100
23	M39A	Х	1.178	1.178	0	%100
24	M39A	Z	.68	.68	0	%100
25	M40	Х	1.178	1.178	0	%100
26	M40	Z	.68	.68	0	%100
27	M54	X	0	0	0	%100
28	M54	Z	0	0	0	%100
29	M55	Χ	.658	.658	0	%100
30	M55	Z	.38	.38	0	%100
31	M56	Χ	0	0	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	X	.56	.56	0	%100
34	MP3A	Z	.323	.323	0	%100
35	MP2A	X	.56	.56	0	%100
36	MP2A	Z	.323	.323	0	%100
37	MP1A	<u> </u>	.56	.56	0	%100
38	MP1A	Ζ	.323	.323	0	%100
39	MP4C	X	.56	.56	0	%100
40	MP4C	<u> </u>	.323	.323	0	%100
41	MP3C	<u> </u>	.00	.00	0	%100
42	MP3C	<u> </u>	.323	.323	0	%100
43	MP2C	<u> </u>	.00	.00	0	%100
44	MP1C	Z V	.323	.323	0	%100
45	MP1C	7	323	323	0	%100
40	MP4B	X	.525	.525	0	%100
48	MP4B	7	323	323	0	%100
49	MP3B	x	.56	.56	0	%100
50	MP3B	Z	.323	.323	0	%100
51	MP2B	x	.56	.56	0	%100
52	MP2B	Z	.323	.323	Ő	%100
53	MP1B	X	.56	.56	0	%100
54	MP1B	Z	.323	.323	0	%100
55	M40A	Х	.169	.169	0	%100
56	M40A	Z	.098	.098	0	%100
57	M47A	X	.169	.169	0	%100
58	M47A	Z	.098	.098	0	%100
59	M54A	X	.677	.677	0	%100
60	M54A	Z	.391	.391	0	%100
61	M61	X	.212	.212	0	%100
62	M61	Z	.123	.123	0	%100
63	M62	X	.212	.212	0	%100
64	M62	Z	.123	.123	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	X	.85	.85	0	%100
66	M63	Z	.491	.491	0	%100
67	M64	X	1.001	1.001	0	%100
68	M64	Z	.578	.578	0	%100
69	M65	X	1.001	1.001	0	%100
70	M65	Z	.578	.578	0	%100
71	M66	X	.469	.469	0	%100
72	M66	Z	.271	.271	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	.097	.097	0	%100
2	M1	Z	.168	.168	0	%100
3	M2	X	.127	.127	0	%100
4	M2	Z	.219	.219	0	%100
5	M5	X	.145	.145	0	%100
6	M5	Z	.25	.25	0	%100
7	M6	Х	.578	.578	0	%100
8	M6	Z	1.001	1.001	0	%100
9	M7	Х	.145	.145	0	%100
10	M7	Z	.25	.25	0	%100
11	M6A	X	.51	.51	0	%100
12	M6A	Z	.884	.884	0	%100
13	M7A	Х	.51	.51	0	%100
14	M7A	Z	.884	.884	0	%100
15	MP4A	Х	.323	.323	0	%100
16	MP4A	Z	.56	.56	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	.389	.389	0	%100
22	M38	Z	.673	.673	0	%100
23	M39A	Х	.51	.51	0	%100
24	M39A	Z	.884	.884	0	%100
25	M40	X	.51	.51	0	%100
26	M40	Z	.884	.884	0	%100
27	M54	X	.097	.097	0	%100
28	M54	Z	.168	.168	0	%100
29	M55	X	.506	.506	0	%100
30	M55	Z	.877	.877	0	%100
31	M56	X	.127	.127	0	%100
32	M56	Z	.219	.219	0	%100
33	MP3A	X	.323	.323	0	%100
34	MP3A	Z	.56	.56	0	%100
35	MP2A	X	.323	.323	0	%100
36	MP2A	Z	.56	.56	0	%100
37	MP1A	X	.323	.323	0	%100
38	MP1A	Z	.56	.56	0	%100
39	MP4C	X	.323	.323	0	%100
40	MP4C	Z	.56	.56	0	%100
41	MP3C	X	.323	.323	0	%100
42	MP3C	Z	.56	.56	0	%100
43	MP2C	X	.323	.323	0	%100
44	MP2C	Z	.56	.56	0	%100
45	MP1C	X	.323	.323	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	.56	.56	0	%100
47	MP4B	Х	.323	.323	0	%100
48	MP4B	Z	.56	.56	0	%100
49	MP3B	Х	.323	.323	0	%100
50	MP3B	Z	.56	.56	0	%100
51	MP2B	Х	.323	.323	0	%100
52	MP2B	Z	.56	.56	0	%100
53	MP1B	Х	.323	.323	0	%100
54	MP1B	Z	.56	.56	0	%100
55	M40A	Х	.293	.293	0	%100
56	M40A	Z	.508	.508	0	%100
57	M47A	Х	0	0	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	.293	.293	0	%100
60	M54A	Z	.508	.508	0	%100
61	M61	X	.368	.368	0	%100
62	M61	Z	.637	.637	0	%100
63	M62	X	0	0	0	%100
64	M62	Z	0	0	0	%100
65	M63	X	.368	.368	0	%100
66	M63	Z	.637	.637	0	%100
67	M64	X	.373	.373	0	%100
68	M64	Z	.646	.646	0	%100
69	M65	X	.68	.68	0	%100
70	M65	Z	1.178	1.178	0	%100
71	M66	X	.373	.373	0	%100
72	M66	7	646	646	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	0	0	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	.867	.867	0	%100
9	M7	Х	0	0	0	%100
10	M7	Z	.867	.867	0	%100
11	M6A	X	0	0	0	%100
12	M6A	Z	1.36	1.36	0	%100
13	M7A	X	0	0	0	%100
14	M7A	Z	1.36	1.36	0	%100
15	MP4A	Х	0	0	0	%100
16	MP4A	Z	.646	.646	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	.34	.34	0	%100
19	M24	X	0	0	0	%100
20	M24	Z	.34	.34	0	%100
21	M38	X	0	0	0	%100
22	M38	Z	.583	.583	0	%100
23	M39A	X	0	0	0	%100
24	M39A	Z	.34	.34	0	%100
25	M40	X	0	0	0	%100
26	M40	Z	.34	.34	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	X	0	0	0	%100
28	M54	Z	.583	.583	0	%100
29	M55	Х	0	0	0	%100
30	M55	Z	.76	.76	0	%100
31	M56	Х	0	0	0	%100
32	M56	Z	.76	.76	0	%100
33	MP3A	Х	0	0	0	%100
34	MP3A	Z	.646	.646	0	%100
35	MP2A	Х	0	0	0	%100
36	MP2A	Z	.646	.646	0	%100
37	MP1A	Х	0	0	0	%100
38	MP1A	Z	.646	.646	0	%100
39	MP4C	Х	0	0	0	%100
40	MP4C	Z	.646	.646	0	%100
41	MP3C	Х	0	0	0	%100
42	MP3C	Z	.646	.646	0	%100
43	MP2C	Х	0	0	0	%100
44	MP2C	Z	.646	.646	0	%100
45	MP1C	Х	0	0	0	%100
46	MP1C	Z	.646	.646	0	%100
47	MP4B	Х	0	0	0	%100
48	MP4B	Z	.646	.646	0	%100
49	MP3B	Х	0	0	0	%100
50	MP3B	Z	.646	.646	0	%100
51	MP2B	Х	0	0	0	%100
52	MP2B	Z	.646	.646	0	%100
53	MP1B	X	0	0	0	%100
54	MP1B	Z	.646	.646	0	%100
55	M40A	X	0	0	0	%100
56	M40A	Z	.782	.782	0	%100
57	M47A	X	0	0	0	%100
58	M47A	Z	.196	.196	0	%100
59	M54A	Х	0	0	0	%100
60	M54A	Z	.196	.196	0	%100
61	M61	X	0	0	0	%100
62	M61	Z	.981	.981	0	%100
63	M62	Х	0	0	0	%100
64	M62	Z	.245	.245	0	%100
65	M63	X	0	0	0	%100
66	M63	Z	.245	.245	0	%100
67	M64	X	0	0	0	%100
68	M64	Z	.541	.541	0	%100
69	M65	x	0	0	0	%100
70	M65	Z	1,156	1,156	0	%100
71	M66	x	0	0	0	%100
72	M66	Z	1.156	1.156	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	_Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	097	097	0	%100
2	M1	Z	.168	.168	0	%100
3	M2	Х	127	127	0	%100
4	M2	Z	.219	.219	0	%100
5	M5	Х	145	145	0	%100
6	M5	Z	.25	.25	0	%100
7	M6	Х	145	145	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

0	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
8	M6	<u> </u>	.25	.25	0	%100
9	N7	X	578	578	0	%100
10	M7	Z	1.001	1.001	0	%100
11	M6A	X	51	51	0	%100
12	M6A	Z	.884	.884	0	%100
13	M7A	Χ	51	51	0	%100
14	M7A	Z	.884	.884	0	%100
15	MP4A	X	323	323	0	%100
16	MP4A	Z	.56	.56	0	%100
17	M23A	Х	51	51	0	%100
18	M23A	Z	.884	.884	0	%100
19	M24	X	51	51	0	%100
20	M24	Z	.884	.884	0	%100
21	M38	X	- 097	- 097	0	%100
22	M38	Z	.168	.168	0	%100
23	M39A	x	0	0	0	%100
24	M39A	7	0	0	0	%100
25	M40	X	0	0	0	%100
26	M40	7	0	0	0	%100
20	M54	<u> </u>	- 380	- 380	0	%100
20	M54	7	309	309	0	%100
20	N54	<u> </u>	1075	.073	0	9/ 100
29	10100	~ ~	127	127	0	%100
30	IVIDD MEC	<u> </u>	.219	.219	0	%100
31	M56	X 7	506	506	0	%100
32	NIS6	<u> </u>	.877	.877	0	%100
33	MP3A	X	323	323	0	%100
34	MP3A		.56	.56	0	%100
35	MP2A	<u> </u>	323	323	0	%100
36	MP2A	Z	.56	.56	0	%100
37	MP1A	X	323	323	0	%100
38	MP1A	Z	.56	.56	0	%100
39	MP4C	X	323	323	0	%100
40	MP4C	Z	.56	.56	0	%100
41	MP3C	X	323	323	0	%100
42	MP3C	Z	.56	.56	0	%100
43	MP2C	X	323	323	0	%100
44	MP2C	Z	.56	.56	0	%100
45	MP1C	Х	323	323	0	%100
46	MP1C	Z	.56	.56	0	%100
47	MP4B	Х	323	323	0	%100
48	MP4B	Z	.56	.56	0	%100
49	MP3B	Х	323	323	0	%100
50	MP3B	Z	.56	.56	0	%100
51	MP2B	Х	323	323	0	%100
52	MP2B	Z	.56	.56	0	%100
53	MP1B	X	323	323	0	%100
54	MP1B	7	.56	.56	Õ	%100
55	M40A	x	- 293	- 293	õ	%100
56	M40A	7	508	508	0	%100
57	M47A	X	- 293	- 293	0	%100
58	Μ47Δ	7	508	508	0	%100
50	M54A	X		.000	0	%100
60	M54A	7	0	0	0	%100
61	MG1	×	- 368	- 368	0	%100
62	MG1	~ 7	300	000	0	0/100
62	Mea		.037	.037	0	0/100
64		∧ 7	300	300	0	70 TUU 9/ 100
04	Ινιοζ	Z	.037	.037	U	70100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	Х	0	0	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	373	373	0	%100
68	M64	Z	.646	.646	0	%100
69	M65	Х	373	373	0	%100
70	M65	Z	.646	.646	0	%100
71	M66	X	68	68	0	%100
72	M66	Z	1.178	1.178	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	505	505	0	%100
2	M1	Z	.292	.292	0	%100
3	M2	X	658	658	0	%100
4	M2	Z	.38	.38	0	%100
5	M5	X	751	751	0	%100
6	M5	Z	.434	.434	0	%100
7	M6	Х	0	0	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	751	751	0	%100
10	M7	Z	.434	.434	0	%100
11	M6A	X	295	295	0	%100
12	M6A	Z	.17	.17	0	%100
13	M7A	Х	295	295	0	%100
14	M7A	Z	.17	.17	0	%100
15	MP4A	Х	56	56	0	%100
16	MP4A	Z	.323	.323	0	%100
17	M23A	Х	-1.178	-1.178	0	%100
18	M23A	Z	.68	.68	0	%100
19	M24	Х	-1.178	-1.178	0	%100
20	M24	Z	.68	.68	0	%100
21	M38	Х	0	0	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	295	295	0	%100
24	M39A	Z	.17	.17	0	%100
25	M40	X	295	295	0	%100
26	M40	Z	.17	.17	0	%100
27	M54	X	505	505	0	%100
28	M54	Z	.292	.292	0	%100
29	M55	X	0	0	0	%100
30	M55	Z	0	0	0	%100
31	M56	X	658	658	0	%100
32	M56	Z	.38	.38	0	%100
33	MP3A	X	56	56	0	%100
34	MP3A	Z	.323	.323	0	%100
35	MP2A	X	56	56	0	%100
36	MP2A	Z	.323	.323	0	%100
37	MP1A	X	56	56	0	%100
38	MP1A	Z	.323	.323	0	%100
39	MP4C	X	56	56	0	%100
40	MP4C	Z	.323	.323	0	%100
41	MP3C	X	56	56	0	%100
42	MP3C	Z	.323	.323	0	%100
43	MP2C	Х	56	56	0	%100
44	MP2C	Z	.323	.323	0	%100
45	MP1C	X	56	56	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	.323	.323	0	%100
47	MP4B	Х	56	56	0	%100
48	MP4B	Z	.323	.323	0	%100
49	MP3B	Х	56	56	0	%100
50	MP3B	Z	.323	.323	0	%100
51	MP2B	Х	56	56	0	%100
52	MP2B	Z	.323	.323	0	%100
53	MP1B	Х	56	56	0	%100
54	MP1B	Z	.323	.323	0	%100
55	M40A	X	169	169	0	%100
56	M40A	Z	.098	.098	0	%100
57	M47A	X	677	677	0	%100
58	M47A	Z	.391	.391	0	%100
59	M54A	Х	169	169	0	%100
60	M54A	Z	.098	.098	0	%100
61	M61	X	212	212	0	%100
62	M61	Z	.123	.123	0	%100
63	M62	X	85	85	0	%100
64	M62	Z	.491	.491	0	%100
65	M63	Х	212	212	0	%100
66	M63	Z	.123	.123	0	%100
67	M64	Х	-1.001	-1.001	0	%100
68	M64	Z	.578	.578	0	%100
69	M65	X	469	469	0	%100
70	M65	Z	.271	.271	0	%100
71	M66	X	-1.001	-1.001	0	%100
72	M66	7	578	578	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	Х	777	777	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	-1.013	-1.013	0	%100
4	M2	Z	0	0	0	%100
5	M5	Х	-1.156	-1.156	0	%100
6	M5	Z	0	0	0	%100
7	M6	Х	289	289	0	%100
8	M6	Z	0	0	0	%100
9	M7	Х	289	289	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	0	0	0	%100
12	M6A	Z	0	0	0	%100
13	M7A	Х	0	0	0	%100
14	M7A	Z	0	0	0	%100
15	MP4A	Х	646	646	0	%100
16	MP4A	Z	0	0	0	%100
17	M23A	Х	-1.02	-1.02	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	-1.02	-1.02	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	194	194	0	%100
22	M38	Z	0	0	0	%100
23	M39A	Х	-1.02	-1.02	0	%100
24	M39A	Z	0	0	0	%100
25	M40	Х	-1.02	-1.02	0	%100
26	M40	Z	0	0	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M54	X	194	194	0	%100
28	M54	Z	0	0	0	%100
29	M55	Х	253	253	0	%100
30	M55	Z	0	0	0	%100
31	M56	Х	253	253	0	%100
32	M56	Z	0	0	0	%100
33	MP3A	Х	646	646	0	%100
34	MP3A	Z	0	0	0	%100
35	MP2A	Х	646	646	0	%100
36	MP2A	Z	0	0	0	%100
37	MP1A	Х	646	646	0	%100
38	MP1A	Z	0	0	0	%100
39	MP4C	Х	646	646	0	%100
40	MP4C	Z	0	0	0	%100
41	MP3C	Х	646	646	0	%100
42	MP3C	Z	0	0	0	%100
43	MP2C	Х	646	646	0	%100
44	MP2C	Z	0	0	0	%100
45	MP1C	Х	646	646	0	%100
46	MP1C	Z	0	0	0	%100
47	MP4B	X	646	646	0	%100
48	MP4B	Z	0	0	0	%100
49	MP3B	Х	646	646	0	%100
50	MP3B	Z	0	0	0	%100
51	MP2B	Х	646	646	0	%100
52	MP2B	Z	0	0	0	%100
53	MP1B	Х	646	646	0	%100
54	MP1B	Z	0	0	0	%100
55	M40A	Х	0	0	0	%100
56	M40A	Z	0	0	0	%100
57	M47A	Х	587	587	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	587	587	0	%100
60	M54A	Z	0	0	0	%100
61	M61	X	0	0	0	%100
62	M61	Z	0	0	0	%100
63	M62	Х	736	736	0	%100
64	M62	Z	0	0	0	%100
65	M63	X	736	736	0	%100
66	M63	Z	0	0	0	%100
67	M64	X	-1.36	-1.36	0	%100
68	M64	Z	0	0	0	%100
69	M65	x	746	746	Õ	%100
70	M65	Z	0	0	Õ	%100
71	M66	x	746	746	Õ	%100
72	M66	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	505	505	0	%100
2	M1	Z	292	292	0	%100
3	M2	Х	658	658	0	%100
4	M2	Z	38	38	0	%100
5	M5	Х	751	751	0	%100
6	M5	Z	434	434	0	%100
7	M6	Х	751	751	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
8	M6	Z	434	434	0	%100
9	M7	X	0	0	0	%100
10	M7	Z	0	0	0	%100
11	M6A	Х	295	295	0	%100
12	M6A	Z	17	17	0	%100
13	M7A	x	295	295	0	%100
14	M7A	Z	- 17	- 17	0	%100
15	MP4A	x	- 56	- 56	0	%100
16	MP4A	7	- 323	- 323	0	%100
17	M23A	x	- 295	- 295	0	%100
18	M23A	7	- 17	- 17	0	%100
10	M24	X	- 295	- 205	0	%100
20	M24	7	_ 17	- 17	0	%100
20	M29	<u> </u>	17	17	0	%100
21	M29	7	000	000	0	%100
22	N30	Z V	292	292	0	%100 9/ 100
23	Maga	~ ~	-1.170	-1.170	0	⁷⁰ 100
24	INIS9A	Z	00	08	0	%100
25	IVI40	⊼	-1.1/8	-1.1/0	0	%100
26	IVI40	Z	08	08	0	%100
21	IVI54	Χ 7	0	0	0	%100
28	M54	<u> </u>	0	0	0	%100
29	M55	X	658	658	0	%100
30	M55	<u> </u>	38	38	0	%100
31	M56	X	0	0	0	%100
32	M56	<u> </u>	0	0	0	%100
33	MP3A	X	56	56	0	%100
34	MP3A	Z	323	323	0	%100
35	MP2A	X	56	56	0	%100
36	MP2A	Z	323	323	0	%100
37	MP1A	X	56	56	0	%100
38	MP1A	Z	323	323	0	%100
39	MP4C	X	56	56	0	%100
40	MP4C	Z	323	323	0	%100
41	MP3C	X	56	56	0	%100
42	MP3C	Z	323	323	0	%100
43	MP2C	X	56	56	0	%100
44	MP2C	Z	323	323	0	%100
45	MP1C	Χ	56	56	0	%100
46	MP1C	Z	323	323	0	%100
47	MP4B	X	56	56	0	%100
48	MP4B	Z	323	323	0	%100
49	MP3B	X	56	56	0	%100
50	MP3B	Z	323	323	0	%100
51	MP2B	X	56	56	0	%100
52	MP2B	Z	323	323	0	%100
53	MP1B	X	56	56	0	%100
54	MP1B	Z	323	323	0	%100
55	M40A	X	169	169	0	%100
56	M40A	Z	098	098	0	%100
57	M47A	X	169	169	0	%100
58	M47A	Z	098	098	0	%100
59	M54A	X	677	677	0	%100
60	M54A	Z	391	391	0	%100
61	M61	X	212	212	0	%100
62	M61	Z	123	123	0	%100
63	M62	X	212	212	0	%100
64	M62	Z	123	-,123	0	%100
<u> </u>		_				/0100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
65	M63	X	85	85	0	%100
66	M63	Z	491	491	0	%100
67	M64	Х	-1.001	-1.001	0	%100
68	M64	Z	578	578	0	%100
69	M65	Х	-1.001	-1.001	0	%100
70	M65	Z	578	578	0	%100
71	M66	X	469	469	0	%100
72	M66	Z	271	271	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	097	097	0	%100
2	M1	Z	168	168	0	%100
3	M2	X	127	127	0	%100
4	M2	Z	219	219	0	%100
5	M5	X	145	145	0	%100
6	M5	Z	25	25	0	%100
7	M6	Х	578	578	0	%100
8	M6	Z	-1.001	-1.001	0	%100
9	M7	Х	145	145	0	%100
10	M7	Z	25	25	0	%100
11	M6A	X	51	51	0	%100
12	M6A	Z	884	884	0	%100
13	M7A	Х	51	51	0	%100
14	M7A	Z	884	884	0	%100
15	MP4A	Х	323	323	0	%100
16	MP4A	Z	56	56	0	%100
17	M23A	Х	0	0	0	%100
18	M23A	Z	0	0	0	%100
19	M24	Х	0	0	0	%100
20	M24	Z	0	0	0	%100
21	M38	Х	389	389	0	%100
22	M38	Z	673	673	0	%100
23	M39A	X	51	51	0	%100
24	M39A	Z	884	884	0	%100
25	M40	X	51	51	0	%100
26	M40	Z	884	884	0	%100
27	M54	X	097	097	0	%100
28	M54	Z	168	168	0	%100
29	M55	X	506	506	0	%100
30	M55	Z	877	877	0	%100
31	M56	X	127	127	0	%100
32	M56	Z	219	219	0	%100
33	MP3A	X	323	323	0	%100
34	MP3A	Z	56	56	0	%100
35	MP2A	Х	323	323	0	%100
36	MP2A	Z	56	56	0	%100
37	MP1A	Х	323	323	0	%100
38	MP1A	Z	56	56	0	%100
39	MP4C	X	323	323	0	%100
40	MP4C	Z	56	56	0	%100
41	MP3C	X	323	323	0	%100
42	MP3C	Z	56	56	0	%100
43	MP2C	X	323	323	0	%100
44	MP2C	Z	56	56	0	%100
45	MP1C	X	323	323	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
46	MP1C	Z	56	56	0	%100
47	MP4B	Х	323	323	0	%100
48	MP4B	Z	56	56	0	%100
49	MP3B	Х	323	323	0	%100
50	MP3B	Z	56	56	0	%100
51	MP2B	Х	323	323	0	%100
52	MP2B	Z	56	56	0	%100
53	MP1B	Х	323	323	0	%100
54	MP1B	Z	56	56	0	%100
55	M40A	X	293	293	0	%100
56	M40A	Z	508	508	0	%100
57	M47A	X	0	0	0	%100
58	M47A	Z	0	0	0	%100
59	M54A	Х	293	293	0	%100
60	M54A	Z	508	508	0	%100
61	M61	X	368	368	0	%100
62	M61	Z	637	637	0	%100
63	M62	X	0	0	0	%100
64	M62	Z	0	0	0	%100
65	M63	X	368	368	0	%100
66	M63	Z	637	637	0	%100
67	M64	Χ	373	373	0	%100
68	M64	Z	646	646	0	%100
69	M65	X	68	68	0	%100
70	M65	Z	-1.178	-1.178	0	%100
71	M66	X	373	373	0	%100
72	M66	7	- 646	- 646	0	%100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M2	Y	-9.499	-9.499	0	2
2	M6	Y	-1.126	-5.212	0	2
3	M6	Y	-5.212	-9.298	2	4
4	M7	Y	-1.126	-5.212	0	2
5	M7	Y	-5.212	-9.298	2	4
6	M6A	Y	-3.98	-3.98	.037	7.397
7	M7A	Y	-1.192	-2.79	0	2.394
8	M7A	Y	-2.79	-3.82	2.394	4.787
9	M7A	Y	-3.82	-4.052	4.787	7.181
10	M7A	Y	-4.052	-3.82	7.181	9.574
11	M7A	Y	-3.82	-2.79	9.574	11.968
12	M7A	Y	-2.79	-1.192	11.968	14.362
13	M5	Y	-1.126	-5.212	0	2
14	M5	Y	-5.212	-9.298	2	4
15	M23A	Y	-3.98	-3.98	.037	7.397
16	M24	Y	-1.192	-2.79	0	2.394
17	M24	Y	-2.79	-3.82	2.394	4.787
18	M24	Y	-3.82	-4.052	4.787	7.181
19	M24	Y	-4.052	-3.82	7.181	9.574
20	M24	Y	-3.82	-2.79	9.574	11.968
21	M24	Y	-2.79	-1.192	11.968	14.362
22	M55	Y	-9.499	-9.499	0	2
23	M39A	Y	-3.98	-3.98	.037	7.397
24	M40	Y	-1.192	-2.79	0	2.394
25	M40	Y	-2.79	-3.82	2.394	4.787
26	M40	Y	-3.82	-4.052	4.787	7.181

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
27	M40	Y	-4.052	-3.82	7.181	9.574
28	M40	Y	-3.82	-2.79	9.574	11.968
29	M40	Y	-2.79	-1.192	11.968	14.362
30	M56	Y	-9.499	-9.499	3.364e-14	2

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	_Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M2	Y	-23.536	-23.536	0	2
2	M6	Y	-2.789	-12.913	0	2
3	M6	Y	-12.913	-23.036	2	4
4	M7	Y	-2.789	-12.913	0	2
5	M7	Y	-12.913	-23.036	2	4
6	M6A	Y	-9.861	-9.861	.037	7.397
7	M7A	Y	-2.954	-6.912	0	2.394
8	M7A	Y	-6.912	-9.466	2.394	4.787
9	M7A	Y	-9.466	-10.039	4.787	7.181
10	M7A	Y	-10.039	-9.466	7.181	9.574
11	M7A	Y	-9.466	-6.912	9.574	11.968
12	M7A	Y	-6.912	-2.954	11.968	14.362
13	M5	Y	-2.789	-12.913	0	2
14	M5	Y	-12.913	-23.036	2	4
15	M23A	Y	-9.861	-9.861	.037	7.397
16	M24	Y	-2.954	-6.912	0	2.394
17	M24	Y	-6.912	-9.466	2.394	4.787
18	M24	Y	-9.466	-10.039	4.787	7.181
19	M24	Y	-10.039	-9.466	7.181	9.574
20	M24	Y	-9.466	-6.912	9.574	11.968
21	M24	Y	-6.912	-2.954	11.968	14.362
22	M55	Y	-23.536	-23.536	0	2
23	M39A	Y	-9.861	-9.861	.037	7.397
24	M40	Y	-2.954	-6.912	0	2.394
25	M40	Y	-6.912	-9.466	2.394	4.787
26	M40	Y	-9.466	-10.039	4.787	7.181
27	M40	Y	-10.039	-9.466	7.181	9.574
28	M40	Y	-9.466	-6.912	9.574	11.968
29	M40	Y	-6.912	-2.954	11.968	14.362
30	M56	Y	-23,536	-23.536	3.364e-14	2

Member Distributed Loads (BLC 89 : BLC 84 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M2	Y	411	411	0	2
2	M6	Y	049	225	0	2
3	M6	Y	225	402	2	4
4	M7	Y	049	225	0	2
5	M7	Y	225	402	2	4
6	M6A	Y	172	172	.037	7.397
7	M7A	Y	052	121	0	2.394
8	M7A	Y	121	165	2.394	4.787
9	M7A	Y	165	175	4.787	7.181
10	M7A	Y	175	165	7.181	9.574
11	M7A	Y	165	121	9.574	11.968
12	M7A	Y	121	052	11.968	14.362
13	M5	Y	049	225	0	2
14	M5	Y	225	402	2	4
15	M23A	Y	172	172	.037	7.397
16	M24	Y	052	121	0	2.394

Member Distributed Loads (BLC 89 : BLC 84 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
17	M24	Y	121	165	2.394	4.787
18	M24	Y	165	175	4.787	7.181
19	M24	Y	175	165	7.181	9.574
20	M24	Y	165	121	9.574	11.968
21	M24	Y	121	052	11.968	14.362
22	M55	Y	411	411	0	2
23	M39A	Y	172	172	.037	7.397
24	M40	Y	052	121	0	2.394
25	M40	Y	121	165	2.394	4.787
26	M40	Y	165	175	4.787	7.181
27	M40	Y	175	165	7.181	9.574
28	M40	Y	165	121	9.574	11.968
29	M40	Y	121	052	11.968	14.362
30	M56	Y	411	411	3.364e-14	2

Member Distributed Loads (BLC 90 : BLC 85 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M2	Z	-1.028	-1.028	0	2
2	M6	Z	122	564	0	2
3	M6	Z	564	-1.007	2	4
4	M7	Z	122	564	0	2
5	M7	Z	564	-1.007	2	4
6	M6A	Z	431	431	.037	7.397
7	M7A	Z	129	302	0	2.394
8	M7A	Z	302	414	2.394	4.787
9	M7A	Z	414	439	4.787	7.181
10	M7A	Z	439	414	7.181	9.574
11	M7A	Z	414	302	9.574	11.968
12	M7A	Z	302	129	11.968	14.362
13	M5	Z	122	564	0	2
14	M5	Z	564	-1.007	2	4
15	M23A	Z	431	431	.037	7.397
16	M24	Z	129	302	0	2.394
17	M24	Z	302	414	2.394	4.787
18	M24	Z	414	439	4.787	7.181
19	M24	Z	439	414	7.181	9.574
20	M24	Z	414	302	9.574	11.968
21	M24	Z	302	129	11.968	14.362
22	M55	Z	-1.028	-1.028	0	2
23	M39A	Z	431	431	.037	7.397
24	M40	Z	129	302	0	2.394
25	M40	Z	302	414	2.394	4.787
26	M40	Z	414	439	4.787	7.181
27	M40	Z	439	414	7.181	9.574
28	M40	Z	414	302	9.574	11.968
29	M40	Z	302	129	11.968	14.362
30	M56	Z	-1.028	-1.028	3.364e-14	2

Member Distributed Loads (BLC 91 : BLC 86 Transient Area Loads)

=

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M2	Х	1.028	1.028	0	2
2	M6	Х	.122	.564	0	2
3	M6	Х	.564	1.007	2	4
4	M7	Х	.122	.564	0	2
5	M7	Х	.564	1.007	2	4
6	M6A	Х	.431	.431	.037	7.397

Member Distributed Loads (BLC 91 : BLC 86 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
7	M7A	Х	.129	.302	0	2.394
8	M7A	Х	.302	.414	2.394	4.787
9	M7A	Х	.414	.439	4.787	7.181
10	M7A	Х	.439	.414	7.181	9.574
11	M7A	Х	.414	.302	9.574	11.968
12	M7A	Х	.302	.129	11.968	14.362
13	M5	Х	.122	.564	0	2
14	M5	Х	.564	1.007	2	4
15	M23A	Х	.431	.431	.037	7.397
16	M24	Х	.129	.302	0	2.394
17	M24	Х	.302	.414	2.394	4.787
18	M24	Х	.414	.439	4.787	7.181
19	M24	Х	.439	.414	7.181	9.574
20	M24	Х	.414	.302	9.574	11.968
21	M24	Х	.302	.129	11.968	14.362
22	M55	Х	1.028	1.028	0	2
23	M39A	Х	.431	.431	.037	7.397
24	M40	Х	.129	.302	0	2.394
25	M40	X	.302	.414	2.394	4.787
26	M40	Х	.414	.439	4.787	7.181
27	M40	Х	.439	.414	7.181	9.574
28	M40	Х	.414	.302	9.574	11.968
29	M40	X	.302	.129	11.968	14.362
30	M56	Х	1.028	1.028	3.364e-14	2

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Y	Two Way	005
2	N18	N17	N10	N14	Y	Two Way	005
3	N14	N10	N15	N16	Y	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Y	Two Way	013
2	N18	N17	N10	N14	Y	Two Way	013
3	N14	N10	N15	N16	Y	Two Way	013

Member Area Loads (BLC 84 : Structure Ev)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Y	Two Way	000225
2	N18	N17	N10	N14	Y	Two Way	000225
3	N14	N10	N15	N16	Y	Two Way	000225

Member Area Loads (BLC 85 : Structure Eh (0 Deg))

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Z	Two Way	000563
2	N18	N17	N10	N14	Z	Two Way	000563
3	N14	N10	N15	N16	Z	Two Way	000563

Member Area Loads (BLC 86 : Structure Eh (90 Deg))

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N16	N15	N17	N18	Х	Two Way	.000563
2	N18	N17	N10	N14	Х	Two Way	.000563

Member Area Loads (BLC 86 : Structure Eh (90 Deg)) (Continued)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
3	N14	N10	N15	N16	Х	Two Way	.000563

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N2	max	4636.054	10	1183.418	24	616.259	1	763	68	3.463	11	.417	46
2		min	-4521.357	4	209.663	6	-566.688	7	-3.359	23	-3.379	5	168	4
3	N77	max	2420.934	11	1150.335	20	3977.476	12	2.003	18	3.394	5	2.613	20
4		min	-2345.068	5	207.83	2	-3930.315	6	.248	12	-3.471	11	.608	65
5	N109	max	2477.92	9	1193.043	16	4124.358	2	1.421	19	3.677	1	622	9
6		min	-2515.867	3	206.754	10	-4153.401	8	.315	64	-3.7	7	-3.158	15
7	N129	max	65.819	10	2518.943	13	937.024	7	0	75	0	8	0	14
8		min	-66.025	4	-499.73	7	-4450.676	13	0	1	0	14	0	8
9	N130	max	809.593	3	2550.348	21	2254.179	21	0	10	0	28	0	28
10		min	-3904.287	21	-498.499	3	-467.293	3	0	28	0	10	0	10
11	N131	max	3493.998	17	2292.06	17	2017.276	17	0	12	0	12	0	12
12		min	-896.254	11	-553.342	11	-517.45	11	0	42	0	42	0	42
13	Totals:	max	5232.114	10	9668.671	13	5184.787	1						
14		min	-5232.117	4	2337.659	71	-5184.79	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	phi*Mn z	Cb	Eqn
1	M7A	L3X3X4	.872	0	9	.173	7.181	y	1	3748.406	46656	1.688	3.078	2	H2-1
2	M24	L3X3X4	.866	0	5	.174	7.181	y	9	3748.406	46656	1.688	2.983	2	H2-1
3	M40	L3X3X4	.862	0	1	.181	7.181	ý	5	3748.406	46656	1.688	2.992	2	H2-1
4	M62	L3X3X4	.689	0	11	.067	.151	y	12	42442.942	46656	1.688	3.756	2	H2-1
5	MP2B	PIPE 2.0	.675	6.25	2	.284	6.25		9	14916.096	32130	1.872	1.872	1	H1-1b
6	M61	L3X3X4	.653	0	3	.067	.043	y	4	42442.942	46656	1.688	3.756	2	H2-1
7	MP2A	PIPE 2.0	.650	6.25	10	.283	6.25		5	14916.096	32130	1.872	1.872	1	H1-1b
8	MP2C	PIPE 2.0	.648	6.25	6	.262	6.25		1	14916.096	32130	1.872	1.872	1	H1-1b
9	M63	L3X3X4	.625	0	7	.056	.797	y	8	42442.942	46656	1.688	3.756	2	H2-1
10	MP1B	PIPE 2.0	.551	4.25	8	.191	1.25		5	20866.733	32130	1.872	1.872	2	H1-1b
11	MP1A	PIPE 2.0	.523	4.25	4	.185	1.25		1	20866.733	32130	1.872	1.872	2	H1-1b
12	MP1C	PIPE 2.0	.513	4.25	12	.178	1.25		9	20866.733	32130	1.872	1.872	2	H1-1b
13	MP3B	PIPE 2.0	.491	1.25	2	.186	1.25		5	20866.733	32130	1.872	1.872	2	H1-1b
14	MP3C	PIPE_2.0	.480	1.25	6	.169	4.25		4	20866.733	32130	1.872	1.872	2	H1-1b
15	MP3A	PIPE 2.0	.468	1.25	10	.179	4.25		12	20866.733	32130	1.872	1.872	2	H1-1b
16	M6	LL3x3x4x0	.424	0	21	.070	1.708	У	21	76288.155	93312	6.48	4.357	1	H1-1b
17	M5	LL3x3x4x0	.420	0	13	.069	1.708	y	13	76288.155	93312	6.48	4.357	2	H1-1b
18	M54A	PIPE_2.5	.390	2.505	2	.194	11.413		10	12741.753	50715	3.596	3.596	1	H1-1b
19	M40A	PIPE 2.5	.387	2.505	10	.196	11.274		6	12741.753	50715	3.596	3.596	1	H1-1b
20	M47A	PIPE_2.5	.375	2.505	6	.177	11.413		3	12741.753	50715	3.596	3.596	1	H1-1b
21	M7	LL3x3x4x0	.372	0	17	.063	1.708	y	17	76288.155	93312	6.48	4.357	1	H1-1b
22	M39A	L3X3X4	.344	7.433	7	.018	0	z	21	13991.953	46656	1.688	3.41	1	H2-1
23	M23A	L3X3X4	.344	7.433	11	.017	0	z	13	13991.953	46656	1.688	3.54	2	H2-1
24	M6A	L3X3X4	.343	0	11	.018	7.433	z	21	13991.953	46656	1.688	3.382	1	H2-1
25	MP4B	PIPE 2.0	.336	4.25	3	.170	1.25		4	20866.733	32130	1.872	1.872	2	H1-1b
26	MP4A	PIPE_2.0	.326	4.25	11	.168	1.25		12	20866.733	32130	1.872	1.872	2	H1-1b
27	M54	HSS4X4X4	.311	0	3	.154	0	z	2	138875.2	139518	16.181	16.181	1	H1-1b
28	MP4C	PIPE_2.0	.307	4.25	6	.150	1.25		8	20866.733	32130	1.872	1.872	2	H1-1b
29	M1	HSS4X4X4	.299	0	11	.150	0	z	10	138875.2	139518	16.181	16.181	1	H1-1b
30	M38	HSS4X4X4	.287	0	5	.147	0	z	6	138875.2	139518	16.181	16.181	1	H1-1b
31	M2	HSS4.5X4.5X3	.164	0	22	.067	0	y	21	119784.8	121302	16.25	16.25	1	H1-1b
32	M56	HSS4.5X4.5X3	.158	0	14	.070	0	у	13	119784.8	121302	16.25	16.25	1	H1-1b
33	M55	HSS4.5X4.5X3	.157	0	24	.072	0	y	17	119784.8	121302	16.25	16.25	1	H1-1b

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y	.phi*Mn z	Cb	Eqn
34	M65	LL3x3x3x6	.113	6.254	21	.005	0	y	22	46027.034	70632	6.362	3.751	1	H1-1b*
35	M64	LL3x3x3x6	.111	6.254	13	.005	0	y	14	46027.034	70632	6.362	3.751	1	H1-1b*
36	M66	LL3x3x3x6	.101	6.254	17	.005	0	y	18	46027.034	70632	6.362	3.751	1	H1-1b*

VzW	Client:	Verizon Wireless	Date: 8/24/2022
SMADT Tool	Site Name:	E GLASTONBURY 2 CT	
SWIAKI 1001	PSLC #:	468152	
Vendor	Fuze ID #:	2559329	Page: 1

Version 1.0

Tower Connection Weld Checks

Weld Shape: Weld Stiffener Configuration: Stiffener Notch Present? Stiffener Length, I (in): Stiffener Spacing/Width, s (in): Weld Size (1/16 in): W1 (in): W2 (in): Weld Total Length (in): Z_x (in³/in): Z_y (in³/in): J_p (in⁴/in): c_x (in) c_v (in) Required combined strength (kip/in): Weld Capacity (kip/in): Weld Utilization:

Rectangle
(1) Stiffener on top/bottom
No
4
4
4
4
32.00
67.56
21.33
362.67
6
6
1.77
5.57
31.7%

Yes

Engineering & besign www.unterengenering.com www.unterengenering.com work of the second secon	verizon			A CONTRACTORNEY OF A CONTRACTOR OF A CONTRACTO	Image: control of contro of contro of control of control of control of control of contr	Relation	FEAS Free All And All All All All All All All All All Al	175 DICKINSON RD. GLASTONBURY, CT 66033 HARTRORD COUNTY FIRMING ISBN 400 RD 1000000	ADARPHIC CONTRACTOR OF A DARBURATION OF	ST-1 ST-1 ST-1 ST-1
						ශ්	SHEET INDEX SHET DESCRETION SF1 TITL4 SHET SF1 TITL4 SHET	C I TATA KAN KAN KAN KAN KAN KAN KAN KAN KAN KA		LON
	RAWINGS)RM	3A ER: CT02216	ONBURY 2 CT : 468152). 6033 IY	° N 5° W		PROJECT INFORMATION APPLICANT/LESSEE COMPANY: VERIZON WIRELESS COLIENT REPRESENTATIVE COMPANY: COLIENS ENGINEERING & DESIGN COMPANY: COLLIERS ENGINEERING & DESIGN	CONTACT PETER ALBANO PHONE BS/779/ALBANO@COLLIBISENGINERING.COM E-MAIL PETER ALBANO@COLLIBISENGINERING.COM	CONTRACTOR PMI REQUIREMENTS PHILOCATION SPHILOCATION SPHILOCATION SPHILOCATION PHILOCATION SPHIL	MIVALISIS UN LE. BILLE B
verizon	MOUNT MODIFICATION D EXISTING 14' PLATFC	TOWER OWNER: SH TOWER OWNER SITE NUMB	CARRIER SITE NAME: E GLAST CARRIER SITE NUMBER FUZE ID: 2559329	175 DICKINSON RI GLASTONBURY, CT 0 HARTFORD COUNT	LATITUDE: 41.6559 LONGITUDE: 72.52327		DESIGN CRITERIA WINDLOALDS BALG WIND SPEED (1 SECOND GUST), V = 119 MPH BALG WIND SPEED (1 SECOND GUST), V = 119 MPH DPOGGAPHIC CATEGORY NA TOPOGGAPHIC CATEGORY NA MEAN BAGE BLEVATION (ANSU) = 442.99 LEE LIOALDS LEE LIOALD	SERVIC LOADS SERVIC DESIGN CATEGORY B SERVIC DESIGN CATEGORY B SERVIC TERM MCER GROUND MOTION \$, = .066 LONG TERM MCER GROUND MOTION \$, = .066		
								COPYRIGHT @2022	COLLIERS INVERTING WE DESIGN ALL RIGHTS RESERVED INFRAMMERANDE CONTRED-REINE HERE AUTHORZE RAUKS ONLY FILE MART FOR WHOM HE WOOR WAY NOT RECORD AD TWO HILL IS GRATIFIED AND HERE DAMANDE AVX CONTRACTED AD TWO HILL INFO DA REIED	UPDAY FOA ANY OTHAR JURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF COLLIERS ENGINEERING & DESIGN.

Colliers Engineering & Design	www.colliersengineering.com	Upper card the comparing the project space to the project space and the upper comparison of the project space of the project space and the interaction on when it is contained by the space and the space distribution and the space reporting the space and the space distribution of the space reporting to the space and the space distribution of the space reporting to the space and the space distribution of the space reporting to the space and the space distribution of the space reporting to the space and the space distribution of the space reporting to the space and the space distribution of the space reporting to the space and the space distribution of the space reporting to the space and the space distribution of the space and the space and the space and the space distribution of the space and the space and the space and the space distribution of the space and the space and the space and the space and the space and the space and the space and the space distribution of the space and the space and the space and the space and the space and the space and the space and the space distribution of the space and the space and the space and the space distribution of the space and the	Doing Business as				Verizon						PROTECT YOURSELF	ALLETATE REQUESTION OF ANY RECARDING TO A ANY PRECAULTION OF ANY PRECA	Logy was below.	Call before your dy. FOR 5178 SPECID DHECT PHONE NUMBERS WSIT:	SOLE AC SUITWIN JOE MAREE		o BIC472 ISELEDFOR CIVE THE CONSTRUCTION CIVE TH SEV DATE DESCRIPTION DRIVIN ORIGIES	Dignally sapred by Liefex Kr. Hartzel	CUNNER RECONNER	A CAN CONTRACT	すけして	Ark re	CENSE CONAL ENC	CTL/PC000131 TTEA VIDL/TON OF LAW FOR ANY RESON	OF THE RESPONSES I. (CENED PROFESSIONAL BIGHNER, TO ALTER THIS DOLUMENT. SITE NAME: E CIT A CENANDALIDY - A CT	468152 175 DICKINSON RD.	GLASTONBURY, CT 06033 HARTFORD COUNTY		STAN FORD	Collects Ramford 27 6901	Construction Construct a construct or construct	BILL OF MATERIALS		COLTANARD -
		WEIGHT (LBS.)	291	150	87	180	90			WEIGHT (LBS.)	234	45	72								WEIGHT (LBS.)	C	大	}	inter a				c		I-2520 (M)		2			
		UNIT WEIGHT (LBS.)	291	150	29	15	30		-	UNIT WEIGHT (LBS.)	78	15	2								UNIT WEIGHT (LBS.)			TOTAL					11 IVLAN MELLI	BELIEK METAL, LI	DAVID STANSBERRT (615) 535-0990 (O). (615) 631	DLS@BETTERMETAL.COM	WWW.BETTERMETAL.COM			
			/ITH THE 'STRUCTURAL									CORDANCE WITH THE										BSTITUTION.	BSTITUTION.								PHONE	EMAIL	WEBSITE			
ERIALS	MART KITS	NOTES	VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WI HEET SSN-1.						QUIRED PARTS	NOTES		FRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACC NOTES ON SHEET SGN-I.								FETY CLIMB PARTS	NOTES	i EOR APPROVED EQUAL, CONTACT MASER CONSULTING FOR APPROVAL OF SUB	i EOR APPROVED EQUAL, CONTACT MASER CONSULTING FOR APPROVAL OF SUB					ROVED VENDORS		SITE PRO 1	4TACT PAULA BOSWELL NE (972) 236-9843	IL PAULA BOSWELL@VALMONT.COM	SITE WWW.SITEPROI.COM NEXX/AVE	INDEW CAVES	NE (971) 239-4762	IL SALES@NEWAVETC.COM
LL OF MATE	TION I - VZWSM		CONTRACTOR TO VE STEEL NOTES ON SHE						V 2 - OTHER REC		GALVANIZED	GALVANIZED. CONTR 'STRUCTURAL STEEL' N	GALVANIZED	GALVANIZED						- REQUIRED SAF		ORE	ORE					KITS - APPR			PHON	EMAIL	WEBSI	CONT	NOH	EMAIL
BI	SEC	DESCRIPTION	KICKER KIT	ONOPOLE COLLAR MOUNT ASSEMBLY	DNG, PIPE 2 SCH40 (2.375"OD X 0.154" THK)	CROSSOVER PLATE	SUPPORT RAIL CORNER BRACKET		SECTION	DESCRIPTION	162" LONG, PIPE 2 1/2 SCH40	30" LONG, L3x3x1/4	8" LONG HSS3x2x1/4	J429 GR-I U-BOLTS						SECTION 3	DESCRIPTION	ROUTING BRACKET	ROUTING BRACKET			NT KITS. Le vzyw	THAT THE RT OF THE RT OF THE THAT THE	IN THIS VZWSMART	PEBEECTMICION	PERFECTVISION	WIRELESS SALES (844) 887-6723	WWW.PERFECT-VISION.COM	WIRELESSALES@PERFECT-VISION.COM		(866) 428-6937	AKWELCH@SABREINDUSTRIES.CUM
		H	KS	K7 MG	96. LO	sk2	K3			ER											H	_	0	-			LL. PLEASE NOTE T LEVIEWED AS A PA LL BE REQUIRED T	BUT NOT LISTED I			CONTACT	EMAIL	WEBSITE	CONTACT	PHONE	EMAIL
		PART NUMBE	VZWSMART-PL	VZWSMART-PU	VZWSMART-P40-23	VZWSMART-MS	VZWSMART-PL			PART NUMBE											PART NUMBE	PV-SCRB-RM-U	PV-CMX-CG-BC			ED VENDORS FOI	PPROVED TO SELL VENDOR: WILL BE R L VENDOR. IT WIL	MODIFICATIONS E	Ī			ECOM				
		MANUFACTURER					VZWSMART		-	MANUFACTURER		,									MANUFACTURER	PERFECT VISION	PERFECT VISION	_		RS LISTED ARE THE APPROV	ALL THEY ARE IN YURN A S ND THE Y ARE IN YURN A ON THE MOUNT MODIFICA LETED BY THE SMART TOOL ARE UTILIZED IN THE MOD	UIRED FOR THE DESIGNED I) TO BE PROVIDED BY THE C	CON DISCODE	COMMSCOPE	ALVADOR ANGUIANO 317) 304-7492	ALVADORANGUIANO@COMMSCOP	WWW.COMMSCOPE.COM	ENT RAMEY	706) 335-7045 (O), (706) 982-9788 (M)	(ENT@METROSITELLC.COM
		QUANTITY	-	-	m	12	e			QUANTITY	m	m	\$								QUANTITY	-	-		OTES:		APPROVAL PROCESS MATERIAL UTILIZED DESKTOP PMI COMPI VZW KITS SPECIFIED	. ALL MATERIALS REQI SHEET ARE ASSUMED			HONE (8	MAIL	VEBSITE METROSI	ONTACT INTELLING	HONE (7	MAIL K.

VzW SMART Tool [©] Verizon	DRAWN BY:HIR DRAWN BY:HIR REV. DRECKED BY: HIM REV.			SUPPORT RAIL CORNER	SHEET NUMBER:	VZWSMART-PLK3 0
		SHEET # WT	PLK3-F1 9 PLK3-F1 9	RBC-1 5	- 0	4LVANIZED WT 30
	STM A123.	NSMARTPLK3 (SUPPORT RAIL CORNER BRACKET)	CORNER BENT PLATE BRACKET CORNER BENT PLATE BRACKET	I RU-BOLT 5/8" X 3" I.W. X 5" I.L. A36 (OR EQUIV.) BOLT 5/8" X 2" A325	2/8 HUG USS FLAI WASHER 5/8" HDG LOCK WASHER	5/8" HDG HEX NUT 64
	N <u>otes</u> . 1. Hot-dipped calvanized per <i>i</i>	VZ ITEM QTY. PART NO.	1 1 CBP-L 2 1 CBP-R	3 4 MS02-625-300-500 4 8	5 16 FW-625 6 16 LW-625	7 16 NUT-625
The second secon						

VzW SMART Tool [©] Vendor	verizon				DRAWN BY: BT CHECKED BY: HIM/KW	REV. DESCRIPTION BY DATE		ZA SHEET TITLE:	VZWSMART	STANDARD ANGLE	SHEET NUMBER:	VZWSMART-ANGLE U
		E		Also Used In:	VZWSMART-PLK2	VZWSMART-PLK5 VZWSMART-SFK3,-SFK3-SL, -PLK6, & -PLK8						
RD ANGLE LENG				dard Angle Hole Gage	1-3/4"	1-3/4" 1-3/8"	1-5/16" 1-5/16"	1-1/2"	1-1/2"	2"	2-1/2"	2-1/2"
STANDA	· · · · · · · · · · · · · · · · · · ·	STANDA	민	MART Stan h Hole Style	V I	C B	<u>а</u> а	D	D		D	D
				VZWS	.96	96" 4"96"	4" 120" 4" 240"	120"	240"	120" 240"	120"	120"
1 1/8"			- <u></u>	Size	L 3" X 3" X 1/4"	L 3"X 3" X 3/16" L 2-1/2" X 2-1/2" X 1/	L 2-1/2" X 2-1/2" X 1/ L 2-1/2" X 2-1/2" X 1/	L 3" X 3" X 1/4"	L 3" X 3" X 1/4"	L 4" X 4" X 1/4" L 4" X 4" X 1/4"	L 5" X 3" X 3/8"	L 5" X 5" X 3/8"
		SEE NO		VZWSMART Number	A-PLK2-01	A-PLK5-01 A-SFK3-01	A-L25X25X4X120 A-L25X25X4X240	A-L30X30X4X120	A-L30X30X4X240	A-L40X40X4X120 A-L40X40X4X240	A-L50X30X6X120	A-L50X50X6X120
1 1/8" STANDARD ANGLE LENGTH	HOLE SINCE "A"	STANDARD ANGLE LENGTH	HOFE SIVE *				NUTE: ADREATER SAMET AT VENTORS ARE ALLAWED TO SUBSTIMITE AT THERE DISCRETION	ANGLES LESTED ON THIS PAGE FOR CUSTON LENGTH COMPONENTS OF MATCHING SZE. SUBSTITUTIONS SAMIL MEET THE ORIGINAL STRUCTURAL INTENT.	UNTES.	1. ALL MOLE GRADE A36 OR BETTER 2. HOT-DIPPED GAUNNIZED PER ASTM A123.	3. ALL FIOLES ARE 11/10. UML UNUO 4. ALLES MAY OR MANDE PRESENT, DEPEND UPON MANUFACTURE DISCRETION. 5. ALL FIELD CLIT AND PRILIF. DIREACES SHALL BE REPAIRED WITH A MUNIMUM OF TWO	COATS OF ZING OR ZING COTE PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.

VzW SMART Tool [©] Vendor Verizon													DRAWN BY: BT CHECKED BY: HMA //W	REV. DESCRIPTION BY DATE				SHEET TITLE:	VZWSMART	STANDARD PIPE	SHEET NUMBER:	VZWSMART-PIPE 0
STANDARD PIPE LENGTH			VZWSMART Standard Pipe	ART Number Size Length Danson Direction Darson Direction Darson	-238X048 PIPE 2 SCH40 (2.5/5 ° OU x 0.154 ° THK) 48	-238X072 PIPE 2 SCH40 (2.375° OD x 0.154" THK) 72" 238X006 DIDE 2 SCH40 (2.375° OD x 0.154" THK) 72" 238X006 DIDE 2 SCH40 /2 375" COL-0 154" THK) 64"	-230X0200 FIFL 2 SOLH40 (2.375" OD X 0.154" THK) 120"	-238X126 PIPE 2 SCH40 (2.375" OD x 0.154" THK) 126"	-238X150 PIPE 2 SCH40 (2.375" OD x 0.154" THK) 150"	-238X174 PIPE 2 SCH40 (2.375" OD x 0.154" THK) 174"	-278X048 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 48"	-278X072 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 72" -278X096 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 96"	-278X120 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 120"	-278X126 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 126"	-278X150 PIPE 2.5 SCH40 (2.875° OD x 0.203° THK) 150°	-278X174 PIPE 2.5 SCH40 (2.875" OD x 0.203" THK) 174"	-312X048 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 48"	-312X072 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 72"	-312X126 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 126"	-312X150 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 150"	-312X174 PIPE 3 SCH40 (3.5" OD x 0.216" THK) 174"	
	- J J J J J J J J J J	EEE NOTE "3" & "4" (TYP)									I			H	H		APPROVED SMART KIT VENDORS ARE ALLOWED TO SUBSTITUTE AT THEIR DISCRETION PPESE LISTED ON THIS PAGE FOR CUSTOM LEWSTH COMPONENTS OF LAYTCHING SIZE.	SUBSTITUTIONS SHALL MEET THE ORIGINAL STRUCTURAL INTENT.	1 Satura	1 ULLES 1. LUE IPIE GRADE A53-B OR BETTER. 1. LATE IPIES OF A114447ED FOR A414	2. RUL PUTPTPU WALKEU PER ASIM AL23. 3. ALL HOLES ARE 11/16" DIA. UNO 4. UNICE UNO A UNV UND RE PORCENIA LIPON UNIVIEWATIRE RECORDANCE	4. HOLES MAI OR MAY INV DE FRASENI, ULFERN UTEN WAVERAUME DISACTIONE DISACTION. ALL FIELD CUT AND DRILLED SUFFACES SHALL BE REPAIRED WITH A MINIMUM OF TWO COATS OF ZINCA OR ZINC COTE PER ASTN A780 AND MANUFACTURER'S RECOMMENDATIONS.

ATTACHMENT 5

1	Dig.	3	100	
3	(1	C	20
L.	U	1	D	

Owner of	Record				Accoun	t Number: 18	600175				
GIS ID:	18600175				Propert	y Address: 17	5 DICKINSON	RD			
Owner:	CHAPMAN RANDAL	L S+			/						
Co-Owner:	BRONZI KARRIE-LY	'NNE									
Address:	PO BOX 7										
City, State ZIP:	TROY, ME 04987-00	007									
Parcel Ir	formation										
Map/Street/Lot	J12 / 1860	/ N0003 P	roperty ID: 1492								
Developer Lot II	D:	v	/ater: Well								
Parcel Acreage:	30.35	S	ewer: Septic								
Zoning Code:	RR	C	ensus: 5205.02								
Valuatio	n Summary						1				
Item	Appraised	Value	Assessed Value				1				
Buildings	0		0				1				
Land	1155200		808700		+						
Appurtenances	0		0		6	1- 1					
Total	1155200		808700		Property h	ighlighted in blue					
		Owner of	Record			Deed / Page	Sale Date	Sale Price			
		CHAPMAN R	ANDALL S+			3456/0161	2017-11-07	0			
		CHAPMAN R	ANDALL S+			3379/0090	2016-10-20	0			
D		CHAPMAN R	ANDALL S+			3057/0041	2013-01-11	0			
Bu	liaing	CHAPMAN R	ANDALL S+			3057/0039	2013-01-11	0			
Pie	cture	CHAPMAN R	ANDALL S+			2684/0333	2009-08-03	0			
	Not	CHAPMAN R	ANDALL S+			2295/0261	2006-02-02	0			
1 1	Raabla	CHAPMAN D	ONALD A (LU)+ RANDAL	I S+		1582/0249	2002-05-08	0			
Арр	licable	CHAPMAN D	ONALD A+BRONZI			0442/0018	1988-08-25	0			
Building I	Information				Build	ling ID	0				
Year Constructe	d :	Nun	ber of Rooms :								
Building Type :		Nun	iber of Bedrooms :								
Style :		Nun	iber of Bathrooms :				Ruilding	T			
Stories :		Fyte	rior Wall :				Bunumg	5			
Building Zone :		Inte	rior Wall :				Sketch				
Roof Type :		Inte	rior Floor :				NT 4				
Roof Material :		Inte	rior Floor #2 :		Not						
Est. Gross S.F. :		Air (Conditioning Type :			٨	nnlicah	ام			
Est. Living S.F. :		Hea	t Type :			A	ppncab	pheable			
		Fue	Туре:								
Subarea Type	Est.	Gross S.F.	Est. Living S.F.	Outbuildin	д Туре		Est. Gross S.F.	Comments			

This data & map is a user generated static output from an Internet mapping site and is for reference only. Data that appears on this form may or may not be accurate, current, or otherwise reliable. Any questions on the data provided above should be directed to the Town of Glastonbury Property Assessment Office 860-652-7600.

ATTACHMENT 6

UNITED STATES POSTAL SERVICE				Cert	ificate of Mail	ing — Firm
Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date of	of Receipt.		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	3	3	n	eopost ^{%{}		
	Postmaster, per (name of receiving	OCT 11 2022			\$003.09 ZIP 06103 041L1220393	7
USPS® Tracking Number	(Name, Street, City	Idress USPS	Postage	Fee	Special Handling	Parcel Airlift
1.	Richard Johnson, Tow	n Manager	-			
	2155 Main Street Glastonbury, CT 060	33				
2.	Jonathan Mullen, Plan Town of Glastonbury	ner				
	Glastonbury, CT 060	33				
3.	Randall Chapman and P.O. Box 7	Karrie-Lynne Bronzi				
	Troy, ME 04987-000	1				
4.						
5.			-			
6.						

EAST GLASTONBURY 2