

EM-CING-053-121114

t  
Delivered

cingular  
raising the bar

New Cingular Wireless PCS, LLC  
154 General Patton Dr.  
Naugatuck, CT 06770  
Phone: (203)-217-6200  
Christopher Bisson  
Real Estate Consultant

November 13, 2012

**Hand Delivered**

Ms. Linda Roberts  
Executive Director  
Connecticut Siting Council  
10 Franklin Square  
New Britain, CT 06051

**RECEIVED**  
NOV 14 2012  
CONNECTICUT  
SITING COUNCIL

RE: New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 5 Tyler drive, North Franklin CT, 06254, know to AT&T as site CT1264.

Dear Ms. Roberts:

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System (“UMTS”) and/or Long Term Evolution (“LTE”) capabilities, and enhance system performance in the state of Connecticut, New Cingular Wireless PCS, LLC (“AT&T”) plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

UMTS offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile (“GSM”) communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the internet as they travel. They have the same capabilities even when they roam, through both terrestrial wireless and satellite transmissions.

LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration based on the supplied structural modification plan dated 4/26/2012 requiring the restacking of the existing coaxial cables.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

1. The height of the overall structure will not be affected.
2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound as all proposed equipment will be located in the existing AT&T equipment shelter.
3. The proposed changes will not increase the noise level at the existing facility by 6 decibels or more.
4. Radio Frequency power density may increase due to the use of one or more GSM channels for UMTS transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons New Cingular Wireless PCS, LLC respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (203)-217-6200 or email  
[CBisson@Transcendwireless.com](mailto:CBisson@Transcendwireless.com) with questions concerning this matter.  
Thank you for your consideration.

Sincerely,

Christopher Bisson  
Real Estate Consultant



C Squared Systems, LLC  
65 Dartmouth Drive, Unit A3  
Auburn, NH 03032  
(603) 644-2800  
[support@csquaredsystems.com](mailto:support@csquaredsystems.com)

---

Calculated Radio Frequency Emissions



CT1264

(Franklin CT)

5 Tyler Drive, North Franklin, CT 06254

(a.k.a. Franklin – 5 Tyler Drive)

---

October 31, 2012

## Table of Contents

|                                                                       |   |
|-----------------------------------------------------------------------|---|
| 1. Introduction.....                                                  | 1 |
| 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits.....    | 1 |
| 3. RF Exposure Prediction Methods.....                                | 2 |
| 4. Calculation Results .....                                          | 3 |
| 5. Conclusion .....                                                   | 4 |
| 6. Statement of Certification.....                                    | 4 |
| Attachment A: References.....                                         | 5 |
| Attachment B: FCC Limits for Maximum Permissible Exposure (MPE) ..... | 6 |
| Attachment C: AT&T Antenna Data Sheets and Electrical Patterns.....   | 8 |

## List of Tables

|                                                                  |   |
|------------------------------------------------------------------|---|
| Table 1: Carrier Information.....                                | 3 |
| Table 2: FCC Limits for Maximum Permissible Exposure (MPE) ..... | 6 |

## List of Figures

|                                                                           |   |
|---------------------------------------------------------------------------|---|
| Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)..... | 7 |
|---------------------------------------------------------------------------|---|

## 1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modifications to the existing AT&T antenna arrays mounted on the lattice tower located at 5 Tyler Drive in North Franklin, CT. The coordinates of the tower are 41° 37' 30.8" N, 72° 9' 22.7" W.

AT&T is proposing the following modifications:

- 1) Install three multi-band (700/850/1900/2100 MHz) antennas (one per sector) for their LTE network.

## 2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter ( $\text{mW/cm}^2$ ). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment B of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment B contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

### 3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

$$\text{Power Density} = \left( \frac{1.6^2 \times \text{EIRP}}{4\pi \times R^2} \right) \times \text{Off Beam Loss}$$

Where:

EIRP = Effective Isotropic Radiated Power

$R = \text{Radial Distance} = \sqrt{(H^2 + V^2)}$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Ground reflection factor of 1.6

Off Beam Loss is determined by the selected antenna pattern

These calculations assume that the antennas are operating at 100 percent capacity and power, and that all channels are transmitting simultaneously. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the finished modifications.

#### 4. Calculation Results

Table 1 below outlines the power density information for the site. Because the proposed AT&T antennas are directional in nature, the majority of the RF power is focused out towards the horizon. As a result, there will be less RF power directed below the antennas relative to the horizon, and consequently lower power density levels around the base of the tower. Please refer to Attachment C for the vertical pattern of the proposed AT&T antennas. The calculated results for AT&T in Table 1 include a nominal 10 dB off-beam pattern loss to account for the lower relative gain below the antennas.

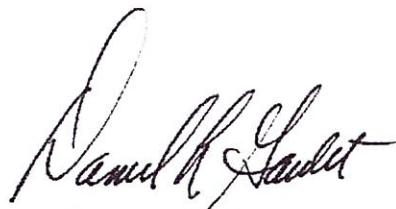
| Carrier          | Antenna Height (Feet) | Operating Frequency (MHz) | Number of Trans. | ERP Per Transmitter (Watts) | Power Density (mw/cm <sup>2</sup> ) | Limit        | %MPE         |
|------------------|-----------------------|---------------------------|------------------|-----------------------------|-------------------------------------|--------------|--------------|
| AT&T             | 168                   | 880                       | 4                | 296                         | 0.0151                              | 0.5867       | 2.57%        |
| AT&T             | 168                   | 1900                      | 2                | 427                         | 0.0109                              | 1.0000       | 1.09%        |
| AT&T             | 168                   | 880                       | 1                | 500                         | 0.0064                              | 0.5867       | 1.09%        |
| AT&T             | 168                   | 1900                      | 1                | 500                         | 0.0064                              | 1.0000       | 0.64%        |
| Town of Franklin | 187                   | 33                        | 1                | 100                         | 0.0010                              | 0.2000       | 0.51%        |
| Town of Franklin | 187                   | 450                       | 1                | 100                         | 0.0010                              | 0.3000       | 0.34%        |
| Town of Franklin | 187                   | 155.9                     | 1                | 54                          | 0.0006                              | 0.2000       | 0.28%        |
| AT&T UMTS        | 168.7                 | 880                       | 2                | 649                         | 0.0016                              | 0.5867       | 0.28%        |
| AT&T UMTS        | 168.7                 | 1900                      | 2                | 1387                        | 0.0035                              | 1.0000       | 0.35%        |
| AT&T LTE         | 168.7                 | 734                       | 1                | 1615                        | 0.0020                              | 0.4893       | 0.42%        |
| AT&T GSM         | 168.7                 | 880                       | 1                | 324                         | 0.0004                              | 0.5867       | 0.07%        |
| AT&T GSM         | 168.7                 | 1900                      | 4                | 832                         | 0.0042                              | 1.0000       | 0.42%        |
|                  |                       |                           |                  |                             |                                     | <b>Total</b> | <b>2.67%</b> |

**Table 1: Carrier Information<sup>1 2 3</sup>**

<sup>1</sup> The existing CSC filing for AT&T should be removed and replaced with the updated AT&T technologies and values provided in Table 1. The power density information for carriers other than AT&T was taken directly from the CSC database dated 7/26/2012. Please note that %MPE values listed are rounded to two decimal points. The total %MPE listed is a summation of each unrounded contribution. Therefore, summing each rounded value may not reflect the total value listed in the table.

<sup>2</sup> In the case where antenna models are not uniform across all 3 sectors for the same frequency band, the antenna model with the highest gain was used for the calculations to present a worse-case scenario.

<sup>3</sup> Antenna height listed for AT&T is in reference to the Hudson Design Group Structural Analysis dated September 14, 2012.


## 5. Conclusion

The above analysis verifies that emissions from the existing site will be below the maximum power density levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Even when using conservative methods, the cumulative power density from the proposed transmit antennas at the existing facility is well below the limits for the general public. The highest expected percent of Maximum Permissible Exposure at ground level is **2.67% of the FCC limit**.

As noted previously, obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. As a result, the predicted signal levels are more conservative (higher) than the actual signal levels will be from the finished modifications.

## 6. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.



Daniel L. Goulet  
C Squared Systems, LLC

October 31, 2012

Date

## Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

ANSI C95.1-1982, American National Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300 kHz to 100 GHz. IEEE-SA Standards Board

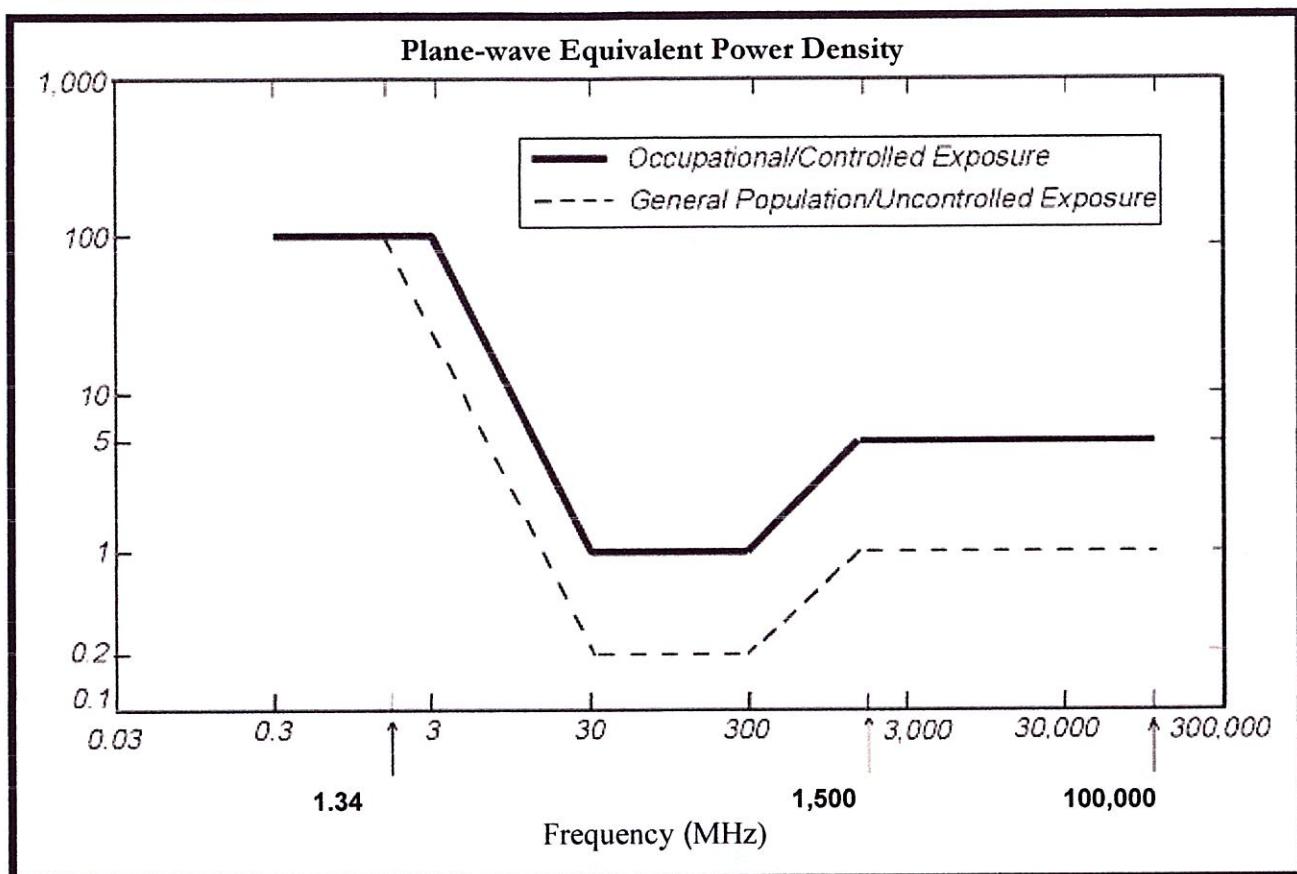
IEEE Std C95.3-1991 (Reaff 1997), IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave. IEEE-SA Standards Board

## Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

### (A) Limits for Occupational/Controlled Exposure<sup>4</sup>

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (E) (A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 0.3-3.0               | 614                               | 1.63                              | (100)*                                  | 6                                                                 |
| 3.0-30                | 1842/f                            | 4.89/f                            | (900/f <sup>2</sup> )*                  | 6                                                                 |
| 30-300                | 61.4                              | 0.163                             | 1.0                                     | 6                                                                 |
| 300-1500              | -                                 | -                                 | f/300                                   | 6                                                                 |
| 1500-100,000          | -                                 | -                                 | 5                                       | 6                                                                 |

### (B) Limits for General Population/Uncontrolled Exposure<sup>5</sup>

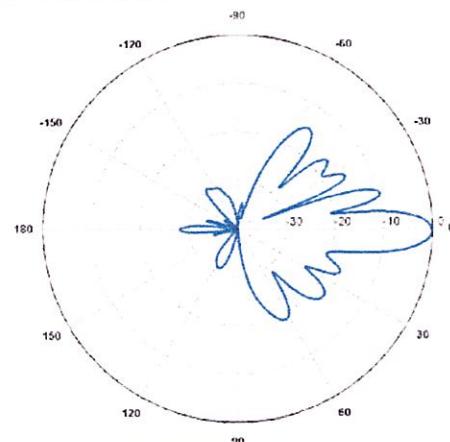

| Frequency Range (MHz) | Electric Field Strength (E) (V/m) | Magnetic Field Strength (E) (A/m) | Power Density (S) (mW/cm <sup>2</sup> ) | Averaging Time  E  <sup>2</sup> ,  H  <sup>2</sup> or S (minutes) |
|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 0.3-1.34              | 614                               | 1.63                              | (100)*                                  | 30                                                                |
| 1.34-30               | 824/f                             | 2.19/f                            | (180/f <sup>2</sup> )*                  | 30                                                                |
| 30-300                | 27.5                              | 0.073                             | 0.2                                     | 30                                                                |
| 300-1500              | -                                 | -                                 | f/1500                                  | 30                                                                |
| 1500-100,000          | -                                 | -                                 | 1.0                                     | 30                                                                |

f = frequency in MHz \* Plane-wave equivalent power density

**Table 2: FCC Limits for Maximum Permissible Exposure (MPE)**

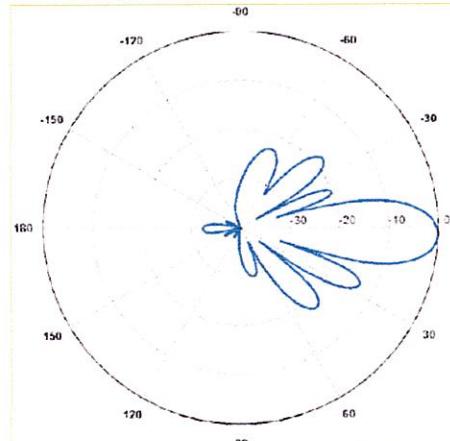
<sup>4</sup> Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure

<sup>5</sup> General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure



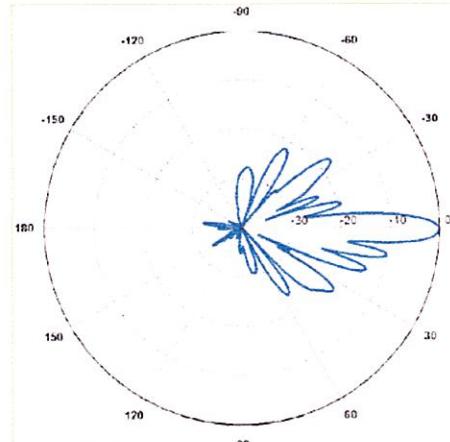

**Figure 1: Graph of FCC Limits for Maximum Permissible Exposure (MPE)**

**Attachment C: AT&T Antenna Data Sheets and Electrical Patterns**


**700 MHz**

Manufacturer: Powerwave  
 Model #: P65-17-XLH-RR  
 Frequency Band: 698-806 MHz  
 Gain: 14.3 dBi  
 Vertical Beamwidth: 8.4°  
 Horizontal Beamwidth: 70°  
 Polarization: Dual Linear ± 45°  
 Size L x W x D: 96.0" x 12.0" x 6.0"




**850 MHz**

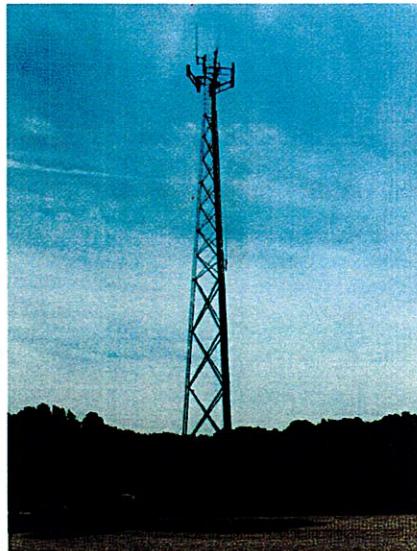
Manufacturer: Powerwave  
 Model #: 7750.00  
 Frequency Band: 824-960 MHz  
 Gain: 12.1 dBi  
 Vertical Beamwidth: 14.3°  
 Horizontal Beamwidth: 69°  
 Polarization: Dual Linear ± 45°  
 Size L x W x D: 55.0" x 11.0" x 5.0"



**1900 MHz**

Manufacturer: Powerwave  
 Model #: 7750.00  
 Frequency Band: 1710-2170 MHz  
 Gain: 15.4 dBi  
 Vertical Beamwidth: 6.6°  
 Horizontal Beamwidth: 63°  
 Polarization: Dual Linear ± 45°  
 Size L x W x D: 55.0" x 11.0" x 5.0"




# STRUCTURAL ANALYSIS REPORT

For

## CT1264 FRANKLIN CT

5 TYLER DRIVE  
NORTH FRANKLIN, CT 06254

### Antennas Mounted to the Tower



Prepared for:



a UniTek GLOBAL SERVICES company  
800 MARSHALL PHELPS ROAD UNIT# 2A  
WINDSOR, CT 06095



500 ENTERPRISE DRIVE, SUITE 3A  
ROCKY HILL, CT 06067

Dated: September 14, 2012

Prepared by:



1600 Osgood Street Building 20 North, Suite 2-101  
North Andover, MA 01845  
Phone: (978) 557-5553  
[www.hudsondesigngroupllc.com](http://www.hudsondesigngroupllc.com)





#### **SCOPE OF WORK:**

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the 180' self supporting tower supporting the proposed AT&T antennas located at elevation 168.7' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT&T's existing and proposed antennas listed below.

Record drawings of the existing tower prepared by Valmont Industries, Inc., dated February 4, 2010 were available and obtained for our use. This office conducted an on-site visual survey and tower mapping on August 23, 2012 to record dimensional properties of the existing tower and its appurtenances. Attendees included Nick Bestor (HDG – Associate), Bradley Loeb (HDG – Associate) and Nick Marshall (HDG - Associate).

#### **CONCLUSION SUMMARY:**

Based on our evaluation, we have determined that the existing tower is in conformance with the ANSI/TIA-222-F Standard for the loading considered under the criteria listed in this report. The tower structure is rated at 48.0% - (Leg at Tower Section T2 from EL.150' to EL.170' Controlling).



#### APPURTEANCES CONFIGURATION:

| Tenant          | Appurtenances                         | Elev.  | Mount                  |
|-----------------|---------------------------------------|--------|------------------------|
|                 | Lighting Rod                          | 181.8' | 1' Side Mount Standoff |
|                 | 20' Omni                              | 187.2' | 3' Side Mount Standoff |
|                 | 20' Omni                              | 186.5' | 3' Side Mount Standoff |
|                 | 8' Dipole                             | 183.2' | 3' Side Mount Standoff |
| <b>AT&amp;T</b> | <b>(6) Powerwave 7750 Antennas</b>    | 168.7' | 12' T-Frame            |
| <b>AT&amp;T</b> | <b>(6) TT08-19DB111 TMA</b>           | 169.5' | 12' T-Frame            |
| <b>AT&amp;T</b> | <b>(3) P65-17-XLH-RR Antennas</b>     | 168.7' | 12' T-Frame            |
| <b>AT&amp;T</b> | <b>(6) RRUs</b>                       | 168.7' | 12' T-Frame            |
| <b>AT&amp;T</b> | <b>Surge Arrestor DC6-48-60-18-8F</b> | 168.7' | Tower Leg              |
|                 | 20' Omni                              | 100.5' | 3' Side Mount Standoff |

\*Proposed AT&T Appurtenances shown in Bold.

#### AT&T EXISTING/PROPOSED COAX CABLES:

| Tenant          | Coax Cables                | Elev.  | Mount     |
|-----------------|----------------------------|--------|-----------|
| <b>AT&amp;T</b> | <b>(12) 1 5/8" Cables</b>  | 168.7' | Tower Leg |
| <b>AT&amp;T</b> | <b>Fiber Cable</b>         | 168.7' | Tower Leg |
| <b>AT&amp;T</b> | <b>(2) DC Power Cables</b> | 168.7' | Tower Leg |

\*Proposed AT&T Coax Cables shown in Bold.

#### ANALYSIS RESULTS SUMMARY:

| Component   | Max. Stress Ratio | Elev. of Component (ft) | Pass/Fail | Comments    |
|-------------|-------------------|-------------------------|-----------|-------------|
| Legs        | 48.0 %            | 150 – 170               | PASS      | Controlling |
| Diagonals   | 47.4 %            | 150 – 170               | PASS      |             |
| Top Girt    | 5.9 %             | 150 – 170               | PASS      |             |
| Bottom Girt | 6.6 %             | 150 – 170               | PASS      |             |



#### **DESIGN CRITERIA:**

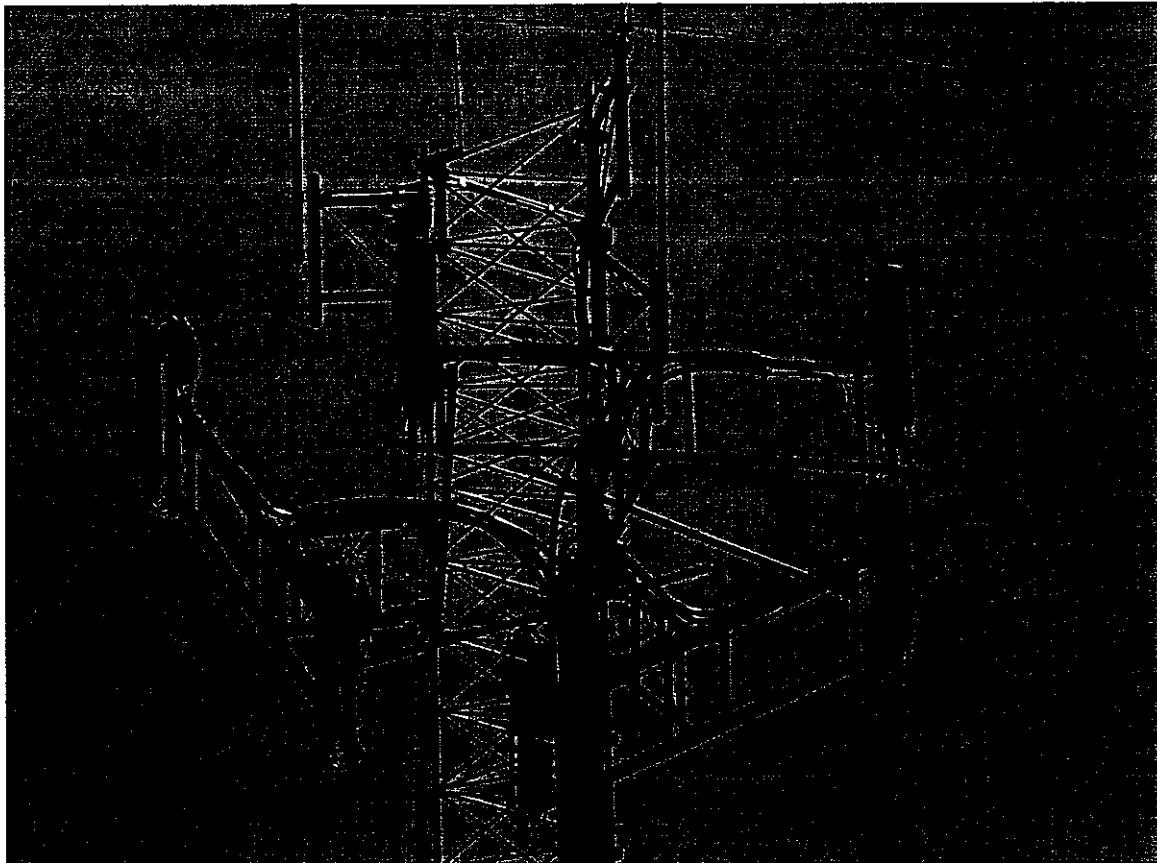
1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: New London  
Wind Load: 85 mph (fastest mile)  
105 mph (3 second gust)  
Nominal Ice Thickness: 0.5 inch

2. Approximate height above grade to proposed antennas: 168.7'

**\*Calculations and referenced documents are attached.**

#### **ASSUMPTIONS:**


1. The appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
2. The tower and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
3. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
4. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.
5. The foundation of the tower was not checked due to lack of information. As-built foundation drawings and geotechnical report would be required to determine whether the foundation is capable of supporting the proposed loadings.



### **SUPPORT RECOMMENDATIONS:**

HDG recommends that the proposed antennas and RRHs be mounted on the existing T-frame supported by the tower; the proposed surge arrestor be mounted on the tower leg.

Reference HDG's Latest Construction Drawings for all component and connection requirements (attached).



**Photo 1:** Photo illustrating the Tower with Appurtenances shown.



## CALCULATIONS

## DESIGNED APPURTEINANCE LOADING

| TYPE                                             | ELEVATION | TYPE                                                           | ELEVATION |
|--------------------------------------------------|-----------|----------------------------------------------------------------|-----------|
| Omni 3"x20"                                      | 187.2     | (2) Powerwave 7750 w/mount pipe (ATT - Existing)               | 168.7     |
| Omni 3"x20"                                      | 186.5     | Powerwave P65-17-XLH-RR w/mount pipe (ATT - Proposed)          | 168.7     |
| 8' Dipole                                        | 183.2     | Powerwave P65-17-XLH-RR w/mount pipe (ATT - Proposed)          | 168.7     |
| Lightning Rod                                    | 181.8     | Powerwave P65-17-XLH-RR w/mount pipe (ATT - Proposed)          | 168.7     |
| 1' Side Mount Standoff                           | 179.6     | Powerwave P65-17-XLH-RR w/mount pipe (ATT - Proposed)          | 168.7     |
| 3' Side Mount Standoff                           | 177       | Powerwave P65-17-XLH-RR w/mount pipe (ATT - Proposed)          | 168.7     |
| 3' Side Mount Standoff                           | 177       | Powerwave P65-17-XLH-RR w/mount pipe (ATT - Proposed)          | 168.7     |
| 3' Side Mount Standoff                           | 177       | (2) Ericsson RRU (ATT - Proposed)                              | 168.7     |
| (2) Powerwave TT08-19DB111-001 (ATT - Existing)  | 169.5     | (2) Ericsson RRU (ATT - Proposed)                              | 168.7     |
| (2) Powerwave TT08-19DB111-001 (ATT - Existing)  | 169.5     | (2) Ericsson RRU (ATT - Proposed)                              | 168.7     |
| (2) Powerwave TT08-19DB111-001 (ATT - Existing)  | 169.5     | Surge Arrestor (DC6-48-60-18-8F) w/mount pipe (ATT - Proposed) | 168.7     |
| (2) Powerwave TT08-19DB111-001 (ATT - Existing)  | 169.5     | PIROD 12' T-Frame (ATT - Existing)                             | 166.7     |
| (2) Powerwave 7750 w/mount pipe (ATT - Existing) | 168.7     | PIROD 12' T-Frame (ATT - Existing)                             | 166.7     |
| (2) Powerwave 7750 w/mount pipe (ATT - Existing) | 168.7     | PIROD 12' T-Frame (ATT - Existing)                             | 166.7     |
| Omni 3"x20"                                      | 100.5     | Omni 3"x20"                                                    | 100.5     |
| 3' Side Mount Standoff (T - Mobile)              | 89.1      |                                                                |           |

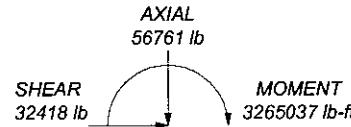
### SYMBOL LIST

| MARK | SIZE         | MARK | SIZE              |
|------|--------------|------|-------------------|
| A    | Pirod 105245 | B    | L2 1/2x2 1/2x3/16 |

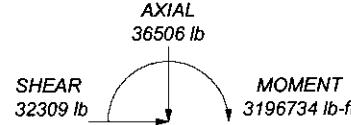
### MATERIAL STRENGTH

| GRADE   | Fy     | Fu     | GRADE | Fy     | Fu     |
|---------|--------|--------|-------|--------|--------|
| A572-50 | 50 ksi | 65 ksi | A36   | 36 ksi | 58 ksi |

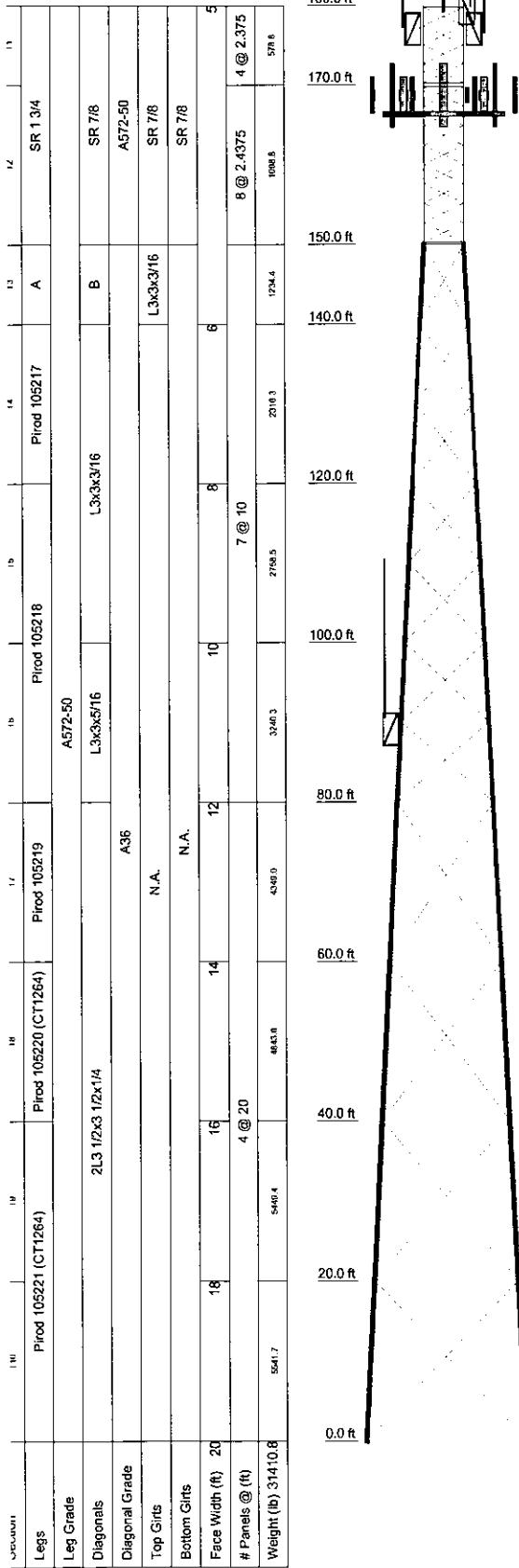
### TOWER DESIGN NOTES


1. Tower is located in New London County, Connecticut.
2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 74 mph basic wind with 0.50 in ice.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 48%

#### MAX. CORNER REACTIONS AT BASE:


DOWN: 207416 lb

UPLIFT: -168516 lb


SHEAR: 20879 lb



TORQUE 27717 lb-ft  
74 mph WIND - 0.5000 in ICE



TORQUE 32302 lb-ft  
REACTIONS - 85 mph WIND



|                                                                                                                                                                                            |         |                              |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|---------------------------|
| <b>inxTower</b><br><br><b>Hudson Design Group, LLC</b><br>1600 Osgood Street, Building 20 North,<br>Suite 2-101<br>North Andover, MA 01845<br>Phone: (978) 557-5553<br>FAX: (978) 226-5586 | Job     | CT 1264 North Franklin, CT   | Page<br>1 of 7            |
|                                                                                                                                                                                            | Project | 180 ft Self Supporting Tower | Date<br>09:34:01 09/14/12 |
|                                                                                                                                                                                            | Client  | AT&T                         | Designed by<br>kw         |

## Tower Input Data

The main tower is a 3x free standing tower with an overall height of 180.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 20.00 ft at the base.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in New London County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.5000 in.

Ice density of 56 pcf.

A wind speed of 74 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

## Tower Section Geometry

| Tower Section | Tower Elevation | Assembly Database | Description | Section Width | Number of Sections | Section Length |
|---------------|-----------------|-------------------|-------------|---------------|--------------------|----------------|
| T1            | 180.00-170.00   |                   |             | 5.00          | 1                  | 10.00          |
| T2            | 170.00-150.00   |                   |             | 5.00          | 1                  | 20.00          |
| T3            | 150.00-140.00   |                   |             | 5.00          | 1                  | 10.00          |
| T4            | 140.00-120.00   |                   |             | 6.00          | 1                  | 20.00          |
| T5            | 120.00-100.00   |                   |             | 8.00          | 1                  | 20.00          |
| T6            | 100.00-80.00    |                   |             | 10.00         | 1                  | 20.00          |
| T7            | 80.00-60.00     |                   |             | 12.00         | 1                  | 20.00          |
| T8            | 60.00-40.00     |                   |             | 14.00         | 1                  | 20.00          |
| T9            | 40.00-20.00     |                   |             | 16.00         | 1                  | 20.00          |
| T10           | 20.00-0.00      |                   |             | 18.00         | 1                  | 20.00          |

## Tower Section Geometry (cont'd)

| Tower Section | Tower Elevation | Diagonal Spacing | Bracing Type | Has K Brace End Panels | Has Horizontals | Top Girt Offset | Bottom Girt Offset |
|---------------|-----------------|------------------|--------------|------------------------|-----------------|-----------------|--------------------|
| T1            | 180.00-170.00   | 2.38             | X Brace      | No                     | No              | 3.0000          | 3.0000             |
| T2            | 170.00-150.00   | 2.44             | X Brace      | No                     | No              | 3.0000          | 3.0000             |
| T3            | 150.00-140.00   | 10.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |
| T4            | 140.00-120.00   | 10.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |
| T5            | 120.00-100.00   | 10.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |
| T6            | 100.00-80.00    | 10.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |
| T7            | 80.00-60.00     | 20.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |
| T8            | 60.00-40.00     | 20.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |
| T9            | 40.00-20.00     | 20.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |

|                                                                                                                                                                                            |         |                              |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|---------------------------|
| <b>tnxTower</b><br><br><b>Hudson Design Group, LLC</b><br>1600 Osgood Street, Building 20 North,<br>Suite 2-101<br>North Andover, MA 01845<br>Phone: (978) 557-5553<br>FAX: (978) 226-5586 | Job     | CT 1264 North Franklin, CT   | Page<br>2 of 7            |
|                                                                                                                                                                                            | Project | 180 ft Self Supporting Tower | Date<br>09:34:01 09/14/12 |
|                                                                                                                                                                                            | Client  | AT&T                         | Designed by<br>kw         |

| Tower Section | Tower Elevation | Diagonal Spacing | Bracing Type | Has K Brace End Panels | Has Horizontals | Top Girt Offset | Bottom Girt Offset |
|---------------|-----------------|------------------|--------------|------------------------|-----------------|-----------------|--------------------|
|               | ft              | ft               |              |                        |                 | in              | in                 |
| T10           | 20.00-0.00      | 20.00            | X Brace      | No                     | No              | 0.0000          | 0.0000             |

### Tower Section Geometry (cont'd)

| Tower Elevation<br>ft | Leg Type    | Leg Size              | Leg Grade           | Diagonal Type      | Diagonal Size     | Diagonal Grade      |
|-----------------------|-------------|-----------------------|---------------------|--------------------|-------------------|---------------------|
| T1 180.00-170.00      | Solid Round | 1 3/4                 | A572-50<br>(50 ksi) | Solid Round        | 7/8               | A572-50<br>(50 ksi) |
| T2 170.00-150.00      | Solid Round | 1 3/4                 | A572-50<br>(50 ksi) | Solid Round        | 7/8               | A572-50<br>(50 ksi) |
| T3 150.00-140.00      | Truss Leg   | Pirod 105245          | A572-50<br>(50 ksi) | Equal Angle        | L2 1/2x2 1/2x3/16 | A36<br>(36 ksi)     |
| T4 140.00-120.00      | Truss Leg   | Pirod 105217          | A572-50<br>(50 ksi) | Equal Angle        | L3x3x3/16         | A36<br>(36 ksi)     |
| T5 120.00-100.00      | Truss Leg   | Pirod 105218          | A572-50<br>(50 ksi) | Equal Angle        | L3x3x3/16         | A36<br>(36 ksi)     |
| T6 100.00-80.00       | Truss Leg   | Pirod 105218          | A572-50<br>(50 ksi) | Equal Angle        | L3x3x5/16         | A36<br>(36 ksi)     |
| T7 80.00-60.00        | Truss Leg   | Pirod 105219          | A572-50<br>(50 ksi) | Double Equal Angle | 2L3 1/2x3 1/2x1/4 | A36<br>(36 ksi)     |
| T8 60.00-40.00        | Truss Leg   | Pirod 105220 (CT1264) | A572-50<br>(50 ksi) | Double Equal Angle | 2L3 1/2x3 1/2x1/4 | A36<br>(36 ksi)     |
| T9 40.00-20.00        | Truss Leg   | Pirod 105221 (CT1264) | A572-50<br>(50 ksi) | Double Equal Angle | 2L3 1/2x3 1/2x1/4 | A36<br>(36 ksi)     |
| T10 20.00-0.00        | Truss Leg   | Pirod 105221 (CT1264) | A572-50<br>(50 ksi) | Double Equal Angle | 2L3 1/2x3 1/2x1/4 | A36<br>(36 ksi)     |

### Tower Section Geometry (cont'd)

| Tower Elevation<br>ft | Top Girt Type | Top Girt Size | Top Girt Grade      | Bottom Girt Type | Bottom Girt Size | Bottom Girt Grade   |
|-----------------------|---------------|---------------|---------------------|------------------|------------------|---------------------|
| T1 180.00-170.00      | Solid Round   | 7/8           | A572-50<br>(50 ksi) | Solid Round      | 7/8              | A572-50<br>(50 ksi) |
| T2 170.00-150.00      | Solid Round   | 7/8           | A572-50<br>(50 ksi) | Solid Round      | 7/8              | A572-50<br>(50 ksi) |
| T3 150.00-140.00      | Equal Angle   | L3x3x3/16     | A36<br>(36 ksi)     | Pipe             |                  | A36<br>(36 ksi)     |

### Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                | Face or Leg | Allow Shield | Component Type | Placement<br>ft | Total Number | Number Per Row | Clear Spacing<br>in | Width or Diameter<br>in | Perimeter<br>in | Weight<br>plf |
|----------------------------|-------------|--------------|----------------|-----------------|--------------|----------------|---------------------|-------------------------|-----------------|---------------|
| 7/8                        | C           | No           | Ar(Leg)        | 177.00 - 6.00   | 3            | 3              | 1.1100              | 1.1100                  |                 | 0.54          |
| 1 5/8<br>(AT&T - existing) | C           | No           | Ar(Leg)        | 168.70 - 6.00   | 12           | 6              | 1.8000              | 1.8000                  |                 | 1.04          |
| 7/8<br>*****               | C           | No           | Af(Leg)        | 89.00 - 6.00    | 1            | 1              | 1.1100              | 1.1100                  |                 | 0.54          |

|                                                                                                                                                                                            |         |                              |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|---------------------------|
| <b>tnxTower</b><br><br><b>Hudson Design Group, LLC</b><br>1600 Osgood Street, Building 20 North,<br>Suite 2-101<br>North Andover, MA 01845<br>Phone: (978) 557-5553<br>FAX: (978) 226-5586 | Job     | CT 1264 North Franklin, CT   | Page                      |
|                                                                                                                                                                                            | Project | 180 ft Self Supporting Tower | Date<br>09:34:01 09/14/12 |
|                                                                                                                                                                                            | Client  | AT&T                         | Designed by<br>kw         |

| Description                          | Face or Leg | Allow Shield | Component Type | Placement ft  | Total Number | Number Per Row | Clear Spacing in | Width or Diameter in | Perimeter in | Weight plf |
|--------------------------------------|-------------|--------------|----------------|---------------|--------------|----------------|------------------|----------------------|--------------|------------|
| FB-L98B-002<br>(AT&T - proposed)     | C           | No           | Ar(Leg)        | 168.70 - 6.00 | 1            | 1              | 0.4000           | 0.4000               |              | 0.25       |
| WR-VG122ST-BRDA<br>(AT&T - proposed) | C           | No           | Ar(Leg)        | 168.70 - 6.00 | 2            | 2              | 0.4000           | 0.4000               |              | 0.25       |

### Discrete Tower Loads

| Description                                             | Face or Leg | Offset Type | Offsets: Horz<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment ° | Placement ft | C <sub>A</sub> A <sub>A</sub> Front | C <sub>A</sub> A <sub>A</sub> Side | Weight         |       |
|---------------------------------------------------------|-------------|-------------|-----------------------------------------|----------------------|--------------|-------------------------------------|------------------------------------|----------------|-------|
| Lightning Rod                                           | B           | From Leg    | 1.00<br>0.00<br>0.00                    | 0.0000               | 181.80       | No Ice<br>1/2" Ice                  | 0.75<br>1.25                       | 0.75<br>1.25   |       |
| 1' Side Mount Standoff                                  | B           | From Leg    | 0.50<br>0.00<br>0.00                    | 0.0000               | 179.60       | No Ice<br>1/2" Ice                  | 1.00<br>1.50                       | 30.00<br>50.00 |       |
| 3' Side Mount Standoff                                  | A           | From Leg    | 1.50<br>0.00<br>0.00                    | 0.0000               | 177.00       | No Ice<br>1/2" Ice                  | 1.90<br>3.30                       | 40.00<br>70.00 |       |
| 3' Side Mount Standoff                                  | B           | From Leg    | 1.50<br>0.00<br>0.00                    | 0.0000               | 177.00       | No Ice<br>1/2" Ice                  | 1.90<br>3.30                       | 40.00<br>70.00 |       |
| 3' Side Mount Standoff                                  | C           | From Leg    | 1.50<br>0.00<br>0.00                    | 0.0000               | 177.00       | No Ice<br>1/2" Ice                  | 1.90<br>3.30                       | 40.00<br>70.00 |       |
| 8' Dipole                                               | A           | From Leg    | 3.00<br>0.00<br>0.00                    | 0.0000               | 183.20       | No Ice<br>1/2" Ice                  | 2.40<br>3.19                       | 25.00<br>42.51 |       |
| Omni 3"x20'                                             | B           | From Leg    | 3.00<br>0.00<br>0.00                    | 0.0000               | 186.50       | No Ice<br>1/2" Ice                  | 6.00<br>8.03                       | 60.00<br>93.17 |       |
| Omni 3"x20'                                             | C           | From Leg    | 3.00<br>0.00<br>0.00                    | 0.0000               | 187.20       | No Ice<br>1/2" Ice                  | 6.00<br>8.03                       | 60.00<br>93.17 |       |
| *****                                                   |             |             |                                         |                      |              |                                     |                                    |                |       |
| PiROD 12' T-Frame<br>(AT&T - Existing)                  | A           | From Leg    | 2.50<br>0.00<br>0.00                    | 0.0000               | 166.70       | No Ice<br>1/2" Ice                  | 12.20<br>17.60                     | 12.20<br>17.60 |       |
| PiROD 12' T-Frame<br>(AT&T - Existing)                  | B           | From Leg    | 2.50<br>0.00<br>0.00                    | 0.0000               | 166.70       | No Ice<br>1/2" Ice                  | 12.20<br>17.60                     | 12.20<br>17.60 |       |
| PiROD 12' T-Frame<br>(AT&T - Existing)                  | C           | From Leg    | 2.50<br>0.00<br>0.00                    | 0.0000               | 166.70       | No Ice<br>1/2" Ice                  | 12.20<br>17.60                     | 12.20<br>17.60 |       |
| (2) Powerwave 7750 w/mount<br>pipe<br>(AT&T - Existing) | A           | From Leg    | 4.50<br>0.00<br>0.00                    | 0.0000               | 168.70       | No Ice<br>1/2" Ice                  | 6.25<br>6.80                       | 4.33<br>5.18   |       |
| (2) Powerwave 7750 w/mount<br>pipe<br>(AT&T - Existing) | B           | From Leg    | 4.50<br>0.00<br>0.00                    | 0.0000               | 168.70       | No Ice<br>1/2" Ice                  | 6.25<br>6.80                       | 4.33<br>5.18   |       |
| (2) Powerwave 7750 w/mount<br>pipe<br>(AT&T - Existing) | C           | From Leg    | 4.50<br>0.00<br>0.00                    | 0.0000               | 168.70       | No Ice<br>1/2" Ice                  | 6.25<br>6.80                       | 4.33<br>5.18   |       |
| (2) Powerwave                                           | A           | From Leg    | 4.50                                    | 0.0000               | 169.50       | No Ice                              | 0.92                               | 0.75           | 22.00 |

|                                                                                                                                                                                            |         |                               |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|---------------------------|
| <b>tnxTower</b><br><br><b>Hudson Design Group, LLC</b><br>1600 Osgood Street, Building 20 North,<br>Suite 2-101<br>North Andover, MA 01845<br>Phone: (978) 557-5553<br>FAX: (978) 226-5586 | Job     | CT 1264    North Franklin, CT | Page<br>4 of 7            |
|                                                                                                                                                                                            | Project | 180 ft Self Supporting Tower  | Date<br>09:34:01 09/14/12 |
|                                                                                                                                                                                            | Client  | AT&T                          | Designed by<br>kw         |

| Description                                                              | Face or Leg | Offset Type | Offsets:<br>Horz<br>Lateral<br>Vert<br>ft<br>ft<br>ft | Azimuth Adjustment ° | Placement ft | CAAFront           | CAASide        | Weight lb      |
|--------------------------------------------------------------------------|-------------|-------------|-------------------------------------------------------|----------------------|--------------|--------------------|----------------|----------------|
| TT08-19DB111-001<br>(AT&T - Existing)                                    |             |             | 0.00<br>0.00                                          |                      | 1/2" Ice     | 1.06               | 0.88           | 29.63          |
| (2) Powerwave                                                            | B           | From Leg    | 4.50<br>0.00                                          | 0.0000               | 169.50       | No Ice<br>1/2" Ice | 0.92<br>1.06   | 0.75<br>0.88   |
| TT08-19DB111-001<br>(AT&T - Existing)                                    |             |             | 0.00<br>0.00                                          |                      |              |                    |                | 22.00<br>29.63 |
| (2) Powerwave                                                            | C           | From Leg    | 4.50<br>0.00                                          | 0.0000               | 169.50       | No Ice<br>1/2" Ice | 0.92<br>1.06   | 0.75<br>0.88   |
| TT08-19DB111-001<br>(AT&T - Existing)                                    |             |             | 0.00<br>0.00                                          |                      |              |                    |                | 22.00<br>29.63 |
| *****                                                                    |             |             |                                                       |                      |              |                    |                |                |
| Powerwave P65-17-XLH-RR<br>w/mount pipe<br>(AT&T - Proposed)             | A           | From Leg    | 4.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 11.75<br>12.47 | 9.39<br>10.90  |
| Powerwave P65-17-XLH-RR<br>w/mount pipe<br>(AT&T - Proposed)             | B           | From Leg    | 4.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 11.75<br>12.47 | 9.39<br>10.90  |
| Powerwave P65-17-XLH-RR<br>w/mount pipe<br>(AT&T - Proposed)             | C           | From Leg    | 4.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 11.75<br>12.47 | 9.39<br>10.90  |
| (2) Ericsson RRU<br>(AT&T - Proposed)                                    | A           | From Leg    | 4.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 2.07<br>2.26   | 1.08<br>1.23   |
| (2) Ericsson RRU<br>(AT&T - Proposed)                                    | B           | From Leg    | 4.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 2.07<br>2.26   | 1.08<br>1.23   |
| (2) Ericsson RRU<br>(AT&T - Proposed)                                    | C           | From Leg    | 4.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 2.07<br>2.26   | 1.08<br>1.23   |
| Surge Arrestor<br>(DC6-48-60-18-8F) w/mount<br>pipe<br>(AT&T - Proposed) | B           | From Leg    | 0.50<br>0.00<br>0.00                                  | 0.0000               | 168.70       | No Ice<br>1/2" Ice | 2.45<br>2.95   | 2.45<br>2.95   |
| *****                                                                    |             |             |                                                       |                      |              |                    |                |                |
| 3' Side Mount Standoff<br>(T - Mobile)                                   | C           | From Leg    | 1.50<br>0.00<br>0.00                                  | 0.0000               | 89.10        | No Ice<br>1/2" Ice | 1.90<br>3.30   | 1.90<br>3.30   |
| Omni 3"x20'                                                              | C           | From Leg    | 3.00<br>0.00<br>0.00                                  | 0.0000               | 100.50       | No Ice<br>1/2" Ice | 6.00<br>8.03   | 6.00<br>8.03   |
|                                                                          |             |             |                                                       |                      |              |                    |                | 40.00<br>70.00 |
|                                                                          |             |             |                                                       |                      |              |                    |                | 50.00<br>93.17 |

## Load Combinations

| Comb. No. | Description                |
|-----------|----------------------------|
| 1         | Dead Only                  |
| 2         | Dead+Wind 0 deg - No Ice   |
| 3         | Dead+Wind 90 deg - No Ice  |
| 4         | Dead+Wind 180 deg - No Ice |
| 5         | Dead+Ice+Temp              |
| 6         | Dead+Wind 0 deg+Ice+Temp   |
| 7         | Dead+Wind 90 deg+Ice+Temp  |
| 8         | Dead+Wind 180 deg+Ice+Temp |
| 9         | Dead+Wind 0 deg - Service  |

|                                                                                                                                                                                            |         |                              |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|---------------------------|
| <b>tnxTower</b><br><br><b>Hudson Design Group, LLC</b><br>1600 Osgood Street, Building 20 North,<br>Suite 2-101<br>North Andover, MA 01845<br>Phone: (978) 557-5553<br>FAX: (978) 226-5586 | Job     | CT 1264 North Franklin, CT   | Page<br>5 of 7            |
|                                                                                                                                                                                            | Project | 180 ft Self Supporting Tower | Date<br>09:34:01 09/14/12 |
|                                                                                                                                                                                            | Client  | AT&T                         | Designed by<br>kw         |

| Comb.<br>No. | Description                 |
|--------------|-----------------------------|
| 10           | Dead+Wind 90 deg - Service  |
| 11           | Dead+Wind 180 deg - Service |

### Maximum Reactions

| Location | Condition           | Gov.<br>Load<br>Comb. | Vertical<br>lb | Horizontal, X<br>lb | Horizontal, Z<br>lb |
|----------|---------------------|-----------------------|----------------|---------------------|---------------------|
| Leg C    | Max. Vert           | 8                     | 114229.17      | 7176.75             | -6533.31            |
|          | Max. H <sub>x</sub> | 4                     | 103241.69      | 8019.20             | -7235.99            |
|          | Max. H <sub>z</sub> | 7                     | -140484.59     | -15558.71           | 7577.79             |
|          | Min. Vert           | 3                     | -143943.62     | -14314.32           | 6724.61             |
|          | Min. H <sub>x</sub> | 7                     | -140484.59     | -15558.71           | 7577.79             |
|          | Min. H <sub>z</sub> | 4                     | 103241.69      | 8019.20             | -7235.99            |
| Leg B    | Max. Vert           | 7                     | 179554.66      | -15105.30           | -7228.24            |
|          | Max. H <sub>x</sub> | 6                     | -77098.46      | 8692.98             | 5672.77             |
|          | Max. H <sub>z</sub> | 6                     | -77098.46      | 8692.98             | 5672.77             |
|          | Min. Vert           | 2                     | -80843.09      | 7526.55             | 4927.00             |
|          | Min. H <sub>x</sub> | 3                     | 168792.39      | -16043.16           | -7668.96            |
|          | Min. H <sub>z</sub> | 3                     | 168792.39      | -16043.16           | -7668.96            |
| Leg A    | Max. Vert           | 6                     | 207416.28      | -834.93             | 19748.00            |
|          | Max. H <sub>x</sub> | 4                     | -168516.05     | 878.40              | -18194.07           |
|          | Max. H <sub>z</sub> | 2                     | 196730.32      | -941.98             | 20857.28            |
|          | Min. Vert           | 4                     | -168516.05     | 878.40              | -18194.07           |
|          | Min. H <sub>x</sub> | 7                     | 17691.09       | -1055.19            | -349.55             |
|          | Min. H <sub>z</sub> | 8                     | -168155.71     | 734.62              | -19819.68           |

### Tower Mast Reaction Summary

| Load<br>Combination         | Vertical<br>lb | Shear <sub>x</sub><br>lb | Shear <sub>z</sub><br>lb | Overshoring<br>Moment, M <sub>x</sub><br>lb-ft | Overshoring<br>Moment, M <sub>z</sub><br>lb-ft | Torque<br>lb-ft |
|-----------------------------|----------------|--------------------------|--------------------------|------------------------------------------------|------------------------------------------------|-----------------|
| Dead Only                   | 36506.17       | 0.00                     | -0.00                    | 8807.77                                        | 14532.91                                       | -0.00           |
| Dead+Wind 0 deg - No Ice    | 36506.17       | -0.00                    | -32309.01                | -3196700.66                                    | 14620.20                                       | -32301.53       |
| Dead+Wind 90 deg - No Ice   | 36506.17       | 31407.96                 | -0.00                    | 8856.37                                        | -3127360.15                                    | 19213.72        |
| Dead+Wind 180 deg - No Ice  | 36506.17       | -0.00                    | 31107.61                 | 3129552.16                                     | 14611.62                                       | 30807.16        |
| Dead+Ice+Temp               | 56761.16       | 0.00                     | -0.00                    | 21243.98                                       | 35329.52                                       | -0.06           |
| Dead+Wind 0 deg+Ice+Temp    | 56761.16       | -0.00                    | -32418.24                | -3264844.72                                    | 35417.91                                       | -27717.29       |
| Dead+Wind 90 deg+Ice+Temp   | 56761.16       | 31719.20                 | -0.00                    | 21292.07                                       | -3200392.47                                    | 16804.66        |
| Dead+Wind 180 deg+Ice+Temp  | 56761.16       | 0.00                     | 31486.19                 | 3240252.99                                     | 35414.78                                       | 26733.93        |
| Dead+Wind 0 deg - Service   | 36506.17       | 0.00                     | -11179.59                | -1100395.42                                    | 14588.03                                       | -11178.68       |
| Dead+Wind 90 deg - Service  | 36506.17       | 10867.81                 | -0.00                    | 8837.55                                        | -1072601.96                                    | 6647.44         |
| Dead+Wind 180 deg - Service | 36506.17       | 0.00                     | 10763.88                 | 1088672.92                                     | 14571.26                                       | 10661.21        |

|                                                                                                                                                                                            |         |                              |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|---------------------------|
| <b>tnxTower</b><br><br><b>Hudson Design Group, LLC</b><br>1600 Osgood Street, Building 20 North,<br>Suite 2-101<br>North Andover, MA 01845<br>Phone: (978) 557-5553<br>FAX: (978) 226-5586 | Job     | CT 1264 North Franklin, CT   | Page                      |
|                                                                                                                                                                                            | Project | 180 ft Self Supporting Tower | Date<br>09:34:01 09/14/12 |
|                                                                                                                                                                                            | Client  | AT&T                         | Designed by<br>kw         |

### Maximum Tower Deflections - Service Wind

| Section No. | Elevation ft | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|--------------|---------------------|-----------------|--------|---------|
| T1          | 180 - 170    | 3.559               | 11              | 0.2003 | 0.0372  |
| T2          | 170 - 150    | 3.139               | 11              | 0.1986 | 0.0354  |
| T3          | 150 - 140    | 2.324               | 11              | 0.1673 | 0.0323  |
| T4          | 140 - 120    | 1.976               | 9               | 0.1535 | 0.0273  |
| T5          | 120 - 100    | 1.384               | 9               | 0.1211 | 0.0201  |
| T6          | 100 - 80     | 0.911               | 9               | 0.0951 | 0.0140  |
| T7          | 80 - 60      | 0.555               | 9               | 0.0675 | 0.0100  |
| T8          | 60 - 40      | 0.302               | 9               | 0.0459 | 0.0069  |
| T9          | 40 - 20      | 0.140               | 9               | 0.0286 | 0.0043  |
| T10         | 20 - 0       | 0.034               | 9               | 0.0141 | 0.0020  |

### Critical Deflections and Radius of Curvature - Service Wind

| Elevation ft | Appurtenance                    | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|---------------------------------|-----------------|---------------|--------|---------|------------------------|
| 187.20       | Omni 3"x20"                     | 11              | 3.559         | 0.2003 | 0.0372  | 406675                 |
| 186.50       | Omni 3"x20"                     | 11              | 3.559         | 0.2003 | 0.0372  | 406675                 |
| 183.20       | 8' Dipole                       | 11              | 3.559         | 0.2003 | 0.0372  | 406675                 |
| 181.80       | Lightning Rod                   | 11              | 3.559         | 0.2003 | 0.0372  | 406675                 |
| 179.60       | 1' Side Mount Standoff          | 11              | 3.542         | 0.2003 | 0.0371  | 406675                 |
| 177.00       | 3' Side Mount Standoff          | 11              | 3.433         | 0.2005 | 0.0363  | 406675                 |
| 169.50       | (2) Powerwave TT08-19DB111-001  | 11              | 3.118         | 0.1982 | 0.0354  | 510584                 |
| 168.70       | (2) Powerwave 7750 w/mount pipe | 11              | 3.084         | 0.1975 | 0.0354  | Inf                    |
| 166.70       | PiROD 12' T-Frame               | 11              | 3.000         | 0.1953 | 0.0354  | 251875                 |
| 100.50       | Omni 3"x20"                     | 9               | 0.922         | 0.0958 | 0.0141  | 40276                  |
| 89.10        | 3' Side Mount Standoff          | 9               | 0.703         | 0.0799 | 0.0116  | 43988                  |

### Section Capacity Table

| Section No. | Elevation ft | Component Type | Size                  | Critical Element | P lb       | SF*P <sub>allow</sub> lb | % Capacity | Pass Fail |
|-------------|--------------|----------------|-----------------------|------------------|------------|--------------------------|------------|-----------|
| T1          | 180 - 170    | Leg            | 1 3/4                 | 3                | -3345.02   | 69961.30                 | 4.8        | Pass      |
| T2          | 170 - 150    | Leg            | 1 3/4                 | 36               | -3129.40   | 68975.15                 | 48.0       | Pass      |
| T3          | 150 - 140    | Leg            | Pirod 105245          | 91               | 28992.70   | 212004.31                | 20.8       | Pass      |
| T4          | 140 - 120    | Leg            | Pirod 105217          | 105              | -63520.40  | 184672.48                | 34.4       | Pass      |
| T5          | 120 - 100    | Leg            | Pirod 105218          | 120              | -87890.40  | 258238.08                | 34.0       | Pass      |
| T6          | 100 - 80     | Leg            | Pirod 105218          | 135              | -112714.00 | 258238.08                | 43.6       | Pass      |
| T7          | 80 - 60      | Leg            | Pirod 105219          | 150              | -125801.00 | 308224.25                | 40.8       | Pass      |
| T8          | 60 - 40      | Leg            | Pirod 105220 (CT1264) | 159              | -153578.00 | 390259.73                | 39.4       | Pass      |
| T9          | 40 - 20      | Leg            | Pirod 105221 (CT1264) | 168              | -173269.00 | 482026.11                | 35.9       | Pass      |
| T10         | 20 - 0       | Leg            | Pirod 105221 (CT1264) | 177              | -197521.00 | 482026.11                | 41.0       | Pass      |
| T1          | 180 - 170    | Diagonal       | 7/8                   | 11               | -640.44    | 6801.57                  | 9.4        | Pass      |
| T2          | 170 - 150    | Diagonal       | 7/8                   | 44               | -3192.84   | 6735.45                  | 47.4       | Pass      |
| T3          | 150 - 140    | Diagonal       | L2 1/2x2 1/2x3/16     | 101              | -4368.44   | 11339.12                 | 38.5       | Pass      |
| T4          | 140 - 120    | Diagonal       | L3x3x3/16             | 107              | -4771.57   | 15208.86                 | 31.4       | Pass      |
| T5          | 120 - 100    | Diagonal       | L3x3x3/16             | 122              | -4681.04   | 12531.43                 | 37.4       | Pass      |

|                                                                                                                                                                                                                                                 |                                                           |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|
| <p><b><i>tnxTower</i></b></p> <p><b><i>Hudson Design Group, LLC</i></b><br/> <i>1600 Osgood Street, Building 20 North,<br/>   Suite 2-101</i></p> <p><i>North Andover, MA 01845<br/>   Phone: (978) 557-5553<br/>   FAX: (978) 226-5586</i></p> | <p><b>Job</b></p> <p>CT 1264 North Franklin, CT</p>       | <p><b>Page</b></p> <p>7 of 7</p>            |
|                                                                                                                                                                                                                                                 | <p><b>Project</b></p> <p>180 ft Self Supporting Tower</p> | <p><b>Date</b></p> <p>09:34:01 09/14/12</p> |
|                                                                                                                                                                                                                                                 | <p><b>Client</b></p> <p>AT&amp;T</p>                      | <p><b>Designed by</b></p> <p>kw</p>         |

| Section No. | Elevation ft | Component Type | Size              | Critical Element | P lb     | SF*P <sub>allow</sub> lb | % Capacity       | Pass Fail   |             |
|-------------|--------------|----------------|-------------------|------------------|----------|--------------------------|------------------|-------------|-------------|
| T6          | 100 - 80     | Diagonal       | L3x3x5/16         | 146              | -5745.68 | 17753.03                 | 32.4             | Pass        |             |
| T7          | 80 - 60      | Diagonal       | 2L3 1/2x3 1/2x1/4 | 155              | -9658.57 | 38995.58                 | 24.8             | Pass        |             |
| T8          | 60 - 40      | Diagonal       | 2L3 1/2x3 1/2x1/4 | 161              | -8417.40 | 35505.39                 | 23.7             | Pass        |             |
| T9          | 40 - 20      | Diagonal       | 2L3 1/2x3 1/2x1/4 | 170              | -9367.13 | 32209.94                 | 29.1             | Pass        |             |
| T10         | 20 - 0       | Diagonal       | 2L3 1/2x3 1/2x1/4 | 182              | -9663.96 | 29164.30                 | 33.1             | Pass        |             |
| T1          | 180 - 170    | Top Girt       | 7/8               | 4                | -107.23  | 3445.04                  | 3.1              | Pass        |             |
| T2          | 170 - 150    | Top Girt       | 7/8               | 37               | -201.88  | 3445.04                  | 5.9              | Pass        |             |
| T3          | 150 - 140    | Top Girt       | L3x3x3/16         | 94               | -37.42   | 16945.10                 | 0.2              | Pass        |             |
| T1          | 180 - 170    | Bottom Girt    | 7/8               | 7                | -168.33  | 3445.04                  | 4.9              | Pass        |             |
| T2          | 170 - 150    | Bottom Girt    | 7/8               | 40               | -228.43  | 3445.04                  | 6.6              | Pass        |             |
|             |              |                |                   |                  |          |                          | Summary          |             |             |
|             |              |                |                   |                  |          |                          | Leg (T2)         | 48.0        | Pass        |
|             |              |                |                   |                  |          |                          | Diagonal (T2)    | 47.4        | Pass        |
|             |              |                |                   |                  |          |                          | Top Girt (T2)    | 5.9         | Pass        |
|             |              |                |                   |                  |          |                          | Bottom Girt (T2) | 6.6         | Pass        |
|             |              |                |                   |                  |          |                          | <b>RATING =</b>  | <b>48.0</b> | <b>Pass</b> |

## PROJECT INFORMATION

SCOPE OF WORK: TELECOMMUNICATIONS FACILITY UPGRADE (LTE):  
 1. INSTALL (3) NEW LTE ANTENNAS, (6) RRH'S, (1) SURGE ARRESTOR,  
 (1) FIBER LINE, (2) DC POWER LINES & (1) GPS ANTENNA  
 2. INSTALL (1) LTE 6601 CABINET

SITE ADDRESS: 5 TYLER DRIVE  
 NORTH FRANKLIN, CT 06254

LATITUDE: 41.62522 N  
 LONGITUDE: 72.15631 W

41° 37' 30.8" N  
 72° 09' 22.7" W

CURRENT USE: TELECOMMUNICATIONS FACILITY  
 PROPOSED USE: TELECOMMUNICATIONS FACILITY



**SITE NUMBER: CT1264**  
**SITE NAME: FRANKLIN CT**

### DRAWING INDEX

### REV

### VICINITY MAP

### GENERAL NOTES

**T-1 TITLE SHEET**

1

**GN-1 GENERAL NOTES**

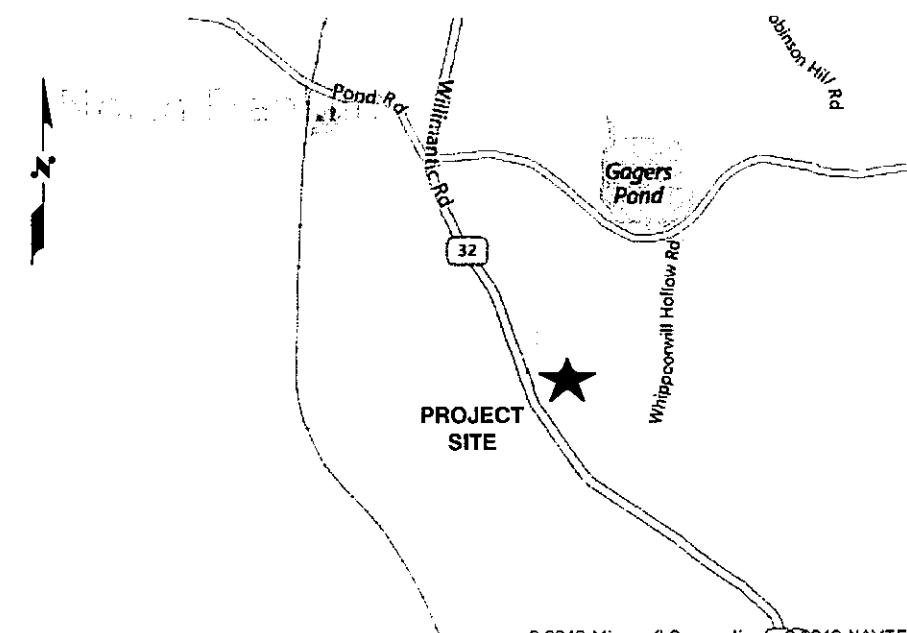
1

**A-1 COMPOUND PLAN & EQUIPMENT PLAN**

1

**A-2 ANTENNA PLAN & ELEVATION**

1


**A-3 DETAILS**

1

**G-1 PLUMBING DIAGRAM & GROUNDING DETAILS**

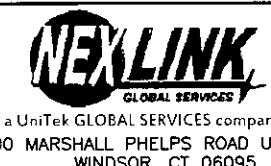
1

**DIRECTION TO SITE:**  
 START OUT GOING NORTHEAST ON ENTERPRISE DR TOWARD CAPITOL BLVD. 0.4 MI TURN LEFT  
 ONTO CAPITOL BLVD. 0.2 MI TURN LEFT ONTO WEST ST. 0.2 MI TAKE RAMP LEFT FOR I-91 N.  
 4.5 MI AT EXIT 25, TAKE RAMP RIGHT FOR CT-3 NORTH TOWARD GLASTONBURY. 2.4 MI TAKE  
 RAMP RIGHT FOR CT-2 EAST TOWARD NORWICH. 31.3 MI AT EXIT 27, TAKE RAMP RIGHT FOR  
 CT-32 NORTH TOWARD WILLIMANTIC / YANTIC. 0.2 MI TURN BACK ON CT-32. 5.5 MI TURN  
 RIGHT ONTO TYLER DR. 74 FT ARRIVE AT 5 TYLER DR, NORTH FRANKLIN, CT 06254.



1. THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.
2. THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.
3. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

CALL




BEFORE YOU DIG

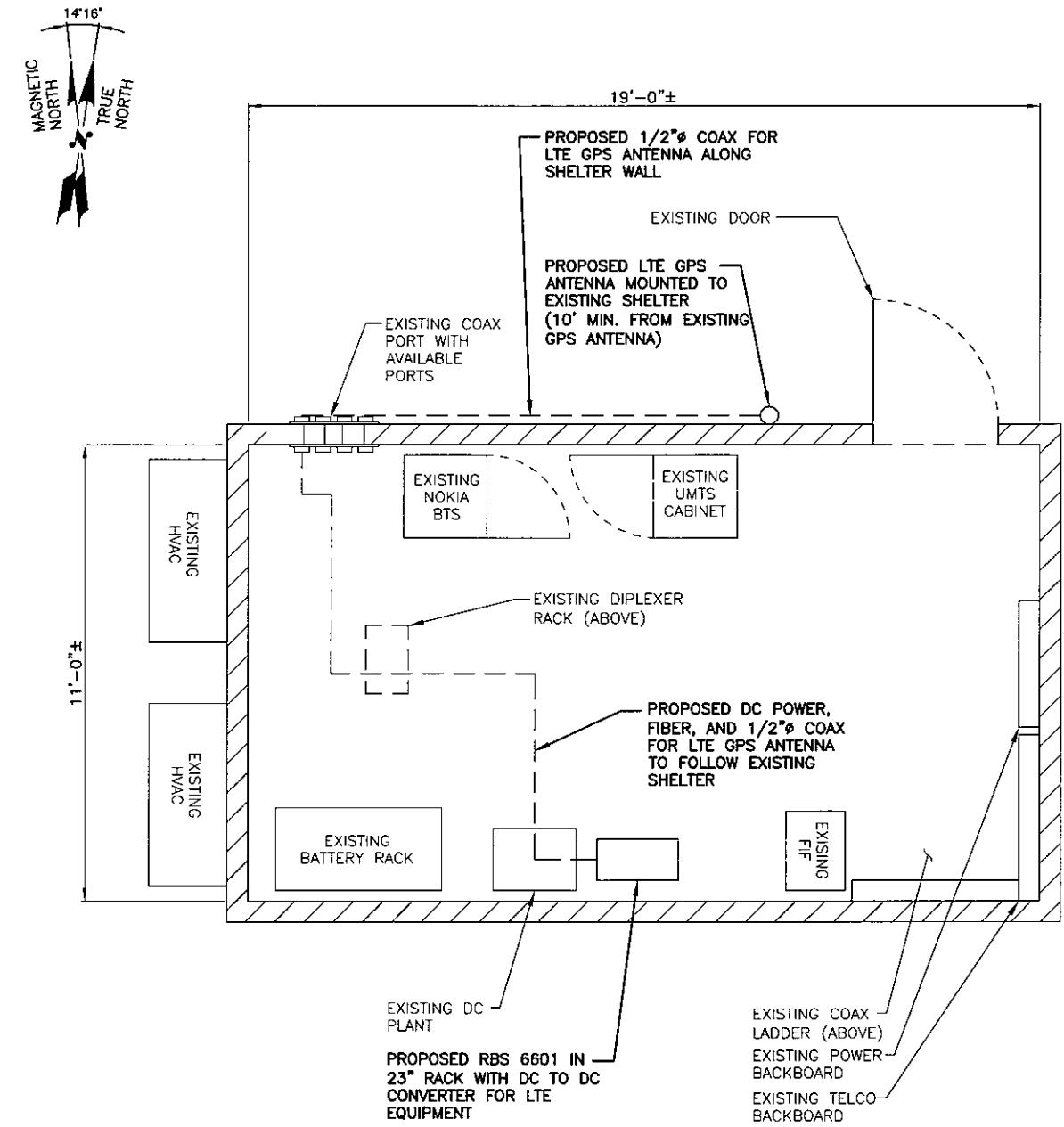
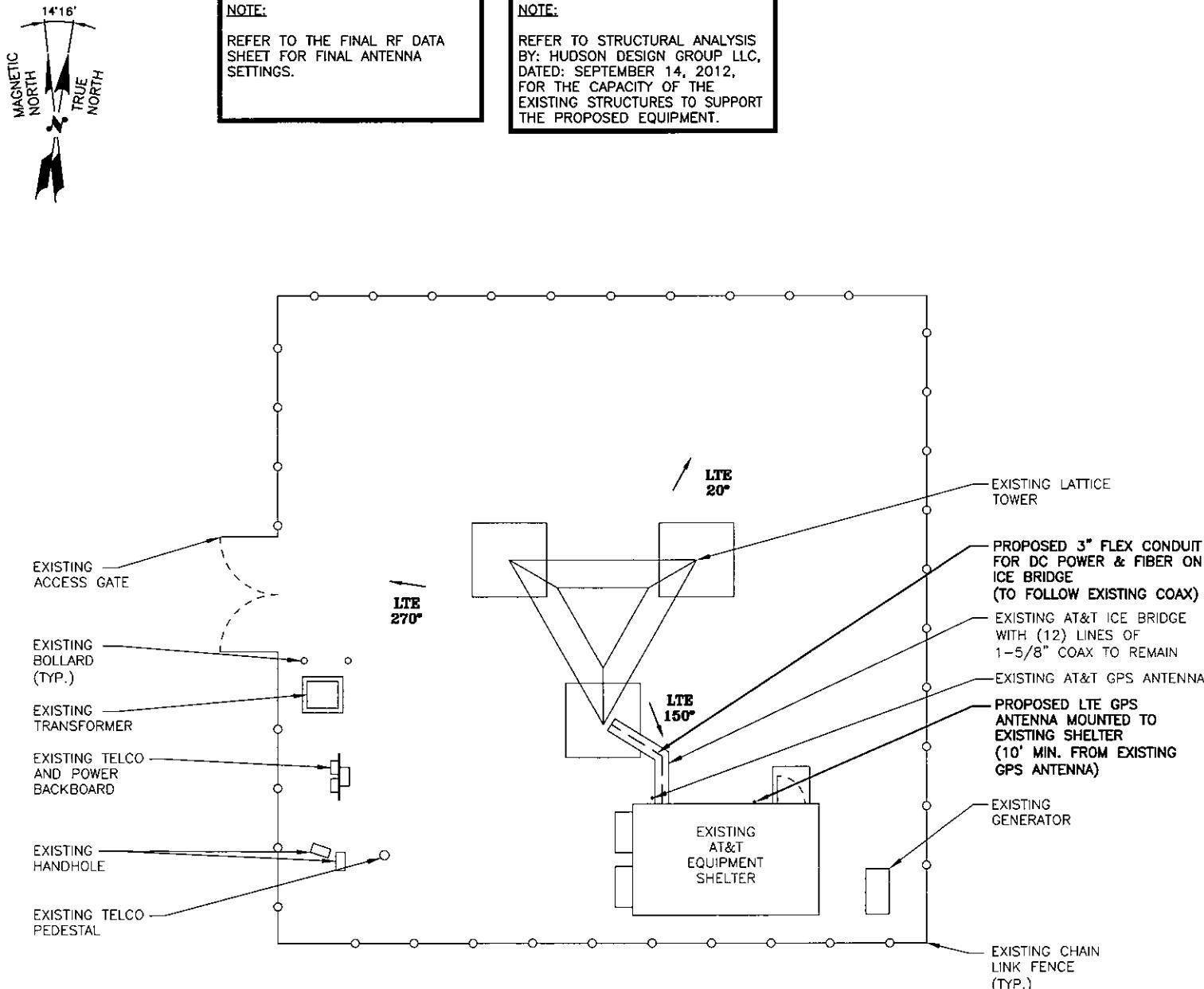


CALL TOLL FREE 1-800-922-4455 OR DIAL 811

### UNDERGROUND SERVICE ALERT



SITE NUMBER: CT1264  
 SITE NAME: FRANKLIN CT  
 5 TYLER DRIVE  
 NORTH FRANKLIN, CT 06254  
 NEW LONDON COUNTY



at&t  
 500 ENTERPRISE DRIVE, SUITE 3A  
 ROCKY HILL, CT 06067

|        |          |                         |              |     |    |     |     |
|--------|----------|-------------------------|--------------|-----|----|-----|-----|
| 1      | 10/12/12 | ISSUED FOR CONSTRUCTION | DD           | DC  | DP |     |     |
| 0      | 08/01/12 | ISSUED FOR REVIEW       | RS           | DC  | DP |     |     |
| NO.    | DATE     | REVISIONS               | BY           | CHK | WP | NO. | REV |
|        |          |                         |              |     |    |     |     |
| SCALE: | AS SHOWN | DESIGNED BY: DC         | DRAWN BY: RS |     |    |     |     |

STATE OF CONNECTICUT  
 CHIEF ENGINEER  
 NO. 24178  
 PROFESSIONAL ENGINEER  
 LICENSED  
 AT&T  
 TITLE SHEET  
 (LTE)  
 DRAWING NUMBER  
 REV  
 T-1  
 1

| GROUNDING NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENERAL NOTES |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <p>1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.</p> <p>2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.</p> <p>3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.</p> <p>4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.</p> <p>5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS 2 AWG STRANDED COPPER FOR OUTDOOR BTS.</p> <p>6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.</p> <p>7. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.</p> <p>8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.</p> <p>9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.</p> <p>10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.</p> <p>11. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWS COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.</p> <p>12. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/2 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50</p> <p>1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:<br/>     CONTRACTOR - NEXLINK<br/>     SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)<br/>     OWNER - AT&amp;T MOBILITY</p> <p>2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.</p> <p>3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.</p> <p>4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.</p> <p>5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.</p> <p>6. "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.</p> <p>7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.</p> <p>8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.</p> <p>9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.</p> <p>10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.</p> <p>11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.</p> <p>12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.</p> <p>13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.</p> <p>14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.</p> <p>15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (<math>F_y = 36</math> ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (<math>F_y = 36</math> ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.</p> <p>16. CONSTRUCTION SHALL COMPLY WITH UMTS SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&amp;T MOBILITY SITES."</p> <p>17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.</p> <p>18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.</p> <p>19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.</p> <p>20. APPLICABLE BUILDING CODES:<br/>     SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.<br/>     BUILDING CODE: 2003 IBC WITH 2005 CT SUPPLEMENT &amp; 2009 CT AMENDMENTS<br/>     ELECTRICAL CODE: REFER TO ELECTRICAL DRAWINGS<br/>     LIGHTENING CODE: REFER TO ELECTRICAL DRAWINGS</p> <p>SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:</p> <p>AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE;</p> <p>AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)</p> <p>MANUAL OF STEEL CONSTRUCTION, ASD, NINTH EDITION;</p> <p>TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-F, STRUCTURAL STANDARDS FOR STEEL</p> <p>ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES; REFER TO ELECTRICAL DRAWINGS FOR SPECIFIC ELECTRICAL STANDARDS.</p> <p>FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.</p> |               |

|                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                 |              |                                                                                                                                             |     |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                          |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------|----------|-------------------------|----|----|-----|---|----------|-------------------|----|----|----|----------|--|-----------|------------|--|--|-----------------|--|-----------------|--------------|--|--|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|  <p><b>Hudson</b><br/>Design Group, Inc.<br/>H D G</p> <p>1600 OSGOOD STREET<br/>BUILDING 2C NORTH, SUITE 309C<br/>N. ANDOVER, MA 01845<br/>TEL: (978) 557-5553<br/>FAX: (978) 336-5586</p> |          |  <p><b>NEXLINK</b><br/>GLOBAL SERVICES<br/>a UniTek GLOBAL SERVICES company<br/>800 MARSHALL PHELPS ROAD UNIT# 2A<br/>WINDSOR, CT 06095</p> |              | <p><b>SITE NUMBER: CT1264</b><br/><b>SITE NAME: FRANKLIN CT</b></p> <p>5 TYLER DRIVE<br/>NORTH FRANKLIN, CT 06254<br/>NEW LONDON COUNTY</p> |     |  <p>500 ENTERPRISE DRIVE, SUITE 3A<br/>ROCKY HILL, CT 06067</p> |  | <table border="1"> <tr> <td>1</td> <td>10/12/12</td> <td>ISSUED FOR CONSTRUCTION</td> <td>DD</td> <td>AC</td> <td>DBH</td> </tr> <tr> <td>0</td> <td>08/01/12</td> <td>ISSUED FOR REVIEW</td> <td>RS</td> <td>DC</td> <td>DB</td> </tr> <tr> <td colspan="2">NO. DATE</td> <td>REVISIONS</td> <td colspan="3">BY CHK APE</td> </tr> <tr> <td colspan="2">SCALE: AS SHOWN</td> <td>DESIGNED BY: DC</td> <td colspan="3">DRAWN BY: RS</td> </tr> </table> |  | 1                                        | 10/12/12 | ISSUED FOR CONSTRUCTION | DD | AC | DBH | 0 | 08/01/12 | ISSUED FOR REVIEW | RS | DC | DB | NO. DATE |  | REVISIONS | BY CHK APE |  |  | SCALE: AS SHOWN |  | DESIGNED BY: DC | DRAWN BY: RS |  |  |  <p>DANIEL P. HARRINGTON<br/>AT&amp;T<br/>No. 24178</p> |  |
| 1                                                                                                                                                                                                                                                                              | 10/12/12 | ISSUED FOR CONSTRUCTION                                                                                                                                                                                                         | DD           | AC                                                                                                                                          | DBH |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                          |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
| 0                                                                                                                                                                                                                                                                              | 08/01/12 | ISSUED FOR REVIEW                                                                                                                                                                                                               | RS           | DC                                                                                                                                          | DB  |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                          |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
| NO. DATE                                                                                                                                                                                                                                                                       |          | REVISIONS                                                                                                                                                                                                                       | BY CHK APE   |                                                                                                                                             |     |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                          |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
| SCALE: AS SHOWN                                                                                                                                                                                                                                                                |          | DESIGNED BY: DC                                                                                                                                                                                                                 | DRAWN BY: RS |                                                                                                                                             |     |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                          |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                 |              |                                                                                                                                             |     |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | <p>GENERAL NOTES<br/>(LTE)</p> <p>**</p> |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                 |              |                                                                                                                                             |     |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | <p>JOB NUMBER</p> <p>GN-1</p>            |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                 |              |                                                                                                                                             |     |                                                                                                                                                      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | <p>DRAWING NUMBER</p> <p>REV</p>         |          |                         |    |    |     |   |          |                   |    |    |    |          |  |           |            |  |  |                 |  |                 |              |  |  |                                                                                                                                              |  |



## **COMPOUND PLAN**

SCALE: 1/8" = 1'-0"

0 4'-0" 8'-0" 16'-0" 24'-0"

## EQUIPMENT PLAN

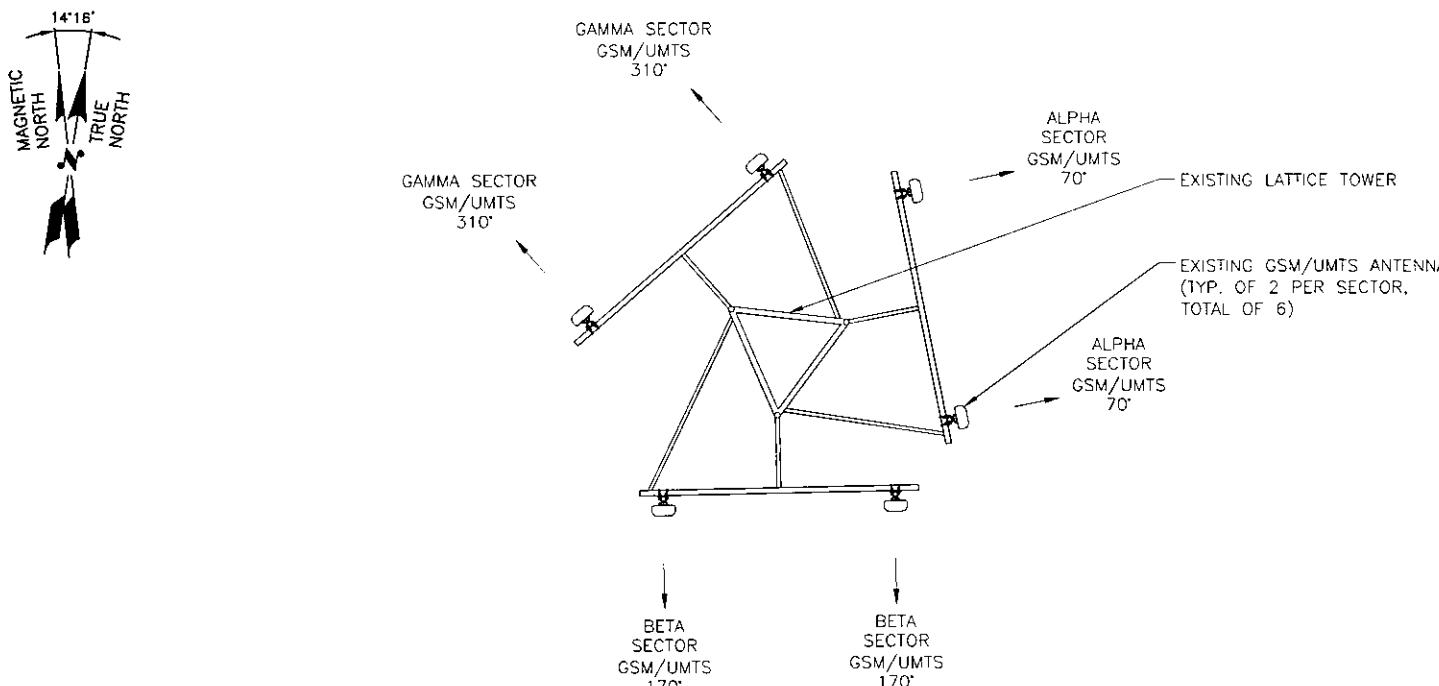
SCALE: 1/2"=1'-0"

0 1'-0" 2'-0" 4'-0" 6'-0"



1600 OSGOOD STREET  
BUILDING 20 NORTH, SUITE 3090  
N. ANDOVER, MA 01845

a UniTek GLOBAL SERVICES company  
800 MARSHALL PHELPS ROAD UNIT# 2A  
WINDSOR CT 06095

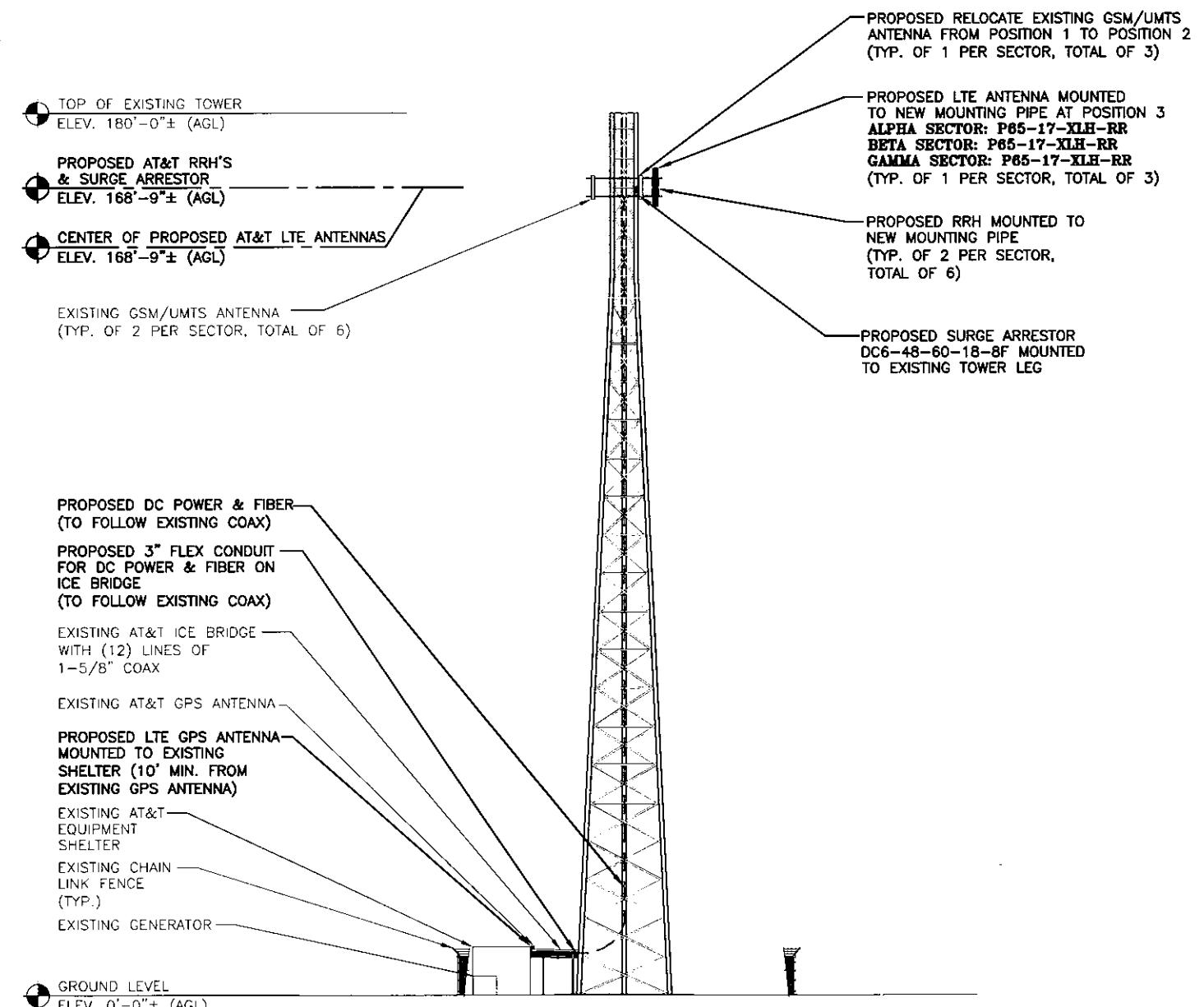

**SITE NUMBER: CT1264**

5 TYLER DRIVE  
NORTH FRANKLIN, CT 06254  
NEW LONDON COUNTY



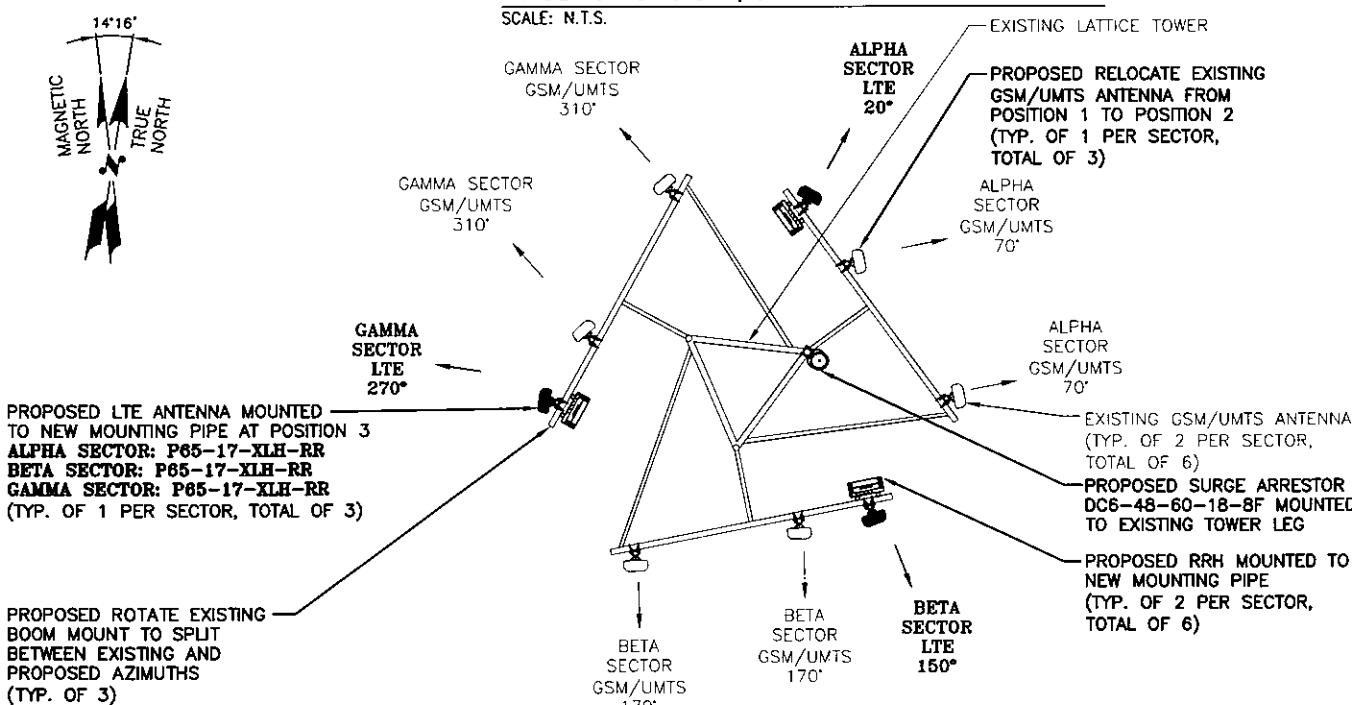
500 ENTERPRISE DRIVE, SUITE 3  
ROCKY HILL, CT 06067

|       |          |                         |    |          |      |             |                                        |                |     |
|-------|----------|-------------------------|----|----------|------|-------------|----------------------------------------|----------------|-----|
|       |          |                         |    |          |      |             | AT&T                                   |                |     |
| 1     | 10/12/12 | ISSUED FOR CONSTRUCTION | DD | DC       | DATE |             | ★ COMPOUND PLAN & EQUIPMENT PLAN (LTE) |                |     |
| 0     | 08/01/12 | ISSUED FOR REVIEW       | RE | DC       | DATE |             |                                        |                |     |
| NO.   | DATE     | REVISIONS               | BY | CHIEF    | RE   | No. 24178   | DEPARTMENT                             | DRAWING NUMBER | REV |
| SCALE | AS SHOWN | DESIGNED BY             | DC | DRAWN BY | RE   | 150-24178-1 | A-1                                    |                | 1   |



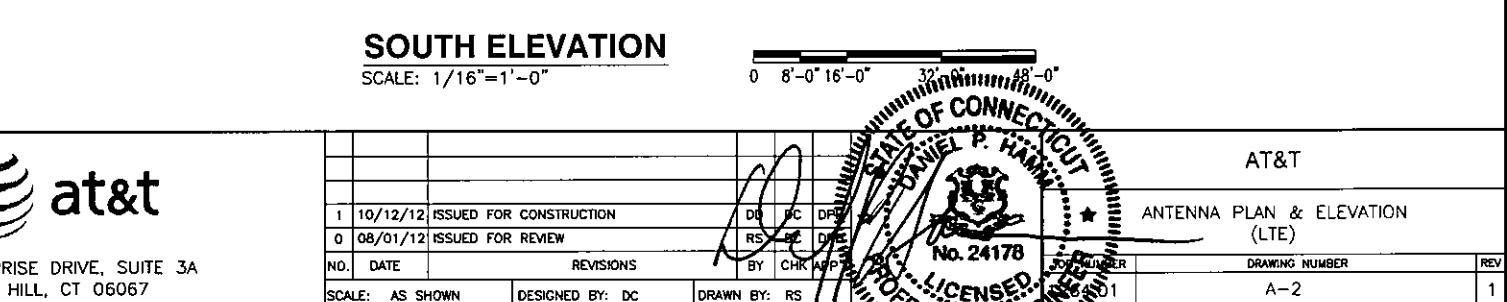

NOT

REFER TO STRUCTURAL ANALYSIS  
BY: HUDSON DESIGN GROUP LLC,  
DATED: SEPTEMBER 14, 2012,  
FOR THE CAPACITY OF THE  
EXISTING STRUCTURES TO SUPPORT  
THE PROPOSED EQUIPMENT.


**NOTE:**

REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS.




## EXISTING GSM/UMTS ANTENNA PLAN

SCALE: N.T.S.



## PROPOSED LTE ANTENNA PLAN

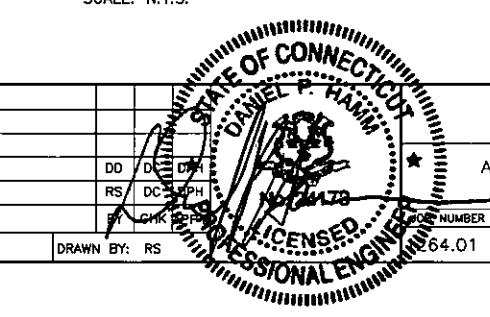
SCALE: N.T.





1600 OSGOOD STREET  
BUILDING 20 NORTH, SUITE 3090  
N. ANDOVER, MA 01845

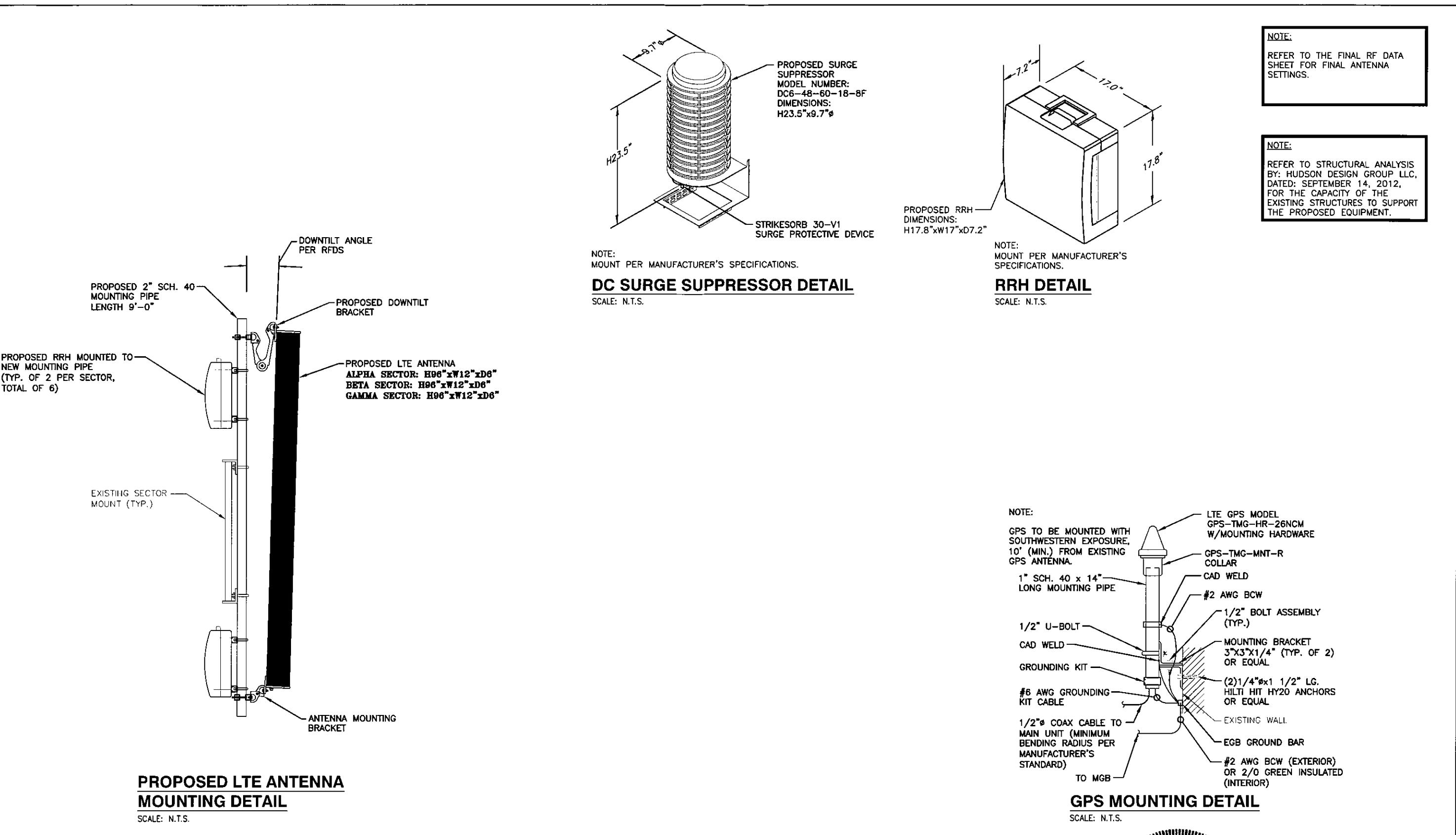



a UniTek GLOBAL SERVICES company  
800 MARSHALL PHELPS ROAD UNIT#:  
WINDSOR, CT 06095

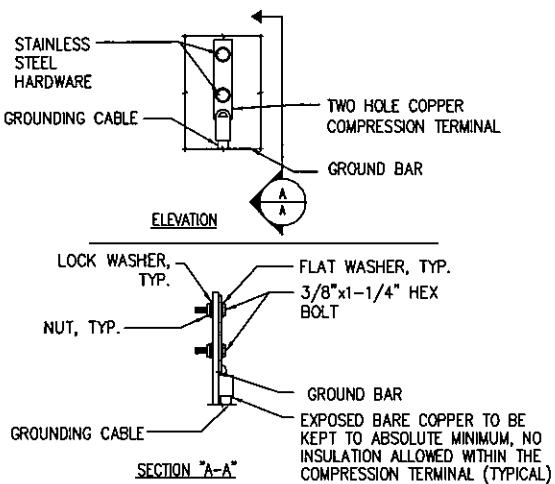
**SITE NUMBER: CT126**  
**SITE NAME: FRANKLIN C**

5 TYLER DRIVE  
NORTH FRANKLIN, CT 06255  
NEW LONDON COUNTY




500 ENTERPRISE DRIVE, SUITE  
ROCKY HILL, CT 06067

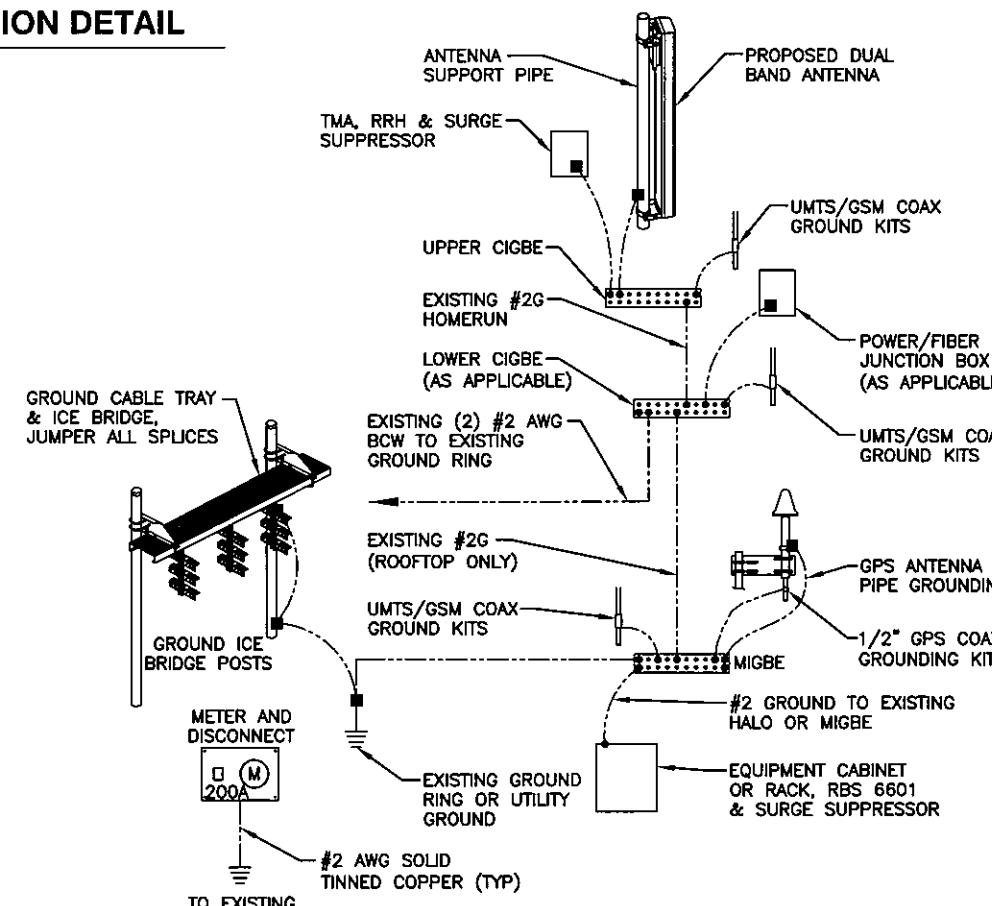



AT&T

## ANTENNA LAYOUT AND ELEVATION (LTE)

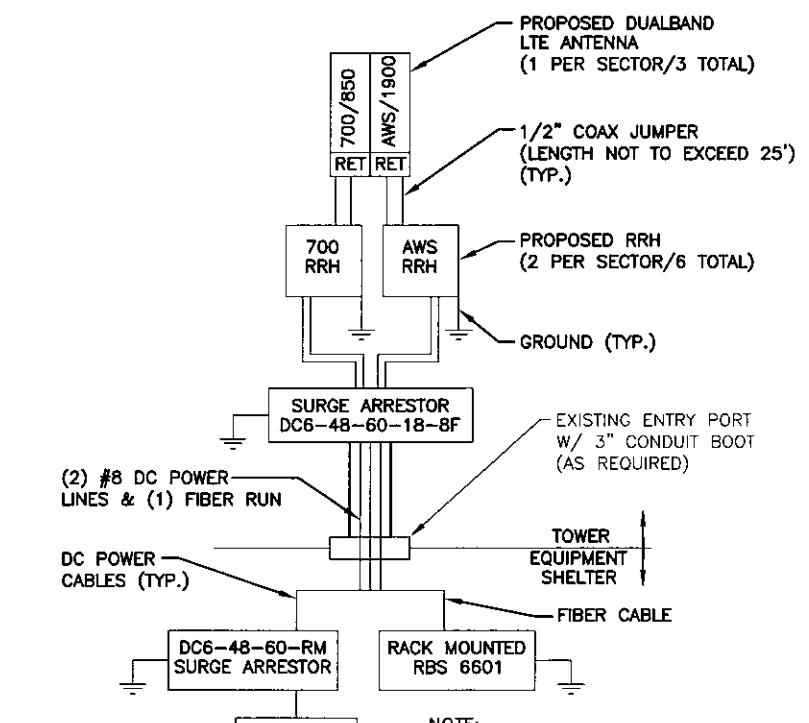
|                |     |
|----------------|-----|
| DRAWING NUMBER | REV |
| A-3            | 1   |




| 1 10/12/12 ISSUED FOR CONSTRUCTION |                 |              | DD DC DPH |  |  | RS DC DPH |  |  | BY CMC DPH |  |  | 10/12/12 |  |                | ★ ANTENNA LAYOUT AND ELEVATION (LTE) |                |  |     |
|------------------------------------|-----------------|--------------|-----------|--|--|-----------|--|--|------------|--|--|----------|--|----------------|--------------------------------------|----------------|--|-----|
| 0 08/01/12 ISSUED FOR REVIEW       |                 |              |           |  |  |           |  |  |            |  |  |          |  |                |                                      |                |  |     |
| NO.                                | DATE            | REVISIONS    |           |  |  |           |  |  |            |  |  |          |  | DRAWING NUMBER |                                      | DRAWING NUMBER |  | REV |
| SCALE: AS SHOWN                    | DESIGNED BY: DC | DRAWN BY: RS |           |  |  |           |  |  |            |  |  |          |  | 264.01         |                                      | A-3            |  | 1   |



NOTE:  
1. "DOUBLING UP" OR "STACKING" OF CONNECTION IS NOT PERMITTED.  
2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS.  
3. CADWELD DOWNLOADS FROM UPPER EGB, LOWER EGB, AND MGB.


### TYPICAL GROUND BAR CONNECTION DETAIL

1  
—  
N.T.S.



### GROUNDING RISER DIAGRAM

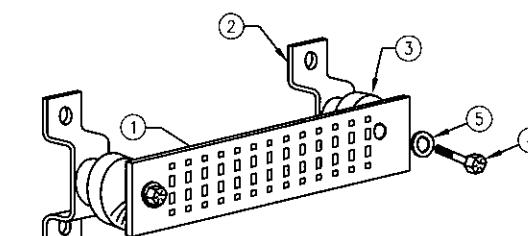
3  
—  
N.T.S.



### PLUMBING DIAGRAM

2  
—  
N.T.S.

EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.


#### SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2)  
GENERATOR FRAMEWORK (IF AVAILABLE) (#2)  
TELCO GROUND BAR  
COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2)  
+24V POWER SUPPLY RETURN BAR (#2)  
-48V POWER SUPPLY RETURN BAR (#2)  
RECTIFIER FRAMES.

#### SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2)  
EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2)  
METALLIC COLD WATER PIPE (IF AVAILABLE) (#2)  
BUILDING STEEL (IF AVAILABLE) (#2)

| WIRELESS SOLUTIONS INC. |      |              |                                  |
|-------------------------|------|--------------|----------------------------------|
| NO.                     | REQ. | PART NO.     | DESCRIPTION                      |
| ①                       | 1    | HLGB-0420-IS | SOLID GND. BAR (20" x 4" x 1/4") |
| ②                       | 2    | —            | WALL MTG. BRKT.                  |
| ③                       | 2    | —            | INSULATORS                       |
| ④                       | 4    | —            | 5/8"-11x1" H.H.C.S.              |
| ⑤                       | 4    | —            | 5/8" LOCKWASHER                  |



### GROUND BAR DETAIL

4  
—  
N.T.S.