

November 12, 2021

Ms. Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification New Cingular Wireless PCS LLC ("AT&T") Site CT1104

45 Maple Ridge Drive, Farmington, CT 06032 (the "Property")

Latitude: 41-43-04.7 N Longitude: 72-46-09.5 W

Dear Ms. Bachman:

AT&T currently maintains (6) antennas at the 88' level on the existing 102' laminated wood utility structure pole # 8012 ("Tower") at 45 Maple Ridge Drive, in Farmington, CT. The Tower and property are owned by Connecticut Light & Power ("Eversource"). Eversource received CT Siting Council ("Council") approval on September 20, 2021 under Sub-Petition 1293-FA-02 to replace the existing Tower with a 95' weathering steel transmission structure ("Structure'). AT&T intends to modify its facility by removing all its equipment on the existing Tower by replacing the (6) existing antennas with (3) DMP65R-BU6DA antennas, & (3) TPA65R-BU6DA-K antennas and adding (6) TMABPD7823VG12A & (6) TMA2124F03V5-1D TMAs on the new Structure. The height of AT&T's proposed antennas is 92' on the new Structure.

This modification includes B2, B5, and B12 hardware that is both 4G (LTE) and 5GNR capable through remote software configuration and either or both services may be turned on or off at various times.

AT&T's original facility received Council approval in Petition 644 on October 29, 2003. The new Eversource Structure approval contained no conditions that could feasibly be violated by AT&T proposed modifications, including facility height or mounting restrictions. AT&T's modification complies with the Council's approval of the new Structure.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A") §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A §16-50j-72(b)(2). In accordance with to R.C.S.A §16-50j-73, a copy of this letter is being sent to the Ms. Kathleen A. Blonski, Town Manager, Town of Farmington, Ms. Shannon Rutherford. P.E., Town Planner, Town of Farmington, and Eversource as structure and property owner.

The planned modification of the facility falls squarely within those activities explicitly provided for in R.C.S.A §16-50j-72(b)(2). Specifically:

- 1. The proposed modifications will not result in an increase in the height of the new structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The new structure and foundation can support the proposed loading.

For the foregoing reasons, AT&T respectfully submits the proposed modifications to the above referenced telecommunication facility constitute an exempt modification pursuant to R.C.S.A §16-50j-72(b)(2).

Sincerely,

Hollis M. Redding SAI Communications, LLC 12 Industrial Way Salem, NH 03079 Mobile: 860-834-6964

hredding@saigrp.com

**Enclosures** 

Cc:

Ms. Kathleen A. Blonski, Town Manager, Town of Farmington Ms. Shannon Rutherford P.E., Town Planner, Town of Farmington Eversource as structure & property owner

### **Power Density**

### **Existing Loading on Tower**

| Carrier         | # of<br>Channels | ERP/Ch<br>(W) | Antenna<br>Centerline<br>Height (ft) | Power Density (mW/cm^2) | Freq.<br>Band<br>(MHz**) | Limit<br>S (mW<br>/cm^2) | %MPE   |
|-----------------|------------------|---------------|--------------------------------------|-------------------------|--------------------------|--------------------------|--------|
| Other Carriers* |                  | (11)          | True grit (Tu)                       | (, 6,                   | ,,,,,,                   | ,,                       | 2.75%  |
| AT&T            | 2                | 1791          | 88                                   | 0.1916                  | 2300                     | 1.0000                   | 1.92%  |
| AT&T            | 2                | 1104          | 88                                   | 0.1181                  | 734                      | 0.4893                   | 2.41%  |
| AT&T            | 2                | 2203          | 88                                   | 0.2356                  | 1900                     | 1.0000                   | 2.36%  |
| AT&T            | 2                | 492           | 88                                   | 0.0526                  | 880                      | 0.5867                   | 0.90%  |
| AT&T            | 2                | 419           | 88                                   | 0.0448                  | 880                      | 0.5867                   | 0.76%  |
| AT&T            | 2                | 817           | 88                                   | 0.0874                  | 1900                     | 1.0000                   | 0.87%  |
| Site Total      |                  |               |                                      |                         |                          |                          | 11.97% |

<sup>\*</sup>Per CSC Records (available upon request, includes calculation formulas)

### **Proposed Loading on new Structure**

| Carrier         | # of<br>Channels | ERP/Ch<br>(W) | Antenna<br>Centerline<br>Height (ft) | Power<br>Density<br>(mW/cm^2) | Freq.<br>Band<br>(MHz**) | Limit<br>S (mW<br>/cm^2) | %МРЕ   |
|-----------------|------------------|---------------|--------------------------------------|-------------------------------|--------------------------|--------------------------|--------|
| Other Carriers* |                  |               |                                      |                               |                          |                          | 2.75%  |
| AT&T            | 1                | 1476          | 92                                   | 0.0789                        | 700                      | 0.4667                   | 1.54%  |
| AT&T            | 1                | 1000          | 92                                   | 0.0535                        | 850                      | 0.5667                   | 0.86%  |
| AT&T            | 1                | 5070          | 92                                   | 0.2712                        | 2300                     | 1.0000                   | 2.47%  |
| AT&T            | 1                | 1000          | 92                                   | 0.0535                        | 850                      | 0.5667                   | 0.86%  |
| AT&T            | 1                | 2951          | 92                                   | 0.1578                        | 700                      | 0.4667                   | 3.07%  |
| AT&T            | 1                | 1000          | 92                                   | 0.0535                        | 850                      | 0.5667                   | 0.86%  |
| AT&T            | 1                | 1285          | 92                                   | 0.0687                        | 2100                     | 1.0000                   | 0.62%  |
| AT&T            | 3                | 4842          | 92                                   | 0.7769                        | 1900                     | 1.0000                   | 7.06%  |
| Site Total      |                  |               |                                      |                               |                          |                          | 20.09% |

<sup>\*</sup>Per CSC Records (available upon request, includes calculation formulas)

<sup>\*\*</sup> If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880

<sup>\*\*</sup> If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880



# CTL01104 - LTE 6C, 4TX4RX, 5G NR, BWE EVERSOURCE STRUCT. NO. 8012 FARMINGTON NU MAPLE RIDGE DRIVE 45 MAPLE RIDGE DRIVE FARMINGTON, CT 06032

### GENERAL NOTES

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- DRAWINGS INDICATE THE MINIMUM STANDARDS. BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS. CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES. LAWS. CODES. RULES OR REGULATIONS WITH NO INCREASE IN COSTS.

- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.

### SITE DIRECTIONS **TO:** 45 MAPLE RIDGE DRIVE FARMINGTON, CT 06032 FROM: 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT 1. TAKE RAMP LEFT FOR I-91 1.7 MI AT EXIT 22N, TAKE RAMP RIGHT FOR CT-9 NORTH TOWARD NEW BRITAIN 10.0 MI. 3. AT EXIT 30, TAKE RAMP RIGHT FOR CT-71 TOWARD CORBINS CORNER 0.3 MI 0.9 MI. 4. TURN RIGHT ONTO CT-71/ HARTFORD 0.6 MI. 5. TURN LEFT ONTO SOUTH RD. 0.2 MI. 6. TURN LEFT ONTO MAPLE RIDGE RD. ARRIVE AT 45 MAPLE RIDGE DR, FARMINGTON, CT 06032



### PROJECT SUMMARY

- THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO
- B. REMOVE ALL EXISTING AT&T EQUIPMENT FROM EXISTING
- C. REMOVE (9) RRUS WITHIN THE EXISTING AT&T EQUIPMENT EQUIPMENT SHELTER.
- D. INSTALL (12) PENTAPLEXER WITHIN THE EXISTING AT&T

- G. INSTALL NEW ANTENNA MOUNT ON NEW TRANSMISSION TOWER AT 92' RAD CENTER.
- H. INSTALL (24) 1-5/8" COAX CABLES
- INSTALL (6) NEW ANTENNAS AND (12) TMA ON NEW TRANSMISSION TOWER AT 92' RAD CENTER
- INSTALL NEW CABLE ICE-BRIDGE FOR THE NEW TRANSMISSION

### PROJECT INFORMATION

PROJECT COORDINATES:

AT&T SITE NUMBER: CTL01104 AT&T SITE NAME: FARMINGTON NU MAPLE RIDGE DR. SITE ADDRESS: EVERSOURCE STRUCT. NO. 8012 45 MAPLE RIDGE DRIVE FARMINGTON, CT 06032 AT&T PACE JOB PACE JOB 1 - MRCTB046571 PACE JOB 2 - MRCTB047034 PACE JOB 3 - MRCTB047029 PACE JOB 4 - MRCTB047537 LESSEE/APPLICANT: AT&T MOBILITY 84 DEERFIELD LANE, MERIDEN, CT 06450 CONTACT PERSON: TIM BURKS SAI COMMUNICATIONS (860) 989-0001 CENTEK ENGINEERING, INC. **ENGINEER:** 63-2 NORTH BRANFORD RD. BRANFORD, CT. 06405

LATITUDE: 41°-43'-04.7"N

LONGITUDE: 72°-46'-09.5"W

GROUND ELEVATION: ±235' AMSL

| SHEET    | INDEX                                           |      |
|----------|-------------------------------------------------|------|
| SHT. NO. | DESCRIPTION                                     | REV. |
| T-1      | TITLE SHEET                                     | 0    |
| N-1      | GENERAL NOTES AND SPECIFICATIONS                | 0    |
| C-1      | EXISTING AND PROPOSED COMPOUND PLANS            | 0    |
| C-2      | EQUIPMENT PLANS, TOWER ELEVATION AND COAX PLAN  | 0    |
| C-3      | ANTENNA PLANS, ELEVATIONS, AND ANTENNA SCHEDULE | 0    |
| C-4      | TYPICAL EQUIPMENT DETAILS                       | 0    |
| E-1      | ELECTRICAL GROUNDING PLAN                       | 0    |
| E-2      | TYPICAL ELECTRICAL DETAILS                      | 0    |
| E-3      | ELECTRICAL SPECIFICATIONS                       | 0    |
| E-4      | SCHEMATIC DIAGRAM AND NOTES                     | 0    |
| E-5      | WIRING DIAGRAM                                  | 0    |
| E-6      | PLUMBING DIAGRAM                                | 0    |



10/20/21 SCALE: AS NOTED JOB NO. 21122.00

TITLE SHEET



### NOTES AND SPECIFICATIONS

### **DESIGN BASIS:**

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

- 1. DESIGN CRITERIA:
- RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
- NOMINAL/ULTIMATE DESIGN SPEED: 97 MPH (Vasd) (EXPOSURE C/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

### SITE NOTES

CONTRACT DOCUMENTS.

- 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
- 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE
- 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
- 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

### **GENERAL NOTES**

- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL
- CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
- 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
- LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
- 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS.
- 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
- 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
- 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
- 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.
- 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION. POURING TOWER FOUNDATIONS. BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN.

### STRUCTURAL STEEL

- 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES)——ASTM A992 (FY = 50 KSI) B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36 (FY = 36 KSI)
- C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B, (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)——ASTM A500 GRADE B, (FY = 42 KSI)
- PIPE---ASTM A53 (FY = 35 KSI)
- CONNECTION BOLTS---ASTM A325-N U-BOLTS---ASTM A36
- ANCHOR RODS---ASTM F 1554 WELDING ELECTRODE———ASTM E 70XX
- 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
- STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
- 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
- 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
- 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
- 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
- 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
- 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
- 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
- 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
- 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
- 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
- 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
- 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
- 16. FABRICATE BEAMS WITH MILL CAMBER UP.
- 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
- 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
- 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
- 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

 $\boldsymbol{\sigma}$ 

488 488 Vort

16C,

10/20/21

SCALE: AS NOTED JOB NO. 21122.00

 $\geqslant$ 

**GENERAL NOTES** AND **SPECIFICATIONS** 



Sheet No. <u>2</u> of <u>1</u>2



at&t

DATE: 10/20/21
SCALE: AS NOTED
JOB NO. 21122.00

EXISTING AND PROPOSED

COMPOUND PLANS

### EQUIPMENT GROUNDING NOTE:

ALL (E/P) EQUIPMENT IS TO BE BONDED TO THE EXISTING GROUNDING SYSTEM. IF AN EXISTING GROUNDING SYSTEM IS NOT PRESENT OR IS NOT OPERATIONAL, THE CONTRACTOR IS TO CONTACT THE ENGINEER OF RECORD.











### STRUCTURAL COMPLIANCE

### ANTENNA MOUNTS

A STRUCTURAL ANALYSIS OF THE ANTENNA MOUNTS WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING..

REFER TO THE ANTENNA MOUNT ANALYSIS REPORT PREPARED BY HUDSON DESIGN GROUP REV.1 DATED 09/30/21 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.

### TOWER AND TOWER FOUNDATION

A STRUCTURAL ANALYSIS OF THE TOWER AND TOWER FOUNDATION WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING.

REFER TO THE STRUCTURAL ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING (PROJECT # 21122.00) DATED 11/09/21 FOR ADDITIONAL INFORMATION AND REQUIREMENTS.

NOTE: NO EQUIPMENT SHALL BE INSTALLED ON THE HOSTING STRUCTURE WITHOUT A PASSING STRUCTURAL ANALYSIS REPORT AND CONTRACTOR PRIOR CONFIRMATION THAT ANY AND ALL REQUISITE MODIFICATIONS HAVE BEEN COMPLETED.



4 PROPOSED COAX CABLE ROUTING PLAN
C-2 SCALE: NOT TO SCALE



10/20/21

SCALE: AS NOTED

JOB NO. 21122.00

EQUIPMENT PLANS, TOWER ELEVATION AND COAX PLAN

 $\left(\begin{array}{c} 3 \\ 0 \end{array}\right)$ 

PROPOSED SOUTHWEST TOWER ELEVATION

SCALE: NOT TO SCALE

### **EQUIPMENT GROUNDING NOTE:**

ALL (E/P) EQUIPMENT IS TO BE BONDED TO THE EXISTING GROUNDING SYSTEM. IF AN EXISTING GROUNDING SYSTEM IS NOT PRESENT OR IS NOT OPERATIONAL, THE CONTRACTOR IS TO CONTACT THE ENGINEER OF RECORD.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANTENNA SCHEDULE |                      |                     |                   |     |                                                                        |                                                                        |                         |                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|---------------------|-------------------|-----|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|------------------------------------------------|--|
| SECTOR EXISTING/PROPOSED BAND ANTENNA SIZE (INCHES) (L x W x D) ANTENNA (L x W x D) AN |                  |                      |                     |                   |     |                                                                        |                                                                        |                         | (E/P) SURGE ARRESTOR (QTY)                     |  |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED         | LTE 700 BC/5G850/WCS | CCI DMP65R-BU6DA    | 71.2 × 20.7 × 7.7 | 92' | 50° TMA: (P) TMABPD7823VG12A (2), DIPLEXER: (E)(G) DBC2055F1V1-2 (2),  | (E) RRUS-32 B30 (1), (P) RADIO 4449 B5/B12 (2)                         | 1-%"ø COAX (8)          | (E) TSXDC-4310FM (4), (P) TSXDC-4310FM (4)(G)  |  |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED         | LTE 700B14/PCS/AWS   | CCI TPA-65R-BU6DA-K | 71.2 × 20.7 × 7.7 | 92' | 50° TMA: (P) TMA2124F03V5-1D (2), PENTAPLEXER: (P)(G) 5PX-0726-0 (4),  | (P) RADIO 4478 B14 (1), (P) RADIO 4415 B25 (1), (P) RADIO 4426 B66 (1) | 1-78 & COAX (8)         | (E) APTDC-BDFDM-DB (10), (P) TSXDC-43FM (4)(G) |  |
| B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED         | LTE 700 BC/5G850/WCS | CCI DMP65R-BU6DA    | 71.2 × 20.7 × 7.7 | 92' | 160° TMA: (P) TMABPD7823VG12A (2), DIPLEXER: (E)(G) DBC2055F1V1-2 (2), | (E) RRUS-32 B30 (1), (P) RADIO 4449 B5/B12 (2)                         | 1 5/"a COAV (9)         | (E) TSXDC-4310FM (4), (P) TSXDC-4310FM (4)(G)  |  |
| B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED         | LTE 700B14/PCS/AWS   | CCI TPA-65R-BU6DA-K | 71.2 × 20.7 × 7.7 |     | TMA: (P) TMA2124F03V5-1D (2), PENTAPLEXER: (P)(G) 5PX-0726-0 (4),      | (P) RADIO 4478 B14 (1), (P) RADIO 4415 B25 (1), (P) RADIO 4426 B66 (1) | 1-%"ø COAX (8)          | (E) APTDC-BDFDM-DB (10), (P) TSXDC-43FM (4)(G) |  |
| C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED         | LTE 700 BC/5G850/WCS | CCI DMP65R-BU6DA    | 71.2 × 20.7 × 7.7 | 92' | 280° TMA: (P) TMABPD7823VG12A (2), DIPLEXER: (E)(G) DBC2055F1V1-2 (2), | (E) RRUS-32 B30 (1), (P) RADIO 4449 B5/B12 (2)                         | 4 5/"4 COAY (8)         | (E) TSXDC-4310FM (4), (P) TSXDC-4310FM (4)(G)  |  |
| C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROPOSED         | LTE 700B14/PCS/AWS   | CCI TPA-65R-BU6DA-K | 71.2 × 20.7 × 7.7 | +   | 280° TMA: (P) TMA2124F03V5-1D (2), PENTAPLEXER: (P)(G) 5PX-0726-0 (4), | (P) RADIO 4478 B14 (1), (P) RADIO 4415 B25 (1), (P) RADIO 4426 B66 (1) | 1− <b>%</b> "ø COAX (8) | (E) APTDC-BDFDM-DB (10), (P) TSXDC-43FM (4)(G) |  |









PROPOSED ANTENNA PLAN

C-3 SCALE: 3/8" = 1'-0"



TYPICAL TMA MOUNTING DETAIL C-3 SCALE: 1/2" = 1'-0"

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |      | PROFESSIONAL ENGINEER SEAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |     |     |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|--------------------------------------------|
| AIX: MODIFII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Z I Z Engineering                              |      | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     |     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Centered on Solutions**                        | 12to | O STATE CONNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |     |                                            |
| CTLOHO4 - LTE6C, 4TX4RX, 5G NR, BWE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |      | LINE OF CENTRAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (203) 488-0580                                 |      | THE SECOND STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |     |                                            |
| EVERSOURCE STRUCT, NO. 8012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (203) 488-838/ Fax<br>63-2 North Branford Road |      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |     |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Branford, CT 06405                             |      | 11 0 1000 1.00 × 12 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |     |                                            |
| TARMING I ON NO MAPLE RIDGE DEIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |      | SCHOOL STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |     |     |                                            |
| AF MARIE DINCE CADAINICATON OF | :<br>-<br>-<br>(                               |      | III WONAL ET SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0  11/09/21 | ASC | TJR | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRU |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 DC+07-100 VVVVV                            |      | Company of the Compan |             |     |     |                                            |

DATE: 10/20/21 SCALE: AS NOTED JOB NO. 21122.00

ANTENNA PLANS, ELEVATIONS, AND ANTENNA SCHEDULE



- INSTALL ANCHORS/FASTENERS A MAXIMUM OF 0'-6" ON CENTERS TOTAL OF (9)
  FASTENERS PER UNISTRUT.
  - HILTI HTB TOGGLER BOLT 3/8" WITH SRH SCREW.
  - "SRH SCREW" DENOTES 3/8" ø x 2  $\frac{1}{2}$ " LONG MACHINE SCREW WITH ROUND HEAD (COMBINATION SLOTTED/PHILLIPS)
- 2. MOUNT RRU TO UNISTRUT WITH 3/8" WINISTRUT BOLTING HARDWARE AND SPRING NUTS. TYPICAL FOUR PER BRACKET.
- 3. NO PAINTING OF THE RRH OR SOLAR SHIELD IS ALLOWED.







|                 | ALPH                   | IA/BETA/GAMMA ANTENNA                                |                |
|-----------------|------------------------|------------------------------------------------------|----------------|
|                 | EQUIPMENT              | DIMENSIONS                                           | WEIGHT         |
| MAKE:<br>MODEL: | CCI<br>DMP65R—BU6DA    | 72"L x 20"W x 7.7"D                                  | 79.4 LBS.      |
| MAKE:<br>MODEL: | CCI<br>TPA-65R-BU6DA-K | 72"L x 20"W x 7.7"D                                  | 69 LBS.        |
|                 |                        | ATE FINAL EQUIPMENT MODEL<br>AGER PRIOR TO ORDERING. | SELECTION WITH |

PROPOSED ANTENNA DETAIL SCALE: NOT TO SCALE







RADIO 4415 B25

RADIO 4478 B14

RADIO 4449 B5/B12

|                 | EQUIPMENT                     | DIMENSIONS              | WEIGHT   | CLEARANCES                                                  |
|-----------------|-------------------------------|-------------------------|----------|-------------------------------------------------------------|
| MAKE:<br>MODEL: | ERICSSON<br>RADIO 4415 B25    | 16.5"L x 13.4"W x 5.9"D | ±46 LBS. | BEHIND ANT.: 8" MI<br>BELOW ANT.: 20" M<br>BELOW RRU: 16" M |
| MAKE:<br>MODEL: | ERICSSON<br>RADIO 4449 B5/B12 | 14.9"L x 13.2"W x 5.4"D | ±73 LBS. | BEHIND ANT.: 8" MI<br>BELOW ANT.: 20" M<br>BELOW RRU: 16" M |
| MAKE:<br>MODEL: | ERICSSON<br>RADIO 4478 B14    | 16.5"L x 13.4"W x 5.9"D | ±59 LBS. | BEHIND ANT.: 8" MI<br>BELOW ANT.: 20" M<br>BELOW RRU: 16" M |







| PENTAPLEXER                    |                                                           |        |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------|--------|--|--|--|--|--|
| EQUIPMENT                      | DIMENSIONS                                                | WEIGHT |  |  |  |  |  |
| MAKE: CCI<br>MODEL: 5PX-0726-0 | 9.2"H x 19.02"W x 1.73"D                                  | 12-LBS |  |  |  |  |  |
|                                | DINATE FINAL EQUIPMENT MODE<br>TON MANAGER PRIOR TO ORDER |        |  |  |  |  |  |











TMABPD7823VG12A

TMA2124F03V5-1D

| TMA                       |                          |            |  |  |  |  |
|---------------------------|--------------------------|------------|--|--|--|--|
| EQUIPMENT                 | DIMENSIONS               | WEIGHT     |  |  |  |  |
| MODEL: TMABPD7823VG12A 10 | ).6"L x 11.04"W x 3.75"D | ±25 LBS.   |  |  |  |  |
| MODEL: TMA2124F03V5-1D    | 9.6"L x 5"W x 8.27"D     | ±17.8 LBS. |  |  |  |  |

NOTES:

1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING.







at&t

10/20/21 SCALE: AS NOTED JOB NO. 21122.00

> TYPICAL **EQUIPMENT DETAILS**



1 ELECTRICAL GROUNDING PLAN
E-1 SCALE: NOT TO SCALE

### GROUNDING PLAN NOTES

- 1) SECTOR GROUND BAR.
- 2 UPPER TOWER MOUNTED GROUND BAR
- BOND UPPER TOWER MOUNTED GROUND BAR TO LOWER TOWER MOUNTED GROUND BAR (2 GROUND LEADS)
- 4 ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BCW.
- 5 BOND ANTENNA MOUNTING PIPES TO SECTOR GROUND BAR. (TYPICAL)
- 6 BOND LOWER TOWER MOUNTED GROUND BAR TO TOWER GROUND RING (BY OTHERS). TYP. OF 2.
- 7 LOWER TOWER MOUNTED GROUND BAR
- 8 ICE BRIDGE POST AND COVER. BOND EACH SECTION AND SUPPORT TO COMPOUND GROUND RING TYP.
- BOND NEW ICE-BRIDGE SECTION TO EXISTING ICE-BRIDGE
- BOND LOWER TOWER MOUNTED GROUND BAR TO TOWER STEEL.

### GENERAL GROUNDING NOTES

- EXISTING COMPOUND GROUND RING SHOULD BE CONNECTED TO THE NEW TOWER GROUND RING BEING INSTALLED BY OTHERS.
- 2. ALL SURGE SUPPRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER MANUFACTURER'S SPECIFICATIONS
- UNLESS OTHERWISE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS SHOWN SHALL BE #2 AWG (SOLID TINNED BCW – EXTERIOR).
- 4. BOND CABLE TRAY AND ICE BRIDGE SECTIONS TOGETHER WITH #6
  AWG STRANDED GREEN INSULATED JUMPERS.
- 5. ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BCW.
- 6. BOND ALL EQUIPMENT CABINETS AND BATTERY CABINETS TO GROUND PER MANUFACTURER'S SPECIFICATIONS.
- 7. ALL BONDS TO TOWER SHALL BE MADE IN STRICT ACCORDANCE WITH SPECIFICATIONS OF TOWER MANUFACTURER OR STRUCTURAL ENGINEER.
- 8. REFER TO GROUNDING PLAN FOR LOCATION OF GROUNDING DEVICES.
- 9. REFER TO ALL ELECTRICAL AND GROUNDING DETAILS.
- 10. COORDINATE ALL TOWER MOUNTED EQUIPMENT WITH OWNER.
- 11. ALL TOWER MOUNTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE BONDED TO THE SECTOR GROUND BAR PER MANUFACTURER'S SPECIFICATIONS.
- 12. ALL GROUNDING SHALL BE IN ACCORDANCE WITH NEC AND OWNER'S REQUIREMENTS.
- 13. COORDINATE WITH EVERSOURCE TRANSMISSION DEPARTMENT REPRESENTATIVE TO DETERMINE ADDITIONAL GROUNDING REQUIREMENTS. PROVIDE ALL REQUIRED ELEMENTS TO MEET EVERSOURCE APPROVAL.
- 14. COORDINATE WITH TOWER OWNER BEFORE INSTALLING ANY GROUNDING ELEMENTS ON TOWER OR BONDING TO EXISTING TOWER GROUND RING.

| <u>a</u>                   | • | +0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | של                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /                |   |                                          |   |                                    |                                  |
|----------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|------------------------------------------|---|------------------------------------|----------------------------------|
| PROFESSIONAL ENGINEER SEAL |   | The state of the s | The Original Property of the Parket of the P | THE CONTRACTOR OF THE PARTY OF | WITTER SEE VIIII |   | 11 000 100 10 10 10 10 10 10 10 10 10 10 |   | SONAL ELECTION                     | . 网络黄檀园园生物中学的大学                  |
|                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |   |                                          | Λ | 0                                  | <u>ה</u>                         |
|                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 4 |                                          |   | 0   11/09/21   ASC                 |                                  |
|                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |   |                                          |   | ASC                                |                                  |
|                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |   |                                          |   | TJR                                | 70 0,/III                        |
|                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |   |                                          |   | CONSTRUCTION DRAWINGS - ISSUED FOR | MOLEGICACIÓN VO ANTINO VO MANAGO |

3) 488-0580 3) 488-8587 Fax 2 North Branford Road nford, CT 06405

(203) 488-058C (203) 488-8587 63-2 North Bra

STRUCT. NO. 8012

EVERSOURCE STRUC

ATE: 10/20/21

SCALE: AS NOTED

JOB NO. 21122.00

ELECTRICAL GROUNDING PLAN

E-1

Sheet No. <u>7</u> o



10/20/21

**TYPICAL** 

**ELECTRICAL** DETAILS

### ELECTRICAL SPECIFICATIONS

### **SECTION 16010**

### 1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE. PRIOR TO SUBMITTAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3—RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
- 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
- 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

### SECTION 16111

### 1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

|                             | CONDUI                        | SCHEDULE SECTION 16111                                                                                                  |                                                           |
|-----------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| CONDUIT TYPE                | NEC REFERENCE                 | APPLICATION                                                                                                             | MIN. BURIAL DEPTH (PER<br>NEC TABLE 300.5) <sup>2,3</sup> |
| ЕМТ                         | ARTICLE 358                   | INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS                                                                          | N/A                                                       |
| RMC, RIGID GALV.<br>STEEL   | ARTICLE 344,<br>300.5, 300.50 | ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.                                                       | 6 INCHES                                                  |
| PVC, SCHEDULE 40            | ARTICLE 352,<br>300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. 1 | 18 INCHES                                                 |
| PVC, SCHEDULE 80            | ARTICLE 352,<br>300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. 1     | 18 INCHES                                                 |
| LIQUID TIGHT FLEX.<br>METAL | ARTICLE 350                   | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                               | N/A                                                       |
| FLEX. METAL                 | ARTICLE 348                   | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                               | N/A                                                       |

1 PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION.

<sup>2</sup> UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24'.

<sup>3</sup> WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2' OF CONCRETE EXTENDING DOWN TO ROCK.

### **SECTION 16123**

1.01. CONDUCTORS

A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT—BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION: 120/208/240V 277/480V

LINE COLOR
A BLACK BROWN
B RED ORANGE
C BLUE YELLOW
N CONTINUOUS WHITE GREY

CONTINUOUS GREEN

B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

### **SECTION 16130**

### 1.01. BOXES

A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.

GREEN WITH YELLOW STRIPE

B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

### **SECTION 16140**

- 1.01. WIRING DEVICES
- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
  - 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS)
- 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE
- 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
- 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

### **SECTION 16170**

- 1.01. DISCONNECT SWITCHES
- A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

### SECTION 16190

### 1.01. SEISMIC RESTRAINT

A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

### **SECTION 16195**

- 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT
- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

### **SECTION 16450**

- 1.01. GROUNDING
- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- C. GROUNDING OF PANELBOARDS:
- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORPOSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).
- D. EQUIPMENT GROUNDING CONDUCTOR:
- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).
- E. CELLULAR GROUNDING SYSTEM:

CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS
- 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
- 3. ANTENNA GROUND CONNECTIONS AND PLATES.
- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.
- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

### **SECTION 16470**

- 1.01. DISTRIBUTION EQUIPMENT
- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

### **SECTION 16477**

- I.01. FUSES
- A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

### **SECTION 16960**

- 1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM
- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.

- TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.
- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

### **SECTION 16961**

- 1.01. TESTS BY CONTRACTOR
- A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.
- B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.
- C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

Do 11/09/21 ASC TJR CONSTRUCTION DRAWINGS — ISSUED FOR CONSTRUCT





03) 488-0580 03) 488-8587 Fax 5-2 North Branford Road anford, CT 06405

STRUCT. NO. 8012 J MAPLE RIDGE DRIVE

CTLOHO4 - LTE6C, 4TX,
EVERSOURCE STRU
FARMINGTON NU MAPL

DATE: 10/20/21
SCALE: AS NOTED

ELECTRICAL SPECIFICATIONS

JOB NO. 21122.00

E-S

Sheet No. <u>9</u>



E-4

- RECOMMENDED 25A BREAKER. SIZE 12 CONDUCTORS MAY BE USED ONLY WITH 20A BREAKERS. . LEAVE COILED AND PROTECTED UNTIL TERMINATED.
- 3. DC AND FIBER CABLE SHALL BE ROUTED WITH THE EXISTING COAX CABLE.
- 4. DC SURGE PROTECTION SHELF SHALL BE RAYCAP DCx-48-60-RM. 5. FIBER & DC DISTRIBUTION BOX W/DC SURGE PROTECTION SHALL BE RAYCAP DC6-48-60-18-8F. SEE DETAIL 1410 OR 1410B FOR INTERNAL WIRING DIAGRAM.
- 6. CONDUIT TO BE USED ON A TOWER IF THE RRU IS MORE THAN 10' FROM THE DISTRIBUTION UNITS. MAX CABLE LENGTH IS 16
- 7. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194™, COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/O AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V. BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION.
- 8. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90°C DRY/75°C WET INSTALLATION. MINIMUM SIZE IS 6AWG UNLESS NOTED OTHERWISE.

### **ELECTRICAL NOTES**

- 1. PRIOR TO START OF CONSTRUCTION CONTRACTOR SHALL COORDINATE WITH OWNER FOR ALL CONSTRUCTION STANDARDS AND SPECIFICATIONS, AND ALL MANUFACTURER DOCUMENTATION FOR ALL EQUIPMENT TO BE INSTALLED.
- 2. INSTALL ALL EQUIPMENT IN ACCORDANCE WITH LOCAL BUILDING CODE, NATIONAL ELECTRIC CODE, OWNER AND MANUFACTURER'S SPECIFICATIONS.
- 3. CONNECT ALL NEW EQUIPMENT TO EXISTING TELCO AS REQUIRED BY MANUFACTURER.
- 4. MAINTAIN ALL CLEARANCES REQUIRED BY NEC AND EQUIPMENT MANUFACTURER.
- 5. PRIOR TO INSTALLATION CONTRACTOR SHALL MEASURE EXISTING ELECTRICAL LOAD AND VERIFY EXISTING AVAILABLE CAPACITY FOR PROPOSED INSTALLATION. IF INADEQUATE CAPACITY IS AVAILABLE, CONTRACTOR SHALL COORDINATE WITH LOCAL ELECTRIC UTILITY COMPANY TO UPGRADE EXISTING ELECTRIC SERVICE.
- 6. CONTRACTOR SHALL INSPECT EXISTING GROUNDING AND LIGHTNING PROTECTION SYSTEM AND ENSURE THAT IT IS IN COMPLIANCE WITH NEC, AND SITE OWNER'S SPECIFICATIONS. THE RESULTS OF THIS INSPECTION SHALL BE PRESENTED TO OWNERS REPRESENTATIVE, AND ANY DEFICIENCIES SHALL BE CORRECTED.
- 7. ALL TRANSMISSION TOWER SITES CONTAIN AN EXTENSIVE BURIED GROUNDING SYSTEM ALL GROUNDING WORK MUST BE COORDINATED WITH, AND APPROVED BY, THE TOWER OWNER'S SITE REPRESENTATIVE. ALL OF THE TOWER OWNER'S SPECIFICATIONS MUST BE STRICTLY FOLLOWED.
- 8. PROVIDE AND INSTALL GROUND KITS FOR ALL NEW COAXIAL CABLES AND BOND TO EXISTING OWNERS GROUNDING SYSTEM PER OWNERS SPECIFICATIONS AND NEC.
- 9. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS, #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:
- 10. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.
- 11. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- 12. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNER'S REPRESENTATIVE. DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES AS MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS AS MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- 14. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE SITE AND/OR BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- 15. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- 16. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID.
- 17. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- 18. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.
- 19. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. (MIN. #12 AWG).
- 20. CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

### TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

- THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:
- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. TESTING SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNERS CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.



10/20/21

SCALE: AS NOTED JOB NO. 21122.00

> **SCHEMATIC** DIAGRAM AND NOTES



### WIRING DIAGRAM NOTES:

- 1. LABEL THE DC POWER CABLES AT BOTH ENDS OF EVERY WIRE AND IN ANY PULL BOX IF USED. LABEL SHALL BE DURABLE, SELF ADHESIVE, WRAPPED LONGITUDINALLY ALONG THE CABLE AND STATE THE SECTOR, FREQUENCY BAND AND POLARITY; I.E. "A-2300+". CABLE AND WIRE LABELS SHOWN ARE REPRESENTATIVE AND MAY BE MODIFIED AS DIRECTED BY
- 2. INSTALL ON BASEBAND EQUIPMENT RACK.
- 3. MAXIMUM CABLE LENGTH IS 49 FEET WITHOUT SURGE PROTECTION AT RRU. INCREASE CONDUCTOR SIZE TO 10 OR 8 AWG WHERE BREAKER RATING IS GREATER THAN 20A.
- 4. CABLE GROUND WIRE AND SHIELD DRAIN WIRE TO BE LEFT UN-TERMINATED AT RRU AND DC POWER PLANT.
- 5. SEE LTE SCHEMATIC DIAGRAM DETAIL 1/E-1 FOR BREAKER RATING.

| PROFESSIONAL ENGINEER SEAL |             | +0+0                    |                                     | NO SO | THE STATE OF THE S |                           | 17 A 198901 CV 7 A 19800 CV 7 A |   |
|----------------------------|-------------|-------------------------|-------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| \_ \_ \_                   |             | Centered on Solutions** |                                     | (203) 488-0580                            | (203) 488-8587 Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63-2 North Branford Road  | Branford, CT 06405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|                            | A-R-MODILII |                         | CTI Offor - I TERC ATXARY SO NR RWE |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ZIOO.ONI.IOOUIO HOROCORIA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| SC                         | ATE:<br>DB  | E:                      | ۷                                   | 2<br>VII                                  | 112<br>RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,<br>NOT<br>22.<br>N(   | 00<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ |

Diagram File Name: CT1104\_A\_B\_C\_6C\_5G\_NR\_RRHBottomRev Diagram Sector: B Atoll Site Name: CTL01104 Location Name: FARMINGTON NU MAPLE RIDGE DR Market: CONNECTICUT Market Cluster: NEW ENGLAND Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna\_Radio Connection Dra







10/20/21 SCALE: AS NOTED JOB NO. 21122.00

> PLUMBING DIAGRAM





Centered on Solutions<sup>™</sup>

# Structural Analysis of Utility Pole

AT&T Site Ref: CT1104

Eversource Structure No. 8012 107' Electric Transmission Pole

45 Maple Ridge Drive Farmington, CT

CENTEK Project No. 21122.00

Date: October 15, 2021

Max Stress Ratio = 66.8%

Prepared for: AT&T Mobility 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

### Table of Contents

### SECTION 1 - REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

### SECTION 2 - CONDITIONS & SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
  - PLS POLE

### SECTION 3 - DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- DESIGN CRITERIA TABLE
- SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

### SECTION 4 - DRAWINGS

- SK-1 POLE ELEVATION
- SK-2 FEEDLINE PLAN

### SECTION 5 - NECS LOAD CALCULATIONS

EQUIPMENT AND COAX LOADS

### SECTION 6 - POLE ANALYSIS

- PLS REPORT
- ANCHOR BOLT ANALYSIS

### SECTION 7 - REFERENCE MATERIAL

- RF DATA SHEET
- EQUIPMENT CUT SHEETS

TABLE OF CONTENTS TOC-1

### <u>Introduction</u>

The purpose of this report is to analyze the 107' utility pole located in Farmington, CT for the proposed antenna and equipment installation by AT&T.

The proposed loads consist of the following:

### AT&T (Proposed):

Antennas: Three (3) CCI DMP65R-BU6DA panel antennas, three (3) CCI TPA65R-BU6DA panel antennas, six (6) CCI TMABPD7823VG12A TMAs and six (6) Kaelus TMA2124F03V5-1D TMAs mounted on platform with handrail kit p/n RMQLP-4120-H10 to the utility pole with a RAD center elevation of 92-ft above grade.

<u>Coax Cables:</u> Twenty-four (24) 1-5/8"  $\varnothing$  coax cables mounted to the outside of the pole as indicated in Section 4 of this report.

### <u>Primary assumptions used in the analysis</u>

- Design steel stresses are defined by AISC-LRFD 14<sup>th</sup> edition for design of the antenna Mast and antenna supporting elements.
- ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", defines allowable steel stresses for evaluation of the utility pole.
- All utility pole members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- Pipe mast will be properly installed and maintained.
- No residual stresses exist due to incorrect pole erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Pipe mast and utility pole will be in plumb condition.
- Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

### Analysis

Structural analysis of the utility pole was independently completed using the current version of PLSPole computer program licensed to CENTEK Engineering, Inc.

NESC prescribed loads for the proposed wireless equipment were calculated to analyze the utility tower. Section 5 of this report details these loads.

### Design Basis

Our analysis was performed in accordance with TIA-222-G, ASCE 48-11, "Design of Steel Transmission Pole Structures", NESC C2-2017 and Eversource Design Criteria.

### UTILITY POLE ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility pole to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the Eversource Design Criteria Table, NESC C2-2017 ~ Construction Grade B, and ASCE Manual No. 48-11.

Load cases considered:

| Load Case 1: NESC Heavy Wind Wind Pressure Radial Ice Thickness Vertical Overload Capacity Factor Wind Overload Capacity Factor Wire Tension Overload Capacity Factor | 4.0 psf<br>0.5"<br>1.50<br>2.50<br>1.65 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Load Case 2: NESC Extreme Wind Wind Speed                                                                                                                             | 10 mph <sup>(1)</sup><br>0"             |
| Load Case 3: NESC Extreme Ice w/ Wind Wind Pressure                                                                                                                   | 4.0 psf<br>1.0"<br>1.0<br>1.0           |

Note 1: NESC C2-2017, Section25, Rule 250C: Extreme Wind Loading, 1.25 x Gust Response Factor (wind speed: 3-second gust)

Results

UTILITY POLE

This analysis finds that the subject utility pole is adequate to support the proposed antenna mast and related appurtenances. The pole stresses meet the requirements set forth by the ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 6 of this report. The analysis results are summarized as follows:

A maximum usage of **66.81%** occurs in the utility pole base plate under the **NESC Extreme** loading condition.

### **POLE SECTION:**

The utility pole was found to be within allowable limits.

| Tower Section  | Elevation           | Stress Ratio<br>(% of capacity) | Result |
|----------------|---------------------|---------------------------------|--------|
| LP - Section 2 | 0.00' -40.00' (AGL) | 39.01%                          | PASS   |

### BASE PLATE:

The base plate was found to be within allowable limits from the PLS output.

| Tower Component | Design Limit | Stress Ratio (percentage of capacity) | Result |
|-----------------|--------------|---------------------------------------|--------|
| Base Plate      | Bending      | 66.81%                                | PASS   |

### FOUNDATION AND ANCHORS

The base of the tower is connected to the foundation by means of (12) 2.25" $\varnothing$ , ASTM A615-75 anchor bolts embedded into the concrete foundation structure. Review of the foundation consisted of a comparison of the base reactions obtained from the proposed tower analysis and the original foundation design.

### **BASE REACTIONS:**

From PLS-Pole analysis of utility pole based on NESC/NU prescribed loads.

| Load Case                | Shear      | Axial      | Moment          |
|--------------------------|------------|------------|-----------------|
| NESC Heavy Wind          | 13.51 kips | 53.22 kips | 851.97 ft-kips  |
| NESC Extreme Wind        | 23.37 kips | 26.09 kips | 1424.29 ft-kips |
| NESC Extreme Ice w/ Wind | 8.34 kips  | 50.34 kips | 556.93 ft-kips  |

Note 1 – 10% increase applied to tower base reactions per OTRM 051

### **ANCHOR BOLTS:**

The anchor bolts were found to be within allowable limits.

| Tower Component | Design Limit | Stress Ratio<br>(% of capacity) | Result |
|-----------------|--------------|---------------------------------|--------|
| Anchor Bolts    | Tension      | 49.3%                           | PASS   |

October 15, 2021

### **FOUNDATION:**

| Force  | Original Design<br>Loading | Proposed<br>Loading | Result |
|--------|----------------------------|---------------------|--------|
| Moment | 3293.0 ft-kips             | 1424.3 ft-kips      | PASS   |
| Shear  | 51.9 kips                  | 23.4 kips           | PASS   |

Note 1: Taken from Eversource drawing 01085-60003p001 dated 10/12/21.

### Conclusion

This analysis shows that the subject utility pole is adequate to support the proposed equipment upgrade.

The analysis is based, in part on the information provided to this office by Eversource and AT&T. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.

Please feel free to call with any questions or comments.

Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

# STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

CENTEK Engineering, Inc.

Structural Analysis – 107-ft Pole # 8012 AT&T Antenna Upgrade – CT1104 Farmington, CT October 15, 2021

### <u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM~PLS-POLE

PLS-POLE provides all of the capabilities a structural engineer requires to design transmission, substation or communications structures. It does so using a simple easy to use graphical interface that rests upon our time tested finite element engine. Regardless of whether you want to model a simple wood pole or a guyed steel X-Frame; PLS-POLE can handle the job simply, reliably and efficiently.

### Modeling Features:

- Structures are made of standard reusable components that are available in libraries. You can
  easily create your own libraries or get them from a manufacturer
- Structure models are built interactively using interactive menus and graphical commands
- Automatic generation of underlying finite element model of structure
- Steel poles can have circular, 4, 6, 8, 12, 16, or 18-sided, regular, elliptical or user input cross sections (flat-to-flat or tip-to-tip orientations)
- Steel and concrete poles can be selected from standard sizes available from manufacturers
- Automatic pole class selection
- Cross brace position optimizer
- Capability to specify pole ground line rotations
- Capability to model foundation displacements
- Can optionally model foundation stiffness
- Guys are easily handled (modeled as exact cable elements in nonlinear analysis)
- Powerful graphics module (members color-coded by stress usage)
- Graphical selection of joints and components allows graphical editing and checking
- Poles can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces

### Analysis Features:

- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Design checks for ASCE, ANSI/TIA/EIA 222 (Revisions F and G) or other requirements
- Automatic calculation of dead and wind loads
- Automated loading on structure (wind, ice and drag coefficients) according to:
  - ASCE 74-1991
  - NESC 2002
  - NESC 2007
  - IEC 60826:2003
  - EN50341-1:2001 (CENELEC)
  - EN50341-3-9:2001 (UK NNA)
  - EN50341-3-17:2001 (Portugal NNA)
  - ESAA C(b)1-2003 (Australia)
  - TPNZ (New Zealand)
  - REE (Spain)
  - EIA/TIA 222-F
  - ANSI/TIA 222-G
  - CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Detects buckling by nonlinear analysis

CENTEK Engineering, Inc.

Structural Analysis – 107-ft Pole # 8012 AT&T Antenna Upgrade – CT1104 Farmington, CT October 15, 2021

### Results Features:

- Detects buckling by nonlinear analysis
- Easy to interpret text, spreadsheet and graphics design summaries
   Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Automatic tracking of part numbers and costs

<u>Criteria for Design of PCS Facilities On or</u>

<u>Extending Above Metal Electric Transmission</u>

<u>Towers & Analysis of Transmission Towers</u>

<u>Supporting PCS Masts</u> (1)

### Introduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA-222-G covering the design of telecommunications structures specifies a limit state design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that the design strength exceeds the required strength.

ANSI Standard C2-2017 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50-year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.

Note 1: Prepared from documentation provide from Northeast Utilities.

DESIGN CRITERIA SECTION 3-1

### PCS Mast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA 222-G:

### ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "Eversource Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2017 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

DESIGN CRITERIA SECTION 3-2

### **Eversource**

### **Overhead Transmission Standards**

## Attachment A Eversource Design Criteria

|                     |                                           |                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                           |                                             | 1                                                           | · · · · · · · · · · · · · · · · · · ·   |
|---------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------|
|                     |                                           | Attachment A<br>ES Design Criteria                                                          | Basic Wind Speed                                                                                                                                                                                                                                                                                    | Pressure                                                                                                                                                                                                                                       | Height Factor             | Gust Factor                                 | Load or Stress Factor                                       | Force Coef Shape Factor                 |
|                     |                                           |                                                                                             | V (MPH)                                                                                                                                                                                                                                                                                             | Q (PSF)                                                                                                                                                                                                                                        | Kz                        | Gh                                          |                                                             |                                         |
|                     | TIA/EIA                                   | Antenna Mount                                                                               | TIA                                                                                                                                                                                                                                                                                                 | TIA<br>(0.75Wi)                                                                                                                                                                                                                                | TIA                       | TIA                                         | TIA, Section 3.1.1.1<br>disallowed for<br>connection design | TIA                                     |
| Ice Condition       | NESC Heavy                                | Tower/Pole Analysis with<br>antennas extending above<br>top of Tower/Pole<br>(Yield Stress) |                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                              | 1                         | 1                                           | 2.5                                                         | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
| _                   | NESC                                      | Tower/Pole Analysis with<br>antennas below top of<br>Tower/Pole (on two faces)              |                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                              | 1                         | 1                                           | 2.5                                                         | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
|                     |                                           | Conductors:                                                                                 |                                                                                                                                                                                                                                                                                                     | Conductor Loads Provided by ES                                                                                                                                                                                                                 |                           |                                             |                                                             |                                         |
|                     | TIA/EIA                                   | Antenna Mount                                                                               | 85                                                                                                                                                                                                                                                                                                  | 85 TIA TIA TIA disallowed for connection design                                                                                                                                                                                                |                           |                                             |                                                             | TIA                                     |
| High Wind Condition | NESC Extreme Wind                         | Tower/Pole Analysis with antennas extending above top of Tower/Pole                         | telecon                                                                                                                                                                                                                                                                                             | For wind speed use OTRM 060 Map 1, Rule 250C: Extreme Wind Loading Apply a 1.25 x Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a 1.0 x Gust Response Factor to the tower/pole structure |                           |                                             | 1.6 Flat Surfaces<br>1.3 Round Surfaces                     |                                         |
| High                | NESC Ex                                   | Tower/Pole Analysis with antennas below top of Tower/Pole                                   | Height a                                                                                                                                                                                                                                                                                            | Rule 2                                                                                                                                                                                                                                         | 50C: Extre<br>and is base | e OTRM 0<br>me Wind<br>ed on over<br>r/pole |                                                             | 1.6 Flat Surfaces<br>1.3 Round Surfaces |
|                     |                                           | Conductors:                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                | Cond                      | uctor Load                                  | ds Provided by ES                                           |                                         |
| ***                 | NESC EXTREME ICE WITH WING CONGILION      | Tower/Pole Analysis with antennas extending above top of Tower/Pole                         | For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load 1.25 x Gust Response Factor Apply a 1.25 x Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a 1.0 x Gust Response Factor to the tower/pole structure |                                                                                                                                                                                                                                                |                           | 1.6 Flat Surfaces<br>1.3 Round Surfaces     |                                                             |                                         |
|                     | SC Extreme ice wi                         | Tower/Pole Analysis with<br>antennas below top of<br>Tower/Pole                             | For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load Height above ground is based on overall height to top of tower/pole                                                                                                                                     |                                                                                                                                                                                                                                                |                           | 1.6 Flat Surfaces<br>1.3 Round Surfaces     |                                                             |                                         |
| }                   |                                           |                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                           |                                             |                                                             |                                         |
|                     | *Only for structures installed after 2007 |                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |                           |                                             |                                                             |                                         |

| Communication Antennas on Transmission Structures |  |  |  |  |  |
|---------------------------------------------------|--|--|--|--|--|
| Eversource Design OTRM 059 Rev. 1                 |  |  |  |  |  |
| Approved by: CPS (CT/WMA) JCC (NH/EMA)            |  |  |  |  |  |

### **Eversource**

### **Overhead Transmission Standards**

determined from NESC applied loading conditions (not TIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The strength reduction factor obtained from the field investigation shall be applied to the members or connections that are showing signs of deterioration from their original condition. With the written approval of Eversource Transmission Line Engineering on a case by case the existing structures may be analyzed initially using the current NESC code, then it is permitted to use the original design code with the original conductor load should the existing tower fail the current NESC code.

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "Eversource Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:

- a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
- b) Conductors and related devices and hardware (wire loads will be provided by Eversource).
- c) Electric Transmission Structure
  - i) The loads from the wireless communication equipment components based on NESC and Eversource Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower. ii)
  - ii) Shape Factor Multiplier:

| NESC Structure Shape                  | Cd              |
|---------------------------------------|-----------------|
| Polyround (for polygonal steel poles) | 1.3             |
| Flat                                  | 1.6             |
| Open Lattice                          | 3.2             |
| Pole with Coaxial Cable               | See Below Table |

iii) When Coaxial Cables are mounted alongside the pole structure, the shape multiplier shall be:

| Mount Type                                      | Cable Cd | Pole Cd |
|-------------------------------------------------|----------|---------|
| Coaxial Cables on outside periphery (One layer) | 1.45     | 1.45    |
| Coaxial Cables mounted on stand offs            | 1.6      | 1.6     |

d) The uniform loadings and factors specified for the above components in Attachment A, "Eversource Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.

| Communication Antennas on Transmission Structures            |  |  |  |  |  |
|--------------------------------------------------------------|--|--|--|--|--|
| Eversource Design OTRM 059 Rev. 1                            |  |  |  |  |  |
| Approved by: CPS (CT/WMA) JCC (NH/EMA) Page 3 of 10 11/19/20 |  |  |  |  |  |



### Wire Loads Load Tree



Single Circuit Steel H-Frame Configuration X Denotes Broken Wire Location

|             | Case | Vertical  | Transverse | Longitudinal |
|-------------|------|-----------|------------|--------------|
|             | 1    | 8055.1275 | 3533.4191  | 0            |
|             | 2    | 3462.1    | 5240.6207  | 0            |
| cto         | 3    | 3462.1    | 722.2362   | 0            |
| Conductor   | 4    | 8211.07   | 2666.1391  | 0            |
| Cor         | 5    | 5370.085  | 2081.5931  | 0            |
|             | 6    | 3462.1    | 722.2362   | 0            |
|             | 7a   | 5270.085  | 1766.7096  | 12540        |
|             | 7b   | 5270.085  | 1766.7096  | 12540        |
|             | Case | Vertical  | Transverse | Longitudina  |
|             | 1    | 2422.3455 | 1890.7651  | 0            |
| e           | 2    | 673.5     | 1712.122   | 0            |
| Wir         | 3    | 673.5     | 261.67978  | 0            |
| Shield Wire | 4    | 3489.294  | 1589.9711  | 0            |
| hie         | 5    | 1614.897  | 1078.6955  | 0            |
| $\sim$      | 6    | 673.5     | 261.67978  | 0            |
|             | 7a   | 1614.897  | 945.38254  | 6050         |
|             | 7b   | 1614.897  | 945.38254  | 6050         |



| REVISIONS |          |                   |
|-----------|----------|-------------------|
| 00        | 10/14/21 | ISSUED FOR REVIEW |
|           |          |                   |
|           |          |                   |
|           |          |                   |
|           |          |                   |



(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road, Branford, CT 06405

STRUCTURE 8012

45 MAPLE RIDGE DRIVE FARMINGTON, CT

| PROJECT NO: | 21122.00 |
|-------------|----------|
| DRAWN BY:   | TJL      |
| CHECKED BY: | CAG      |
| SCALE:      | AS NOTED |
| DATE:       | 10/14/21 |



SK-1

DWG. 1\_ OF 2



| REVISIONS |          |                   |  |  |
|-----------|----------|-------------------|--|--|
| 00        | 10/14/21 | ISSUED FOR REVIEW |  |  |
|           |          |                   |  |  |
|           |          |                   |  |  |
|           |          |                   |  |  |
|           |          |                   |  |  |



(203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road, Branford, CT 06405

| CT1104         |
|----------------|
| STRUCTURE 8012 |

SCALE: NOT TO SCALE

| 45 MAPLE RIDGE DRIVE |
|----------------------|
| FARMINGTON, CT       |

| PROJECT NO: | 21122.00 |
|-------------|----------|
| DRAWN BY:   | TJL      |
| CHECKED BY: | CFC      |
| SCALE:      | AS NOTED |
| DATE:       | 10/14/21 |

| FE |
|----|
|    |
|    |
|    |
| 3  |

SK-2

DWG. 2 OF 2



Centered on Solutions www.centekeng.com 63-3 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Loads - Structure #8012

Farmington, CT Location:

Prepared by: T.J.L Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21122.00

#### Basic Components

Heavy Wind Pressure = (User Input NESC 2017 Figure 250-1 & Table 250-1) p := 4.00Basic Windspeed = V := 110mph (User Input NESC 2017 Figure 250-2(e))

Radial Ice Thickness = lr := 0.50in (User Input) Radial Ice Density= (User Input) Id := 56.0

### Factors for Extreme Wind Calculation

Elevation of Top of Mast Above Grade = TMF := 107 ft (User Input)

Multiplier Gust Response Factor = (User Input - Only for NESC Extreme wind case) m := 1.00

> NESC Factor = kv := 1.43(User Input from NESC 2017 Table 250-3 equation)

Importance Factor = I := 1.0(User Input from NESC 2017 Section 250.C.2)

 $Kz := 2.01 \cdot \left(\frac{TME}{900}\right)^{\frac{2}{9.5}} = 1.284$ Velocity Pressure Coefficient = (NESC 2017 Table 250-2)

> Es :=  $0.346 \left[ \frac{33}{(0.67 \cdot \text{TME})} \right]^{\frac{1}{7}} = 0.31$ (NESC 2017 Table 250-3) Exposure Factor =

> Bs :=  $\frac{1}{\left(1 + 0.375 \cdot \frac{TME}{220}\right)} = 0.846$ (NESC 2017 Table 250-3) Response Term =

Gust Response Factor =

 $qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 34.4$ Wind Pressure = (NESC 2017 Section 250.C.2)

### NESC Extreme Ice w/ Wind Components

Heavy Wind Pressure = (User Input NESC 2017 Figure 250-3 & Table 250-4)  $p_{ex} = 4.0$  $Ir_{ex} := 1.0$ Radial Ice Thickness= (User Input NESC 2017 Figure 250-3)

#### Shape Factors

Shape Factor for Round Members =  $Cd_R := 1.3$ (User Input)  $Cd_{\mathbf{F}} := 1.6$ Shape Factor for Flat Members = (User Input)

Shape Factor for Open Lattice =  $Cd_{OI} := 3.2$ (User Input)

Shape Factor for Coax Cables Attached to Outside of Pole =  $Cd_{coax} := 1.6$ (User Input)

### Overload Factors

#### Overload Factors for Wind Loads:

NESC Heavy Loading = 2.5 (User Input) Apply in Risa-3D Analysis NESC Extreme Loading = 1.0 (User Input) Apply in Risa-3D Analysis

#### Overload Factors for Vertica I Loads:

NESC Heavy Loading = Apply in Risa-3D Analysis 1.5 (User Input) NESC Extreme Loading = 1.0 (User Input) Apply in Risa-3D Analysis



F: (203) 488-8587

Subject:

Location:

Rev. 0: 10/14/21

Loads - Structure #8012

Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

lbs

Job No. 21122.00

### Development of Wind & Ice Load on Antennas

#### Antenna Data:

Antenna Model = CCI DMP65-BU6D

Flat Antenna Shape = (User Input)

L<sub>ant</sub> := 71.2 Anterna Height = (User Input)

 $W_{ant} = 20.7$ Antenna Width = (User Input) in

Antenna Thickness =  $T_{ant} := 7.7$ in (User Input)

Antenna Weight =  $WT_{ant} = 96$ (User Input)

Number of Antennas =  $N_{ant} := 3$ (User Input)

#### Gravity Load (without ice)

#### Weight of All Antennas=

### Gravity Load (ice only)

Volume of Each Antenna =

Volume of Ice on Each Antenna =

Weight of Ice on Each Antenna =

### Weight of Ice on All Antennas =

### Gravity Load (Extreme ice only)

Volume of Extreme Ice on Each Antenna =

Weight of Extreme Ice on Each Antenna =

Weight of Extreme Ice on All Antennas =

### Wind Load (NESC Heavy)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ lce =

#### Total Antenna Wind Forcew/Ice =

#### Wind Load (NESC Extreme)

Surface Area for One Antenna =

Antenna Proiected Surface Area =

### Total Antenna Wind Force=

### Wind Load (NESC Extreme Ice w/ Wind)

Surface Area for One Antenna w/ Extreme Ice =

Antenna Projected Surface Area w/ Extreme Ice =

Total Anten na Wind Forcew/Extreme Ice =

### Wt<sub>ant1</sub> := WT<sub>ant</sub>·N<sub>ant</sub> = 288

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 1 \times 10^4$ cu in

$$\label{eq:Vice} V_{ice} \coloneqq \left( \mathsf{L}_{ant} + 2 \cdot \mathsf{Ir} \right) \! \left( \mathsf{W}_{ant} + 2 \cdot \mathsf{Ir} \right) \! \left( \mathsf{T}_{ant} + 2 \cdot \mathsf{Ir} \right) - \, \mathsf{V}_{ant} = 2282 \qquad \text{cu in}$$

$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 74$$
 lbs

$$\label{eq:vice.ex} \begin{aligned} \textbf{V}_{ice.ex} \coloneqq \left(\textbf{L}_{ant} + 2 \cdot \textbf{Ir}_{ex}\right) \! \left(\textbf{W}_{ant} + 2 \cdot \textbf{Ir}_{ex}\right) \! \left(\textbf{T}_{ant} + 2 \cdot \textbf{Ir}_{ex}\right) - \ \textbf{V}_{ant} = 4769 \end{aligned} \qquad \text{cu in}$$

$$W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 155$$
 lbs

$$SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 10.9$$
 sf

$$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 32.6$$
 sf

$$SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 10.2$$

$$A_{ant} := SA_{ant} \cdot N_{ant} = 30.7$$

$$F_{ant1} := qz \cdot Cd_{F} \cdot A_{ant} \cdot m = 1690$$
 lbs

$$SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 11.5$$
 sf

$$A_{ICE.exant} := SA_{ICE.exant} \cdot N_{ant} = 34.6$$
 sf

$$Fi_{ex.ant1} := p_{ex} \cdot Cd_{F} \cdot A_{ICE.exant} \cdot m = 222$$
 lbs



F: (203) 488-8587

Subject:

Loads - Structure #8012

Location: Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

lhs

cu in

lbs

Rev. 0: 10/14/21 Job No. 21122.00

#### Development of Wind & Ice Load on Antennas

#### Antenna Data:

Antenna Model = CCITPA65-BU6D

Antenna Shape = Flat (User Input)

Antenna Height = L<sub>ant</sub> := 71.2 (User Input)

 $W_{ant} = 20.7$ Antenna Width = in (User Input)

Antenna Thickness =  $T_{ant} = 7.7$ in (User Input)

 $WT_{ant} := 70$ Antenna Weight = lbs (User Input)

Number of Antennas =  $N_{ant} := 3$ (User Input)

### Gravity Load (without ice)

#### Weight of All Antennas=

### Gravity Load (ice only)

Volume of Each Antenna =

Volume of Ice on Each Antenna =

Weight of Ice on Each Antenna =

#### Weight of Ice on All Antennas =

#### Gravity Load (Extreme ice only)

Volume of Extreme Ice on Each Antenna =

Weight of Extreme Ice on Each Antenna =

Weight of Extreme Ice on All Antennas =

### Wind Load (NESC Heavy)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ lce =

### Total Antenna Wind Forcew/Ice =

### Wind Load (NESC Extreme)

Surface Area for One Antenna =

Antenna Projected Surface Area =

### Total Antenna Wind Force=

### Wind Load (NESC Extreme Ice w/ Wind)

Surface Area for One Antenna w/ Extreme Ice =

Antenna Projected Surface Area w/ Extreme Ice =

Total Anten na Wind Forcew/Extreme Ice =

### $Wt_{ant2} := WT_{ant} \cdot N_{ant} = 210$

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 1 \times 10^4$ 

$$V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 2282$$
 cu in

$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 74$$
 lbs

$$V_{ice.ex} \coloneqq \left( L_{ant} + 2 \cdot Ir_{ex} \right) \! \left( W_{ant} + 2 \cdot Ir_{ex} \right) \! \left( T_{ant} + 2 \cdot Ir_{ex} \right) - V_{ant} = 4769 \qquad \text{cu in}$$

$$W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 155$$
 lbs

$$SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 10.9$$
 sf

$$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 32.6$$
 sf

$$SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 10.2$$
 sf

$$A_{ant} := SA_{ant} \cdot N_{ant} = 30.7$$
 sf

$$F_{ant2} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 1690$$
 lbs

$$SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 11.5$$
 sf

$$Fi_{ex.ant2} := p_{ex} \cdot Cd_{F} \cdot A_{ICE.exant} \cdot m = 222$$
 lbs



F: (203) 488-8587

Subject:

Loads - Structure #8012

Location: Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

lbs

Rev. 0: 10/14/21 Job No. 21122.00

#### Development of Wind & Ice Load on Antennas

### Antenna Data:

Antenna Model =

Antenna Shape =

Antenna Height =

Antenna Width =

Antenna Thickness =

Antenna Weight =

Number of Antennas =

#### Gravity Load (without ice)

#### Weight of All Antennas=

### Gravity Load (ice only)

Volume of Each Antenna =

Volume of Ice on Each Antenna =

Weight of Ice on Each Antenna =

#### Weight of Ice on All Antennas =

### Gravity Load (Extreme ice only)

Volume of Extreme Ice on Each Antenna =

Weight of Extreme Ice on Each Antenna =

### Weight of Extreme Ice on All Antennas =

### Wind Load (NESC Heavy)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ lce =

#### Total Antenna Wind Forcew/Ice =

### Wind Load (NESC Extreme)

Surface Area for One Antenna =

Antenna Projected Surface Area =

#### Total Antenna Wind Force=

#### Wind Load (NESC Extreme Ice w/ Wind)

Surface Area for One Antenna w/ Extreme Ice =

Antenna Projected Surface Area w/ Extreme Ice =

Total Antenna Wind Forcew/Extreme Ice =

#### TMARPDB7823VG12A

Flat (User Input)

L<sub>ant</sub> := 14.25 (User Input)

W<sub>ant</sub>:= 11.024 (User Input)

 $T_{ant} := 4.11$ in (User Input)

 $WT_{ant} := 25$ lbs (User Input)

 $N_{ant} := 6$ (User Input)

$$Wt_{ant3} := WT_{ant} \cdot N_{ant} = 150$$

$$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 646$$
 cu in

$$V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 291$$
 cu in

$$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 9$$
 lbs

$$Wt_{ice.ant3} := W_{ICEant} \cdot N_{ant} = 57$$
 lbs

$$V_{ice.ex} \coloneqq \left( \mathsf{L}_{ant} + 2 \cdot \mathsf{Ir}_{ex} \right) \left( \mathsf{W}_{ant} + 2 \cdot \mathsf{Ir}_{ex} \right) \left( \mathsf{T}_{ant} + 2 \cdot \mathsf{Ir}_{ex} \right) - \mathsf{V}_{ant} = 647 \qquad \text{cuin}$$

$$W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 21$$
 lbs

$$SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 1.3$$
 sf

$$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 7.6$$
 sf

$$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 1.1$$

$$A_{ant} := SA_{ant} \cdot N_{ant} = 6.5$$
 sf

$$F_{ant3} := qz \cdot Cd_{F} \cdot A_{ant} \cdot m = 360$$
 lbs

$$SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 1.5$$

$$A_{ICE.exant} := SA_{ICE.exant} \cdot N_{ant} = 8.8$$
 sf

$$Fi_{ex.ant3} := p_{ex} \cdot Cd_{F} \cdot A_{ICE.exant} \cdot m = 56$$
 lbs



F: (203) 488-8587

Subject:

Loads - Structure #8012

Location: Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

lbs

lbs

Rev. 0: 10/14/21 Job No. 21122.00

### Development of Wind & Ice Load on Antennas

#### Antenna Data:

Antenna Model = Kaelus TMA2124F03V5-1D

Flat Antenna Shape = (User Input)

Antenna Height= (User Input) L<sub>ant</sub> := 9.65

Antenna Width =  $W_{ant} = 5.04$ (User Input) in

 $T_{ant} := 8.27$ Antenna Thickness = (User Input)

 $WT_{ant} := 20$ Antenna Weight = lbs (User Input)

Number of Antennas =  $N_{ant} = 6$ (User Input)

#### Gravity Load (without ice)

#### Weight of All Antennas=

#### Gravity Load (ice only)

Volume of Each Antenna =

Volume of Ice on Each Antenna =

Weight of Ice on Each Antenna =

### Weight of Ice on All Antennas =

### Gravity Load (Extreme ice only)

Volume of Extreme Ice on Each Antenna =

Weight of Extreme Ice on Each Antenna =

Weight of Extreme Ice on All Antennas =

### Wind Load (NESC Heavy)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ lce =

Total Antenna Wind Forcew/Ice =

#### Wind Load (NESC Extreme)

Surface Area for One Antenna =

Antenna Projected Surface Area =

Total Antenna Wind Force=

#### Wind Load (NESC Extreme Ice w/ Wind)

Surface Area for One Antenna w/ Extreme Ice =

Antenna Projected Surface Area w/ Extreme Ice =

Total Anten na Wind Forcew/Extreme Ice =

### $Wt_{ant4} := WT_{ant} \cdot N_{ant} = 120$

 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 402$ cu in

 $V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 194$ cu in

 $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 6$ lbs

 $Wt_{ice.ant4} := W_{ICEant} \cdot N_{ant} = 38$ 

 $V_{ice.ex} := (L_{ant} + 2 \cdot Ir_{ex})(W_{ant} + 2 \cdot Ir_{ex})(T_{ant} + 2 \cdot Ir_{ex}) - V_{ant} = 440$ cu in

 $W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 14$ lbs

Wt<sub>ice.ex.ant4</sub> := W<sub>ICE.exant</sub>·N<sub>ant</sub> = 86 lbs

 $SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 0.4$ 

A<sub>ICEant</sub> := SA<sub>ICEant</sub>·N<sub>ant</sub> = 2.7

 $Fi_{ant4} := p \cdot Cd_F \cdot A_{ICEant} = 17$ lbs

 $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 0.3$ sf

 $A_{ant} := SA_{ant} \cdot N_{ant} = 2$ 

 $F_{ant4} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 112$ 

 $SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 0.6$ sf

 $A_{ICE.exant} = SA_{ICE.exant} \cdot N_{ant} = 3.4$ sf

 $Fi_{ex.ant4} = p_{ex} \cdot Cd_F \cdot A_{ICE.exant} \cdot m = 22$ lbs CENTEK engineering

Centered on Solutions | www.centekeng.com 63-2 North Branford Road | P: (203) 488-0580 Branford, CT 06405 | F: (203) 488-8587 Subject:

Loads - Structure #8012

Location:

Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21122.00

# **Development of Wind & Ice Load on Antenna Mounts**

Mount Data:

Mount Type:

RMQLP-4120-HK

Mount Shape =

CdAa:= 45.6

(User Input)

Mount Projected Surface Area w/ Ice =

Mount Projected Surface Area =

 $\mathsf{CdAa}_{\mathsf{ice}} \coloneqq \mathsf{52.4}$ 

(User Input)

Mount Projected Surface Ar ea w/ Extreme Ice =

 $CdAa_{ice.ex} := 58$   $WT_{mnt} := 3250$ 

Ibs (User Input)

sf

lhs

Mount Weight w/ Ice =

Mount Weight =

WT<sub>mnt.ice</sub>:= 3600

(User Input)

Mount Weight w/Extreme Ice =

 $WT_{mnt.ice.ex} = 4000$  lbs

(User Input)

(User Input)

# Gravity Loads (without ice)

Weight of All Mounts =

 $Wt_{mnt1} := WT_{mnt} = 3250$ 

lbs

Gravity Load (ice only)

Weight of Ice on All Mounts =

 $Wt_{ice.mnt1} := (WT_{mnt.ice} - WT_{mnt}) = 350$ 

lbs

Gravity Load (extreme ice only)

Weight of Ice on All Mounts =

 $Wt_{ice.ex.mnt1} := (WT_{mnt.ice.ex} - WT_{mnt}) = 750$ 

lbs

Wind Load (NESC Heavy)

Total Mount Wind Force w/Ice =

 $Fi_{mnt1} := p \cdot CdAa_{ice} = 210$ 

lbs

Wind Load (NESC Extreme)

Total Mount Wind Force =

 $F_{mnt1} := qz \cdot CdAa \cdot m = 1569$ 

lbs

Wind Load (NESC Extreme Ice w/ Wind)

Total Mount Wind Force w/ Extreme Ice =

 $Fi_{ex.mnt1} := p_{ex} \cdot CdAa_{ice.ex} = 232$ 

lbs

CENTEK engineering

Centered on Solutions

www.centekeng.com
63-2 North Branford Road

P: (203) 488-0580

F: (203) 488-8587

Subject:

Loads - Structure #8012

Location:

Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

Job No. 21122.00

Rev. 0: 10/14/21

# **Total Equipment Loads:**

NESC Heavy Wind Vertical =

Branford, CT 06405

 $\left(Wt_{ant1} + Wt_{ice.ant1} + Wt_{ant2} + Wt_{ice.ant2} + Wt_{ant3} + Wt_{ice.ant3} + Wt_{ice.ant4} + Wt_{ice.ant4} + Wt_{ice.ant4} + Wt_{ice.ant1} + Wt_{ice.ant1}\right) \cdot 1.5 = 7359$ 

NESC Heavy Wind Trasnsverse =

 $(Fi_{ant1} + Fi_{ant2} + Fi_{ant3} + Fi_{ant4} + Fi_{mnt1}) \cdot 2.5 = 1734$ 

NESC Extreme Wind Vertical =

 $(Wt_{ant1} + Wt_{ant2} + Wt_{ant3} + Wt_{ant4} + Wt_{mnt1}) = 4018$ 

NESC Extreme Wind Trasnsverse =

 $(F_{ant1} + F_{ant2} + F_{ant3} + F_{ant4} + F_{mnt1}) = 5421$ 

NESC Extreme Ice w/Wind Vertical=

 $NESC_{ice.ex.} = Wt_{ant1} + Wt_{ice.ex.ant1} + Wt_{ant2} + Wt_{ice.ex.ant2} + Wt_{ant3} + Wt_{ice.ex.ant3} + Wt_{ant4} + Wt_{ice.ex.ant4} + Wt_{mnt1} + Wt_{ice.ex.mnt1} = 5907$ 

NESC Extreme Ice w/Wind Trasnsverse =

 $(Fi_{ex.ant1} + Fi_{ex.ant2} + Fi_{ex.ant3} + Fi_{ex.ant4} + Fi_{ex.mnt1}) = 753$ 



Centered on Solutions www.centekeng.com Branford, CT 06405

F: (203) 488-8587

Subject:

Coax Cable on Pole #8012

Farmington, CT Location:

Prepared by: T.J.L Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21122.00

# Coax Cable on CL&P Pole

Coaxial Cable Span (User Input)  $Coax_{Span} := 10ft$ 

Heavy Wind Pressure =  $p := 4 \cdot psf$ (User Input)

Radial Ice Thickness = (User Input)  $Ir := \, 0.5 {\cdot} in$ 

Radial Ice Density=  $Id := 56 \cdot pcf$ (User Input)

Extreme Ice w/Wind Pressure =  $p_{\hbox{\it ex}} := 4 \cdot psf$ (User Input)

 $Ir_{ex} := 1.0 \cdot in$ Extreme Radial Ice Thickness = (User Input)

> Basic Windspeed = V := 110 (User Input NESC 2017 Figure 250-2(e))

Height to Top of Coax Above Grade = TC := 107 (User Input)

> NESC Factor = (User Input from NESC 2017 Table 250-3 equation) kv := 1.43

I := 1.0Importance Factor = (User Input from NESC 2017 Section 250.C.2)

 $Kz := 2.01 \cdot \left(\frac{0.67TC}{900}\right)^{\frac{2}{9.5}} = 1.18$ Velocity Pressure Coefficient = (NESC 2017 Table 250-2)

> Exposure Factor = (NESC 2017 Table 250-3)

 $Bs := \frac{1}{\left(1 + 0.375 \cdot \frac{TC}{220}\right)} = 0.846$ Response Term = (NESC 2017 Table 250-3)

Grf :=  $\frac{\left[1 + \left(\frac{1}{2.7 \cdot \text{Es} \cdot \text{Bs}^{2}}\right)\right]}{\frac{1}{1...2}} = 0.865$ Gust Response Factor = (NESC 2017 Table 250-3)

 $qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 31.6$ (NESC 2017 Section 250.C.2) Wind Pressure =

Diameter of Coax Cable = (User Input)  $D_{coax} := 1.98 \cdot in$ 

Weight of Coax Cable =  $W_{coax} = 1.04 \cdot plf$ (User Input)

Number of Coax Cables =  $N_{coax} := 24$ (User Input)

Number of Projected Coax Cables =  $NP_{coax} := 6$ (User Input)



Centered on Solutions www.centekeng.com Branford, CT 06405

Subject:

Location:

Coax Cable on Pole #8012

Farmington, CT

Prepared by: T.J.L Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21122.00

| Shape Factor = | $Cd_{coax} := 1.6$ | (User Inpu  |
|----------------|--------------------|-------------|
| po actor -     | Coax - 1.0         | (000) 11/00 |

Overload Factor for NESC Heavy Wind Transverse Load = OF<sub>HWT</sub> := 2.5 (User Input)

Overload Factor for NESC Heavy Wind Vertical Load = OF<sub>HWV</sub> := 1.5 (User Input)

Overload Factor for NESC Extreme Wind TransverseLoad =  $OF_{FWT} := 1.0$ (User Input)

Overload Factor for NESC Extreme Wind Vertical Load=  $OF_{FWV} := 1.0$ (User Input)

Overload Factor for NESC Extreme Ice w/Wind Transverse Load =  $OF_{FIT} := 1.0$ (User Input)

Overload Factor for NESC Extreme Ice w/ Wind Vertical Load = OF<sub>FIV</sub> := 1.0 (User Input)

> $A := \left(NP_{coax} \cdot D_{coax}\right) = 11.88 \cdot in$ Wind Area without Ice =

 $A_{ice} := \left(NP_{coax} \cdot D_{coax} + 2 \cdot Ir\right) = 12.88 \cdot in$ Wind Area with Ice =

WindArea with Extreme Ice =  $A_{ice.ex} := \left(NP_{coax} \cdot D_{coax} + 2 \cdot Ir_{ex}\right) = 13.88 \cdot in$ 

 $Ai_{coax} := \frac{\pi}{4} \cdot \left[ \left( D_{coax} + 2 \cdot Ir \right)^2 - D_{coax}^{2} \right] = 0.027 ft^2$ IceAreaper Liner Ft=

 $W_{ice} := Ai_{coax} \cdot Id \cdot N_{coax} = 36.359 \cdot plf$ Weight of Ice on All Coax Cables =

 $Ai_{coax.ex} := \frac{\pi}{4} \cdot \left[ \left( D_{coax} + 2 \cdot Ir_{ex} \right)^2 - D_{coax}^2 \right] = 0.065 ft^2$ Extreme Ice Area per Liner Ft=

 $W_{ice.ex} := Ai_{coax.ex} \cdot Id \cdot N_{coax} = 87.378 \cdot plf$ Weight of Extreme Ice on All Coax Cables =

Heaw Wind Vertical Load =

$$\mathsf{Heavy\_WInd}_{Vert} \coloneqq \overline{\left[ \left( \mathsf{N}_{coax} \cdot \mathsf{W}_{coax} + \mathsf{W}_{ice} \right) \cdot \mathsf{Coax}_{Span} \cdot \mathsf{OF}_{HWV} \right]}$$

Heavy Wind Transverse Load =

$$\text{Heavy\_Wind}_{\text{Trans}} \coloneqq \left( \text{p-A}_{\text{ice}} \cdot \text{Cd}_{\text{coax}} \cdot \text{Coax}_{\text{Span}} \cdot \text{OF}_{\text{HWT}} \right) \\ \text{Heavy\_WInd}_{\text{Vert}} = 920 \text{lb} \\ \text{Heavy\_Wind}_{\text{Trans}} = 172 \text{lb}$$

Extreme Wind Vertical Load =

$$\mathsf{Extreme\_Wind}_{\mathsf{Vert}} \coloneqq \overbrace{\left(\mathsf{N}_{\mathsf{coax}}.\mathsf{W}_{\mathsf{coax}}.\mathsf{Coax}_{\mathsf{Span}}.\mathsf{OF}_{\mathsf{EWV}}\right)}^{\mathsf{OF}_{\mathsf{EWV}}}$$

Extreme Wind Transverse Load =

Extreme Ice w/Wind Vertical Load =

$$\mathsf{Extreme\_Ice}_{Vert} \coloneqq \boxed{\left( \mathsf{N}_{coax} \cdot \mathsf{W}_{coax} + \mathsf{W}_{ice.ex} \right) \cdot \mathsf{Coax}_{Span} \cdot \mathsf{OF}_{EIV}}$$

Extreme Ice w/Wind Transverse Load =





10 (ft)

Project Name : Project Notes:

Project File : J:\Jobs\2112200.WI\05\_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 & 103\_str#8012\_80ft(lp)-107ft(rp)\_r3.pol

Date run : 2:46:11 PM Thursday, October 14, 2021

by : PLS-POLE Version 16.81 Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

The model has 0 warnings.

Loads from file: J:\Jobs\2112200.WI\05\_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 & 103-str#8012-r3.lca

\*\*\* Analysis Results:

Maximum element usage is 66.81% for Base Plate "RP" in load case "NESC Rule 250D"

### Summary of Joint Support Reactions For All Load Cases:

|      | Load | Case |      | Force | Force  | Force  | Force | Moment  | Moment | Bending<br>Moment<br>(ft-k) | Moment | Usage |
|------|------|------|------|-------|--------|--------|-------|---------|--------|-----------------------------|--------|-------|
| NESC | Rule | 250B | LP:g | -0.19 | -13.51 | -36.66 | 13.51 | 851.37  | -31.84 | 851.97                      | -10.26 | 0.00  |
| NESC | Rule | 250B | RP:g | -0.03 | -12.58 | -53.22 | 12.58 | 812.68  | -19.82 | 812.92                      | -5.36  | 0.00  |
|      | NESC | 250C | LP:g | -0.18 | -23.37 | -20.49 | 23.37 | 1424.12 | -22.46 | 1424.29                     | -17.47 | 0.00  |
|      | NESC | 250C | RP:g | 0.07  | -21.86 | -26.09 | 21.86 | 1344.14 | -4.13  | 1344.14                     | -4.74  | 0.00  |
| NESC | Rule | 250D | LP:g | -0.14 | -8.34  | -33.44 | 8.34  | 556.13  | -29.95 | 556.93                      | -6.81  | 0.00  |
| NESC | Rule | 250D | RP:g | -0.00 | -7.72  | -50.34 | 7.72  | 532.91  | -21.00 | 533.32                      | -4.47  | 0.00  |

### Summary of Tip Deflections For All Load Cases:

Note: positive tip load results in positive deflection

|      | Load | Case |      | Defl. | Defl. | Defl. | Resultant Defl. | Rot.  | Rot.  |       |
|------|------|------|------|-------|-------|-------|-----------------|-------|-------|-------|
|      |      |      |      | (in)  | (in)  | (in)  | (in)            | (deg) | (deg) | (deg) |
| NESC | Rule | 250B | LP:t | 0.60  | 9.55  | -0.08 | 9.56            | 0.08  | -0.96 | 0.04  |
| NESC | Rule | 250B | RP:t | 0.85  | 16.22 | -0.16 | 16.25           | 0.07  | -1.16 | 0.02  |
|      | NESC | 250C | LP:t | 0.35  | 15.72 | -0.17 | 15.72           | 0.05  | -1.56 | 0.08  |
|      | NESC | 250C | RP:t | 0.31  | 27.58 | -0.40 | 27.58           | 0.03  | -2.04 | 0.02  |
| NESC | Rule | 250D | LP:t | 0.58  | 6.36  | -0.04 | 6.39            | 0.08  | -0.64 | 0.03  |
| NESC | Rule | 250D | RP:t | 0.91  | 10.65 | -0.09 | 10.69           | 0.07  | -0.74 | 0.02  |

#### Tubes Summary:

| Pole<br>Label | Tube<br>Num. | Weight | Load | Case | Maximum<br>Usage | Resultant<br>Moment |
|---------------|--------------|--------|------|------|------------------|---------------------|
|               |              | (lbs)  |      |      | %                | (ft-k)              |
| LP            | 1            | 4666   | NESC | 250C | 29.16            | 577.79              |
| LP            | 2            | 6821   | NESC | 250C | 39.01            | 1424.40             |
| RP            | 1            | 364    | NESC | 250C | 1.25             | 2.80                |
| RP            | 2            | 992    | NESC | 250C | 13.45            | 85.14               |
| RP            | 3            | 4666   | NESC | 250C | 30.14            | 596.52              |
| RP            | 4            | 6821   | NESC | 250C | 36.88            | 1344.15             |
|               |              |        |      |      |                  |                     |

\*\*\* Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress

# Summary of Steel Pole Usages:

| Steel Pole<br>Label | Maximum<br>Usage % | Load | Case |     | Segment<br>Number | _                  |
|---------------------|--------------------|------|------|-----|-------------------|--------------------|
| LP<br>RP            | 37.01              |      |      | 2.5 |                   | 12719.3<br>14075.1 |

### Summary of Tubular X-Arm Usages:

| Tubular | X-Arm | Maximum |      | Load | Case | H€  | eight | Segment | Weight |
|---------|-------|---------|------|------|------|-----|-------|---------|--------|
|         | Label | Usage % |      |      |      | AGL | (ft)  | Number  | (lbs)  |
|         | XArm  | 30.21   | NESC | Rule | 250B |     | 71.5  | 3       | 1523.8 |

\*\*\* Maximum Stress Summary for Each Load Case

### Summary of Maximum Usages by Load Case:

|      | Load | Case | Maximum<br>Usage % | Element<br>Label | E]   | Lement<br>Type |
|------|------|------|--------------------|------------------|------|----------------|
| NESC | Rule | 250B | 66.29              | RP               | Base | Plate          |
|      | NESC | 250C | 64.33              | LP               | Base | Plate          |
| NESC | Rule | 250D | 66.81              | RP               | Base | Plate          |

### Summary of Steel Pole Usages by Load Case:

|      | Load         | Case | Maximum<br>Usage % | Steel Pole<br>Label | Height<br>AGL (ft) |          |
|------|--------------|------|--------------------|---------------------|--------------------|----------|
| NESC | Rule         |      | 24.10              | LP                  | 2.5                | 18       |
| NESC | NESC<br>Rule |      | 39.01<br>16.05     | LP<br>LP            | 2.5<br>2.5         | 18<br>18 |

# Summary of Base Plate Usages by Load Case:

|      | Load | Case | Pole<br>Label |   | Length | Vertical<br>Load |          |         | Bending<br>Stress |        | Acting On | Max Bolt<br>Load For<br>Bend Line | Plate | Usage |
|------|------|------|---------------|---|--------|------------------|----------|---------|-------------------|--------|-----------|-----------------------------------|-------|-------|
|      |      |      |               |   | (in)   | (kips)           | (ft-k)   | (ft-k)  | (ksi)             | (ft-k) |           | (kips)                            | (in)  | %     |
| NESC | Rule | 250B | LP            | 1 | 12.996 | 35.427           | 1856.686 | -69.421 | 33.029            | 45.084 | -1.5      | 118.589                           | 2.235 | 66.06 |
|      | NESC | 250C | LP            | 1 | 12.996 | 19.257           | 1857.753 | -29.274 | 32.165            | 43.904 | -1.5      | 115.752                           | 2.206 | 64.33 |
| NESC | Rule | 250D | LP            | 1 | 12.996 | 32.205           | 1855.296 | -99.895 | 33.301            | 45.455 | -1.5      | 119.416                           | 2.244 | 66.60 |
| NESC | Rule | 250B | RP            | 1 | 12.996 | 51.986           | 1857.431 | -45.302 | 33.147            | 45.245 | -1.5      | 119.081                           | 2.239 | 66.29 |
|      | NESC | 250C | RP            | 1 | 12.996 | 24.858           | 1857.975 | -5.701  | 32.016            | 43.701 | -1.5      | 115.320                           | 2.201 | 64.03 |
| NESC | Rule | 250D | RP            | 1 | 12.996 | 49.103           | 1856.543 | -73.149 | 33.403            | 45.595 | -1.5      | 119.864                           | 2.248 | 66.81 |

# Summary of Tubular X-Arm Usages by Load Case:

| L      | oad | Case         | Maximum<br>Usage % |              | _            | Segment<br>Number |
|--------|-----|--------------|--------------------|--------------|--------------|-------------------|
| NESC R |     | 250B<br>250C |                    | XArm<br>XArm | 71.5<br>71.5 | 3                 |

# Summary of Insulator Usages:

|                        | Insulator<br>Type |          |      | Load  | Case    | Weight<br>(lbs) |  |  |
|------------------------|-------------------|----------|------|-------|---------|-----------------|--|--|
| RAntFUT                | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| RAnt                   |                   | 0.00     |      |       |         |                 |  |  |
| Coax1                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax2                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax3                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax4                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax5                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Соахб                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax7                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax8                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| Coax9                  | Clamp             | 0.00     | NESC | Rule  | 250B    | 0.0             |  |  |
| SWL                    | Suspension        | 0.00     | NESC | Rule  | 250B    | 1.0             |  |  |
| SWR                    | Suspension        | 0.00     | NESC | Rule  | 250B    | 1.0             |  |  |
| PHL                    | Suspension        | 0.00     | NESC | Rule  | 250B    | 50.0            |  |  |
| PHM                    | Suspension        | 0.00     | NESC | Rule  | 250B    | 50.0            |  |  |
| PHR                    | Suspension        | 0.00     | NESC | Rule  | 250B    | 50.0            |  |  |
| *** Weight             | of structur       | re (lbs) | :    |       |         |                 |  |  |
| Weight                 | of Tubular        | X-Arms:  |      | -     | 1523.8  | 3               |  |  |
| Weight                 | of Steel Po       | oles:    |      | 26    | 5794.4  | 4               |  |  |
| Weight of Suspensions: |                   |          |      | 152.0 |         |                 |  |  |
| Total:                 | Total:            |          |      |       | 28470.2 |                 |  |  |

\*\*\* End of Report

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

PLS-POLE

POLE AND FRAME ANALYSIS AND DESIGN Copyright Power Line Systems 1999-2021

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Project Name : Project Notes:

Project File : J:\Jobs\2112200.WI\05\_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 & 103\_str#8012\_80ft(lp)-107ft(rp)\_r3.pol

Date run : 2:46:10 PM Thursday, October 14, 2021

by : PLS-POLE Version 16.81 Licensed to : Centek Engineering Inc

Successfully performed nonlinear analysis

The model has 0 warnings.



Modeling options:

Offset Arms from Pole/Mast: Yes
Offset Braces from Pole/Mast: Yes
Offset Guys from Pole/Mast: Yes
Offset Posts from Pole/Mast: Yes
Offset Strains from Pole/Mast: Yes
Use Alternate Convergence Process: No

Steel poles and tubular arms checked with ASCE/SEI 48-19

### Vang Connectivity:

| Vang<br>Label | Attach<br>Label | Tip<br>Label | Azimuth (deg) | Length (ft) | Measured<br>Relative To |
|---------------|-----------------|--------------|---------------|-------------|-------------------------|
| SWLVang       | RP:SW           | SWLVANG      | 180           | 0.5         | Face                    |
| SWRVang       |                 | SWRVANG      | 0             | 0.5         | Face                    |
| ArmSusL       |                 | VangCL       | 0             | 0.5         | Face                    |

ArmSusM XArm:ML VangCM 0 0.5 Face ArmSusR XArm:E VangCR 0 0.5 Face

Default Modulus of Elasticity for Steel = 29000.00 (ksi) Default Weight Density for Steel = 490.00 (lbs/ft^3)

# Steel Pole Properties:

| Distan | ce Ultima | Steel Pole     | Stock Length<br>Texture | Default  | Base  | Shape | Tip      | Base     | Taper   | Default | Tubes   | Modulus of | Weight    | Shape | Strength   |
|--------|-----------|----------------|-------------------------|----------|-------|-------|----------|----------|---------|---------|---------|------------|-----------|-------|------------|
|        |           | Property       | Number                  | Embedded | Plate |       | Diameter | Diameter |         | Drag    |         | Elasticity | Density   | At    | Check      |
| From   | Trans.    | Long.          |                         |          |       |       |          |          |         |         |         |            |           |       |            |
|        |           | Label          |                         | Length   |       |       |          |          |         | Coef.   |         | Override   | Override  | Base  | Type       |
| Tip    | Load      | Load           |                         |          |       |       |          |          |         |         |         |            |           |       |            |
|        |           |                | (ft)                    | (ft)     |       |       | (in)     | (in)(    | (in/ft) |         |         | (ksi)(     | lbs/ft^3) |       |            |
| (ft)   | (kips)    | (kips)         |                         |          |       |       |          |          |         |         |         |            |           |       |            |
|        |           |                |                         |          |       |       |          |          |         |         |         |            |           |       |            |
|        |           | .2_80FT(LP)-R3 | 80.00                   | 0        | Yes   | 12F   | 0        | 48.5     | 0.3283  | 1.6     | 2 tubes | 0          | 0         | (     | Calculated |
| 0.000  | 0.0000    | 0.0000 Corte   | n Steel                 |          |       |       |          |          |         |         |         |            |           |       |            |
| QT103  | _Str#8012 | _107FT(RP)-R3  | 107.00                  | 0        | Yes   | 12F   | 13       | 48.5     | 0       | 1.6     | 4 tubes | 0          | 0         | (     | Calculated |
| 0.000  | 0.0000    | 0.0000 Corte   | n Steel                 |          |       |       |          |          |         |         |         |            |           |       |            |

# Steel Tubes Properties:

| Diam.           | Actual                | Pole       | Tube | Length | Thickness | Lap    | Lap    | Lap  | Gap or | Yield  | Moment Cap. | Tube   | Center of | Calculated | Tube Top | Tube Bot. 1 | 1.5x |
|-----------------|-----------------------|------------|------|--------|-----------|--------|--------|------|--------|--------|-------------|--------|-----------|------------|----------|-------------|------|
|                 |                       | Property   | No.  |        |           | Length | Factor | Butt | Offset | Stress | Override    | Weight | Gravity   | Taper      | Diameter | Diameter I  | Lap  |
| Length          | Overlap               |            |      | (ft)   | (in)      | (ft)   |        |      | (in)   | (ksi)  | (ft-k)      | (lbs)  | (ft)      | (in/ft)    | (in)     | (in)        |      |
| (ft)            | (ft)                  |            |      |        |           |        |        |      |        |        |             |        |           |            |          |             |      |
|                 |                       |            |      |        |           |        |        |      |        |        |             |        |           |            |          |             |      |
| QT003_<br>4.327 | _Str#8012_80<br>0.000 | )FT(LP)-R3 | 1    | 40     | 0.375     | 0.000  | 0.000  |      | 0.000  | 65.000 | 0.000       | 4666   | 21.54     | 0.32827    | 22.24    | 35.37       |      |
| QT003_<br>0.000 | _Str#8012_80<br>0.000 | )FT(LP)-R3 | 2    | 40     | 0.375     | 0.000  | 0.000  |      | 0.000  | 65.000 | 0.000       | 6821   | 21.05     | 0.32827    | 35.37    | 48.50       |      |

# Steel Tubes Properties:

|                | Pole          | Tube | Length | Thickness | Lap    | Lap    | Lap G  | ap or | Yield  | Moment Cap. | Tube   | Center of | Calculated | Tube Top | Tube Bot. 1.5x |
|----------------|---------------|------|--------|-----------|--------|--------|--------|-------|--------|-------------|--------|-----------|------------|----------|----------------|
| Diam. Actual   |               |      |        |           |        |        |        |       |        |             |        | _         |            | _        |                |
| I              | Property      | No.  |        |           | Length | Factor | Butt C | ffset | Stress | Override    | Weight | Gravity   | Taper      | Diameter | Diameter Lap   |
| Length Overlap |               |      | (ft)   | (in)      | (ft)   |        |        | (in)  | (ksi)  | (ft-k)      | (lbs)  | (ft)      | (in/ft)    | (in)     | (in)           |
| (ft) (ft)      |               |      | (10)   | ( /       | (10)   |        |        | (     | (1151) | (20 11)     | (100)  | (20)      | (111/10)   | (111)    | (222)          |
|                |               |      |        |           |        |        |        |       |        |             |        |           |            |          |                |
|                |               |      |        |           |        |        |        |       |        |             |        |           |            |          |                |
| QT103_Str#8012 | _107FT(RP)-R3 | 1    | 12     | 0.1875    | 0.000  | 0.000  |        | 0.000 | 65.000 | 0.000       | 364    | 6.27      | 0.32827    | 13.00    | 16.94          |
| 2.071 0.000    |               |      |        |           |        |        |        |       |        |             |        |           |            |          |                |
| QT103_Str#8012 | _107FT(RP)-R3 | 2    | 15     | 0.3125    | 0.000  | 0.000  |        | 0.000 | 65.000 | 0.000       | 992    | 7.82      | 0.32827    | 17.19    | 22.11          |
| 2.686 0.000    |               |      |        |           |        |        |        |       |        |             |        |           |            |          |                |
| QT103_Str#8012 | _107FT(RP)-R3 | 3    | 40     | 0.375     | 0.000  | 0.000  |        | 0.000 | 65.000 | 0.000       | 4666   | 21.54     | 0.32827    | 22.24    | 35.37          |
| 4.327 0.000    |               |      |        |           |        |        |        |       |        |             |        |           |            |          |                |
| QT103_Str#8012 | _107FT(RP)-R3 | 4    | 40     | 0.375     | 0.000  | 0.000  |        | 0.000 | 65.000 | 0.000       | 6821   | 21.05     | 0.32827    | 35.37    | 48.50          |
| 0.000 0.000    |               |      |        |           |        |        |        |       |        |             |        |           |            |          |                |

# Base Plate Properties:

| Pole                        | Plate  | Plate | Plate  | Plate  | Bend Line | Hole   | Hole  | Steel      | Steel  | Bolt  | Bolt    | Num.  | Bolt     | Bolt     |
|-----------------------------|--------|-------|--------|--------|-----------|--------|-------|------------|--------|-------|---------|-------|----------|----------|
| Property                    | Diam.  | Shape | Thick. | Weight | Length    | Diam.  | Shape | Density    | Yield  | Diam. | Pattern | Of    | Cage X   | Cage Y   |
|                             |        |       |        |        | Override  |        |       |            | Stress |       | Diam.   | Bolts | Inertia  | Inertia  |
|                             | (in)   |       | (in)   | (lbs)  | (in)      | (in)   | (     | (lbs/ft^3) | (ksi)  | (in)  | (in)    |       | (in^4)   | (in^4)   |
|                             |        |       |        |        |           |        |       |            |        |       |         |       |          |          |
| QT003_Str#8012_80FT(LP)-R3  | 52.000 | 4F    | 2.750  | 1233   | 0.000     | 37.000 | 0     | 490.00     | 50.000 | 2.250 | 55.750  | 12    | 18334.12 | 18334.12 |
| QT103_Str#8012_107FT(RP)-R3 | 52.000 | 4F    | 2.750  | 1233   | 0.000     | 37.000 | 0     | 490.00     | 50.000 | 2.250 | 55.750  | 12    | 18334.12 | 18334.12 |

Base Plate Bolt Coordinates for Property "QT003\_Str#8012\_80FT(LP)-R3":



Base Plate Bolt Coordinates for Property "QT103\_Str#8012\_107FT(RP)-R3":

|        | Bolt Y<br>Coord. | Bolt<br>Angle<br>(deg) |
|--------|------------------|------------------------|
|        |                  |                        |
| 0.5336 | 0.8386           | 0                      |
| 0.704  | 0.704            | 0                      |
| 0.8386 | 0.5336           | 0                      |



Steel Pole Connectivity:

| Pole    | Tip     | Base  | X of | Y of  | Z of | Inclin. | Inclin. | Property                    | Z     | Attach. | Base    | Embed % E  | Embed C. |
|---------|---------|-------|------|-------|------|---------|---------|-----------------------------|-------|---------|---------|------------|----------|
| Label 3 | Joint 3 | Joint | Base | Base  | Base | About X | About Y | Set                         |       | Labels  | Connect | Override ( | Override |
|         |         |       | (ft) | (ft)  | (ft) | (deg)   | (deg)   |                             |       |         |         |            | (ft)     |
| LP      |         |       | 0    | -7.75 | 0    | 0       | 0       | OT003 Str#8012 80FT(LP)-R3  | <br>2 | labels  |         | 0.00       | 0        |
| RP      |         |       | 0    | 7.75  | 0    | 0       |         | QT103_Str#8012_107FT(RP)-R3 |       |         |         | 0.00       | 0        |

Relative Attachment Labels for Steel Pole "LP":

| Joint | Distance From         | Global Z          |
|-------|-----------------------|-------------------|
| Label | Origin/Top Joint (ft) | of Attach<br>(ft) |
| LP:SW | 0.75<br>8.50          | 0.00              |

Relative Attachment Labels for Steel Pole "RP":

| Joint<br>Label | Distance From<br>Origin/Top Joint<br>(ft) | Global Z<br>of Attach<br>(ft) |
|----------------|-------------------------------------------|-------------------------------|
| RP:ANTFUT      | 3.00                                      | 0.00                          |
| RP:ANT         | 15.00                                     | 0.00                          |
| RP:SW          | 27.75                                     | 0.00                          |
| RP:C           | 35.50                                     | 0.00                          |
| RP:Coax1       | 0.00                                      | 5.00                          |
| RP:Coax2       | 0.00                                      | 15.00                         |
| RP:Coax3       | 0.00                                      | 25.00                         |
| RP:Coax4       | 0.00                                      | 35.00                         |
| RP:Coax5       | 0.00                                      | 45.00                         |
| RP:Coax6       | 0.00                                      | 55.00                         |
| RP:Coax7       | 0.00                                      | 65.00                         |
| RP:Coax8       | 0.00                                      | 75.00                         |
| RP:Coax9       | 0.00                                      | 85.00                         |



Transverse/Vertical (Y) Axis

# Pole Steel Properties:

| Element<br>Label | Joint<br>Label | Joint<br>Position | Rel.<br>Dist. | Outer | Area   | T-Moment<br>Inertia | L-Moment<br>Inertia | D/t  | W/t<br>Max. | Fy    |       | T-Moment<br>Capacity |         |
|------------------|----------------|-------------------|---------------|-------|--------|---------------------|---------------------|------|-------------|-------|-------|----------------------|---------|
|                  |                |                   | (ft)          |       | (in^2) |                     | (in^4)              |      |             | (ksi) | (ksi) | (ft-k)               | (ft-k)  |
| LP               | LP:t           | LP:t Ori          | 0.00          | 22.24 | 26.36  | 1613.33             | 1613.33             | 0.00 | 13.2        | 65.00 | 65.00 | 785.93               | 785.93  |
| LP               | LP:SW          | LP:SW End         | 0.75          | 22.48 | 26.66  | 1668.44             | 1668.44             | 0.00 | 13.4        | 65.00 | 65.00 | 803.87               | 803.87  |
| LP               | LP:SW          | LP:SW Ori         | 0.75          | 22.48 | 26.66  | 1668.44             | 1668.44             | 0.00 | 13.4        | 65.00 | 65.00 | 803.87               | 803.87  |
| LP               | #LP:0          | Tube 1 End        | 4.63          | 23.76 | 28.19  | 1973.24             | 1973.24             | 0.00 | 14.3        | 65.00 | 65.00 | 899.82               | 899.82  |
| LP               | #LP:0          | Tube 1 Ori        | 4.63          | 23.76 | 28.19  | 1973.24             | 1973.24             | 0.00 | 14.3        | 65.00 | 65.00 | 899.82               | 899.82  |
| LP               | LP:C           | LP:C End          | 8.50          | 25.03 | 29.73  | 2313.08             | 2313.08             | 0.00 | 15.2        | 65.00 | 65.00 | 1001.18              | 1001.18 |
| LP               | LP:C           | LP:C Ori          | 8.50          | 25.03 | 29.73  | 2313.08             | 2313.08             | 0.00 | 15.2        | 65.00 | 65.00 | 1001.18              | 1001.18 |
| LP               | #LP:1          | Tube 1 End        | 13.50         | 26.67 | 31.71  | 2806.43             | 2806.43             | 0.00 | 16.4        | 65.00 | 65.00 | 1139.97              | 1139.97 |
| LP               | #LP:1          | Tube 1 Ori        | 13.50         | 26.67 | 31.71  | 2806.43             | 2806.43             | 0.00 | 16.4        | 65.00 | 65.00 | 1139.97              | 1139.97 |
| LP               | #LP:2          | Tube 1 End        | 18.50         | 28.31 | 33.68  | 3365.38             | 3365.38             | 0.00 | 17.5        | 65.00 | 65.00 | 1287.76              | 1287.76 |
| LP               | #LP:2          | Tube 1 Ori        | 18.50         | 28.31 | 33.68  | 3365.38             | 3365.38             | 0.00 | 17.5        | 65.00 | 65.00 | 1287.76              | 1287.76 |
| LP               | #LP:3          | Tube 1 End        | 23.50         | 29.95 | 35.66  | 3994.01             | 3994.01             | 0.00 | 18.7        | 65.00 | 65.00 | 1444.56              | 1444.56 |
| LP               | #LP:3          | Tube 1 Ori        | 23.50         | 29.95 | 35.66  | 3994.01             | 3994.01             | 0.00 | 18.7        | 65.00 | 65.00 | 1444.56              | 1444.56 |
| LP               | #LP:4          | Tube 1 End        | 28.50         | 31.59 | 37.64  | 4696.43             | 4696.43             | 0.00 | 19.9        | 65.00 | 65.00 | 1610.36              | 1610.36 |
| LP               | #LP:4          | Tube 1 Ori        | 28.50         | 31.59 | 37.64  | 4696.43             | 4696.43             | 0.00 | 19.9        | 65.00 | 65.00 | 1610.36              | 1610.36 |
| LP               | #LP:5          | Tube 1 End        | 33.50         | 33.24 | 39.62  | 5476.73             | 5476.73             | 0.00 | 21.1        | 65.00 | 65.00 | 1785.18              | 1785.18 |
| LP               | #LP:5          | Tube 1 Ori        | 33.50         | 33.24 | 39.62  | 5476.74             | 5476.74             | 0.00 | 21.1        | 65.00 | 65.00 | 1785.18              | 1785.18 |

| LP | #LP:6     | Tube 1    | End | 36.75 3 | 4.30 | 40.91 | 6027.63  | 6027.63  | 0.00 | 21.8 | 65.00 | 65.00 | 1903.64 | 1903.64 |
|----|-----------|-----------|-----|---------|------|-------|----------|----------|------|------|-------|-------|---------|---------|
| LP | #LP:6     | Tube 1    | Ori | 36.75 3 | 4 30 | 40.91 | 6027.63  | 6027.63  | 0 00 | 21 8 | 65 00 | 65 00 | 1903.64 | 1903.64 |
|    | #LP:7     | SpliceT   |     | 40.00 3 |      | 42.19 | 6614.29  | 6614.29  |      |      |       |       | 2025.91 | 2025.91 |
| LP |           | _         |     |         |      |       |          |          |      |      |       |       |         |         |
| LΡ | #LP:7     | SpliceT   |     | 40.00 3 |      | 42.19 | 6614.29  | 6614.29  |      |      |       |       | 2025.91 | 2025.91 |
| LΡ | #LP:8     | Tube 2    | End | 45.00 3 | 7.01 | 44.17 | 7589.25  | 7589.25  | 0.00 | 23.8 | 65.00 | 65.00 | 2221.44 | 2221.44 |
| LΡ | #LP:8     | Tube 2    | Ori | 45.00 3 | 7.01 | 44.17 | 7589.25  | 7589.25  | 0.00 | 23.8 | 65.00 | 65.00 | 2221.44 | 2221.44 |
| LP | #LP:9     | Tube 2    |     | 50.00 3 |      | 46.15 | 8655.60  | 8655.60  |      |      |       |       | 2425.98 | 2425.98 |
|    |           |           |     |         |      |       |          |          |      |      |       |       |         |         |
| LP | #LP:9     | Tube 2    |     | 50.00 3 |      | 46.15 | 8655.60  | 8655.60  |      |      |       |       | 2425.98 | 2425.98 |
| LΡ | #LP:10    | Tube 2    |     | 55.00 4 | 0.29 | 48.13 | 9817.44  | 9817.44  |      |      |       |       | 2639.53 | 2639.53 |
| LΡ | #LP:10    | Tube 2    | Ori | 55.00 4 | 0.29 | 48.13 | 9817.44  | 9817.44  | 0.00 | 26.1 | 65.00 | 65.00 | 2639.53 | 2639.53 |
| LΡ | #LP:11    | Tube 2    | End | 60.00 4 | 1.93 | 50.11 | 11078.85 | 11078.85 | 0.00 | 27.3 | 65.00 | 65.00 | 2862.09 | 2862.09 |
| LP | #LP:11    | Tube 2    |     | 60.00 4 |      |       | 11078.85 |          |      |      |       |       | 2862.09 | 2862.09 |
| LP | #LP:12    | Tube 2    |     | 65.00 4 |      |       | 12443.94 |          |      |      |       |       | 3093.66 | 3093.66 |
|    |           |           |     |         |      |       |          |          |      |      |       |       |         |         |
| LP | #LP:12    | Tube 2    |     | 65.00 4 |      |       | 12443.95 |          |      |      |       |       | 3093.66 | 3093.66 |
| LΡ | #LP:13    | Tube 2    | End | 70.00 4 | 5.22 | 54.07 | 13916.80 | 13916.80 | 0.00 | 29.6 | 65.00 | 65.00 | 3334.24 | 3334.24 |
| LP | #LP:13    | Tube 2    | Ori | 70.00 4 | 5.22 | 54.07 | 13916.80 | 13916.80 | 0.00 | 29.6 | 65.00 | 65.00 | 3334.24 | 3334.24 |
| LΡ | #LP:14    | Tube 2    | End | 75.00 4 | 6.86 | 56.05 | 15501.53 | 15501.53 | 0.00 | 30.8 | 65.00 | 64.01 | 3529.36 | 3529.36 |
| LP | #LP:14    | Tube 2    |     | 75.00 4 |      |       | 15501.53 |          |      |      |       |       | 3529.36 | 3529.36 |
|    |           |           |     |         |      |       | 17202.21 |          |      |      |       |       |         |         |
| LP | LP:g      | LP:g      | End | 80.00 4 | 8.50 | 58.03 | 1/202.21 | 1/202.21 | 0.00 | 32.0 | 65.00 | 02.80 | 3715.97 | 3715.97 |
| RP | RP:t      | RP:t      | Ori | 0.00 1  | 3 00 | 7.72  | 162.33   | 162.33   | 0 00 | 15 9 | 65 00 | 65 00 | 135.28  | 135.28  |
|    | RP:ANTFUT |           |     |         |      |       |          |          |      |      |       |       | 157.03  |         |
|    |           |           |     | 3.00 1  |      | 8.32  | 202.71   | 202.71   |      |      |       |       |         | 157.03  |
| RP |           | RP:ANTFUT |     | 3.00 1  |      | 8.32  | 202.71   | 202.71   |      |      |       |       | 157.03  | 157.03  |
| RP | #RP:15    | Tube 1    | End | 7.50 1  | 5.46 | 9.21  | 275.03   | 275.03   | 0.00 | 19.4 | 65.00 | 65.00 | 192.70  | 192.70  |
| RP | #RP:15    | Tube 1    | Ori | 7.50 1  | 5.46 | 9.21  | 275.03   | 275.03   | 0.00 | 19.4 | 65.00 | 65.00 | 192.70  | 192.70  |
| RP | #RP:16    | SpliceT   | End | 12.00 1 | 6.94 | 10.10 | 362.79   | 362.79   | 0.00 | 21.5 | 65.00 | 65.00 | 232.02  | 232.02  |
| RP | #RP:16    | SpliceT   |     | 12.00 1 |      | 16.96 | 618.41   | 618.41   |      |      |       |       | 389.74  | 389.74  |
|    |           | _         |     |         |      |       |          |          |      |      |       |       |         |         |
| RP | RP:ANT    | RP:ANT    |     | 15.00 1 |      | 17.95 | 733.08   | 733.08   |      |      |       |       | 436.98  | 436.98  |
| RP | RP:ANT    | RP:ANT    |     | 15.00 1 |      | 17.95 | 733.08   | 733.08   |      |      |       |       | 436.98  | 436.98  |
| RP | #RP:17    | Tube 2    | End | 18.50 1 | 9.32 | 19.10 | 883.81   | 883.81   | 0.00 | 13.9 | 65.00 | 65.00 | 495.50  | 495.50  |
| RP | #RP:17    | Tube 2    | Ori | 18.50 1 | 9.32 | 19.10 | 883.81   | 883.81   | 0.00 | 13.9 | 65.00 | 65.00 | 495.50  | 495.50  |
| RP | RP:Coax9  | RP:Coax9  | End | 22.00 2 | 0 47 | 20.26 | 1053.91  | 1053.91  | 0 00 | 14 9 | 65 00 | 65 00 | 557.71  | 557.71  |
| RP | RP:Coax9  | RP:Coax9  |     | 22.00 2 |      | 20.26 | 1053.91  | 1053.91  |      |      |       |       | 557.71  | 557.71  |
|    |           |           |     |         |      |       |          |          |      |      |       |       |         |         |
| RP | #RP:18    | SpliceT   |     | 27.00 2 |      | 21.91 | 1332.82  | 1332.82  |      |      |       |       | 652.95  | 652.95  |
| RP | #RP:18    | SpliceT   | Ori | 27.00 2 | 2.24 | 26.36 | 1613.31  | 1613.31  |      |      |       |       | 785.92  | 785.92  |
| RP | RP:SW     | RP:SW     | End | 27.75 2 | 2.48 | 26.66 | 1668.42  | 1668.42  | 0.00 | 13.4 | 65.00 | 65.00 | 803.87  | 803.87  |
| RP | RP:SW     | RP:SW     | Ori | 27.75 2 | 2.48 | 26.66 | 1668.42  | 1668.42  | 0.00 | 13.4 | 65.00 | 65.00 | 803.87  | 803.87  |
| RP | RP:Coax8  | RP:Coax8  | End | 32.00 2 |      | 28.34 | 2004.55  | 2004.55  |      |      |       |       | 909.39  | 909.39  |
| RP | RP:Coax8  | RP:Coax8  |     | 32.00 2 |      | 28.34 | 2004.55  | 2004.55  |      |      |       |       | 909.39  | 909.39  |
|    |           |           |     |         |      |       |          |          |      |      |       |       |         |         |
| RP | RP:C      | RP:C      |     | 35.50 2 |      | 29.73 | 2313.06  | 2313.06  |      |      |       |       | 1001.18 | 1001.18 |
| RP | RP:C      | RP:C      |     | 35.50 2 | 5.03 | 29.73 | 2313.06  | 2313.06  |      |      |       |       | 1001.18 | 1001.18 |
| RP | #RP:19    | Tube 3    | End | 38.75 2 | 6.10 | 31.01 | 2626.48  | 2626.48  | 0.00 | 16.0 | 65.00 | 65.00 | 1090.36 | 1090.36 |
| RP | #RP:19    | Tube 3    | Ori | 38.75 2 | 6.10 | 31.01 | 2626.48  | 2626.48  | 0.00 | 16.0 | 65.00 | 65.00 | 1090.36 | 1090.36 |
| RP | RP:Coax7  | RP:Coax7  | End | 42.00 2 | 7 16 | 32.30 | 2967.02  | 2967.02  | 0 00 | 16 7 | 65 00 | 65 00 | 1183.35 | 1183.35 |
| RP | RP:Coax7  | RP:Coax7  |     | 42.00 2 |      | 32.30 | 2967.02  | 2967.02  |      |      |       |       | 1183.35 | 1183.35 |
|    |           |           |     |         |      |       |          |          |      |      |       |       |         |         |
| RP | #RP:20    | Tube 3    |     | 47.00 2 |      | 34.28 | 3546.44  | 3546.44  |      |      |       |       | 1333.84 | 1333.84 |
| RP | #RP:20    | Tube 3    |     | 47.00 2 |      | 34.28 | 3546.44  | 3546.44  |      |      |       |       | 1333.84 | 1333.84 |
| RP | RP:Coax6  | RP:Coax6  | End | 52.00 3 | 0.45 | 36.26 | 4196.78  | 4196.78  | 0.00 | 19.1 | 65.00 | 65.00 | 1493.35 | 1493.35 |
| RP | RP:Coax6  | RP:Coax6  | Ori | 52.00 3 | 0.45 | 36.26 | 4196.78  | 4196.78  | 0.00 | 19.1 | 65.00 | 65.00 | 1493.35 | 1493.35 |
| RP | #RP:21    | Tube 3    | End | 57.00 3 | 2 09 | 38.24 | 4922.14  | 4922.14  | 0 00 | 20 2 | 65 00 | 65 00 | 1661.86 | 1661.86 |
| RP | #RP:21    | Tube 3    |     | 57.00 3 |      | 38.24 | 4922.14  | 4922.14  |      |      |       |       | 1661.86 | 1661.86 |
|    |           |           |     |         |      |       |          |          |      |      |       |       |         |         |
| RP | RP:Coax5  | RP:Coax5  |     | 62.00 3 |      | 40.22 | 5726.60  | 5726.60  |      |      |       |       | 1839.37 | 1839.37 |
| RP | RP:Coax5  | RP:Coax5  |     | 62.00 3 |      | 40.22 | 5726.60  | 5726.60  |      |      |       |       | 1839.37 | 1839.37 |
| RP | #RP:22    | SpliceT   | End | 67.00 3 | 5.37 | 42.19 | 6614.26  | 6614.26  | 0.00 | 22.6 | 65.00 | 65.00 | 2025.90 | 2025.90 |
| RP | #RP:22    | SpliceT   | Ori | 67.00 3 | 5.37 | 42.19 | 6614.27  | 6614.27  | 0.00 | 22.6 | 65.00 | 65.00 | 2025.90 | 2025.90 |
| RP | RP:Coax4  | RP:Coax4  |     | 72.00 3 |      | 44.17 | 7589.23  | 7589.23  |      |      |       |       | 2221.44 | 2221.44 |
|    |           |           |     | 72.00 3 |      | 44.17 | 7589.23  | 7589.23  |      |      |       |       | 2221.44 | 2221.44 |
| RP | RP:Coax4  | RP:Coax4  |     |         |      |       |          |          |      |      |       |       |         |         |
| RP | #RP:23    | Tube 4    |     | 77.00 3 |      | 46.15 | 8655.58  | 8655.58  |      |      |       |       | 2425.98 | 2425.98 |
| RP | #RP:23    | Tube 4    | Ori | 77.00 3 | 8.65 | 46.15 | 8655.58  | 8655.58  | 0.00 | 24.9 | 65.00 | 65.00 | 2425.98 | 2425.98 |

```
RP | RP:Coax3 | RP:Coax3 | End | 82.00 | 40.29 | 48.13 | 9817.42 | 9817.42 | 0.00 | 26.1 | 65.00 | 65.00 | 2639.53 | 2639.53 | 2639.53 | RP:Coax3 | RP:Coax3 | Coax3 |
```

Chara New Charle Charl Mhighware Dismotor Laugh Madulus Duas Comptus Character Ventical Museum

#### Tubular X-Arm Properties:

| Texture          | Cross Arm Stock          | steel | Tnickness | Diameter | Length | Modulus          | Drag Geometry | strength      | vertical | Trans.   | Long.    | Steel           | weight              |  |
|------------------|--------------------------|-------|-----------|----------|--------|------------------|---------------|---------------|----------|----------|----------|-----------------|---------------------|--|
|                  | Property Number<br>Label | Shape |           | or Depth |        | of<br>Elasticity | Coef.         | Check<br>Type | Capacity | Capacity | Capacity | Yield<br>Stress | Density<br>Override |  |
|                  |                          |       | (in)      | (in)     | (ft)   | (ksi)            |               | -7F0          | (lbs)    | (lbs)    | (lbs)    |                 | lbs/ft^3)           |  |
| -<br>31FT_XArm_Q | T003&QT103               | 8F    | 0.375     | 12       | 31     | 29000            | 1.3 3 points  | Calculated    | 0        | 0        | 0        | 65              | 0                   |  |

Joints Relative to the Origin for Cross Arm Property "31FT XArm QT003&QT103":

Joint Offset

Label

(ft)

LP 7.75

ML 15.5

RP 23.25

Tubular X-Arm Connectivity:

X-Arm X-Arm Azimuth Slope Attach. Connects
Label Property
Set
(deg) (deg)

XArm 31FT\_XArm\_QT003&QT103 0 0 5 connections

### X-Arm Connections for "XArm":

| Ction<br>Code<br>Type |
|-----------------------|
|                       |
| Face                  |
|                       |
| Face                  |
|                       |
|                       |



Transverse/Vertical (Y) Axis

# Tubular X-Arm Steel Properties:

| Element<br>Label | Joint<br>Label | Joint<br>Position | Rel.<br>Dist.<br>(ft) |       | Area  | V-Moment<br>Inertia<br>(in^4) | H-Moment<br>Inertia<br>(in^4) | D/t  | W/t<br>Max. | Fy<br>(ksi) | Min.  | V-Moment<br>Capacity<br>(ft-k) |        |
|------------------|----------------|-------------------|-----------------------|-------|-------|-------------------------------|-------------------------------|------|-------------|-------------|-------|--------------------------------|--------|
|                  |                |                   |                       |       |       |                               |                               |      |             |             |       |                                |        |
| XArm             | XArm:O         | Origin            | 0.00                  | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:0       | End               | 3.87                  | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:0       | Origin            | 3.87                  | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:LP        | End               | 7.75                  | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:LP        | Origin            | 7.75                  | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:1       | End               | 11.63                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:1       | Origin            | 11.63                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:ML        | End               | 15.50                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:ML        | Origin            | 15.50                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:2       | End               | 19.38                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:2       | Origin            | 19.38                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:RP        | End               | 23.25                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:RP        | Origin            | 23.25                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:3       | End               | 27.13                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | #sXArm:3       | Origin            | 27.13                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |
| XArm             | XArm:E         | End               | 31.00                 | 12.00 | 14.45 | 258.25                        | 258.25                        | 0.00 | 9.1         | 65.00       | 65.00 | 233.14                         | 233.14 |

# \*\*\* Insulator Data

### Clamp Properties:

Label Stock Holding Hardware Notes
Number Capacity Capacity
(lbs) (lbs)

CLAMP 1e+05 0

### Clamp Insulator Connectivity:

| Clamp<br>Label |           |       | Min. Required Vertical Load (uplift) (lbs) |
|----------------|-----------|-------|--------------------------------------------|
| RAntFUT        | RP:ANTFUT | CLAMP | No Uplift                                  |
| RAnt           | RP:ANT    | CLAMP | No Uplift                                  |
| Coax1          | RP:Coax1  | CLAMP | No Limit                                   |
| Coax2          | RP:Coax2  | CLAMP | No Limit                                   |
| Coax3          | RP:Coax3  | CLAMP | No Limit                                   |
| Coax4          | RP:Coax4  | CLAMP | No Limit                                   |
| Coax5          | RP:Coax5  | CLAMP | No Limit                                   |
| Coax6          | RP:Coax6  | CLAMP | No Limit                                   |
| Coax7          | RP:Coax7  | CLAMP | No Limit                                   |
| Coax8          | RP:Coax8  | CLAMP | No Limit                                   |
| Coax9          | RP:Coax9  | CLAMP | No Limit                                   |

### Suspension Properties:

| Label      | Stock  | Length | Weight | Wind   | Tension  | Top Rect | Top Rect | Bot. Rect | Bot. Rect | Vert. Rect | Vert. Rect | Hardware 1 | Notes | Draw R | ≀igid |
|------------|--------|--------|--------|--------|----------|----------|----------|-----------|-----------|------------|------------|------------|-------|--------|-------|
|            | Number |        |        | Area   | Capacity | Width    | Height   | Width     | Height    | Width      | Height     | Capacity   |       |        |       |
|            |        | (ft)   | (lbs)  | (ft^2) | (lbs)    | (ft)     | (ft)     | (ft)      | (ft)      | (ft)       | (ft)       | (lbs)      |       |        |       |
| SW SUS     |        | 0.25   | 1      | 0      | 2.5e+04  | 0        | 0        | 0         | 0         | 0          | 0          | 0          |       | Sheds  | No    |
| dummy Susp |        | 6      | 50     | 2      | 3e+04    | 0        | 0        | 0         | 0         | 0          | 0          | 0          | 9     | Sheds  | No    |

# Suspension Insulator Connectivity:

| Su | spension<br>Label | Structure<br>Attach | Tip<br>Label |            |        | Maximum | Minimum | Maximum | Minimum | Maximum | Minimum | Maximum | Min. Required<br>Vertical Load<br>(uplift)<br>(lbs) |
|----|-------------------|---------------------|--------------|------------|--------|---------|---------|---------|---------|---------|---------|---------|-----------------------------------------------------|
|    | SWL               | SWLVANG             | SWL          | SW SUS     | 0.00   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | No Limit                                            |
|    | SWR               | SWRVANG             | SWR          | SW SUS     | 0.00   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | No Limit                                            |
|    | PHL               | VangCL              | PHL          | dummy Susp | -90.00 | 77.00   | -90.00  | 48.00   | 0.00    | 0.00    | 0.00    | 0.00    | No Limit                                            |
|    | PHM               | VangCM              | PHM          | dummy Susp | -77.00 | 77.00   | -48.00  | 48.00   | 0.00    | 0.00    | 0.00    | 0.00    | No Limit                                            |
|    | PHR               | VangCR              | PHR          | dummy Susp | -77.00 | 90.00   | -48.00  | 90.00   | 0.00    | 0.00    | 0.00    | 0.00    | No Limit                                            |

 $Loads from file: J:\Jobs\2112200.WI\05\_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 \& 103-str\#8012-r3.lca$ 

Insulator dead and wind loads are already included in the point loads printed below.

# Loading Method Parameters:

Structure Height Summary (used for calculating wind/ice adjust with height):

| Z of ground for wind height adjust | 0.00 (ft) and structure Z coordinate that will be put on the centerline ground profile in PLS-CADD. |
|------------------------------------|-----------------------------------------------------------------------------------------------------|
| Ground elevation shift             | 0.00 (ft)                                                                                           |
| Z of ground with shift             | 0.00 (ft)                                                                                           |
| Z of structure top (highest joint) | 107.00 (ft)                                                                                         |
| Structure height                   | 107.00 (ft)                                                                                         |
| Structure height above ground      | 107.00 (ft)                                                                                         |

#### Vector Load Cases:

| Load Case Dead Wind<br>Longit. Ice Ice Tempera |                        |                      | SF for SF for SF for | SF for SF For Point    | Wind/Ice Trans. |
|------------------------------------------------|------------------------|----------------------|----------------------|------------------------|-----------------|
| <del>-</del>                                   | Steel Poles Wood Conc. | Conc. Conc. Guys     | Non Braces Insuls.   | Hardware Found. Loads  | Model Wind      |
| Wind Thick. Density                            | Deflection Deflection  |                      |                      |                        |                 |
| Factor Factor T                                |                        |                      | Tubular              |                        | Pressure        |
| Pressure                                       | Check Lim              |                      |                      |                        |                 |
|                                                | and Towers             | Crack Tens. Cables   | Arms                 |                        | (psf)           |
| (psf) (in)(lbs/ft^3) (deg                      | F) % or (ft)           |                      |                      |                        |                 |
|                                                |                        | -                    |                      |                        |                 |
| NESC Rule 250B 1.5000 2.5000                   | 1.00000 1.0000 1.0000  | 0.0000 0.0000 1.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.0000 15 loads | Wind on All 4   |
| 0 0.500 57.000 0.0                             | No Limit 0             |                      |                      |                        |                 |
| NESC 250C 1.0000 1.0000                        | 1.00000 1.0000 1.0000  | 0.0000 0.0000 1.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.0000 15 loads | NESC 2017 31    |
| 0 0.000 57.000 0.0                             | No Limit 0             |                      |                      |                        |                 |
| NESC Rule 250D 1.0000 1.0000                   | 1.00000 1.0000 1.0000  | 0.0000 0.0000 1.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.0000 15 loads | Wind on All 4   |
| 0 1.000 57.000 15.0                            | No Limit 0             |                      |                      |                        |                 |

### Point Loads for Load Case "NESC Rule 250B":

| Joint<br>Label | Vertical<br>Load<br>(lbs) | Transverse<br>Load<br>(1bs) | Longitudinal<br>Load<br>(1bs) | Load<br>Comment |
|----------------|---------------------------|-----------------------------|-------------------------------|-----------------|
| RP:ANT         | 7359                      | 1734                        | 0                             |                 |
| SWL            | 2422.35                   | 1890.8                      | 0                             |                 |
| SWR            | 2422.35                   | 1890.8                      | 0                             |                 |
| PHL            | 8055.13                   | 3533.42                     | 0                             |                 |
| PHM            | 8055.13                   | 3533.42                     | 0                             |                 |
| PHR            | 8055.13                   | 3533.42                     | 0                             |                 |
| RP:Coax1       | 920                       | 172                         | 0                             |                 |
| RP:Coax2       | 920                       | 172                         | 0                             |                 |
| RP:Coax3       | 920                       | 172                         | 0                             |                 |
| RP:Coax4       | 920                       | 172                         | 0                             |                 |
| RP:Coax5       | 920                       | 172                         | 0                             |                 |
| RP:Coax6       | 920                       | 172                         | 0                             |                 |
| RP:Coax7       | 920                       | 172                         | 0                             |                 |
| RP:Coax8       | 920                       | 172                         | 0                             |                 |

RP:Coax9 920 172 0

Detailed Pole Loading Data for Load Case "NESC Rule 250B":

Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole.

| Pole<br>Label | Top<br>Joint | Bottom<br>Joint | Section        |                | Section        | Outer<br>Diameter | _                    | _     | Adjusted<br>Wind | Adjusted<br>Ice | Pole<br>Vert.      |        | Pole Ice<br>Vertical | Pole Ice<br>Wind | Tran.            | Long.<br>Wind |
|---------------|--------------|-----------------|----------------|----------------|----------------|-------------------|----------------------|-------|------------------|-----------------|--------------------|--------|----------------------|------------------|------------------|---------------|
| Label         | JOING        | JOING           | Z              | Bottom<br>Z    | Elevation      | Diameter          | Number               | COEI. |                  | Thickness       | Load               | Load   | Load                 | Load             |                  | Load          |
|               |              |                 | (ft)           | (ft)           | (ft)           | (in)              |                      |       | (psf)            | (in)            | (lbs)              | (lbs)  | (lbs)                | (lbs)            | (lbs)            |               |
| LP            | LP:t         | LP:SW           | 80.00          | 79.25          | 79.63          | 22.362            | 1.06e+06             | 1.600 | 10.00            | 0.50            | 101.49             | 22.36  | 10.67                |                  | 23.36            | 0.00          |
| LP            | LP:SW        |                 | 79.25          | 75.38          | 77.31          | 23.121            | 1.09e+06             | 1.600 | 10.00            | 0.50            | 542.45             | 119.46 | 57.01                | 5.17             | 124.63           | 0.00          |
| LP            |              | LP:C            | 75.38          | 71.50          | 73.44          | 24.393            | 1.15e+06             | 1.600 | 10.00            | 0.50            | 572.79             | 126.04 | 60.15                | 5.17             | 131.20           | 0.00          |
| LP            | LP:C         |                 | 71.50          | 66.50          | 69.00          | 25.849            | 1.22e+06             | 1.600 | 10.00            | 0.50            | 783.90             |        | 82.25                |                  | 179.01           | 0.00          |
| LP            |              |                 | 66.50          | 61.50          | 64.00          |                   | 1.3e+06              |       | 10.00            | 0.50            | 834.41             |        | 87.47                |                  | 189.95           | 0.00          |
| LP            |              |                 | 61.50          | 56.50          | 59.00          |                   | 1.38e+06             |       | 10.00            | 0.50            | 884.92             |        | 92.70                |                  | 200.89           | 0.00          |
| LP            |              |                 | 56.50          | 51.50          | 54.00          |                   | 1.46e+06             |       | 10.00            | 0.50            | 935.43             |        | 97.92                |                  | 211.83           |               |
| LP            |              |                 | 51.50          | 46.50          | 49.00          |                   | 1.53e+06             |       | 10.00            | 0.50            | 985.94             |        | 103.14               |                  | 222.78           | 0.00          |
| LP            |              |                 | 46.50          | 43.25          | 44.87          |                   | 1.6e+06              |       | 10.00            | 0.50            | 667.94             |        | 69.84                |                  | 150.67           | 0.00          |
| LP            |              |                 | 43.25          | 40.00          | 41.63          |                   | 1.65e+06             |       | 10.00            | 0.50            |                    |        | 72.05                |                  | 155.30           | 0.00          |
| LP            |              |                 | 40.00          | 35.00          | 37.50          |                   | 1.71e+06             |       | 10.00            |                 | 1102.11            |        | 115.15               |                  | 247.95           | 0.00          |
| LP            |              |                 | 35.00          | 30.00          | 32.50          |                   | 1.79e+06             |       | 10.00            |                 | 1152.61            |        | 120.38               |                  | 258.89           | 0.00          |
| LP            |              |                 | 30.00          | 25.00          | 27.50          |                   | 1.87e+06             |       | 10.00            |                 | 1203.12            |        | 125.60               |                  | 269.83           | 0.00          |
| LP<br>LP      |              |                 | 25.00<br>20.00 | 20.00<br>15.00 | 22.50<br>17.50 |                   | 1.95e+06             |       | 10.00            |                 | 1253.63            |        | 130.82<br>136.04     |                  | 280.77<br>291.72 | 0.00          |
| LP            |              |                 | 15.00          | 10.00          | 17.50          |                   | 2.02e+06<br>2.1e+06  |       | 10.00            |                 | 1304.14<br>1354.65 |        | 136.04               |                  | 302.66           | 0.00          |
| LP            |              |                 | 10.00          | 5.00           | 7.50           |                   | 2.1e+06<br>2.18e+06  |       | 10.00            |                 | 1405.15            |        | 141.27               |                  |                  | 0.00          |
| LP            |              | LP:q            | 5.00           | 0.00           | 2.50           |                   | 2.16e+06<br>2.26e+06 |       | 10.00            |                 | 1405.15            |        | 151.71               |                  | 313.60<br>324.55 | 0.00          |
| RP            | +•תם         | RP:ANTFUT       |                | 104.00         | 105.50         |                   | 6.39e+05             |       | 10.00            | 0.50            |                    |        | 25.76                |                  | 57.97            |               |
|               | RP:ANTFUT    | RP · ANIFUI     | 107.00         | 99.50          | 101.75         |                   | 6.97e+05             |       | 10.00            | 0.50            | 201.29             |        | 42.16                |                  | 94.35            | 0.00          |
| RP            | KF · ANII OI |                 | 99.50          | 95.00          | 97.25          |                   | 7.67e+05             |       | 10.00            | 0.50            | 201.23             |        | 46.39                |                  | 103.21           | 0.00          |
| RP            |              | RP:ANT          | 95.00          | 92.00          | 93.50          |                   | 8.37e+05             |       | 10.00            | 0.50            |                    |        | 33.76                |                  | 74.73            | 0.00          |
| RP            | RP:ANT       | IXI • AIVI      | 92.00          | 88.50          | 90.25          |                   | 8.88e+05             |       | 10.00            | 0.50            | 330.94             |        | 41.76                | 4.67             |                  | 0.00          |
| RP            | 101 - 11111  | RP:Coax9        | 88.50          | 85.00          | 86.75          |                   | 9.42e+05             |       | 10.00            | 0.50            | 351.56             |        | 44.32                |                  | 97.53            | 0.00          |
| RP            | RP:Coax9     | 111 000113      | 85.00          | 80.00          | 82.50          |                   | 1.01e+06             |       | 10.00            | 0.50            | 538.03             |        | 67.75                |                  | 148.63           | 0.00          |
| RP            | 111 000113   | RP:SW           | 80.00          | 79.25          | 79.63          |                   | 1.06e+06             |       | 10.00            | 0.50            | 101.46             |        | 10.67                |                  | 23.36            | 0.00          |
| RP            | RP:SW        | RP:Coax8        | 79.25          | 75.00          | 77.13          |                   | 1.1e+06              |       | 10.00            | 0.50            | 596.55             |        | 62.70                |                  | 137.04           |               |
| RP            | RP:Coax8     | RP:C            | 75.00          | 71.50          | 73.25          |                   | 1.16e+06             |       | 10.00            | 0.50            | 518.68             |        | 54.47                |                  | 118.79           | 0.00          |
| RP            | RP:C         |                 | 71.50          | 68.25          | 69.88          | 25.562            | 1.21e+06             | 1.600 | 10.00            | 0.50            | 503.79             | 110.77 | 52.87                | 4.33             | 115.11           | 0.00          |
| RP            |              | RP:Coax7        | 68.25          | 65.00          | 66.63          | 26.629            | 1.26e+06             | 1.600 | 10.00            | 0.50            | 525.13             | 115.40 | 55.07                | 4.33             | 119.73           | 0.00          |
| RP            | RP:Coax7     |                 | 65.00          | 60.00          | 62.50          | 27.983            | 1.32e+06             | 1.600 | 10.00            | 0.50            | 849.56             | 186.56 | 89.04                | 6.67             | 193.23           | 0.00          |
| RP            |              | RP:Coax6        | 60.00          | 55.00          | 57.50          | 29.624            | 1.4e+06              | 1.600 | 10.00            | 0.50            | 900.07             | 197.51 | 94.26                | 6.67             | 204.17           | 0.00          |
| RP            | RP:Coax6     |                 | 55.00          | 50.00          | 52.50          | 31.266            | 1.48e+06             | 1.600 | 10.00            | 0.50            | 950.58             | 208.45 | 99.48                | 6.67             | 215.12           | 0.00          |
| RP            |              | RP:Coax5        | 50.00          | 45.00          | 47.50          | 32.907            | 1.56e+06             | 1.600 | 10.00            | 0.50            | 1001.09            | 219.39 | 104.71               |                  | 226.06           | 0.00          |
| RP            | RP:Coax5     |                 | 45.00          | 40.00          | 42.50          | 34.548            | 1.64e+06             | 1.600 | 10.00            | 0.50            | 1051.60            | 230.34 | 109.93               | 6.67             | 237.00           | 0.00          |
| RP            |              | RP:Coax4        | 40.00          | 35.00          | 37.50          |                   | 1.71e+06             |       | 10.00            |                 | 1102.10            |        | 115.15               |                  | 247.95           | 0.00          |
| RP            | RP:Coax4     |                 | 35.00          | 30.00          | 32.50          |                   | 1.79e+06             |       | 10.00            |                 | 1152.61            |        | 120.37               |                  | 258.89           | 0.00          |
| RP            |              | RP:Coax3        | 30.00          | 25.00          | 27.50          |                   | 1.87e+06             |       | 10.00            |                 | 1203.12            |        | 125.60               |                  | 269.83           | 0.00          |
| RP            | RP:Coax3     |                 | 25.00          | 20.00          | 22.50          |                   | 1.95e+06             |       | 10.00            |                 | 1253.63            |        | 130.82               |                  | 280.77           |               |
| RP            |              | RP:Coax2        | 20.00          | 15.00          | 17.50          |                   | 2.02e+06             |       | 10.00            |                 | 1304.14            |        | 136.04               |                  | 291.72           | 0.00          |
| RP            | RP:Coax2     |                 | 15.00          | 10.00          | 12.50          |                   | 2.1e+06              |       |                  |                 | 1354.65            |        | 141.27               |                  | 302.66           | 0.00          |
| RP            | <i>-</i>     | RP:Coax1        | 10.00          | 5.00           | 7.50           |                   | 2.18e+06             |       | 10.00            |                 | 1405.15            |        | 146.49               |                  | 313.60           | 0.00          |
| RP            | RP:Coax1     | RP:g            | 5.00           | 0.00           | 2.50           | 47.679            | 2.26e+06             | ⊥.600 | 10.00            | 0.50            | 1455.66            | 317.88 | 151.71               | 6.67             | 324.55           | 0.00          |

Point Loads for Load Case "NESC 250C":

Joint Vertical Transverse Longitudinal Load

| Load<br>(lbs) | Load<br>(1bs)                                                                    | Load<br>(1bs)                                                                                                                                                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4018          | 5421                                                                             | 61                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 673.5         | 1712.12                                                                          | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 673.5         | 1712.12                                                                          | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3462.1        | 5240.62                                                                          | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3462.1        | 5240.62                                                                          | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3462.1        | 5240.62                                                                          | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 250           | 501                                                                              | 0                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | (1bs)  4018 673.5 673.5 3462.1 3462.1 3462.1 250 250 250 250 250 250 250 250 250 | (1bs) (1bs)  4018 5421 673.5 1712.12 673.5 1712.12 3462.1 5240.62 3462.1 5240.62 250 501 250 501 250 501 250 501 250 501 250 501 250 501 250 501 250 501 250 501 | (lbs)         (lbs)         (lbs)           4018         5421         61           673.5         1712.12         0           673.5         1712.12         0           3462.1         5240.62         0           3462.1         5240.62         0           3462.1         5240.62         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0           250         501         0 |

Detailed Pole Loading Data for Load Case "NESC 250C":

Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole.

| Pole     | Top       | Bottom    | Section | Section        | Section   | Outer    | Reynolds | Drag  | Adjusted | Adjusted  | Pole   | Pole   | Pole Ice | Pole Ice | Tran.  | Long. |
|----------|-----------|-----------|---------|----------------|-----------|----------|----------|-------|----------|-----------|--------|--------|----------|----------|--------|-------|
| Label    | Joint     | Joint     | Top     | Bottom         | Average   | Diameter | Number   | Coef. | Wind     | Ice       | Vert.  | Wind   | Vertical | Wind     | Wind   | Wind  |
|          |           |           | Z       | Z              | Elevation |          |          |       | Pressure | Thickness | Load   | Load   | Load     | Load     | Load   | Load  |
|          |           |           | (ft)    | (ft)           | (ft)      | (in)     |          |       | (psf)    | (in)      | (lbs)  | (lbs)  | (lbs)    | (lbs)    | (lbs)  | (lbs) |
| LP       | LP:t      | LP:SW     | 80.00   | 79.25          | 79.63     | 22 362   | 1.88e+06 | 1 000 | 31.62    | 0.00      | 67.66  | 44 19  | 0.00     | 0 00     | 44.19  | 0.00  |
| LP       | LP:SW     | EL . DW   | 79.25   | 75.38          | 77.31     |          | 1.95e+06 |       | 31.62    |           |        | 236.04 |          |          | 236.04 | 0.00  |
| LP       | HI 'BW    | LP:C      | 75.38   | 71.50          | 73.44     |          | 2.05e+06 |       | 31.62    |           |        | 249.03 |          |          | 249.03 | 0.00  |
| LP       | LP:C      | 11.0      | 71.50   | 66.50          | 69.00     |          | 2.18e+06 |       | 31.62    |           | 522.60 |        | 0.00     |          | 340.51 | 0.00  |
| LP       | 21 0      |           | 66.50   | 61.50          | 64.00     |          | 2.31e+06 |       | 31.62    |           | 556.28 |        | 0.00     |          | 362.14 | 0.00  |
| LP       |           |           | 61.50   | 56.50          | 59.00     |          | 2.45e+06 |       | 31.62    |           |        | 383.76 |          |          | 383.76 | 0.00  |
| LP       |           |           | 56.50   | 51.50          | 54.00     |          | 2.59e+06 |       | 31.62    | 0.00      | 623.62 | 405.38 | 0.00     |          | 405.38 | 0.00  |
| LP       |           |           | 51.50   | 46.50          | 49.00     |          | 2.73e+06 |       | 31.62    |           |        | 427.00 |          |          | 427.00 | 0.00  |
| LP       |           |           | 46.50   | 43.25          | 44.87     | 33.769   | 2.84e+06 | 1.000 | 31.62    | 0.00      | 445.30 | 289.15 | 0.00     | 0.00     | 289.15 | 0.00  |
| LP       |           |           | 43.25   | 40.00          | 41.63     | 34.836   | 2.93e+06 | 1.000 | 31.62    | 0.00      | 459.52 | 298.28 | 0.00     | 0.00     | 298.28 | 0.00  |
| LP       |           |           | 40.00   | 35.00          | 37.50     | 36.190   | 3.05e+06 | 1.000 | 31.62    | 0.00      | 734.74 | 476.73 | 0.00     | 0.00     | 476.73 | 0.00  |
| LP       |           |           | 35.00   | 30.00          | 32.50     | 37.831   | 3.18e+06 | 1.000 | 31.62    | 0.00      | 768.41 | 498.35 | 0.00     | 0.00     | 498.35 | 0.00  |
| LP       |           |           | 30.00   | 25.00          | 27.50     | 39.473   | 3.32e+06 | 1.000 | 31.62    | 0.00      | 802.08 | 519.97 | 0.00     | 0.00     | 519.97 | 0.00  |
| LP       |           |           | 25.00   | 20.00          | 22.50     | 41.114   | 3.46e+06 | 1.000 | 31.62    | 0.00      | 835.75 | 541.60 | 0.00     | 0.00     | 541.60 | 0.00  |
| LP       |           |           | 20.00   | 15.00          | 17.50     |          | 3.6e+06  |       | 31.62    |           | 869.43 |        | 0.00     |          | 563.22 | 0.00  |
| LP       |           |           | 15.00   | 10.00          | 12.50     |          | 3.74e+06 |       | 31.62    |           | 903.10 |        | 0.00     |          | 584.84 | 0.00  |
| LP       |           |           | 10.00   | 5.00           | 7.50      |          | 3.88e+06 |       | 31.62    |           |        | 606.46 |          |          | 606.46 | 0.00  |
| LP       |           | LP:g      | 5.00    | 0.00           | 2.50      |          | 4.01e+06 |       | 31.62    |           | 970.44 |        | 0.00     |          | 628.08 | 0.00  |
| RP       |           | RP:ANTFUT |         | 104.00         | 105.50    |          | 1.14e+06 |       | 31.62    |           |        | 106.64 |          |          | 106.64 | 0.00  |
|          | RP:ANTFUT |           | 104.00  | 99.50          | 101.75    |          | 1.24e+06 |       | 31.62    |           |        | 174.56 |          |          | 174.56 | 0.00  |
| RP       |           |           | 99.50   | 95.00          | 97.25     |          | 1.36e+06 |       | 31.62    |           | 147.85 |        | 0.00     |          | 192.07 | 0.00  |
| RP       |           | RP:ANT    | 95.00   | 92.00          | 93.50     |          | 1.49e+06 |       | 31.62    |           |        | 139.75 |          |          | 139.75 | 0.00  |
| RP       | RP:ANT    |           | 92.00   | 88.50          | 90.25     |          | 1.58e+06 |       | 31.62    |           | 220.62 |        | 0.00     |          | 172.88 | 0.00  |
| RP       | a         | RP:Coax9  | 88.50   | 85.00          | 86.75     |          | 1.67e+06 |       | 31.62    |           | 234.37 |        | 0.00     |          | 183.48 | 0.00  |
| RP       | RP:Coax9  |           | 85.00   | 80.00          | 82.50     |          | 1.79e+06 |       | 31.62    |           | 358.68 |        | 0.00     |          | 280.49 | 0.00  |
| RP       |           | RP:SW     | 80.00   | 79.25          | 79.63     |          | 1.88e+06 |       | 31.62    |           | 67.64  |        | 0.00     |          | 44.19  | 0.00  |
| RP       |           | RP:Coax8  | 79.25   | 75.00          | 77.13     |          | 1.95e+06 |       | 31.62    |           | 397.70 |        | 0.00     |          | 259.57 | 0.00  |
| RP       | RP:Coax8  | RP:C      | 75.00   | 71.50          | 73.25     |          | 2.06e+06 |       | 31.62    |           | 345.79 |        | 0.00     |          | 225.49 | 0.00  |
| RP<br>RP | RP:C      | DD: 07    | 71.50   | 68.25<br>65.00 | 69.88     |          | 2.15e+06 |       | 31.62    |           | 335.86 |        | 0.00     |          | 218.87 | 0.00  |
| KP       |           | RP:Coax7  | 68.25   | 05.00          | 66.63     | 20.029   | 2.24e+06 | 1.000 | 31.62    | 0.00      | 350.09 | ∠∠8.Ul | 0.00     | 0.00     | 228.01 | 0.00  |

| RP | RP:Coax7 | RP:Coax6   | 65.00<br>60.00 | 60.00<br>55.00 | 62.50<br>57.50 | 27.983 2.36e+06 1.000<br>29.624 2.49e+06 1.000 | 31.62<br>31.62 | 0.00 566.38 368.62<br>0.00 600.05 390.24 | 0.00 | 0.00 368.62 0.00<br>0.00 390.24 0.00 |
|----|----------|------------|----------------|----------------|----------------|------------------------------------------------|----------------|------------------------------------------|------|--------------------------------------|
| RP |          | RP · COaxo |                |                |                |                                                |                |                                          |      |                                      |
| RP | RP:Coax6 |            | 55.00          | 50.00          | 52.50          | 31.266 2.63e+06 1.000                          | 31.62          | 0.00 633.72 411.87                       | 0.00 | 0.00 411.87 0.00                     |
| RP |          | RP:Coax5   | 50.00          | 45.00          | 47.50          | 32.907 2.77e+06 1.000                          | 31.62          | 0.00 667.39 433.49                       | 0.00 | 0.00 433.49 0.00                     |
| RP | RP:Coax5 |            | 45.00          | 40.00          | 42.50          | 34.548 2.91e+06 1.000                          | 31.62          | 0.00 701.06 455.11                       | 0.00 | 0.00 455.11 0.00                     |
| RP |          | RP:Coax4   | 40.00          | 35.00          | 37.50          | 36.190 3.05e+06 1.000                          | 31.62          | 0.00 734.74 476.73                       | 0.00 | 0.00 476.73 0.00                     |
| RP | RP:Coax4 |            | 35.00          | 30.00          | 32.50          | 37.831 3.18e+06 1.000                          | 31.62          | 0.00 768.41 498.35                       | 0.00 | 0.00 498.35 0.00                     |
| RP |          | RP:Coax3   | 30.00          | 25.00          | 27.50          | 39.473 3.32e+06 1.000                          | 31.62          | 0.00 802.08 519.97                       | 0.00 | 0.00 519.97 0.00                     |
| RP | RP:Coax3 |            | 25.00          | 20.00          | 22.50          | 41.114 3.46e+06 1.000                          | 31.62          | 0.00 835.75 541.59                       | 0.00 | 0.00 541.59 0.00                     |
| RP |          | RP:Coax2   | 20.00          | 15.00          | 17.50          | 42.755 3.6e+06 1.000                           | 31.62          | 0.00 869.42 563.22                       | 0.00 | 0.00 563.22 0.00                     |
| RP | RP:Coax2 |            | 15.00          | 10.00          | 12.50          | 44.397 3.74e+06 1.000                          | 31.62          | 0.00 903.10 584.84                       | 0.00 | 0.00 584.84 0.00                     |
| RP |          | RP:Coax1   | 10.00          | 5.00           | 7.50           | 46.038 3.88e+06 1.000                          | 31.62          | 0.00 936.77 606.46                       | 0.00 | 0.00 606.46 0.00                     |
| RP | RP:Coax1 | RP:g       | 5.00           | 0.00           | 2.50           | 47.679 4.01e+06 1.000                          | 31.62          | 0.00 970.44 628.08                       | 0.00 | 0.00 628.08 0.00                     |

Point Loads for Load Case "NESC Rule 250D":

| Load<br>Comment |    | Load    |         | Joint<br>Label |
|-----------------|----|---------|---------|----------------|
|                 | 53 | 753     | 5907    | RP:ANT         |
|                 | 0  | 1589.97 | 3489.29 | SWL            |
|                 | 0  | 1589.97 | 3489.29 | SWR            |
|                 | 0  | 2666.14 | 8211.07 | PHL            |
|                 | 0  | 2666.14 | 8211.07 | PHM            |
|                 | 0  | 2666.14 | 8211.07 | PHR            |
|                 | 0  | 74      | 1123    | RP:Coax1       |
|                 | 0  | 74      | 1123    | RP:Coax2       |
|                 | 0  | 74      | 1123    | RP:Coax3       |
|                 | 0  | 74      | 1123    | RP:Coax4       |
|                 | 0  | 74      | 1123    | RP:Coax5       |
|                 | 0  | 74      | 1123    | RP:Coax6       |
|                 | 0  | 74      | 1123    | RP:Coax7       |
|                 | 0  | 74      | 1123    | RP:Coax8       |
|                 | 0  | 74      | 1123    | RP:Coax9       |
|                 |    |         |         |                |

Detailed Pole Loading Data for Load Case "NESC Rule 250D":

Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole.

| Pole<br>Label | Top<br>Joint | Bottom<br>Joint | Section<br>Top<br>Z | Bottom |       | Outer<br>Diameter | -        | _     | Wind  | Adjusted<br>Ice<br>Thickness |        | Wind   | Pole Ice<br>Vertical<br>Load | Pole Ice<br>Wind<br>Load | Tran.<br>Wind<br>Load | Long.<br>Wind<br>Load |
|---------------|--------------|-----------------|---------------------|--------|-------|-------------------|----------|-------|-------|------------------------------|--------|--------|------------------------------|--------------------------|-----------------------|-----------------------|
|               |              |                 | (ft)                | (ft)   | (ft)  | (in)              |          |       | (psf) | (in)                         | (lbs)  | (lbs)  | (lbs)                        | (1bs)                    | (lbs)                 |                       |
| LP            | LP:t         | LP:SW           | 80.00               | 79.25  | 79.63 | 22.362            | 6.7e+05  | 1.600 | 4.00  | 1.00                         | 67.66  | 8.95   | 21.35                        | 0.80                     | 9.75                  | 0.00                  |
| LP            | LP:SW        |                 | 79.25               | 75.38  | 77.31 | 23.121            | 6.92e+05 | 1.600 | 4.00  | 1.00                         | 361.63 | 47.80  | 114.03                       | 4.13                     | 51.93                 | 0.00                  |
| LP            |              | LP:C            | 75.38               | 71.50  | 73.44 | 24.393            | 7.31e+05 | 1.600 | 4.00  | 1.00                         | 381.86 | 50.43  | 120.30                       | 4.13                     | 54.56                 | 0.00                  |
| LP            | LP:C         |                 | 71.50               | 66.50  | 69.00 | 25.849            | 7.74e+05 | 1.600 | 4.00  | 1.00                         | 522.60 | 68.96  | 164.50                       | 5.34                     | 74.29                 | 0.00                  |
| LP            |              |                 | 66.50               | 61.50  | 64.00 | 27.491            | 8.23e+05 | 1.600 | 4.00  | 1.00                         | 556.28 | 73.33  | 174.95                       | 5.34                     | 78.67                 | 0.00                  |
| LP            |              |                 | 61.50               | 56.50  | 59.00 | 29.132            | 8.72e+05 | 1.600 | 4.00  | 1.00                         | 589.95 | 77.71  | 185.39                       | 5.34                     | 83.05                 | 0.00                  |
| LP            |              |                 | 56.50               | 51.50  | 54.00 | 30.773            | 9.22e+05 | 1.600 | 4.00  | 1.00                         | 623.62 | 82.09  | 195.84                       | 5.34                     | 87.43                 | 0.00                  |
| LP            |              |                 | 51.50               | 46.50  | 49.00 | 32.415            | 9.71e+05 | 1.600 | 4.00  | 1.00                         | 657.29 | 86.47  | 206.28                       | 5.34                     | 91.80                 | 0.00                  |
| LP            |              |                 | 46.50               | 43.25  | 44.87 | 33.769            | 1.01e+06 | 1.600 | 4.00  | 1.00                         | 445.30 | 58.55  | 139.68                       | 3.47                     | 62.02                 | 0.00                  |
| LP            |              |                 | 43.25               | 40.00  | 41.63 | 34.836            | 1.04e+06 | 1.600 | 4.00  | 1.00                         | 459.52 | 60.40  | 144.10                       | 3.47                     | 63.87                 | 0.00                  |
| LP            |              |                 | 40.00               | 35.00  | 37.50 | 36.190            | 1.08e+06 | 1.600 | 4.00  | 1.00                         | 734.74 | 96.54  | 230.30                       | 5.34                     | 101.87                | 0.00                  |
| LP            |              |                 | 35.00               | 30.00  | 32.50 | 37.831            | 1.13e+06 | 1.600 | 4.00  | 1.00                         | 768.41 | 100.92 | 240.75                       | 5.34                     | 106.25                | 0.00                  |
| LP            |              |                 | 30.00               | 25.00  | 27.50 | 39.473            | 1.18e+06 | 1.600 | 4.00  | 1.00                         | 802.08 | 105.30 | 251.20                       | 5.34                     | 110.63                | 0.00                  |

| LP |           |           | 25.00  | 20.00  | 22.50  | 41.114 1.23e+06 1.600 | 4.00 | 1.00 835.75 109.67 | 261.64 | 5.34 115.01 | 0.00 |
|----|-----------|-----------|--------|--------|--------|-----------------------|------|--------------------|--------|-------------|------|
| LP |           |           | 20.00  | 15.00  | 17.50  | 42.755 1.28e+06 1.600 | 4.00 | 1.00 869.43 114.05 | 272.09 | 5.34 119.39 | 0.00 |
| LP |           |           | 15.00  | 10.00  | 12.50  | 44.397 1.33e+06 1.600 | 4.00 | 1.00 903.10 118.43 | 282.53 | 5.34 123.77 | 0.00 |
| LP |           |           | 10.00  | 5.00   | 7.50   | 46.038 1.38e+06 1.600 | 4.00 | 1.00 936.77 122.81 | 292.98 | 5.34 128.14 | 0.00 |
| LP |           | LP:g      | 5.00   | 0.00   | 2.50   | 47.679 1.43e+06 1.600 | 4.00 | 1.00 970.44 127.19 | 303.42 | 5.34 132.52 | 0.00 |
| RP | RP:t      | RP:ANTFUT | 107.00 | 104.00 | 105.50 | 13.492 4.04e+05 1.600 | 4.00 | 1.00 81.88 21.60   | 51.52  | 3.20 24.80  | 0.00 |
| RP | RP:ANTFUT |           | 104.00 | 99.50  | 101.75 | 14.723 4.41e+05 1.600 | 4.00 | 1.00 134.19 35.35  | 84.33  | 4.80 40.15  | 0.00 |
| RP |           |           | 99.50  | 95.00  | 97.25  | 16.201 4.85e+05 1.600 | 4.00 | 1.00 147.85 38.89  | 92.79  | 4.80 43.70  | 0.00 |
| RP |           | RP:ANT    | 95.00  | 92.00  | 93.50  | 17.682 5.3e+05 1.600  | 4.00 | 1.00 178.14 28.30  | 67.51  | 3.20 31.50  | 0.00 |
| RP | RP:ANT    |           | 92.00  | 88.50  | 90.25  | 18.749 5.61e+05 1.600 | 4.00 | 1.00 220.62 35.01  | 83.52  | 3.73 38.74  | 0.00 |
| RP |           | RP:Coax9  | 88.50  | 85.00  | 86.75  | 19.897 5.96e+05 1.600 | 4.00 | 1.00 234.37 37.15  | 88.64  | 3.73 40.89  | 0.00 |
| RP | RP:Coax9  |           | 85.00  | 80.00  | 82.50  | 21.293 6.38e+05 1.600 | 4.00 | 1.00 358.68 56.80  | 135.50 | 5.34 62.13  | 0.00 |
| RP |           | RP:SW     | 80.00  | 79.25  | 79.63  | 22.361 6.7e+05 1.600  | 4.00 | 1.00 67.64 8.95    | 21.35  | 0.80 9.75   | 0.00 |
| RP | RP:SW     | RP:Coax8  | 79.25  | 75.00  | 77.13  | 23.182 6.94e+05 1.600 | 4.00 | 1.00 397.70 52.56  | 125.40 | 4.53 57.10  | 0.00 |
| RP | RP:Coax8  | RP:C      | 75.00  | 71.50  | 73.25  | 24.454 7.32e+05 1.600 | 4.00 | 1.00 345.79 45.66  | 108.93 | 3.73 49.40  | 0.00 |
| RP | RP:C      |           | 71.50  | 68.25  | 69.88  | 25.562 7.66e+05 1.600 | 4.00 | 1.00 335.86 44.32  | 105.74 | 3.47 47.79  | 0.00 |
| RP |           | RP:Coax7  | 68.25  | 65.00  | 66.63  | 26.629 7.97e+05 1.600 | 4.00 | 1.00 350.09 46.17  | 110.15 | 3.47 49.64  | 0.00 |
| RP | RP:Coax7  |           | 65.00  | 60.00  | 62.50  | 27.983 8.38e+05 1.600 | 4.00 | 1.00 566.38 74.65  | 178.08 | 5.34 79.98  | 0.00 |
| RP |           | RP:Coax6  | 60.00  | 55.00  | 57.50  | 29.624 8.87e+05 1.600 | 4.00 | 1.00 600.05 79.03  | 188.52 | 5.34 84.36  | 0.00 |
| RP | RP:Coax6  |           | 55.00  | 50.00  | 52.50  | 31.266 9.36e+05 1.600 | 4.00 | 1.00 633.72 83.40  | 198.97 | 5.34 88.74  | 0.00 |
| RP |           | RP:Coax5  | 50.00  | 45.00  | 47.50  | 32.907 9.86e+05 1.600 | 4.00 | 1.00 667.39 87.78  | 209.41 | 5.34 93.12  | 0.00 |
| RP | RP:Coax5  |           | 45.00  | 40.00  | 42.50  | 34.548 1.03e+06 1.600 | 4.00 | 1.00 701.06 92.16  | 219.86 | 5.34 97.50  | 0.00 |
| RP |           | RP:Coax4  | 40.00  | 35.00  | 37.50  | 36.190 1.08e+06 1.600 | 4.00 | 1.00 734.74 96.54  | 230.30 | 5.34 101.87 | 0.00 |
| RP | RP:Coax4  |           | 35.00  | 30.00  | 32.50  | 37.831 1.13e+06 1.600 | 4.00 | 1.00 768.41 100.92 | 240.75 | 5.34 106.25 | 0.00 |
| RP |           | RP:Coax3  | 30.00  | 25.00  | 27.50  | 39.473 1.18e+06 1.600 | 4.00 | 1.00 802.08 105.30 | 251.20 | 5.34 110.63 | 0.00 |
| RP | RP:Coax3  |           | 25.00  | 20.00  | 22.50  | 41.114 1.23e+06 1.600 | 4.00 | 1.00 835.75 109.67 | 261.64 | 5.34 115.01 | 0.00 |
| RP |           | RP:Coax2  | 20.00  | 15.00  | 17.50  | 42.755 1.28e+06 1.600 | 4.00 | 1.00 869.42 114.05 | 272.09 | 5.34 119.39 | 0.00 |
| RP | RP:Coax2  |           | 15.00  | 10.00  | 12.50  | 44.397 1.33e+06 1.600 | 4.00 | 1.00 903.10 118.43 | 282.53 | 5.34 123.77 | 0.00 |
| RP |           | RP:Coax1  | 10.00  | 5.00   | 7.50   | 46.038 1.38e+06 1.600 | 4.00 | 1.00 936.77 122.81 | 292.98 | 5.34 128.14 | 0.00 |
| RP | RP:Coax1  | RP:g      | 5.00   | 0.00   | 2.50   | 47.679 1.43e+06 1.600 | 4.00 | 1.00 970.44 127.19 | 303.42 | 5.34 132.52 | 0.00 |

# \*\*\* Analysis Results:

Maximum element usage is 66.81% for Base Plate "RP" in load case "NESC Rule 250D"



\*\*\* Analysis Results for Load Case No. 1 "NESC Rule 250B" - Number of iterations in SAPS 13

Equilibrium Joint Positions and Rotations for Load Case "NESC Rule 250B":

| <br>Joint<br>Label | X-Displ<br>(ft) | Y-Displ<br>(ft) | Z-Displ<br>(ft) |         | Y-Rot<br>(deg) |        | X-Pos<br>(ft) | Y-Pos<br>(ft) | Z-Pos<br>(ft) |
|--------------------|-----------------|-----------------|-----------------|---------|----------------|--------|---------------|---------------|---------------|
| <br>LP:g           | 0               | 0               | 0               | 0.0000  | 0.0000         | 0.0000 | 0             | -7.75         | 0             |
| LP:t               | 0.04961         | 0.7955          | -0.006596       | -0.9560 | 0.0821         | 0.0448 | 0.04961       | -6.955        | 79.99         |
| LP:SW              | 0.04854         | 0.7829          | -0.006491       | -0.9560 | 0.0821         | 0.0448 | 0.04854       | -6.967        | 79.24         |
| LP:C               | 0.03754         | 0.6537          | -0.005376       | -0.9513 | 0.0821         | 0.0448 | 0.03754       | -7.096        | 71.49         |

| RP:t 0.07045 1.352 -0.01346 -1.1589 0.0693 0.0234 0.07045 9.102 107  RP:ANTFUT 0.06685 1.291 -0.01284 -1.1587 0.0693 0.0234 0.06685 9.041 104  RP:ANT 0.05246 1.049 -0.01037 -1.1500 0.0690 0.0234 0.05246 8.799 91.99  RP:Coax9 0.0441 0.9098 -0.00887 -1.1270 0.0687 0.0233 0.0441 8.66 84.99  RP:SW 0.03726 0.7983 -0.00769 -1.0922 0.0683 0.0233 0.03726 8.548 79.24  RP:Coax8 0.03224 0.7183 -0.006863 -1.0605 0.0680 0.0233 0.03726 8.548 79.24  RP:Coax7 0.02137 0.5413 -0.006863 -1.0605 0.0680 0.0233 0.03224 8.468 74.99  RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0185 0.02137 8.291 64.99  RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55  RP:Coax7 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45  RP:Coax8 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35  RP:Coax2 0.0007155 0.02749 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25  RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.777 15  RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5  SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27  SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21  XArm:0 0.04393 0.6555 -0.09112 0.7186 0.0909 0.0483 1.587 -14.84 71.41 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP:ANT         0.05246         1.049         -0.01037         -1.1500         0.0690         0.0234         0.05246         8.799         91.99           RP:Coax9         0.0441         0.9098         -0.00887         -1.1270         0.0687         0.0233         0.0441         8.66         84.99           RP:SW         0.03726         0.7983         -0.00769         -1.0922         0.0683         0.0233         0.03726         8.548         79.24           RP:Coax8         0.03224         0.7183         -0.006863         -1.0605         0.0680         0.0233         0.03224         8.468         74.99           RP:Coax7         0.02812         0.6543         -0.006214         -1.0295         0.0677         0.0232         0.02812         8.404         71.49           RP:Coax7         0.02137         0.5413         -0.005022         -0.9572         0.0534         0.0185         0.02137         8.291         64.99           RP:Coax6         0.01362         0.3856         -0.003497         -0.8181         0.0372         0.0130         0.01362         8.136         55           RP:Coax5         0.00823         0.2557         -0.002345         -0.6650         0.0257         0.0091         0.00823<                                                                |
| RP:Coax8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RP:SW         0.03726         0.7983         -0.00769         -1.0922         0.0683         0.0233         0.03726         8.548         79.24           RP:Coax8         0.03224         0.7183         -0.006863         -1.0605         0.0680         0.0233         0.03224         8.468         74.99           RP:Coax7         0.02812         0.6543         -0.006214         -1.0295         0.0677         0.0232         0.02812         8.404         71.49           RP:Coax7         0.02137         0.5413         -0.005022         -0.9572         0.0534         0.0185         0.02137         8.291         64.99           RP:Coax6         0.01362         0.3856         -0.003497         -0.8181         0.0372         0.0130         0.01362         8.136         55           RP:Coax5         0.00823         0.2557         -0.002345         -0.6650         0.0257         0.0091         0.00823         8.006         45           RP:Coax4         0.004544         0.1529         -0.001512         -0.5093         0.0172         0.0061         0.004544         7.903         35           RP:Coax3         0.002137         0.07707         -0.009207         -0.5093         0.01707         0.003605 <td< td=""></td<>                                                      |
| RP:Coax8 0.03224 0.7183 -0.006863 -1.0605 0.0680 0.0233 0.03224 8.468 74.99 RP:C 0.02812 0.6543 -0.006214 -1.0295 0.0677 0.0232 0.02812 8.404 71.49 RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0088 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RP:C       0.02812       0.6543       -0.006214       -1.0295       0.0677       0.0232       0.02812       8.404       71.49         RP:Coax7       0.02137       0.5413       -0.005022       -0.9572       0.0534       0.0185       0.02137       8.291       64.99         RP:Coax6       0.01362       0.3856       -0.003497       -0.8181       0.0372       0.0130       0.01362       8.136       55         RP:Coax5       0.00823       0.2557       -0.002345       -0.6650       0.0257       0.0091       0.00823       8.006       45         RP:Coax4       0.004544       0.1529       -0.001512       -0.5093       0.0172       0.0061       0.004544       7.903       35         RP:Coax3       0.002137       0.07707       -0.0009207       -0.3564       0.0107       0.0038       0.002137       7.827       25         RP:Coax2       0.0007155       0.02749       -0.0004927       -0.2090       0.0057       0.0020       0.007155       7.777       15         RP:Coax1       7.524e-05       0.003104       -0.001557       -0.0680       0.0017       0.0066       7.524e-05       7.753       5         SWLVANG       0.0497       0.7831                                                                                                                                                |
| RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5  SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27  SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SWLVANG       0.0497       0.7831       0.01748 -0.9560       0.0821       0.0448       0.0497 -8.404       79.27         SWRVANG       0.03665       0.798       -0.03508 -1.0922       0.0683       0.0233       0.03665       9.985       79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ¥7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| XArm:O 0.04393 0.6555 -0.09112 0.7186 0.0909 0.0483 1.587 -14.84 71.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XArm:LP 0.03754 0.655 -0.007898 0.4135 0.0907 0.0482 1.58 -7.095 71.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XArm:ML 0.0321 0.655 0.01596 -0.0018 0.0836 0.0338 1.575 0.655 71.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| XArm:RP 0.02812 0.655 -0.008324 -0.3997 0.0765 0.0256 1.571 8.405 71.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| XArm:E 0.02455 0.6547 -0.08535 -0.6419 0.0763 0.0256 1.567 16.15 71.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VangCL 0.04233 0.6681 -0.09104 0.7186 0.0909 0.0483 1.585 -14.83 70.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VangCM 0.03064 0.655 0.01596 -0.0018 0.0836 0.0338 1.574 0.655 70.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VangCR 0.02322 0.6435 -0.08529 -0.6419 0.0763 0.0256 1.566 16.14 70.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Joint Support Reactions for Load Case "NESC Rule 250B":

| Joint | Х     | X     | Y      | Y     | H-Shear | Z      | Comp. | Uplift | Result. | Result. | X      | X-M.  | Y      | Y-M.  | H-Bend-M | Z      | Z-M.  | Max.  |
|-------|-------|-------|--------|-------|---------|--------|-------|--------|---------|---------|--------|-------|--------|-------|----------|--------|-------|-------|
| Label | Force | Usage | Force  | Usage | Usage   | Force  | Usage | Usage  | Force   | Usage   | Moment | Usage | Moment | Usage | Usage    | Moment | Usage | Usage |
| (     | kips) | %     | (kips) | %     | %       | (kips) | %     | %      | (kips)  | %       | (ft-k) | %     | (ft-k) | %     | %        | (ft-k) | %     | %     |
|       |       |       |        |       |         |        |       |        |         |         |        |       |        |       |          |        |       |       |
| LP:g  | -0.19 | 0.0   | -13.51 | 0.0   | 0.0     | -36.66 | 0.0   | 0.0    | 0.00    | 0.0     | 851.37 | 0.0   | -31.8  | 0.0   | 0.0      | -10.26 | 0.0   | 0.0   |
| RP:g  | -0.03 | 0.0   | -12.58 | 0.0   | 0.0     | -53.22 | 0.0   | 0.0    | 0.00    | 0.0     | 812.68 | 0.0   | -19.8  | 0.0   | 0.0      | -5.36  | 0.0   | 0.0   |

Detailed Steel Pole Usages for Load Case "NESC Rule 250B":

|        |                                                                                                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M/S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V/Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T/R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Res.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Label  | Position                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>(</i> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>(</i> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                | (IC)                                                                                                                                                                                                                                                                                     | (1n)                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (IC-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (IC-K)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IT-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Kips)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Kips)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Kips)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (KS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (KS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (KS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (KS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (KS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LP:t   | Origin                                                                                                         | 0.00                                                                                                                                                                                                                                                                                     | 9.55                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LP:SW  | End                                                                                                            | 0.75                                                                                                                                                                                                                                                                                     | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LP:SW  | Origin                                                                                                         | 0.75                                                                                                                                                                                                                                                                                     | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | End                                                                                                            | 4.63                                                                                                                                                                                                                                                                                     | 8.62                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | Origin                                                                                                         | 4.63                                                                                                                                                                                                                                                                                     | 8.62                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LP:C   | End                                                                                                            | 8.50                                                                                                                                                                                                                                                                                     | 7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LP:C   | Origin                                                                                                         | 8.50                                                                                                                                                                                                                                                                                     | 7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -20.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -17.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | End                                                                                                            | 13.50                                                                                                                                                                                                                                                                                    | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -21.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -17.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | Origin                                                                                                         | 13.50                                                                                                                                                                                                                                                                                    | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -21.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | End                                                                                                            | 18.50                                                                                                                                                                                                                                                                                    | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -22.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | Origin                                                                                                         | 18.50                                                                                                                                                                                                                                                                                    | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -22.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | End                                                                                                            | 23.50                                                                                                                                                                                                                                                                                    | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -22.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -19.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | Origin                                                                                                         | 23.50                                                                                                                                                                                                                                                                                    | 4.99                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -22.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | End                                                                                                            | 28.50                                                                                                                                                                                                                                                                                    | 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -23.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | Origin                                                                                                         | 28.50                                                                                                                                                                                                                                                                                    | 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -23.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | End                                                                                                            | 33.50                                                                                                                                                                                                                                                                                    | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 279.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -24.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tube 1 | Origin                                                                                                         | 33.50                                                                                                                                                                                                                                                                                    | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 279.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -24.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -22.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | LP:t LP:SW LP:SW Tube 1 Tube 1 LP:C LP:C Tube 1 | LP:t Origin LP:SW End LP:SW Origin Tube 1 End Tube 1 Origin LP:C End LP:C Origin Tube 1 End Tube 1 Origin | Label Position (ft)  LP:t Origin 0.00 LP:SW End 0.75 LP:SW Origin 0.75 Tube 1 End 4.63 Tube 1 Origin 4.63 LP:C End 8.50 LP:C Origin 8.50 Tube 1 End 13.50 Tube 1 End 13.50 Tube 1 Origin 18.50 Tube 1 End 23.50 Tube 1 End 23.50 Tube 1 End 23.50 Tube 1 Origin 23.50 Tube 1 Origin 23.50 Tube 1 End 28.50 Tube 1 Origin 23.50 Tube 1 End 28.50 Tube 1 Origin 28.50 | Label Position (ft) (in)  LP:t Origin 0.00 9.55 LP:SW End 0.75 9.40 LP:SW Origin 0.75 9.40 Tube 1 End 4.63 8.62 Tube 1 Origin 4.63 8.62 LP:C End 8.50 7.84 LP:C Origin 8.50 7.84 LP:C Origin 13.50 6.86 Tube 1 Origin 13.50 6.86 Tube 1 End 13.50 6.86 Tube 1 Origin 13.50 5.90 Tube 1 End 18.50 5.90 Tube 1 Origin 18.50 5.90 Tube 1 Origin 23.50 4.99 Tube 1 Origin 23.50 4.99 Tube 1 Origin 28.50 4.15 Tube 1 Origin 28.50 4.15 Tube 1 Origin 28.50 4.15 Tube 1 End 33.50 3.38 | Label Position (ft) (in) Defl. (in)  LP:t Origin 0.00 9.55 0.60 LP:SW End 0.75 9.40 0.58 LP:SW Origin 0.75 9.40 0.58 Tube 1 End 4.63 8.62 0.52 Tube 1 Origin 4.63 8.62 0.52 LP:C End 8.50 7.84 0.45 LP:C Origin 8.50 7.84 0.45 Tube 1 End 13.50 6.86 0.37 Tube 1 Origin 13.50 6.86 0.37 Tube 1 Origin 13.50 6.86 0.37 Tube 1 End 18.50 5.90 0.31 Tube 1 Origin 18.50 5.90 0.31 Tube 1 Origin 23.50 4.99 0.25 Tube 1 Origin 23.50 4.99 0.25 Tube 1 End 28.50 4.15 0.20 Tube 1 Origin 28.50 4.15 0.20 Tube 1 Origin 28.50 4.15 0.20 Tube 1 End 33.50 3.38 0.16 | Label Position (ft) (in) Defl. (in) (in) (in)  LP:t Origin 0.00 9.55 0.60 -0.08  LP:SW End 0.75 9.40 0.58 -0.08  LP:SW Origin 0.75 9.40 0.58 -0.08  Tube 1 End 4.63 8.62 0.52 -0.07  Tube 1 Origin 4.63 8.62 0.52 -0.07  LP:C End 8.50 7.84 0.45 -0.06  LP:C Origin 8.50 7.84 0.45 -0.06  Tube 1 End 13.50 6.86 0.37 -0.06  Tube 1 Origin 13.50 6.86 0.37 -0.06  Tube 1 End 18.50 5.90 0.31 -0.05  Tube 1 Origin 18.50 5.90 0.31 -0.05  Tube 1 End 23.50 4.99 0.25 -0.04  Tube 1 Origin 23.50 4.99 0.25 -0.04  Tube 1 End 28.50 4.15 0.20 -0.03  Tube 1 Origin 28.50 4.15 0.20 -0.03  Tube 1 Origin 28.50 4.15 0.20 -0.03  Tube 1 End 33.50 3.38 0.16 -0.02 | Label Position (ft) (in) (in) (local Mx) (ft-k)  LP:t Origin 0.00 9.55 0.60 -0.08 0.00  LP:SW End 0.75 9.40 0.58 -0.08 0.01  LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47  Tube 1 End 4.63 8.62 0.52 -0.07 4.37  Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37  LP:C End 8.50 7.84 0.45 -0.06 12.75  LP:C Origin 8.50 7.84 0.45 -0.06 12.75  Tube 1 End 13.50 6.86 0.37 -0.06 64.22  Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22  Tube 1 End 18.50 5.90 0.31 -0.05 116.63  Tube 1 Origin 18.50 5.90 0.31 -0.05 116.63  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40  Tube 1 End 33.50 3.38 0.16 -0.02 279.81 | Label Position (ft) (in) (in) (in) (Local Mx) (Local My) (ft-k) (ft) (in) (in) (in) (in) (ft-k) (ft- | Label Position (ft) (in) (in) (local Mx) (Local My) Mom. (ft-k) (ft) (in) (in) (ft-k) (ft-k) (ft-k) (ft-k)  LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.00 -0.0  LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 0.0  LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 0.00 0.0  Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0  Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0  LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0  LP:C Origin 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0  LDE:C Origin 8.50 6.86 0.37 -0.06 64.22 -21.46 10.3  Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 -21.47 10.3  Tube 1 End 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3  Tube 1 Origin 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3  Tube 1 End 23.50 4.99 0.25 -0.04 170.02 -22.80 10.3  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3  Tube 1 End 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.49 10.3  Tube 1 End 33.50 3.38 0.16 -0.02 279.81 -24.18 10.3 | Label Position (ft) (in) (in) (in) (Local Mx) (Local My) Mom. Force (ft) (in) (in) (in) (ft-k) (Local Mx) (Local My) Mom. Force (ft-k) (ft-k) (in) (in) (in) (ft-k) (ft-k) (ft-k) (kips)  LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.00 -0.0 -0.06  LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 -0.00 -0.06  LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 0.00 0.0 0.0 -2.80  Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -2.80  Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -3.42  LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42  LP:C Origin 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42  LP:C Origin 8.50 7.84 0.45 -0.06 12.74 -20.81 10.3 -17.98  Tube 1 End 13.50 6.86 0.37 -0.06 64.22 -21.46 10.3 -17.98  Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 -21.47 10.3 -18.88  Tube 1 End 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 -18.88  Tube 1 End 23.50 4.99 0.25 -0.04 170.02 -22.80 10.3 -19.84  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85  Tube 1 Origin 23.50 4.15 0.20 -0.03 224.40 -23.48 10.3 -20.85  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3 -21.93  Tube 1 End 33.50 3.38 0.16 -0.02 279.81 -24.18 10.3 -21.93 | Label Position (ft) (in) (in) (in) (Local Mx) (Local My) Mom. Force Shear (ft) (in) (in) (in) (in) (ft-k) (Local My) Mom. Force Shear (kips)  LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.0 -0.06 0.01  LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 -0.00 -0.0 -0.06 0.01  LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 0.00 0.0 0.0 -2.80 2.02  Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -2.80 2.02  Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -3.42 2.16  LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 2.16  LP:C Origin 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 2.16  LP:C Origin 8.50 7.84 0.45 -0.06 12.74 -20.81 10.3 -17.98 10.29  Tube 1 End 13.50 6.86 0.37 -0.06 64.22 -21.46 10.3 -17.98 10.29  Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 -21.47 10.3 -18.88 10.48  Tube 1 End 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 -18.88 10.48  Tube 1 Origin 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 -18.88 10.48  Tube 1 End 23.50 4.99 0.25 -0.04 170.02 -22.80 10.3 -19.84 10.68  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85 10.88  Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85 10.88  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3 -20.85 10.88  Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.49 10.3 -21.93 11.08  Tube 1 End 33.50 3.38 0.16 -0.02 279.81 -24.18 10.3 -21.93 11.08 | Label Position         Dist. (ft)         Defl. (in)         Defl. (in)         Local Mx (ft-k)         (Local My)         Mom. Force (kips)         Shear (kips)         Shear (kips)           LP:t         Origin         0.00         9.55         0.60         -0.08         0.00         0.00         -0.0         -0.06         0.01         -0.00           LP:SW         End         0.75         9.40         0.58         -0.08         0.01         -0.00         -0.0         -0.06         0.01         -0.00           LP:SW         Origin         0.75         9.40         0.58         -0.08         0.01         -0.00         -0.0         -0.06         0.01         -0.00           LP:SW         Origin         0.75         9.40         0.58         -0.08         0.01         -0.00         0.0         -2.80         2.02         -0.01           Tube 1         End         4.63         8.62         0.52         -0.07         4.37         -0.03         0.0         -2.80         2.02         -0.01           LP:C         End         8.50         7.84         0.45         -0.06         12.75         -0.08         0.0         -3.42         2.16         -0.01           LP:C< | Label Position         Dist. (ft)         Defl. (in)         Defl. (in)         Clocal Mx (ft-k)         (Local My)         Mom. (ft-k)         Force (kips)         Shear (kips) <td>Label Position         Dist. (ft)         Defl. (in)         Defl. (in)         Local Mx (ft-k)         Mom. (ft-k) (ft-k)         Force (kips) (kips)         Shear (kips) (ksi)           LP:t         Origin         0.00         9.55         0.60         -0.08         0.00         0.00         -0.00         0.01         -0.00         -0.00         0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         0.00         0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00</td> <td>Label Position (ft) (in) (in) (in) (10) (Local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (k</td> <td>Label Position (ft) (in) (in) (in) (local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ks</td> <td>Label Position (ft) (in) (in) (in) (in) (ft-k) (Local My) Mom. Force Shear (kips) (ksi) (s</td> <td>Label Position         Dist. (ft)         Defl. (in)         Defl. (in)         (local Mx) (ft-k)         Mom. (ft-k) (ft-k)         Shear (kips)         Shear (kips)         (ksi)         (ksi)</td> | Label Position         Dist. (ft)         Defl. (in)         Defl. (in)         Local Mx (ft-k)         Mom. (ft-k) (ft-k)         Force (kips) (kips)         Shear (kips) (ksi)           LP:t         Origin         0.00         9.55         0.60         -0.08         0.00         0.00         -0.00         0.01         -0.00         -0.00         0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         0.00         0.00         0.00         -0.06         0.01         -0.00         -0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 | Label Position (ft) (in) (in) (in) (10) (Local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (k | Label Position (ft) (in) (in) (in) (local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ks | Label Position (ft) (in) (in) (in) (in) (ft-k) (Local My) Mom. Force Shear (kips) (ksi) (s | Label Position         Dist. (ft)         Defl. (in)         Defl. (in)         (local Mx) (ft-k)         Mom. (ft-k) (ft-k)         Shear (kips)         Shear (kips)         (ksi)         (ksi) |

| LP         | Tube 1    | End    | 36.75 | 2.92  | 0.13 | -0.02 | 316.40 | -24.65 | 10.3 -22.85 | 11.26 | -0.14 -0.56 11.03 | 0.15  | 0.18 11.60 | 17.8 | 2 |
|------------|-----------|--------|-------|-------|------|-------|--------|--------|-------------|-------|-------------------|-------|------------|------|---|
| LP         | Tube 1    | Origin | 36.75 | 2.92  | 0.13 | -0.02 | 316.40 | -24.66 | 10.3 -23.61 | 11.40 | -0.15 -0.58 11.03 | 0.15  | 0.18 11.62 | 17.9 | 2 |
| LP         | SpliceT   | End    | 40.00 | 2.50  | 0.11 | -0.02 | 353.45 | -25.12 | 10.3 -23.61 | 11.40 | -0.15 -0.56 11.56 | 0.14  | 0.17 12.13 | 18.7 | 2 |
|            | -         |        |       | 2.50  | 0.11 | -0.02 |        | -25.12 | 10.3 -24.61 | 11.58 |                   | 0.15  |            | 18.7 | 2 |
| LP         | SpliceT   | Origin | 40.00 |       |      |       | 353.45 |        |             |       | -0.15 -0.58 11.56 |       | 0.17 12.15 |      |   |
| LP         | Tube 2    | End    | 45.00 | 1.90  | 0.08 | -0.01 | 411.37 | -25.87 | 10.3 -24.61 | 11.58 | -0.15 -0.56 12.24 | 0.14  | 0.16 12.81 | 19.7 | 2 |
| $_{ m LP}$ | Tube 2    | Origin | 45.00 | 1.90  | 0.08 | -0.01 | 411.37 | -25.88 | 10.3 -25.88 | 11.82 | -0.16 -0.59 12.24 | 0.14  | 0.16 12.84 | 19.7 | 2 |
| LP         | Tube 2    | End    | 50.00 | 1.39  | 0.06 | -0.01 | 470.45 | -26.64 | 10.3 -25.88 | 11.82 | -0.16 -0.56 12.80 | 0.14  | 0.14 13.37 | 20.6 | 2 |
| LP         | Tube 2    | Origin | 50.00 | 1.39  | 0.06 | -0.01 | 470.45 | -26.65 | 10.3 -27.19 | 12.05 | -0.16 -0.59 12.80 | 0.14  | 0.14 13.39 | 20.6 | 2 |
| LP         | Tube 2    | End    | 55.00 | 0.96  | 0.04 | -0.01 | 530.72 | -27.43 | 10.3 -27.19 | 12.05 | -0.16 -0.56 13.25 | 0.13  | 0.13 13.82 | 21.3 | 2 |
|            |           |        |       |       |      |       |        |        |             |       |                   |       |            |      |   |
| LP         | Tube 2    | Origin | 55.00 | 0.96  | 0.04 | -0.01 | 530.72 | -27.45 | 10.3 -28.57 | 12.30 | -0.17 -0.59 13.25 | 0.14  | 0.13 13.85 | 21.3 | 2 |
| LP         | Tube 2    | End    | 60.00 | 0.61  | 0.02 | -0.01 | 592.22 | -28.25 | 10.3 -28.57 | 12.30 | -0.17 -0.57 13.62 | 0.13  | 0.12 14.20 | 21.8 | 2 |
| $_{ m LP}$ | Tube 2    | Origin | 60.00 | 0.61  | 0.02 | -0.01 | 592.22 | -28.27 | 10.3 -29.99 | 12.56 | -0.17 -0.60 13.62 | 0.13  | 0.12 14.23 | 21.9 | 2 |
| LP         | Tube 2    | End    | 65.00 | 0.34  | 0.01 | -0.00 | 655.00 | -29.10 | 10.3 -29.99 | 12.56 | -0.17 -0.58 13.93 | 0.13  | 0.11 14.51 | 22.3 | 2 |
| LP         | Tube 2    | Origin | 65.00 | 0.34  | 0.01 | -0.00 | 655.00 | -29.12 | 10.3 -31.48 | 12.82 | -0.18 -0.60 13.93 | 0.13  | 0.11 14.54 | 22.4 | 2 |
| LP         | Tube 2    | End    | 70.00 | 0.15  | 0.01 | -0.00 | 719.09 | -29.98 | 10.3 -31.48 | 12.82 | -0.18 -0.58 14.18 | 0.13  | 0.10 14.76 | 22.7 | 2 |
| LP         | Tube 2    | Origin | 70.00 | 0.15  | 0.01 | -0.00 | 719.09 | -29.99 | 10.3 -33.02 | 13.09 | -0.18 -0.61 14.18 | 0.13  | 0.10 14.79 | 22.8 | 2 |
|            |           | _      |       |       |      |       |        |        |             |       |                   |       |            | 23.4 | 2 |
| LP         | Tube 2    | End    | 75.00 | 0.04  | 0.00 | -0.00 | 784.53 | -30.89 | 10.3 -33.02 | 13.09 | -0.18 -0.59 14.38 | 0.12  | 0.10 14.97 |      |   |
| LP         | Tube 2    | Origin | 75.00 | 0.04  | 0.00 | -0.00 | 784.53 | -30.90 | 10.3 -34.61 | 13.37 | -0.19 -0.62 14.38 | 0.13  | 0.10 15.00 | 23.4 | 2 |
| LP         | LP:g      | End    | 80.00 | 0.00  | 0.00 | 0.00  | 851.37 | -31.83 | 10.3 -34.61 | 13.37 | -0.19 -0.60 14.55 | 0.12  | 0.09 15.15 | 24.1 | 2 |
|            |           |        |       |       |      |       |        |        |             |       |                   |       |            |      |   |
| RP         | RP:t      | Origin | 0.00  | 16.22 | 0.85 | -0.16 | -0.00  | 0.00   | 0.0 -0.07   | 0.03  | -0.00 -0.01 0.00  | 0.01  | 0.00 0.02  | 0.0  | 5 |
|            | RP:ANTFUT | End    | 3.00  | 15.49 | 0.80 | -0.15 | 0.09   | -0.00  | 0.0 -0.07   | 0.03  | -0.00 -0.01 0.04  | 0.00  | 0.00 0.05  | 0.1  | 2 |
|            | RP:ANTFUT |        | 3.00  | 15.49 |      | -0.15 | 0.09   | -0.00  |             |       | -0.00 -0.03 0.04  |       |            |      | 2 |
|            |           | Origin |       |       | 0.80 |       |        |        |             | 0.11  |                   | 0.01  | 0.00 0.07  | 0.1  |   |
| RP         | Tube 1    | End    | 7.50  | 14.40 | 0.74 | -0.14 | 0.59   | -0.02  | -0.0 -0.27  | 0.11  | -0.00 -0.03 0.20  | 0.01  | 0.00 0.23  | 0.4  | 2 |
| RP         | Tube 1    | Origin | 7.50  | 14.40 | 0.74 | -0.14 | 0.59   | -0.02  | -0.0 -0.53  | 0.21  | -0.01 -0.06 0.20  | 0.01  | 0.00 0.26  | 0.4  | 2 |
| RP         | SpliceT   | End    | 12.00 | 13.31 | 0.67 | -0.13 | 1.55   | -0.04  | -0.0 -0.53  | 0.21  | -0.01 -0.05 0.44  | 0.01  | 0.00 0.49  | 0.8  | 2 |
| RP         | SpliceT   | Origin | 12.00 | 13.31 | 0.67 | -0.13 | 1.55   | -0.04  | -0.0 -0.81  | 0.31  | -0.01 -0.05 0.26  | 0.01  | 0.00 0.31  | 0.5  | 2 |
| RP         | RP:ANT    | End    | 15.00 | 12.59 | 0.63 | -0.12 | 2.48   | -0.07  | -0.0 -0.81  | 0.31  | -0.01 -0.05 0.37  | 0.01  | 0.00 0.42  | 0.6  | 2 |
| RP         | RP:ANT    | Origin | 15.00 | 12.59 | 0.63 | -0.12 | 2.48   | -0.07  | -0.0 -8.47  | 2.28  | -0.02 -0.47 0.37  | 0.07  | 0.00 0.85  | 1.3  | 2 |
| RP         |           | End    |       |       |      |       |        |        |             |       |                   |       |            |      | 2 |
|            | Tube 2    |        | 18.50 | 11.75 | 0.58 | -0.12 | 10.46  | -0.14  |             | 2.28  | -0.02 -0.44 1.38  | 0.06  |            | 2.8  |   |
| RP         | Tube 2    | Origin | 18.50 | 11.75 | 0.58 | -0.12 | 10.46  | -0.14  | -0.0 -8.85  | 2.38  | -0.02 -0.46 1.38  | 0.07  | 0.00 1.84  | 2.8  | 2 |
| RP         | RP:Coax9  | End    | 22.00 | 10.92 | 0.53 | -0.11 | 18.79  | -0.23  | -0.0 -8.85  | 2.38  | -0.02 -0.44 2.20  | 0.06  | 0.00 2.64  | 4.1  | 2 |
| RP         | RP:Coax9  | Origin | 22.00 | 10.92 | 0.53 | -0.11 | 18.79  | -0.23  | -0.0 -10.27 | 2.70  | -0.03 -0.51 2.20  | 0.07  | 0.00 2.71  | 4.2  | 2 |
| RP         | SpliceT   | End    | 27.00 | 9.75  | 0.46 | -0.09 | 32.29  | -0.37  | -0.0 -10.27 | 2.70  | -0.03 -0.47 3.22  | 0.07  | 0.00 3.70  | 5.7  | 2 |
| RP         | SpliceT   | Origin | 27.00 | 9.75  | 0.46 | -0.09 | 32.29  | -0.37  | -0.0 -10.63 | 2.79  | -0.03 -0.40 2.68  | 0.06  | 0.00 3.08  | 4.7  | 2 |
| RP         | RP:SW     | End    | 27.75 | 9.58  | 0.45 | -0.09 | 34.39  | -0.39  | -0.0 -10.63 | 2.79  | -0.03 -0.40 2.79  | 0.06  | 0.00 3.19  | 4.9  | 2 |
| RP         | RP:SW     | Origin | 27.75 | 9.58  | 0.45 | -0.09 | 37.87  | -0.40  | -0.0 -13.41 | 4.81  | -0.04 -0.50 3.07  | 0.10  | 0.00 3.19  | 5.5  | 2 |
|            |           | _      |       |       |      |       |        |        |             |       |                   |       |            |      |   |
| RP         | RP:Coax8  | End    | 32.00 | 8.62  | 0.39 | -0.08 | 58.31  | -0.56  | -0.0 -13.41 | 4.81  | -0.04 -0.47 4.18  | 0.09  | 0.00 4.65  | 7.2  | 2 |
| RP         | RP:Coax8  | Origin | 32.00 | 8.62  | 0.39 | -0.08 | 58.31  | -0.56  | -0.0 -14.94 | 5.13  | -0.04 -0.53 4.18  | 0.10  | 0.00 4.71  | 7.2  | 2 |
| RP         | RP:C      | End    | 35.50 | 7.85  | 0.34 | -0.07 | 76.26  | -0.71  | -0.0 -14.94 | 5.13  | -0.04 -0.50 4.96  | 0.09  | 0.00 5.47  | 8.4  | 2 |
| RP         | RP:C      | Origin | 35.50 | 7.85  | 0.34 | -0.07 | 76.26  | -20.54 | 5.4 - 27.97 | 8.33  | 0.03 -0.94 5.31   | 0.15  | 0.18 6.28  | 9.7  | 2 |
| RP         | Tube 3    | End    | 38.75 | 7.16  | 0.29 | -0.07 | 103.35 | -20.43 | 5.4 -27.97  | 8.33  | 0.03 -0.90 6.49   | 0.14  | 0.17 7.41  | 11.4 | 2 |
| RP         | Tube 3    | Origin | 38.75 | 7.16  | 0.29 | -0.07 | 103.34 | -20.44 | 5.4 -28.54  | 8.44  | 0.03 -0.92 6.49   | 0.14  | 0.17 7.43  | 11.4 | 2 |
| RP         | RP:Coax7  | End    | 42.00 | 6.50  | 0.26 | -0.06 | 130.78 | -20.33 | 5.4 -28.54  | 8.44  | 0.03 -0.88 7.48   | 0.14  | 0.15 8.38  | 12.9 | 2 |
|            |           |        |       |       |      |       |        |        |             |       |                   |       |            | 13.0 |   |
| RP         | RP:Coax7  | Origin | 42.00 | 6.50  | 0.26 | -0.06 | 130.78 | -20.34 | 5.4 -30.22  | 8.77  | 0.03 -0.94 7.48   | 0.14  | 0.15 8.43  |      | 2 |
| RP         | Tube 3    | End    | 47.00 | 5.52  | 0.21 | -0.05 | 174.64 | -20.18 | 5.4 -30.22  | 8.77  | 0.03 -0.88 8.77   | 0.14  | 0.14 9.67  | 14.9 | 2 |
| RP         | Tube 3    | Origin | 47.00 | 5.52  | 0.21 | -0.05 | 174.64 | -20.19 | 5.4 -31.20  | 8.95  | 0.03 -0.91 8.77   | 0.14  | 0.14 9.70  | 14.9 | 2 |
| RP         | RP:Coax6  | End    | 52.00 | 4.63  | 0.16 | -0.04 | 219.38 | -20.04 | 5.4 - 31.20 | 8.95  | 0.03 -0.86 9.78   | 0.13  | 0.12 10.65 | 16.4 | 2 |
| RP         | RP:Coax6  | Origin | 52.00 | 4.63  | 0.16 | -0.04 | 219.38 | -20.05 | 5.4 - 33.15 | 9.32  | 0.03 -0.91 9.78   | 0.14  | 0.12 10.71 | 16.5 | 2 |
| RP         | Tube 3    | End    | 57.00 | 3.81  | 0.13 | -0.03 | 265.96 | -19.91 | 5.4 -33.15  | 9.32  | 0.03 -0.87 10.61  | 0.13  | 0.11 11.49 | 17.7 | 2 |
| RP         | Tube 3    | Origin | 57.00 | 3.81  | 0.13 | -0.03 | 265.95 | -19.92 | 5.4 -34.24  | 9.51  | 0.02 -0.90 10.61  | 0.13  | 0.11 11.51 |      | 2 |
|            |           | _      |       |       |      |       |        |        |             |       |                   |       |            |      |   |
| RP         | RP:Coax5  | End    | 62.00 | 3.07  | 0.10 | -0.03 | 313.48 | -19.80 | 5.4 -34.24  | 9.51  | 0.02 -0.85 11.27  | 0.13  | 0.10 12.12 | 18.7 | 2 |
| RP         | RP:Coax5  | Origin | 62.00 | 3.07  | 0.10 | -0.03 | 313.48 | -19.80 | 5.4 -36.31  | 9.88  | 0.02 -0.90 11.27  | 0.13  | 0.10 12.17 | 18.7 | 2 |
| RP         | SpliceT   | End    | 67.00 | 2.41  | 0.07 | -0.02 | 362.90 | -19.70 | 5.4 -36.31  | 9.88  | 0.02 -0.86 11.81  | 0.12  | 0.09 12.68 | 19.5 | 2 |
| RP         | SpliceT   | Origin | 67.00 | 2.41  | 0.07 | -0.02 | 362.90 | -19.71 | 5.4 - 37.51 | 10.09 | 0.01 -0.89 11.81  | 0.13  | 0.09 12.71 | 19.5 | 2 |
| RP         | RP:Coax4  | End    | 72.00 | 1.83  | 0.05 | -0.02 | 413.34 | -19.62 | 5.4 -37.51  | 10.09 | 0.01 -0.85 12.25  | 0.12  | 0.08 13.10 | 20.2 | 2 |
| RP         | RP:Coax4  | Origin | 72.00 | 1.83  | 0.05 | -0.02 | 413.34 | -19.63 | 5.4 -39.69  | 10.48 | 0.01 -0.90 12.25  | 0.13  | 0.08 13.15 | 20.2 | 2 |
| RP         | Tube 4    | End    | 77.00 | 1.34  | 0.03 | -0.02 | 465.75 | -19.57 | 5.4 -39.69  | 10.48 | 0.01 -0.86 12.62  | 0.13  | 0.00 13.13 | 20.2 | 2 |
| RP         | Tube 4    |        |       |       |      |       |        |        |             | 10.48 |                   |       |            | 20.7 | 2 |
| KΡ         | TUDE 4    | Origin | 77.00 | 1.34  | 0.04 | -0.01 | 465.75 | -19.58 | 5.4 - 41.00 | 10.70 | 0.01 -0.89 12.62  | U. 12 | 0.07 13.51 | ∠∪.0 | 4 |

| RP | RP:Coax3 | End    | 82.00  | 0.92 | 0.03 | -0.01 | 519.26 | -19.54 | 5.4 -41.00  | 10.70 | 0.01 -0.85 12.92  | 0.12 | 0.07 13.77 | 21.2 | 2 |
|----|----------|--------|--------|------|------|-------|--------|--------|-------------|-------|-------------------|------|------------|------|---|
| RP | RP:Coax3 | Origin | 82.00  | 0.92 | 0.03 | -0.01 | 519.26 | -19.54 | 5.4 -43.29  | 11.11 | 0.00 -0.90 12.92  | 0.12 | 0.07 13.82 | 21.3 | 2 |
| RP | Tube 4   | End    | 87.00  | 0.59 | 0.02 | -0.01 | 574.80 | -19.53 | 5.4 - 43.29 | 11.11 | 0.00 -0.86 13.17  | 0.12 | 0.06 14.04 | 21.6 | 2 |
| RP | Tube 4   | Origin | 87.00  | 0.59 | 0.02 | -0.01 | 574.80 | -19.54 | 5.4 -44.72  | 11.34 | -0.01 -0.89 13.17 | 0.12 | 0.06 14.07 | 21.6 | 2 |
| RP | RP:Coax2 | End    | 92.00  | 0.33 | 0.01 | -0.01 | 631.52 | -19.56 | 5.4 -44.72  | 11.34 | -0.01 -0.86 13.38 | 0.11 | 0.06 14.24 | 21.9 | 2 |
| RP | RP:Coax2 | Origin | 92.00  | 0.33 | 0.01 | -0.01 | 631.52 | -19.57 | 5.4 -47.12  | 11.76 | -0.01 -0.90 13.38 | 0.12 | 0.06 14.29 | 22.0 | 2 |
| RP | Tube 4   | End    | 97.00  | 0.15 | 0.00 | -0.00 | 690.34 | -19.61 | 5.4 -47.12  | 11.76 | -0.01 -0.87 13.56 | 0.11 | 0.05 14.43 | 22.2 | 2 |
| RP | Tube 4   | Origin | 97.00  | 0.15 | 0.00 | -0.00 | 690.34 | -19.62 | 5.4 -48.66  | 12.02 | -0.02 -0.90 13.56 | 0.12 | 0.05 14.46 | 22.3 | 2 |
| RP | RP:Coax1 | End    | 102.00 | 0.04 | 0.00 | -0.00 | 750.42 | -19.70 | 5.4 -48.66  | 12.02 | -0.02 -0.87 13.71 | 0.11 | 0.05 14.58 | 22.8 | 2 |
| RP | RP:Coax1 | Origin | 102.00 | 0.04 | 0.00 | -0.00 | 750.42 | -19.71 | 5.4 -51.17  | 12.45 | -0.02 -0.91 13.71 | 0.12 | 0.05 14.62 | 22.8 | 2 |
| RP | RP:g     | End    | 107.00 | 0.00 | 0.00 | 0.00  | 812.68 | -19.82 | 5.4 -51.17  | 12.45 | -0.02 -0.88 13.84 | 0.11 | 0.05 14.72 | 23.4 | 2 |
|    |          |        |        |      |      |       |        |        |             |       |                   |      |            |      |   |

Detailed Tubular X-Arm Usages for Load Case "NESC Rule 250B":

| Element | Joint    | Joint    |       | Trans. | Long. | Vert. | Vert.  |        |        | Axial  |        | Horz.  | P/A    | M/S.   | V/Q.   | T/R.   | Res.   |            |     |
|---------|----------|----------|-------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|-----|
| Label   | Label    | Position | Dist. |        | Defl. | Defl. | Mom.   | Mom.   |        | Force  |        |        | (legi) | (l-ai) | (l-ai) | (l-ai) | (l-ai) | Usage<br>% | Pt. |
|         |          |          | (ft)  | (in)   | (in)  | (in)  | (ft-k) | (IC-K) | (IC-K) | (KIPS) | (kips) | (kips) | (KSI)  | (KSI)  | (KSI)  | (KSI)  | (KSI)  | ა<br>      |     |
| XArm    | XArm:O   | Origin   | 0.00  | 7.87   | 0.53  | -1.09 | -3.53  | -0.01  | 0.0    | -3.43  | -8.24  | -0.02  | -0.24  | 0.00   | 1.19   | 0.00   | 2.07   | 3.2        | 4   |
| XArm    | #sXArm:0 | End      | 3.87  | 7.86   | 0.49  | -0.53 | -35.46 | -0.07  | 0.0    | -3.43  | -8.24  | -0.02  | -0.24  | 9.90   | 0.46   | 0.00   | 10.16  | 15.6       | 2   |
| XArm    | #sXArm:0 | Origin   | 3.87  | 7.86   | 0.49  | -0.53 | -35.46 | -0.07  | 0.0    | -3.45  | -8.52  | -0.02  | -0.24  | 9.90   | 0.48   | 0.00   | 10.17  | 15.6       | 2   |
| XArm    | XArm:LP  | End      | 7.75  | 7.86   | 0.45  | -0.09 | -68.46 | -0.13  | 0.0    | -3.45  | -8.52  | -0.02  | -0.24  | 19.10  | 0.48   | 0.00   | 19.36  | 29.8       | 2   |
| XArm    | XArm:LP  | Origin   | 7.75  | 7.86   | 0.45  | -0.09 | -68.46 | -2.15  | -0.6   | 4.18   | 5.19   | 0.10   | 0.29   | 19.34  | 0.29   | 0.09   | 19.64  | 30.2       | 2   |
| XArm    | #sXArm:1 | End      | 11.63 | 7.86   | 0.42  | 0.13  | -48.35 | -1.75  | -0.6   | 4.18   | 5.19   | 0.10   | 0.29   | 13.68  | 0.29   | 0.09   | 13.99  | 21.5       | 2   |
| XArm    | #sXArm:1 | Origin   | 11.63 | 7.86   | 0.42  | 0.13  | -48.35 | -1.75  | -0.6   | 4.20   | 4.89   | 0.10   | 0.29   | 13.68  | 0.27   | 0.09   | 13.99  | 21.5       | 2   |
| XArm    | XArm:ML  | End      | 15.50 | 7.86   | 0.39  | 0.19  | -29.39 | -1.36  | -0.6   | 4.20   | 4.89   | 0.10   | 0.29   | 8.35   | 0.27   | 0.09   | 8.67   | 13.3       | 2   |
| XArm    | XArm:ML  | Origin   | 15.50 | 7.86   | 0.39  | 0.19  | -32.93 | -1.36  | -0.6   | 0.67   | -3.46  | 0.09   | 0.05   | 9.34   | 0.19   | 0.09   | 9.40   | 14.5       | 2   |
| XArm    | #sXArm:2 | End      | 19.38 | 7.86   | 0.36  | 0.13  | -46.32 | -1.03  | -0.6   | 0.67   | -3.46  | 0.09   | 0.05   | 13.03  | 0.19   | 0.09   | 13.09  | 20.1       | 2   |
| XArm    | #sXArm:2 | Origin   | 19.38 | 7.86   | 0.36  | 0.13  | -46.32 | -1.03  | -0.6   | 0.65   | -3.74  | 0.09   | 0.05   | 13.03  | 0.21   | 0.09   | 13.09  | 20.1       | 2   |
| XArm    | XArm:RP  | End      | 23.25 | 7.86   | 0.34  | -0.10 | -60.83 | -0.69  | -0.6   | 0.65   | -3.74  | 0.09   | 0.05   | 17.04  | 0.21   | 0.09   | 17.09  | 26.3       | 2   |
| XArm    | XArm:RP  | Origin   | 23.25 | 7.86   | 0.34  | -0.10 | -60.83 | -0.09  | -0.0   | 3.61   | 8.45   | 0.01   | 0.25   | 16.97  | 0.47   | 0.00   | 17.24  | 26.5       | 2   |
| XArm    | #sXArm:3 | End      | 27.13 | 7.86   | 0.32  | -0.51 | -28.08 | -0.04  | -0.0   | 3.61   | 8.45   | 0.01   | 0.25   | 7.83   | 0.47   | 0.00   | 8.13   | 12.5       | 2   |
| XArm    | #sXArm:3 | Origin   | 27.13 | 7.86   | 0.32  | -0.51 | -28.08 | -0.04  | -0.0   | 3.62   | 8.16   | 0.01   | 0.25   | 7.83   | 0.46   | 0.00   | 8.12   | 12.5       | 2   |
| XArm    | XArm:E   | End      | 31.00 | 7.86   | 0.29  | -1.02 | 3.53   | 0.00   | -0.0   | 3.62   | 8.16   | 0.01   | 0.25   | 0.00   | 1.18   | 0.00   | 2.05   | 3.2        | 4   |

Summary of Clamp Capacities and Usages for Load Case "NESC Rule 250B":

| Clamp Force<br>Label | Holding  | Factored<br>Holding<br>Capacity | Usage | Hardware | Factored<br>Hardware<br>Capacity |      |      |
|----------------------|----------|---------------------------------|-------|----------|----------------------------------|------|------|
| (kips                | ) (kips) | (kips)                          | %     | (kips)   | (kips)                           | %    | %    |
| RAntFUT 0.00         | 0 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| RAnt 7.56            | 1 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax1 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax2 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax3 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax4 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax5 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax6 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax7 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax8 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |
| Coax9 0.93           | 5 100.00 | 0.00                            | 0.00  | 0.00     | 0.00                             | 0.00 | 0.00 |

Summary of Suspension Capacities and Usages for Load Case "NESC Rule 250B":

Suspension Tension Input Factored Tension Input Factored Hardware Max.

| Label |        | Tension<br>Capacity | Tension<br>Capacity | Usage | Hardware<br>Capacity | Hardware<br>Capacity | Usage | Usage |
|-------|--------|---------------------|---------------------|-------|----------------------|----------------------|-------|-------|
|       | (kips) | (kips)              | (kips)              | %     | (kips)               | (kips)               | %     | %     |
| SWL   | 3.073  | 25.00               | 0.00                | 0.00  | 0.00                 | 0.00                 | 0.00  | 0.00  |
| SWR   | 3.073  | 25.00               | 0.00                | 0.00  | 0.00                 | 0.00                 | 0.00  | 0.00  |
| PHL   | 8.796  | 30.00               | 0.00                | 0.00  | 0.00                 | 0.00                 | 0.00  | 0.00  |
| PHM   | 8.796  | 30.00               | 0.00                | 0.00  | 0.00                 | 0.00                 | 0.00  | 0.00  |
| PHR   | 8.796  | 30.00               | 0.00                | 0.00  | 0.00                 | 0.00                 | 0.00  | 0.00  |

Equilibrium Joint Positions and Rotations for Load Case "NESC 250C":

| Joint<br>Label | X-Displ<br>(ft) | Y-Displ<br>(ft) | Z-Displ<br>(ft) | X-Rot<br>(deg) | Y-Rot<br>(deg) | Z-Rot<br>(deg) | X-Pos<br>(ft) | Y-Pos<br>(ft) | Z-Pos<br>(ft) |
|----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|---------------|---------------|---------------|
| LP:g           | 0               | 0               | 0               | 0.0000         | 0.0000         | 0.0000         | 0             | -7.75         | 0             |
| LP:t           | 0.02889         | 1.31            | -0.01455        | -1.5625        | 0.0467         | 0.0768         | 0.02889       | -6.44         | 79.99         |
| LP:SW          | 0.02831         | 1.289           | -0.01427        | -1.5625        | 0.0467         | 0.0768         | 0.02831       | -6.461        | 79.24         |
| LP:C           | 0.02228         | 1.078           | -0.01138        | -1.5554        | 0.0466         | 0.0768         | 0.02228       | -6.672        | 71.49         |
| RP:g           | 0               | 0               | 0               | 0.0000         | 0.0000         | 0.0000         | 0             | 7.75          | 0             |
| RP:t           | 0.02615         | 2.298           | -0.03313        | -2.0448        | 0.0290         | 0.0207         | 0.02615       | 10.05         | 107           |
| RP:ANTFUT      | 0.02467         | 2.191           | -0.03122        | -2.0444        | 0.0290         | 0.0207         | 0.02467       | 9.941         | 104           |
| RP:ANT         | 0.01875         | 1.764           | -0.02362        | -2.0287        | 0.0290         | 0.0207         | 0.01875       | 9.514         | 91.98         |
| RP:Coax9       | 0.01532         | 1.519           | -0.01926        |                |                |                | 0.01532       | 9.269         | 84.98         |
| RP:SW          | 0.01257         | 1.325           | -0.01595        | -1.8794        | 0.0276         | 0.0206         | 0.01257       | 9.075         | 79.23         |
| RP:Coax8       | 0.0106          | 1.188           | -0.01371        | -1.8061        | 0.0269         | 0.0206         | 0.0106        | 8.938         | 74.99         |
| RP:C           | 0.00901         | 1.08            | -0.012          | -1.7376        | 0.0263         | 0.0206         | 0.00901       | 8.83          | 71.49         |
| RP:Coax7       | 0.006558        | 0.8906          | -0.009147       |                |                |                | 0.006558      | 8.641         |               |
| RP:Coax6       | 0.003917        | 0.633           | -0.005686       |                |                |                | 0.003917      | 8.383         | 54.99         |
| RP:Coax5       | 0.002221        | 0.4196          | -0.003266       |                |                |                | 0.002221      | 8.17          | 45            |
| RP:Coax4       | 0.001152        | 0.2511          | -0.001702       |                |                |                | 0.001152      | 8.001         | 35            |
| RP:Coax3       |                 |                 | -0.0007849      |                |                |                |               | 7.877         | 25            |
| RP:Coax2       | 0.0001601       |                 | -0.0003064      |                |                |                |               | 7.795         | 15            |
| RP:Coax1       | 1.55e-05        | 0.005135        |                 |                |                |                | 1.55e-05      | 7.755         | 5             |
| SWLVANG        | 0.03027         | 1.29            |                 | -1.5625        |                |                | 0.03027       |               | 79.27         |
| SWRVANG        | 0.01203         | 1.325           | -0.06307        |                |                |                | 0.01203       | 10.51         | 79.19         |
| XArm:O         | 0.03338         | 1.081           | -0.05241        |                | 0.0506         |                |               | -14.42        | 71.45         |
| XArm:LP        | 0.02228         | 1.08            | -0.01284        | 0.1884         | 0.0505         | 0.0821         | 1.565         | -6.67         | 71.49         |
| XArm:ML        | 0.01367         | 1.081           | -0.00244        |                | 0.0403         |                | 1.557         | 1.081         | 71.5          |
| XArm:RP        | 0.009009        | 1.081           | -0.01284        |                |                |                | 1.552         | 8.831         |               |
| XArm:E         | 0.005831        | 1.081           | -0.04295        |                |                |                | 1.549         | 16.58         | 71.46         |
| VangCL         | 0.03248         | 1.087           | -0.05239        |                | 0.0506         |                | 1.575         | -14.41        | 70.45         |
| VangCM         | 0.01297         | 1.081           | -0.00244        |                | 0.0403         |                | 1.556         | 1.081         | 70.5          |
| VangCR         | 0.005305        | 1.077           | -0.04294        | -0.2382        | 0.0302         | 0.0234         | 1.548         | 16.58         | 70.46         |

Joint Support Reactions for Load Case "NESC 250C":

| Joint | х      | х     | Y      | Y     | H-Shear | Z      | Comp. | Uplift | Result. | Result. | х       | X-M.  | Y      | Y-M.  | H-Bend-M | Z      | Z-M.  | Max.  |
|-------|--------|-------|--------|-------|---------|--------|-------|--------|---------|---------|---------|-------|--------|-------|----------|--------|-------|-------|
| Label | Force  | Usage | Force  | Usage | Usage   | Force  | Usage | Usage  | Force   | Usage   | Moment  | Usage | Moment | Usage | Usage    | Moment | Usage | Usage |
|       | (kips) | %     | (kips) | %     | %       | (kips) | 8     | %      | (kips)  | %       | (ft-k)  | 8     | (ft-k) | %     | %        | (ft-k) | 8     | %     |
|       |        |       |        |       |         |        |       |        |         |         |         |       |        |       |          |        |       |       |
| LP:g  | -0.18  | 0.0   | -23.37 | 0.0   | 0.0     | -20.49 | 0.0   | 0.0    | 0.00    | 0.0     | 1424.12 | 0.0   | -22.5  | 0.0   | 0.0      | -17.47 | 0.0   | 0.0   |
| RP:a  | 0.07   | 0.0   | -21.86 | 0.0   | 0.0     | -26.09 | 0.0   | 0.0    | 0.00    | 0.0     | 1344.14 | 0.0   | -4.1   | 0.0   | 0.0      | -4.74  | 0.0   | 0.0   |

Detailed Steel Pole Usages for Load Case "NESC 250C":

| Element<br>Label | Joint<br>Label | Joint<br>Position |      | Trans. Defl. | _    | Vert.<br>Defl. | Trans. Mom. (Local Mx) | _      |        |        |        | _      |       | M/S.  | V/Q.  | T/R.  | Res.  | Max.<br>Usage |   |
|------------------|----------------|-------------------|------|--------------|------|----------------|------------------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|---------------|---|
|                  |                |                   | (ft) | (in)         | (in) | (in)           | (ft-k)                 | (ft-k) | (ft-k) | (kips) | (kips) | (kips) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | %             |   |
| LP               | LP:t           | Origin            | 0.00 | 15.72        | 0.35 | -0.17          | -0.00                  | 0.00   | -0.0   | -0.03  | 0.02   | -0.00  | -0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.0           | 5 |
| LP               | LP:SW          | End               | 0.75 | 15.47        | 0.34 | -0.17          | 0.02                   | -0.00  | -0.0   | -0.03  | 0.02   | -0.00  | -0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.0           | 4 |
| LP               | LP:SW          | Origin            | 0.75 | 15.47        | 0.34 | -0.17          | -0.95                  | 0.00   | 0.0    | -0.87  | 1.90   | -0.00  | -0.03 | 0.00  | 0.15  | 0.00  | 0.25  | 0.4           | 5 |
| LP               | Tube 1         | End               | 4.63 | 14.20        | 0.30 | -0.15          | 6.41                   | -0.01  | 0.0    | -0.87  | 1.90   | -0.00  | -0.03 | 0.46  | 0.04  | 0.00  | 0.50  | 0.8           | 2 |

| LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 19.6 2 9 23.2 2 1 23.2 2 9 26.1 2 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 7 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LP LP: C   Sind   8.50   12.94   0.27   -0.14   14.74   -0.03   0.0   -1.25   2.15   -0.01   -0.04   0.96   0.04   0.00   0.05   LP Tube   End   13.55   11.32   0.23   -0.11   98.97   -10.39   17.5   -8.30   16.85   -0.19   -0.28   0.87   1.2   0.59   LP Tube   Origin   13.55   11.32   0.23   -0.11   98.97   -10.39   17.5   -8.30   16.85   -0.19   -0.26   5.80   0.28   0.52   0.25   LP Tube   Origin   13.55   11.32   0.23   -0.11   98.97   -10.39   17.5   -8.86   17.20   -0.19   -0.26   5.80   0.28   0.52   0.25   LP Tube   Origin   18.50   9.75   0.19   -0.09   184.99   -11.31   17.5   -8.86   17.20   -0.19   -0.26   9.49   0.27   0.46   9.25   LP Tube   Origin   18.50   9.75   0.19   -0.09   184.99   -11.31   17.5   -8.86   17.20   -0.19   -0.26   9.49   0.27   0.46   9.25   LP Tube   Origin   23.55   8.26   0.16   -0.07   272.88   -12.23   17.5   -9.45   17.58   -0.19   -0.22   9.49   0.27   0.46   9.25   LP Tube   Origin   23.55   8.26   0.16   -0.07   272.88   -12.23   17.5   -9.45   17.58   -0.19   -0.22   12.43   0.26   0.41   LP Tube   Origin   28.55   6.88   0.13   -0.06   362.74   -13.14   17.5   -10.09   17.97   -0.19   -0.22   14.78   0.25   0.37   12.14   LP Tube   Origin   28.55   6.88   0.13   -0.06   362.74   -13.14   17.5   -10.09   17.97   -0.19   -0.27   14.78   0.25   0.37   12.14   LP Tube   Origin   33.55   5.61   0.10   -0.04   454.64   -14.04   17.5   -10.76   18.38   -0.18   -0.27   16.69   0.25   0.33   12.14   LP Tube   Origin   33.55   5.61   0.10   -0.04   454.64   -14.04   17.5   -10.76   18.38   -0.18   -0.29   16.69   0.25   0.33   12.14   LP Tube   Origin   36.75   4.85   0.09   -0.04   515.52   -14.63   17.5   -11.35   18.73   -0.18   -0.29   16.69   0.25   0.33   12.14   LP Splicer   End   Origin   36.75   4.85   0.09   -0.04   515.52   -14.66   17.5   -11.35   18.73   -0.18   -0.29   16.79   0.25   0.33   12.14   LP Splicer   End   40.00   4.14   0.07   -0.03   577.33   -15.22   17.5   -11.38   18.73   -0.18   -0.29   17.74   0.24   0.31   LP Tube   Origin   36.75   4.85   0. | 0 1.5 2 7 4.9 4 2 9.6 2 4 9.6 2 3 15.1 2 5 19.6 2 4 19.6 2 9 23.2 2 1 23.2 2 1 23.2 2 1 26.2 2 2 26.1 2 2 6.2 2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 8 31.0 2 8 31.0 2 8 31.0 2 8 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2                                                                                                                                                                            |
| LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 4.9 4<br>2 9.6 2<br>4 9.6 2<br>3 15.1 2<br>15.2 2<br>4 19.6 2<br>9 23.2 2<br>1 23.2 2<br>9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>8 31.0 2<br>8 31.0 2<br>8 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                             |
| Fig.   Tube      | 2 9.6 2<br>4 9.6 2<br>3 15.1 2<br>5 15.2 2<br>4 19.6 2<br>6 19.6 2<br>9 23.2 2<br>1 23.2 2<br>9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>8 31.0 2<br>8 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                          |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4     9.6     2       3     15.1     2       5     15.2     2       4     19.6     2       6     19.6     2       9     23.2     2       9     26.1     2       1     26.2     2       4     27.8     2       5     27.8     2       7     29.2     2       6     31.0     2       8     31.0     2       5     32.5     2       7     32.6     2       8     33.8     2       0     33.8     2 |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4     9.6     2       3     15.1     2       5     15.2     2       4     19.6     2       6     19.6     2       9     23.2     2       9     26.1     2       1     26.2     2       4     27.8     2       5     27.8     2       7     29.2     2       6     31.0     2       8     31.0     2       5     32.5     2       7     32.6     2       8     33.8     2       0     33.8     2 |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 15.1 2<br>5 15.2 2<br>4 19.6 2<br>9 23.2 2<br>1 23.2 2<br>9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                                                                        |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5     15.2     2       4     19.6     2       6     19.6     2       9     23.2     2       1     26.1     2       1     26.2     2       4     27.8     2       5     27.8     2       6     29.2     2       7     29.2     2       8     31.0     2       5     32.5     2       7     32.6     2       8     33.8     2       0     33.8     2                                              |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 19.6 2<br>6 19.6 2<br>9 23.2 2<br>1 23.2 2<br>9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>8 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                                                                                                            |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 19.6 2 9 23.2 2 1 23.2 2 9 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 7 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2                                                                                                                                                                                                                                                 |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 19.6 2 9 23.2 2 1 23.2 2 9 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 7 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2                                                                                                                                                                                                                                                 |
| LP Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 23.2 2<br>1 23.2 2<br>9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                                                                                                            |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 23.2 2<br>9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 29.2 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                                                                                                                        |
| LP Tube 1 Origin 33.50 5.61 0.10 -0.04 454.64 -14.04 17.5 -10.76 18.38 -0.18 -0.27 16.69 0.25 0.33 1' LP Tube 1 Bnd 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 16.69 0.25 0.33 1' LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 17.74 0.24 0.31 18 LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.28 17.74 0.24 0.31 18 LP Splicer End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.28 18.65 0.24 0.26 28 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.94 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.36 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.34 0.21 0.18 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.44 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -16.78 21.93 -0.18 -0.33 23.44 0.21 0.18 2 LP Tu | 9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                                                                                                                                                |
| LP Tube 1 Origin 33.50 5.61 0.10 -0.04 454.64 -14.04 17.5 -10.76 18.38 -0.18 -0.27 16.69 0.25 0.33 1' LP Tube 1 Bnd 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 16.69 0.25 0.33 1' LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 17.74 0.24 0.31 18 LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.28 17.74 0.24 0.31 18 LP Splicer End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.28 18.65 0.24 0.26 28 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.94 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.36 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.34 0.21 0.18 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.44 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -16.78 21.93 -0.18 -0.33 23.44 0.21 0.18 2 LP Tu | 9 26.1 2<br>1 26.2 2<br>4 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2                                                                                                                                                                                                                                                                |
| LP Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     26.2     2       4     27.8     2       5     27.8     2       6     29.2     2       7     29.2     2       6     31.0     2       5     32.5     2       7     32.6     2       8     33.8     2       0     33.8     2                                                                                                                                                                 |
| LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.28 17.74 0.24 0.31 14   LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.29 17.74 0.25 0.31 14   LP SpliceT End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 14   LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.28 18.65 0.24 0.29 14   LP Tube 2 End 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.24 0.29 14   LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.24 0.26 24   LP Tube 2 End 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 2   LP Tube 2 End 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 2   LP Tube 2 End 65.00 0.161 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 21.68 0.23 0.22 2   LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.21 2   LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.21 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.21 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.19 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.84 21.39 -0.18 -0.32 22.36 0.22 0.19 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.84 21.39 -0.18 -0.32 22.36 0.22 0.19 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.78 21.93 -0.18 -0.32 22.36 0.22 0.19 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.78 21.93 -0.18 -0.32 22.36 0.22 0.19 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 0.00 1086.62 -19.71 17.5 -16.78 21.93 -0.18 -0.32 22.34 0.22 0.19 2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                           | 4 27.8 2<br>5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                            |
| LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.29 17.74 0.25 0.31 14 LP SpliceT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 27.8 2<br>6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                        |
| LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 11 LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.29 11 LP Tube 2 End 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.23 0.26 21 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.26 21 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.30 19.86 0.24 0.26 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 50.00 1.61 0.03 -0.01 875.38 -1.791 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 21.68 0.23 0.22 2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.31 22.36 0.22 0.22 2 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 23.84 0.21 0.18 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.19 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 0.75 -18.75 20.99 -0.00 -0.00 0.00 0.00 0.00 0.00 0.0             | 6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                    |
| LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 11 LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.29 11 LP Tube 2 End 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.23 0.26 21 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.26 21 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.30 19.86 0.24 0.26 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 50.00 1.61 0.03 -0.01 875.38 -1.791 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 21.68 0.23 0.22 2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.31 22.36 0.22 0.22 2 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 23.84 0.21 0.18 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.19 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 0.75 -18.75 20.99 -0.00 -0.00 0.00 0.00 0.00 0.00 0.0             | 6 29.2 2<br>7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                    |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 29.2 2<br>6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                |
| LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.05 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.23 0.26 20 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 31.0 2<br>8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                            |
| LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.30 19.86 0.24 0.26 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.05 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 875.38 -17.05 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 End 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.31 21.68 0.23 0.22 22 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -15.84 21.39 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.22 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.15 24 LP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 31.0 2<br>5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                                                    |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 32.5 2<br>7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                                                    |
| LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.05 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 End 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.32 21.67 0.22 0.22 22 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.22 0.21 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 22 LP Tube 1 Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 32.6 2<br>8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                                                                |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 33.8 2<br>0 33.8 2                                                                                                                                                                                                                                                                                                                                                                            |
| LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.95 20.86 -0.18 -0.31 21.68 0.23 0.22 2.2   LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 2.2   LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.85 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.22 0.21 2.2   LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.16 2.2   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2   LP End 80.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.15 2.8    RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 33.8 2                                                                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.95 20.86 -0.18 -0.31 21.68 0.23 0.22 2.2   LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 2.2   LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.85 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.22 0.21 2.2   LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2   LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.16 2.2   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2   LP End 80.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.15 2.8    RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 33.8 2                                                                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
| LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.85 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 22 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP Tube 2 Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.05 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.00 0.00 0.00 0.00 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0.00 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.03 0.36 0.02 0.00 0.00 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0.00 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / 34.9 2                                                                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
| LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22   LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24   RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 34.9 2                                                                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22   LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24   RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 35.8 2                                                                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22   LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22   LP Tube 2 End 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24   LP Tube 2 End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24   RP RP: ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.07 0.00 0.00   RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.02 0.05 0.03 0.00 0   RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0   RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0   RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0   RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0   RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |
| LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 End 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0.0 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.0 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0.00 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0.0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.00 -0.00 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0.00 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |
| LP Tube 2 End 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24   LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24   LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24    RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.00 0.00 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0.0   RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.0    RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0    RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0    RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.03 0.36 0.02 0.00 0    RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0    RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                 |
| LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24   LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24   RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0   RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0   RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0   RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0   RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0   RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0   RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0   RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 36.6 2                                                                                                                                                                                                                                                                                                                                                                                        |
| LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24   LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24   RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0   RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0   RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0   RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0   RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0   RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0   RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0   RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 37.8 2                                                                                                                                                                                                                                                                                                                                                                                        |
| RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.00 0.00 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0.00 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0.00 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0.00 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.00 -0.29 0.39 -0.00 -0.03 0.36 0.02 0.00 0.00 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0.00 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0.00 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 39.0 2                                                                                                                                                                                                                                                                                                                                                                                        |
| RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 0.0 5                                                                                                                                                                                                                                                                                                                                                                                         |
| RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 -0.00 -0.0 -0.29 0.39 -0.00 -0.03 0.36 0.02 0.00 0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 -0.0 -0.29 0.39 -0.00 -0.03 0.36 0.02 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0.1 3                                                                                                                                                                                                                                                                                                                                                                                         |
| RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 0.6 2                                                                                                                                                                                                                                                                                                                                                                                         |
| RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0.6 2                                                                                                                                                                                                                                                                                                                                                                                         |
| RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 ( RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0.8 2                                                                                                                                                                                                                                                                                                                                                                                         |
| RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 1.1 2                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 2.0 4                                                                                                                                                                                                                                                                                                                                                                                         |
| RP TUDE 2 ENG 18.50 19.69 0.20 -0.26 26.46 -0.26 0.0 -4.48 6.28 -0.07 -0.23 3.48 0.18 0.00 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 5.7 2                                                                                                                                                                                                                                                                                                                                                                                         |
| RP Tube 2 Origin 18.50 19.69 0.20 -0.26 26.46 -0.26 -0.0 -4.71 6.46 -0.07 -0.25 3.48 0.18 0.00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 5.8 2                                                                                                                                                                                                                                                                                                                                                                                         |
| RP RP:Coax9 End 22.00 18.23 0.18 -0.23 49.09 -0.50 -0.0 -4.71 6.46 -0.07 -0.23 5.74 0.17 0.00 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 9.2 2                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 9.2 2                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 13.5 2                                                                                                                                                                                                                                                                                                                                                                                        |
| RP SpliceT Origin 27.00 16.20 0.16 -0.20 85.14 -0.85 -0.0 -5.46 7.38 -0.07 -0.21 7.06 0.15 0.00 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 11.2 2                                                                                                                                                                                                                                                                                                                                                                                        |
| RP RP:SW End 27.75 15.91 0.15 -0.19 90.67 -0.90 -0.0 -5.46 7.38 -0.07 -0.20 7.35 0.15 0.00 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 11.6 2                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 11 2 つ                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 11.8 2                                                                                                                                                                                                                                                                                                                                                                                        |
| RP RP:Coax8 Origin 32.00 14.26 0.13 -0.16 131.01 -1.21 -0.0 -6.94 10.02 -0.07 -0.24 9.39 0.19 0.00 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 14.8 2                                                                                                                                                                                                                                                                                                                                                                                        |
| RP RP:C End 35.50 12.96 0.11 -0.14 166.07 -1.46 -0.0 -6.94 10.02 -0.07 -0.23 10.81 0.18 0.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |
| RP RP:C Origin 35.50 12.96 0.11 -0.14 166.07 -9.81 4.7 -12.16 11.90 0.08 -0.41 10.95 0.21 0.16 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 14.8 2<br>4 14.8 2                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 14.8 2<br>4 14.8 2<br>5 17.0 2                                                                                                                                                                                                                                                                                                                                                                |
| RP Tube 3 End 38.75 11.80 0.09 -0.13 204.76 -9.54 4.7 -12.16 11.90 0.08 -0.39 12.36 0.20 0.15 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 14.8 2<br>4 14.8 2<br>5 17.0 2<br>8 17.5 2                                                                                                                                                                                                                                                                                                                                                    |
| RP Tube 3 Origin 38.75 11.80 0.09 -0.13 204.76 -9.54 4.7 -12.52 12.12 0.08 -0.40 12.36 0.21 0.15 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 14.8 2<br>4 14.8 2<br>5 17.0 2<br>8 17.5 2<br>7 19.6 2                                                                                                                                                                                                                                                                                                                                        |
| RP RP:Coax7 End 42.00 10.69 0.08 -0.11 244.16 -9.26 4.7 -12.52 12.12 0.08 -0.39 13.55 0.20 0.13 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 14.8 2<br>4 14.8 2<br>5 17.0 2<br>8 17.5 2<br>7 19.6 2                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 14.8 2<br>4 14.8 2<br>5 17.0 2<br>8 17.5 2<br>7 19.6 2<br>8 19.7 2                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     14.8     2       4     14.8     2       5     17.0     2       8     17.5     2       7     19.6     2       8     19.7     2       5     21.5     2                                                                                                                                                                                                                                      |
| RP Tube 3 End 47.00 9.08 0.06 -0.09 308.76 -8.84 4.7 -13.23 12.92 0.08 -0.39 15.16 0.20 0.12 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     14.8     2       4     14.8     2       5     17.0     2       8     17.5     2       19.6     2       8     19.7     2       5     21.5     2       7     21.5     2                                                                                                                                                                                                                     |

| RP | Tube 3   | Origin | 47.00  | 9.08 | 0.06 | -0.09 | 308.76  | -8.85 | 4.7 -13.85  | 13.28 | 0.08 -0.40 15.16 | 0.21 | 0.12 15.58 | 24.0 | 2 |
|----|----------|--------|--------|------|------|-------|---------|-------|-------------|-------|------------------|------|------------|------|---|
| RP | RP:Coax6 | End    | 52.00  | 7.60 | 0.05 | -0.07 | 375.18  | -8.42 | 4.7 -13.85  | 13.28 | 0.08 -0.38 16.43 | 0.19 | 0.11 16.82 | 25.9 | 2 |
| RP | RP:Coax6 | Origin | 52.00  | 7.60 | 0.05 | -0.07 | 375.18  | -8.43 | 4.7 -14.73  | 14.17 | 0.08 -0.41 16.43 | 0.21 | 0.11 16.84 | 25.9 | 2 |
| RP | Tube 3   | End    | 57.00  | 6.25 | 0.04 | -0.05 | 446.05  | -8.00 | 4.7 -14.73  | 14.17 | 0.08 -0.39 17.53 | 0.20 | 0.10 17.92 | 27.6 | 2 |
| RP | Tube 3   | Origin | 57.00  | 6.25 | 0.04 | -0.05 | 446.05  | -8.01 | 4.7 -15.41  | 14.58 | 0.08 -0.40 17.53 | 0.20 | 0.10 17.94 | 27.6 | 2 |
| RP | RP:Coax5 | End    | 62.00  | 5.04 | 0.03 | -0.04 | 518.94  | -7.59 | 4.7 -15.41  | 14.58 | 0.08 -0.38 18.41 | 0.19 | 0.09 18.80 | 28.9 | 2 |
| RP | RP:Coax5 | Origin | 62.00  | 5.04 | 0.03 | -0.04 | 518.94  | -7.60 | 4.7 -16.37  | 15.50 | 0.08 -0.41 18.41 | 0.20 | 0.09 18.82 | 29.0 | 2 |
| RP | SpliceT  | End    | 67.00  | 3.96 | 0.02 | -0.03 | 596.46  | -7.18 | 4.7 -16.37  | 15.50 | 0.08 -0.39 19.20 | 0.19 | 0.08 19.59 | 30.1 | 2 |
| RP | SpliceT  | Origin | 67.00  | 3.96 | 0.02 | -0.03 | 596.46  | -7.19 | 4.7 -17.13  | 15.94 | 0.08 -0.41 19.20 | 0.20 | 0.08 19.61 | 30.2 | 2 |
| RP | RP:Coax4 | End    | 72.00  | 3.01 | 0.01 | -0.02 | 676.18  | -6.77 | 4.7 -17.13  | 15.94 | 0.08 -0.39 19.84 | 0.19 | 0.07 20.23 | 31.1 | 2 |
| RP | RP:Coax4 | Origin | 72.00  | 3.01 | 0.01 | -0.02 | 676.18  | -6.79 | 4.7 -18.16  | 16.91 | 0.08 -0.41 19.84 | 0.20 | 0.07 20.26 | 31.2 | 2 |
| RP | Tube 4   | End    | 77.00  | 2.20 | 0.01 | -0.02 | 760.72  | -6.38 | 4.7 -18.16  | 16.91 | 0.08 -0.39 20.43 | 0.19 | 0.07 20.20 | 32.0 | 2 |
| RP | Tube 4   |        | 77.00  | 2.20 | 0.01 | -0.01 | 760.72  | -6.39 | 4.7 -18.10  | 17.39 | 0.08 -0.39 20.43 | 0.19 | 0.07 20.83 | 32.1 | 2 |
|    |          | Origin |        |      |      |       |         |       |             |       |                  |      |            |      |   |
| RP | RP:Coax3 | End    | 82.00  | 1.52 | 0.01 | -0.01 | 847.66  | -5.98 | 4.7 -18.98  | 17.39 | 0.08 -0.39 20.91 | 0.19 | 0.06 21.31 | 32.8 | 2 |
| RP | RP:Coax3 | Origin | 82.00  | 1.52 | 0.01 | -0.01 | 847.66  | -5.99 | 4.7 -20.08  | 18.39 | 0.08 -0.42 20.91 | 0.20 | 0.06 21.34 | 32.8 | 2 |
| RP | Tube 4   | End    | 87.00  | 0.97 | 0.00 | -0.01 | 939.60  | -5.60 | 4.7 -20.08  | 18.39 | 0.08 -0.40 21.37 | 0.19 | 0.06 21.78 | 33.5 | 2 |
| RP | Tube 4   | Origin | 87.00  | 0.97 | 0.00 | -0.01 | 939.60  | -5.60 | 4.7 -20.97  | 18.90 | 0.08 -0.42 21.37 | 0.20 | 0.06 21.80 | 33.5 | 2 |
| RP | RP:Coax2 | End    | 92.00  | 0.54 | 0.00 | -0.00 | 1034.12 | -5.22 | 4.7 - 20.97 | 18.90 | 0.08 -0.40 21.76 | 0.19 | 0.05 22.16 | 34.1 | 2 |
| RP | RP:Coax2 | Origin | 92.00  | 0.54 | 0.00 | -0.00 | 1034.12 | -5.23 | 4.7 - 22.15 | 19.94 | 0.07 -0.43 21.76 | 0.20 | 0.05 22.19 | 34.1 | 2 |
| RP | Tube 4   | End    | 97.00  | 0.24 | 0.00 | -0.00 | 1133.82 | -4.84 | 4.7 - 22.15 | 19.94 | 0.07 -0.41 22.13 | 0.19 | 0.05 22.54 | 34.7 | 2 |
| RP | Tube 4   | Origin | 97.00  | 0.24 | 0.00 | -0.00 | 1133.82 | -4.85 | 4.7 -23.11  | 20.50 | 0.07 -0.43 22.13 | 0.20 | 0.05 22.56 | 34.7 | 2 |
| RP | RP:Coax1 | End    | 102.00 | 0.06 | 0.00 | -0.00 | 1236.30 | -4.48 | 4.7 -23.11  | 20.50 | 0.07 -0.41 22.44 | 0.19 | 0.04 22.86 | 35.7 | 2 |
| RP | RP:Coax1 | Origin | 102.00 | 0.06 | 0.00 | -0.00 | 1236.30 | -4.49 | 4.7 -24.35  | 21.57 | 0.07 -0.43 22.44 | 0.20 | 0.04 22.88 | 35.7 | 2 |
| RP | RP:g     | End    | 107.00 | 0.00 | 0.00 | 0.00  | 1344.14 | -4.12 | 4.7 -24.35  | 21.57 | 0.07 -0.42 22.76 | 0.20 | 0.04 23.18 | 36.9 | 2 |
|    |          |        |        |      |      |       |         |       |             |       |                  |      |            |      |   |

Detailed Tubular X-Arm Usages for Load Case "NESC 250C":

| Element | Joint    | Joint    |               | Trans.        | Long.         | Vert.      | Vert.          |                |      | Axial           |                 | Horz.           | P/A   | M/S.  | V/Q.  | T/R.  |       |            |     |
|---------|----------|----------|---------------|---------------|---------------|------------|----------------|----------------|------|-----------------|-----------------|-----------------|-------|-------|-------|-------|-------|------------|-----|
| Label   | Label    | Position | Dist.<br>(ft) | Defl.<br>(in) | Defl.<br>(in) | Defl. (in) | Mom.<br>(ft-k) | Mom.<br>(ft-k) |      | Force<br>(kips) | Shear<br>(kips) | Shear<br>(kips) | (ksi) | (ksi) | (ksi) | (ksi) |       | Usage<br>% | Pt. |
| XArm    | XArm:O   | Origin   | 0.00          | 12.97         | 0.40          | -0.63      | -5.24          | -0.00          | 0.0  | -5.22           | -3.59           | -0.01           | -0.36 | 1.46  | 0.20  | 0.00  | 1.86  | 2.9        | 2   |
| XArm    | #sXArm:0 | End      | 3.87          | 12.97         | 0.33          | -0.36      | -19.14         | -0.05          | 0.0  | -5.22           | -3.59           | -0.01           | -0.36 | 5.34  | 0.20  | 0.00  | 5.71  | 8.8        | 2   |
| XArm    | #sXArm:0 | Origin   | 3.87          | 12.97         | 0.33          | -0.36      | -19.14         | -0.05          | 0.0  | -5.22           | -3.77           | -0.01           | -0.36 | 5.34  | 0.21  | 0.00  | 5.72  | 8.8        | 2   |
| XArm    | XArm:LP  | End      | 7.75          | 12.97         | 0.27          | -0.15      | -33.75         | -0.09          | 0.0  | -5.22           | -3.77           | -0.01           | -0.36 | 9.42  | 0.21  | 0.00  | 9.79  | 15.1       | 2   |
| XArm    | XArm:LP  | Origin   | 7.75          | 12.97         | 0.27          | -0.15      | -33.75         | -4.77          | -0.9 | 8.96            | 3.07            | 0.17            | 0.62  | 9.96  | 0.17  | 0.14  | 10.59 | 16.3       | 2   |
| XArm    | #sXArm:1 | End      | 11.63         | 12.97         | 0.21          | -0.05      | -21.85         | -4.09          | -0.9 | 8.96            | 3.07            | 0.17            | 0.62  | 6.57  | 0.17  | 0.14  | 7.21  | 11.1       | 2   |
| XArm    | #sXArm:1 | Origin   | 11.63         | 12.97         | 0.21          | -0.05      | -21.85         | -4.09          | -0.9 | 8.96            | 2.87            | 0.17            | 0.62  | 6.57  | 0.16  | 0.14  | 7.20  | 11.1       | 2   |
| XArm    | XArm:ML  | End      | 15.50         | 12.97         | 0.16          | -0.03      | -10.75         | -3.43          | -0.9 | 8.96            | 2.87            | 0.17            | 0.62  | 3.39  | 0.16  | 0.14  | 4.05  | 6.2        | 2   |
| XArm    | XArm:ML  | Origin   | 15.50         | 12.97         | 0.16          | -0.03      | -15.99         | -3.44          | -0.9 | 3.72            | -0.79           | 0.16            | 0.26  | 4.86  | 0.05  | 0.13  | 5.12  | 7.9        | 2   |
| XArm    | #sXArm:2 | End      | 19.38         | 12.97         | 0.13          | -0.06      | -19.07         | -2.81          | -0.9 | 3.72            | -0.79           | 0.16            | 0.26  | 5.64  | 0.05  | 0.13  | 5.91  | 9.1        | 2   |
| XArm    | #sXArm:2 | Origin   | 19.38         | 12.97         | 0.13          | -0.06      | -19.07         | -2.81          | -0.9 | 3.72            | -0.99           | 0.16            | 0.26  | 5.64  | 0.06  | 0.13  | 5.91  | 9.1        | 2   |
|         | XArm:RP  | End      | 23.25         | 12.97         | 0.11          | -0.15      | -22.91         | -2.18          | -0.9 | 3.72            | -0.99           | 0.16            | 0.26  | 6.64  | 0.06  | 0.13  | 6.90  | 10.6       | 2   |
| XArm    | XArm:RP  | Origin   | 23.25         | 12.97         | 0.11          | -0.15      | -22.91         | -0.03          | -0.0 | 5.25            | 3.73            | 0.00            | 0.36  | 6.39  | 0.21  | 0.00  | 6.76  | 10.4       | 2   |
| XArm    | #sXArm:3 | End      | 27.13         | 12.97         | 0.09          | -0.32      | -8.46          | -0.01          | -0.0 | 5.25            | 3.73            | 0.00            | 0.36  | 2.36  | 0.21  | 0.00  | 2.75  | 4.2        | 2   |
|         | #sXArm:3 | Origin   | 27.13         | 12.97         | 0.09          | -0.32      | -8.46          | -0.01          | -0.0 |                 | 3.54            | 0.00            | 0.36  | 2.36  | 0.20  | 0.00  | 2.75  | 4.2        | 2   |
|         | XArm:E   | End      | 31.00         | 12.97         | 0.07          | -0.52      | 5.24           | 0.00           | -0.0 | 5.26            | 3.54            | 0.00            | 0.36  | 1.46  | 0.20  | 0.00  | 1.86  | 2.9        | 2   |

Summary of Clamp Capacities and Usages for Load Case "NESC 250C":

| Clamp Force<br>Label        | -                  | Factored<br>Holding | _    | Input<br>Hardware  |                    | Hardware<br>Usage |      |
|-----------------------------|--------------------|---------------------|------|--------------------|--------------------|-------------------|------|
| (kips)                      | Capacity<br>(kips) | Capacity<br>(kips)  | %    | Capacity<br>(kips) | Capacity<br>(kips) | %                 | %    |
| RAntFUT 0.000<br>RAnt 6.748 | 100.00             | 0.00                | 0.00 | 0.00               | 0.00               | 0.00              | 0.00 |

| Coax1 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|-------|-------|--------|------|------|------|------|------|------|
| Coax2 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax3 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax4 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax5 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax6 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax7 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax8 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax9 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Summary of Suspension Capacities and Usages for Load Case "NESC 250C":

| Suspension<br>Label | Tension        | Tension        | Factored<br>Tension<br>Capacity |      | Hardware | Factored<br>Hardware<br>Capacity |      | Max.<br>Usage |
|---------------------|----------------|----------------|---------------------------------|------|----------|----------------------------------|------|---------------|
|                     | (kips)         | (kips)         | (kips)                          | %    | (kips)   | (kips)                           | %    | %             |
| SWL                 | 1.840          | 25.00<br>25.00 | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |
| SWR<br>PHL          | 1.840<br>6.281 | 30.00          | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |
| PHM<br>PHR          | 6.281<br>6.281 | 30.00          | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |

Equilibrium Joint Positions and Rotations for Load Case "NESC Rule 250D":

| Joint<br>Label | X-Displ<br>(ft) | Y-Displ<br>(ft) | Z-Displ<br>(ft) | X-Rot<br>(deg) | Y-Rot<br>(deg) | Z-Rot<br>(deg) | X-Pos<br>(ft) | Y-Pos<br>(ft) | Z-Pos<br>(ft) |
|----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|---------------|---------------|---------------|
| LP:g           | 0               | 0               | 0               | 0.0000         | 0.0000         | 0.0000         | 0             | -7.75         | 0             |
| LP:t           | 0.04863         | 0.53            | -0.003716       | -0.6385        | 0.0805         | 0.0297         | 0.04863       | -7.22         | 80            |
| LP:SW          | 0.04758         | 0.5216          | -0.003668       | -0.6385        | 0.0805         | 0.0297         | 0.04758       | -7.228        | 79.25         |
| LP:C           | 0.03673         | 0.4351          | -0.00314        | -0.6371        | 0.0805         | 0.0297         | 0.03673       | -7.315        | 71.5          |
| RP:g           | 0               | 0               | 0               | 0.0000         | 0.0000         | 0.0000         | 0             | 7.75          | 0             |
| RP:t           | 0.07578         | 0.8873          | -0.007117       | -0.7445        | 0.0746         | 0.0195         | 0.07578       | 8.637         | 107           |
| RP:ANTFUT      | 0.07188         | 0.8483          | -0.00686        |                |                |                | 0.07188       | 8.598         | 104           |
| RP:ANT         | 0.05631         | 0.6927          | -0.005825       | -0.7406        | 0.0745         | 0.0195         | 0.05631       | 8.443         | 91.99         |
| RP:Coax9       | 0.04726         | 0.6027          | -0.005151       | -0.7306        | 0.0740         | 0.0195         | 0.04726       | 8.353         | 84.99         |
| RP:SW          | 0.03991         | 0.5301          | -0.004607       | -0.7153        | 0.0730         | 0.0194         | 0.03991       |               | 79.25         |
| RP:Coax8       | 0.03453         | 0.4776          | -0.004211       |                |                |                | 0.03453       | 8.228         | 75            |
| RP:C           | 0.03015         | 0.4354          | -0.003895       | -0.6806        | 0.0717         | 0.0194         | 0.03015       | 8.185         | 71.5          |
| RP:Coax7       | 0.02294         | 0.3604          | -0.003258       |                |                |                | 0.02294       | 8.11          | 65            |
| RP:Coax6       | 0.01463         | 0.2566          | -0.002414       |                |                |                | 0.01463       | 8.007         | 55            |
| RP:Coax5       | 0.008836        | 0.1699          | -0.00174        |                |                |                | 0.008836      | 7.92          | 45            |
| RP:Coax4       | 0.004871        | 0.1013          | -0.001212       |                |                |                | 0.004871      | 7.851         | 35            |
| RP:Coax3       | 0.002284        |                 | -0.0007947      |                |                |                | 0.002284      | 7.801         | 25            |
|                | 0.0007621       |                 | -0.0004507      |                |                |                | 0.0007621     | 7.768         | 15            |
| RP:Coax1       | 7.968e-05       |                 | -0.0001469      |                |                |                |               | 7.752         | 5             |
| SWLVANG        | 0.04835         | 0.5217          |                 | -0.6385        |                |                | 0.04835       |               |               |
| SWRVANG        | 0.0394          | 0.53            | -0.02255        |                |                |                | 0.0394        | 9.717         |               |
| XArm:O         | 0.04093         | 0.4365          | -0.08896        |                | 0.0893         |                |               | -15.06        |               |
| XArm:LP        | 0.03673         | 0.436           | -0.005604       |                | 0.0891         |                |               | -7.314        |               |
| XArm:ML        | 0.03311         | 0.436           |                 | -0.0020        |                |                | 1.576         | 0.436         |               |
| XArm:RP        | 0.03014         | 0.436           | -0.006104       |                |                |                | 1.573         | 8.186         |               |
| XArm:E         | 0.02717         | 0.4356          | -0.08496        |                |                |                | 1.57          |               | 71.42         |
| VangCL         | 0.03936         | 0.449           | -0.08888        |                | 0.0893         |                |               | -15.05        |               |
| VangCM         | 0.03163         | 0.436           |                 | -0.0020        |                |                | 1.574         |               | 70.52         |
| VangCR         | 0.02578         | 0.4241          | -0.08489        | -0.6602        | 0.0801         | 0.0211         | 1.569         | 15.92         | 70.42         |

Joint Support Reactions for Load Case "NESC Rule 250D":

| Joint | х      | х       | Y     | Y     | H-Shear | Z      | Comp. | Uplift | Result. | Result. | х      | X-M.  | Y      | Y-M.  | H-Bend-M | Z      | Z-M.  | Max.  |
|-------|--------|---------|-------|-------|---------|--------|-------|--------|---------|---------|--------|-------|--------|-------|----------|--------|-------|-------|
| Label | Force  | Usage I | Force | Usage | Usage   | Force  | Usage | Usage  | Force   | Usage   | Moment | Usage | Moment | Usage | Usage    | Moment | Usage | Usage |
| (     | (kips) | %(]     | kips) | %     | %       | (kips) | %     | %      | (kips)  | %       | (ft-k) | %     | (ft-k) | %     | %        | (ft-k) | %     | %     |
|       |        |         |       |       |         |        |       |        |         |         |        |       |        |       |          |        |       |       |
| LP:g  | -0.14  | 0.0 -   | -8.34 | 0.0   | 0.0     | -33.44 | 0.0   | 0.0    | 0.00    | 0.0     | 556.13 | 0.0   | -29.9  | 0.0   | 0.0      | -6.81  | 0.0   | 0.0   |
| RP:a  | -0.00  | 0.0 -   | -7.72 | 0.0   | 0.0     | -50.34 | 0.0   | 0.0    | 0.00    | 0.0     | 532.91 | 0.0   | -21.0  | 0.0   | 0.0      | -4.47  | 0.0   | 0.0   |

Detailed Steel Pole Usages for Load Case "NESC Rule 250D":

| Element<br>Label | Joint<br>Label | Joint<br>Position |      | Trans. Defl. (in) | Long.<br>Defl.<br>(in) |       | Trans. Mom. (Local Mx) (ft-k) | (Local My) | Mom. | Force |      | Shear |       |      | -    |      |      | Max.<br>Usage<br>% |   |
|------------------|----------------|-------------------|------|-------------------|------------------------|-------|-------------------------------|------------|------|-------|------|-------|-------|------|------|------|------|--------------------|---|
|                  |                |                   |      |                   |                        |       |                               |            |      |       |      |       |       |      |      |      |      |                    |   |
| LP               | LP:t           | Origin            | 0.00 | 6.36              | 0.58                   | -0.04 | 0.00                          | 0.00       | -0.0 | -0.04 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0                | 5 |
| LP               | LP:SW          | End               | 0.75 | 6.26              | 0.57                   | -0.04 | 0.00                          | -0.00      | -0.0 | -0.04 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0                | 2 |
| LP               | LP:SW          | Origin            | 0.75 | 6.26              | 0.57                   | -0.04 | -5.01                         | 0.00       | 0.0  | -3.80 | 1.67 | -0.01 | -0.14 | 0.41 | 0.03 | 0.00 | 0.55 | 0.8                | 2 |
| LP               | Tube 1         | End               | 4.63 | 5.74              | 0.51                   | -0.04 | 1.45                          | -0.03      | 0.0  | -3.80 | 1.67 | -0.01 | -0.13 | 0.03 | 0.12 | 0.00 | 0.26 | 0.4                | 4 |

| Expression   Property   Propert   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LIPPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 4.63                                                                                                                                                       | 5.74                                                                                                                                                                   | 0.51                                                                                                                                         | -0.04                                                                                                                                                          | 1.45                                                                                                                                                                                             | -0.03                                                                                                                    | 0.0 - 4.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.73                                                                                                                                                         | -0.01 -0.15                                                                                                                                                                                                                                 | 0.03                                                                                                                                                 | 0.12                                                                                                                                                 | 0.00 0.28                                                                                                                                                                                                    | 0.4                                                                                                                                                    | 4                                                                                           |
| In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        | 2                                                                                           |
| In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Image   Tube     Fragman   | LP                                                                              | LP:C                                                                                                                                                                                                                                                                                                                                                                           | Origin                                                                                                                                                                          | 8.50                                                                                                                                                       | 5.22                                                                                                                                                                   | 0.44                                                                                                                                         | -0.04                                                                                                                                                          | 8.14                                                                                                                                                                                             | -20.62                                                                                                                   | 6.8 -18.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.11                                                                                                                                                         | -0.13 -0.62                                                                                                                                                                                                                                 | 1.48                                                                                                                                                 | 0.47                                                                                                                                                 | 0.23 2.43                                                                                                                                                                                                    | 3.7                                                                                                                                                    | 4                                                                                           |
| Image   Tube     Fragman   | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 13.50                                                                                                                                                      | 4.56                                                                                                                                                                   | 0.36                                                                                                                                         | -0.03                                                                                                                                                          | 43.67                                                                                                                                                                                            | -21.26                                                                                                                   | 6.8 -18.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.11                                                                                                                                                         | -0.13 -0.58                                                                                                                                                                                                                                 | 2.82                                                                                                                                                 | 0.12                                                                                                                                                 | 0.20 3.44                                                                                                                                                                                                    | 5.3                                                                                                                                                    | 2                                                                                           |
| In   Tube     Tube     Tube     Tube     Cristin   18,50   3,92   0.30   -0.03   79,59   -21,90   6.8   -19,15   7.18   -0.13   -0.57   4.31   0.11   0.18   4,93   7.6   2   LP   Tube   1   Tube     | T.D                                                                             | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          |                                                                                                                                                            | 4 56                                                                                                                                                                   | 0.36                                                                                                                                         | -0 03                                                                                                                                                          |                                                                                                                                                                                                  | _21 27                                                                                                                   | 6 9 _10 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 1 2                                                                                                                                                        | _0 13 _0 60                                                                                                                                                                                                                                 |                                                                                                                                                      | 0 12                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| LP Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| The   Tube     Send   23.50   3.31   0.24   -0.02   115.89   -22.54   6.8   -19.71   7.26   -0.13   -0.56   5.49   0.11   0.16   6.08   9.3   2.15   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07   1.07    | ЬΡ                                                                              | Tube I                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 |                                                                                                                                                            | 3.92                                                                                                                                                                   | 0.30                                                                                                                                         | -0.03                                                                                                                                                          | 79.59                                                                                                                                                                                            | -21.90                                                                                                                   | 6.8 -19.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.18                                                                                                                                                         | -0.13 -0.57                                                                                                                                                                                                                                 | 4.31                                                                                                                                                 | 0.11                                                                                                                                                 | 0.18 4.91                                                                                                                                                                                                    | 7.6                                                                                                                                                    | 2                                                                                           |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 18.50                                                                                                                                                      | 3.92                                                                                                                                                                   | 0.30                                                                                                                                         | -0.03                                                                                                                                                          | 79.59                                                                                                                                                                                            | -21.91                                                                                                                   | 6.8 -19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.26                                                                                                                                                         | -0.13 -0.59                                                                                                                                                                                                                                 | 4.31                                                                                                                                                 | 0.11                                                                                                                                                 | 0.18 4.93                                                                                                                                                                                                    | 7.6                                                                                                                                                    | 2                                                                                           |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.D                                                                             | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 23 50                                                                                                                                                      | 3 31                                                                                                                                                                   | 0 24                                                                                                                                         | -0 02                                                                                                                                                          | 115 89                                                                                                                                                                                           | -22 54                                                                                                                   | 6 8 -19 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 26                                                                                                                                                         | -0 13 -0 56                                                                                                                                                                                                                                 | 5 49                                                                                                                                                 | 0 11                                                                                                                                                 | 0 16 6 06                                                                                                                                                                                                    | 93                                                                                                                                                     | 2                                                                                           |
| LP Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| The Let   Tube 1   Control   Contr   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| The Tube 1 bright 3,500 2,24 0,15 -0.02 189.68 -3.81 6.8 -21.95 7.42 -0.13 -0.54 7.14 0.10 0.13 7.69 11.8 2 Lp Tube 1 bright 35.50 2,24 0,15 -0.02 189.67 -33.81 6.8 -21.95 7.42 -0.13 -0.54 7.53 0.10 0.13 7.07 11.9 2 Lp Tube 1 bright 35.50 2.40 0.15 -0.02 189.67 -32.81 6.8 -22.93 7.49 -0.13 -0.54 7.53 0.10 0.13 7.01 11.9 2 Lp Tube 1 bright 36.75 1.93 0.13 -0.01 214.00 -42.22 6.8 -22.23 7.49 -0.13 -0.54 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 28.50                                                                                                                                                      | 2.75                                                                                                                                                                   | 0.19                                                                                                                                         | -0.02                                                                                                                                                          | 152.58                                                                                                                                                                                           | -23.17                                                                                                                   | 6.8 -20.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.34                                                                                                                                                         | -0.13 -0.55                                                                                                                                                                                                                                 | 6.41                                                                                                                                                 | 0.10                                                                                                                                                 | 0.14 6.97                                                                                                                                                                                                    | 10.7                                                                                                                                                   | 2                                                                                           |
| The Tube 1 bright 3,500 2,24 0,15 -0.02 189.68 -3.81 6.8 -21.95 7.42 -0.13 -0.54 7.14 0.10 0.13 7.69 11.8 2 Lp Tube 1 bright 35.50 2,24 0,15 -0.02 189.67 -33.81 6.8 -21.95 7.42 -0.13 -0.54 7.53 0.10 0.13 7.07 11.9 2 Lp Tube 1 bright 35.50 2.40 0.15 -0.02 189.67 -32.81 6.8 -22.93 7.49 -0.13 -0.54 7.53 0.10 0.13 7.01 11.9 2 Lp Tube 1 bright 36.75 1.93 0.13 -0.01 214.00 -42.22 6.8 -22.23 7.49 -0.13 -0.54 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 28.50                                                                                                                                                      | 2.75                                                                                                                                                                   | 0.19                                                                                                                                         | -0.02                                                                                                                                                          | 152.58                                                                                                                                                                                           | -23.18                                                                                                                   | 6.8 -21.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.42                                                                                                                                                         | -0.13 -0.57                                                                                                                                                                                                                                 | 6.41                                                                                                                                                 | 0.10                                                                                                                                                 | 0.14 7.00                                                                                                                                                                                                    | 10.8                                                                                                                                                   | 2                                                                                           |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.D                                                                             |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Fig.   Fube      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Tube 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | БΡ                                                                              |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| LP Splicer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 36.75                                                                                                                                                      | 1.93                                                                                                                                                                   | 0.13                                                                                                                                         | -0.01                                                                                                                                                          | 214.00                                                                                                                                                                                           | -24.22                                                                                                                   | 6.8 -22.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.49                                                                                                                                                         | -0.13 -0.54                                                                                                                                                                                                                                 | 7.53                                                                                                                                                 | 0.10                                                                                                                                                 | 0.12 8.08                                                                                                                                                                                                    | 12.4                                                                                                                                                   | 2                                                                                           |
| LP Splicer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LP                                                                              | Tube 1                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 36.75                                                                                                                                                      | 1.93                                                                                                                                                                   | 0.13                                                                                                                                         | -0.01                                                                                                                                                          | 214.00                                                                                                                                                                                           | -24.23                                                                                                                   | 6.8 -22.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.54                                                                                                                                                         | -0.13 - 0.56                                                                                                                                                                                                                                | 7.53                                                                                                                                                 | 0.10                                                                                                                                                 | 0.12 8.10                                                                                                                                                                                                    | 12.5                                                                                                                                                   | 2.                                                                                          |
| LP SpliceT Origin 40.00 1.65 0.11 -0.01 238.51 -24.64 6.8 -23.68 7.61 -0.13 -0.56 7.86 0.10 0.11 8.43 13.0 2 LP Tube 2 CHigh 45.00 1.26 0.08 -0.01 276.57 -25.28 6.8 -23.68 7.61 -0.13 -0.56 8.29 0.09 0.10 8.83 13.6 2 LP Tube 2 CHigh 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -24.67 7.70 -0.13 -0.56 8.29 0.09 0.10 8.87 13.6 2 LP Tube 2 CHigh 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -24.67 7.70 -0.13 -0.56 8.29 0.09 0.10 8.81 13.6 2 LP Tube 2 CHIGH 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -24.67 7.70 -0.13 -0.58 8.63 0.09 0.09 9.17 14.1 2 LP Tube 2 CHIGH 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -25.71 7.79 -0.13 -0.56 8.63 0.09 0.09 9.17 14.1 2 LP Tube 2 CHIGH 50.00 0.02 0.04 0.01 354.02 22.57 6.8 25.71 7.79 -0.13 -0.56 8.63 0.09 0.09 9.45 14.1 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 393.44 -27.23 6.8 -25.71 7.79 -0.13 -0.56 8.63 0.09 0.09 9.45 14.1 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 393.44 -27.23 6.8 -26.79 7.89 -0.13 -0.59 9.10 0.08 0.08 9.64 14.8 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 393.44 -27.23 6.8 -27.92 7.98 -0.13 -0.59 9.10 0.08 0.08 9.64 14.8 2 LP Tube 2 CHIGH 50.00 0.03 0.01 -0.00 433.35 -27.90 6.8 -27.92 7.98 -0.13 -0.59 9.10 0.08 0.08 9.64 14.8 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 433.35 -27.90 6.8 -27.92 7.98 -0.13 -0.54 9.26 0.08 0.07 9.80 15.1 2 LP Tube 2 CHIGH 50.00 0.03 0.00 -0.00 473.66 -28.57 6.8 -29.99 8.08 -0.14 -0.54 9.39 0.08 0.07 9.95 15.1 2 LP Tube 2 CHIGH 50.00 0.03 0.00 -0.00 473.66 -28.57 6.8 -29.99 8.08 -0.14 -0.54 9.39 0.08 0.07 9.95 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.54 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.55 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.56 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.56 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                    | T.D                                                                             |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 54                                                                                                                                                         |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Fig.   Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LP                                                                              | SpliceT                                                                                                                                                                                                                                                                                                                                                                        | Origin                                                                                                                                                                          | 40.00                                                                                                                                                      | 1.65                                                                                                                                                                   | 0.11                                                                                                                                         | -0.01                                                                                                                                                          |                                                                                                                                                                                                  | -24.64                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.61                                                                                                                                                         | -0.13 - 0.56                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                                                                                                      | 0.11 8.43                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                             |
| Fig.      | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 45.00                                                                                                                                                      | 1.26                                                                                                                                                                   | 0.08                                                                                                                                         | -0.01                                                                                                                                                          | 276.57                                                                                                                                                                                           | -25.28                                                                                                                   | 6.8 -23.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.61                                                                                                                                                         | -0.13 -0.54                                                                                                                                                                                                                                 | 8.29                                                                                                                                                 | 0.09                                                                                                                                                 | 0.10 8.83                                                                                                                                                                                                    | 13.6                                                                                                                                                   | 2                                                                                           |
| Fig.      | T.P                                                                             | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 45.00                                                                                                                                                      | 1.26                                                                                                                                                                   | 0.08                                                                                                                                         | -0.01                                                                                                                                                          | 276.57                                                                                                                                                                                           | -25.28                                                                                                                   | 6.8 -24.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.70                                                                                                                                                         | -0.13 -0.56                                                                                                                                                                                                                                 | 8.29                                                                                                                                                 | 0.09                                                                                                                                                 | 0.10 8.86                                                                                                                                                                                                    | 13.6                                                                                                                                                   | 2                                                                                           |
| LP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Provide 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 50.00                                                                                                                                                      | 0.92                                                                                                                                                                   | 0.06                                                                                                                                         | -0.01                                                                                                                                                          | 315.07                                                                                                                                                                                           | -25.93                                                                                                                   | 6.8 -25.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.79                                                                                                                                                         | -0.13 -0.56                                                                                                                                                                                                                                 | 8.63                                                                                                                                                 | 0.09                                                                                                                                                 | 0.09 9.19                                                                                                                                                                                                    | 14.1                                                                                                                                                   | 2                                                                                           |
| Property   Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 55.00                                                                                                                                                      | 0.63                                                                                                                                                                   | 0.04                                                                                                                                         | -0.01                                                                                                                                                          | 354.02                                                                                                                                                                                           | -26.57                                                                                                                   | 6.8 -25.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.79                                                                                                                                                         | -0.13 -0.53                                                                                                                                                                                                                                 | 8.89                                                                                                                                                 | 0.09                                                                                                                                                 | 0.09 9.43                                                                                                                                                                                                    | 14.5                                                                                                                                                   | 2                                                                                           |
| Property   Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T.D                                                                             | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 55 00                                                                                                                                                      | 0.63                                                                                                                                                                   | 0 04                                                                                                                                         | -0.01                                                                                                                                                          | 354 02                                                                                                                                                                                           | -26 58                                                                                                                   | 6 8 -26 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 88                                                                                                                                                         | -0 13 -0 56                                                                                                                                                                                                                                 | 8 89                                                                                                                                                 | 0 09                                                                                                                                                 | 0 09 9 45                                                                                                                                                                                                    | 14 5                                                                                                                                                   | 2                                                                                           |
| Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 60.00                                                                                                                                                      | 0.40                                                                                                                                                                   | 0.02                                                                                                                                         | -0.00                                                                                                                                                          | 393.44                                                                                                                                                                                           | -27.24                                                                                                                   | 6.8 -27.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.98                                                                                                                                                         | -0.13 -0.56                                                                                                                                                                                                                                 | 9.10                                                                                                                                                 | 0.08                                                                                                                                                 | 0.08 9.66                                                                                                                                                                                                    | 14.9                                                                                                                                                   | 2                                                                                           |
| Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 65.00                                                                                                                                                      | 0.23                                                                                                                                                                   | 0.01                                                                                                                                         | -0.00                                                                                                                                                          | 433.35                                                                                                                                                                                           | -27.90                                                                                                                   | 6.8 -27.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.98                                                                                                                                                         | -0.13 -0.54                                                                                                                                                                                                                                 | 9.26                                                                                                                                                 | 0.08                                                                                                                                                 | 0.07 9.80                                                                                                                                                                                                    | 15.1                                                                                                                                                   | 2                                                                                           |
| Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.D                                                                             |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | α Λα                                                                                                                                                         |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| LP Tube 2 Origin 70.00 0.01 0.01 -0.00 514.68 -29.26 6.8 -30.31 8.18 -0.14 -0.56 9.39 0.08 0.07 9.95 15.3 2 LP Tube 2 Origin 75.00 0.03 0.00 -0.00 514.68 -29.26 6.8 -30.31 8.18 -0.14 -0.56 9.48 0.08 0.06 10.02 15.7 2 LP Tube 2 Origin 75.00 0.03 0.00 -0.00 514.68 -29.26 6.8 -31.56 8.29 -0.14 -0.56 9.48 0.08 0.06 10.02 15.7 2 LP LP LP:g End 80.00 0.00 0.00 0.00 556.13 -29.94 6.8 -31.56 8.29 -0.14 -0.56 9.48 0.08 0.06 10.09 16.1 2 LP LP:g End 80.00 0.00 0.00 0.00 556.13 -29.94 6.8 -31.56 8.29 -0.14 -0.56 9.48 0.08 0.06 10.09 16.1 2 LP LP:g End 80.00 10.65 0.91 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| LP Tube 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ЪΡ                                                                              |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| Tube 2   Origin   75.00   O.03   O.00   O.00   O.00   O.00   S14.68   -29.26   6.8   -31.56   8.29   -0.14   -0.56   9.48   O.08   O.06   I.0.04   15.7   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | Origin                                                                                                                                                                          | 70.00                                                                                                                                                      | 0.10                                                                                                                                                                   | 0.01                                                                                                                                         | -0.00                                                                                                                                                          | 473.76                                                                                                                                                                                           | -28.58                                                                                                                   | 6.8 -30.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.18                                                                                                                                                         | -0.14 -0.56                                                                                                                                                                                                                                 | 9.39                                                                                                                                                 | 0.08                                                                                                                                                 | 0.07 9.95                                                                                                                                                                                                    | 15.3                                                                                                                                                   | 2                                                                                           |
| Tube 2   Origin   75.00   O.03   O.00   O.00   O.00   O.00   S14.68   -29.26   6.8   -31.56   8.29   -0.14   -0.56   9.48   O.08   O.06   I.0.04   15.7   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LP                                                                              | Tube 2                                                                                                                                                                                                                                                                                                                                                                         | End                                                                                                                                                                             | 75.00                                                                                                                                                      | 0.03                                                                                                                                                                   | 0.00                                                                                                                                         | -0.00                                                                                                                                                          | 514.68                                                                                                                                                                                           | -29.25                                                                                                                   | 6.8 - 30.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.18                                                                                                                                                         | -0.14 - 0.54                                                                                                                                                                                                                                | 9.48                                                                                                                                                 | 0.08                                                                                                                                                 | 0.06 10.02                                                                                                                                                                                                   | 15.7                                                                                                                                                   | 2.                                                                                          |
| LP   LP   End   80.00   0.00   0.00   0.00   0.00   556.13   -29.94   6.8 -31.56   8.29   -0.14 -0.54   9.54   0.08   0.06   10.09   16.1   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| RP RP: ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.24 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.02 -0.07 0.01 -0.00 -0.04 0.16 0.00 0.00 0.00 0.15 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.02 -0.00 -0.07 0.01 -0.00 -0.04 0.16 0.00 0.00 0.15 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.02 -0.0 -0.07 0.00 -0.07 0.00 -0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                               |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 0.0 -0.07 0.01 -0.00 -0.01 0.02 0.00 0.00 0.00 0.02 0.0 2 RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.00 -0.04 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.0 2 RP TUBE 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.05 0.09 0.00 0.00 0.01 10.2 RP TUBE 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.00 0.16 0.2 2 RP RP:ANT DEAD 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.07 0.07 0.07 0.07 0.03 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LP                                                                              | LP:g                                                                                                                                                                                                                                                                                                                                                                           | End                                                                                                                                                                             | 80.00                                                                                                                                                      | 0.00                                                                                                                                                                   | 0.00                                                                                                                                         | 0.00                                                                                                                                                           | 556.13                                                                                                                                                                                           | -29.94                                                                                                                   | 6.8 - 31.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.29                                                                                                                                                         | -0.14 -0.54                                                                                                                                                                                                                                 | 9.54                                                                                                                                                 | 0.08                                                                                                                                                 | 0.06 10.09                                                                                                                                                                                                   | 16.1                                                                                                                                                   | 2                                                                                           |
| RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 0.0 -0.07 0.01 -0.00 -0.01 0.02 0.00 0.00 0.00 0.02 0.0 2 RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.00 -0.04 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.0 2 RP TUBE 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.05 0.09 0.00 0.00 0.01 10.2 RP TUBE 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.00 0.16 0.2 2 RP RP:ANT DEAD 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.07 0.07 0.07 0.07 0.03 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 0.0 -0.07 0.01 -0.00 -0.01 0.02 0.00 0.00 0.00 0.02 0.0 2 RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.00 -0.04 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.0 2 RP TUBE 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.05 0.09 0.00 0.00 0.01 10.2 RP TUBE 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.00 0.16 0.2 2 RP RP:ANT DEAD 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.07 0.07 0.07 0.07 0.03 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP                                                                              | DD • +                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | 0 00                                                                                                                                                       | 10 65                                                                                                                                                                  | 0.91                                                                                                                                         | -0.09                                                                                                                                                          | 0.00                                                                                                                                                                                             | 0 00                                                                                                                     | 0.0 -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                         | -0.00 -0.01                                                                                                                                                                                                                                 | 0.00                                                                                                                                                 | 0 00                                                                                                                                                 | 0 00 0 01                                                                                                                                                                                                    | 0.0                                                                                                                                                    | 5                                                                                           |
| RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.0 -0.24 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.1 2 RP Tube 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.03 0.09 0.00 0.00 0.01 10.2 2 RP Tube 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.01 0.00 0.14 0.2 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.26 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.25 0.3 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.61 0.03 0.00 0.97 1.5 2 RP RP:COax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -0.72 0.10 4 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.53 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.06 -0.00 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.09 -0.00 -0.00 -0.08 0.40 0.00 0.00 0.279 4.3 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.09 -0.00 -0.00 -0.08 0.40 0.00 0.00 0.55 0.8 2 RP RP:SW End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:SW End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:COax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:SW End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:COax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:COax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                | Origin                                                                                                                                                                          |                                                                                                                                                            |                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      | 0.00                                                                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                        |                                                                                             |
| RP Tube 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.03 0.09 0.00 0.00 0.11 0.2 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.20 0.3 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.03 0.00 0.50 0.8 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.44 1.24 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.09 -0.00 -0.00 -0.04 0.14 0.03 0.00 1.53 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 1.53 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 - | מם                                                                              |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                        | 0 06                                                                                                                                         | $\cap$ $\cap$ $\circ$                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                          | 0 0 0 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 01                                                                                                                                                         | 0 00 0 01                                                                                                                                                                                                                                   | 0 02                                                                                                                                                 |                                                                                                                                                      |                                                                                                                                                                                                              | 0 0                                                                                                                                                    | _                                                                                           |
| RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.07 -0.07 0.09 -0.00 -0.05 0.09 0.01 0.00 0.14 0.2 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.20 0.3 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.03 0.00 0.20 0.3 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.95 0.8 2 RP RP:COASP End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:COASP End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.83 2.8 2 RP RP:COASP End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.00 0.00 1.53 2.4 2 RP RP:COASP Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.00 0.00 2.79 4.3 2 RP RP:COASP Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.01 2.13 3.3 2 RP RP:COASP End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.01 2.13 5.73 8.8 2 RP RP:COASP Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.08 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.08 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.09 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.08 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.36 6.07 -0.00 -0.09 4.85 0.10 0.13 5.73 8.8 9                                                                                                                                                                        |                                                                                 | RP:ANTFUT                                                                                                                                                                                                                                                                                                                                                                      | End                                                                                                                                                                             | 3.00                                                                                                                                                       | 10.18                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                | 0.04                                                                                                                                                                                             | -0.00                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                      | 0.00                                                                                                                                                 | 0.00 0.02                                                                                                                                                                                                    |                                                                                                                                                        |                                                                                             |
| RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.16 0.2 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.07 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.16 0.2 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.97 1.5 2 RP RP:Coax9 End 2.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 1.33 2.0 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.41 2.2 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 4.98 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2                                                                                                                                                                         |                                                                                 | RP:ANTFUT<br>RP:ANTFUT                                                                                                                                                                                                                                                                                                                                                         | End<br>Origin                                                                                                                                                                   | 3.00<br>3.00                                                                                                                                               | 10.18<br>10.18                                                                                                                                                         | 0.86                                                                                                                                         | -0.08                                                                                                                                                          | $0.04 \\ 0.04$                                                                                                                                                                                   | -0.00<br>-0.00                                                                                                           | -0.0 -0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              | -0.00 -0.03                                                                                                                                                                                                                                 | 0.02                                                                                                                                                 | 0.00                                                                                                                                                 | 0.00 0.02<br>0.00 0.05                                                                                                                                                                                       | 0.1                                                                                                                                                    | 2                                                                                           |
| RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.16 0.2 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.07 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.16 0.2 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.97 1.5 2 RP RP:Coax9 End 2.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 1.33 2.0 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.41 2.2 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 4.98 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2                                                                                                                                                                         | RP                                                                              | RP:ANTFUT<br>RP:ANTFUT                                                                                                                                                                                                                                                                                                                                                         | End<br>Origin                                                                                                                                                                   | 3.00<br>3.00                                                                                                                                               | 10.18<br>10.18                                                                                                                                                         | 0.86                                                                                                                                         | -0.08                                                                                                                                                          | $0.04 \\ 0.04$                                                                                                                                                                                   | -0.00<br>-0.00                                                                                                           | -0.0 -0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                         | -0.00 -0.03                                                                                                                                                                                                                                 | 0.02                                                                                                                                                 | 0.00                                                                                                                                                 | 0.00 0.02<br>0.00 0.05                                                                                                                                                                                       | 0.1                                                                                                                                                    | 2                                                                                           |
| RP RP:ANT End 15.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.16 0.2 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.20 0.3 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.97 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.16 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.44 1.19 0.03 0.00 1.58 2.4 2 RP RP:Coax8 Origin 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.53 2.4 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.85 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP<br>RP                                                                        | RP:ANTFUT<br>RP:ANTFUT<br>Tube 1                                                                                                                                                                                                                                                                                                                                               | End<br>Origin<br>End                                                                                                                                                            | 3.00<br>3.00<br>7.50                                                                                                                                       | 10.18<br>10.18<br>9.48                                                                                                                                                 | 0.86<br>0.79                                                                                                                                 | -0.08<br>-0.08                                                                                                                                                 | 0.04<br>0.04<br>0.26                                                                                                                                                                             | -0.00<br>-0.00<br>-0.01                                                                                                  | $ \begin{array}{rrr} -0.0 & -0.24 \\ -0.0 & -0.24 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.05                                                                                                                                                 | -0.00 -0.03<br>-0.00 -0.03                                                                                                                                                                                                                  | 0.02                                                                                                                                                 | 0.00<br>0.00<br>0.00                                                                                                                                 | 0.00 0.02<br>0.00 0.05<br>0.00 0.11                                                                                                                                                                          | 0.1<br>0.2                                                                                                                                             | 2<br>2                                                                                      |
| RP RP:ANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP<br>RP<br>RP                                                                  | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1                                                                                                                                                                                                                                                                                                                                              | End<br>Origin<br>End<br>Origin                                                                                                                                                  | 3.00<br>3.00<br>7.50<br>7.50                                                                                                                               | 10.18<br>10.18<br>9.48<br>9.48                                                                                                                                         | 0.86<br>0.79<br>0.79                                                                                                                         | -0.08<br>-0.08<br>-0.08                                                                                                                                        | 0.04<br>0.04<br>0.26<br>0.26                                                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01                                                                                         | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.05<br>0.09                                                                                                                                         | -0.00 -0.03<br>-0.00 -0.03<br>-0.00 -0.05                                                                                                                                                                                                   | 0.02<br>0.09<br>0.09                                                                                                                                 | 0.00<br>0.00<br>0.00<br>0.01                                                                                                                         | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14                                                                                                                                                             | 0.1<br>0.2<br>0.2                                                                                                                                      | 2<br>2<br>2                                                                                 |
| RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.36 0.61 0.03 0.00 0.97 1.5 2 RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP RP:Coax9 Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.05 6.36 0.48 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.44 1.43 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -1.441 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -1.441 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -1.441 3.04 -0.08 -0.48 2.82 0.55 0.00 3.31 5.1 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 4.98 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                  | RP<br>RP<br>RP<br>RP                                                            | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT                                                                                                                                                                                                                                                                                                                                      | End<br>Origin<br>End<br>Origin<br>End                                                                                                                                           | 3.00<br>3.00<br>7.50<br>7.50<br>12.00                                                                                                                      | 10.18<br>10.18<br>9.48<br>9.48<br>8.78                                                                                                                                 | 0.86<br>0.79<br>0.79<br>0.72                                                                                                                 | -0.08<br>-0.08<br>-0.08<br>-0.07                                                                                                                               | 0.04<br>0.04<br>0.26<br>0.26<br>0.67                                                                                                                                                             | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02                                                                                | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.05<br>0.09<br>0.09                                                                                                                                 | -0.00 -0.03<br>-0.00 -0.03<br>-0.00 -0.05<br>-0.00 -0.05                                                                                                                                                                                    | 0.02<br>0.09<br>0.09<br>0.19                                                                                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00                                                                                                                 | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24                                                                                                                                                | 0.1<br>0.2<br>0.2<br>0.4                                                                                                                               | 2<br>2<br>2<br>2                                                                            |
| RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.36 0.61 0.03 0.00 0.97 1.5 2 RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.06 0.00 2.85 4.4 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax7 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP<br>RP<br>RP<br>RP                                                            | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT                                                                                                                                                                                                                                                                                                                                      | End<br>Origin<br>End<br>Origin<br>End                                                                                                                                           | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00                                                                                                             | 10.18<br>10.18<br>9.48<br>9.48<br>8.78                                                                                                                                 | 0.86<br>0.79<br>0.79<br>0.72                                                                                                                 | -0.08<br>-0.08<br>-0.08<br>-0.07                                                                                                                               | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67                                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02                                                                                | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.05<br>0.09<br>0.09                                                                                                                                 | -0.00 -0.03<br>-0.00 -0.03<br>-0.00 -0.05<br>-0.00 -0.05                                                                                                                                                                                    | 0.02<br>0.09<br>0.09<br>0.19                                                                                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00                                                                                                                 | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24                                                                                                                                                | 0.1<br>0.2<br>0.2<br>0.4<br>0.2                                                                                                                        | 2<br>2<br>2<br>2<br>2                                                                       |
| RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.36 0.61 0.03 0.00 0.97 1.5 2 RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.06 0.00 2.85 4.4 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax7 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP<br>RP<br>RP<br>RP                                                            | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT                                                                                                                                                                                                                                                                                                                              | End<br>Origin<br>End<br>Origin<br>End<br>Origin                                                                                                                                 | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00                                                                                                             | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78                                                                                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72                                                                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07                                                                                                                      | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67                                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02                                                                       | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.05<br>0.09<br>0.09                                                                                                                                 | -0.00 -0.03<br>-0.00 -0.03<br>-0.00 -0.05<br>-0.00 -0.05<br>-0.00 -0.04                                                                                                                                                                     | 0.02<br>0.09<br>0.09<br>0.19<br>0.11                                                                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00                                                                                                         | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.16                                                                                                                                   | 0.1<br>0.2<br>0.2<br>0.4<br>0.2                                                                                                                        | 2<br>2<br>2<br>2<br>2                                                                       |
| RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.85 4.4 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP<br>RP<br>RP<br>RP<br>RP                                                      | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT                                                                                                                                                                                                                                                                                                                                 | End<br>Origin<br>End<br>Origin<br>End<br>Origin<br>End                                                                                                                          | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00<br>15.00                                                                                                    | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31                                                                                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68                                                                                                 | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07                                                                                                                      | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67                                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03                                                              | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13                                                                                                                 | -0.00 -0.03<br>-0.00 -0.03<br>-0.00 -0.05<br>-0.00 -0.05<br>-0.00 -0.04<br>-0.00 -0.04                                                                                                                                                      | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16                                                                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00                                                                                                         | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.16<br>0.00 0.20                                                                                                                      | 0.1<br>0.2<br>0.2<br>0.4<br>0.2                                                                                                                        | 2<br>2<br>2<br>2<br>2<br>2                                                                  |
| RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C Dorigin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP<br>RP<br>RP<br>RP<br>RP<br>RP                                                | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT RP:ANT                                                                                                                                                                                                                                                                                                                | End Origin End Origin End Origin End Origin End                                                                                                                                 | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00<br>15.00                                                                                                    | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>8.31                                                                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68                                                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07                                                                                                             | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67                                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03                                                              | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13                                                                                                                 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \end{array}$                                                                                      | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.16                                                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00                                                                                                 | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.20<br>0.00 0.55                                                                                                                      | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8                                                                                                          | 2<br>2<br>2<br>2<br>2<br>2<br>2                                                             |
| RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 2.79 4.3 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP<br>RP<br>RP<br>RP<br>RP<br>RP                                                | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2                                                                                                                                                                                                                                                                                                                | End Origin End Origin End Origin End Origin End Origin                                                                                                                          | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00<br>15.00<br>15.00<br>18.50                                                                                  | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77                                                                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68                                                                                         | -0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07                                                                                                    | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03<br>-0.03                                                     | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00                                                                                                         | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \end{array}$                                                                     | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.16                                                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.26<br>0.00 0.20<br>0.00 0.55                                                                                                         | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5                                                                                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                   |
| RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP<br>RP<br>RP<br>RP<br>RP<br>RP                                                | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2                                                                                                                                                                                                                                                                                                                | End Origin End Origin End Origin End Origin End Origin                                                                                                                          | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00<br>15.00<br>15.00<br>18.50                                                                                  | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77                                                                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68                                                                                         | -0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07                                                                                                    | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58                                                                                                                                     | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03<br>-0.03                                                     | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00                                                                                                         | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \end{array}$                                                                     | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.16                                                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.26<br>0.00 0.20<br>0.00 0.55                                                                                                         | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5                                                                                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                   |
| RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                                          | RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2 Tube 2                                                                                                                                                                                                                                                                                                                   | End Origin End Origin End Origin End Origin End Origin                                                                                                                          | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50                                                                                           | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.77                                                                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.62                                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07                                                                                           | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58                                                                                                                             | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03<br>-0.03<br>-0.27<br>-0.27                                   | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.00                                                                                                 | -0.00 -0.03<br>-0.00 -0.03<br>-0.00 -0.05<br>-0.00 -0.05<br>-0.00 -0.04<br>-0.00 -0.04<br>-0.07 -0.38<br>-0.07 -0.38                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.16<br>0.61                                                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03<br>0.03                                                                                 | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.20<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99                                                                                                         | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5                                                                                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                              |
| RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                                          | RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT PR:ANT Tube 2 Tube 2 RP:Coax9                                                                                                                                                                                                                                                                                                          | End<br>Origin<br>End<br>Origin<br>End<br>Origin<br>End<br>Origin<br>End<br>Origin                                                                                               | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>18.50<br>22.00                                                                         | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23                                                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.62                                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07                                                                                  | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24                                                                                                             | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03<br>-0.03<br>-0.27<br>-0.27<br>-0.50                          | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.00                                                                                                 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \end{array}$                                                    | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.16<br>0.61<br>0.61                                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03<br>0.03                                                                                 | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.24<br>0.00 0.20<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33                                                                                            | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5                                                                                            | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                    |
| RP RP:SW Origin 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                                    | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9                                                                                                                                                                                                                                                                                       | End Origin                                                                                                    | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>18.50<br>22.00<br>22.00                                                                | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23                                                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.68<br>0.68<br>0.62<br>0.62<br>0.57                                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06                                                                         | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24                                                                                                             | -0.00<br>-0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.02<br>-0.03<br>-0.03<br>-0.27<br>-0.27<br>-0.50                          | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -7.20<br>0.0 -7.20<br>-0.0 -8.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.00<br>1.04<br>1.04                                                                                         | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.36 \\ -0.07 & -0.36 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \\ -0.07 & -0.43 \end{array}$                  | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.16<br>0.61<br>0.61<br>0.98                                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03<br>0.03                                                                                 | 0.00 0.02<br>0.00 0.05<br>0.00 0.11<br>0.00 0.24<br>0.00 0.20<br>0.00 0.55<br>0.00 0.99<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41                                                                               | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0                                                                                     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.86 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                                    | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT                                                                                                                                                                                                                                                                                         | End Origin                                                                                                    | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>18.50<br>22.00<br>27.00                                                                | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47                                                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.62<br>0.57<br>0.57                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06                                                                         | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24                                                                                                             | -0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.03<br>-0.03<br>-0.27<br>-0.27<br>-0.50<br>-0.50<br>-0.86                          | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -6.89<br>0.0 -7.20<br>0.0 -7.20<br>-0.0 -8.73<br>-0.0 -8.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.00<br>1.04<br>1.19                                                                                 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \\ -0.07 & -0.36 \\ -0.07 & -0.43 \\ -0.07 & -0.40 \end{array}$ | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.61<br>0.98<br>0.98<br>1.43                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.26<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.83                                                                  | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.86 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                                    | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT                                                                                                                                                                                                                                                                                         | End Origin                                                                                                    | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>18.50<br>22.00<br>27.00                                                                | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47                                                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.62<br>0.57<br>0.57                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06                                                                         | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24                                                                                                             | -0.00<br>-0.01<br>-0.01<br>-0.02<br>-0.03<br>-0.03<br>-0.27<br>-0.27<br>-0.50<br>-0.50<br>-0.86                          | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -6.89<br>0.0 -7.20<br>0.0 -7.20<br>-0.0 -8.73<br>-0.0 -8.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.00<br>1.04<br>1.19                                                                                 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \\ -0.07 & -0.36 \\ -0.07 & -0.43 \\ -0.07 & -0.40 \end{array}$ | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.61<br>0.98<br>0.98<br>1.43                                                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.26<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.83                                                                  | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                              | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT                                                                                                                                                                                                                                                                                 | End Origin                                                                                                    | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>18.50<br>22.00<br>27.00<br>27.00                                                       | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.47                                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49                                                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06                                                                | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24<br>14.18                                                                                                    | -0.00 -0.01 -0.01 -0.01 -0.02 -0.03 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.86                                            | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -6.89<br>0.0 -6.89<br>0.0 -6.89<br>0.0 -7.20<br>0.0 -7.20<br>-0.0 -8.73<br>-0.0 -8.73<br>-0.0 -9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.00<br>1.04<br>1.19<br>1.19                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.26<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.41<br>0.00 1.83<br>0.00 1.83                                                                  | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2                                                                              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.88 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                              | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT RP:ANT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW                                                                                                                                                                                                                                                                         | End Origin                                                                                         | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>22.00<br>27.00<br>27.75                                                       | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.47<br>6.36                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48                                                 | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06                                                       | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24<br>14.18<br>14.18                                                                                           | -0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91                                | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -6.89<br>0.0 -6.89<br>0.0 -7.20<br>0.0 -7.20<br>-0.0 -8.73<br>-0.0 -8.73<br>-0.0 -9.02<br>-0.0 -9.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>1.00<br>1.00<br>1.04<br>1.04<br>1.19<br>1.19                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.20<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.53<br>0.00 1.53                                                     | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>2.4                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.88 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                        | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9                                                                                                                                                                                                             | End Origin                                                                                         | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>22.00<br>27.00<br>27.75<br>27.75                                              | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.27<br>7.23<br>6.47<br>6.47<br>6.36<br>6.36                                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.68<br>0.68<br>0.62<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48                                                 | -0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06                                                       | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>14.18                                                                                          | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.91 -0.92                                            | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -6.89<br>0.0 -7.20<br>0.0 -7.20<br>-0.0 -8.73<br>-0.0 -8.73<br>-0.0 -9.02<br>-0.0 -9.02<br>-0.0 -12.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>1.00<br>1.00<br>1.04<br>1.19<br>1.19<br>1.23<br>2.90                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.16<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19<br>1.24                                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.20<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.58<br>0.00 1.58                                                     | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>2.4                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                        | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8                                                                                                                                                                                                                                                         | End Origin                                                                              | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>22.00<br>27.00<br>27.00<br>27.75<br>32.00                                     | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>5.73                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.49<br>0.48<br>0.48                                 | -0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05                                     | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41                                                                | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25                                            | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.04<br>1.19<br>1.19<br>1.23<br>2.90<br>2.90                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.83<br>0.00 1.53<br>0.00 1.53<br>0.00 2.79                                        | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>3.3                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                        | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8                                                                                                                                                                                                                                                         | End Origin                                                                              | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>22.00<br>27.00<br>27.00<br>27.75<br>32.00                                     | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>5.73                                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.49<br>0.48<br>0.48                                 | -0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05                                     | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41                                                                | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25                                            | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.04<br>1.19<br>1.19<br>1.23<br>2.90<br>2.90                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.83<br>0.00 1.53<br>0.00 1.53<br>0.00 2.79                                        | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>3.3                                                         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.88 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP                  | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8 RP:Coax8 RP:Coax8                                                                                                                                                                                                                                          | End Origin                                                                              | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>32.00                                     | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.47<br>6.36<br>6.36<br>5.73<br>5.73                                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48<br>0.41                                         | -0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05                                     | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41                                                                        | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25                                            | -0.0 -0.24<br>-0.0 -0.24<br>-0.0 -0.47<br>-0.0 -0.47<br>-0.0 -0.72<br>-0.0 -0.72<br>0.0 -6.89<br>0.0 -6.89<br>0.0 -7.20<br>-0.0 -7.20<br>-0.0 -8.73<br>-0.0 -8.73<br>-0.0 -9.02<br>-0.0 -9.02<br>-0.0 -12.80<br>-0.0 -12.80<br>-0.0 -14.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.19<br>1.19<br>1.23<br>2.90<br>2.90<br>3.04                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.34                                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.41 0.00 1.83 0.00 1.53 0.00 2.79 0.00 2.79 0.00 2.85                                                                            | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>3.3<br>4.3                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2  RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2  RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP            | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT RP:SW RP:SW RP:Coax8 RP:Coax8 RP:Coax8 RP:Coax8 RP:Coax8 RP:Coax8                                                                                                                                                                                                                       | End Origin                                                        | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50                            | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22                                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.49<br>0.48<br>0.41<br>0.41                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05                   | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>43.05                                                               | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 -1.54                                      | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ -0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.19<br>1.19<br>1.23<br>2.90<br>2.90<br>3.04<br>3.04                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.16<br>0.61<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.82                                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.55<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.83<br>0.00 1.58<br>0.00 1.58<br>0.00 2.13<br>0.00 2.85<br>0.00 2.85<br>0.00 3.31 | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>3.3<br>4.4<br>5.1                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP      | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8                                                                                                                                                                         | End Origin                                                        | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50<br>35.50                            | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22<br>5.22                         | 0.86<br>0.79<br>0.79<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48<br>0.48<br>0.41<br>0.36<br>0.36                         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05                            | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>43.05<br>43.05                                                      | -0.00 -0.01 -0.01 -0.01 -0.02 -0.03 -0.27 -0.27 -0.50 -0.86 -0.91 -0.92 -1.25 -1.54 -21.21                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.19<br>1.23<br>1.23<br>2.90<br>2.90<br>3.04<br>3.04<br>6.07                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.61<br>0.61<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.34<br>2.34<br>2.34<br>2.34                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03                                                                                         | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.41 0.00 1.83 0.00 1.58 0.00 2.13 0.00 2.13 0.00 2.85 0.00 3.31 0.15 4.11                                              | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>2.4<br>3.3<br>4.3<br>4.3<br>5.1<br>6.3                      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP      | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT SpliceT RP:SW RP:SW RP:Coax8                                                                                                          | End Origin                                             | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50<br>35.50<br>38.75                   | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22<br>5.22<br>4.77                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.62<br>0.62<br>0.57<br>0.49<br>0.48<br>0.48<br>0.41<br>0.36<br>0.36<br>0.32                 | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.04          | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>32.41<br>43.05<br>43.05<br>62.79                                    | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.21              | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ 4.5 & -27.36 \\ 4.5 & -27.36 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>1.00<br>1.04<br>1.04<br>1.19<br>1.23<br>1.23<br>2.90<br>2.90<br>3.04<br>3.04<br>6.07<br>6.07                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.61<br>0.61<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.34<br>2.34<br>2.34                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.25<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.58<br>0.00 2.79<br>0.00 2.79<br>0.00 2.85<br>0.00 2.85<br>0.01 4.11<br>0.14 4.98 | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.4<br>2.4<br>3.3<br>4.3<br>4.3<br>7.7                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP      | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT SpliceT RP:SW RP:SW RP:Coax8                                                                                                          | End Origin                                             | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50<br>35.50<br>38.75                   | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22<br>5.22<br>4.77                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.62<br>0.62<br>0.57<br>0.49<br>0.48<br>0.48<br>0.41<br>0.36<br>0.36<br>0.32                 | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.04          | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>32.41<br>43.05<br>43.05<br>62.79                                    | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.21              | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ 4.5 & -27.36 \\ 4.5 & -27.36 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>1.00<br>1.04<br>1.04<br>1.19<br>1.23<br>1.23<br>2.90<br>2.90<br>3.04<br>3.04<br>6.07<br>6.07                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.61<br>0.61<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.34<br>2.34<br>2.34                         | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03                                                                                         | 0.00 0.02<br>0.00 0.11<br>0.00 0.14<br>0.00 0.24<br>0.00 0.25<br>0.00 0.97<br>0.00 0.99<br>0.00 1.33<br>0.00 1.41<br>0.00 1.58<br>0.00 2.79<br>0.00 2.79<br>0.00 2.85<br>0.00 2.85<br>0.01 4.11<br>0.14 4.98 | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.4<br>2.4<br>3.3<br>4.3<br>4.3<br>7.7                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>R | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 RP:Coax9 RP:Coax8 RP:Coax8 RP:SW RP:SW RP:SW RP:Coax8                                           | End Origin                       | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50<br>38.75<br>38.75                   | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.77<br>7.23<br>7.23<br>6.47<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22<br>5.22<br>4.77<br>4.77         | 0.86<br>0.79<br>0.79<br>0.72<br>0.68<br>0.62<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48<br>0.41<br>0.41<br>0.36<br>0.36<br>0.32                 | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.04          | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>32.41<br>43.05<br>43.05<br>62.79<br>62.79                           | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.21 -21.21       | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.5 & -27.36 \\ 4.5 & -27.36 \\ 4.5 & -27.82 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>1.00<br>1.04<br>1.04<br>1.19<br>1.23<br>1.23<br>2.90<br>2.90<br>3.04<br>6.07<br>6.07<br>6.07                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.61<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.34<br>2.32<br>4.08                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05<br>0.06<br>0.05<br>0.05<br>0.01<br>0.10                 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.43 0.00 1.58 0.00 1.58 0.00 2.79 0.00 2.85 0.00 2.85 0.00 2.85 0.01 4.98 0.14 5.00                                    | 0.1<br>0.2<br>0.2<br>0.4<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>2.4<br>3.3<br>4.3<br>4.3<br>7.7                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| RP Tube 3 End $47.00$ 3.68 $0.22$ -0.03 113.96 -21.19 $4.5$ -29.55 $6.26$ $0.00$ -0.86 $5.83$ $0.10$ $0.11$ $6.70$ $10.3$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>R | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 Tube 2 RP:Coax9 RP:Coax9 RP:Coax9 RP:Coax8 RP:SW RP:SW RP:SW RP:Coax8                  | End Origin | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>12.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50<br>38.75<br>38.75<br>42.00          | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.78<br>8.31<br>7.77<br>7.27<br>7.23<br>6.47<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22<br>5.22<br>4.77<br>4.77                 | 0.86<br>0.79<br>0.79<br>0.72<br>0.68<br>0.68<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48<br>0.41<br>0.41<br>0.36<br>0.36<br>0.32<br>0.32         | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.04 | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>43.05<br>43.05<br>43.05<br>62.79<br>62.79<br>82.67          | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.25 -1.21 -21.21 | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ -0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.5 & -27.36 \\ -0.5 & -27.36 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5 & -27.82 \\ -0.5$ | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.19<br>1.19<br>1.23<br>2.90<br>2.90<br>3.04<br>6.07<br>6.12<br>6.12                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.16<br>0.16<br>0.61<br>0.98<br>0.98<br>1.43<br>1.24<br>1.65<br>2.34<br>2.32<br>3.40<br>4.08<br>4.08                 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05<br>0.06<br>0.05<br>0.11<br>0.10<br>0.10                 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.41 0.00 1.58 0.00 2.13 0.00 2.79 0.00 2.85 0.00 2.85 0.01 4 4.98 0.14 5.00 0.13 5.73                                  | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>2.4<br>3.3<br>4.3<br>4.3<br>7.7<br>7.7<br>8.8               | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>RP<br>R | RP:ANTFUT RP:ANTFUT SpliceT SpliceT RP:ANT Tube 1 SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 RP:Coax9 RP:SW RP:SW RP:SW RP:Coax8 RP:Coax7 RP:Coax7 | End Origin            | 3.00<br>3.00<br>7.50<br>7.50<br>12.00<br>15.00<br>15.00<br>18.50<br>22.00<br>27.00<br>27.75<br>27.75<br>32.00<br>35.50<br>35.50<br>38.75<br>42.00<br>42.00 | 10.18<br>10.18<br>9.48<br>9.48<br>8.78<br>8.31<br>8.31<br>7.77<br>7.77<br>7.23<br>6.47<br>6.36<br>6.36<br>5.73<br>5.73<br>5.22<br>5.22<br>4.77<br>4.77<br>4.32<br>4.32 | 0.86<br>0.79<br>0.79<br>0.72<br>0.72<br>0.68<br>0.62<br>0.62<br>0.57<br>0.57<br>0.49<br>0.48<br>0.41<br>0.36<br>0.36<br>0.36<br>0.32<br>0.32 | -0.08<br>-0.08<br>-0.08<br>-0.07<br>-0.07<br>-0.07<br>-0.07<br>-0.06<br>-0.06<br>-0.06<br>-0.06<br>-0.05<br>-0.05<br>-0.05<br>-0.05<br>-0.04<br>-0.04<br>-0.04 | 0.04<br>0.04<br>0.26<br>0.26<br>0.67<br>0.67<br>1.07<br>1.07<br>4.58<br>4.58<br>8.24<br>14.18<br>14.18<br>14.18<br>15.10<br>20.11<br>32.41<br>43.05<br>43.05<br>62.79<br>62.79<br>82.67<br>82.67 | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 -1.25 -1.54 -21.21 -21.21                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05<br>0.05<br>0.09<br>0.09<br>0.13<br>0.13<br>1.00<br>1.04<br>1.19<br>1.23<br>1.23<br>2.90<br>2.90<br>3.04<br>3.04<br>6.07<br>6.07<br>6.12<br>6.12<br>6.26 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                        | 0.02<br>0.09<br>0.09<br>0.19<br>0.11<br>0.16<br>0.61<br>0.98<br>0.98<br>1.43<br>1.19<br>1.24<br>1.65<br>2.34<br>2.82<br>3.16<br>4.08<br>4.08<br>4.85 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00<br>0.00<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05<br>0.06<br>0.05<br>0.11<br>0.10<br>0.10<br>0.10 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.97 0.00 1.33 0.00 1.41 0.00 1.83 0.00 1.53 0.00 2.79 0.00 2.85 0.00 2.73 0.13 5.73 0.13 5.73                                              | 0.1<br>0.2<br>0.2<br>0.4<br>0.2<br>0.3<br>0.8<br>1.5<br>1.5<br>2.0<br>2.2<br>2.8<br>2.4<br>2.4<br>3.3<br>4.3<br>4.3<br>4.7<br>7.7<br>7.7<br>8.8<br>8.9 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

| RP | Tube 3   | Origin | 47.00  | 3.68 | 0.22 | -0.03 | 113.96 | -21.19 | 4.5 -30.32 | 6.33 | 0.00 -0.88  | 5.83 | 0.10 | 0.11 | 6.72 | 10.3 | 2 |
|----|----------|--------|--------|------|------|-------|--------|--------|------------|------|-------------|------|------|------|------|------|---|
| RP | RP:Coax6 | End    | 52.00  | 3.08 | 0.18 | -0.03 | 145.59 | -21.17 | 4.5 -30.32 | 6.33 | 0.00 - 0.84 | 6.58 | 0.09 | 0.10 | 7.43 | 11.4 | 2 |
| RP | RP:Coax6 | Origin | 52.00  | 3.08 | 0.18 | -0.03 | 145.59 | -21.17 | 4.5 -32.26 | 6.48 | 0.00 -0.89  | 6.58 | 0.09 | 0.10 | 7.48 | 11.5 | 2 |
| RP | Tube 3   | End    | 57.00  | 2.53 | 0.14 | -0.02 | 177.97 | -21.14 | 4.5 -32.26 | 6.48 | 0.00 -0.84  | 7.18 | 0.09 | 0.09 | 8.03 | 12.4 | 2 |
| RP | Tube 3   | Origin | 57.00  | 2.53 | 0.14 | -0.02 | 177.97 | -21.14 | 4.5 -33.12 | 6.55 | 0.01 -0.87  | 7.18 | 0.09 | 0.09 | 8.05 | 12.4 | 2 |
| RP | RP:Coax5 | End    | 62.00  | 2.04 | 0.11 | -0.02 | 210.70 | -21.11 | 4.5 -33.12 | 6.55 | 0.01 -0.82  | 7.65 | 0.09 | 0.08 | 8.47 | 13.0 | 2 |
| RP | RP:Coax5 | Origin | 62.00  | 2.04 | 0.11 | -0.02 | 210.70 | -21.11 | 4.5 -35.14 | 6.70 | 0.01 -0.87  | 7.65 | 0.09 | 0.08 | 8.52 | 13.1 | 2 |
| RP | SpliceT  | End    | 67.00  | 1.60 | 0.08 | -0.02 | 244.20 | -21.08 | 4.5 -35.14 | 6.70 | 0.01 -0.83  | 8.02 | 0.08 | 0.07 | 8.85 | 13.6 | 2 |
| RP | SpliceT  | Origin | 67.00  | 1.60 | 0.08 | -0.02 | 244.20 | -21.09 | 4.5 -36.09 | 6.77 | 0.01 -0.86  | 8.02 | 0.08 | 0.07 | 8.88 | 13.7 | 2 |
| RP | RP:Coax4 | End    | 72.00  | 1.22 | 0.06 | -0.01 | 278.07 | -21.05 | 4.5 -36.09 | 6.77 | 0.01 -0.82  | 8.30 | 0.08 | 0.07 | 9.12 | 14.0 | 2 |
| RP | RP:Coax4 | Origin | 72.00  | 1.22 | 0.06 | -0.01 | 278.07 | -21.06 | 4.5 -38.21 | 6.93 | 0.00 -0.86  | 8.30 | 0.08 | 0.07 | 9.17 | 14.1 | 2 |
| RP | Tube 4   | End    | 77.00  | 0.89 | 0.04 | -0.01 | 312.72 | -21.03 | 4.5 -38.21 | 6.93 | 0.00 -0.83  | 8.53 | 0.08 | 0.06 | 9.36 | 14.4 | 2 |
| RP | Tube 4   | Origin | 77.00  | 0.89 | 0.04 | -0.01 | 312.72 | -21.03 | 4.5 -39.25 | 7.01 | 0.00 -0.85  | 8.53 | 0.08 | 0.06 | 9.38 | 14.4 | 2 |
| RP | RP:Coax3 | End    | 82.00  | 0.61 | 0.01 | -0.01 | 347.76 | -21.03 | 4.5 -39.25 | 7.01 | 0.00 -0.82  | 8.70 | 0.08 | 0.06 | 9.52 | 14.6 | 2 |
| RP | RP:Coax3 | Origin | 82.00  | 0.61 | 0.03 | -0.01 | 347.76 | -21.01 | 4.5 -41.45 | 7.17 | 0.00 -0.86  | 8.70 | 0.08 | 0.06 | 9.57 | 14.7 | 2 |
| RP | Tube 4   | End    | 87.00  | 0.39 | 0.03 | -0.01 | 383.61 | -20.99 | 4.5 -41.45 | 7.17 | 0.00 -0.83  | 8.84 | 0.08 | 0.05 | 9.67 | 14.9 | 2 |
| RP | Tube 4   | Origin | 87.00  | 0.39 | 0.02 | -0.01 | 383.61 | -20.99 | 4.5 -42.58 | 7.25 | 0.00 -0.85  | 8.84 | 0.08 | 0.05 | 9.69 | 14.9 | 2 |
| RP | RP:Coax2 | End    | 92.00  | 0.22 | 0.02 | -0.01 | 419.88 | -20.99 | 4.5 -42.58 | 7.25 | 0.00 -0.83  | 8.94 | 0.00 | 0.05 | 9.76 | 15.0 | 2 |
| RP | RP:Coax2 |        | 92.00  | 0.22 | 0.01 | -0.01 | 419.88 | -20.98 | 4.5 -44.87 | 7.42 | 0.00 -0.82  | 8.94 | 0.07 | 0.05 | 9.80 | 15.1 | 2 |
|    |          | Origin |        |      |      |       |        |        |            |      |             |      |      |      |      |      |   |
| RP | Tube 4   | End    | 97.00  | 0.10 | 0.00 | -0.00 | 456.97 | -20.98 | 4.5 -44.87 | 7.42 | 0.00 -0.83  | 9.02 | 0.07 | 0.05 | 9.85 | 15.2 | 2 |
| RP | Tube 4   | Origin | 97.00  | 0.10 | 0.00 | -0.00 | 456.97 | -20.98 | 4.5 -46.08 | 7.51 | -0.00 -0.85 | 9.02 | 0.07 | 0.05 | 9.87 | 15.2 | 2 |
| RP | RP:Coax1 |        | 102.00 | 0.02 | 0.00 | -0.00 | 494.52 | -20.98 | 4.5 -46.08 | 7.51 | -0.00 -0.82 | 9.07 | 0.07 | 0.04 | 9.90 | 15.5 | 2 |
| RP | RP:Coax1 | Origin |        | 0.02 | 0.00 | -0.00 | 494.52 | -20.99 | 4.5 -48.46 | 7.68 | -0.00 -0.86 | 9.07 | 0.07 | 0.04 | 9.94 | 15.5 | 2 |
| RP | RP:g     | End    | 107.00 | 0.00 | 0.00 | 0.00  | 532.91 | -21.00 | 4.5 -48.46 | 7.68 | -0.00 -0.84 | 9.11 | 0.07 | 0.04 | 9.95 | 15.8 | 2 |

Detailed Tubular X-Arm Usages for Load Case "NESC Rule 250D":

| Element | Joint    | Joint    |               | Trans.        | Long.         | Vert.         | Vert.          |                |      | Axial           |                 |                 | P/A   | M/S.  | V/Q.  | T/R.  | Res.  |            |     |
|---------|----------|----------|---------------|---------------|---------------|---------------|----------------|----------------|------|-----------------|-----------------|-----------------|-------|-------|-------|-------|-------|------------|-----|
| Label   | Label    | Position | Dist.<br>(ft) | Defl.<br>(in) | Defl.<br>(in) | Defl.<br>(in) | Mom.<br>(ft-k) | Mom.<br>(ft-k) |      | Force<br>(kips) | Shear<br>(kips) | Shear<br>(kips) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | Usage<br>% | Pt. |
| XArm    | XArm:O   | Origin   | 0.00          | 5.24          | 0.49          | -1.07         | -2.67          | -0.00          | 0.0  | -2.57           | -8.34           | -0.01           | -0.18 | 0.00  | 1.20  | 0.00  | 2.09  | 3.2        | 4   |
| XArm    | #sXArm:0 | End      | 3.87          | 5.23          | 0.47          | -0.51         | -34.98         | -0.06          | 0.0  | -2.57           | -8.34           | -0.01           | -0.18 | 9.76  | 0.47  | 0.00  | 9.97  | 15.3       | 2   |
| XArm    | #sXArm:0 | Origin   | 3.87          | 5.23          | 0.47          | -0.51         | -34.98         | -0.06          | 0.0  | -2.59           | -8.52           | -0.01           | -0.18 | 9.76  | 0.48  | 0.00  | 9.97  | 15.3       | 2   |
| XArm    | XArm:LP  | End      | 7.75          | 5.23          | 0.44          | -0.07         | -68.00         | -0.12          | 0.0  | -2.59           | -8.52           | -0.01           | -0.18 | 18.97 | 0.48  | 0.00  | 19.17 | 29.5       | 2   |
| XArm    | XArm:LP  | Origin   | 7.75          | 5.23          | 0.44          | -0.07         | -67.99         | -1.50          | -0.4 | 2.47            | 4.94            | 0.11            | 0.17  | 19.13 | 0.28  | 0.06  | 19.31 | 29.7       | 2   |
| XArm    | #sXArm:1 | End      | 11.63         | 5.23          | 0.42          | 0.16          | -48.84         | -1.08          | -0.4 | 2.47            | 4.94            | 0.11            | 0.17  | 13.74 | 0.28  | 0.06  | 13.92 | 21.4       | 2   |
| XArm    | #sXArm:1 | Origin   | 11.63         | 5.23          | 0.42          | 0.16          | -48.84         | -1.08          | -0.4 | 2.49            | 4.74            | 0.11            | 0.17  | 13.74 | 0.27  | 0.06  | 13.93 | 21.4       | 2   |
| XArm    | XArm:ML  | End      | 15.50         | 5.23          | 0.40          | 0.22          | -30.46         | -0.67          | -0.4 | 2.49            | 4.74            | 0.11            | 0.17  | 8.57  | 0.27  | 0.06  | 8.76  | 13.5       | 2   |
| XArm    | XArm:ML  | Origin   | 15.50         | 5.23          | 0.40          | 0.22          | -33.12         | -0.68          | -0.4 | -0.18           | -3.66           | 0.09            | -0.01 | 9.31  | 0.21  | 0.06  | 9.34  | 14.4       | 2   |
| XArm    | #sXArm:2 | End      | 19.38         | 5.23          | 0.38          | 0.16          | -47.31         | -0.32          | -0.4 | -0.18           | -3.66           | 0.09            | -0.01 | 13.23 | 0.21  | 0.06  | 13.25 | 20.4       | 2   |
|         | #sXArm:2 | Origin   | 19.38         | 5.23          | 0.38          | 0.16          | -47.31         | -0.32          | -0.4 | -0.19           | -3.85           | 0.09            | -0.01 | 13.23 | 0.22  | 0.06  | 13.25 | 20.4       | 2   |
| XArm    |          | End      | 23.25         | 5.23          | 0.36          | -0.07         | -62.23         | 0.04           | -0.4 | -0.19           | -3.85           | 0.09            | -0.01 | 17.36 | 0.22  | 0.06  | 17.38 | 26.7       | 2.  |
| XArm    |          | Origin   | 23.25         |               | 0.36          | -0.07         | -62.23         | -0.10          |      |                 | 8.47            | 0.01            | 0.19  | 17.36 | 0.47  | 0.00  | 17.57 | 27.0       | 2   |
|         | #sXArm:3 | End      | 27.13         | 5.23          | 0.34          | -0.50         | -29.40         | -0.05          |      |                 | 8.47            | 0.01            | 0.19  | 8.20  | 0.47  | 0.00  | 8.43  | 13.0       | 2   |
|         | #sXArm:3 | Origin   | 27.13         |               | 0.34          | -0.50         | -29.40         | -0.05          |      |                 |                 | 0.01            | 0.19  | 8.20  | 0.46  | 0.00  | 8.43  | 13.0       | 2   |
| XArm    |          | End      | 31.00         |               | 0.33          | -1.02         | 2.67           | 0.00           |      |                 |                 | 0.01            | 0.19  | 0.00  | 1.19  | 0.00  | 2.08  | 3.2        | 4   |

Summary of Clamp Capacities and Usages for Load Case "NESC Rule 250D":

| Clamp Forc<br>Label |                 |        | -                  | Factored Holding   | _    | Input<br>Hardware  |                    | Hardware<br>Usage |      |  |
|---------------------|-----------------|--------|--------------------|--------------------|------|--------------------|--------------------|-------------------|------|--|
|                     |                 | (kips) | Capacity<br>(kips) | Capacity<br>(kips) | %    | Capacity<br>(kips) | Capacity<br>(kips) | 8                 | %    |  |
|                     | RAntFUT<br>RAnt | 0.000  |                    | 0.00               | 0.00 | 0.00               | 0.00               | 0.00              | 0.00 |  |

| Coax1 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|-------|-------|--------|------|------|------|------|------|------|
| Coax2 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax3 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax4 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax5 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax6 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax7 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax8 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Coax9 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Summary of Suspension Capacities and Usages for Load Case "NESC Rule 250D":

|   | Suspension<br>Label | Tension | Tension | Factored<br>Tension<br>Capacity |      | Hardware | Factored<br>Hardware<br>Capacity |      | Max.<br>Usage |
|---|---------------------|---------|---------|---------------------------------|------|----------|----------------------------------|------|---------------|
|   |                     | (kips)  | (kips)  | (kips)                          | %    | (kips)   | (kips)                           | %    | <b>%</b>      |
| _ | SWL                 | 3.834   | 25.00   | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |
|   | SWR                 | 3.834   | 25.00   | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |
|   | PHL                 | 8.633   | 30.00   | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |
|   | PHM                 | 8.633   | 30.00   | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |
|   | PHR                 | 8.633   | 30.00   | 0.00                            | 0.00 | 0.00     | 0.00                             | 0.00 | 0.00          |

## Summary of Steel Pole Usages:

| Steel | Pole  | Maximum | Load | Case | H€  | eight | Segment | Weight  |
|-------|-------|---------|------|------|-----|-------|---------|---------|
| 1     | Label | Usage % |      |      | AGL | (ft)  | Number  | (lbs)   |
|       | LP    | 39.01   | NESC | 250C |     | 2.5   | 18      | 12719.3 |
|       | RP    | 36.88   | NESC | 250C |     | 2.5   | 25      | 14075.1 |

#### Base Plate Results by Bend Line:

| Pole<br>Label         | Load Cas              | Line     | Start<br>X<br>(ft) | Start<br>Y<br>(ft) |                       | End<br>Y<br>(ft) | (in)    | (ksi)              | Mom. Sum (ft-k)      | _               | Max Load<br>(kips) | Min Plate<br>Thickness<br>(in) | (in)  | Usage<br>% |                   |
|-----------------------|-----------------------|----------|--------------------|--------------------|-----------------------|------------------|---------|--------------------|----------------------|-----------------|--------------------|--------------------------------|-------|------------|-------------------|
| LP NESC<br>overridden | Rule 250              |          |                    |                    |                       |                  | 12.996  | 33.029             | 45.084               | -1.5            | 118.589            |                                | 2.750 |            | Note: actual load |
|                       | Rule 250              | )B 2     | -1.479             | 1.479              | -2.021                | 0.541            | 12.996  | 24.745             | 33.777               | -1.5            | 101.318            | 1.935                          | 2.750 | 49.49      | Note: actual load |
| LP NESC<br>overridden | Rule 250<br>by one ha |          |                    |                    | -1.479 -<br>pacity at |                  |         |                    | 28.240<br>S/SEI 48-1 |                 | -88.323            | 1.769                          | 2.750 | 41.38      | Note: actual load |
| LP NESC<br>overridden | Rule 250<br>by one ha | alf of p | ole mom            | ent car            |                       | the b            | oase as | per ASCE           | 40.426<br>SEI 48-1   |                 | -107.310           | 2.116                          | 2.750 |            | Note: actual load |
| overridden            | -                     | alf of p | ole mom            | ent car            |                       | the b            | oase as | per ASCE           |                      | 1 6.4.2         | -112.684           | 2.176                          | 2.750 |            | Note: actual load |
| overridden            | -                     | alf of p | ole mom            | ent car            |                       | the b            | oase as | per ASCE           |                      |                 |                    | 1.866                          | 2.750 |            | Note: actual load |
| overridden            |                       | alf of p | ole mom            | ent car            |                       | the h            | oase as | per ASCE           |                      |                 | 94.227             | 1.841                          | 2.750 |            | Note: actual load |
| overridden            | Rule 250<br>by one ha |          |                    |                    | 0.541<br>pacity at    |                  |         |                    | 42.765<br>S/SEI 48-1 |                 | 113.215            | 2.177                          | 2.750 | 62.66      | Note: actual load |
| LP<br>overridden      | NESC 250              |          |                    |                    | -1.479                |                  |         |                    | 43.904               |                 | 115.752            | 2.206                          | 2.750 | 64.33      | Note: actual load |
| LP<br>overridden      | NESC 250              | C 2      | -1.479             | 1.479              | -2.021                | 0.541            | 12.996  | 23.690             | 32.336               | -1.5            | 97.975             | 1.893                          | 2.750 | 47.38      | Note: actual load |
| LP<br>overridden      | NESC 250              | C 3      | -2.021             | -0.541             | -1.479 -              | -1.479           | 12.996  | 21.771             | 29.716               | -1.5            | -91.775            | 1.815                          | 2.750 | 43.54      | Note: actual load |
| LP<br>overridden      | NESC 250              | C 4      | -1.479             | -1.479             | -0.541 -              | -2.021           | 12.996  | 30.517             | 41.655               | -1.5            | -110.277           | 2.148                          | 2.750 | 61.03      | Note: actual load |
| LP<br>overridden      | NESC 250<br>by one ha |          |                    |                    | 1.479 -<br>pacity at  |                  |         |                    | 42.632<br>SEI 48-1   |                 | -112.543           | 2.173                          | 2.750 | 62.47      | Note: actual load |
| LP<br>overridden      | NESC 250<br>by one ha |          |                    |                    | 2.021 -<br>pacity at  |                  |         |                    |                      | -1.5<br>1 6.4.2 | -94.765            | 1.855                          | 2.750 |            | Note: actual load |
| LP<br>overridden      | -                     | alf of p | ole mom            | ent car            |                       | the b            | oase as | per ASCE           |                      |                 |                    | 1.853                          | 2.750 |            | Note: actual load |
| LP<br>overridden      | NESC 250<br>by one ha |          |                    |                    |                       |                  |         | 31.448<br>per ASCE | 42.926<br>SEI 48-1   |                 | 113.486            | 2.181                          | 2.750 | 62.90      | Note: actual load |
| LP NESC               | Rule 250              |          |                    |                    |                       |                  |         | 33.301             | 45.455               |                 | 119.416            | 2.244                          | 2.750 | 66.60      | Note: actual load |
|                       | Rule 250              | D 2      | -1.479             | 1.479              | -2.021                | 0.541            | 12.996  | 25.165             | 34.349               | -1.5            | 102.535            | 1.951                          | 2.750 | 50.33      | Note: actual load |
|                       | Rule 250              | D 3      | -2.021             | -0.541             | -1.479 -              | -1.479           | 12.996  | 20.236             | 27.622               | -1.5            | -86.964            | 1.749                          | 2.750 | 40.47      | Note: actual load |
|                       | Rule 250              | _        | •                  | _                  | -0.541 -              |                  |         | -                  | 39.991               |                 | -106.314           | 2.105                          | 2.750 | 58.60      | Note: actual load |

| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------|
| LP NESC Rule 250D 5 0.541 -2.021 1.479 -1.479 12.996 31.743 43.328 -1.5 -114.048                                                                                           | 2.191 | 2.750 | 63.49 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2<br>LP NESC Rule 250D 6 1.479 -1.479 2.021 -0.541 12.996 23.606 32.222 -1.5 -97.167  | 1 000 | 2.750 | 47 21 Note: agtual load  |
| LP NESC Rule 250D 6 1.479 -1.479 2.021 -0.541 12.996 23.606 32.222 -1.5 -97.167 overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2     | 1.890 | 2.750 | 47.21 Note: actual load  |
| LP NESC Rule 250D 7 2.021 0.541 1.479 1.479 12.996 21.794 29.748 -1.5 92.332                                                                                               | 1.816 | 2.750 | 43.59 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 1.010 | 2.750 | 13.33 Noce accual road   |
| LP NESC Rule 250D 8 1.479 1.479 0.541 2.021 12.996 30.856 42.118 -1.5 111.682                                                                                              | 2.160 | 2.750 | 61.71 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
|                                                                                                                                                                            |       |       |                          |
| RP NESC Rule 250B 1 -0.541 2.021 -1.479 1.479 12.996 33.147 45.245 -1.5 119.081                                                                                            | 2.239 | 2.750 | 66.29 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11$ $6.4.2$                                                                                 |       |       |                          |
| RP NESC Rule 250B 2 -1.479 1.479 -2.021 0.541 12.996 24.748 33.781 -1.5 101.504                                                                                            | 1.935 | 2.750 | 49.50 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 4 ==0 |       |                          |
| RP NESC Rule 250B 3 -2.021 -0.541 -1.479 -1.479 12.996 20.705 28.261 -1.5 -88.213                                                                                          | 1.770 | 2.750 | 41.41 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 0 112 | 2 750 | FO OF Make: askural land |
| RP NESC Rule 250B 4 -1.479 -1.479 -0.541 -2.021 12.996 29.523 40.299 -1.5 -106.909 overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2  | 2.113 | 2.750 | 59.05 Note: actual load  |
| RP NESC Rule 250B 5 0.541 -2.021 1.479 -1.479 12.996 30.632 41.812 -1.5 -110.416                                                                                           | 2.152 | 2.750 | 61.26 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 2.132 | 2.750 | 01.20 Nocci accuai ioaa  |
| RP NESC Rule 250B 6 1.479 -1.479 2.021 -0.541 12.996 22.233 30.348 -1.5 -92.840                                                                                            | 1.834 | 2.750 | 44.47 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
| RP NESC Rule 250B 7 2.021 0.541 1.479 1.479 12.996 23.220 31.694 -1.5 96.877                                                                                               | 1.874 | 2.750 | 46.44 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI $48	ext{-}11$ $6.4.2$                                                                           |       |       |                          |
| RP NESC Rule 250B 8 1.479 1.479 0.541 2.021 12.996 32.039 43.732 -1.5 115.573                                                                                              | 2.201 | 2.750 | 64.08 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI $48	ext{-}11$ $6.4.2$                                                                           |       |       |                          |
|                                                                                                                                                                            | 0.001 | 0 550 | 64.00 77.1               |
| RP NESC 250C 1 -0.541 2.021 -1.479 1.479 12.996 32.016 43.701 -1.5 115.320                                                                                                 | 2.201 | 2.750 | 64.03 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2<br>RP NESC 250C 2 -1.479 1.479 -2.021 0.541 12.996 23.431 31.982 -1.5 97.249        | 1.883 | 2.750 | 46.86 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 1.003 | 2.750 | 40.00 Note: actual load  |
| RP NESC 250C 3 -2.021 -0.541 -1.479 -1.479 12.996 22.036 30.078 -1.5 -92.524                                                                                               | 1.826 | 2.750 | 44.07 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
| RP NESC 250C 4 -1.479 -1.479 -0.541 -2.021 12.996 30.673 41.868 -1.5 -110.736                                                                                              | 2.154 | 2.750 | 61.35 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11$ $6.4.2$                                                                                 |       |       |                          |
| RP NESC 250C 5 0.541 -2.021 1.479 -1.479 12.996 30.813 42.059 -1.5 -111.177                                                                                                | 2.159 | 2.750 | 61.63 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
| RP NESC 250C 6 1.479 -1.479 2.021 -0.541 12.996 22.228 30.341 -1.5 -93.106                                                                                                 | 1.834 | 2.750 | 44.46 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 1 075 | 2 750 | 46 40 Nata: astural land |
| RP NESC 250C 7 2.021 0.541 1.479 1.479 12.996 23.238 31.720 -1.5 96.667 overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2             | 1.875 | 2.750 | 46.48 Note: actual load  |
| RP NESC 250C 8 1.479 1.479 0.541 2.021 12.996 31.876 43.510 -1.5 114.879                                                                                                   | 2.196 | 2.750 | 63.75 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 2.170 | 2.750 | 03.73 Noce accual road   |
| 0,                                                                                                                                                                         |       |       |                          |
| RP NESC Rule 250D 1 -0.541 2.021 -1.479 1.479 12.996 33.403 45.595 -1.5 119.864                                                                                            | 2.248 | 2.750 | 66.81 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11  6.4.2$                                                                                  |       |       |                          |
| RP NESC Rule 250D 2 -1.479 1.479 -2.021 0.541 12.996 25.137 34.312 -1.5 102.641                                                                                            | 1.950 | 2.750 | 50.27 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
| RP NESC Rule 250D 3 -2.021 -0.541 -1.479 -1.479 12.996 20.294 27.700 -1.5 -86.986                                                                                          | 1.752 | 2.750 | 40.59 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 0 100 | 0 550 | 50 40 27 1 1 1 1         |
| RP NESC Rule 250D 4 -1.479 -1.479 -0.541 -2.021 12.996 29.238 39.909 -1.5 -106.017                                                                                         | 2.103 | 2.750 | 58.48 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2<br>RP NESC Rule 250D 5 0.541 -2.021 1.479 -1.479 12.996 31.028 42.352 -1.5 -111.680 | 2.166 | 2.750 | 62.06 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     | 2.100 | 4./50 | 02.00 Note: actual 10ad  |
| RP NESC Rule 250D 6 1.479 -1.479 2.021 -0.541 12.996 22.762 31.069 -1.5 -94.457                                                                                            | 1.855 | 2.750 | 45.52 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2                                                                                     |       |       |                          |
| RP NESC Rule 250D 7 2.021 0.541 1.479 1.479 12.996 22.669 30.943 -1.5 95.169                                                                                               | 1.852 | 2.750 | 45.34 Note: actual load  |
| overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11\ 6.4.2$                                                                                  |       |       |                          |
| RP NESC Rule 250D 8 1.479 1.479 0.541 2.021 12.996 31.613 43.151 -1.5 114.201                                                                                              | 2.187 | 2.750 | 63.23 Note: actual load  |
|                                                                                                                                                                            |       |       |                          |

overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2

#### Summary of Tubular X-Arm Usages:

| Tubular X-Ar | m Maximum | ximum Load Case |      |      | Height |      | Segment | Weight |  |
|--------------|-----------|-----------------|------|------|--------|------|---------|--------|--|
| Labe         | l Usage % |                 |      |      | AGL    | (ft) | Number  | (lbs)  |  |
| XArı         | m 30.21   | NESC            | Rule | 250B |        | 71.5 | 3       | 1523.8 |  |

\*\*\* Maximum Stress Summary for Each Load Case

#### Summary of Maximum Usages by Load Case:

|      | Load | Case | Maximum<br>Usage % | Element<br>Label | E    | Lement<br>Type |
|------|------|------|--------------------|------------------|------|----------------|
| NESC | Rule | 250B | 66.29              | RP               | Base | Plate          |
|      | NESC | 250C | 64.33              | LP               | Base | Plate          |
| NESC | Rule | 250D | 66.81              | RP               | Base | Plate          |

## Summary of Steel Pole Usages by Load Case:

|      | Load | Case | Maximum<br>Usage % | Steel Pole<br>Label | Height<br>AGL (ft) | -  |
|------|------|------|--------------------|---------------------|--------------------|----|
| NESC | Rule | 250B | 24.10              | LP                  | 2.5                | 18 |
|      | NESC | 250C | 39.01              | LP                  | 2.5                | 18 |
| NESC | Rule | 250D | 16.05              | LP                  | 2.5                | 18 |

## Summary of Base Plate Usages by Load Case:

|      | Load | Case | Pole<br>Label |   | -      | Vertical<br>Load | X<br>Moment |            | Bending<br>Stress | Bolt<br>Moment | # Bolts<br>Acting On |           | Minimum<br>Plate | Usage |
|------|------|------|---------------|---|--------|------------------|-------------|------------|-------------------|----------------|----------------------|-----------|------------------|-------|
|      |      |      | Luber         | # |        | Loud             | 1101110110  | 1101110110 | 501055            |                | -                    | Bend Line |                  |       |
|      |      |      |               |   | (in)   | (kips)           | (ft-k)      | (ft-k)     | (ksi)             | (ft-k)         |                      | (kips)    | (in)             | %     |
| NESC | Rule | 250B | LP            | 1 | 12.996 | 35.427           | 1856.686    | -69.421    | 33.029            | 45.084         | -1.5                 | 118.589   | 2.235            | 66.06 |
|      | NESC | 250C | LP            | 1 | 12.996 | 19.257           | 1857.753    | -29.274    | 32.165            | 43.904         | -1.5                 | 115.752   | 2.206            | 64.33 |
| NESC | Rule | 250D | LP            | 1 | 12.996 | 32.205           | 1855.296    | -99.895    | 33.301            | 45.455         | -1.5                 | 119.416   | 2.244            | 66.60 |
| NESC | Rule | 250B | RP            | 1 | 12.996 | 51.986           | 1857.431    | -45.302    | 33.147            | 45.245         | -1.5                 | 119.081   | 2.239            | 66.29 |
|      | NESC | 250C | RP            | 1 | 12.996 | 24.858           | 1857.975    | -5.701     | 32.016            | 43.701         | -1.5                 | 115.320   | 2.201            | 64.03 |
| NESC | Rule | 250D | RP            | 1 | 12.996 | 49.103           | 1856.543    | -73.149    | 33.403            | 45.595         | -1.5                 | 119.864   | 2.248            | 66.81 |

## Summary of Tubular X-Arm Usages by Load Case:

|      | Load | Case | Maximum<br>Usage % | Tubular |      | Height<br>AGL (ft) | - |
|------|------|------|--------------------|---------|------|--------------------|---|
| NESC | Rule | 250B | 30.21              |         | XArm | 71.5               | 3 |
|      | NESC | 250C | 16.30              |         | XArm | 71.5               | 3 |
| NESC | Rule | 250D | 29.71              |         | XArm | 71.5               | 3 |

#### Summary of Insulator Usages:

| Insulator | Insulator | Maximum | Load | Case Weight |
|-----------|-----------|---------|------|-------------|
| Label     | Type      | Usage % |      | (lbs)       |

| RAntFUT | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
|---------|------------|------|------|------|------|------|
| RAnt    | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax1   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax2   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax3   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax4   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax5   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax6   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax7   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax8   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| Coax9   | Clamp      | 0.00 | NESC | Rule | 250B | 0.0  |
| SWL     | Suspension | 0.00 | NESC | Rule | 250B | 1.0  |
| SWR     | Suspension | 0.00 | NESC | Rule | 250B | 1.0  |
| PHL     | Suspension | 0.00 | NESC | Rule | 250B | 50.0 |
| PHM     | Suspension | 0.00 | NESC | Rule | 250B | 50.0 |
| PHR     | Suspension | 0.00 | NESC | Rule | 250B | 50.0 |

Loads At Insulator Attachments For All Load Cases:

| Load<br>Case   | Insulator<br>Label | Insulator<br>Type | Structure<br>Attach<br>Label | Structure<br>Attach<br>Load X<br>(kips) | Structure<br>Attach<br>Load Y<br>(kips) | Attach | Structure<br>Attach<br>Load Res.<br>(kips) |
|----------------|--------------------|-------------------|------------------------------|-----------------------------------------|-----------------------------------------|--------|--------------------------------------------|
| NESC Rule 250B | RAntFUT            | Clamp             | RP:ANTFUT                    | 0.000                                   | 0.000                                   | -0.000 | 0.000                                      |
| NESC Rule 250B | RAnt               | Clamp             | RP:ANT                       | 0.000                                   | 1.734                                   | 7.359  | 7.561                                      |
| NESC Rule 250B | Coax1              | Clamp             | RP:Coax1                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax2              | Clamp             | RP:Coax2                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax3              | Clamp             | RP:Coax3                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax4              | Clamp             | RP:Coax4                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax5              | Clamp             | RP:Coax5                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Соахб              | Clamp             | RP:Coax6                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax7              | Clamp             | RP:Coax7                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax8              | Clamp             | RP:Coax8                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B | Coax9              | Clamp             | RP:Coax9                     | 0.000                                   | 0.172                                   | 0.920  | 0.936                                      |
| NESC Rule 250B |                    | Suspension        |                              | 0.000                                   | 1.891                                   | 2.422  | 3.073                                      |
| NESC Rule 250B |                    | Suspension        |                              | 0.000                                   | 1.891                                   | 2.422  | 3.073                                      |
| NESC Rule 250B |                    | Suspension        | _                            | 0.000                                   | 3.533                                   | 8.055  | 8.796                                      |
| NESC Rule 250B |                    | Suspension        | VangCM                       | 0.000                                   | 3.533                                   | 8.055  | 8.796                                      |
| NESC Rule 250B |                    | Suspension        | VangCR                       | 0.000                                   | 3.533                                   | 8.055  | 8.796                                      |
| NESC 250C      | RAntFUT            | _                 | RP:ANTFUT                    | 0.000                                   | 0.000                                   | -0.000 | 0.000                                      |
| NESC 250C      | RAnt               | Clamp             | RP:ANT                       | 0.061                                   | 5.421                                   | 4.018  | 6.748                                      |
| NESC 250C      | Coaxl              | Clamp             | RP:Coax1                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax2              | Clamp             | RP:Coax2                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax3              | Clamp             | RP:Coax3                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax4              | Clamp             | RP:Coax4                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax5              | Clamp             | RP:Coax5                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax6              | Clamp             | RP:Coax6                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax7              | Clamp             | RP:Coax7                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax8              | Clamp             | RP:Coax8                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      | Coax9              | Clamp             | RP:Coax9                     | 0.000                                   | 0.501                                   | 0.250  | 0.560                                      |
| NESC 250C      |                    | Suspension        |                              | 0.000                                   | 1.712                                   | 0.673  | 1.840                                      |
| NESC 250C      |                    | Suspension        |                              | 0.000                                   | 1.712                                   | 0.673  | 1.840                                      |
| NESC 250C      |                    | Suspension        | VangCL                       | 0.000                                   | 5.241                                   | 3.462  | 6.281                                      |
| NESC 250C      |                    | Suspension        | VangCM                       | 0.000                                   | 5.241                                   | 3.462  | 6.281                                      |
| NESC 250C      |                    | Suspension        | VangCR                       | 0.000                                   | 5.241                                   | 3.462  | 6.281                                      |
| NESC Rule 250D | RAntFUT            | _                 | RP:ANTFUT                    | 0.000                                   | 0.000                                   | -0.000 | 0.000                                      |
| NESC Rule 250D | RAnt               | Clamp             | RP:ANT                       | 0.053                                   | 0.753                                   | 5.907  | 5.955                                      |

| NESC Rule |      | Coax1 | Clamp      | RP:Coax1 | 0.000 | 0.074 | 1.123 | 1.125 |
|-----------|------|-------|------------|----------|-------|-------|-------|-------|
| NESC Rule | 250D | Coax2 | Clamp      | RP:Coax2 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax3 | Clamp      | RP:Coax3 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax4 | Clamp      | RP:Coax4 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax5 | Clamp      | RP:Coax5 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax6 | Clamp      | RP:Coax6 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax7 | Clamp      | RP:Coax7 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax8 | Clamp      | RP:Coax8 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | Coax9 | Clamp      | RP:Coax9 | 0.000 | 0.074 | 1.123 | 1.125 |
| NESC Rule | 250D | SWL   | Suspension | SWLVANG  | 0.000 | 1.590 | 3.489 | 3.834 |
| NESC Rule | 250D | SWR   | Suspension | SWRVANG  | 0.000 | 1.590 | 3.489 | 3.834 |
| NESC Rule | 250D | PHL   | Suspension | VangCL   | 0.000 | 2.666 | 8.211 | 8.633 |
| NESC Rule | 250D | PHM   | Suspension | VangCM   | 0.000 | 2.666 | 8.211 | 8.633 |
| NESC Rule | 250D | PHR   | Suspension | VangCR   | 0.000 | 2.666 | 8.211 | 8.633 |

#### Overturning Moments For User Input Concentrated Loads:

Moments are static equivalents based on central axis of 0,0 (i.e. a single pole).

28470.2

|          | Load           | Case  | Tran.<br>Load                      | Long.<br>Load   | Vert.<br>Load |                            | Longitudinal<br>Overturning<br>Moment<br>(ft-k) | Moment  |
|----------|----------------|-------|------------------------------------|-----------------|---------------|----------------------------|-------------------------------------------------|---------|
|          | NESC           | 250C  | 17.664<br>29.076<br>12.597         | 0.061           | 18.001        |                            | -37.284<br>-21.637<br>-42.882                   | -23.784 |
| We<br>We | eight<br>eight | of Ti | ructure ubular N teel Pol uspensio | K-Arms:<br>Les: | :             | 1523.8<br>26794.4<br>152.0 |                                                 |         |

<sup>\*\*\*</sup> End of Report

Total:



Centered on Solutions www.centekeng.com 43-3 North Branford Road P: (203) 488-0580 Branford, CT 06405

F: (203) 488-8587

Subject:

Anchor Bolt Analysis CL&P Pole #8012

Farmington, CT Location:

Prepared by: T.J.L. Checked by: C.F.C.

Rev. 0: 10/14/21 Job No. 21122.00

# Anchor Bolt Analysis:

## Input Data:

**Bolt Force:** 

Maximum Tensile Force =  $T_{Max} := 120 \cdot kips$ (User Input from PLS-Pole)

Maximum Shear Force at Base = V<sub>base</sub> := 24·kips (User Input from PLS-Pole)

Anchor Bolt Data:

Use AST MA615 Grade 75

Number of Anc hor Bolts= N := 12(User Input)

Bolt "Column" Distance = I:= 3.0·in (User Input)

Bolt Ultimate Strength =  $F_u := 100 \cdot ksi$ (User Input)

Bolt Yeild Strength=  $F_V := 75 \cdot ksi$ (User Input)

Bolt Modulus = E := 29000·ksi (User Input)

Diameter of Anchor Bolts = (User Input) D := 2.25·in

Threads per Inch = n:= 4.5 (User Input)

## **Anchor Bolt Analysis:**

 $A_S := \frac{\pi}{4} \cdot \left( D - \frac{0.9743 \cdot in}{n} \right)^2 = 3.248 \cdot in^2$ StressArea of Bolt =

 $V_{Max} := \frac{V_{base}}{N} = 2 \times 10^3 lbf$ Maximum Shear Force per Bolt =

> $f_V := \frac{V_{\text{Max}}}{A_s} = 615.8 \, \text{psi}$ Shear Stress per Bolt =

Tensile Stress Permitted =  $F_t := 0.75 \cdot F_U = 75 \cdot ksi$ 

Shear Stress Permitted =  $F_V := 0.35F_V = 26.25 \cdot ksi$ 

 $F_{tv} := F_{t'} \sqrt{1 - \left(\frac{f_v}{F_v}\right)^2} = 74.98 \cdot ksi$ Permitted Axi at Tensile Stress in Conjuction with Shear =

> $\frac{\mathsf{T}_{\mathsf{Max}}}{\mathsf{F}_{\mathsf{tv}}\cdot\mathsf{A}_{\mathsf{s}}} = 49.28 \cdot \%$ Bolt Tension % of Capacity =

> > Condition1 := if  $\left(\frac{T_{Max}}{F_{tv} \cdot A_s} \le 1.00, "OK", "Overstressed"\right)$ Condition1 =

> > > Condition1 = "OK"

| RFDS NAME:                                 | ICTI 01104                                   | DATE: 3/10/2020                         |                     |                  | F DESIGN ENG: Omair Mohamr       | nod.             | Section 1 - RFDS (      | ENERAL INFO             | DRMATION   | REDS PROGRAM TYPE                  | 12024 LTE Most Cord                         |
|--------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------|------------------|----------------------------------|------------------|-------------------------|-------------------------|------------|------------------------------------|---------------------------------------------|
|                                            | Preliminary                                  | Approved?<br>(Y/N):                     |                     |                  | DESIGN PHONE: (860) 513-7598     |                  | RF PERF PHONE           | Polann Ayo              |            | RFDS TECHNOLOGY                    |                                             |
| PEVISION                                   | Bronze Standard                              | RF MANAGER: John Benedetto              |                     | RF               | DESIGN EMAIL: OM636A@US.         | ATT COM          | RF PERF EMAIL           |                         |            | STATE/STATUS                       | Final/Approved                              |
| REVISION                                   | . Diorizo diandard                           | RF MARAGER. BOTT DETECTION              |                     |                  | DECIGIT EMPLE.                   | 111.00m          | ADDITIONAL WORKFLOW     |                         |            |                                    |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | NOTIFICATIONS           |                         |            | RFDS ID                            |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | RFDS VERSIO             |                         |            | Created By: OM636A                 | Updated By: sp656b                          |
|                                            |                                              |                                         |                     |                  |                                  |                  | UMTS FREQUENCY          | 850<br>700,850,1900,WCS |            | Created: 3/9/2020  EXPIRATION DATE | Updated: 10/11/2021                         |
|                                            |                                              |                                         |                     |                  |                                  |                  | 5G FREQUENCY            |                         |            | ESTIMATED SQIN: 10,322             | Calculation ID: 202110111325119363          |
|                                            |                                              |                                         |                     |                  |                                  |                  |                         | NER-RCTB-20-013         | 13         | PRD    SUB GRP #                   | LTE Next Carrier II LTE 6C                  |
|                                            | LTE 6C[700 UP                                | PER DJ, 4TX4RX Software Retrofit[700 B- | C], 5G NR Upgrade[  | 850 B(U)], BWE S | oftware Carrier[1900 A3-A4 & E & | C5]              |                         | NER-RCTB-20-013         |            | PRD    SUB GRP #                   | Antenna Modifications    4TX4RX Software    |
|                                            |                                              |                                         |                     |                  |                                  |                  |                         | NER-RCTB-20-013         |            | DDD II OUD ODD #                   | Cell Site RF Modifications    5G NR Upgrade |
|                                            |                                              |                                         |                     |                  |                                  |                  | IPLAN JOB # 4           | NER-RCTB-20-016         | 30         |                                    |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | IPLAN JOB # 6           | •                       |            | PRD    SUB GRP #                   |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | IPLAN JOB #             |                         |            | PRD    SUB GRP #                   |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | IPLAN JOB # 8           | •                       |            | PRD    SUB GRP #                   |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | Section 2 - LOC         | _                       | MATION     |                                    |                                             |
| USID:                                      | 59423                                        | FA LOCATION CODE:                       | 10035295            |                  | LOCATION FARMINGTON NAME: DR     | NU MAPLE RIDGE   | ORACLE PRJT # 1         | 2051A0V4N7              |            |                                    | : MRCTB046571                               |
| REGION:                                    | NORTHEAST                                    | MARKET CLUSTER:                         | NEW ENGLAND         |                  | MARKET: CONNECTICU               |                  | ORACLE PRJT # 2         | 2051A0V4AC              |            | PACE JOB #2                        | MRCTB047034                                 |
| ADDRESS:                                   | 45 MAPLE RIDGE DRIVE                         | CITY:                                   | FARMINGTON          |                  | STATE: CT                        |                  | ORACLE PRJT # 3         | 2051A0V4RN              |            | PACE JOB #3                        | MRCTB047029                                 |
| ZIP CODE:                                  | : 06032                                      | COUNTY:                                 | HARTFORD            |                  | LONG (DEC. DEG.): -72.7693019    |                  | ORACLE PRJT # 4         | 2051A0VNBT              |            | PACE JOB #4                        | : MRCTB047537                               |
| LATITUDE (D-M-S):                          | 41d 43m 4.692s                               | LONGITUDE (D-M-S):                      | -72d -46m -9.48684s |                  | LAT (DEC.<br>DEG.): 41.7179700   |                  | ORACLE PRJT # 5         |                         |            | PACE JOB #5                        |                                             |
|                                            |                                              |                                         | l .                 | J                | DEG.J.                           |                  | ORACLE PRJT#6           |                         |            | PACE JOB #6                        | :                                           |
|                                            |                                              |                                         |                     |                  |                                  |                  | ORACLE PRJT # 1         |                         |            | PACE JOB #7                        |                                             |
|                                            | ROUTE 9 NORTH TOWARD NEW                     | V BRITIAN TAKE THE CT 71 EXIT NUME      | BER 30 TOWARD CO    | RBINS CORNER     | TURN RIGHT ONTO CT 71 TUR        | N LEFT ONTO      | ORACLE PRJT #8          |                         |            | PACE JOB #8                        |                                             |
|                                            | SOUTH RD TURN LEFT ONTO N                    | IAPLE RIDGE DR. SHELTER SITE ON T       | HE RIGHT DOWN TO    | HE ROAD N/U PO   | WER MOUNT GATE COMBO 50          | 00               | BORDER CELL WITH CONTOU | 2                       |            | SEARCH RING NAME                   |                                             |
|                                            | METER # 89 094 946 POWER C                   |                                         |                     |                  |                                  |                  | AM STUDY REQ'D (Y/N     | No                      |            | SEARCH RING NAME                   |                                             |
|                                            | T-1 ARE IN HOFFMANN BOX OL                   | RSIDE COMPOUND                          |                     |                  |                                  |                  | FREQ COORE              | . INC                   |            | BTA:                               | MSA / RSA:                                  |
| DIRECTIONS, ACCESS AND EQUIPMENT LOCATION: | GMS T-1 1 DHXV 295358 ET-60<br>2 DHXV 295359 |                                         |                     |                  |                                  |                  | FREQ COORE              |                         |            | BTA:                               | MSA / RSA:                                  |
|                                            | 3 HCGS 725802                                |                                         |                     |                  |                                  |                  |                         |                         |            |                                    |                                             |
|                                            | UMTS IS ON FIBER                             |                                         |                     |                  |                                  |                  |                         |                         |            | LAC(UMTS)                          | 05986                                       |
|                                            | ET 60<br>HCGS295358SN                        | TTWS.COM:7777/PLS/ENGDB/XPERWI          |                     |                  |                                  |                  | RF DISTRICT             |                         |            |                                    |                                             |
|                                            | HTTP://ALNXNGWB1.WNSNET.                     | ATTWS.COM:7777/PLS/ENGDB/XPERWI         | EB.PATH_DEF?IPAT    | HINSTID=111942   | 0                                |                  | RF ZONE                 | TBD                     |            |                                    | MIDDLETOWN RNC06                            |
|                                            |                                              |                                         |                     |                  |                                  |                  |                         |                         |            | MME POOL ID(LTE)                   | FF01                                        |
|                                            |                                              |                                         |                     |                  |                                  |                  | PARENT NAME(UMTS        |                         |            |                                    |                                             |
|                                            |                                              |                                         |                     | <u> </u>         |                                  |                  | ection 3 - LICENSE CO   | ERAGE/FILIN             | G INFORMA  | ATION                              |                                             |
| CGSA - NO FILING TRIG                      |                                              | CGSA LOSS:                              |                     |                  | PCS REDUCED - UPS Z              |                  |                         |                         |            |                                    |                                             |
| CGSA - MINOR FILING N                      |                                              | CGSA EXT AGMT NEEDED:                   |                     |                  | PCS POPS REDUCE                  | D:               | CGSA CALL SIGNS         |                         |            |                                    |                                             |
| CGSA - MAJOR FILING N                      | NEEDED (Yes/No): No                          | CGSA SCORECARD UPDATED:                 |                     |                  |                                  |                  |                         |                         |            |                                    |                                             |
|                                            |                                              |                                         |                     |                  | ethictupe!                       |                  | Section 4 - TOWER/RI    |                         | NFORMATI   | ON                                 |                                             |
|                                            | E AT&T OWNED?: Yes                           | GROUND ELEVATION (ft):                  |                     |                  | STRUCTURE<br>TYPE:               |                  | MARKET LOCAT            |                         |            |                                    | 1                                           |
|                                            | L REGULATORY?: Yes                           | HEIGHT OVERALL (ft):                    |                     |                  | FCC ASR<br>NUMBER:               |                  |                         | ON 850 MHz Band:        |            |                                    |                                             |
| SUB-                                       | -LEASE RIGHTS?: Yes                          | STRUCTURE HEIGHT (ft):                  | 62.00               |                  |                                  |                  | MARKET LOCATIO          | N 1900 MHz Band:        | n-Air      |                                    |                                             |
|                                            | LIGHTING TYPE: NOT REQUIRE                   | ED                                      |                     |                  |                                  |                  | MARKET LOC              | ATION AWS Band:         |            |                                    |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | MARKET LOC              | ATION WCS Band:         |            |                                    |                                             |
|                                            |                                              |                                         |                     |                  |                                  |                  | MARKET LOCA             | TION Future Band:       |            |                                    | 1                                           |
|                                            |                                              |                                         |                     |                  |                                  |                  | Section 5 - E-911       |                         | - existing |                                    |                                             |
|                                            | PS.                                          | AP NAME:                                | PSAP ID:            | E911 PHASE:      | MPC SVC PROVIDER:                | LMU<br>REQUIRED: | ESRN: DATE LIVE PH1     | DATE LIVE PH2:          |            |                                    |                                             |
| ECTOR A E-911                              | 1                                            |                                         |                     |                  | NTRADO_MIAMI                     |                  | 0                       |                         |            |                                    |                                             |
| ECTOR B                                    |                                              |                                         |                     |                  | NTRADO_MIAMI                     |                  | 0                       |                         |            |                                    |                                             |
| ECTOR C                                    |                                              |                                         |                     |                  | NTRADO_MIAMI                     |                  | 0                       |                         |            |                                    |                                             |
| ECTOR D                                    |                                              |                                         |                     |                  |                                  |                  |                         |                         |            |                                    |                                             |
| ECTOR E                                    |                                              |                                         |                     |                  |                                  |                  |                         |                         |            |                                    |                                             |
| MNI                                        |                                              |                                         |                     |                  |                                  |                  |                         |                         |            |                                    |                                             |
|                                            | 1                                            |                                         |                     |                  |                                  |                  | Section 5 - E-91        | INFORMATIO              | N - final  |                                    |                                             |
|                                            |                                              | AP NAME:                                | PSAP ID:            | E911 PHASE:      | MPC SVC PROVIDER:                | LMU<br>REQUIRED: | ESRN: DATE LIVE PH1:    |                         |            |                                    |                                             |
|                                            | PS.                                          | n man.                                  |                     |                  | NTRADO MIAMI                     | REQUIRED:        | PH1:                    | FH4.                    |            |                                    |                                             |
| ECTOR A E-911                              |                                              | n mane.                                 |                     | Į!               | NTRADO_MIAMI                     |                  | 0                       |                         |            |                                    |                                             |
| ECTOR B                                    |                                              | TOTAL .                                 |                     |                  | NTRADO_MIAMI                     |                  | 0                       |                         |            |                                    |                                             |
| ECTOR B                                    |                                              | S. Osmo.                                |                     |                  |                                  |                  | 0                       |                         |            |                                    |                                             |
| CTOR B                                     |                                              | W WORLD                                 |                     |                  | NTRADO_MIAMI                     |                  | 0                       |                         |            |                                    |                                             |

| SECTOR F                    |                              |                              |                              |                              |               |               |               |      |  |      |  |  |  |
|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------|---------------|---------------|------|--|------|--|--|--|
| OMNI                        |                              |                              |                              |                              |               |               |               |      |  |      |  |  |  |
|                             |                              |                              |                              |                              |               |               |               |      |  |      |  |  |  |
|                             |                              |                              |                              |                              | Section 6/7 - | BBU INFORMATI | ON - existing |      |  |      |  |  |  |
|                             | BBU 1                        | BBU 2                        | BBU 3                        | BBU 4                        |               |               |               |      |  |      |  |  |  |
| BBU ID                      | 172525                       | 229472                       | 366891                       | 551242                       |               |               |               |      |  |      |  |  |  |
| TECHNOLOGY                  | r: umts                      | UMTS                         | LTE                          | LTE,5G                       |               |               |               |      |  |      |  |  |  |
| BBU NAME                    | CTU1104                      | CTV1104                      | CTL01104                     | CTL00104R,CTCN001104         |               |               |               |      |  |      |  |  |  |
| BBU USID                    | 59423                        | 59423                        | 59423                        | 59423                        |               |               |               |      |  |      |  |  |  |
| CELL ID / BCF               | CTU1104                      | CTU1104                      | CTL01104                     | CTL00104R                    |               |               |               |      |  |      |  |  |  |
| BTA/TID                     | 0:<br>184V                   | 184U                         | 184L                         | 184L                         |               |               |               |      |  |      |  |  |  |
| 4-9 DIGIT SITE ID           | 1104                         | 1104                         | 1104                         | 0104                         |               |               |               |      |  |      |  |  |  |
| COW OR TOY?                 | P: No                        | No                           | No                           | No                           |               |               |               |      |  |      |  |  |  |
| CELL SITE TYPE              | SECTORIZED                   | SECTORIZED                   | SECTORIZED                   | SECTORIZED                   |               |               |               |      |  |      |  |  |  |
|                             | MACRO-CONVENTIONAL           | MACRO-CONVENTIONAL           | MACRO-CONVENTIONAL           | MACRO-CONVENTIONAL           |               |               |               |      |  |      |  |  |  |
| BTS LOCATION ID             | D: INTERNAL                  | INTERNAL                     | INTERNAL                     |                              |               |               |               |      |  |      |  |  |  |
| BASE STATION TYPE           | BASE                         | OVERLAY                      | BASE                         | OVERLAY                      |               |               |               |      |  |      |  |  |  |
| EQUIPMENT NAME              | FARMINGTON NU MAPLE RIDGE DR |               |               |               |      |  |      |  |  |  |
| DISASTER PRIORITY           | <mark>f:</mark> 1            | 1                            | 3                            | 3                            |               |               |               |      |  |      |  |  |  |
| EQUIPMENT VENDOR            | R: ERICSSON                  | ERICSSON                     | ERICSSON                     | ERICSSON                     |               |               |               |      |  |      |  |  |  |
| EQUIPMENT TYPE (Model)      | ):                           |                              | 6601 INDOOR MU               |                              |               |               |               |      |  |      |  |  |  |
| BASEBAND CONFIGURATION      |                              |                              |                              |                              |               |               |               |      |  |      |  |  |  |
| MARKET STATE CODE           | •                            |                              | ст                           | ст,стс                       |               |               |               |      |  |      |  |  |  |
| NODE B NUMBER               | <b>t:</b> 0                  | 0                            | 1104                         | 104,1104                     |               |               |               |      |  |      |  |  |  |
| SIDEHAUL SWITCH VENDOR      | R:                           |                              |                              |                              |               |               |               |      |  |      |  |  |  |
| SIDEHAUL SWITCH MODEL       | _                            |                              |                              |                              |               |               |               |      |  |      |  |  |  |
| SIDEHAUL SWITCH NAME        | <u>:</u>                     |                              |                              |                              |               |               |               |      |  |      |  |  |  |
| CSS - CTS COMMON IE         | CTU1104                      | CTV1104                      | CTL01104                     | CTL00104R                    |               |               |               |      |  |      |  |  |  |
| CSS - SECONDARY FUNCTION ID | o:                           |                              |                              | CTCN001104                   |               |               |               | <br> |  |      |  |  |  |
|                             |                              |                              |                              |                              | Section 6/7   | - BBU INFORMA | TION - final  |      |  |      |  |  |  |
|                             | BBU 1                        | BBU 2                        | BBU 3                        |                              |               |               |               |      |  |      |  |  |  |
| BBU ID                      | 229472                       | 366891                       | 551242                       |                              |               |               |               |      |  | <br> |  |  |  |
| TECHNOLOGY                  |                              | LTE                          | LTE,5G                       |                              |               |               |               |      |  |      |  |  |  |
| BBU NAME                    | CTV1104                      | CTL01104                     | CTL00104R,CTCN001104         |                              |               |               |               |      |  |      |  |  |  |
| BBU USID                    |                              | 59423                        | 59423                        |                              |               |               |               |      |  |      |  |  |  |
| CELL ID / BCF               | CTU1104                      | CTL01104                     | CTL00104R                    |                              |               |               |               |      |  |      |  |  |  |
| BTA/TID                     | 0: 184W                      | 184L                         | 184L                         |                              |               |               |               |      |  |      |  |  |  |
| 4-9 DIGIT SITE ID           | 1104                         | 1104                         | 0104                         |                              |               |               |               |      |  |      |  |  |  |
| COW OR TOY?                 | P: No                        | No                           | No                           |                              |               |               |               |      |  |      |  |  |  |
| CELL SITE TYPE              | SECTORIZED                   | SECTORIZED                   | SECTORIZED                   |                              |               |               |               |      |  |      |  |  |  |
| SITE TYPE                   | MACRO-CONVENTIONAL           | MACRO-CONVENTIONAL           | MACRO-CONVENTIONAL           |                              |               |               |               |      |  |      |  |  |  |
| PTC LOCATION IS             |                              |                              |                              | 7                            |               |               |               |      |  |      |  |  |  |

SITE TYPE: MACRO-CONVENTIONAL BTS LOCATION ID: INTERNAL

BASE STATION TYPE: OVERLAY

DISASTER PRIORITY: EQUIPMENT VENDOR: ERICSSON

EQUIPMENT TYPE (Model):

BASEBAND CONFIGURATION:

MARKET STATE CODE: NODE B NUMBER:

SIDEHAUL SWITCH VENDOR: SIDEHAUL SWITCH MODEL: SIDEHAUL SWITCH NAME: CSS - CTS COMMON ID: CTV1104

CSS - SECONDARY FUNCTION ID:

INTERNAL

EQUIPMENT NAME: FARMINGTON NU MAPLE RIDGE DR. FARMINGTON NU MAPLE RIDGE DR. FARMINGTON NU MAPLE RIDGE DR.

ERICSSON

CTL01104

BASEBAND 6630

x6601 / 2x6630 / 1xXMU03 + IDLe

OVERLAY

ERICSSON

104,1104

CTL00104R

BASEBAND 6630

|                |             |          |                                |                    |    |     | Section 7b - Rad | dio INFORMATIO | ON - existing |      |  |   |   |  |   |  |
|----------------|-------------|----------|--------------------------------|--------------------|----|-----|------------------|----------------|---------------|------|--|---|---|--|---|--|
|                |             |          |                                |                    |    |     | Section 7b - R   | adio INFORMAT  | TION - final  |      |  |   |   |  |   |  |
|                |             |          |                                |                    |    | Sec | tion 8 - RBS/SE  | CTOR ASSOCIA   | ATION - exis  | ting |  |   |   |  |   |  |
|                | BBU 1       | BBU 2    | BBU 3                          | BBU                | 4  |     |                  |                |               |      |  |   |   |  |   |  |
| CTS Common I   | CTU1104     | CTV1104  | CTL01104                       | CTL00104R,CTCN0011 | 04 |     |                  |                |               |      |  | • |   |  | • |  |
| Soft Sector IE | OS CTU11044 | CTV11041 | CTL01104_2A_2                  | CTL00104_3A_1      |    |     |                  |                |               |      |  |   |   |  |   |  |
|                | CTU11045    | CTV11042 | CTL01104_2B_2                  | CTL00104_7A_1      |    |     |                  |                |               |      |  |   |   |  |   |  |
|                | CTU11046    | CTV11043 | CTL01104_2C_2                  | CTL00104_9A_1      |    |     |                  |                |               |      |  |   |   |  |   |  |
|                | CTU11047    | CTV1104A | CTL01104_3A_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                | CTU11048    | CTV1104B | CTL01104_3B_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                | CTU11049    | CTV1104C | CTL01104_3C_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_7A_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_7A_2_E                |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_7B_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_7B_2_E                |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_7C_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_7C_2_E                |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_8A_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_8B_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_8C_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_9A_1<br>CTL01104_9A_2 |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_9A_2<br>CTL01104_9B_1 |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_9B_1<br>CTL01104_9B_2 |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_9C_1                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             |          | CTL01104_9C_2                  |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
|                |             | •        | ,                              |                    | I  | S   | ection 8 - RBS/S | SECTOR ASSOC   | CIATION - fir | al   |  |   |   |  |   |  |
|                | BBU 1       | BBU 2    | BBU 3                          |                    |    |     |                  |                |               |      |  |   |   |  |   |  |
| CTS Common I   | D CD(1104   | CTL01104 | CTL00104R,CTCN001104           |                    |    |     |                  |                |               |      |  | _ | _ |  |   |  |

CTL01104\_3B\_1

CTL01104\_3C\_1

CTCN001104\_N005B\_1

CTCN001104\_N005C\_1

CTV11042

CTV11043

|                               |                 |                  |                 |                  |                |                |                 |                |                | Sect            | ion 9 - SOFT    | SECTOR ID      | - existing     |                 |                 |                |                 |                 |                  |    |   |   |   |
|-------------------------------|-----------------|------------------|-----------------|------------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|-----------------|------------------|----|---|---|---|
|                               | UMTS<br>1ST 850 | UMTS<br>1ST 1900 | UMTS<br>2ND 850 | UMTS<br>2ND 1900 | LTE<br>1ST 700 | LTE<br>1ST 850 | LTE<br>1ST 1900 | LTE<br>1ST AWS | LTE<br>1ST WCS | LTE<br>2ND 700  | LTE<br>2ND 1900 | LTE<br>2ND WCS | LTE<br>3RD 700 | LTE<br>3RD 1900 | LTE<br>4TH 1900 | LTE<br>4TH AWS | LTE<br>STH 700  | LTE<br>5TH 1900 | 5G<br>1ST 850    |    |   |   |   |
| USEID (excluding Hard Sector) | 59423.850.3G.1  | 59423.1900.3G.1  | 59423.850.3G.2  | 59423.1900.3G.2  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR A SOFT SECTOR ID       | CTV11041        | CTU11047         | CTV1104A        | CTU11044         | CTL01104_7A_1  | CTL01104_8A_1  | CTL01104_9A_1   | CTL01104_2A_2  | CTL01104_3A_1  | CTL01104_7A_2_E | CTL01104_9A_2   | CTL00104_3A_1  | CTL00104_7A_1  | CTL00104_9A_1   |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR B                      | CTV11042        | CTU11048         | CTV1104B        | CTU11045         | CTL01104_7B_1  | CTL01104_8B_1  | CTL01104_9B_1   | CTL01104_2B_2  | CTL01104_3B_1  | CTL01104_7B_2_E | CTL01104_9B_2   |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR C                      | CTV11043        | CTU11049         | CTV1104C        | CTU11046         | CTL01104_7C_1  | CTL01104_8C_1  | CTL01104_9C_1   | CTL01104_2C_2  | CTL01104_3C_1  | CTL01104_7C_2_E | CTL01104_9C_2   |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR D                      |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR E                      |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR F                      |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| OMNI                          |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
|                               |                 |                  |                 |                  |                |                |                 |                |                | Se              | ction 9 - SO    | FT SECTOR I    | D - final      |                 |                 |                |                 |                 |                  |    |   |   |   |
|                               | UMTS<br>1ST 850 | UMTS<br>1ST 1900 | UMTS<br>2ND 850 | UMTS<br>2ND 1900 | LTE<br>1ST 700 | LTE<br>1ST 850 | LTE<br>1ST 1900 | LTE<br>1ST AWS | LTE<br>1ST WCS | LTE<br>2ND 700  | LTE<br>2ND 1900 | LTE<br>2ND WCS | LTE<br>3RD 700 | LTE<br>3RD 1900 | LTE<br>4TH 1900 | LTE<br>4TH AWS | LTE<br>STH 700  | LTE<br>5TH 1900 | 5G<br>1ST 850    |    |   |   |   |
| USEID (excluding Hard Sector) | 59423.850.3G.1  |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    | • | • | - |
| SECTOR A SOFT SECTOR ID       | CTV11041        |                  |                 |                  | CTL01104_7A_1  | CTL01104_8A_1  |                 |                | CTL01104_3A_1  |                 |                 |                |                | CTL00104_9A_1   | CTL00104_9A_2   | CTL00104_2A_2  | CTL01104_7A_3_F | CTL00104_9A_3   | CTCN001104_N005  | _1 |   |   |   |
| SECTOR B                      | CTV11042        |                  |                 |                  | CTL01104 7B 1  | CTL01104 8B 1  | CTL00104 9B 1   |                | CTL01104 3B 1  |                 |                 |                |                |                 | CTL00104 9B 2   | CTL00104 2B 2  | CTL01104 7B 3 F | CTL00104 9B 3   | CTCN001104 N0058 | 1  |   |   |   |
| SECTOR C                      | CTV11043        |                  |                 |                  | CTL01104 7C 1  | CTL01104 8C 1  | CTL00104 9C 1   |                | CTL01104 3C 1  |                 |                 |                |                |                 | CTL00104 9C 2   | CTL00104 2C 2  | CTL01104 7C 3 F | CTL00104 9C 3   | CTCN001104 N0056 | 1  |   |   |   |
| SECTOR D                      |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR E                      |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| SECTOR F                      |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |
| OMNI                          |                 |                  |                 |                  |                |                |                 |                |                |                 |                 |                |                |                 |                 |                |                 |                 |                  |    |   |   |   |

|                               |                 |                  |                 |                  |                |                |                 |                |                | S              | ection 9 - Cel  | l Number - e   | xisting        |                 |                 |                |                |                 |               |   |   |  |
|-------------------------------|-----------------|------------------|-----------------|------------------|----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------|---------------|---|---|--|
|                               | UMTS<br>1ST 850 | UMTS<br>1ST 1900 | UMTS<br>2ND 850 | UMTS<br>2ND 1900 | LTE<br>1ST 700 | LTE<br>1ST 850 | LTE<br>1ST 1900 | LTE<br>1ST AWS | LTE<br>1ST WCS | LTE<br>2ND 700 | LTE<br>2ND 1900 | LTE<br>2ND WCS | LTE<br>3RD 700 | LTE<br>3RD 1900 | LTE<br>4TH 1900 | LTE<br>4TH AWS | LTE<br>5TH 700 | LTE<br>5TH 1900 | 5G<br>1ST 850 |   |   |  |
| USEID (excluding Hard Sector) | 59423.850.3G.1  | 59423.1900.3G.1  | 59423.850.3G.2  | 59423.1900.3G.2  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR A CELL NUMBER          |                 |                  |                 |                  | 15             | 1              | 8               | 192            | 149            | 185            | 178             | 149            | 15             | 8               |                 |                |                |                 |               |   |   |  |
| SECTOR B                      |                 |                  |                 |                  | 16             | 2              | 9               | 193            | 150            | 186            | 179             |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR C                      |                 |                  |                 |                  | 17             | 3              | 10              | 194            | 151            | 187            | 180             |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR D                      |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR E                      |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR F                      |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| OMNI                          |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
|                               |                 |                  |                 |                  |                |                |                 |                |                |                | Section 9 - C   | ell Number -   | final          |                 |                 |                |                |                 |               |   |   |  |
|                               | UMTS<br>1ST 850 | UMTS<br>1ST 1900 | UMTS<br>2ND 850 | UMTS<br>2ND 1900 | LTE<br>1ST 700 | LTE<br>1ST 850 | LTE<br>1ST 1900 | LTE<br>1ST AWS | LTE<br>1ST WCS | LTE<br>2ND 700 | LTE<br>2ND 1900 | LTE<br>2ND WCS | LTE<br>3RD 700 | LTE<br>3RD 1900 | LTE<br>4TH 1900 | LTE<br>4TH AWS | LTE<br>5TH 700 | LTE<br>5TH 1900 | 5G<br>1ST 850 |   |   |  |
| USEID (excluding Hard Sector) | 59423.850.3G.1  |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               | ' | ' |  |
| SECTOR A CELL NUMBER          |                 |                  |                 |                  | 15             | 1              |                 |                | 149            |                |                 |                |                | 8               | 178             | 192            | 171            | 203             | 25            |   |   |  |
| SECTOR B                      |                 |                  |                 |                  | 16             | 2              | 9               |                | 150            |                |                 |                |                |                 | 179             | 193            | 172            | 204             | 49            |   |   |  |
| SECTOR C                      |                 |                  |                 |                  | 17             | 3              | 10              |                | 151            |                |                 |                |                |                 | 180             | 194            | 173            | 205             | 73            |   |   |  |
| SECTOR D                      |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR E                      |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| SECTOR F                      |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |
| OMNI                          |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |   |  |

|                  |                 |                  |                 |                  |                |                |                 |                |                | S              | ection 10 - C   | CID/SAC - exi  | sting          |                 |                 |                |                |                 |               |   |  |  |
|------------------|-----------------|------------------|-----------------|------------------|----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------|---------------|---|--|--|
|                  | UMTS<br>1ST 850 | UMTS<br>1ST 1900 | UMTS<br>2ND 850 | UMTS<br>2ND 1900 | LTE<br>1ST 700 | LTE<br>1ST 850 | LTE<br>1ST 1900 | LTE<br>1ST AWS | LTE<br>1ST WCS | LTE<br>2ND 700 | LTE<br>2ND 1900 | LTE<br>2ND WCS | LTE<br>3RD 700 | LTE<br>3RD 1900 | LTE<br>4TH 1900 | LTE<br>4TH AWS | LTE<br>5TH 700 | LTE<br>5TH 1900 | 5G<br>1ST 850 |   |  |  |
| SECTOR A CID/SAC | 11041           | 11047            | 01041           | 11044            |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR B         | 11042           | 11048            | 01042           | 11045            |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR C         | 11043           | 11049            | 01043           | 11046            |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR D         |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR E         |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR F         |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| OMNI             |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
|                  |                 |                  |                 |                  |                |                |                 |                |                |                | Section 10      | - CID/SAC - fi | nal            |                 |                 |                |                |                 |               |   |  |  |
|                  | UMTS<br>1ST 850 | UMTS<br>1ST 1900 | UMTS<br>2ND 850 | UMTS<br>2ND 1900 | LTE<br>1ST 700 | LTE<br>1ST 850 | LTE<br>1ST 1900 | LTE<br>1ST AWS | LTE<br>1ST WCS | LTE<br>2ND 700 | LTE<br>2ND 1900 | LTE<br>2ND WCS | LTE<br>3RD 700 | LTE<br>3RD 1900 | LTE<br>4TH 1900 | LTE<br>4TH AWS | LTE<br>5TH 700 | LTE<br>5TH 1900 | 5G<br>1ST 850 |   |  |  |
| SECTOR A CID/SAC | 11041           |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR B         | 11042           |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR C         | 11043           |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR D         |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR E         |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |
| SECTOR F         |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               | ] |  |  |
| OMNI             |                 |                  |                 |                  |                |                |                 |                |                |                |                 |                |                |                 |                 |                |                |                 |               |   |  |  |

|                                                                                      |                                              |                        |                                                  |           |                    |                                                  | Section 15/                                            | A - CURREN                                       | TOWER CO              | UNFIGURAT                                        | ION - SECTO                                      | R A (OR OMNI)      |                                                  |                                                  |   |                           |
|--------------------------------------------------------------------------------------|----------------------------------------------|------------------------|--------------------------------------------------|-----------|--------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|--------------------|--------------------------------------------------|--------------------------------------------------|---|---------------------------|
| ANTENNA POSITION is  LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENNA P                                    | POSITION 1             | ANTENNA PO                                       | OSITION 2 | ANTENNA F          | POSITION 3                                       | ANTENNA                                                | POSITION 4                                       | ANTENNA               | POSITION 5                                       | ANTE                                             | NNA POSITION 6     | ANTENN                                           | A POSITION 7                                     | i |                           |
| ANTENNA MAKE - MODE                                                                  | HPA-65R-BUU-H6                               | 3                      |                                                  |           | QS66512-2          |                                                  |                                                        | -                                                |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| ANTENNA VENDOI                                                                       |                                              | -                      |                                                  |           | Quintel            |                                                  |                                                        | -                                                |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
|                                                                                      |                                              | -                      |                                                  |           |                    |                                                  |                                                        |                                                  | l                     |                                                  | 1                                                |                    |                                                  |                                                  | - |                           |
| ANTENNA SIZE (H x W x D                                                              |                                              |                        |                                                  |           | 72X12X9.6          |                                                  |                                                        |                                                  | <br>I                 |                                                  | +                                                |                    |                                                  |                                                  | - |                           |
| ANTENNA WEIGH                                                                        |                                              |                        |                                                  |           | 111                |                                                  |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  | - |                           |
| AZIMUTI                                                                              | 160                                          |                        |                                                  |           | 50                 |                                                  |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  | _ |                           |
| MAGNETIC DECLINATION                                                                 | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | - |                           |
| RADIATION CENTER (feet                                                               | 88                                           |                        |                                                  |           | 88                 |                                                  |                                                        |                                                  | <del></del>           |                                                  |                                                  |                    |                                                  |                                                  | _ |                           |
| ANTENNA TIP HEIGH                                                                    | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | _ |                           |
| MECHANICAL DOWNTIL                                                                   | 0                                            |                        |                                                  |           | 0                  |                                                  |                                                        |                                                  | <b></b>               |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| FEEDER AMOUN                                                                         | 4                                            | Į.                     |                                                  |           | 8                  |                                                  |                                                        | I.                                               | i                     |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP                                   | 4                                            | Į.                     |                                                  |           |                    |                                                  |                                                        | I.                                               | i                     |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP                                   |                                              |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to                    |                                              |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| CENTERLINE                                                                           | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | _ |                           |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLIN)                      |                                              | Ų.                     |                                                  |           |                    |                                                  |                                                        | Ų.                                               | li                    |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| to CENTERLINE HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # o      | r                                            |                        |                                                  |           | †                  |                                                  | <u> </u>                                               |                                                  | <br>I                 |                                                  | +                                                |                    | <u> </u>                                         |                                                  |   | 1                         |
| inches                                                                               | )                                            |                        | <del>                                     </del> |           | +                  |                                                  | <del> </del>                                           |                                                  | <br>I                 | <del> </del>                                     | +                                                |                    | <del> </del>                                     | <del>                                     </del> |   | 1                         |
| Antenna RET Motor (QTY/MODEL                                                         |                                              | Internal               | +                                                |           | +                  | Internal<br>Andrew APTDC-                        | <del>                                     </del>       |                                                  |                       | <del></del>                                      | +                                                |                    | <del>                                     </del> | -                                                |   | -                         |
| SURGE ARRESTOR (QTY/MODEL                                                            |                                              | TSXDC-4310FM<br>Kaelus |                                                  |           | 12                 | BDFDM-DB<br>Kaelus                               |                                                        | <b></b> '                                        |                       | <del>                                     </del> | +                                                |                    |                                                  | 1                                                |   | 4                         |
| DIPLEXER (QTY/MODEL                                                                  | 4                                            | DBC2055F1V1-2          |                                                  | <b></b>   | 8                  | DBC2055F1V1-2                                    |                                                        | <u> </u>                                         |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| DUPLEXER (QTY/MODEL                                                                  |                                              |                        |                                                  | <b>.</b>  |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| Antenna RET CONTROL UNIT (QTY/MODEL                                                  | 1                                            | Powerwave /<br>7070    |                                                  | ı         |                    | RRH<br>CONTROLLED                                |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| DC BLOCK (QTY/MODEL                                                                  | ,                                            |                        |                                                  | 1         |                    |                                                  |                                                        |                                                  | 1                     |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| TMA/LNA (QTY/MODEL                                                                   | , ,                                          | DTMABP0721VG<br>12A    |                                                  |           | 4                  | TMA2117F00V1-<br>1 (Twin PCS-                    |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
|                                                                                      | F                                            | Powerwave AISG         |                                                  | <br>I     |                    | KATHREIN 860-                                    |                                                        |                                                  |                       |                                                  | 1                                                |                    |                                                  |                                                  | ٠ |                           |
| CURRENT INJECTORS FOR TMA (QTY/MODEL                                                 |                                              | Diplexer (Built In)    |                                                  |           | -                  | 10006                                            |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  | ٠ | -                         |
| PDU FOR TMAS (QTY/MODEL                                                              |                                              |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  |   |                           |
| FILTER (QTY/MODEL                                                                    | <u> </u>                                     | <u> </u>               |                                                  |           |                    | <del>                                     </del> |                                                        | ļ                                                |                       |                                                  |                                                  |                    |                                                  |                                                  | - |                           |
| SQUID (QTY/MODEL                                                                     | <u>4</u>                                     | <u> </u>               |                                                  |           |                    | -                                                |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | - |                           |
| FIBER TRUNK (QTY/MODEL                                                               | į.                                           |                        |                                                  | <b>.</b>  |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| DC TRUNK (QTY/MODEL                                                                  | ,                                            |                        |                                                  | ı         |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| REPEATER (QTY/MODEL                                                                  | 8                                            | [                      |                                                  | I         |                    |                                                  |                                                        | ]                                                | <br>                  |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| RRH - 700 band (QTY/MODEL                                                            |                                              |                        |                                                  | 1         | 1                  | RRUS-11 B12                                      |                                                        |                                                  | 1                     |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
|                                                                                      |                                              |                        |                                                  |           |                    | RRUS-12 B5                                       |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| RRH - 850 band (QTY/MODEL                                                            |                                              |                        |                                                  |           | <u> </u>           |                                                  |                                                        |                                                  |                       |                                                  | <b>†</b>                                         |                    |                                                  |                                                  |   |                           |
| RRH - 1900 band (QTY/MODEL                                                           | 1                                            |                        |                                                  | i         | 1                  | RRUS-32 B2                                       |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  | ٠ |                           |
| RRH - AWS band (QTY/MODEL                                                            | 1 4                                          | 4426 B66               |                                                  |           |                    |                                                  | -                                                      | <del>                                     </del> |                       |                                                  |                                                  |                    | -                                                |                                                  | - | -                         |
| RRH - WCS band (QTY/MODEL                                                            | 4                                            | <u> </u>               |                                                  |           | 1                  | RRUS-32 B30                                      |                                                        | <u> </u>                                         |                       |                                                  | +                                                |                    |                                                  |                                                  | - |                           |
| Additional RRH #1 - any band (QTY/MODEL                                              | 4                                            | <u> </u>               |                                                  |           |                    | <del>                                     </del> | -                                                      |                                                  |                       |                                                  |                                                  |                    | -                                                |                                                  | - | 1                         |
| Additional RRH #2 - any band (QTY/MODEL                                              | <u>,                                    </u> | ļ                      |                                                  |           |                    | <b></b>                                          |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | _ |                           |
| RRH_7B_1 (QTY/MODEL                                                                  | į .                                          |                        |                                                  | L         |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| RRH_7B_2 (QTY/MODEL                                                                  | ,                                            | [                      |                                                  | I         |                    |                                                  |                                                        | ]                                                | <br>                  |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| RRH_7B_3 (QTY/MODEL                                                                  |                                              |                        |                                                  | 1         |                    |                                                  |                                                        |                                                  | 1                     |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
|                                                                                      |                                              |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | ٠ |                           |
| Additional Component 1 (QTY/MODEL                                                    |                                              |                        |                                                  | <br>I     |                    |                                                  |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  | ٠ |                           |
| Additional Component 2 (QTY/MODEL                                                    | 1                                            |                        |                                                  | i         |                    |                                                  |                                                        |                                                  |                       |                                                  | +                                                |                    |                                                  |                                                  | ٠ |                           |
| Additional Component 3 (QTY/MODEL                                                    | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        | <u> </u>                                         |                       |                                                  |                                                  |                    |                                                  |                                                  | - |                           |
| Local Market Note                                                                    | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | _ |                           |
| Local Market Note                                                                    | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | _ |                           |
| Local Market Note                                                                    | <u> </u>                                     |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
|                                                                                      |                                              |                        |                                                  |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  | Ì |                           |
| PORT SPECIFIC FIELDS PORT NUMBER USEID (CSSng                                        | USEID (Atoli)                                | ATOLL TXID             | ATOLL CELL ID                                    | TX/RX?    | TECHNOLOGY         | / FREQUENCY                                      | ANTENNA<br>ATOLL                                       | ANTENNA GAIN                                     | ELECTRICAL<br>AZIMUTH | ELECTRICAL<br>TILT                               | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE       | FEEDER<br>LENGTH (feet)                          | RXAIT KIT<br>MODULE?                             |   | TRIPLEXER or LLC<br>(QTY) |
|                                                                                      |                                              |                        |                                                  |           |                    |                                                  | 4                                                      |                                                  |                       |                                                  | Integrated/None)                                 |                    |                                                  |                                                  |   |                           |
| ANTENNA POSITION 4 PORT 1                                                            | 59423.A.850.3G.<br>1                         | CTV11041               | CTV11041                                         | <b></b>   | UMTS 850           |                                                  |                                                        | 14.6                                             | 160                   | 10                                               | None                                             | 1 5/8" -<br>Andrew | 130                                              |                                                  |   |                           |
| AN IENNA PUSITION 1                                                                  | 1                                            |                        | OT1 04404 04 0                                   | ı         | LTE AWS            |                                                  | H6_2170MHz_04<br>DT                                    | 17.3                                             | 50                    | 4                                                | Bottom                                           | 1 5/8"<br>- Andrew | 130                                              | <u></u>                                          |   |                           |
| ANTENNA POSITION 1  PORT 3                                                           |                                              | CTL01104_2A_2          | CILUTIU4_ZA_Z                                    |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| ANTENNA POSITION 1                                                                   |                                              | CTL01104_2A_2          | CILUTIU4_ZA_Z                                    |           |                    |                                                  |                                                        |                                                  |                       |                                                  |                                                  |                    |                                                  |                                                  |   |                           |
| PORT 3                                                                               | 59423.A.700.4G.                              |                        |                                                  |           |                    |                                                  | QS66512-<br>2 722MHz 10DT                              | 13.1                                             | 50                    | 10                                               | Rottom                                           | 1.5/8": - Andrew   | 130                                              | 1                                                | - |                           |
| ANTENNA POSITION 1                                                                   | 59423.A.700.4G.<br>1 (0.59423.A.850.4G)      | CTL01104_7A_1          | CTL01104_7A_1 CTL01104_8A_1                      |           | LTE 700<br>LTE 850 |                                                  | QS66512-<br>2_722MHz_10DT<br>QS66512-<br>2_850MHz_10DT |                                                  | 50                    | 10                                               | Bottom<br>None                                   | 1 5/8" - Andrew    | 130                                              |                                                  |   |                           |

Section 15A - CURRENT TOWER CONFIGURATION - SECTOR A (OR OMNI)

|                                                                                      |                          |                 |                                       |                                                  |                                                  |            |                                     | Secti                                            | on 15B - CUR | RRENT TOW  | ER CONFIG                                        | URATION - SI                                     | ECTOR B                     |                                                  |                      |
|--------------------------------------------------------------------------------------|--------------------------|-----------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------|------------|-------------------------------------|--------------------------------------------------|--------------|------------|--------------------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|----------------------|
| ANTENNA POSITION is  LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | )                        | ANTENNA P       | POSITION 1                            | ANTENNA F                                        | POSITION 2                                       | ANTENNA    | POSITION 3                          |                                                  | POSITION 4   |            | POSITION 5                                       |                                                  | NNA POSITION 6              | ANTENNA                                          | A POSITION 7         |
| ANTENNA MAK                                                                          | KE - MODEL H             | HPA-65R-BUU-H6  | j                                     |                                                  |                                                  | QS66512-2  |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| ANTENN                                                                               | NA VENDOR C              | CCI Antennas    | ļ                                     |                                                  |                                                  | Quintel    | ļ                                   |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| ANTENNA SIZE                                                                         |                          |                 |                                       |                                                  |                                                  | 72X12X9.6  |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
|                                                                                      | NA WEIGHT 50             |                 |                                       |                                                  |                                                  | 111        |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
|                                                                                      | AZIMUTH 28               |                 |                                       |                                                  |                                                  | 160        |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| MAGNETIC DE                                                                          |                          | -               |                                       |                                                  |                                                  | 100        |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| RADIATION CEI                                                                        |                          |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
|                                                                                      |                          | .8              |                                       |                                                  |                                                  | 88         |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| ANTENNA 1                                                                            |                          |                 |                                       |                                                  |                                                  | +          |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| MECHANICAL                                                                           |                          |                 |                                       |                                                  |                                                  | 0          |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
|                                                                                      | R AMOUNT 4               |                 |                                       |                                                  |                                                  | 8          |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| VERTICAL SEPARATION from ANTENNA ABOVE                                               |                          |                 |                                       |                                                  |                                                  | +          |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| VERTICAL SEPARATION from ANTENNA BELOW                                               |                          |                 |                                       | <del></del>                                      |                                                  | +          |                                     | <u> </u>                                         |              | <b></b>    |                                                  | <del>                                     </del> |                             |                                                  |                      |
| NTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENT<br>CE                             | TERLINE to<br>ENTERLINE) |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| ZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CE                                  | ENTERLINE                |                 | -                                     |                                                  |                                                  |            | -                                   |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| to CEI<br>ZONTAL SEPARATION from ANOTHER ANTENNA (which ante                         | NTERLINE)                |                 |                                       | <del></del>                                      |                                                  | +          |                                     | <u> </u>                                         |              | <u> </u>   |                                                  | <del> </del>                                     |                             | <del>                                     </del> |                      |
|                                                                                      |                          |                 |                                       | <del>                                     </del> |                                                  | +          | -                                   | <del>                                     </del> |              |            |                                                  |                                                  |                             |                                                  |                      |
| Antenna RET Motor (Q                                                                 | TY/MODEL)                |                 | Internal                              |                                                  |                                                  | <b>├</b>   | Internal                            | <del>                                     </del> | $\vdash$     | $\vdash$   |                                                  |                                                  | <b></b>                     | $\vdash$                                         | <del></del>          |
| SURGE ARRESTOR (Q                                                                    | TY/MODEL) 4              |                 | TSXDC-4310FM<br>Kaelus                |                                                  |                                                  | 12         | Andrew APTDC-<br>BDFDM-DB<br>Kaelus |                                                  |              |            |                                                  |                                                  | <del> </del>                |                                                  |                      |
| DIPLEXER (Q1                                                                         | TY/MODEL) 4              | í               | DBC2055F1V1-2                         |                                                  |                                                  | 8          | DBC2055F1V1-2                       | -                                                |              |            |                                                  |                                                  | ļ                           |                                                  | <b></b>              |
| DUPLEXER (QT                                                                         | TY/MODEL)                |                 |                                       |                                                  |                                                  |            |                                     | <del>                                     </del> | $\sqcup$     | $\sqcup$   |                                                  |                                                  | ļ                           |                                                  | <b></b>              |
| Antenna RET CONTROL UNIT (Q                                                          | TY/MODEL)                |                 | <u> </u>                              |                                                  |                                                  |            | RRH<br>CONTROLLED                   |                                                  |              |            |                                                  |                                                  |                             |                                                  | <b></b>              |
| DC BLOCK (Q1                                                                         | TY/MODEL)                |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  | <u> </u>                    |                                                  |                      |
| TMA/LNA (QT                                                                          | TY/MODEL) 2              | 2               | DTMABP0721VG<br>12A                   |                                                  |                                                  | 4          | TMA2117F00V1-<br>1 (Twin PCS-       |                                                  |              |            |                                                  |                                                  | <u> </u>                    |                                                  | ļ                    |
| CURRENT INJECTORS FOR TMA (Q1                                                        | TY/MODEL)                |                 | Powerwave AISG<br>Diplexer (Built In) |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| PDU FOR TMAS (Q                                                                      | TY/MODEL)                |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| FILTER (Q1                                                                           | TY/MODEL)                |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  | <u> </u>                    |                                                  | <u> </u>             |
| SQUID (Q1                                                                            | TY/MODEL)                |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| FIBER TRUNK (QT                                                                      |                          |                 |                                       |                                                  |                                                  |            | ļ.                                  |                                                  |              |            |                                                  |                                                  |                             |                                                  | Ì                    |
| DC TRUNK (QT                                                                         | TY/MODEL)                |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| REPEATER (Q1                                                                         |                          |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| RRH - 700 band (Q                                                                    |                          |                 |                                       |                                                  |                                                  | 1          | RRUS-11 B12                         |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| RRH - 850 band (Q1                                                                   |                          |                 |                                       |                                                  |                                                  | 1          | RRUS-12 B5                          |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| RRH - 1900 band (Q1                                                                  |                          |                 |                                       |                                                  |                                                  | 1          | RRUS-32 B2                          |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| RRH - AWS band (Q)                                                                   |                          | 1               | 4426 B66                              |                                                  |                                                  | 1          |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
|                                                                                      |                          |                 | T-10 D00                              |                                                  |                                                  | 1          | RRUS-32 B30                         |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| RRH - WCS band (Q)                                                                   |                          |                 |                                       |                                                  |                                                  | †          | 10103°32 B30                        |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| Additional RRH #1 - any band (Q                                                      |                          |                 |                                       |                                                  |                                                  | †          |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| Additional RRH #2 - any band (Q                                                      |                          |                 |                                       |                                                  | <b>—</b>                                         | +          |                                     |                                                  |              |            | <b>—</b>                                         |                                                  |                             |                                                  |                      |
| RRH_7B_1 (Q1                                                                         |                          |                 |                                       |                                                  | <del>                                     </del> | +          |                                     |                                                  |              |            | <del>                                     </del> |                                                  |                             |                                                  |                      |
| RRH_7B_2 (Q1                                                                         |                          |                 |                                       |                                                  | <del></del>                                      | +          |                                     |                                                  |              |            | <del>                                     </del> |                                                  |                             |                                                  |                      |
| RRH_7B_3 (Q1                                                                         |                          |                 |                                       | <b></b>                                          |                                                  | +          | -                                   | <del>                                     </del> | $\vdash$     | $\vdash$   | $\vdash$                                         |                                                  |                             | $\vdash$                                         |                      |
| Additional Component 1 (Q1                                                           |                          |                 |                                       | <del>                                     </del> | <del></del>                                      | +          |                                     | <u> </u>                                         |              |            | <del></del>                                      |                                                  |                             | $\vdash$                                         |                      |
| Additional Component 2 (Q                                                            | TY/MODEL)                |                 |                                       |                                                  |                                                  | +          |                                     | <del>                                     </del> |              |            |                                                  |                                                  |                             |                                                  |                      |
| Additional Component 3 (Q1                                                           | TY/MODEL)                |                 |                                       |                                                  |                                                  | 1          | L                                   | L                                                |              |            |                                                  |                                                  | L                           |                                                  |                      |
| Local Ma                                                                             | arket Note 1             |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| Local Ma                                                                             | arket Note 2             |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| Local Ma                                                                             | arket Note 3             |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
|                                                                                      |                          |                 |                                       |                                                  |                                                  |            |                                     | ANTENNA                                          |              | ELECTRICAL | EI ECTRICAL                                      | RRH LOCATION                                     |                             | FEEDER                                           | DYAIT KIT            |
| PORT SPECIFIC FIELDS PORT NUMBER USEI                                                | ID (CSSng)               | USEID (Atoll)   | ATOLL TXID                            | ATOLL CELL ID                                    | TX/RX?                                           | TECHNOLOGY | / / FREQUENCY                       | ANTENNA<br>ATOLL                                 | ANTENNA GAIN | AZIMUTH    | ELECTRICAL<br>TILT                               | (Top/Bottom/<br>Integrated/None)                 | FEEDERS TYPE                | LENGTH (feet)                                    | RXAIT KIT<br>MODULE? |
|                                                                                      |                          |                 |                                       |                                                  |                                                  |            |                                     |                                                  |              |            |                                                  |                                                  |                             |                                                  |                      |
| ANTENNA POSITION 1 PORT 1                                                            | 55                       | 59423.B.850.3G. | CTV11042                              | CTV11042                                         |                                                  | UMTS 850   |                                     | H6_849MHz_00D<br>T<br>H6_2170MHz_02              | 14.8         | 280        | 0                                                | None                                             | 1 5/8" - Andrew<br>1 5/8" - | 130                                              |                      |

| PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng) | USEID (Atoli)         | ATOLL TXID    | ATOLL CELL ID | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA<br>ATOLL          | ANTENNA GAIN | ELECTRICAL<br>AZIMUTH | ELECTRICAL    | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE       | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or<br>LLC (MODEL) | SCPA/MCPA<br>MODULE? | HATCHPLATE<br>POWER (Watts) | ERP (Watts) | Antenna RET<br>Name | CABLE<br>NUMBER | CABLE<br>ID(cssng) |
|----------------------|-------------|---------------|-----------------------|---------------|---------------|--------|------------------------|---------------------------|--------------|-----------------------|---------------|--------------------------------------------------|--------------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------|
|                      | PORT 1      |               | 59423.B.850.3G.<br>1  | CTV11042      | CTV11042      |        | UMTS 850               | H6_849MHz_00D<br>T        | 14.8         | 280                   | 0             | None                                             | 1 5/8" - Andrew    | 130                     |                      |                        |                             |                      |                             | 449.78      |                     | 9               |                    |
| ANTENNA POSITION 1   | PORT 3      | 8             |                       | CTL01104_2B_2 | CTL01104_2B_2 |        |                        | H6_2170MHz_02<br>DT       | 17.24        | 160                   | 2             |                                                  | 1 5/8" -<br>Andrew | 130                     |                      |                        |                             |                      |                             | 2535.1286   |                     | 10              |                    |
|                      |             |               |                       |               | •             |        |                        |                           |              |                       |               |                                                  |                    |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |
|                      | PORT 1      |               | 59423.B.700.4G.<br>1  | CTL01104_7B_1 | CTL01104_7B_1 |        | LTE 700                | QS66512-<br>2_722MHz_02DT | 13.6         | 160                   | 2             | Bottom                                           | 1 5/8" - Andrew    | 130                     |                      |                        |                             |                      |                             | 1475.7065   |                     | 13              |                    |
|                      | PORT 2      |               | 59423.B.850.4G.<br>1  | CTL01104_8B_1 | CTL01104_8B_1 |        | LTE 850                | QS66512-<br>2_850MHz_02DT | 13.2         | 160                   | 2             | None                                             | 1 5/8" - Andrew    | 130                     |                      |                        |                             |                      |                             | 1000        |                     | 13              |                    |
| ANTENNA POSITION 3   | PORT 3      |               | 59423.B.WCS.4G<br>.1  | CTL01104_3B_1 | CTL01104_3B_1 |        | LTE WCS                | 2_2355MHz_03D<br>T        | 16.7         | 160                   | 3             | Bottom                                           | 1 5/8" - Andrew    | 130                     |                      |                        |                             |                      |                             | 1285.2866   |                     | 14              |                    |
|                      | PORT 4      |               | 59423.B.1900.4G<br>.1 | CTL01104_9B_1 | CTL01104_9B_1 |        | LTE 1900               | 2_1930MHz_02D<br>T        | 16           | 160                   | 2             | Bottom                                           | 1 5/8" - Andrew    | 130                     |                      |                        |                             |                      |                             | 4842.058    |                     | 14              | l                  |
|                      | PORT 7      |               | 59423.B.1900.4G<br>.2 |               | CTL01104_9B_2 |        | LTE 1900               | 2_1930MHz_02D<br>T        | 16           | 160                   | 2             | Bottom                                           | 1 5/8" - Andrew    | 130                     |                      |                        |                             |                      |                             | 4842.058    |                     | 14              |                    |
|                      |             |               |                       |               |               |        |                        |                           |              |                       | Page 12 of 30 |                                                  |                    |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |

|                                                          |                               |                                 |                            |                               |                           |            |           |                               | Secti                     | on 15C - CU  | RRENT TOW             | ER CONFIG          | URATION - S                                      | SECTOR C                 | _                       |                      |   |                        |   |
|----------------------------------------------------------|-------------------------------|---------------------------------|----------------------------|-------------------------------|---------------------------|------------|-----------|-------------------------------|---------------------------|--------------|-----------------------|--------------------|--------------------------------------------------|--------------------------|-------------------------|----------------------|---|------------------------|---|
| ANTENNA POSITIO<br>LEFT to RIGHT from BACK OF ANTENNA (L | ON is<br>unless otherwise spe | ecified)                        | ANTENNA POSITIO            | ON 1                          | ANTENNA                   | POSITION 2 | ANTENNA   | A POSITION 3                  | ANTENNA                   | POSITION 4   | ANTENNA               | POSITION 5         | ANTE                                             | NNA POSITION 6           | ANTENNA                 | A POSITION 7         |   |                        |   |
|                                                          | ANTENNA                       | MAKE - MODEL                    | HPA-65R-BUU-H6             |                               |                           |            | QS66512-2 |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | AN                            | TENNA VENDOR                    | CCI Antennas               |                               |                           |            | Quintel   |                               |                           |              |                       |                    |                                                  |                          |                         |                      | l |                        |   |
|                                                          | ANTENNA                       | SIZE (H x W x D)                | 72X14.8X9                  |                               |                           |            | 72X12X9.6 |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | AN                            | ITENNA WEIGHT                   | 50.7                       |                               |                           |            | 111       |                               |                           |              |                       |                    |                                                  |                          |                         |                      | 1 |                        |   |
|                                                          |                               | AZIMUTH                         | 50                         |                               |                           |            | 280       |                               |                           |              |                       |                    |                                                  |                          |                         |                      | 1 |                        |   |
|                                                          |                               | C DECLINATION                   |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      | 1 |                        |   |
|                                                          | RADIATIO                      | N CENTER (feet)                 | 88                         |                               |                           |            | 88        |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          |                               | NNA TIP HEIGHT                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          |                               | ICAL DOWNTILT                   | 0                          |                               |                           |            | 0         |                               |                           |              |                       |                    |                                                  |                          |                         |                      | 1 |                        |   |
|                                                          |                               | EEDER AMOUNT                    |                            |                               |                           |            | 8         |                               |                           |              |                       |                    |                                                  |                          |                         |                      | 1 |                        |   |
| VERTICAL SEPARATION fr                                   |                               |                                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      | 1 |                        |   |
| VERTICAL SEPARATION from CLOSEST AN                      |                               |                                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
| ORIZONTAL SEPARATION from CLOSEST AF                     | N I ENNA to LEFT              | (CENTERLINE to<br>CENTERLINE)   |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
| HORIZONTAL SEPARATION from CLOSEST A                     | ANTENNA to RIGH               | T (CENTERLINE<br>to CENTERLINE) |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          | <u> </u>                |                      |   |                        |   |
| HORIZONTAL SEPARATION from ANOTHER                       | ANTENNA (which                | h antenna # / # of<br>inches)   |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | ] |
|                                                          | Antenna RET Mot               | or (QTY/MODEL)                  | Interna                    | nal                           |                           |            |           | Internal                      |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | SURGE ARRESTO                 | OR (QTY/MODEL)                  |                            | OC-4310FM                     |                           |            | 12        | Andrew APTDC-<br>BDFDM-DB     |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | DIPLEXE                       | ER (QTY/MODEL)                  | Kaelus<br>4 DBC2           | is<br>2055F1V1-2              |                           |            | 8         | Kaelus<br>DBC2055F1V1-2       |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | I |
|                                                          | DUPLEXE                       | ER (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
| Antenna R                                                | RET CONTROL UN                | IIT (QTY/MODEL)                 |                            |                               |                           |            |           | RRH<br>CONTROLLED             |                           |              |                       |                    |                                                  |                          | 1                       |                      |   |                        |   |
|                                                          | DC BLOC                       | CK (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | l |
|                                                          | TMA/LN                        | NA (QTY/MODEL)                  | 2 12A                      | ABP0721VG                     |                           |            | 4         | TMA2117F00V1-<br>1 (Twin PCS- |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | 1 |
| CURRENT IN.                                              | JECTORS FOR TN                | MA (QTY/MODEL)                  | Diplex                     | erwave AISG<br>xer (Built In) |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   | -                      |   |
|                                                          |                               | AS (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   | -                      |   |
|                                                          |                               | ER (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | 1 |
|                                                          |                               | IID (QTY/MODEL)                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | 1 |
|                                                          |                               | NK (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | 1 |
|                                                          |                               | NK (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | l |
|                                                          |                               | ER (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          |                               | nd (QTY/MODEL)                  |                            |                               |                           |            |           | RRUS-11 B12                   |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | RRH - 850 bar                 | nd (QTY/MODEL)                  |                            |                               |                           |            | ,         | RRUS-12 B5<br>RRUS-32 B2      |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          |                               | nd (QTY/MODEL)                  | 1 4426 8                   | B66                           |                           |            |           | RRUS-32 B2                    |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | RRH - WCS bar                 |                                 | . 14420 0                  |                               |                           |            | 1         | RRUS-32 B30                   |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
| Additional                                               | RRH #1 - any bar              |                                 |                            |                               |                           |            | ĺ         | 02 000                        |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | I RRH #2 - any ba             |                                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          |                               | 1 (QTY/MODEL)                   |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | ١ |
|                                                          |                               | 2 (QTY/MODEL)                   |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | RRH_7B                        | _3 (QTY/MODEL)                  |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | ļ |
| Addi                                                     | itional Componen              | t 1 (QTY/MODEL)                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | ļ |
| Addi                                                     | itional Componen              | t 2 (QTY/MODEL)                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | l |
| Addi                                                     | itional Componen              | t 3 (QTY/MODEL)                 |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        | l |
|                                                          | Loc                           | cal Market Note 1               |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   | -                      | 1 |
|                                                          | Loc                           | cal Market Note 2               |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
|                                                          | Loc                           | cal Market Note 3               |                            |                               |                           |            |           |                               |                           |              |                       |                    |                                                  |                          |                         |                      |   |                        |   |
| PORT SPECIFIC FIELDS                                     | PORT NUMBER                   | USEID (CSSng)                   | USEID (Atoli) ATO          | OLL TXID                      | ATOLL CELL ID             | TX/RX?     | TECHNOLOG | Y / FREQUENCY                 | ANTENNA<br>ATOLL          | ANTENNA GAIN | ELECTRICAL<br>AZIMUTH | ELECTRICAL<br>TILT | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE             | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? |   | TRIPLEXER or LLC (QTY) |   |
|                                                          |                               |                                 | 59423.C.850.3G.            | 14040                         | OT (4404                  |            |           |                               | H6_849MHz_10D             |              | 50                    | 40                 |                                                  | 4.5/0.4                  | 420                     |                      |   |                        | l |
| ANTENNA POSITION 1                                       | PORT 1                        |                                 |                            |                               | CTV11043<br>CTL01104_2C_2 |            | UMTS 850  |                               | T<br>H6_2170MHz_07<br>DT  | 114.6        | 280                   | 7                  | None<br>Bottom                                   | 1 5/8 Andrew<br>1 5/8" - | 130                     |                      |   |                        | l |
|                                                          | PORT 3                        |                                 | I CTL01                    | 11104_2U_2  C                 | U1201104_2U_2             | 1          | LTE AWS   |                               | lo.                       | 11.2         | 1200                  | ľ                  | Lottom                                           | Andrew                   | 130                     | 1                    |   |                        | 1 |
|                                                          | PORT 1                        |                                 | 59423.C.700.4G.<br>1 CTL01 | 1104 70 1                     | CTL01104_7C_1             |            | LTE 700   |                               | QS66512-<br>2_722MHz_06DT | 13.1         | 280                   | 6                  | Bottom                                           | 1 5/8" - Andrew          | 130                     |                      |   |                        | Ī |
|                                                          | 10.11                         |                                 | 59423.C.850.4G.            |                               |                           |            |           |                               | QS66512-                  |              |                       |                    |                                                  |                          |                         |                      |   |                        | t |

59423.C.WCS.4G

59423.C.1900.4G

LTE WCS

LTE 1900

T 2\_1930MHz\_07D

T 1 2\_1930MHz\_07D T

PORT 3

CABLE ID(cssng)

1285.2866

|                                                                                |                                |                                  |                |               |                                    |                | Secti                      | on 16A - PL      | ANNED/PRO                                        | POSED TOW             | ER CONFIG          | URATION - S                                      | SECTOR A (OR ON | INI)                    |                      |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------|----------------|---------------|------------------------------------|----------------|----------------------------|------------------|--------------------------------------------------|-----------------------|--------------------|--------------------------------------------------|-----------------|-------------------------|----------------------|
| ANTENNA POSITION is  LEFT to RIGHT from BACK OF ANTENNA (unless otherwise spec | cified)                        | ANTENNA P                        | OSITION 1      | ANTENNA       | POSITION 2                         | ANTENNA        | POSITION 3                 | ANTENNA          | POSITION 4                                       | ANTENNA I             | POSITION 5         | ANTEN                                            | NNA POSITION 6  | ANTENN                  | A POSITION 7         |
|                                                                                | isting Antenna?                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | MAKE - MODEL                   |                                  |                | DMP65R-BU6DA  |                                    | TPA-65R-BU6DA- | v                          |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | ENNA VENDOR                    |                                  |                | CCI           |                                    | CCI            | K.                         |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | SIZE (H x W x D)               |                                  |                | 71.2X20.7X7.7 |                                    | 71.2X20.7X7.7  |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | TENNA WEIGHT                   |                                  |                | 79.4          |                                    | 69             |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | AZIMUTH                        |                                  |                | 50            |                                    | 50             |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| MAGNETIC                                                                       | DECLINATION                    |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| RADIATION                                                                      | N CENTER (feet)                |                                  |                | 92'           |                                    | 92'            |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| ANTEN                                                                          | INA TIP HEIGHT                 |                                  |                | 95'           |                                    | 95'            |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| MECHANIC                                                                       | CAL DOWNTILT                   |                                  |                | 0             |                                    | 0              |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| FE                                                                             | EDER AMOUNT                    |                                  |                |               |                                    | Fiber          |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| VERTICAL SEPARATION from ANTENNA ABO                                           | OVE (TIP to TIP)               |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| VERTICAL SEPARATION from ANTENNA BEL                                           | OW (TIP to TIP)                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (0                          | CENTERLINE to<br>CENTERLINE)   |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT                            | T (CENTERLINE                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| HORIZONTAL SEPARATION from ANOTHER ANTENNA (which                              |                                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Antenna RET Moto                                                               |                                |                                  |                |               | Internal                           |                | Built in                   |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| SURGE ARRESTO                                                                  |                                |                                  |                | 4             | TSXDC-4310FM                       | 4              | TSXDC-4310FM               |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | R (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | R (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Antenna RET CONTROL UNI                                                        |                                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| DC BLOCK                                                                       | K (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| TMA/LN/                                                                        | A (QTY/MODEL)                  |                                  |                | 2             | TMABPD7823VG<br>12A                | 2              | TMA2124F03V5-<br>1D        |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| CURRENT INJECTORS FOR TMA                                                      | A (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| PDU FOR TMA:                                                                   | S (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| FILTER                                                                         | R (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| SQUII                                                                          | D (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| FIBER TRUN                                                                     | K (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| DC TRUN                                                                        | K (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| REPEATE                                                                        | R (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| RRH - 700 band                                                                 |                                |                                  |                | 1             | 4449 B5/B12<br>RRH is shared       | 1              | 4478 B14                   |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| RRH - 850 band                                                                 |                                |                                  |                |               | RRH is shared<br>with another band |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| RRH - 1900 ban                                                                 |                                |                                  |                |               |                                    | 1              | 4415 B25                   |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| RRH - AWS band                                                                 |                                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| RRH - WCS band                                                                 |                                |                                  |                |               |                                    |                |                            |                  | <del>                                     </del> |                       |                    |                                                  |                 |                         |                      |
| Additional RRH #1 - any ban                                                    |                                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Additional RRH #2 - any band                                                   |                                |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | 1 (QTY/MODEL)<br>2 (QTY/MODEL) |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                | 3 (QTY/MODEL)                  |                                  |                |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Additional Component                                                           |                                |                                  |                |               |                                    | 4              | Pentaplexer 5PX-<br>0726-O |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Additional Component                                                           |                                |                                  |                |               |                                    | 2              | K SBT 782-11055            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Additional Component                                                           |                                |                                  |                |               |                                    | 2              | Polyphaser<br>1000860      |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
| Loca                                                                           | al Market Note 1               | - Antennae and Ra<br>- Move UMTS | dios as per PD |               |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                |                                | Configure each sec               |                | fiagram.      |                                    |                |                            |                  |                                                  |                       |                    |                                                  |                 |                         |                      |
|                                                                                |                                | 1x6601 / 2x6630 /                |                |               |                                    | -              | -                          | -                |                                                  | -                     |                    | -                                                |                 |                         |                      |
| PORT SPECIFIC FIELDS PORT NUMBER                                               | USEID (CSSng)                  | USEID (Atoll)                    | ATOLL TXID     | ATOLL CELL ID | TX/RX?                             | TECHNOLOGY     | / FREQUENCY                | ANTENNA<br>ATOLL | ANTENNA GAIN                                     | ELECTRICAL<br>AZIMUTH | ELECTRICAL<br>TILT | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE    | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? |
|                                                                                | 0423 A 700 4C                  | E0422 A 700 4C                   |                |               |                                    |                |                            | DISCO 725MUs     |                                                  |                       |                    | g.zzJiio)                                        |                 |                         |                      |

| PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng)            | USEID (Atoli)         | ATOLL TXID             | ATOLL CELL ID          | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA<br>ATOLL     | ANTENNA GAIN | ELECTRICAL<br>AZIMUTH | ELECTRICAL<br>TILT | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or<br>LLC (MODEL) | SCPA/MCPA<br>MODULE? | HATCHPLATE<br>POWER (Watts) | ERP (Watts) | Antenna RET<br>Name | CABLE<br>NUMBER | CABLE<br>ID(cssng) |
|----------------------|-------------|--------------------------|-----------------------|------------------------|------------------------|--------|------------------------|----------------------|--------------|-----------------------|--------------------|--------------------------------------------------|--------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------|
|                      | PORT 1      | 59423.A.700.4G.<br>1     | 59423.A.700.4G.<br>1  | CTL01104_7A_1          | CTL01104_7A_1          |        | LTE 700                | BU6D_725MHz_<br>10DT | 12.7         | 50                    | 10                 | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1475.71     | 1                   |                 |                    |
| ANTENNA POSITION 2   | PORT 2      | 59423.A.850.4G.<br>1     |                       | CTL01104_8A_1          | CTL01104_8A_1          |        | LTE 850                | BU6D_850MHz_<br>10DT | 13.3         | 50                    | 10                 | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1000        | 1                   |                 |                    |
|                      | PORT 5      | 59423.A.850.5G.t<br>mp1  | 59423.A.850.5G.<br>1  | CTCN001104_N0<br>05A_1 | CTCN001104_N0<br>05A_1 |        | 5G 850                 | BU6D_850MHz_<br>10DT | 13.3         | 50                    | 10                 | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1000        | 1                   |                 |                    |
|                      |             |                          |                       |                        |                        |        |                        |                      |              |                       |                    |                                                  |              |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |
|                      | PORT 1      | 59423.A.700.4G.t<br>mp5  | 59423.A.700.4G.<br>5  | CTL01104_7A_3<br>_F    | CTL01104_7A_3<br>_F    |        | LTE 700                | TPA65R-BU6DA-<br>K   | 14.7         | 50                    | 10                 | Bottom                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 2951.41     | 5                   |                 |                    |
|                      | PORT 3      | 59423.A.1900.4G<br>.2    | 59423.A.1900.4G<br>.2 | CTL08104_9A_1          | CTL08104_9A_1          |        | LTE 1900               | TPA65R-BU6DA-<br>K   | 17.15        | 50                    | 4                  | Bottom                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 4842.06     | 6                   |                 |                    |
| ANTENNA POSITION 3   | PORT 4      | 59423.A.1900.4G<br>.tmp4 |                       | CTL08104_9A_2          | CTL08104_9A_2          |        | LTE 1900               | TPA65R-BU6DA-<br>K   | 17.15        | 50                    | 4                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             |             | 4                   |                 |                    |

|        | 59423.A.AWS.40  | 59423.A.AWS.40  | 3             |               |          | TPA65R-BU6DA- |       |    |   |        |            |     |  |   |   |
|--------|-----------------|-----------------|---------------|---------------|----------|---------------|-------|----|---|--------|------------|-----|--|---|---|
| PORT 7 | .tmp4           | .1              | CTL08104_2A_2 | CTL08104_2A_2 | LTE AWS  | K             | 17.15 | 50 | 4 | Bottom | 1-5/8 Coax | 130 |  | 7 |   |
|        | 59423.A.1900.40 | 59423.A.1900.40 | 3             |               |          | TPA65R-BU6DA- |       |    |   |        |            |     |  |   |   |
| PORT 8 | .tmp5           | .tmp5           | CTL08104_9A_3 | CTL08104_9A_3 | LTE 1900 | K             | 17.15 | 50 | 4 | Bottom | 1-5/8 Coax | 130 |  | 8 | 1 |

|                                                           |                              |                      |                                  |                                                  |                                |                                    |                              | Section 16                           | 3 - PLANNED                                      | PROPOSED                                         | TOWER CO     | NFIGURATION                      | ON - SECTOR B  |                                                  |              |
|-----------------------------------------------------------|------------------------------|----------------------|----------------------------------|--------------------------------------------------|--------------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------------------------|----------------|--------------------------------------------------|--------------|
| ANTENNA POSITION<br>LEFT to RIGHT from BACK OF ANTENNA (u | ON is<br>unless otherwise sp | pecified)            | ANTENNA                          | POSITION 1                                       | ANTENNA P                      | POSITION 2                         | ANTENNA POSITION 3           | ANTENNA                              | POSITION 4                                       | ANTENNA                                          | POSITION 5   | ANTEN                            | NNA POSITION 6 | ANTENNA                                          | A POSITION 7 |
|                                                           | E                            | Existing Antenna?    |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | ANTENN                       | IA MAKE - MODEL      |                                  |                                                  | DMP65R-BU6DA                   |                                    | TPA-65R-BU6DA-K              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | AA.                          | NTENNA VENDOR        |                                  |                                                  | CCI                            |                                    | CCI                          |                                      |                                                  |                                                  |              |                                  |                | <u> </u>                                         |              |
|                                                           | ANTENNA                      | A SIZE (H x W x D)   |                                  |                                                  | 71.2X20.7X7.7                  |                                    | 71.2X20.7X7.7                |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | A                            | NTENNA WEIGHT        |                                  |                                                  | 79.4                           |                                    | 69                           |                                      |                                                  | <del>                                     </del> |              |                                  |                | <del>                                     </del> |              |
|                                                           |                              | AZIMUTH              |                                  |                                                  | 160                            |                                    | 160                          |                                      |                                                  |                                                  |              |                                  |                | +                                                |              |
|                                                           |                              | TIC DECLINATION      |                                  |                                                  | 92'                            |                                    | 92'                          |                                      |                                                  |                                                  |              |                                  |                | +                                                |              |
|                                                           |                              | ON CENTER (feet)     |                                  |                                                  | 92                             |                                    | 92                           |                                      |                                                  |                                                  |              |                                  |                | +                                                |              |
|                                                           |                              | NICAL DOWNTILT       |                                  |                                                  | 0                              |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | FEEDER AMOUNT        |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
| VERTICAL SEPARATION fro                                   | rom ANTENNA A                | BOVE (TIP to TIP)    |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
| VERTICAL SEPARATION fro                                   | om ANTENNA BI                | ELOW (TIP to TIP)    |                                  |                                                  | <u> </u>                       |                                    |                              |                                      |                                                  | <u> </u>                                         |              | <u> </u>                         |                |                                                  |              |
| RIZONTAL SEPARATION from CLOSEST AN                       | NTENNA to LEFT               | T (CENTERLINE to     |                                  |                                                  |                                |                                    |                              |                                      | ļ                                                |                                                  |              |                                  |                |                                                  |              |
| ORIZONTAL SEPARATION from CLOSEST A                       | ANTENNA to RIG               |                      |                                  | -                                                |                                |                                    |                              |                                      |                                                  |                                                  | -            |                                  |                | 1                                                |              |
| ORIZONTAL SEPARATION from ANOTHER                         | ANTENNA (whice               | ch antenna # / # of  |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  | T            |                                  |                | +                                                |              |
|                                                           | A DET 11-                    | inches)              |                                  |                                                  |                                | Internal                           |                              |                                      |                                                  |                                                  |              |                                  |                | +                                                |              |
|                                                           |                              | OTY/MODEL)           |                                  |                                                  | 4                              | Internal TSXDC-4310FM              | 4 TSXDC-4310FM               |                                      |                                                  |                                                  |              |                                  |                | <del>                                     </del> |              |
|                                                           |                              | KER (QTY/MODEL)      |                                  |                                                  |                                |                                    | . PONDO-45TOPM               |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | KER (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
| Antenna R                                                 | RET CONTROL U                | INIT (QTY/MODEL)     |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | DC BLO                       | OCK (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      | ļ                                                |                                                  |              |                                  |                |                                                  |              |
|                                                           | TMA/L                        | LNA (QTY/MODEL)      |                                  |                                                  | 2                              | TMABPD7823VG<br>12A                | TMA2124F03V5-<br>2 1D        |                                      |                                                  |                                                  |              |                                  | ļ              |                                                  |              |
| CURRENT INJ                                               | JECTORS FOR T                | MA (QTY/MODEL)       |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | MAS (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | TER (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | UID (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | JNK (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                | +                                                |              |
|                                                           |                              | TER (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | and (QTY/MODEL)      |                                  |                                                  | 1                              | 4449 B5/B12                        | 1 4478 B14                   |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | and (QTY/MODEL)      |                                  |                                                  | ļ                              | RRH is shared<br>with another band |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | RRH - 1900 ba                | and (QTY/MODEL)      |                                  |                                                  |                                |                                    | 1 4415 B25                   |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | RRH - AWS ba                 | and (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  | <u> </u>       |                                                  |              |
|                                                           | RRH - WCS ba                 | and (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  | ļ              |                                                  |              |
| Additional                                                | RRH #1 - any ba              | and (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      | -                                                |                                                  | <del></del>  |                                  |                | <del>                                     </del> |              |
| Additional                                                |                              | and (QTY/MODEL)      | <del> </del>                     | <del>                                     </del> |                                |                                    |                              |                                      | <del>                                     </del> | <del>                                     </del> | <del> </del> | <u> </u>                         |                | <del>                                     </del> |              |
|                                                           |                              | B_1 (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | B_2 (QTY/MODEL)      |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                | _                                                |              |
| 0 ddi                                                     |                              | nt 1 (QTY/MODEL)     |                                  |                                                  |                                |                                    | Pentaplexer 5PX-<br>4 0726-O |                                      |                                                  |                                                  |              |                                  |                | +                                                |              |
|                                                           |                              | nt 2 (QTY/MODEL)     |                                  |                                                  |                                |                                    | 2 K SBT 782-11055            |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | nt 3 (QTY/MODEL)     |                                  |                                                  |                                |                                    | Polyphaser<br>2 1000860      |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           |                              | ocal Market Note 1   | - Antennae and Ra<br>- Move UMTS | adios as per PD                                  |                                |                                    | *                            |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | Lo                           | ocal Market Note 2   | Configure per PD                 |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
|                                                           | Lo                           | ocal Market Note 3   | 1x6601 / 2x6630 /                | 1xXMU03 + IDLe                                   |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |
| DODT SPECIEIC FIFE DO                                     | DODT NUMBER                  | LIGEID (CCC.         | HOEID (Assi)                     | ATOL: TVIC                                       | ATOLL OF L                     | TV/DVA                             | TECHNOLOGY / EDECHIEROY      | ANTENNA                              | ANTENNA GAIN                                     | ELECTRICAL                                       | ELECTRICAL   | RRH LOCATION                     | EEEDEDO TVOS   | FEEDER                                           | RXAIT KIT    |
| PORT SPECIFIC FIELDS F                                    |                              | USEID (CSSng)        |                                  |                                                  | ATOLL CELL ID                  | TX/RX?                             | TECHNOLOGY / FREQUENCY       | ATOLL                                | ANTENNA GAIN                                     | AZIMUTH                                          | TILT         | (Top/Bottom/<br>Integrated/None) | FEEDERS TYPE   | LENGTH (feet)                                    | MODULE?      |
|                                                           | PORT 1                       | 59423.B.700.4G.      | 1                                | CTL01104_7B_1                                    | CTL01104_7B_1                  |                                    | LTE 700                      | BU6D_725MHz_<br>02DT                 | 13.2                                             | 160                                              | 2            | воттом                           | 1-5/8 Coax     | 130                                              |              |
| ANTENNA POSITION 2                                        | PORT 2                       | 59423.B.850.4G.<br>1 | 1                                | CTL01104_8B_1                                    | CTL01104_8B_1<br>CTCN001104_N0 |                                    | LTE 850                      | BU6D_850MHz_<br>02DT<br>BU6D_850MHz_ | 13.1                                             | 160                                              | 2            | воттом                           | 1-5/8 Coax     | 130                                              |              |
|                                                           |                              | 59423.B.850.5G.t     |                                  |                                                  |                                |                                    |                              |                                      |                                                  |                                                  |              |                                  |                |                                                  |              |

TPA65R-BU6DA-

TPA65R-BU6DA-K 1 TPA65R-BU6DA-K

LTE 700

LTE 1900 LTE 1900

| S9423 B 700 4G | S9423 B 700 4G | S70 4G | S70

1-5/8 Coax

130

SCPA/MCPA HATCHPLATE POWER (Watts) ERP (Watts)

1475.71

2951.41

CABLE ID(cssng)

|  |  |  | 4.500.0000 |  |  |  |  |
|--|--|--|------------|--|--|--|--|
|  |  |  |            |  |  |  |  |
|  |  |  |            |  |  |  |  |

|                                                                                      |                                                  |                                                  |                                    |                                                  |                               | Section 16C - PLANNED                     | PROPOSED TO    | WER CO       | ONFIGURAT                       | ON - SECTOR C  |                         |                      |                           |                             |                      |               |             |                     |        |
|--------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------------|-------------------------------|-------------------------------------------|----------------|--------------|---------------------------------|----------------|-------------------------|----------------------|---------------------------|-----------------------------|----------------------|---------------|-------------|---------------------|--------|
| ANTENNA POSITION is  LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENNA POSITION 1                               | ANTENNA                                          | POSITION 2                         | ANTENNA P                                        | OSITION 3                     | ANTENNA POSITION 4                        | ANTENNA POSITI | ION 5        | ANTE                            | NNA POSITION 6 | ANTENN                  | A POSITION 7         |                           |                             |                      |               |             |                     |        |
| LEFT to KIGHT HOILI BACK OF ARTENWA (UIIIESS OUIEWISE SPECIFICA)                     |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Existing Antenna?                                                                    |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| ANTENNA MAKE - MODEL                                                                 |                                                  | DMP65R-BU6DA                                     |                                    | TPA-65R-BU6DA-K                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| ANTENNA VENDOR                                                                       |                                                  | CCI                                              |                                    | CCI                                              |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| ANTENNA SIZE (H x W x D                                                              |                                                  | 71.2X20.7X7.7                                    |                                    | 71.2X20.7X7.7                                    |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| ANTENNA WEIGHT                                                                       |                                                  | 79.4                                             |                                    | 69                                               |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| AZIMUTH                                                                              |                                                  | 280                                              |                                    | 280                                              |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| MAGNETIC DECLINATION                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RADIATION CENTER (feet                                                               |                                                  | 92'                                              |                                    | 92'                                              |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| ANTENNA TIP HEIGHT                                                                   |                                                  | 95'                                              |                                    | 95'                                              |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
|                                                                                      |                                                  |                                                  |                                    | 00                                               |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| MECHANICAL DOWNTILT                                                                  |                                                  | 0                                                |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| FEEDER AMOUNT                                                                        |                                                  |                                                  |                                    | Fiber                                            |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP                                   |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)                                  |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)        |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE                      |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| to CENTERLINE  HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of    | •                                                | -                                                |                                    | <del>                                     </del> |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| inches                                                                               |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              | -                               |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Antenna RET Motor (QTY/MODEL                                                         |                                                  |                                                  | Internal                           |                                                  | Built in                      |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| SURGE ARRESTOR (QTY/MODEL)                                                           |                                                  | 4                                                | TSXDC-4310FM                       |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| DIPLEXER (QTY/MODEL)                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| DUPLEXER (QTY/MODEL)                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Antenna RET CONTROL UNIT (QTY/MODEL)                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| DC BLOCK (QTY/MODEL)                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| TMA/LNA (QTY/MODEL                                                                   |                                                  | 2                                                | TMABPD7823VG                       | 2                                                | TMA2124F03V5-                 |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| CURRENT INJECTORS FOR TMA (QTY/MODEL)                                                |                                                  |                                                  | I.D.                               | -                                                |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
|                                                                                      |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| PDU FOR TMAS (QTY/MODEL                                                              |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| FILTER (QTY/MODEL                                                                    |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| SQUID (QTY/MODEL                                                                     |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| FIBER TRUNK (QTY/MODEL)                                                              |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| DC TRUNK (QTY/MODEL)                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| REPEATER (QTY/MODEL)                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH - 700 band (QTY/MODEL                                                            |                                                  | 1                                                | 4449 B5/B12                        |                                                  | 4478 B14                      |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH - 850 band (QTY/MODEL)                                                           |                                                  |                                                  | RRH is shared<br>with another band | 1                                                |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH - 1900 band (QTY/MODEL)                                                          |                                                  |                                                  |                                    | 1 .                                              | 4415 B25                      |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH - AWS band (QTY/MODEL)                                                           |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH - WCS band (QTY/MODEL)                                                           |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Additional RRH #1 - any band (QTY/MODEL)                                             |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Additional RRH #2 - any band (QTY/MODEL)                                             |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH_7B_1 (QTY/MODEL                                                                  |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
|                                                                                      |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH_7B_2 (QTY/MODEL)                                                                 |                                                  |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| RRH_7B_3 (QTY/MODEL                                                                  |                                                  |                                                  |                                    |                                                  | Pentaplexer 5PX-<br>0726-O    |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Additional Component 1 (QTY/MODEL                                                    |                                                  | <del>                                     </del> |                                    | 4                                                |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Additional Component 2 (QTY/MODEL                                                    |                                                  | <del>                                     </del> |                                    | 2                                                | K SBT 782-11055<br>Polyphaser |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Additional Component 3 (QTY/MODEL                                                    | - Antennae and                                   | <del>                                     </del> |                                    | 2                                                | 1000860                       |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Local Market Note 1                                                                  | Radios as per PD                                 |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Local Market Note 2                                                                  | Configure per PD<br>1x6601 / 2x6630 /            | -                                                |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| Local Market Note 3                                                                  | 1xXMU03 + IDLe                                   |                                                  |                                    |                                                  |                               |                                           |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
|                                                                                      |                                                  |                                                  |                                    |                                                  |                               | ANTENNA                                   | ELECTRICAL EL  | ECTRICAL     | RRH LOCATION                    |                | FEEDER                  | RXAIT KIT            | TDIDI EVEN                | TRIDI EVEN                  | SCDA TION :          | HATCHPLATE    |             | Antonno Dev         | CABLE  |
| PORT SPECIFIC FIELDS PORT NUMBER USEID (CSSng)                                       | USEID (Atoll) ATOLL TXID                         | ATOLL CELL ID                                    | TX/RX?                             | TECHNOLOGY                                       | FREQUENCY                     | ATOLL ANTENNA GAIN                        | AZIMUTH ELI    | TILT         | (Top/Bottom/<br>Integrated/None | FEEDERS TYPE   | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? | TRIPLEXER or LLC<br>(QTY) | TRIPLEXER or<br>LLC (MODEL) | SCPA/MCPA<br>MODULE? | POWER (Watts) | ERP (Watts) | Antenna RET<br>Name | NUMBER |
| 59423.C.700.4G.                                                                      | 59423.C.700.4G.                                  |                                                  |                                    |                                                  |                               | BU6D_725MHz_                              |                |              |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |
| PORT 1                                                                               | 1 CTL01104_7C_1<br>59423 C 850 4G                |                                                  |                                    | LTE 700                                          |                               | 06DT 12.8                                 | 50 6           |              | воттом                          | 1-5/8 Coax     | 130                     |                      |                           |                             |                      |               | 1475.71     | 17                  | ·      |
| PORT 2                                                                               | 1 CTL01104_8C_1<br>59423.C.850.5G. CTCN001104_N0 | CTL01104_8C_1                                    |                                    | LTE 850                                          |                               | BU6D_850MHz_<br>06DT 13.2<br>BU6D_850MHz_ | 50 6           |              | воттом                          | 1-5/8 Coax     | 130                     |                      |                           |                             |                      |               | 1000        | 17                  |        |
| 9923.C.850.5G.1<br>PORT 5 mp1                                                        | 1 05C_1                                          | 05C_1                                            |                                    | 5G 850                                           |                               | 06DT 13.2                                 | 50 6           |              | воттом                          | 1-5/8 Coax     | 130                     |                      |                           |                             |                      | <u> </u>      | 1000        | 17                  | ,      |
|                                                                                      | L                                                | I                                                | ı                                  |                                                  |                               | I                                         | 1              |              | 1                               |                | 1                       |                      |                           | 1                           | 1                    | 1             |             |                     |        |
| 59423.C.700.4G.t                                                                     | 59423.C.700.4G. CTL01104_7C_3<br>5 _F            | CFL01104_7C_3<br>_F                              |                                    | LTE 700                                          |                               | TPA65R-BU6DA-<br>K 13.5                   | 280 6          |              | Bottom                          | 1-5/8 Coax     | 130                     |                      |                           |                             |                      |               | 2951.41     | 21                  |        |
| 59423.C.1900.4G  ANTENNA POSITION 3  PORT 4  Imp1                                    | CTL00104_9C_1                                    | CTL00104_9C_1                                    |                                    | LTE 1900                                         |                               | TPA65R-BU6DA-<br>K 15.9                   | 280 7          |              | Bottom                          | 1-5/8 Coax     | 130                     |                      |                           |                             |                      |               |             | 23                  | 3      |
| 59423.C.1900.4G<br>PORT 7                                                            | CTL00104_9C_2                                    | CTL00104_9C_2                                    |                                    | LTE 1900                                         |                               | TPA65R-BU6DA-<br>K 15.9                   | 280 7          |              | Bottom                          | 1-5/8 Coax     | 130                     |                      |                           |                             |                      |               |             | 24                  | 4      |
|                                                                                      |                                                  |                                                  |                                    |                                                  |                               |                                           |                | ige 18 of 30 |                                 |                |                         |                      |                           |                             |                      |               |             |                     |        |

|  |  |  |  |  |  |  |  | 4942.00 |  |
|--|--|--|--|--|--|--|--|---------|--|
|  |  |  |  |  |  |  |  |         |  |

#### Section 16.5A - SCOPING TOWER CONFIGURATION - SECTOR A (OR OMNI) Section 17A - FINAL TOWER CONFIGURATION - SECTOR A (OR OMNI)

| ANTENNA POSITION is<br>LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENN                                                          | NA POSITION 1    | ANTENNA I                                        | POSITION 2                                        | ANTENNA I      | POSITION 3                               | ANTENNA POSITION 4                        | ANTENN                 | A POSITION 5       | ANTI                                            | ENNA POSITION 6          | ANTENNA                 | A POSITION 7         |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------------------|----------------|------------------------------------------|-------------------------------------------|------------------------|--------------------|-------------------------------------------------|--------------------------|-------------------------|----------------------|
| ANTENNA MAKE                                                                           | MODEL                                                           |                  | DMP65R-BU6DA                                     |                                                   | TPA-65R-BU6DA- | к                                        |                                           |                        |                    |                                                 |                          |                         |                      |
| ANTENNA                                                                                | ENDOR                                                           |                  | CCI                                              |                                                   | CCI            |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| ANTENNA SIZE (H                                                                        | x W x D)                                                        |                  | 71.2X20.7X7.7                                    |                                                   | 71.2X20.7X7.7  |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| ANTENNA                                                                                | NEIGHT                                                          |                  | 79.4                                             |                                                   | 69             |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
|                                                                                        | ZIMUTH                                                          |                  | 50                                               |                                                   | 50             |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| MAGNETIC DECL                                                                          |                                                                 |                  | 001                                              |                                                   | 001            |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| RADIATION CENT                                                                         |                                                                 |                  | 92'<br>95'                                       |                                                   | 92'<br>95'     |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| ANTENNA TIF                                                                            |                                                                 |                  | 95                                               |                                                   | 95             |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| MECHANICAL DO                                                                          |                                                                 |                  | 0                                                |                                                   | 0              |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| FEEDER.  VERTICAL SEPARATION from ANTENNA ABOVE (T                                     |                                                                 |                  | 4                                                |                                                   | 4              |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| VERTICAL SEPARATION from ANTENNA BELOW (T                                              |                                                                 |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| ORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTE                               | RLINE to                                                        |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| CENT                                                                                   | ERLINE)                                                         |                  | +                                                |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CEN                               |                                                                 |                  |                                                  | 1                                                 |                |                                          |                                           |                        |                    | 1                                               | 1                        | 1                       | ı                    |
| HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenn                               | inches)                                                         | +                |                                                  |                                                   |                |                                          |                                           |                        |                    | 1                                               |                          | -                       |                      |
| Antenna RET Motor (QTY                                                                 |                                                                 | +                | +                                                | Internal                                          |                | Internal<br>BDFDM-DB (10)                |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| SURGE ARRESTOR (QTY                                                                    |                                                                 | +                | 8                                                | TSXDC-4310FM                                      | 14             | + TSXDC-                                 |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| DIPLEXER (QTY                                                                          |                                                                 | +                | 2                                                | DBC2055F1V1-2                                     |                |                                          |                                           |                        |                    | +                                               |                          | 1                       |                      |
| DUPLEXER (QTY                                                                          |                                                                 | +                | t                                                |                                                   |                | RRH<br>CONTROLLED                        |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| Antenna RET CONTROL UNIT (QTY                                                          |                                                                 | +                | 1                                                |                                                   |                | CONTROLLED                               |                                           |                        |                    |                                                 |                          |                         |                      |
| TMA/LNA (QTY                                                                           |                                                                 |                  | 2                                                | TMABPD7823VG<br>12A                               | 2              | TMA2124F03V5-<br>1D                      |                                           |                        |                    |                                                 |                          |                         |                      |
| CURRENT INJECTORS FOR TMA (QTY                                                         |                                                                 |                  |                                                  |                                                   | 1              | KATHREIN 860-<br>10006                   |                                           |                        |                    |                                                 |                          |                         |                      |
| PDU FOR TMAS (QTY                                                                      |                                                                 |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| FILTER (QTY                                                                            | MODEL)                                                          |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| SQUID (QTY                                                                             | MODEL)                                                          |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| FIBER TRUNK (QTY                                                                       | MODEL)                                                          |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| DC TRUNK (QTY                                                                          | MODEL)                                                          | +                | <del>                                     </del> |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| REPEATER (QTY                                                                          |                                                                 | +                | <u> </u>                                         |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| RRH - 700 band (QTY                                                                    |                                                                 | +                |                                                  | 4449 B5/B12<br>RRH is shared<br>with another band | 1              | 4478 B14                                 |                                           |                        |                    |                                                 |                          |                         |                      |
| RRH - 850 band (QTY                                                                    |                                                                 | +                | +                                                | with another band                                 |                | 4415 B25                                 |                                           |                        |                    |                                                 |                          |                         |                      |
| RRH - AWS band (QTY                                                                    |                                                                 | +                | +                                                |                                                   | 1              | 4415 B25<br>4426 B66                     |                                           |                        |                    |                                                 |                          |                         |                      |
| RRH - WCS band (QTY                                                                    |                                                                 | 1                | 1                                                | RRUS-32 B30                                       | -              | 20 500                                   |                                           |                        |                    |                                                 |                          |                         |                      |
| Additional RRH #1 - any band (QTY                                                      |                                                                 |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| Additional RRH #2 - any band (QTY                                                      |                                                                 |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| RRH_7B_1 (QTY                                                                          | MODEL)                                                          |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| RRH_7B_2 (QTY                                                                          | MODEL)                                                          |                  |                                                  |                                                   |                |                                          |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| RRH_7B_3 (QTY                                                                          | MODEL)                                                          | +                | <del> </del>                                     |                                                   |                | Pentanlever 5DV                          |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| Additional Component 1 (QTY                                                            | MODEL)                                                          | +                | +                                                |                                                   | 4              | Pentaplexer 5PX-<br>0726-O               |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| Additional Component 2 (QTY                                                            |                                                                 | +                | <del> </del>                                     |                                                   | 2              | K SBT 782-11055<br>Polyphaser<br>1000860 |                                           |                        |                    | 1                                               |                          | 1                       |                      |
| Additional Component 3 (QTY                                                            | - Antennae and                                                  | Radios as per PD | 1                                                |                                                   | 2              | 1000860                                  |                                           |                        |                    |                                                 |                          |                         |                      |
|                                                                                        | t Note 1 - Move UMTS                                            |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
|                                                                                        | ot Note 2 Configure per Pi                                      |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| Local Mark                                                                             |                                                                 |                  |                                                  |                                                   |                |                                          |                                           |                        |                    |                                                 |                          |                         |                      |
| PORT SPECIFIC FIELDS PORT NUMBER USEID                                                 |                                                                 |                  | ATOLL CELL ID                                    | TX/RX?                                            | TECHNOLOGY     |                                          | ANTENNA ANTENNA G                         | AIN ELECTRICAL AZIMUTH | ELECTRICAL<br>TILT | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None | FEEDERS TYPE             | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? |
| PORT 1 1                                                                               | 700.4G. 59423.A.700.4G                                          | CTL01104_7A_1    | CTL01104_7A_1                                    |                                                   | LTE 700        |                                          | BU6D_725MHz_<br>10DT 12.7                 | 160                    | 10                 | воттом                                          | 1-5/8 Coax               | 130                     |                      |
| ANTENNA POSITION 2 PORT 2 1                                                            | 850.4G. 59423.A.850.4G                                          | á.               | 1                                                | 1                                                 | LTE 850        |                                          | BU6D_850MHz_<br>10DT 13.3                 | 160                    | 10                 | воттом                                          | 1-5/8 Coax               | 130                     |                      |
|                                                                                        | 1                                                               | 10               | CTL01104_8A_1                                    |                                                   | L1E 000        |                                          | DUIGN 2255MU2                             |                        |                    |                                                 |                          |                         |                      |
| PORT 3 .1                                                                              | 1<br>WCS.4G 59423.A.WCS.4<br>.1<br>850.5G.t 59423.A.850.5G<br>1 | 10               |                                                  |                                                   | LTE WCS        |                                          | BU6D_2355MHz<br>_04DT 17.7<br>BU6D_850MHz | 160                    | 4                  | Bottom<br>BOTTOM                                | 1-5/8 Coax<br>1-5/8 Coax | 130                     |                      |

TPA65R-BU6DA-K 13.1 K TPA65R-BU6DA-K

UMTS 850

59423 A 700.4G1 59423 A 700.4G. CTL01104\_7A\_3 CTL01104\_7A\_3 F 59423 A 850.3G 59423 A 850.3G. CTV11041 CTV11041 CTV11041

CABLE ID(cssng)

ERP (Watts) 1475.71 5070.26

2951.413

|                    | 59423.A.AWS.4G 59423.A.AWS.4G PORT 31, tmp4 4 CTL00104 2A 2 CTL00104 2A 2 ITF AWS | TPA65R-BU6DA-                | Bottom 1 Elif Conv. 190 | 1285.2866 6 |
|--------------------|-----------------------------------------------------------------------------------|------------------------------|-------------------------|-------------|
| ANTENNA POSITION 3 | 59423.A.1900.4G 59423.A.1900.4G PORT 4.2                                          | TPA65R-BU6DA-<br>K 15.6 50 4 | Bottom 1-5/8 Coax 130   | 4842.058 6  |
|                    | 59423 A.1900.4G 59423.A.1900.4G  PORT 7, Imp4                                     | TPA65R-BU6DA-<br>K 15.6 50 4 | Bottom 1-5/8 Coax 130   | 4842.058 6  |
|                    | . tmp4, 59423.A.1900.4G<br>PORT 8 59423.A.1900.4G                                 | TPA6SR-BU6DA-<br>K 15.6 50 4 | Bottom 1-5/8 Coax 130   | 4842.058 6  |

|                                                                                           |                                  |               |                                    |               |                            | Sec     | tion 17B - F | INAL TOWER | R CONFIGUE | RATION - SEC | CTOR B         |        |              |
|-------------------------------------------------------------------------------------------|----------------------------------|---------------|------------------------------------|---------------|----------------------------|---------|--------------|------------|------------|--------------|----------------|--------|--------------|
| ANTENNA POSITION is  LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified)      | ANTENNA POSITION 1               | ANTENNA       | POSITION 2                         | ANTENNA       | POSITION 3                 | ANTENNA | POSITION 4   | ANTENNA    | POSITION 5 | ANTE         | NNA POSITION 6 | ANTENN | A POSITION 7 |
| ANTENNA MAKE - MODEL                                                                      |                                  | DMP65R-BU6DA  |                                    | TPA-65R-BU6DA | -K                         |         |              |            |            |              |                |        |              |
| ANTENNA VENDOR                                                                            |                                  | CCI           |                                    | CCI           |                            |         |              |            |            |              |                |        |              |
| ANTENNA SIZE (H x W x D)                                                                  |                                  | 71.2X20.7X7.7 |                                    | 71.2X20.7X7.7 |                            |         |              |            |            |              |                |        |              |
| ANTENNA WEIGHT                                                                            |                                  | 79.4          |                                    | 69            |                            |         |              |            |            |              |                |        |              |
| AZIMUTH                                                                                   |                                  | 160           |                                    | 160           |                            |         |              |            |            |              |                |        |              |
| MAGNETIC DECLINATION                                                                      |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| RADIATION CENTER (feet)                                                                   |                                  | 92'           |                                    | 92'           |                            |         |              |            |            |              |                |        |              |
| ANTENNA TIP HEIGHT                                                                        |                                  | 95'           |                                    | 95'           |                            |         |              |            |            |              |                |        |              |
| MECHANICAL DOWNTILT                                                                       |                                  | 0             |                                    | 0             |                            |         |              |            |            |              |                |        |              |
| FEEDER AMOUNT                                                                             |                                  | 4             |                                    | 4             |                            |         |              |            |            |              |                |        |              |
| VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)                                       |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)                                       |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)             |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE                           |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| to CENTERLINE) HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches) |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
|                                                                                           |                                  |               | Internal                           |               |                            |         |              |            |            |              |                |        |              |
| Antenna RET Motor (QTY/MODEL)  SURGE ARRESTOR (QTY/MODEL)                                 |                                  |               | TSXDC-4310FM                       | 14            | BDFDM-DB (10)<br>+ TSXDC-  |         |              |            |            |              |                |        |              |
| SURGE ARRESTOR (QTT/MODEL) DIPLEXER (QTY/MODEL)                                           |                                  | 2             |                                    | 14            | + ISADC*                   |         |              |            |            |              |                |        |              |
|                                                                                           |                                  | 2             | DBC2055F1V1-2                      |               |                            |         |              |            |            |              |                |        |              |
| DUPLEXER (QTY/MODEL)                                                                      |                                  |               |                                    |               | RRH<br>CONTROLLED          |         |              |            |            |              |                |        |              |
| Antenna RET CONTROL UNIT (QTY/MODEL)                                                      |                                  |               |                                    |               | CONTROLLED                 |         |              |            |            |              |                |        |              |
| DC BLOCK (QTY/MODEL)                                                                      |                                  |               | TMABPD7823VG<br>12A                |               | TMA2124F03V5-<br>1D        |         |              |            |            |              |                |        |              |
| TMA/LNA (QTY/MODEL)  CURRENT INJECTORS FOR TMA (QTY/MODEL)                                |                                  | 2             | IZA                                | 2             | ID                         |         |              |            |            |              |                |        |              |
| PDU FOR TMAS (QTY/MODEL)                                                                  |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| FILTER (QTY/MODEL)                                                                        |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| SQUID (QTY/MODEL)                                                                         |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| FIBER TRUNK (QTY/MODEL)                                                                   |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| DC TRUNK (QTY/MODEL)                                                                      |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| REPEATER (QTY/MODEL)                                                                      |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| RRH - 700 band (QTY/MODEL)                                                                |                                  | 1             | 4449 B5/B12                        |               | 4478 B14                   |         |              |            |            |              |                |        |              |
| RRH - 850 band (QTY/MODEL)                                                                |                                  |               | RRH is shared<br>with another band |               | 4470 014                   |         |              |            |            |              |                |        |              |
| RRH - 1900 band (QTY/MODEL)                                                               |                                  |               | another ballo                      | 1             | 4415 B25                   |         |              |            |            |              |                |        |              |
| RRH - AWS band (QTY/MODEL)                                                                |                                  |               |                                    | 1             | 4415 B25<br>4426 B66       |         |              |            |            |              |                |        |              |
| RRH - WCS band (QTY/MODEL)                                                                |                                  | 1             | RRUS-32 B30                        |               | ++20 B00                   |         |              |            |            |              |                |        |              |
| Additional RRH #1 - any band (QTY/MODEL)                                                  |                                  | 1             |                                    |               |                            |         |              |            |            |              |                |        |              |
| Additional RRH #2 - any band (QTY/MODEL)                                                  |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| RRH_7B_1 (QTY/MODEL)                                                                      |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| RRH_7B_1 (QTY/MODEL)                                                                      |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| RRH_7B_3 (QTY/MODEL)                                                                      |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| Additional Component 1 (QTY/MODEL)                                                        |                                  |               |                                    | 4             | Pentaplexer 5PX-<br>0726-O |         |              |            |            |              |                |        |              |
| Additional Component 1 (QTY/MODEL)  Additional Component 2 (QTY/MODEL)                    |                                  |               |                                    | 2             | K SBT 782-11055            |         |              |            |            |              |                |        |              |
| Additional Component 3 (QTY/MODEL)                                                        |                                  |               |                                    | 2             | Polyphaser<br>1000860      |         |              |            |            |              |                |        |              |
| Additional Component's (QTY/MODEL)  Local Market Note 1                                   | - Antennae and Radios as per PD  | 1             | 1                                  | 1*            | 1.000000                   | 1       | 1            | l          | 1          | 1            |                | l      | 1            |
| Local Market Note 1  Local Market Note 2                                                  |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
|                                                                                           | 1x6601 / 2x6630 / 1xXMU03 + IDL  |               |                                    |               |                            |         |              |            |            |              |                |        |              |
| Local market Note 3                                                                       | 10000 1 / 200030 / 1AAMOUS * IDE |               |                                    |               |                            |         |              |            |            |              |                |        |              |
|                                                                                           |                                  |               |                                    |               |                            |         |              |            |            |              |                |        |              |

| PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng)           | USEID (Atoli)        | ATOLL TXID             | ATOLL CELL ID          | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA<br>ATOLL      | ANTENNA GAIN | ELECTRICAL<br>AZIMUTH | ELECTRICAL<br>TILT | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or<br>LLC (MODEL) | SCPA/MCPA<br>MODULE? | HATCHPLATE<br>POWER (Watts) | ERP (Watts) | Antenna RET<br>Name | CABLE<br>NUMBER | CABLE<br>ID(cssng) |
|----------------------|-------------|-------------------------|----------------------|------------------------|------------------------|--------|------------------------|-----------------------|--------------|-----------------------|--------------------|--------------------------------------------------|--------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------|
|                      | PORT 1      | 59423.B.700.4G.<br>1    |                      | CTL01104 7B 1          | CTL01104 7B 1          |        | LTE 700                | BU6D_725MHz_<br>02DT  | 13.2         | 160                   | 2                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1475.71     |                     | 9               |                    |
| ANTENNA POSITION 2   | PORT 2      | 59423.B.850.4G.<br>1    |                      | CTL01104_8B_1          | CTL01104_8B_1          |        | LTE 850                | BU6D_850MHz_<br>02DT  | 13.1         | 160                   | 2                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1000        |                     | 9               |                    |
| ANTENNA POSITION 2   | PORT 3      | 59423.B.WCS.4G<br>.1    |                      | CTL01104_3B_1          | CTL01104_3B_1          |        | LTE WCS                | BU6D_2355MHz<br>_02DT | 18.5         | 160                   | 2                  | Bottom                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 5070.26     |                     | 10              |                    |
|                      | PORT 5      | 59423.B.850.5G.t<br>mp1 | 59423.B.850.5G.<br>1 | CTCN001104_N0<br>05B_1 | CTCN001104_N0<br>05B_1 |        | 5G 850                 | BU6D_850MHz_<br>02DT  | 13.1         | 160                   | 2                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1000        |                     | 9               |                    |
|                      |             |                         |                      |                        |                        |        |                        |                       |              |                       |                    | •                                                |              |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |
|                      |             | 59423.B.700.4G.t        | 59423.B.700.4G.      | CTL01104_7B_3          | CTL01104_7B_3          |        |                        | TPA65R-BU6DA-         |              |                       |                    |                                                  |              |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |

PORT 2 1 C 1/1/10/2 C

| ANTENNA POSITIONS  |        |                 |                 |                             |          |               |    |     |   |        |            |     |  |  |          |    |
|--------------------|--------|-----------------|-----------------|-----------------------------|----------|---------------|----|-----|---|--------|------------|-----|--|--|----------|----|
| ARTEMIA I CONTON S |        | 59423.B.1900.4G | 59423.B.1900.4G |                             |          | TPA65R-BU6DA- |    |     |   |        |            |     |  |  |          |    |
|                    | PORT 4 | .tmp1           | .1              | CTL00104_9B_1 CTL00104_9B_1 | LTE 1900 | K             | 16 | 160 | 2 | Bottom | 1-5/8 Coax | 130 |  |  | 4842.058 | 14 |
|                    |        | 59423.B.1900.4G | 59423.B.1900.4G |                             |          | TPA65R-BU6DA- |    |     |   |        |            |     |  |  |          |    |
|                    | PORT 7 | .tmp4           | .4              | CTL00104_9B_2 CTL00104_9B_2 | LTE 1900 | K             | 16 | 160 | 2 | Bottom | 1-5/8 Coax | 130 |  |  | 4842.058 | 14 |
|                    |        | .tmp4,          | 59423.B.1900.4G |                             |          | TPA65R-BU6DA- |    |     |   |        |            |     |  |  |          |    |
|                    | PORT 8 | 59423.B.1900.4G | .4              | CTL00104_9B_3 CTL00104_9B_3 | LTE 1900 | K             | 16 | 160 | 2 | Bottom | 1-5/8 Coax | 130 |  |  | 4842.058 | 14 |

|                                                                                        |                                                      |               |                                                   |                |                           | Sec     | tion 17C - F | INAL TOWER | CONFIGUE   | RATION - SEC | CTOR C         |        |              |
|----------------------------------------------------------------------------------------|------------------------------------------------------|---------------|---------------------------------------------------|----------------|---------------------------|---------|--------------|------------|------------|--------------|----------------|--------|--------------|
| ANTENNA POSITION is  LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified)   | ANTENNA POSITION 1                                   | ANTENNA       | POSITION 2                                        | ANTENNA        | POSITION 3                | ANTENNA | POSITION 4   | ANTENNA    | POSITION 5 | ANTE         | NNA POSITION 6 | ANTENN | A POSITION 7 |
|                                                                                        |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| ANTENNA MAKE - MODEL                                                                   |                                                      | DMP65R-BU6DA  |                                                   | TPA-65R-BU6DA- | К                         |         |              |            |            |              |                |        |              |
| ANTENNA VENDOR                                                                         |                                                      | CCI           |                                                   | CCI            |                           |         |              |            |            |              |                |        |              |
| ANTENNA SIZE (H x W x D                                                                |                                                      | 71.2X20.7X7.7 |                                                   | 71.2X20.7X7.7  |                           |         |              |            |            |              |                |        |              |
| ANTENNA WEIGHT                                                                         |                                                      | 79.4          |                                                   | 69             |                           |         |              |            |            |              |                |        |              |
| AZIMUTH                                                                                |                                                      | 280           |                                                   | 280            |                           |         |              |            |            |              |                |        |              |
| MAGNETIC DECLINATION                                                                   |                                                      | 001           |                                                   | 92'            |                           |         |              |            |            |              |                |        |              |
| RADIATION CENTER (feet                                                                 |                                                      | 92'<br>95'    |                                                   | 95'            |                           |         |              |            |            |              |                |        |              |
| ANTENNA TIP HEIGHT                                                                     |                                                      | 90            |                                                   | 90             |                           |         |              |            |            |              |                |        |              |
| MECHANICAL DOWNTILT                                                                    |                                                      | 0             |                                                   | 0              |                           |         |              |            |            |              |                |        |              |
| FEEDER AMOUNT                                                                          |                                                      | 4             |                                                   | 4              |                           |         |              |            |            |              |                |        |              |
| VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP                                     |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP                                     |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)          |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE          |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| to CENTERLINE HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # o inches |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
|                                                                                        |                                                      |               | Internal                                          |                | lata-sal                  |         |              |            |            |              |                |        |              |
| Antenna RET Motor (QTY/MODEL                                                           |                                                      |               | TSXDC-4310FM                                      | 10             | Andrew APTDC-<br>BDFDM-DB |         |              |            |            |              |                |        |              |
| SURGE ARRESTOR (QTY/MODEL)                                                             |                                                      |               |                                                   | 10             | BDFUM-UB                  |         |              |            |            |              |                |        |              |
| DIPLEXER (QTY/MODEL)                                                                   |                                                      | 2             | DBC2055F1V1-2                                     |                |                           |         |              |            |            |              |                |        |              |
| DUPLEXER (QTY/MODEL                                                                    |                                                      |               |                                                   |                | RRH                       |         |              |            |            |              |                |        |              |
| Antenna RET CONTROL UNIT (QTY/MODEL                                                    |                                                      |               |                                                   |                | CONTROLLED                |         |              |            |            |              |                |        |              |
| DC BLOCK (QTY/MODEL)                                                                   |                                                      |               | TMABPD7823VG                                      |                | TMA2124F03V5-<br>1D       |         |              |            |            |              |                |        |              |
| TMA/LNA (QTY/MODEL                                                                     |                                                      | 2             | 12A                                               | 2              | טו                        |         |              |            |            |              |                |        |              |
| CURRENT INJECTORS FOR TMA (QTY/MODEL                                                   |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| PDU FOR TMAS (QTY/MODEL)                                                               |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| FILTER (QTY/MODEL)                                                                     |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| SQUID (QTY/MODEL)                                                                      |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| FIBER TRUNK (QTY/MODEL)                                                                |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| DC TRUNK (QTY/MODEL                                                                    |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| REPEATER (QTY/MODEL)                                                                   |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| RRH - 700 band (QTY/MODEL)                                                             |                                                      | 1             | 4449 B5/B12<br>RRH is shared<br>with another band | 1              | 4478 B14                  |         |              |            |            |              |                |        |              |
| RRH - 850 band (QTY/MODEL)                                                             |                                                      |               | with another band                                 |                | 4415 B25                  |         |              |            |            |              |                |        |              |
| RRH - 1900 band (QTY/MODEL)                                                            |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| RRH - AWS band (QTY/MODEL)                                                             |                                                      |               | RRUS-32 B30                                       |                | 4426 B66                  |         |              |            |            |              |                |        |              |
| RRH - WCS band (QTY/MODEL                                                              |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| Additional RRH #1 - any band (QTY/MODEL)                                               |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| Additional RRH #2 - any band (QTY/MODEL:                                               |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| RRH_7B_1 (QTY/MODEL)                                                                   |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| RRH_7B_2 (QTY/MODEL)                                                                   |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| RRH_7B_3 (QTY/MODEL)                                                                   |                                                      |               |                                                   |                | Pentaplexer 5PX-          |         |              |            |            |              |                |        |              |
| Additional Component 1 (QTY/MODEL)                                                     |                                                      |               |                                                   | 2              | 0726-Ö<br>K SBT 782-11055 |         |              |            |            |              |                |        |              |
| Additional Component 2 (QTY/MODEL)                                                     |                                                      |               |                                                   | 2              | Polyphaser<br>1000860     |         |              |            |            |              |                |        |              |
| Additional Component 3 (QTY/MODEL)                                                     | - Antennae and Radios as per PD                      | 1             | I .                                               | <u> -</u>      | 1000000                   |         | I .          | l .        | 1          | 1            |                | l .    | 1            |
| Local Market Note 1                                                                    |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| Local Market Note 2                                                                    | Configure per PD<br>1x6601 / 2x6630 / 1xXMU03 + IDLe |               |                                                   |                |                           |         |              |            |            |              |                |        |              |
| Local Market Note 3                                                                    |                                                      |               |                                                   |                |                           |         |              |            |            |              |                |        |              |

59423.C.850.3G. 59423.C.850.3G.

CTL00104\_2C\_2 CTL00104\_2C\_2

59423.C.AWS.4G 59423.C.AWS.4G PORT 3 .tmp4 .tmp4

|                      |             | ocui mui net ivote e    | 18000172800307       | IXMINOUS - IDEC        |                        |        |                        |                       |              |                       |                    |                                                  |              |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |
|----------------------|-------------|-------------------------|----------------------|------------------------|------------------------|--------|------------------------|-----------------------|--------------|-----------------------|--------------------|--------------------------------------------------|--------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------|
|                      |             |                         |                      |                        |                        |        |                        |                       |              |                       |                    |                                                  |              |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |
| PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng)           | USEID (Atoli)        | ATOLL TXID             | ATOLL CELL ID          | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA<br>ATOLL      | ANTENNA GAIN | ELECTRICAL<br>AZIMUTH | ELECTRICAL<br>TILT | RRH LOCATION<br>(Top/Bottom/<br>Integrated/None) | FEEDERS TYPE | FEEDER<br>LENGTH (feet) | RXAIT KIT<br>MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or<br>LLC (MODEL) | SCPA/MCPA<br>MODULE? | HATCHPLATE<br>POWER (Watts) | ERP (Watts) | Antenna RET<br>Name | CABLE<br>NUMBER | CABLE<br>ID(cssng) |
|                      | PORT        | 59423.C.700.4G.         |                      | CTL01104_7C_1          | CTL01104_7C_1          |        |                        | BU6D_725MHz_<br>06DT  | 12.8         | 280                   | 6                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1475.71     |                     | 17              | 1                  |
| ANTENNA POSITION 2   | PORT:       | 59423.C.850.4G.         |                      | CTL01104_8C_1          | CTL01104_8C_1          |        |                        | BU6D_850MHz_<br>06DT  | 13.2         | 280                   | 6                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1000        |                     | 17              | <br>I              |
| ANTENNA POSITION 2   | PORT:       | 59423.C.WCS.4G          | 59423.C.WCS.4G<br>.1 | CTL01104_3C_1          | CTL01104_3C_1          |        | LTE WCS                | BU6D_2355MHz<br>_07DT | 17.2         | 280                   | 7                  | Bottom                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 5070.26     |                     | 18              | 1                  |
|                      | PORT        | 59423.C.850.5G.t<br>mp1 | 59423.C.850.5G.<br>1 | CTCN001104_N0<br>05C_1 | CTCN001104_N0<br>05C_1 |        |                        | BU6D_850MHz_<br>06DT  | 13.2         | 280                   | 6                  | воттом                                           | 1-5/8 Coax   | 130                     |                      |                        |                             |                      |                             | 1000        |                     | 17              | 1                  |
|                      |             |                         |                      |                        |                        |        |                        |                       |              |                       |                    |                                                  |              |                         |                      |                        |                             |                      |                             |             |                     |                 |                    |
|                      | DODT        | 59423.C.700.4G.t        | 59423.C.700.4G.      | CTL01104_7C_3          | CTL01104_7C_3          |        | I TE 700               | TPA65R-BU6DA-         | 13.5         | 280                   | 6                  | Rottom                                           | 1-5/8 Cnay   | 130                     |                      |                        |                             |                      |                             | 2051 413    |                     | 21              | ı                  |

Page 24 of 30

TPA65R-BU6DA-K TPA65R-BU6DA-K

LTE AWS

| ANTENNA FOSITION S |        |                    |                |               |               |          |               |      |     |   |        |            |     |  |  |          |   |    |  |
|--------------------|--------|--------------------|----------------|---------------|---------------|----------|---------------|------|-----|---|--------|------------|-----|--|--|----------|---|----|--|
| ANTENNA POSITION 3 |        | 59423.C.1900.4G 5  | 9423.C.1900.4G |               |               |          | TPA65R-BU6DA- |      |     |   |        |            |     |  |  |          |   |    |  |
|                    | PORT 4 | .tmp1 .1           | 1              | CTL00104_9C_1 | CTL00104_9C_1 | LTE 1900 | K             | 15.9 | 280 | 7 | Bottom | 1-5/8 Coax | 130 |  |  | 4842.058 |   | 22 |  |
|                    |        | 59423.C.1900.4G 5  | 9423.C.1900.4G |               |               |          | TPA65R-BU6DA- |      |     |   |        |            |     |  |  |          |   |    |  |
|                    | PORT 7 | .tmp4 .4           | 1              | CTL00104_9C_2 | CTL00104_9C_2 | LTE 1900 | K             | 15.9 | 280 | 7 | Bottom | 1-5/8 Coax | 130 |  |  | 4842.058 |   | 22 |  |
|                    |        | .tmp4, 5           | 9423.C.1900.4G |               |               |          | TPA65R-BU6DA- |      |     |   |        |            |     |  |  |          |   | 1  |  |
|                    | PORT 8 | 59423.C.1900.4G .4 | 1              | CTL00104_9C_3 | CTL00104_9C_3 | LTE 1900 | K             | 15.9 | 280 | 7 | Bottom | 1-5/8 Coax | 130 |  |  | 4842.058 | l | 22 |  |

Diagram Sector: A

Diagram File Name: CT1104\_A\_B\_C\_6C\_5G\_NR\_RRHBottomRev
Atoll Site Name: CTL01104

Location Name: FARMINGTON NU MAPLE RIDGE DR
Market: CONNECTICUT

Market Cluster: NEW ENGLAND

Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna Radio Connection Dra

ANTENNA POSITION 1

**EMPTY** 



Diagram Sector: B
Atoll Site Name: CTL01104
Market: CONNECTICUT

Diagram File Name: CT1104\_A\_B\_C\_6C\_5G\_NR\_RRHBottomRev Location Name: FARMINGTON NU MAPLE RIDGE DR Market Cluster: NEW ENGLAND

Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna Radio Connection Dra



Diagram Sector: C
Atoll Site Name: CTL01104
Market: CONNECTICUT

Diagram File Name: CT1104\_A\_B\_C\_6C\_5G\_NR\_RRHBottomRev Location Name: FARMINGTON NU MAPLE RIDGE DR Market Cluster: NEW ENGLAND

Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna Radio Connection Dra



| Date / Time<br>(Eastern) | Version | ATTUID | Note                      |
|--------------------------|---------|--------|---------------------------|
| 11/13/2020 3:59:2        | 2.00    | om636a | RFDS VERSION incremented. |
| 11/13/2020 3:59:2        | 2.00    | om636a | Updated PCS radio to 4415 |
| 10/11/2021 12:07:        | 2.00    | sp656b | Revised by Jobet          |

|                          |                                           |                  |                                     |                  |                    |                                                | -                                                      |
|--------------------------|-------------------------------------------|------------------|-------------------------------------|------------------|--------------------|------------------------------------------------|--------------------------------------------------------|
| Date                     | FROM State / Status                       | FROM             | TO State / Status                   | TO               | Operation          | n Comments                                     | PACE Status                                            |
| 03/27/2020               | Preliminary In Progress                   | OM636A           | Preliminary Submitted for A         |                  |                    | Preliminary RFDS                               | NER-RCTB-20-01313 MRCTB046571 SUCCESS 03/27/2020 6:38  |
| 04/07/2020               | Preliminary Submitted for Apr             |                  | Preliminary In Progress             | om636a           |                    | incorrect iplan.                               |                                                        |
| 4/07/2020                | Preliminary In Progress                   | om636a           | Preliminary Submitted for A         | Appro KG0839     | Promote            | iplan corrected                                | NER-RCTB-20-01313 FAILURE 04/07/2020 12:09:05 PMNER-R  |
| /20/2020                 | Preliminary Submitted for App             | pro KG0839       | Preliminary Modification Re         | ecomr OM636a     | Demote             | 4/20/2020 - please refresh PACE & iPlan. N     | EF                                                     |
| 4/20/2020                | Preliminary Modification Reco             | omr OM636a       | Preliminary Submitted for A         | Appro KG0839     | Promote            | Mentioned iplan and pace are not found in      | R                                                      |
| /21/2020                 | Preliminary Submitted for App             |                  | Preliminary Approved                | FC091G           | Promote            | 4/21/2020 - promoted without review, plea      |                                                        |
| 5/14/2020                | Preliminary Approved                      | FC091G           | Preliminary Modification Re         |                  |                    | Plumbing Diagram (Incorrect) - PD Note ind     | lic                                                    |
| 15/15/2020               | Preliminary Modification Reco             |                  | Preliminary Submitted for A         |                  | Promote            | updated separation notes in PD                 |                                                        |
| 05/18/2020               | Preliminary Submitted for App             |                  | Preliminary Approved                | FC091G<br>OM636A | Promote            | 5/18/2020 - re-promoting without review        |                                                        |
| 05/19/2020<br>08/11/2020 | Preliminary Approved<br>Final RF Approval | FC091G<br>OM636A | Final RF Approval<br>Final Approved | FC091G           | Promote<br>Promote | Refreshed CSS                                  | NER-RCTB-20-01313 MRCTB046571 SUCCESS 08/11/2020 6:59  |
| 11/13/2020               | Final Approved                            | FC091G           | Final RF Approval                   | om636a           | Pull Back          | Replace PCS radio to 4415                      | NER-NC18-20-01313 WINC18040371 30CCE33 00/11/2020 0.35 |
| 11/13/2020               | Final RF Approval                         | om636a           | Final Approved                      | fc091g           | Promote            | updated PCS to 4415                            | NER-RCTB-20-01313 PENDING 11/13/2020 4:05:19 PMNER-R   |
| -, -,,                   |                                           |                  |                                     |                  |                    | Scoping Change – Revise Sect 16, 17, LMN       |                                                        |
|                          |                                           |                  |                                     |                  |                    | & to show the following Final Configuration    | 1                                                      |
|                          |                                           |                  |                                     |                  |                    | for all Sectors:                               |                                                        |
|                          |                                           |                  |                                     |                  |                    | Pos. 2                                         |                                                        |
|                          |                                           |                  |                                     |                  |                    | (3) DMP65R-BU6DA (Tower)                       |                                                        |
|                          |                                           |                  |                                     |                  |                    | (6) TMABPD7823VG12A (Tower)                    |                                                        |
|                          |                                           |                  |                                     |                  |                    | (6) DBC2055F1V1-2 (Shelter)                    |                                                        |
|                          |                                           |                  |                                     |                  |                    | (3) 4449 (Shelter)<br>(3) RRUS-32B30 (Shelter) |                                                        |
|                          |                                           |                  |                                     |                  |                    | (4) Lines of coax                              |                                                        |
|                          |                                           |                  |                                     |                  |                    | (4) Lilies of Coax                             |                                                        |
|                          |                                           |                  |                                     |                  |                    | Pos. 4                                         |                                                        |
| 10/07/2021               | Final Approved                            | fc091g           | Final Modification Recomme          | iender SP656B    | Demote             | (3) TPA65R-BU6DA-K (Tower)                     |                                                        |
|                          |                                           |                  |                                     |                  |                    | (6) TMA2124F03V5-1D (Tower)                    |                                                        |
|                          |                                           |                  |                                     |                  |                    | (6) K SBT 782-11055 (Shelter)                  |                                                        |
|                          |                                           |                  |                                     |                  |                    | (6) Polyphaser 1000860 (Shelter)               |                                                        |
|                          |                                           |                  |                                     |                  |                    | (12) Pentaplexer 5PX-0726-O (Shelter)          |                                                        |
|                          |                                           |                  |                                     |                  |                    | (3) 4478 -B14(Shelter)                         |                                                        |
|                          |                                           |                  |                                     |                  |                    | (3) 4415-B25 (Shelter)                         |                                                        |
|                          |                                           |                  |                                     |                  |                    | (3) 4426-B66 (Shelter)<br>(4) lines of coax    |                                                        |
|                          |                                           |                  |                                     |                  |                    | (4) lines of coax                              |                                                        |
|                          |                                           |                  |                                     |                  |                    | ALL Rad Centers to be 92'.                     |                                                        |
|                          |                                           |                  |                                     |                  |                    |                                                |                                                        |
| 10/11/2021               | Final Modification Recommer               | nderSP656B       | Final Approved                      | FC091G           | Promote            | Revised as requested.                          |                                                        |
|                          |                                           |                  |                                     |                  |                    |                                                |                                                        |
|                          |                                           |                  |                                     |                  |                    |                                                |                                                        |





DATA SHEET

# Diplexed Multi-Band Antenna

DMP65R-BU6D



- Six foot (1.8 m) internally multiplexed MultiBand antenna, including eight external RF ports (12 RF ports internal), with a 65° azimuth beamwidth covering 698-896 MHz and 1695-2400 MHz frequencies
- Four wide high band ports covering 1695-2400 MHz and four wide low band ports covering 698-896 MHz in a single antenna enclosure
- Innovative Multiplexed/RET Control configuration, supporting Dual Band Radio Configurations (B12/B5 and B29/B5). The antenna provides Dual 4T4R (4x4 MIMO) capability, while providing independent RET control, an Industry First
- Innovative Low and High Band Array configuration allows for 4T4R (4x4 MIMO) on Low Band and 4T4R (4x4 MIMO) High Band Arrays, using full length arrays (non stacked), all in a 20.7" (525 mm) width enclosure, an Industry First
- Industry leading antenna topology and RET shielding techniques drastically mitigate PIM propagation from B12/B14/B29 operations, allowing for superior Network performance
- Full Spectrum Compliance for PCS, AWS-3 and WCS frequencies and 700/850 MHz Dual Band Radio Configurations
- LTE Optimized FBR and SPR performance, providing for an efficient use of valuable radio capacity
- LTE Optimized Boresight and Sector XPD and USL performance, essential for LTE Performance
- Exceeds minimum PIM performance requirements
- Equipped with new 4.3-10 connector, which is 40% smaller than traditional 7/16 DIN connector
- Ordering options for External RET Controllers (Type 1) or Internally Integrated RET Controllers (Type 17)

# Overview

The CCI internally multiplexed MultiBand array is an eight port (12 RF ports internal) antenna, with four wide band ports covering 1695-2400 MHz and four low band ports covering 698-896 MHz. The antenna provides the capability to deploy 4T4R (4x4 MIMO) in the high band, with separate RET control. The antenna also provides the capability to provide independent RET control for 700/850 MHz Dual Band Radio Configurations, while maintaining 4T4R (4x4 MIMO) across the low band ports.

CCI antennas are designed and produced to ISO 9001 certification standards for reliability and quality in our state-of-the-art manufacturing facilities.

# **Applications**

- 4x4 MIMO for the High Band and 4X4 MIMO Low Band ports
- Ready for Network Standardization on 4.3-10 DIN connectors
- With CCI's multiband antennas, wireless providers can connect multiple platforms to a single antenna, reducing tower load, lease expense, deployment time and installation costs





# **SPECIFICATIONS**

# Diplexed Multi-Band Antenna

DMP65R-BU6D

# Mechanical

| Dimensions (L×W×D) | 71.2×20.7×7.7 in (1808×525×197 mm) |
| Survival Wind Speed | > 150 mph (> 241 kph) |
| Front Wind Load | 325 lbs (1446 N) @ 100 mph (161 kph) |
| Side Wind Load | 144 lbs (642 N) @ 100 mph (161 kph) |
| Equivalent Flat Plate Area | Weight \* 96.0 lbs (43.6 kg) |
| Connector | 8 × 4.3-10 female |
| Mounting Pole | 2 to 5 in (5 to 12 cm) |

#### **Bottom View**



### Connector Spacing



<sup>\*</sup> Weight excludes mounting





DATA SHEET

# Multi-Band Twelve-Port Antenna

TPA65R-BU6D



- Six foot (1.8 m) multiband, twelve port antenna with a 65° azimuth beamwidth covering 698-896 MHz and 1695-2400 MHz frequencies
- Eight high band ports covering 1695-2400 MHz and four low band ports covering 698-896 MHz in a single antenna enclosure
- Innovative Low and High Band Array configuration allows for 4T4R (4x4 MIMO) on Low Band and Dual 4T4R (4x4 MIMO) High Band Arrays, using full length arrays (non stacked), all in a 20.7" (525 mm) width enclosure, an Industry First
- Full Spectrum Compliance for WCS and AWS-3 frequencies and Band 14 Operations
- Array configuration allows for 4T4R (4X4 MIMO) on Low Band, essential for Band 14 Operations
- LTE Optimized FBR and SPR performance, providing for an efficient use of valuable radio capacity
- LTE Optimized Boresight and Sector XPD and USL performance, essential for LTE Performance
- Exceeds minimum PIM performance requirements
- Equipped with new 4.3-10 connector, which is 40% smaller than traditional 7/16 DIN connector
- Ordering options for External RET Controllers (Type 1) or Internally Integrated RET Controllers (Type 17)

### Overview

The CCI 12-Port multiband array is a twelve port antenna, with eight wide band ports covering 1695-2400 MHz and four low band ports covering 698-896 MHz. The antenna provides the capability to deploy Dual 4x4 Multiple-input Multiple-output (MIMO) in the high band and 4X4 Multiple-input Multiple-output (MIMO) across low band ports. The CCI 12-Port allows independent tilt control between the low band ports and high band ports and independent tilt control between left and right antenna arrays.

In this three RET configuration, the 1st RET is dedicated for the four Low Band ports. The 2nd RET is dedicated for the four Left High Band ports and the 3th RET is dedicated for the four Right High Band ports. This RET arrangement allows for complete flexibility in coverage control between left and right antenna arrays.

CCI antennas are designed and produced to ISO 9001 certification standards for reliability and quality in our state-of-the-art manufacturing facilities.

# **Applications**

- Dual 4x4 MIMO for the High Band and 4X4 MIMO Low Band ports
- Ready for Network Standardization on 4.3-10 DIN connectors
- With CCI's multiband antennas, wireless providers can connect multiple platforms to a single antenna, reducing tower load, lease expense, deployment time and installation costs





# **SPECIFICATIONS**

# Multi-Band Twelve-Port Antenna

Mounting Pole 2 to 5 in (5 to 12 cm)

TPA65R-BU6D

# Mechanical

| Dimensions (L×W×D)           | 71.2×20.7×7.7 in (1808×525×197 mm)         |
|------------------------------|--------------------------------------------|
| Survival Wind Speed          | > 150 mph (> 241 kph)                      |
| Front Wind Load              | 325 lbs (1446 N) @ 100 mph (161 kph)       |
| Side Wind Load               | 144 lbs (642 N) @ 100 mph (161 kph)        |
| Equivalent Flat Plate Area   | 12.7 ft <sup>2</sup> (1.2 m <sup>2</sup> ) |
| Weight *                     | 68.3 lbs (31.0 kg)                         |
| Packaging Dimensions (L×W×D) | 81.4×25.2×13.9 in (2067×641×354 mm)        |
| Packaged Weight ~            | 116.8 lbs (53.0 kg)                        |
| Connector                    | 12 × 4.3-10 female                         |

\* Weight excludes mounting

Bottom View

# TPA65R-BU6DA



Connector Spacing





# Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass

Tel: 201-342-3338 Fax: 201-342-3339 www.cciproducts.com

# **General Information**



CCI's Triple Band TMA with 700/850 bypass contains two triple band TMA's in a single housing. The TMA's are fully duplexed and share a single LNA for all three bands. The bypass path provides excellent isolation to the TMA path. Separate antenna ports for the bypass path and TMA path are combined onto a single BTS port. Low noise high linearity

amplifiers improve the uplink sensitivity and the receive performance of base stations. The TMA is fully compliant with the latest AISG 2.0 specification. The TMA supports CDMA, EDGE/GSM, UMTS and LTE BTS equipment. The TMA is ideally suited for sites upgraded to quadband using the existing infrastructure. The TMA allows the sharing of feeder lines for both AWS and PCS bands thus reducing tower loading, leasing, and installation costs. The input and output connectors are located inline for ease of installation in space constrained areas such as uni-pole structures and stealth antennas.

# AISGY Antenna Interface Standards Group

3

# ModelTMABPDB7823VG12A

# **Contents:**

| General Info and Technical<br>Description |   |
|-------------------------------------------|---|
| Elect & Mech. Specs                       | 2 |

Block Diagram & Outline Drawing

# **Features:**

- Small lightweight unit
- Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass
- Independent Gain Control
- High linearity
- Lightning protected
- Fail-safe bypass mode
- High reliability

# **Technical Description**

The TMA system is an outdoor quad band tower mount unit which provides low noise amplification of PCS, AWS, and WCS uplink signals combined with 700/850 bypassed signals from separate antenna ports to a common BTS port. The tower mount unit consists of 14 band-pass filters, two redundant low noise amplifiers (LNA) with bypass failure circuitry, two bias tees, AISG control circuitry, and lightning protection circuitry all housed in an IP68 enclosure suited to long life masthead mounting. The AWS, PCS and WCS paths are dual duplexed to separate the low power uplink signals from the high power down link signals at the BTS and antenna ports. The AWS, PCS, and WCS uplink signals are amplified with a dedicated ultralow noise PHEMT LNA with adjustable gain control. The unit provides protection against lightning strikes via a multistage surge protection circuit. DC power and AISG 2.0 control is provided via the BTS feeder cable. The unit operates in current window alarm (CWA) mode until a valid AISG message is detected, at which point it automatically switches to AISG mode. Once in AISG mode, the unit can only switch back to CWA mode with the receipt of an AISG CCI vendor defined command. In CWA mode, the unit requires 12VDC at each BTS port and follows typical current window convention. In AISG mode, the unit will accept 10-30 VDC from either BTS port. In AISG mode, the unit does not require an AISG 2.0 compatible site control unit (SCU) and may also be powered by a standard power distribution unit (PDU).

An optional Site Control Unit (SCU) is available to power up to 32 AISG modules per sector and to provide the monitoring and alarm functions for the system. The SCU is housed in a single (1U) 1.75" x 19" rack and contains dual redundant power supplies capable of being "hot swapped" that provide a regulated DC supply voltage on the RF coax for the tower mount amplifiers.

# CCI Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass Typical Specifications



| Description                               | Typical Specifications                                                          |                                                 |                                                 |                                                 |
|-------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Electrical Specifications                 | 700/850                                                                         | PCS                                             | AWS                                             | wcs                                             |
| Receive Frequency Range                   | - 1850 – 1910 MHz                                                               |                                                 | 1710 – 1755 MHz                                 | 2305 – 2320 MHz                                 |
| Transmit Frequency Range                  | -                                                                               | 1930 – 1990 MHz                                 | 2110 – 2155 MHz                                 | 2345 – 2360 MHz                                 |
| Bypass Frequency Range                    | 698 - 894 MHz                                                                   | -                                               | -                                               | -                                               |
| Amplifier Gain                            | -                                                                               | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | 6 to 12 dB Adjustable in 0.25 dB steps via AISG |
| Gain Variation                            | -                                                                               | ±1.0 dB                                         | ±1.0 dB                                         | ±1.0 dB                                         |
| System Noise Figure                       | -                                                                               | 1.4 dB Typ.                                     | 1.3 dB Typ.                                     | 1.3 dB Typ.                                     |
| Input Third Order Intercept Point         | -                                                                               |                                                 | +12 dBm Min at Max. Gain                        |                                                 |
| Input / Output Return Loss                |                                                                                 | 18 dB Min all por                               | ts, 12 dB Min. Bypass Mod                       | е                                               |
| Insertion Loss                            | 0.25 dB Typ.                                                                    |                                                 |                                                 |                                                 |
| Transmit Passband                         | -                                                                               | 0.5 dB Typical                                  | 0.4 dB Typical                                  | 0.4 dB Typical                                  |
| Bypass Mode, (PCS/AWS/WCS)<br>Rx Passband | -                                                                               | 2.5 dB Typ.                                     | 2.5 dB Typ.                                     | 2.5 dB Typ.                                     |
| Filter Characteristics                    |                                                                                 |                                                 |                                                 |                                                 |
| Continuous Average Power                  |                                                                                 | 20                                              | 00 Watts max                                    |                                                 |
| Peak Envelope Power                       | 2 KW max                                                                        |                                                 |                                                 |                                                 |
| Intermodulation Performance               |                                                                                 |                                                 |                                                 |                                                 |
| IMD at ANT port in Rx Band                | < -112 dBm (-155 dBc) [2 tones at +43 dBm]                                      |                                                 |                                                 |                                                 |
| Operating Voltage                         | +10V to +30V DC provided via coax or AISG                                       |                                                 |                                                 |                                                 |
| Power Consumption                         | <2.0 Watts                                                                      |                                                 |                                                 |                                                 |
| Mechanical Specifications                 |                                                                                 |                                                 |                                                 |                                                 |
| Connectors                                |                                                                                 | DIN 7-16                                        | female x 2; AISG x 1                            |                                                 |
| Dimensions (Body Only)                    | 10.63" (H) x 11.024" (W) x 3.72" (D); (290.60 (H) x 280.00 (W) x 95.0 (D) mm)   |                                                 |                                                 |                                                 |
| Dimensions (with Conn. & Bracket)         | 14.25" (H) x 11.024" (W) x 4.11" (D); (362.00 (H) x 280.00 (W) x 104.40 (D) mm) |                                                 |                                                 |                                                 |
| Weight                                    | 23.1 Lbs. (10.5 Kg) - with Brackets; 22 Lbs. (10 Kg) - without brackets         |                                                 |                                                 |                                                 |
| Mounting                                  | Pole/Wall Mounting Bracket                                                      |                                                 |                                                 |                                                 |
| Environmental Specifications              |                                                                                 |                                                 |                                                 |                                                 |
| Operating Temperature                     | -40° C to +65°C                                                                 |                                                 |                                                 |                                                 |
| Lightning Protection                      | 8/20us, ±2KA max, 10 strikes each, IEC61000-4-5                                 |                                                 |                                                 |                                                 |
| Enclosure                                 | IP68                                                                            |                                                 |                                                 |                                                 |
| MTBF                                      | >500,000 hours                                                                  |                                                 |                                                 |                                                 |

All specifications are subject to change. The latest specifications are available at www.cciproducts.com

# Communication Components Inc.



# TMA2124F03V5-1D

# TWIN TMA 1900/AWS/LOWPASS 555-960MHZ 6 ANT

NON-DIPLEXED 1900/AWS ANTENNA PORTS

Designed to be deployed in co-located AWS & 1900 networks, the Kaelus TMA2124 provides gain in 1900 and AWS uplink, using independent LNAs per band and per channel. Low loss bypass 555-960MHz signal to low band antennas is also provided.

# **FEATURES**

- Improved base station sensitivity through excellent noise figure performance and linearity
- AISG 2.0 compatible, full software upgradable using AISG "personality" upload
- DC/AISG passthrough to AWS antenna (port 5)
- AISG OUT connector disabled when AISG device (SBT equipped antenna) present on Port 3 +R1/+R1
- One AISG subunit per LNA, 4 in total. All fixed gain
- 555-960 bypass to low band antenna



# **TECHNICAL SPECIFICATIONS**

| 1900                                                              | AWS                                                                                                                                                       |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                   |                                                                                                                                                           |  |  |
| 1930 - 1990MHz                                                    | 2110 - 2200MHz                                                                                                                                            |  |  |
| 0.4dB typical                                                     | 0.3dB typical                                                                                                                                             |  |  |
| 22dB t                                                            | ypical                                                                                                                                                    |  |  |
| 160W (average) / 2kW (PEP)                                        | 160W (average) / 2kW (PEP)                                                                                                                                |  |  |
| -155dBc maximum, at antenna port in RX band with 2 x 20W carriers | -163dBc maximum, at antenna port in RX band with 2 x 20W carriers                                                                                         |  |  |
|                                                                   |                                                                                                                                                           |  |  |
| 1850 - 1910MHz                                                    | 1695 - 1780MHz                                                                                                                                            |  |  |
| 13                                                                | dB                                                                                                                                                        |  |  |
| ±1dB maximum                                                      |                                                                                                                                                           |  |  |
| 22dB typical                                                      |                                                                                                                                                           |  |  |
| 14dB typical                                                      |                                                                                                                                                           |  |  |
| 3dB typical                                                       |                                                                                                                                                           |  |  |
| 1.2dB typical @ 13dB gain                                         | 1.0dB typical @ 13dB gain                                                                                                                                 |  |  |
| +28dBm typical                                                    |                                                                                                                                                           |  |  |
| +12dBm                                                            |                                                                                                                                                           |  |  |
|                                                                   |                                                                                                                                                           |  |  |
| 555 - 9                                                           | 60MHz                                                                                                                                                     |  |  |
| 0.2dB typical                                                     |                                                                                                                                                           |  |  |
| 21dB typical                                                      |                                                                                                                                                           |  |  |
| 250W (average) / 2.5kW (PEP)                                      |                                                                                                                                                           |  |  |
| -155dBc maximum, at antenna port with 2 x 20W carriers            |                                                                                                                                                           |  |  |
|                                                                   |                                                                                                                                                           |  |  |
| 50Ohms                                                            |                                                                                                                                                           |  |  |
|                                                                   | 1930 - 1990MHz  0.4dB typical  22dB to 160W (average) / 2kW (PEP)  -155dBc maximum, at antenna port in RX band with 2 x 20W carriers  1850 - 1910MHz  134 |  |  |



# POWER SUPPLY AND ALARM (CURRENT WINDOW ALARM MODE, DEFAULT)

Current window alarm mode (CWA) is the default operating mode and can be configured to specific customer requirements. The TMA2124F03V4 is configured so that both channels are independently powered and monitored via their respective BTS port, 7 or 8. The BTS port sinks additional current to indicate an alarm state in its uplink path. Normal operating and alarm current values are configured independently via a field-loadable personality file. Please contact Kaelus for more information.

| DC supply voltage              | +8.5 to +18V DC, case is DC ground                 |  |  |
|--------------------------------|----------------------------------------------------|--|--|
| DC supply                      | Each BTS port powered individually                 |  |  |
| DC supply current, normal mode | le 200mA per port typical (both ports are powered) |  |  |
| DC supply current, alarm mode  | 300mA per port typical (both ports are powered)    |  |  |

### AISG MODE OF OPERATION (AUTO SELECTED ON VALID AISG 2.0 FRAMES)

AISG signals can be applied to port 7 or port 8. The TMA unit switches to AISG mode when valid frames are detected on either port 7 or 8. All LNAs take DC power from the port with the AISG frames or, if DC is present on both ports, power will be supplied equally between the ports. Each LNA is controlled uniquely by its sub-unit number.

| DC supply voltage                 | +7.5V to +30V DC                                          |  |  |
|-----------------------------------|-----------------------------------------------------------|--|--|
| AISG version                      | 2.0 (1.1 optional)                                        |  |  |
| Supply current, AISG mode         | 500mA @ 7.5V, 135mA @ 30V typical                         |  |  |
| AISG connector, current rating    | IEC60130-9, 8-pin female, < 4A peak, 2A continuous, pin 6 |  |  |
| Field firmware upgradable         | Yes (R951022ATA2.0 Rev 2.9.12)                            |  |  |
| AISG pass through to antenna port | Yes                                                       |  |  |

### ANTENNA AISG OOK + DC

When DC is applied it is quickly switched through to port 5. If an over-current condition is detected, DC & AISG are disconnected from port 5. If DC remains connected to the load at port 5, DC and AISG are disconnected from the AISG OUT 8 pin connector. If DC is disconnected from port 5, DC and AISG are enabled at the AISG OUT 8 pin connector. If a short circuit is detected at the AISG OUT 8 pin connector, DC and AISG are disabled.

| Mode of Operation | Voltage at<br>Port 5 | Assumption                               | "Autosense + Protection"<br>Switch Status | Comment                                                                                                  |
|-------------------|----------------------|------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------|
| AISG or CWA       | High                 | Device present or open circuit           | Close                                     | DC & AISG OOK will be<br>supplied to port 5.<br>DC & AISG is removed<br>from the AISG OUT 8 pin<br>port  |
| AISG or CWA       | Low                  | DC short circuit or low<br>DC resistance | Open                                      | DC & AISG OOK will not be<br>supplied to port 5.<br>DC & AISG are supplied<br>to the AISG OUT 8 pin port |

| ENVIRONMENTAL                                                           |                                                                    |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| For further details of environmental compliance, please contact Kaelus. |                                                                    |  |  |  |
| Temperature range                                                       | -40°C to +65°C   -40°F to +149°F                                   |  |  |  |
| Ingress protection                                                      | IP67                                                               |  |  |  |
| Altitude                                                                | 3,000m   10,000ft                                                  |  |  |  |
| Lightning protection                                                    | IEC61312-1, RF: ±5kA maximum (8/20us), AISG: ±2kA maximum (8/20us) |  |  |  |
| MTBF                                                                    | >1,000,000 hours                                                   |  |  |  |
| Compliance                                                              | FCC Part 15 subpart B                                              |  |  |  |

| MECHANICAL           |                                                                                                                                                  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensions H x D x W | 245 x 128 x 210mm   9.65 x 5.04 x 8.27in Excluding connectors                                                                                    |
| Weight               | 8.1kg   17.86lbs                                                                                                                                 |
| Finish               | Painted, light grey (RAL 7035)                                                                                                                   |
| Connectors           | 4.3-10 (F) x 8 long neck, AISG (F) x 1                                                                                                           |
| Wind Load            | Front 390N, Side 147N (Single)<br>Front 251N, Side 409N (Twin)<br>At 74m/s (AS/NZS 1170-2-2011 Structural design - Wind actions - Cyclone areas) |
| Mounting             | Pole/wall bracket supplied with two metal clamps 45-178mm diameter poles                                                                         |

# ORDERING INFORMATION

| PART NUMBER     | CONFIGURATION      | OPTIONAL FEATURES | CONNECTORS |
|-----------------|--------------------|-------------------|------------|
| TMA2124F03V5-1D | TWIN 2 in / 6 out  | STANDARD          | 4.3-10 (F) |
| TMA2124F03V5-2D | QUAD 4 in / 12 out | STANDARD          | 4.3-10 (F) |



TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES ( $\pm\,0.030$ ") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS AND ANGLES ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT NDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF

WITH TWELVE 2-7/8" ANTENNA MOUTING PIPES, REINFORCED HANDRAIL, AND CABLE

DRAWING USAGE

**CUSTOMER** 

87

02



valmont **valmont** 

DWG. NO.

Support Team: 1-888-753-7446

Tampa, FL

|         |                |               | )    |
|---------|----------------|---------------|------|
| CPD NO. | DRAWN BY       | ENG. APPROVAL | PART |
|         | CSL 10/17/2019 | 10/18/2019    |      |

**CHECKED BY** 

BMC 10/18/2019

RMQLP-4120-H10

RMQLP-4120-H10

OF G



# September 30, 2021 (Rev. 1)

June 05, 2020



SAI Communications 12 Industrial Way Salem NH, 03079

RE: Site Number: CT1104 (LTE 6C/5G/BWE)

FA Number: 10035295
PACE Number: MRCTB046571
PT Number: 2051A0V4N7

Site Name: FARMINGTON NU MAPLE RIDGE DR

Site Address: 45 Maple Ridge Drive

Farmington, CT 06032

# To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by SAI Communications to perform a mount analysis on the proposed AT&T antenna/RRH mount to determine their capability of supporting the following additional loading:

- (3) TPA65R-BU6DA-K Antennas (71.2"x20.7"x7.7" Wt. = 68 lbs. /each)
- (3) DMP65R-BU6DA Antennas (71.2"x20.7"x7.7" Wt. = 80 lbs. /each)
- (6) TMABPD7823VG12A TMA's (10.7"x11.1"x3.8" Wt. = 25 lbs. /each)
- (6) TMA2124F03V5 TMA's (9.7"x5.0"x8.3" Wt. = 18 lbs. /each)

\*Proposed equipment shown in bold

Mount fabrication drawings prepared by SitePro1 P/N RMQLP-4120-H10, dated October 17, 2019, were used to perform this analysis.

# Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive R13.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments
  all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the
  max basic wind speed for this site is equal to 125 mph with a max basic wind speed with ice of 50
  mph and a max ice thickness of 1.5 in. An escalated ice thickness of 1.65 in was used for this
  analysis.
- HDG considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom of a hill or ridge.
- HDG considers this site to have a spectral response acceleration parameter at short periods, S<sub>S</sub>, of 0.183 and a spectral response acceleration parameter at a period of 1 second, S<sub>1</sub>, of 0.064.
- The mount has been analyzed with load combinations consisting of 500 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 3.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount.

Based on our evaluation, we have determined that the <u>Proposed RMQLP-4120-H10</u> mount <u>IS CAPABLE</u> of supporting the proposed installation.

|                                   | Component | Controlling Load Case | Stress Ratio | Pass/Fail |
|-----------------------------------|-----------|-----------------------|--------------|-----------|
| New (LTE 6C/5G/BWE)  Mount Rating | 37        | LC4                   | 56%          | PASS      |

# **Reference Documents:**

Fabrication drawings prepared by SitePro1 P/N RMQLP-4120-H10, dated October 17, 2019.

# This determination was based on the following limitations and assumptions:

- 1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 4. The proposed mount will be adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. HDG performed a localized analysis on the mount itself and not on the supporting monopole.

Please feel free to contact our office should you have any questions.

Respectfully Submitted, Hudson Design Group LLC

Yuland al

Michael Cabral Vice President Daniel P. Hamm, PE Principal

# FIELD PHOTOS:

\*Existing mounts to be removed and replaced.













# FIELD PHOTOS (CONT.):















Wind & Ice Calculations

**Project Name:** FARMINGTON NU MAPLE RIDGE DR

Project No.: CT1104

Designed By: RL Checked By: MSC



# 2.6.5.2 Velocity Pressure Coeff:

| $K_z = 2.01 (z/z_g)^{2/\alpha}$ |       | z=               | 88 (ft)   |
|---------------------------------|-------|------------------|-----------|
|                                 |       | z <sub>g</sub> = | 1200 (ft) |
| K <sub>z</sub> =                | 0.953 | α=               | 7.0       |

 $Kzmin \le Kz \le 2.01$ 

# Table 2-4

| Exposure | $\mathbf{Z}_{\mathrm{g}}$ | α    | $K_{zmin}$ | K <sub>c</sub> |
|----------|---------------------------|------|------------|----------------|
| В        | 1200 ft                   | 7.0  | 0.70       | 0.9            |
| С        | 900 ft                    | 9.5  | 0.85       | 1.0            |
| D        | 700 ft                    | 11.5 | 1.03       | 1.1            |

# 2.6.6.2 Topographic Factor:

# Table 2-5

| Topo. Category | K <sub>t</sub> | f    |
|----------------|----------------|------|
| 2              | 0.43           | 1.25 |
| 3              | 0.53           | 2.0  |
| 4              | 0.72           | 1.5  |

$$K_{zt} = [1 + (K_c K_t / K_h)]^2$$
  $K_h = e^{-(f^*z/H)}$ 

1  $K_{zt} =$ 1  $K_h =$ 0.9 (from Table 2-4)  $K_c =$ (If Category 1 then  $K_{zt} = 1.0$ )  $K_t =$ (from Table 2-5) f= (from Table 2-5) Category= 1 z=  $z_s =$ 240 (Mean elevation of base of structure above sea level) (Ht. of the crest above surrounding terrain) H= 1.00 (from 2.6.6.2.1)  $K_{zt} =$ 0.99 (from 2.6.8)  $K_e =$ 

# 2.6.10 Design Ice Thickness

Project Name: FARMINGTON NU MAPLE RIDGE DR

Project No.: CT1104

Designed By: RL Checked By: MSC



# 2.6.9 Gust Effect Factor

# 2.6.9.1 Self Supporting Lattice Structures

G<sub>h</sub> = 1.0 Latticed Structures > 600 ft

G<sub>h</sub> = 0.85 Latticed Structures 450 ft or less

 $G_h = 0.85 + 0.15 [h/150 - 3.0]$ 

h= ht. of structure

h= 102

G<sub>h</sub>= 0.85

2.6.9.2 Guyed Masts

 $G_h = 0.85$ 

2.6.9.3 Pole Structures

 $G_h = 1.1$ 

2.6.9 Appurtenances

G<sub>h</sub>= 1.0

# 2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

G<sub>h</sub>= 1.35

Gh= 1.00

# 2.6.11.2 Design Wind Force on Appurtenances

 $F = q_z * G_h * (EPA)_A$ 

 $q_z = 0.00256*K_z*K_{zt}*K_s*K_e*K_d*V_{max}^2$ 

 $K_z$ = 0.953 (from 2.6.5.2)

 $K_{zt}$ = 1.0 (from 2.6.6.2.1)

 $K_s = 1.0 \text{ (from 2.6.7)}$ 

 $K_e = 0.99 \text{ (from 2.6.8)}$ 

 $K_d$ = 0.95 (from Table 2-2)

V<sub>max</sub>= 125 mph (Ultimate Wind Speed)

 $V_{\text{max (ice)}} = 50 \text{ mph}$ 

V<sub>30</sub>= 30 mph

35.89

5.74

2.07

### Table 2-2

 $q_z =$ 

 $q_{z (ice)} =$ 

 $q_{z(30)} =$ 

| Structure Type                                                                        | Wind Direction Probability Factor, Kd |
|---------------------------------------------------------------------------------------|---------------------------------------|
| Latticed structures with triangular, square or rectangular cross sections             | 0.85                                  |
| Tubular pole structures, latticed structures with other cross sections, appurtenances | 0.95                                  |
| Tubular pole structures supporting antennas enclosed within a cylindrical shroud      | 1.00                                  |

Project Name: FARMINGTON NU MAPLE RIDGE DR

Project No.: CT1104

Designed By: RL Checked By: MSC



# <u>Determine Ca:</u>

Table 2-9

|       | Ford               | e Coefficients (Ca) for App | ourtenances                |                           |
|-------|--------------------|-----------------------------|----------------------------|---------------------------|
|       | Member Type        | Aspect Ratio ≤ 2.5          | Aspect Ratio = 7           | Aspect Ratio ≥ 25         |
| '     | Member Type        | Ca                          | Ca                         | a                         |
|       | Flat               | 1.2                         | 1.4                        | 2.0                       |
| Squar | re/Rectangular HSS | $1.2 - 2.8(r_s) \ge 0.85$   | $1.4 - 4.0(r_s) \ge 0.90$  | $2.0 - 6.0(r_s) \ge 1.25$ |
| Round | C < 39             | 0.7                         | 0.8                        | 1.2                       |
|       | (Subcritical)      | 0.7                         | 0.8                        | 1.2                       |
|       | 39 ≤ C ≤ 78        | 0.485                       | 0.66.460.415               | 10.0 (10.1.0)             |
|       | (Transitional)     | 4.14/(C <sup>0.485</sup> )  | 3.66/(C <sup>0.415</sup> ) | 46.8/(C <sup>.1.0</sup> ) |
|       | C > 78             | 0.5                         | 0.6                        | 0.6                       |
|       | (Supercritical)    | 0.5                         | 0.6                        | 0.6                       |

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown.

| Ice Thickness =        | 1.65          | in           | Angle =      | 0 (deg)   |                 | Equival   | ent Angle = | 180 (deg)               |                         |
|------------------------|---------------|--------------|--------------|-----------|-----------------|-----------|-------------|-------------------------|-------------------------|
| <u>Appurtenances</u>   | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area | Aspect<br>Ratio | <u>Ca</u> | Force (lbs) | Force (lbs)<br>(w/ lce) | Force (lbs)<br>(30 mph) |
| DMP65R-BU6DA Antenna   | 71.2          | 20.7         | 7.7          | 10.24     | 3.44            | 1.24      | 456         | 89                      | 26                      |
| TPA65R-BU6DA-K Antenna | 71.2          | 20.7         | 7.7          | 10.24     | 3.44            | 1.24      | 456         | 89                      | 26                      |
| TMABPD7823VG12A TMA    | 10.7          | 11.1         | 3.8          | 0.82      | 0.96            | 1.20      | 36          | 10                      | 2                       |
| TMA2124F03V5 TMA       | 9.7           | 8.3          | 5.0          | 0.56      | 1.17            | 1.20      | 24          | 7                       | 1                       |
| 2-1/2" Pipe            | 2.9           | 12.0         | -            | 0.24      | 0.24            | 1.20      | 10          |                         |                         |
| 3" Pipe                | 3.5           | 12.0         | -            | 0.29      | 0.29            | 1.20      | 13          |                         |                         |
| L 2x2 Angles           | 2.0           | 12.0         | -            | 0.17      | 0.17            | 1.25      | 7           |                         |                         |
| L 2-1/2x2-1/2 Angles   | 2.5           | 12.0         | -            | 0.21      | 0.21            | 1.25      | 9           |                         |                         |
| PL 6x3/8               | 0.4           | 12.0         | -            | 0.03      | 0.03            | 2.00      | 2           |                         |                         |
| HSS 4x4                | 4.0           | 12.0         | -            | 0.33      | 0.33            | 1.25      | 15          |                         |                         |

Project Name: FARMINGTON NU MAPLE RIDGE DR



|                         |               |              |              |                       | WIND LOAD           | S               |                 |             |                     |                         |                       |                        |
|-------------------------|---------------|--------------|--------------|-----------------------|---------------------|-----------------|-----------------|-------------|---------------------|-------------------------|-----------------------|------------------------|
| Angle = 30              | (deg)         |              | Ice Thick    | ness =                | 1.65                | in.             |                 | [           | Equiva              | lent Angle =            | 210                   | (deg)                  |
| WIND LOADS WITH NO ICE: |               |              |              |                       |                     |                 |                 |             |                     |                         |                       |                        |
| <u>Appurtenances</u>    | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area<br>(normal) | Flat Area<br>(side) | Aspect<br>Ratio | Aspect<br>Ratio | Ca (normal) | <u>Ca</u><br>(side) | Force (lbs)<br>(normal) | Force (lbs)<br>(side) | Force (lbs)<br>(angle) |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44            | 9.25            | 1.24        | 1.47                | 456                     | 202                   | 393                    |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44            | 9.25            | 1.24        | 1.47                | 456                     | 202                   | 393                    |
| TMABPD7823VG12A TMA     | 10.7          | 11.1         | 3.8          | 0.82                  | 0.28                | 0.96            | 2.82            | 1.20        | 1.21                | 36                      | 12                    | 30                     |
| TMA2124F03V5 TMA        | 9.7           | 8.3          | 5.0          | 0.56                  | 0.34                | 1.17            | 1.94            | 1.20        | 1.20                | 24                      | 15                    | 22                     |
| WIND LOADS WITH ICE:    |               |              |              |                       |                     |                 |                 |             |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 74.5          | 24.0         | 11.0         | 12.42                 | 5.70                | 3.10            | 6.77            | 1.23        | 1.39                | 88                      | 45                    | 77                     |
| TPA65R-BU6DA-K Antenna  | 74.5          | 24.0         | 11.0         | 12.42                 | 5.70                | 3.10            | 6.77            | 1.23        | 1.39                | 88                      | 45                    | 77                     |
| TMABPD7823VG12A TMA     | 14.0          | 14.4         | 7.1          | 1.40                  | 0.69                | 0.97            | 1.97            | 1.20        | 1.20                | 10                      | 5                     | 8                      |
| TMA2124F03V5 TMA        | 13.0          | 11.6         | 8.3          | 1.05                  | 0.75                | 1.12            | 1.57            | 1.20        | 1.20                | 7                       | 5                     | 7                      |
| WIND LOADS AT 30 MPH:   |               |              |              |                       |                     |                 |                 |             |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44            | 9.25            | 1.24        | 1.47                | 26                      | 12                    | 23                     |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44            | 9.25            | 1.24        | 1.47                | 26                      | 12                    | 23                     |
| TMABPD7823VG12A TMA     | 10.7          | 11.1         | 3.8          | 0.82                  | 0.28                | 0.96            | 2.82            | 1.20        | 1.21                | 2                       | 1                     | 2                      |
| TMA2124F03V5 TMA        | 9.7           | 8.3          | 5.0          | 0.56                  | 0.34                | 1.17            | 1.94            | 1.20        | 1.20                | 1                       | 1                     | 1                      |

Project Name: FARMINGTON NU MAPLE RIDGE DR



| Angle = 60              | (deg)         |              | Ice Thick    | ness =                | 1.65                | in.               |                 | Γ                     | Equiva              | lent Angle =            | 240                   | (deg)                 |
|-------------------------|---------------|--------------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|-----------------------|
| Angle - 00              | (ucg)         |              | ice mick     |                       | 1.03                |                   |                 | L                     | Lyuiva              | iciit Aligie –          | 270                   | (ucg)                 |
| WIND LOADS WITH NO ICE: |               |              |              |                       |                     |                   |                 |                       |                     |                         |                       |                       |
| <u>Appurtenances</u>    | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area<br>(normal) | Flat Area<br>(side) | Ratio<br>(normal) | Ratio<br>(side) | <u>Ca</u><br>(normal) | <u>Ca</u><br>(side) | Force (lbs)<br>(normal) | Force (lbs)<br>(side) | Force (lbs<br>(angle) |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 265                   |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 265                   |
| TMABPD7823VG12A TMA     | 10.7          | 11.1         | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 36                      | 12                    | 18                    |
| TMA2124F03V5 TMA        | 9.7           | 8.3          | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 24                      | 15                    | 17                    |
| WIND LOADS WITH ICE:    |               |              |              |                       |                     |                   |                 |                       |                     |                         |                       |                       |
| DMP65R-BU6DA Antenna    | 74.5          | 24.0         | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 56                    |
| TPA65R-BU6DA-K Antenna  | 74.5          | 24.0         | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 56                    |
| TMABPD7823VG12A TMA     | 14.0          | 14.4         | 7.1          | 1.40                  | 0.69                | 0.97              | 1.97            | 1.20                  | 1.20                | 10                      | 5                     | 6                     |
| TMA2124F03V5 TMA        | 13.0          | 11.6         | 8.3          | 1.05                  | 0.75                | 1.12              | 1.57            | 1.20                  | 1.20                | 7                       | 5                     | 6                     |
| WIND LOADS AT 30 MPH:   |               |              |              |                       |                     |                   |                 |                       |                     |                         |                       |                       |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 15                    |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 15                    |
| TMABPD7823VG12A TMA     | 10.7          | 11.1         | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 2                       | 1                     | 1                     |
| TMA2124F03V5 TMA        | 9.7           | 8.3          | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 1                       | 1                     | 1                     |

Project Name: FARMINGTON NU MAPLE RIDGE DR



|                         |               |       |              | '                     | VIND LOAD           | S                 |                 |                       |                     |                         |                       |                        |
|-------------------------|---------------|-------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|------------------------|
| Angle = 90              | (deg)         |       | Ice Thick    | ness =                | 1.65                | in.               |                 |                       | Equiva              | lent Angle =            | 270                   | (deg)                  |
| WIND LOADS WITH NO ICE: |               |       |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| <u>Appurtenances</u>    | <u>Height</u> | Width | <u>Depth</u> | Flat Area<br>(normal) | Flat Area<br>(side) | Ratio<br>(normal) | Ratio<br>(side) | <u>Ca</u><br>(normal) | <u>Ca</u><br>(side) | Force (lbs)<br>(normal) | Force (lbs)<br>(side) | Force (lbs)<br>(angle) |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 202                    |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 202                    |
| TMABPD7823VG12A TMA     | 10.7          | 11.1  | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 36                      | 12                    | 12                     |
| TMA2124F03V5 TMA        | 9.7           | 8.3   | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 24                      | 15                    | 15                     |
| WIND LOADS WITH ICE:    |               |       |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 74.5          | 24.0  | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 45                     |
| TPA65R-BU6DA-K Antenna  | 74.5          | 24.0  | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 45                     |
| TMABPD7823VG12A TMA     | 14.0          | 14.4  | 7.1          | 1.40                  | 0.69                | 0.97              | 1.97            | 1.20                  | 1.20                | 10                      | 5                     | 5                      |
| TMA2124F03V5 TMA        | 13.0          | 11.6  | 8.3          | 1.05                  | 0.75                | 1.12              | 1.57            | 1.20                  | 1.20                | 7                       | 5                     | 5                      |
| WIND LOADS AT 30 MPH:   |               |       |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 12                     |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 12                     |
| TMABPD7823VG12A TMA     | 10.7          | 11.1  | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 2                       | 1                     | 1                      |
| TMA2124F03V5 TMA        | 9.7           | 8.3   | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 1                       | 1                     | 1                      |

Project Name: FARMINGTON NU MAPLE RIDGE DR



| 420                     | / I \         | İ            |              |                       | 4.65                | . 1               |                 | Ī                     |                     |                         | 200                   | / I \                  |
|-------------------------|---------------|--------------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|------------------------|
| Angle = 120             | (deg)         |              | Ice Thick    | ness =                | 1.65                | in.               |                 | <u>.</u>              | Equiva              | lent Angle =            | 300                   | (deg)                  |
| WIND LOADS WITH NO ICE: |               |              |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| <u>Appurtenances</u>    | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area<br>(normal) | Flat Area<br>(side) | Ratio<br>(normal) | Ratio<br>(side) | <u>Ca</u><br>(normal) | <u>Ca</u><br>(side) | Force (lbs)<br>(normal) | Force (lbs)<br>(side) | Force (lbs)<br>(angle) |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 265                    |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 265                    |
| TMABPD7823VG12A TMA     | 10.7          | 11.1         | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 36                      | 12                    | 18                     |
| TMA2124F03V5 TMA        | 9.7           | 8.3          | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 24                      | 15                    | 17                     |
| WIND LOADS WITH ICE:    |               |              |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 74.5          | 24.0         | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 56                     |
| TPA65R-BU6DA-K Antenna  | 74.5          | 24.0         | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 56                     |
| TMABPD7823VG12A TMA     | 14.0          | 14.4         | 7.1          | 1.40                  | 0.69                | 0.97              | 1.97            | 1.20                  | 1.20                | 10                      | 5                     | 6                      |
| TMA2124F03V5 TMA        | 13.0          | 11.6         | 8.3          | 1.05                  | 0.75                | 1.12              | 1.57            | 1.20                  | 1.20                | 7                       | 5                     | 6                      |
| WIND LOADS AT 30 MPH:   |               |              |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 15                     |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7         | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 15                     |
| TMABPD7823VG12A TMA     | 10.7          | 11.1         | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 2                       | 1                     | 1                      |
| TMA2124F03V5 TMA        | 9.7           | 8.3          | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 1                       | 1                     | 1                      |

Project Name: FARMINGTON NU MAPLE RIDGE DR



|                         |               |       |              | N                     | IND LOAD            | S                 |                 |                       |                     |                         |                       |                        |
|-------------------------|---------------|-------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|------------------------|
| Angle = 150             | (deg)         |       | Ice Thick    | ness =                | 1.65                | in.               |                 | I                     | Equiva              | lent Angle =            | 330                   | (deg)                  |
| WIND LOADS WITH NO ICE: |               |       |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| <u>Appurtenances</u>    | <u>Height</u> | Width | <u>Depth</u> | Flat Area<br>(normal) | Flat Area<br>(side) | Ratio<br>(normal) | Ratio<br>(side) | <u>Ca</u><br>(normal) | <u>Ca</u><br>(side) | Force (lbs)<br>(normal) | Force (lbs)<br>(side) | Force (lbs)<br>(angle) |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 393                    |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 456                     | 202                   | 393                    |
| TMABPD7823VG12A TMA     | 10.7          | 11.1  | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 36                      | 12                    | 30                     |
| TMA2124F03V5 TMA        | 9.7           | 8.3   | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 24                      | 15                    | 22                     |
| WIND LOADS WITH ICE:    |               |       |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 74.5          | 24.0  | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 77                     |
| TPA65R-BU6DA-K Antenna  | 74.5          | 24.0  | 11.0         | 12.42                 | 5.70                | 3.10              | 6.77            | 1.23                  | 1.39                | 88                      | 45                    | 77                     |
| TMABPD7823VG12A TMA     | 14.0          | 14.4  | 7.1          | 1.40                  | 0.69                | 0.97              | 1.97            | 1.20                  | 1.20                | 10                      | 5                     | 8                      |
| TMA2124F03V5 TMA        | 13.0          | 11.6  | 8.3          | 1.05                  | 0.75                | 1.12              | 1.57            | 1.20                  | 1.20                | 7                       | 5                     | 7                      |
| WIND LOADS AT 30 MPH:   |               |       |              |                       |                     |                   |                 |                       |                     |                         |                       |                        |
| DMP65R-BU6DA Antenna    | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 23                     |
| TPA65R-BU6DA-K Antenna  | 71.2          | 20.7  | 7.7          | 10.24                 | 3.81                | 3.44              | 9.25            | 1.24                  | 1.47                | 26                      | 12                    | 23                     |
| TMABPD7823VG12A TMA     | 10.7          | 11.1  | 3.8          | 0.82                  | 0.28                | 0.96              | 2.82            | 1.20                  | 1.21                | 2                       | 1                     | 2                      |
| TMA2124F03V5 TMA        | 9.7           | 8.3   | 5.0          | 0.56                  | 0.34                | 1.17              | 1.94            | 1.20                  | 1.20                | 1                       | 1                     | 1                      |

Project Name: FARMINGTON NU MAPLE RIDGE DR

Project No.: CT1104

Designed By: RL Checked By: MSC



#### ICE WEIGHT CALCULATIONS

Thickness of ice: 1.65 in.

Density of ice: 56 pcf

#### DMP65R-BU6DA Antenna

Weight of ice based on total radial SF area:

 Height (in):
 71.2

 Width (in):
 20.7

 Depth (in):
 7.7

Total weight of ice on object: 284 lbs

Weight of object: 80.0 lbs

Combined weight of ice and object: 364 lbs

### TMABPD7823VG12A TMA

Weight of ice based on total radial SF area:

 Height (in):
 10.7

 Width (in):
 3.8

 Depth (in):
 11.1

Total weight of ice on object: 24 lbs

Weight of object: 25.0 lbs

Combined weight of ice and object: 49 lbs

# 2-1/2" Pipe

Per foot weight of ice:

diameter (in):

Per foot weight of ice on object:

9 plf

# L 2x2 Angles

Weight of ice based on total radial SF area:

 Height (in):
 2

 Width (in):
 2

Per foot weight of ice on object: 9 plf

# PL 6x3/8

Weight of ice based on total radial SF area:

Height (in): 6 Width (in): 0.38

Per foot weight of ice on object: 15 plf

#### TPA65R-BU6DA-K Antenna

Weight of ice based on total radial SF area:

 Height (in):
 71.2

 Width (in):
 20.7

 Depth (in):
 7.7

Total weight of ice on object: 284 lbs

Weight of object: 69.0 lbs

Combined weight of ice and object: 353 lbs

### **TMA2124F03V5 TMA**

Weight of ice based on total radial SF area:

 Height (in):
 9.7

 Width (in):
 5.0

 Depth (in):
 8.3

Total weight of ice on object: 18 lbs

Weight of object: 18.0 lbs

Combined weight of ice and object: 36 lbs

# 3" Pipe

Per foot weight of ice:

diameter (in):

Per foot weight of ice on object:

10 plf

# L 2-1/2x2-1/2 Angles

Weight of ice based on total radial SF area:

Height (in): 2.5 Width (in): 2.5

Per foot weight of ice on object: 10 plf

# HSS 4x4

Weight of ice based on total radial SF area:

Height (in): 4
Width (in): 4

Per foot weight of ice on object: 15 plf



Mount Calculations (New Conditions)



Bentley
Current Date: 9/30/2021 10:44 AM
Units system: English
File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx







File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx







Current Date: 9/30/2021 10:45 AM
Units system: English
File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx









Bentley
Current Date: 9/30/2021 10:45 AM
Units system: English
File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx







Current Date: 9/30/2021 10:49 AM

Units system: English

File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option

2\CT1104.retx

# **Load data**

**GLOSSARY** 

Comb : Indicates if load condition is a load combination

# **Load Conditions**

| Condition | Description                      | Comb.  | Category |
|-----------|----------------------------------|--------|----------|
| <br>DL    | Dead Load                        | <br>No | DL       |
| W0        | Wind Load 0/60/120 deg           | No     | WIND     |
| W30       | Wind Load 30/90/120 deg          | No     | WIND     |
| Di        | Ice Load                         | No     | LL       |
| Wi0       | Ice Wind Load 0/60/120 deg       | No     | WIND     |
| Wi30      | Ice Wind Load 30/90/150 deg      | No     | WIND     |
| WL0       | WL 30 mph 0/60/120 deg           | No     | WIND     |
| WL30      | WL 30 mph 30/90/150 deg          | No     | WIND     |
| LL1       | 250 lb Live Load Center of Mount | No     | LL       |
| LL2       | 250 lb Live Load End of Mount    | No     | LL       |
| LLa1      | 500 lb Live Load on Antenna 1    | No     | LL       |
| LLa2      | 500 lb Live Load on Antenna 2    | No     | LL       |
| LLa3      | 500 lb Live Load on Antenna 3    | No     | LL       |
| LLa4      | 500 lb Live Load on Antenna 4    | No     | LL       |

# Distributed force on members



| Condition | Member | Dir1 | <b>Val1</b><br>[Kip/ft] | <b>Val2</b><br>[Kip/ft] | Dist1<br>[ft] | %  | Dist2<br>[ft] | %   |
|-----------|--------|------|-------------------------|-------------------------|---------------|----|---------------|-----|
| DL        | 24     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 25     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 26     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 27     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 28     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 29     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 18     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 19     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 20     | у    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
| W0        | 2      | Z    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 4      | Z    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 5      | Z    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 6      | Z    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |
|           | 7      | Z    | -0.01                   | -0.01                   | 0.00          | No | 100.00        | Yes |

|       | 8        | Z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|-------|----------|--------|------------------|------------------|--------------|----------|------------------|------------|
|       | 9        | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 10       | Z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 11       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 12       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 61       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 62       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 63       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 64       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 65       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 66       | Z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 35       | Z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 37       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 39       | z      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 13       | z      | -0.013           | -0.013           | 0.00         | No       | 100.00           | Yes        |
|       | 14       | z      | -0.013           | -0.013           | 0.00         | No       | 100.00           | Yes        |
|       | 34       | z      | -0.013           | -0.013           | 0.00         | No       | 100.00           | Yes        |
|       | 24       | z      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 25       | Z      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 26       | Z      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 27       | Z      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 28       | Z      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 29       | Z      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 36       | Z      | -0.009           | -0.009           | 0.00         | No       | 100.00           | Yes        |
|       | 38       | Z      | -0.009           | -0.009           | 0.00         | No       | 100.00           | Yes        |
|       | 40       | z<br>- | -0.009           | -0.009           | 0.00         | No       | 100.00           | Yes        |
|       | 21<br>22 | Z      | -0.002           | -0.002           | 0.00         | No       | 100.00           | Yes        |
|       | 23       | Z<br>- | -0.002<br>-0.002 | -0.002<br>-0.002 | 0.00<br>0.00 | No<br>No | 100.00<br>100.00 | Yes<br>Yes |
|       | 23<br>15 | z<br>z | -0.002           | -0.002<br>-0.015 | 0.00         | No       | 100.00           | Yes        |
|       | 17       | Z      | -0.015           | -0.015<br>-0.015 | 0.00         | No       | 100.00           | Yes        |
|       | 18       | Z      | -0.015           | -0.015<br>-0.015 | 0.00         | No       | 100.00           | Yes        |
|       | 19       | Z      | -0.015           | -0.015<br>-0.015 | 0.00         | No       | 100.00           | Yes        |
|       | 20       | Z      | -0.015           | -0.015<br>-0.015 | 0.00         | No       | 100.00           | Yes        |
| W30   | 1        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
| ***** | 2        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 3        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 4        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 5        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 6        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 7        | X      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 8        | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 10       | х      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 12       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 61       | Х      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 62       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 63       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 64       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 65       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 66       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 37       | x      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 39       | х      | -0.01            | -0.01            | 0.00         | No       | 100.00           | Yes        |
|       | 13       | х      | -0.013           | -0.013           | 0.00         | No       | 100.00           | Yes        |
|       | 14       | х      | -0.013           | -0.013           | 0.00         | No       | 100.00           | Yes        |
|       | 25       | Х      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 26       | Х      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 27       | Х      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 28       | Х      | -0.007           | -0.007           | 0.00         | No       | 100.00           | Yes        |
|       | 36       | Х      | -0.009           | -0.009           | 0.00         | No       | 100.00           | Yes        |
|       | 40       | X      | -0.009           | -0.009           | 0.00         | No       | 100.00           | Yes        |
|       |          |        |                  |                  |              |          |                  |            |

|    | 21                   | × | -0.002 | -0.002          | 0.00         | No       | 100.00 | Yes |
|----|----------------------|---|--------|-----------------|--------------|----------|--------|-----|
|    | 23                   | × | -0.002 | -0.002          | 0.00         | No       | 100.00 | Yes |
|    | 15                   | x | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 16                   | x | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 17                   | x | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 18                   | x | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 20                   | × | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
| Di | 1                    | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 2                    | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 3                    | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 4                    | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 5                    | ý | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 6                    | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 7                    | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 8                    | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 9                    | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 10                   | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 11                   | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 12                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 61                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 62                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 63                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 64                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 65                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 66                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 35                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 37                   | y | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 39                   |   | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 13                   | у | -0.009 | -0.01           | 0.00         | No       | 100.00 | Yes |
|    | 14                   | у | -0.01  | -0.01           | 0.00         | No       | 100.00 | Yes |
|    | 34                   | у | -0.01  | -0.01           | 0.00         | No       | 100.00 | Yes |
|    | 24                   | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 2 <del>4</del><br>25 | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 26<br>26             | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 20<br>27             | у | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    |                      | у |        |                 |              |          |        |     |
|    | 28                   | У | -0.009 | -0.009          | 0.00         | No       | 100.00 | Yes |
|    | 29<br>36             | у | -0.009 | -0.009<br>-0.01 | 0.00<br>0.00 | No<br>No | 100.00 | Yes |
|    |                      | У | -0.01  |                 |              |          | 100.00 | Yes |
|    | 38                   | у | -0.01  | -0.01           | 0.00         | No       | 100.00 | Yes |
|    | 40                   | У | -0.01  | -0.01           | 0.00         | No       | 100.00 | Yes |
|    | 21                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 22                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 23                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 15                   | у | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 16                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 17                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 18                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 19                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    | 20                   | У | -0.015 | -0.015          | 0.00         | No       | 100.00 | Yes |
|    |                      |   |        |                 |              |          |        |     |



| Condition | Member | Dir1 | <b>Value1</b><br>[Kip] | Dist1<br>[ft] | %  |
|-----------|--------|------|------------------------|---------------|----|
| DL        | 1      | у    | -0.04                  | 3.00          | No |
|           |        | у    | -0.04                  | 8.00          | No |
|           |        | у    | -0.025                 | 4.00          | No |
|           |        | у    | -0.025                 | 6.00          | No |
|           | 3      | У    | -0.035                 | 3.00          | No |
|           |        | У    | -0.035                 | 8.00          | No |
|           |        | У    | -0.018                 | 4.00          | No |
|           |        | У    | -0.018                 | 6.00          | No |
|           | 5      | У    | -0.04                  | 3.00          | No |
|           |        | У    | -0.04                  | 8.00          | No |
|           |        | У    | -0.025                 | 4.00          | No |
|           |        | У    | -0.025                 | 6.00          | No |
|           | 7      | У    | -0.035                 | 3.00          | No |
|           |        | У    | -0.035                 | 8.00          | No |
|           |        | У    | -0.018                 | 4.00          | No |
|           |        | У    | -0.018                 | 6.00          | No |
|           | 9      | У    | -0.04                  | 3.00          | No |
|           |        | У    | -0.04                  | 8.00          | No |
|           |        | У    | -0.025                 | 4.00          | No |
|           |        | У    | -0.025                 | 6.00          | No |
|           | 11     | У    | -0.035                 | 3.00          | No |
|           |        | У    | -0.035                 | 8.00          | No |
|           |        | У    | -0.018                 | 4.00          | No |
|           |        | У    | -0.018                 | 6.00          | No |
| W0        | 1      | Z    | -0.229                 | 3.00          | No |
|           |        | Z    | -0.229                 | 8.00          | No |
|           | 3      | Z    | -0.229                 | 3.00          | No |
|           |        | Z    | -0.229                 | 8.00          | No |
|           | 5      | Z    | -0.133                 | 3.00          | No |
|           |        | Z    | -0.133                 | 8.00          | No |
|           |        | Z    | -0.018                 | 4.00          | No |
|           |        | Z    | -0.018                 | 6.00          | No |
|           | 7      | Z    | -0.133                 | 3.00          | No |
|           |        | Z    | -0.133                 | 8.00          | No |
|           |        | Z    | -0.017                 | 4.00          | No |
|           |        | Z    | -0.017                 | 6.00          | No |
|           | 9      | Z    | -0.133                 | 3.00          | No |
|           |        | Z    | -0.133                 | 8.00          | No |
|           |        | Z    | -0.018                 | 4.00          | No |
|           |        | Z    | -0.018                 | 6.00          | No |
|           | 11     | Z    | -0.133                 | 3.00          | No |
|           |        | Z    | -0.133                 | 8.00          | No |
|           |        | Z    | -0.017                 | 4.00          | No |
|           |        | Z    | -0.017                 | 6.00          | No |
| W30       | 1      | Х    | -0.101                 | 3.00          | No |
|           |        | Х    | -0.101                 | 8.00          | No |
|           |        | Х    | -0.012                 | 4.00          | No |
|           |        | Х    | -0.012                 | 6.00          | No |
|           | 3      | Х    | -0.101                 | 3.00          | No |
|           |        | Х    | -0.101                 | 8.00          | No |
|           |        | Х    | -0.015                 | 4.00          | No |
|           |        | Х    | -0.015                 | 6.00          | No |
|           | 5      | Х    | -0.197                 | 3.00          | No |
|           |        | X    | -0.197                 | 8.00          | No |

|      |     | X        | -0.03  | 4.00         | No       |
|------|-----|----------|--------|--------------|----------|
|      |     | X        | -0.03  | 6.00         | No       |
|      | 7   | x        | -0.197 | 3.00         | No       |
|      |     | x        | -0.197 | 8.00         | No       |
|      |     | x        | -0.022 | 4.00         | No       |
|      |     | x        | -0.022 | 6.00         | No       |
|      | 9   | X        | -0.197 | 3.00         | No       |
|      | · · | X        | -0.197 | 8.00         | No       |
|      |     | X        | -0.03  | 4.00         | No       |
|      |     |          | -0.03  | 6.00         | No       |
|      | 11  | X        |        |              |          |
|      | 11  | X        | -0.197 | 3.00         | No<br>No |
|      |     | X        | -0.197 | 8.00         |          |
|      |     | X        | -0.022 | 4.00         | No       |
| Б.   |     | x        | -0.022 | 6.00         | No       |
| Di   | 1   | У        | -0.142 | 3.00         | No       |
|      |     | У        | -0.142 | 8.00         | No       |
|      |     | У        | -0.024 | 4.00         | No       |
|      |     | У        | -0.024 | 6.00         | No       |
|      | 3   | У        | -0.142 | 3.00         | No       |
|      |     | У        | -0.142 | 8.00         | No       |
|      |     | У        | -0.018 | 4.00         | No       |
|      |     | У        | -0.018 | 6.00         | No       |
|      | 5   | у        | -0.142 | 3.00         | No       |
|      |     | у        | -0.142 | 8.00         | No       |
|      |     | У        | -0.024 | 4.00         | No       |
|      |     | У        | -0.024 | 6.00         | No       |
|      | 7   | у        | -0.142 | 3.00         | No       |
|      |     | у        | -0.142 | 8.00         | No       |
|      |     | y        | -0.018 | 4.00         | No       |
|      |     | y        | -0.018 | 6.00         | No       |
|      | 9   | y        | -0.142 | 3.00         | No       |
|      |     | y        | -0.142 | 8.00         | No       |
|      |     | y        | -0.024 | 4.00         | No       |
|      |     | y        | -0.024 | 6.00         | No       |
|      | 11  | y        | -0.142 | 3.00         | No       |
|      |     | y        | -0.142 | 8.00         | No       |
|      |     | y        | -0.018 | 4.00         | No       |
|      |     |          | -0.018 | 6.00         | No       |
| Wi0  | 1   | y<br>z   | -0.045 | 3.00         | No       |
| VVIO | '   |          | -0.045 | 8.00         |          |
|      | 3   | Z        | -0.045 | 3.00         | No<br>No |
|      | 3   | Z        |        |              |          |
|      | _   | Z        | -0.045 | 8.00         | No       |
|      | 5   | Z        | -0.028 | 3.00         | No       |
|      |     | <b>Z</b> | -0.028 | 8.00         | No       |
|      |     | Z        | -0.006 | 4.00         | No       |
|      | _   | Z        | -0.006 | 6.00         | No       |
|      | 7   | Z        | -0.028 | 3.00         | No       |
|      |     | Z        | -0.028 | 8.00         | No       |
|      |     | Z        | -0.006 | 4.00         | No       |
|      |     | Z        | -0.006 | 6.00         | No       |
|      | 9   | Z        | -0.028 | 3.00         | No       |
|      |     | Z        | -0.028 | 8.00         | No       |
|      |     | Z        | -0.006 | 4.00         | No       |
|      |     | z        | -0.006 | 6.00         | No       |
|      | 11  | z        | -0.028 | 3.00         | No       |
|      |     | z        | -0.028 | 8.00         | No       |
|      |     | z        | -0.006 | 4.00         | No       |
|      |     | z        | -0.006 | 6.00         | No       |
| Wi30 | 1   | x        | -0.023 | 3.00         | No       |
|      |     | x        | -0.023 | 8.00         | No       |
|      |     |          | . ===  | <del>-</del> |          |

|        |    | X | -0.005 | 4.00 | No |
|--------|----|---|--------|------|----|
|        |    | X | -0.005 | 6.00 | No |
|        | 3  | x | -0.023 | 3.00 | No |
|        | _  | X | -0.023 | 8.00 | No |
|        |    |   |        |      | No |
|        |    | Х | -0.005 | 4.00 |    |
|        | _  | X | -0.005 | 6.00 | No |
|        | 5  | X | -0.039 | 3.00 | No |
|        |    | X | -0.039 | 8.00 | No |
|        |    | X | -0.008 | 4.00 | No |
|        |    | x | -0.008 | 6.00 | No |
|        | 7  | x | -0.039 | 3.00 | No |
|        |    | X | -0.039 | 8.00 | No |
|        |    | X | -0.007 | 4.00 | No |
|        |    |   |        |      |    |
|        | _  | X | -0.007 | 6.00 | No |
|        | 9  | X | -0.039 | 3.00 | No |
|        |    | X | -0.039 | 8.00 | No |
|        |    | X | -0.008 | 4.00 | No |
|        |    | Х | -0.008 | 6.00 | No |
|        | 11 | x | -0.039 | 3.00 | No |
|        |    | × | -0.039 | 8.00 | No |
|        |    | X | -0.007 | 4.00 | No |
|        |    |   |        |      |    |
| 14/1 0 | 4  | X | -0.007 | 6.00 | No |
| WL0    | 1  | Z | -0.014 | 3.00 | No |
|        |    | Z | -0.014 | 8.00 | No |
|        | 3  | Z | -0.014 | 3.00 | No |
|        |    | Z | -0.014 | 8.00 | No |
|        | 5  | Z | -0.008 | 3.00 | No |
|        |    | Z | -0.008 | 8.00 | No |
|        |    | Z | -0.001 | 4.00 | No |
|        |    | z | -0.001 | 6.00 | No |
|        | 7  | z | -0.008 | 3.00 | No |
|        |    | Z | -0.008 | 8.00 | No |
|        |    | Z | -0.001 | 4.00 | No |
|        |    | Z | -0.001 | 6.00 | No |
|        | 0  |   |        |      |    |
|        | 9  | Z | -0.008 | 3.00 | No |
|        |    | Z | -0.008 | 8.00 | No |
|        |    | Z | -0.001 | 4.00 | No |
|        |    | Z | -0.001 | 6.00 | No |
|        | 11 | Z | -0.008 | 3.00 | No |
|        |    | Z | -0.008 | 8.00 | No |
|        |    | Z | -0.001 | 4.00 | No |
|        |    | z | -0.001 | 6.00 | No |
| WL30   | 1  | x | -0.006 | 3.00 | No |
|        |    | X | -0.006 | 8.00 | No |
|        |    | X | -0.001 | 4.00 | No |
|        |    |   |        |      |    |
|        | 0  | X | -0.001 | 6.00 | No |
|        | 3  | X | -0.006 | 3.00 | No |
|        |    | Х | -0.006 | 8.00 | No |
|        |    | Х | -0.001 | 4.00 | No |
|        |    | X | -0.001 | 6.00 | No |
|        | 5  | x | -0.012 | 3.00 | No |
|        |    | x | -0.012 | 8.00 | No |
|        |    | x | -0.002 | 4.00 | No |
|        |    | x | -0.002 | 6.00 | No |
|        | 7  | X | -0.012 | 3.00 | No |
|        | •  | X | -0.012 | 8.00 | No |
|        |    |   | -0.012 | 4.00 | No |
|        |    | X |        |      |    |
|        | 0  | X | -0.001 | 6.00 | No |
|        | 9  | X | -0.012 | 3.00 | No |
|        |    | X | -0.012 | 8.00 | No |

|      |    | х | -0.002 | 4.00   | No  |
|------|----|---|--------|--------|-----|
|      |    | × | -0.002 | 6.00   | No  |
|      | 11 | x | -0.012 | 3.00   | No  |
|      |    | x | -0.012 | 8.00   | No  |
|      |    | х | -0.001 | 4.00   | No  |
|      |    | x | -0.001 | 6.00   | No  |
| LL1  | 35 | У | -0.25  | 50.00  | Yes |
| LL2  | 35 | У | -0.25  | 100.00 | Yes |
| LLa1 | 1  | У | -0.50  | 50.00  | Yes |
| LLa2 | 2  | У | -0.50  | 50.00  | Yes |
| LLa3 | 3  | y | -0.50  | 50.00  | Yes |
| LLa4 | 4  | У | -0.50  | 50.00  | Yes |
|      |    |   |        |        |     |

# Self weight multipliers for load conditions

|           |                                  | Self weight multiplier |       |       |       |  |
|-----------|----------------------------------|------------------------|-------|-------|-------|--|
| Condition | Description                      | Comb.                  | MultX | MultY | MultZ |  |
|           | Dead Load                        | <br>No                 | 0.00  | -1.00 | 0.00  |  |
| W0        | Wind Load 0/60/120 deg           | No                     | 0.00  | 0.00  | 0.00  |  |
| W30       | Wind Load 30/90/150 deg          | No                     | 0.00  | 0.00  | 0.00  |  |
| Di        | Ice Load                         | No                     | 0.00  | 0.00  | 0.00  |  |
| Wi0       | Ice Wind Load 0/60/120 deg       | No                     | 0.00  | 0.00  | 0.00  |  |
| Wi30      | Ice Wind Load 30/90/150 deg      | No                     | 0.00  | 0.00  | 0.00  |  |
| WL0       | WL 30 mph 0/60/120 deg           | No                     | 0.00  | 0.00  | 0.00  |  |
| WL30      | WL 30 mph 30/90/150 deg          | No                     | 0.00  | 0.00  | 0.00  |  |
| LL1       | 250 lb Live Load Center of Mount | No                     | 0.00  | 0.00  | 0.00  |  |
| LL2       | 250 lb Live Load End of Mount    | No                     | 0.00  | 0.00  | 0.00  |  |
| LLa1      | 500 lb Live Load on Antenna 1    | No                     | 0.00  | 0.00  | 0.00  |  |
| LLa2      | 500 lb Live Load on Antenna 2    | No                     | 0.00  | 0.00  | 0.00  |  |
| LLa3      | 500 lb Live Load on Antenna 3    | No                     | 0.00  | 0.00  | 0.00  |  |
| LLa4      | 500 lb Live Load on Antenna 4    | No                     | 0.00  | 0.00  | 0.00  |  |

# Earthquake (Dynamic analysis only)

| Condition | a/g  | <b>Ang</b> .<br>[Deg] | Damp.<br>[%] |
|-----------|------|-----------------------|--------------|
| DL        | 0.00 | 0.00                  | 0.00         |
| W0        | 0.00 | 0.00                  | 0.00         |
| W30       | 0.00 | 0.00                  | 0.00         |
| Di        | 0.00 | 0.00                  | 0.00         |
| Wi0       | 0.00 | 0.00                  | 0.00         |
| Wi30      | 0.00 | 0.00                  | 0.00         |
| WL0       | 0.00 | 0.00                  | 0.00         |
| WL30      | 0.00 | 0.00                  | 0.00         |
| LL1       | 0.00 | 0.00                  | 0.00         |
| LL2       | 0.00 | 0.00                  | 0.00         |
| LLa1      | 0.00 | 0.00                  | 0.00         |
| LLa2      | 0.00 | 0.00                  | 0.00         |
| LLa3      | 0.00 | 0.00                  | 0.00         |
| LLa4      | 0.00 | 0.00                  | 0.00         |

Page7



Current Date: 9/30/2021 10:55 AM

Units system: English

File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option

2\CT1104.retx

### **Steel Code Check**

Report: Summary - Group by member

### Load conditions to be included in design :

LC1=1.2DL+1.6W0

LC2=1.2DL+1.6W30

LC3=1.2DL-1.6W0

LC4=1.2DL-1.6W30

LC5=0.9DL+1.6W0

LC6=0.9DL+1.6W30

LC7=0.9DL-1.6W0

LC8=0.9DL-1.6W30

LC9=1.2DL+Di+Wi0

LC10=1.2DL+Di+Wi30

LC11=1.2DL+Di-Wi0

LC12=1.2DL+Di-Wi30

LC13=1.2DL

LC14=0.9DL

LC15=1.2DL+1.6LL1

LC16=1.2DL+1.6LL2

LC17=1.2DL+WL0+LLa1

LC18=1.2DL+WL30+LLa1

LC19=1.2DL-WL0+LLa1

LC20=1.2DL-WL30+LLa1

LC21=1.2DL+WL0+LLa2

LC22=1.2DL+WL30+LLa2

LC23=1.2DL-WL0+LLa2

LC24=1.2DL-WL30+LLa2

LC25=1.2DL+WL0+LLa3

LC26=1.2DL+WL30+LLa3 LC27=1.2DL-WL0+LLa3

LC28=1.2DL-WL30+LLa3

LC29=1.2DL+WL0+LLa4

LC30=1.2DL+WL30+LLa4

LC31=1.2DL-WL0+LLa4

LC32=1.2DL-WL30+LLa4

| Description        | Section            | Member | Ctrl Eq.       | Ratio | Status | Reference |
|--------------------|--------------------|--------|----------------|-------|--------|-----------|
|                    | HSS_SQR 4X4X1_4    | 15     | LC3 at 100.00% | 0.17  | OK     | Eq. H1-1b |
|                    |                    | 16     | LC2 at 100.00% | 0.23  | OK     | Eq. H1-1b |
|                    |                    | 17     | LC3 at 100.00% | 0.18  | OK     | Eq. H1-1b |
|                    |                    | 18     | LC2 at 50.00%  | 0.18  | OK     | Eq. H1-1b |
|                    |                    | 19     | LC1 at 48.44%  | 0.16  | OK     | Eq. H1-1b |
|                    |                    | 20     | LC4 at 48.44%  | 0.18  | OK     | Eq. H1-1b |
| L 2-1_2X2-1_2X3_16 | L 2-1_2X2-1_2X3_16 | 36     | LC4 at 100.00% | 0.52  | OK     | Eq. H2-1  |
|                    |                    | 38     | LC3 at 100.00% | 0.53  | ок     | Sec. F1   |
|                    |                    | 40     | LC2 at 100.00% | 0.46  | OK     | Sec. F1   |
| L 2X2              | L 2X2X1_4          | 24     | LC3 at 100.00% | 0.20  | OK     | Eq. H2-1  |
|                    |                    | 25     | LC1 at 100.00% | 0.22  | OK     | Eq. H2-1  |
|                    |                    | 26     | LC4 at 100.00% | 0.23  | OK     | Eq. H2-1  |
|                    |                    | 27     | LC2 at 0.00%   | 0.22  | OK     | Eq. H2-1  |
|                    |                    | 28     | LC1 at 0.00%   | 0.21  | OK     | Eq. H2-1  |

|                  | 29 | LC3 at 0.00%  | 0.20 | ОК | Eq. H2-1  |
|------------------|----|---------------|------|----|-----------|
| PIPE 2-1_2x0.203 | 1  | LC3 at 31.25% | 0.16 | OK | Eq. H1-1b |
|                  | 2  | LC4 at 89.58% | 0.10 | OK | Eq. H1-1b |
|                  | 3  | LC2 at 89.58% | 0.15 | OK | Eq. H1-1b |
|                  | 4  | LC2 at 89.58% | 0.10 | OK | Eq. H1-1b |
|                  | 5  | LC2 at 89.58% | 0.25 | OK | Eq. H1-1b |
|                  | 6  | LC2 at 89.58% | 0.10 | OK | Eq. H1-1b |
|                  | 7  | LC1 at 89.58% | 0.19 | OK | Eq. H1-1b |
|                  | 8  | LC1 at 89.58% | 0.13 | OK | Eq. H1-1b |
|                  | 9  | LC1 at 89.58% | 0.21 | OK | Eq. H1-1b |
|                  | 10 | LC1 at 89.58% | 0.13 | OK | Eq. H1-1b |
|                  | 11 | LC4 at 89.58% | 0.16 | OK | Eq. H1-1b |
|                  | 12 | LC4 at 89.58% | 0.14 | OK | Eq. H1-1b |
|                  | 61 | LC2 at 0.00%  | 0.40 | OK | Eq. H1-1b |
|                  | 62 | LC1 at 0.00%  | 0.35 | OK | Eq. H1-1b |
|                  | 63 | LC1 at 0.00%  | 0.32 | OK | Eq. H1-1b |
|                  | 64 | LC2 at 0.00%  | 0.38 | OK | Eq. H1-1b |
|                  | 65 | LC3 at 0.00%  | 0.23 | OK | Eq. H1-1b |
|                  | 66 | LC4 at 0.00%  | 0.23 | OK | Eq. H1-1b |
|                  | 35 | LC1 at 22.32% | 0.41 | OK | Eq. H1-1b |
|                  | 37 | LC4 at 22.32% | 0.56 | OK | Eq. H1-1b |
|                  | 39 | LC3 at 22.32% | 0.52 | OK | Eq. H1-1b |
| PIPE 3x0.216     | 13 | LC2 at 8.04%  | 0.18 | ОК | Eq. H1-1b |
|                  | 14 | LC4 at 64.29% | 0.15 | OK | Eq. H1-1b |
|                  | 34 | LC3 at 8.04%  | 0.15 | OK | Eq. H1-1b |
| PL 6x3/8         | 21 | LC2 at 50.00% | 0.20 | OK | Eq. H1-1b |
|                  | 22 | LC1 at 50.00% | 0.22 | OK | Eq. H1-1b |
|                  | 23 | LC4 at 50.00% | 0.20 | OK | Eq. H1-1b |



Current Date: 9/30/2021 10:50 AM

Units system: English

File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option

2\CT1104.retx

### **Geometry data**

**GLOSSARY** 

Cb22, Cb33 : Moment gradient coefficients

Cm22, Cm33 : Coefficients applied to bending term in interaction formula d0 : Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL : Tapered member section depth at K end of member

Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members

K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3

L22 : Member length for calculation of axial capacity
L33 : Member length for calculation of axial capacity

LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2

RX : Rotation about X
RY : Rotation about Y
RZ : Rotation about Z

TO : 1 = Tension only member 0 = Normal member

TX : Translation in X
TY : Translation in Y
TZ : Translation in Z

### **Nodes**

| Node | <b>X</b><br>[ft] | <b>Y</b><br>[ft] | <b>Z</b><br>[ft] | Rigid Floor |
|------|------------------|------------------|------------------|-------------|
| 21   | 0.00             | -4.00            | -2.0457          | 0           |
| 15   | 1.7716           | -4.00            | 1.0228           | 0           |
| 19   | -1.7716          | -4.00            | 1.0228           | 0           |
| 114  | -1.7716          | 0.00             | 1.0228           | 0           |
| 116  | 1.7716           | 0.00             | 1.0228           | 0           |
| 115  | 0.00             | 0.00             | -2.0457          | 0           |

### Restraints

| Node | TX | TY | TZ | RX | RY | RZ |
|------|----|----|----|----|----|----|
|      |    |    |    |    |    |    |
| 21   | 1  | 1  | 1  | 1  | 1  | 1  |
| 15   | 1  | 1  | 1  | 1  | 1  | 1  |
| 19   | 1  | 1  | 1  | 1  | 1  | 1  |
| 114  | 1  | 1  | 1  | 1  | 1  | 1  |
| 116  | 1  | 1  | 1  | 1  | 1  | 1  |
| 115  | 1  | 1  | 1  | 1  | 1  | 1  |

\_\_\_\_\_

### Members

| Member | NJ  | NK  | Description | Section            | Material             | <b>d0</b><br>[in] | <b>dL</b><br>[in] | lg factor |
|--------|-----|-----|-------------|--------------------|----------------------|-------------------|-------------------|-----------|
| 1      | 100 | 104 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 2      | 101 | 105 |             | PIPE 2-1 2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 3      | 102 | 106 |             | PIPE 2-1 2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 4      | 103 | 107 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 5      | 145 | 146 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 6      | 139 | 140 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 7      | 133 | 134 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 8      | 127 | 128 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 9      | 169 | 170 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 10     | 163 | 164 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 11     | 157 | 158 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 12     | 151 | 152 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 61     | 115 | 175 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 62     | 115 | 178 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 63     | 116 | 173 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 64     | 114 | 177 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 65     | 114 | 174 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 66     | 116 | 176 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 35     | 112 | 108 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 37     | 109 | 110 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 39     | 111 | 113 |             | PIPE 2-1_2x0.203   | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 13     | 9   | 10  |             | PIPE 3x0.216       | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 14     | 3   | 4   |             | PIPE 3x0.216       | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 34     | 12  | 13  |             | PIPE 3x0.216       | A53 GrB              | 0.00              | 0.00              | 0.00      |
| 24     | 34  | 18  |             | L 2X2X1_4          | A36                  | 0.00              | 0.00              | 0.00      |
| 25     | 36  | 20  |             | L 2X2X1_4          | A36                  | 0.00              | 0.00              | 0.00      |
| 26     | 30  | 14  |             | L 2X2X1_4          | A36                  | 0.00              | 0.00              | 0.00      |
| 27     | 18  | 35  |             | L 2X2X1_4          | A36                  | 0.00              | 0.00              | 0.00      |
| 28     | 20  | 37  |             | L 2X2X1_4          | A36                  | 0.00              | 0.00              | 0.00      |
| 29     | 14  | 31  |             | L 2X2X1_4          | A36                  | 0.00              | 0.00              | 0.00      |
| 36     | 108 | 109 |             | L 2-1_2X2-1_2X3_16 | A36                  | 0.00              | 0.00              | 0.00      |
| 38     | 110 | 111 |             | L 2-1_2X2-1_2X3_16 | A36                  | 0.00              | 0.00              | 0.00      |
| 40     | 112 | 113 |             | L 2-1_2X2-1_2X3_16 | A36                  | 0.00              | 0.00              | 0.00      |
| 21     | 13  | 9   |             | PL 6x3/8           | A36                  | 0.00              | 0.00              | 0.00      |
| 22     | 10  | 3   |             | PL 6x3/8           | A36                  | 0.00              | 0.00              | 0.00      |
| 23     | 12  | 4   |             | PL 6x3/8           | A36                  | 0.00              | 0.00              | 0.00      |
| 15     | 18  | 19  |             | HSS_SQR 4X4X1_4    | A500 GrB rectangular |                   | 0.00              | 0.00      |
| 16     | 20  | 21  |             | HSS_SQR 4X4X1_4    | A500 GrB rectangular |                   | 0.00              | 0.00      |
| 17     | 14  | 15  |             | HSS_SQR 4X4X1_4    | A500 GrB rectangular |                   | 0.00              | 0.00      |
| 18     | 28  | 27  |             | HSS_SQR 4X4X1_4    | A500 GrB rectangular |                   | 0.00              | 0.00      |
| 19     | 26  | 22  |             | HSS_SQR 4X4X1_4    | A500 GrB rectangular |                   | 0.00              | 0.00      |
| 20     | 23  | 29  |             | HSS_SQR 4X4X1_4    | A500 GrB rectangular | 0.00              | 0.00              | 0.00      |

### Orientation of local axes

| Member | Rotation<br>[Deg] | Axes23 | NX   | NY   | NZ   |  |
|--------|-------------------|--------|------|------|------|--|
| 36     | 180.00            | 0      | 0.00 | 0.00 | 0.00 |  |
| 38     | 180.00            | 0      | 0.00 | 0.00 | 0.00 |  |
| 40     | 90.00             | 0      | 0.00 | 0.00 | 0.00 |  |
|        |                   |        |      |      |      |  |

### Rigid end offsets

| Member | DJX<br>[in] | DJY<br>[in] | <b>DJZ</b><br>[in] | DKX<br>[in] | DKY<br>[in] | <b>DKZ</b><br>[in] |
|--------|-------------|-------------|--------------------|-------------|-------------|--------------------|
| 24     | 0.00        | 3.00        | 0.00               | 0.00        | 3.00        | 0.00               |
| 25     | 0.00        | 3.00        | 0.00               | 0.00        | 3.00        | 0.00               |
| 26     | 0.00        | 3.00        | 0.00               | 0.00        | 3.00        | 0.00               |
| 27     | 0.00        | 3.00        | 0.00               | 0.00        | 3.00        | 0.00               |
| 28     | 0.00        | 3.00        | 0.00               | 0.00        | 3.00        | 0.00               |
| 29     | 0.00        | 3.00        | 0.00               | 0.00        | 3.00        | 0.00               |



**Property Listing Report** 

Map Block Lot

109 37A

Building #

Unique Identifier

11950045

### **Property Information**

| Property Location | 45 MAPLE RIDGE DR      |  |  |  |
|-------------------|------------------------|--|--|--|
| Mailing Address   | POST OFFICE BOX 270    |  |  |  |
| Mailing Address   | HARTFORD CT 06141      |  |  |  |
| Land Use          | Commercial Vacant Land |  |  |  |
| Zoning Code       | R20                    |  |  |  |
| Neighborhood      | 97                     |  |  |  |

| Owner        | CONN LIGHT & POWER CO |
|--------------|-----------------------|
| Co-Owner     |                       |
| Book / Page  | 0288/0347             |
| Land Class   | Public Utility        |
| Census Tract | 4601                  |
| Acreage      | 2                     |

### **Valuation Summary**

(Assessed value = 70% of Appraised Value)

| Item         | Appraised | Assessed |
|--------------|-----------|----------|
| Buildings    | 0         | 0        |
| Outbuildings | 2400      | 1680     |
| Land         | 275000    | 192500   |
| Total        | 277400    | 194180   |

### **Utility Information**

| Electric     | No |
|--------------|----|
| Gas          | No |
| Sewer        | No |
| Public Water | No |
| Well         | No |





### **Primary Construction Details**

| Year Built        |  |
|-------------------|--|
| Building Desc.    |  |
| Building Style    |  |
| Stories           |  |
| Exterior Walls    |  |
| Exterior Walls 2  |  |
| Interior Walls    |  |
| Interior Walls 2  |  |
| Interior Floors 1 |  |
| Interior Floors 2 |  |

| Heating Fuel   |  |
|----------------|--|
| Heating Type   |  |
| AC Type        |  |
| Bedrooms       |  |
| Full Bathrooms |  |
| Half Bathrooms |  |
| Extra Fixtures |  |
| Total Rooms    |  |
| Bath Style     |  |
| Kitchen Style  |  |
| Occupancy      |  |
|                |  |

| Building Use              |  |  |  |  |
|---------------------------|--|--|--|--|
| <b>Building Condition</b> |  |  |  |  |
| Frame Type                |  |  |  |  |
| Fireplaces                |  |  |  |  |
| Bsmt Gar                  |  |  |  |  |
| Fin Bsmt Area             |  |  |  |  |
| Fin Bsmt Quality          |  |  |  |  |
| Building Grade            |  |  |  |  |
| Roof Style                |  |  |  |  |
| Roof Cover                |  |  |  |  |
| 10/19/2021                |  |  |  |  |

Report Created On

10/18/2021

### Town of Farmington, CT

**Property Listing Report** 

**CONN LIGHT & POWER CO** 

Map Block Lot

109 37A

Building #

Unique Identifier

11950045

| Detached Outbuildings  | <u>3</u>    |              |           |            |
|------------------------|-------------|--------------|-----------|------------|
| Type                   | Description | Area (sq ft) | Condition | Year Built |
| Utility                | Pump House  | 240          | Average   | 1960       |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
| Attached Extra Feature | <u>es</u>   |              |           |            |
| Type                   | Description | Area (sq ft) | Condition | Year Built |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
|                        |             |              |           |            |
| vales History          |             | Book/ Page   | Sale Date | Sale Price |

0288\_0347

1/1/1900

0







### STATE OF CONNECTICUT

### CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm

### CERTIFIED MAIL RETURN RECEIPT REQUESTED

November 6, 2003

Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP 185 Asylum Street, CityPlace I Hartford, CT 06103-3402

RE: **PETITION NO. 644** - Sprint Spectrum, L.P., d/b/a Sprint PCS and Southwestern Bell Mobile Systems, LLC, d/b/a Cingular Wireless petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the addition of Sprint PCS and Cingular Wireless Antennas to an existing Connecticut Light & Power Company electrical transmission structure at 45 Maple Ridge Drive, Farmington, Connecticut.

### Dear Attorney Regan:

At a public meeting held on October 29, 2003, the Connecticut Siting Council (Council) considered and ruled that this proposal would not have a substantial adverse environmental effect, and pursuant to General Statutes § 16-50k would not require a Certificate of Environmental Compatibility and Public Need.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the supplemental filing dated September 22, 2003 and with the condition that the color of the equipment building, equipment cabinets, and bollards conform with the surrounding landscape.

Enclosed for your information is a copy of the staff report on this project.

Very truly yours,

Pamela B. Katz, P.E.

Chairman

PBK/laf

Enclosure: Staff Report dated October 29, 2003

c: Honorable Arline B. Whitaker, Chairman Town Council, Town of Farmington Jeffrey Ollendorf, Planning and Zoning Official, Town of Farmington

L:\siting\petition\644\dc102903.doc



### STATE OF CONNECTICUT

### CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm

Petition No. 644
Sprint Spectrum, L.P. and Southwestern Bell Mobile System, LLC
Maple Ridge Drive, Farmington

Staff Report October 29, 2003

On August 27, 2003, Connecticut Siting Council (Council) member Edward Wilinsky and Robert Mercier of Council staff met with Sprint Spectrum, L.P d/b/a Sprint PCS (Sprint) representative Thomas Regan at a Connecticut Light & Power Company (CL&P) right-of-way on Maple Ridge Drive in Farmington for the inspection of an electric transmission structure owned by CL&P. Sprint and Southwestern Bell Mobile System, LLC d/b/a Cingular Wireless (Cingular), with the agreement of CL&P, propose to redesign and replace CL&P transmission tower #8012 to allow for the installation of telecommunication equipment at this location. Sprint and Cingular (Applicant) are petitioning the Council for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) is required for the redesign and replacement of the transmission structure.

The Applicant proposes to replace an existing 61-foot H-frame transmission line structure with a new laminated wood structure. The new H-frame structure would consist of two poles, an 86-foot pole and a 100-foot pole connected by diagonal and horizontal cross beams. The 100-foot pole would accommodate 3 panel antennas owned by Sprint at a centerline height of 100 feet and 3 panel antennas owned by Cingular at a centerline height of 88 feet. The total height of the structure with antennas would be approximately 102 feet. The antennas of both carriers would be flush mounted to the pole.

A 42-foot by 33-foot equipment compound enclosed with six-foot high chain link fence would be constructed at the base of the transmission tower. Sprint would place four cabinets, no taller than six feet, on a concrete pad within the compound. Cingular would place a 20-foot by 12-foot by 11.75-foot equipment building within the compound.

Access to the site would be via a 12-foot wide, 125-foot long gravel driveway that would extend from Maple Ridge Drive within the existing CL&P right-of-way. No wetlands or watercourses are within or adjacent to the proposed construction area. Soil and erosion controls would be installed prior to construction.

Land use in the immediate area is residential. The two nearest residences are 37 Maple Ridge Drive, approximately 186 feet north of the site, and 51 Maple Ridge Drive, approximately 153 feet south of the site. Visual simulations indicate the residence at 37 Maple Ridge Drive would have year round views of most of the structure. The residence at 51 Maple Ridge Drive would have mostly winter views of the structure. The structure and compound would be visible from Maple Ridge Drive where the transmission line crosses the road. No landscaping is planned; existing shrubby vegetation in the right-of-way would provide limited screening. A 65-foot CL&P structure east of site and adjacent to Maple Ridge Drive was replaced with an 80-foot structure in 1999 to accommodate three flush mounted antennas owned by Omnipoint Communications Inc. (Petition 423).



### STATE OF CONNECTICUT

### CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

### VIA ELECTRONIC MAIL

September 20, 2021

Kathleen M. Shanley Manager – Transmission Siting Eversource Energy P.O. Box 270 Hartford, CT 06141

RE: SUB-PETITION NO. 1293- FA-02 (Farmington) – Eversource Energy declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for all transmission facility asset condition maintenance improvements statewide to comply with the updated National Electrical Safety Code clearance requirements.

Dear Ms. Shanley:

The Connecticut Siting Council (Council) hereby acknowledges your notice to replace 2 transmission structures at various locations along Eversource transmission line right-of-way in the Town of Farmington pursuant to National Electrical Safety Code standards, with the following conditions:

- 1. Any deviation from the proposed transmission line maintenance activity as specified in this notice and supporting materials filed with the Council shall render this acknowledgement invalid;
- 2. Any material changes to this transmission line maintenance activity as proposed shall require the filing of a new notice with the Council;
- 3. Not less than 45 days after completion of the transmission line maintenance activity, the Council shall be notified in writing that construction has been completed;
- 4. The validity of this action shall expire one year from the date of this letter; and
- 5. The petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

The proposed transmission line maintenance activities are to be implemented as specified here and in your notice dated August 9, 2021. This decision is under the exclusive jurisdiction of the Council.

Thank you for your attention and cooperation.

Sincerely,

Melanie Bachman Executive Director

c: Honorable C.J. Thomas, Town Council Chairman, Town of Farmington (towncouncil@farmington-ct.org)



56 Prospect Street, Hartford, CT 06103

P.O. Box 270 Hartford, CT 06141-0270 (860) 665-5000

November 12, 2021

Mr. Tim Burks SAI Communications 12 Industrial Way Salem, NH 03079

RE: AT&T Antenna Site CT1104, Maple Ridge Drive, Farmington CT, Eversource Structure 8012

Dear Mr. Burks:

Based on our reviews of the site drawings, the structural analysis and foundation review provided by Centek Engineering, along with a third party review performed by Paul J. Ford and Company, we accept the proposed modification.

Please work with Christopher Gelinas of Eversource Real Estate to process the site lease amendment. Please do not hesitate to contact us with questions or concerns. Christopher can be contacted at 860-665-2008, and I can be contacted at (203) 623-0409.

Sincerely,

Richard Badon

Richard Badon Transmission Line Engineering

Ref: 2021-1109 - CT1104 Structural Analysis Rev2 (21122.00) 2021-1109\_21122.00 CT1104 Rev0 CDs (S&S)



Click-N-Ship®

U.S. POSTAGE PAID

Mailed from 03079

11/12/2021

# PRIORITY MAIL 2-DAYTM

SALEM NH 03079-2837 12 INDUSTRIAL WAY SAI GROUP HOLLIS M REDDING

> Expected Delivery Date: 11/15/21 Ref#: CT1104

**R001** 

SHIP

**USPS TRACKING #** 



Electronic Rate Approved #038555749

Cut on dotted line.

TO: KATHLEEN BRONSKI, TOWN MANAGER SHANNON TOWN OF FARMINGTON

1 MONTIETH DR

FARMINGTON CT 06032-1082



## Click-N-Ship®



\$8.70 94

Flat Rate Env

U.S. POSTAGE PAID

Mailed from 03079

11/12/2021

### **PRIORITY** MAIL 2-DAY™

SAI GROUP **HOLLIS M REDDING** 

SALEM NH 03079-2837 12 INDUSTRIAL WAY

0006

Expected Delivery Date: 11/15/21

Ref#: CT1104

C015

**USPS TRACKING #** 

TO: CHRIS GELINAS EVERSOURCE 107 SELDEN ST BERLIN CT 06037-1616



Electronic Rate Approved #038555749

From: auto-reply@usps.com
To: Hollis Redding

Subject: USPS® Expected Delivery by Saturday, November 13, 2021 arriving by 9:00pm 9405503699300060273801

**Date:** Friday, November 12, 2021 3:31:33 PM



### Hello HOLLIS M REDDING,

USPS is now in possession of your item as of 2:35 pm on November 12, 2021 in MERIDEN, CT 06450.

Tracking Number: 9405503699300060273801



### **Hollis Redding**

**From:** auto-reply@usps.com

Sent: Friday, November 12, 2021 3:31 PM

**To:** Hollis Redding

Subject: USPS® Expected Delivery by Saturday, November 13, 2021 arriving by 9:00pm

9405503699300060273818



### Hello HOLLIS M REDDING,

USPS is now in possession of your item as of 2:35 pm on November 12, 2021 in MERIDEN, CT 06450.

Tracking Number: 9405503699300060273818

### **Expected Delivery By**



### By 9:00pm



### **Tracking & Delivery Options**

### My Account

Visit <u>USPS Tracking</u>® to check the most up-to-date status of your package. Sign up for <u>Informed Delivery</u>® to digitally preview the address side of your incoming letter-