June 18, 2019
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT1264 5 Tyler Drive, North Franklin, CT 06254 (Site Name: Franklin CT Tyler Drive) N 41.631750 // W -72.143560

Dear Ms. Bachman:
New Cingular Wireless, PCS, LLC ("AT\&T") currently maintains nine (9) antennas at the 169foot level of the existing 180-foot self-support tower at 5 Tyler Drive, North Franklin, CT 06254. The tower is owned by the Town of Franklin. The property is also owned by the Town of Franklin. AT\&T now intends to swap out and replace (6) antennas for its LTE upgrade. These antennas would be installed at the same 169 -foot level of the tower. AT\&T also intends to install six (6) new RRUS (radios), add one (1) Surge Arrestor with associated two (2) DC and one (1) fiber cables along existing runs.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16$50 \mathrm{j}-72$ (b)(2). In accordance with R.C.S.A. § $16-50 \mathrm{j}-73$, a copy of this letter is being sent to Charles Grant, the First Selectman on the Board of Selectman for the town of Franklin, who is also the contact for the tower and ground owner, and to the Town of Franklin Building department and Zoning Enforcement office.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Attached to accommodate this filing are construction drawings dated $06 / 12 / 2019$ by Hudson Design Group LLC, a structural analysis dated 05/15/2019 by Hudson Design Group LLC, a mount analysis dated 03/29/2019 by Hudson Design Group, LLC and an Emissions Analysis Report dated 06/04/2019 by Centerline Communications, LLC.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by American Tower Engineering, dated $12 / 20 / 2018$, and the mount analysis by Hudson Design Engineering, dated 11/29/2018.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Aldan Griffin, Site Acquisition Consultant
coo New Cingular Wireless, PCS LLC (AT\&T)
Centerline Communications, LLC
750 W Center St., Suite 301
West Bridgewater, MA 02379
Mobile: (617) 838-6796
agriffin@clinellc.com
Attachments: Structural Analysis, Mount Analysis, Property Card, Emissions Analysis, Construction Drawings
cc: Charles Grant, First Selectman, Town of Franklin- as elected official
Charles Grant, First Selectman, Town of Franklin - as tower owner Charles Grant, First Selectman, Town of Franklin - as property owner Building \& Zoning, Town of Franklin

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT1264

Franklin Court Tyler Drive
5 Tyler Drive
North Franklin, CT 06254
June 4, 2019
Centerline Communications Project Number: 950012-219

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{4 . 1 4} \%$

June 4, 2019
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT1264 - Franklin Court Tyler Drive

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at $\mathbf{5}$ Tyler Drive in North Franklin, Connecticut for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter $\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at 5 Tyler Drive in North Franklin, Connecticut, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
5 G	850 MHz	2	25
LTE	700 MHz	2	40
LTE	$2100 \mathrm{MHz}(\mathrm{AWS})$	4	30
LTE	$1900 \mathrm{MHz}(\mathrm{PCS})$	4	40

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ $\mathrm{MHz}, 1900 \mathrm{MHz}(\mathrm{PCS})$ and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Kathrein 800-10965	169
A	2	CCI HPA-65R-BU6A	169
A	3	Powerwave 7750	169
B	1	Kathrein 800-10965	169
B	2	CCI HPA-65R-BU6A	169
B	3	Powerwave 7750	169
C	1	Kathrein 800-10965	169
C	2	CCI HPA-65R-BU6A	169
C	3	Powerwave 7750	169

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make/ Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	$\begin{gathered} \text { Total } \\ \text { TX } \end{gathered}$	ERP (W)	MPE \%
Antenna A1	Kathrein 800-10965	$\begin{gathered} 850 \mathrm{MHz} / 700 \mathrm{MHz} / \\ 850 \mathrm{MHz} / 1900 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} 13.45 \mathrm{dBd} / 12.65 \mathrm{dBd} \\ / 13.45 \mathrm{dBd} / 15.65 \\ \mathrm{dBd} / 15.65 \mathrm{dBd} \\ \hline \end{gathered}$	14	530	16,102.67	2.52
Antenna A2	CCI HPA-65R-BU6A	$\begin{gathered} 700 \mathrm{MHz} / 2100 \mathrm{MHz} / \\ 2100 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 12.25 \mathrm{dBd} / 14.75 \mathrm{dBd} \\ / 14.75 \mathrm{dBd} \end{gathered}$	10	320	8,507.96	1.26
Antenna A3	Powerwave 7750	850 MHz	12.5 dBd	2	60	1,066.97	0.24
Sector A Composite MPE\%							4.02
Antenna B1	Kathrein 80010965	$\left\|\begin{array}{c} 850 \mathrm{MHz} / 700 \mathrm{MHz} \text { / } \\ 850 \mathrm{MHz} / 1900 \mathrm{MHz} \\ 1900 \mathrm{MHz} \end{array}\right\|$	$\begin{gathered} 13.45 \mathrm{dBd} / 12.65 \\ \mathrm{dBd} / 13.45 \mathrm{dBd} / \\ 15.65 \mathrm{dBd} / 15.65 \\ \mathrm{dDd} \end{gathered}$	14	530	16,102.67	2.52
Antenna B2	CCI HPA-65R- BU6A	$\left\|\begin{array}{c} 700 \mathrm{MHz} / 2100 \mathrm{MHz} \\ 2100 \mathrm{MHz} \end{array}\right\|$	$\begin{gathered} 12.25 \mathrm{dBd} / 14.75 \\ \mathrm{dBd} / 14.75 \mathrm{dBd} \end{gathered}$	10	320	8,507.96	1.26
Antenna B3	Powerwave 7750	850 MHz	12.5 dBd	2	60	1,066.97	0.24
Sector B Composite MPE\%							4.02
Antenna C1	Kathrein 800- 10965	$\left\|\begin{array}{c} 850 \mathrm{MHz} / 700 \mathrm{MHz} \text { I } \\ 850 \mathrm{MHz} / 1900 \mathrm{MHz} \\ 1900 \mathrm{MHz} \end{array}\right\|$	$\begin{gathered} 13.45 \mathrm{dBd} / 12.65 \\ \mathrm{dBd} / 13.45 \mathrm{dBd} / \\ 15.65 \mathrm{dBd} / 15.65 \\ \mathrm{dBd} \end{gathered}$	14	530	16,102.67	2.52
Antenna C2	CCI HPA-65RBU6A	$\left\|\begin{array}{c} 700 \mathrm{MHz} / 2100 \mathrm{MHz} \\ 2100 \mathrm{MHz} \end{array}\right\|$	$\begin{gathered} 12.25 \mathrm{dBd} / 14.75 \\ \mathrm{dBd} / 14.75 \mathrm{dBd} \end{gathered}$	10	320	8,507.96	1.26
$\begin{array}{r} \hline \text { Antenna } \\ \hline \end{array}$	Powerwave 7750	850 MHz	12.5 dBd	2	60	1,066.97	0.24
Sector C Composite MPE\%							4.02

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE \%		
Carrier	MPE \%	
AT\&T - Max Per Sector Value	$\mathbf{4 . 0 2} \quad \%$	
Town of Franklin	$0.12 \quad \%$	
Site Total MPE \%:	$\mathbf{4 . 1 4}$	

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	4.02	$\%$
AT\&T Sector B Total:	4.02	$\%$
AT\&T Sector C Total:	4.02	$\%$
Site Total:		4.14

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

$\begin{gathered} \hline \text { AT\&T_Frequency Band / Technology } \\ \text { Max Power Values } \\ \text { (Per Sector) } \\ \hline \end{gathered}$	\# Channels	Watts ERP (Per Channel)	Height (feet)	$\begin{gathered} \text { Total Power } \\ \text { Density } \\ \text { (i.tW/cm²) } \end{gathered}$	Frequency (MHz)	$\begin{gathered} \text { Allowable } \\ \text { MPE } \\ (\text { (i.tW/cm²) } \end{gathered}$	Calculated \% MPE
AT\&T $850 \mathrm{MHz} 5 \mathrm{G}-$ Antenna 1	2	553.27	169.0	1.39	$850 \mathrm{MHz} \mathrm{5G}$	567	0.25\%
AT\&T 700 MHz LTE- Antenna 1	2	736.31	169.0	1.85	700 MHz LTE	467	0.40\%
AT\&T 850 MHz LTE- Antenna 1	2	885.24	169.0	2.23	850 MHz LTE	567	0.39\%
AT\&T 1900 MHz LTE- Antenna 1	4	1469.13	169.0	7.40	1900 MHz LTE	1000	0.74\%
AT\&T 1900 MHz LTE- Antenna 1	4	1469.13	169.0	7.40	1900 MHz LTE	1000	0.74\%
AT\&T 700 MHz LTE- Antenna 2	2	671.52	169.0	1.69	700 MHz LTE	467	0.36\%
AT\&T 2100 MHz LTE- Antenna 2	4	895.61	169.0	4.51	2100 MHz LTE	1000	0.45\%
AT\&T 2100 MHz LTE- Antenna 2	4	895.61	169.0	4.51	2100 MHz LTE	1000	0.45\%
AT\&T 850 MHz UMTS- Antenna 3	2	533.48	169.0	1.34	850 MHz UMTS	567	0.24\%
						Total:	4.02\%

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	4.02%
Sector B:	4.02%
Sector C:	4.02%
AT\&T Maximum Total (per sector):	4.02%
Site Total:	4.14%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{4 . 1 4 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

"RagaibMalaws

Ryan McManus

Senior RF EME Compliance Manager

Centerline Communications, LLC

95 Ryan Drive, Suite 1
Raynham, MA 02767

at\&t

Centerline Communications
750 West Center Street, Suite \#301
West Bridgewater, MA 02379
RE: Site Number: CT1264 (LTE 2C)
FA Number: 10065727 PACE Number: MRCTB037987
PT Number: Site Name: Site Address:

2101AOMCKQ
FRANKLIN CT TYLER DR
5 Tyler Drive
North Franklin, CT 06254

To Whom It May Concern:
Hudson Design Group LLC (HDG) has been authorized by Centerline Communications to perform a mount analysis on the existing AT\&T antenna/RRH mounts to determine their capability of supporting the following additional loading:

- (1) 7750 Antennas (57"x11"x5" - Wt. = 35 lbs. /each)
- (2) 7770 Antennas (55.0"x11.0" $\times 5.0^{\prime \prime}-W+$. $=35 \mathrm{lbs}$. /each)
- (3) TT08-19DB111-001 TMA's (14.2"x6.7"x5.4" - Wt. = 22 lbs. /each)
- (1) Squid Surge Arrestor (24.0"x9.7" Φ - Wt. = 33 lbs . /each) (Tower Mount)
- (2) 800-10965 Antennas (78.7"x20.0"x6.9"- Wt. = 109 lbs. /each)
- (1) 800-10966 Antennas (96.0"x20.0"x6.9"- Wt. = 115 lbs. /each)
- (2) HPA65R-BU6AA Antennas (71.2"x11.7"x8.4" - Wt. = 43 lbs. /each)
- (1) HPA65R-BU8AA Antennas (96.0"x11.7"x7.6" - Wt. = 54 lbs. /each)
- (3) B5/B12 4449 RRH's (14.9"x13.2"x10.4" - Wt. = 73 lbs. /each)
- (3) B2/B66A 8843 RRH's (14.9"x13.2"x10.9" - Wt. = 72 lbs. /each)
- (1) Squid Surge Arrestor (24.0"x9.7" Φ - Wt. = 33 lbs. /each) (Tower Mount)
*Proposed equipment shown in bold

No original structural design documents or fabrication drawings were available for the existing mounts. HDG's subconsultant, ProVertic LLC, conducted a survey climb and mapping of the existing AT\&T antenna mounts on March 27, 2019.

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT\&T Mount Technical Directive - R12.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the max basic wind speed for this site is equal to 130 mph with a max basic wind speed with ice of 50 mph and a max ice thickness of 1.0 in . An escalated ice thickness of 1.18 in was used for this analysis.
- HDG considers this site to be exposure category C ; tower is located near large, flat, open, terrain/grasslands.
- HDG considers this site to be topographic category 1 ; tower is located on flat terrain or the bottom of a hill or ridge.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 1.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount.
- The existing mount is secured to the existing tower with clamps and threaded rods. The connection is considered OK by visual inspection.

Based on our evaluation, we have determined that the existing mounts ARE NOT CAPABLE of supporting the proposed installation. HDG recommends the following modifications:

- Install new 2" std. (2.38" O.D.) pipe brace secured to the mount and tower (typ. of 1 per sector, total of 3).
- Install new 2-1/2" std. (2.88" O.D.) pipe mast behind new 800-10966 Antenna and 800-10965 Antennas (typ. of 1 per sector, total of 3).
- Reinforce existing horizontal steel angles with new L3x3x1/4 steel angles (typ. of 2 per sector, total of 6).
- Reinforce existing standoff steel angles with new $\mathbf{L} 3 \times 3 \times 1 / 4$ steel angles (typ. of 2 per sector, total of 6).

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
Existing (LTE 2C) Mount Rating	8	LCl3	466%	FAIL
Modified (LTE 2C) Mount Rating	1	LC10	91%	PASS

Reference Documents:

- Mount mapping report prepared by ProVertic LLC.

This determination was based on the following limitations and assumptions:

1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
4. The existing mount has been adequately secured to the tower structure per the mount manufacturer's specifications.
5. All components pertaining to AT\&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.
Respectfully Submitted, Hudson Design Group LLC

Michael Cabral Structural Dept. Head

Daniel P. Hamm, PE
Principal

Re: CT1264

FIELD PHOTOS:

Wind \& Ice
Calculations

Date: $\quad 3 / 29 / 2019$
Project Name: FRANKLIN CT TYLER DR
Project No.: CTI264

Designed By: LBW Checked By: MSC
2.6.5.2 Velocity Pressure Coeff:

$\mathrm{K}_{2}=2.01\left(\mathrm{z} / \mathrm{z}_{\mathrm{g}}\right)^{2 / \alpha}$	$\mathrm{z}=$	$169(\mathrm{ft})$
$\mathrm{K}_{2}=$	1.413	$\mathrm{z}_{\mathrm{B}}=$
	$\alpha=$	$900(\mathrm{ft})$

K zmin $\leq K z \leq 2.01$
Table 2-4

$\mathbf{E x p o s u r e}_{\mathbf{g}}$	$\mathbf{\alpha}$	$\mathbf{K}_{\mathbf{z m i n}}$	$\mathbf{K}_{\mathbf{c}}$	
B	1200 ft	7.0	0.70	0.9
C	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

Topo. Category	$\mathbf{K}_{\mathbf{t}}$			\mathbf{f}
2	0.43	1.25		
3	0.53	2.0		
		0.72		

$K_{z t}=\left[1+\left(K_{c} K_{t} / K_{h}\right)\right]^{2}$	$K_{h}=e^{\left(f{ }^{\left(r^{*} / H\right)}\right.}$	
$K_{2 t}=\quad$ \#DIV/01	$K_{\text {h }}=$	\#DIV/0!
	$\mathrm{K}_{\mathrm{c}}=$	0.9 (from Table 2-4)
(If Cateqony 1 then $K_{z t}=1.0$)	$\mathrm{K}_{\mathrm{t}}=$	0 (from Table 2-5)
	$\mathrm{f}=$	0 (from Table 2-5)
Category= 1	z=	169
	$z_{s}=$	430 (Mean elevation of base of structure above sea level)
	$\mathrm{H}=$	0 (Ht. of the crest above surrounding terrain)
	$\mathrm{K}_{2 \mathrm{t}}=$	1.00 (from 2.6.6.2.1)
	$\mathrm{K}_{\mathrm{e}}=$	0.98 (from 2.6.8)

2.6.10 Design Ice Thickness

Max Ice Thickness $=$	$t_{i}=$	1.00 in
Importance Factor $=$	$\mathrm{l}=$	1.0 (from Table 2-3)
	$\mathrm{K}_{\mathrm{iz}}=$	1.18 (from Sec. 2.6.10)
$\mathrm{t}_{\mathrm{i} 2}=\mathrm{t}_{\mathrm{i}}{ }^{*} \mid{ }^{*} \mathrm{~K}_{\mathrm{iz}}{ }^{*}\left(\mathrm{~K}_{\mathrm{zt}}\right)^{0.35}$	$\mathrm{t}_{\mathrm{i} 2}=$	1.18 in

Date: $\quad 3 / 29 / 2019$
Project Name: FRANKLIN CT TYLER DR
Project No.: CT1264
Designed By: LBW Checked By: MSC

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting Lattice Structures

$G_{h}=1.0$ Latticed Structures $>600 \mathrm{ft}$
$\mathrm{G}_{\mathrm{h}}=0.85$ Latticed Structures 450 ft or less

$\mathrm{G}_{\mathrm{h}}=0.85+0.15[\mathrm{~h} / 150-3.0]$		$h=h t$. of structure	
$h=$	180	$\mathrm{G}_{\mathrm{h}}=$	0.85
2.6.9.2 Guyed Masts		$\mathrm{G}_{\mathrm{h}}=$	0.85
2.6.9.3 Pole Structures		$\mathrm{G}_{\mathrm{h}}=$	1.1
2.6.9 Appurtenances		$\mathrm{G}_{\mathrm{h}}=$	1.0

2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht. : width ratio > 5)
$G_{h}=$
1.35

Gh=
1.00

2.6.11.2 Design Wind Force on Appurtenances

$F=q_{z}{ }^{*} G_{h}{ }^{*}(E P A)_{A}$
$\mathrm{q}_{\mathrm{z}}=0.00256 * \mathrm{~K}_{\mathrm{z}} * \mathrm{~K}_{2 \mathrm{t}} * K_{\mathrm{s}} * K_{e}{ }^{*} \mathrm{~K}_{\mathrm{d}} * \mathrm{~V}_{\text {max }}{ }^{2}$

$q_{z}=$	51.18
$\mathbf{q}_{\mathbf{z}(1 \mathrm{ce})}=$	7.57
$\mathrm{q}_{\mathbf{z}(30)}=$	2.73

$q_{z(30)}=$
2.73

$\mathrm{K}_{\mathrm{z}}=$	1.413 (from 2.6.5.2)
$\mathrm{K}_{2 \mathrm{t}}=$	1.0 (from 2.6.6.2.1)
$\mathrm{K}_{\mathrm{s}}=$	1.0 (from 2.6.7)
$\mathrm{K}_{\mathrm{e}}=$	0.98 (from 2.6.8)
$\mathrm{K}_{\mathrm{d}}=$	0.85 (from Table 2-2)
$\mathrm{V}_{\text {max }}=$	130 mph (Ultimate Wind Speed)
$\mathrm{V}_{\max (\mathrm{lies})}=$	50 mph
$\mathrm{V}_{30}=$	30 mph

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95
Tubular pole structures supporting antennas enclosed within a cylindrical shroud	1.00

Date:
3/29/2019
Project Name: FRANKLIN CT TYLER DR
Project No.: CT1264
Designed By: LBW Checked By: MSC

HUDSON
Design Group LLC

Determine Ca:

Table 2-9

Force Coefficlents (Ca) Ior Appurtenances				
Member Type		Aspect Ratlo ≤ 2.5	Aspect Ratio $=7$	Aspect Rallo ≥ 25
		Ca	Ca	Ca
	Flat	1.2	1.4	2.0
Square/Rectangular HSS		$1.2-2.8\left(r_{s}\right) \geq 0.85$	1.4-4.0($\left.\mathrm{r}_{5}\right) \geq 0.90$	$2.0-6.0\left(r_{s}\right) \geq 1.25$
Round	$C<39$ (Subcritical)	0.7	0.8	1.2
	$39 \leq$ C ≤ 78 (Transitional)	$4.14 /\left(C^{0.485}\right)$	$3.66 /\left(C^{0.415}\right)$	46.8/($\mathrm{C}^{1.0}$)
	$C>78$ (Supercritical)	0.5	0.6	0.6
Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.				
IAspect ratio is independent of the spacing between support points of a linear appurtenance,				

Ice Thickness =	1.18 in		Angle $=$	0 (deg)	Aspect Ratio	Equivalent Angle $=180(\mathrm{deg}$)			$\begin{aligned} & \text { Force (lbs). } \\ & \text { (} 30 \mathrm{mph} \text {) } \end{aligned}$
Appurtenances	Height	Width	Depth	Flat Area		Ca	Force (lbs)	$\frac{\text { Force (lbs) }}{\text { (w/ Ice) }}$	
7750 Antenna	57.0	11.0	5.0	4.35	5.18	1.32	294	55	16
7770 Antenna	55.0	11.0	5.0	4.20	5.00	1.31	282	53	15
800-10965 Antenna	78.7	20.0	6.9	10.93	3.94	1.26	707	120	38
800-10966 Antenna	96.0	20.0	6.9	13.33	4.80	1.30	889	151	47
HPA65R-BU6AA Antenna	71.2	11.7	8.4	5.79	6.09	1.36	402	74	21
HPA65R-BU8AA Antenna	96.0	11.7	7.6	7.80	8.21	1.44	575	105	31
B5/B12 4449 RRH	14.9	13.2	10.4	1.37	1.13	1.20	84	17	4
B5/B12 44490 RRH (Shielded)	14.9	0.0	10.4	0.00	0.00	1.20	0	3	0
B2/B66A 8843 RRH	14.9	13.2	10.9	1.37	1.13	1.20	84	17	4
B2/B66A 8843 RRH (Shielded)	14.9	0.0	10.9	0.00	0.00	1.20	0	3	0
TT08-19DB111-001 TMA	14.2	5.4	6.7	0.53	2.63	1.21	33	8	2
Surge Arrestor	24.0	9.7	9.7	1.62	2.47	0.70	58	12	3
2" Pipe	2.4	12.0		0.20	0.20	1.20	12	4	1
3x3 Angle	3.0	12.0		0.25	0.25	2.00	26	8	1
3/4" Roundbar	0.8	12.0		0.06	0.06	1.25	4	3	0

Angle $=$	30	(deg)		Ice Thickness =			in.			Equivalent Angle =		210	(deg)
WIND LOADS WITH NOICE:													
Appurtenances		Height	Width	Depth	Flat Area (normal)	Flat Area (side)	Aspect Ratio	Aspect Ratio	Ca (normal)	$\underset{\text { (side) }}{\underline{\mathrm{Ca}}}$	Force (bs)	Force (lbs)	Force (lbs)
7750 Antenna		57.0	11.0	5,0	4.35	1,98	5.18	11.40	1.32	1.55	294	157	260
7770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	282	150	249
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1.55	707	299	605
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13.91	1.30	1.63	889	384	762
HPA65R-BU6AA Antenna		71.2	11.7	8.4	5.79	4.15	6.09	8.48	1.36	1.45	402	308	379
HPA65R-8U8AA Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12.63	1,44	1.59	575	412	534
B5/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1,20	1,20	84	66	79
B5/B12 44490 RRH (Shielded)		14.9	6.6	10.4	0.68	1.08	2.26	1.43	1.20	1.20	42	66	48
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	84	69	80
B2/866A 8843 RRH (Shielded)		14.9	6.6	10.9	0.68	1.13	2.26	1.37	1.20	1.20	42	69	49
TT08-19DB111-001 TMA		14.2	5.4	6.7	0.53	0.66	2,63	2.12	1,21	1.20	33	41	35
WIND LOADS WITH ICE:													
7750 Antenna		59.4	13.4	7.4	5.50	3.03	4.44	8.07	1.29	1.44	54	33	48
7770 Antenna		57.4	13.4	7.4	5.32	2.93	4.29	7.80	1.28	1.43	52	32	47
800-10965 Antenna		81.1	22.4	9.3	12.58	5.21	3.63	8.76	1.25	1.46	119	58	104
800-10966 Antenna		98.4	22.4	9.3	15.27	6.32	4.40	10.63	1.28	1.52	148	73	130
HPA6SR-BU6AA Antenna		73.6	14.1	10.8	7.18	5.49	5.23	6.84	1.32	1.39	72	58	68
HPA65R-BU8AA Antenna		98.4	14.1	10.0	9.60	6.80	7.00	9.88	1.40	1.50	102	77	96
B5/B12 4449 RRH		17.3	15.6	12,8	1.86	1.53	1,11	1.35	1,20	1.20	17	14	16
B5/B12 44490 RRH (Shielded)		17.3	7.8	12.8	0.93	1.53	2.22	1.35	1.20	1.20	8	14	10
B2/B66A 8843 RRH		17.3	15.6	13.3	1.86	1.59	1.11	1.30	1.20	1,20	17	14	16
B2/B66A 8843 RRH (Shielded)		17.3	7.8	13.3	0.93	1.59	2.22	1.30	1.20	1.20	8	14	10
TT08-19DB111-001 TMA		16.6	7.8	9.1	0.89	1.04	2.13	1.83	1.20	1.20	8	9	8
WIND LOADS AT 30 MPH:													
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11.40	1.32	1.55	16	8	14
7770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	15	8	13
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1.55	38	16	32
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13.91	1.30	1.63	47	20	41
HPA6SR-BU6AA Antenna		71.2	11.7	8.4	5.79	4.15	6.09	8.48	1.36	1.45	21	16	20
HPA65R-BUBAA Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12.63	1.44	1.59	31	22	28
B5/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	4	4	4
B5/B12 44490 RRH (Shielded)		14.9	6.6	10.4	0.68	1.08	2.26	1.43	1.20	1.20	2	4	3
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.19	1.13	1,37	1.20	1,20	4	4	4
B2/B66A 8843 RRH (Shielded)		14.9	6.6	10.9	0.68	1.13	2.26	1,37	1.20	1.20	2	4	3
TT08-19DB111-001 TMA		14.2	5.4	6.7	0.53	0.66	2.63	2.12	1.21	1.20	2	2	2

WINDIOADS													
Angle $=$	60	(dog)		Ice Thick	ness $=$	1.18	in.			Equiva	t Angle $=$	240	(deg)
WIND LOADS WITH NOICE:													
Appurtenances		Height	width	Depth	Flat Area (normal)	Hat Area (side)	Ratio (normal)	Ratio (side)	Ca (normal)	$\underset{\text { (side) }}{\text { Ca }}$	Force (lbs)	Force (Ibs)	Force (lbs)
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11.40	1.32	1.55	294	157	191
7770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	282	150	183
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1.55	707	299	401
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13.91	1.30	1.63	889	384	510
HPA65R-bu6AA Antenna		71.2	11.7	8.4	5.79	4.15	6.09	8.48	1.36	1.45	402	308	332
HPA6SR-BUBAA Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12.63	1.44	1.59	575	412	452
B5/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	84	66	71
B5/B12 44490 RRH (Shielded)		14.9	9.9	10.4	1.02	1.08	1.51	1.43	1.20	1.20	63	66	65
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	84	69	73
B2/B66A 8843 RRH (Shielded)		14.9	9.9	10.9	1.02	1.13	1.51	1.37	1.20	1.20	63	69	68
T08-19DB111-001 TMA		14.2	5.4	6.7	0.53	0.66	2.63	2.12	1.21	1.20	33	41	39
WIND LOADS WITHICE:													
7750 Antenna		59.4	13.4	7.4	5.50	3.03	4.44	8.07	1.29	1.44	54	33	${ }^{38}$
7770 Antenna		57.4	13.4	7.4	5.32	2.93	4.29	7.80	1.28	1.43	52	32	37
800-10965 Antenna		81.1	22.4	9.3	12.58	5.21	3.63	8.76	1.25	1.46	119	58	73
800-10966 Antenna		98.4	22.4	9,3	15.27	6,32	4.40	10,63	1.28	1.52	148	73	92
HPA65R-bU6AA Antenna		73.6	14.1	10.8	7.18	5.49	5.23	6.84	1.32	1.39	72	58	61
HPA65R-bu8AA Antenna		98.4	14.1	10.0	9.60	6.80	7.00	9.88	1.40	1.50	102	77	83
B5/B12 4449 RRH		17.3	15.6	12.8	1.86	1.59	1.11	1,35	1.20	1.20	17	14	15
B5/B12 44490 RRH (Shielded)		17.3	11.7	12.8	1.40	1.53	1.48	1.35	1.20	1.20	13	14	14
B2/B66A 8843 RRH		17.3	15.6	13.3	1.86	1.59	1.11	1.30	1.20	1.20	17	14	15
82/B66A 8843 RRH (Shielded)		17.3	11.7	13.3	1.40	1.59	1.48	1.30	1.20	1.20	13	14	14
TT08-19DB111-001 TMA		16.6	7.8	9.1	0.89	1.04	2.13	1.83	1.20	1.20	8	9	9
WIND LOADS AT 30 MPH :													
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11.40	1.32	1.55	16	8	10
7770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	15	8	10
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1.55	38	16	21
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13,91	1.30	1.63	47	20	27
HPA65R-BU6AA Antenna		71.2	11.7	8.4	5.79	4.15	6.09	8.48	1.36	1.45	21	16	18
HPA65R-bu8AA Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12.63	1.44	1.59	31	22	24
B5/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	4	4	4
B5/B12 44490 RRH (Shielded)		14.9	9.9	10.4	1.02	1.08	1,51	1,43	1.20	1.20	3	4	3
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	4	4
B2/866A 8843 RRH (Shielded)		14.9	9.9	10.9	1.02	1.13	1.51	1.37	1.20	1.20	3	4	4
TT08-19DB111-001 TMA		14.2	5.4	6.7	0.53	0.66	2,63	2.12	1.21	1.20	2	2	2

WINDLOADS													
Angle $=$	90	(deg)		Ice Thick	ness =	1.18	in.			Equiva	t Angle $=$	270	(deg)
WIND LOADS WITH NOICE:													
Appurtenances		Height	Width	Depth	Flat Area (normal)	$\frac{\text { Flat Area }}{\text { [side! }}$	$\underbrace{\text { Ratio }}_{\text {[normall }}$	Ratio (side)	$\underset{\text { inormall }}{\text { Ca }}$	$\frac{\text { (sa }}{\text { (side) }}$	Force (lbs)	Force (l bs)	Force (Ibs)
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11.40	1.32	1.55	294	157	157
1770 Antenna		55.0	11.0	5.0	4.20	1.91	5,00	11,00	1,31	1.53	282	150	150
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1.55	707	299	299
800-10966 Antenna		96.0	20.0	6.9	19.33	4.60	4.80	13.91	1.30	1.63	839	384	384
HPAGSR-BUGAA Antenna		71.2	11,7	8.4	5.79	4.15	6.09	8,48	1,36	1,45	402	308	308
hPa65R-busaa Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12.63	1,44	1.59	575	412	412
B5/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1,13	1.43	1.20	1,20	84	66	66
B5/B12 44490 RRH (Shielded)		14.9	0.0	10.4	0.00	1.08	0.00	1.43	1.20	1.20	0	66	66
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	84	69	69
B2/B66A 8843 RRH (Shlelded)		14.9	0.0	10.9	0.00	1.13	0.00	1.37	1,20	1.20	0	69	69
T08-19DB111-001 TMA		14.2	5.4	6.7	0.59	0.66	2.63	2.12	1.21	1.20	33	41	41
WIND LOADS WITH ICE:													
7750 Antenna		59.4	13.4	7.4	5.50	3.03	4.44	8.07	1.29	1.44	54	93	33
7770 Antenna		57.4	13.4	7.4	5.32	2.93	4.29	7.80	1.28	1.43	52	32	32
800-10965 Antenna		81.1	22.4	9.3	12.58	5.21	3.63	8.76	1.25	1.46	119	58	58
800-10966 Antenna		98.4	22.4	9.3	15.27	6.32	4.40	10.63	1.28	1.52	148	73	73
hPa65R-bu6aa Antenna		73.6	14.1	10.8	7.18	5.49	5.23	6.84	1.32	1,39	72	58	58
HPA65R-BUBAA Antenna		98.4	14.1	10.0	9.60	6.80	7.00	9.88	1.40	1.50	102	77	77
B5/812 4449 RRH		17.3	15.6	12.8	1.86	1.53	1.11	1.35	1.20	1.20	17	14	14
B5/B12 44490 RRH (Shielded)		17.3	2.4	12.8	0.28	1.53	7.33	1.35	1.41	1.20	3	14	14
B2/B66A 8843 RRH		17.3	15.6	13.3	1.86	1.59	1,11	1,30	1.20	1,20	17	14	14
B2/B66A 8843 RRH (Shielded)		17.3	2.4	13.3	0.28	1.59	7.33	1.30	1.41	1.20	3	14	14
T00-19DB111-001 TMA		16.6	7.8	9.1	0.89	1.04	2.13	1.83	1.20	1,20	8	9	9
WIND LOADS AT 30 MPH:													
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11.40	1.32	1.55	16	8	8
7770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	15	8	8
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1,55	38	16	16
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13.91	1.30	1.63	47	20	20
HPAGSR-BUGAA Antenns		71.2	11.7	8.4	5.79	4.15	6.09	8.48	1.36	1.45	21	16	16
HPA65R-BUBAA Antenna		96.0	11.7	7.6	7.80	5.07	8. 21	12.63	1,44	1.59	31	22	22
B5/812 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	4	4	4
B5/B12 44490 RRH (Shielded)		14.9	0.0	10.4	0.00	1.08	0.00	1.43	1.20	1.20	0	4	4
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1,37	1.20	1.20	4	4	4
B2/B66A 8843 RRH (Shielded)		14.9	0.0	10.9	0.00	1.13	0.00	1,37	1.20	1.20	0	4	4
T08-1908111-001 TMA		14.2	5.4	6.7	0.53	0.66	2.63	2.12	1.21	1,20	2	2	2

Designed By: LBW Checked By: MSC

WINDTOADS

WINDTOADS													
Angle $=$	150	(deg)		Ice Thick	ness =	1.18	in.			Equiva	t Angle $=$	330	(deg)
WIND LOADS WITH NO ICE:													
Appurtenances		Height	Wlath	Depth	Elat Area (normall	Flat Area [sidel	Ratio (normal)	$\frac{\text { Ratio }}{\text { (side) }}$	Ca (normall	$\underset{\text { (side) }}{\frac{\text { Ca }}{}}$	Force (Ibs)	Force (lbs)	Force (lbs)
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11,40	1.32	1.55	294	157	260
7770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	282	150	249
800-10965 Antenna		78.7	20.0	6.9	10.99	3.77	3.94	11.41	1.26	1.55	707	299	605
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13.91	1.30	1.63	889	384	762
HPA65R-BU6AA Antenna		71.2	11.7	8.4	5.79	4,15	6.09	8.48	1.36	1.45	402	308	379
HPA65R-busaA Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12,63	1.44	1.59	575	412	534
B5/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	84	66	79
B5/B12 44490 RRH (Shielded)		14.9	6.6	10.4	0.68	1.08	2.26	1.43	1.20	1.20	42	66	48
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	84	69	80
B2/B66A 8843 RRH (Shielded)		14.9	6.6	10.9	0.68	1.13	2.26	1.37	1.20	1.20	42	69	49
TTOB-19DB111-001 TMA		14.2	5.4	6.7	0.59	0.66	2,63	2.12	1.21	1.20	33	41	35
WIND LOADS WITHICE:													
7750 Antenna		59.4	13.4	7.4	5,50	3.03	4.44	8.07	1.29	1.44	54	33	48
7770 Antenna		57.4	13.4	7.4	5.32	2.93	4.29	7.80	1.28	1.43	52	32	47
800-10965 Antenna		81.1	22.4	9.3	12.58	5.21	3.63	8.76	1.25	1.46	119	58	104
800-10966 Antenna		98.4	22.4	9.3	15.27	6.32	4.40	10.63	1.28	1.52	148	73	130
HPA65R-bu6AA Antenna		73.6	14.1	10.8	7.18	5.49	5.23	6.84	1.32	1.39	72	58	68
HPA65R-BU8AA Antenna		98.4	14.1	10.0	9.60	6.80	7.00	9.88	1.40	1.50	102	71	96
85/812 4449 RRH		17.3	15.6	12.8	1.86	1.53	1.11	1.35	1.20	1.20	17	14	16
B5/B12 44490 RRH (Shielded)		17.3	7.8	12.8	0.93	1.53	2.22	1.35	1.20	1.20	8	14	10
B2/B66A 8843 RRH		17.3	15.6	13.3	1.86	1.59	1.11	1.30	1.20	1.20	17	14	16
B2/B66A 8843 RRH (5hielded)		17.3	7.8	13.3	0.93	1.59	2.22	1.30	1.20	1.20	8	14	10
TT08-19DB111-001 TMA		16.6	7.8	9.1	0.89	1.04	2.13	1.83	1.20	1.20	8	9	8
WIND LOADS AT 30 MPH:													
7750 Antenna		57.0	11.0	5.0	4.35	1.98	5.18	11.40	1.32	1.55	16	8	14
1770 Antenna		55.0	11.0	5.0	4.20	1.91	5.00	11.00	1.31	1.53	15	8	13
800-10965 Antenna		78.7	20.0	6.9	10.93	3.77	3.94	11.41	1.26	1.55	38	16	32
800-10966 Antenna		96.0	20.0	6.9	13.33	4.60	4.80	13.91	1.30	1.63	47	20	41
HPAGSR-busaA Antenna		71.2	11.7	8.4	5.79	4.15	6.09	8.48	1.36	1.45	21	16	20
HPA65R-bu8AA Antenna		96.0	11.7	7.6	7.80	5.07	8.21	12.63	1.44	1.59	31	22	28
85/B12 4449 RRH		14.9	13.2	10.4	1.37	1.08	1.13	1.43	1.20	1.20	4	4	4
B5/B12 44490 RRH (Shlelded)		14.9	6.6	10.4	0.68	1.08	2.26	1.43	1.20	1.20	2	4	3
B2/B66A 8843 RRH		14.9	13.2	10.9	1.37	1.13	1.13	1.37	1.20	1.20	4	4	4
B2/B66A 8843 RRH (Shielded)		14.9	6.6	10.9	0.68	1.13	2.26	1.37	1.20	1.20	2	4	3
TT08-19DB111-001 TMA		14,2	5.4	6.7	0.53	0.66	2.63	2.12	1.21	1.20	2	2	2

Date: 3/29/2019
Project Name: FRANKLIN CT TYLER DR
Project No.: CT1264
$\mapsto($
HUDSON
Design Group LLC

ICE WEIGHT CALCULATIONS

Thickness of ice:	1.18 in.
Density of ice:	56 pcf

| 7750 Antenna | | |
| :--- | :---: | ---: | :--- |
| Weight of ice based on total radial SF area: | | |
| Height (in): | 57.0 | |
| Width (in): | 11.0 | |
| Depth (in): | 5.0 | |
| Total weight of ice on object: | | 91 lbs |
| Weight of object: | 35.0 lbs | |
| Combined weight of ice and object: | | 126 lbs |

7770 Antenna	
Weight of ice based on total radial SF area:	
Height (in):	55.0
Width (in):	11.0
Depth (in):	5.0
Total weight of ice on object:	88 lbs
Weight of object:	35.0 lbs
Combined weight of ice and object:	123 lbs
800-10966 Antenna	
Weight of ice based on total radial SF area:	
Height (in):	96.0
Width (in):	20.0
Depth (in):	6.9
Total weight of ice on object:	258 lbs
Weight of object:	115.0 lbs
Combined weight of ice and object:	373 lbs

HPA65R-BU6AA Antenna

Weight of ice based on total radial SF area:		
Height (in):	71.2	
Width (in):	20.0	
Depth (in):	6.9	
Total weight of ice on object:		191 lbs
Weight of object:	109.0 lbs	
Combined weight of ice and object:		300 lbs

RRUS-11 RRH		
Weight of ice based on total radial SF area:		
Height (in):	19.7	
Width (in):	17.0	
Depth (in):	7.2	
Total weight of ice on object:		46 lbs
Weight of object:	51.0 lbs	
Combined weight of ice and object:		97 lbs

B2/B66A 8843 RRH

Weight of ice based on total radial SF area:		
Height (in):	14.9	
Width (in):	13.2	
Depth (in):	10.9	
Total weight of ice on object:		33 lbs
Weight of object:	72.0 lbs	
Combined weight of ice and object: 105 lbs		

2" pipe

Per foot weight of ice:
diameter (in):
Per foot weight of ice on object:

3/4" Round Bar
Per foot weight of ice:
diameter (in):
Per foot weight of ice on object:

L 3x3 Angles

Weight of ice based on total radial SF area:

Height (in):	3
Width (in):	3

Per foot weight of ice on object: 8 plf

HPA65R-BU8AA Antenna

Weight of ice based on total radial SF area:		
Height (in):	96.0	
Width (in):	11.7	
Depth (in):	7.6	
Total weight of ice on object:	175 lbs	
Weight of object:	54.0 lbs	
Combined weight of ice and object:	229 lbs	

B5/B12 4449 RRH

Weight of ice based on total radial SF area:	
Height (in):	14.9
Width (in):	13.2
Depth (in):	10.4
Total weight of ice on object:	
Weight of object:	32 lbs
Combined weight of ice and object:	73.0 tbs

TT08-19DB111-001 TMA

Weight of ice based on total radial SF area:	
Height (in):	14.2
Width (in):	5.4
Depth (in):	6.7
Total weight of ice on object:	17 lbs
Weight of object:	22.0 lbs
Combined weight of ice and object:	39 lbs
Squid Surge Arrestor	
Weight of ice based on total radial SF area:	
Depth (in):	24.0
Diameter(in):	9.7
Total weight of ice on object:	31 lbs
Weight of object:	33 lbs
Combined weight of ice and object:	64 lbs

Mount Calculations
(Existing Conditions)

Current Date: 3/29/2019 11:51 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsLAT\&TICTICT1264ILTE 2CICT1264 (LTE 2C).etz)

Current Date: 3/29/2019 11:51 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTIANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsIAT\&TICTICT1264ILTE 2CICT1264 (LTE 2C).etz)

Current Date: 3/29/2019 11:51 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1264ILTE 2CICT1264 (LTE 2C). etz)

Current Date: 3/29/2019 11:51 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1264\LTE 2CICT1264 (LTE 2C).etz

Load data

GLOSSARY

Comb
: Indicates if load condition is a load combination

Load Conditions

Condition	Description		Comb.	Category
D	Dead Load		No	DL
Wo	Wind Load (NO ICE)		No	WIND
W30	WL 30deg		No	WIND
W60	WL 60deg	,	No	WIND
W90	WL 90deg		No	WIND
W120	WL. 120deg		No	WIND
W150	WL 150deg		No	WIND
Di	Ice Load		No	LL
WIO	WL ICE Odeg		No	WIND
WI30	WL ICE 30deg		No	WIND
WI60	WL ICE 60deg		No	WIND
W190	WL ICE 90deg		No	WIND
WI120	WL ICE 120deg		No	WIND
WI150	WL ICE 150deg		No	WIND
WLO	WL 30 mph Odeg		No	WIND
WL30	WL 30 mph 30 deg		No	WIND
WL60	WL 30 mph 60 deg		No	WIND
WL90	WL 30 mph 90 deg		No	WIND
WL120	WL 30 mph 120 deg		No	WIND
WL150	WL 30 mph 150 deg		No	WIND
LL1	250 lb Live Load Center of Mount		No	LL.
LL2	250 lb Live Load Right End of Mount		No	LL
LL3	250 lb Live Load Left End of Mount		No	LL
LLa 1	250 lb Live Load Antenna 1		No	LL
LLa2	250 lb Live Load Antenna 2		No	LL
LLa3	250 lb Live Load Antenna 3		No	LL

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	$\begin{array}{r} \mathrm{Val2} \\ {[\mathrm{Kip} / \mathrm{ft}]} \end{array}$	Dist1 [ft]	\%	Dist2 [ft]	\%
Wo	1	z	-0.026	0.00	0.00	No	0.00	No
	2	z	-0.026	0.00	0.00	No	0.00	No
	5	z	-0.012	0.00	0.00	No	0.00	No
	6	z	-0.012	0.00	0.00	No	0.00	No
	7	z	-0.004	0.00	0.00	No	0.00	No
	8	z	-0.026	0.00	0.00	No	0.00	No
	9	z	-0.026	0.00	0.00	No	0.00	No
	11	z	-0.026	0.00	0.00	No	0.00	No
	12	z	-0.026	0.00	0.00	No	0.00	No
	16	z	-0.012	0.00	0.00	No	0.00	No
	17	z	-0.012	0.00	0.00	No	0.00	No
	18	z	-0.012	0.00	0.00	No	0.00	No
	19	z	-0.012	0.00	0.00	No	0.00	No
	20	z	-0.012	0.00	0.00	No	0.00	No
W30	1	z	-0.026	0.00	0.00	No	0.00	No
	2	z	-0.026	0.00	0.00	No	0.00	No
	5	z	-0.012	0.00	0.00	No	0.00	No
	6	z	-0.012	0.00	0.00	No	0.00	No
	7	z	-0.004	0.00	0.00	No	0.00	No
	8	z	-0.026	0.00	0.00	No	0.00	No
	9	z	-0.026	0.00	0.00	No	0.00	No
	11	z	-0.026	0.00	0.00	No	0.00	No
	12	z	-0.026	0.00	0.00	No	0.00	No
	16	z	-0.012	0.00	0.00	No	0.00	No
	17	z	-0.012	0.00	0.00	No	0.00	No
	18	z	-0.012	0.00	0.00	No	0.00	No
	19	z	-0.012	0.00	0.00	No	0.00	No
	20	z	-0.012	0.00	0.00	No	0.00	No
W60	1	x	-0.026	0.00	0.00	No	0.00	No
	2	x	-0.026	0.00	0.00	No	0.00	No
	5	x	-0.012	0.00	0.00	No	0.00	No
	6	x	-0.012	0.00	0.00	No	0.00	No
	7	x	-0.004	0.00	0.00	No	0.00	No
	8	x	-0.026	0.00	0.00	No	0.00	No
	9	x	-0.026	0.00	0.00	No	0.00	No
	11	x	-0.026	0.00	0.00	No	0.00	No
	12	x	-0.026	0.00	0.00	No	0.00	No
	13	x	-0.012	0.00	0.00	No	0.00	No
	14	x	-0.012	0.00	0.00	No	0.00	No
	15	x	-0.012	0.00	0.00	No	0.00	No
	16	x	-0.012	0.00	0.00	No	0.00	No
	17	x	-0.012	0.00	0.00	No	0.00	No
	18	x	-0.012	0.00	0.00	No	0.00	No
	19	x	-0.012	0.00	0.00	No	0.00	No
	20	x	-0.012	0.00	0.00	No	0.00	No
W90	1	x	-0.026	0.00	0.00	No	0.00	No
	2	x	-0.026	0.00	0.00	No	0.00	No
	5	x	-0.012	0.00	0.00	No	0.00	No
	6	x	-0.012	0.00	0.00	No	0.00	No
	7	x	-0.004	0.00	0.00	No	0.00	No
	8	x	-0.026	0.00	0.00	No	0.00	No
	9	x	-0.026	0.00	0.00	No	0.00	No
	11	x	-0.026	0.00	0.00	No	0.00	No
	12	x	-0.026	0.00	0.00	No	0.00	No
	13	X	-0.012	0.00	0.00	No	0.00	No
	14	x	-0.012	0.00	0.00	No	0.00	No
	15	x	-0.012	0.00	0.00	No	0.00	No
	16	x	-0.012	0.00	0.00	No	0.00	No
	17	x	-0.012	0.00	0.00	No	0.00	No
	18	x	-0.012	0.00	0.00	No	0.00	No

	19	x	-0.012	0.00	0.00	No	0.00	No
	20	x	-0.012	0.00	0.00	No	0.00	No
W120	1	x	-0.026	0.00	0.00	No	0.00	No
	2	x	-0.026	0.00	0.00	No	0.00	No
	5	x	-0.012	0.00	0.00	No	0.00	No
	6	x	-0.012	0.00	0.00	No	0.00	No
	7	x	-0.004	0.00	0.00	No	0.00	No
	8	x	-0.026	0.00	0.00	No	0.00	No
	9	x	-0.026	0.00	0.00	No	0.00	No
	11	x	-0.026	0.00	0.00	No	0.00	No
	12	x	-0.026	0.00	0.00	No	0.00	No
	13	x	-0.012	0.00	0.00	No	0.00	No
	14	x	-0.012	0.00	0.00	No	0.00	No
	15	x	-0.012	0.00	0.00	No	0.00	No
	16	x	-0.012	0.00	0.00	No	0.00	No
	17	x	-0.012	0.00	0.00	No	0.00	No
	18	x	-0.012	0.00	0.00	No	0.00	No
	19	x	-0.012	0.00	0.00	No	0.00	No
	20	X	-0.012	0.00	0.00	No	0.00	No
W150	1	z	0.026	0.00	0.00	No	0.00	No
	2	z	0.026	0.00	0.00	No	0.00	No
	5	z	0.012	0.00	0.00	No	0.00	No
	6	z	0.012	0.00	0.00	No	0.00	No
	7	z	0.004	0.00	0.00	No	0.00	No
	8	z	0.026	0.00	0.00	No	0.00	No
	9	z	0.026	0.00	0.00	No	0.00	No
	11	z	0.026	0.00	0.00	No	0.00	No
	12	z	0.026	0.00	0.00	No	0.00	No
	16	z	0.012	0.00	0.00	No	0.00	No
	17	z	0.012	0.00	0.00	No	0.00	No
	18	z	0.012	0.00	0.00	No	0.00	No
	19	z	0.012	0.00	0.00	No	0.00	No
	20	z	0.012	0.00	0.00	No	0.00	No
Di	1	y	0.00	0.00	0.00	No	0.00	No
	2	y	0.00	0.00	0.00	No	0.00	No
	5	y	-0.005	0.00	0.00	No	0.00	No
	6	y	-0.005	0.00	0.00	No	0.00	No
	7	y	-0.003	0.00	0.00	No	0.00	No
	8	y	-0.008	0.00	0.00	No	0.00	No
	9	y	-0.008	0.00	0.00	No	0.00	No
	11	y	-0.008	0.00	0.00	No	0.00	No
	12	y	-0.008	0.00	0.00	No	0.00	No
	13	y	-0.005	0.00	0.00	No	0.00	No
	14	y	-0.005	0.00	0.00	No	0.00	No
	15	y	-0.005	0.00	0.00	No	0.00	No
	16	y	-0.005	0.00	0.00	No	0.00	No
	17	y	-0.005	0.00	0.00	No	0.00	No
	18	y	-0.005	0.00	0.00	No	0.00	No
	19	y	-0.005	0.00	0.00	No	0.00	No
	20	y	-0.005	0.00	0.00	No	0.00	No

		2	-0.048	2.00	No
	14	2	-0.268	0.50	No
		2	-0.268	7.50	No
		2	-0.049	2.00	No
	15	2	-0.125	0.50	No
		2	-0.125	5.00	No
		2	-0.035	2.00	No
Di	13	y	-0.129	0.50	No
		y	-0.129	7.50	No
		y	-0.032	2.00	No
	14	y	-0.088	0.50	No
		y	-0.088	7.50	No
		y	-0.033	2.00	No
	15	y	-0.044	0.50	No
		y	-0.044	5.00	No
		y	-0.017	2.00	No
WIO	13	z	-0.076	0.50	No
		z	-0.076	7.50	No
		z	-0.003	2.00	No
	14	z	-0.053	0.50	No
		z	-0.053	7.50	No
		z	-0.003	2.00	No
	15	z	-0.027	0.50	No
		z	-0.027	5.00	No
		z	-0.008	2.00	No
WI30	13	3	-0.065	0.50	No
		3	-0.065	7.50	No
		3	-0.01	2.00	No
	14	3	-0.048	0.50	No
		3	-0.048	7.50	No
		3	-0.01	2.00	No
	15	3	-0.024	0.50	No
		3	-0.024	5.00	No
		3	-0.008	2.00	No
WI60	13	3	-0.046	0.50	No
		3	-0.046	7.50	No
		3	-0.014	2.00	No
	14	3	-0.042	0.50	No
		3	-0.042	7.50	No
		3	-0.014	2.00	No
	15	3	-0.019	0.50	No
		3	-0.019	5.00	No
		3	-0.009	2.00	No
WI90	13	x	-0.037	0.50	No
		X	-0.037	7.50	No
		X	-0.014	2.00	No
	14	x	-0.039	0.50	No
		x	-0.039	7.50	No
		x	-0.014	2.00	No
	15	x	-0.016	0.50	No
		x	-0.016	5.00	No
		\times	-0.009	2.00	No
WI120	13	2	-0.046	0.50	No
		2	-0.046	7.50	No
		2	-0.014	2.00	No
	14	2	-0.042	0.50	No
		2	-0.042	7.50	No
		2	-0.014	2.00	No
	15	2	-0.019	0.50	No
		2	-0.019	5.00	No

		2	-0.009	2.00	No
WI150	13	2	-0.065	0.50	No
		2	-0.065	7.50	No
		2	-0.01	2.00	No
	14	2	-0.048	0.50	No
		2	-0.048	7.50	No
		2	-0.01	2.00	No
	15	2	-0.024	0.50	No
		2	-0.024	5.00	No
		2	-0.008	2.00	No
WLO	13	z	-0.024	0.50	No
		z	-0.024	7.50	No
	14	z	-0.016	0.50	No
		z	-0.016	7.50	No
	15	z	-0.008	0.50	No
		z	-0.008	5.00	No
		z	-0.002	2.00	No
WL30	13	3	-0.021	0.50	No
		3	-0.021	7.50	No
		3	-0.003	2.00	No
	14	3	-0.015	0.50	No
		3	-0.015	7.50	No
		3	-0.003	2.00	No
	15	3	-0.007	0.50	No
		3	-0.007	5.00	No
		3	-0.002	2.00	No
WL60	13	3	-0.014	0.50	No
		3	-0.014	7.50	No
		3	-0.003	2.00	No
	14	3	-0.013	0.50	No
		3	-0.013	7.50	No
		3	-0.004	2.00	No
	15	3	-0.005	0.50	No
		3	-0.005	5.00	No
		3	-0.002	2.00	No
WL90	13	x	-0.011	0.50	No
		x	-0.011	7.50	No
		x	-0.004	2.00	No
	14	x	-0.011	0.50	No
		x	-0.011	7.50	No
		x	-0.004	2.00	No
	15	x	-0.004	0.50	No
		x	-0.004	5.00	No
		x	-0.002	2.00	No
WL120	13	2	-0.014	0.50	No
		2	-0.014	7.50	No
		2	-0.003	2.00	No
	14	2	-0.013	0.50	No
		2	-0.013	7.50	No
		2	-0.004	2.00	No
	15	2	-0.005	0.50	No
		2	-0.005	5.00	No
		2	-0.002	2.00	No
WL150	13	2	-0.021	0.50	No
		2	-0.021	7.50	No
		2	-0.003	2.00	No
	14	2	-0.015	0.50	No
		2	-0.015	7.50	No
		2	-0.003	2.00	No
	15	2	-0.007	0.50	No

		2	-0.007	5.00	No
		2	-0.002	2.00	No
LL1	11	y	-0.25	6.23	No
LL2	12	y	-0.25	6.23	No
LL3	11	y	-0.25	0.00	No
LLa1	13	y	-0.25	4.00	No
LLa2	14	y	-0.25	4.00	No
LLa3	15	y	-0.25	3.50	No

Self weight multipliers for load conditions

Condition	Description	Self weight multiplier			
		Comb.	MultX	Multy	Multz
D	Dead Load	No	0.00	-1.00	0.00
Wo	Wind Load (NO ICE)	No	0.00	0.00	0.00
W30	WL 30deg	No	0.00	0.00	0.00
W60	WL 60deg	No	0.00	0.00	0.00
W90	WL 90deg	No	0.00	0.00	0.00
W120	WL 120deg	No	0.00	0.00	0.00
W150	WL 150deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
WIO	WL ICE Odeg	No	0.00	0.00	0.00
WI30	WL ICE 30deg	No	0.00	0.00	0.00
WI60	WL ICE 60deg	No	0.00	0.00	0.00
W190	WL ICE 90deg	No	0.00	0.00	0.00
WI120	WL ICE 120deg	No	0.00	0.00	0.00
WI150	WL ICE 150deg	No	0.00	0.00	0.00
WLO	WL 30 mph Odeg	No	0.00	0.00	0.00
WL30	WL 30 mph 30 deg	No	0.00	0.00	0.00
WL60	WL 30 mph 60 deg	No	0.00	0.00	0.00
WL90	WL 30 mph 90 deg	No	0.00	0.00	0.00
WL120	WL 30 mph 120 deg	No	0.00	0.00	0.00
WL150	WL 30 mph 150 deg	No	0.00	0.00	0.00
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00
LL2	250 lb Live Load Right End of Mount	No	0.00	0.00	0.00
LL3	250 lb Live Load Left End of Mount	No	0.00	0.00	0.00
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [\%]
-	0.00	0.00	0.00
D	0.00	0.00	0.00
W0	0.00	0.00	0.00
W30	0.00	0.00	0.00
W60	0.00	0.00	0.00
W90	0.00	0.00	0.00
W120	0.00	0.00	0.00

Di	0.00	0.00	0.00
WIO	0.00	0.00	0.00
WI30	0.00	0.00	0.00
WI60	0.00	0.00	0.00
WI90	0.00	0.00	0.00
WI120	0.00	0.00	0.00
WI150	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
WL60	0.00	0.00	0.00
WL90	0.00	0.00	0.00
WL120	0.00	0.00	0.00
WL150	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LL3	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00

Current Date: 3/29/2019 11:51 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1264ILTE 2CICT1264 (LTE 2C).etz

Steel Code Check

[^0]LC55 $=1.2 \mathrm{D}+\mathrm{WL} 60+1.5 \mathrm{LLa} 2$
LC56=1.2D+WL90+1.5LLa2
LC57=1.2D+WL120+1.5LLa2
LC58=1.2D+WL150+1.5LLa2
LC59=1.2D-WL0+1.5LLa2
LC60=1.2D-WL30+1.5LLa2
LC61=1.2D-WL60+1.5LLa2
LC62=1.2D-WL90+1.5LLa2
LC63=1.2D-WL120+1.5LLa2
LC64=1.2D-WL150+1.5LLa2
LC65=1.2D+WL0+1.5LLa3
LC66=1.2D+WL30+1.5LLa3
LC67=1.2D+WL60+1.5LLa3
LC68=1.2D+WL90+1.5LLa3
LC69=1.2D+WL120+1.5LLa3
LC70=1.2D+WL150+1.5LLa3
LC71=1.2D-WL0+1.5LLa3
LC72=1.2D-WL30+1.5LLa3
LC73=1.2D-WL60+1.5LLa3
LC74=1.2D-WL90+1.5LLa3
LC75=1.2D-WL120+1.5LLa3
LC76=1.2D-WL150+1.5LLa3

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	L 3 $\times 3 \times 3$ - 16	8	LC13 at 100.00\%	4.66	N.G.	Sec. F1
		9	LC12 at 0.00\%	3.20	N.G.	Sec. F1
		11	LC1 at 100.00\%	4.50	N.G.	Sec. F1
		12	LC7 at 0.00\%	2.16	N.G.	Sec. F1
	L 3X3X3_8	1	LC11 at 0.00\%	2.29	N.G.	Sec. F1
		2	LC5 at 0.00\%	1.57	N.G.	Sec. F1
	PIPE 2x0. 154	5	LC8 at 0.00\%	0.10	OK	Eq. H1-1b
		6	LC12 at 100.00\%	0.65	OK	Eq. H3-6
		13	LC7 at 33.33\%	1.10	N.G.	Eq. H1-1b
		14	LC12 at 35.42\%	0.83	OK	Eq. H1-1b
		15	LC1 at 37.50\%	0.37	OK	Eq. H1-1b
		16	LC1 at 100.00%	0.80	OK	Eq. H1-1b
		17	LC36 at 0.00\%	0.56	OK	Eq. H1-1b
		18	LC1 at 0.00\%	0.72	OK	Eq. H1-1b
		19	LC12 at 0.00\%	0.70	OK	Eq. H3-6
		20	LC7 at 0.00\%	0.89	OK	Eq. H1-1b
	PL 11x3/16	3	LC8 at 100.00\%	0.32	OK	Eq. H1-1b
		4	LC1 at 100.00\%	0.30	OK	Eq. H1-1b
	RndBar 3_4	7	LC36 at 0.00\%	0.46	With warnings	Eq. H1-1a

Current Date: 3/29/2019 11:52 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM Elements\RAM Projects\AT\&TICTICT1264ILTE 2CICT1264 (LTE 2C).etz

Geometry data

GLOSSARY

Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
do	: Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	: Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	: Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
Ig factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	: Rotation about Z
TO	: 1 = Tension only member $0=$ Normal member
TX	: Translation in X
TY	: Translation in Y
TZ	: Translation in \mathbf{Z}

Nodes

Node	X	Y	Z	Rigid Floor
	[t]	[ft]	[ft]	
1	0.00	0.00	0.00	0
2	0.00	3.25	0.00	0
3	0.00	0.00	0.33	0
4	0.00	3.25	0.33	0
5	0.00	0.00	2.3717	0
6	0.00	3.25	2.3717	0
7	0.00	0.00	3.1842	0
8	0.00	3.25	3.1842	0
9	0.00	0.00	3.6012	0
10	0.00	3.25	3.6012	0
11	6.23	0.00	3.6012	0
12	6.23	3.25	3.6012	0
27	5.9783	-2.00	3.8012	0
28	1.9783	-2.00	3.8012	0
29	-5.98	-1.00	3.8012	0
30	5.9783	6.00	3.8012	0
31	1.9783	6.00	3.8012	0
32	-5.98	6.00	3.8012	0
33	-5.2925	3.25	3.6012	0
34	-5.2925	0.00	3.6012	0
35	-0.9625	3.25	3.6012	0
36	-0.9625	0.00	3.6012	0
				Page1

37	5.2925	0.00	3.6012	0
38	5.2925	3.25	3.6012	0
39	0.9625	0.00	3.6012	0
40	0.9625	3.25	3.6012	0
41	-5.2925	2.25	3.6012	0
42	-5.2925	2.25	-1.5446	0

Restraints

Node	TX	TY	TZ	$\mathbf{R X}$	$\mathbf{R Y}$	$\mathbf{R Z}$	
1	1	1	1	1	1	1	
2	1	1	1	1	1	1	
42	1	1	1	0	0	0	

Members

Member	NJ	NK	Description	Section	Material	$\begin{gathered} \text { do } \\ \text { [in] } \end{gathered}$	$\begin{gathered} \mathbf{d L} \\ \text { [in] } \end{gathered}$	\lg factor
1	2	10		L 3 $\times 3 \times 3$-8	A36	0.00	0.00	0.00
2	1	9		L 3 3 3 3 _8	A36	0.00	0.00	0.00
3	8	10		PL 11x3/16	A36	0.00	0.00	0.00
4	7	9		PL 11x3/16	A36	0.00	0.00	0.00
5	4	3		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
6	6	5		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
7	5	4		RndBar 3_4	A36	0.00	0.00	0.00
8	12	10		L 3 $\times 3 \times 3$ _16	A36	0.00	0.00	0.00
9	10	14		L 3X3X3_16	A36	0.00	0.00	0.00
11	11	9		L 3 $3 \times 3 \times 3$ _16	A36	0.00	0.00	0.00
12	9	13		L 3X3X3_16	A36	0.00	0.00	0.00
13	30	27		PIPE 2x0. 154	A53 GrB	0.00	0.00	0.00
14	31	28		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
15	32	29		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
16	37	38		PIPE 2x0. 154	A53 GrB	0.00	0.00	0.00
17	39	40		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
18	35	36		PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
19	33	34		PIPE 2x0. 154	A53 GrB	0.00	0.00	0.00
20	41	42		PIPE 2x0. 154	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ
1	180.00	0	0.00	0.00	0.00
2	180.00	0	0.00	0.00	0.00
3	90.00	0	0.00	0.00	0.00
4	90.00	0	0.00	0.00	0.00
8	90.00	0	0.00	0.00	0.00

9	90.00	0	0.00	0.00	0.00
11	90.00	0	0.00	0.00	0.00
12	90.00	0	0.00	0.00	0.00
13	315.00	0	0.00	0.00	0.00
14	315.00	0	0.00	0.00	0.00
15	315.00	0	0.00	0.00	0.00

Rigid end offsets

Member	DJX [in]	$\begin{aligned} & \text { DJY } \\ & {[\mathrm{in}]} \end{aligned}$	$\begin{aligned} & \text { DJZ } \\ & \text { [in] } \end{aligned}$	$\begin{array}{r} \text { DKX } \\ {[i n]} \end{array}$	$\begin{array}{r} \text { DKY } \\ {[\mathrm{in}]} \end{array}$	$\begin{array}{r} \text { DKZ } \\ \text { [in] } \end{array}$
1	0.00	-0.25	0.00	0.00	-0.25	1.00
2	0.00	-0.25	0.00	0.00	-0.25	1.00
3	0.00	0.75	0.00	0.00	0.75	0.00
4	0.00	0.75	0.00	0.00	0.75	0.00
5	0.50	0.00	0.00	0.50	0.00	0.00
6	0.50	0.00	0.00	0.50	0.00	0.00
7	0.50	0.00	0.00	0.50	0.00	0.00
8	0.00	0.25	0.00	0.00	0.25	0.00
9	0.00	0.25	0.00	0.00	0.25	0.00
11	0.00	0.25	0.00	0.00	0.25	0.00
12	0.00	0.25	0.00	0.00	0.25	0.00
16	0.00	1.00	-0.50	0.00	1.00	-0.50
17	0.00	1.00	-0.50	0.00	1.00	-0.50
18	0.00	1.00	-0.50	0.00	1.00	-0.50
19	0.00	1.00	-0.50	0.00	1.00	-0.50
20	2.00	0.00	0.00	2.00	0.00	0.00

HUDSON
Design Group LLC

Mount Calculations

(Modified Conditions)

Current Date: 3/29/2019 11:52 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM Elements\RAM Projects\AT\&TICTICT1264ILTE 2CICT1264 (LTE 2C)(MODS). etz

Current Date: 3/29/2019 11:52 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTLANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsLAT\&TICTICT1264ILTE 2CICT1264 (LTE 2C)(MODS).etz
Design status
Not designed Error on design Design O.K. With warnings

x

Current Date: 3/29/2019 11:52 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT\&TICTICT1264ILTE 2CICT1264 (LTE 2C)(MODS).etz

Current Date: 3/29/2019 11:52 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENT\ANALYSIS SOFTWAREIRAM ElementsIRAM ProjectsIAT\&TICTICT1264ILTE 2CICT1264 (LTE 2C)(MODS).etz

Load data

GLOSSARY

Comb : Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
D	Dead Load	No	DL
Wo	Wind Load (NO ICE)	No	WIND
W30	WL 30deg	No	WIND
W60	WL 60deg	No	WIND
W90	WL 90deg	No	WIND
W120	WL 120deg	No	WIND
W150	WL 150deg	No	WIND
Di	Ice Load	No	LL
WIO	WL ICE Odeg	No	WIND
W130	WL ICE 30deg	No	WIND
WI60	WL ICE 60deg	No	WIND
W190	WL ICE 90deg	No	WIND
WI120	WL ICE 120deg	No	WIND
WI150	WL ICE 150deg	No	WIND
WLO	WL 30 mph Odeg	No	WIND
WL30	WL 30 mph 30 deg	No	WIND
WL60	WL 30 mph 60 deg	No	WIND
WL90	WL 30 mph 90 deg	No	WIND
WL120	WL 30 mph 120 deg	No	WIND
WL150	WL 30 mph 150 deg	No	WIND
LL1	250 lb Live Load Center of Mount	No	LL
LL2	250 lb Live Load Right End of Mount	No	LL
LL3	250 lb Live Load Left End of Mount	No	LL
LLa1	250 lb Live Load Antenna 1	No	LL
LLa2	250 lb Live Load Antenna 2	No	LL
LLa3	250 lb Live Load Antenna 3	No	LL

Distributed force on members

Condition	Member	Dir1	$\begin{array}{r} \text { Val1 } \\ {[\mathrm{Kip} / \mathrm{ft}} \end{array}$	$\begin{array}{r} \text { Val2 } \\ {[\mathrm{Kip} / \mathrm{tt}]} \end{array}$	Dist1 [ft]	\%	Dist2 [ft]	\%
Wo	1	z	-0.026	0.00	0.00	No	0.00	No
	2	z	-0.026	0.00	0.00	No	0.00	No
	5	z	-0.012	0.00	0.00	No	0.00	No
	6	z	-0.012	0.00	0.00	No	0.00	No
	7	z	-0.004	0.00	0.00	No	0.00	No
	8	z	-0.026	0.00	0.00	No	0.00	No
	9	z	-0.026	0.00	0.00	No	0.00	No
	11	z	-0.026	0.00	0.00	No	0.00	No
	12	z	-0.026	0.00	0.00	No	0.00	No
	16	z	-0.012	0.00	0.00	No	0.00	No
	17	z	-0.012	0.00	0.00	No	0.00	No
	18	z	-0.012	0.00	0.00	No	0.00	No
	19	z	-0.012	0.00	0.00	No	0.00	No
	20	z	-0.012	0.00	0.00	No	0.00	No
	27	z	-0.012	0.00	0.00	No	0.00	No
W30	1	z	-0.026	0.00	0.00	No	0.00	No
	2	z	-0.026	0.00	0.00	No	0.00	No
	5	z	-0.012	0.00	0.00	No	0.00	No
	6	z	-0.012	0.00	0.00	No	0.00	No
	7	z	-0.004	0.00	0.00	No	0.00	No
	8	z	-0.026	0.00	0.00	No	0.00	No
	9	z	-0.026	0.00	0.00	No	0.00	No
	11	z	-0.026	0.00	0.00	No	0.00	No
	12	z	-0.026	0.00	0.00	No	0.00	No
	16	z	-0.012	0.00	0.00	No	0.00	No
	17	z	-0.012	0.00	0.00	No	0.00	No
	18	z	-0.012	0.00	0.00	No	0.00	No
	19	z	-0.012	0.00	0.00	No	0.00	No
	20	z	-0.012	0.00	0.00	No	0.00	No
	27	z	-0.012	0.00	0.00	No	0.00	No
W60	1	x	-0.026	0.00	0.00	No	0.00	No
	2	x	-0.026	0.00	0.00	No	0.00	No
	5	x	-0.012	0.00	0.00	No	0.00	No
	6	x	-0.012	0.00	0.00	No	0.00	No
	7	x	-0.004	0.00	0.00	No	0.00	No
	8	x	-0.026	0.00	0.00	No	0.00	No
	9	x	-0.026	0.00	0.00	No	0.00	No
	11	x	-0.026	0.00	0.00	No	0.00	No
	12	x	-0.026	0.00	0.00	No	0.00	No
	13	\times	-0.012	0.00	0.00	No	0.00	No
	14	x	-0.012	0.00	0.00	No	0.00	No
	15	x	-0.012	0.00	0.00	No	0.00	No
	16	x	-0.012	0.00	0.00	No	0.00	No
	17	x	-0.012	0.00	0.00	No	0.00	No
	18	x	-0.012	0.00	0.00	No	0.00	No
	19	x	-0.012	0.00	0.00	No	0.00	No
	20	x	-0.012	0.00	0.00	No	0.00	No
	27	x	-0.012	0.00	0.00	No	0.00	No
W90	1	x	-0.026	0.00	0.00	No	0.00	No
	2	x	-0.026	0.00	0.00	No	0.00	No
	5	x	-0.012	0.00	0.00	No	0.00	No
	6	x	-0.012	0.00	0.00	No	0.00	No
	7	X	-0.004	0.00	0.00	No	0.00	No
	8	x	-0.026	0.00	0.00	No	0.00	No
	9	X	-0.026	0.00	0.00	No	0.00	No
	11	x	-0.026	0.00	0.00	No	0.00	No
	12	x	-0.026	0.00	0.00	No	0.00	No
	13	\times	-0.012	0.00	0.00	No	0.00	No
	14	x	-0.012	0.00	0.00	No	0.00	No
	15	x	-0.012	0.00	0.00	No	0.00	No

	16	x	-0.012	0.00	0.00	No	0.00	No
	17	x	-0.012	0.00	0.00	No	0.00	No
	18	x	-0.012	0.00	0.00	No	0.00	No
	19	x	-0.012	0.00	0.00	No	0.00	No
	20	x	-0.012	0.00	0.00	No	0.00	No
	27	x	-0.012	0.00	0.00	No	0.00	No
W120	1	\times	-0.026	0.00	0.00	No	0.00	No
	2	x	-0.026	0.00	0.00	No	0.00	No
	5	x	-0.012	0.00	0.00	No	0.00	No
	6	x	-0.012	0.00	0.00	No	0.00	No
	7	x	-0.004	0.00	0.00	No	0.00	No
	\%	x	-0.026	0.00	0.00	No	0.00	No
	9	x	-0.026	0.00	0.00	No	0.00	No
	11	x	-0.026	0.00	0.00	No	0.00	No
	12	x	-0.026	0.00	0.00	No	0.00	No
	13	x	-0.012	0.00	0.00	No	0.00	No
	14	x	-0.012	0.00	0.00	No	0.00	No
	15	x	-0.012	0.00	0.00	No	0.00	No
	16	x	-0.012	0.00	0.00	No	0.00	No
	17	x	-0.012	0.00	0.00	No	0.00	No
	18	x	-0.012	0.00	0.00	No	0.00	No
	19	x	-0.012	0.00	0.00	No	0.00	No
	20	\times	-0.012	0.00	0.00	No	0.00	No
	27	x	-0.012	0.00	0.00	No	0.00	No
W150	1	z	0.026	0.00	0.00	No	0.00	No
	2	z	0.026	0.00	0.00	No	0.00	No
	5	z	0.012	0.00	0.00	No	0.00	No
	6	z	0.012	0.00	0.00	No	0.00	No
	7	z	0.004	0.00	0.00	No	0.00	No
	8	z	0.026	0.00	0.00	No	0.00	No
	9	z	0.026	0.00	0.00	No	0.00	No
	11	z	0.026	0.00	0.00	No	0.00	No
	12	z	0.026	0.00	0.00	No	0.00	No
	16	z	0.012	0.00	0.00	No	0.00	No
	17	z	0.012	0.00	0.00	No	0.00	No
	18	z	0.012	0.00	0.00	No	0.00	No
	19	z	0.012	0.00	0.00	No	0.00	No
	20	z	0.012	0.00	0.00	No	0.00	No
	27	z	0.012	0.00	0.00	No	0.00	No
Di	1	y	0.00	0.00	0.00	No	0.00	No
	2	y	0.00	0.00	0.00	No	0.00	No
	5	y	-0.005	0.00	0.00	No	0.00	No
	6	y	-0.005	0.00	0.00	No	0.00	No
	7	y	-0.003	0.00	0.00	No	0.00	No
	8	y	-0.008	0.00	0.00	No	0.00	No
	9	y	-0.008	0.00	0.00	No	0.00	No
	11	y	-0.008	0.00	0.00	No	0.00	No
	12	y	-0.008	0.00	0.00	No	0.00	No
	13	y	-0.005	0.00	0.00	No	0.00	No
	14	y	-0.005	0.00	0.00	No	0.00	No
	15	y	-0.005	0.00	0.00	No	0.00	No
	16	y	-0.005	0.00	0.00	No	0.00	No
	17	y	-0.005	0.00	0.00	No	0.00	No
	18	y	-0.005	0.00	0.00	No	0.00	No
	19	y	-0.005	0.00	0.00	No	0.00	No
	20	y	-0.005	0.00	0.00	No	0.00	No
	27	y	-0.005	0.00	0.00	No	0.00	No

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	$\%$
D	13	y	-0.058	0.50	No
		y	-0.058	7.50	No
		y	-0.073	2.00	No
	14	y	-0.054	0.50	No
		y	-0.054	7.50	No
		y	-0.072	2.00	No
	15	y	-0.018	0.50	No
		y	-0.018	5.00	No
		y	-0.022	2.00	No
Wo	13	z	-0.445	0.50	No
		z	-0.445	7.50	No
	14	z	-0.288	0.50	No
		z	-0.288	7.50	No
	15	z	-0.141	0.50	No
		z	-0.141	5.00	No
		z	-0.033	2.00	No
W30	13	3	-0.382	0.50	No
		3	-0.382	7.50	No
		3	-0.048	2.00	No
	14	3	-0.268	0.50	No
		3	-0.268	7.50	No
		3	-0.049	2.00	No
	15	3	-0.125	0.50	No
		3	-0.125	5.00	No
		3	-0.035	2.00	No
W60	13	3	-0.256	0.50	No
		3	-0.256	7.50	No
		3	-0.065	2.00	No
	14	3	-0.227	0.50	No
		3	-0.227	7.50	No
		3	-0.068	2.00	No
	15	3	-0.092	0.50	No
		3	-0.092	5.00	No
		3	-0.039	2.00	No
W90	13	x	-0.192	0.50	No
		x	-0.192	7.50	No
		X	-0.066	2.00	No
	14	x	-0.206	0.50	No
		X	-0.206	7.50	No
		x	-0.069	2.00	No
	15	x	-0.075	0.50	No
		x	-0.075	5.00	No
		x	-0.041	2.00	No
W120	13	2	-0.256	0.50	No
		2	-0.256	7.50	No
		2	-0.065	2.00	No
	14	2	-0.227	0.50	No
		2	-0.227	7.50	No
		2	-0.068	2.00	No
	15	2	-0.092	0.50	No
		2	-0.092	5.00	No
		2	-0.039	2.00	No
W150	13	2	-0.382	0.50	No
		2	-0.382	7.50	No

		2	-0.048	2.00	No
	14	2	-0.268	0.50	No
		2	-0.268	7.50	No
		2	-0.049	2.00	No
	15	2	-0.125	0.50	No
		2	-0.125	5.00	No
		2	-0.035	2.00	No
Di	13	y	-0.129	0.50	No
		y	-0.129	7.50	No
		y	-0.032	2.00	No
	14	y	-0.088	0.50	No
		y	-0.088	7.50	No
		y	-0.033	2.00	No
	15	y	-0.044	0.50	No
		y	-0.044	5.00	No
		y	-0.017	2.00	No
WIO	13	z	-0.076	0.50	No
		z	-0.076	7.50	No
		z	-0.003	2.00	No
	14	z	-0.053	0.50	No
		z	-0.053	7.50	No
		z	-0.003	2.00	No
	15	z	-0.027	0.50	No
		z	-0.027	5.00	No
		z	-0.008	2.00	No
WI30	13	3	-0.065	0.50	No
		3	-0.065	7.50	No
		3	-0.01	2.00	No
	14	3	-0.048	0.50	No
		3	-0.048	7.50	No
		3	-0.01	2.00	No
	15	3	-0.024	0.50	No
		3	-0.024	5.00	No
		3	-0.008	2.00	No
W160	13	3	-0.046	0.50	No
		3	-0.046	7.50	No
		3	-0.014	2.00	No
	14	3	-0.042	0.50	No
		3	-0.042	7.50	No
		3	-0.014	2.00	No
	15	3	-0.019	0.50	No
		3	-0.019	5.00	No
		3	-0.009	2.00	No
WI90	13	x	-0.037	0.50	No
		X	-0.037	7.50	No
		x	-0.014	2.00	No
	14	x	-0.039	0.50	No
		x	-0.039	7.50	No
		x	-0.014	2.00	No
	15	x	-0.016	0.50	No
		\times	-0.016	5.00	No
		x	-0.009	2.00	No
WI120	13	2	-0.046	0.50	No
		2	-0.046	7.50	No
		2	-0.014	2.00	No
	14	2	-0.042	0.50	No
		2	-0.042	7.50	No
		2	-0.014	2.00	No
	15	2	-0.019	0.50	No
		2	-0.019	5.00	No

		2	-0.009	2.00	No
WI150	13	2	-0.065	0.50	No
		2	-0.065	7.50	No
		2	-0.01	2.00	No
	14	2	-0.048	0.50	No
		2	-0.048	7.50	No
		2	-0.01	2.00	No
	15	2	-0.024	0.50	No
		2	-0.024	5.00	No
		2	-0.008	2.00	No
WLO	13	z	-0.024	0.50	No
		z	-0.024	7.50	No
	14	z	-0.016	0.50	No
		z	-0.016	7.50	No
	15	z	-0.008	0.50	No
		z	-0.008	5.00	No
		z	-0.002	2.00	No
WL30	13	3	-0.021	0.50	No
		3	-0.021	7.50	No
		3	-0.003	2.00	No
	14	3	-0.015	0.50	No
		3	-0.015	7.50	No
		3	-0.003	2.00	No
	15	3	-0.007	0.50	No
		3	-0.007	5.00	No
		3	-0.002	2.00	No
WL60	13	3	-0.014	0.50	No
		3	-0.014	7.50	No
		3	-0.003	2.00	No
	14	3	-0.013	0.50	No
		3	-0.013	7.50	No
		3	-0.004	2.00	No
	15	3	-0.005	0.50	No
		3	-0.005	5.00	No
		3	-0.002	2.00	No
WL90	13	x	-0.011	0.50	No
		x	-0.011	7.50	No
		x	-0.004	2.00	No
	14	x	-0.011	0.50	No
		x	-0.011	7.50	No
		x	-0.004	2.00	No
	15	x	-0.004	0.50	No
		x	-0.004	5.00	No
		x	-0.002	2.00	No
WL120	13	2	-0.014	0.50	No
		2	-0.014	7.50	No
		2	-0.003	2.00	No
	14	2	-0.013	0.50	No
		2	-0.013	7.50	No
		2	-0.004	2.00	No
	15	2	-0.005	0.50	No
		2	-0.005	5.00	No
		2	-0.002	2.00	No
WL150	13	2	-0.021	0.50	No
		2	-0.021	7.50	No
		2	-0.003	2.00	No
	14	2	-0.015	0.50	No
		2	-0.015	7.50	No
		2	-0.003	2.00	No
	15	2	-0.007	0.50	No

		2	-0.007	5.00	No
		2	-0.002	2.00	No
LL1	11	y	-0.25	6.23	No
LL2	12	y	-0.25	6.23	No
LL3	11	y	-0.25	0.00	No
LLa 1	13	y	-0.25	4.00	No
LLa2	14	y	-0.25	4.00	No
LLa3	15	y	-0.25	3.50	No

Self weight multipliers for load conditions

Condition	Description	Self weight multiplier			
		Comb.	MultX	MultY	MultZ
D	Dead Load	No	0.00	-1.00	0.00
Wo	Wind Load (NO ICE)	No	0.00	0.00	0.00
W30	WL 30deg	No	0.00	0.00	0.00
W60	WL 60deg	No	0.00	0.00	0.00
W90	WL 90deg	No	0.00	0.00	0.00
W120	WL 120deg	No	0.00	0.00	0.00
W150	WL 150deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
WIO	WL ICE Odeg	No	0.00	0.00	0.00
WI30	WL ICE 30deg	No	0.00	0.00	0.00
WI60	WL ICE 60deg	No	0.00	0.00	0.00
WI90	WL ICE 90deg	No	0.00	0.00	0.00
WI120	WL ICE 120deg	No	0.00	0.00	0.00
WI150	WL ICE 150deg	No	0.00	0.00	0.00
WLO	WL 30 mph 0deg	No	0.00	0.00	0.00
WL30	WL 30 mph 30 deg	No	0.00	0.00	0.00
WL60	WL 30 mph 60 deg	No	0.00	0.00	0.00
WL90	WL 30 mph 90 deg	No	0.00	0.00	0.00
WL120	WL 30 mph 120 deg	No	0.00	0.00	0.00
WL150	WL 30 mph 150 deg	No	0.00	0.00	0.00
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00
LL2	250 lb Live Load Right End of Mount	No	0.00	0.00	0.00
LL3	250 lb Live Load Left End of Mount	No	0.00	0.00	0.00
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00

Earthquake (Dynamic analysis only)

a/g	Ang. [Deg]	Damp. [\%]	
D			
D	0.00	0.00	0.00
Wo	0.00	0.00	0.00
W30	0.00	0.00	0.00
W60	0.00	0.00	0.00
W90	0.00	0.00	0.00
W120	0.00	0.00	0.00
W150	0.00	0.00	0.00

Di	0.00	0.00	0.00
WIO	0.00	0.00	0.00
WI30	0.00	0.00	0.00
WI60	0.00	0.00	0.00
WI90	0.00	0.00	0.00
WI120	0.00	0.00	0.00
WI150	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
WL60	0.00	0.00	0.00
WL90	0.00	0.00	0.00
WL120	0.00	0.00	0.00
WL150	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LL3	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00

Current Date: 3/29/2019 1:22 PM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1264ILTE 2C 3C 4C 5CICT1264 (LTI 3C 4C 5C)(MODS).etz

Steel Code Check

Report: Summary - Group by member
Load conditions to be included in design :

LC1 $=1.2 \mathrm{D}+$ Wo

LC2 $=1.2 \mathrm{D}+\mathrm{W} 30$
LC3 $=1.2 \mathrm{D}+\mathrm{W} 60$
LC4 $=1.2 \mathrm{D}+\mathrm{W} 90$
LC5 $=1.2 \mathrm{D}+\mathrm{W} 120$
LC6=1.2D+W150
LC7=1.2D-Wo
LC8=1.2D-W30
LC9=1.2D-W60
LC10=1.2D-W90
LC11=1.2D-W120
LC12=1.2D-W150
LC13=0.9D+Wo
LC14=0.9D+W30
LC15=0.9D+W60
LC16=0.9D+W90
LC17 $=0.9 \mathrm{D}+\mathrm{W} 120$
LC18=0.9D+W150
LC19=0.9D-Wo
LC20=0.9D-W30
LC21 $=0.9 \mathrm{D}-\mathrm{W} 60$
LC22=0.9D-W90
LC23=0.9D-W120
LC24=0.9D-W150
LC25=1.2D+Di+WIO
LC26=1.2D+Di+WI30
LC27 $=1.2 \mathrm{D}+\mathrm{D}$ i+WI60
LC28=1.2D+Di+WI90
LC29=1.2D+Di+WI120
LC30=1.2D+Di+WI150
LC31=1.2D+Di-WIO
LC32=1.2D+Di-WI30
LC33=1.2D+Di-WI60
LC34=1.2D+Di-WI90
LC35=1.2D+Di-WI120
LC36=1.2D+Di-WI150
LC38=1.2D+1.5LL1
LC39 $=1.2 \mathrm{D}+1.5 \mathrm{LL} 2$
LC40=1.2D+1.5LL3
LC41 $=1.2 \mathrm{D}+\mathrm{WL} 0+1.5 \mathrm{LLa} 1$
LC42=1.2D+WL30+1.5LLa1
LC43=1.2D+WL60+1.5LLa1
LC44=1.2D+WL90+1.5LLa1
LC45=1.2D+WL120+1.5LLa1
LC46=1.2D+WL150+1.5LLa1
LC47=1.2D-WL0+1.5LLa1
LC48=1.2D-WL30+1.5LLa 1
LC49=1.2D-WL60+1.5LLa1
LC50=1.2D-WL90+1.5LLa1
LC51=1.2D-WL120+1.5LLa1
LC52=1.2D-WL150+1.5LLa1
LC53=1.2D+WL0+1.5LLa2

```
LC54=1.2D+WL30+1.5LLa2
LC55=1.2D+WL60+1.5LLa2
LC56=1.2D+WL90+1.5LLa2
LC57=1.2D+WL120+1.5LLa2
LC58=1.2D+WL150+1.5LLa2
LC59=1.2D-WL0+1.5LLa2
LC60=1.2D-WL30+1.5LLa2
LC61=1.2D-WL60+1.5LLa2
LC62=1.2D-WL90+1.5LLa2
LC63=1.2D-WL120+1.5LLa2
LC64=1.2D-WL150+1.5LLa2
LC65=1.2D+WL0+1.5LLa3
LC66=1.2D+WL30+1.5LLa3
LC67=1.2D+WL60+1.5LLa3
LC68=1.2D+WL90+1.5LLa3
LC69=1.2D+WL120+1.5LLa3
LC70=1.2D+WL150+1.5LLa3
LC71=1.2D-WL0+1.5LLa3
LC72=1.2D-WL30+1.5LLa3
LC73=1.2D-WL60+1.5LLa3
LC74=1.2D-WL90+1.5LLa3
LC75=1.2D-WL120+1.5LLa3
LC76=1.2D-WL150+1.5LLa3
```


Current Date: 3/29/2019 11:53 AM
Units system: English
File name: W:ISTRUCTURAL DEPARTMENTVANALYSIS SOFTWAREIRAM ElementsIRAM Projects\AT\&TICTICT1264ILTE 2CICT1264 (LTE 2C)(MODS).etz

Geometry data

GLOSSARY	
Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	: Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	: Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
Ig factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	: Rotation about \mathbf{Z}
TO	: 1 = Tension only member $0=$ Normal member
TX	: Translation in X
TY	: Translation in Y
TZ	: Translation in Z

Nodes

Node	\mathbf{X} $[\mathrm{ft}]$	\mathbf{Y} $[\mathrm{ft}]$	\mathbf{Z} $[\mathrm{ft}]$	Rigid Floor
	0.00	0.00	0.00	0
1	0.00	3.25	0.00	0
2	0.00	0.00	0.33	0
3	0.00	3.25	0.33	0
4	0.00	0.00	2.3717	0
5	0.00	3.25	2.3717	0
6	0.00	0.00	3.1842	0
7	0.00	3.25	3.1842	0
8	0.00	0.00	3.6012	0
9	0.00	3.25	3.6012	0
10	6.23	0.00	3.6012	0
11	6.23	3.25	3.6012	0
12	-6.23	0.00	3.6012	0
13	-6.23	3.25	3.6012	0
14	-5.98	0.00	3.6012	0
15	-5.98	3.25	3.6012	0
16	1.9783	0.00	3.6012	0
17	1.9783	3.25	3.6012	0
18	5.9783	0.00	3.6012	0
19	5.9783	3.25	3.6012	0
20	1.9783	0.00	3.8012	0
21				Page1

22	1.9783	3.25	3.8012	0
23	5.9783	0.00	3.8012	0
24	5.9783	3.25	3.8012	0
25	-5.98	0.00	3.8012	0
26	-5.98	3.25	3.8012	0
27	5.9783	-2.00	3.8012	0
28	1.9783	-2.00	3.8012	0
29	-5.98	-1.00	3.8012	0
30	5.9783	6.00	3.8012	0
31	1.9783	6.00	3.8012	0
32	-5.98	6.00	3.8012	0
33	-5.2925	3.25	3.6012	0
34	-5.2925	0.00	3.6012	0
35	-0.9625	3.25	3.6012	0
36	-0.9625	0.00	3.6012	0
37	5.2925	0.00	3.6012	0
38	5.2925	3.25	3.6012	0
39	0.9625	0.00	3.6012	0
40	0.9625	3.25	3.6012	0
41	-5.2925	2.25	3.6012	0
42	-5.2925	2.25	-1.5446	0
43	5.2925	2.25	3.6012	0
44	5.2925	2.25	-1.5446	0

Restraints

Node	TX	TY	TZ	RX	RY	RZ
1	1	1	1	1	1	1
2	1	1	1	1	1	1
42	1	1	1	0	0	0
44	1	1	1	0	0	0

Members

Member	NJ	NK	Description	Section	Material	$\begin{gathered} \text { do } \\ \text { [in] } \end{gathered}$	$\begin{gathered} \mathbf{d L} \\ {[\mathrm{in}]} \end{gathered}$	Ig factor
1	2	10		T2L 3X3X1_4	A36	0.00	0.00	0.00
2	1	9		T2L 3X3X1_4	A36	0.00	0.00	0.00
3	8	10		PL $11 \times 3 / 16$	A36	0.00	0.00	0.00
4	7	9		PL 11x3/16	A36	0.00	0.00	0.00
5	4	3		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
6	6	5		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
7	5	4		RndBar 3_4	A36	0.00	0.00	0.00
8	12	10		T2L 3X3X3_16	A36	0.00	0.00	0.00
9	10	14		T2L 3X3X3_16	A36	0.00	0.00	0.00
11	11	9		T2L 3X3X3_16	A36	0.00	0.00	0.00
12	9	13		T2L 3X3X3_16	A36	0.00	0.00	0.00
13	30	27		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
14	31	28		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
15	32	29		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
16	37	38		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00

17	39	40	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
18	35	36	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
19	33	34	PIPE 2×0.154	A53 GrB	0.00	0.00	0.00
20	41	42	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
21	20	24	RndBar 1-1_2	A36	0.00	0.00	0.00
22	19	23	RndBar 1-1_2	A36	0.00	0.00	0.00
23	18	22	RndBar 1-1_2	A36	0.00	0.00	0.00
24	17	21	RndBar 1-1_2	A36	0.00	0.00	0.00
25	16	26	RndBar 1-1_2	A36	0.00	0.00	0.00
26	15	25	RndBar 1-1_2	A36	0.00	0.00	0.00
27	43	44	PIPE 2x0. 154	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ
3	90.00	0	0.00	0.00	0.00
4	90.00	0	0.00	0.00	0.00
8	270.00	0	0.00	0.00	0.00
9	270.00	0	0.00	0.00	0.00
13	315.00	0	0.00	0.00	0.00
14	315.00	0	0.00	0.00	0.00
15	315.00	0	0.00	0.00	0.00

Rigid end offsets

Member	$\begin{gathered} \text { DJXX } \\ \text { [in] } \end{gathered}$	DJY [in]	$\begin{gathered} \text { DJZ } \\ {[\mathrm{in}]} \end{gathered}$	$\begin{gathered} \text { DKX } \\ {[\mathrm{in}]} \end{gathered}$	$\begin{array}{r} \text { DKY } \\ {[\mathrm{in}]} \end{array}$	$\begin{array}{r} \text { DKZ } \\ {[\mathrm{in}]} \end{array}$
1	0.00	-0.25	0.00	0.00	-0.25	0.00
2	0.00	-0.25	0.00	0.00	-0.25	0.00
3	0.00	0.75	0.00	0.00	0.75	0.00
4	0.00	0.75	0.00	0.00	0.75	0.00
5	0.50	0.00	0.00	0.50	0.00	0.00
6	0.50	0.00	0.00	0.50	0.00	0.00
7	0.50	0.00	0.00	0.50	0.00	0.00
8	0.00	1.00	0.00	0.00	1.00	0.00
9	0.00	1.00	0.00	0.00	1.00	0.00
11	0.00	0.25	0.00	0.00	0.25	0.00
12	0.00	0.25	0.00	0.00	0.25	0.00
16	0.00	1.00	-0.50	0.00	1.00	-0.50
17	0.00	1.00	-0.50	0.00	1.00	-0.50
18	0.00	1.00	-0.50	0.00	1.00	-0.50
19	0.00	1.00	-0.50	0.00	1.00	-0.50
20	2.00	0.00	0.00	2.00	0.00	0.00
27	2.00	0.00	0.00	2.00	0.00	0.00

STRUCTURAL ANALYSIS REPORT

For

CT1264
FRANKLIN CT TYLER DRIVE
5 TYLER DRIVE
NORTH FRANKLIN, CT 06254

Antennas Mounted to the Tower

Prepared for:

Dated: May 15, 2019

Prepared by:

45 Beechwood Drive
North Andover, MA 01845
(P) 978.557.5553 (F) 978.336.5586

SCOPE OF WORK:

Hudson Design Group $\amalg C$ (HDG) has been a uthorized by AT\&T to conduct a structural evaluation of the 180 self supporting tower supporting the proposed AT\&T antennas located at elevation 169' above the ground level.

This report represents this office's findings, conclusions a nd recommendations perta ining to the support of AT\&T sexisting and proposed antennas listed below.

Record drawings of the existing tower prepared by Valmont Industries, Inc., dated February 4, 2010, were available and obtained for our use. This office conducted an onsite visual survey and tower mapping on August 23, 2012 to record dimensional properties of the existing tower a nd its a ppurtena nces.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower and foundation are in conformance with the ANSI/TIA-222-G Standard for the loading considered under the criteria listed in this report. The tower structure is rated at 69.8% - (Leq at Tower Section T2 from EL. 150' to EL.170' Controlling).

APPURIENANCES CONFGURATION:

Tenant	Appurtenances	Elev.	Mount
	Lightning Rod	182^{\prime}	Side Mount Sta nd off
	20^{\prime} Omni	187^{\prime}	Side Mount Sta nd off
	20^{\prime} Omni	186.5^{\prime}	Side Mount Sta nd off
	8' Dipole $^{\prime}$ (3) Powerwa ve 7750 Antennas	163^{\prime}	Side Mount Sta nd off
AT\&T	T- Frame		
AT\&T	(3) T108-19DB111-001	169^{\prime}	T- Frame
AT\&T	(2) 800 10965 Antennas	169^{\prime}	T- Frame
AT\&T	(1) 800 10966 Antenna	169^{\prime}	T- Frame
AT\&T	(2) HPA-65R-BU6AA Antennas	169^{\prime}	T- Frame
AT\&T	(1) HPA-65R-BU8AA Antenna	169^{\prime}	T- Frame
AT\&T	(3) B5/B12 4449	169^{\prime}	T- Frame
AT\&T	(3) B2/B66A 8843	169^{\prime}	T- Frame
AT\&T	(1) DC6-48-60-18-8F	169^{\prime}	Tower Leg
AT\&T	(1) DC6-48-60-18-8C	169^{\prime}	Tower Leg
	20' Omni	100.5^{\prime}	Side Mount Sta ndoff

*Proposed AT\&TAppurtenances shown in Bold.

AT\&TEXISTING/ PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
AT\&T	(6) $15 / 8^{\prime \prime}$ Cables	169^{\prime}	Tower Leg
AT\&T	(1) Fiber Cable	169^{\prime}	Tower Leg
AT\&T	(2) DC Power Cables	169^{\prime}	Tower Leg
AT\&T	(1) FiberCable	169^{\prime}	Tower Leg
AT\&T	(2) DC Power Cables	169^{\prime}	Tower Leg

*Proposed AT\&TCoax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	$\mathbf{6 9 . 8} \%$	$150-170$	PASS	Controlling
Diagonals	64.1%	$150-170$	PASS	
Top Girt	21.6%	$150-170$	PASS	
Bottom Girt	10.2%	$150-170$	PASS	

FOUNDATION ANALYSIS RESULTS SUMMARY:

	Original Design Reactions	Proposed Reactions	Pass/ Fail	Comments
COMPRESSION/ Leg	572.0 k	$\mathbf{3 0 7 . 1 \mathbf { k }}$	PASS	
UPUFI/Leg	526.0 k	$\mathbf{2 7 1 . 5} \mathbf{~ k}$	PASS	
SHEAR	95.0 k	$\mathbf{5 0 . 3} \mathbf{k}$	PASS	

DESIGN CRIERIA:

1. EIA/TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures
2. 2018 Connectic ut State Build ing Code

City/Town: Franklin
County: New London
Wind Load: 120 mph
Structural Class: II
Exposure Category: C
Topographic Category: 1
Ice Thickness: 0.75 inch
3. Approximate height above grade to proposed antennas: 169'

ASSUMPIIONS:

1. The appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
2. The tower and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
3. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
4. All prior structural modification, if any, are assumed to be as per the data supplied (if available), a nd installed properly.

SUPPORTRECOMMENDATIONS:

HDG recommends that the proposed antennas and RRHs be mounted on the existing T frame supported by the tower, the proposed surge arrestor be mounted on the tower leg.

Reference HDG's Latest Construction Drawings for all component and connection requirements.

Photo 1: Photo illustrating the Tower with Appurtenances shown.

CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Omni 3"x20'	187	DC6-48-60-18-8F	169
Omni 3"x20'	186.5	80010965 w/ Mount Pipe (ATI -	169
8' Dipole	183	Proposed)	
Lightning Rod	182	800 10965 w/ Mount Pipe	169
1' Side Mount Standoff	179.6	800 10966 w/ Mount Pipe	169
3' Side Mount Standoff	177	HPA-65R-BU6AA w/mount pipe	169
3' Side Mount Standoff	177	HPA-65R-BU6AA w/mount pipe	169
3' Side Mount Standoff	177	HPA-65R-BU8AA w/mount pipe	169
PiROD 12' T-Frame (ATI - Existing)	169	B5/B12 4449	169
PiROD 12' T-Frame	B5/B12 4449	169	
PiROD 12' T-Frame	B5/B12 4449	169	
Powerwave 7750 w/mount pipe	169	B2/B66A 8843	169
Powerwave 7750 w/mount pipe	169	B2/B66A 8843	169
Powerwave 7750 w/mount pipe	169	B2/B66A 8843	169
Powerwave TT08-19DB111-001	169	DC6-48-60-18-8C	169
Powerwave TT08-19DB111-001	169	Omni 3"x20'	100.5
Powerwave TT08-19DB111-001	169	$3 '$ Side Mount Standoff	89

MARK	SYMBOL LIST				
A	Pirod 105245		SARE	B	L2 $1 / 2 \times 21 / 2 \times 3 / 16$

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in New London County, Connecticut.
2. Tower designed for Exposure C to the TIA-222-G Standard.
3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 69.8\%

ALL REACTIONS

ARE FACTORED
MAX. CORNER REACTIONS AT BASE:
DOWN: 307130 lb
SHEAR: 32207 lb

UPLIFT: -271458 Ib
SHEAR: 28700 lb

TORQUE 14237 lb-ft
50 mph WIND - 0.7500 in ICE

TORQUE 44026 lb-ft REACTIONS - 120 mph WIND

Hudson Design Group LLC	${ }^{\text {ob: }}$ CT1264 North Franklin, CT		
	Project: 180 ft Self Supporting Tower		
do	Client: AT\&T	Drawn by: kw	App'd:
Phone: (978) 557-5553	Code: TIA-222-G	Date: 05/15/19	Scale: NTS
FAX: (978) 336-5586			

tnxTower	Job	CT1264	North Franklin, CT	$\text { Page } 1 \text { of } 8$
Hudson Design Group LLC 45 Beechwood Drive	Project	180 ft S	S Supporting Tower	$\begin{aligned} & \text { Date } \\ & \text { 08:46:20 05/15/19 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 180.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 5.00 ft at the top and 20.00 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New London County, Connecticut.
Basic wind speed of 120 mph .
Structure Class II.
Exposure Category C.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	$f t$			$f t$		$f t$
T1	180.00-170.00			5.00	1	10.00
T2	170.00-150.00			5.00	1	20.00
T3	150.00-140.00			5.00	1	10.00
T4	140.00-120.00			6.00	1	20.00
T5	120.00-100.00			8.00	1	20.00
T6	100.00-80.00			10.00	1	20.00
T7	80.00-60.00			12.00	1	20.00
T8	60.00-40.00			14.00	1	20.00
T9	40.00-20.00			16.00	1	20.00
T10	20.00-0.00			18.00	1	20.00

Tower Section Geometry (cont'd)

tnxTower Hudson Design Group LLC 45 Beechwood Drive	Job	CT1264	North Franklin, CT	$\text { Page } 2 \text { of } 8$
	180 ft Self Supporting Tower			$\begin{aligned} & \text { Date } \\ & \text { 08:46:20 05/15/19 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft				Panels	
in		No	No	0.0000			
T3	$150.00-140.00$	10.00	X Brace	No	No	0.0000	0.000
T4	$140.00-120.00$	10.00	X Brace	No	0.0000	0.0000	
T5	$120.00-100.00$	10.00	X Brace	No	No		
T6	$100.00-80.00$	10.00	X Brace	No	No	0.0000	0.0000
T7	$80.00-60.00$	20.00	X Brace	No	No	0.0000	0.0000
T8	$60.00-40.00$	20.00	X Brace	No	No	0.0000	0.0000
T9	$40.00-20.00$	20.00	X Brace	No	No	0.0000	0.0000
T10	$20.00-0.00$	20.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Type	Leg Size	Leg Grade	Diagonal Type	$\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$	Diagonal Grade
T1 180.00-170.00	Solid Round	$13 / 4$	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Solid Round	7/8	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T2 170.00-150.00	Solid Round	$13 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	7/8	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T3 150.00-140.00	Truss Leg	Pirod 105245	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2 1/2x2 1/2x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T4 140.00-120.00	Truss Leg	Pirod 105217	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L3x3x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T5 120.00-100.00	Truss Leg	Pirod 105218	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L3x3x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T6 100.00-80.00	Truss Leg	Pirod 105218	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L3x3x5/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T7 80.00-60.00	Truss Leg	Pirod 105219	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Equal Angle	2L3 1/2x3 1/2x1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 60.00-40.00	Truss Leg	Pirod 105220 (CT1264)	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Equal Angle	2L3 1/2x3 1/2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T9 40.00-20.00	Truss Leg	Pirod 105221 (CT1264)	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Double Equal Angle	2L3 1/2x3 1/2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T10 20.00-0.00	Truss Leg	Pirod 105221 (CT1264)	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	Double Equal Angle	2L3 1/2x3 1/2x1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 180.00-170.00	Solid Round	7/8	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	7/8	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T2 170.00-150.00	Solid Round	7/8	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Solid Round	7/8	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T3 150.00-140.00	Equal Angle	L3x3x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Pipe		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

tnxTower	Job	CT1264	North Franklin, CT	$\text { Page } 3 \text { of } 8$
Hudson Design Group LLC 45 Beechwood Drive	Project	180 ft S	f Supporting Tower	$\begin{aligned} & \text { Date } \\ & \text { 08:46:20 05/15/19 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#		Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
7/8	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 177.00- \\ 6.00 \end{gathered}$	-3.0000	0.35	3	3	0.0000	1.1100		0.54
$\underset{* * * * * * * * * * *}{7 / 8}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	89.00-6.00	-3.0000	0.38	1	1	0.0000	1.1100		0.54
$\begin{gathered} 15 / 8 \\ \text { (AT\&T - } \\ \text { existing) } \end{gathered}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 169.00- \\ 6.00 \end{gathered}$	-3.0000	0.43	6	3	0.0000	1.9800		1.04
FB-L98B-002	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 169.00- \\ 6.00 \end{gathered}$	-3.0000	0.46	1	1	0.0000	0.4000		0.25
WR-VG122S T-BRDA **********	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 169.00- \\ 6.00 \end{gathered}$	-3.0000	0.47	2	1	0.0000	0.4000		0.25
$\begin{gathered} \text { FB-L98B-002 } \\ \text { (AT\&T - } \\ \text { proposed) } \end{gathered}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 169.00- \\ 6.00 \end{gathered}$	-5.0000	0.46	1	1	0.0000	0.4000		0.25
$\begin{gathered} \text { WR-VG122S } \\ \text { T-BRDA } \end{gathered}$	A	No	No	$\mathrm{Ar}(\mathrm{CaAa})$	$\begin{gathered} 169.00- \\ 6.00 \end{gathered}$	-5.0000	0.47	2	2	0.0000	0.4000		0.25

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{Lightning Rod} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{182.00} \& No Ice \& 0.75 \& 0.75 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.25 \& 1.25 \& 40.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.75 \& 1.75 \& 70.00

\hline \multirow[t]{3}{*}{1' Side Mount Standoff} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{179.60} \& No Ice \& 1.00 \& 1.00 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.50 \& 1.50 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.00 \& 2.00 \& 70.00

\hline \multirow[t]{3}{*}{3' Side Mount Standoff} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{177.00} \& No Ice \& 1.50 \& 1.50 \& 45.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.20 \& 2.20 \& 70.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.90 \& 2.90 \& 95.00

\hline \multirow[t]{3}{*}{3' Side Mount Standoff} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{177.00} \& No Ice \& 1.50 \& 1.50 \& 45.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.20 \& 2.20 \& 70.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.90 \& 2.90 \& 95.00

\hline \multirow[t]{3}{*}{3' Side Mount Standoff} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{177.00} \& No Ice \& 1.50 \& 1.50 \& 45.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.20 \& 2.20 \& 70.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.90 \& 2.90 \& 95.00

\hline \multirow[t]{3}{*}{8' Dipole} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{183.00} \& No Ice \& 2.14 \& 2.14 \& 25.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.19 \& 3.19 \& 42.51

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.67 \& 3.67 \& 65.37

\hline \multirow[t]{3}{*}{Omni 3"x20'} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& No Ice \& 5.33 \& 5.33 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.03 \& 8.03 \& 93.17

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 10.08 \& 10.08 \& 149.01

\hline \multirow[t]{3}{*}{Omni 3"x20'} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{187.00} \& No Ice \& 5.33 \& 5.33 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.03 \& 8.03 \& 93.17

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 10.08 \& 10.08 \& 149.01

\hline ********** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{PiROD 12' T-Frame (AT\&T - Existing)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 23.00 \& 23.00 \& 620.00

\hline PiROD 12' T-Frame \& B \& From Leg \& 2.50 \& 0.0000 \& 169.00 \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline
\end{tabular}

tnxTower Hudson Design Group LLC 45 Beechwood Drive	Job	CT1264	North Franklin, CT	Page 4 of 8
	180 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ 08: 46: 20 ~ 05 / 15 / 19 \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow{5}{*}{PiROD 12' T-Frame} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{169.00} \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.00 \& 23.00 \& 620.00

\hline \& \& \& 2.50 \& \& \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.00 \& 23.00 \& 620.00

\hline \multirow[t]{3}{*}{Powerwave 7750 w/mount pipe} \& \& \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 5.88 \& 4.33 \& 60.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.36 \& 5.18 \& 109.42

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.81 \& 5.90 \& 164.44

\hline \multirow[t]{3}{*}{Powerwave 7750 w/mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 5.88 \& 4.33 \& 60.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.36 \& 5.18 \& 109.42

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.81 \& 5.90 \& 164.44

\hline \multirow[t]{3}{*}{Powerwave $7750 \mathrm{w} / \mathrm{mount}$ pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 5.88 \& 4.33 \& 60.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.36 \& 5.18 \& 109.42

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.81 \& 5.90 \& 164.44

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { Powerwave } \\
\text { TT08-19DB111-001 }
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 0.79 \& 0.64 \& 22.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.91 \& 0.75 \& 29.63

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.04 \& 0.87 \& 39.15

\hline \multirow[t]{3}{*}{Powerwave TT08-19DB111-001} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 0.79 \& 0.64 \& 22.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.91 \& 0.75 \& 29.63

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.04 \& 0.87 \& 39.15

\hline \multirow[t]{3}{*}{Powerwave TT08-19DB111-001} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 0.79 \& 0.64 \& 22.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.91 \& 0.75 \& 29.63

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.04 \& 0.87 \& 39.15

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 1.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{169.00} \& No Ice \& 0.79 \& 0.79 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.27 \& 1.27 \& 35.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.45 \& 1.45 \& 52.57

\hline *********** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{80010965 w/ Mount Pipe (AT\&T - Proposed)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 13.92 \& 7.50 \& 134.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 14.50 \& 8.71 \& 229.58

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 15.07 \& 9.65 \& 333.52

\hline \multirow[t]{3}{*}{80010965 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 13.92 \& 7.50 \& 134.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 14.50 \& 8.71 \& 229.58

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 15.07 \& 9.65 \& 333.52

\hline \multirow[t]{3}{*}{80010966 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 17.60 \& 9.64 \& 158.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.33 \& 11.15 \& 274.43

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 19.07 \& 12.70 \& 400.76

\hline \multirow[t]{3}{*}{HPA-65R-BU6AA w/mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 8.11 \& 7.27 \& 72.45

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.67 \& 8.45 \& 141.53

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.19 \& 9.34 \& 218.55

\hline \multirow[t]{3}{*}{HPA-65R-BU6AA w/mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 8.11 \& 7.27 \& 72.45

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.67 \& 8.45 \& 141.53

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 9.19 \& 9.34 \& 218.55

\hline \multirow[t]{3}{*}{HPA-65R-BU8AA w/mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 11.50 \& 10.54 \& 111.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.24 \& 12.24 \& 206.10

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 12.94 \& 13.58 \& 312.19

\hline \multirow[t]{3}{*}{B5/B12 4449} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 1.97 \& 1.40 \& 71.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.15 \& 1.56 \& 89.48

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.33 \& 1.72 \& 110.77

\hline \multirow[t]{3}{*}{B5/B12 4449} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 1.97 \& 1.40 \& 71.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.15 \& 1.56 \& 89.48

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.33 \& 1.72 \& 110.77

\hline \multirow[t]{3}{*}{B5/B12 4449} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 1.97 \& 1.40 \& 71.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.15 \& 1.56 \& 89.48

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.33 \& 1.72 \& 110.77

\hline \multirow[t]{3}{*}{B2/B66A 8843} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{169.00} \& No Ice \& 1.65 \& 0.93 \& 40.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.81 \& 1.05 \& 54.37

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 1.98 \& 1.19 \& 71.23

\hline
\end{tabular}

tnxTower	Job	CT1264	North Franklin, CT	$\begin{aligned} & \text { Page } 5 \text { of } 8 \end{aligned}$
Hudson Design Group LLC 45 Beechwood Drive	Project	180 ft Self Supporting Tower		Date 08:46:20 05/15/19
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
B2/B66A 8843	B	From Leg	3.50	0.0000	169.00	No Ice	1.65	0.93	40.00
			0.00			1/2" Ice	1.81	1.05	54.37
			0.00			$1^{\prime \prime}$ Ice	1.98	1.19	71.23
B2/B66A 8843	C	From Leg	3.50	0.0000	169.00	No Ice	1.65	0.93	40.00
			0.00			1/2" Ice	1.81	1.05	54.37
			0.00			$1{ }^{\prime \prime}$ Ice	1.98	1.19	71.23
DC6-48-60-18-8C	A	From Leg	1.00	0.0000	169.00	No Ice	0.79	0.79	20.00
			0.00			1/2" Ice	1.27	1.27	35.12
			0.00			$1{ }^{\prime \prime}$ Ice	1.45	1.45	52.57

3' Side Mount Standoff	C	From Leg	1.50	0.0000	89.00	No Ice	1.50	1.50	45.00
			0.00			1/2" Ice	2.20	2.20	70.00
			0.00			$1^{\prime \prime}$ Ice	2.90	2.90	95.00
Omni 3"x20'	C	From Leg	3.00	0.0000	100.50	No Ice	5.69	5.69	50.00
			0.00			1/2" Ice	8.03	8.03	93.17
			0.00			$1^{\prime \prime}$ Ice	10.08	10.08	149.01

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z lb
Leg C	Max. Vert	18	294835.44	26214.45	-16244.79
	Max. H_{x}	18	294835.44	26214.45	-16244.79
	Max. H_{z}	7	-258908.33	-23163.82	14486.56
	Min. Vert	7	-258908.33	-23163.82	14486.56
	Min. H_{x}	7	-258908.33	-23163.82	14486.56
	Min. H_{z}	18	294835.44	26214.45	-16244.79
	Max. Vert	10	307130.17	-27361.41	-16989.07
	Max. H_{x}	23	-271457.60	24318.65	15242.03
	Max. H_{z}	23	-271457.60	24318.65	15242.03
	Min. Vert	23	-271457.60	24318.65	15242.03
	Min. H_{x}	10	307130.17	-27361.41	-16989.07
	Min. H_{z}	10	307130.17	-27361.41	-16989.07
	Leg Aax. Vert	2	295611.28	-192.72	30840.99
	Max. H_{x}	21	11163.83	3561.07	742.99
	Max. H_{z}	2	295611.28	-192.72	30840.99
	Min. Vert	15	-258327.01	194.19	-27291.62
	Min. H_{x}	8	14883.75	-3563.72	1042.81
	Min. H_{z}	15	-258327.01	194.19	-27291.62

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $l b$	Shear $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	35774.65	0.00	0.00	-8165.99	1244.57	-0.00
1.2 Dead+1.6 Wind 0 deg - No	42929.57	-0.00	-48019.94	-4872283.49	1521.44	-6708.39

tnxTower	Job	CT1264	North Franklin, CT	Page 6 of 8
Hudson Design Group LLC 45 Beechwood Drive	180 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 08:46:20 05/15/19 } \end{array}$
$\begin{gathered} \text { North Andover, MA } 01845 \\ \text { Phone: (978) 557-5553 } \\ \text { FAX: (978) 336-5586 } \end{gathered}$	Client		AT\&T	Designed by kw

Load Combination	Vertical lb	Shear $_{x}$ $l b$	Shear $_{z}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
0.9 Dead+1.6 Wind 0 deg - No	32197.18	-0.00	-48019.94	-4866405.72	1145.92	-6705.63
Ice						
1.2 Dead+1.6 Wind 30 deg - No	42929.57	22493.26	-38959.47	-4004501.81	-2304791.50	-20036.46
Ice 0.9 Dead+1.6 Wind 30 deg - No	32197.18	22493.26	-38959.47	-3999202.07	-2303523.80	-20029.06
Ice						
1.2 Dead+1.6 Wind 60 deg - No	42929.57	39355.84	-22722.10	-2345355.40	-4043610.14	-33317.08
Ice						
0.9 Dead+1.6 Wind 60 deg - No	32197.18	39355.83	-22722.10	-2341230.70	-4041104.33	-33306.61
Ice						
1.2 Dead+1.6 Wind 90 deg - No	42929.57	48003.91	-0.00	-9940.09	-4902106.49	-44025.98
Ice						
0.9 Dead+1.6 Wind 90 deg - No	32197.18	48003.91	-0.00	-7475.11	-4899016.48	-44014.82
Ice						
1.2 Dead+1.6 Wind 120 deg -	42929.57	43529.09	25131.53	2529114.23	-4396221.45	-35878.03
No Ice						
0.9 Dead+1.6 Wind 120 deg -	32197.18	43529.09	25131.53	2529797.46	-4393520.17	-35869.72
No Ice						
1.2 Dead+1.6 Wind 150 deg -	42929.57	24001.95	41572.61	4236823.34	-2450309.72	-15556.75
No Ice						
0.9 Dead+1.6 Wind 150 deg -	32197.18	24001.95	41572.61	4236278.95	-2448956.89	-15553.80
No Ice						
1.2 Dead+1.6 Wind 180 deg -	42929.57	0.00	45444.20	4661114.01	1524.18	6708.13
No Ice						
0.9 Dead+1.6 Wind 180 deg -	32197.18	0.00	45444.20	4660245.56	1147.84	6705.38
No Ice						
1.2 Dead+1.6 Wind 210 deg -	42929.57	-22493.26	38959.47	3984825.04	2307845.21	20036.59
No Ice						
0.9 Dead+1.6 Wind 210 deg -	32197.18	-22493.26	38959.47	3984441.55	2305832.51	20029.15
No Ice						
1.2 Dead+1.6 Wind 240 deg -	42929.57	-41586.49	24009.97	2421343.75	4212548.23	33318.41
No Ice						
0.9 Dead+1.6 Wind 240 deg -	32197.18	-41586.49	24009.97	2422094.78	4209213.36	33307.65
No Ice						
1.2 Dead+1.6 Wind 270 deg -	42929.57	-48003.91	-0.00	-9936.94	4905105.04	44026.01
No Ice						
0.9 Dead+1.6 Wind 270 deg -	32197.18	-48003.91	-0.00	-7472.75	4901263.15	44014.85
No Ice						
1.2 Dead+1.6 Wind 300 deg -	42929.57	-41298.43	-23843.66	-2453131.16	4233281.26	35877.00
No Ice						
0.9 Dead+1.6 Wind 300 deg -	32197.18	-41298.43	-23843.66	-2448938.36	4229904.65	35868.89
No Ice						
1.2 Dead+1.6 Wind 330 deg -	42929.57	-24001.96	-41572.61	-4256476.76	2453293.35	15556.56
No Ice						
0.9 Dead+1.6 Wind 330 deg -	32197.18	-24001.96	-41572.61	-4251016.61	2451180.95	15553.66
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	100186.93	0.00	0.00	-50873.41	5295.93	-0.22
1.2 Dead+1.0 Wind 0 deg+1.0	100186.93	-0.00	-11136.43	-1209251.01	5325.48	-1319.19
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$	100186.93	5431.98	-9408.46	-1034697.77	-562445.13	-7420.75
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	100186.93	9457.44	-5460.26	-622292.44	-984124.05	-12054.67
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	100186.93	11195.57	-0.00	-50961.18	-1162638.47	-14236.65
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	100186.93	9931.63	5734.03	544124.48	-1025606.40	-12079.52
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	100186.93	5597.79	9695.65	960363.75	-578755.41	-5910.42
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	100186.93	0.00	10920.51	1091490.37	5323.89	1318.85
deg+1.0 Ice+1.0 Temp						

tnxTower	Job	CT1264	North Franklin, CT	$\text { Page } 7 \text { of } 8$
Hudson Design Group LLC 45 Beechwood Drive	180 ft Self Supporting Tower		f Supporting Tower	$\begin{array}{\|l} \text { Date } \\ \text { 08:46:20 05/15/19 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	100186.93	-5431.98	9408.46	932513.58	573326.83	7420.69
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	100186.93	-9644.43	5568.22	528051.37	1008404.84	12057.46
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	100186.93	-11195.57	-0.00	-50958.14	1173280.49	14236.66
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	100186.93	-9744.63	-5626.07	-638370.03	1022618.62	12076.79
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	100186.93	-5597.79	-9695.65	-1062540.56	589169.21	5910.48
Dead+Wind 0 deg - Service	35774.65	0.00	-7503.12	-767626.10	1249.32	-1047.70
Dead+Wind 30 deg - Service	35774.65	3514.57	-6087.42	-632093.12	-358969.99	-3132.36
Dead+Wind 60 deg - Service	35774.65	6149.35	-3550.33	-372945.21	-630459.78	-5203.85
Dead+Wind 90 deg - Service	35774.65	7500.61	0.00	-8197.77	-764627.49	-6874.89
Dead+Wind 120 deg - Service	35774.65	6801.42	3926.80	388369.74	-685610.49	-5605.77
Dead+Wind 150 deg - Service	35774.65	3750.31	6495.72	655094.65	-381687.53	-2433.44
Dead+Wind 180 deg - Service	35774.65	-0.00	7100.66	721221.34	1250.34	1048.11
Dead+Wind 210 deg - Service	35774.65	-3514.57	6087.42	615729.95	361461.17	3132.36
Dead+Wind 240 deg - Service	35774.65	-6497.89	3751.56	371535.72	658946.75	5205.00
Dead+Wind 270 deg - Service	35774.65	-7500.61	0.00	-8197.52	767125.23	6874.88
Dead+Wind 300 deg - Service	35774.65	-6452.88	-3725.57	-389779.24	662109.69	5603.95
Dead+Wind 330 deg - Service	35774.65	-3750.31	-6495.72	-671417.85	384161.23	2434.37

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance | | $\begin{array}{c}\text { Gov. } \\ \text { Load }\end{array}$ | Deflection | Tilt | Twist |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Radius of

Curvature\end{array}\right]\)| | | |
| :---: | :---: | :---: |
| $f t$ | | Comb. |

tnxTower	Job	CT1264	North Franklin, CT	$\text { Page } 8 \text { of } 8$
Hudson Design Group LLC 45 Beechwood Drive	Project	180 ft S	S Supporting Tower	$\begin{aligned} & \text { Date } \\ & \text { 08:46:20 05/15/19 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		AT\&T	Designed by kw

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \phi P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T1	180-170	Leg	$13 / 4$	2	-4295.61	79364.40	5.4	Pass
T2	170-150	Leg	$13 / 4$	35	-54516.70	78062.10	69.8	Pass
T3	150-140	Leg	Pirod 105245	93	-63618.90	214859.00	31.8	Pass
T4	140-120	Leg	Pirod 105217	104	-101015.00	214859.00	47.0	Pass
T5	120-100	Leg	Pirod 105218	119	-134415.00	300681.00	44.7	Pass
T6	100-80	Leg	Pirod 105218	134	-168786.00	300681.00	56.1	Pass
T7	80-60	Leg	Pirod 105219	149	-189372.00	356293.00	53.2	Pass
T8	60-40	Leg	Pirod 105220 (CT1264)	158	-225569.00	451148.00	50.0	Pass
T9	40-20	Leg	Pirod 105221 (CT1264)	167	-258981.00	557267.00	46.5	Pass
T10	20-0	Leg	Pirod 105221 (CT1264)	176	-289016.00	557267.00	51.9	Pass
T1	180-170	Diagonal	7/8	16	-816.88	7719.11	10.6	Pass
T2	170-150	Diagonal	$7 / 8$	48	-4899.76	7644.08	64.1	Pass
T3	150-140	Diagonal	L2 $1 / 2 \times 21 / 2 \times 3 / 16$	101	-6062.02	12697.80	47.7	Pass
T4	140-120	Diagonal	L3x3x3/16	108	-6025.61	16781.00	35.9	Pass
T5	120-100	Diagonal	L3x3x3/16	123	-6178.77	14143.40	43.7	Pass
T6	100-80	Diagonal	L3 $3 \times 5 \times 16$	139	-6977.37	18229.00	38.3	Pass
T7	80-60	Diagonal	2L3 1/2x3 1/2x1/4	153	-12507.10	44155.80	28.3	Pass
T8	60-40	Diagonal	2L3 1/2x3 1/2x1/4	162	-11921.20	40295.10	29.6	Pass
T9	40-20	Diagonal	2L3 1/2x3 1/2x1/4	171	-11565.30	36555.10	31.6	Pass
T10	20-0	Diagonal	2L3 1/2x3 1/2x1/4	180	-14268.40	33098.70	43.1	Pass
T1	180-170	Top Girt	7/8	4	-209.05	3909.80	5.3	Pass
T2	170-150	Top Girt	$7 / 8$	39	-844.39	3909.80	21.6	Pass
T3	150-140	Top Girt	L3x3x3/16	94	-141.46	18672.90	0.8	Pass
T1	180-170	Bottom Girt	7/8	9	-38.71	3909.80	1.0	Pass
T2	170-150	Bottom Girt	7/8	42	-398.74	3909.80	10.2	Pass
						Summary		
						Leg (T2)	69.8	Pass
						Diagonal (T2)	64.1	Pass
						Top Girt (T2)	21.6	Pass
						Bottom Girt (T2)	10.2	Pass
						RATING =	69.8	Pass

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REYIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIIHTNING PROTECTION SSSEM (AA DESCNED AND NSTALLED) FOR STRRCT
COMPLANCE WITH THE NEC (AS ADOPTED BY THE AHD), THE STTE-SPECIFIC (LLL, LPI, OR
 FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
2. ALL GROUND ELECTRODE SYYTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNNG PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE,
BY TWO OR MORE COPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH
TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE AR
SUBCONTRACTOR SHALL FUNNSH ANO NSTALL SUPDLEMENTAL GROUND ELECTRODES AS SUBCONTRACTOR SHALL FURNSH AND INSTALL SUPPLEMENTAL
NEEDED TO ACHEVE A TEST RESLT OF 5 OHMS OR LESS.
4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUPMENT GROUND
CONDUCTOR. STRANDED COPPER CONDUCTORS WTH GREEN INSULATION, SIZED IN ACCORDANCE WTH THE NEC, SHALL BE FURNSHED AND INSTALLED WTHH THE POWER
5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO TTE MASTER GROUND BAR WITH GREE INSULATED SUPPLEMENTAL EQUPMENT GROUND WIRES, 6 AWG STRANDED
COPPER OR LARGER FOR INDOOR BTS 2 AWG STRANDED COPPER FOR OUTOOOR BTS.
6. Exothermic weld shall be used for all grounding connections below grade.
7. APPROVED ANTIOXIDANT COATNGS (IEE., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL
COMPRESSION AND BOLTED GROUND CONNECTIONS.
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED To
GROUND BAR.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR
GROUNOING CONNECTIONS.
10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS
SHALL BE BONDED TO THE GROUND RNG, IN ACCORDANCE WTH THE NEC. 1. METAL CONDUT SHALL BE MADE ELECTRICALYY CONTINOUS WTH LISTED BONDING FITINGS
OR BY BONING ACROSS TE TISCONTNITY WITH 6 AWS COPPER WIRE \cup UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
12. ALL New STructures with a foundation and/or footing having 20 TT. or more of
$1 / 2$ IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORING STEL MUST HAVE IT BONDED

GENERAL NOTES

For the purpose of construction drawing, the following defintions shall apply CONTRACTRR - CENTERLINE
SUBCOTTACTTOR - GENERAL CONTRACTOR (CONSTRUCTION)
OWNER - AT\&T MOBLITT OWNER - ATET MOBLLTY
 BE ACCOAPLISED AS SHOWN ON THE CONSTRUCTION AND TO CONFIRM THAT THE WORK CAN
SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPROPIATE NOTICES AND COMMLY WTH ALL LAWS, ORDINANCES, RULES, REGULATONS, AND
AWFUL ORDERS OF ANY PUBLC AUTHORIH REGARDING THE PERFORMANC AWFUL ORDERS OF ANY PUELC AUHHORIV REGARDING THE PERRORMANCE OF THE WORK.
ALL WORK CARRIED OUT SHAL COMPLY WTTH ALL APPLCABLE MUNIIPAL AND UTILTT ALL WORK CARRED OUT SHALL COMPLL WITH ALL APPLLCABLL MUNICIPAL AND UTILITY
COMPANY SPC
REGULATIONS.
4. drawings provided here are not to be scaled and are intended to show outline

6. "KITTTNG LIST" SUPPLLED WITH THE BID PACKAGE IDENTIEES ITEMS THAT WLLL BE SUPPLIED BY
COTRCOTOR ITEMS NOT NCCUDD IN
SUPLLED BY THE SUBCONTRACTOR.

THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH
MANUFACTURER'S RECOMMENDATONS UNLESS SPECIFICALLY STATED OTHERWISE.
8. IF THE SPECIFIED EQUPMENT CANNOT BE INSTALED AS SHOWN ON THESE DRAWNGS, THE
SUBCONRCTOR SHALL PROPOSE AN ALTERNATVE INSTALLATON SPACE FOR APPROVALL BY THE CONTRACTOR
9. SUBCONTRACTOR SHALL DETERM INE ACTUAL ROUTING OF CONDUTT, POWER AND T1 CABLES,
GROUNOING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS
NECESARRY. SUBCONTRACTOR SHALL CONFRM THE ACTUAL ROUTING WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS,
LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPARED AT ANDSCATING AND STTUCCURES. ANY DAMAGE PART SHALL BE
SUBCONTRACTOR'S EXPENSE TO THE SATIFACTION OF OWNER.
11. SUBCONTRACTOR SHALL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS
COAXIAL CABLES AND OTHR ITEMS REMOVED FROM THE EXISTNG FACILTT. ANTENNAS COAXIAL CABLLES AND OTHER ITEMS REMMVED FROM TEE EXISTING FACILTT. ANTENNAS
REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
2. SUBCONtractor shall leave premises in clean condition.
13. ALL CONCRETE REPAR WORK SHALL be done in accordance with american concrete
institute (aci) 301 .
14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL AAVE 4000 PSI STRENGTH AT 28 DAYS AL CON
ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
15. ALL STRUCTURAL STEEL WORK SHALL BE DETALLED, FABRICATED AND ERECTED IN ACCORDANCE
WITH AISC SPECIFICATONS. ALL STRUCTURAL STELL SHALL BE ASTM AB6 (Fy $=36$ ksi) WITH AISC SPECIIICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy $=36 \mathrm{ksi})$

16. CONSTRUCTION SHALL COMPLY WTH , SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES
17. SUBCONTRACTOR SHALL VERIY ALL EXISTING DIMENIINNS AND CONDITINS PRIOR TO
COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY
DISCREPANCIES PRIOR TO ORERRING MATERAL OR PROCEEDING WTH CONSTRUCTION.
18. THE EXIITTING CELL STE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY
SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATON. ANY WORK ON EXISTNG EQUPMENT MUST BE COORDINATE WITH CONTRACTOR ALSO, WORK SHOULD BE
SCHEDLED FOR AN APPROPRIATE MAITENANCE WINDOW USUALIY IN LOW TRAFFIC PERIODS SCHEDULED FRR
AFTER MDNIGT.
19. SINCE THE CELL SITE IS ACTVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING
 PERSONAL RF EXPOSU
EXPOSURE LEVELS.
20. APPLICABLE BUILDING CODES:
SUBCONTRACTOR'S WORK SHAL

BULLDING CODE: IBC 2015 WTH 2018 CT STATE BULDING CODE AMENDMENTS
ELECTRICAL CODE: 2017 NATTONAL ELECTRICAL CODE (NFPA 70-2017) SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDTIION OF THE FOLLOWIN
STANDARDS:

AMERICAN CONCRETE INSTTUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR
STRUCTURAL CONCRETE;
AMERICAN INSTTUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION,
ASD, FOURIEENTH EDTION:
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TAA) 222-G,
STRUCTURAL STANDARDS FOR STEEL
 REQUREMENT SHALL GOVERN. WHERE THERE IS COFLLCT BETWEEN A GENERAL REQUIREMENT
ANO A SPECFIC REQUIRMENT, THE SPECFIC REQUIREMENT SHALL GOVERN.

ABBREVATIONS					
AGL	above Grade level	EQ	EQUAL	REQ	Required
awg	american wire gauge	cc	general contaactor	RF	radio frequency
BBU	battery backup unit	GRC	galvanizd rigid conduit	TBD	to be determined
BTCW	bare tinned solid COPPER WIRE	MGB	master ground bar	TBR	TO BE REMOVED
BGR	buried ground ring	MIN	MINMUM	TBR	TO BE REMOVED AND REPLACED
BTS	base transceiver station	P	Proposed	TYP	TYPICAL
E	Existing	NTS	Not to Scale	ug	UNDER GROUND IIIIII!
EGB	EQUPMENT GROUND BAR	RAD	radiation center line (ANTENNA)	VIF	VERIF INFFIELD
EGR	EQUPMENT GROUND	REF	reference		ミら/*

STRUCTURAL NOTES:

DESIGN REOUREMENTS ARE PER STATE BULLDING COOE AND APPLICABLE SUPPLEMENTS, INTERNATIONAL BUILDING CODE, EIA/TA-222-G
TOWERS ANO ANTENNA SUPPORTING STRUCTURES,
2. CONTRACTOR SHALL VERIYY ALL DIMENSIONS AND CONDITINS IN THE FELD PRIOR TO FABRICATIN AND ERECTION OF ANY MATERAL. ANY UNUSUAL CONDITIONS SHALL BE
REPORTED TO THE ATENTION OF THE CONSTRUTON MANAGER AND ENGINEER OF RECORD.
3. DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN
INSTTUTE OF STEL CONSTRUCTION "SPECIFICATON FOR THE DESIGN, FABRICATON AND INSTTUTE OF STEEL CONSTRUCTION "SPECLFICATION
ERECTION OF STRUCTURAL STEEL FOR BULLINGS".
4. STRUCTURA STREL SHALL CONFORM TO ASTM A992 ($\mathrm{Sy}=50$ Ksi), MISCELLANEOUS STEEL
SHALL CONFORM TO ASTM A36 UNLESS OTHRWWISE (NODCATED.
5. STEEL PPPE SHALL CONFORM TO ASTM A500 "COLD-FORMED WELDED \& SEAMLESS CARBON
 NoMINAL. ACTUAL OUTSIDE DAMETER IS LARGER.
6. STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE) AND
CONFORM TO ASTM A325 TTPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INFORM TO ATTM A325 TYPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JINTSS
INCLODNG SUIABLE NUTS AND PLAN HARENED WASHERS". ALL BOLTS SHALL BE $3 / 4$ DIA
7. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM
A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS A123 "ZINC (HOT-
OTHERWISE NOTED.
8. ALL BLITS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE
WTHH ASTM A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HAROWARE", UNLESS WITH ASIM A15J
OTHERWISE NOTED.
9. FIELD WELDS, DRLL HOLES, SAW CUTS AND ALL DAMAGED GALVANIZED SURFACES SHALL BE
RFARARE WTH AN ORGAII CIIC REPAR PANT COMPLMNG WTH REQUERMNTS OF STM ATBO. GALVANIING REPAR PANT SHALL HAVE 65 PERCENT ZINC BY WEIGHT, ZIRP BY
DUNCAN GALVANZING, GALVA BRIGHT PREMUM BY CROWN OR EQUAL. THICKNESS OF APPLIED DUNCAN GALVANZING, GALVA BRIGHT PREMUM
GALVANIING REPAIR PAINT SHALL BE NOT NOT LESS THAN 4 COATS (ALLOW TIME TO DRY BETWEEN COATS) WTTH A RESULTING COATING THICKNESS REQUIRED BY ASTM A123 OR A153
as
 PROCESSES SHALL BE QUALFIED IN ACCORDANCE WTH AWS "STANDARD QUALIFICATION
PROCEDURES". ALL WELOING SHALL BE DONE USING ETOXX ELECTRODES AND WELDNG SHAL
 11. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITING OR NON-CONFORMNG
MATERALS OR CONDTIONS SHALL
BE REPORTED TO TO THE CONSTRUCTION MANGER PRIO REMRDAL OR CORRECTVE ACTON. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGE
APPROVAL.
12. UNISTRUT SHALL Be formed Steel channel strut framing as manufactured by

13. EPOXY ANCHOR ASSEMBLY SHALL CONSIST OF STANLESS STEEL ANCHOR ROD WITH NUTS \&
WASHERS. AN INTERNALY THREADED
INSERT, A SCREN TUEE AND A EPOXY ADHESIVE. THE ANCHORING SYSTEM SHALL BE THE HLTI-HIT HY-270 AND OR HY-200 SYSTEMS (AS
SPECIFIED IN DWG.) OR ENGINEERS APPROVED EQUAL.
14. EXPANSION BOLTS SHALL CONFORM TO FEDERAL SPECIFICATION FF-S-325, GROUP II, TTPE
CLASS I, HILI KWIK BOLT III OR APPROVED EQUAL. INSTALLTTON SHALL BE IN ACCORDANCE WTH THE MANUFACTURER'S RECOMMENDATIONS.
15. LUMBER SHALL COMPLY WTH THE REQUIREMENTS OF THE AMERICAN INSTTUTE OF TIMBER CONSTRUCTION AND THE NATIONAL FOREST PRODUCTS ASSOCIATION'S NATIONAL DESIGN
SPCCIICICAION FOR WOOD CONTRCTTON. ALL LUMEER SHALL BE PRESSURE TREATED AND
SHALL BE STRUCTURAL GRADE NO. 2 OR BETER.

WHERE ROOE PENETPATONS ARE
 WARAANT. ROOF SHALL BE WATERTIGAT
17. ALL FIBERGLASS MEMBERS USED ARE AS MANUACTURED BY STRONGWELL COMPANY OF
BRISTOL VA 24203. ALL DESIGN CRITERI FOR THESE MEMBERS IS BASED ON INFORMATIO

18. No Materials ti be ordered and no work to
HAVE BEEN REVIEWED AND APPROVED in WRIING.
19. subcontractor shall fireproof all steel to pre-existing conotions,

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17)
 IN RESPONSIBLE CHARGE ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE APRROVED AGENCIES TO
PERFORM INSPCCTIONS DURING CONSTRUCTON ON THE TYPES OF WORK LSTED IN THE INSPECTION CHECKIST ABOVE.
 TO ACT AS THE SPECIAL NSP
QUALIFCATON REQUIREMENTS.

REQURED STEEL ISSPECTIONS

N/A	HIGH WIND ZONE INSPECTIONS ${ }^{4}$
N/A	FOUNDATION INSPECTIONS
N/A	CONCRETE COMP. STRENGTH, SLUMP TESTS AND PLACEMENT
N/A	POST INSTALLED ANCHOR VERFICATON
N/A	Grout verification
N/A	Certifed welo inspection
N/A	Earthwork: LITT AND DENSITY
N/A	ON SITE COLD GALVANIIING
N/A	GUY WIRE TENSION REPORT

ER CONSTRUCTI
CONSTRUCTIONINSTALATION
ISPFCTTONS
ANT TETNG

REQUIRED	MODIFICATION INSPECTOR REDLINE R RECORD DRAWINGS ${ }^{6}$
N/A	POST INSTALLED ANCHOR
Required	PHOTOGAPPHS

\section*{NOTES:
 | | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

NOTES:

TE NUMBER: CT1264
SITE NUMBER: CT1264
SITE NAME: FRANKLIN CT TYLER DRIVE
CENTERLINE
HUDSON
-

STRUCTURAL NOTES:

DESIGN REOUREMENTS ARE PER STATE BULLDING COOE AND APPLICABLE SUPPLEMENTS, INTERNATIONAL BUILDING CODE, EIA/TA-222-G
TOWERS ANO ANTENNA SUPPORTING STRUCTURES,
2. CONTRACTOR SHALL VERIYY ALL DIMENSIONS AND CONDITINS IN THE FELD PRIOR TO FABRICATIN AND ERECTION OF ANY MATERAL. ANY UNUSUAL CONDITIONS SHALL BE
REPORTED TO THE ATENTION OF THE CONSTRUTON MANAGER AND ENGINEER OF RECORD.
3. DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN
INSTTUTE OF STEL CONSTRUCTION "SPECIFICATON FOR THE DESIGN, FABRICATON AND INSTTUTE OF STEEL CONSTRUCTION "SPECLFICATION
ERECTION OF STRUCTURAL STEEL FOR BULLINGS".
4. STRUCTURA STREL SHALL CONFORM TO ASTM A992 ($\mathrm{Sy}=50$ Ksi), MISCELLANEOUS STEEL
SHALL CONFORM TO ASTM A36 UNLESS OTHRWWISE (NODCATED.
5. STEEL PPPE SHALL CONFORM TO ASTM A500 "COLD-FORMED WELDED \& SEAMLESS CARBON
 NoMINAL. ACTUAL OUTSIDE DAMETER IS LARGER.
6. STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE) AND
CONFORM TO ASTM A325 TTPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INFORM TO ATTM A325 TYPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JINTSS
INCLODNG SUIABLE NUTS AND PLAN HARENED WASHERS". ALL BOLTS SHALL BE $3 / 4$ DIA
7. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM
A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS A123 "ZINC (HOT-
OTHERWISE NOTED.
8. ALL BLITS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE
WTHH ASTM A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HAROWARE", UNLESS WITH ASIM A15J
OTHERWISE NOTED.
9. FIELD WELDS, DRLL HOLES, SAW CUTS AND ALL DAMAGED GALVANIZED SURFACES SHALL BE
RFARARE WTH AN ORGAII CIIC REPAR PANT COMPLMNG WTH REQUERMNTS OF STM ATBO. GALVANIING REPAR PANT SHALL HAVE 65 PERCENT ZINC BY WEIGHT, ZIRP BY
DUNCAN GALVANZING, GALVA BRIGHT PREMUM BY CROWN OR EQUAL. THICKNESS OF APPLIED DUNCAN GALVANZING, GALVA BRIGHT PREMUM
GALVANIING REPAIR PAINT SHALL BE NOT NOT LESS THAN 4 COATS (ALLOW TIME TO DRY BETWEEN COATS) WTTH A RESULTING COATING THICKNESS REQUIRED BY ASTM A123 OR A153
as
 PROCESSES SHALL BE QUALFIED IN ACCORDANCE WTH AWS "STANDARD QUALIFICATION
PROCEDURES". ALL WELOING SHALL BE DONE USING ETOXX ELECTRODES AND WELDNG SHAL
 11. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITING OR NON-CONFORMNG
MATERALS OR CONDTIONS SHALL
BE REPORTED TO TO THE CONSTRUCTION MANGER PRIO REMRDAL OR CORRECTVE ACTON. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGE
APPROVAL.
12. UNISTRUT SHALL Be formed Steel channel strut framing as manufactured by

13. EPOXY ANCHOR ASSEMBLY SHALL CONSIST OF STANLESS STEEL ANCHOR ROD WITH NUTS \&
WASHERS. AN INTERNALY THREADED
INSERT, A SCREN TUEE AND A EPOXY ADHESIVE. THE ANCHORING SYSTEM SHALL BE THE HLTI-HIT HY-270 AND OR HY-200 SYSTEMS (AS
SPECIFIED IN DWG.) OR ENGINEERS APPROVED EQUAL.
14. EXPANSION BOLTS SHALL CONFORM TO FEDERAL SPECIFICATION FF-S-325, GROUP II, TTPE
CLASS I, HILI KWIK BOLT III OR APPROVED EQUAL. INSTALLTTON SHALL BE IN ACCORDANCE WTH THE MANUFACTURER'S RECOMMENDATIONS.
15. LUMBER SHALL COMPLY WTH THE REQUIREMENTS OF THE AMERICAN INSTTUTE OF TIMBER CONSTRUCTION AND THE NATIONAL FOREST PRODUCTS ASSOCIATION'S NATIONAL DESIGN
SPCCIICICAION FOR WOOD CONTRCTTON. ALL LUMEER SHALL BE PRESSURE TREATED AND
SHALL BE STRUCTURAL GRADE NO. 2 OR BETER.

WHERE ROOE PENETPATONS ARE
 WARAANT. ROOF SHALL BE WATERTIGAT
17. ALL FIBERGLASS MEMBERS USED ARE AS MANUACTURED BY STRONGWELL COMPANY OF
BRISTOL VA 24203. ALL DESIGN CRITERI FOR THESE MEMBERS IS BASED ON INFORMATIO

18. No Materials ti be ordered and no work to
HAVE BEEN REVIEWED AND APPROVED in WRIING.
19. subcontractor shall fireproof all steel to pre-existing conotions,

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17)
 IN RESPONSIBLE CHARGE ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE APRROVED AGENCIES TO
PERFORM INSPCCTIONS DURING CONSTRUCTON ON THE TYPES OF WORK LSTED IN THE INSPECTION CHECKIST ABOVE.
 TO ACT AS THE SPECIAL NSP
QUALIFCATON REQUIREMENTS.

REQURED STEEL ISSPECTIONS

N/A	HIGH WIND ZONE INSPECTIONS ${ }^{4}$
N/A	FOUNDATION INSPECTIONS
N/A	CONCRETE COMP. STRENGTH, SLUMP TESTS AND PLACEMENT
N/A	POST INSTALLED ANCHOR VERFICATON
N/A	Grout verification
N/A	Certifed welo inspection
N/A	Earthwork: LITT AND DENSITY
N/A	ON SITE COLD GALVANIIING
N/A	GUY WIRE TENSION REPORT

ER CONSTRUCTI
CONSTRUCTIONINSTALATION
ISPFCTTONS
ANT TETNG

REQUIRED	MODIFICATION INSPECTOR REDLINE R RECORD DRAWINGS ${ }^{6}$
N/A	POST INSTALLED ANCHOR
Required	PHOTOGAPPHS

\section*{NOTES:
 | | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

NOTES:

TE NUMBER: CT1264
SITE NUMBER: CT1264
SITE NAME: FRANKLIN CT TYLER DRIVE
CENTERLINE
HUDSON
-

From:

Sent:
To:
Subject:

UPS Quantum View < pkginfo@ups.com>
Monday, June 17, 2019 5:34 PM
Aidan Griffin
UPS Ship Notification, Tracking Number 1Z9Y45030216453649

You have a package coming.

Scheduled Delivery Date: Tuesday, 06/18/2019

This message was sent to you at the request of CENTERLINE SITE ACQUISITION to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	CENTERLINE SITE ACQUISITION
Tracking Number:	1Z9Y45030216453649
Ship To:	Attn: Thomas Weber Franklin Town Hall 7 Meetinghouse Hill Rd. Building Department FRANKLIN, CT 062541313 US
UPS Service:	UPS 2ND DAY AIR
Number of Packages:	1
Scheduled Delivery:	06/18/2019
Shipment Type:	Letter
	x
\times Download the UPS mobile app	

© 2019 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this e-mail. UPS will not receive any reply message. For more information on UPS's privacy practices, refer to the UPS Privacy Notice. For questions or comments, visit the Help and Support Center.

This communication contains proprietary information and may be confidential. If you are not the intended recipient, the reading, copying, disclosure or other use of the contents of this e-mail is strictly prohibited and you are instructed to please delete this e-mail immediately.

UPS Privacy Notice

Help and Support Center

From:

Sent:
To:
Subject:

UPS Quantum View pkginfo@ups.com
Monday, June 17, 2019 5:39 PM
Aidan Griffin
UPS Ship Notification, Tracking Number 1Z9Y45030204117669

You have a package coming.

Scheduled Delivery Date: Tuesday, 06/18/2019

This message was sent to you at the request of CENTERLINE SITE ACQUISITION to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	CENTERLINE SITE ACQUISITION
Tracking Number:	1Z9Y45030204117669
Ship To:	Attn: Charles Grant Franklin Town Hall 7 Meetinghouse Hill Rd. FRANKLIN, CT 062541313 US
UPS Service:	UPS 2ND DAY AIR
Number of Packages:	1
Scheduled Delivery:	06/18/2019
Shipment Type:	Letter
	\times
Download the UPS mobile app	

© 2019 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this e-mail. UPS will not receive any reply message. For more information on UPS's privacy practices, refer to the UPS Privacy Notice. For questions or comments, visit the Help and Support Center.

This communication contains proprietary information and may be confidential. If you are not the intended recipient, the reading, copying, disclosure or other use of the contents of this e-mail is strictly prohibited and you are instructed to please delete this e-mail immediately.

UPS Privacy Notice

Help and Support Center

From:

Sent:

To:
Subject:

UPS Quantum View < pkginfo@ups.com>
Monday, June 17, 2019 5:37 PM
Aidan Griffin
UPS Ship Notification, Tracking Number 1Z9Y45030207184653

You have a package coming.

Scheduled Delivery Date: Tuesday, 06/18/2019

This message was sent to you at the request of CENTERLINE SITE ACQUISITION to notify you that the shipment information below has been transmitted to UPS. The physical package may or may not have actually been tendered to UPS for shipment. To verify the actual transit status of your shipment, click on the tracking link below.

Shipment Details

From:	CENTERLINE SITE ACQUISITION
Tracking Number:	1Z9Y45030207184653
Ship To:	Attn: Ronald Chalecki Franklin Town Hall 7 Meetinghouse Hill Rd. Zoning Enforcement Office FRANKLIN, CT 062541313 US
UPS Service:	UPS 2ND DAY AIR
Number of Packages:	1
Scheduled Delivery:	06/18/2019
Shipment Type:	Letter
	x
\times Download the UPS mobile app	

© 2019 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this e-mail. UPS will not receive any reply message. For more information on UPS's privacy practices, refer to the UPS Privacy Notice. For questions or comments, visit the Help and Support Center.

This communication contains proprietary information and may be confidential. If you are not the intended recipient, the reading, copying, disclosure or other use of the contents of this e-mail is strictly prohibited and you are instructed to please delete this e-mail immediately.

UPS Privacy Notice

Help and Support Center

[^0]: Report: Summary - Group by member
 Load conditions to be included in design :
 LC1 $=1.2 \mathrm{D}+$ Wo
 LC2=1.2D+W30
 LC3 $=1.2 \mathrm{D}+\mathrm{W} 60$
 LC4=1.2D+W90
 LC5=1.2D+W120
 LC6=1.2D+W150
 LC7=1.2D-Wo
 LC8=1.2D-W30
 LC9=1.2D-W60 LC10=1.2D-W90
 LC11=1.2D-W120
 LC12=1.2D-W150
 LC13=0.9D+Wo
 LC14=0.9D+W30
 LC15=0.9D+W60
 LC16=0.9D+W90 LC17=0.9D+W120
 LC18=0.9D+W150
 LC19=0.9D-Wo
 LC20=0.9D-W30
 LC21=0.9D-W60
 LC22=0.9D-W90
 LC23=0.9D-W120
 LC24=0.9D-W150
 LC25=1.2D+Di+WIO
 LC26=1.2D+Di+WI30
 LC27=1.2D+Di+WI60
 LC28=1.2D+Di+WI90
 LC29=1.2D+Di+WI120
 LC30 $=1.2 \mathrm{D}+\mathrm{Di}+\mathrm{WI} 150$
 LC31 $=1.2 \mathrm{D}+\mathrm{Di}-\mathrm{W} 10$
 LC32=1.2D+Di-WI30
 LC33=1.2D+Di-WI60
 LC34=1.2D+Di-WI90
 LC35=1.2D+Di-WI120
 LC36=1.2D+Di-WI150
 LC38=1.2D+1.5LL1
 LC39=1.2D+1.5LL2
 LC40=1.2D+1.5LL3
 LC41 $=1.2 \mathrm{D}+\mathrm{WL} 0+1.5 \mathrm{LLa} 1$
 LC42=1.2D+WL30+1.5LLa1
 LC43=1.2D+WL60+1.5LLa1
 LC44=1.2D+WL90+1.5LLa1
 LC45=1.2D+WL120+1.5LLa1
 LC46=1.2D+WL150+1.5LLa1
 LC47=1.2D-WL0+1.5LLa1
 LC48=1.2D-WL30+1.5LLa1
 LC49=1.2D-WL60+1.5LLa1
 LC50=1.2D-WL90+1.5LLa 1
 LC51=1.2D-WL120+1.5LLa1
 LC52=1.2D-WL150+1.5LLa1
 LC53=1.2D+WL0+1.5LLa2
 LC54=1.2D+WL30+1.5LLa2

