June 25, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

DRW NX Tower Share Application 115 Birch Mountain Road, Glastonbury, CT 06033 Latitude- 41.708956 Longitude- -72.473447

Dear Ms. Bachman,

This letter and the attachments are submitted on behalf of DRW NX ("DRW"). DRW plans to install microwave dishes and related equipment at the tower site located at 115 Birch Mountain Road in Glastonbury, Connecticut. The tower was originally approved by the Town of Glastonbury Zoning Board of Appeals on August 7, 1998. The approval was made without conditions. Documentation from the Town of Glastonbury on this is enclosed.

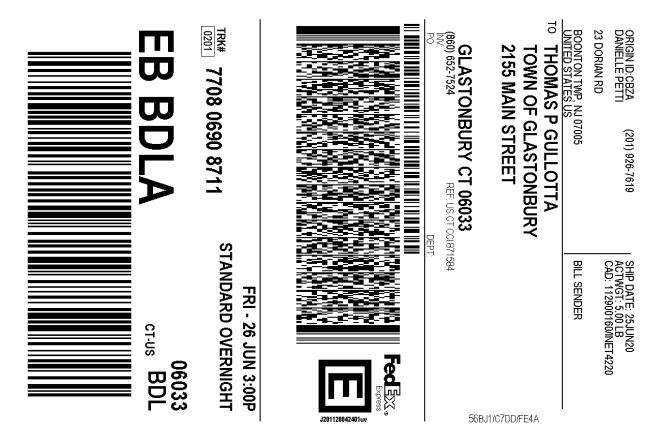
DRW will install three (3) microwave dishes, six (6) SAF radios, and related equipment at the 190' level of the existing 200' self-support tower. DRW will also install an equipment cabinet and related ground equipment in the existing building within the existing ground facility. Included are plans by GPD Engineering and Architecture, dated June 15, 2020, depicting the proposed site and attached as **Exhibit A**. Also included is a structural analysis prepared by Crown Castle, dated June 5, 2020, confirming that the existing tower will be structurally capable of supporting the proposed equipment after tower modifications are made. This is attached and detailed in **Exhibit B**. Additionally, an analysis of the proposed mounts is attached and incorporated as **Exhibit C**.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of DRW's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Thomas P. Gullotta, Chairman of the Town of Glastonbury Town Council, Khara Dodds, Director of Planning and Land Use Services for the Town of Glastonbury, the tower owner, Crown Castle, and the property owner, Scarrone Park LLC. Please see the attached letter from Crown Castle authorizing the proposed shared use of this facility attached as **Exhibit D**.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the self-support tower is 200'; DRW's proposed equipment will be located at a center line height of 190'.
- 2. The proposed modifications will not result in the increase of the site boundary, as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligible.

4. The operation of the proposed equipment will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached RF exposure assessment, the site operations will have no measurable effect on RF exposure levels near this facility, as evidenced by **Exhibit E**.


Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, DRW respectfully submits that the shared use of this facility satisfies these criteria.

- A. <u>Technical Feasibility</u>. The existing self-support tower has been deemed structurally capable of supporting DRW's proposed loading after tower modifications are made. The structural analysis and tower modification drawings are included as **Exhibit B**.
- B. <u>Legal Feasibility</u>. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this self-support tower in Glastonbury. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit DRW to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as **Exhibit D**, authorizing DRW to file this application for shared use.
- C. <u>Environmental Feasibility</u>. The proposed shared use of this facility would have minimal environmental impact. The installation of DRW equipment at the 190' level of the existing 200' tower would have an insignificant visual impact on the area around the tower. DRW's ground equipment would be installed in the existing building within the existing facility compound. DRW's shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by **Exhibit E**, the proposed equipment would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. <u>Economic Feasibility</u>. DRW will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist DRW with this tower sharing application.
- E. <u>Public Safety Concerns</u>. As discussed above, the self-support tower will be structurally capable of supporting DRW's proposed loading after completion of tower modifications. DRW is not aware of any public safety concerns relative to the proposed sharing of the existing tower.

Sincerely,

Danielle Petti (o/b/o DRW NX) 201-926-7619 Dpetti111@gmail.com

CC: Thomas P. Gullotta- Town Council Chairman, Town of Glastonbury Khara Dodds- Director of Planning and Land Use Services, Town of Glastonbury Crown Castle- Tower Owner Scarrone Park LLC- Property Owner

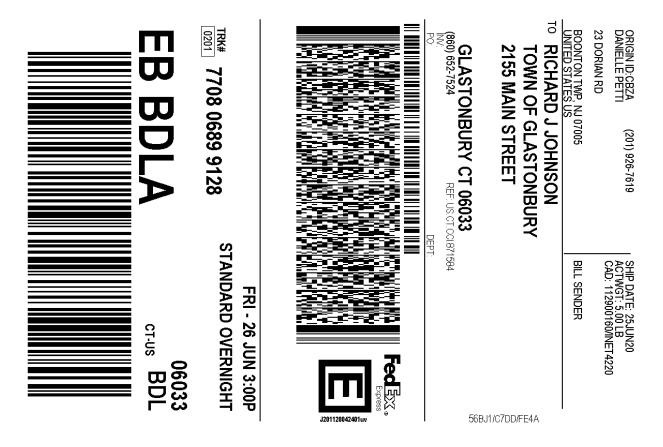
1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

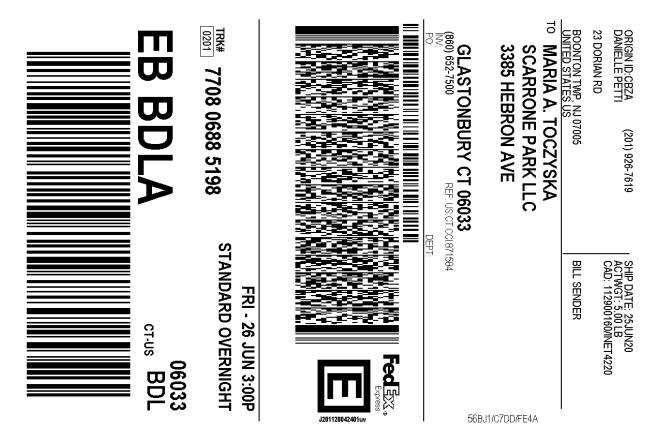

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

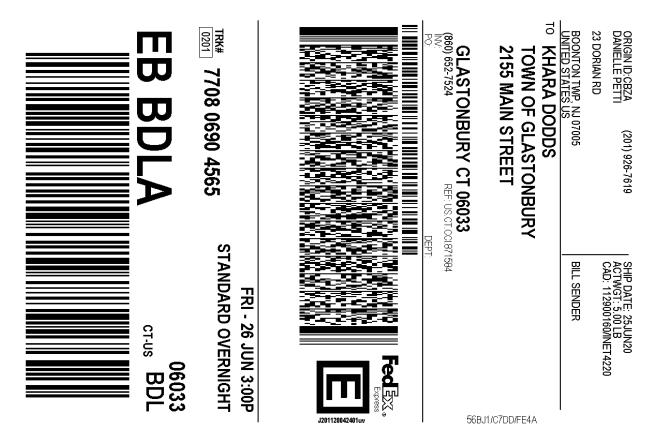

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

115 BIRCH MOUNTAIN RD

Location	115 BIRCH MOUNTAIN RD	Mblu	N6/ 2920/ E0001C/ /
Acct#	29203387	Owner	SCARRONE PARK LLC
Assessment	\$566,600	Appraisal	\$809,400
PID	13487	Building Count	1

Current Value

Appraisal				
Valuation Year	Improvements	Land	Total	
2019	\$800	\$808,600	\$809,400	
	Assessment			
Valuation Year	Improvements	Land	Total	
2019	\$600	\$566,000	\$566,600	

Owner of Record

Owner	SCARRONE PARK LLC	Sale Price	\$0
Co-Owner	C/O TOCZYSKA MARIA A	Certificate	
Address	3385 HEBRON AVE	Book & Page	3525/0218
	GLASTONBURY, CT 06033-2806	Sale Date	11/15/2018
		Instrument	79

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
TOCZYSKA MARIA A	\$0		3525/0216	81	11/15/2018
SCARRONE CAROLYN R REVOCABLE TRUST	\$0		3468/0328	25	01/22/2018
SCARRONE CAROLYN R REVOCABLE TRUST	\$0		1829/0101	79	06/03/2003
SCARRONE CAROLYN R	\$0		1261/0312		07/29/1999

Building Information

Building 1 : Section 1

Year Built:Living Area:0Replacement Cost:\$0

Replacement Cost

Less Depreciation:

:

\$0

Building Attributes				
Field	Description			
Style	Vacant Land			
Model				
Occupancy				
Exterior Wall 1				
Roof Structure:				
Roof Cover				
Interior Wall 1				
Floor/Cover 1				
Floor/Cover 2				
Heat Fuel				
Heat Type:				
АС Туре:				
Total Bedrooms:				
Total Bthrms:				
Total Half Baths:				
Total Rooms:				
Extra Kitchens				
Style Sub Class				
Bsmt Garages				
Fireplaces				

Building Photo

(http://images.vgsi.com/photos/GlastonburyCTPhotos//\02\02\02\02.jpg)

Building Layout

(http://images.vgsi.com/photos/GlastonburyCTPhotos//Sketches/13487_13

Building Sub-Areas (sq ft)

No Data for Building Sub-Areas

.

Extra Features

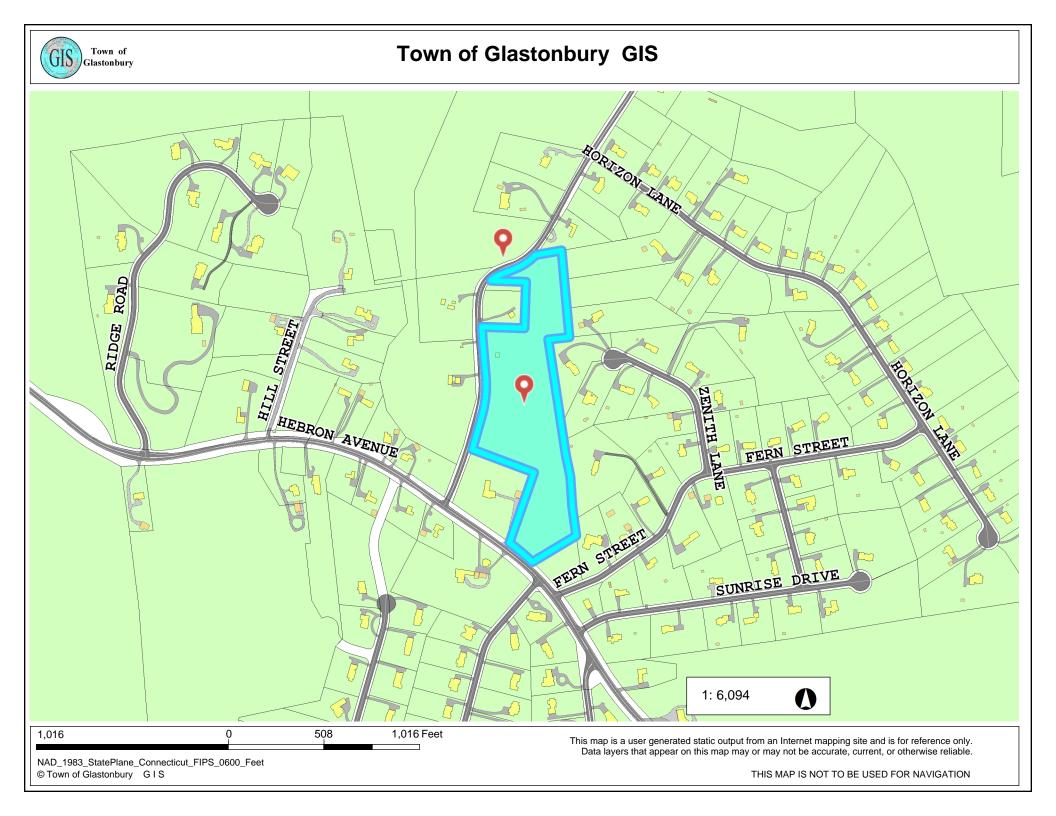
Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valua	tion
Use Code	350V	Size (Acres)	11.54
Description	Cell Tower 00 MDL	Assessed Value	\$566,000
Zone	RR	Appraised Value	\$808,600
Category			

Outbuildings

Outbuildings					<u>Legend</u>	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #


SHD2	Shed-Metal-Storage			168 S.F.	\$800	1
------	--------------------	--	--	----------	-------	---

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$800	\$808,600	\$809,400		
2017	\$800	\$808,600	\$809,400		

Assessment				
Valuation Year	Improvements	Land	Total	
2018	\$600	\$566,000	\$566,600	
2017	\$600	\$566,000	\$566,600	

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

0425-01'

TOWN OF GLASTONBURY APPLICATION FOR BUILDING PERMIT CONNECTICUT STATE BUILDING CODE (SBC111.0)

DEPARTMENT D	ECISION	ESTIMATED	COSTS	FEES
Approved	Disapproved	Plumbing Electrical	, <i>8.20</i> 1. 000	C.O. & Use Structural Plumbing Electrical Heating/AC
Date	Inspector	Fire Protection	0, 870	Fire Protection
IS BIRCH MAUNTA	(Please Print or T	Type All Entrie	s)	N92
CARELY'N R. SCARI	CONE CO DAVID	SHEINCOD A	UDEL, SHE	LOTH ENCOD & JANENDA, LLC
701 HEBRON AVE. Street Address	GLASTWSUL	ر wn	CT State	Zip
Home Phone#	860-652-4020 Work Phone#			Mobile Phone#
MOTREAD NORDI PMELICAN			EL PR	LIENT MANAGER
<u><u><u><u>6</u></u> <u>3</u><u>4</u><u>9</u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	BENSALEA Tov		PA State	<u>19020</u> Zip
Home Phone#	215-252-4955 Work Phone#	<u>2/5- 757</u>	<u>- 6152</u> ax#	Mobile Phone#
C.E.R. TOWERS, L.L.C.	tor/General Contractor			<u> /6 - 1 /8 - G44G</u> Registration #
7693 WEST STATE ST Street Address	LOWVILLE Town	1	•	315-376-0056 Telephone#
Home Phone#	Work Phone#	<u>315.37</u>	6 - <u>XI 3 4</u> ax#	Mobile Phone#
ZONING INFORMATION: <u>Distance From</u> : Street Line		75 '		e. <i>RIRAL RESIDENCE</i> Permit
Project Type: a) New Constru- b) Addition c) Alteration d) Repair/Repl e) Demolition	uction f) 🗌 Reloc g) 🔲 Chan h) 🔲 Articl	cation nge of Use		
Construction Type: 1 A 1 Use Group(s): A-1 B A-2 A-3 F- A-4 F-: A-5 Mixed Use: Yes No	_	L.) R-1	☐ 4 ☐ 5A ☐ 5B ☐ S-1 ☐ S-2 ☐ U
	(Ove			

Exhibit A

Construction Drawings

SHEET NUMBER:
TP-1
N-1
N-2
N-3
C-1
C-2
T-1
T-2
T-3
T-4
T-5
T-6
E-1
E-2
E-3
E-4
E-5
E-6
i
OVERALL SITE PLAN ENLARGED SITE PLAN TOWER ELEVATION & ANTENNA SCH DISH MOUNT DETAILS DISH PLAN @ 190'-0" DISH PLAN @ 190'-0" DISH ELEVATIONS COAX MOUNTING DETAILS COAX MOUNTING DETAILS CABINET DETAILS UTILITY PLAN GROUNDING PLAN ONE-LINE DIAGRAM & UTILITY DET PANEL SCHEDULE GROUNDING RISER DIAGRAM GROUNDING DETAILS

SPECIAL NOTES

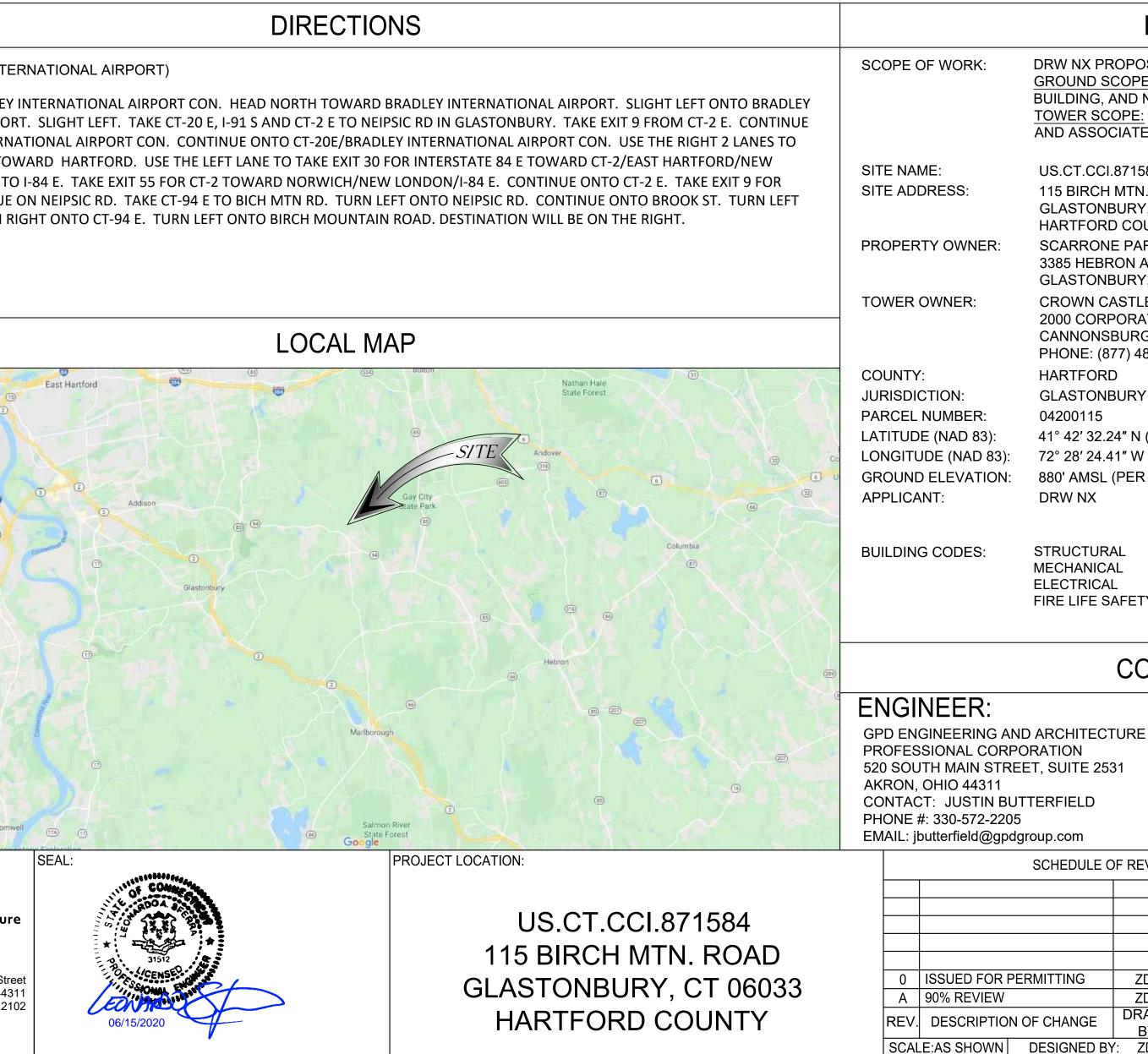
CONTRACTOR SHALL VERIFY ALL (EX.) CONDITIONS IN FIELD. IF SIGNIFICANT DEVIATIONS OR DETERIORATION ARE ENCOUNTERED AT THE TIME OF CONSTRUCTION, A REPAIR PERMIT WILL BE OBTAINED AND CONTRACTOR SHALL NOTIFY STRUCTURAL ENGINEER IMMEDIATELY.

CONTRACTOR SHALL VERIFY ALL PLANS AND (EX.) DIMENSIONS AND CONDITIONS ON THE JOB SITE & SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

THESE DRAWINGS ARE PLOTTED AT 22"X34" AND SCALABLE TO 11"X17". PLOT WILL BE FULL SCALE UNLESS OTHERWISE NOTED.

TO OBTAIN LOCATION OF PARTICIPANTS UNDERGROUND FACILITIES BEFORE YOU DIG IN CONNECTICUT, CONTACT CALL BEFORE YOU DIG TOLL FREE: 1-800-922-4455 OR www.cbyd.com CONNECTICUT STATUTE **REQUIRES MIN OF 2** WORKING DAYS NOTICE

BEFORE YOU EXCAVATE


Call before you dig.

DRIVNX /

GPD Engineering and Architecture Professional Corporation

> 520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

GPD#:202

SITE NAME: US.CT.CCI.871584

SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033

PROJECT SUMMARY

DRW NX PROPOSES TO: GROUND SCOPE: INSTALL EQUIPMENT CABINET WITHIN 4'x8' LEASE AREA IN BUILDING, AND NEW 100A ELECTRICAL SERVICE. TOWER SCOPE: INSTALL (3) 6'-0" MW DISHES, (6) SAF RADIO, ASSOCIATED CABLING AND ASSOCIATED MOUNTING EQUIPMENT.

US.CT.CCI.871584 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY SCARRONE PARK LLC 3385 HEBRON AVE GLASTONBURY, CT 06033 **CROWN CASTLE** 2000 CORPORATE DR. CANNONSBURG, PA 15317 PHONE: (877) 486-9377 HARTFORD **GLASTONBURY** 04200115 41° 42' 32.24" N (41.708956°) (PER PER CCI SITES) 72° 28' 24.41" W (-72.473447°) (PER PER CCI SITES) 880' AMSL (PER GOOGLE EARTH) DRW NX

STRUCTURAL MECHANICAL ELECTRICAL FIRE LIFE SAFETY

2018 CONNECTICUT BUILDING CODE, W/ AMENDMENTS FROM 2015 IBC 2018 CONNECTICUT BUILDING CODE, W/ AMENDMENTS FROM 2015 IMC 2017 NEC, AS ADOPTED BY THE STATE OF CONNECTICUT 2018 CONNECTICUT BUILDING CODE, W/ AMENDMENTS FROM 2015 IFC

CONSULTING TEAM

STRUCTURAL ENGINEER:

CROWN CASTLE 2000 CORPORATE DR. CANONSBURG, PA CONTACT: MAHAM BARIMANI PHONE #: 724-416-2000

•				
SCHEDULE C	OF REVISION	٧S		PROJECT NAME:
				US.CT.CCI.871584
				DRAWING TITLE:
	707		00/45/0000	TITLE PAGE
RMITTING	ZDT ZDT	JWB JWB	06/15/2020 06/10/2020	
OF CHANGE	DRAWN BY:	AUTH BY:		
DESIGNED BY	: ZDT	DR	AWN BY: ZDT	TP-1
20796.01.l	JS.CT.C	CI.87	1584.01	

GENERAL NOTES

- 1. THE CONTRACTOR'S SCOPE OF WORK SHALL INCLUDE ALL ITEMS DEFINED IN THE CONTRACT DOCUMENTS. THE CONTRACT DOCUMENTS INCLUDE, BUT ARE NOT LIMITED TO, THE FOLLOWING: THE CONTRACT, SPECIFICATIONS AND CONSTRUCTION DRAWINGS.
- 2. ALL EQUIPMENT SUPPLIED BY THE OWNER SHALL BE PICKED UP BY THE CONTRACTOR AT THE APPROPRIATE WAREHOUSE
- THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING ALL WORK.

4. THE CONTRACTOR SHALL PROVIDE ON-SITE SUPERVISION AT ALL TIMES WHILE THE WORK IS BEING PERFORMED AND SHALL DIRECT ALL WORK, USING HIS BEST SKILL AND ATTENTION. HE SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, PROCEDURES AND SEQUENCES FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.

- 5. THE CONTRACTOR SHALL VISIT THE JOB SITE TO REVIEW THE SCOPE OF WORK AND EXISTING JOB SITE CONDITIONS INCLUDING, BUT NOT LIMITED TO, MECHANICAL, ELECTRICAL SERVICE AND OVERALL COORDINATION. THE CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS AND DIMENSIONS PRIOR TO SUBMITTING HIS BID. ANY DISCREPANCIES, CONFLICTS OR OMISSIONS, ETC., SHALL BE REPORTED TO DRW NX CONSTRUCTION SUPERVISOR BEFORE PROCEEDING WITH THE WORK.
- 6. THE CONTRACTOR SHALL PROTECT ALL AREAS FROM DAMAGE WHICH MAY OCCUR DURING CONSTRUCTION. ANY DAMAGE TO NEW AND EXISTING CONSTRUCTION, STRUCTURE, LANDSCAPING OR EQUIPMENT SHALL BE IMMEDIATELY REPAIRED OR REPLACED TO THE SATISFACTION OF THE TENANT, BUILDING OWNER OR OWNER'S REPRESENTATIVE AT THE EXPENSE OF THE CONTRACTOR.
- 7. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE ALL EXISTING UTILITIES, WHETHER SHOWN HEREON OR NOT. AND TO PROTECT THEM FROM DAMAGE. THE CONTRACTOR SHALL BEAR ALL EXPENSES FOR REPAIR OR REPLACEMENT OF UTILITIES OR OTHER PROPERTY DAMAGED IN CONJUNCTION WITH THE EXECUTION OF WORK
- 8. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE COMPLETE SECURITY OF THE SITE WHILE THE JOB IS IN PROGRESS AND UNTIL THE JOB IS COMPLETED.
- 9. THE CONTRACTOR SHALL PROVIDE TEMPORARY WATER, POWER AND TOILET FACILITIES AS REQUIRED BY THE CITY OR GOVERNING AGENCY.
- 10. THE CONTRACTOR AND ALL SUBORDINATE CONTRACTORS SHALL COMPLY WITH ALL LOCAL AND STATE REGULATIONS.
- 11. THE CONTRACTOR SHALL OBTAIN AND PAY FOR PERMITS, LICENSES AND INSPECTIONS NECESSARY FOR PERFORMANCE OF THE WORK AND INCLUDE THOSE IN THE COST OF THE WORK TO DRW NX.
- 12. FIGURED DIMENSIONS HAVE PRECEDENCE OVER DRAWING SCALE, AND DETAIL DRAWINGS HAVE PRECEDENCE OVER SMALL DRAWINGS. CHECK ACCURACY OF ALL DIMENSIONS IN THE FIELD. UNLESS SPECIFICALLY NOTED, DO NOT FABRICATE ANY MATERIALS OFF SITE, NOR DO ANY CONSTRUCTION UNTIL THE ACCURACY OF DRAWING DIMENSIONS HAVE BEEN VERIFIED AGAINST ACTUAL FIELD DIMENSIONS.
- 13. THE CONTRACTOR SHALL NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR OF ANY CONFLICTS OR DISCREPANCIES IN THE CONTRACT DOCUMENTS OR FIELD CONDITIONS PRIOR TO EXECUTING THE WORK IN QUESTION.
- 14. THE CONTRACTOR SHALL NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR IF DETAILS ARE CONSIDERED UNSOUND, UNSAFE, NOT WATERPROOF, OR NOT WITHIN CUSTOMARY TRADE PRACTICE. IF WORK IS PERFORMED, IT WILL BE ASSUMED THAT THERE IS NO OBJECTION TO THE DETAIL. DETAILS ARE INTENDED TO SHOW THE END RESULT OF THE DESIGN. MINOR MODIFICATIONS MAY BE REQUIRED TO SUIT JOB CONDITIONS, AND SHALL BE INCLUDED AS PART OF THE WORK.
- 15. EXISTING ELEVATIONS AND LOCATIONS TO BE JOINED SHALL BE VERIFIED BY THE CONTRACTOR BEFORE CONSTRUCTION. IF THEY DIFFER FROM THOSE SHOWN ON THE PLANS, THE CONTRACTOR SHALL NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR SO THAT MODIFICATIONS CAN BE MADE BEFORE PROCEEDING WITH THE WORK.
- 16. ALL SYMBOLS AND ABBREVIATIONS USED ON THE DRAWINGS ARE CONSIDERED CONSTRUCTION STANDARDS. IF THE CONTRACTOR HAS QUESTIONS REGARDING THEIR EXACT MEANING, THE DRW NX CONSTRUCTION SUPERVISOR SHALL BE NOTIFIED FOR CLARIFICATION BEFORE PROCEEDING WITH THE WORK.
- 17. THE CONTRACTOR SHALL PROVIDE ALL NECESSARY BLOCKING, BACKING, FRAMING, HANGERS OR OTHER SUPPORT FOR ALL OTHER ITEMS REQUIRING THE SAME.
- 18. APPROVED PLANS SHALL BE KEPT IN A PLAN BOX AND SHALL NOT BE USED BY WORKMEN. ALL CONSTRUCTION SETS SHALL REFLECT SAME INFORMATION. AT ALL TIMES THESE ARE TO BE UNDER THE CARE OF THE JOB SUPERINTENDENT.
- 19. DESIGN DRAWINGS ARE DIAGRAMMATIC ONLY AND SHALL BE FOLLOWED AS CLOSELY AS ACTUAL CONSTRUCTION CONDITIONS WILL PERMIT. ANY ERROR, OMISSION, OR DESIGN DISCREPANCY SHALL BE BROUGHT TO THE ATTENTION OF THE DRW NX CONSTRUCTION SUPERVISOR FOR CLARIFICATION OR CORRECTION BEFORE CONSTRUCTION.
- 20. AS-BUILTS REQUIREMENTS: DO NOT USE RECORD DOCUMENTS FOR CONSTRUCTION PURPOSES. PROTECT RECORD DOCUMENTS FROM DETERIORATION AND LOSS IN A SECURE, FIRE-RESISTANT LOCATION. PROVIDE ACCESS TO RECORD DOCUMENTS FOR THE DRW NX CONSTRUCTION SUPERVISOR'S REFERENCE DURING NORMAL WORKING HOURS. MAINTAIN A CLEAN, UNDAMAGED SET OF BLUE OR BLACK LINE PRINTS OF CONTRACT DRAWINGS AND SHOP DRAWINGS. MARK THE SET TO SHOW THE ACTUAL INSTALLATION WHERE THE INSTALLATION VARIES SUBSTANTIALLY FROM THE WORK AS ORIGINALLY SHOWN. MARK WHICH DRAWINGS IS MOST CAPABLE OF SHOWING CONDITIONS FULLY AND ACCURATELY. WHERE SHOP DRAWINGS ARE USED, RECORD A CROSS-REFERENCE AT THE CORRESPONDING LOCATION ON THE CONTRACT DRAWINGS. GIVE PARTICULAR ATTENTION TO CONCEALED ELEMENTS THAT WOULD BE DIFFICULT TO MEASURE AND RECORD AT A LATER DATE. MARK RECORD SETS WITH RED ERASABLE PENCIL. USE OTHER COLORS TO DISTINGUISH BETWEEN VARIATIONS IN SEPARATE CATEGORIES OF THE WORK. MARK NEW INFORMATION THAT IS IMPORTANT TO THE OWNER BUT WAS NOT SHOWN ON THE CONTRACT DRAWINGS. DETAILS OR SHOP DRAWINGS. NOTE RELATED CHANGE ORDER NUMBERS WHERE APPLICABLE. NOTE RELATED RECORD DRAWING INFORMATION AND PRODUCT DATA. UPON COMPLETION OF THE WORK, SUBMIT ONE (1) COMPLETE SET OF RECORD DOCUMENTS TO THE DRW NX CONSTRUCTION SUPERVISOR FOR THE OWNER'S RECORDS.

GPD Engineering and Architecture Professional Corporation

> 520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

SEAL

PART I: GENERAL

1.1 SCOPE: CLEARING, GRUBBING, STRIPPING, EROSION CONTROL, SURVEY, LAYOUT, SUB GRADE PREPARATION, FINISH GRADING AND SECURITY FENCE, AS REQUIRED BY CONSTRUCTION DRAWINGS AND DETAIL DRAWINGS.

1.2 REFERENCES

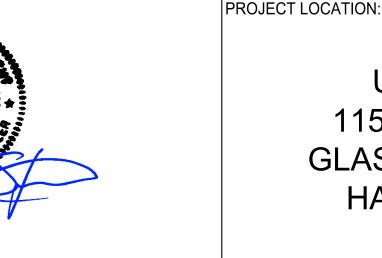
A. DEPARTMENT OF TRANSPORTATION CONSTRUCTION AND MATERIAL SPECIFICATIONS FOR THE STATE IN WHICH THE PROJECT IS LOCATED.

- B. ASTM (AMERICAN SOCIETY FOR TESTING AND MATERIALS) C. OSHA (OCCUPATIONAL SAFETY AND HEALTH
- ADMINISTRATION)
- D. AASHTO (AMERICAN ASSOCIATION OF STATE AND HIGHWAY TRANSPORTATION OFFICIALS)

1.3 INSPECTION AND TESTING

- A. FIELD TESTING OF EARTHWORK, AGGREGATE BASE COURSE, COMPACTION, AND CONCRETE TESTING SHALL BE PERFORMED BY THE CONTRACTOR'S INDEPENDENT TESTING LAB.
- B. ALL WORK SHALL BE INSPECTED AND RELEASED BY THE DRW NX CONSTRUCTION SUPERVISOR WHO SHALL CARRY OUT THE GENERAL INSPECTION OF THE WORK WITH SPECIFIC CONCERN TO PROPER PERFORMANCE OF THE WORK AS SPECIFIED AND/OR CALLED FOR ON THE DRAWINGS. IT IS THE CONTRACTOR'S RESPONSIBILITY TO REQUEST TIMELY INSPECTIONS PRIOR TO PROCEEDING WITH FURTHER WORK THAT WOULD MAKE PARTS OF THE WORK INACCESSIBLE OR DIFFICULT TO INSPECT.

1.4 SITE MAINTENANCE AND PROTECTION


- A. PROVIDE ALL NECESSARY JOB SITE MAINTENANCE FROM COMMENCEMENT OF THE WORK UNTIL COMPLETION OF THE CONTRACT.
- B. CONTACT THE ONE-CALL UTILITY LOCATION SERVICE PRIOR TO ANY EXCAVATING ACTIVITIES TO HAVE LOCATIONS OF UNDERGROUND UTILITIES VERIFIED
- C. AVOID DAMAGE TO THE SITE INCLUDING EXISTING FACILITIES, STRUCTURES, TREES AND SHRUBS DESIGNATED TO REMAIN. TAKE PROTECTIVE MEASURES TO PREVENT EXISTING FACILITIES THAT ARE NOT DESIGNATED FOR REMOVAL FROM BEING DAMAGED BY THE WORK
- D. KEEP SITE FREE OF ALL PONDING WATER.
- E. PROVIDE EROSION CONTROL MEASURES IN ACCORDANCE WITH THE DEPARTMENT OF TRANSPORTATION CONSTRUCTION AND MATERIAL SPECIFICATIONS FOR THE
- STATE IN WHICH THE PROJECT IS LOCATED. F. PROVIDE AND MAINTAIN ALL TEMPORARY FENCING,
- BARRICADES, WARNING SIGNALS AND SIMILAR DEVICES NECESSARY TO PROTECT LIFE AND PROPERTY DURING THE ENTIRE PERIOD OF CONSTRUCTION. REMOVE ALL SUCH DEVICES UPON COMPLETION OF THE WORK.

- PART II: PRODUCTS
- CONSTRUCTION SUPERVISOR AND GEOTECHNICAL ENGINEER.
- 2.2 POROUS AND NON POROUS EMBANKMENT AND BACK FILL: A. CONNECTICUT: PER CONNECTICUT DEPARTMENT OF TRANSPORTATION SECTION 2.13-19
- A. CONNECTICUT: PER CONNECTICUT DEPARTMENT OF TRANSPORTATION SECTION 2.13-19
- 2.4 GRANULAR BEDDING AND TRENCH BACK FILL: WELL-GRADED SAND (SW OR SW-SM) AND THE FOLLOWING: A. CONNECTICUT: PER CONNECTICUT DEPARTMENT OF TRANSPORTATION SECTION 2.13-19
- 2.5 CRUSHED STONE SURFACE COURSE FOR ACCESS ROAD:
- A. CONNECTICUT: PER CONNECTICUT DEPARTMENT OF TRANSPORTATION SECTION 2.13-19L
- 2.6 CRUSHED STONE SUBBASE FOR ACCESS ROAD: A. AASHTO #57 CRUSHED LIMESTONE OR APPROVED EQUAL
- 2.7 CRUSHED STONE GRANULAR BASE FOR COMPOUND: A. AASHTO #57 CRUSHED LIMESTONE OR APPROVED EQUAL
- 2.9 GEOTEXTILE FABRIC: MIRAFI 500X OR APPROVED EQUIVALENT
- CORROSION. TAPE COLOR SHALL BE RED FOR ELECTRIC UTILITIES AND ORANGE FOR TELECOMMUNICATION UTILITIES.
- 2.11 SECURITY FENCE
- USE APPLICABLE PROVISIONS OF ASTM FOR MATERIALS.
- AND BOTTOM SELVAGES TWISTED AND BARBED.
- C. POSTS

D

F.

- 1. LINE POST FOR FABRIC UP TO 8 FEET HIGH SHALL BE 2 3/8 INCH O.D. ASTM A120, A570 AND A525. FOR FENCE OVER 8 FEET HIGH, SIZE POST ACCORDING TO MANUFACTURER'S RECOMMENDATIONS.
- TENSION WIRE SHALL BE 7 GAUGE U.S. STEEL WIRE GALVANIZED IN ACCORDANCE WITH ASTM A116, COATING CLASS III.
- F.
- FABRIC TIES SHALL BE CLASS I GALVANIZED STEEL WIRE NO LESS THAN 9 GAUGE. G.
- Η. POST TOPS SHALL BE PRESSED STEEL OR MALLEABLE IRON AND SHALL BE GALVANIZED PER ASTM A153.
- WITHOUT FAILURE 250 POUNDS DOWNWARD PULL AT THE OUTERMOST END OF THE ARM. GATE MATERIALS, SUCH AS FABRIC, BOLTS, NUTS, TENSION BARS AND BARBED WIRE SHALL BE CONSISTENT WITH FENCE MATERIALS.

US.CT.CCI.871584 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY

	SCHEDULE C	F REVISION	١S		PROJECT NAME:
					US.CT.CCI.871584
					DRAWING TITLE:
					GENERAL NOTES
0	ISSUED FOR PERMITTING	ZDT	JWB	06/15/2020	
A	90% REVIEW	ZDT	JWB	06/10/2020	DRAWING NUMBER:
REV.	DESCRIPTION OF CHANGE	DRAWN BY:	AUTH BY:	ISSUE DATE	
SCAL	E:AS SHOWN DESIGNED BY	': ZDT	DR	AWN BY: ZDT	N-1
	GPD#:2020796.01.U	JS.CT.C	CI.87	1584.01	

2.1 SUITABLE BACK FILL: EXCAVATED INORGANIC MATERIAL, COHESIVE AND NON-COHESIVE MATERIALS, INCLUDING GRAVEL, SAND, INORGANIC LEAN CLAY, GRAVEL SILT, GRAVEL CLAY, SAND CLAY, SAND SILT OR SILT CLAY MATERIAL FREE FROM FROZEN LUMPS, REFUSE, STONES OR ROCKS LARGER THAN 3-INCHES IN ANY DIMENSION OR OTHER MATERIAL THAT MAY MAKE THE INORGANIC MATERIAL UNSUITABLE FOR BACKFILL OR FILL MATERIAL AS DETERMINED BY THE DRW NX 2.3 SELECT STRUCTURAL FILL: GRANULAR FILL MATERIAL FOR USE AROUND AND UNDER STRUCTURES WHERE STRUCTURAL FILL MATERIALS ARE REQUIRED: 2.8 UNSUITABLE MATERIALS: TOP SOIL, HIGH AND MODERATELY PLASTIC SILTS AND CLAY, MATERIAL CONTAINING REFUSE, FROZEN LUMPS, DEMOLISHED BITUMINOUS MATERIAL, VEGETATIVE MATTER, WOOD, STONES IN EXCESS OF 3-INCHES IN ANY DIMENSION AND DEBRIS AS DETERMINED BY THE CONSTRUCTION SUPERVISOR AND DRW NX GEOTECHNICAL ENGINEER. TYPICALLY, THESE WILL BE SOILS CLASSIFIED AS PT. MH. CH. OH. ML OR OL. 2.10 PLASTIC MARKING TAPE: SHALL BE ACID AND ALKALI RESISTANT POLYETHYLENE FILM, SPECIFICALLY MANUFACTURED FOR MARKING AND LOCATING UNDERGROUND UTILITIES, 6-INCHES WIDE WITH A MINIMUM THICKNESS OF 0.004-INCH. TAPE SHALL HAVE MINIMUM STRENGTH OF 1500 PSI IN BOTH DIRECTIONS AND MANUFACTURED WITH INTEGRAL WIRES, FOIL BACKING OR OTHER MEANS TO ENABLE DETECTION BY A METAL DETECTOR WHEN BURIED UP TO 3 FEET DEEP. THE METALLIC CORE OF THE TAPE SHALL BE ENCASED IN A PROTECTIVE JACKET OR PROVIDED WITH OTHER MEANS TO PROTECT IT FROM A. PROVIDE AND INSTALL THE GALVANIZED FENCE WITH ASSOCIATED POSTS, RAILS, BRACES, FABRIC, TERMINAL POST, GATES, DROP BAR AND BARBED WIRE. FABRIC SHALL BE HEAVY GALVANIZED CHAIN LINK FENCE, CONFORMING TO ASTM A392 2-INCH MESH 9 GAUGE WIRE (0.148 INCHES IN DIAMETER) WITH THE TOP 2. END CORNER, PULL POST AND GATE POST SHALL BE 2 7/8 INCH O.D. ALL POSTS SHALL BE SCHEDULE 40 GALVANIZED STEEL PIPE IN ACCORDANCE WITH TOP RAILS SHALL CONFORM TO 1 1/4 INCH (1.660" O.D.), SCHEDULE 40 GALVANIZED STEEL PIPE IN ACCORDANCE WITH ASTM A120. BRACE BANDS, TENSION BANDS AND TENSION BARS SHALL BE FABRICATED OF 1/8 INCH BY 7/8 INCH GALVANIZED STEEL WITH GALVANIZED STEEL CARRIAGE BOLTS AND NUTS IN ACCORDANCE WITH ASTM A123. TENSION BARS SHALL BE 1/4 INCH BY 3/4 INCH GALVANIZED STEEL BAR IN ACCORDANCE WITH ASTM A153. BARBED WIRE SHALL CONSIST OF DOUBLE STRANDED 12 1/2 GAUGE WIRE ASTM A121, CLASS 3 WITH 4-POINT BARBS SPACED 5 INCHES APART. THE TOP 1 FOOT OF THE FENCE SHALL CONSIST OF 3 STRANDS OF BARBED WIRE ATTACHED TO 45 DEGREE ANGLE, HEAVY-PRESSED ARMS CAPABLE OF WITHSTANDING

PART III: EXECUTION

3.1 GENERAL

A. BEFORE STARTING GENERAL SITE PREPARATION ACTIVITIES, INSTALL EROSION AND SEDIMENT CONTROL MEASURES. TH WORK AREA SHALL BE CONSTRUCTED AND MAINTAINED IN SUCH CONDITION THAT IN THE EVENT OF RAIN THE SITE WILL BE WELL DRAINED AT ALL TIMES.

B. PERFORM ALL SURVEY, LAYOUT, STAKING AND MARKING TO ESTABLISH AND MAINTAIN ALL LINES, GRADES, ELEVATIONS AND BENCHMARKS NEEDED FOR EXECUTION OF THE WORK.

C. CLEAR AND GRUB THE AREA WITHIN THE LIMITS OF THE SITE AND ONLY THE IMMEDIATE SURROUNDINGS NECESSARY TO COMPLETE THE WORK. REMOVE TREES, BRUSH, STUMPS, RUBBISH AND OTHER DEBRIS AND VEGETATION RESTING ON OR PROTRUDING THROUGH THE SURFACE OF THE SITE AREA TO BE CLEARED AND GRUBBED.

1. REMOVE THE FOLLOWING MATERIALS TO A DEPTH OF NO LESS THAN 12-INCHES BELOW THE ORIGINAL GROUND SURFACE: ROOTS, STUMPS AND OTHER DEBRIS, BRUSH AND REFUSE EMBEDDED IN OR PROTRUDING THROUGH THE GROUND SURFACE. RAKE, DISK OR PLOW THE AREA TO A DEPTH OF NO LESS THAN 6-INCHES, AND REMOVE UP TO A DEPTH OF 12-INCHES ALL ROOTS AND OTHER DEBRIS THEREBY EXPOSED.

2. REMOVE TOPSOIL MATERIALS COMPLETELY FROM THE SURFACE UNTIL THE SOIL NO LONGER MEETS THE DEFINITION OF TOPSOIL. AVOID MIXING TOPSOIL WITH SUBSOIL OR OTHER EXCAVATED MATERIALS. TOPSOIL SHALL BE STOCKPILED SEPARATELY FOR REUSE, AS DIRECTED BY THE CONSTRUCTION SUPERVISOR.

3. EXCEPT WHERE EXCAVATION TO GREATER DEPTH IS INDICATED, FILL DEPRESSIONS RESULTING FROM CLEARING, GRUBBING AND DEMOLITION COMPLETELY WITH SUITABLE FILL.

D. REMOVE FROM THE SITE AND DISPOSE IN AN AUTHORIZED LANDFILL ALL DEBRIS RESULTING FROM CLEARING AND GRUBBING OPERATIONS. BURNING IS NOT PERMITTED.

E. PRIOR TO EXCAVATING, THOROUGHLY EXAMINE THE AREA TO BE EXCAVATED AND/OR TRENCHED TO VERIFY THE LOCATIONS OF FEATURES INDICATED ON THE DRAWINGS, AND ASCERTAIN THE EXISTENCE AND LOCATION OF ANY STRUCTURE, UNDERGROUND STRUCTURE, CULVERT, STREAM CROSSING OR OTHER ITEM NOT SHOWN THAT MIGHT AFFECT OR INTERFERE WITH THE NEW CONSTRUCTION. NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR OF ANY OBSTRUCTIONS THAT WILL PREVENT ACCOMPLISHMENT OF THE WORK AS INDICATED ON THE DRAWINGS.

F. SEPARATE AND STOCKPILE ALL EXCAVATED MATERIALS SUITABLE FOR BACK FILL. ALL EXCESS EXCAVATED AND UNSUITABLE MATERIALS SHALL BE DISPOSED OF IN AN AREA DESIGNATED BY THE DRW NX CONSTRUCTION SUPERVISOR. (UNSUITABLE MATERIAL MAY BE REQUIRED TO BE REMOVED FROM THE SITE.)

3.2 BACK FILL AS SOON AS PRACTICAL AFTER COMPLETING CONSTRUCTION OF THE RELATED STRUCTURE, INCLUDING EXPIRATIO OF THE SPECIFIED MINIMUM CURING PERIOD FOR CAST-IN-PLACE CONCRETE. BACKFILL THE EXCAVATION WITH APPROVED MATERIAL TO RESTORE THE REQUIRED FINISH GRADE.

A. PRIOR TO PLACING BACKFILL AROUND STRUCTURES, ALL FORMS SHALL HAVE BEEN REMOVED AND THE EXCAVATION CLEANED OF ALL TRASH, DEBRIS AND UNSUITABLE MATERIALS.

B. BACK FILL BY PLACING AND COMPACTING SUITABLE BACKFILL MATERIAL OR SELECT GRANULAR BACKFILL MATERIAL, WHE REQUIRED, IN UNIFORM HORIZONTAL LAYERS OF NO GREATER THAN 8-INCH LOOSE THICKNESS. WHERE HAND-OPERATED COMPACTORS ARE USED, THE FILL MATERIALS SHALL BE PLACED IN LIFTS NOT TO EXCEED FOUR INCHES IN LOOSE DEPTH. C. WHENEVER THE DENSITY TESTS INDICATE THAT THE CONTRACTOR HAS NOT OBTAINED THE SPECIFIED DENSITY, THE SUCCEEDING LAYER SHALL NOT BE PLACED UNTIL THE SPECIFICATION REQUIREMENTS ARE MET UNLESS OTHERWISE AUTHORIZED BY THE GEOTECHNICAL ENGINEER. THE CONTRACTOR SHALL TAKE WHATEVER APPROPRIATE ACTION IS NECESSARY, SUCH AS DISKING AND DRYING, ADDING WATER OR INCREASING THE COMPACTIVE EFFORT. D. THOROUGHLY COMPACT EACH LAYER OF BACKFILL TO A MINIMUM OF 90% OF THE MAXIMUM DRY DENSITY AS PROVIDED

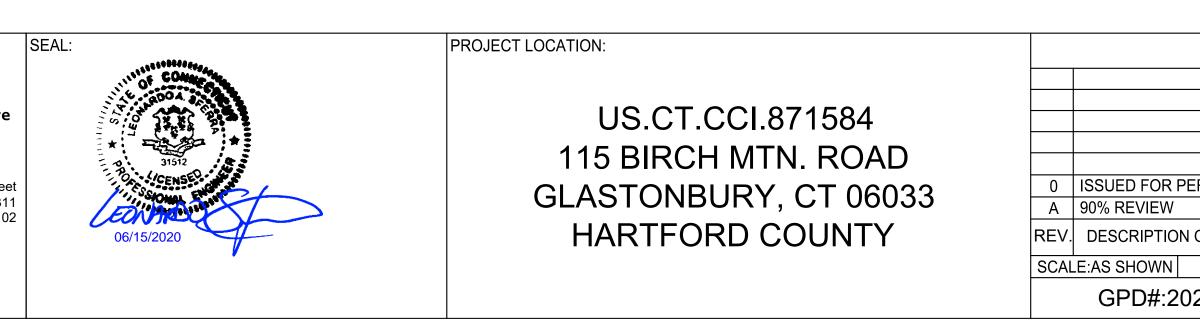
THE MODIFIED PROCTOR TEST C. DO NOT PLACE BACKFILL AROUND NEW CAST-IN-PLACE CONCRETE STRUCTURES UNTIL TH CONCRETE HAS CURED FOR AT LEAST 7 DAYS OR COMPRESSIVE STRENGTH TESTS INDICATE THAT THE CONCRETE HAS ACHIEVED MORE THAN 80% OF ITS SPECIFIED 28 DAY COMPRESSIVE STRENGTH.

3.3 TRENCH EXCAVATION

A. UTILITY TRENCHES SHALL BE EXCAVATED TO THE LINES AND GRADES SHOWN ON THE DRAWINGS OR AS DIRECTED BY TI DRW NX CONSTRUCTION SUPERVISOR. PROVIDE SHORING. SHEETING AND BRACING AS REQUIRED TO PREVENT CAVING OR SLOUGHING OF THE TRENCH WALLS.

B. THE TRENCH WIDTH EXTENDS A MINIMUM OF 6 INCHES BEYOND EACH OUTSIDE EDGE OF THE CONDUIT OR OUTERMOST CONDUIT, WHICHEVER IS APPLICABLE.

C. WHEN SOFT, YIELDING OR OTHERWISE UNSTABLE SOIL CONDITIONS ARE ENCOUNTERED AT THE REQUIRED TRENCH BOTTOM ELEVATION, OVER-EXCAVATE THE TRENCH TO A DEPTH OF NO LESS THAN 12 INCHES BELOW THE REQUIRED ELEVATION AND BACKFILL WITH GRANULAR BEDDING MATERIAL



GPD Engineering and Architecture Professional Corporation

> 520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

THE	3.4 TRENCH BACK FILL A. PROVIDE GRANULAR BEDDING MATERIAL IN ACCORDANCE WITH THE SPECIFICATIONS, DRAWINGS AND THE UTILITY	SAFETY IS OF PARAMOUNT CONCERN TO BOTH SITE WORKERS AND THE PUBLIC.
BE	REQUIREMENTS.	
S	 B. NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR 24 HOURS IN ADVANCE OF BACK FILLING C. CONDUCT UTILITY CHECK TESTS BEFORE BACK FILLING BACK FILL AND COMPACT TRENCH BEFORE ACCEPTANCE TESTING. D. PLACE GRANULAR TRENCH BACKFILL UNIFORMLY ON BOTH SIDES OF THE CONDUITS IN 6-INCH UNCOMPACTED LIFTS UNTIL 12 	1. CONSTRUCTION WORK PRESENTS UNIQUE THREATS TO HEALTH AND SAFETY. THE CONTRACTOR IS RESPONSIBLE TO EDUCATE THEIR WORK FORCE OF THESE DANGERS AND LIMIT THEIR
го	INCHES OVER THE CONDUITS. SOLIDLY RAM AND TAMP BACKFILL INTO SPACES AROUND THE CONDUITS.	EXPOSURE TO HAZARDS. THIS EDUCATION SHALL INCLUDE BUT
K	E. PROTECT CONDUIT FROM LATERAL MOVEMENT, DAMAGE FROM IMPACT OR UNBALANCED LOADING. F. ABOVE THE CONDUIT EMBEDMENT ZONE, PLACE AND COMPACT SATISFACTORY BACKFILL MATERIAL IN 9-INCH MAXIMUM LOOSE THICKNESS LIFTS TO RESTORE THE REQUIRED FINISHED SURFACE GRADE.	NOT BE LIMITED TO APPLICABLE TRAINING COURSES AND CERTIFICATIONS, PROPER PERSONAL PROTECTIVE EQUIPMENT USAGE, DAILY TAILGATE MEETINGS AND ANY OTHER
	G. COMPACT FINAL TRENCH BACKFILL TO A DENSITY EQUAL TO OR GREATER THAN THAT OF THE EXISTING UNDISTURBED MATERIAL IMMEDIATELY ADJACENT TO THE TRENCH BUT NO LESS THAN A MINIMUM OF 95%OF THE MAXIMUM DRY DENSITY AS	PREVENTATIVE MEASURES WHICH MAY BE REASONABLY EXPECTED. THE CONTRACTOR AND ALL SUB-CONTRACTORS
ON	PROVIDED BY THE MODIFIED PROCTOR TEST, ASTM D1557	SHALL BE RESPONSIBLE FOR THE SAFETY OF THE WORK AREA, ADJACENT AREAS AND ANY PROPERTY OCCUPANTS WHO MAY BE
LED	3.5 AGGREGATE ACCESS ROAD AND SITE A. CLEAR, GRUB, STRIP AND EXCAVATE FOR THE ACCESS ROAD AND TOWER COMPOUND TO THE LINES AND GRADES INDICATED	AFFECTED BY THE WORK UNDER CONTRACT. THE CONTRACTOR SHALL REVIEW ALL LANDOWNER, PRIME CONTRACTOR, CARRIER,
	ON THE DRAWINGS. SCARIFY TO A DEPTH OF 6 INCHES AND PROOF-ROLL. ALL HOLES, RUTS, SOFT PLACES AND OTHER DEFECTS SHALL BE CORRECTED.	OSHA, AND LOCAL SAFETY GUIDELINES AND AT ALL TIMES SHALL CONFORM TO THE MOST RESTRICTIVE OF THESE STANDARDS TO
	B. THE ENTIRE SUB GRADE SHALL BE COMPACTED TO NOT LESS THAN 95% OF THE MAXIMUM DRY DENSITY AS PROVIDED BY THE MODIFIED PROCTOR TEST, ASTM D 1557.	ENSURE A SAFE WORKPLACE.
	C. AFTER PREPARATION OF THE SUB GRADE IS COMPLETED, THE GEOTEXTILE FABRIC SHALL BE INSTALLED TO THE LIMITS INDICATED ON THE DRAWINGS BY ROLLING THE FABRIC OUT LONGITUDINALLY ALONG THE ROADWAY OR SITE. THE FABRIC SHALL	2. ALL SAFETY EQUIPMENT SHALL BE INSPECTED ACCORDING TO ALL OSHA AND INDUSTRY SCHEDULED INTERVALS AND ALL
CT NS	NOT BE DRAGGED ACROSS THE SUB GRADE PLACE THE ENTIRE ROLL IN A SINGLE OPERATION, ROLLING THE MATERIAL AS SMOOTHLY AS POSSIBLE.	INSPECTIONS SHALL BE DOCUMENTED PER APPLICABLE CODES AND STANDARDS.
	 OVERLAPS PARALLEL TO THE ROADWAY AND SITE WILL BE PERMITTED AT THE CENTERLINE AND AT LOCATIONS BEYOND THE ROADWAY OR SITE SURFACE WIDTH (I.E., WITHIN THE SHOULDER WIDTH) ONLY. NO LONGITUDINAL OVERLAPS SHALL 	3. TOWER WORK PRESENTS ADDITIONAL THREATS TO HEALTH AND
	BE LOCATED BETWEEN THE CENTERLINE AND THE SHOULDER. PARALLEL OVERLAPS SHALL BE A MINIMUM OF 3 FEET WIDE. 2. TRANSVERSE (PERPENDICULAR TO THE ROADWAY) OVERLAPS AT THE END OF A ROLL SHALL OVERLAP IN THE DIRECTION	SAFETY. ALL TOWER WORKERS WORKING ON A TOWER MUST BE ADEQUATELY TRAINED AND MONITORED TO ENSURE THAT SAFE
ΓΙΟΝ	OF THE AGGREGATE PLACEMENT (PREVIOUS ROLL ON TOP) AND SHALL HAVE A MINIMUM LENGTH OF 3 FEET.	WORK PRACTICES ARE LEARNED AND FOLLOWED. AS REQUIRED BY OSHA, WHEN WORKING ON EXISTING COMMUNICATION
D	 ALL OVERLAPS SHALL BE PINNED WITH STAPLES OR NAILS BETWEEN 10 AND 12 INCHES LONG TO INSURE STABLE POSITIONING DURING PLACEMENT OF AGGREGATE. PIN LONGITUDINAL SEAMS AT 25-FOOT CENTERS AND TRANSVERSE SEAMS EVERY 5 FEET ON CENTER. 	TOWERS, EMPLOYEES MUST BE PROVIDED WITH APPROPRIATE FALL PROTECTION, TRAINED TO USE THIS FALL PROTECTION
	D. THE AGGREGATE SUB BASE, BASE AND SURFACE COURSES SHALL BE CONSTRUCTED IN LAYERS NOT MORE THAN 4 INCHES (COMPACTED) THICKNESS. AGGREGATE TO BE PLACED ON GEOTEXTILE FABRIC SHALL BE END-DUMPED ON THE FABRIC FROM	PROPERLY, AND THE USE OF FALL PROTECTION MUST BE CONSISTENTLY SUPERVISED AND ENFORCED BY THE
VHEN	THE FREE END OF THE FABRIC OR OVER PREVIOUSLY PLACED AGGREGATE. AT NO TIME SHALL EQUIPMENT, EITHER DUMPING THE AGGREGATE OR GRADING THE AGGREGATE, BE PERMITTED ON THE ROADWAY OR COMPOUND WITH LESS THAN 8 INCHES OF MATERIAL COVERING THE FARRIC	CONTRACTOR. 4. ELECTRICAL WORK PRESENTS SPECIFIC THREATS TO THE HEALTH
Н.	MATERIAL COVERING THE FABRIC. E. THE AGGREGATE SUB BASE AND BASE SHALL BE IMMEDIATELY COMPACTED TO NOT LESS THAN 95% OF THE MAXIMUM DRY DENSITY AS DROVIDED BY THE MODIFIED DROCTOR TEST. ASTM D 1557	AND SAFETY OF WORKERS ON SITE. SPECIFICALLY ELECTROCUTIONS ARE THE FOURTH LEADING CAUSE OF DEATH
	DENSITY AS PROVIDED BY THE MODIFIED PROCTOR TEST, ASTM D 1557. 3.6 FINISH GRADING	ON CONSTRUCTION SITES. ALL ELECTRICAL WORKERS SHALL HAVE CURRENT CERTIFICATIONS WHICH SATISFY ALL TRAINING
ED BY	A. PERFORM ALL FINISHED GRADING TO PROVIDE SMOOTH, EVEN SURFACE AND SUBSURFACE DRAINAGE OF THE ENTIRE AREA	REQUIREMENTS FOR THE ELECTRICAL WORK THEY ARE
THE	WITHIN THE LIMITS OF CONSTRUCTION. GRADING SHALL BE COMPATIBLE WITH ALL SURROUNDING TOPOGRAPHY AND STRUCTURES.	PERFORMING PER OSHA STANDARDS. ALL ELECTRICAL WORKERS SHALL ADHERE TO ALL SAFETY RULES AND
	B. UTILIZE SATISFACTORY FILL MATERIALS RESULTING FROM THE EXCAVATION WORK IN THE CONSTRUCTION OF FILLS,	REGULATIONS FOR WORKER AND PUBLIC SAFETY. ALL WORK
	EMBANKMENTS AND FOR THE REPLACEMENT OF REMOVED UNSUITABLE MATERIALS. C. REPAIR ALL ACCESS ROADS AND SURROUNDING AREAS USED DURING THE COURSE OF THIS WORK TO THEIR ORIGINAL	SHALL BE PERFORMED BY QUALIFIED ELECTRICIANS TRAINED FOR THE TYPE OF WORK AND THE VOLTAGES PRESENT FOR
THE OR	CONDITION.	EACH TASK. THE CONTRACTOR SHALL REVIEW ALL LANDOWNER, PRIME CONTRACTOR, CARRIER, OSHA, NFPA 70, AND LOCAL
-	3.7 SECURITY FENCE	SAFETY GUIDELINES AND AT ALL TIMES SHALL CONFORM TO THE
Т	A. THE BOTTOM OF THE FENCE SHALL BE 2 INCHES BELOW THE TOP OF THE COMPOUND GRAVEL. IF THE SITE CROSSES FEATURES SUCH AS DRAINAGE DITCHES, ETC., THE FENCE SHALL SPAN THE DEPRESSION. CLOSE THE SPACE BELOW THE BOTTOM OF THE FENCE WITH EXTRA FENCE FABRIC OR BARBED WIRE AS DIRECTED BY THE DRW NX CONSTRUCTION	MOST RESTRICTIVE OF THESE STANDARDS TO ENSURE A SAFE WORKPLACE.
	SUPERVISOR. PRIOR TO PLACING COMPONENTS SUCH AS FABRIC, RAILS, TENSION WIRE AND GATES, ENSURE THAT THE CONCRETE POST FOUNDATION HAS REACHED AT LEAST 75% OF ITS DESIGN STRENGTH OR HAS CURED A MINIMUM OF 7 DAYS AFTER SETTING THE POST.	
	B. FURNISH GATES WITH NECESSARY FITTINGS AND HARDWARE. HINGES SHALL ALLOW SWING GATES TO SWING 180 DEGREES. PLUNGER BARS SHALL HAVE TOP, BOTTOM AND MIDDLE LOCKING POINTS WITH THE MIDDLE POINT ARRANGED FOR PADLOCKING.	
	GATES SHALL HAVE KEEPERS ON EACH LEAF THAT ENGAGE AUTOMATICALLY WHEN THE GATE IS SWUNG OPEN. REPAIR GALVANIZED COATING DAMAGED IN THE FIELD WITH METHODS AND TECHNIQUES AS RECOMMENDED BY THE MANUFACTURER.	

END OF SPECIFICATION

SAFETY ENFORCEMENT

SCHEDULE C	F REVISION	١S		PROJECT NAME:
				US.CT.CCI.871584
				DRAWING TITLE:
				GENERAL NOTES
RMITTING	ZDT	JWB	06/15/2020	
	ZDT	JWB	06/10/2020	DRAWING NUMBER:
OF CHANGE	DRAWN BY:	AUTH BY:	ISSUE DATE	
DESIGNED BY	: ZDT	DR	AWN BY: ZDT	N-2
20796.01.l	JS.CT.C	CI.87	1584.01	

PROJECT SPECIFICATION 16000 (ELECTRICAL)

NOT ALL SECTIONS MAY APPLY TO THIS PROJECT, COORDINATE WITH CONSTRUCTION MANAGER.

PART I: GENERAL

1.1 SCOPE: THIS SPECIFICATION DESCRIBES THE MINIMUM REQUIREMENT FOR INSTALLATION OF ALL ELECTRICAL SYSTEMS.

- 1.2 REFERENCES: THE PUBLICATIONS LISTED BELOW FORM PART OF THIS SPECIFICATION. EACH PUBLICATION SHALL BE THE LATEST REVI AND ADDENDUM IN EFFECT ON THE DATE THIS SPECIFICATION IS ISSUED FOR CONSTRUCTION, UNLESS NOTED OTHERWISE. EXCEPT MODIFIED BY THE REQUIREMENTS SPECIFIED HEREIN, OR THE DETAILS OF THE DRAWINGS, WORK INCLUDED IN THIS SPECIFICATION S CONFORM TO THE APPLICABLE PROVISIONS OF THESE PUBLICATIONS.
 - A. ANSI (AMERICAN NATIONAL STANDARDS INSTITUTE)
 - B. NESC (NATIONAL ELECTRICAL SAFETY CODE), LATEST EDITION
 - C. NEC (NATIONAL ELECTRICAL CODE), LATEST EDITION
 - D. NFPA 70 (NATIONAL FIRE PROTECTION ASSOCIATION)
 - E. OSHA (OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION), INCLUDING ALL APPLICABLE AMENDMENTS
 - F. U.L. (UNDERWRITERS LABORATORIES)
- 1.3 SYSTEM DESCRIPTION

A. DESIGN REQUIREMENTS: THE CONTRACTOR SHALL INSTALL UNDERGROUND ELECTRICAL AND TELEPHONE CONDUITS AND CABLE A SPECIFIED HEREIN AND AS SHOWN ON THE DRAWINGS.

B. PERFORMANCE REQUIREMENTS: WHEN FINISHED, WORK SHALL BE IN A COMPLETE AND UNDAMAGED STATE, AS REQUIRED IN THE CONTRACT DOCUMENTS.

PART II: PRODUCTS

2.1 GENERAL A. ITEMS SHALL BE NEW AND SHALL BE INSTALLED ONLY IF IN FIRST-CLASS CONDITION.

B. SUBSTITUTIONS FOR MATERIAL WILL BE PERMITTED ONLY BY WRITTEN APPROVAL OF THE DRW NX CONSTRUCTION SUPERVISOR.

2.2 MATERIALS: THE CONTRACTOR SHALL PROVIDE ALL MATERIAL EXCEPT AS SPECIFIED IN THE CONTRACT DOCUMENTS. ALL MATERIAL S BE APPROVED AND LISTED BY OR BEAR THE U.L. LABEL, AND WILL COMPLY WITH ANSI, IEEE AND NEMA STANDARDS WHERE APPLICABLE. A. CONDUITS:

- 1. ALL UNDERGROUND CONDUIT SHALL BE SCHEDULE 40 PVC, SIZED AS SHOWN ON THE CONSTRUCTION DRAWINGS.
- 2. ALL EXTERIOR ABOVEGROUND CONDUIT SHALL BE PER LOCAL CODE REQUIREMENTS, MIN. SCH. 80 PVC.
- 3. ALL INTERIOR CONDUIT SHALL BE EMT WITH COMPRESSION-TYPE FITTINGS.

4. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT SHALL BE USED FOR OUTDOOR LOCATIONS WHERE FLEXIBLE CONNECTION IS REQUIRED.

B. CABLES:

CONDUCTORS FOR GENERAL WIRING SHALL BE NEC STANDARD ANNEALED COPPER WIRE WITH NEC 600 VOLT INSULATION.

- 1. #8 AND LARGER-STRANDED TYPE, THHN/THWN
- 2. #10 AND SMALLER-SOLID TYPE THHN/THWN
- 3. CONDUCTORS IN CONDUIT IN OR ADJACENT TO HIGH HEAT SOURCE SHALL BE TYPE XHHW

4. CONDUCTORS IN CONDUITS ABOVE ROOF, ON TOP OF ROOF OR INSIDE BUILT-UP ROOFING MATERIAL SHALL BE TYPE XHHW C. CONVENIENCE OUTLET: UNLESS NOTED OTHERWISE, SURFACE-MOUNTED OUTLETS FOR EXTERIOR LOCATIONS SHALL BE FERALO CAD/ZINC ELECTROPLATED WITH THREADED HUBS OR CONDUIT ENTRANCES DRILLED AND TAPPED. ALL COVERS SHALL BE SELF-CLC AND GASKETED. SURFACE MOUNTED OUTLETS FOR INTERIOR LOCATIONS SHALL BE GALVANIZED, PRESSED STEEL WITH COVER PLAT SIERRA PLASTIC STYLE, IVORY COLOR.

D. COAXIAL CABLE SUPPORTS

1. ALL WAVE GUIDE SUPPORTS SHALL BE MANUFACTURED TO MEET ALL COAX MINIMUM BENDING REQUIREMENTS WAVE GUIDE AND B1587 FOR 6 WAVE GUIDES. SUPPORTS SHALL BE PROVIDED 3'-0" ON CENTERS.

PART III: EXECUTION

3.1 PREPARATION

- A. BEFORE LAYING OUT WORK, EXERCISE PROPER PRECAUTION TO VERIFY EACH MEASUREMENT.
- B. USE EXTREME CAUTION BEFORE EXCAVATING IN EXISTING AREAS TO LOCATE EXISTING UNDERGROUND SERVICES.

3.2 INSPECTION

A. A VISUAL CHECK OF ELECTRICAL AND TELEPHONE CABLES, CONDUITS AND OTHER ITEMS SHALL BE MADE BY AN DRW NX

- CONSTRUCTION SUPERVISOR BEFORE THESE ITEMS ARE PERMANENTLY INSTALLED.
- B. THE CONTRACTOR SHALL NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR 24 HOURS PRIOR TO TRENCH BACK FILL

3.3 INSTALLATION

A. TRENCHING, BACK FILLING, BEDDING AND COMPACTING SHALL COMPLY WITH SITE WORK SPECIFICATIONS.

- B. DIG TRENCHES TO THE REQUIRED DEPTH AS SHOWN ON THE DRAWINGS WITHOUT POCKETS OR DIPS. REMOVE LARGE STONES FR THE BOTTOM OF THE TRENCH AND FIRMLY TAMP LOOSE FILL IN THE BOTTOM BEFORE CONDUIT IS LAID.
- C. INSTALL UNDERGROUND CONDUIT WITH A MINIMUM 3-INCH TO 100-FOOT SLOPE OR TO A SLOPE SHOWN ON THE DRAWINGS.
- D. UNLESS SHOWN OTHERWISE ON THE DRAWINGS, TERMINATE AND CAP ALL STUB-UPS 12 INCHES ABOVE FINISHED GRADE ELEVATION OF A CAP ALL STUB-UPS 12 INCHES ABOVE FINISHED GRADE ELEVATION OF A CAP ALL STUB-UPS 12 INCHES ABOVE FINISHED GRADE ELEVATION OF A CAP ALL STUB-UPS 12 INCHES ABOVE FINISHED GRADE ELEVATION OF A CAP ALL STUB-UPS 12 INCHES ABOVE FINISHED GRADE ELEVATION OF A CAP A
- E. WHEREVER CONDUITS CROSS UNDER ROADWAYS, USE GALVANIZED RIGID STEEL CONDUITS IN ALL CASES, EXTENDING 5 FEET BEY

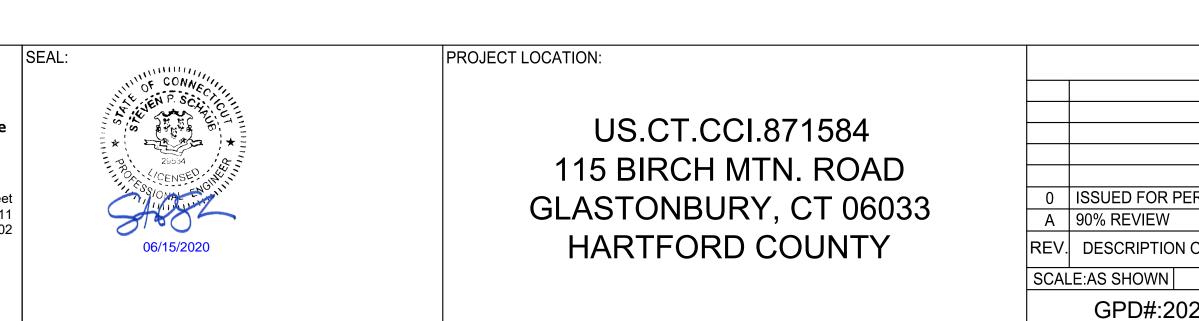
THE EDGE OF THE ROAD BED. MINIMUM DEPTH FOR CONDUIT SHALL BE 4 FEET BELOW ROADWAY GRADE. F. MARK UNDERGROUND CONDUITS WITH A 6-INCH WIDE RED POLYETHYLENE TAPE BURIED 6 INCHES UNDER THE SURFACE DIRECTL OVER THE CONDUITS. MARK THE TAPE THUS: CAUTION-BURIED ELECTRICAL CABLE.

G. FOR SEALING CONDUITS, USE ONLY NONTHERMOPLASTIC COMPOUNDS SUCH AS J.M. DUXSEAL, OR AN APPROVED SUBSTITUTE. T COMPOUND SHALL HAVE NO EFFECT ON RUBBER OR RUBBER-LIKE INSULATIONS, LEAD, ALUMINUM OR FERROUS ALLOYS; IT SHALL BE INSOLUBLE IN WATER AND WITHSTAND MAXIMUM TEMPERATURE RANGES OF THE LOCALITY.

H. COAXIAL - REFER TO NOKIA ANTENNA AND COAXIAL CABLE INSULATION PROCEDURES.

I. ANTENNA - REFER TO NOKIA ANTENNA AND COAXIAL CABLE INSULATION PROCEDURES.

J. LNA/MHA - REFER TO NOKIA ANTENNA AND COAXIAL CABLE INSULATION PROCEDURES.


END OF ELECTRICAL SPECIFICATIONS

GPD Engineering and Architecture Professional Corporation

> 520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

	PROJECT SPECIFICATION 16670 (GROUNDING)	
	NOT ALL SECTIONS MAY APPLY TO THIS PROJECT, COORDINATE WITH CONSTRUCTION MANAGER.	
	PART I: GENERAL	
VISION PT AS N SHALL	 1.1 SCOPE A. THIS SPECIFICATION PRESCRIBES THE REQUIREMENTS FOR FURNISHING, INSTALLATION AND TESTING OF THE GROUNDING CABLE, CONNECTORS AND ASSOCIATED COMPONENTS AS INDICATED ON THE DRAWINGS. B. APPLICATIONS OF ELECTRICAL GROUNDING AND BONDING WORK SPECIFIED IN THIS SPECIFICATION INCLUDE THE FOLLOWING: FENCE AND GATE POSTS ELECTRICAL POWER SYSTEMS GROUNDING ELECTRODES GROUND BUS BAR SERVICE EQUIPMENT ENCLOSURES MONOPOLE/LATTICE TOWER 	C. GROUN 1. AL WIRE BELC 2. AL EXO SPLI MAN INST 3. GF DIST INST A
E AS	1.2 REFERENCES: THE PUBLICATIONS LISTED BELOW FORM PART OF THIS SPECIFICATION. EACH PUBLICATION SHALL BE	T(D
IE	THE LATEST REVISION AND ADDENDUM IN EFFECT ON THE DATE THIS SPECIFICATION IS ISSUED FOR CONSTRUCTION, UNLESS NOTED OTHERWISE. EXCEPT AS MODIFIED BY THE REQUIREMENTS SPECIFIED HEREIN, OR THE DETAILS OF THE DRAWINGS, WORK INCLUDED IN THIS SPECIFICATION SHALL CONFORM TO THE APPLICABLE PROVISIONS OF THESE PUBLICATIONS. A. ANSI (AMERICAN NATIONAL STANDARDS INSTITUTE) B. IEEE (INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS)	B. R. C SI C R.
۲.	C. NEC (NATIONAL ELECTRICAL CODE), LATEST EDITION D. NEMA (NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION)	PART III: EXECU
_ SHALL	E. NESC (NATIONAL ELECTRICAL SAFETY CODE), LATEST EDITION F. OSHA (OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION) G. U.L. (UNDERWRITERS LABORATORIES) H. APPLICABLE LOCAL CODES AND ORDINANCES	3.1 PREPARATIO A. ALL SUF GALVANIZI B. ALL MET PAINTED T
V	 PART II: PRODUCTS 2.1 MATERIALS: EXCEPT AS OTHERWISE INDICATED, PROVIDE ELECTRICAL GROUNDING AND BONDING SYSTEMS INDICATED; WITH ASSEMBLY OF MATERIAL, INCLUDING, BUT NOT LIMITED TO, GROUNDING ELECTRODES, BONDING JUMPER AND ADDITIONAL ACCESSORIES NEEDED FOR A COMPLETE INSTALLATION. WHERE MORE THAN ONE TYPE COMPONENT PRODUCT MEETS INDICATED REQUIREMENTS, SELECTION IS INSTALLER'S OPTION. WHERE MATERIALS OR COMPONENTS ARE NOT INDICATED, PROVIDE PRODUCTS WHICH COMPLY WITH NEC, U.L. AND IEEE REQUIREMENTS AND WITH ESTABLISHED INDUSTRY STANDARDS FOR THOSE APPLICATIONS INDICATED. A. GROUNDING 1. THE EQUIPMENT SHALL BE GROUNDED AS FOLLOWS, AS SHOWN ON THE DRAWINGS AND IN COMPLIANCE 	3.2 EXAMINATIO A. EXAMIN CONNECTI WRITING O PROCEED B. THE CO PRIOR TO BY THE AE
LOY, LOSING ATE,	WITH NEC ARTICLE 250 AND STATE AND LOCAL CODES. 2. GROUND RODS AND QUANTITY SHOWN ON THE DRAWINGS ARE DIAGRAMMATIC. THE CONTRACTOR SHALL PERFORM A GROUND-RESISTANCE-TO-EARTH TEST. SHOULD THE INSTALLATION HAVE A RESISTANCE OF 5 OHMS OR MORE, CONTRACTOR SHALL INSTALL MORE GROUND RODS AS NECESSARY SO THAT THE OVERALL	SHALL PRO 3.3 GROUND TE A. THE CO
DES,	 GROUND-TO-EARTH RESISTANCE IS LESS THAN 5 OHMS. 3. INSTALL ELECTRICAL GROUNDING AND BONDING SYSTEMS AS INDICATED, IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS, NEC'S "STANDARD OF INSTALLATION," AND IN ACCORDANCE WITH RECOGNIZED INDUSTRY PRACTICES TO ENSURE THAT PRODUCTS COMPLY WITH REQUIREMENTS. 4. COORDINATE WITH OTHER ELECTRICAL WORK AS NECESSARY TO INTERFACE INSTALLATION OF ELECTRICAL GROUNDING AND BONDING SYSTEMS. 5. INSTALL GROUND CONDUCTORS A MINIMUM OF 36 INCHES BELOW FINISHED GRADE WHICH ENCIRCLES THE TOWER AND EQUIPMENT AND ARE CONNECTED TO EACH DRIVEN GROUND ROD. GROUND TRENCH SHALL BE AT LEAST 24 INCHES AWAY FROM FOUNDATIONS. 6. TIGHTEN GROUNDING AND BONDING CONNECTORS, INCLUDING SCREWS AND BOLTS, IN ACCORDANCE WITH MANUFACTURER'S PUBLISHED TORQUE TIGHTENING VALUE FOR CONNECTORS AND BOLTS. WHERE MANUFACTURER'S TORQUING REQUIREMENTS ARE NOT INDICATED, TIGHTEN CONNECTIONS TO COMPLY WITH TIGHTENING TORQUE VALUE SPECIFIED IN U.L. 486A TO ASSURE PERMANENT AND EFFECTIVE GROUNDING. 7. APPLY CORROSION-RESISTANT FINISH (NO-OX) TO FIELD-CONNECTIONS, AT COPPER GROUND BARS AND PLACES WHERE FACTORY APPLIED PROTECTIVE COATING HAVE BEEN DESTROYED, WHICH ARE SUBJECTED TO CORROSIVE AND/OR OXIDATION PROCESS. 	ACCORDA METHOD. B. TEST IN CONTAIN S SENSITIVIT C. PRIOR DISCONNE RUBBER S D. GROUN CONSTRUC E. AN INDE OUTLINED SUPERVIS
ROM	8. ON EXISTING LATTICE TOWERS, WATER TOWERS AND ROOF TOPS WHEN A NEW GROUNDING SYSTEM IS INSTALLED, THE CONTRACTOR SHALL TIE THE NEW GROUND SYSTEM TO THE EXISTING WATER TOWER, LATTICE TOWER STRUCTURAL STEEL OR BUILDING STRUCTURAL STEEL AS THE CASE MAY BE AT LEAST AT ONE	<u>CLOSE OUT DO</u> CLOSEOUT BOO
TION. EYOND TLY THE BE	 LOCATION SO THAT THEY ARE AT THE SAME POTENTIAL. B. GROUND RODS GROUND RODS SHALL BE 3/4" DIAMETER 10'-0" LONG, COPPER CLAD DRIVEN ROD(S). GROUND ROD(S) SHALL BE LOCATED AT THE PERIMETER OF EQUIPMENT AS TO CREATE A GROUND RING AS SHOWN ON THE DRAWINGS. GROUND ROD(S) SHALL BE SPACED AT A MINIMUM SPACING OF 8'-0" AND A MAXIMUM SPACING OF 10'-0". GROUND RODS SHALL BE BURIED BELOW THE FROSTLINE. AT NO TIME SHALL THIS DEPTH BE LESS THAN 18" BELOW FINISHED GRADE. GROUND RODS WHICH CANNOT BE DRIVEN STRAIGHT DOWN THE ENTIRE (10) FEET, SHALL BE DRIVEN AT AN ANGLE NOT GRATER THAN 45 DEGREES (NEC 250-83 AND 250-84). GROUND ROD LOCATIONS SHALL BE NOTED ON THE AS-BUILT DRAWING COMPLETE WITH DIMENSIONS. PROVIDE GROUND TEST WELLS AS SHOWN ON THE CONSTRUCTION DRAWINGS. 	A. AS BUIL B. SWEEP C. GROUN D. PHOTO 1. UN 2. AN 3. AN OF T 4. GF E. SIGNED F. CERTIFI G. RETURN H. ORIGINA

JND CONDUCTOR

ALL DIRECT BURIED GROUND CONDUCTORS SHALL BE TINNED SOLID (#2 AWG CU) IRE. BURIED GROUND CONDUCTOR SHALL BE INSTALLED AT MINIMUM DEPTH OF 36" ELOW GRADE.

ALL SUB GRADE GROUND CONNECTIONS SHALL BE MADE THROUGH THE USE OF COTHERMIC WELD PROCESS. CONNECTIONS SHALL INCLUDE ALL CABLE TO CABLE PLICES, TEES AND ALL GROUND ROD CONNECTIONS. MOLD, WELD KITS, ETC., SHALL BE ANUFACTURED BY CADWELD AND SHALL BE INSTALLED AS PER THE MANUFACTURER'S STRUCTIONS.

GROUND CONDUCTORS SHALL BE ROUTED IN THE SHORTEST AND STRAIGHTEST STANCES POSSIBLE TO MINIMIZE TRANSIENT VOLTAGE RISES. CONDUCTORS SHALL BE STALLED AS FOLLOWS:

A. ALL GROUND CONDUCTORS SHALL FOLLOW A CONTINUOUS DOWNWARD PATTERN TO THE GROUND SOURCE. (NEVER RUN GROUND CONDUCTOR IN AN UPWARD DIRECTION.)

B. CONDUCTORS SHALL BE INSTALLED WITH A MINIMUM OF 12 INCH MINIMUM BENDING RADIUS.

C. WHEN THE MINIMUM BENDING RADIUS CANNOT BE ACHIEVED, GROUND CABLES SHALL BE ROUTED AT 90 DEGREE BENDS WITH THE USE OF EXOTHERMIC CONNECTIONS AT 90 DEGREES. THE INTENT IS TO ELIMINATE THE CABLE BEND RADIUS AND REPLACE THE RADIUS WITH AN EXOTHERMIC CONNECTION.

CUTION TION

URFACES TO WHICH GROUND CONNECTIONS WILL BE MADE SHALL BE FREE OF PAINT, IIZING DIRECT CORROSION ETC.. IETAL SURFACES EXPOSED ON GROUNDING SHALL BE EITHER COLD GALVANIZE, OR D TO MATCH ORIGINAL SURFACE.

ION.

MINE AREAS AND CONDITIONS UNDER WHICH ELECTRICAL GROUNDING AND BONDING CTIONS ARE TO BE MADE AND NOTIFY DRW NX CONSTRUCTION SUPERVISOR IN G OF CONDITIONS DETRIMENTAL TO PROPER COMPLETION OF WORK. DO NOT ED WITH WORK UNTIL UNSATISFACTORY CONDITIONS HAVE BEEN REMEDIED. CONTRACTOR SHALL NOTIFY THE DRW NX CONSTRUCTION SUPERVISOR 24 HOURS TO TRENCH BACK FILL ALL WORK DONE BELOW FINISHED GRADE SHALL BE INSPECTED AERIAL CONSTRUCTION SUPERVISOR DURING THAT PERIOD OR THE CONTRACTOR PROCEED.

FESTING

CONTRACTOR SHALL TEST THE GROUND ELECTRODE ROD RESISTANCE IN DANCE WITH THE METHODS OF MEASUREMENT SHOWN IN THE FALL OF POTENTIAL

INSTRUMENTS SHALL OPERATE AT A FREQUENCY OTHER THAN 60 HERTZ AND SHALL N STRAY CURRENT AND DC FILTERS, FAULT CURRENT PROTECTION AND HAVE /ITY TO OPERATE A LOW SIGNAL STRENGTH.

OR TO TESTING, THE CONTRACTOR SHALL DE-ENERGIZE ALL POWER SOURCES, INECT THE ELECTRODE CONDUCTOR FROM THE GROUND ROD, WEAR HIGH VOLTAGE R SAFETY GLOVES AND WILL NOT HANDLE TEST INSTRUMENTS IF AT ALL POSSIBLE. UND TESTS ARE TO BE PERFORMED BY QUALIFIED PERSONS FAMILIAR WITH THE RUCTION AND OPERATION OF THE EQUIPMENT AND THE HAZARDS INVOLVED. NDEPENDENT, APPROVED OUTSIDE FIRM SHALL PERFORM THE GROUND TEST AS ED. ALL TEST RESULTS SHALL BE FORWARDED TO THE DRW NX CONSTRUCTION /ISOR FOR APPROVAL.

NDING SPECIFICATIONS

DOCUMENTATION

OOK CONTAINING THE FOLLOWING:

JILT DESIGN DRAWINGS

P TEST RESULTS JND RESISTIVITY TEST

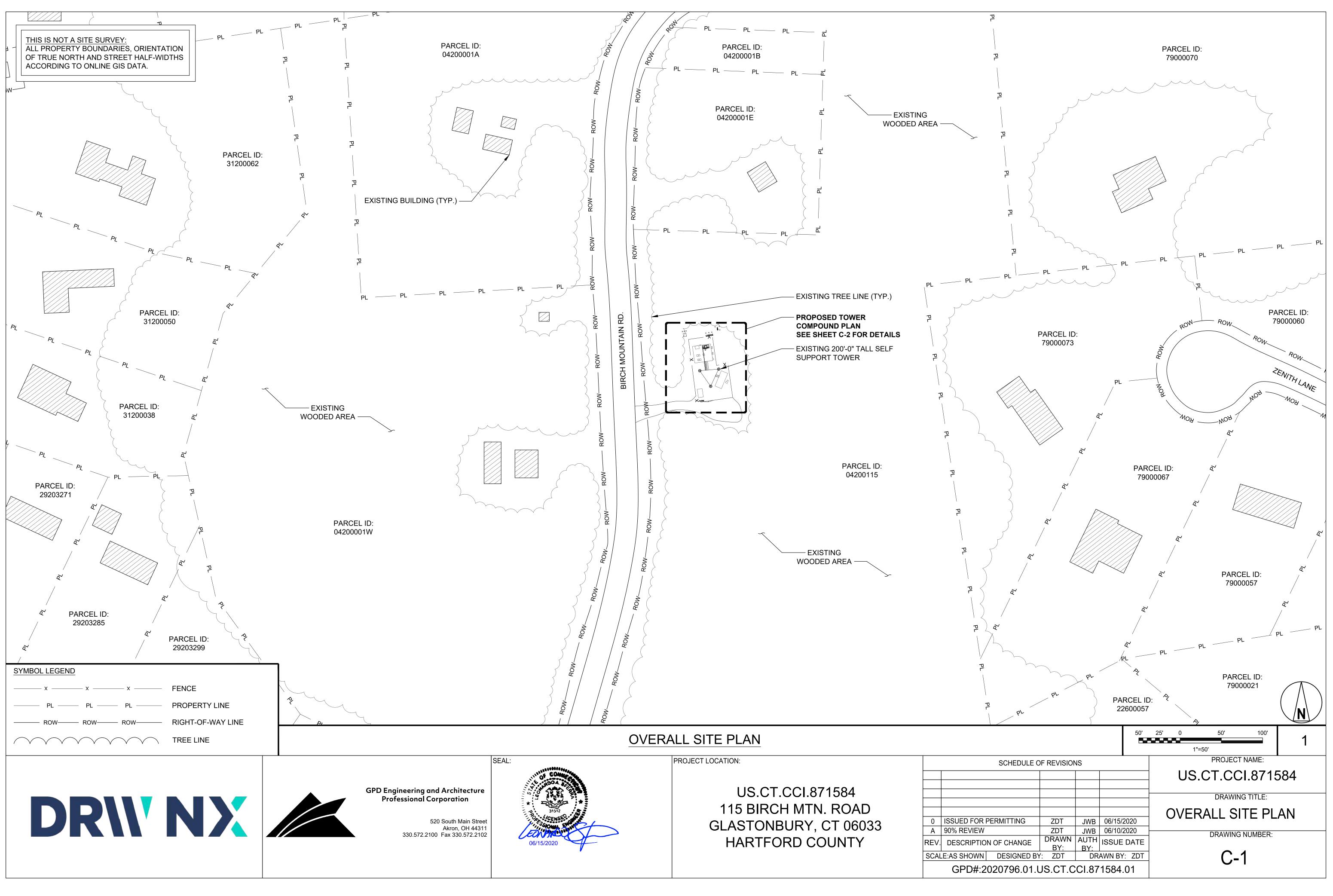
TO DOCUMENTATION OF:

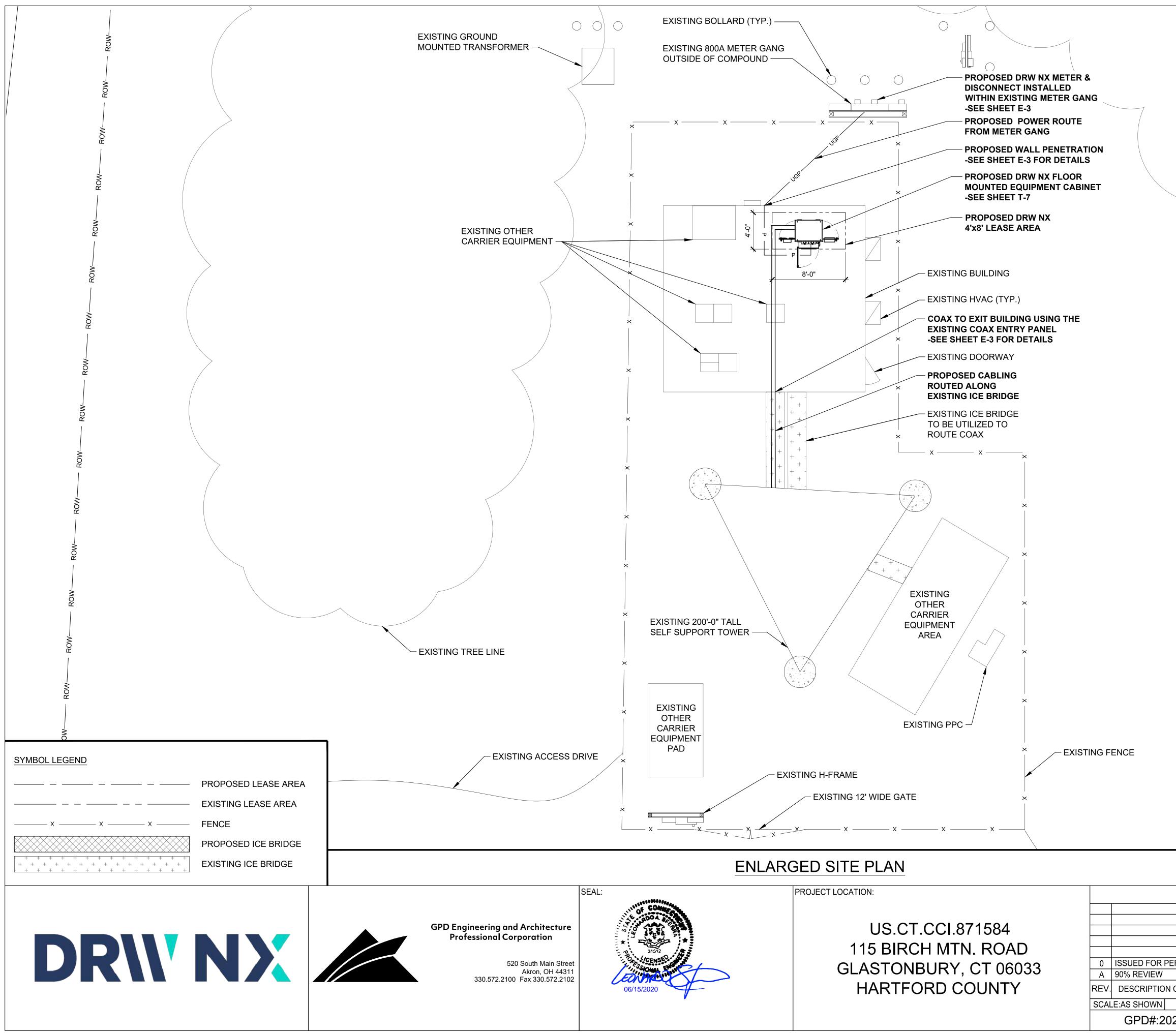
JNDERGROUND CONDUITS AND GROUND RING

ANTENNA, COAXIAL, JUMPER ATTACHMENTS AND GROUND KIT ATTACHMENTS

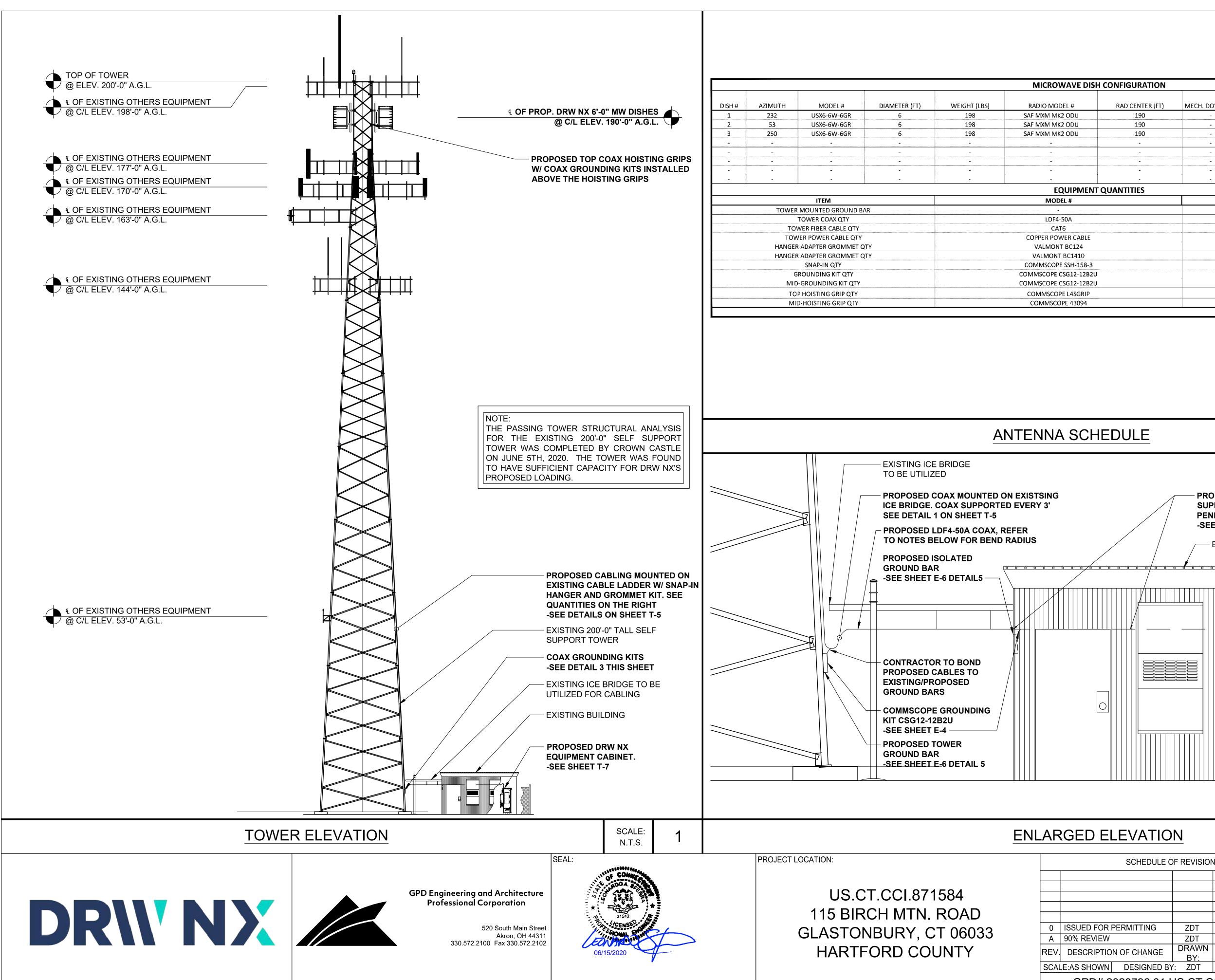
ANTENNA DOWN TILT MEASUREMENT USING AN INCLINOMETER ON THE BACK PLANE

GROUND BAR ATTACHMENTS


ED OFF PERMIT CARDS


FICATE OF OCCUPANCY

IRN OF KEYS AND/OR ACCESS AUTHORIZATION


H. ORIGINAL BUILDING PERMIT

SCHEDULE OF REVISIONS				PROJECT NAME:
				US.CT.CCI.871584
				DRAWING TITLE:
				ELECTRICAL NOTES
RMITTING	ZDT	JWB	06/15/2020	
	ZDT	JWB	06/10/2020	DRAWING NUMBER:
OF CHANGE	DRAWN BY:	AUTH BY:	ISSUE DATE	
DESIGNED BY	/: ZDT	DR.	AWN BY: ZDT	N-3
20796.01.	JS.CT.C	CI.87	1584.01	

				6'	4' 2' 0 5' 10'	1
SCHEDULE C	OF REVISION	NS				I
					US.CT.CCI.871	JO4
RMITTING	ZDT	JWB	06/15/20		ENLARGED SITE I	PLAN
OF CHANGE		DR	06/10/20 ISSUE D AWN BY:	DATE ZDT	DRAWING NUMBER:	
20796.01.	JS.CT.C	CI.87	1584.0	1		

ISSUED FOR PERMITTING

GPD#:2020796.01.US.CT.CCI.871584.01

ZDT

ZDT

BY:

JWB 06/15/2020

JWB 06/10/2020

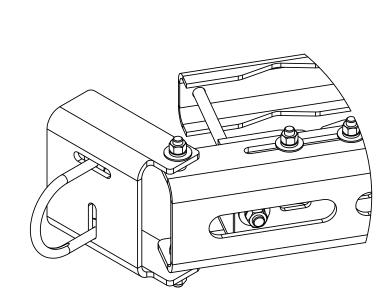
DRAWN BY: ZDT

DRAWN AUTH ISSUE DATE

BY:

IGURATION D CENTER (FT) 190 190 190 -						
190 190 190				CABLING TAB	BLE	
190 190	MECH. DOWNTILT		# OF CABLES	MODEL #		DIA. (IN)
190		2	3/3/3 3/3/3	LDF4-50A/CAT6/COPP		1/2, 1/4, 1/4 1/2, 1/4, 1/4
•	-	2	3/3/3	LDF4-50A/CAT6/COPP		1/2, 1/4, 1/4
-	-	-	-	-		-
-	-	-	-	-		-
-	-	-	-	-		-
ITIES				1		
		QUANTITY 2			UNIT*	
		2079			LF	
		2079 2079			LF LF	
		201				
		134 335				
		81				
		0 27				
		0				
Λ	SUPPORTI	D CABLING R ED ON CABLI	NG SUPPOF		RAD LDF4	<u>ES:</u> MUM BEND IUS BELOW I-50A=5" I.5-50=8"
	-SEE DETA	ION THROUG	ET E-3	3		
		NG BUILDING		0 0 0 0 0 0 0 0		
					×	

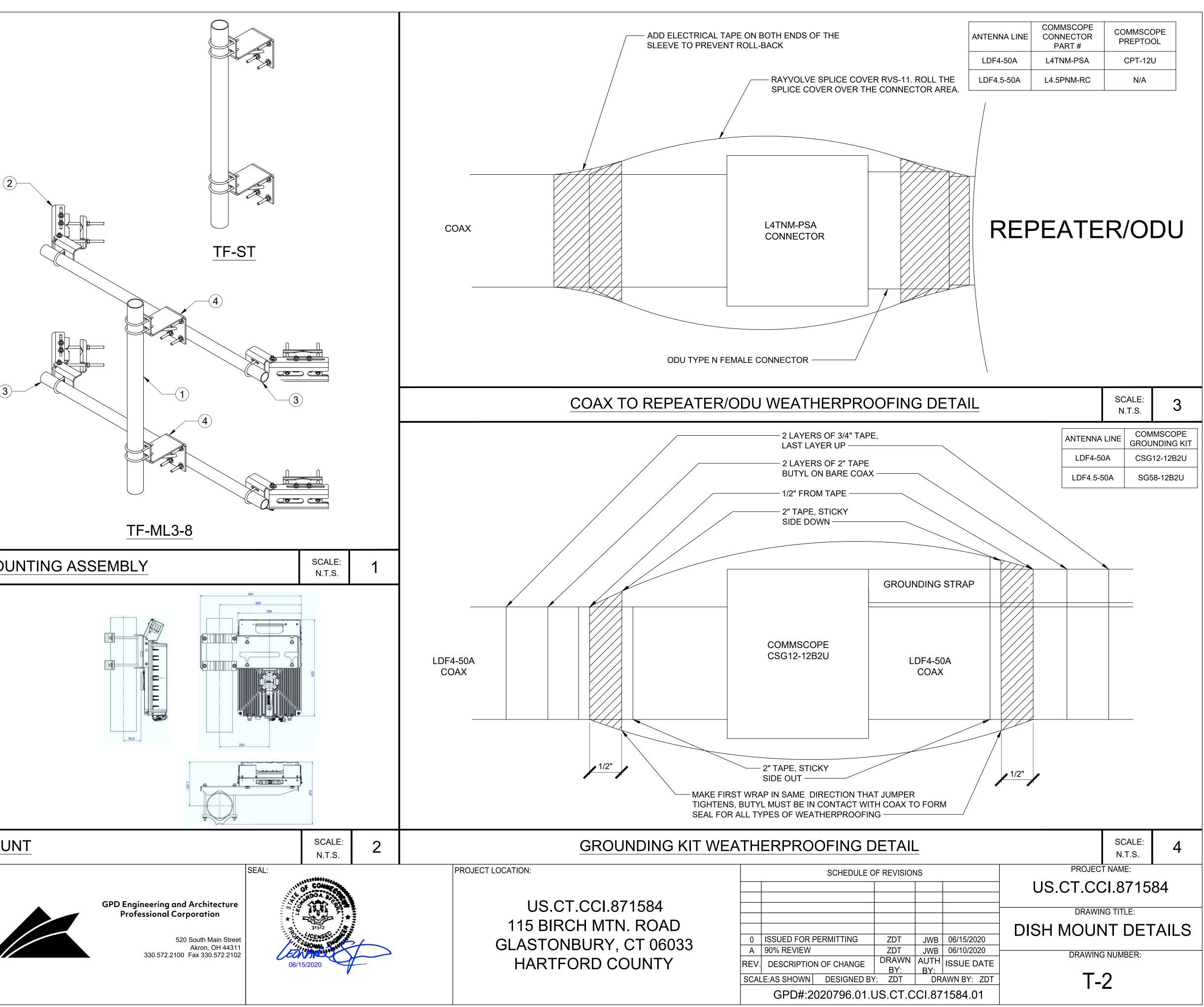
US.CT.CCI.871584

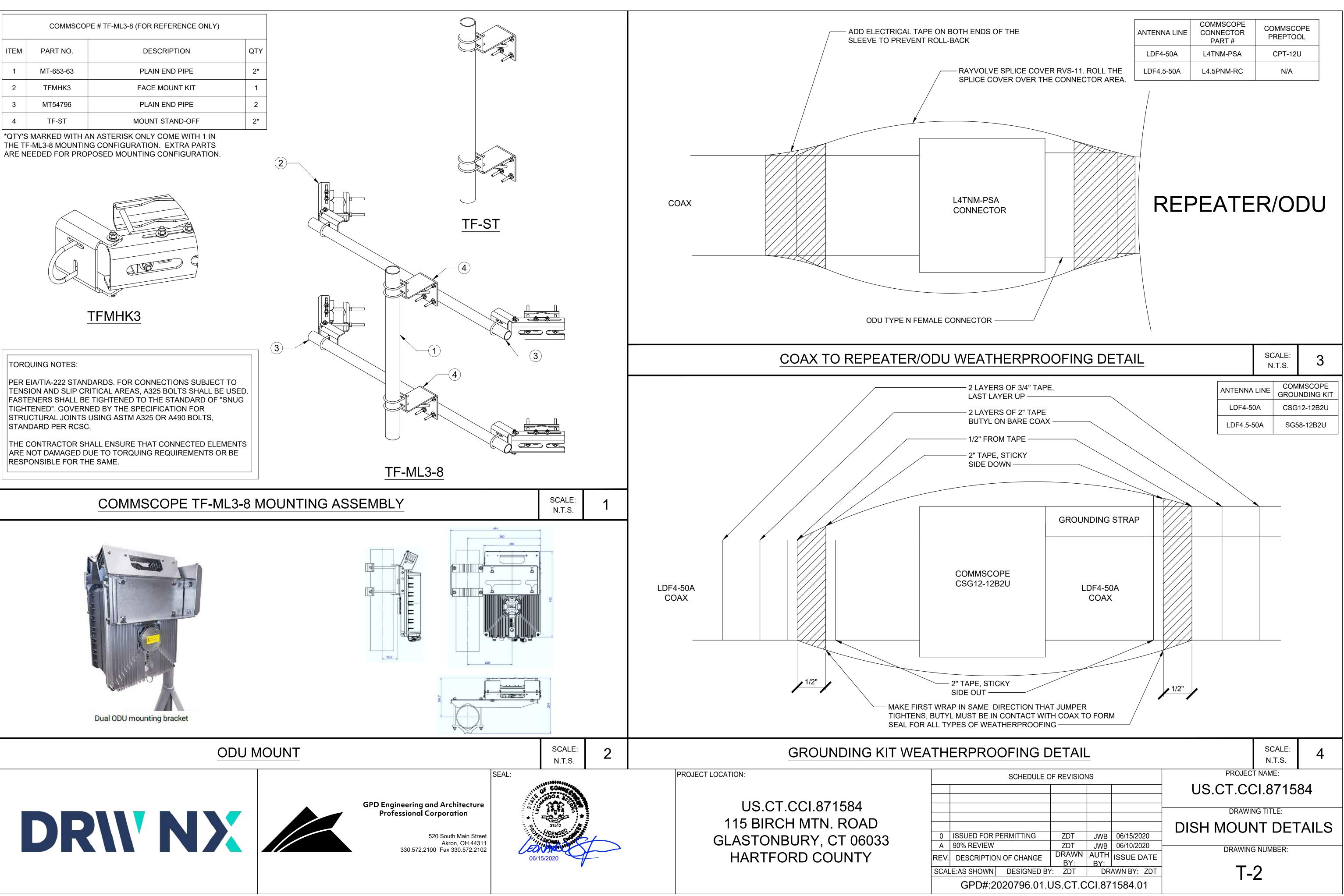

TOWER ELEVATION &

ANTENNA SCHEDULE DRAWING NUMBER:

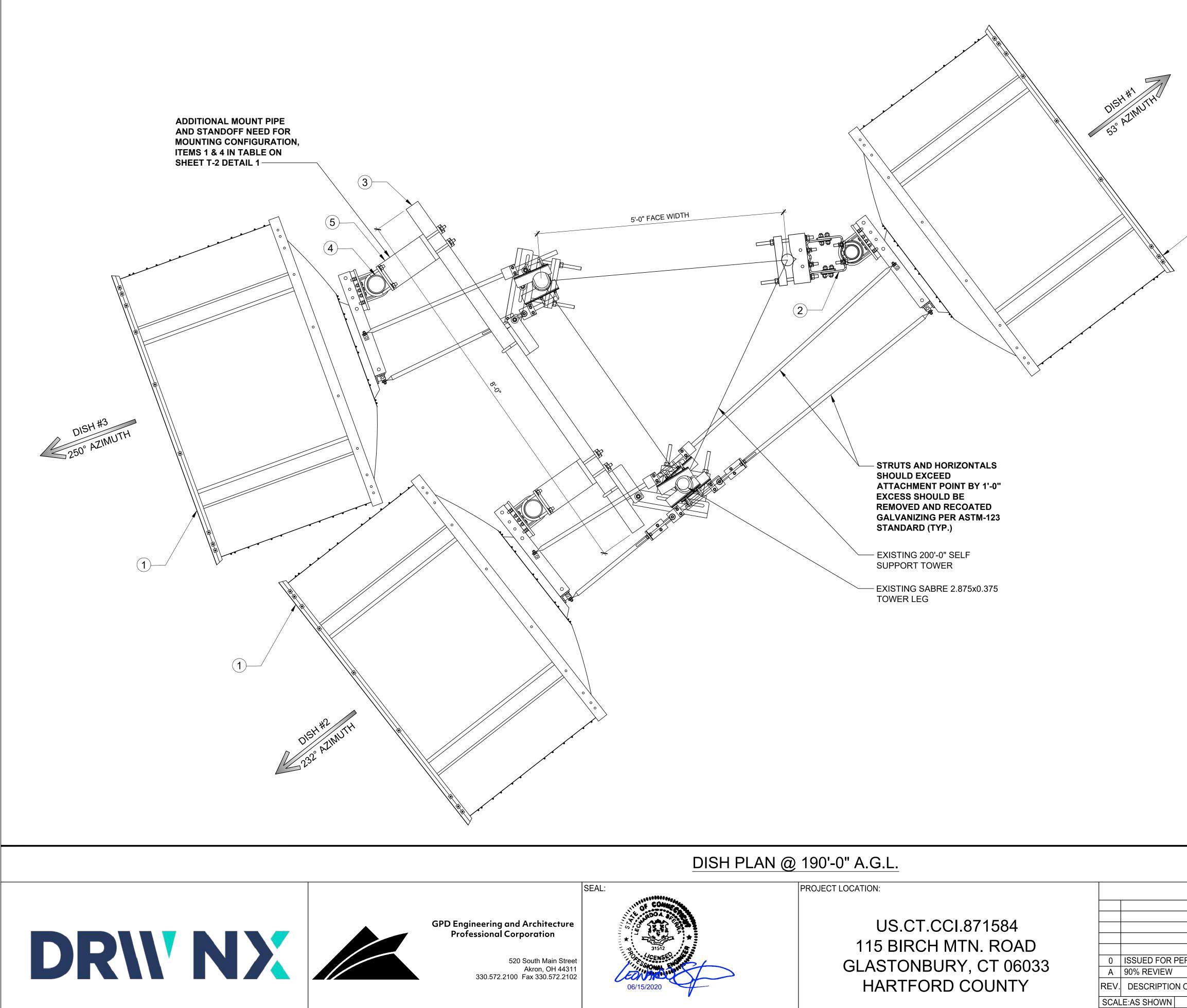
T-1

	COMMSCO	PE # TF-ML3-8 (FOR REFERENCE ONLY)	
ITEM	PART NO.	DESCRIPTION	QTY
1	MT-653-63	PLAIN END PIPE	2*
2	TFMHK3	FACE MOUNT KIT	1
3	MT54796	PLAIN END PIPE	2
4	TF-ST	MOUNT STAND-OFF	2*

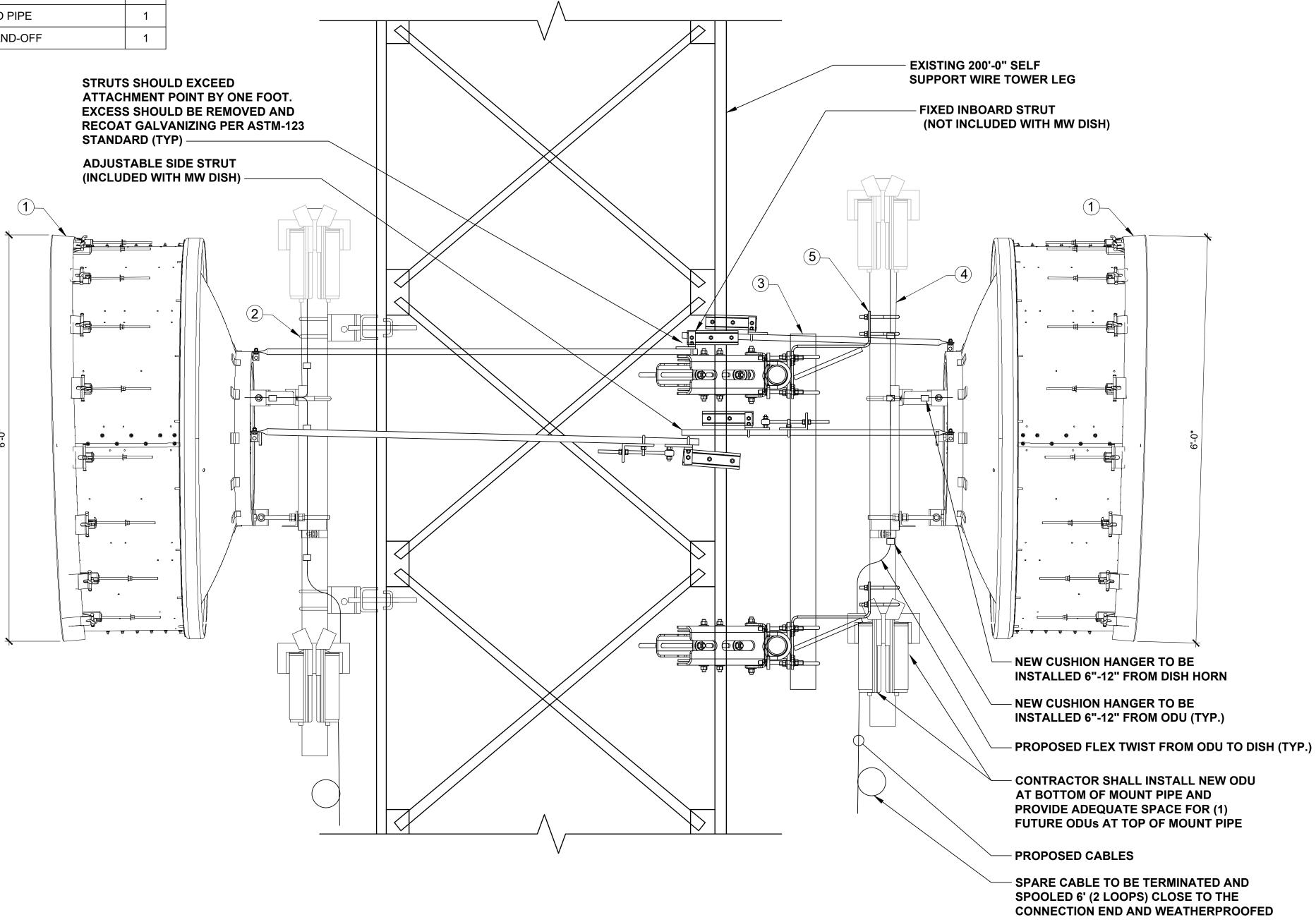

*QTY'S MARKED WITH AN ASTERISK ONLY COME WITH 1 IN THE TF-ML3-8 MOUNTING CONFIGURATION. EXTRA PARTS



TORQUING NOTES:


PER EIA/TIA-222 STANDARDS. FOR CONNECTIONS SUBJECT TO TENSION AND SLIP CRITICAL AREAS, A325 BOLTS SHALL BE USED. FASTENERS SHALL BE TIGHTENED TO THE STANDARD OF "SNUG TIGHTENED". GOVERNED BY THE SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS STANDARD PER RCSC.

THE CONTRACTOR SHALL ENSURE THAT CONNECTED ELEMENTS ARE NOT DAMAGED DUE TO TORQUING REQUIREMENTS OR BE RESPONSIBLE FOR THE SAME.

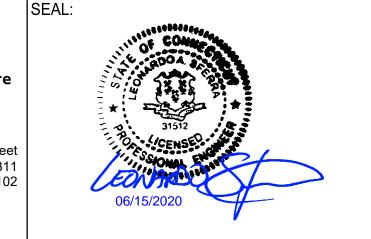

0	ISSUED FOR PER
Α	90% REVIEW
REV.	DESCRIPTION C
SCAL	E:AS SHOWN
	GPD#:202

5° VERTICALLY SIDE STRUT (WITHOUT AZIMUTH ADJUSTMENT): 25° HORIZONTALLY 25° VERTICALLY 25° VERTICALLY 25° VERTICALLY 25° VERTICALLY 25° VERTICALLY 3. ANTENNAS MUST BE INSTALLED PER MANUFACTURER SPECIFICATIONS
0 0.75 1.5 3 1" = 1'-0"
SCHEDULE OF REVISIONS PROJECT NAME:
US.CT.CCI.871584
DRAWING TITLE:
ERMITTING ZDT JWB 06/15/2020 190'-0" A.G.L.
DRAWING NUMBER:
BY: BY: BY:
DESIGNED BY: ZDT DRAWN BY: ZDT T-3
020796.01.US.CT.CCI.871584.01

-(1)

COMMSCOPE BILL OF MATERIAL FOR DISH & MOUNTING COMPONENTS								
ITEM PART NO. DESCRIPTION QT								
1	USX6-6W-6GR	6'-0" MW DISH	2					
2	PM-SC4-96	UNIVERSAL OPEN FACE PIPE MOUNT	1					
3	TF-ML3-8	TOWER FACE MOUNT W/ 14" STANDOFF	1					
4	MT-653-63	PLAIN END PIPE	1					
5	TF-ST	MOUNT STAND-OFF	1					

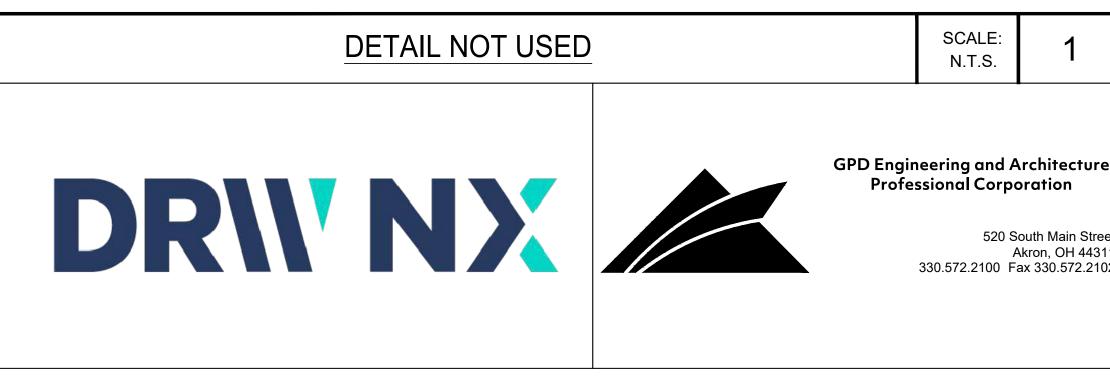
	COMMSCOPE BILL OF MATERIAL FOR DISH & MOUNTING COMPONENTS								
ITEM	PART NO.	DESCRIPTION	QTY						
1	USX6-6W-6GR	6'-0" MW DISH	2						
2	PM-SC4-96	UNIVERSAL OPEN FACE PIPE MOUNT	1						
3	TF-ML3-8	TOWER FACE MOUNT W/ 14" STANDOFF	1						
4	MT-653-63	PLAIN END PIPE	1						
5	TF-ST	MOUNT STAND-OFF	1						

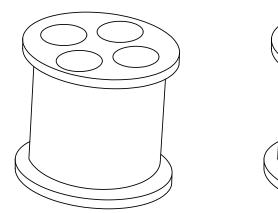


GPD Engineering and Architecture Professional Corporation

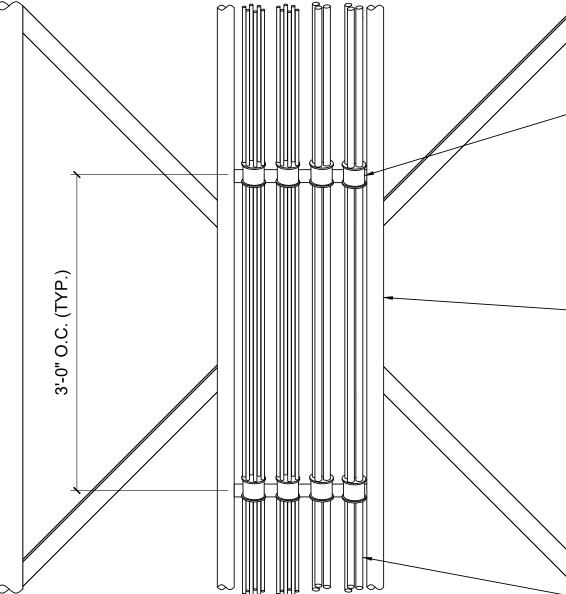
520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

PROJECT LOCATION:

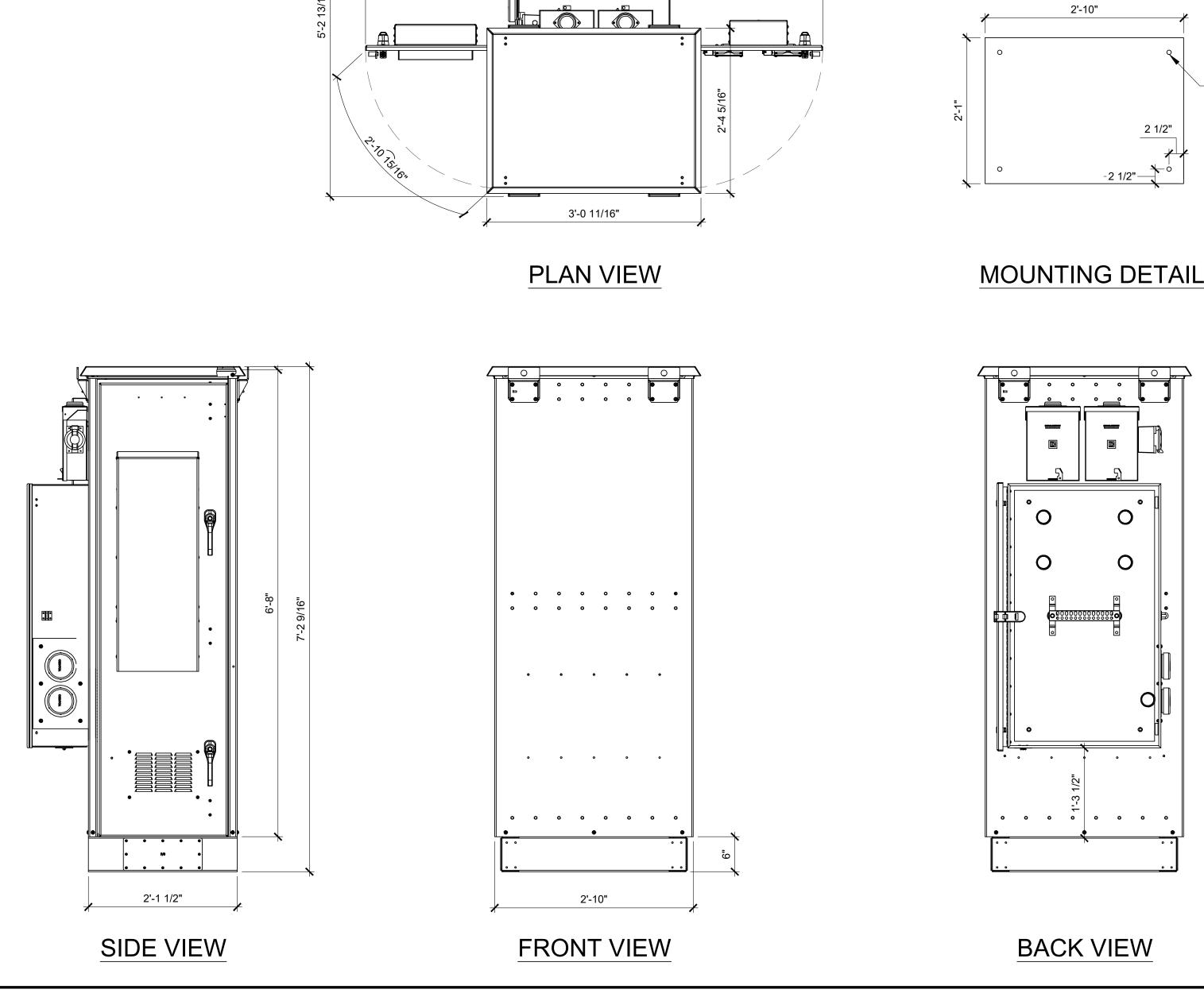

US.CT.CCI.871584 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY


					12" 9" 6" 3" 0 1' 2' 1"=1'-0"
	SCHEDULE C	F REVISION	١S		PROJECT NAME:
					US.CT.CCI.871584
					DRAWING TITLE:
					DISH ELEVATIONS
0	ISSUED FOR PERMITTING	ZDT	JWB	06/15/2020	
Α	90% REVIEW	ZDT	JWB	06/10/2020	DRAWING NUMBER:
REV.	DESCRIPTION OF CHANGE	DRAWN BY:	AUTH BY:	ISSUE DATE	
SCAL	E:AS SHOWN DESIGNED BY	': ZDT	DR	AWN BY: ZDT	1 T_4
	GPD#:2020796.01.l	JS.CT.C			

NOTE:

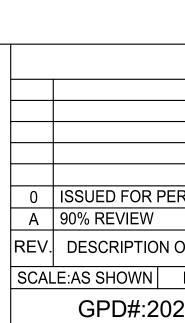

1. THE SIDE STRUTS MUST BE ATTACHED POINTING DIRECTLY BEHIND THE ANTENNA WITHIN THE FOLLOWING ANGULAR LIMITS: SIDE STRUT (WITH AZIMUTH ADJUSTMENT): 25° HORIZONTALLY 5° VERTICALLY SIDE STRUT (WITHOUT AZIMUTH ADJUSTMENT): 25° HORIZONTALLY 25° VERTICALLY

- 2. REFER TO SOW DOCUMENT FOR ODU CABLING DETAILS
- 3 THE PIPE MOUNT CAN BE EXTENDED VERTICALLY TO ACCOMMODATE THE PROPOSED ODU'S IF SITE CONSTRAINTS PREVENT THE INSTALLATION OF ODU'S BELOW THE PROPOSED DISH
- 4.CONTRACTOR SHALL FIELD ADJUST/MODIFY BACK STRUTS VERTICALLY UP TO 5° TO AVOID CONFLICT


VALMONT PART #	CABLE SIZE & TYPE	# OF HOLES	HOLE SIZE	N HAN
BC124	1/2" COAX	4	0.63 (16)	
BC1410	1/4" CAT6 1/4" COPPER POWER	10	0.24 (6)	

	COMMSCOPE CABLE SIZ PART # CABLE SIZ SSH-158-3 1-5/8" COA CABLE CABLE	PART # CABLE SIZE & TYPE XIAL BC124 1/2" COAX	# OF HOLESHOLE SIZEMATING HANGER SIZE40.63 (16)1-5/8"100.24 (6)1-5/8"	 NOTES: 1. REFER TO OWNERS MANUAL SPECIFICATIONS 2. ALL QUANTITIES ARE ASSUME DRW NX AND CONSTRUCTION ORDERING. 3. HANGERS SHOULD BE INSTAL HORIZONTAL LEVEL OF THE LEVERY 3 FEET) 4. HOISTING GRIPS AND GROUN INSTALLED PER MANUFACTUR 5. GROUND KITS ARE TO BE INS HOISTING GRIPS. 6. CONTRACTOR TO VERIFY QUA CONSTRUCTION WALK FOR S GROMMETS. ALL CURRENT Q REFERENCE ONLY 	ED. CONSULT N MANAGER BE LED ON EVER ADDER (MINIM DING KITS TO RER SPECIFIC/ FALLED ABOVI	WITH FORE Y IUM BE ATIONS. E THE ING PRE				
		Reposed coax cables Routed Desting Contractor Stells Proposed coax cables Routed Desting Contractor Stalls Contractor Stalls Proposed coax cables Routed Desting Contractor Stalls Proposed coax cables Routed Desting Contractor Stalls Proposed Coax cables Routed Desting Coale Labder Stalls on the Left								
ľ		WAVE GUIDE LADE	DER		SCALE: N.T.S.	2				
	 STABLE, OVER-EXCAVATE AN ADDITIONAL 12 B. AFTER EXCAVATION, THE EXPOSED SOILS FILLED WITH SELECT STRUCTURAL FILL OR V C. PRIOR TO PLACEMENT OF CONC. FOUNDA TEST, ASTM D1557. D. NO FOUNDATIONS OR STRUCTURES SHALL 2. STRUCTURAL FILL: 	JT TO FIRM MATERIAL HAVING A SAFE BEARING VALUE OF 3000 PSF 2 INCHES, COMPACT SUB-GRADE AND FILL WITH 12 INCHES OF SELE 3 SHALL BE INSPECTED AND TESTED AND ANY UNSUITABLE DEPOSI WITH LEAN CONCRETE FILL TO THE ELEVATION OF THE BOTTOM OF ATIONS, THE SURFACE ON WHICH THE CONCRETE IS TO BE PLACED LL BE CONSTRUCTED UNTIL THE BASE MATERIALS HAVE BEEN INSP AYERS NOT EXCEEDING A LOOSE 8" THICKNESS AND COMPACTED	CT STRUCTURAL FILL. TS REMOVED AS DIRECTED TO REACH S FOOTING OR FOUNDATION AS INDICATE SHALL BE COMPACTED TO A MINIMUM (ECTED BY THE DRW NX CONSTRUCTION	SUITABLE BEARING SOIL. ALL OVER-EXCAVATED A ED ON THE DRAWINGS. OF 95% OF THE MODIFIED PROCTOR DENSITY BY ⁻ N SUPERVISOR.	REAS SHALL B	E BACK PROCTOR				
		NOTES			SCALE: N.T.S.	3				
e eet 11 02	SEAL:	US.CT.CCI.871584 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY		US.CT.C US.CT.C DRAW COAX N COAX N DT JWB 06/15/2020 DT JWB 06/10/2020 AWN AUTH ISSUE DATE DT DRAWN BY: ZDT T	ING TITLE:					

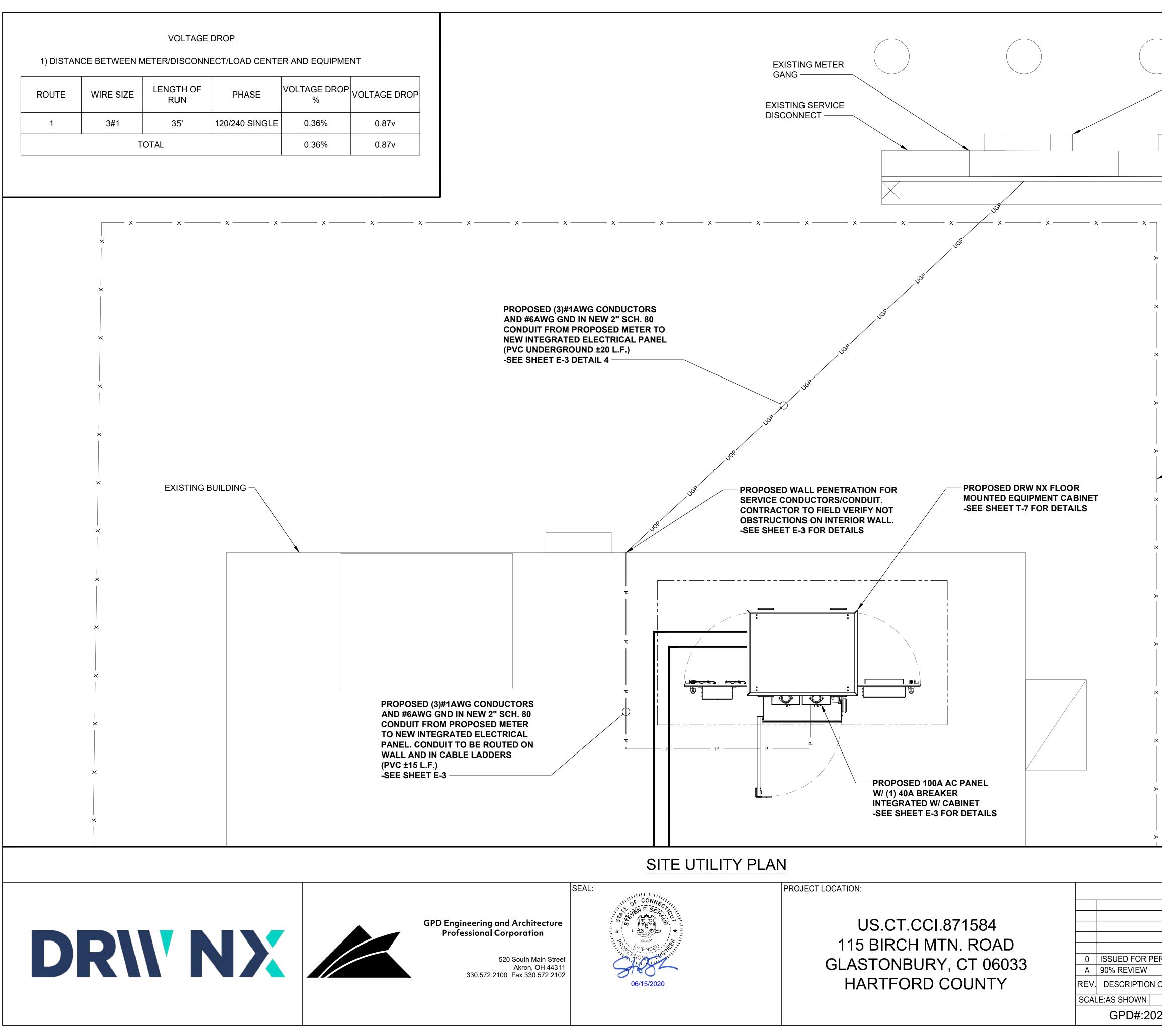
REFERENCE ONLY


6'-6 5/16"

2'-2"

REFERENCE ONLY

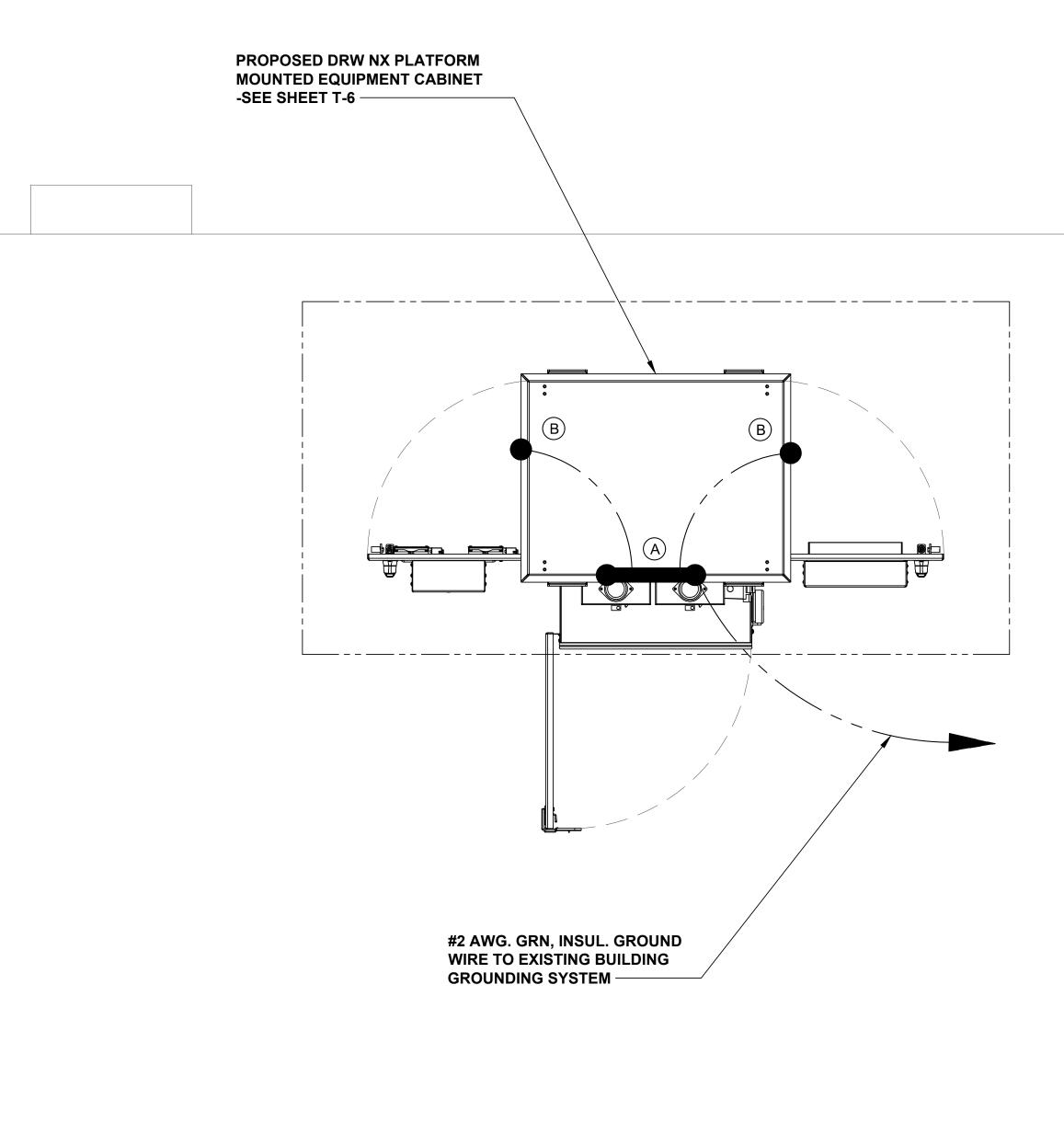
SEAL:


US.CT.CCI.871584 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY

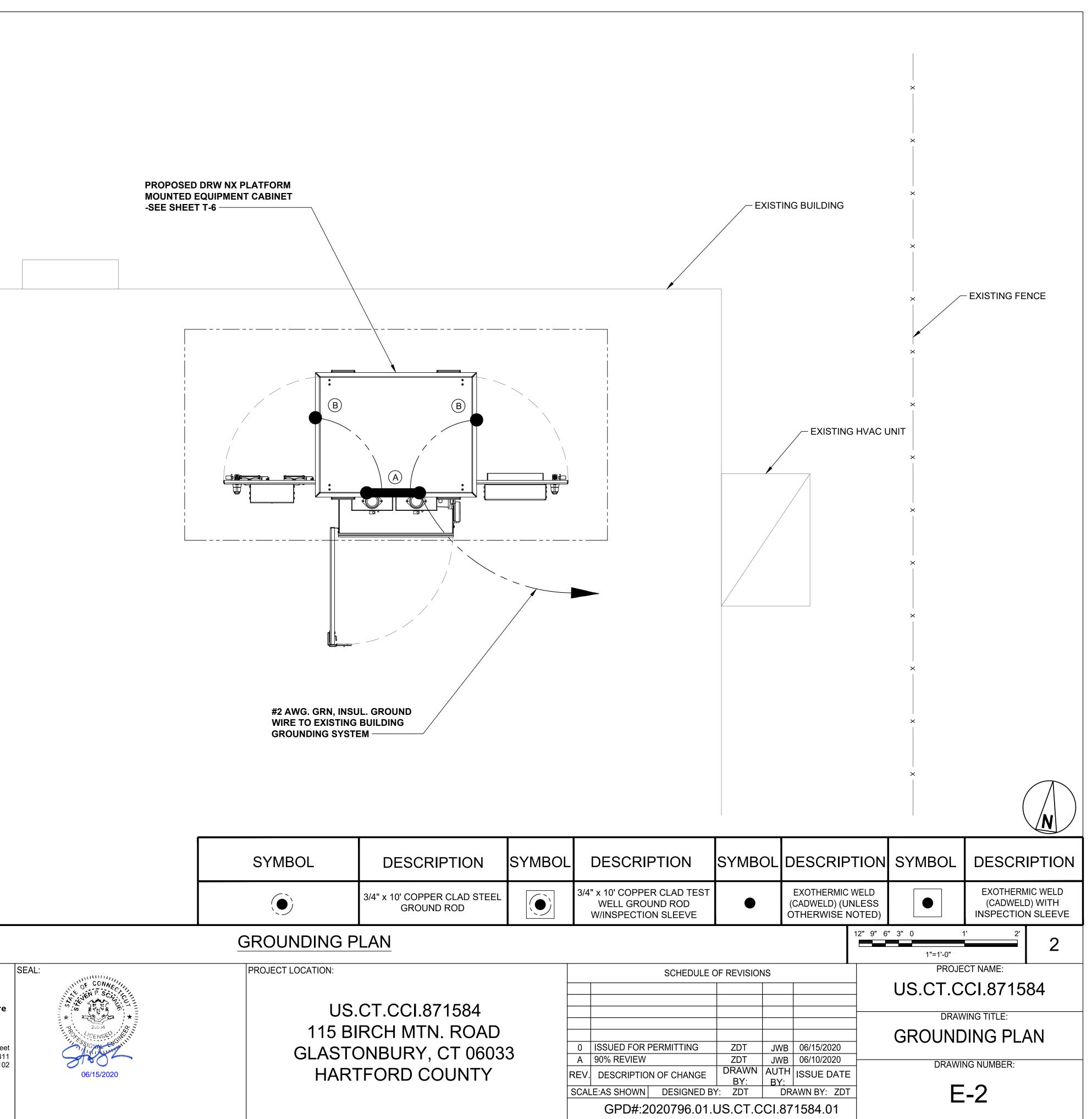
CABINET SPECIFICATIONS

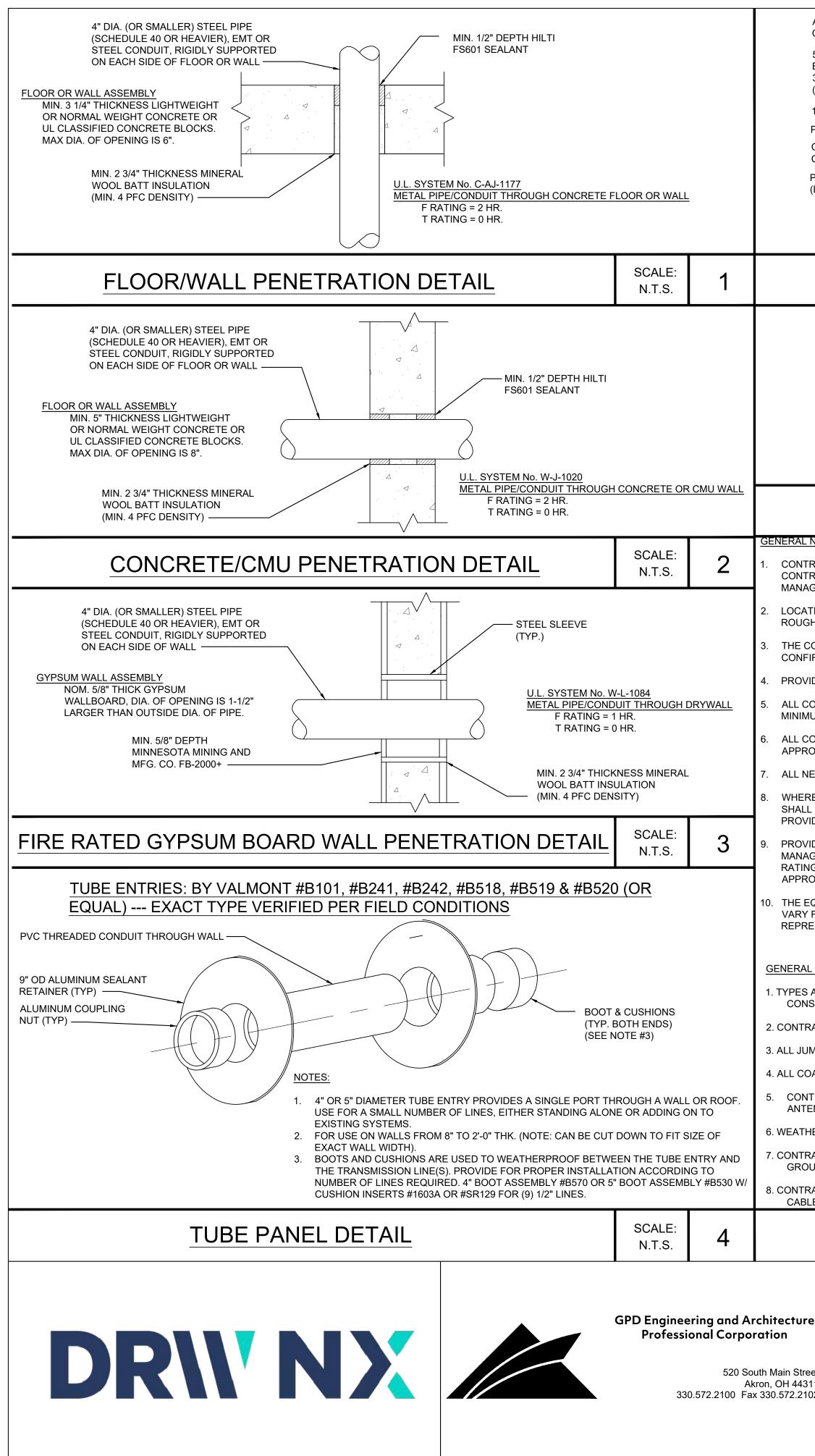
PROJECT LOCATION:

.75"Ø				
				SCALE:
				N.T.S.
HEDULE		NS		PROJECT NAME: US.CT.CCI.871584
		1		
TTING	ZDT ZDT	JWB JWB	06/15/2020 06/10/2020	CABINET DETAILS
TTING CHANGE SIGNED B	ZDT DRAWN BY:	JWB AUTH BY:	06/10/2020	DRAWING NUMBER: T-6

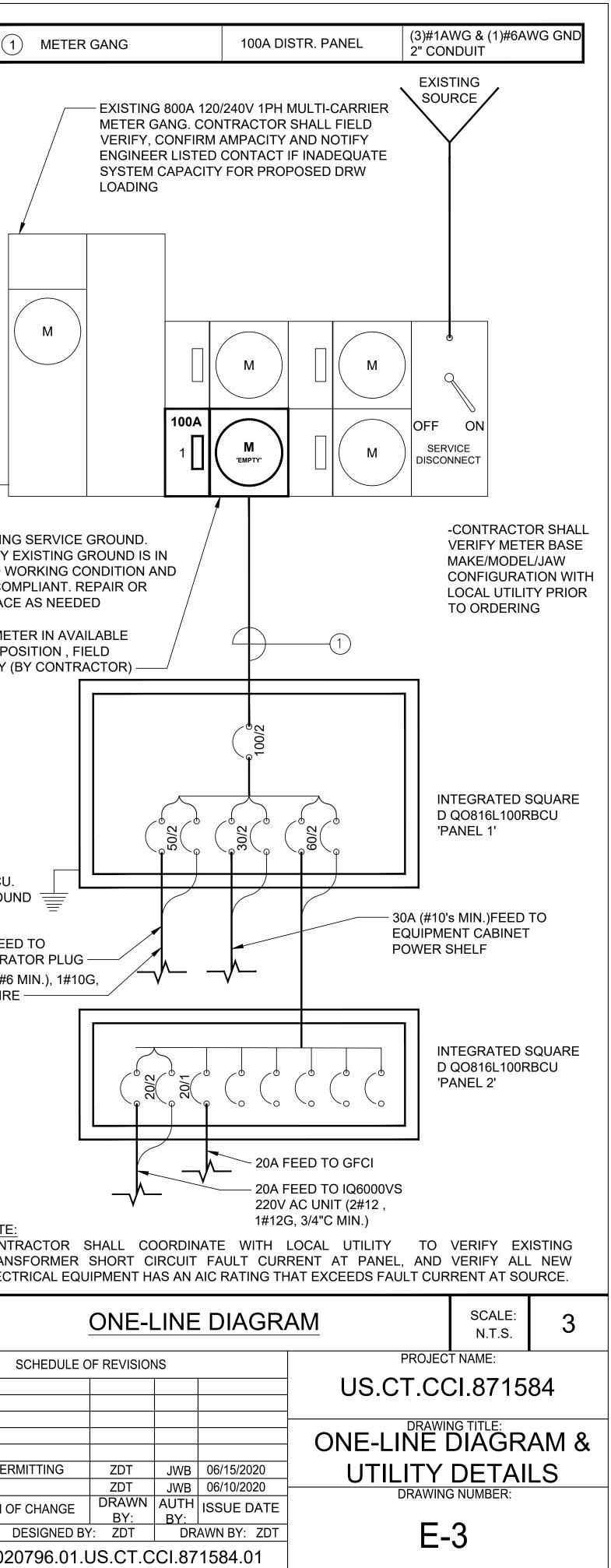


: :									
12" 6" 0 1' 2' 3' 3/4"=1'-0"									
SCHEDULE C	F REVISION	٧S			PROJECT NAME:				
					US.CT.CCI.871584				
					DRAWING TITLE:				
RMITTING	ZDT	JWB	06/15/20	20	UTILITY PLAN				
	ZDT	JWB	06/10/20	20	DRAWING NUMBER:				
OF CHANGE	DRAWN BY:	AUTH BY:	ISSUE D	DATE					
DESIGNED BY: ZDT DRAWN BY: ZDT					E-1				
20796.01.l	JS.CT.C	CI.87	1584.0	1					


EXISTING COMPOUND FENCE


- PROPOSED DRW NX 100A DISCONNECT SWITCH AND 100A UTILITY METER IN EXISTING 800A 12/240V METER GANG (FIELD VERIFY) -SEE SHEET E-3 FOR DETAILS

EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR ^D MOUNTED TO THE H-FRAME, CABINETS, SHALL BE BONDED TO THE EXTERIOR GROUND RING W/ #2 AWG SOLID TINNED CU. B MASTER GROUNDING BAR: EXTEND TWO (2) #2 AWG TINNED CU CONDUCTORS FROM BURIED GROUNDING RING UP TO MASTER **GROUNDING BAR & MAKE EXOTHERMIC CONNECTIONS.** EXISTING OTHER CARRIER EQUIPMENT AREA CONTRACTOR SHALL FIELD VERIFY ALL EXISTING GROUNDING PRIOR TO COMMENCING WORK **GROUNDING NOTES** GPD Engineering and Architecture Professional Corporation DRIVNX / 520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

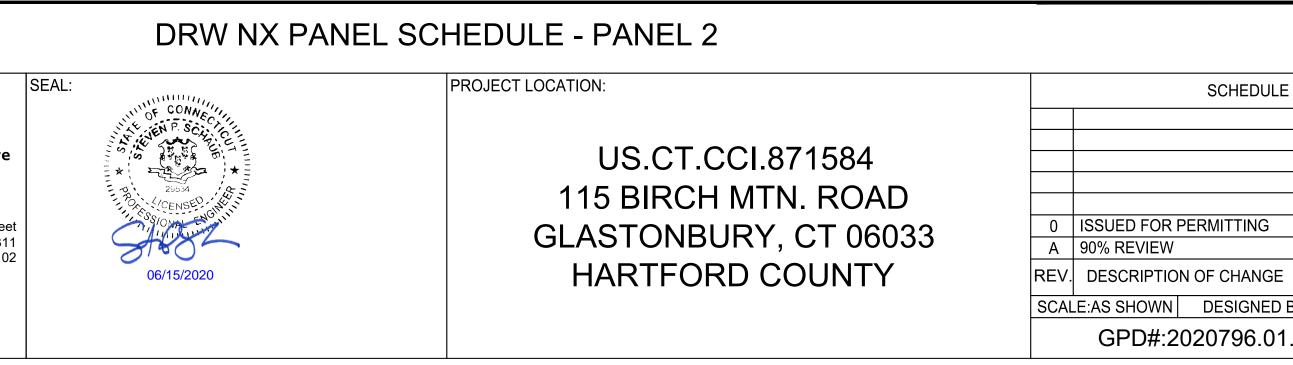


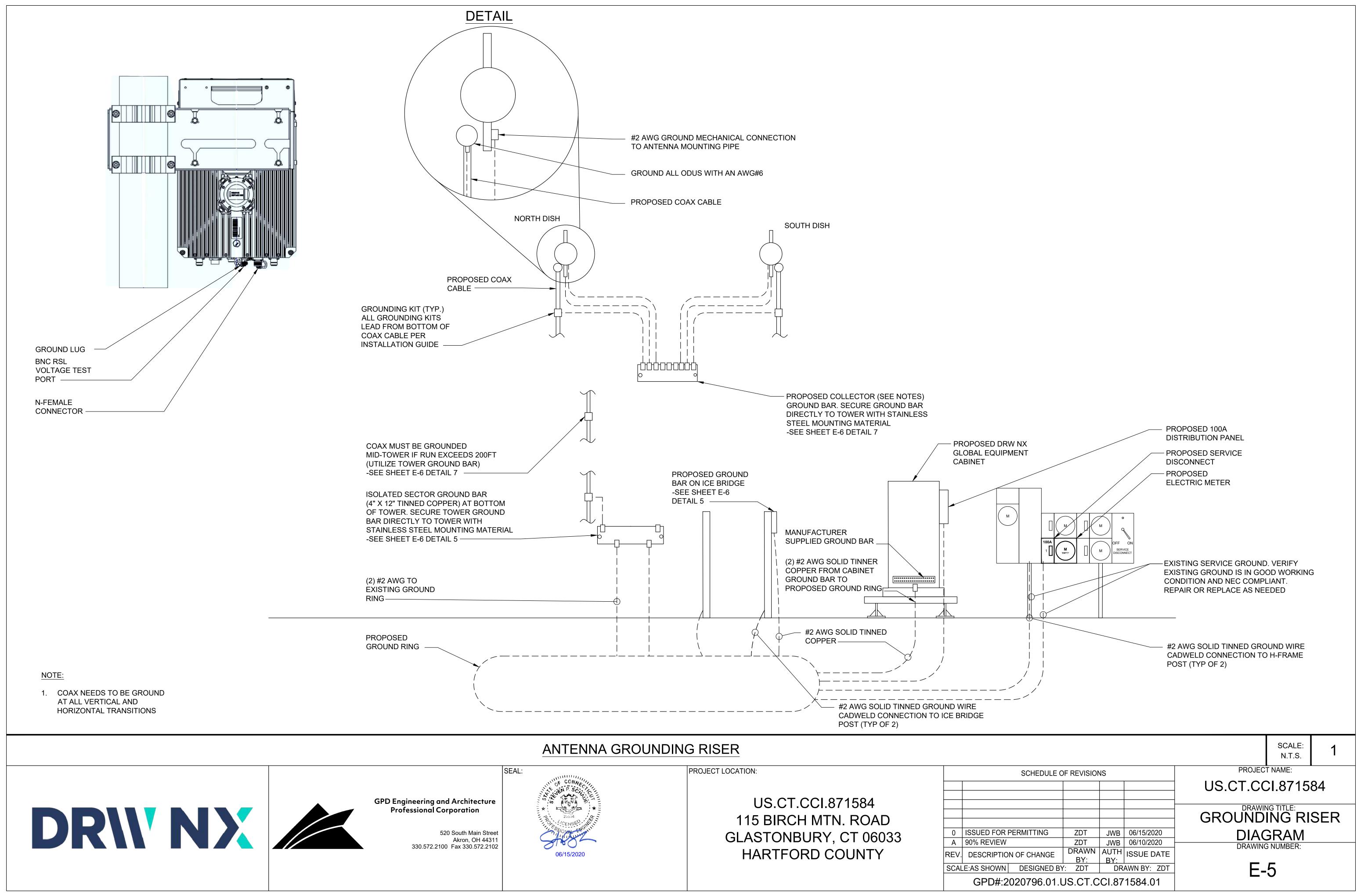
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTI
(\bullet)	3/4" x 10' COPPER CLAD STEEL GROUND ROD	$\overbrace{}$	3/4" x 10' COPPER CL WELL GROUND W/INSPECTION SL

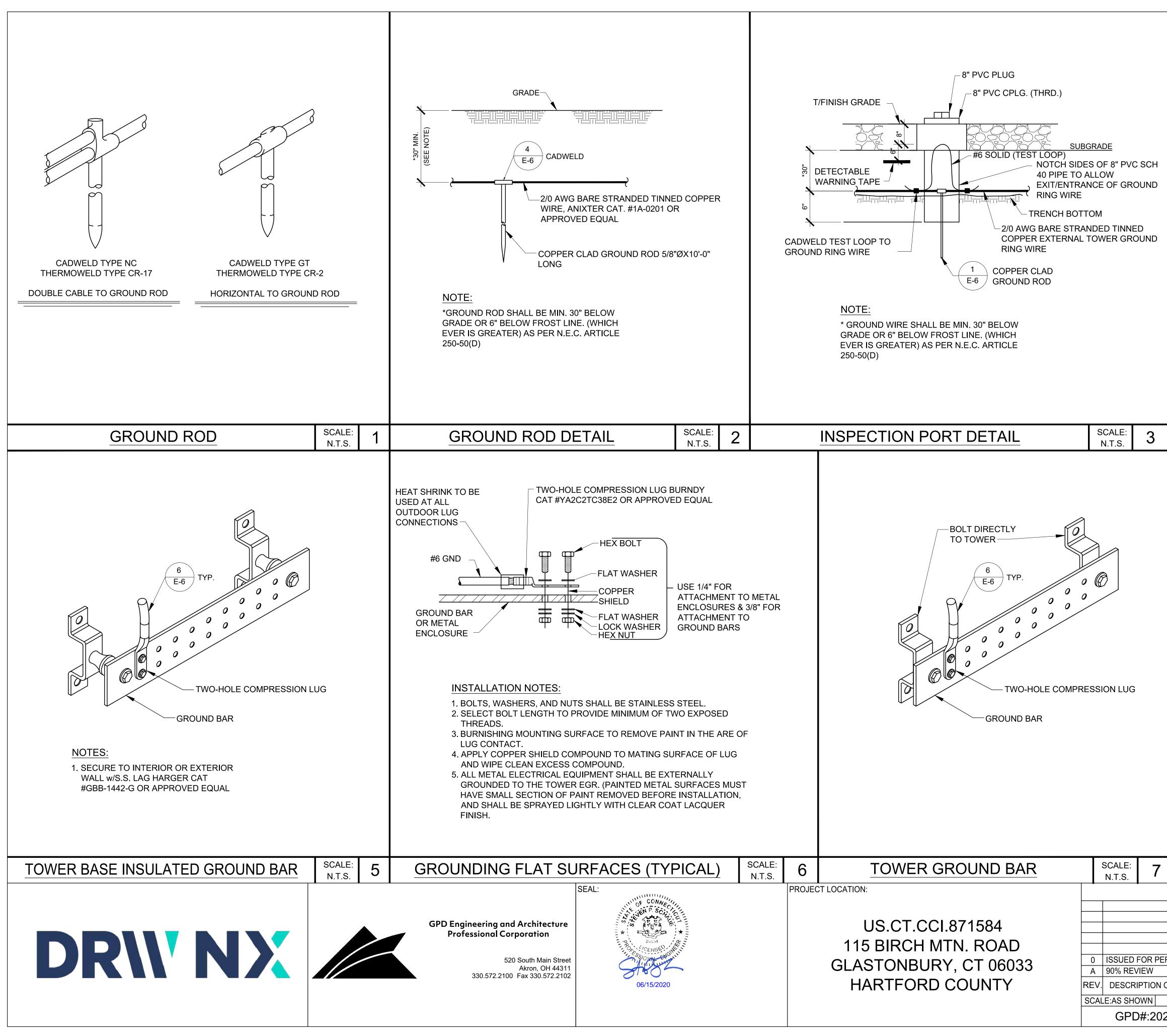
ANCHOR TO CONCRETE CEILING (SEE NOTE *) 5/8"Ø HILTI KWIK BOLT III EXPANSION ANCHOR @ W/ 3 1/8" MIN. EMBEDMENT (TYP. 2 PER CHANNEL) 1/2"Ø ALL THREADED ROD (TYP.) POWER CONDUIT CONDUIT CLAMP(S) PER APPROPRIATE CONDUIT SIZE (FIELD TO VERIFY) P1000 UNISTRUT OR EQUAL (LENGTHS MAY VARY)		<u>OTE:</u> CEILING & V AY VARY IN FIEL ROPER ANCHOR ONNECTION.	D. PROVIDE	
CONDUIT SUF	PPORT DETAIL	SCALE: N.T.S.	5	
4" BOOT ASSEMBLY BOOT CLAMP TYP. (INCLUDED) TUBE ENTRY WITH (4) 1/2" PORTS				
CABLE PC	DRT DETAIL	SCALE: N.T.S.	6	EXISTIN VERIFY GOOD V
RACTORS FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSL GER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN A TION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRA H-IN. CONDUIT RUNS AS SHOWN ON THE PLANS ARE APPROXIMATE. EXA IRMED WITH THE OWNER'S REPRESENTATIVE PRIOR TO ROUGH-IN IDE PULL BOXES AND JUNCTION BOXES WHERE SHOWN OR REQUI ONDUITS SHALL BE MET WITH BENDS MADE IN ACCORDANCE WITH UM INSIDE SWEEPS FOR ALL CONDUITS 2" OR LARGER. OAX, FIBER OR WIRES SHALL BE TAGGED AT ALL PULL BOXES, J-BO OVED EQUAL. EW MATERIAL SHALL HAVE A U.L. LABEL. RE APPLICABLE: INSTALL AN EQUIPMENT GROUNDING CONDUCTOR. BE BONDED AT ALL JUNCTION BOXES, PULLBOXES, AND ALL DISC IDED WITH PLASTIC THROAT INSULATING GROUNDING BUSHINGS. IDE CORE DRILLING AS NECESSARY FOR PENETRATIONS OR RISEF GERS APPROVAL. SLEEVES AND/OR PENETRATIONS IN FIRE RATEI G OF THE WALL OR STRUCTURE. FILL FOR FLOOR PENETRATIONS OVED FOR THIS PURPOSE. QUIPMENT (THE DESIGN OF THESE PLANS ARE BASED UPON BEST FROM DESIGN AS SHOWN ON THESE DRAWINGS). LOCATION OF AL ESENTATIVE PRIOR TO ROUGH-IN.	WINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD C CT LOCATION AND ROUTING SHALL BE PER EXISTING FIELD CONDITION I. RED BY NEC. I NEC TABLE 346-10. NO RIGHT ANGLE DEVICE OTHER THAN STANDARD DXES, EQUIPMENT BOXES AND CABINETS WITH APPROVED PLASTIC TAG R IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC. THE EQUIPMENT CONNECT SWITCHES, STARTERS, AND EQUIPMENT CABINETS. ALL COND RS THROUGH BUILDING. DO NOT PENETRATE STRUCTURAL MEMBERS V D CONSTRUCTION SHALL BE PACKED WITH FIRE RATED MATERIAL WHIC SHALL PREVENT PASSAGE OF WATER, SMOKE, FIRE AND FUMES. ALL N "AVAILABLE INFORMATION AT THE TIME OF DESIGN AND SOME EXISTING LL SHOWN PENETRATIONS ON THESE PLANS SHALL BE CONFIRMED WIT	PERIOD WITH T ONDITIONS PRIC S. LOCATION OF CONDUIT ELBOW GS, ACTION CRA T GROUNDING C OUIT TERMINATIC VITHOUT CONSTI SH SHALL MAINT/ IATERIAL SHALL G AS-BUILT CONI TH THE OWNER'S FUAL LENGTH BA	ALL SHALL BE VS WITH 12" FT, BRADY, OR ONDUCTORS ONDUCTORS ONS SHALL BE RUCTIONS ANN THE FIRE BE UL OITIONS MAY SED ON FEST VERSION.	#2 CU GROL 50A FEE GENER 3#3 (3#6 1"C WIR
ACTOR SHALL GROUND ALL EQUIPMENT. INCLUDING ANTENNAS, F	IG TAPE. WEATHERPROOFING SHALL BE COMPLETED IN STRICT ACCOR RET MOTORS, TMA'S, COAX CABLES, AND RET CONTROL CABLES AS A C NCE WITH MANUFACTURER'S SPECIFICATION AND RECOMMENDATION.			NOTE CON ⁻ TRAN
	OR ALL CABLE ASSEMBLIES, COAX CABLES, AND RET CONTROL CABLES. TION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIC			ELEC
		N.T.S.	7	
e et 11 02 SEAL:	US.CT.CCI.871584 115 BIRCH MTN. ROAD GLASTONBURY, CT 0603 HARTFORD COUNTY	3	A 90% R REV. DESC SCALE:AS S	D FOR PER EVIEW CRIPTION C HOWN PD#:202

a	WHERE STREET, AND ADDREET, AND ADDREET, AND ADDREET, ADDREET, ADDREET, ADDREET, ADDREET, ADDREET, ADDREET, ADDR														
	SITE NUMBER: US.CT.CCI.871584						MODEL NUMBER: SQUARE D			RE D QO816L100RBCU - 1					
	VOLTAGE	8	120/240V				PHASE:		1		WIRE:		3		
	MAIN BREAKER: 100 AMP					BUSS RATI	NG:	100 AMPS		AIC:		22K (SEE NOTE)			
	MOUNT:		SURFACE				NEUTRAL E	BAR:	YES		GROUND BAR:		YES		
	ENCLOSU	JRE TYPE:	NEMA 3R				N to GROU	ND BOND:	NO						
	PANEL ST	TATUS:	PROPOSED	•			INTERNAL	TVSS:	YES						
		LOAD DESCRIPTION	BREAKER	BREAKER	BREAKER	SERVICE	USAGE		PHASE B						
1	CKT		AMPS	POLES	STATUS	LOAD VA	FACTOR	VA	VA						
	1	100A MAIN	100	2	ON	0	1.00	0							
	2			2	ON	0	1.00		0						
	3				ON -	0	1.00	0							
	4	GENERATOR PLUG	50	2		0	1.00		0						
	5					2800	1.00	2800							
	6	DC POWER SHELF	30	30 2	ON	2800	1.00		2800						
	7	PANEL 2 (PROVIDED BY				1850	1.00	1850							
	8	MANUFACTURER)	60 2	2	ON	1850	1.00		1850						
							•	L	· · · · ·						
-											T 1_				
								4650	4650	VA		OTAL KVA	9.30	2	
		PROPOSED PANEL									A	MPS	38.75		

	SITE NUM	BER:	US.CT.CCI.87	1584			MODEL NU	MBER:	SQUARE D	SQUARE D QO816L100RBCU - 2			
	VOLTAGE: 120/240V						PHASE:		1	WIRE:		3	
	MAIN BRE	EAKER:	N/A (MLO)				BUSS RATI	NG:	100 AMPS	AIC:		22K (SEE NOTE)	
	MOUNT:		SURFACE				NEUTRAL E	BAR:	YES	GROUND BAR	k:	YES	
	ENCLOSU	JRE TYPE:	NEMA 3R				N to GROU	ND BOND:	NO				
	PANEL ST	TATUS:	PROPOSED	•			INTERNAL	TVSS:	YES				
		LOAD DESCRIPTION	BREAKER	BREAKER	BREAKER	SERVICE	USAGE	PHASE A					
	CKT	LOAD DESCRIPTION	AMPS	POLES	STATUS	LOAD VA	FACTOR	VA	VA				
	1		20	2	ON	1760	1.00	1760					
	2	ACONT	20	2	ON	1760	1.00		1760				
	3	GFCI	20	1	ON	180	1.00	180					
	4				N/A	0	1.00		0				
	5				N/A	0	1.00	0					
	6				N/A	0	1.00		0				
	7				N/A	0	1.00	0					
	8				N/A	0	1.00		0				
2									· · · · ·				
								1010	4700		TOTAL	0.70	
								1940	1760		TOTAL KVA	3.70	
		PROPOSED PANEL									AMPS	15.42	




GPD Engineering and Architecture Professional Corporation


520 South Main Street Akron, OH 44311 330.572.2100 Fax 330.572.2102

DRW NX PANEL SCHEDULE - PANEL 1

NOTE: CONTRACTOR SHALL COORDINATE WITH LOCAL UTILITY TO VERIFY EXISTING TRANSFORMER SHORT CIRCUIT FAULT CURRENT AT PANEL, AND VERIFY ALL NEW ELECTRICAL EQUIPMENT HAS AN AIC RATING THAT EXCEEDS FAULT CURRENT AT SOURCE. NOTE: CONTRACTOR SHALL COORDINATE WITH LOCAL UTILITY TO VERIFY EXISTING TRANSFORMER SHORT CIRCUIT FAULT CURRENT AT PANEL, AND VERIFY ALL ELECTRICAL NEW EQUIPMENT HAS AN AIC RATING THAT EXCEEDS FAULT CURRENT AT SOURCE. 2 PROJECT NAME: SCHEDULE OF REVISIONS US.CT.CCI.871584 DRAWING TITLE: PANEL SCHEDULE JWB 06/15/2020 ZDT JWB 06/10/2020 ZDT DRAWING NUMBER: DRAWN AUTH BY: BY: E-4 SCALE:AS SHOWN DESIGNED BY: ZDT DRAWN BY: ZDT GPD#:2020796.01.US.CT.CCI.871584.01

Image: wide wide wide wide wide wide wide wide	A TYPE VS	
CADWELDS (T)	(PICAL) SCALE: N.T.S.	4
DETAIL NOT U	JSED SCALE N.T.S. PROJECT NAME:	
SCHEDULE OF REVISIONS Image: Schedule	DRAWING TITLE: DRAWING DETAI	
DF CHANGE DRAWN AUTH BY: BY: ISSUE DATE DESIGNED BY: ZDT DRAWN BY: ZDT 20796.01.US.CT.CCI.871584.01	E-6	

Exhibit B

Structural Analysis

Date: June 5, 2020

Jason Rouse Crown Castle 6325 Ardrey Kell Rd Suite 600 Charlotte, NC 28277		Crown Castle 2000 Corporate Canonsburg, P (724) 416-2000	A
Subject:	Structural Modification Repo	rt	
Carrier Designation:	<i>DRW Canada Co</i> Co-Locate Carrier Site Name:		US.CT.CCI.871584
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Numb Crown Castle Work Order Nu Crown Castle Order Number:	mber:	871584 John Tom Hill 607657 1853234 519195 Rev. 0
Engineering Firm Designation:	Crown Castle Project Numbe	r:	1853234
Site Data:	115 Birch Mtn. Road, GLAST Latitude <i>41° 42' 32.24"</i> , Longi 200 Foot - Self Support Towe	tude -72° 28' 24	

Dear Jason Rouse,

Crown Castle is pleased to submit this "**Structural Modification Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC4: Modified Structure w/ Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Alexander Greguric, E.I.T. / DBS

Respectfully submitted by:

Maham Barimani, P.E. Senior Project Engineer

Jun 8 2020 1:21 PM

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 – Tower Component Stresses vs. Capacity – LC4

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C Additional Calculations

8) APPENDIX D

Required Modification Drawings

1) INTRODUCTION

This tower is a 200 ft Self Support tower designed by Sabre Communications.

The modification drawings designed by CCI and attached in Appendix D, have been considered in this analysis.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	2 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer		Number of Feed Lines	Feed Line Size (in)
		3	commscope	USX6-6W-6GR	40	414
190.0	190.0 190.0		saf	MXM REPEATER MK2	18 9	1/4 1/2
		1	tower mounts	Pipe Mount [PM 601-3]		1/2

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	208.0	1	rfs celwave	ALR10-O		1/2
		1	decibel	DB225-A		
198.0	205.0	1	rfs celwave	PD1107-1	2	
190.0		1	rfs celwave	PD201-7	3	7/8
	204.0	1	scala	OGB6-928N		
	204.0	1	tower mounts	Sector Mount [SM 702-3]		
	183.0	3	ericsson	KRY 112 489/2		
	182.0	3	SitePro	STK-U Stiff Arm Kit		1-5/8
		1	tower mounts	Sector Mount [SM 702-3]		
182.0	177.0	3	ericsson	RADIO 4449 B12/B71	12	
		3	rfs celwave	APXV18-209015-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
		3	alcatel lucent	PCS 1900MHZ 4X45W- 65MHZ		
170.0	171.0	6	alcatel lucent	RRH2X50-800		
		3	alcatel lucent	TD-RRH8X20-25	4	1-1/4
		3	commscope	NNVV-65B-R4 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe	<u> </u>	

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		1	tower mounts	Sector Mount [SM 506-3]		
163.0	163.0 1		kathrein	PR-850	1	1/2
103.0 103.0		1	tower mounts	Pipe Mount [PM 601-1]		1/2
	155.0	1	sinclair	SRL480N1DT4		
144.0	4.0 152.0 2 1		rfs celwave	PD1109-1	2	7/8
			tower mounts	Sector Mount [SM 702-3]	3	1/2
53.0	55.0	55.0 1 lucent		KS24019-L112A	1	1/2
53.0 53.0		1	tower mounts	Side Arm Mount [SO 202-1]		1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E.	1404208	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Sabre/ TEP (Mapped)	2068370	CCISITES
4-TOWER MANUFACTURER DRAWINGS	Sabre	1403674	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Crown Castle	Appendix D	On File

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	200 - 180	Leg	Sabre 2.875x.375	3	-26.74	100.37	26.6	Pass
T2	180 - 160	Leg	Sabre 3.5 x .3	33	-76.51	116.34	65.8	Pass
Т3	160 - 140	Leg	Sabre 4 x .318	60	-120.05	149.09	80.5	Pass
T4	140 - 120	Leg	Sabre 4.5 x .438	87	-159.16	211.28	75.3	Pass

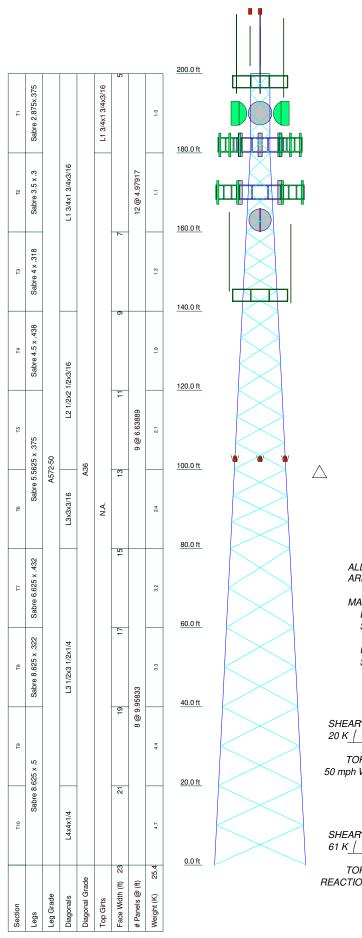
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
T5	120 - 100	Leg	Sabre 5.5625 x .375	108	-195.74	251.62	77.8	Pass
Т6	100 - 80	Leg	Sabre 5.5625 x .375	129	-230.15	251.62	91.5	Pass
Τ7	80 - 60	Leg	Sabre 6.625 x .432	148	-261.73	319.52	81.9	Pass
Т8	60 - 40	Leg	Sabre 8.625 x .322	163	-296.52	351.50	84.4	Pass
Т9	40 - 20	Leg	Sabre 8.625 x .5	178	-331.18	531.40	62.3	Pass
T10	20 - 0	Leg	Sabre 8.625 x .5	193	-364.85	531.40	68.7	Pass
T1	200 - 180	Diagonal	L1 3/4x1 3/4x3/16	10	-5.35	13.85	38.6 64.4 (b)	Pass
T2	180 - 160	Diagonal	L1 3/4x1 3/4x3/16	37	-5.83	9.47	61.6 70.2 (b)	Pass
Т3	160 - 140	Diagonal	L1 3/4x1 3/4x3/16	64	-6.13	6.54	93.8	Pass
T4	140 - 120	Diagonal	L2 1/2x2 1/2x3/16	91	-6.70	12.36	54.2 64.5 (b)	Pass
T5	120 - 100	Diagonal	L2 1/2x2 1/2x3/16	113	-6.93	9.61	72.1	Pass
Т6	100 - 80	Diagonal	L3x3x3/16	134	-7.35	13.18	55.8 65.2 (b)	Pass
Τ7	80 - 60	Diagonal	L3 1/2x3 1/2x1/4	155	-8.56	18.99	45.1 55.0 (b)	Pass
Т8	60 - 40	Diagonal	L3 1/2x3 1/2x1/4	166	-9.25	16.23	57.0 58.5 (b)	Pass
Т9	40 - 20	Diagonal	L3 1/2x3 1/2x1/4	181	-9.80	13.73	71.4	Pass
T10	20 - 0	Diagonal	L4x4x1/4	196	-10.94	17.67	61.9 66.1 (b)	Pass
T1	200 - 180	Top Girt	L1 3/4x1 3/4x3/16	4	-0.43	7.66	5.6	Pass
							Summary	
						Leg (T6)	91.5	Pass
						Diagonal (T3)	93.8	Pass
						Top Girt (T1)	5.6	Pass
						Bolt Checks	72.6	Pass
						Rating =	93.8	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC4

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	57.5	Pass
1	Base Foundation Structural	0	73.1	Pass
1	Base Foundation Soil Interaction	0	69.0	Pass

Structure Rating (max from all components) =	93.8%
--	-------


T

4.1) Recommendations

Perform the modifications detailed in "Appendix D" to remedy the deficiencies identified in Crown Castle Work Order No. 1847521.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH											
GRADE	Fy	Fu	GRADE	Fy	Fu						
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi						

TOWER DESIGN NOTES

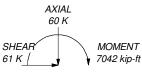
- Tower is located in Hartford County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- - 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to
 - increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

Tower Risk Category II. Topographic Category 1 with Crest Height of 0.00 ft TOWER RATING: 93.8% 6. 7. 8.

ALL REACTIONS ARE FACTORED MAX. CORNER REACTIONS AT BASE:

UPLIFT: -327 K SHEAR: 34 K


DOWN: 373 K

SHEAR: 38 K

MOMENT 2405 kip-ft

TORQUE 12 kip-ft 50 mph WIND - 2.000 in ICE

TORQUE 28 kip-ft REACTIONS - 125 mph WIND

	Crown Castle	^{Job:} BU 871584								
CROWN	2000 Corporate Drive	Project:	Project:							
CASTLE	Canonsburg, PA 15317	Client: Crown Castle	^{Drawn by:} dstephens	App'd:						
The Pathway to Possible	Phone: 724-416-2000			Scale: NTS						
The Failway to Possible		Path:	June\871584 WO 1853234\Working\QA\871584.et	Dwg No. E-1						

Tower Input Data

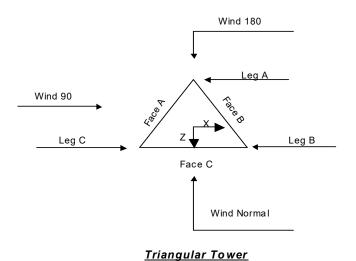
The main tower is a 3x free standing tower with an overall height of 200.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.000 ft at the top and 23.000 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Hartford County, Connecticut.
- 2) Tower base elevation above sea level: 878.00 ft.
- 3) Basic wind speed of 125 mph.
- 4) Risk Category II.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.00 ft.
- 9) Nominal ice thickness of 2.000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) A non-linear (P-delta) analysis was used.
- 16) Pressures are calculated at each section.
- 17) Tower analysis based on target reliabilities in accordance with Annex S.
- 18) Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- 19) Stress ratio used in tower member design is 1.05.
- 20) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.


Options

Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules **Consider Moments - Horizontals** Assume Legs Pinned ✓ Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Alwavs Use Max Kz Use Azimuth Dish Coefficients Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Use Special Wind Profile Project Wind Area of Appurt. Exemption Use TIA-222-H Tension Splice $\sqrt{}$ Include Bolts In Member Capacity Autocalc Torque Arm Areas Exemption Leg Bolts Are At Top Of Section Add IBC .6D+W Combination

Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Exemption Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances

Outside and Inside Corner Radii Are Known

Tower Section Geometry

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	
	ft			ft		ft
T1	200.00-180.00			5.000	1	20.00
T2	180.00-160.00			5.000	1	20.00
Т3	160.00-140.00			7.000	1	20.00
T4	140.00-120.00			9.000	1	20.00
T5	120.00-100.00			11.000	1	20.00
T6	100.00-80.00			13.000	1	20.00
T7	80.00-60.00			15.000	1	20.00
Т8	60.00-40.00			17.000	1	20.00
Т9	40.00-20.00			19.000	1	20.00
T10	20.00-0.00			21.000	1	20.00

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		End Panels		in	in
T1	200.00-180.00	4.979	X Brace	No	No	0.000	1.000
T2	180.00-160.00	4.979	X Brace	No	No	0.000	1.000
Т3	160.00-140.00	4.979	X Brace	No	No	0.000	1.000
T4	140.00-120.00	6.639	X Brace	No	No	0.000	1.000
T5	120.00-100.00	6.639	X Brace	No	No	0.000	1.000
T6	100.00-80.00	6.639	X Brace	No	No	0.000	1.000
T7	80.00-60.00	9.958	X Brace	No	No	0.000	1.000
T8	60.00-40.00	9.958	X Brace	No	No	0.000	1.000
Т9	40.00-20.00	9.958	X Brace	No	No	0.000	1.000
T10	20.00-0.00	9.958	X Brace	No	No	0.000	1.000

Tower Section Geometry (cont'd)

Tower Elevation	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
ft						
T1 200.00-	Pipe	Sabre 2.875x.375	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
180.00	•		(50 ksi)			(36 ksi)
T2 180.00-	Pipe	Sabre 3.5 x .3	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
160.00	•		(50 ksi)			(36 ksi)
T3 160.00-	Pipe	Sabre 4 x .318	A572-50	Equal Angle	L1 3/4x1 3/4x3/16	A36
140.00	•		(50 ksi)			(36 ksi)
T4 140.00-	Pipe	Sabre 4.5 x .438	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
120.00	•		(50 ksi)			(36 ksi)
T5 120.00-	Pipe	Sabre 5.5625 x .375	A572-50	Equal Angle	L2 1/2x2 1/2x3/16	A36
100.00			(50 ksi)			(36 ksi)
T6 100.00-	Pipe	Sabre 5.5625 x .375	A572-50	Equal Angle	L3x3x3/16	A36
80.00			(50 ksi)			(36 ksi)
T7 80.00-60.00	Pipe	Sabre 6.625 x .432	A572-50	Equal Angle	L3 1/2x3 1/2x1/4	A36
			(50 ksi)			(36 ksi)
T8 60.00-40.00	Pipe	Sabre 8.625 x .322	A572-50	Equal Angle	L3 1/2x3 1/2x1/4	A36
			(50 ksi)			(36 ksi)
T9 40.00-20.00	Pipe	Sabre 8.625 x .5	À572-50	Equal Angle	L3 1/2x3 1/2x1/4	`A36 ´
	-		(50 ksi)			(36 ksi)
T10 20.00-0.00	Pipe	Sabre 8.625 x .5	À572-50	Equal Angle	L4x4x1/4	`A36 ´
	•		(50 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 200.00-	Equal Angle	L1 3/4x1 3/4x3/16	A36	Solid Round		A36
180.00			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness		<i>A</i> _f	Factor Ar		Stitch Bolt Spacing Diagonals	Stitch Bolt Spacing Horizontals	Stitch Bolt Spacing Redundants
ft	ft ²	in					in	in	in
T1 200.00- 180.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T2 180.00- 160.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T3 160.00- 140.00	0.00	0.375	`A36 ´ (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T4 140.00- 120.00	0.00	0.375	`A36 ´ (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T5 120.00- 100.00	0.00	0.375	`A36 ´ (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T6 100.00- 80.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T7 80.00- 60.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T8 60.00- 40.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T9 40.00- 20.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt
T10 20.00- 0.00	0.00	0.375	A36 (36 ksi)	1.03	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt

			Towe	r Secti	on Geo	ometry	(cont'o	d)				
			K Factors ¹									
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X V	K Brace Diags X	Single Diags X Y	Girts X Y	Horiz. X Y	Sec. Horiz. X Y	Inner Brace X Y		
ft T1 200.00-	Yes	No	1	Y 1	Y 1	Y 1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
180.00	res	INO	I	1	1	1	1	1	1	1		
T2 180.00-	Yes	No	1	1	1	1	1	1	1	1		
160.00				1	1	1	1	1	1	1		
T3 160.00-	Yes	No	1	1	1	1	1	1	1	1		
140.00				1	1	1	1	1	1	1		
T4 140.00-	Yes	No	1	1	1	1	1	1	1	1		
120.00				1	1	1	1	1	1	1		
T5 120.00- 100.00	Yes	No	1	1	1	1	1	1	1	1		
T6 100.00-	Yes	No	1	1	1	1	1	1	1	1		
80.00	165	NU	1	1	1	1	1	1	1	1		
T7 80.00-	Yes	No	1	1	1	1	1	1	1	1		
60.00				1	1	1	1	1	1	1		
T8 60.00-	Yes	No	1	1	1	1	1	1	1	1		
40.00				1	1	1	1	1	1	1		
T9 40.00-	Yes	No	1	1	1	1	1	1	1	1		
20.00				1	1	1	1	1	1	1		
T10 20.00-	Yes	No	1	1	1	1	1	1	1	1		
0.00				1	1	1	1	1	1	1		

11 IN

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

				low	<u>er Sec</u>	tior	<u>ı Geo</u>	metr	'y (col	nťď)				
Tower Elevation ft	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
'n	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 200.00- 180.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T2 180.00- 160.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T3 160.00- 140.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T4 140.00- 120.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T5 120.00- 100.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T6 100.00- 80.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T7 80.00- 60.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T8 60.00- 40.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T9 40.00- 20.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75
T10 20.00- 0.00	0.000	1	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75	0.000	0.75

(1 I) ... /

Tower	Leg	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal		
Elevation	Connection													Horizoi	ntal
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 200.00-	Flange	0.750	4	0.625	1	0.625	1	0.000	0	0.625	0	0.000	0	0.625	0
180.00		A325X		A325X		A325X		A325N		A325N		A325N		A325N	
T2 180.00-	Flange	1.000	4	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
160.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T3 160.00-	Flange	1.000	4	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
140.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T4 140.00-	Flange	1.250	4	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
120.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T5 120.00-	Flange	1.250	4	0.625	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
100.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T6 100.00-	Flange	1.250	6	0.750	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
80.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T7 80.00-	Flange	1.250	6	0.750	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
60.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T8 60.00-	Flange	1.375	6	0.750	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
40.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T9 40.00-	Flange	1.375	6	0.750	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
20.00		A325X		A325X		A325N		A325N		A325N		A325N		A325N	
T10 20.00-	Flange	0.000	0	0.750	1	0.000	0	0.000	0	0.625	0	0.000	0	0.625	0
0.00	_	A572-50		A325X		A325N		A325N		A325N		A325N		A325N	

Tower Section Geometry (cont'd)

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g in	Width or Diameter in	Perimete r in	Weight plf

LDF4- 50A(1/2)	В	No	No	Ar (CaAa)	198.00 - 163.00	0.000	0.18	1	1	0.500	0.630		0.150
LDF4- 50A(1/2)	С	No	No	Ar (CaAa)	198.00 - 0.00	-2.000	0.03	1	1	0.500	0.630		0.150
LDF5- 50A(7/8)	В	No	No	Ar (CaAa)	198.00 - 144.00	0.000	0.16	3	2	0.500	1.090		0.330
760178129(1 /4)	В	No	No	Ar (CaAa)	190.00 - 182.00	1.000	-0.08	18	9	0.330	0.330		0.044
LDF4- 50A(1/2)	В	No	No	Ar (CaAa)	190.00 - 182.00	0.000	-0.08	9	9	0.625	0.625		0.150
760178129(1 /4)	В	No	No	Ar (CaAa)	182.00 - 0.00	3.000	-0.08	18	9	0.330	0.001		0.040
LDF4- 50A(1/2) ***	В	No	No	Ar (CaAa)	182.00 - 0.00	2.000	-0.08	9	9	0.625	0.001		0.150
AVA7-50(1- 5/8)	В	No	No	Ar (CaAa)	182.00 - 0.00	0.000	-0.1	12	8	0.500	2.010		0.700
Feedline Ladder (Af)	В	No	No	Af (CaAa)	168.00 - 0.00	0.000	-0.1	1	1	1.500	1.500		8.400
HB114-1- 0813U4- M5J(1-1/4)	С	No	No	Ar (CaAa)	170.00 - 0.00	-2.000	0.02	4	4	0.500	1.540		1.200
Feedline Ladder (Af)	С	No	No	Af (CaAa)	170.00 - 0.00	-1.000	0.005	1	1	3.000	3.000		8.400
FLC 12- 50J(1/2)	В	No	No	Ar (CaAa)	163.00 - 144.00	0.000	0.14	2	2	0.500	0.640		0.170
LDF5- 50A(7/8)	В	No	No	Ar (CaAa)	144.00 - 0.00	0.000	0.15	5	5	0.500	1.090		0.330

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g in	Width or Diameter in	Perimete r in	Weight plf
LDF4- 50A(1/2)	В	No	No	Ar (CaAa)	144.00 - 56.00	0.000	0.12	5	5	0.625	0.630		0.150
LDF4- 50A(1/2)	С	No	No	Ar (CaAa)	53.00 - 0.00	-1.500	0.03	1	1	0.630	0.630		0.150
LDF4- 50A(1/2)	В	No	No	Ar (CaAa)	56.00 - 0.00	1.000	0.15	6	6	0.630	0.630		0.150
LDF2- 50(3/8")	В	No	No	Ar (CaAa)	100.00 - 0.00	0.000	0.04	1	1	0.500	0.440		0.080
50-AC-208- 8SM(3/4")	В	No	No	Ar (CaAa)	200.00 - 0.00	0.000	0.05	1	1	0.740	0.740		0.290
Feedline Ladder (Af)	В	No	No	Af (CaAa)	200.00 - 0.00	0.000	0.05	1	1	3.000	3.000		8.400
Feedline Ladder (Af)	В	No	No	Af (CaAa)	200.00 - 0.00	0.000	0.15	1	1	3.000	3.000		8.400
Thin Flat Bar Climbing Ladder	С	No	No	Af (CaAa)	200.00 - 0.00	0.000	0	1	1	2.000	2.000		4.000
Safety Line 3/8	С	No	No	Ar (CaAa)	200.00 - 0.00	0.000	0	1	1	0.375	0.375		0.220
1 1/2" Rigid Conduit	В	No	No	Ar (CaAa)	200.00 - 0.00	0.000	0.06	1	1	1.500	1.500		1.000
Feedline Ladder (Af)	А	No	No	Af (CaAa)	180.00 - 0.00	0.000	-0.13	1	1	3.000	3.000		8.400
Feedline Ladder (Af)	A	No	No	Af (CaAa)	140.00 - 0.00	0.000	-0.03	1	1	3.000	3.000		8.400

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number	C _A A _A	Weight
	Leg	ernora	Torque	Туре	ft	, turno or	ft²/ft	plf
			Calculation	1				

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A _R	AF	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft²	ft²	ft ²	ft ²	К
T1	200.00-180.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	45.581	0.000	0.42
		С	0.000	0.000	8.551	0.000	0.09
T2	180.00-160.00	Α	0.000	0.000	10.000	0.000	0.17
		В	0.000	0.000	82.769	0.000	0.66
		С	0.000	0.000	19.837	0.000	0.22
Т3	160.00-140.00	А	0.000	0.000	10.000	0.000	0.17
		В	0.000	0.000	88.494	0.000	0.77
		С	0.000	0.000	30.997	0.000	0.35
T4	140.00-120.00	А	0.000	0.000	20.000	0.000	0.34
		В	0.000	0.000	94.974	0.000	0.79
		С	0.000	0.000	30.997	0.000	0.35
T5	120.00-100.00	А	0.000	0.000	20.000	0.000	0.34

200 Ft Self Support Tower Structural Analysis Project Number 1853234, Order 519195, Revision 0

Tower Sectio	Tower Elevation	Face	A _R	AF	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft²	ft ²	ft ²	K
		В	0.000	0.000	94.974	0.000	0.79
		С	0.000	0.000	30.997	0.000	0.35
T6	100.00-80.00	А	0.000	0.000	20.000	0.000	0.34
		В	0.000	0.000	95.854	0.000	0.79
		С	0.000	0.000	30.997	0.000	0.35
T7	80.00-60.00	А	0.000	0.000	20.000	0.000	0.34
		В	0.000	0.000	95.854	0.000	0.79
		С	0.000	0.000	30.997	0.000	0.35
T8	60.00-40.00	А	0.000	0.000	20.000	0.000	0.34
		В	0.000	0.000	96.862	0.000	0.79
		С	0.000	0.000	31.816	0.000	0.35
Т9	40.00-20.00	А	0.000	0.000	20.000	0.000	0.34
		В	0.000	0.000	97.114	0.000	0.79
		С	0.000	0.000	32.257	0.000	0.35
T10	20.00-0.00	А	0.000	0.000	20.000	0.000	0.34
		В	0.000	0.000	97.114	0.000	0.79
		С	0.000	0.000	32.257	0.000	0.35

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
T1	200.00-180.00	А	2.025	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	123.790	0.000	2.17
		С		0.000	0.000	32.043	0.000	0.57
T2	180.00-160.00	Α	2.003	0.000	0.000	18.011	0.000	0.47
		В		0.000	0.000	203.249	0.000	3.50
		С		0.000	0.000	57.862	0.000	1.06
Т3	160.00-140.00	Α	1.978	0.000	0.000	17.912	0.000	0.47
		В		0.000	0.000	220.788	0.000	3.77
		С		0.000	0.000	82.449	0.000	1.52
T4	140.00-120.00	Α	1.950	0.000	0.000	35.598	0.000	0.92
		В		0.000	0.000	232.059	0.000	3.93
		С		0.000	0.000	81.812	0.000	1.49
T5	120.00-100.00	Α	1.918	0.000	0.000	35.340	0.000	0.91
		В		0.000	0.000	230.342	0.000	3.87
		С		0.000	0.000	81.081	0.000	1.47
T6	100.00-80.00	Α	1.879	0.000	0.000	35.035	0.000	0.89
		В		0.000	0.000	236.718	0.000	3.90
		С		0.000	0.000	80.218	0.000	1.44
T7	80.00-60.00	А	1.833	0.000	0.000	34.662	0.000	0.88
		В		0.000	0.000	234.057	0.000	3.80
		С		0.000	0.000	79.162	0.000	1.40
T8	60.00-40.00	Α	1.772	0.000	0.000	34.177	0.000	0.85
		В		0.000	0.000	232.956	0.000	3.72
		С		0.000	0.000	83.217	0.000	1.42
Т9	40.00-20.00	А	1.684	0.000	0.000	33.471	0.000	0.82
		В		0.000	0.000	228.534	0.000	3.55
		С		0.000	0.000	83.790	0.000	1.38
T10	20.00-0.00	Α	1.509	0.000	0.000	32.069	0.000	0.75
		В		0.000	0.000	218.613	0.000	3.21
		С		0.000	0.000	79.134	0.000	1.24

Feed Line Center of Pressure

Section	Elevation	CPx	CP ₇	CPx	CPz
0001011	Lievalion			Ice	lce
	ft	in	in	in	in
T1	200.00-180.00	5.847	-1.460	6.654	-0.478
T2	180.00-160.00	5.585	-3.969	7.038	-2.635
Т3	160.00-140.00	6.551	-4.056	8.384	-2.584

Section	Elevation	CPx	CPz	CPx Ice	CPz Ice
	ft	in	in	in	in
T4	140.00-120.00	5.952	-4.835	8.184	-3.492
T5	120.00-100.00	6.615	-5.366	9.189	-3.893
T6	100.00-80.00	6.915	-5.611	10.521	-4.458
T7	80.00-60.00	7.886	-6.347	11.916	-5.057
Т8	60.00-40.00	8.383	-6.297	12.513	-4.546
Т9	40.00-20.00	8.944	-6.569	13.222	-4.547
T10	20.00-0.00	8.895	-6.602	13.377	-4.955

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	,	Segment	No Ice	Ice
			Elev.		
T1	2	LDF4-50A(1/2)	- 180.00 198.00	0.6000	0.5372
T1	3	LDF4-50A(1/2)	180.00 -	0.6000	0.5372
	_		198.00		
T1	4	LDF5-50A(7/8)	180.00 -	0.6000	0.5372
T1	G	760178129(1/4)	198.00	0.6000	0 5272
11	6	760176129(1/4)	182.00 - 190.00	0.0000	0.5372
T1	7	LDF4-50A(1/2)	182.00 -	0.6000	0.5372
		、 ,	190.00		
T1	8	760178129(1/4)	180.00 -	0.6000	0.5372
T1	9	LDF4-50A(1/2)	182.00 180.00 -	0.6000	0.5372
	5		182.00	0.0000	0.0072
T1	11	AVA7-50(1-5/8)	180.00 -	0.6000	0.5372
			182.00		
T1	26	50-AC-208-8SM(3/4")	180.00 -	0.6000	0.5372
T1	27	Feedline Ladder (Af)	200.00 180.00 -	0.6000	0.5372
	21		200.00	0.0000	0.0012
T1	29	Feedline Ladder (Af)	180.00 -	0.6000	0.5372
			200.00		
T1	30	Thin Flat Bar Climbing	180.00 -	0.6000	0.5372
T1	31	Ladder Safety Line 3/8	200.00 180.00 -	0.6000	0.5372
	01		200.00	0.0000	0.0012
T1	33	1 1/2" Rigid Conduit	180.00 -	0.6000	0.5372
то			200.00	0 0000	0 5000
T2	2	LDF4-50A(1/2)	163.00 - 180.00	0.6000	0.5938
Т2	3	LDF4-50A(1/2)	160.00 -	0.6000	0.5938
		· · ·	180.00		
T2	4	LDF5-50A(7/8)	160.00 -	0.6000	0.5938
T2	8	760179120(1/4)	180.00 160.00 -	0.6000	0.5938
12	°	760178129(1/4)	180.00	0.0000	0.5930
T2	9	LDF4-50A(1/2)	160.00 -	0.6000	0.5938
			180.00		
T2	11	AVA7-50(1-5/8)	160.00 -	0.6000	0.5938
T2	12	Feedline Ladder (Af)	180.00 160.00 -	0.6000	0.5938
12	12	i counte Lauder (AI)	168.00	0.0000	0.0000
T2	14	HB114-1-0813U4-M5J(1-	160.00 -	0.6000	0.5938
		1/4)	170.00	0.000-	0 -000
T2	15	Feedline Ladder (Af)	160.00 - 170.00	0.6000	0.5938
Т2	17	FLC 12-50J(1/2)	160.00 -	0.6000	0.5938
		0 12 000(112)	163.00	0.0000	0.0000
T2	26	50-AC-208-8SM(3/4")	160.00 -	0.6000	0.5938
I			180.00		

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₂ No Ice	K₄ Ice
то	07	Feedline Ledder (A6)	Ĕlev.	0.0000	0.5020
T2 T2	27 29	Feedline Ladder (Af) Feedline Ladder (Af)	160.00 - 180.00 160.00 -	0.6000 0.6000	0.5938 0.5938
T2	30	Thin Flat Bar Climbing	180.00 - 180.00 160.00 -	0.6000	0.5938
T2	31	Ladder Safety Line 3/8	180.00 160.00 -	0.6000	0.5938
T2	33	1 1/2" Rigid Conduit	180.00 160.00 -	0.6000	0.5938
T2	35	Feedline Ladder (Af)	180.00 160.00 -	0.6000	0.5938
Т3	3	LDF4-50A(1/2)	180.00 140.00 - 160.00	0.6000	0.6000
Т3	4	LDF5-50A(7/8)	144.00 - 160.00	0.6000	0.6000
Т3	8	760178129(1/4)	140.00 - 160.00	0.6000	0.6000
Т3	9	LDF4-50A(1/2)	140.00 - 160.00	0.6000	0.6000
Т3	11	AVA7-50(1-5/8)	140.00 - 160.00	0.6000	0.6000
T3 T3	12 14	Feedline Ladder (Af) HB114-1-0813U4-M5J(1-	140.00 - 160.00	0.6000 0.6000	0.6000 0.6000
T3	14	Feedline Ladder (Af)	140.00 - 160.00 140.00 -	0.6000	0.6000
T3	17	FLC 12-50J(1/2)	160.00 144.00 -	0.6000	0.6000
Т3	19	LDF5-50A(7/8)	160.00 140.00 -	0.6000	0.6000
Т3	20	LDF4-50A(1/2)	144.00 140.00 -	0.6000	0.6000
Т3	26	50-AC-208-8SM(3/4")	144.00 140.00 -	0.6000	0.6000
Т3	27	Feedline Ladder (Af)	160.00 140.00 - 160.00	0.6000	0.6000
Т3	29	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.6000
Т3	30	Thin Flat Bar Climbing Ladder	140.00 - 160.00	0.6000	0.6000
Т3	31	Safety Line 3/8	140.00 - 160.00	0.6000	0.6000
Т3	33	1 1/2" Rigid Conduit	140.00 - 160.00	0.6000	0.6000
T3	35	Feedline Ladder (Af)	140.00 - 160.00	0.6000	0.6000
T4 T4	3 8	LDF4-50A(1/2) 760178129(1/4)	120.00 - 140.00 120.00 -	0.6000 0.6000	0.6000 0.6000
T4	o 9	LDF4-50A(1/2)	140.00 - 140.00 120.00 -	0.6000	0.6000
T4	11	AVA7-50(1-5/8)	140.00 120.00 -	0.6000	0.6000
T4	12	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
T4	14	HB114-1-0813U4-M5J(1-	140.00 120.00 -	0.6000	0.6000
T4	15	1/4) Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
T4	19	LDF5-50A(7/8)	140.00 120.00 - 140.00	0.6000	0.6000
T4	20	LDF4-50A(1/2)	120.00 - 120.00 - 140.00	0.6000	0.6000
T4	26	50-AC-208-8SM(3/4")	120.00 - 140.00	0.6000	0.6000
T4	27	Feedline Ladder (Af)		0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	Ka No Ice	K₂ Ice
T4	29	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
Т4	30	Thin Flat Bar Climbing	140.00 120.00 -	0.6000	0.6000
T4	31	Ladder Safety Line 3/8	140.00 120.00 -	0.6000	0.6000
T4	33	1 1/2" Rigid Conduit	140.00 120.00 - 140.00	0.6000	0.6000
T4	35	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.6000
T4	36	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.6000
Т5	3	LDF4-50A(1/2)	100.00 - 120.00	0.6000	0.6000
Т5	8	760178129(1/4)	100.00 - 120.00	0.6000	0.6000
T5	9	LDF4-50A(1/2)	100.00 - 120.00	0.6000	0.6000
Т5	11	AVA7-50(1-5/8)	100.00 - 120.00	0.6000	0.6000
T5	12	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5	14	HB114-1-0813U4-M5J(1- 1/4)	100.00 - 120.00	0.6000	0.6000
Т5	15	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5	19	LDF5-50A(7/8)	100.00 - 120.00	0.6000	0.6000
Т5	20	LDF4-50A(1/2)	100.00 - 120.00	0.6000	0.6000
T5	26	50-AC-208-8SM(3/4")	100.00 - 120.00	0.6000	0.6000
Т5	27	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5		Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
T5	30	Thin Flat Bar Climbing Ladder	100.00 - 120.00	0.6000	0.6000
T5	31	Safety Line 3/8	100.00 - 120.00	0.6000	0.6000
Т5	33	1 1/2" Rigid Conduit	100.00 - 120.00	0.6000	0.6000
Т5	35	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т5	36	Feedline Ladder (Af)	100.00 - 120.00	0.6000	0.6000
Т6	3	LDF4-50A(1/2)	80.00 - 100.00	0.6000	0.6000
T6	8	760178129(1/4)	80.00 - 100.00	0.6000	0.6000
T6	9	LDF4-50A(1/2)	80.00 - 100.00	0.6000	0.6000
T6	11	AVA7-50(1-5/8)	80.00 - 100.00	0.6000	0.6000
T6	12	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T6	14	HB114-1-0813U4-M5J(1- 1/4)	80.00 - 100.00	0.6000	0.6000
T6	15	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T6	19	LDF5-50A(7/8)	80.00 - 100.00	0.6000	0.6000
T6	20	LDF4-50A(1/2)	80.00 - 100.00	0.6000	0.6000
T6	25	LDF2-50(3/8")	80.00 - 100.00	0.6000	0.6000
Т6	26	50-AC-208-8SM(3/4")	80.00 - 100.00	0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment	K₂ No Ice	K₂ Ice
			Ĕlev.		
Т6	27	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
Т6	29	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
Т6	30	Thin Flat Bar Climbing Ladder	80.00 - 100.00	0.6000	0.6000
Т6	31	Safety Line 3/8	80.00 -	0.6000	0.6000
Т6	33	1 1/2" Rigid Conduit	100.00 80.00 -	0.6000	0.6000
Т6	35	Feedline Ladder (Af)	100.00 80.00 -	0.6000	0.6000
Т6	36	Feedline Ladder (Af)	100.00 80.00 -	0.6000	0.6000
Т7	3	LDF4-50A(1/2)	100.00 60.00 -	0.6000	0.6000
Т7	8	760178129(1/4)	80.00 60.00 -	0.6000	0.6000
Т7	9	LDF4-50A(1/2)	80.00 60.00 -	0.6000	0.6000
Т7	11	AVA7-50(1-5/8)	80.00 60.00 -	0.6000	0.6000
Τ7	12	Feedline Ladder (Af)	80.00 - 60.00 80.00	0.6000	0.6000
Τ7	14	HB114-1-0813U4-M5J(1- 1/4)	60.00 - 80.00	0.6000	0.6000
Τ7	15	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т7	19	LDF5-50A(7/8)	60.00 - 80.00	0.6000	0.6000
Τ7	20	LDF4-50A(1/2)	60.00 - 80.00	0.6000	0.6000
Т7	25	LDF2-50(3/8")	60.00 - 80.00	0.6000	0.6000
Т7	26	50-AC-208-8SM(3/4")	60.00 - 80.00	0.6000	0.6000
Т7	27	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т7	29	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т7	30	Thin Flat Bar Climbing Ladder	60.00 - 80.00	0.6000	0.6000
Τ7	31	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
Τ7	33	1 1/2" Rigid Conduit	60.00 -	0.6000	0.6000
Τ7	35	Feedline Ladder (Af)	80.00 - 60.00 80.00	0.6000	0.6000
Τ7	36	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
Т8	3	LDF4-50A(1/2)	40.00 - 60.00	0.6000	0.6000
Т8	8	760178129(1/4)	40.00 - 60.00	0.6000	0.6000
Т8	9	LDF4-50A(1/2)	40.00 - 60.00	0.6000	0.6000
Т8	11	AVA7-50(1-5/8)	40.00 - 60.00	0.6000	0.6000
Т8	12	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т8	14	HB114-1-0813U4-M5J(1- 1/4)	40.00 - 60.00	0.6000	0.6000
Т8	15	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т8	19	LDF5-50A(7/8)	40.00 - 60.00	0.6000	0.6000
Т8	20	LDF4-50A(1/2)	56.00 - 60.00	0.6000	0.6000
Т8	22	LDF4-50A(1/2)		0.6000	0.6000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K₂ No Ice	Kª Ice
Т8	24	LDF4-50A(1/2)	53.00 40.00 -	0.6000	0.6000
Т8	25	LDF2-50(3/8")	56.00 40.00 -	0.6000	0.6000
Т8	26	50-AC-208-8SM(3/4")	60.00 40.00 -	0.6000	0.6000
Т8	27	Feedline Ladder (Af)	60.00 40.00 -	0.6000	0.6000
Т8	29	Feedline Ladder (Af)	60.00 40.00 - 60.00	0.6000	0.6000
Т8	30	Thin Flat Bar Climbing Ladder	40.00 - 60.00	0.6000	0.6000
Т8	31	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
Т8	33	1 1/2" Rigid Conduit	40.00 - 60.00	0.6000	0.6000
Т8	35	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т8	36	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т9	3	LDF4-50A(1/2)	20.00 - 40.00	0.6000	0.6000
Т9	8	760178129(1/4)	20.00 - 40.00	0.6000	0.6000
Т9	9	LDF4-50A(1/2)	20.00 - 40.00	0.6000	0.6000
Т9	11	AVA7-50(1-5/8)	20.00 - 40.00	0.6000	0.6000
Т9	12	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	14	-HB114-1-0813U4-M5J(1 1/4)	20.00 - 40.00	0.6000	0.6000
Т9	15	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	19	LDF5-50A(7/8)	20.00 - 40.00	0.6000	0.6000
Т9	22	LDF4-50A(1/2)	20.00 - 40.00	0.6000	0.6000
Т9	24	LDF4-50A(1/2)	20.00 - 40.00	0.6000	0.6000
Т9	25	LDF2-50(3/8")	20.00 - 40.00	0.6000	0.6000
Т9	26	50-AC-208-8SM(3/4")	20.00 - 40.00	0.6000	0.6000
Т9	27	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	29	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
Т9	30	Thin Flat Bar Climbing Ladder	20.00 - 40.00	0.6000	0.6000
T9	31	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T9 T0	33	1 1/2" Rigid Conduit	20.00 - 40.00	0.6000	0.6000
T9 T0	35	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T9	36	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T10 T10	3 8	LDF4-50A(1/2) 760178129(1/4)	0.00 - 20.00 0.00 - 20.00	0.6000 0.6000	0.6000 0.6000
T10 T10	9 11	LDF4-50A(1/2) AVA7-50(1-5/8)	0.00 - 20.00 0.00 - 20.00	0.6000 0.6000	0.6000 0.6000
T10 T10	12	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10	14	HB114-1-0813U4-M5J(1- 1/4)	0.00 - 20.00	0.6000	0.6000
T10 T10	15 19	Feedline Ladder (Af) LDF5-50A(7/8)	0.00 - 20.00 0.00 - 20.00	0.6000 0.6000	0.6000 0.6000
T10					

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
			Elev.		
T10	24	LDF4-50A(1/2)	0.00 - 20.00	0.6000	0.6000
T10	25	LDF2-50(3/8")	0.00 - 20.00	0.6000	0.6000
T10	26	50-AC-208-8SM(3/4")	0.00 - 20.00	0.6000	0.6000
T10	27	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10	29	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10	30	Thin Flat Bar Climbing	0.00 - 20.00	0.6000	0.6000
		Ladder			
T10	31	Safety Line 3/8	0.00 - 20.00	0.6000	0.6000
T10	33	1 1/2" Rigid Conduit	0.00 - 20.00	0.6000	0.6000
T10	35	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
T10	36	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
15" Dia. x 15" Beacon	А	From Leg	0.00	0.000	200.00	No Ice	0.78	0.78	0.03
			0.000			1/2"	1.24	1.24	0.05
			15.000			Ice	1.40	1.40	0.07
						1" Ice	1.75	1.75	0.12
		- ·	0.00			2" Ice	0.04	0.04	0.00
2.4" x 16' Mount Pipe	A	From Leg	0.00	0.000	200.00	No Ice	3.84	3.84	0.06
			0.000			1/2"	5.47	5.47	0.09
			7.000			lce	7.11	7.11	0.13
						1" Ice 2" Ice	10.45	10.45	0.23
15" Dia. x 15" Beacon	С	From Leg	0.00	0.000	200.00	No Ice	0.78	0.78	0.03
			0.000			1/2"	1.24	1.24	0.05
			15.000			lce	1.40	1.40	0.07
						1" Ice 2" Ice	1.75	1.75	0.12
2.4" x 16' Mount Pipe	С	From Leg	0.00	0.000	200.00	No Ice	3.84	3.84	0.06
			0.000			1/2"	5.47	5.47	0.09
			7.000			Ice	7.11	7.11	0.13
						1" Ice 2" Ice	10.45	10.45	0.23
3" x 6" SideLight	А	From Leg	0.00	0.000	102.00	No Ice	0.09	0.09	0.00
0		Ũ	0.000			1/2"	0.14	0.14	0.00
			0.000			Ice	0.19	0.19	0.00
						1" Ice 2" Ice	0.34	0.34	0.01
3" x 6" SideLight	В	From Leg	0.00	0.000	102.00	No Ice	0.09	0.09	0.00
5		5	0.000			1/2"	0.14	0.14	0.00
			0.000			Ice	0.19	0.19	0.00
						1" Ice 2" Ice	0.34	0.34	0.01
3" x 6" SideLight	С	From Leg	0.00	0.000	102.00	No Ice	0.09	0.09	0.00
	-	g	0.000	0.000		1/2"	0.14	0.14	0.00
			0.000			lce	0.19	0.19	0.00
						1" Ice 2" Ice	0.34	0.34	0.01
**									
DB225-A	А	From Leg	4.00	0.000	198.00	No Ice	3.21	3.21	0.04
			0.000			1/2"	5.78	5.78	0.05
			7.000			lce	8.35	8.35	0.06
						1" Ice	13.48	13.48	0.08
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
ALR10-O	В	From Leg	4.00	0.000	198.00	No Ice	6.63	6.63	0.09
		-	0.000			1/2"	15.31	15.31	0.18
			10.000			lce	17.39	17.39	0.28
						1" Ice	20.79	20.79	0.52
OGB6-928N	В	From Leg	4.00	0.000	198.00	2" Ice No Ice	0.97	0.97	0.01
0980-9201	Б	FIOILEG	0.000	0.000	190.00	1/2"	1.33	1.33	0.01
			6.000			lce	1.63	1.63	0.02
			0.000			1" Ice	2.26	2.26	0.06
						2" Ice			
PD1107-1	С	From Leg	4.00	0.000	198.00	No Ice	2.18	2.18	0.01
			0.000			1/2"	3.29	3.29	0.02
			7.000			Ice	4.43	4.43	0.05
						1" Ice 2" Ice	6.42	6.42	0.12
PD201-7	С	From Leg	4.00	0.000	198.00	No Ice	1.02	1.02	0.00
1 0201-7	C	T IOIII Leg	0.000	0.000	190.00	1/2"	1.81	1.81	0.00
			7.000			lce	2.62	2.62	0.03
						1" Ice	3.76	3.76	0.07
						2" Ice			
(4) 6' x 2" Mount Pipe	Α	From Leg	4.00	0.000	198.00	No Ice	1.43	1.43	0.02
			0.000			1/2"	1.92	1.92	0.03
			0.000			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
(4) 6' x 2" Mount Ding	В	From Log	4.00	0.000	198.00	2" Ice No Ice	1.43	1.43	0.02
(4) 6' x 2" Mount Pipe	D	From Leg	4.00 0.000	0.000	196.00	1/2"	1.43	1.43	0.02
			0.000			lce	2.29	2.29	0.05
			0.000			1" Ice	3.06	3.06	0.09
						2" Ice			
(4) 6' x 2" Mount Pipe	С	From Leg	4.00	0.000	198.00	No Ice	1.43	1.43	0.02
			0.000			1/2"	1.92	1.92	0.03
			0.000			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
(2) 4' x 2" Pipe Mount	А	From Leg	4.00	0.000	198.00	2" Ice No Ice	0.79	0.79	0.03
	A	FIOIII Leg	0.000	0.000	190.00	1/2"	1.03	1.03	0.03
			0.000			lce	1.28	1.28	0.04
						1" Ice	1.81	1.81	0.07
						2" Ice			
(2) 4' x 2" Pipe Mount	В	From Leg	4.00	0.000	198.00	No Ice	0.79	0.79	0.03
			0.000			1/2"	1.03	1.03	0.04
			0.000			lce 1" lce	1.28	1.28	0.04
						2" Ice	1.81	1.81	0.07
(2) 4' x 2" Pipe Mount	С	From Leg	4.00	0.000	198.00	No Ice	0.79	0.79	0.03
(_) : / _ : .pooa	•		0.000	0.000		1/2"	1.03	1.03	0.04
			0.000			Ice	1.28	1.28	0.04
						1" Ice	1.81	1.81	0.07
	-					2" Ice			
Sector Mount [SM 702-3]	С	None		0.000	198.00	No Ice	38.89	38.89	1.55
						1/2" Ice	50.40 61.77	50.40 61.77	2.28 3.22
						1" Ice	84.35	84.35	5.70
						2" Ice	000	000	0.10

2) MXM REPEATER MK2	А	From Leg	1.00	0.000	190.00	No Ice	1.57	0.75	0.02
			0.000			1/2"	1.73	0.88	0.03
			0.000			lce 1" lce	1.90 2.26	1.01 1.29	0.04 0.08
						2" Ice	2.20	1.29	0.00
2) MXM REPEATER MK2	В	From Lea	1.00	0.000	190.00	No Ice	1.57	0.75	0.02
2) MXM REPEATER MK2	В	From Leg	1.00 0.000	0.000	190.00		1.57 1.73	0.75 0.88	0.02 0.03
2) MXM REPEATER MK2	В	From Leg		0.000	190.00	No Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft		ft		ft²	ft²	к
			ft ft	٥					
			11			2" Ice			
(2) MXM REPEATER MK2	С	From Leg	1.00	0.000	190.00	No Ice	1.57	0.75	0.02
			0.000			1/2"	1.73	0.88	0.03
			0.000			lce	1.90	1.01	0.04
						1" Ice	2.26	1.29	0.08
						2" Ice			
Pipe Mount [PM 601-1]	A	From Leg	0.50	0.000	190.00	No Ice	1.32	1.32	0.07
			0.000			1/2"	1.58	1.58	0.08
			0.000			lce	1.84	1.84	0.09
						1" Ice	2.40	2.40	0.13
Dine Mount [DM 601 1]	Р	From Log	0 50	0.000	190.00	2" Ice	1 20	1 20	0.07
Pipe Mount [PM 601-1]	В	From Leg	0.50 0.000	0.000	190.00	No Ice 1/2"	1.32 1.58	1.32 1.58	0.07 0.08
			0.000			lce	1.84	1.84	0.08
			0.000			1" Ice	2.40	2.40	0.09
						2" Ice	2.40	2.40	0.10
Pipe Mount [PM 601-1]	С	From Leg	0.50	0.000	190.00	No Ice	1.32	1.32	0.07
	0	1 Ioni Log	0.000	0.000	100.00	1/2"	1.58	1.58	0.08
			0.000			lce	1.84	1.84	0.09
			0.000			1" Ice	2.40	2.40	0.13
***						2" Ice	20	2	0110
APXVAARR24 43-U-NA20	А	From Leg	4.00	0.000	182.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		5	0.000			1/2"	15.46	7.55	0.31
•			-5.000			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
						2" Ice			
APXVAARR24_43-U-NA20	В	From Leg	4.00	0.000	182.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		-	0.000			1/2"	15.46	7.55	0.31
			-5.000			Ice	16.23	8.25	0.46
						1" Ice 2" Ice	17.82	9.67	0.79
APXVAARR24 43-U-NA20	С	From Leg	4.00	0.000	182.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe			0.000			1/2"	15.46	7.55	0.31
•			-5.000			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
						2" Ice			
APXV18-209015-C-A20 w/	А	From Leg	4.00	0.000	182.00	No Ice	3.79	3.16	0.06
Mount Pipe			0.000			1/2"	4.36	3.71	0.10
			-5.000			lce	4.94	4.28	0.15
						1" Ice	6.14	5.47	0.28
	_					2" Ice			
APXV18-209015-C-A20 w/	В	From Leg	4.00	0.000	182.00	No Ice	3.79	3.16	0.06
Mount Pipe			0.000			1/2"	4.36	3.71	0.10
			-5.000			lce	4.94	4.28	0.15
						1" Ice	6.14	5.47	0.28
ADX1/10 200015 0 400 cm	~	From Lar	4 00	0.000	100.00	2" Ice	2 70	0.40	0.00
APXV18-209015-C-A20 w/	С	From Leg	4.00	0.000	182.00	No Ice	3.79	3.16	0.06
Mount Pipe			0.000			1/2"	4.36	3.71	0.10
			-5.000			lce 1" lce	4.94 6.14	4.28 5.47	0.15
						2" Ice	0.14	5.47	0.28
RADIO 4449 B12/B71	А	From Leg	4.00	0.000	182.00	No Ice	1.65	1.16	0.07
	Л	. ioni Leg	0.000	0.000	102.00	1/2"	1.81	1.30	0.07
			-5.000			lce	1.98	1.45	0.03
			0.000			1" Ice	2.34	1.76	0.16
						2" Ice			
RADIO 4449 B12/B71	В	From Leg	4.00	0.000	182.00	No Ice	1.65	1.16	0.07
		3	0.000			1/2"	1.81	1.30	0.09
			-5.000			lce	1.98	1.45	0.11
						1" Ice	2.34	1.76	0.16
						2" Ice			
RADIO 4449 B12/B71	С	From Leg	4.00	0.000	182.00	No Ice	1.65	1.16	0.07
		5	0.000			1/2"	1.81	1.30	0.09

200 Ft Self Support Tower Structural Analysis Project Number 1853234, Order 519195, Revision 0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
						1" Ice 2" Ice	2.34	1.76	0.16
(2) KRY 112 489/2	В	From Leg	4.00	0.000	182.00	No Ice	0.56	0.37	0.02
		0	0.000			1/2"	0.66	0.45	0.02
			1.000			Ice	0.76	0.54	0.03
						1" Ice 2" Ice	1.00	0.75	0.05
KRY 112 489/2	С	From Leg	4.00	0.000	182.00	No Ice	0.56	0.37	0.02
			0.000			1/2"	0.66	0.45	0.02
			1.000			lce	0.76	0.54	0.03
						1" Ice 2" Ice	1.00	0.75	0.05
Sector Mount [SM 702-3]	С	None		0.000	182.00	No Ice	38.89	38.89	1.55
						1/2"	50.40	50.40	2.28
						Ice	61.77	61.77	3.22
						1" Ice 2" Ice	84.35	84.35	5.70
(3) 6' x 2" Mount Pipe	А	From Leg	4.00	0.000	182.00	No Ice	1.43	1.43	0.02
			0.000			1/2"	1.92	1.92	0.03
			0.000			lce	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
(3) 6' x 2" Mount Pipe	В	From Leg	4.00	0.000	182.00	No Ice	1.43	1.43	0.02
(3) 0 X 2 Mount Fipe	Б	FIOIIILEg	0.000	0.000	102.00	1/2"	1.43	1.43	0.02
			0.000			lce	2.29	2.29	0.05
			0.000			1" Ice	3.06	3.06	0.09
						2" Ice			
(3) 6' x 2'' Mount Pipe	С	From Leg	4.00	0.000	182.00	No Ice	1.43	1.43	0.02
			0.000			1/2"	1.92	1.92	0.03
			0.000			lce	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
SitePro STK-U Stiff Arm Kit	А	From Leg	2.00	0.000	182.00	No Ice	1.14	0.00	0.02
	~	Tiom Log	0.000	0.000	102.00	1/2"	1.76	0.00	0.02
			0.000			lce	2.14	0.00	0.04
						1" Ice	2.90	0.00	0.08
						2" Ice			
SitePro STK-U Stiff Arm Kit	В	From Leg	2.00	0.000	182.00	No Ice	1.14	0.00	0.02
			0.000			1/2"	1.76	0.00	0.03
			0.000			lce	2.14	0.00	0.04
						1" Ice 2" Ice	2.90	0.00	0.08
SitePro STK-U Stiff Arm Kit	С	From Leg	2.00	0.000	182.00	No Ice	1.14	0.00	0.02
	0	Tiom Log	0.000	0.000	102.00	1/2"	1.76	0.00	0.02
			0.000			lce	2.14	0.00	0.04
						1" Ice	2.90	0.00	0.08
**						2" Ice			
APXVTM14-ALU-I20 w/	А	From Leg	4.00	0.000	170.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.000			1/2"	4.48	3.23	0.13
			1.000			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
	-	F n n n n n n n n n n	4.00	0.000	470.00	2" Ice	4.00	0.00	0.00
APXVTM14-ALU-I20 w/	В	From Leg	4.00	0.000	170.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.000 1.000			1/2" Ice	4.48 4.88	3.23 3.61	0.13 0.19
			1.000			1" Ice	4.00 5.71	4.40	0.19
						2" Ice			
APXVTM14-ALU-I20 w/	С	From Leg	4.00	0.000	170.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.000			1/2"	4.48	3.23	0.13
			1.000			lce 1" lce	4.88	3.61	0.19
						2" Ice	5.71	4.40	0.33
NNVV-65B-R4 w/ Mount	А	From Leg	4.00	0.000	170.00	No Ice	7.55	4.23	0.11
			0.000	0.000		1/2"	8.04	4.67	0.20

tnxTower Report - version 8.0.5.0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	K
			1.000			lce	8.53	5.12	0.30
						1" Ice 2" Ice	9.56	6.05	0.53
NNVV-65B-R4 w/ Mount	В	From Leg	4.00	0.000	170.00	No Ice	7.55	4.23	0.11
Pipe			0.000			1/2"	8.04	4.67	0.20
			1.000			Ice	8.53	5.12	0.30
						1" Ice	9.56	6.05	0.53
NNNA/ GED D4 w/ Mount	С	From Log	4.00	0.000	170.00	2" Ice	7 55	4.00	0.11
NNVV-65B-R4 w/ Mount Pipe	C	From Leg	0.000	0.000	170.00	No Ice 1/2"	7.55 8.04	4.23 4.67	0.11 0.20
Fipe			1.000			lce	8.53	5.12	0.20
			1.000			1" Ice	9.56	6.05	0.53
						2" Ice	0.00	0.00	0.00
PCS 1900MHZ 4X45W-	А	From Leg	4.00	0.000	170.00	No Ice	2.32	2.24	0.06
65MHZ		0	0.000			1/2"	2.53	2.44	0.08
			1.000			Ice	2.74	2.65	0.11
						1" Ice 2" Ice	3.19	3.09	0.17
PCS 1900MHZ 4X45W-	В	From Leg	4.00	0.000	170.00	No Ice	2.32	2.24	0.06
65MHZ	D	1 Ioiii Log	0.000	0.000	170.00	1/2"	2.53	2.44	0.08
			1.000			lce	2.74	2.65	0.11
						1" Ice	3.19	3.09	0.17
						2" Ice			
PCS 1900MHZ 4X45W-	С	From Leg	4.00	0.000	170.00	No Ice	2.32	2.24	0.06
65MHZ			0.000			1/2"	2.53	2.44	0.08
			1.000			Ice	2.74	2.65	0.11
						1" Ice	3.19	3.09	0.17
	•	F	1.00	0.000	470.00	2" Ice	4.05	4 50	0.07
TD-RRH8X20-25	A	From Leg	4.00	0.000	170.00	No Ice 1/2"	4.05	1.53 1.71	0.07
			0.000 1.000			lce	4.30 4.56	1.71	0.10 0.13
			1.000			1" Ice	4.50 5.10	2.30	0.13
						2" Ice	0.10	2.00	0.20
TD-RRH8X20-25	В	From Leg	4.00	0.000	170.00	No Ice	4.05	1.53	0.07
	2		0.000	0.000		1/2"	4.30	1.71	0.10
			1.000			Ice	4.56	1.90	0.13
						1" Ice	5.10	2.30	0.20
						2" Ice			
TD-RRH8X20-25	С	From Leg	4.00	0.000	170.00	No Ice	4.05	1.53	0.07
			0.000			1/2"	4.30	1.71	0.10
			1.000			lce	4.56	1.90	0.13
						1" Ice 2" Ice	5.10	2.30	0.20
(2) RRH2X50-800	А	From Leg	4.00	0.000	170.00	No Ice	1.70	1.28	0.05
		T Tom Log	0.000	0.000	170.00	1/2"	1.86	1.43	0.07
			1.000			lce	2.03	1.58	0.09
						1" Ice	2.40	1.91	0.14
						2" Ice			
(2) RRH2X50-800	В	From Leg	4.00	0.000	170.00	No Ice	1.70	1.28	0.05
			0.000			1/2"	1.86	1.43	0.07
			1.000			lce	2.03	1.58	0.09
						1" lce 2" lce	2.40	1.91	0.14
(2) RRH2X50-800	С	From Leg	4.00	0.000	170.00	Z ICe No Ice	1.70	1.28	0.05
	0	1 Join Ley	0.000	0.000	110.00	1/2"	1.86	1.43	0.03
			1.000			lce	2.03	1.58	0.09
						1" Ice	2.40	1.91	0.14
						2" Ice			
10' horizontal x 2" Pipe	А	From Leg	2.00	0.000	170.00	No Ice	1.90	0.01	0.03
Mount			0.000			1/2"	2.92	0.04	0.04
			0.000			lce	3.97	0.09	0.06
						1" Ice	5.65	0.21	0.13
10' horizontal y 0" Din-	В	From	2.00	0.000	170.00	2" Ice	1.00	0.04	0.00
10' horizontal x 2'' Pipe Mount	D	From Leg	2.00 0.000	0.000	170.00	No Ice 1/2"	1.90 2.92	0.01 0.04	0.03 0.04
MOUTE			0.000			1/2	2.92	0.04	0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
			0.000			lce 1" lce	3.97 5.65	0.09 0.21	0.06 0.13
						2" Ice		0.2	
10' horizontal x 2" Pipe	С	From Leg	2.00	0.000	170.00	No Ice	1.90	0.01	0.03
Mount			0.000 0.000			1/2" Ice	2.92 3.97	0.04 0.09	0.04 0.06
			0.000			1" Ice	5.65	0.09	0.00
						2" Ice	0100	0.2.	0110
6' x 2" Mount Pipe	А	From Leg	4.00	0.000	170.00	No Ice	1.43	1.43	0.02
			0.000			1/2"	1.92	1.92	0.03
			0.000			lce	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
6' x 2" Mount Pipe	В	From Leg	4.00	0.000	170.00	No Ice	1.43	1.43	0.02
o x = mount ipo	-		0.000	0.000		1/2"	1.92	1.92	0.03
			0.000			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
6' x 2" Mount Pipe	С	From Leg	4.00	0.000	170.00	2" Ice No Ice	1.43	1.43	0.02
	C	FIOII Leg	0.000	0.000	170.00	1/2"	1.43	1.43	0.02
			0.000			lce	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
	-					2" Ice			
Sector Mount [SM 506-3]	С	None		0.000	170.00	No Ice	32.27	32.27	1.74
						1/2" Ice	45.45 58.44	45.45 58.44	2.39 3.23
						1" Ice	84.07	84.07	5.23 5.54
						2" Ice	01.07	01.07	0.01
*** Ding Mount [DM 601 1]	А	From Log	0.50	0.000	163.00	No leo	1.32	1.32	0.07
Pipe Mount [PM 601-1]	A	From Leg	0.000	0.000	103.00	No Ice 1/2"	1.52	1.52	0.07
			0.000			lce	1.84	1.84	0.09
						1" Ice	2.40	2.40	0.13
***						2" Ice			
(2) PD1109-1	В	From Leg	4.00	0.000	144.00	No Ice	2.83	2.83	0.02
(=) · = · · · · · ·	-		0.000	0.000		1/2"	3.89	3.89	0.04
			8.000			Ice	4.97	4.97	0.07
						1" Ice	6.37	6.37	0.14
	~		4 00	0.000	111.00	2" Ice	0.05	0.05	0.00
SRL480N1DT4	С	From Leg	4.00 0.000	0.000	144.00	No Ice 1/2"	6.35 8.08	6.35 8.08	0.03 0.07
			11.000			lce	9.81	9.81	0.07
			11.000			1" Ice	13.32	13.32	0.25
						2" Ice			
(4) 6' x 2" Mount Pipe	Α	From Leg	4.00	0.000	144.00	No Ice	1.43	1.43	0.02
			0.000			1/2"	1.92	1.92	0.03
			0.000			lce 1" lce	2.29 3.06	2.29 3.06	0.05 0.09
						2" Ice	3.00	3.00	0.09
(4) 6' x 2" Mount Pipe	В	From Leg	4.00	0.000	144.00	No Ice	1.43	1.43	0.02
. /		5	0.000	-		1/2"	1.92	1.92	0.03
			0.000			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
(4) 6' x 2'' Mount Pipe	С	From Leg	4.00	0.000	144.00	2" Ice No Ice	1.43	1.43	0.02
	U	I IOIII LEY	0.000	0.000	144.00	1/2"	1.43	1.43	0.02
			0.000			lce	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
		_ .				2" Ice			
(2) 4' x 2" Pipe Mount	Α	From Leg	4.00	0.000	144.00	No Ice	0.79	0.79	0.03
			0.000 0.000			1/2" Ice	1.03 1.28	1.03 1.28	0.04 0.04
			0.000			1" Ice	1.20	1.20	0.04
						lice	1.01	1.01	0.07

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
(2) 4' x 2" Pipe Mount	В	From Leg	4.00 0.000 0.000	0.000	144.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.79 1.03 1.28 1.81	0.79 1.03 1.28 1.81	0.03 0.04 0.04 0.07
(2) 4' x 2" Pipe Mount	С	From Leg	4.00 0.000 0.000	0.000	144.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.79 1.03 1.28 1.81	0.79 1.03 1.28 1.81	0.03 0.04 0.04 0.07
Sector Mount [SM 702-3]	С	None		0.000	144.00	No Ice 1/2" Ice 1" Ice 2" Ice	38.89 50.40 61.77 84.35	38.89 50.40 61.77 84.35	1.55 2.28 3.22 5.70
*** KS24019-L112A	С	From Leg	2.00 0.000 2.000	-30.000	53.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.10 0.18 0.26 0.42	0.10 0.18 0.26 0.42	0.01 0.01 0.01 0.01
Side Arm Mount [SO 202- 1]	С	From Leg	1.00 0.000 0.000	-30.000	53.00	2 ICe No Ice 1/2" Ice 1" Ice 2" Ice	1.78 2.24 2.75 3.89	2.97 3.57 4.19 5.55	0.11 0.13 0.16 0.25

					Dishe	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	٥	۰	ft	ft		ft²	K
USX6-6W-6GR	A	Paraboloid w/Shroud (HP)	From Leg	1.00 0.000 0.000	-6.000		190.00	6.00	No Ice 1/2" Ice 1" Ice 2" Ice	28.27 29.07 29.86 31.44	0.20 0.35 0.50 0.80
USX6-6W-6GR	В	Paraboloid w/Shroud (HP)	From Leg	1.00 0.000 0.000	53.000		190.00	6.00	No Ice 1/2" Ice 1" Ice 2" Ice	28.27 29.07 29.86 31.44	0.20 0.35 0.50 0.80
USX6-6W-6GR	С	Paraboloid w/Shroud (HP)	From Leg	1.00 0.000 0.000	-49.000		190.00	6.00	No Ice 1/2" Ice 1" Ice 2" Ice	28.27 29.07 29.86 31.44	0.20 0.35 0.50 0.80
PR-850	A	Grid	From Leg	1.00 0.000 0.000	30.000		163.00	5.67	No Ice 1/2" Ice 1" Ice 2" Ice	25.22 25.97 26.71 28.21	0.04 0.17 0.30 0.57

Load Combinations

Comb.	Description
<u>No.</u> 1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
2	0
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4 5	1.2 Dead+1.0 Wind 30 deg - No Ice 0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
9 10	1.2 Dead+1.0 Wind 120 deg - No Ice
10	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
12	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No lee
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 lce+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 lce+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
T1	200 - 180	Leg	Max Tension	15	26.97	-0.03	-0.53
		-	Max. Compression	2	-33.19	0.05	1.15
			Max. Mx	8	-3.65	1.06	0.04
			Max. My	2	-33.19	0.05	1.15
			Max. Vy	18	-5.45	0.97	-0.50
			Max. Vx	2	-6.92	0.05	1.15
		Diagonal	Max Tension	24	5.32	0.00	0.00
		-	Max. Compression	24	-5.35	0.00	0.00
			Max. Mx	31	0.90	0.03	0.00
			Max. My	16	-4.50	-0.00	0.01
			Max. Vy	31	-0.02	0.03	0.00

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	ĸ	kip-ft	kip-ft
			Max. Vx	16	-0.00	-0.00	0.01
		Top Girt	Max Tension	3	0.38	0.00	0.00
			Max. Compression	14	-0.43	0.00	0.00
			Max. Mx	31	0.01	-0.04	0.00
			Max. My	16	0.08	0.00	0.00
			Max. Vy	31	-0.03	0.00	0.00
			Max. Vx	16	-0.00	0.00	0.00
T2	180 - 160	Leg	Max Tension	15	70.78	-0.09	0.00
			Max. Compression	2	-82.72	0.68	-0.02
			Max. Mx	2	-38.89	1.15	-0.05
			Max. My	17	-5.53	0.08	0.53
			Max. Vy	2	-6.69	0.68	-0.02
			Max. Vx	16	-2.66	0.05	0.26
		Diagonal	Max Tension	24	5.80	0.00	0.00
		-	Max. Compression	24	-5.88	0.00	0.00
			Max. Mx	31	1.50	0.03	0.00
			Max. My	24	-5.46	-0.01	-0.01
			Max. Vy	31	-0.03	0.03	0.00
			Max. Vx	24	0.00	0.00	0.00
Т3	160 - 140	Leg	Max Tension	15	109.36	-0.30	0.02
	100 110	9	Max. Compression	2	-125.99	0.97	-0.05
			Max. Mx	3	-123.77	0.97	-0.05
			Max. My	16	-14.91	0.02	0.87
			Max. Wy	18	-8.37	0.02	-0.01
			Max. Vy Max. Vx	16	-3.11	0.02	0.87
		Diagonal	Max Tension	24	6.01	0.02	0.00
		Diagonal	Max. Compression	24	-6.13	0.00	0.00
			Max. Max. Mx	24	1.48	0.00	-0.00
				28	-0.98	0.04	-0.00
			Max. My	20	0.04	0.03	-0.01
			Max. Vy	29			
τ.	140 400	1.0.0	Max. Vx		0.00	0.00	0.00
T4	140 - 120	Leg	Max Tension	15	145.54	-0.20	0.01
			Max. Compression	2	-166.14	0.91	-0.04
			Max. Mx	3	-130.04	0.97	-0.05
			Max. My	16	-15.23	0.02	0.87
			Max. Vy	18	-9.11	0.92	-0.03
			Max. Vx	16	-3.37	0.03	0.68
		Diagonal	Max Tension	24	6.71	0.00	0.00
			Max. Compression	24	-6.90	0.00	0.00
			Max. Mx	27	1.70	0.08	-0.01
			Max. My	27	-0.02	0.07	-0.01
			Max. Vy	29	0.06	0.08	-0.01
			Max. Vx	27	0.00	0.00	0.00
T5	120 - 100	Leg	Max Tension	7	179.39	-0.35	0.03
			Max. Compression	2	-202.19	1.19	-0.05
			Max. Mx	18	-199.35	1.21	-0.03
			Max. My	4	-0.35	-0.03	-0.86
			Max. Vy	18	-10.08	1.21	-0.03
			Max. Vx	16	-3.71	0.05	0.85
		Diagonal	Max Tension	4	6.73	0.00	0.00
		-	Max. Compression	4	-6.93	0.00	0.00
			Max. Mx	29	1.88	0.10	-0.01
			Max. My	27	-0.28	0.10	-0.01
			Max. Vy	29	0.07	0.10	-0.01
			Max. Vx	27	-0.00	0.00	0.00
Т6	100 - 80	Leg	Max Tension	7	211.51	-0.70	0.05
			Max. Compression	2	-236.25	1.60	-0.09
			Max. Max. Mx	18	-235.63	1.66	-0.04
			Max. My	4	-1.37	-0.04	-1.38
			Max. Vy	18	-11.02	1.66	-0.04
			Max. Vy Max. Vx	16	-4.34	0.05	-0.04
		Diagonal	Max. VX Max Tension			0.05	0.00
		Diagonal		4	7.14		
			Max. Compression	4	-7.35	0.00	0.00
			Max. Mx	29	2.03	0.15	0.02
			Max. My	28	-1.18	0.12	-0.02
			Max. Vy	29	0.09	0.15	0.02
			Max. Vx	28	-0.00	0.00	0.00
T7	80 - 60	Leg	Max Tension	7	242.27 -271.28	-1.01 2.13	0.03 -0.03
			Max. Compression	18			

200 Ft Self Support Tower Structural Analysis Project Number 1853234, Order 519195, Revision 0

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n No.	ft	Туре		Load Comb.	к	Moment kip-ft	Moment kip-ft
140.			Max. Mx	18	-271.28	2.13	-0.03
			Max. My	4	-1.51	-0.04	-1.38
			Max. Vy	18	-12.30	2.13	-0.03
			Max. Vy Max. Vx	16	-4.58	0.11	1.18
		Diagonal	Max Tension	4	8.30	0.00	0.00
		Diagonal	Max. Compression	4	-8.56	0.00	0.00
			Max. Compression Max. Mx	29	2.28	0.00	-0.03
			Max. My	29	-0.32	0.23	-0.03
			Max. Wy	29	-0.32	0.25	-0.03
			Max. Vy Max. Vx	29 27	-0.01	0.25	-0.03
Т8	60 - 40	١٥٣		7			
10	60 - 40	Leg	Max Tension		271.90	-1.15	0.06
			Max. Compression	18	-306.25	2.40	-0.05
			Max. Mx	18	-306.25	2.40	-0.05
			Max. My	4	-3.42	-0.16	-2.32
			Max. Vy	18	-13.89	2.40	-0.05
		D ¹	Max. Vx	16	-4.65	0.12	1.65
		Diagonal	Max Tension	4	8.82	0.00	0.00
			Max. Compression	18	-9.25	0.00	0.00
			Max. Mx	29	2.55	0.29	-0.04
			Max. My	27	-0.11	0.27	-0.04
			Max. Vy	29	0.13	0.29	-0.04
			Max. Vx	27	-0.01	0.00	0.00
Т9	40 - 20	Leg	Max Tension	7	300.51	-1.26	0.04
			Max. Compression	18	-340.76	2.68	-0.02
			Max. Mx	29	58.59	-4.29	-0.01
			Max. My	4	-4.67	-0.01	-1.67
			Max. Vy	18	-15.03	2.68	-0.02
			Max. Vx	17	-4.89	0.15	1.34
		Diagonal	Max Tension	5	9.27	0.00	0.00
			Max. Compression	18	-9.80	0.00	0.00
			Max. Mx	29	1.80	0.31	-0.04
			Max. My	27	-0.99	0.30	-0.04
			Max. Vy	29	0.14	0.31	-0.04
			Max. Vx	27	-0.01	0.00	0.00
T10	20 - 0	Leg	Max Tension	7	328.28	1.23	0.00
		č	Max. Compression	18	-374.82	0.00	-0.00
			Max. Mx	35	-159.25	4.55	-0.04
			Max. My	4	-7.43	-0.22	-3.19
			Max. Vy	18	-16.84	0.00	-0.00
			Max. Vx	17	-4.54	-0.00	-0.00
		Diagonal	Max Tension	16	9.97	0.00	0.00
		2.530101	Max. Compression	18	-10.94	0.00	0.00
			Max. Max. Mx	29	0.60	0.42	0.00
			Max. My	28	-4.05	0.40	-0.06
			Max. Vy	20	0.15	0.40	-0.00
			Max. Vy Max. Vx	29	0.13	0.42	0.00
			ινιαλ. Vλ	20	0.01	0.00	0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	373.26	32.98	-18.92
	Max. H _x	18	373.26	32.98	-18.92
	Max. H _z	7	-326.85	-29.44	16.95
	Min. Vert	7	-326.85	-29.44	16.95
	Min. H _x	7	-326.85	-29.44	16.95
	Min. H _z	18	373.26	32.98	-18.92
Leg B	Max. Vert	10	346.04	-29.86	-17.69
	Max. H _x	23	-295.68	26.13	15.61
	Max. H _z	23	-295.68	26.13	15.61
	Min. Vert	23	-295.68	26.13	15.61
	Min. H _x	10	346.04	-29.86	-17.69
	Min. H _z	10	346.04	-29.86	-17.69
Leg A	Max. Vert	2	363.76	0.62	36.14

tnxTower Report - version 8.0.5.0

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, 2 K
	Max. H _x	<u>Comb.</u> 21	15.06	4.19	1.08
	Max. H _z	21	363.76	0.62	36.14
	Min. Vert	15	-311.20	-0.64	-31.71
	Min. H _x	9	15.26	-4.17	1.10
	Min. H _z	15	-311.20	-0.64	-31.71

Tower Mast Reaction Summary

Lact	Vartical	Shearx	Shacr	Ou contra inciana	Overturneinen	Tores
Load Combination	Vertical		Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	<u> </u>	kip-ft	kip-ft	kip-ft
Dead Only	50.01	-0.00	0.00	-4.36	-13.43	-0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	60.01	0.05	-57.69	-6847.20	-25.59	24.91
0.9 Dead+1.0 Wind 0 deg -	45.01	0.05	-57.69	-6835.03	-21.50	24.87
No Ice	40.01	0.00	01.00	0000.00	21.00	24.07
1.2 Dead+1.0 Wind 30 deg -	60.01	28.52	-51.86	-6173.47	-3306.68	25.62
No Ice						
0.9 Dead+1.0 Wind 30 deg -	45.01	28.52	-51.86	-6162.37	-3297.52	25.59
	00.04	40.50	00 54	0007.40	5754.00	4.40
1.2 Dead+1.0 Wind 60 deg -	60.01	49.50	-30.51	-3687.13	-5751.00	1.49
No Ice 0.9 Dead+1.0 Wind 60 deg -	45.01	49.50	-30.51	-3679.91	-5738.04	1.48
No Ice	45.01	49.00	-50.51	-307 3.31	-57 50.04	1.40
1.2 Dead+1.0 Wind 90 deg -	60.01	56.16	-0.00	-6.51	-6563.50	-18.75
No Ice						
0.9 Dead+1.0 Wind 90 deg -	45.01	56.16	-0.00	-5.19	-6549.21	-18.73
No Ice						
1.2 Dead+1.0 Wind 120 deg	60.01	47.26	28.98	3481.04	-5489.08	-15.46
No Ice	45.01	47.00	20.00	3476.76	-5476.49	-15.44
0.9 Dead+1.0 Wind 120 deg · No Ice	45.01	47.26	28.98	3470.70	-5470.49	-15.44
1.2 Dead+1.0 Wind 150 deg	60.01	24.99	45.50	5515.59	-2958.14	-10.79
No Ice		2			2000111	
).9 Dead+1.0 Wind 150 deg	45.01	24.99	45.50	5508.01	-2949.44	-10.75
No Ice						
.2 Dead+1.0 Wind 180 deg	60.01	0.03	54.19	6506.48	-20.99	-25.22
	45.04	0.00	54.40	0407.00	10.04	05.40
).9 Dead+1.0 Wind 180 deg No Ice	45.01	0.03	54.19	6497.39	-16.91	-25.19
1.2 Dead+1.0 Wind 210 deg	60.01	-28.42	51.51	6100.19	3254.47	-27.66
No Ice	00.01	20.12	01.01	0100110	0201111	21.00
).9 Dead+1.0 Wind 210 deg	45.01	-28.42	51.52	6091.85	3253.51	-27.63
No Ice						
1.2 Dead+1.0 Wind 240 deg	60.01	-52.26	31.86	3765.95	5950.73	-4.17
	45.04	50.05	04.00	0704.04	5045.05	4.40
).9 Dead+1.0 Wind 240 deg · No Ice	45.01	-52.25	31.86	3761.31	5945.65	-4.16
1.2 Dead+1.0 Wind 270 deg	60.01	-56.18	0.02	-2.52	6535.39	18.60
No Ice	00.01	-50.10	0.02	-2.02	0000.00	10.00
).9 Dead+1.0 Wind 270 deg	45.01	-56.18	0.02	-1.19	6529.24	18.58
No Ice						
1.2 Dead+1.0 Wind 300 deg	60.01	-44.36	-27.57	-3388.38	5197.57	18.01
No Ice						
).9 Dead+1.0 Wind 300 deg	45.01	-44.36	-27.57	-3381.55	5193.46	17.99
No Ice .2 Dead+1.0 Wind 330 deg	60.01	-24.97	-45.78	-5577.83	2923.35	12.48
No Ice	00.01	-24.97	-45.76	-5577.65	2923.33	12.40
).9 Dead+1.0 Wind 330 deg	45.01	-24.97	-45.78	-5567.50	2922.80	12.45
No Ice					0	
I.2 Dead+1.0 Ice+1.0 Temp	174.26	0.00	-0.00	-24.75	-95.32	0.00
.2 Dead+1.0 Wind 0	174.26	0.01	-18.53	-2281.81	-96.89	11.95
leg+1.0 lce+1.0 Temp				·		
1.2 Dead+1.0 Wind 30	174.26	9.41	-16.73	-2056.81	-1219.59	11.74
deg+1.0 Ice+1.0 Temp						

200 Ft Self Support Tower Structural Analysis Project Number 1853234, Order 519195, Revision 0

Load Combination	Vertical	Shearx	Shearz	Overturning Moment. M _×	Overturning Moment. M _z	Torque
Combination	к	к	К	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 60	174.26	16.52	-9.88	-1229.86	-2066.95	, 3.81
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 90	174.26	18.57	-0.01	-27.13	-2326.93	-4.53
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	174.26	15.39	9.19	1105.50	-1948.42	-6.91
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 150	174.26	8.39	15.35	1876.30	-1108.33	-7.38
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 180	174.26	-0.12	18.12	2198.99	-74.84	-11.21
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 210	174.26	-9.44	16.75	2009.24	1032.51	-11.87
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 240	174.26	-16.90	10.21	1215.28	1906.23	-4.43
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 270	174.26	-18.65	0.21	10.56	2148.29	4.63
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 300	174.26	-15.00	-9.00	-1141.39	1723.09	7.39
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 330	174.26	-8.52	-15.23	-1908.69	939.13	8.56
deg+1.0 lce+1.0 Temp						
Dead+Wind 0 deg - Service	50.01	0.01	-13.99	-1662.05	-15.75	6.03
Dead+Wind 30 deg - Service	50.01	6.92	-12.58	-1498.83	-810.73	6.20
Dead+Wind 60 deg - Service	50.01	12.01	-7.40	-896.42	-1402.96	0.36
Dead+Wind 90 deg - Service	50.01	13.62	-0.00	-4.67	-1599.80	-4.54
Dead+Wind 120 deg -	50.01	11.46	7.03	840.28	-1339.48	-3.75
Service						
Dead+Wind 150 deg -	50.01	6.06	11.04	1333.19	-726.27	-2.62
Service						
Dead+Wind 180 deg -	50.01	0.01	13.14	1573.27	-14.64	-6.11
Service		0101				0
Dead+Wind 210 deg -	50.01	-6.89	12.49	1474.85	778.96	-6.70
Service						
Dead+Wind 240 deg -	50.01	-12.67	7.73	909.32	1432.22	-1.01
Service				000102		
Dead+Wind 270 deg -	50.01	-13.63	0.00	-3.70	1573.84	4.50
Service			0.00	00		
Dead+Wind 300 deg -	50.01	-10.76	-6.69	-824.01	1249.71	4.37
Service	00.01		2.00	0201		
Dead+Wind 330 deg -	50.01	-6.06	-11.10	-1354.47	698.71	3.03
Service	00.01	0.00				2.00

Solution Summary

	Sun	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-50.01	0.00	0.00	50.01	-0.00	0.000%
2	0.05	-60.01	-57.69	-0.05	60.01	57.69	0.001%
3	0.05	-45.01	-57.69	-0.05	45.01	57.69	0.001%
4	28.53	-60.01	-51.86	-28.52	60.01	51.86	0.008%
5	28.53	-45.01	-51.86	-28.52	45.01	51.86	0.008%
6	49.51	-60.01	-30.52	-49.50	60.01	30.51	0.010%
7	49.51	-45.01	-30.52	-49.50	45.01	30.51	0.009%
8	56.17	-60.01	-0.01	-56.16	60.01	0.00	0.008%
9	56.17	-45.01	-0.01	-56.16	45.01	0.00	0.008%
10	47.26	-60.01	28.98	-47.26	60.01	-28.98	0.001%
11	47.26	-45.01	28.98	-47.26	45.01	-28.98	0.001%
12	24.99	-60.01	45.50	-24.99	60.01	-45.50	0.008%
13	24.99	-45.01	45.50	-24.99	45.01	-45.50	0.007%
14	0.03	-60.01	54.20	-0.03	60.01	-54.19	0.010%
15	0.03	-45.01	54.20	-0.03	45.01	-54.19	0.009%
16	-28.42	-60.01	51.52	28.42	60.01	-51.51	0.009%
17	-28.42	-45.01	51.52	28.42	45.01	-51.52	0.009%
18	-52.25	-60.01	31.86	52.26	60.01	-31.86	0.001%
19	-52.25	-45.01	31.86	52.25	45.01	-31.86	0.001%
20	-56.19	-60.01	0.01	56.18	60.01	-0.02	0.008%

200 Ft Self Support Tower Structural Analysis Project Number 1853234, Order 519195, Revision 0

	Sun	n of Applied Force	s		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
21	-56.19	-45.01	0.01	56.18	45.01	-0.02	0.007%
22	-44.37	-60.01	-27.57	44.36	60.01	27.57	0.009%
23	-44.37	-45.01	-27.57	44.36	45.01	27.57	0.008%
24	-24.98	-60.01	-45.78	24.97	60.01	45.78	0.007%
25	-24.98	-45.01	-45.78	24.97	45.01	45.78	0.006%
26	0.00	-174.26	0.00	-0.00	174.26	0.00	0.000%
27	0.01	-174.26	-18.53	-0.01	174.26	18.53	0.000%
28	9.41	-174.26	-16.73	-9.41	174.26	16.73	0.000%
29	16.52	-174.26	-9.88	-16.52	174.26	9.88	0.000%
30	18.57	-174.26	-0.01	-18.57	174.26	0.01	0.000%
31	15.39	-174.26	9.19	-15.39	174.26	-9.19	0.000%
32	8.39	-174.26	15.35	-8.39	174.26	-15.35	0.000%
33	-0.12	-174.26	18.12	0.12	174.26	-18.12	0.000%
34	-9.44	-174.26	16.75	9.44	174.26	-16.75	0.000%
35	-16.90	-174.26	10.21	16.90	174.26	-10.21	0.000%
36	-18.65	-174.26	0.21	18.65	174.26	-0.21	0.000%
37	-15.00	-174.26	-9.00	15.00	174.26	9.00	0.000%
38	-8.52	-174.26	-15.23	8.52	174.26	15.23	0.000%
39	0.01	-50.01	-13.99	-0.01	50.01	13.99	0.001%
40	6.92	-50.01	-12.58	-6.92	50.01	12.58	0.001%
41	12.01	-50.01	-7.40	-12.01	50.01	7.40	0.002%
42	13.62	-50.01	-0.00	-13.62	50.01	0.00	0.001%
43	11.46	-50.01	7.03	-11.46	50.01	-7.03	0.001%
44	6.06	-50.01	11.04	-6.06	50.01	-11.04	0.001%
45	0.01	-50.01	13.14	-0.01	50.01	-13.14	0.002%
46	-6.89	-50.01	12.50	6.89	50.01	-12.49	0.001%
47	-12.67	-50.01	7.73	12.67	50.01	-7.73	0.001%
48	-13.63	-50.01	0.00	13.63	50.01	-0.00	0.001%
49	-10.76	-50.01	-6.69	10.76	50.01	6.69	0.002%
50	-6.06	-50.01	-11.10	6.06	50.01	11.10	0.001%

		Non-Line	ear Converge	ence Results
Load Combination	Converged?	Number	Displacement Tolerance	Force Tolerance
Combination	Mara	of Cycles		
1	Yes	4	0.00000001	0.0000001
2	Yes	4	0.00007779	0.00039142
3	Yes Yes	4	0.00005533	0.00028221
4		4	0.00008127	0.00041055
5	Yes	4	0.00005869	0.00030052
6	Yes	4	0.00008574	0.00043123
7	Yes	4	0.00006293	0.00032084
8	Yes	4	0.00008201	0.00040779
9	Yes	4	0.00005945	0.00029960
10	Yes	4	0.00007826	0.00038880
11	Yes	4	0.0000001	0.00028112
12	Yes	4	0.00008308	0.00041454
13	Yes	4	0.00006032	0.00030513
14	Yes	4	0.00008625	0.00043364
15	Yes	4	0.00006330	0.00032267
16	Yes	4	0.00008247	0.00041566
17	Yes	4	0.00005983	0.00030574
18	Yes	4	0.00007745	0.00038777
19	Yes	4	0.00005515	0.00027991
20	Yes	4	0.00008201	0.00040738
21	Yes	4	0.00005945	0.00029941
22	Yes	4	0.00008606	0.00042795
23	Yes	4	0.00006317	0.00031847
24	Yes	4	0.00008192	0.00040911
25	Yes	4	0.00005922	0.00029984
26	Yes	4	0.0000001	0.00009812
27	Yes	5	0.0000001	0.00029590
28	Yes	5	0.0000001	0.00030129
29	Yes	5	0.0000001	0.00030248
30	Yes	5	0.0000001	0.00029776

tnxTower Report - version 8.0.5.0

31	Yes	5	0.00000001	0.00029383
32	Yes	5	0.00000001	0.00029474
33	Yes	5	0.00000001	0.00029618
34	Yes	5	0.00000001	0.00029415
35	Yes	5	0.0000001	0.00028893
36	Yes	5	0.00000001	0.00028609
37	Yes	5	0.00000001	0.00028689
38	Yes	5	0.00000001	0.00029073
39	Yes	4	0.00000001	0.00029664
40	Yes	4	0.0000001	0.00029957
41	Yes	4	0.00000001	0.00030214
42	Yes	4	0.00000001	0.00029697
43	Yes	4	0.00000001	0.00029435
44	Yes	4	0.00000001	0.00030084
45	Yes	4	0.00000001	0.00030447
46	Yes	4	0.00000001	0.00029955
47	Yes	4	0.00000001	0.00029241
48	Yes	4	0.00000001	0.00029592
49	Yes	4	0.00000001	0.00030145
50	Yes	4	0.00000001	0.00029992

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist	
No.		Deflection	Load			
	ft	in	Comb.	0	۰	
T1	200 - 180	6.644	40	0.329	0.039	
T2	180 - 160	5.263	40	0.316	0.032	
Т3	160 - 140	3.993	40	0.270	0.023	
T4	140 - 120	2.929	40	0.217	0.018	
T5	120 - 100	2.069	40	0.177	0.014	
Т6	100 - 80	1.372	40	0.138	0.010	
T7	80 - 60	0.840	40	0.098	0.007	
T8	60 - 40	0.469	47	0.069	0.005	
Т9	40 - 20	0.220	47	0.039	0.003	
T10	20 - 0	0.069	47	0.019	0.002	

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	۰	ft
200.00	15" Dia. x 15" Beacon	40	6.644	0.329	0.039	177657
198.00	DB225-A	40	6.505	0.329	0.038	177657
190.00	USX6-6W-6GR	40	5.947	0.325	0.036	88828
182.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	40	5.398	0.318	0.033	49270
170.00	APXVTM14-ALU-I20 w/ Mount Pipe	40	4.607	0.296	0.028	28110
163.00	PR-850	40	4.172	0.278	0.025	22405
144.00	(2) PD1109-1	40	3.124	0.227	0.019	22214
102.00	3" x 6" SideLight	40	1.434	0.142	0.011	28544
53.00	KS24019-L112A	47	0.370	0.058	0.005	43592

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	٥
T1	200 - 180	27.305	4	1.352	0.160

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	٥	٥
T2	180 - 160	21.635	4	1.297	0.134
Т3	160 - 140	16.415	4	1.109	0.097
T4	140 - 120	12.042	4	0.892	0.075
T5	120 - 100	8.510	4	0.728	0.058
T6	100 - 80	5.642	4	0.569	0.042
T7	80 - 60	3.470	18	0.404	0.029
Т8	60 - 40	1.943	18	0.282	0.021
Т9	40 - 20	0.911	18	0.159	0.014
T10	20 - 0	0.286	18	0.080	0.006

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	0	ft
200.00	15" Dia. x 15" Beacon	4	27.305	1.352	0.160	42956
198.00	DB225-A	4	26.730	1.349	0.157	42956
190.00	USX6-6W-6GR	4	24.442	1.336	0.148	21478
182.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	4	22.189	1.308	0.137	11914
170.00	APXVTM14-ALU-I20 w/ Mount Pipe	4	18.938	1.216	0.115	6821
163.00	PR-850	4	17.150	1.143	0.102	5443
144.00	(2) PD1109-1	4	12.845	0.932	0.078	5399
102.00	3" x 6" SideLight	4	5.899	0.585	0.044	6948
53.00	KS24019-L112A	18	1.532	0.238	0.019	10610

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade		Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable	-	
T1	200	Leg	A325X	0.750	4	6.74	30.10	0.224	1.05	Bolt Tension
		Diagonal	A325X	0.625	1	5.32	7.88	0.676	1.05	Member Block Shear
		Top Girt	A325X	0.625	1	0.38	7.88	0.048	1.05	Member Block Shear
T2	180	Leg	A325X	1.000	4	17.70	54.52	0.325	1.05	Bolt Tension
		Diagonal	A325X	0.625	1	5.80	7.88	0.737	1.05	Member Block Shear
Т3	160	Leg	A325X	1.000	4	27.34	54.52	0.502	1.05	Bolt Tension
		Diagonal	A325X	0.625	1	6.01	7.88	0.763	1.05	Member Block Shear
T4	140	Leg	A325X	1.250	4	36.38	87.22	0.417	1.05	Bolt Tension
		Diagonal	A325X	0.625	1	6.71	9.91	0.677	1.05	Member Block Shear
T5	120	Leg	A325X	1.250	4	44.85	87.22	0.514	1.05	Bolt Tension
		Diagonal	A325X	0.625	1	6.73	9.91	0.679	1.05	Member Block Shear
T6	100	Leg	A325X	1.250	6	35.25	87.22	0.404	1.05	Bolt Tension
		Diagonal	A325X	0.750	1	7.14	10.42	0.685	1.05	Member Block Shear
T7	80	Leg	A325X	1.250	6	40.38	87.22	0.463	1.05	Bolt Tension
		Diagonal	A325X	0.750	1	8.30	14.36	0.578	1.05	Member Bearing
T8	60	Leg	A325X	1.375	6	45.32	103.94	0.436	1.05	Bolt Tension
		Diagonal	A325X	0.750	1	8.82	14.36	0.615	1.05	Member Bearing
Т9	40	Leg	A325X	1.375	6	50.08	103.94	0.482	1.05	Bolt Tension
		Diagonal	A325X	0.750	1	9.27	14.36	0.645	1.05	Member

tnxTower Report - version 8.0.5.0

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T10	20	Diagonal	A325X	0.750	1	9.97	14.36	0.694	1.05	Bearing Member Bearing

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in²	K	ĸ	ϕP_n
T1	200 - 180	Sabre 2.875x.375	20.00	4.98	66.9 K=1.00	2.945	-26.74	95.59	0.280 ¹
T2	180 - 160	Sabre 3.5 x .3	20.03	4.99	52.7 K=1.00	3.016	-76.51	110.80	0.690 ¹
Т3	160 - 140	Sabre 4 x .318	20.03	4.99	45.8 K=1.00	3.678	-120.05	141.99	0.845 ¹
T4	140 - 120	Sabre 4.5 x .438	20.03	6.65	55.2 K=1.00	5.589	-159.16	201.22	0.791 ¹
T5	120 - 100	Sabre 5.5625 x .375	20.03	6.65	43.4 K=1.00	6.111	-195.74	239.63	0.817 ¹
Т6	100 - 80	Sabre 5.5625 x .375	20.03	6.65	43.4 K=1.00	6.111	-230.15	239.63	0.960 ¹
Τ7	80 - 60	Sabre 6.625 x .432	20.03	9.97	54.5 K=1.00	8.405	-261.73	304.30	0.860 ¹
Т8	60 - 40	Sabre 8.625 x .322	20.03	9.97	40.7 K=1.00	8.399	-296.52	334.76	0.886 ¹
Т9	40 - 20	Sabre 8.625 x .5	20.03	9.97	41.6 K=1.00	12.763	-331.18	506.09	0.654 ¹
T10	20 - 0	Sabre 8.625 x .5	20.03	9.97	41.6 K=1.00	12.763	-364.85	506.09	0.721 ¹

¹ P_u / ϕP_n controls

	Diagonal Design Data (Compression)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ Ρ _n	Ratio Pu		
	ft		ft	ft		in²	K	ĸ	ϕP_n		
T1	200 - 180	L1 3/4x1 3/4x3/16	7.06	3.21	114.2 K=1.02	0.621	-5.35	13.19	0.405 ¹		
T2	180 - 160	L1 3/4x1 3/4x3/16	8.38	4.02	140.4 K=1.00	0.621	-5.83	9.01	0.647 ¹		
Т3	160 - 140	L1 3/4x1 3/4x3/16	10.06	4.84	169.0 K=1.00	0.621	-6.13	6.22	0.985 ¹		
T4	140 - 120	L2 1/2x2 1/2x3/16	12.56	6.11	148.1 K=1.00	0.902	-6.70	11.77	0.569 ¹		
T5	120 - 100	L2 1/2x2 1/2x3/16	14.30	6.93	168.0 K=1.00	0.902	-6.93	9.15	0.757 ¹		
Т6	100 - 80	L3x3x3/16	16.09	7.83	157.6 K=1.00	1.090	-7.35	12.56	0.586 ¹		
Τ7	80 - 60	L3 1/2x3 1/2x1/4	19.27	9.46	163.5 K=1.00	1.690	-8.56	18.09	0.473 ¹		
Т8	60 - 40	L3 1/2x3 1/2x1/4	21.01	10.23	176.9 K=1.00	1.690	-9.25	15.45	0.598 ¹		
Т9	40 - 20	L3 1/2x3 1/2x1/4	22.79	11.12	192.4	1.690	-9.80	13.07	0.750 ¹		

tnxTower Report - version 8.0.5.0

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P n	Ratio Pu
	ft		ft	ft		in²	K	К	ϕP_n
T10	20 - 0	L4x4x1/4	24.60	12.03	K=1.00 181.6 K=1.00	1.940	-10.94	16.83	0.650 ¹

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu
	ft		ft	ft		in²	K	К	ϕP_n
T1	200 - 180	L1 3/4x1 3/4x3/16	5.00	4.47	156.1 K=1.00	0.621	-0.43	7.29	0.059 ¹

¹ P_u / ϕP_n controls

Tension Checks

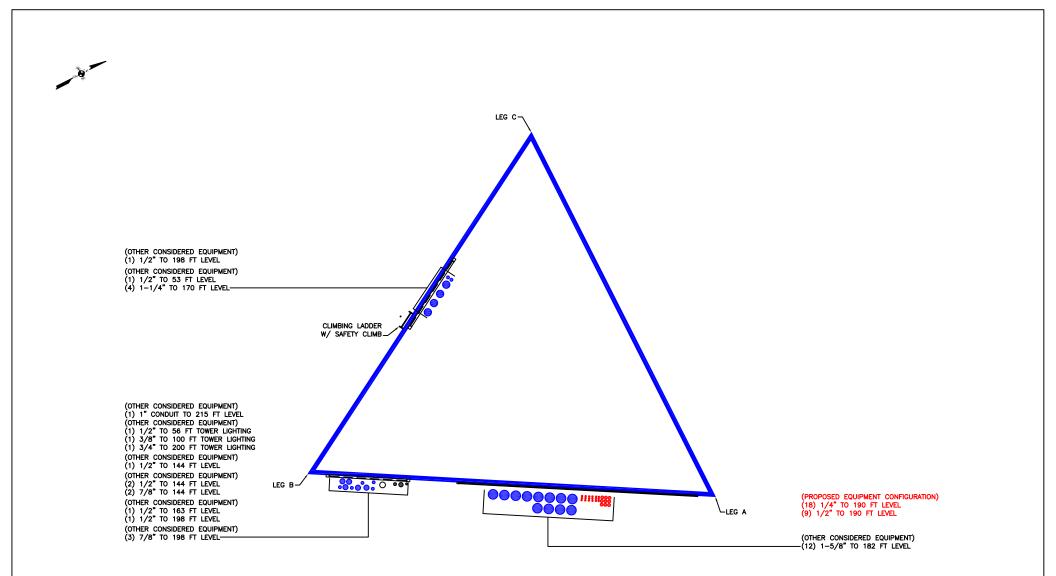
	Leg Design Data (Tension)										
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P n	Ratio Pu		
	ft		ft	ft		in²	ĸ	ĸ	φ P n		
T1	200 - 180	Sabre 2.875x.375	20.00	0.08	1.1	2.945	26.97	132.54	0.203 ¹		
T2	180 - 160	Sabre 3.5 x .3	20.03	0.08	0.9	3.016	70.78	135.72	0.522 ¹		
Т3	160 - 140	Sabre 4 x .318	20.03	0.08	0.8	3.678	109.36	165.53	0.661 ¹		
T4	140 - 120	Sabre 4.5 x .438	20.03	0.08	0.7	5.589	145.54	251.52	0.579 ¹		
T5	120 - 100	Sabre 5.5625 x .375	20.03	0.08	0.5	6.111	179.39	275.01	0.652 ¹		
Т6	100 - 80	Sabre 5.5625 x .375	20.03	0.08	0.5	6.111	211.51	275.01	0.769 ¹		
T7	80 - 60	Sabre 6.625 x .432	20.03	0.08	0.5	8.405	242.27	378.22	0.641 ¹		
Т8	60 - 40	Sabre 8.625 x .322	20.03	0.08	0.3	8.399	271.90	377.97	0.719 ¹		
Т9	40 - 20	Sabre 8.625 x .5	20.03	0.08	0.3	12.763	300.51	574.32	0.523 ¹		
T10	20 - 0	Sabre 8.625 x .5	20.03	0.08	0.3	12.763	328.28	574.32	0.572 ¹		

¹ P_u / ϕP_n controls

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	ϕP_n	Ratio Pu
	ft		ft	ft		in²	ĸ	K	ϕP_n
T1	200 - 180	L1 3/4x1 3/4x3/16	7.06	3.21	75.1	0.360	5.32	15.68	0.340 ¹
T2	180 - 160	L1 3/4x1 3/4x3/16	8.38	4.02	93.1	0.360	5.80	15.68	0.370 ¹
Т3	160 - 140	L1 3/4x1 3/4x3/16	10.06	4.84	111.4	0.360	6.01	15.68	0.383 1
T4	140 - 120	L2 1/2x2 1/2x3/16	11.45	5.56	88.1	0.571	6.71	24.84	0.270 ¹
T5	120 - 100	L2 1/2x2 1/2x3/16	14.30	6.93	109.1	0.571	6.73	24.84	0.271 ¹
T6	100 - 80	L3x3x3/16	16.09	7.83	101.9	0.694	7.14	30.21	0.236 ¹
T7	80 - 60	L3 1/2x3 1/2x1/4	19.27	9.46	105.7	1.103	8.30	48.00	0.173 ¹
T8	60 - 40	L3 1/2x3 1/2x1/4	21.01	10.23	114.3	1.103	8.82	48.00	0.184 ¹
Т9	40 - 20	L3 1/2x3 1/2x1/4	22.79	11.12	124.1	1.103	9.27	48.00	0.193 ¹
T10	20 - 0	L4x4x1/4	24.60	12.03	116.9	1.291	9.97	56.16	0.177 ¹

¹ P_u / ϕP_n controls


Top Girt Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φ Ρ _n	Ratio Pu
	ft		ft	ft		in²	K	К	ϕP_n
T1	200 - 180	L1 3/4x1 3/4x3/16	5.00	4.47	106.4	0.360	0.38	15.68	0.024 1

¹ P_u / ϕP_n controls

Section Capacity Table									
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail	
T1	200 - 180	Leg	Sabre 2.875x.375	3	-26.74	100.37	26.6	Pass	
T2	180 - 160	Leg	Sabre 3.5 x .3	33	-76.51	116.34	65.8	Pass	
Т3	160 - 140	Leg	Sabre 4 x .318	60	-120.05	149.09	80.5	Pass	
T4	140 - 120	Leg	Sabre 4.5 x .438	87	-159.16	211.28	75.3	Pass	
T5	120 - 100	Leg	Sabre 5.5625 x .375	108	-195.74	251.62	77.8	Pass	
T6	100 - 80	Leg	Sabre 5.5625 x .375	129	-230.15	251.62	91.5	Pass	
Τ7	80 - 60	Leg	Sabre 6.625 x .432	148	-261.73	319.52	81.9	Pass	
T8	60 - 40	Leg	Sabre 8.625 x .322	163	-296.52	351.50	84.4	Pass	
Т9	40 - 20	Leg	Sabre 8.625 x .5	178	-331.18	531.40	62.3	Pass	
T10	20 - 0	Leg	Sabre 8.625 x .5	193	-364.85	531.40	68.7	Pass	
T1	200 - 180	Diagonal	L1 3/4x1 3/4x3/16	10	-5.35	13.85	38.6 64.4 (b)	Pass	
T2	180 - 160	Diagonal	L1 3/4x1 3/4x3/16	37	-5.83	9.47	61.6 70.2 (b)	Pass	
Т3	160 - 140	Diagonal	L1 3/4x1 3/4x3/16	64	-6.13	6.54	93.8	Pass	
T4	140 - 120	Diagonal	L2 1/2x2 1/2x3/16	91	-6.70	12.36	54.2 64.5 (b)	Pass	
T5	120 - 100	Diagonal	L2 1/2x2 1/2x3/16	113	-6.93	9.61	72.1	Pass	
Т6	100 - 80	Diagonal	L3x3x3/16	134	-7.35	13.18	55.8 65.2 (b)	Pass	
Τ7	80 - 60	Diagonal	L3 1/2x3 1/2x1/4	155	-8.56	18.99	45.1 55.0 (b)	Pass	
Т8	60 - 40	Diagonal	L3 1/2x3 1/2x1/4	166	-9.25	16.23	57.0 58.5 (b)	Pass	
Т9	40 - 20	Diagonal	L3 1/2x3 1/2x1/4	181	-9.80	13.73	71.4	Pass	
T10	20 - 0	Diagonal	L4x4x1/4	196	-10.94	17.67	61.9 66.1 (b)	Pass	
T1	200 - 180	Top Girt	L1 3/4x1 3/4x3/16	4	-0.43	7.66	5.6 Summary	Pass	
						Leg (T6)	91.5	Pass	
						Diagonal (T3)	93.8	Pass	
						Top Girt (T1)	5.6	Pass	
						Bolt Checks	72.6	Pass	
						RATING =	93.8	Pass	

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Project Information	
	871584
	John Tom Hill
Order #	519195 rev. 0

Tower Information		
Tower Type	Self Support	
TIA-222 Rev	Н	

Apply TIA-222-H Section 15.5

Applied Loads			
	Comp.	Uplift	
Axial (k)	373.00	327.00	
Shear (k)	38.00	34.00	

Anchor Rod Data		
Quantity:	8	
Diameter (in):	1.5	
Material Grade:	A572-50	Fy=50 ksi Fu=65 ksi
Grout Considered:		Not Considered, lar<=1(d)
I _{ar} (in):	1.125	
Eta Factor, η:		
Thread Type:	N-Included	
Configuration:	Symmetrical	

Anchor Rod Results		
Axial, Pu_c (kips)	46.63	
Shear, Vu (kips)	4.75	
Moment, Mu (kip-in)	-	
Axial Cap., φPn_c (kips)	79.52	
Shear Cap., φVn (kips)	35.78	
Moment Cap., φMn (kip-in)	-	
Stress Rating	57.5%	

Pass

Pier and Pad Foundation

	871584
	John Tom Hill
App. Number:	519195 rev 0

TIA-222 Revision: Н Tower Type:

Self Support

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	

Superstructure Analysis Reactions		
Compression, P _{comp} :	373	kips
Compression Shear, Vu_comp:	20.3333333	kips
Uplift, P_{uplift}:	327	kips
Uplift Shear, V _{u_uplift} :	20.3333333	kips
Tower Height, H:	200	ft
Base Face Width, BW:	23	ft
BP Dist. Above Fdn, bp_{dist}:	2.625	in

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier:	3.5	ft
Ext. Above Grade, E:	0.4167	ft
Pier Rebar Size, Sc :	7	
Pier Rebar Quantity, mc :	14	
Pier Tie/Spiral Size, St:	3	
Pier Tie/Spiral Quantity, mt:	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Properties		
Depth, D:	10.5	ft
Pad Width, W :	15	ft
Pad Thickness, T :	1.75	ft
Pad Rebar Size (Bottom), Sp:	7	
Pad Rebar Quantity (Bottom), mp:	20	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	125	pcf
Ultimate Gross Bearing, Qult:	16.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	36	degrees
SPT Blow Count, N _{blows} :	28	
Base Friction, μ :	0.6	
Neglected Depth, N:	3.33	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	8	ft

<--Toggle between Gross and Net

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Uplift (kips)	451.48	327.00	69.0%	Pass
Lateral (Sliding) (kips)	124.75	20.33	15.5%	Pass
Bearing Pressure (ksf)	12.00	3.11	24.7%	Pass
Pier Flexure (Comp.) (kip*ft)	983.54	186.39	18.0%	Pass
Pier Flexure (Tension) (kip*ft)	242.88	186.39	73.1%	Pass
Pier Compression (kip)	4592.74	388.33	8.1%	Pass
Pad Flexure (kip*ft)	858.77	414.66	46.0%	Pass
Pad Shear - 1-way (kips)	246.78	109.35	42.2%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.105	61.0%	Pass
Flexural 2-way (Comp) (kip*ft)	990.20	111.83	10.8%	Pass
Pad Shear - 2-way (Uplift) (ksi)	0.164	0.114	65.8%	Pass
Flexural 2-way (Tension) (kip*ft)	990.20	111.83	10.8%	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*:	69.0%
Structural Rating*:	73.1%

Concrete Grade Beam Verification		
Reference		
Inputs:	2	
$\frac{1}{2}$:= 61 kip	$Ag := 2.5ft \cdot 2ft = 5 ft^2$	
fc := 4000 psi	Ast := $8.0.79$ in ² = $6.32 \cdot in^2$	
fy := 60000 · psi	L = 20 ft	
Forcea on Grade Beam:	$Pu := \frac{V}{3}$	
Compression:	$Pu = 20.33 \cdot kip$	
Tension:	Tu := Pu = 20.33 kip	
	$w_{soil} := 6in \cdot 2ft \cdot 118pcf = 118 \cdot plf$	
	$w_{beam} := 2ft \cdot 2ft \cdot 150pcf = 600 \cdot plf$	
	$w := 1.2 \cdot (w_{soil} + w_{beam}) = 861.6 \cdot plf$	
Moment:	$M_{u} := \frac{w \cdot L^{2}}{12} = 28.72 \cdot kip \cdot ft$	
$d := 2.5 \cdot ft$		
$d_t := 2ft - 3in - 0.375in$	$\frac{1\mathrm{in}}{2} = 20.13 \cdot \mathrm{in}$	
b := 2ft		
$a := \frac{Ast \cdot fy}{0.85 \cdot fc \cdot b} = 4.65 \cdot in$		
$0.85 \cdot fc \cdot b$ $\varepsilon_{ty} \coloneqq 0.002$		[ACI 318-14 Eq. 22.2.2.4.1] [ACI 318-14 21.2.2.1]
$\beta_{1} := \begin{bmatrix} 0.85 & \text{if } \text{fc} \ge 2500 \cdot \text{ps} \\ \\ 0.8505 \\ \hline \frac{\text{fc}}{\text{psi}} - 4 \\ 1000 \\ 0.65 & \text{if } \text{fc} \ge 8000 \cdot \text{ps} \end{bmatrix}$	$\frac{1000}{1000} \int \frac{1}{1000} \text{ if } \text{ fc} > 4000 \cdot \text{psi} \wedge \text{ fc} < 8000 \cdot \text{psi}$	[ACI 318-14 Table 22.2.2.4.3]
$c := \frac{a}{\beta_1} = 5.47 \text{ in}$		
$\varepsilon_{t} \coloneqq \frac{0.003(d_{t} - c)}{c} = 0.008$		

$$\begin{aligned} \varphi &\coloneqq \begin{bmatrix} 0.9 & \text{if } \varepsilon_{1} \geq 0.005 & = 0.9 \\ 0.65 &+ 0.25 \frac{(\varepsilon_{1} \in \varepsilon_{1})}{0.005 - \varepsilon_{1}y} & \text{if } \varepsilon_{1} \geq \varepsilon_{1}y \wedge \varepsilon_{1} < 0.005 \\ 0.65 & \text{if } \varepsilon_{1} \leq \varepsilon_{2}y \end{bmatrix} \\ \text{Compression Check:} \\ P_{0} &\coloneqq 0.85 & \text{fe} (Ag - Ast) + \text{fy-Ast} = 2805.71 \text{ kip} \\ P_{\text{mmax}} &\simeq 0.80 \cdot P_{0} = 2244.57 \text{ kip} \\ P_{\text{mmax}} &\simeq 0.80 \cdot P_{0} = 2244.57 \text{ kip} \\ P_{\text{mmax}} &\simeq 0.20.11 \text{ kip} \\ \text{OrmpressionCheck} &= "SUFFICIENT" \\ \text{Capacity} &= 1.01.39 \\ \text{TensionCheck} &= "SUFFICIENT" \\ \text{TensionCheck} &= "SUFFICIENT" \\ \text{TensionCheck} &= "SUFFICIENT" \\ \text{TensionCheck} &= SUFFICIENT" \\ \text{TensionCheck} &= SUFFICIENT \\ \text{TensionCheck}$$

Dowel Embedment:

Horizontal Dowel Size:

Total Number of Dowels: (Per End)

Grade:

Maximum Allowable Yield Strength:

Dowel Diameter:

Singel Dowel Area:

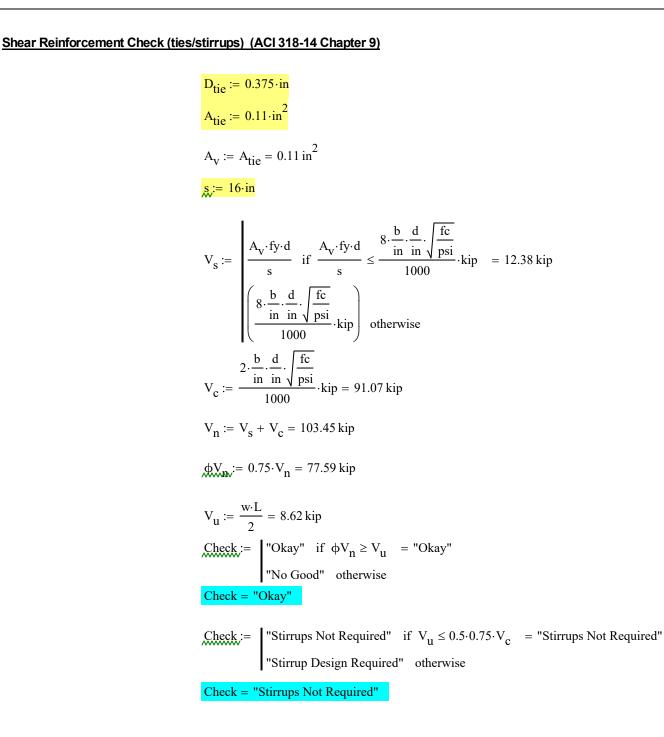
$n_d := 8$	
Fy _{dowel} := 60ksi	Fu _{dowel} := 90ksi
Check _{yield} := "RE "Oka	DESIGN" if Fy _{dowel} > 60ksi = "Okay" ay" otherwise
D _{dowel} := vlookup(d	dowel, Rebar, 2) \cdot in = 0.75 \cdot in
A _{dowel} := vlookup(a	dowel, Rebar, 3) \cdot in ² = 0.44 \cdot in ²

Dowel Development into Existing Pier (Hilti Catalog Tables)

	Epoxy := Hilti HIT-HY 200 🔽
Rebar Embedment into Exisiting Pad:	$L_{re} := 9in$
Epoxy Design Tensile Strength: (Inc. Load Adjustment Factors)	$\phi N_n := 3.87 \text{kip}$
Epoxy Design Shear Strength: (Inc. Load Adjustment Factors)	$ \phi V_n := 3.31 \text{kip} $ $ \lambda_n := 1.0 $
New Concrete Modification Factor:	$\lambda_n := 1.0$
Pier Surface:	Roughened Concrete
Coefficient of Friction:	$\mu := \operatorname{coeff} \lambda_n = 1.0 $ ACI 318-14
Minimum Embedment from HILTI:	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Check = "Okay"

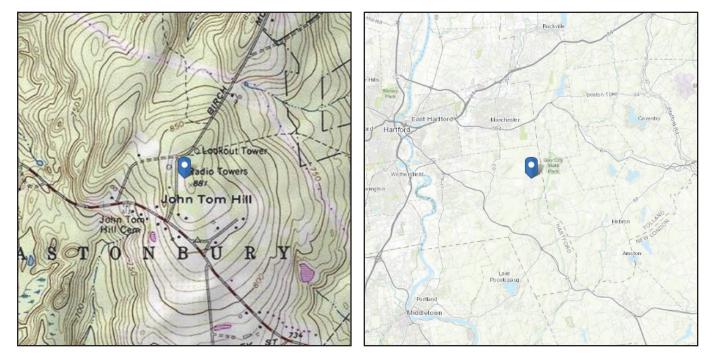
Table 22.9.4.2

Done By: AJG Checked By: DBS Date: 6/3/2020



Minimum Spacing of Adhesive Anchors:	$S_v := 6 \cdot D_{dowel} = 4.5 \cdot in$	ACI 318-14 17.7.1
Minimum Distance from Edge of Concrete for Adhesive Anchors:	$Edge_{v} := 6 \cdot D_{dowel} = 4.5 \cdot in$	ACI 318-14 17.7.3
Tensile Force per single Dowel	$T_{dowel} := \frac{Pu}{n_d} = 2.54 \cdot kip$	
Dowel Tension Check	Check := "Okay" if $\phi N_n \ge T_{dowel}$ "No Good" otherwise	
	Check = "Okay"	
Dowel Tension Rating:	rating := $\frac{T_{dowel}}{\phi N_n} = 65.68.\%$	
	w·L	
Shear Force per single Dowel	$V_{dowel} := \frac{\frac{W \cdot L}{2}}{n_d} = 1.08 \cdot kip$	
Dowel Tension Check	Check := "Okay" if $\phi N_n \ge T_{dowel}$ "No Good" otherwise	
	Check = "Okay"	
Dowel Tension Rating:	$\operatorname{rating} := \frac{V_{\text{dowel}}}{\phi N_{\text{n}}} = 27.83.\%$	
	$(T,)^2 (V,)^2$	
Dowel Combined Rating:	$\operatorname{rating}_{\sim} := \left(\frac{\mathrm{T}_{\mathrm{dowel}}}{\mathrm{\phi}\mathrm{N}_{\mathrm{n}}}\right)^{2} + \left(\frac{\mathrm{V}_{\mathrm{dowel}}}{\mathrm{\phi}\mathrm{V}_{\mathrm{n}}}\right)^{2} = 53.72.\%$	

Dowel Development into to New Beam (A	ACI 318-14 Chapter 25)	
Assumed Development Length:	$L_d := 18 \cdot in$	
New Concrete Compressive Strength:	$f_c := 4000 \cdot psi$	
Concrete Modification Factor:	$\lambda := 1.0$	
Modification Factors:	$\psi_c := 1 \qquad \psi_e := 1 \qquad \psi_r := 1$	
Required Embedment Length: (Standard Hook Termination)	$l_{d} := \frac{1}{50} \cdot \frac{\frac{Fy_{dowel}}{psi}}{\lambda \cdot \sqrt{\frac{f_{c}}{psi}}} \cdot \psi_{c} \cdot \psi_{e} \cdot \psi_{r} \cdot D_{dowel} = 14.23 \cdot in$	ACI 318-14 25.4.3.2
	$l_{d_req} := \max(l_d, 8 \cdot D_{dowel}, 6in) = 14.23 \cdot in$ $\underset{\text{Weak}}{\text{Check}} := \begin{bmatrix} \text{"Okay"} & \text{if } L_d \ge l_{d_req} & \text{= "Okay"} \\ \text{"No Good"} & \text{otherwise} \end{bmatrix}$	
	Check = "Okay"	
Designed Development Length:	$L_{dh} := L_d = 18 \cdot in$	
Required Hook Extension Length: (90 degree hook)	$L_{ext} := 12 \cdot D_{dowel} = 9 \cdot in$	ACI 318-14 Table 25.3.1
Minimum Inside Bend Diameter: (90 degree hook)	$d_{bend} = 4.5 \cdot in$	ACI 318-14 Table 25.3.1



ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

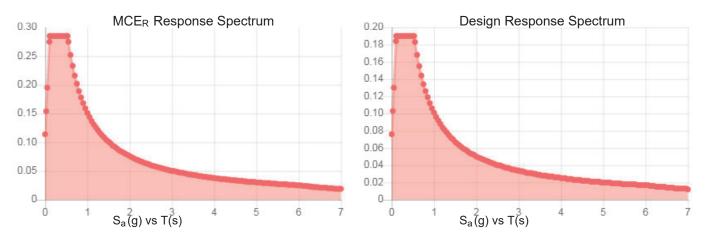
Elevation: 877.95 ft (NAVD 88) Latitude: 41.708956 Longitude: -72.473447

Wind

Results:

Wind Speed:	125 Vmph
10-year MRI	77 Vmph
25-year MRI	87 Vmph
50-year MRI	94 Vmph
100-year MRI	102 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Fri Apr 24 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.178	S _{DS} :	0.19	
S ₁ :	0.063	S _{D1} :	0.101	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.09	
S _{MS} :	0.285	PGA M :	0.143	
S _{M1} :	0.151	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Fri Apr 24 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Apr 24 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX D

REQUIRED MODIFICATION DRAWINGS

CROWN **TOWER MODIFICATION DRAWINGS**

PROJECT CONTACTS:

SITE NAME: JOHN TOM HILL **BU NUMBER: 871584**

SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA **1. CROWN PROJECT MANAGER**

DAN VADNEY (518) 373-3510 DAN.VADNEY@CROWNCASTLE.COM 3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065

2. CROWN DESIGN ENGINEER (EOR)

MAHAM BARIMANI, P.E. (724) 416-9627 EORAPPROVAL@CROWNCASTLE.COM 2000 CORPORATE DRIVE CANONSBURG, PA 15317

TOWER INFORMATION

TOWER HEIGHT / TYPE:

TOWER LOCATION: DATUM: (NAD 1983)

STRUCTURAL DESIGN DRAWING: CCI / WO # 1853234 STRUCTURAL ANALYSIS REPORT: TEP / WO # 1847521 STRUCTURAL ANALYSIS DATE: 04/28/20 ORDER #: 519195 REV # 0 CCISITES DOCUMENT ID: 9052570

CODE COMPLIANCE

THIS MODIFICATION DESIGN IS BASED ON THE REQUIREMENTS OF THE TIA-222-H STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES BASED UPON AN ULTIMATE 3-SECOND GUST WIND SPEED OF 125 MPH WITH NO ICE AS REQUIRED BY THE 2018 CONNECTICUT BUILDING CODE, 50 MPH WITH 2 INCH ICE THICKNESS AND 60 MPH UNDER SERVICE LOADS, EXPOSURE CATEGORY C AND RISK CATEGORY II.

HOT WORK INCLUDED	
NA	BASE GRINDING ONLY
NA	BASE WELDING (AND GRINDING)
NA	AERIAL GRINDING ONLY
NA	AERIAL WELDING (AND GRINDING)

ATTENTION ALL CONTRACTORS, ANYTIME YOU ACCESS A CROWN SITE FOR ANY REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND DEPARTURE, DAILY AT 800-788-7011

SAFETY CLIMB: 'LOOK UP

look

THE INTEGRITY OF THE WIRE ROPE SAFETY CLIMB SYSTEM SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER REINFORCEMENTS AND EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF ANY WIRE ROPE SAFETY CLIMB ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR. OR IMPACT TO THE ANCHORAGE POINTS IN ANY WAY. ANY COMPROMISED SAFETY CLIMB MUST BE REPORTED TO YOUR CROWN POC FOR RESOLUTION, INCLUDING EXISTING CONDITIONS

DRAWINGS INCLUDED

SHEET NUMBER	DESCRIPTION
S-1	TITLE PAGE
S-2	MODIFICATION INSPECTION CHECKLIST
S-3 & S-4	NOTES
S-5	TOWER MODIFICATION SCHEDULE
S-6	DETAILS
S-7	REBAR SCHEDULE

				CCCCROWN
		DESCRIPTION		THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF CROWN CASTLE. IT IS PRODUCED SOLELY FOR USE BY CROWN CASTLE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE
NO.	DATE	DESCRIPTION	BY	INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF CROWN CASTLE.
	REVISIONS			CROWN CASTLE. SITE NAME: JOHN TOM HILL BU NUMBER: 871584 WO NUMBER: 1853234 SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA ENG/QA BY: DBS DATE: 06/03/20 DFT BY: TE DATE: 06/04/20 DFT/QA BY: BF DATE: 06/05/20 APRV'D BY: AJG DATE: 06/05/20 SCALE: N.T.S.
	Jull	8 2020 1:21 PM		TITLE PAGE
				S-1 0

TOWER MANUFACTURER / DWG #: SABRE / DWG # 9010764

200 FT SELF SUPPORT TOWER

LAT 41° 42' 32.24" LONG -72° 28' 24.41" ELEV 879.0 FT AMSL

	1		CHECKLIST	MOD
REQUIRED	REPORT ITEM	APPLICABLE CROWN DOC #	BRIEF DESCRIPTION	GENERAL
			NSTRUCTION	THE MI IS AN ON-SITE VISUAL AND HANDS
х	MI CHECKLIST DRAWING	CED-SOW-10007	THIS CHECKLIST SERVES AS A GUIDELINE FOR THE REQUIRED CONSTRUCTION DOCUMENTS AND INSPECTIONS FOR THIS MODIFICATION.	ADDITIONAL PERTINENT DOCUMENTATION PF 3RD PARTY INSPECTORS. THE MI IS TO ENSU THE MODIFICATION DRAWINGS; IN ACCORDAN
NA	EOR APPROVED SHOP DRAWINGS	CED-SOW-10007	ONCE THE PRE-MODIFICATION MAPPING IS COMPLETE AND PRIOR TO FABRICATION, THE CONTRACTOR SHALL PROVIDE DETAILED ASSEMBLY DRAWINGS AND/OR SHOP DRAWINGS. THESE ARE TO INCLUDE, BUT ARE NOT LIMITED TO, A VISUAL LAYOUT OF NEW REINFORCEMENT, EXISTING REINFORCEMENT CONFIGURATION, PORTHOLES, MOUNTS, STEP PEGS, SAFETY CLIMBS AND ANY OTHER MISCELLANEOUS ITEMS WHICH MAY AFFECT SUCCESSFUL INSTALLATION OF MODIFICATIONS ON THE TOWER. THESE DRAWINGS SHALL BE SUBMITTED TO THE EOR FOR APPROVAL. SHOP DRAWINGS SUBMISSION SHALL INCLUDE THE EOR RFI FORM	NO DOCUMENT, CODE OR POLICY CAN ANTIC SOURCE OF GUIDING PRINCIPLES IN ESTABLIS THE MI IS TO CONFIRM INSTALLATION CONFIG MI INSPECTOR DOES NOT TAKE OWNERSHIP AND INTEGRITY RESIDES WITH THE EOR AT AL TO THE CROWN POINT OF CONTACT (CROWN)
NA	FABRICATION INSPECTION	CED-SOW-10007	DETAILING ANY CHANGES FROM THE ORIGINAL DESIGN. A LETTER FROM THE FABRICATOR, STATING THAT THE WORK WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THE CONTRACT DOCUMENTS, SHALL BE PROVIDED TO THE MI INSPECTOR FOR	ALL MI'S SHALL BE CONDUCTED BY A CROWN "APPROVED MI VENDORS".
NA	FABRICATOR CERTIFIED WELD INSPECTION	CED-SOW-10007	INCLUSION IN THE MI REPORT. A CWI SHALL INSPECT ALL WELDING PERFORMED ON STRUCTURAL MEMBERS DURING FABRICATION. A	TO ENSURE THAT THE REQUIREMENTS OF COMMUNICATING AND COORDINATING AS SO
X	MATERIAL TEST REPORTS (MTR)	CED-STD-10069 CED-SOW-10007	WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT. MATERIAL TEST REPORTS SHALL BE PROVIDED FOR MATERIAL USED AS REQUIRED PER SECTION 9.2.5 OF	REACHING OUT TO THE OTHER PARTY. IF CC CONTACT (POC).
NA	FABRICATOR NDE INSPECTION REPORT	CED-SOW-10066 CED-STD-10069	CED-SOW-10007. MTRS SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT. CRITICAL SHOP WELDS THAT REQUIRE TESTING ARE NOTED ON THESE CONTRACT DRAWINGS. A CERTIFIED NDT INSPECTOR SHALL PERFORM NON-DESTRUCTIVE EXAMINATION AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.	REFER TO CROWN CED-SOW-10007, "MODIFIC SERVICE LEVEL COMMITM
NA	NDE OF MONOPOLE BASE PLATE	ENG-SOW-10033	A NDE OF THE POLE TO BASE PLATE CONNECTION IS REQUIRED AND A WRITTEN REPORT SHALL BE PROVIDED	THE FOLLOWING RECOMMENDATIONS AND REPORT:
X	PACKING SLIPS	CED-SOW-10007	TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT. PACKING/SHIPPING LIST FOR ALL MATERIAL THAT WAS USED DURING CONSTRUCTION OF THE MODIFICATION.	• THE GC SHALL PROVIDE A MINIMUM OF
	TING AND INSPECTIONS:			 FOR THE MI TO BE CONDUCTED. THE GC AND MI INSPECTOR COORDINATI WHEN POSSIBLE, IT IS PREFERRED TO
X OR NA				WHEN POSSIBLE, IT IS PREFERRED T RE-TENSIONING OPERATIONS. WHEN POSSIBLE, IT IS PREFERRED TO I
		CON	STRUCTION	DURING THE INITIAL MI. THEREFORE, T AT THEIR DISPOSAL WHEN THE MI INSPE
х	FOUNDATION INSPECTIONS	CED-SOW-10144	A VISUAL OBSERVATION OF THE EXCAVATION AND REBAR SHALL BE PERFORMED BEFORE PLACING THE CONCRETE. A VISUAL OBSERVATION OF THE REBAR SHALL BE PERFORMED BEFORE PLACING THE EPOXY. A SEALED WRITTEN REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.	REQUIRED PHOTOS
x	CONCRETE COMP. STRENGTH AND SLUMP TEST	CED-SOW-10144	THE CONCRETE MIX DESIGN, SLUMP TEST, AND COMPRESSIVE STRENGTH TESTS SHALL BE PROVIDED AS PART OF THE FOUNDATION REPORT.	PRE-CONSTRUCTION GENERAL SITE CO
x	EARTHWORK	CED-SOW-10144	FOUNDATION SUB-GRADES SHALL BE INSPECTED AND APPROVED BY AN APPROVED FOUNDATION INSPECTOR AND RESULTS INCLUDED AS PART OF THE FOUNDATION REPORT.	PHOTOGRAPHS DURING THE REINFORC RAW MATERIALS PHOTOS OF ALL CRITICAL DETAIL
NA	MICROPILE/ROCK ANCHOR	CED-SOW-10144	MICROPILES/ROCK ANCHORS SHALL BE INSPECTED BY THE FOUNDATION INSPECTION VENDOR AND SHALL BE INCLUDED AS PART OF THE FOUNDATION INSPECTION REPORT, ADDITIONAL TESTING AND/OR INSPECTION REQUIREMENTS ARE NOTED IN THESE CONTRACT DOCUMENTS.	FOUNDATION MODIFICATIONS WELD PREPARATION BOLT INSTALLATION FINAL INSTALLED CONDITION
NA	POST-INSTALLED ANCHOR ROD VERIFICATION	CED-SOW-10007	POST INSTALLED ANCHOR ROD VERIFICATION SHALL BE PERFORMED IN ACCORDANCE WITH CROWN REQUIREMENTS AND A REPORT SHALL BE PROVIDED TO THE MI INSPECTOR FOR INCLUSION IN THE MI REPORT.	SURFACE COATING REPAIR POST CONSTRUCTION PHOTOGRAPHS FINAL INFIELD CONDITION
NA	BASE PLATE GROUT VERIFICATION	ENG-STD-10323	THE GENERAL CONTRACTOR SHALL PROVIDE DOCUMENTATION TO THE MI INSPECTOR THAT CERTIFIES THAT THE GROUT WAS REMOVED AND/OR INSTALLED IN ACCORDANCE WITH CROWN REQUIREMENTS FOR INCLUSION IN THE MI REPORT.	PHOTOS OF ELEVATED MODIFICATIONS TAKE THIS IS NOT A COMPLETE LIST OF REQUIRED
NA	FIELD CERTIFIED WELD INSPECTION	CED-SOW-10066 CED-STD-10069	A CROWN APPROVED CERTIFIED WELD INSPECTOR SHALL INSPECT AND TEST FIELD WELDS, FOLLOWING ALL PROCEDURES SPECIFIED IN CROWN STANDARD DOCUMENTS APPLICABLE TO WELD INSPECTIONS. A REPORT SHALL BE PROVIDED. NDE OF FIELD WELDS SHALL BE PERFORMED AS REQUIRED BY CROWN STANDARDS AND CONTRACT DOCUMENTS. THE NDE REPORT SHALL BE INCLUDED IN THE CWI REPORT.	
NA	ON-SITE COLD GALVANIZING VERIFICATION	ENG-STD-10149	THE GENERAL CONTRACTOR SHALL PROVIDE WRITTEN AND PHOTOGRAPHIC DOCUMENTATION TO THE MI INSPECTOR VERIFYING THAT ANY ON-SITE COLD GALVANIZING WAS APPLIED PER MANUFACTURER SPECIFICATIONS AND APPLICABLE STANDARDS.	
NA	TENSION TWIST AND PLUMB	CED-PRC-10182 CED-STD-10261		NO.
х	GC AS-BUILT DRAWINGS	CED-SOW-10007	THE GENERAL CONTRACTOR SHALL SUBMIT A LEGIBLE COPY OF THE ORIGINAL DESIGN DRAWINGS EITHER STATING "INSTALLED AS DESIGNED" OR NOTING ANY CHANGES THAT WERE REQUIRED AND APPROVED BY THE ENGINEER OF RECORD. EOR/RFI FORMS APPROVING ALL CHANGES SHALL BE SUBMITTED.	
DITIONAL TES	TING AND INSPECTIONS:			
X OR NA				
	I	POST-C	ONSTRUCTION	
х	CONSTRUCTION COMPLIANCE LETTER	CED-SOW-10007	A LETTER FROM THE GENERAL CONTRACTOR STATING THAT THE WORKMANSHIP WAS PERFORMED IN ACCORDANCE WITH INDUSTRY STANDARDS AND THESE CONTRACT DRAWINGS, INCLUDING LISTING ADDITIONAL PARTIES TO THE MODIFICATION PROCESS.	
NA	POST-INSTALLED ANCHOR ROD PULL TESTS	CED-PRC-10119	POST-INSTALLED ANCHOR RODS SHALL BE TESTED BY A CROWN APPROVED PULL TEST INSPECTOR AND A REPORT SHALL BE PROVIDED INDICATING TESTING RESULTS.	
х	PHOTOGRAPHS	CED-SOW-10007	PHOTOGRAPHS SHALL BE SUBMITTED TO THE MI. PHOTOS SHALL DOCUMENT ALL PHASES OF THE CONSTRUCTION. THE PHOTOS SHALL BE ORGANIZED IN A MANNER THAT EASILY IDENTIFIES THE EXACT LOCATION OF THE PHOTO.	
NA	BOLT HOLE INSTALLATION VERIFICATION REPORT	CED-SOW-10007	THE MI INSPECTOR SHALL VERIFY THE INSTALLATION AND TIGHTNESS 10% OF ALL NON PRE-TENSIONED BOLTS INSTALLED AS PART OF THE MODIFICATION. THE MI INSPECTOR SHALL LOOSEN THE NUT AND VERIFY THE BOLT HOLE SIZE AND CONDITION. THE MI REPORT SHALL CONTAIN THE COMPLETED BOLT INSTALLATION VERIFICATION REPORT, INCLUDING THE SUPPORTING PHOTOGRAPHS.	
х	PUNCHLIST DEVELOPMENT AND CORRECTION DOCUMENTATION	CED-PRC-10283 CED-FRM-10285	FINAL PUNCHLIST INDICATING ALL NONCONFORMANCE(S) IDENTIFIED AND THE FINAL RESOLUTION/APPROVAL.	
х	MI INSPECTOR REDLINE OR RECORD DRAWING(S)	CED-SOW-10007	THE MI INSPECTOR SHALL OBSERVE AND REPORT ANY DISCREPANCIES BETWEEN THE CONTRACTOR'S REDLINE DRAWING AND THE ACTUAL COMPLETED INSTALLATION.	
DITIONAL TES	TING AND INSPECTIONS:			

THE MI CHECKLIST SHALL BE REVIEWED PRIOR TO THE START OF CONSTRUCTION. ALL PARTIES TO THE MODIFICATION SHALL UNDERSTAND CROWN REQUIREMENTS AND INSPECTION/DOCUMENTATION THAT IS APPLICABLE TO THE SCOPE OF WORK THEY ARE PERFORMING. ERRORS ON THE MI CHECKLIST SHALL BE BROUGHT TO THE ATTENTION OF THE CROWN POC AND EOR AS SOON AS POSSIBLE.

ICATION INSPECTION NOTES

NSPECTION OF TOWER MODIFICATIONS INCLUDING A REVIEW OF CONSTRUCTION REPORTS AND ED BY THE GENERAL CONTRACTOR (GC), AS WELL AS ANY INSPECTION DOCUMENTS PROVIDED BY HE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY TH APPLICABLE CROWN STANDARDS; AND AS DESIGNED BY THE ENGINEER OF RECORD (EOR).

EVERY SITUATION THAT MAY ARISE. ACCORDINGLY, THIS CHECKLIST IS INTENDED TO SERVE AS A GUIDELINES FOR MODIFICATION INSPECTION.

ION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, AND THE E MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS ES. THE M INSPECTOR SHALL INSPECT AND NOTE CONFORMANCE/NONCONFORMANCE AND PROVIDE OR EVALUATION.

OVED MI INSPECTOR, WORKING FOR A CROWN APPROVED MI VENDOR. SEE CROWN CED-LST-10173,

I ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN A PURCHASE ORDER (PO) IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN INFORMATION IS NOT KNOWN THE GC AND/OR INSPECTOR SHALL CONTACT THE CROWN POINT OF

NSPECTION SOW", FOR FURTHER DETAILS AND REQUIREMENTS.

STIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI

NESS DAYS NOTICE, PREFERABLY 10, TO THE MI INSPECTOR AS TO WHEN THE SITE WILL BE READY

SELY THROUGHOUT THE ENTIRE PROJECT. E THE GC AND MI INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR

HE GC AND MI INSPECTOR ON-SITE DURING THE MI TO HAVE ANY MINOR DEFICIENCIES CORRECTED MAY CHOOSE TO COORDINATE THE MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE S ON SITE.

OWING PHOTOGRAPHS, AT A MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:

MODIFICATION CONSTRUCTION/ERECTION AND INSPECTION

FROM THE GROUND SHALL BE CONSIDERED INADEQUATE.

, FOR A COMPLETE LIST OF PHOTOS SEE CED-SOW-10007

		THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF CROWN CASTLE. IT IS PRODUCED SOLELY FOR USE BY CROWN CASTLE AND ITS AFFILIATES. REPRODUCTION
DESCRIPTION	BY	OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF CROWN CASTLE.
RENOUND RENOUN RENOUN RENOUND RENOUND RENOUND RENOUND RENOU		CROWN CASTLE. SITE NAME: JOHN TOM HILL BU NUMBER: 871584 WO NUMBER: 1853234 SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA ENG/QA BY: DBS DATE: 06/03/20 DFT BY: TE DATE: 06/04/20 DFT/QA BY: BF DATE: 06/05/20 APRV'D BY: AJG DATE: 06/05/20 SCALE: N.T.S.
a 8 2020 1:21 PM		MODIFICATION INSPECTION CHECKLIST
		S-2 0

GENERAL NOTES

- 1. The General Contractor (GC) shall reference CED-STD-10159. "Tower Modification Construction Specifications", as a continuation of the following General Notes. The GC shall keep a copy of this document with the Structural Design Drawings (SDD) at all times, and shall ensure that all Contractor Personnel are aware of the information enclosed within the General Notes and CED-STD-10159.
- 2. The Contract Documents are the property of Crown Castle (Crown). They are provided to the GC and its Lower Tier Contractors and material suppliers for the limited purpose of use in completing the Work for this Site, and shall be kept in strict confidence and not disclosed to any third parties. The Contract Documents shall not be used for any other purpose whatsoever without the prior written consent of Crown.
- 3. Detail drawings, including notes and tables, shall govern over general notes and typical details. Contact the Crown Point of Contact (POC) and Engineer of Record (EOR) for clarification as needed.
- 4. Do not scale drawings.
- 5. Any Work performed without a prefabrication mapping is done at the risk of the GC and/or fabricator. All dimensions of existing structural elements are assumed based on the available documentation and are preliminary until field-verified by the GC, unless noted otherwise (UNO). Where discrepancies are found, GC shall contact the Crown POC and EOR through RFI.
- 6. For this analysis and modification, the tower has been assumed to be in good condition without any structural defects, UNO. If the GC discovers any indication of an existing structural defect, contact the Crown POC and EOR immediately.
- 7. All construction means and methods, including but not limited to erection plans, rigging plans, climbing plans, and rescue plans, shall be the responsibility of the GC responsible for the execution of the Work contained herein, and shall meet ANSI/ASSE A10.48 (latest edition); federal, state, and local regulations; and any applicable industry consensus standards related to the construction activities being performed. All rigging plans shall adhere to ANSI/ASSE A10.48 (latest edition) and Crown standard CED-STD-10253, "Rigging Program", including the required involvement of a qualified engineer for class IV construction to certify the supporting structure(s) in accordance with the ANSI/TIA-322 (latest edition).
- 8. The structural integrity of the modification design extends to the complete condition only. The GC must be cognizant that the removal of any structural component of an existing tower has the potential to cause the partial or complete collapse of the structure. All necessary precautions must be taken to ensure structural integrity, including, but not limited to, engineering assessment 14. For a list of Crown-approved cold galvanizing compounds, refer to of construction stresses with installation maximum wind speed and/or temporary bracing and shoring.
- 9. Aerial and underground utilities and facilities may or may not be shown on the drawings. The GC shall take every precaution to preserve and protect these items, which may include aerial or underground power lines, telephone lines, water lines, sewer lines, cable television facilities, pipelines, structures and other public and private improvements within or adjacent to the Work area. The responsibility for determining the actual on-site location of these items shall rest exclusively with the GC.
- 10. All manufacturer's hardware assembly instructions shall be followed, UNO. Conflicting notes shall be brought to the attention of the EOR and the Crown POC.

11. The GC shall fabricate all required items per the materials specified below, UNO on the detail drawing sheets. If the GC finds for any component that the materials have not been clearly specified, the GC shall submit an RFI to the EOR to confirm the required material.

All structural elements shall be new and shall conform to the following requirements, UNO:

Monopoles:

I		
 Structural shapes and p 	lates:	ASTM A572 Grade 65 (FY = 65 KSI)
 Welding electrodes, SM 	AW:	E80XX
Welding electrodes, FC	AW:	E8XT-XX
 Welding electrodes, GM 	AW:	ER80S-X
Self-Support and Guyed Tow	/ers:	
 Structural shapes and p 	lates:	ASTM A572 Grade 50 (FY = 50 KSI)
 Welding electrodes, SM 	AW:	E70XX
 Welding electrodes, FC/ 	AW:	E7XT-XX
 Welding electrodes, GM 	IAW:	ER70S-X
All tower types:		
 Steel angle: 	ASTM A572	2 Grade 50 (FY = 50 KSI)

- ASTM A36 (FY = 36 KSI)
- Solid rod: ASTM A500 Grade C (FY = 46 KSI) • Pipe/tube (round):
- Pipe/tube (square): ASTM A500 Grade C (FY = 50 KSI)
- Bolts: ASTM F3125 Grade A325 Type 1
- U-bolts: ASTM A307 Grade A, or SAE J429 Grade 2
- Nuts: ASTM A563 Grade DH
- Washers: ASTM F436 Type 1
- Guy Wires: ASTM A475 Grade EHS
- ASTM A586 Grade 1 • Bridge Strand:
- 12. After fabrication, hot-dip galvanize all steel items, UNO. Galvanize per ASTM A123. ASTM A153/A153M. or ASTM A653 G90. as applicable. ASTM A490 bolts shall not be hot-dip galvanized, but shall instead be coated with Magni 565 or EOR approved equivalent, per ASTM F2833.
- 13. Contractor Personnel shall not drill holes in any new or existing structural members, other than those drilled holes shown on structural drawings, without the approval of the EOR.
- ENG-STD-10149, "Tower Protective Coatings Guidelines".
- 15. All exposed structural steel as the result of this scope of Work including welds (after final inspection of the weld by the CWI), field drilled holes, and shaft interiors (where accessible), shall be cleaned and two (2) coats cold galvanizing shall be applied by brush in accordance with ENG-STD-10149, "Tower Protective Coatings Guidelines". Photo documentation is required to be submitted to the MI Inspector.
- 16. If removal of existing modifications is required per the modification scope, the GC shall clean and cold galvanize any existing empty bolt holes, UNO. If additional unexpected, oversized, or slotted holes are found, the GC shall contact the EOR and Crown POC for guidance prior to proceeding with the modifications.
- 17. All Work involving base plate grout scope items or resulting in disturbance of base plate grout shall reference ENG-STD-10323, "Base Plate Grout", and shall follow any Base Plate Grout Removal Notes contained herein.

- must be replaced.
- shall be snug tightened, UNO.

NO.	DATE

Jun

18. All tower grounding affected by the Work shall be repaired or replaced in accordance with OPS-STD-10090, "Tower Grounding", and OPS-BUL-10133, "Grounding Repair Recommendation".

19. If scope of modification requires removal or covering of tower ID tag, the tag

20. Any hardware removed from the existing tower shall be replaced with new hardware of equal size and quality, UNO. No existing fasteners shall be reused.

21. All joints using ASTM A325 or A490 bolts, U-bolts, V-bolts, and threaded rods

22. A nut locking device shall be installed on all proposed and/or replaced snug tightened ASTM A325 or A490 bolts, U-bolts, V-bolts, and threaded rods.

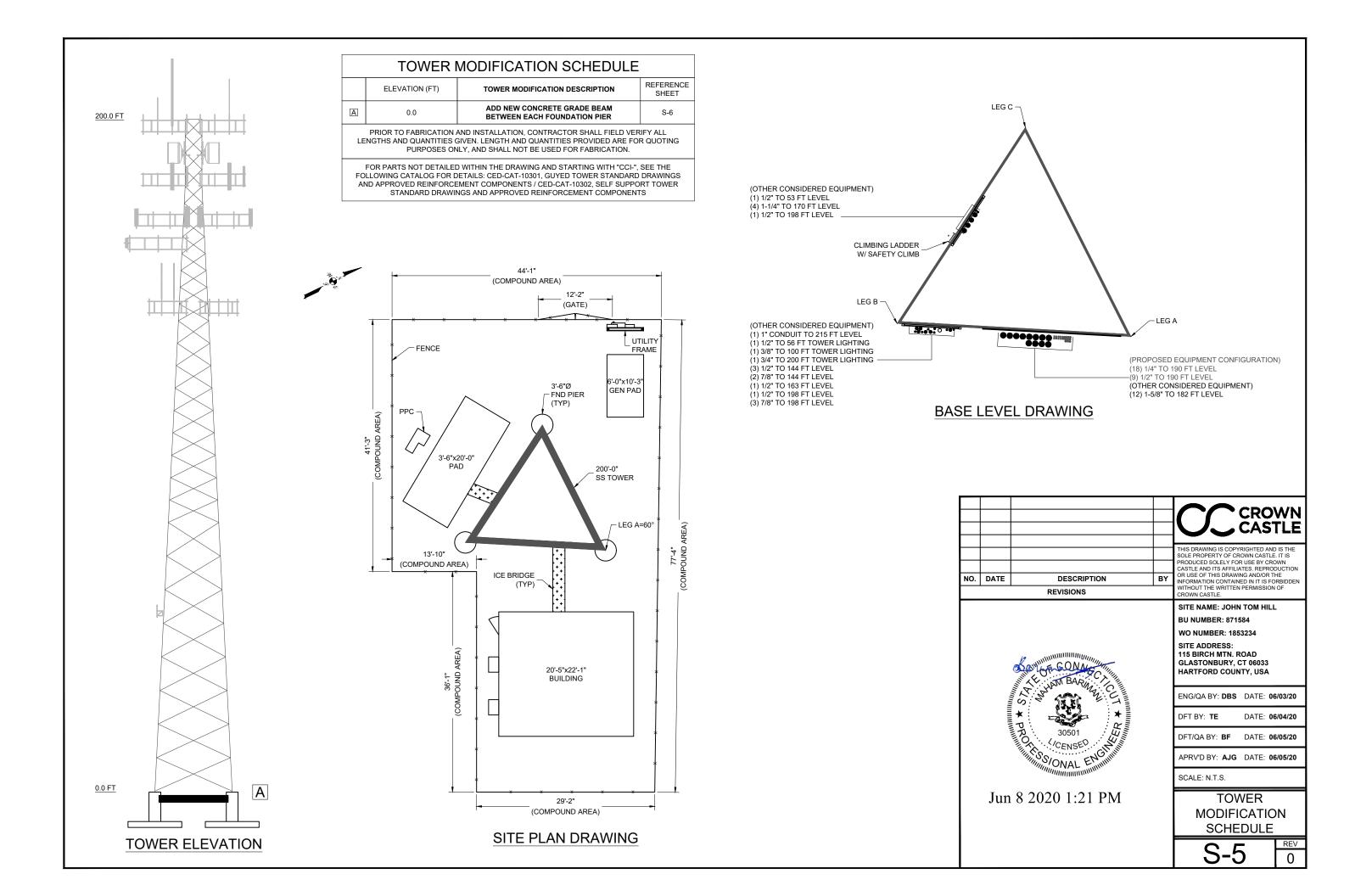
23. All joints are bearing type connections UNO. If no bolt length is given in the Bill of Materials, the connection may include threads in the shear planes, and the GC is responsible for sizing the length of the bolt.

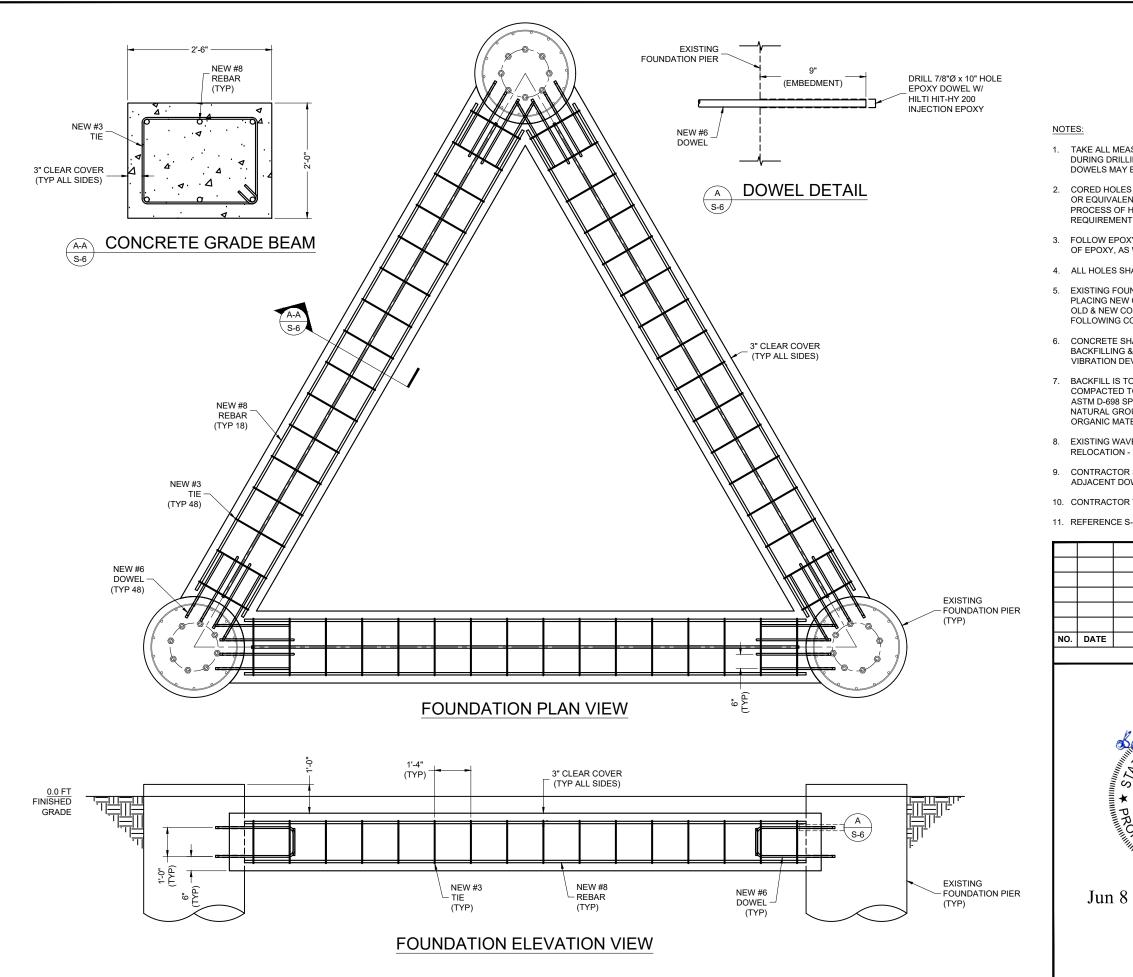
24. Blind bolts shall be installed per the installation specifications on the corresponding Approved Fastener sheets contained in CED-CAT-10300, "Monopole Standard Drawings and Approved Reinforcement Components".

25. If ASTM A325 or A490 bolts, and/or threaded rods are specified to be pre-tensioned, these shall be installed and tightened to the pretensioned condition according to the requirements of the RCSC Specification for Structural Joints Using ASTM High Strength Bolts.

26. All proposed and/or replaced bolts shall be of sufficient length such that the end of the bolt be at least flush with the face of the nut. It is not permitted for the bolt end to be below the face of the nut after tightening is completed.

		CC CROWN CASTLE	
		THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF CROWN CASTLE. IT IS PRODUCED SOLELY FOR USE BY CROWN CASTLE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE	
DESCRIPTION BY REVISIONS		INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF CROWN CASTLE.	
ROBINSTONAL ENGIN		SITE NAME: JOHN TOM HILL BU NUMBER: 871584 WO NUMBER: 1853234 SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA ENG/QA BY: DBS DATE: 06/03/20 DFT BY: TE DATE: 06/05/20 DFT/QA BY: BF DATE: 06/05/20 SCALE: N.T.S.	
a 8 2020 1:21 PM		NOTES	
		S-3 0	


CONCRETE NOTES


- 1. All concrete work shall be in accordance with ACI 301 specifications for structural concrete (latest edition). All concrete shall have a minimum 28 day compressive strength of 4000 PSI and air entrained at 6% ± 1.5%.
- 2. Prepare and submit batch tickets for each type and strength of concrete. All concrete parameters (strength, slump, water content, aggregates, additives, etc.) shall meet the requirements of the concrete design mix engineer.
- 3. For field mixing, prepare and submit mix designs for pre-approval for each type and strength of concrete in accordance with ACI 211, "Proportioning Concrete Mixtures", and ACI 301, "Specifications for Structural Concrete".
- 4. All concrete shall be normal weight concrete.
- 5. Slump test shall be made in accordance with ASTM C143. The allowable concrete slump shall be 4 inches unless super-plasticizers are used.
- 6. The engineer shall pre-approve superplasticizer use.
- 7. Cement shall conform to ASTM C150 Type II. Fine aggregate shall conform to ASTM C33. Course aggregate shall be gravel or crushed stone conforming to ASTM C33. maximum aggregate size shall be 3/4".
- 8. Water shall be clean and free from oils, acids, alkalies, and organic materials. No additional water shall be added to the concrete at the job site.
- 9. Do not use chloride-containing admixtures.
- 10. Air entraining admixtures shall conform to ASTM C260.
- 11. Hot weather concrete placement shall comply with ACI 305R. Cold weather concrete placement shall comply with ACI 306.1.
- 12. Concrete shall be placed within 24 hours of excavation inspections. The contractor shall be responsible for protecting exposed excavations prior to concrete placement.
- 13. Place concrete by using a chute or hopper device such that concrete shall not free fall from a height greater than 5 feet. Deposit concrete within the center of the steel reinforcing cage to prevent segregation.
- 14. Consolidate placed concrete with mechanical vibrating equipment in accordance with ACI 309R. Do not use vibrators to transport concrete.
- 15. Concrete shall be cured in accordance with ACI 301. When applicable, curing compounds shall be water clear, styrene acrylate type with a minimum solids content of 30%. Application shall be in conformance with manufacturer's instructions.

CONCRETE REINFORCING STEEL NOTES

- 1. All reinforcing steel shall be deformed billet steel conforming to ASTM A615, Grade 60 unless noted otherwise.
- 2. Reinforcing steel shall be detailed, fabricated, bent and placed in accordance with the CRSI Manual of Standard Practice and the ACI 315 (latest edition).
- 3. Welding of reinforcing and embedments is prohibited.
- 4. All reinforcing steel shall have a minimum three (3) inches concrete coverage unless noted otherwise.
- 5. Spacing devices shall be used as required to maintain the side and bottom clearance between the steel reinforcement and excavation.

		THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF CROWN CASTLE. IT IS	
		PRODUCED SOLELY FOR USE BY CROWN CASTLE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE	
DESCRIPTION	BY	INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF	
REVISIONS		CROWN CASTLE.	
		SITE NAME: JOHN TOM HILL	
		BU NUMBER: 871584	
		WO NUMBER: 1853234	
Contraction of CONAL CONTRACTION	SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA		
S Z S	ENG/QA BY: DBS DATE: 06/03/20		
30501 CENSED SONAL ENGINE		DFT BY: TE DATE: 06/04/20	
30501		DFT/QA BY: BF DATE: 06/05/20	
SONAL ENMININ		APRV'D BY: AJG DATE: 06/05/20	
	SCALE: N.T.S.		
n 8 2020 1:21 PM		NOTES	
		C / REV	

 TAKE ALL MEASUREMENTS NECESSARY TO AVOID DAMAGING EXISTING REINFORCING BARS DURING DRILLING OPERATIONS. MINOR ADJUSTMENT TO PROPOSED LOCATION OF NEW DOWELS MAY BE REQUIRED.

 CORED HOLES SHALL BE MECHANICALLY ROUGHENED USING A CARBIDE HOLE ROUGHENER OR EQUIVALENT. BRUSHING WITH A NYLON OR WIRE BRUSH SHALL BE USED IN THE PROCESS OF HOLE CLEANING, BUT DOES NOT SATISFY THE HOLE ROUGHENING REQUIREMENT.

3. FOLLOW EPOXY MANUFACTURER'S RECOMMENDATIONS FOR HOLE CLEANING, HANDLING OF EPOXY, AS WELL AS ALL INSTALLATION INSTRUCTIONS AND REQUIREMENTS.

4. ALL HOLES SHALL BE DRY PRIOR TO PLACING EPOXY.

 EXISTING FOUNDATION SHOULD BE CLEANED OF GREASE, DIRT & LOOSE DEBRIS PRIOR TO PLACING NEW CONCRETE. APPLY AN EPOXY BONDING AGENT TO ALL SURFACES BETWEEN OLD & NEW CONCRETE. SEAL ALL EXPOSED JOINTS BETWEEN OLD & NEW CONCRETE FOLLOWING CONSTRUCTION.

6. CONCRETE SHALL BE ALLOWED TO CURE FOR A MINIMUM OF 24 HOURS BEFORE BACKFILLING & COMPACTION WITH HANDHELD VIBRATORY EQUIPMENT. FOR LARGER VIBRATION DEVICES, A MINIMUM OF 3 DAYS OF CONCRETE CURE TIME IS REQUIRED.

7. BACKFILL IS TO BE MADE IN LIFTS NOT TO EXCEED 8 INCHES. EACH LIFT IS TO BE COMPACTED TO A MINIMUM OF 95 PERCENT OF MAXIMUM DRY DENSITY AS DETERMINED BY ASTM D-698 SPECIFICATIONS. EXCAVATED AREA TO HAVE A MINIMUM 6" MOUND ABOVE NATURAL GROUND SURFACE WHEN COMPLETED. NO FROZEN MATERIAL, LARGE ROCKS OR ORGANIC MATERIAL IS TO BE USED FOR BACKFILL.

 EXISTING WAVEGUIDE POSTS & GROUND LEADS MAY REQUIRE TEMPORARY SHORING (OR RELOCATION - FIELD VERIFY) PRIOR TO EXCAVATION.

9. CONTRACTOR SHALL ALTERNATE HOOK LOCATION AND DRILLED HOLE LOCATIONS ON ADJACENT DOWEL LAYERS TO AVOID INTERFERENCE ISSUES.

10. CONTRACTOR TO DETERMINE CUBIC YARDS OF CONCRETE REQUIRED.

11. REFERENCE S-4 FOR ADDITIONAL CONCRETE AND REBAR NOTES.

		CROWN
DESCRIPTION REVISIONS	BY	THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF CROWN CASTLE. IT IS PRODUCED SOLELY FOR USE BY CROWN CASTLE AND ITS AFFILIATES. REPRODUCTION OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF CROWN CASTLE.
Keyward CA CONAL		SITE NAME: JOHN TOM HILL BU NUMBER: 871584 WO NUMBER: 1853234 SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA
A 8 2020 1:21 PM		ENG/QA BY: DBS DATE: 06/03/20 DFT BY: TE DATE: 06/04/20 DFT/QA BY: BF DATE: 06/05/20
		APRV'D BY: AJG DATE: 06/05/20 SCALE: N.T.S.
		DETAILS
		S-6

REBAR SCHEDULE				
BAR SIZE	ТҮРЕ	BENDING DIAGRAM	QUANTITY	
#8	STRAIGHT	19'-6"	18	
#3	TIES	2'-0" R 3/4" (TYP) (TYP) 3" (TYP)	48	
#6	DOWELS	R2 1/4"	48	

Jun

	_	
		THIS DRAWING IS COPYRIGHTED AND IS THE SOLE PROPERTY OF CROWN CASTLE. IT IS
	PRODUCED SOLELY FOR USE BY CROWN CASTLE AND ITS AFFILIATES. REPRODUCTION	
DESCRIPTION	BY	OR USE OF THIS DRAWING AND/OR THE INFORMATION CONTAINED IN IT IS FORBIDDEN
REVISIONS		WITHOUT THE WRITTEN PERMISSION OF CROWN CASTLE.
		SITE NAME: JOHN TOM HILL
		BU NUMBER: 871584
		WO NUMBER: 1853234
A SOLUTION BARNER CANANAL CANANAL CANANAL CANANAL ENGINEER	SITE ADDRESS: 115 BIRCH MTN. ROAD GLASTONBURY, CT 06033 HARTFORD COUNTY, USA	
S Z MARKEN	ENG/QA BY: DBS DATE: 06/03/20	
	DFT BY: TE DATE: 06/04/20	
R 30501		DFT/QA BY: BF DATE: 06/05/20
MANNO/ONAL ENGININ		APRV'D BY: AJG DATE: 06/05/20
	SCALE: N.T.S.	
n 8 2020 1:21 PM		REBAR SCHEDULE
		C 7 REV

Exhibit C

Mount Analysis

GPD Engineering and Architecture Professional Corporation Matt Dickson 520 South Main Street, Suite 2531 Akron, OH 44311 (469) 573-4308 mdickson@gpdgroup.com

GPD# US.CT.CCI.871584.01 June 19, 2020

MOUNT ANALYSIS REPORT

SITE DESIGNATION:	Site Name #:	US.CT.CCI.871584
ANALYSIS CRITERIA:	Codes:	TIA-222-G, 2015 IBC, 2018 Connecticut Building Code, & AISC-360 125 mph (ultimate 3-second gust) w/ 0" ice 97 mph (nominal 3-second gust) w/ 0" ice 50 mph (3-second gust) w/ 1" ice
SITE DATA:		115 Birch Mtn. Road, Glastonbury, CT 06033, Hartford County Latitude 41°42' 32.24" N, Longitude 72°28' 24.41" W (1) Commscope PM-SC4-96 Universal Pipe Mount (1) Commscope TF-ML4-8 Face Mount

Dear Sacha Ferrari-Apollon,

GPD is pleased to submit this Mount Analysis Report to determine the structural integrity of the aforementioned mount. The purpose of the analysis is to determine the suitability of the mount with the proposed loading configuration detailed in the analysis report.

Analysis Results

Mount Stress Level with Proposed Equipment: 71.0% Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and DRW NX LLC. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E. Connecticut #: 0030026

SUMMARY & RESULTS

The purpose of this analysis was to verify whether the proposed mounts are capable of carrying the proposed loading configuration as specified by DRW NX LLC.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph (converted to an equivalent 97 mph nominal 3second gust wind speed per Section 1609.3.1 for use with TIA-222 G) as required by the 2015 International Building Code & 2018 Connecticut Building Code. Applicable Standard references and design criteria are listed in Appendices A & B.

The mount was verified to be capable of withstanding a 500 lb live load concurrent with 30-mph wind speeds.

MOUNT SUMMARY AND RESULTS

Member	Capacity	Results
Mount	71.0%	Pass
Mount to Tower Connection	36.3%	Pass

RECOMMENDATIONS

The mount has sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

ANALYSIS METHOD

RISA-3D (Version 17.0.2), a commercially available analysis software package, and hand calculations were used to create a three-dimensional model of the mount and calculate member stresses for the proposed loading configuration. Selected calculations from this analysis are included in Appendices B & C. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information.

DOCUMENTS PROVIDED

Document	Remarks	Source
Construction Drawings	GPD Project #: 2020796.01.US.CT.CCI.871584.01, dated 6/15/2020	DRW NX LLC
Mount Design	Commscope Drawing #: TF-M Series, dated 1/23/2009	Commscope
Mount Design	Commscope Drawing #: PM-SC Series, dated 4/20/2010	Commscope
Mount Mapping	Not Provided	N/A
Previous Mount Analysis	Not Provided	N/A
Mount Modification Drawings	Not Provided	N/A
Tower Design	Not Provided	N/A
Previous Tower Analysis	Not Provided	N/A

ASSUMPTIONS

This mount structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the mount. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The mount member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed based on experience with similar mounts.
- 2. The antenna configuration is as supplied and/or as modeled in the analysis. When information was not provided, the configuration was modeled based upon past experience with similar loading.
- 3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
- 4. The mount has been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 5. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 6. The threaded rods at the mount to tower connection are considered to be sufficiently tightened to resist rotation.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the mount.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the mount to verify the member sizes and antenna/coax loading. If the existing conditions are not as represented on the mount elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the mount. This report does not replace a full mount inspection. The mount is assumed to have been properly fabricated, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Mount Analysis are limited to a computer analysis of the mount structure and theoretical capacity of its main structural members. All mount components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing mount standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing mount. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed mount. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this mount. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Mount Analysis Summary Form

Mount Analysis Summary Form

General Info

Site Name	US.CT.CCI.871584
Date of Analysis	6/19/2020
Company Performing Analysis	GPD

Structure Info	Description	Date
Tower Type (G, SST, MP)	SST	
Tower Height (top of steel AGL)	200'	
Mount Manufacturer	Commscope	
Mount Model	PM-SC4-63	
Mount Design	Commscope Drawing #: PM-SC Series	4/20/2010
Mount Mapping	n/a	
Previous Mount Analysis	n/a	
Mount Modification Design	n/a	
Tower Design	n/a	
Previous Tower Analysis	n/a	
Mount Design	Commscope Drawing #: TF-M Series	1/23/2009

The information contained in this summary report is not to be used independently from the PE stamped mount analysis.

Design Parameters

Design Code Used	TIA-222-G, 2015 IBC, 2018 Connecticut Building Code, & AISC-360
Location of Tower (County, State)	Hartford, CT
Wind Speed (mph)	97 (nominal 3-second gust)
Ice Thickness (in)	1
Risk Category (I, II, III)	I
Exposure Category (B, C, D)	С
Topographic Category (1 to 5)	1

The mount was verified to be capable of withstanding a 500 lb live load concurrent with 30-mph wind speeds.

Analysis Results (% Maximum Usage)

Proposed Condition	
Mount (%)	71.0%
Mount to Tower Connection (%)	36.3%

Steel Yield Strength (ksi)

Pipes	35
Solid Round	36
Bolts	A325

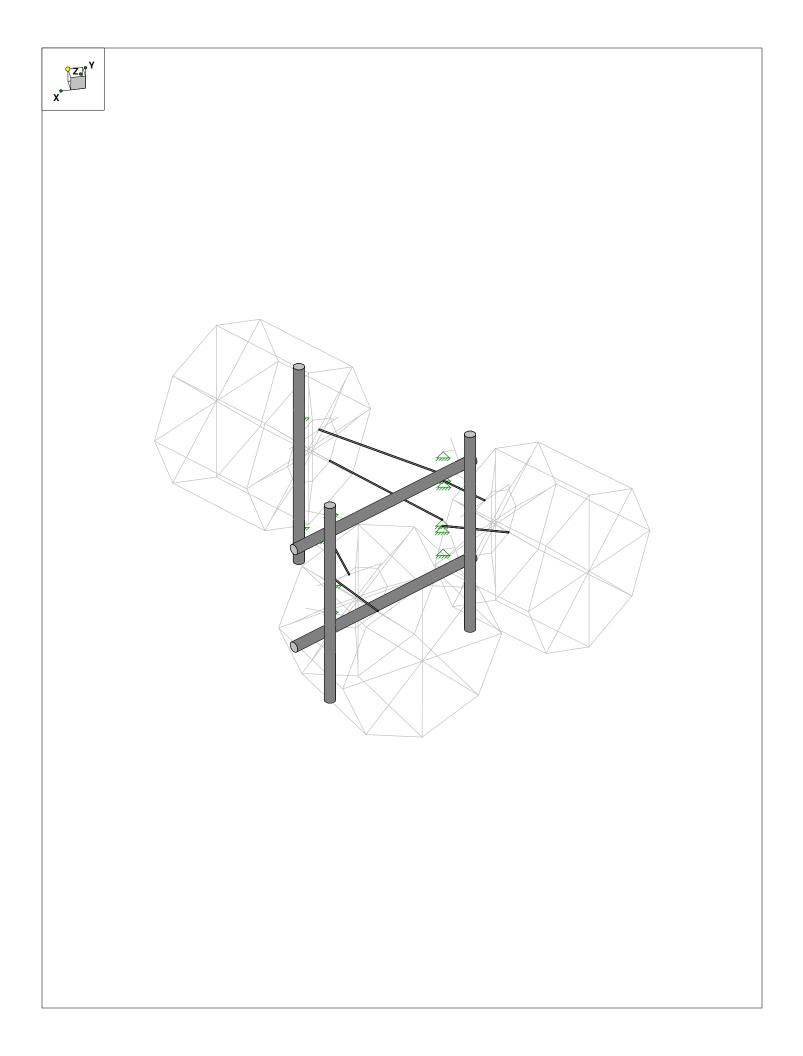
Note: Steel grades have been assumed based upon experience with similar mounts.

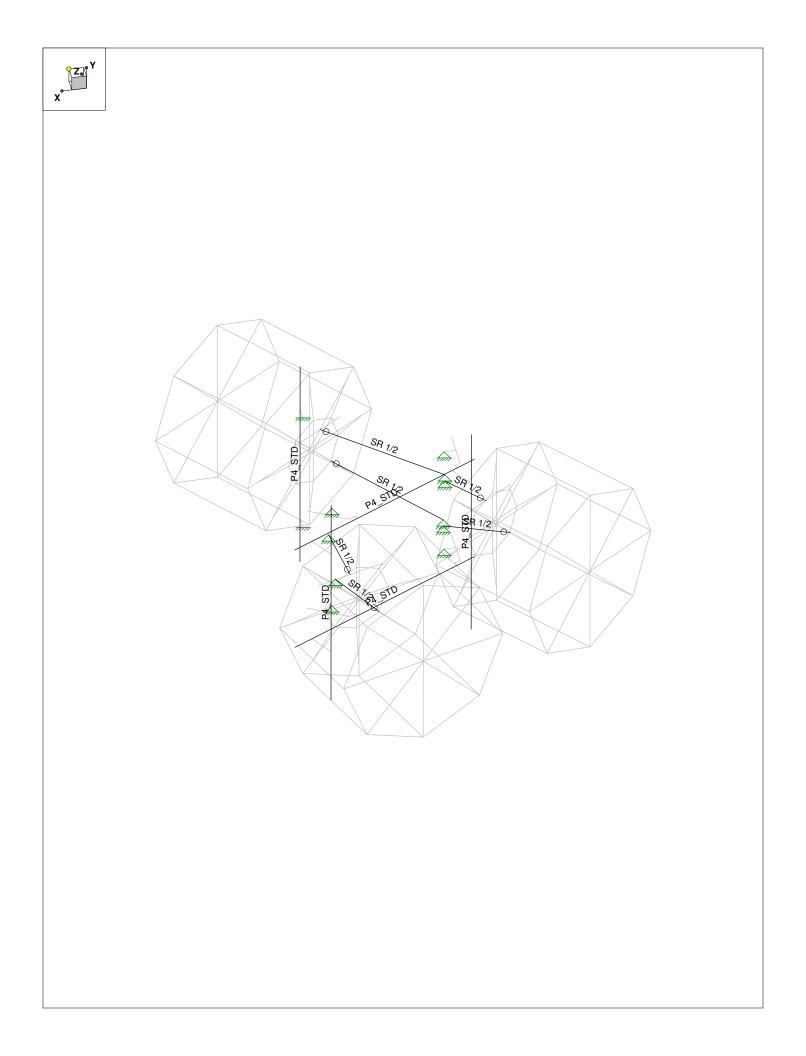
Proposed Configuration

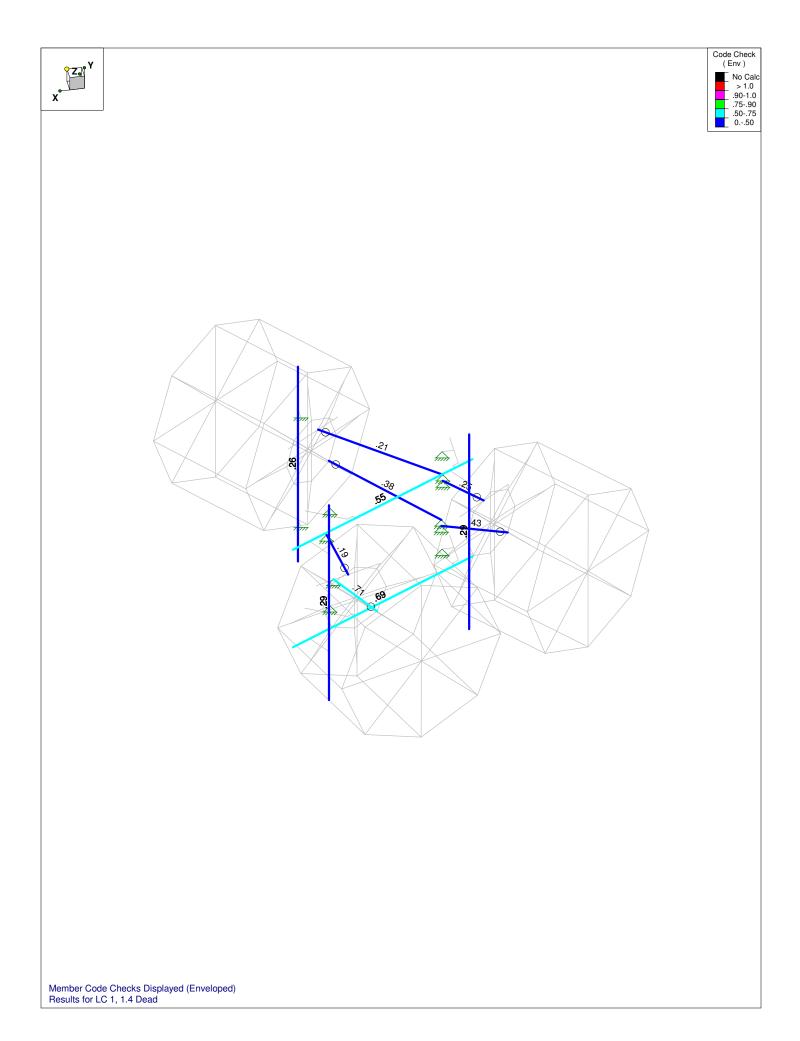
Proposed Configuration														
			Mount											
Antenna Owner Mount Height (ft) Antenna CL (ft) Quantity		Туре	Type Manufacturer Model Azimu			Quantity	Manufacturer	Туре						
DRW NX	190	190	3	Dish	Commscope	USX6-6W-6GR	53/232/250	1	Commscope	PM-SC4-96 Universal Pipe Mount				
DRW NX	190	190	6	ODU	SAF	MXM MK2		1	Commscope	TF-ML4-8 Face Mount				

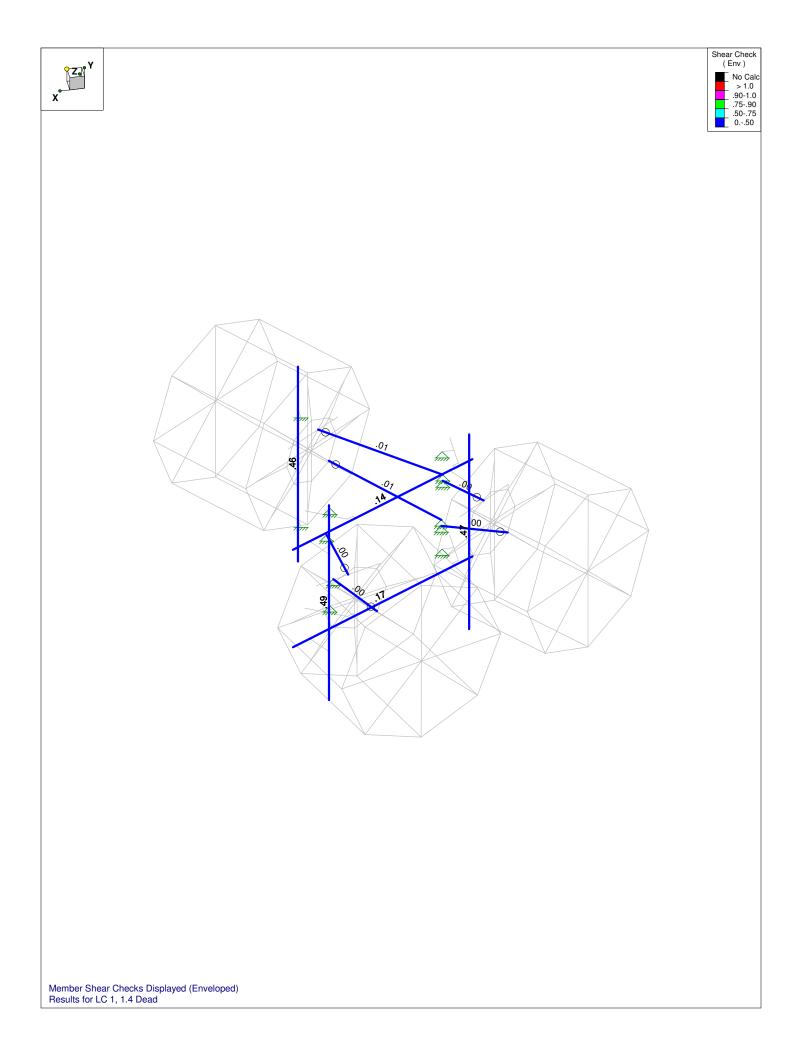
APPENDIX B

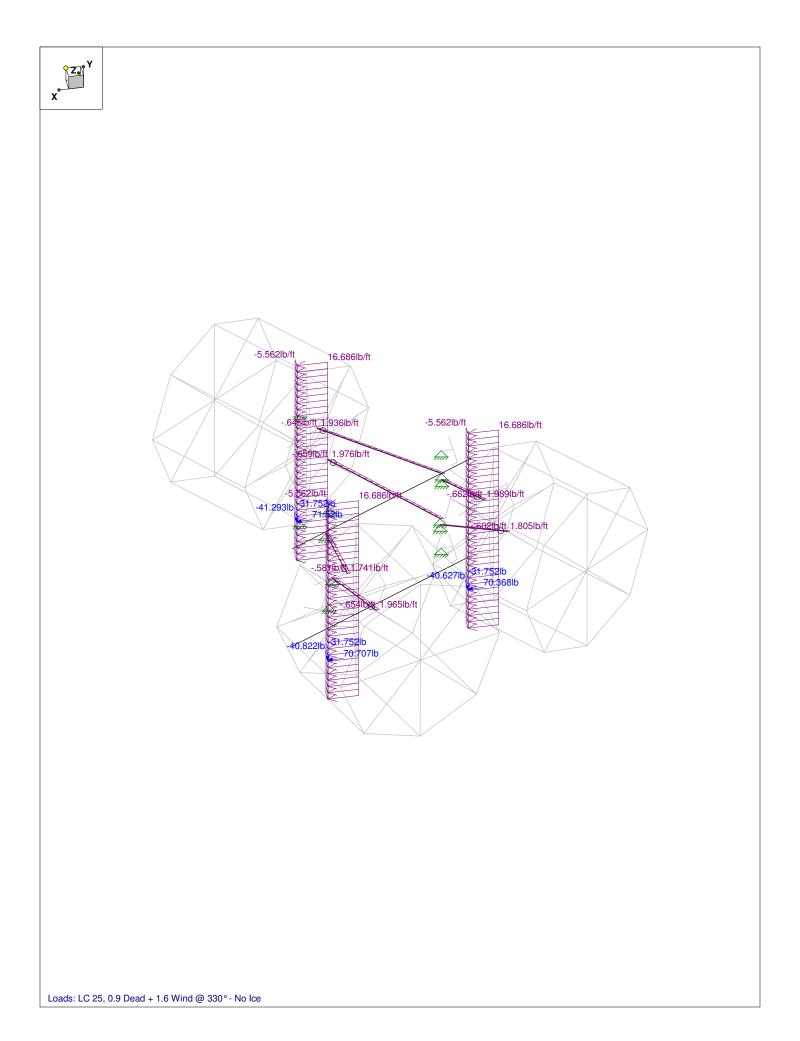
Wind Calculations and RISA-3D Output File

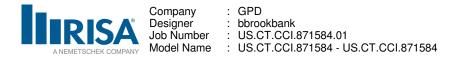

TIA-222-G: Mount Analysis Wind Loading US.CT.CCI.871584 - US.CT.CCI.871584 US.CT.CCI.871584.01


Structure Inf	ormation		Cod	e Specifications			
Structure Type:	Self Support						Topographic Fe
Structure Height:	200	ft	TIA/EIA Code:	G			-
z (Mount Centerline) =	190	ft	Nominal Wind Speed (No Ice) =	97	mph (3-s gust)		
Gh (Mount Gust Effect Factor) =	1.00		Nominal Wind Speed (With Ice) =	50	mph (3-s gust)		
Risk Category:	II		Ice Thickness	1	in		
			Exposure Category	С			
						-	


Topographic Inputs								
Topographic Feature:	N/A							


		No Ice	Ice Out	put								
Mount Components	Member Type	Length (in)	Side (Longest seeing wind) (in)	Other Side (in)	Calculated Dc, for ice weight (in)	Dc, for ice weight (in)	Area Type (Round or Flat)	K _a	User's Wind Multiplier	Normal Wind Force (lb/ft)*	Normal Ice Wind Force (lb/ft)*	Ice Weight (Ib/ft)*
Face Pipe	Pipe	96.000	4.5	4.5		4.50	Round	1.00	1.00	13.90	5.95	20.03
Mount Pipe	Pipe	96.000	4.5	4.5		4.50	Round	1.00	1.00	13.90	5.95	20.03
Dish Strut	Pipe	61.615	0.5	0.5		0.50	Round	1.00	1.00	1.66	3.50	8.39


	Appurtenances								Shielding			Ice Output	
Appurtenance Model	Loading Elevation (ft)	Height (in)	Front Width (in)	Side Depth (in)	Wt (lbs)	Type for Area	Front Shielding (%)	Side Shielding (%)	K _a and/or block shielding	Normal Wind Force (lbs)*	Wt (lbs) (no ice)*	Normal Wind Force (lbs (w/ ice)*) Wt (lbs) (only ice)*
(3) USX6-6W-6GR	190	72	72	59.8	198	HP Dish	0%	0%	1.00	1182.62	198.00	357.19	711.02
(6) MXM MK2	190	17.13	11.02	5.12	17.64	Flat	0%	0%	1.00	52.15	17.64	20.57	79.40
*All forces are unfactored.													



Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1		. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
3	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.42	29000	11154	.3	.65	.49	42	1.4	58	1.3
5	A500 Gr.46	29000	11154	.3	.65	.49	46	1.4	58	1.3
6	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Face Pipe	P4 STD	None	None	A53 Gr. B	Typical	3.174	7.233	7.233	14.465
2	Mount Pipe	P4 STD	None	None	A53 Gr. B	Typical	3.174	7.233	7.233	14.465
3	Dish Strut	SR 1/2	None	None	A36 Gr.36	Typical	.196	.003	.003	.006

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Dead	DL		-1			12			
2	No Ice Wind 0 deg	None					12	11		
3	No Ice Wind 30 deg	None					24	22		
4	No Ice Wind 60 deg	None					24	22		
5	No Ice Wind 90 deg	None					12	11		
6	No Ice Wind 120 deg	None					24	22		
7	No Ice Wind 150 deg	None					24	18		
8	No Ice Wind 180 deg	None					12	11		
9	No Ice Wind 210 deg	None					24	22		
10	No Ice Wind 240 deg	None					24	22		
11	No Ice Wind 270 deg	None					12	11		
12	No Ice Wind 300 deg	None					24	22		
13	No Ice Wind 330 deg	None					24	18		
14	Ice Weight	None					12	11		
15	Ice Wind 0 deg	None					12	11		
16	Ice Wind 30 deg	None					24	22		
17	Ice Wind 60 deg	None					24	22		
18	Ice Wind 90 deg	None					12	11		
19	Ice Wind 120 deg	None					24	22		
20	Ice Wind 150 deg	None					24	18		
21	Ice Wind 180 deg	None					12	11		
22	Ice Wind 210 deg	None					24	22		
23	Ice Wind 240 deg	None					24	22		
24	Ice Wind 270 deg	None					12	11		
25	Ice Wind 300 deg	None					24	22		
26	Ice Wind 330 deg	None					24	18		
27	Live Load - M55	None					1			
28	Live Load - M136	None					1			
29	Live Load - M169	None					1			
30	Live Load - M1 (Start)	None					1			
	Live Load - M1 (Midd	None					1			
32	Live Load - M1 (End)	None					1			
	Live Load - M78A (St	None					1			
	Live Load - M78A (Mi	None					1			
	Live Load - M78A (E	None					1			
30	LIVE LOUGH WITCH (L	INOLIE								

Load Combinations

		_	_		_	_	_	_		_	_					_	_	_		_		_	
	Description			<u>S</u> B.			<u>, Fa</u>		Fa		<u>Fa</u>		Fa		<u>Fa</u>		Fa		<u>Fa</u>	B	Fa	<u>В</u>	Fa
1	1.4 Dead	Yes		1	1.4	1 0		0		0		0		0		0		0					
2	1.2 Dead + 1.6 Wind @ 0)°Yes	Y	1	1.2	2 2	1.6	0		0		0		0		0		0					
3	0.9 Dead + 1.6 Wind @ 0)°Yes	Y	1		2	1.6			0		0		0		0		0					
	1.2 Dead + 1.6 Wind @ 3									0		0		0		0		0					
	0.9 Dead + 1.6 Wind @ 3				_		1.6			0		0		0		0		0				-	
														-		-							
	1.2 Dead + 1.6 Wind @ 6		_					_		0		0		0		0		0					
-	0.9 Dead + 1.6 Wind @ 6		-	1						0		0		0		0		0					
8	1.2 Dead + 1.6 Wind @ 9	90Yes	Y	1	1.2	2 5	1.6	0		0		0		0		0		0					
9	0.9 Dead + 1.6 Wind @ 9	90Yes	Y	1	.9	5	1.6	0		0		0		0		0		0					
10	1.2 Dead + 1.6 Wind @ 1	I2Yes	Y	1			1.6	0		0		0		0		0		0					
11	0.9 Dead + 1.6 Wind @ 1	2. Yes	Ý				1.6			0		0		0		0		0					
	1.2 Dead + 1.6 Wind @ 1									0		0		0		0		0					
	0.9 Dead + 1.6 Wind @ 1		<u> </u>											-		-							
				1	-		1.6			0		0		0		0		0					
	1.2 Dead + 1.6 Wind @ 1		_	1						0		0		0		0		0					
	0.9 Dead + 1.6 Wind @ 1			1			1.6			0		0		0		0		0					
	1.2 Dead + 1.6 Wind @ 2		_	1						0		0		0		0		0					
17	0.9 Dead + 1.6 Wind @ 2	21Yes	Y	1	.9	9	1.6	0		0		0	T	0		0		0			7	Ī	
18	1.2 Dead + 1.6 Wind @ 2	24Yes	Y	1			1.6			0		0		0		0		0					
	0.9 Dead + 1.6 Wind @ 2						1.6			0		0		0		0		0					
	1.2 Dead + 1.6 Wind @ 2									0		0		0		0		0					
	0.9 Dead + 1.6 Wind @ 2											- - -		•		•		-					
										0		0		0		0		0					
	1.2 Dead + 1.6 Wind @ 3					2 12				0		0		0		0		0					
	0.9 Dead + 1.6 Wind @ 3				-		1.6			0		0		0		0		0					
24	1.2 Dead + 1.6 Wind @ 3	33Yes	Y	1	1.2	2 13	1.6	0		0		0		0		0		0					
25	0.9 Dead + 1.6 Wind @ 3	33Yes	Y	1	.9	13	1.6	0		0		0		0		0		0					
26	1.2 Dead + 1.0 Ice Wind	Yes	Y	1		2 15		14	1		1	0		0		0		0					
	1.2 Dead + 1.0 Ice Wind .			1		2 16		14			1	0		0		0		0				_	
	1.2 Dead + 1.0 Ice Wind			1				14			1	0		0		0		0					
	1.2 Dead + 1.0 Ice Wind .													-		-							
				1		2 18		14			1	0		0		0		0					
	1.2 Dead + 1.0 Ice Wind			1				14			1	0		0		0		0					
<u> </u>	1.2 Dead + 1.0 Ice Wind .					2 20		14			1	0		0		0		0					
32	1.2 Dead + 1.0 Ice Wind .	Yes	Y	1	1.2	2 21	1	14	1		1	0		0		0		0					
33	1.2 Dead + 1.0 Ice Wind .	Yes	Y	1	1.2	2 22	1	14	1		1	0		0		0		0					
34	1.2 Dead + 1.0 Ice Wind .	Yes	Y	1		2 23		14			1	0		0		0		0					
• •	1.2 Dead + 1.0 Ice Wind					2 24		14			1	0		0		0		0					
	1.2 Dead + 1.0 Ice Wind			1		2 25					1			0		0		0					
								14				0		-		-							
01	1.2 Dead + 1.0 Ice Wind					2 26		14			1	0		0		0		0					
	1.2 Dead + 1.5 Live_M - I				_	2 27		-				0		0		0		0					
	1.2 Dead + 1.5 Live_M - I					2 27				-		0		0		0		0					
40	1.2 Dead + 1.5 Live_M - I	MYes	Y	1	1.2	2 27	1.5	4	.096	0		0		0		0		0					
41	1.2 Dead + 1.5 Live_M - I	MYes	Y	1			1.5		.096	0		0		0		0		0					
	1.2 Dead + 1.5 Live_M - I								.096			0		0		0		0					
	1.2 Dead + 1.5 Live M - I						1.5					0		0		0		0					
	1.2 Dead + 1.5 Live_M - I						1.5					0		0		0		0					
														-									
	1.2 Dead + 1.5 Live_M - I		_				1.5					0		0		0		0					
	1.2 Dead + 1.5 Live_M - I			1					.096			0		0		0		0					
	1.2 Dead + 1.5 Live_M - I								.096			0		0		0		0					
48	1.2 Dead + 1.5 Live_M - I	MYes	Y	1	1.2	2 27	1.5	12	.096	0		0		0		0		0					
49	1.2 Dead + 1.5 Live_M - I	MYes	Υ	1					.096			0		0		0		0					
	1.2 Dead + 1.5 Live_M - I			1			1.5					0		0		0		0					
	1.2 Dead + 1.5 Live_M - I						1.5			-		0		0		0		0					
	1.2 Dead + 1.5 Live_M - 1													-		-							
									.096			0		0		0		0					
	1.2 Dead + 1.5 Live_M - I						1.5					0		0		0		0					
	1.2 Dead + 1.5 Live_M - I						1.5					0		0		0		0					
	1.2 Dead + 1.5 Live_M - I			1	1.2	2 28	1.5	7	.096	0		0		0		0		0					
56	1.2 Dead + 1.5 Live_M - I	MYes	Y	1					.096	0		0		0		0		0					

Load Combinations (Continued)

	Description			В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
57	1.2 Dead + 1.5 Live_M			1	1.2	28	1.5	9	.096			0		0		0		0					
58	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	28	1.5	10	.096	0		0		0		0		0					
59	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	28	1.5	11	.096	0		0		0		0		0					
60	1.2 Dead + 1.5 Live_M -			1	1.2	28	1.5	12				0		0		0		0					
61	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	28	1.5	13	.096	0		0		0		0		0					
62	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	2	.096	0		0		0		0		0					
63	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	3	.096	0		0		0		0		0					
64	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	4	.096	0		0		0		0		0					
65	1.2 Dead + 1.5 Live_M -	MYes	s Y	1	1.2	29	1.5	5	.096	0		0		0		0		0					
66	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	6	.096	0		0		0		0		0					
67	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	7	.096	0		0		0		0		0					
68	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	8	.096	0		0		0		0		0					
69	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	9	.096	0		0		0		0		0					
70	1.2 Dead + 1.5 Live_M -	MYes	s Y	1	1.2	29	1.5	10	.096	0		0		0		0		0					
71	1.2 Dead + 1.5 Live_M -	MYes	S Y	1	1.2	29	1.5	11	.096	0		0		0		0		0					
72	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	12	.096	0		0		0		0		0					
73	1.2 Dead + 1.5 Live_M -	MYes	Y	1	1.2	29	1.5	13	.096	0		0		0		0		0					
74	1.2 Dead + 1.5 Live_V -	MYes	Y	1	1.2	30	1.5	0		0		0		0		0		0					
75	1.2 Dead + 1.5 Live_V -	MYes	Y	1	1.2	31	1.5	0		0		0		0		0		0					
76	1.2 Dead + 1.5 Live_V -	MYes	Y	1	1.2	32	1.5	0		0		0		0		0		0					
77	1.2 Dead + 1.5 Live_V -	MYes	Y	1	1.2	33	1.5	0		0		0		0		0		0					
78	1.2 Dead + 1.5 Live_V -	MYes	Y	1	1.2	34	1.5	0		0		0		0		0		0					
79	1.2 Dead + 1.5 Live_V -	MYes	Y	1	1.2	35	1.5	0		0		0		0		0		0					

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	CodLocI	LC She	Loc[in]	LC	phi*P phi*P phi*Mphi*M Eqn
1	M165	SR 1/2		25 .004	28.426	26	857.76361053H1
2	M1	P4 STD	.686 63	2 .170	63	2	812879998211.318 11.318 H1-1b
3	M78A	P4 STD	.552 63	14 .138	9	30	81287 <mark>99982</mark> .11.318 11.318 H1-1b
4	M92	SR 1/2	.434 28 2	23 .004	0	35	863.86361053 .053 H1
5	M237A	SR 1/2	.383 61 2	25 .009	61.126	37	185.46361053 .053 H1
6	M136	P4 STD	.294 59	2 .489	72	12	81287 <mark>99982</mark> .11.318 11.318 H1-1b
7	M55	P4 STD	.290 72	10.472	72	10	812879998211.318 11.318 H3-6
8	M169	P4 STD	.259 21	12.463	21	12	812879998211.318 11.318 H3-6
9	M93	SR 1/2	.246 21 2	22 .003	0	37	14996361053 H1
10	M238	SR 1/2	.213 61 2	24 .009	0	36	182.56361053 .053 H1
11	M166	SR 1/2	.190 29 (35 .004	29.002	32	823.96361053 .053 H1

APPENDIX C

Additional Calculations

TIA-222-G CONNECTION CHECK Mount to Tower Connection - Typ. All Sectors US.CT.CCI.871584.01

Bolt Information			
Bolt Diameter (d)	0.5	in	
Net Tensile Area (An)	0.142	in ²	
# of Bolts Total (n)	2		
Bolt Grade	A325N		
Bolt Tensile Strength (F _{ub})	120	ksi	

RISA 3D Reactions			
Moment (M)	0.00	k-ft	
Axial (T)	-3.06	kips	
Shear (V)	5.77	kips	

Bolt Capacity				
Nominal Tensile Strength (R _{nt})	17.028	kips		
Nominal Shear Strength (R _{nv})	10.60	kips		
Bolt Tensile Force (T _{ub})	-1.53	kips		
Bolt Shear Force (V _{ub})	2.885	kips		
Τ _{ub} /φR _{nt}	-0.11969			
V _{ub} / ϕ R _{nv}	0.36277			
$(V_{ub}/\varphi R_{nv})^2 + (T_{ub}/\varphi R_{nt})^2$	0.14592			
Bolt Capacity =	36.3%	ОК		

Exhibit D

Letter of Authorization

6325 Ardrey Kell Rd, Suite 600 Charlotte, NC 28277 Phone: (980) 209-8227 Fax: (724) 416-6110 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Re: Application for Zoning/Building Permit Crown Castle telecommunications site at: 115 BIRCH MTN. ROAD, GLASTONBURY, CT 06033

PINNACLE TOWERS LLC ("Crown Castle") hereby authorizes DRW NX LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 871584/John Tom Hill Customer Site ID: US.CT.CCI.871584 Site Address: 115 Birch Mtn. Road, GLASTONBURY, CT 06033

Crown Castle

preny thom Bv:

Jeremy Thomas Real Estate Specialist

Date: 4/21/20

Exhibit E

Emissions Analysis Report

Sublight Engineering PLLC

US.CT.CCI.871584 RF EXPOSURE ASSESSMENT

GPD Group

Abstract

This installation will have no measurable effect on RF exposure levels near this facility. There are no areas that will exceed the FCC RF exposure limits based on this assessment of the proposed installation.

Mathin Butches

Matthew J Butcher Registered Professional Engineer Commonwealth of Virginia Lic. No.0402 40784

Matthew J Butcher matt@sublight.net

June 18, 2020

Sublight Engineering PLLC (Sublight) has been asked to assess Radio Frequency (RF) exposure levels near the proposed installation detailed below. GDP Group engaged Sublight and provided information for this report.

DRW NX proposes to add equipment at this location. The new installation will operate in the 6 GHz point-to-point microwave band.

This installation will have no measurable effect on RF exposure levels near this facility. There are no areas that will exceed the FCC RF exposure limits based on this assessment of the proposed installation.

Installation Location

The site is a collocation on an existing Crown Castle owned telecommunications tower in Glastonbury, CT.

Address: 115 Birch Mountain Road, Glastonbury, CT 06033 Coordinates: 41.708956° N, 72.473447° W. Antenna Height (radiation center): 190 feet above ground level

Figure 1 Overhead View

((0))

US.CT.CCI.871584 RF Exposure Assessment

Antenna and Transmitter Information

The proposed DRW NX installation will add three microwave dish antennas to an existing communications tower.

The antennas proposed are Comscope USX6-6W-6GR microwave dishes.

USX6-6W-6GR

1.8m | 6ft Sentinel® Ultra High Performance, Super High XPD Antenna, dual-polarized, 5.925 – 7.125 GHz, grey, CPR137G flange

The three antennas are to be mounted at 190 feet above ground level and oriented at 53°, 232° and 250° relative to true north.

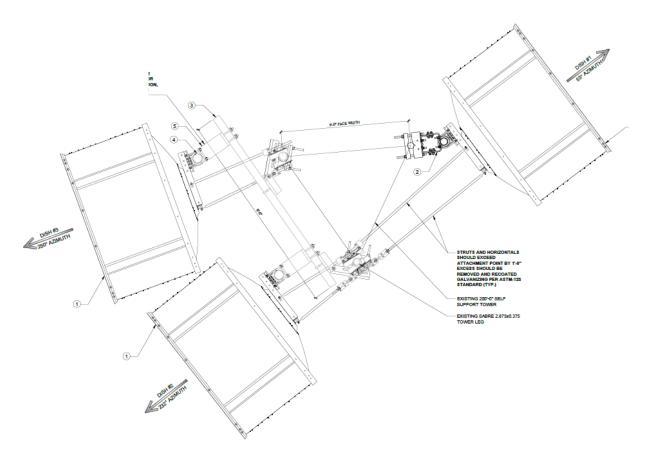
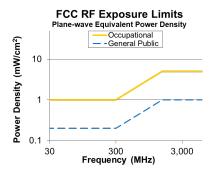


Figure 2 Antenna and Radio Configuration


Each antenna is connected to a microwave radio operating at 5787 MHz with a transmit power of 1.25 W, 1 dB of loss, and an effective isotropic radiated power (EIRP) of 68.8 dBmW.

RF Exposure Assessment

This RF Exposure assessment is based on exposure limits set by the Federal Communications Commission (FCC), as addressed most recently in 2019¹, and codified in their rules². The FCC has two limits: one for the General Public and a less conservative or higher limit for Occupational workers. An Occupational worker is defined as someone who through training and notification can understand and control their exposure to RF that they may encounter in the workplace. Everyone else is considered the General Public. In this assessment, both limits are considered but the stricter, General Public, limits are used to determine compliance.

This assessment uses worst-case modelling of maximum transmitter power to the antennas and conservative techniques to determine compliance boundaries. Outside the boundaries, exposure levels will be below the limits.

FCC plane-wave equivalent power density limits for maximum permissible exposure are derived from the whole-body SAR limits and expressed in milliwatts per square centimeter (mW/cm²). FCC exposure limits are for continuous exposure spatial-averaged over the whole body and time-averaged, over 6 minutes for Occupational and 30 minutes for General Public limits. To account for changes in absorption relative to frequency, the limits are dependent on the frequency of the RF energy. This graph indicates that frequency relationship.

To calculate exposure and compliance boundaries, power density from each source (exposure value by frequency EV_f) is divided by the appropriate exposure limit (EL_f), creating an exposure ratio (ER_f).

$$ER_f = \frac{EV_f}{EL_f}$$

Ratios from each source are combined to determine a total exposure ratio *TER*. This ratio is used to determine exposure and compliance boundaries.

$$TER = \sum_{i=1}^{n} ER_i$$

¹ FCC-19-126 Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies

² 47 CFR § 1.1310 Radiofrequency radiation exposure limits, US Code of Federal Regulations

RF power density levels are calculated using the IXUS Modeler³. IXUS employs a synthetic ray tracing method for panel and omnidirectional antennas and a conservative cylindrical envelope method for microwave dish (parabolic reflector / aperture) antennas.

The ray tracing method is an advanced computation method described in IEC 62232⁴. The power is summed from elemental sources representing the individual components of the antenna. These elemental sources are selected by an analysis of the proposed antennas and their manufacturers datasheets. Ray tracing algorithms typically overestimate RF field strength due to absorption of RF energy in the ground, building walls and other man-made structures.

The conservative cylindrical envelope method for microwave dish antennas from ETSI⁵ is used to determine worst-case RF power density. This technique is derived from common configurations and shown to be conservative based on measurement results from real systems. Dish antennas are extremely directional and almost all the RF energy is confined to a cylindrical beam in the direction the antenna is pointed, levels outside the beam are negligible.

IXUS combines results from all sources to create graphic 3D compliance boundaries around antennas.

The following depiction graphically shows the worst-case compliance boundaries with respect to surrounding structures. Yellow indicates areas that may exceed the FCC's General Public exposure limits while red indicates areas that may exceed the Occupational limits. Because of the low power to this installation there are no areas that exceed the limits. To show the modeling, light blue indicates areas that exceed 5% or 1/20th of the limit.

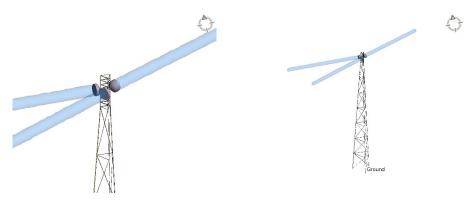


Figure 3 Modeling of Installation – top of tower & whole tower

The graph below shows the power density estimation (ETSI Envelope) for the proposed antennas in this installation with respect to the FCC Whole Body Limit for the General Public. It

³ IXUS EMF Compliance Management Software version 3.8 (0) (Calculator 15.0) provided by Alphawave Mobile Network Products http://www.ixusapp.com.

⁴ IEC 62232:2017, Determination of RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure, International Electrotechnical Commission, Geneva.

⁵ ETSI TR 102 457. Fixed Radio Systems; Evaluation of the ElectroMagnetic Field (EMF) radiated by Line-of-Sight (LoS) fixed radio stations using parabolic dish directional antennas. V2.1.0 (2018-09)

also shows 5% or 1/20th of that limit. This indicates that even at zero distance from the antenna, the exposure levels are below the limit.

Figure 4 ETSI power density estimation

Because of the low power, installation height, and directionality of the proposed installation, there will be no change to the RF exposure levels on or around this site. RF levels on the ground from this installation will not be measurable.

RF Safety Program

Crown Castle, the tower owner, has an RF Exposure Safety Program for their transmitting sites. Part of this program requires the installation of signs near antennas where workers could access areas that exceed FCC RF exposure limits.

Because this installation will have no effect on RF exposure levels on or around the tower, there will be no need to update the existing RF Exposure Safety Program.

Conclusions

This installation will have no measurable effect on RF exposure levels near this facility. There are no areas that will exceed the FCC RF exposure limits based on this assessment of the proposed installation.

This engineer hereby certifies that this proposed wireless facility, installed by GPD Group, will comply with the RF exposure limits set forth by the FCC and as required by federal law.

If you have any questions on this assessment, please contact Sublight Engineering PLLC.

Engineering Statement

My professional engineer seal on this document certifies and affirms that:

I am registered as a Professional Engineer.

I am the principal of Sublight Engineering PLLC, in Arlington, Virginia.

I provide RF engineering services.

I am thoroughly familiar with the rules and regulations of the Federal Communications Commission (FCC) as well as the regulations of the Occupational Safety and Health Administration (OSHA), both in general and specifically as they apply to the FCC radiofrequency radiation exposure limits.

That I have prepared this RF Exposure Assessment and believe it to be true and accurate to the best of my knowledge.

<u>June 18, 2020</u>