November 12, 2021 Ms. Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051 Re: Notice of Exempt Modification New Cingular Wireless PCS LLC ("AT&T") Site CT1104 45 Maple Ridge Drive, Farmington, CT 06032 (the "Property") Latitude: 41-43-04.7 N Longitude: 72-46-09.5 W Dear Ms. Bachman: AT&T currently maintains (6) antennas at the 88' level on the existing 102' laminated wood utility structure pole # 8012 ("Tower") at 45 Maple Ridge Drive, in Farmington, CT. The Tower and property are owned by Connecticut Light & Power ("Eversource"). Eversource received CT Siting Council ("Council") approval on September 20, 2021 under Sub-Petition 1293-FA-02 to replace the existing Tower with a 95' weathering steel transmission structure ("Structure'). AT&T intends to modify its facility by removing all its equipment on the existing Tower by replacing the (6) existing antennas with (3) DMP65R-BU6DA antennas, & (3) TPA65R-BU6DA-K antennas and adding (6) TMABPD7823VG12A & (6) TMA2124F03V5-1D TMAs on the new Structure. The height of AT&T's proposed antennas is 92' on the new Structure. This modification includes B2, B5, and B12 hardware that is both 4G (LTE) and 5GNR capable through remote software configuration and either or both services may be turned on or off at various times. AT&T's original facility received Council approval in Petition 644 on October 29, 2003. The new Eversource Structure approval contained no conditions that could feasibly be violated by AT&T proposed modifications, including facility height or mounting restrictions. AT&T's modification complies with the Council's approval of the new Structure. Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ("R.C.S.A") §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A §16-50j-72(b)(2). In accordance with to R.C.S.A §16-50j-73, a copy of this letter is being sent to the Ms. Kathleen A. Blonski, Town Manager, Town of Farmington, Ms. Shannon Rutherford. P.E., Town Planner, Town of Farmington, and Eversource as structure and property owner. The planned modification of the facility falls squarely within those activities explicitly provided for in R.C.S.A §16-50j-72(b)(2). Specifically: - 1. The proposed modifications will not result in an increase in the height of the new structure. - 2. The proposed modifications will not require an extension of the site boundary. - 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria. - 4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. - 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site. - 6. The new structure and foundation can support the proposed loading. For the foregoing reasons, AT&T respectfully submits the proposed modifications to the above referenced telecommunication facility constitute an exempt modification pursuant to R.C.S.A §16-50j-72(b)(2). Sincerely, Hollis M. Redding SAI Communications, LLC 12 Industrial Way Salem, NH 03079 Mobile: 860-834-6964 hredding@saigrp.com **Enclosures** Cc: Ms. Kathleen A. Blonski, Town Manager, Town of Farmington Ms. Shannon Rutherford P.E., Town Planner, Town of Farmington Eversource as structure & property owner ### **Power Density** ### **Existing Loading on Tower** | Carrier | # of
Channels | ERP/Ch
(W) | Antenna
Centerline
Height (ft) | Power Density (mW/cm^2) | Freq.
Band
(MHz**) | Limit
S (mW
/cm^2) | %MPE | |-----------------|------------------|---------------|--------------------------------------|-------------------------|--------------------------|--------------------------|--------| | Other Carriers* | | (11) | True grit (Tu) | (, 6, | ,,,,,, | ,, | 2.75% | | AT&T | 2 | 1791 | 88 | 0.1916 | 2300 | 1.0000 | 1.92% | | AT&T | 2 | 1104 | 88 | 0.1181 | 734 | 0.4893 | 2.41% | | AT&T | 2 | 2203 | 88 | 0.2356 | 1900 | 1.0000 | 2.36% | | AT&T | 2 | 492 | 88 | 0.0526 | 880 | 0.5867 | 0.90% | | AT&T | 2 | 419 | 88 | 0.0448 | 880 | 0.5867 | 0.76% | | AT&T | 2 | 817 | 88 | 0.0874 | 1900 | 1.0000 | 0.87% | | Site Total | | | | | | | 11.97% | ^{*}Per CSC Records (available upon request, includes calculation formulas) ### **Proposed Loading on new Structure** | Carrier | # of
Channels | ERP/Ch
(W) | Antenna
Centerline
Height (ft) | Power
Density
(mW/cm^2) | Freq.
Band
(MHz**) | Limit
S (mW
/cm^2) | %МРЕ | |-----------------|------------------|---------------|--------------------------------------|-------------------------------|--------------------------|--------------------------|--------| | Other Carriers* | | | | | | | 2.75% | | AT&T | 1 | 1476 | 92 | 0.0789 | 700 | 0.4667 | 1.54% | | AT&T | 1 | 1000 | 92 | 0.0535 | 850 | 0.5667 | 0.86% | | AT&T | 1 | 5070 | 92 | 0.2712 | 2300 | 1.0000 | 2.47% | | AT&T | 1 | 1000 | 92 | 0.0535 | 850 | 0.5667 | 0.86% | | AT&T | 1 | 2951 | 92 | 0.1578 | 700 | 0.4667 | 3.07% | | AT&T | 1 | 1000 | 92 | 0.0535 | 850 | 0.5667 | 0.86% | | AT&T | 1 | 1285 | 92 | 0.0687 | 2100 | 1.0000 | 0.62% | | AT&T | 3 | 4842 | 92 | 0.7769 | 1900 | 1.0000 | 7.06% | | Site Total | | | | | | | 20.09% | ^{*}Per CSC Records (available upon request, includes calculation formulas) ^{**} If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880 ^{**} If a range of frequencies are used, such as 880-894, enter the lowest value, i.e. 880 # CTL01104 - LTE 6C, 4TX4RX, 5G NR, BWE EVERSOURCE STRUCT. NO. 8012 FARMINGTON NU MAPLE RIDGE DRIVE 45 MAPLE RIDGE DRIVE FARMINGTON, CT 06032 ### GENERAL NOTES - ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES. - CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK. - CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS. - CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK. - CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS. - CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT. - LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS. - 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. - DRAWINGS INDICATE THE MINIMUM STANDARDS. BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS. CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES. LAWS. CODES. RULES OR REGULATIONS WITH NO INCREASE IN COSTS. - 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS. - 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION - 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSED' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE AT&T CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS. - 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON—SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER. - 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW. - 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT - 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. - 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR
EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES. - 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION. - 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR. ### SITE DIRECTIONS **TO:** 45 MAPLE RIDGE DRIVE FARMINGTON, CT 06032 FROM: 500 ENTERPRISE DRIVE ROCKY HILL, CONNECTICUT 1. TAKE RAMP LEFT FOR I-91 1.7 MI AT EXIT 22N, TAKE RAMP RIGHT FOR CT-9 NORTH TOWARD NEW BRITAIN 10.0 MI. 3. AT EXIT 30, TAKE RAMP RIGHT FOR CT-71 TOWARD CORBINS CORNER 0.3 MI 0.9 MI. 4. TURN RIGHT ONTO CT-71/ HARTFORD 0.6 MI. 5. TURN LEFT ONTO SOUTH RD. 0.2 MI. 6. TURN LEFT ONTO MAPLE RIDGE RD. ARRIVE AT 45 MAPLE RIDGE DR, FARMINGTON, CT 06032 ### PROJECT SUMMARY - THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO - B. REMOVE ALL EXISTING AT&T EQUIPMENT FROM EXISTING - C. REMOVE (9) RRUS WITHIN THE EXISTING AT&T EQUIPMENT EQUIPMENT SHELTER. - D. INSTALL (12) PENTAPLEXER WITHIN THE EXISTING AT&T - G. INSTALL NEW ANTENNA MOUNT ON NEW TRANSMISSION TOWER AT 92' RAD CENTER. - H. INSTALL (24) 1-5/8" COAX CABLES - INSTALL (6) NEW ANTENNAS AND (12) TMA ON NEW TRANSMISSION TOWER AT 92' RAD CENTER - INSTALL NEW CABLE ICE-BRIDGE FOR THE NEW TRANSMISSION ### PROJECT INFORMATION PROJECT COORDINATES: AT&T SITE NUMBER: CTL01104 AT&T SITE NAME: FARMINGTON NU MAPLE RIDGE DR. SITE ADDRESS: EVERSOURCE STRUCT. NO. 8012 45 MAPLE RIDGE DRIVE FARMINGTON, CT 06032 AT&T PACE JOB PACE JOB 1 - MRCTB046571 PACE JOB 2 - MRCTB047034 PACE JOB 3 - MRCTB047029 PACE JOB 4 - MRCTB047537 LESSEE/APPLICANT: AT&T MOBILITY 84 DEERFIELD LANE, MERIDEN, CT 06450 CONTACT PERSON: TIM BURKS SAI COMMUNICATIONS (860) 989-0001 CENTEK ENGINEERING, INC. **ENGINEER:** 63-2 NORTH BRANFORD RD. BRANFORD, CT. 06405 LATITUDE: 41°-43'-04.7"N LONGITUDE: 72°-46'-09.5"W GROUND ELEVATION: ±235' AMSL | SHEET | INDEX | | |----------|---|------| | SHT. NO. | DESCRIPTION | REV. | | T-1 | TITLE SHEET | 0 | | N-1 | GENERAL NOTES AND SPECIFICATIONS | 0 | | C-1 | EXISTING AND PROPOSED COMPOUND PLANS | 0 | | C-2 | EQUIPMENT PLANS, TOWER ELEVATION AND COAX PLAN | 0 | | C-3 | ANTENNA PLANS, ELEVATIONS, AND ANTENNA SCHEDULE | 0 | | C-4 | TYPICAL EQUIPMENT DETAILS | 0 | | E-1 | ELECTRICAL GROUNDING PLAN | 0 | | E-2 | TYPICAL ELECTRICAL DETAILS | 0 | | E-3 | ELECTRICAL SPECIFICATIONS | 0 | | E-4 | SCHEMATIC DIAGRAM AND NOTES | 0 | | E-5 | WIRING DIAGRAM | 0 | | E-6 | PLUMBING DIAGRAM | 0 | 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 TITLE SHEET ### NOTES AND SPECIFICATIONS ### **DESIGN BASIS:** GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE. - 1. DESIGN CRITERIA: - RISK CATEGORY II (BASED ON IBC TABLE 1604.5) - NOMINAL/ULTIMATE DESIGN SPEED: 97 MPH (Vasd) (EXPOSURE C/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10). ### SITE NOTES CONTRACT DOCUMENTS. - 1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION. - 2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE - 3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION. - 4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL. - 5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS. THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED. ### **GENERAL NOTES** - ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL - CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK. - CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS. - 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK. - CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS. - CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT. - LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS. - THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND IT'S COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. - DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS. - 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS. - 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER. - 12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSED ITEMS. - 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER. - 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW. - 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. - 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. - 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES. - 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION. - 18. CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR. - 19. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS. - 20. THE COUNTY/CITY/TOWN MUST BE NOTIFIED (2) WORKING DAYS PRIOR TO CONCEALMENT/BURIAL OF ANY SYSTEM OR MATERIAL THAT WILL PREVENT THE DIRECT INSPECTION OF MATERIALS, METHODS OR WORKMANSHIP. EXAMPLES OF THESE PROCESSES ARE BACKFILLING A GROUND RING OR TOWER FOUNDATION. POURING TOWER FOUNDATIONS. BURYING GROUND RODS, PLATES OR GRIDS, ETC. THE CONTRACTOR MAY PROCEED WITH THE SCHEDULED PROCESS (2) WORKING DAYS AFTER PROVIDING NOTICE UNLESS NOTIFIED OTHERWISE BY THE COUNTY/CITY/TOWN. ### STRUCTURAL STEEL - 1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD) - A. STRUCTURAL STEEL (W SHAPES)——ASTM A992 (FY = 50 KSI) B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36 (FY = 36 KSI) - C. STRUCTURAL HSS (RECTANGULAR SHAPES) --- ASTM A500 GRADE B, (FY = 46 KSI) - D. STRUCTURAL HSS (ROUND SHAPES)——ASTM A500 GRADE B, (FY = 42 KSI) - PIPE---ASTM A53 (FY = 35 KSI) - CONNECTION BOLTS---ASTM A325-N U-BOLTS---ASTM A36 - ANCHOR RODS---ASTM F 1554 WELDING ELECTRODE———ASTM E 70XX - 2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT
COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS. - STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION. - 4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE. - 5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE. - 6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS. - 7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780. - 8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS. - 9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE". - 10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW. - 11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES. - 12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS. - 13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES. - 14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED. - 15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION. - 16. FABRICATE BEAMS WITH MILL CAMBER UP. - 17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN. - 18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK. - 19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY. - 20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION. $\boldsymbol{\sigma}$ 488 488 Vort 16C, 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 \geqslant **GENERAL NOTES** AND **SPECIFICATIONS** Sheet No. <u>2</u> of <u>1</u>2 at&t DATE: 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 EXISTING AND PROPOSED COMPOUND PLANS ### EQUIPMENT GROUNDING NOTE: ALL (E/P) EQUIPMENT IS TO BE BONDED TO THE EXISTING GROUNDING SYSTEM. IF AN EXISTING GROUNDING SYSTEM IS NOT PRESENT OR IS NOT OPERATIONAL, THE CONTRACTOR IS TO CONTACT THE ENGINEER OF RECORD. ### STRUCTURAL COMPLIANCE ### ANTENNA MOUNTS A STRUCTURAL ANALYSIS OF THE ANTENNA MOUNTS WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING.. REFER TO THE ANTENNA MOUNT ANALYSIS REPORT PREPARED BY HUDSON DESIGN GROUP REV.1 DATED 09/30/21 FOR ADDITIONAL INFORMATION AND REQUIREMENTS. ### TOWER AND TOWER FOUNDATION A STRUCTURAL ANALYSIS OF THE TOWER AND TOWER FOUNDATION WAS PERFORMED FOR THE PROPOSED EQUIPMENT INSTALLATION AND THEY WERE FOUND TO BE STRUCTURALLY SUFFICIENT TO ACCOMMODATE THE PROPOSED LOADING. REFER TO THE STRUCTURAL ANALYSIS REPORT PREPARED BY CENTEK ENGINEERING (PROJECT # 21122.00) DATED 11/09/21 FOR ADDITIONAL INFORMATION AND REQUIREMENTS. NOTE: NO EQUIPMENT SHALL BE INSTALLED ON THE HOSTING STRUCTURE WITHOUT A PASSING STRUCTURAL ANALYSIS REPORT AND CONTRACTOR PRIOR CONFIRMATION THAT ANY AND ALL REQUISITE MODIFICATIONS HAVE BEEN COMPLETED. 4 PROPOSED COAX CABLE ROUTING PLAN C-2 SCALE: NOT TO SCALE 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 EQUIPMENT PLANS, TOWER ELEVATION AND COAX PLAN $\left(\begin{array}{c} 3 \\ 0 \end{array}\right)$ PROPOSED SOUTHWEST TOWER ELEVATION SCALE: NOT TO SCALE ### **EQUIPMENT GROUNDING NOTE:** ALL (E/P) EQUIPMENT IS TO BE BONDED TO THE EXISTING GROUNDING SYSTEM. IF AN EXISTING GROUNDING SYSTEM IS NOT PRESENT OR IS NOT OPERATIONAL, THE CONTRACTOR IS TO CONTACT THE ENGINEER OF RECORD. | | ANTENNA SCHEDULE | | | | | | | | | | |--|------------------|----------------------|---------------------|-------------------|-----|--|--|-------------------------|--|--| | SECTOR EXISTING/PROPOSED BAND ANTENNA SIZE (INCHES) (L x W x D) ANTENNA AN | | | | | | | | | (E/P) SURGE ARRESTOR (QTY) | | | A1 | PROPOSED | LTE 700 BC/5G850/WCS | CCI DMP65R-BU6DA | 71.2 × 20.7 × 7.7 | 92' | 50° TMA: (P) TMABPD7823VG12A (2), DIPLEXER: (E)(G) DBC2055F1V1-2 (2), | (E) RRUS-32 B30 (1), (P) RADIO 4449 B5/B12 (2) | 1-%"ø COAX (8) | (E) TSXDC-4310FM (4), (P) TSXDC-4310FM (4)(G) | | | A2 | PROPOSED | LTE 700B14/PCS/AWS | CCI TPA-65R-BU6DA-K | 71.2 × 20.7 × 7.7 | 92' | 50° TMA: (P) TMA2124F03V5-1D (2), PENTAPLEXER: (P)(G) 5PX-0726-0 (4), | (P) RADIO 4478 B14 (1), (P) RADIO 4415 B25 (1), (P) RADIO 4426 B66 (1) | 1-78 & COAX (8) | (E) APTDC-BDFDM-DB (10), (P) TSXDC-43FM (4)(G) | | | B1 | PROPOSED | LTE 700 BC/5G850/WCS | CCI DMP65R-BU6DA | 71.2 × 20.7 × 7.7 | 92' | 160° TMA: (P) TMABPD7823VG12A (2), DIPLEXER: (E)(G) DBC2055F1V1-2 (2), | (E) RRUS-32 B30 (1), (P) RADIO 4449 B5/B12 (2) | 1 5/"a COAV (9) | (E) TSXDC-4310FM (4), (P) TSXDC-4310FM (4)(G) | | | B2 | PROPOSED | LTE 700B14/PCS/AWS | CCI TPA-65R-BU6DA-K | 71.2 × 20.7 × 7.7 | | TMA: (P) TMA2124F03V5-1D (2), PENTAPLEXER: (P)(G) 5PX-0726-0 (4), | (P) RADIO 4478 B14 (1), (P) RADIO 4415 B25 (1), (P) RADIO 4426 B66 (1) | 1-%"ø COAX (8) | (E) APTDC-BDFDM-DB (10), (P) TSXDC-43FM (4)(G) | | | C1 | PROPOSED | LTE 700 BC/5G850/WCS | CCI DMP65R-BU6DA | 71.2 × 20.7 × 7.7 | 92' | 280° TMA: (P) TMABPD7823VG12A (2), DIPLEXER: (E)(G) DBC2055F1V1-2 (2), | (E) RRUS-32 B30 (1), (P) RADIO 4449 B5/B12 (2) | 4 5/"4 COAY (8) | (E) TSXDC-4310FM (4), (P) TSXDC-4310FM (4)(G) | | | C2 | PROPOSED | LTE 700B14/PCS/AWS | CCI TPA-65R-BU6DA-K | 71.2 × 20.7 × 7.7 | + | 280° TMA: (P) TMA2124F03V5-1D (2), PENTAPLEXER: (P)(G) 5PX-0726-0 (4), | (P) RADIO 4478 B14 (1), (P) RADIO 4415 B25 (1), (P) RADIO 4426 B66 (1) | 1− % "ø COAX (8) | (E) APTDC-BDFDM-DB (10), (P) TSXDC-43FM (4)(G) | | PROPOSED ANTENNA PLAN C-3 SCALE: 3/8" = 1'-0" TYPICAL TMA MOUNTING DETAIL C-3 SCALE: 1/2" = 1'-0" | | | | PROFESSIONAL ENGINEER SEAL | | | | |
--|--|------|--|-------------|-----|-----|--| | AIX: MODIFII | Z I Z Engineering | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | | | | Centered on Solutions** | 12to | O STATE CONNESS | | | | | | CTLOHO4 - LTE6C, 4TX4RX, 5G NR, BWE | | | LINE OF CENTRAL | | | | | | | (203) 488-0580 | | THE SECOND STATES | | | | | | EVERSOURCE STRUCT, NO. 8012 | (203) 488-838/ Fax
63-2 North Branford Road | | 2 | | | | | | | Branford, CT 06405 | | 11 0 1000 1.00 × 12 11 | | | | | | TARMING I ON NO MAPLE RIDGE DEIVE | | | SCHOOL STATES | | | | | | AF MARIE DINCE CADAINICATON OF | :
-
-
(| | III WONAL ET SAN | 0 11/09/21 | ASC | TJR | CONSTRUCTION DRAWINGS - ISSUED FOR CONSTRU | | | 200 DC+07-100 VVVVV | | Company of the Compan | | | | | DATE: 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 ANTENNA PLANS, ELEVATIONS, AND ANTENNA SCHEDULE - INSTALL ANCHORS/FASTENERS A MAXIMUM OF 0'-6" ON CENTERS TOTAL OF (9) FASTENERS PER UNISTRUT. - HILTI HTB TOGGLER BOLT 3/8" WITH SRH SCREW. - "SRH SCREW" DENOTES 3/8" ø x 2 $\frac{1}{2}$ " LONG MACHINE SCREW WITH ROUND HEAD (COMBINATION SLOTTED/PHILLIPS) - 2. MOUNT RRU TO UNISTRUT WITH 3/8" WINISTRUT BOLTING HARDWARE AND SPRING NUTS. TYPICAL FOUR PER BRACKET. - 3. NO PAINTING OF THE RRH OR SOLAR SHIELD IS ALLOWED. | | ALPH | IA/BETA/GAMMA ANTENNA | | |-----------------|------------------------|--|----------------| | | EQUIPMENT | DIMENSIONS | WEIGHT | | MAKE:
MODEL: | CCI
DMP65R—BU6DA | 72"L x 20"W x 7.7"D | 79.4 LBS. | | MAKE:
MODEL: | CCI
TPA-65R-BU6DA-K | 72"L x 20"W x 7.7"D | 69 LBS. | | | | ATE FINAL EQUIPMENT MODEL
AGER PRIOR TO ORDERING. | SELECTION WITH | PROPOSED ANTENNA DETAIL SCALE: NOT TO SCALE RADIO 4415 B25 RADIO 4478 B14 RADIO 4449 B5/B12 | | EQUIPMENT | DIMENSIONS | WEIGHT | CLEARANCES | |-----------------|-------------------------------|-------------------------|----------|---| | MAKE:
MODEL: | ERICSSON
RADIO 4415 B25 | 16.5"L x 13.4"W x 5.9"D | ±46 LBS. | BEHIND ANT.: 8" MI
BELOW ANT.: 20" M
BELOW RRU: 16" M | | MAKE:
MODEL: | ERICSSON
RADIO 4449 B5/B12 | 14.9"L x 13.2"W x 5.4"D | ±73 LBS. | BEHIND ANT.: 8" MI
BELOW ANT.: 20" M
BELOW RRU: 16" M | | MAKE:
MODEL: | ERICSSON
RADIO 4478 B14 | 16.5"L x 13.4"W x 5.9"D | ±59 LBS. | BEHIND ANT.: 8" MI
BELOW ANT.: 20" M
BELOW RRU: 16" M | | PENTAPLEXER | | | | | | | | |--------------------------------|---|--------|--|--|--|--|--| | EQUIPMENT | DIMENSIONS | WEIGHT | | | | | | | MAKE: CCI
MODEL: 5PX-0726-0 | 9.2"H x 19.02"W x 1.73"D | 12-LBS | | | | | | | | DINATE FINAL EQUIPMENT MODE
TON MANAGER PRIOR TO ORDER | | | | | | | TMABPD7823VG12A TMA2124F03V5-1D | TMA | | | | | | | |---------------------------|--------------------------|------------|--|--|--|--| | EQUIPMENT | DIMENSIONS | WEIGHT | | | | | | MODEL: TMABPD7823VG12A 10 |).6"L x 11.04"W x 3.75"D | ±25 LBS. | | | | | | MODEL: TMA2124F03V5-1D | 9.6"L x 5"W x 8.27"D | ±17.8 LBS. | | | | | NOTES: 1. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION WITH AT&T CONSTRUCTION MANAGER PRIOR TO ORDERING. at&t 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 > TYPICAL **EQUIPMENT DETAILS** 1 ELECTRICAL GROUNDING PLAN E-1 SCALE: NOT TO SCALE ### GROUNDING PLAN NOTES - 1) SECTOR GROUND BAR. - 2 UPPER TOWER MOUNTED GROUND BAR - BOND UPPER TOWER MOUNTED GROUND BAR TO LOWER TOWER MOUNTED GROUND BAR (2 GROUND LEADS) - 4 ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BCW. - 5 BOND ANTENNA MOUNTING PIPES TO SECTOR GROUND BAR. (TYPICAL) - 6 BOND LOWER TOWER MOUNTED GROUND BAR TO TOWER GROUND RING (BY OTHERS). TYP. OF 2. - 7 LOWER TOWER MOUNTED GROUND BAR - 8 ICE BRIDGE POST AND COVER. BOND EACH SECTION AND SUPPORT TO COMPOUND GROUND RING TYP. - BOND NEW ICE-BRIDGE SECTION TO EXISTING ICE-BRIDGE - BOND LOWER TOWER MOUNTED GROUND BAR TO TOWER STEEL. ### GENERAL GROUNDING NOTES - EXISTING COMPOUND GROUND RING SHOULD BE CONNECTED TO THE NEW TOWER GROUND RING BEING INSTALLED BY OTHERS. - 2. ALL SURGE SUPPRESSION EQUIPMENT SHALL BE BONDED TO GROUND PER MANUFACTURER'S SPECIFICATIONS - UNLESS OTHERWISE NOTED OR REQUIRED BY CODE, GROUND CONDUCTORS SHOWN SHALL BE #2 AWG (SOLID TINNED BCW – EXTERIOR). - 4. BOND CABLE TRAY AND ICE BRIDGE SECTIONS TOGETHER WITH #6 AWG STRANDED GREEN INSULATED JUMPERS. - 5. ALL SECTOR GROUND BARS SHALL BE BONDED TOGETHER WITH #2 AWG SOLID TINNED BCW. - 6. BOND ALL EQUIPMENT CABINETS AND BATTERY CABINETS TO GROUND PER MANUFACTURER'S SPECIFICATIONS. - 7. ALL BONDS TO TOWER SHALL BE MADE IN STRICT ACCORDANCE WITH SPECIFICATIONS OF TOWER MANUFACTURER OR STRUCTURAL ENGINEER. - 8. REFER TO GROUNDING PLAN FOR LOCATION OF GROUNDING DEVICES. - 9. REFER TO ALL ELECTRICAL AND GROUNDING DETAILS. - 10. COORDINATE ALL TOWER MOUNTED EQUIPMENT WITH OWNER. - 11. ALL TOWER MOUNTED AMPLIFIERS AND ASSOCIATED EQUIPMENT SHALL BE BONDED TO THE SECTOR GROUND BAR PER MANUFACTURER'S SPECIFICATIONS. - 12. ALL GROUNDING SHALL BE IN ACCORDANCE WITH NEC AND OWNER'S REQUIREMENTS. - 13. COORDINATE WITH EVERSOURCE TRANSMISSION DEPARTMENT REPRESENTATIVE TO DETERMINE ADDITIONAL GROUNDING REQUIREMENTS. PROVIDE ALL REQUIRED ELEMENTS TO MEET EVERSOURCE APPROVAL. - 14. COORDINATE WITH TOWER OWNER BEFORE INSTALLING ANY GROUNDING ELEMENTS ON TOWER OR BONDING TO EXISTING TOWER GROUND RING. | <u>a</u> | • | +0. | של | <u> </u> | / | | | | | | |----------------------------|---
--|--|---|------------------|---|--|---|------------------------------------|----------------------------------| | PROFESSIONAL ENGINEER SEAL | | The state of s | The Original Property of the Parket P | THE CONTRACTOR OF THE PARTY | WITTER SEE VIIII | | 11 000 100 10 10 10 10 10 10 10 10 10 10 | | SONAL ELECTION | . 网络黄檀园园生物中学的大学 | | | | | | | | | | Λ | 0 | <u>ה</u> | | | | | | | | 4 | | | 0 11/09/21 ASC | | | | | | | | | | | | ASC | | | | | | | | | | | | TJR | 70 0,/III | | | | | | | | | | | CONSTRUCTION DRAWINGS - ISSUED FOR | MOLEGICACIÓN VO ANTINO VO MANAGO | 3) 488-0580 3) 488-8587 Fax 2 North Branford Road nford, CT 06405 (203) 488-058C (203) 488-8587 63-2 North Bra STRUCT. NO. 8012 EVERSOURCE STRUC ATE: 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 ELECTRICAL GROUNDING PLAN E-1 Sheet No. <u>7</u> o 10/20/21 **TYPICAL** **ELECTRICAL** DETAILS ### ELECTRICAL SPECIFICATIONS ### **SECTION 16010** ### 1.02. GENERAL REQUIREMENTS - A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS. - B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES. - C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY. - D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED. - E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL. - F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER. - G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE. PRIOR TO SUBMITTAL OF BID. - H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3—RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST. - I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE. - J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED. - K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS. - L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED. - M. SHOP DRAWINGS: - 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC. - 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS. - N.
THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION. ### SECTION 16111 ### 1.01. CONDUITS - A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C. - B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS. - C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5. - D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS - E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS. | | CONDUI | SCHEDULE SECTION 16111 | | |-----------------------------|-------------------------------|---|---| | CONDUIT TYPE | NEC REFERENCE | APPLICATION | MIN. BURIAL DEPTH (PER
NEC TABLE 300.5) ^{2,3} | | ЕМТ | ARTICLE 358 | INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS | N/A | | RMC, RIGID GALV.
STEEL | ARTICLE 344,
300.5, 300.50 | ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS. | 6 INCHES | | PVC, SCHEDULE 40 | ARTICLE 352,
300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. 1 | 18 INCHES | | PVC, SCHEDULE 80 | ARTICLE 352,
300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. 1 | 18 INCHES | | LIQUID TIGHT FLEX.
METAL | ARTICLE 350 | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS. | N/A | | FLEX. METAL | ARTICLE 348 | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS. | N/A | 1 PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION. ² UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24'. ³ WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2' OF CONCRETE EXTENDING DOWN TO ROCK. ### **SECTION 16123** 1.01. CONDUCTORS A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT—BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION: 120/208/240V 277/480V LINE COLOR A BLACK BROWN B RED ORANGE C BLUE YELLOW N CONTINUOUS WHITE GREY CONTINUOUS GREEN B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR. ### **SECTION 16130** ### 1.01. BOXES A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL. GREEN WITH YELLOW STRIPE B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS. ### **SECTION 16140** - 1.01. WIRING DEVICES - A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL. - 1. 15 MINUTE TIMER SWITCH INTERMATIC #FF15M (INTERIOR LIGHTS) - 2. DUPLEX RECEPTACLE P&S #2095 (GFCI) SPECIFICATION GRADE - 3. SINGLE POLE SWITCH P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE - 4. DUPLEX RECEPTACLE P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE - B. PLATES ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS. - C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER. ### **SECTION 16170** - 1.01. DISCONNECT SWITCHES - A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE. ### SECTION 16190 ### 1.01. SEISMIC RESTRAINT A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS. ### **SECTION 16195** - 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT - A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT. - B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN. - C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS. ### **SECTION 16450** - 1.01. GROUNDING - A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES. - B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION. - C. GROUNDING OF PANELBOARDS: - 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORPOSION. - 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S). - D. EQUIPMENT GROUNDING CONDUCTOR: - 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. - 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER. - 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S). - E. CELLULAR GROUNDING SYSTEM: CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960). PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO: - 1. GROUND BARS - 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED). - 3. ANTENNA GROUND CONNECTIONS AND PLATES. - F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM. - G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS. ### **SECTION 16470** - 1.01. DISTRIBUTION EQUIPMENT - A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES. ### **SECTION 16477** - I.01. FUSES - A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL. FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED. ### **SECTION 16960** - 1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM - A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM: TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER. - TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM. - THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT: - 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT. - 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER. - 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED. - B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS. - C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER. - D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING. ### **SECTION 16961** - 1.01.
TESTS BY CONTRACTOR - A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F. - B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER. - C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED. Do 11/09/21 ASC TJR CONSTRUCTION DRAWINGS — ISSUED FOR CONSTRUCT 03) 488-0580 03) 488-8587 Fax 5-2 North Branford Road anford, CT 06405 STRUCT. NO. 8012 J MAPLE RIDGE DRIVE CTLOHO4 - LTE6C, 4TX, EVERSOURCE STRU FARMINGTON NU MAPL DATE: 10/20/21 SCALE: AS NOTED ELECTRICAL SPECIFICATIONS JOB NO. 21122.00 E-S Sheet No. <u>9</u> E-4 - RECOMMENDED 25A BREAKER. SIZE 12 CONDUCTORS MAY BE USED ONLY WITH 20A BREAKERS. . LEAVE COILED AND PROTECTED UNTIL TERMINATED. - 3. DC AND FIBER CABLE SHALL BE ROUTED WITH THE EXISTING COAX CABLE. - 4. DC SURGE PROTECTION SHELF SHALL BE RAYCAP DCx-48-60-RM. 5. FIBER & DC DISTRIBUTION BOX W/DC SURGE PROTECTION SHALL BE RAYCAP DC6-48-60-18-8F. SEE DETAIL 1410 OR 1410B FOR INTERNAL WIRING DIAGRAM. - 6. CONDUIT TO BE USED ON A TOWER IF THE RRU IS MORE THAN 10' FROM THE DISTRIBUTION UNITS. MAX CABLE LENGTH IS 16 - 7. SINGLE-CONDUCTOR DC POWER CABLES SHALL BE TELCOFLEX® OR KS24194™, COPPER, UL LISTED RHH NON-HALOGEN, LOW SMOKE WITH BRAIDED COVER, TYPE TC (1/O AND LARGER). UNLESS OTHERWISE NOTED, STRANDING SHALL BE CLASS B (TYPE III) FOR CABLES SIZES 14, 12 & 10 AWG AND CLASS I (TYPE IV) FOR SIZES 8 AWG AND LARGER. CABLES SHALL BE COLOR CODED RED FOR +24V. BLUE FOR -48V AND GRAY FOR 24V AND 48V RETURN CONDUCTORS. MULTI-CONDUCTOR DC POWER CABLES SHALL BE COPPER, CLASS B STRANDING WITH FLAME RETARDANT PVC JACKET, TYPE TC, UL LISTED FOR 90°C DRY/ 75°C WET INSTALLATION. - 8. GROUNDING WIRES SHALL BE COPPER, GREEN THHN/THWN UL LISTED FOR 90°C DRY/75°C WET INSTALLATION. MINIMUM SIZE IS 6AWG UNLESS NOTED OTHERWISE. ### **ELECTRICAL NOTES** - 1. PRIOR TO START OF CONSTRUCTION CONTRACTOR SHALL COORDINATE WITH OWNER FOR ALL CONSTRUCTION STANDARDS AND SPECIFICATIONS, AND ALL MANUFACTURER DOCUMENTATION FOR ALL EQUIPMENT TO BE INSTALLED. - 2. INSTALL ALL EQUIPMENT IN ACCORDANCE WITH LOCAL BUILDING CODE, NATIONAL ELECTRIC CODE, OWNER AND MANUFACTURER'S SPECIFICATIONS. - 3. CONNECT ALL NEW EQUIPMENT TO EXISTING TELCO AS REQUIRED BY MANUFACTURER. - 4. MAINTAIN ALL CLEARANCES REQUIRED BY NEC AND EQUIPMENT MANUFACTURER. - 5. PRIOR TO INSTALLATION CONTRACTOR SHALL MEASURE EXISTING ELECTRICAL LOAD AND VERIFY EXISTING AVAILABLE CAPACITY FOR PROPOSED INSTALLATION. IF INADEQUATE CAPACITY IS AVAILABLE, CONTRACTOR SHALL COORDINATE WITH LOCAL ELECTRIC UTILITY COMPANY TO UPGRADE EXISTING ELECTRIC SERVICE. - 6. CONTRACTOR SHALL INSPECT EXISTING GROUNDING AND LIGHTNING PROTECTION SYSTEM AND ENSURE THAT IT IS IN COMPLIANCE WITH NEC, AND SITE OWNER'S SPECIFICATIONS. THE RESULTS OF THIS INSPECTION SHALL BE PRESENTED TO OWNERS REPRESENTATIVE, AND ANY DEFICIENCIES SHALL BE CORRECTED. - 7. ALL TRANSMISSION TOWER SITES CONTAIN AN EXTENSIVE BURIED GROUNDING SYSTEM ALL GROUNDING WORK MUST BE COORDINATED WITH, AND APPROVED BY, THE TOWER OWNER'S SITE REPRESENTATIVE. ALL OF THE TOWER OWNER'S SPECIFICATIONS MUST BE STRICTLY FOLLOWED. - 8. PROVIDE AND INSTALL GROUND KITS FOR ALL NEW COAXIAL CABLES AND BOND TO EXISTING OWNERS GROUNDING SYSTEM PER OWNERS SPECIFICATIONS AND NEC. - 9. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION), 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS, #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION: - 10. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR. - 11. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS. - 12. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNER'S REPRESENTATIVE. DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES. - 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES AS MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR SCHEDULING OF ALL INSPECTIONS AS MAY BE REQUIRED BY THE LOCAL AUTHORITY. - 14. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE SITE AND/OR BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED. - 15. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER. - 16. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITTAL OF BID. - 17. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES. - 18. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION. - 19. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122. (MIN. #12 AWG). - 20. CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 5 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960). ### TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM: TEST 1: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM. - THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT: - 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT. - 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER. - 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED. - B. TESTING SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNERS CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS. - C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER. - D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING. 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 > **SCHEMATIC** DIAGRAM AND NOTES ### WIRING DIAGRAM NOTES: - 1. LABEL THE DC POWER CABLES AT BOTH ENDS OF EVERY WIRE AND IN ANY PULL BOX IF USED. LABEL SHALL BE DURABLE, SELF ADHESIVE, WRAPPED LONGITUDINALLY ALONG THE CABLE AND STATE THE SECTOR, FREQUENCY BAND AND POLARITY; I.E. "A-2300+". CABLE AND WIRE LABELS SHOWN ARE REPRESENTATIVE AND MAY BE MODIFIED AS DIRECTED BY - 2. INSTALL ON BASEBAND EQUIPMENT RACK. - 3. MAXIMUM CABLE LENGTH IS 49 FEET WITHOUT SURGE PROTECTION AT RRU. INCREASE CONDUCTOR SIZE TO 10 OR 8 AWG WHERE BREAKER RATING IS GREATER THAN 20A. - 4. CABLE GROUND WIRE AND SHIELD DRAIN WIRE TO BE LEFT UN-TERMINATED AT RRU AND DC POWER PLANT. - 5. SEE LTE SCHEMATIC DIAGRAM DETAIL 1/E-1 FOR BREAKER RATING. | PROFESSIONAL ENGINEER SEAL | | +0+0 | | NO SO | THE STATE OF S | | 17 A 198901 CV 7 A 19800 | | |----------------------------|-------------|-------------------------|-------------------------------------|---
--|---------------------------|--|---| | _ _ _ | | Centered on Solutions** | | (203) 488-0580 | (203) 488-8587 Fax | 63-2 North Branford Road | Branford, CT 06405 | | | | A-R-MODILII | | CTI Offor - I TERC ATXARY SO NR RWE | | | ZIOO.ONI.IOOUIO HOROCORIA | | | | SC | ATE:
DB | E: | ۷ | 2
VII | 112
RI | 20,
NOT
22.
N(| 00
3 | _ | Diagram File Name: CT1104_A_B_C_6C_5G_NR_RRHBottomRev Diagram Sector: B Atoll Site Name: CTL01104 Location Name: FARMINGTON NU MAPLE RIDGE DR Market: CONNECTICUT Market Cluster: NEW ENGLAND Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna_Radio Connection Dra 10/20/21 SCALE: AS NOTED JOB NO. 21122.00 > PLUMBING DIAGRAM Centered on Solutions[™] # Structural Analysis of Utility Pole AT&T Site Ref: CT1104 Eversource Structure No. 8012 107' Electric Transmission Pole 45 Maple Ridge Drive Farmington, CT CENTEK Project No. 21122.00 Date: October 15, 2021 Max Stress Ratio = 66.8% Prepared for: AT&T Mobility 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067 ### Table of Contents ### SECTION 1 - REPORT - INTRODUCTION - PRIMARY ASSUMPTIONS USED IN THE ANALYSIS - ANALYSIS - DESIGN BASIS - RESULTS - CONCLUSION ### SECTION 2 - CONDITIONS & SOFTWARE - STANDARD ENGINEERING CONDITIONS - GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS - PLS POLE ### SECTION 3 - DESIGN CRITERIA - CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS - DESIGN CRITERIA TABLE - SHAPE FACTOR CRITERIA - WIRE LOADS SHEET ### SECTION 4 - DRAWINGS - SK-1 POLE ELEVATION - SK-2 FEEDLINE PLAN ### SECTION 5 - NECS LOAD CALCULATIONS EQUIPMENT AND COAX LOADS ### SECTION 6 - POLE ANALYSIS - PLS REPORT - ANCHOR BOLT ANALYSIS ### SECTION 7 - REFERENCE MATERIAL - RF DATA SHEET - EQUIPMENT CUT SHEETS TABLE OF CONTENTS TOC-1 ### <u>Introduction</u> The purpose of this report is to analyze the 107' utility pole located in Farmington, CT for the proposed antenna and equipment installation by AT&T. The proposed loads consist of the following: ### AT&T (Proposed): Antennas: Three (3) CCI DMP65R-BU6DA panel antennas, three (3) CCI TPA65R-BU6DA panel antennas, six (6) CCI TMABPD7823VG12A TMAs and six (6) Kaelus TMA2124F03V5-1D TMAs mounted on platform with handrail kit p/n RMQLP-4120-H10 to the utility pole with a RAD center elevation of 92-ft above grade. <u>Coax Cables:</u> Twenty-four (24) 1-5/8" \varnothing coax cables mounted to the outside of the pole as indicated in Section 4 of this report. ### <u>Primary assumptions used in the analysis</u> - Design steel stresses are defined by AISC-LRFD 14th edition for design of the antenna Mast and antenna supporting elements. - ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", defines allowable steel stresses for evaluation of the utility pole. - All utility pole members are adequately protected to prevent corrosion of steel members. - All proposed antenna mounts are modeled as listed above. - Pipe mast will be properly installed and maintained. - No residual stresses exist due to incorrect pole erection. - All bolts are appropriately tightened providing the necessary connection continuity. - All welds conform to the requirements of AWS D1.1. - Pipe mast and utility pole will be in plumb condition. - Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection. - Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy. ### Analysis Structural analysis of the utility pole was independently completed using the current version of PLSPole computer program licensed to CENTEK Engineering, Inc. NESC prescribed loads for the proposed wireless equipment were calculated to analyze the utility tower. Section 5 of this report details these loads. ### Design Basis Our analysis was performed in accordance with TIA-222-G, ASCE 48-11, "Design of Steel Transmission Pole Structures", NESC C2-2017 and Eversource Design Criteria. ### UTILITY POLE ANALYSIS The purpose of this analysis is to determine the adequacy of the existing utility pole to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the Eversource Design Criteria Table, NESC C2-2017 ~ Construction Grade B, and ASCE Manual No. 48-11. Load cases considered: | Load Case 1: NESC Heavy Wind Wind Pressure Radial Ice Thickness Vertical Overload Capacity Factor Wind Overload Capacity Factor Wire Tension Overload Capacity Factor | 4.0 psf
0.5"
1.50
2.50
1.65 | |---|---| | Load Case 2: NESC Extreme Wind Wind Speed | 10 mph ⁽¹⁾
0" | | Load Case 3: NESC Extreme Ice w/ Wind Wind Pressure | 4.0 psf
1.0"
1.0
1.0 | Note 1: NESC C2-2017, Section25, Rule 250C: Extreme Wind Loading, 1.25 x Gust Response Factor (wind speed: 3-second gust) Results UTILITY POLE This analysis finds that the subject utility pole is adequate to support the proposed antenna mast and related appurtenances. The pole stresses meet the requirements set forth by the ASCE Manual No. 48-11, "Design of Steel Transmission Pole Structures", for the applied NESC Heavy and Hi-Wind load cases. The detailed analysis results are provided in Section 6 of this report. The analysis results are summarized as follows: A maximum usage of **66.81%** occurs in the utility pole base plate under the **NESC Extreme** loading condition. ### **POLE SECTION:** The utility pole was found to be within allowable limits. | Tower Section | Elevation | Stress Ratio
(% of capacity) | Result | |----------------|---------------------
---------------------------------|--------| | LP - Section 2 | 0.00' -40.00' (AGL) | 39.01% | PASS | ### BASE PLATE: The base plate was found to be within allowable limits from the PLS output. | Tower Component | Design Limit | Stress Ratio (percentage of capacity) | Result | |-----------------|--------------|---------------------------------------|--------| | Base Plate | Bending | 66.81% | PASS | ### FOUNDATION AND ANCHORS The base of the tower is connected to the foundation by means of (12) 2.25" \varnothing , ASTM A615-75 anchor bolts embedded into the concrete foundation structure. Review of the foundation consisted of a comparison of the base reactions obtained from the proposed tower analysis and the original foundation design. ### **BASE REACTIONS:** From PLS-Pole analysis of utility pole based on NESC/NU prescribed loads. | Load Case | Shear | Axial | Moment | |--------------------------|------------|------------|-----------------| | NESC Heavy Wind | 13.51 kips | 53.22 kips | 851.97 ft-kips | | NESC Extreme Wind | 23.37 kips | 26.09 kips | 1424.29 ft-kips | | NESC Extreme Ice w/ Wind | 8.34 kips | 50.34 kips | 556.93 ft-kips | Note 1 – 10% increase applied to tower base reactions per OTRM 051 ### **ANCHOR BOLTS:** The anchor bolts were found to be within allowable limits. | Tower Component | Design Limit | Stress Ratio
(% of capacity) | Result | |-----------------|--------------|---------------------------------|--------| | Anchor Bolts | Tension | 49.3% | PASS | October 15, 2021 ### **FOUNDATION:** | Force | Original Design
Loading | Proposed
Loading | Result | |--------|----------------------------|---------------------|--------| | Moment | 3293.0 ft-kips | 1424.3 ft-kips | PASS | | Shear | 51.9 kips | 23.4 kips | PASS | Note 1: Taken from Eversource drawing 01085-60003p001 dated 10/12/21. ### Conclusion This analysis shows that the subject utility pole is adequate to support the proposed equipment upgrade. The analysis is based, in part on the information provided to this office by Eversource and AT&T. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues. Please feel free to call with any questions or comments. Respectfully Submitted by: Timothy J. Lynn, PE Structural Engineer # STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to: - Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information. - Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure. - It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition. - All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 & ANSI/EIA-222. - All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply. CENTEK Engineering, Inc. Structural Analysis – 107-ft Pole # 8012 AT&T Antenna Upgrade – CT1104 Farmington, CT October 15, 2021 ### <u>GENERAL DESCRIPTION OF STRUCTURAL</u> ANALYSIS PROGRAM~PLS-POLE PLS-POLE provides all of the capabilities a structural engineer requires to design transmission, substation or communications structures. It does so using a simple easy to use graphical interface that rests upon our time tested finite element engine. Regardless of whether you want to model a simple wood pole or a guyed steel X-Frame; PLS-POLE can handle the job simply, reliably and efficiently. ### Modeling Features: - Structures are made of standard reusable components that are available in libraries. You can easily create your own libraries or get them from a manufacturer - Structure models are built interactively using interactive menus and graphical commands - Automatic generation of underlying finite element model of structure - Steel poles can have circular, 4, 6, 8, 12, 16, or 18-sided, regular, elliptical or user input cross sections (flat-to-flat or tip-to-tip orientations) - Steel and concrete poles can be selected from standard sizes available from manufacturers - Automatic pole class selection - Cross brace position optimizer - Capability to specify pole ground line rotations - Capability to model foundation displacements - Can optionally model foundation stiffness - Guys are easily handled (modeled as exact cable elements in nonlinear analysis) - Powerful graphics module (members color-coded by stress usage) - Graphical selection of joints and components allows graphical editing and checking - Poles can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces ### Analysis Features: - Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.) - Design checks for ASCE, ANSI/TIA/EIA 222 (Revisions F and G) or other requirements - Automatic calculation of dead and wind loads - Automated loading on structure (wind, ice and drag coefficients) according to: - ASCE 74-1991 - NESC 2002 - NESC 2007 - IEC 60826:2003 - EN50341-1:2001 (CENELEC) - EN50341-3-9:2001 (UK NNA) - EN50341-3-17:2001 (Portugal NNA) - ESAA C(b)1-2003 (Australia) - TPNZ (New Zealand) - REE (Spain) - EIA/TIA 222-F - ANSI/TIA 222-G - CSA S37-01 - Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G - Detects buckling by nonlinear analysis CENTEK Engineering, Inc. Structural Analysis – 107-ft Pole # 8012 AT&T Antenna Upgrade – CT1104 Farmington, CT October 15, 2021 ### Results Features: - Detects buckling by nonlinear analysis - Easy to interpret text, spreadsheet and graphics design summaries Automatic determination of allowable wind and weight spans - Automatic determination of interaction diagrams between allowable wind and weight spans - Automatic tracking of part numbers and costs <u>Criteria for Design of PCS Facilities On or</u> <u>Extending Above Metal Electric Transmission</u> <u>Towers & Analysis of Transmission Towers</u> <u>Supporting PCS Masts</u> (1) ### Introduction This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts. ANSI Standard TIA-222-G covering the design of telecommunications structures specifies a limit state design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that the design strength exceeds the required strength. ANSI Standard C2-2017 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress). Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings. Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50-year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings. The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports. Note 1: Prepared from documentation provide from Northeast Utilities. DESIGN CRITERIA SECTION 3-1 ### PCS Mast The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be
designed in accordance with the provisions of TIA 222-G: ### ELECTRIC TRANSMISSION TOWER The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "Eversource Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility: - PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure. - Conductors are related devices and hardware. - Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower. The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2017 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.) In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members. DESIGN CRITERIA SECTION 3-2 ### **Eversource** ### **Overhead Transmission Standards** ## Attachment A Eversource Design Criteria | | | | | | | | 1 | · · · · · · · · · · · · · · · · · · · | |---------------------|---|---|---|--|---------------------------|---|---|---| | | | Attachment A
ES Design Criteria | Basic Wind Speed | Pressure | Height Factor | Gust Factor | Load or Stress Factor | Force Coef Shape Factor | | | | | V (MPH) | Q (PSF) | Kz | Gh | | | | | TIA/EIA | Antenna Mount | TIA | TIA
(0.75Wi) | TIA | TIA | TIA, Section 3.1.1.1
disallowed for
connection design | TIA | | Ice Condition | NESC Heavy | Tower/Pole Analysis with
antennas extending above
top of Tower/Pole
(Yield Stress) | | 4 | 1 | 1 | 2.5 | 1.6 Flat Surfaces
1.3 Round Surfaces | | _ | NESC | Tower/Pole Analysis with
antennas below top of
Tower/Pole (on two faces) | | 4 | 1 | 1 | 2.5 | 1.6 Flat Surfaces
1.3 Round Surfaces | | | | Conductors: | | Conductor Loads Provided by ES | | | | | | | TIA/EIA | Antenna Mount | 85 | 85 TIA TIA TIA disallowed for connection design | | | | TIA | | High Wind Condition | NESC Extreme Wind | Tower/Pole Analysis with antennas extending above top of Tower/Pole | telecon | For wind speed use OTRM 060 Map 1, Rule 250C: Extreme Wind Loading Apply a 1.25 x Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a 1.0 x Gust Response Factor to the tower/pole structure | | | 1.6 Flat Surfaces
1.3 Round Surfaces | | | High | NESC Ex | Tower/Pole Analysis with antennas below top of Tower/Pole | Height a | Rule 2 | 50C: Extre
and is base | e OTRM 0
me Wind
ed on over
r/pole | | 1.6 Flat Surfaces
1.3 Round Surfaces | | | | Conductors: | | | Cond | uctor Load | ds Provided by ES | | | *** | NESC EXTREME ICE WITH WING CONGILION | Tower/Pole Analysis with antennas extending above top of Tower/Pole | For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load 1.25 x Gust Response Factor Apply a 1.25 x Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a 1.0 x Gust Response Factor to the tower/pole structure | | | 1.6 Flat Surfaces
1.3 Round Surfaces | | | | | SC Extreme ice wi | Tower/Pole Analysis with
antennas below top of
Tower/Pole | For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load Height above ground is based on overall height to top of tower/pole | | | 1.6 Flat Surfaces
1.3 Round Surfaces | | | | } | | | | | | | | | | | *Only for structures installed after 2007 | | | | | | | | | Communication Antennas on Transmission Structures | | | | | | |---|--|--|--|--|--| | Eversource Design OTRM 059 Rev. 1 | | | | | | | Approved by: CPS (CT/WMA) JCC (NH/EMA) | | | | | | ### **Eversource** ### **Overhead Transmission Standards** determined from NESC applied loading conditions (not TIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria) The strength reduction factor obtained from the field investigation shall be applied to the members or connections that are showing signs of deterioration from their original condition. With the written approval of Eversource Transmission Line Engineering on a case by case the existing structures may be analyzed initially using the current NESC code, then it is permitted to use the original design code with the original conductor load should the existing tower fail the current NESC code. The structure shall be analyzed using yield stress theory in accordance with Attachment A, "Eversource Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility: - a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure. - b) Conductors and related devices and hardware (wire loads will be provided by Eversource). - c) Electric Transmission Structure - i) The loads from the wireless communication equipment components based on NESC and Eversource Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower. ii) - ii) Shape Factor Multiplier: | NESC Structure Shape | Cd | |---------------------------------------|-----------------| | Polyround (for polygonal steel poles) | 1.3 | | Flat | 1.6 | | Open Lattice | 3.2 | | Pole with Coaxial Cable | See Below Table | iii) When Coaxial Cables are mounted alongside the pole structure, the shape multiplier shall be: | Mount Type | Cable Cd | Pole Cd | |---|----------|---------| | Coaxial Cables on outside periphery (One layer) | 1.45 | 1.45 | | Coaxial Cables mounted on stand offs | 1.6 | 1.6 | d) The uniform loadings and factors specified for the above components in Attachment A, "Eversource Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above. | Communication Antennas on Transmission Structures | | | | | | |--|--|--|--|--|--| | Eversource Design OTRM 059 Rev. 1 | | | | | | | Approved by: CPS (CT/WMA) JCC (NH/EMA) Page 3 of 10 11/19/20 | | | | | | ### Wire Loads Load Tree Single Circuit Steel H-Frame Configuration X Denotes Broken Wire Location | | Case | Vertical | Transverse | Longitudinal | |-------------|------|-----------|------------|--------------| | | 1 | 8055.1275 | 3533.4191 | 0 | | | 2 | 3462.1 | 5240.6207 | 0 | | cto | 3 | 3462.1 | 722.2362 | 0 | | Conductor | 4 | 8211.07 | 2666.1391 | 0 | | Cor | 5 | 5370.085 | 2081.5931 | 0 | | | 6 | 3462.1 | 722.2362 | 0 | | | 7a | 5270.085 | 1766.7096 | 12540 | | | 7b | 5270.085 | 1766.7096 | 12540 | | | Case | Vertical | Transverse | Longitudina | | | 1 | 2422.3455 | 1890.7651 | 0 | | e | 2 | 673.5 | 1712.122 | 0 | | Wir | 3 | 673.5 | 261.67978 | 0 | | Shield Wire | 4 | 3489.294 | 1589.9711 | 0 | | hie | 5 | 1614.897 | 1078.6955 | 0 | | \sim | 6 | 673.5 | 261.67978 | 0 | | | 7a | 1614.897 | 945.38254 | 6050 | | | 7b | 1614.897 | 945.38254 | 6050 | | REVISIONS | | | |-----------|----------|-------------------| | 00 | 10/14/21 | ISSUED FOR REVIEW | | | | | | | | | | | | | | | | | (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road, Branford, CT 06405 STRUCTURE 8012 45 MAPLE RIDGE DRIVE FARMINGTON, CT | PROJECT NO: | 21122.00 | |-------------|----------| | DRAWN BY: | TJL | | CHECKED BY: | CAG | | SCALE: | AS NOTED | | DATE: | 10/14/21 | SK-1 DWG. 1_ OF 2 | REVISIONS | | | | | |-----------|----------|-------------------|--|--| | 00 | 10/14/21 | ISSUED FOR REVIEW | (203) 488-0580 (203) 488-8587 Fax 63-2 North Branford Road, Branford, CT 06405 | CT1104 | |----------------| | STRUCTURE 8012 | SCALE: NOT TO SCALE | 45 MAPLE RIDGE DRIVE | |----------------------| | FARMINGTON, CT | | PROJECT NO: | 21122.00 | |-------------|----------| | DRAWN BY: | TJL | | CHECKED BY: | CFC | | SCALE: | AS NOTED | | DATE: | 10/14/21 | | FE | |----| | | | | | | | 3 | SK-2 DWG. 2 OF 2 Centered on Solutions www.centekeng.com 63-3 North Branford Road P: (203) 488-0580 Branford, CT 06405 F:
(203) 488-8587 Subject: Loads - Structure #8012 Farmington, CT Location: Prepared by: T.J.L Checked by: C.F.C. Rev. 0: 10/14/21 Job No. 21122.00 #### Basic Components Heavy Wind Pressure = (User Input NESC 2017 Figure 250-1 & Table 250-1) p := 4.00Basic Windspeed = V := 110mph (User Input NESC 2017 Figure 250-2(e)) Radial Ice Thickness = lr := 0.50in (User Input) Radial Ice Density= (User Input) Id := 56.0 ### Factors for Extreme Wind Calculation Elevation of Top of Mast Above Grade = TMF := 107 ft (User Input) Multiplier Gust Response Factor = (User Input - Only for NESC Extreme wind case) m := 1.00 > NESC Factor = kv := 1.43(User Input from NESC 2017 Table 250-3 equation) Importance Factor = I := 1.0(User Input from NESC 2017 Section 250.C.2) $Kz := 2.01 \cdot \left(\frac{TME}{900}\right)^{\frac{2}{9.5}} = 1.284$ Velocity Pressure Coefficient = (NESC 2017 Table 250-2) > Es := $0.346 \left[\frac{33}{(0.67 \cdot \text{TME})} \right]^{\frac{1}{7}} = 0.31$ (NESC 2017 Table 250-3) Exposure Factor = > Bs := $\frac{1}{\left(1 + 0.375 \cdot \frac{TME}{220}\right)} = 0.846$ (NESC 2017 Table 250-3) Response Term = Gust Response Factor = $qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 34.4$ Wind Pressure = (NESC 2017 Section 250.C.2) ### NESC Extreme Ice w/ Wind Components Heavy Wind Pressure = (User Input NESC 2017 Figure 250-3 & Table 250-4) $p_{ex} = 4.0$ $Ir_{ex} := 1.0$ Radial Ice Thickness= (User Input NESC 2017 Figure 250-3) #### Shape Factors Shape Factor for Round Members = $Cd_R := 1.3$ (User Input) $Cd_{\mathbf{F}} := 1.6$ Shape Factor for Flat Members = (User Input) Shape Factor for Open Lattice = $Cd_{OI} := 3.2$ (User Input) Shape Factor for Coax Cables Attached to Outside of Pole = $Cd_{coax} := 1.6$ (User Input) ### Overload Factors #### Overload Factors for Wind Loads: NESC Heavy Loading = 2.5 (User Input) Apply in Risa-3D Analysis NESC Extreme Loading = 1.0 (User Input) Apply in Risa-3D Analysis #### Overload Factors for Vertica I Loads: NESC Heavy Loading = Apply in Risa-3D Analysis 1.5 (User Input) NESC Extreme Loading = 1.0 (User Input) Apply in Risa-3D Analysis F: (203) 488-8587 Subject: Location: Rev. 0: 10/14/21 Loads - Structure #8012 Farmington, CT Prepared by: T.J.L Checked by: C.F.C. lbs Job No. 21122.00 ### Development of Wind & Ice Load on Antennas #### Antenna Data: Antenna Model = CCI DMP65-BU6D Flat Antenna Shape = (User Input) L_{ant} := 71.2 Anterna Height = (User Input) $W_{ant} = 20.7$ Antenna Width = (User Input) in Antenna Thickness = $T_{ant} := 7.7$ in (User Input) Antenna Weight = $WT_{ant} = 96$ (User Input) Number of Antennas = $N_{ant} := 3$ (User Input) #### Gravity Load (without ice) #### Weight of All Antennas= ### Gravity Load (ice only) Volume of Each Antenna = Volume of Ice on Each Antenna = Weight of Ice on Each Antenna = ### Weight of Ice on All Antennas = ### Gravity Load (Extreme ice only) Volume of Extreme Ice on Each Antenna = Weight of Extreme Ice on Each Antenna = Weight of Extreme Ice on All Antennas = ### Wind Load (NESC Heavy) Surface Area for One Antenna w/ Ice = Antenna Projected Surface Area w/ lce = #### Total Antenna Wind Forcew/Ice = #### Wind Load (NESC Extreme) Surface Area for One Antenna = Antenna Proiected Surface Area = ### Total Antenna Wind Force= ### Wind Load (NESC Extreme Ice w/ Wind) Surface Area for One Antenna w/ Extreme Ice = Antenna Projected Surface Area w/ Extreme Ice = Total Anten na Wind Forcew/Extreme Ice = ### Wt_{ant1} := WT_{ant}·N_{ant} = 288 $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 1 \times 10^4$ cu in $$\label{eq:Vice} V_{ice} \coloneqq \left(\mathsf{L}_{ant} + 2 \cdot \mathsf{Ir} \right) \! \left(\mathsf{W}_{ant} + 2 \cdot \mathsf{Ir} \right) \! \left(\mathsf{T}_{ant} + 2 \cdot \mathsf{Ir} \right) - \, \mathsf{V}_{ant} = 2282 \qquad \text{cu in}$$ $$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 74$$ lbs $$\label{eq:vice.ex} \begin{aligned} \textbf{V}_{ice.ex} \coloneqq \left(\textbf{L}_{ant} + 2 \cdot \textbf{Ir}_{ex}\right) \! \left(\textbf{W}_{ant} + 2 \cdot \textbf{Ir}_{ex}\right) \! \left(\textbf{T}_{ant} + 2 \cdot \textbf{Ir}_{ex}\right) - \ \textbf{V}_{ant} = 4769 \end{aligned} \qquad \text{cu in}$$ $$W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 155$$ lbs $$SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 10.9$$ sf $$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 32.6$$ sf $$SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 10.2$$ $$A_{ant} := SA_{ant} \cdot N_{ant} = 30.7$$ $$F_{ant1} := qz \cdot Cd_{F} \cdot A_{ant} \cdot m = 1690$$ lbs $$SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 11.5$$ sf $$A_{ICE.exant} := SA_{ICE.exant} \cdot N_{ant} = 34.6$$ sf $$Fi_{ex.ant1} := p_{ex} \cdot Cd_{F} \cdot A_{ICE.exant} \cdot m = 222$$ lbs F: (203) 488-8587 Subject: Loads - Structure #8012 Location: Farmington, CT Prepared by: T.J.L Checked by: C.F.C. lhs cu in lbs Rev. 0: 10/14/21 Job No. 21122.00 #### Development of Wind & Ice Load on Antennas #### Antenna Data: Antenna Model = CCITPA65-BU6D Antenna Shape = Flat (User Input) Antenna Height = L_{ant} := 71.2 (User Input) $W_{ant} = 20.7$ Antenna Width = in (User Input) Antenna Thickness = $T_{ant} = 7.7$ in (User Input) $WT_{ant} := 70$ Antenna Weight = lbs (User Input) Number of Antennas = $N_{ant} := 3$ (User Input) ### Gravity Load (without ice) #### Weight of All Antennas= ### Gravity Load (ice only) Volume of Each Antenna = Volume of Ice on Each Antenna = Weight of Ice on Each Antenna = #### Weight of Ice on All Antennas = #### Gravity Load (Extreme ice only) Volume of Extreme Ice on Each Antenna = Weight of Extreme Ice on Each Antenna = Weight of Extreme Ice on All Antennas = ### Wind Load (NESC Heavy) Surface Area for One Antenna w/ Ice = Antenna Projected Surface Area w/ lce = ### Total Antenna Wind Forcew/Ice = ### Wind Load (NESC Extreme) Surface Area for One Antenna = Antenna Projected Surface Area = ### Total Antenna Wind Force= ### Wind Load (NESC Extreme Ice w/ Wind) Surface Area for One Antenna w/ Extreme Ice = Antenna Projected Surface Area w/ Extreme Ice = Total Anten na Wind Forcew/Extreme Ice = ### $Wt_{ant2} := WT_{ant} \cdot N_{ant} = 210$ $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 1 \times 10^4$ $$V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 2282$$ cu in $$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 74$$ lbs $$V_{ice.ex} \coloneqq \left(L_{ant} + 2 \cdot Ir_{ex} \right) \! \left(W_{ant} + 2 \cdot Ir_{ex} \right) \! \left(T_{ant} + 2 \cdot Ir_{ex} \right) - V_{ant} = 4769 \qquad \text{cu in}$$ $$W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 155$$ lbs $$SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 10.9$$ sf $$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 32.6$$ sf $$SA_{ant} := \frac{L_{ant} W_{ant}}{144} = 10.2$$ sf $$A_{ant} := SA_{ant} \cdot N_{ant} = 30.7$$ sf $$F_{ant2} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 1690$$ lbs $$SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 11.5$$ sf $$Fi_{ex.ant2} := p_{ex} \cdot Cd_{F} \cdot A_{ICE.exant} \cdot m = 222$$ lbs F: (203) 488-8587 Subject: Loads - Structure #8012 Location: Farmington, CT Prepared by: T.J.L Checked by: C.F.C. lbs Rev. 0: 10/14/21 Job No. 21122.00 #### Development of Wind & Ice Load on Antennas ### Antenna Data: Antenna Model = Antenna Shape = Antenna Height = Antenna Width = Antenna Thickness = Antenna Weight = Number of Antennas = #### Gravity Load (without ice) #### Weight of All Antennas= ### Gravity Load (ice only) Volume of Each Antenna = Volume of Ice on Each Antenna = Weight of Ice on Each Antenna = #### Weight of Ice on All Antennas = ### Gravity Load (Extreme ice only) Volume of Extreme Ice on Each Antenna = Weight of Extreme Ice on Each Antenna = ### Weight of Extreme Ice on All Antennas = ### Wind Load (NESC Heavy) Surface Area for One Antenna w/ Ice = Antenna Projected Surface Area w/ lce = #### Total Antenna Wind Forcew/Ice = ### Wind Load (NESC Extreme) Surface Area for One Antenna = Antenna Projected Surface Area = #### Total Antenna Wind Force= #### Wind Load (NESC Extreme Ice w/ Wind) Surface Area for One Antenna w/ Extreme Ice = Antenna Projected Surface Area w/ Extreme Ice = Total Antenna Wind Forcew/Extreme Ice = #### TMARPDB7823VG12A Flat (User Input) L_{ant} := 14.25 (User Input) W_{ant}:= 11.024 (User Input) $T_{ant} := 4.11$ in (User Input) $WT_{ant} := 25$ lbs (User Input) $N_{ant} := 6$ (User Input) $$Wt_{ant3} := WT_{ant} \cdot N_{ant} = 150$$ $$V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 646$$ cu in $$V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 291$$ cu in $$W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 9$$ lbs $$Wt_{ice.ant3} := W_{ICEant} \cdot N_{ant} = 57$$ lbs $$V_{ice.ex} \coloneqq \left(\mathsf{L}_{ant} + 2 \cdot \mathsf{Ir}_{ex} \right) \left(\mathsf{W}_{ant} + 2 \cdot \mathsf{Ir}_{ex} \right) \left(\mathsf{T}_{ant} + 2 \cdot \mathsf{Ir}_{ex} \right) - \mathsf{V}_{ant} = 647 \qquad \text{cuin}$$ $$W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 21$$ lbs $$SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 1.3$$ sf $$A_{ICEant} := SA_{ICEant} \cdot N_{ant} = 7.6$$ sf $$SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 1.1$$ $$A_{ant} := SA_{ant} \cdot N_{ant} = 6.5$$ sf $$F_{ant3} := qz \cdot Cd_{F} \cdot A_{ant} \cdot m = 360$$ lbs $$SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 1.5$$ $$A_{ICE.exant} := SA_{ICE.exant} \cdot N_{ant} = 8.8$$ sf $$Fi_{ex.ant3} := p_{ex} \cdot Cd_{F} \cdot A_{ICE.exant} \cdot m = 56$$ lbs F: (203) 488-8587 Subject: Loads - Structure #8012 Location: Farmington, CT Prepared by: T.J.L Checked by: C.F.C. lbs lbs Rev. 0: 10/14/21 Job No.
21122.00 ### Development of Wind & Ice Load on Antennas #### Antenna Data: Antenna Model = Kaelus TMA2124F03V5-1D Flat Antenna Shape = (User Input) Antenna Height= (User Input) L_{ant} := 9.65 Antenna Width = $W_{ant} = 5.04$ (User Input) in $T_{ant} := 8.27$ Antenna Thickness = (User Input) $WT_{ant} := 20$ Antenna Weight = lbs (User Input) Number of Antennas = $N_{ant} = 6$ (User Input) #### Gravity Load (without ice) #### Weight of All Antennas= #### Gravity Load (ice only) Volume of Each Antenna = Volume of Ice on Each Antenna = Weight of Ice on Each Antenna = ### Weight of Ice on All Antennas = ### Gravity Load (Extreme ice only) Volume of Extreme Ice on Each Antenna = Weight of Extreme Ice on Each Antenna = Weight of Extreme Ice on All Antennas = ### Wind Load (NESC Heavy) Surface Area for One Antenna w/ Ice = Antenna Projected Surface Area w/ lce = Total Antenna Wind Forcew/Ice = #### Wind Load (NESC Extreme) Surface Area for One Antenna = Antenna Projected Surface Area = Total Antenna Wind Force= #### Wind Load (NESC Extreme Ice w/ Wind) Surface Area for One Antenna w/ Extreme Ice = Antenna Projected Surface Area w/ Extreme Ice = Total Anten na Wind Forcew/Extreme Ice = ### $Wt_{ant4} := WT_{ant} \cdot N_{ant} = 120$ $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 402$ cu in $V_{ice} := (L_{ant} + 2 \cdot Ir)(W_{ant} + 2 \cdot Ir)(T_{ant} + 2 \cdot Ir) - V_{ant} = 194$ cu in $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 6$ lbs $Wt_{ice.ant4} := W_{ICEant} \cdot N_{ant} = 38$ $V_{ice.ex} := (L_{ant} + 2 \cdot Ir_{ex})(W_{ant} + 2 \cdot Ir_{ex})(T_{ant} + 2 \cdot Ir_{ex}) - V_{ant} = 440$ cu in $W_{ICE.exant} := \frac{V_{ice.ex}}{1728} \cdot Id = 14$ lbs Wt_{ice.ex.ant4} := W_{ICE.exant}·N_{ant} = 86 lbs $SA_{ICEant} := \frac{\left(L_{ant} + 2 \cdot Ir\right) \cdot \left(W_{ant} + 2 \cdot Ir\right)}{144} = 0.4$ A_{ICEant} := SA_{ICEant}·N_{ant} = 2.7 $Fi_{ant4} := p \cdot Cd_F \cdot A_{ICEant} = 17$ lbs $SA_{ant} := \frac{L_{ant} \cdot W_{ant}}{144} = 0.3$ sf $A_{ant} := SA_{ant} \cdot N_{ant} = 2$ $F_{ant4} := qz \cdot Cd_F \cdot A_{ant} \cdot m = 112$ $SA_{ICE.exant} := \frac{\left(L_{ant} + 2 \cdot Ir_{ex}\right) \cdot \left(W_{ant} + 2 \cdot Ir_{ex}\right)}{144} = 0.6$ sf $A_{ICE.exant} = SA_{ICE.exant} \cdot N_{ant} = 3.4$ sf $Fi_{ex.ant4} = p_{ex} \cdot Cd_F \cdot A_{ICE.exant} \cdot m = 22$ lbs CENTEK engineering Centered on Solutions | www.centekeng.com 63-2 North Branford Road | P: (203) 488-0580 Branford, CT 06405 | F: (203) 488-8587 Subject: Loads - Structure #8012 Location: Farmington, CT Prepared by: T.J.L Checked by: C.F.C. Rev. 0: 10/14/21 Job No. 21122.00 # **Development of Wind & Ice Load on Antenna Mounts** Mount Data: Mount Type: RMQLP-4120-HK Mount Shape = CdAa:= 45.6 (User Input) Mount Projected Surface Area w/ Ice = Mount Projected Surface Area = $\mathsf{CdAa}_{\mathsf{ice}} \coloneqq \mathsf{52.4}$ (User Input) Mount Projected Surface Ar ea w/ Extreme Ice = $CdAa_{ice.ex} := 58$ $WT_{mnt} := 3250$ Ibs (User Input) sf lhs Mount Weight w/ Ice = Mount Weight = WT_{mnt.ice}:= 3600 (User Input) Mount Weight w/Extreme Ice = $WT_{mnt.ice.ex} = 4000$ lbs (User Input) (User Input) # Gravity Loads (without ice) Weight of All Mounts = $Wt_{mnt1} := WT_{mnt} = 3250$ lbs Gravity Load (ice only) Weight of Ice on All Mounts = $Wt_{ice.mnt1} := (WT_{mnt.ice} - WT_{mnt}) = 350$ lbs Gravity Load (extreme ice only) Weight of Ice on All Mounts = $Wt_{ice.ex.mnt1} := (WT_{mnt.ice.ex} - WT_{mnt}) = 750$ lbs Wind Load (NESC Heavy) Total Mount Wind Force w/Ice = $Fi_{mnt1} := p \cdot CdAa_{ice} = 210$ lbs Wind Load (NESC Extreme) Total Mount Wind Force = $F_{mnt1} := qz \cdot CdAa \cdot m = 1569$ lbs Wind Load (NESC Extreme Ice w/ Wind) Total Mount Wind Force w/ Extreme Ice = $Fi_{ex.mnt1} := p_{ex} \cdot CdAa_{ice.ex} = 232$ lbs CENTEK engineering Centered on Solutions www.centekeng.com 63-2 North Branford Road P: (203) 488-0580 F: (203) 488-8587 Subject: Loads - Structure #8012 Location: Farmington, CT Prepared by: T.J.L Checked by: C.F.C. Job No. 21122.00 Rev. 0: 10/14/21 # **Total Equipment Loads:** NESC Heavy Wind Vertical = Branford, CT 06405 $\left(Wt_{ant1} + Wt_{ice.ant1} + Wt_{ant2} + Wt_{ice.ant2} + Wt_{ant3} + Wt_{ice.ant3} + Wt_{ice.ant4} + Wt_{ice.ant4} + Wt_{ice.ant4} + Wt_{ice.ant1} + Wt_{ice.ant1}\right) \cdot 1.5 = 7359$ NESC Heavy Wind Trasnsverse = $(Fi_{ant1} + Fi_{ant2} + Fi_{ant3} + Fi_{ant4} + Fi_{mnt1}) \cdot 2.5 = 1734$ NESC Extreme Wind Vertical = $(Wt_{ant1} + Wt_{ant2} + Wt_{ant3} + Wt_{ant4} + Wt_{mnt1}) = 4018$ NESC Extreme Wind Trasnsverse = $(F_{ant1} + F_{ant2} + F_{ant3} + F_{ant4} + F_{mnt1}) = 5421$ NESC Extreme Ice w/Wind Vertical= $NESC_{ice.ex.} = Wt_{ant1} + Wt_{ice.ex.ant1} + Wt_{ant2} + Wt_{ice.ex.ant2} + Wt_{ant3} + Wt_{ice.ex.ant3} + Wt_{ant4} + Wt_{ice.ex.ant4} + Wt_{mnt1} + Wt_{ice.ex.mnt1} = 5907$ NESC Extreme Ice w/Wind Trasnsverse = $(Fi_{ex.ant1} + Fi_{ex.ant2} + Fi_{ex.ant3} + Fi_{ex.ant4} + Fi_{ex.mnt1}) = 753$ Centered on Solutions www.centekeng.com Branford, CT 06405 F: (203) 488-8587 Subject: Coax Cable on Pole #8012 Farmington, CT Location: Prepared by: T.J.L Checked by: C.F.C. Rev. 0: 10/14/21 Job No. 21122.00 # Coax Cable on CL&P Pole Coaxial Cable Span (User Input) $Coax_{Span} := 10ft$ Heavy Wind Pressure = $p := 4 \cdot psf$ (User Input) Radial Ice Thickness = (User Input) $Ir := \, 0.5 {\cdot} in$ Radial Ice Density= $Id := 56 \cdot pcf$ (User Input) Extreme Ice w/Wind Pressure = $p_{\hbox{\it ex}} := 4 \cdot psf$ (User Input) $Ir_{ex} := 1.0 \cdot in$ Extreme Radial Ice Thickness = (User Input) > Basic Windspeed = V := 110 (User Input NESC 2017 Figure 250-2(e)) Height to Top of Coax Above Grade = TC := 107 (User Input) > NESC Factor = (User Input from NESC 2017 Table 250-3 equation) kv := 1.43 I := 1.0Importance Factor = (User Input from NESC 2017 Section 250.C.2) $Kz := 2.01 \cdot \left(\frac{0.67TC}{900}\right)^{\frac{2}{9.5}} = 1.18$ Velocity Pressure Coefficient = (NESC 2017 Table 250-2) > Exposure Factor = (NESC 2017 Table 250-3) $Bs := \frac{1}{\left(1 + 0.375 \cdot \frac{TC}{220}\right)} = 0.846$ Response Term = (NESC 2017 Table 250-3) Grf := $\frac{\left[1 + \left(\frac{1}{2.7 \cdot \text{Es} \cdot \text{Bs}^{2}}\right)\right]}{\frac{1}{1...2}} = 0.865$ Gust Response Factor = (NESC 2017 Table 250-3) $qz := 0.00256 \cdot Kz \cdot V^2 \cdot Grf \cdot I = 31.6$ (NESC 2017 Section 250.C.2) Wind Pressure = Diameter of Coax Cable = (User Input) $D_{coax} := 1.98 \cdot in$ Weight of Coax Cable = $W_{coax} = 1.04 \cdot plf$ (User Input) Number of Coax Cables = $N_{coax} := 24$ (User Input) Number of Projected Coax Cables = $NP_{coax} := 6$ (User Input) Centered on Solutions www.centekeng.com Branford, CT 06405 Subject: Location: Coax Cable on Pole #8012 Farmington, CT Prepared by: T.J.L Checked by: C.F.C. Rev. 0: 10/14/21 Job No. 21122.00 | Shape Factor = | $Cd_{coax} := 1.6$ | (User Inpu | |----------------|--------------------|-------------| | po actor - | Coax - 1.0 | (000) 11/00 | Overload Factor for NESC Heavy Wind Transverse Load = OF_{HWT} := 2.5 (User Input) Overload Factor for NESC Heavy Wind Vertical Load = OF_{HWV} := 1.5 (User Input) Overload Factor for NESC Extreme Wind TransverseLoad = $OF_{FWT} := 1.0$ (User Input) Overload Factor for NESC Extreme Wind Vertical Load= $OF_{FWV} := 1.0$ (User Input) Overload Factor for NESC Extreme Ice w/Wind Transverse Load = $OF_{FIT} := 1.0$ (User Input) Overload Factor for NESC Extreme Ice w/ Wind Vertical Load = OF_{FIV} := 1.0 (User Input) > $A := \left(NP_{coax} \cdot D_{coax}\right) = 11.88 \cdot in$ Wind Area without Ice = $A_{ice} := \left(NP_{coax} \cdot D_{coax} + 2 \cdot Ir\right) = 12.88 \cdot in$ Wind Area with Ice = WindArea with Extreme Ice = $A_{ice.ex} := \left(NP_{coax} \cdot D_{coax} + 2 \cdot Ir_{ex}\right) = 13.88 \cdot in$ $Ai_{coax} := \frac{\pi}{4} \cdot \left[\left(D_{coax} + 2 \cdot Ir \right)^2 - D_{coax}^{2} \right] = 0.027 ft^2$ IceAreaper Liner Ft= $W_{ice} := Ai_{coax} \cdot Id \cdot N_{coax} = 36.359 \cdot plf$ Weight of Ice on All Coax Cables = $Ai_{coax.ex} := \frac{\pi}{4} \cdot \left[\left(D_{coax} + 2 \cdot Ir_{ex} \right)^2 - D_{coax}^2 \right] = 0.065 ft^2$ Extreme Ice Area per Liner Ft= $W_{ice.ex} := Ai_{coax.ex} \cdot Id \cdot N_{coax} = 87.378 \cdot plf$ Weight of Extreme Ice on All Coax Cables = Heaw Wind Vertical Load = $$\mathsf{Heavy_WInd}_{Vert} \coloneqq \overline{\left[\left(\mathsf{N}_{coax} \cdot \mathsf{W}_{coax} + \mathsf{W}_{ice} \right) \cdot \mathsf{Coax}_{Span} \cdot \mathsf{OF}_{HWV} \right]}$$ Heavy Wind Transverse Load = $$\text{Heavy_Wind}_{\text{Trans}} \coloneqq \left(\text{p-A}_{\text{ice}} \cdot \text{Cd}_{\text{coax}} \cdot \text{Coax}_{\text{Span}} \cdot \text{OF}_{\text{HWT}} \right) \\ \text{Heavy_WInd}_{\text{Vert}} = 920 \text{lb} \\ \text{Heavy_Wind}_{\text{Trans}} = 172 \text{lb}$$ Extreme Wind Vertical Load = $$\mathsf{Extreme_Wind}_{\mathsf{Vert}} \coloneqq \overbrace{\left(\mathsf{N}_{\mathsf{coax}}.\mathsf{W}_{\mathsf{coax}}.\mathsf{Coax}_{\mathsf{Span}}.\mathsf{OF}_{\mathsf{EWV}}\right)}^{\mathsf{OF}_{\mathsf{EWV}}}$$ Extreme Wind Transverse Load = Extreme Ice w/Wind Vertical Load = $$\mathsf{Extreme_Ice}_{Vert} \coloneqq \boxed{\left(\mathsf{N}_{coax} \cdot \mathsf{W}_{coax} + \mathsf{W}_{ice.ex} \right) \cdot \mathsf{Coax}_{Span} \cdot \mathsf{OF}_{EIV}}$$ Extreme Ice w/Wind Transverse Load = 10 (ft) Project Name : Project Notes: Project File : J:\Jobs\2112200.WI\05_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 & 103_str#8012_80ft(lp)-107ft(rp)_r3.pol Date run : 2:46:11 PM Thursday, October 14, 2021 by : PLS-POLE Version 16.81 Licensed to : Centek Engineering Inc Successfully performed nonlinear analysis The model has 0 warnings. Loads from file: J:\Jobs\2112200.WI\05_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 & 103-str#8012-r3.lca *** Analysis Results: Maximum element usage is 66.81% for Base Plate "RP" in load case "NESC Rule 250D" ### Summary of Joint
Support Reactions For All Load Cases: | | Load | Case | | Force | Force | Force | Force | Moment | Moment | Bending
Moment
(ft-k) | Moment | Usage | |------|------|------|------|-------|--------|--------|-------|---------|--------|-----------------------------|--------|-------| | NESC | Rule | 250B | LP:g | -0.19 | -13.51 | -36.66 | 13.51 | 851.37 | -31.84 | 851.97 | -10.26 | 0.00 | | NESC | Rule | 250B | RP:g | -0.03 | -12.58 | -53.22 | 12.58 | 812.68 | -19.82 | 812.92 | -5.36 | 0.00 | | | NESC | 250C | LP:g | -0.18 | -23.37 | -20.49 | 23.37 | 1424.12 | -22.46 | 1424.29 | -17.47 | 0.00 | | | NESC | 250C | RP:g | 0.07 | -21.86 | -26.09 | 21.86 | 1344.14 | -4.13 | 1344.14 | -4.74 | 0.00 | | NESC | Rule | 250D | LP:g | -0.14 | -8.34 | -33.44 | 8.34 | 556.13 | -29.95 | 556.93 | -6.81 | 0.00 | | NESC | Rule | 250D | RP:g | -0.00 | -7.72 | -50.34 | 7.72 | 532.91 | -21.00 | 533.32 | -4.47 | 0.00 | ### Summary of Tip Deflections For All Load Cases: Note: positive tip load results in positive deflection | | Load | Case | | Defl. | Defl. | Defl. | Resultant Defl. | Rot. | Rot. | | |------|------|------|------|-------|-------|-------|-----------------|-------|-------|-------| | | | | | (in) | (in) | (in) | (in) | (deg) | (deg) | (deg) | | NESC | Rule | 250B | LP:t | 0.60 | 9.55 | -0.08 | 9.56 | 0.08 | -0.96 | 0.04 | | NESC | Rule | 250B | RP:t | 0.85 | 16.22 | -0.16 | 16.25 | 0.07 | -1.16 | 0.02 | | | NESC | 250C | LP:t | 0.35 | 15.72 | -0.17 | 15.72 | 0.05 | -1.56 | 0.08 | | | NESC | 250C | RP:t | 0.31 | 27.58 | -0.40 | 27.58 | 0.03 | -2.04 | 0.02 | | NESC | Rule | 250D | LP:t | 0.58 | 6.36 | -0.04 | 6.39 | 0.08 | -0.64 | 0.03 | | NESC | Rule | 250D | RP:t | 0.91 | 10.65 | -0.09 | 10.69 | 0.07 | -0.74 | 0.02 | #### Tubes Summary: | Pole
Label | Tube
Num. | Weight | Load | Case | Maximum
Usage | Resultant
Moment | |---------------|--------------|--------|------|------|------------------|---------------------| | | | (lbs) | | | % | (ft-k) | | LP | 1 | 4666 | NESC | 250C | 29.16 | 577.79 | | LP | 2 | 6821 | NESC | 250C | 39.01 | 1424.40 | | RP | 1 | 364 | NESC | 250C | 1.25 | 2.80 | | RP | 2 | 992 | NESC | 250C | 13.45 | 85.14 | | RP | 3 | 4666 | NESC | 250C | 30.14 | 596.52 | | RP | 4 | 6821 | NESC | 250C | 36.88 | 1344.15 | | | | | | | | | *** Overall summary for all load cases - Usage = Maximum Stress / Allowable Stress # Summary of Steel Pole Usages: | Steel Pole
Label | Maximum
Usage % | Load | Case | | Segment
Number | _ | |---------------------|--------------------|------|------|-----|-------------------|--------------------| | LP
RP | 37.01 | | | 2.5 | | 12719.3
14075.1 | ### Summary of Tubular X-Arm Usages: | Tubular | X-Arm | Maximum | | Load | Case | H€ | eight | Segment | Weight | |---------|-------|---------|------|------|------|-----|-------|---------|--------| | | Label | Usage % | | | | AGL | (ft) | Number | (lbs) | | | XArm | 30.21 | NESC | Rule | 250B | | 71.5 | 3 | 1523.8 | *** Maximum Stress Summary for Each Load Case ### Summary of Maximum Usages by Load Case: | | Load | Case | Maximum
Usage % | Element
Label | E] | Lement
Type | |------|------|------|--------------------|------------------|------|----------------| | NESC | Rule | 250B | 66.29 | RP | Base | Plate | | | NESC | 250C | 64.33 | LP | Base | Plate | | NESC | Rule | 250D | 66.81 | RP | Base | Plate | ### Summary of Steel Pole Usages by Load Case: | | Load | Case | Maximum
Usage % | Steel Pole
Label | Height
AGL (ft) | | |------|--------------|------|--------------------|---------------------|--------------------|----------| | NESC | Rule | | 24.10 | LP | 2.5 | 18 | | NESC | NESC
Rule | | 39.01
16.05 | LP
LP | 2.5
2.5 | 18
18 | # Summary of Base Plate Usages by Load Case: | | Load | Case | Pole
Label | | Length | Vertical
Load | | | Bending
Stress | | Acting On | Max Bolt
Load For
Bend Line | Plate | Usage | |------|------|------|---------------|---|--------|------------------|----------|---------|-------------------|--------|-----------|-----------------------------------|-------|-------| | | | | | | (in) | (kips) | (ft-k) | (ft-k) | (ksi) | (ft-k) | | (kips) | (in) | % | | NESC | Rule | 250B | LP | 1 | 12.996 | 35.427 | 1856.686 | -69.421 | 33.029 | 45.084 | -1.5 | 118.589 | 2.235 | 66.06 | | | NESC | 250C | LP | 1 | 12.996 | 19.257 | 1857.753 | -29.274 | 32.165 | 43.904 | -1.5 | 115.752 | 2.206 | 64.33 | | NESC | Rule | 250D | LP | 1 | 12.996 | 32.205 | 1855.296 | -99.895 | 33.301 | 45.455 | -1.5 | 119.416 | 2.244 | 66.60 | | NESC | Rule | 250B | RP | 1 | 12.996 | 51.986 | 1857.431 | -45.302 | 33.147 | 45.245 | -1.5 | 119.081 | 2.239 | 66.29 | | | NESC | 250C | RP | 1 | 12.996 | 24.858 | 1857.975 | -5.701 | 32.016 | 43.701 | -1.5 | 115.320 | 2.201 | 64.03 | | NESC | Rule | 250D | RP | 1 | 12.996 | 49.103 | 1856.543 | -73.149 | 33.403 | 45.595 | -1.5 | 119.864 | 2.248 | 66.81 | # Summary of Tubular X-Arm Usages by Load Case: | L | oad | Case | Maximum
Usage % | | _ | Segment
Number | |--------|-----|--------------|--------------------|--------------|--------------|-------------------| | NESC R | | 250B
250C | | XArm
XArm | 71.5
71.5 | 3 | # Summary of Insulator Usages: | | Insulator
Type | | | Load | Case | Weight
(lbs) | | | |------------------------|-------------------|----------|------|-------|---------|-----------------|--|--| | RAntFUT | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | RAnt | | 0.00 | | | | | | | | Coax1 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax2 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax3 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax4 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax5 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Соахб | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax7 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax8 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | Coax9 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | | | SWL | Suspension | 0.00 | NESC | Rule | 250B | 1.0 | | | | SWR | Suspension | 0.00 | NESC | Rule | 250B | 1.0 | | | | PHL | Suspension | 0.00 | NESC | Rule | 250B | 50.0 | | | | PHM | Suspension | 0.00 | NESC | Rule | 250B | 50.0 | | | | PHR | Suspension | 0.00 | NESC | Rule | 250B | 50.0 | | | | *** Weight | of structur | re (lbs) | : | | | | | | | Weight | of Tubular | X-Arms: | | - | 1523.8 | 3 | | | | Weight | of Steel Po | oles: | | 26 | 5794.4 | 4 | | | | Weight of Suspensions: | | | | 152.0 | | | | | | Total: | Total: | | | | 28470.2 | | | | *** End of Report ********************* PLS-POLE POLE AND FRAME ANALYSIS AND DESIGN Copyright Power Line Systems 1999-2021 ******************** Project Name : Project Notes: Project File : J:\Jobs\2112200.WI\05_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 & 103_str#8012_80ft(lp)-107ft(rp)_r3.pol Date run : 2:46:10 PM Thursday, October 14, 2021 by : PLS-POLE Version 16.81 Licensed to : Centek Engineering Inc Successfully performed nonlinear analysis The model has 0 warnings. Modeling options: Offset Arms from Pole/Mast: Yes Offset Braces from Pole/Mast: Yes Offset Guys from Pole/Mast: Yes Offset Posts from Pole/Mast: Yes Offset Strains from Pole/Mast: Yes Use Alternate Convergence Process: No Steel poles and tubular arms checked with ASCE/SEI 48-19 ### Vang Connectivity: | Vang
Label | Attach
Label | Tip
Label | Azimuth (deg) | Length (ft) | Measured
Relative To | |---------------|-----------------|--------------|---------------|-------------|-------------------------| | SWLVang | RP:SW | SWLVANG | 180 | 0.5 | Face | | SWRVang | | SWRVANG | 0 | 0.5 | Face | | ArmSusL | | VangCL | 0 | 0.5 | Face | ArmSusM XArm:ML VangCM 0 0.5 Face ArmSusR XArm:E VangCR 0 0.5 Face Default Modulus of Elasticity for Steel = 29000.00 (ksi) Default Weight Density for Steel = 490.00 (lbs/ft^3) # Steel Pole Properties: | Distan | ce Ultima | Steel Pole | Stock Length
Texture | Default | Base | Shape | Tip | Base | Taper | Default | Tubes | Modulus of | Weight | Shape | Strength | |--------|-----------|----------------|-------------------------|----------|-------|-------|----------|----------|---------|---------|---------|------------|-----------|-------|------------| | | | Property | Number | Embedded | Plate | | Diameter | Diameter | | Drag | | Elasticity | Density | At | Check | | From | Trans. | Long. | | | | | | | | | | | | | | | | | Label | | Length | | | | | | Coef. | | Override | Override | Base | Type | | Tip | Load | Load | | | | | | | | | | | | | | | | | | (ft) | (ft) | | | (in) | (in)(| (in/ft) | | | (ksi)(| lbs/ft^3) | | | | (ft) | (kips) | (kips) | .2_80FT(LP)-R3 | 80.00 | 0 | Yes | 12F | 0 | 48.5 | 0.3283 | 1.6 | 2 tubes | 0 | 0 | (| Calculated | | 0.000 | 0.0000 | 0.0000 Corte | n Steel | | | | | | | | | | | | | | QT103 | _Str#8012 | _107FT(RP)-R3 | 107.00 | 0 | Yes | 12F | 13 | 48.5 | 0 | 1.6 | 4 tubes | 0 | 0 | (| Calculated | | 0.000 | 0.0000 | 0.0000 Corte | n Steel | | | | | | | | | | | | | # Steel Tubes Properties: | Diam. | Actual | Pole | Tube | Length | Thickness | Lap | Lap | Lap | Gap or | Yield | Moment Cap. | Tube | Center of | Calculated | Tube Top | Tube Bot. 1 | 1.5x | |-----------------|-----------------------|------------|------|--------|-----------|--------|--------|------|--------|--------|-------------|--------|-----------|------------|----------|-------------|------| | | | Property | No. | | | Length | Factor | Butt | Offset | Stress | Override | Weight | Gravity | Taper | Diameter | Diameter I | Lap | | Length | Overlap | | | (ft) | (in) | (ft) | | | (in) | (ksi) | (ft-k) | (lbs) | (ft) | (in/ft) | (in) | (in) | | | (ft) | (ft) | QT003_
4.327 | _Str#8012_80
0.000 |)FT(LP)-R3 | 1 | 40 | 0.375 | 0.000 | 0.000 | | 0.000 | 65.000 | 0.000 | 4666 | 21.54 | 0.32827 | 22.24 | 35.37 | | |
QT003_
0.000 | _Str#8012_80
0.000 |)FT(LP)-R3 | 2 | 40 | 0.375 | 0.000 | 0.000 | | 0.000 | 65.000 | 0.000 | 6821 | 21.05 | 0.32827 | 35.37 | 48.50 | | # Steel Tubes Properties: | | Pole | Tube | Length | Thickness | Lap | Lap | Lap G | ap or | Yield | Moment Cap. | Tube | Center of | Calculated | Tube Top | Tube Bot. 1.5x | |----------------|---------------|------|--------|-----------|--------|--------|--------|-------|--------|-------------|--------|-----------|------------|----------|----------------| | Diam. Actual | | | | | | | | | | | | _ | | _ | | | I | Property | No. | | | Length | Factor | Butt C | ffset | Stress | Override | Weight | Gravity | Taper | Diameter | Diameter Lap | | Length Overlap | | | (ft) | (in) | (ft) | | | (in) | (ksi) | (ft-k) | (lbs) | (ft) | (in/ft) | (in) | (in) | | (ft) (ft) | | | (10) | (/ | (10) | | | (| (1151) | (20 11) | (100) | (20) | (111/10) | (111) | (222) | QT103_Str#8012 | _107FT(RP)-R3 | 1 | 12 | 0.1875 | 0.000 | 0.000 | | 0.000 | 65.000 | 0.000 | 364 | 6.27 | 0.32827 | 13.00 | 16.94 | | 2.071 0.000 | | | | | | | | | | | | | | | | | QT103_Str#8012 | _107FT(RP)-R3 | 2 | 15 | 0.3125 | 0.000 | 0.000 | | 0.000 | 65.000 | 0.000 | 992 | 7.82 | 0.32827 | 17.19 | 22.11 | | 2.686 0.000 | | | | | | | | | | | | | | | | | QT103_Str#8012 | _107FT(RP)-R3 | 3 | 40 | 0.375 | 0.000 | 0.000 | | 0.000 | 65.000 | 0.000 | 4666 | 21.54 | 0.32827 | 22.24 | 35.37 | | 4.327 0.000 | | | | | | | | | | | | | | | | | QT103_Str#8012 | _107FT(RP)-R3 | 4 | 40 | 0.375 | 0.000 | 0.000 | | 0.000 | 65.000 | 0.000 | 6821 | 21.05 | 0.32827 | 35.37 | 48.50 | | 0.000 0.000 | | | | | | | | | | | | | | | | # Base Plate Properties: | Pole | Plate | Plate | Plate | Plate | Bend Line | Hole | Hole | Steel | Steel | Bolt | Bolt | Num. | Bolt | Bolt | |-----------------------------|--------|-------|--------|--------|-----------|--------|-------|------------|--------|-------|---------|-------|----------|----------| | Property | Diam. | Shape | Thick. | Weight | Length | Diam. | Shape | Density | Yield | Diam. | Pattern | Of | Cage X | Cage Y | | | | | | | Override | | | | Stress | | Diam. | Bolts | Inertia | Inertia | | | (in) | | (in) | (lbs) | (in) | (in) | (| (lbs/ft^3) | (ksi) | (in) | (in) | | (in^4) | (in^4) | | | | | | | | | | | | | | | | | | QT003_Str#8012_80FT(LP)-R3 | 52.000 | 4F | 2.750 | 1233 | 0.000 | 37.000 | 0 | 490.00 | 50.000 | 2.250 | 55.750 | 12 | 18334.12 | 18334.12 | | QT103_Str#8012_107FT(RP)-R3 | 52.000 | 4F | 2.750 | 1233 | 0.000 | 37.000 | 0 | 490.00 | 50.000 | 2.250 | 55.750 | 12 | 18334.12 | 18334.12 | Base Plate Bolt Coordinates for Property "QT003_Str#8012_80FT(LP)-R3": Base Plate Bolt Coordinates for Property "QT103_Str#8012_107FT(RP)-R3": | | Bolt Y
Coord. | Bolt
Angle
(deg) | |--------|------------------|------------------------| | | | | | 0.5336 | 0.8386 | 0 | | 0.704 | 0.704 | 0 | | 0.8386 | 0.5336 | 0 | Steel Pole Connectivity: | Pole | Tip | Base | X of | Y of | Z of | Inclin. | Inclin. | Property | Z | Attach. | Base | Embed % E | Embed C. | |---------|---------|-------|------|-------|------|---------|---------|-----------------------------|-------|---------|---------|------------|----------| | Label 3 | Joint 3 | Joint | Base | Base | Base | About X | About Y | Set | | Labels | Connect | Override (| Override | | | | | (ft) | (ft) | (ft) | (deg) | (deg) | | | | | | (ft) | | LP | | | 0 | -7.75 | 0 | 0 | 0 | OT003 Str#8012 80FT(LP)-R3 |
2 | labels | | 0.00 | 0 | | RP | | | 0 | 7.75 | 0 | 0 | | QT103_Str#8012_107FT(RP)-R3 | | | | 0.00 | 0 | Relative Attachment Labels for Steel Pole "LP": | Joint | Distance From | Global Z | |-------|-----------------------|-------------------| | Label | Origin/Top Joint (ft) | of Attach
(ft) | | LP:SW | 0.75
8.50 | 0.00 | Relative Attachment Labels for Steel Pole "RP": | Joint
Label | Distance From
Origin/Top Joint
(ft) | Global Z
of Attach
(ft) | |----------------|---|-------------------------------| | RP:ANTFUT | 3.00 | 0.00 | | RP:ANT | 15.00 | 0.00 | | RP:SW | 27.75 | 0.00 | | RP:C | 35.50 | 0.00 | | RP:Coax1 | 0.00 | 5.00 | | RP:Coax2 | 0.00 | 15.00 | | RP:Coax3 | 0.00 | 25.00 | | RP:Coax4 | 0.00 | 35.00 | | RP:Coax5 | 0.00 | 45.00 | | RP:Coax6 | 0.00 | 55.00 | | RP:Coax7 | 0.00 | 65.00 | | RP:Coax8 | 0.00 | 75.00 | | RP:Coax9 | 0.00 | 85.00 | Transverse/Vertical (Y) Axis # Pole Steel Properties: | Element
Label | Joint
Label | Joint
Position | Rel.
Dist. | Outer | Area | T-Moment
Inertia | L-Moment
Inertia | D/t | W/t
Max. | Fy | | T-Moment
Capacity | | |------------------|----------------|-------------------|---------------|-------|--------|---------------------|---------------------|------|-------------|-------|-------|----------------------|---------| | | | | (ft) | | (in^2) | | (in^4) | | | (ksi) | (ksi) | (ft-k) | (ft-k) | | LP | LP:t | LP:t Ori | 0.00 | 22.24 | 26.36 | 1613.33 | 1613.33 | 0.00 | 13.2 | 65.00 | 65.00 | 785.93 | 785.93 | | LP | LP:SW | LP:SW End | 0.75 | 22.48 | 26.66 | 1668.44 | 1668.44 | 0.00 | 13.4 | 65.00 | 65.00 | 803.87 | 803.87 | | LP | LP:SW | LP:SW Ori | 0.75 | 22.48 | 26.66 | 1668.44 | 1668.44 | 0.00 | 13.4 | 65.00 | 65.00 | 803.87 | 803.87 | | LP | #LP:0 | Tube 1 End | 4.63 | 23.76 | 28.19 | 1973.24 | 1973.24 | 0.00 | 14.3 | 65.00 | 65.00 | 899.82 | 899.82 | | LP | #LP:0 | Tube 1 Ori | 4.63 | 23.76 | 28.19 | 1973.24 | 1973.24 | 0.00 | 14.3 | 65.00 | 65.00 | 899.82 | 899.82 | | LP | LP:C | LP:C End | 8.50 | 25.03 | 29.73 | 2313.08 | 2313.08 | 0.00 | 15.2 | 65.00 | 65.00 | 1001.18 | 1001.18 | | LP | LP:C | LP:C Ori | 8.50 | 25.03 | 29.73 | 2313.08 | 2313.08 | 0.00 | 15.2 | 65.00 | 65.00 | 1001.18 | 1001.18 | | LP | #LP:1 | Tube 1 End | 13.50 | 26.67 | 31.71 | 2806.43 | 2806.43 | 0.00 | 16.4 | 65.00 | 65.00 | 1139.97 | 1139.97 | | LP | #LP:1 | Tube 1 Ori | 13.50 | 26.67 | 31.71 | 2806.43 | 2806.43 | 0.00 | 16.4 | 65.00 | 65.00 | 1139.97 | 1139.97 | | LP | #LP:2 | Tube 1 End | 18.50 | 28.31 | 33.68 | 3365.38 | 3365.38 | 0.00 | 17.5 | 65.00 | 65.00 | 1287.76 | 1287.76 | | LP | #LP:2 | Tube 1 Ori | 18.50 | 28.31 | 33.68 | 3365.38 | 3365.38 | 0.00 | 17.5 | 65.00 | 65.00 | 1287.76 | 1287.76 | | LP | #LP:3 | Tube 1 End | 23.50 | 29.95 | 35.66 | 3994.01 | 3994.01 | 0.00 | 18.7 | 65.00 | 65.00 | 1444.56 | 1444.56 | | LP | #LP:3 | Tube 1 Ori | 23.50 | 29.95 | 35.66 | 3994.01 | 3994.01 | 0.00 | 18.7 | 65.00 | 65.00 | 1444.56 | 1444.56 | | LP | #LP:4 | Tube 1 End | 28.50 | 31.59 | 37.64 | 4696.43 | 4696.43 | 0.00 | 19.9 | 65.00 | 65.00 | 1610.36 | 1610.36 | | LP | #LP:4 | Tube 1 Ori | 28.50 | 31.59 | 37.64 | 4696.43 | 4696.43 | 0.00 | 19.9 | 65.00 | 65.00 | 1610.36 | 1610.36 | | LP | #LP:5 | Tube 1 End | 33.50 | 33.24 | 39.62 | 5476.73 | 5476.73 | 0.00 | 21.1 | 65.00 | 65.00 | 1785.18 | 1785.18 | | LP | #LP:5 | Tube 1 Ori | 33.50 | 33.24 | 39.62 | 5476.74 | 5476.74 | 0.00 | 21.1 | 65.00 | 65.00 | 1785.18 | 1785.18 | | LP | #LP:6 | Tube 1 | End | 36.75 3 | 4.30 | 40.91 | 6027.63 | 6027.63 | 0.00 | 21.8 | 65.00 | 65.00 | 1903.64 | 1903.64 | |----|-----------|-----------|-----|---------|------|-------|----------|----------|------|------|-------|-------|---------|---------| | LP | #LP:6 | Tube 1 | Ori | 36.75 3 | 4 30 | 40.91 | 6027.63 | 6027.63 | 0 00 | 21 8 | 65 00 | 65 00 | 1903.64 | 1903.64 | | | #LP:7 | SpliceT | | 40.00 3 | | 42.19 | 6614.29 | 6614.29 | | | | | 2025.91 | 2025.91 | | LP | | _ | | | | | | | | | | | | | | LΡ | #LP:7 | SpliceT | | 40.00 3 | | 42.19 | 6614.29 | 6614.29 | | | | | 2025.91 | 2025.91 | | LΡ | #LP:8 | Tube 2 | End | 45.00 3 | 7.01 | 44.17 | 7589.25 | 7589.25 | 0.00 | 23.8 | 65.00 | 65.00 | 2221.44 | 2221.44 | | LΡ | #LP:8 | Tube 2 | Ori | 45.00 3 | 7.01 | 44.17 | 7589.25 | 7589.25 | 0.00 | 23.8 | 65.00 | 65.00 | 2221.44 | 2221.44 | | LP | #LP:9 | Tube 2 | | 50.00 3 | | 46.15 | 8655.60 | 8655.60 | | | | | 2425.98 | 2425.98 | | | | | | | | | | | | | | | | | | LP | #LP:9 | Tube 2 | | 50.00 3 | | 46.15 | 8655.60 | 8655.60 | | | | | 2425.98 | 2425.98 | | LΡ | #LP:10 | Tube 2 | | 55.00 4 | 0.29 | 48.13 | 9817.44 | 9817.44 | | | | | 2639.53 | 2639.53 | | LΡ | #LP:10 | Tube 2 | Ori | 55.00 4 | 0.29 | 48.13 | 9817.44 | 9817.44 | 0.00 | 26.1 | 65.00 | 65.00 | 2639.53 | 2639.53 | | LΡ | #LP:11 | Tube 2 | End | 60.00 4 | 1.93 | 50.11 | 11078.85 | 11078.85 | 0.00 | 27.3 | 65.00 | 65.00 | 2862.09 | 2862.09 | | LP | #LP:11 | Tube 2 | | 60.00 4 | | | 11078.85 | | | | | | 2862.09 | 2862.09 | | LP | #LP:12 | Tube 2 | | 65.00 4 | | | 12443.94 | | | | | | 3093.66 | 3093.66 | | | | | | | | | | | | | | | | | | LP | #LP:12 | Tube 2 | | 65.00 4 | | | 12443.95 | | | | | | 3093.66 | 3093.66 | | LΡ | #LP:13 | Tube 2 | End | 70.00 4 | 5.22 | 54.07 | 13916.80 | 13916.80 | 0.00 | 29.6 | 65.00 | 65.00 | 3334.24 | 3334.24 | | LP | #LP:13 | Tube 2 | Ori | 70.00 4 | 5.22 | 54.07 | 13916.80 | 13916.80 | 0.00 | 29.6 | 65.00 | 65.00 | 3334.24 | 3334.24 | | LΡ | #LP:14 | Tube 2 | End | 75.00 4 | 6.86 | 56.05 | 15501.53 | 15501.53 | 0.00 | 30.8 | 65.00 | 64.01 | 3529.36 | 3529.36 | | LP | #LP:14 | Tube 2 | | 75.00 4 | | | 15501.53 | | | | | | 3529.36 | 3529.36 | | | | | | | | | 17202.21 | | | | | | | | | LP | LP:g | LP:g | End | 80.00 4 | 8.50 | 58.03 | 1/202.21 | 1/202.21 | 0.00 | 32.0 | 65.00 | 02.80 | 3715.97 | 3715.97 | | RP | RP:t | RP:t | Ori | 0.00 1 | 3 00 | 7.72 | 162.33 | 162.33 | 0 00 | 15 9 | 65 00 | 65 00 | 135.28 | 135.28 | | | RP:ANTFUT | | | | | | | | | | | | 157.03 | | | | | | | 3.00 1 | | 8.32 | 202.71 | 202.71 | | | | | | 157.03 | | RP | | RP:ANTFUT | | 3.00 1 | | 8.32 | 202.71 | 202.71 | | | | | 157.03 | 157.03 | | RP | #RP:15 | Tube 1 | End | 7.50 1 | 5.46 | 9.21 | 275.03 | 275.03 | 0.00 | 19.4 | 65.00 | 65.00 | 192.70 | 192.70 | | RP | #RP:15 | Tube 1 | Ori | 7.50 1 | 5.46 | 9.21 | 275.03 | 275.03 | 0.00 | 19.4 | 65.00 | 65.00 | 192.70 | 192.70 | | RP | #RP:16 | SpliceT | End | 12.00 1 | 6.94 | 10.10 | 362.79 | 362.79 | 0.00 | 21.5 |
65.00 | 65.00 | 232.02 | 232.02 | | RP | #RP:16 | SpliceT | | 12.00 1 | | 16.96 | 618.41 | 618.41 | | | | | 389.74 | 389.74 | | | | _ | | | | | | | | | | | | | | RP | RP:ANT | RP:ANT | | 15.00 1 | | 17.95 | 733.08 | 733.08 | | | | | 436.98 | 436.98 | | RP | RP:ANT | RP:ANT | | 15.00 1 | | 17.95 | 733.08 | 733.08 | | | | | 436.98 | 436.98 | | RP | #RP:17 | Tube 2 | End | 18.50 1 | 9.32 | 19.10 | 883.81 | 883.81 | 0.00 | 13.9 | 65.00 | 65.00 | 495.50 | 495.50 | | RP | #RP:17 | Tube 2 | Ori | 18.50 1 | 9.32 | 19.10 | 883.81 | 883.81 | 0.00 | 13.9 | 65.00 | 65.00 | 495.50 | 495.50 | | RP | RP:Coax9 | RP:Coax9 | End | 22.00 2 | 0 47 | 20.26 | 1053.91 | 1053.91 | 0 00 | 14 9 | 65 00 | 65 00 | 557.71 | 557.71 | | RP | RP:Coax9 | RP:Coax9 | | 22.00 2 | | 20.26 | 1053.91 | 1053.91 | | | | | 557.71 | 557.71 | | | | | | | | | | | | | | | | | | RP | #RP:18 | SpliceT | | 27.00 2 | | 21.91 | 1332.82 | 1332.82 | | | | | 652.95 | 652.95 | | RP | #RP:18 | SpliceT | Ori | 27.00 2 | 2.24 | 26.36 | 1613.31 | 1613.31 | | | | | 785.92 | 785.92 | | RP | RP:SW | RP:SW | End | 27.75 2 | 2.48 | 26.66 | 1668.42 | 1668.42 | 0.00 | 13.4 | 65.00 | 65.00 | 803.87 | 803.87 | | RP | RP:SW | RP:SW | Ori | 27.75 2 | 2.48 | 26.66 | 1668.42 | 1668.42 | 0.00 | 13.4 | 65.00 | 65.00 | 803.87 | 803.87 | | RP | RP:Coax8 | RP:Coax8 | End | 32.00 2 | | 28.34 | 2004.55 | 2004.55 | | | | | 909.39 | 909.39 | | RP | RP:Coax8 | RP:Coax8 | | 32.00 2 | | 28.34 | 2004.55 | 2004.55 | | | | | 909.39 | 909.39 | | | | | | | | | | | | | | | | | | RP | RP:C | RP:C | | 35.50 2 | | 29.73 | 2313.06 | 2313.06 | | | | | 1001.18 | 1001.18 | | RP | RP:C | RP:C | | 35.50 2 | 5.03 | 29.73 | 2313.06 | 2313.06 | | | | | 1001.18 | 1001.18 | | RP | #RP:19 | Tube 3 | End | 38.75 2 | 6.10 | 31.01 | 2626.48 | 2626.48 | 0.00 | 16.0 | 65.00 | 65.00 | 1090.36 | 1090.36 | | RP | #RP:19 | Tube 3 | Ori | 38.75 2 | 6.10 | 31.01 | 2626.48 | 2626.48 | 0.00 | 16.0 | 65.00 | 65.00 | 1090.36 | 1090.36 | | RP | RP:Coax7 | RP:Coax7 | End | 42.00 2 | 7 16 | 32.30 | 2967.02 | 2967.02 | 0 00 | 16 7 | 65 00 | 65 00 | 1183.35 | 1183.35 | | RP | RP:Coax7 | RP:Coax7 | | 42.00 2 | | 32.30 | 2967.02 | 2967.02 | | | | | 1183.35 | 1183.35 | | | | | | | | | | | | | | | | | | RP | #RP:20 | Tube 3 | | 47.00 2 | | 34.28 | 3546.44 | 3546.44 | | | | | 1333.84 | 1333.84 | | RP | #RP:20 | Tube 3 | | 47.00 2 | | 34.28 | 3546.44 | 3546.44 | | | | | 1333.84 | 1333.84 | | RP | RP:Coax6 | RP:Coax6 | End | 52.00 3 | 0.45 | 36.26 | 4196.78 | 4196.78 | 0.00 | 19.1 | 65.00 | 65.00 | 1493.35 | 1493.35 | | RP | RP:Coax6 | RP:Coax6 | Ori | 52.00 3 | 0.45 | 36.26 | 4196.78 | 4196.78 | 0.00 | 19.1 | 65.00 | 65.00 | 1493.35 | 1493.35 | | RP | #RP:21 | Tube 3 | End | 57.00 3 | 2 09 | 38.24 | 4922.14 | 4922.14 | 0 00 | 20 2 | 65 00 | 65 00 | 1661.86 | 1661.86 | | RP | #RP:21 | Tube 3 | | 57.00 3 | | 38.24 | 4922.14 | 4922.14 | | | | | 1661.86 | 1661.86 | | | | | | | | | | | | | | | | | | RP | RP:Coax5 | RP:Coax5 | | 62.00 3 | | 40.22 | 5726.60 | 5726.60 | | | | | 1839.37 | 1839.37 | | RP | RP:Coax5 | RP:Coax5 | | 62.00 3 | | 40.22 | 5726.60 | 5726.60 | | | | | 1839.37 | 1839.37 | | RP | #RP:22 | SpliceT | End | 67.00 3 | 5.37 | 42.19 | 6614.26 | 6614.26 | 0.00 | 22.6 | 65.00 | 65.00 | 2025.90 | 2025.90 | | RP | #RP:22 | SpliceT | Ori | 67.00 3 | 5.37 | 42.19 | 6614.27 | 6614.27 | 0.00 | 22.6 | 65.00 | 65.00 | 2025.90 | 2025.90 | | RP | RP:Coax4 | RP:Coax4 | | 72.00 3 | | 44.17 | 7589.23 | 7589.23 | | | | | 2221.44 | 2221.44 | | | | | | 72.00 3 | | 44.17 | 7589.23 | 7589.23 | | | | | 2221.44 | 2221.44 | | RP | RP:Coax4 | RP:Coax4 | | | | | | | | | | | | | | RP | #RP:23 | Tube 4 | | 77.00 3 | | 46.15 | 8655.58 | 8655.58 | | | | | 2425.98 | 2425.98 | | RP | #RP:23 | Tube 4 | Ori | 77.00 3 | 8.65 | 46.15 | 8655.58 | 8655.58 | 0.00 | 24.9 | 65.00 | 65.00 | 2425.98 | 2425.98 | ``` RP | RP:Coax3 | RP:Coax3 | End | 82.00 | 40.29 | 48.13 | 9817.42 | 9817.42 | 0.00 | 26.1 | 65.00 | 65.00 | 2639.53 | 2639.53 | 2639.53 | RP:Coax3 | RP:Coax3 | Coax3 ``` Chara New Charle Charl Mhighware Dismotor Laugh Madulus Duas Comptus Character Ventical Museum #### Tubular X-Arm Properties: | Texture | Cross Arm Stock | steel | Tnickness | Diameter | Length | Modulus | Drag Geometry | strength | vertical | Trans. | Long. | Steel | weight | | |------------------|--------------------------|-------|-----------|----------|--------|------------------|---------------|---------------|----------|----------|----------|-----------------|---------------------|--| | | Property Number
Label | Shape | | or Depth | | of
Elasticity | Coef. | Check
Type | Capacity | Capacity | Capacity | Yield
Stress | Density
Override | | | | | | (in) | (in) | (ft) | (ksi) | | -7F0 | (lbs) | (lbs) | (lbs) | | lbs/ft^3) | | | -
31FT_XArm_Q | T003&QT103 | 8F | 0.375 | 12 | 31 | 29000 | 1.3 3 points | Calculated | 0 | 0 | 0 | 65 | 0 | | Joints Relative to the Origin for Cross Arm Property "31FT XArm QT003&QT103": Joint Offset Label (ft) LP 7.75 ML 15.5 RP 23.25 Tubular X-Arm Connectivity: X-Arm X-Arm Azimuth Slope Attach. Connects Label Property Set (deg) (deg) XArm 31FT_XArm_QT003&QT103 0 0 5 connections ### X-Arm Connections for "XArm": | Ction
Code
Type | |-----------------------| | | | Face | | | | Face | | | | | Transverse/Vertical (Y) Axis # Tubular X-Arm Steel Properties: | Element
Label | Joint
Label | Joint
Position | Rel.
Dist.
(ft) | | Area | V-Moment
Inertia
(in^4) | H-Moment
Inertia
(in^4) | D/t | W/t
Max. | Fy
(ksi) | Min. | V-Moment
Capacity
(ft-k) | | |------------------|----------------|-------------------|-----------------------|-------|-------|-------------------------------|-------------------------------|------|-------------|-------------|-------|--------------------------------|--------| | | | | | | | | | | | | | | | | XArm | XArm:O | Origin | 0.00 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:0 | End | 3.87 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:0 | Origin | 3.87 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:LP | End | 7.75 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:LP | Origin | 7.75 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:1 | End | 11.63 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:1 | Origin | 11.63 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:ML | End | 15.50 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:ML | Origin | 15.50 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:2 | End | 19.38 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:2 | Origin | 19.38 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:RP | End | 23.25 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:RP | Origin | 23.25 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:3 | End | 27.13 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | #sXArm:3 | Origin | 27.13 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | | XArm | XArm:E | End | 31.00 | 12.00 | 14.45 | 258.25 | 258.25 | 0.00 | 9.1 | 65.00 | 65.00 | 233.14 | 233.14 | # *** Insulator Data ### Clamp Properties: Label Stock Holding Hardware Notes Number Capacity Capacity (lbs) (lbs) CLAMP 1e+05 0 ### Clamp Insulator Connectivity: | Clamp
Label | | | Min. Required Vertical Load (uplift) (lbs) | |----------------|-----------|-------|--| | RAntFUT | RP:ANTFUT | CLAMP | No Uplift | | RAnt | RP:ANT | CLAMP | No Uplift | | Coax1 | RP:Coax1 | CLAMP | No Limit | | Coax2 | RP:Coax2 | CLAMP | No Limit | | Coax3 | RP:Coax3 | CLAMP | No Limit | | Coax4 | RP:Coax4 | CLAMP | No Limit | | Coax5 | RP:Coax5 | CLAMP | No Limit | | Coax6 | RP:Coax6 | CLAMP | No Limit | | Coax7 | RP:Coax7 | CLAMP | No Limit | | Coax8 | RP:Coax8 | CLAMP | No Limit | | Coax9 | RP:Coax9 | CLAMP | No Limit | ### Suspension Properties: | Label | Stock | Length | Weight | Wind | Tension | Top Rect | Top Rect | Bot. Rect | Bot. Rect | Vert. Rect | Vert. Rect | Hardware 1 | Notes | Draw R | ≀igid | |------------|--------|--------|--------|--------|----------|----------|----------|-----------|-----------|------------|------------|------------|-------|--------|-------| | | Number | | | Area | Capacity | Width | Height | Width | Height | Width | Height | Capacity | | | | | | | (ft) | (lbs) | (ft^2) | (lbs) | (ft) | (ft) | (ft) | (ft) | (ft) | (ft) | (lbs) | | | | | SW SUS | | 0.25 | 1 | 0 | 2.5e+04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sheds | No | | dummy Susp | | 6 | 50 | 2 | 3e+04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | Sheds | No | # Suspension Insulator Connectivity: | Su | spension
Label | Structure
Attach | Tip
Label | | | Maximum | Minimum | Maximum | Minimum | Maximum | Minimum | Maximum | Min. Required
Vertical Load
(uplift)
(lbs) | |----|-------------------|---------------------|--------------|------------|--------|---------|---------|---------|---------|---------|---------|---------|---| | | SWL | SWLVANG | SWL | SW SUS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | No Limit | | | SWR | SWRVANG | SWR | SW SUS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | No Limit | | | PHL | VangCL | PHL | dummy Susp | -90.00 | 77.00 | -90.00 | 48.00 | 0.00 | 0.00 | 0.00 | 0.00 | No Limit | | | PHM | VangCM | PHM | dummy Susp | -77.00 | 77.00 | -48.00 | 48.00 | 0.00 | 0.00 |
0.00 | 0.00 | No Limit | | | PHR | VangCR | PHR | dummy Susp | -77.00 | 90.00 | -48.00 | 90.00 | 0.00 | 0.00 | 0.00 | 0.00 | No Limit | $Loads from file: J:\Jobs\2112200.WI\05_Structural\Tower Analysis\Backup Documentation\Calcs\PLS-Pole\qt003 \& 103-str\#8012-r3.lca$ Insulator dead and wind loads are already included in the point loads printed below. # Loading Method Parameters: Structure Height Summary (used for calculating wind/ice adjust with height): | Z of ground for wind height adjust | 0.00 (ft) and structure Z coordinate that will be put on the centerline ground profile in PLS-CADD. | |------------------------------------|---| | Ground elevation shift | 0.00 (ft) | | Z of ground with shift | 0.00 (ft) | | Z of structure top (highest joint) | 107.00 (ft) | | Structure height | 107.00 (ft) | | Structure height above ground | 107.00 (ft) | #### Vector Load Cases: | Load Case Dead Wind
Longit. Ice Ice Tempera | | | SF for SF for SF for | SF for SF For Point | Wind/Ice Trans. | |--|------------------------|----------------------|----------------------|------------------------|-----------------| | - | Steel Poles Wood Conc. | Conc. Conc. Guys | Non Braces Insuls. | Hardware Found. Loads | Model Wind | | Wind Thick. Density | Deflection Deflection | | | | | | Factor Factor T | | | Tubular | | Pressure | | Pressure | Check Lim | | | | | | | and Towers | Crack Tens. Cables | Arms | | (psf) | | (psf) (in)(lbs/ft^3) (deg | F) % or (ft) | | | | | | | | - | | | | | NESC Rule 250B 1.5000 2.5000 | 1.00000 1.0000 1.0000 | 0.0000 0.0000 1.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.0000 15 loads | Wind on All 4 | | 0 0.500 57.000 0.0 | No Limit 0 | | | | | | NESC 250C 1.0000 1.0000 | 1.00000 1.0000 1.0000 | 0.0000 0.0000 1.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.0000 15 loads | NESC 2017 31 | | 0 0.000 57.000 0.0 | No Limit 0 | | | | | | NESC Rule 250D 1.0000 1.0000 | 1.00000 1.0000 1.0000 | 0.0000 0.0000 1.0000 | 1.0000 1.0000 0.0000 | 1.0000 0.0000 15 loads | Wind on All 4 | | 0 1.000 57.000 15.0 | No Limit 0 | | | | | ### Point Loads for Load Case "NESC Rule 250B": | Joint
Label | Vertical
Load
(lbs) | Transverse
Load
(1bs) | Longitudinal
Load
(1bs) | Load
Comment | |----------------|---------------------------|-----------------------------|-------------------------------|-----------------| | RP:ANT | 7359 | 1734 | 0 | | | SWL | 2422.35 | 1890.8 | 0 | | | SWR | 2422.35 | 1890.8 | 0 | | | PHL | 8055.13 | 3533.42 | 0 | | | PHM | 8055.13 | 3533.42 | 0 | | | PHR | 8055.13 | 3533.42 | 0 | | | RP:Coax1 | 920 | 172 | 0 | | | RP:Coax2 | 920 | 172 | 0 | | | RP:Coax3 | 920 | 172 | 0 | | | RP:Coax4 | 920 | 172 | 0 | | | RP:Coax5 | 920 | 172 | 0 | | | RP:Coax6 | 920 | 172 | 0 | | | RP:Coax7 | 920 | 172 | 0 | | | RP:Coax8 | 920 | 172 | 0 | | RP:Coax9 920 172 0 Detailed Pole Loading Data for Load Case "NESC Rule 250B": Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole. | Pole
Label | Top
Joint | Bottom
Joint | Section | | Section | Outer
Diameter | _ | _ | Adjusted
Wind | Adjusted
Ice | Pole
Vert. | | Pole Ice
Vertical | Pole Ice
Wind | Tran. | Long.
Wind | |---------------|--------------|-----------------|----------------|----------------|----------------|-------------------|----------------------|-------|------------------|-----------------|--------------------|--------|----------------------|------------------|------------------|---------------| | Label | JOING | JOING | Z | Bottom
Z | Elevation | Diameter | Number | COEI. | | Thickness | Load | Load | Load | Load | | Load | | | | | (ft) | (ft) | (ft) | (in) | | | (psf) | (in) | (lbs) | (lbs) | (lbs) | (lbs) | (lbs) | | | LP | LP:t | LP:SW | 80.00 | 79.25 | 79.63 | 22.362 | 1.06e+06 | 1.600 | 10.00 | 0.50 | 101.49 | 22.36 | 10.67 | | 23.36 | 0.00 | | LP | LP:SW | | 79.25 | 75.38 | 77.31 | 23.121 | 1.09e+06 | 1.600 | 10.00 | 0.50 | 542.45 | 119.46 | 57.01 | 5.17 | 124.63 | 0.00 | | LP | | LP:C | 75.38 | 71.50 | 73.44 | 24.393 | 1.15e+06 | 1.600 | 10.00 | 0.50 | 572.79 | 126.04 | 60.15 | 5.17 | 131.20 | 0.00 | | LP | LP:C | | 71.50 | 66.50 | 69.00 | 25.849 | 1.22e+06 | 1.600 | 10.00 | 0.50 | 783.90 | | 82.25 | | 179.01 | 0.00 | | LP | | | 66.50 | 61.50 | 64.00 | | 1.3e+06 | | 10.00 | 0.50 | 834.41 | | 87.47 | | 189.95 | 0.00 | | LP | | | 61.50 | 56.50 | 59.00 | | 1.38e+06 | | 10.00 | 0.50 | 884.92 | | 92.70 | | 200.89 | 0.00 | | LP | | | 56.50 | 51.50 | 54.00 | | 1.46e+06 | | 10.00 | 0.50 | 935.43 | | 97.92 | | 211.83 | | | LP | | | 51.50 | 46.50 | 49.00 | | 1.53e+06 | | 10.00 | 0.50 | 985.94 | | 103.14 | | 222.78 | 0.00 | | LP | | | 46.50 | 43.25 | 44.87 | | 1.6e+06 | | 10.00 | 0.50 | 667.94 | | 69.84 | | 150.67 | 0.00 | | LP | | | 43.25 | 40.00 | 41.63 | | 1.65e+06 | | 10.00 | 0.50 | | | 72.05 | | 155.30 | 0.00 | | LP | | | 40.00 | 35.00 | 37.50 | | 1.71e+06 | | 10.00 | | 1102.11 | | 115.15 | | 247.95 | 0.00 | | LP | | | 35.00 | 30.00 | 32.50 | | 1.79e+06 | | 10.00 | | 1152.61 | | 120.38 | | 258.89 | 0.00 | | LP | | | 30.00 | 25.00 | 27.50 | | 1.87e+06 | | 10.00 | | 1203.12 | | 125.60 | | 269.83 | 0.00 | | LP
LP | | | 25.00
20.00 | 20.00
15.00 | 22.50
17.50 | | 1.95e+06 | | 10.00 | | 1253.63 | | 130.82
136.04 | | 280.77
291.72 | 0.00 | | LP | | | 15.00 | 10.00 | 17.50 | | 2.02e+06
2.1e+06 | | 10.00 | | 1304.14
1354.65 | | 136.04 | | 302.66 | 0.00 | | LP | | | 10.00 | 5.00 | 7.50 | | 2.1e+06
2.18e+06 | | 10.00 | | 1405.15 | | 141.27 | | | 0.00 | | LP | | LP:q | 5.00 | 0.00 | 2.50 | | 2.16e+06
2.26e+06 | | 10.00 | | 1405.15 | | 151.71 | | 313.60
324.55 | 0.00 | | RP | +•תם | RP:ANTFUT | | 104.00 | 105.50 | | 6.39e+05 | | 10.00 | 0.50 | | | 25.76 | | 57.97 | | | | RP:ANTFUT | RP · ANIFUI | 107.00 | 99.50 | 101.75 | | 6.97e+05 | | 10.00 | 0.50 | 201.29 | | 42.16 | | 94.35 | 0.00 | | RP | KF · ANII OI | | 99.50 | 95.00 | 97.25 | | 7.67e+05 | | 10.00 | 0.50 | 201.23 | | 46.39 | | 103.21 | 0.00 | | RP | | RP:ANT | 95.00 | 92.00 | 93.50 | | 8.37e+05 | | 10.00 | 0.50 | | | 33.76 | | 74.73 | 0.00 | | RP | RP:ANT | IXI • AIVI | 92.00 | 88.50 | 90.25 | | 8.88e+05 | | 10.00 | 0.50 | 330.94 | | 41.76 | 4.67 | | 0.00 | | RP | 101 - 11111 | RP:Coax9 | 88.50 | 85.00 | 86.75 | | 9.42e+05 | | 10.00 | 0.50 | 351.56 | | 44.32 | | 97.53 | 0.00 | | RP | RP:Coax9 | 111 000113 | 85.00 | 80.00 | 82.50 | | 1.01e+06 | | 10.00 | 0.50 | 538.03 | | 67.75 | | 148.63 | 0.00 | | RP | 111 000113 | RP:SW | 80.00 | 79.25 | 79.63 | | 1.06e+06 | | 10.00 | 0.50 | 101.46 | | 10.67 | | 23.36 | 0.00 | | RP | RP:SW | RP:Coax8 | 79.25 | 75.00 | 77.13 | | 1.1e+06 | | 10.00 | 0.50 | 596.55 | | 62.70 | | 137.04 | | | RP | RP:Coax8 | RP:C | 75.00 | 71.50 | 73.25 | | 1.16e+06 | | 10.00 | 0.50 | 518.68 | | 54.47 | | 118.79 | 0.00 | | RP | RP:C | | 71.50 | 68.25 | 69.88 | 25.562 | 1.21e+06 | 1.600 | 10.00 | 0.50 | 503.79 | 110.77 | 52.87 | 4.33 | 115.11 | 0.00 | | RP | | RP:Coax7 | 68.25 | 65.00 | 66.63 | 26.629 | 1.26e+06 | 1.600 | 10.00 | 0.50 | 525.13 | 115.40 | 55.07 | 4.33 | 119.73 | 0.00 | | RP | RP:Coax7 | | 65.00 | 60.00 | 62.50 | 27.983 | 1.32e+06 | 1.600 | 10.00 | 0.50 | 849.56 | 186.56 | 89.04 | 6.67 | 193.23 | 0.00 | | RP | | RP:Coax6 | 60.00 | 55.00 | 57.50 | 29.624 | 1.4e+06 | 1.600 | 10.00 | 0.50 | 900.07 | 197.51 | 94.26 | 6.67 | 204.17 | 0.00 | | RP | RP:Coax6 | | 55.00 | 50.00 | 52.50 | 31.266 | 1.48e+06 | 1.600 | 10.00 | 0.50 | 950.58 | 208.45 | 99.48 | 6.67 | 215.12 | 0.00 | | RP | | RP:Coax5 | 50.00 | 45.00 | 47.50 | 32.907 | 1.56e+06 | 1.600 | 10.00 | 0.50 | 1001.09 | 219.39 | 104.71 | | 226.06 | 0.00 | | RP | RP:Coax5 | | 45.00 | 40.00 | 42.50 | 34.548 | 1.64e+06 | 1.600 | 10.00 | 0.50 | 1051.60 | 230.34 | 109.93 | 6.67 | 237.00 | 0.00 | | RP | | RP:Coax4 | 40.00 | 35.00 | 37.50 | | 1.71e+06 | | 10.00 | | 1102.10 | | 115.15 | | 247.95 | 0.00 | | RP | RP:Coax4 | | 35.00 | 30.00 | 32.50 | | 1.79e+06 | | 10.00 | | 1152.61 | | 120.37 | | 258.89 | 0.00 | | RP | | RP:Coax3 | 30.00 | 25.00 | 27.50 | | 1.87e+06 | | 10.00 | | 1203.12 | | 125.60 | | 269.83 | 0.00 | | RP | RP:Coax3 | | 25.00 | 20.00 | 22.50 | | 1.95e+06 | | 10.00 | | 1253.63 | | 130.82 | | 280.77 | | | RP | | RP:Coax2 | 20.00 | 15.00 | 17.50 | | 2.02e+06 | | 10.00 | | 1304.14 | | 136.04 | | 291.72 | 0.00 | | RP | RP:Coax2 | | 15.00 | 10.00 | 12.50 | | 2.1e+06 | | | | 1354.65 | | 141.27 | | 302.66 | 0.00 | | RP | <i>-</i> | RP:Coax1 | 10.00 | 5.00 | 7.50 | | 2.18e+06 | | 10.00 | | 1405.15 | | 146.49 | | 313.60 | 0.00 | | RP | RP:Coax1 | RP:g | 5.00 | 0.00 | 2.50 | 47.679 | 2.26e+06 | ⊥.600 | 10.00 | 0.50 | 1455.66 | 317.88 | 151.71 | 6.67 | 324.55 | 0.00 | Point Loads for Load Case "NESC 250C": Joint Vertical Transverse Longitudinal Load | Load
(lbs) | Load
(1bs) | Load
(1bs) | Comment | |---------------|--|--
---| | 4018 | 5421 | 61 | | | 673.5 | 1712.12 | 0 | | | 673.5 | 1712.12 | 0 | | | 3462.1 | 5240.62 | 0 | | | 3462.1 | 5240.62 | 0 | | | 3462.1 | 5240.62 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | 250 | 501 | 0 | | | | (1bs) 4018 673.5 673.5 3462.1 3462.1 3462.1 250 250 250 250 250 250 250 250 250 | (1bs) (1bs) 4018 5421 673.5 1712.12 673.5 1712.12 3462.1 5240.62 3462.1 5240.62 250 501 250 501 250 501 250 501 250 501 250 501 250 501 250 501 250 501 250 501 | (lbs) (lbs) (lbs) 4018 5421 61 673.5 1712.12 0 673.5 1712.12 0 3462.1 5240.62 0 3462.1 5240.62 0 3462.1 5240.62 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 250 501 0 | Detailed Pole Loading Data for Load Case "NESC 250C": Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole. | Pole | Top | Bottom | Section | Section | Section | Outer | Reynolds | Drag | Adjusted | Adjusted | Pole | Pole | Pole Ice | Pole Ice | Tran. | Long. | |----------|-----------|-----------|---------|----------------|-----------|----------|----------|-------|----------|-----------|--------|--------|----------|----------|--------|-------| | Label | Joint | Joint | Top | Bottom | Average | Diameter | Number | Coef. | Wind | Ice | Vert. | Wind | Vertical | Wind | Wind | Wind | | | | | Z | Z | Elevation | | | | Pressure | Thickness | Load | Load | Load | Load | Load | Load | | | | | (ft) | (ft) | (ft) | (in) | | | (psf) | (in) | (lbs) | (lbs) | (lbs) | (lbs) | (lbs) | (lbs) | | LP | LP:t | LP:SW | 80.00 | 79.25 | 79.63 | 22 362 | 1.88e+06 | 1 000 | 31.62 | 0.00 | 67.66 | 44 19 | 0.00 | 0 00 | 44.19 | 0.00 | | LP | LP:SW | EL . DW | 79.25 | 75.38 | 77.31 | | 1.95e+06 | | 31.62 | | | 236.04 | | | 236.04 | 0.00 | | LP | HI 'BW | LP:C | 75.38 | 71.50 | 73.44 | | 2.05e+06 | | 31.62 | | | 249.03 | | | 249.03 | 0.00 | | LP | LP:C | 11.0 | 71.50 | 66.50 | 69.00 | | 2.18e+06 | | 31.62 | | 522.60 | | 0.00 | | 340.51 | 0.00 | | LP | 21 0 | | 66.50 | 61.50 | 64.00 | | 2.31e+06 | | 31.62 | | 556.28 | | 0.00 | | 362.14 | 0.00 | | LP | | | 61.50 | 56.50 | 59.00 | | 2.45e+06 | | 31.62 | | | 383.76 | | | 383.76 | 0.00 | | LP | | | 56.50 | 51.50 | 54.00 | | 2.59e+06 | | 31.62 | 0.00 | 623.62 | 405.38 | 0.00 | | 405.38 | 0.00 | | LP | | | 51.50 | 46.50 | 49.00 | | 2.73e+06 | | 31.62 | | | 427.00 | | | 427.00 | 0.00 | | LP | | | 46.50 | 43.25 | 44.87 | 33.769 | 2.84e+06 | 1.000 | 31.62 | 0.00 | 445.30 | 289.15 | 0.00 | 0.00 | 289.15 | 0.00 | | LP | | | 43.25 | 40.00 | 41.63 | 34.836 | 2.93e+06 | 1.000 | 31.62 | 0.00 | 459.52 | 298.28 | 0.00 | 0.00 | 298.28 | 0.00 | | LP | | | 40.00 | 35.00 | 37.50 | 36.190 | 3.05e+06 | 1.000 | 31.62 | 0.00 | 734.74 | 476.73 | 0.00 | 0.00 | 476.73 | 0.00 | | LP | | | 35.00 | 30.00 | 32.50 | 37.831 | 3.18e+06 | 1.000 | 31.62 | 0.00 | 768.41 | 498.35 | 0.00 | 0.00 | 498.35 | 0.00 | | LP | | | 30.00 | 25.00 | 27.50 | 39.473 | 3.32e+06 | 1.000 | 31.62 | 0.00 | 802.08 | 519.97 | 0.00 | 0.00 | 519.97 | 0.00 | | LP | | | 25.00 | 20.00 | 22.50 | 41.114 | 3.46e+06 | 1.000 | 31.62 | 0.00 | 835.75 | 541.60 | 0.00 | 0.00 | 541.60 | 0.00 | | LP | | | 20.00 | 15.00 | 17.50 | | 3.6e+06 | | 31.62 | | 869.43 | | 0.00 | | 563.22 | 0.00 | | LP | | | 15.00 | 10.00 | 12.50 | | 3.74e+06 | | 31.62 | | 903.10 | | 0.00 | | 584.84 | 0.00 | | LP | | | 10.00 | 5.00 | 7.50 | | 3.88e+06 | | 31.62 | | | 606.46 | | | 606.46 | 0.00 | | LP | | LP:g | 5.00 | 0.00 | 2.50 | | 4.01e+06 | | 31.62 | | 970.44 | | 0.00 | | 628.08 | 0.00 | | RP | | RP:ANTFUT | | 104.00 | 105.50 | | 1.14e+06 | | 31.62 | | | 106.64 | | | 106.64 | 0.00 | | | RP:ANTFUT | | 104.00 | 99.50 | 101.75 | | 1.24e+06 | | 31.62 | | | 174.56 | | | 174.56 | 0.00 | | RP | | | 99.50 | 95.00 | 97.25 | | 1.36e+06 | | 31.62 | | 147.85 | | 0.00 | | 192.07 | 0.00 | | RP | | RP:ANT | 95.00 | 92.00 | 93.50 | | 1.49e+06 | | 31.62 | | | 139.75 | | | 139.75 | 0.00 | | RP | RP:ANT | | 92.00 | 88.50 | 90.25 | | 1.58e+06 | | 31.62 | | 220.62 | | 0.00 | | 172.88 | 0.00 | | RP | a | RP:Coax9 | 88.50 | 85.00 | 86.75 | | 1.67e+06 | | 31.62 | | 234.37 | | 0.00 | | 183.48 | 0.00 | | RP | RP:Coax9 | | 85.00 | 80.00 | 82.50 | | 1.79e+06 | | 31.62 | | 358.68 | | 0.00 | | 280.49 | 0.00 | | RP | | RP:SW | 80.00 | 79.25 | 79.63 | | 1.88e+06 | | 31.62 | | 67.64 | | 0.00 | | 44.19 | 0.00 | | RP | | RP:Coax8 | 79.25 | 75.00 | 77.13 | | 1.95e+06 | | 31.62 | | 397.70 | | 0.00 | | 259.57 | 0.00 | | RP | RP:Coax8 | RP:C | 75.00 | 71.50 | 73.25 | | 2.06e+06 | | 31.62 | | 345.79 | | 0.00 | | 225.49 | 0.00 | | RP
RP | RP:C | DD: 07 | 71.50 | 68.25
65.00 | 69.88 | | 2.15e+06 | | 31.62 | | 335.86 | | 0.00 | | 218.87 | 0.00 | | KP | | RP:Coax7 | 68.25 | 05.00 | 66.63 | 20.029 | 2.24e+06 | 1.000 | 31.62 | 0.00 | 350.09 | ∠∠8.Ul | 0.00 | 0.00 | 228.01 | 0.00 | | RP | RP:Coax7 | RP:Coax6 | 65.00
60.00 | 60.00
55.00 | 62.50
57.50 | 27.983 2.36e+06 1.000
29.624 2.49e+06 1.000 | 31.62
31.62 | 0.00 566.38 368.62
0.00 600.05 390.24 | 0.00 | 0.00 368.62 0.00
0.00 390.24 0.00 | |----|----------|------------|----------------|----------------|----------------|--|----------------|--|------|--------------------------------------| | RP | | RP · COaxo | | | | | | | | | | RP | RP:Coax6 | | 55.00 | 50.00 | 52.50 | 31.266 2.63e+06 1.000 | 31.62 | 0.00 633.72 411.87 | 0.00 | 0.00 411.87 0.00 | | RP | | RP:Coax5 | 50.00 | 45.00 | 47.50 | 32.907 2.77e+06 1.000 | 31.62 | 0.00 667.39 433.49 | 0.00 | 0.00 433.49 0.00 | | RP | RP:Coax5 | | 45.00 | 40.00 | 42.50 | 34.548 2.91e+06 1.000 | 31.62 | 0.00 701.06 455.11 | 0.00 | 0.00 455.11 0.00 | | RP | | RP:Coax4 | 40.00 | 35.00 | 37.50 | 36.190 3.05e+06 1.000 | 31.62 | 0.00 734.74 476.73 | 0.00 | 0.00 476.73 0.00 | | RP | RP:Coax4 | | 35.00 | 30.00 | 32.50 | 37.831 3.18e+06 1.000 | 31.62 | 0.00 768.41 498.35 | 0.00 | 0.00 498.35 0.00 | | RP | | RP:Coax3 | 30.00 | 25.00 | 27.50 | 39.473 3.32e+06 1.000 | 31.62 | 0.00 802.08 519.97 | 0.00 | 0.00 519.97 0.00 | | RP | RP:Coax3 | | 25.00 | 20.00 | 22.50 | 41.114 3.46e+06 1.000 | 31.62 | 0.00 835.75 541.59 | 0.00 | 0.00 541.59 0.00 | | RP | | RP:Coax2 | 20.00 | 15.00 | 17.50 | 42.755 3.6e+06 1.000 | 31.62 | 0.00 869.42 563.22 | 0.00 | 0.00 563.22 0.00 | | RP | RP:Coax2 | | 15.00 | 10.00 | 12.50 | 44.397 3.74e+06 1.000 | 31.62 | 0.00 903.10 584.84 | 0.00 | 0.00 584.84 0.00 | | RP | | RP:Coax1 | 10.00 | 5.00 | 7.50 | 46.038 3.88e+06 1.000 | 31.62 | 0.00 936.77 606.46 | 0.00 | 0.00 606.46 0.00 | | RP | RP:Coax1 | RP:g | 5.00 | 0.00 | 2.50 | 47.679 4.01e+06 1.000 | 31.62 | 0.00 970.44 628.08 | 0.00 | 0.00 628.08 0.00 | Point Loads for Load Case "NESC Rule 250D": | Load
Comment | | Load | | Joint
Label | |-----------------|----|---------|---------|----------------| | | 53 | 753 | 5907 | RP:ANT | | | 0 | 1589.97 | 3489.29 | SWL | | | 0 | 1589.97 | 3489.29 | SWR | | | 0 | 2666.14 | 8211.07 | PHL | | | 0 | 2666.14 | 8211.07 | PHM | | | 0 | 2666.14 | 8211.07 | PHR | | | 0 | 74 | 1123 | RP:Coax1 | | | 0 | 74 | 1123 | RP:Coax2 | | | 0 | 74 | 1123 | RP:Coax3 | | | 0 | 74 | 1123 | RP:Coax4 | | | 0 | 74 | 1123 | RP:Coax5 | | | 0 | 74 | 1123 | RP:Coax6 | | | 0 | 74 | 1123 | RP:Coax7 | | | 0 | 74 | 1123 | RP:Coax8 | | | 0 | 74 | 1123 | RP:Coax9 | | | | | | | Detailed Pole Loading Data for Load Case "NESC Rule 250D": Notes: Does not include loads from equipment, arms, guys, braces, etc. or user input loads. Wind load is calculated for the undeformed shape of a pole. | Pole
Label | Top
Joint | Bottom
Joint | Section
Top
Z | Bottom | | Outer
Diameter | - | _ | Wind | Adjusted
Ice
Thickness | | Wind | Pole Ice
Vertical
Load | Pole Ice
Wind
Load | Tran.
Wind
Load | Long.
Wind
Load | |---------------|--------------|-----------------|---------------------|--------|-------|-------------------|----------|-------|-------|------------------------------|--------|--------|------------------------------|--------------------------|-----------------------|-----------------------| | | | | (ft) | (ft) | (ft) | (in) | | | (psf) | (in) | (lbs) | (lbs) | (lbs) | (1bs) | (lbs) | | | LP | LP:t | LP:SW | 80.00 | 79.25 | 79.63 | 22.362 | 6.7e+05 | 1.600 | 4.00 | 1.00 | 67.66 | 8.95 | 21.35 | 0.80 | 9.75 | 0.00 | | LP | LP:SW | | 79.25 | 75.38 | 77.31 | 23.121 | 6.92e+05 | 1.600 | 4.00 | 1.00 | 361.63 | 47.80 | 114.03 | 4.13 | 51.93 | 0.00 | | LP | | LP:C | 75.38 | 71.50 | 73.44 | 24.393 | 7.31e+05 | 1.600 | 4.00 | 1.00 | 381.86 | 50.43 | 120.30 | 4.13 | 54.56 | 0.00 | | LP | LP:C | | 71.50 | 66.50 | 69.00 | 25.849 | 7.74e+05 | 1.600 | 4.00 | 1.00 | 522.60 | 68.96 | 164.50 | 5.34 | 74.29 | 0.00 | | LP | | | 66.50 | 61.50 | 64.00 | 27.491 | 8.23e+05 | 1.600 | 4.00 | 1.00 | 556.28 | 73.33 | 174.95 | 5.34 | 78.67 | 0.00 | | LP | | | 61.50 |
56.50 | 59.00 | 29.132 | 8.72e+05 | 1.600 | 4.00 | 1.00 | 589.95 | 77.71 | 185.39 | 5.34 | 83.05 | 0.00 | | LP | | | 56.50 | 51.50 | 54.00 | 30.773 | 9.22e+05 | 1.600 | 4.00 | 1.00 | 623.62 | 82.09 | 195.84 | 5.34 | 87.43 | 0.00 | | LP | | | 51.50 | 46.50 | 49.00 | 32.415 | 9.71e+05 | 1.600 | 4.00 | 1.00 | 657.29 | 86.47 | 206.28 | 5.34 | 91.80 | 0.00 | | LP | | | 46.50 | 43.25 | 44.87 | 33.769 | 1.01e+06 | 1.600 | 4.00 | 1.00 | 445.30 | 58.55 | 139.68 | 3.47 | 62.02 | 0.00 | | LP | | | 43.25 | 40.00 | 41.63 | 34.836 | 1.04e+06 | 1.600 | 4.00 | 1.00 | 459.52 | 60.40 | 144.10 | 3.47 | 63.87 | 0.00 | | LP | | | 40.00 | 35.00 | 37.50 | 36.190 | 1.08e+06 | 1.600 | 4.00 | 1.00 | 734.74 | 96.54 | 230.30 | 5.34 | 101.87 | 0.00 | | LP | | | 35.00 | 30.00 | 32.50 | 37.831 | 1.13e+06 | 1.600 | 4.00 | 1.00 | 768.41 | 100.92 | 240.75 | 5.34 | 106.25 | 0.00 | | LP | | | 30.00 | 25.00 | 27.50 | 39.473 | 1.18e+06 | 1.600 | 4.00 | 1.00 | 802.08 | 105.30 | 251.20 | 5.34 | 110.63 | 0.00 | | LP | | | 25.00 | 20.00 | 22.50 | 41.114 1.23e+06 1.600 | 4.00 | 1.00 835.75 109.67 | 261.64 | 5.34 115.01 | 0.00 | |----|-----------|-----------|--------|--------|--------|-----------------------|------|--------------------|--------|-------------|------| | LP | | | 20.00 | 15.00 | 17.50 | 42.755 1.28e+06 1.600 | 4.00 | 1.00 869.43 114.05 | 272.09 | 5.34 119.39 | 0.00 | | LP | | | 15.00 | 10.00 | 12.50 | 44.397 1.33e+06 1.600 | 4.00 | 1.00 903.10 118.43 | 282.53 | 5.34 123.77 | 0.00 | | LP | | | 10.00 | 5.00 | 7.50 | 46.038 1.38e+06 1.600 | 4.00 | 1.00 936.77 122.81 | 292.98 | 5.34 128.14 | 0.00 | | LP | | LP:g | 5.00 | 0.00 | 2.50 | 47.679 1.43e+06 1.600 | 4.00 | 1.00 970.44 127.19 | 303.42 | 5.34 132.52 | 0.00 | | RP | RP:t | RP:ANTFUT | 107.00 | 104.00 | 105.50 | 13.492 4.04e+05 1.600 | 4.00 | 1.00 81.88 21.60 | 51.52 | 3.20 24.80 | 0.00 | | RP | RP:ANTFUT | | 104.00 | 99.50 | 101.75 | 14.723 4.41e+05 1.600 | 4.00 | 1.00 134.19 35.35 | 84.33 | 4.80 40.15 | 0.00 | | RP | | | 99.50 | 95.00 | 97.25 | 16.201 4.85e+05 1.600 | 4.00 | 1.00 147.85 38.89 | 92.79 | 4.80 43.70 | 0.00 | | RP | | RP:ANT | 95.00 | 92.00 | 93.50 | 17.682 5.3e+05 1.600 | 4.00 | 1.00 178.14 28.30 | 67.51 | 3.20 31.50 | 0.00 | | RP | RP:ANT | | 92.00 | 88.50 | 90.25 | 18.749 5.61e+05 1.600 | 4.00 | 1.00 220.62 35.01 | 83.52 | 3.73 38.74 | 0.00 | | RP | | RP:Coax9 | 88.50 | 85.00 | 86.75 | 19.897 5.96e+05 1.600 | 4.00 | 1.00 234.37 37.15 | 88.64 | 3.73 40.89 | 0.00 | | RP | RP:Coax9 | | 85.00 | 80.00 | 82.50 | 21.293 6.38e+05 1.600 | 4.00 | 1.00 358.68 56.80 | 135.50 | 5.34 62.13 | 0.00 | | RP | | RP:SW | 80.00 | 79.25 | 79.63 | 22.361 6.7e+05 1.600 | 4.00 | 1.00 67.64 8.95 | 21.35 | 0.80 9.75 | 0.00 | | RP | RP:SW | RP:Coax8 | 79.25 | 75.00 | 77.13 | 23.182 6.94e+05 1.600 | 4.00 | 1.00 397.70 52.56 | 125.40 | 4.53 57.10 | 0.00 | | RP | RP:Coax8 | RP:C | 75.00 | 71.50 | 73.25 | 24.454 7.32e+05 1.600 | 4.00 | 1.00 345.79 45.66 | 108.93 | 3.73 49.40 | 0.00 | | RP | RP:C | | 71.50 | 68.25 | 69.88 | 25.562 7.66e+05 1.600 | 4.00 | 1.00 335.86 44.32 | 105.74 | 3.47 47.79 | 0.00 | | RP | | RP:Coax7 | 68.25 | 65.00 | 66.63 | 26.629 7.97e+05 1.600 | 4.00 | 1.00 350.09 46.17 | 110.15 | 3.47 49.64 | 0.00 | | RP | RP:Coax7 | | 65.00 | 60.00 | 62.50 | 27.983 8.38e+05 1.600 | 4.00 | 1.00 566.38 74.65 | 178.08 | 5.34 79.98 | 0.00 | | RP | | RP:Coax6 | 60.00 | 55.00 | 57.50 | 29.624 8.87e+05 1.600 | 4.00 | 1.00 600.05 79.03 | 188.52 | 5.34 84.36 | 0.00 | | RP | RP:Coax6 | | 55.00 | 50.00 | 52.50 | 31.266 9.36e+05 1.600 | 4.00 | 1.00 633.72 83.40 | 198.97 | 5.34 88.74 | 0.00 | | RP | | RP:Coax5 | 50.00 | 45.00 | 47.50 | 32.907 9.86e+05 1.600 | 4.00 | 1.00 667.39 87.78 | 209.41 | 5.34 93.12 | 0.00 | | RP | RP:Coax5 | | 45.00 | 40.00 | 42.50 | 34.548 1.03e+06 1.600 | 4.00 | 1.00 701.06 92.16 | 219.86 | 5.34 97.50 | 0.00 | | RP | | RP:Coax4 | 40.00 | 35.00 | 37.50 | 36.190 1.08e+06 1.600 | 4.00 | 1.00 734.74 96.54 | 230.30 | 5.34 101.87 | 0.00 | | RP | RP:Coax4 | | 35.00 | 30.00 | 32.50 | 37.831 1.13e+06 1.600 | 4.00 | 1.00 768.41 100.92 | 240.75 | 5.34 106.25 | 0.00 | | RP | | RP:Coax3 | 30.00 | 25.00 | 27.50 | 39.473 1.18e+06 1.600 | 4.00 | 1.00 802.08 105.30 | 251.20 | 5.34 110.63 | 0.00 | | RP | RP:Coax3 | | 25.00 | 20.00 | 22.50 | 41.114 1.23e+06 1.600 | 4.00 | 1.00 835.75 109.67 | 261.64 | 5.34 115.01 | 0.00 | | RP | | RP:Coax2 | 20.00 | 15.00 | 17.50 | 42.755 1.28e+06 1.600 | 4.00 | 1.00 869.42 114.05 | 272.09 | 5.34 119.39 | 0.00 | | RP | RP:Coax2 | | 15.00 | 10.00 | 12.50 | 44.397 1.33e+06 1.600 | 4.00 | 1.00 903.10 118.43 | 282.53 | 5.34 123.77 | 0.00 | | RP | | RP:Coax1 | 10.00 | 5.00 | 7.50 | 46.038 1.38e+06 1.600 | 4.00 | 1.00 936.77 122.81 | 292.98 | 5.34 128.14 | 0.00 | | RP | RP:Coax1 | RP:g | 5.00 | 0.00 | 2.50 | 47.679 1.43e+06 1.600 | 4.00 | 1.00 970.44 127.19 | 303.42 | 5.34 132.52 | 0.00 | # *** Analysis Results: Maximum element usage is 66.81% for Base Plate "RP" in load case "NESC Rule 250D" *** Analysis Results for Load Case No. 1 "NESC Rule 250B" - Number of iterations in SAPS 13 Equilibrium Joint Positions and Rotations for Load Case "NESC Rule 250B": |
Joint
Label | X-Displ
(ft) | Y-Displ
(ft) | Z-Displ
(ft) | | Y-Rot
(deg) | | X-Pos
(ft) | Y-Pos
(ft) | Z-Pos
(ft) | |--------------------|-----------------|-----------------|-----------------|---------|----------------|--------|---------------|---------------|---------------| |
LP:g | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0 | -7.75 | 0 | | LP:t | 0.04961 | 0.7955 | -0.006596 | -0.9560 | 0.0821 | 0.0448 | 0.04961 | -6.955 | 79.99 | | LP:SW | 0.04854 | 0.7829 | -0.006491 | -0.9560 | 0.0821 | 0.0448 | 0.04854 | -6.967 | 79.24 | | LP:C | 0.03754 | 0.6537 | -0.005376 | -0.9513 | 0.0821 | 0.0448 | 0.03754 | -7.096 | 71.49 | | RP:t 0.07045 1.352 -0.01346 -1.1589 0.0693 0.0234 0.07045 9.102 107 RP:ANTFUT 0.06685 1.291 -0.01284 -1.1587 0.0693 0.0234 0.06685 9.041 104 RP:ANT 0.05246 1.049 -0.01037 -1.1500 0.0690 0.0234 0.05246 8.799 91.99 RP:Coax9 0.0441 0.9098 -0.00887 -1.1270 0.0687 0.0233 0.0441 8.66 84.99 RP:SW 0.03726 0.7983 -0.00769 -1.0922 0.0683 0.0233 0.03726 8.548 79.24 RP:Coax8 0.03224 0.7183 -0.006863 -1.0605 0.0680 0.0233 0.03726 8.548 79.24 RP:Coax7 0.02137 0.5413 -0.006863 -1.0605 0.0680 0.0233 0.03224 8.468 74.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax7 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax8 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax2 0.0007155 0.02749 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 XArm:0 0.04393 0.6555 -0.09112 0.7186 0.0909 0.0483 1.587 -14.84 71.41 | |--| | RP:ANT 0.05246 1.049 -0.01037 -1.1500 0.0690 0.0234 0.05246 8.799 91.99 RP:Coax9 0.0441 0.9098 -0.00887 -1.1270 0.0687 0.0233 0.0441 8.66 84.99 RP:SW 0.03726 0.7983 -0.00769 -1.0922 0.0683 0.0233 0.03726 8.548 79.24 RP:Coax8 0.03224 0.7183 -0.006863 -1.0605 0.0680 0.0233 0.03224 8.468 74.99 RP:Coax7 0.02812 0.6543 -0.006214 -1.0295 0.0677 0.0232 0.02812 8.404 71.49 RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823< | | RP:Coax8 | | RP:SW 0.03726 0.7983 -0.00769 -1.0922 0.0683 0.0233 0.03726 8.548 79.24 RP:Coax8 0.03224 0.7183 -0.006863 -1.0605 0.0680 0.0233 0.03224 8.468 74.99 RP:Coax7 0.02812 0.6543 -0.006214 -1.0295 0.0677 0.0232 0.02812 8.404 71.49 RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.009207 -0.5093 0.01707 0.003605 <td< td=""></td<> | | RP:Coax8 0.03224 0.7183 -0.006863 -1.0605 0.0680 0.0233 0.03224 8.468 74.99 RP:C 0.02812 0.6543 -0.006214 -1.0295 0.0677 0.0232 0.02812 8.404 71.49 RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0088
0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:C 0.02812 0.6543 -0.006214 -1.0295 0.0677 0.0232 0.02812 8.404 71.49 RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.001557 -0.0680 0.0017 0.0066 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 | | RP:Coax7 0.02137 0.5413 -0.005022 -0.9572 0.0534 0.0185 0.02137 8.291 64.99 RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:Coax6 0.01362 0.3856 -0.003497 -0.8181 0.0372 0.0130 0.01362 8.136 55 RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:Coax5 0.00823 0.2557 -0.002345 -0.6650 0.0257 0.0091 0.00823 8.006 45 RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:Coax4 0.004544 0.1529 -0.001512 -0.5093 0.0172 0.0061 0.004544 7.903 35 RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:Coax3 0.002137 0.07707 -0.0009207 -0.3564 0.0107 0.0038 0.002137 7.827 25 RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:Coax2 0.0007155 0.02749 -0.0004927 -0.2090 0.0057 0.0020 0.0007155 7.777 15 RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | RP:Coax1 7.524e-05 0.003104 -0.0001557 -0.0680 0.0017 0.0006 7.524e-05 7.753 5 SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | SWLVANG 0.0497 0.7831 0.01748 -0.9560 0.0821 0.0448 0.0497 -8.404 79.27 SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | SWRVANG 0.03665 0.798 -0.03508 -1.0922 0.0683 0.0233 0.03665 9.985 79.21 | | | | ¥7 | | XArm:O 0.04393 0.6555 -0.09112 0.7186 0.0909 0.0483 1.587 -14.84 71.41 | | XArm:LP 0.03754 0.655 -0.007898 0.4135 0.0907 0.0482 1.58 -7.095 71.49 | | XArm:ML 0.0321 0.655 0.01596 -0.0018 0.0836 0.0338 1.575 0.655 71.52 | | XArm:RP 0.02812 0.655 -0.008324 -0.3997 0.0765 0.0256 1.571 8.405 71.49 | | XArm:E 0.02455 0.6547 -0.08535 -0.6419 0.0763 0.0256 1.567 16.15 71.41 | | VangCL 0.04233 0.6681 -0.09104 0.7186 0.0909 0.0483 1.585 -14.83 70.41 | | VangCM 0.03064 0.655 0.01596 -0.0018 0.0836 0.0338 1.574 0.655 70.52 | | VangCR 0.02322 0.6435 -0.08529 -0.6419 0.0763 0.0256 1.566 16.14 70.41 | Joint Support Reactions for Load Case "NESC Rule 250B": | Joint | Х | X | Y | Y | H-Shear | Z | Comp. | Uplift | Result. | Result. | X | X-M. | Y | Y-M. | H-Bend-M | Z | Z-M. | Max. | |-------|-------|-------|--------|-------|---------|--------|-------|--------|---------|---------|--------|-------|--------|-------|----------|--------|-------|-------| | Label | Force | Usage | Force | Usage | Usage | Force | Usage | Usage | Force | Usage | Moment | Usage | Moment | Usage | Usage | Moment | Usage | Usage | | (| kips) | % | (kips) | % | % | (kips) | % | % | (kips) | % | (ft-k) | % | (ft-k) | % | % | (ft-k) | % | % | LP:g | -0.19 | 0.0 | -13.51 | 0.0 | 0.0 | -36.66 | 0.0 | 0.0 | 0.00 | 0.0 | 851.37 | 0.0 | -31.8 | 0.0 | 0.0 | -10.26 | 0.0 | 0.0 | | RP:g | -0.03 | 0.0 | -12.58 | 0.0 | 0.0 | -53.22 | 0.0 | 0.0 | 0.00 | 0.0 | 812.68 | 0.0 | -19.8 | 0.0 | 0.0 | -5.36 | 0.0 | 0.0 | Detailed Steel Pole Usages for Load Case "NESC Rule 250B": | | | | | _ | | | - | | | | - | | M/S. | V/Q. | T/R. | Res. | | | |--------|--|--|---|---|--|---|---
--|--|--|---|---
--
--|--|--|--|--|--| | Label | Position | | | | | | • | | | | | | | <i>(</i> 1 | <i>(</i> 1 | | - | Pt. | | | | (IC) | (1n) | (1n) | (1n) | (IC-K) | (IC-K)(| IT-K) | (Kips) | (Kips) | (Kips) | (KS1) | (KS1) | (KS1) | (KS1) | (KS1) | ~
 | | | LP:t | Origin | 0.00 | 9.55 | 0.60 | -0.08 | 0.00 | 0.00 | -0.0 | -0.06 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 5 | | LP:SW | End | 0.75 | 9.40 | 0.58 | -0.08 | 0.01 | -0.00 | -0.0 | -0.06 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 3 | | LP:SW | Origin | 0.75 | 9.40 | 0.58 | -0.08 | -3.47 | 0.00 | 0.0 | -2.80 | 2.02 | -0.01 | -0.11 | 0.28 | 0.04 | 0.00 | 0.39 | 0.6 | 2 | | Tube 1 | End | 4.63 | 8.62 | 0.52 | -0.07 | 4.37 | -0.03 | 0.0 | -2.80 | 2.02 | -0.01 | -0.10 | 0.32 | 0.04 | 0.00 | 0.42 | 0.6 | 2 | | Tube 1 | Origin | 4.63 | 8.62 | 0.52 | -0.07 | 4.37 | -0.03 | 0.0 | -3.42 | 2.16 | -0.01 | -0.12 | 0.32 | 0.04 | 0.00 | 0.44 | 0.7 | 2 | | LP:C | End | 8.50 | 7.84 | 0.45 | -0.06 | 12.75 | -0.08 | 0.0 | -3.42 | 2.16 | -0.01 | -0.11 | 0.83 | 0.04 | 0.00 | 0.95 | 1.5 | 2 | | LP:C | Origin | 8.50 | 7.84 | 0.45 | -0.06 | 12.74 | -20.81 | 10.3 | -17.98 | 10.29 | -0.13 | -0.60 | 1.57 | 0.68 | 0.35 | 2.81 | 4.3 | 4 | | Tube 1 | End | 13.50 | 6.86 | 0.37 | -0.06 | 64.22 | -21.46 | 10.3 | -17.98 | 10.29 |
-0.13 | -0.57 | 3.99 | 0.17 | 0.30 | 4.63 | 7.1 | 2 | | Tube 1 | Origin | 13.50 | 6.86 | 0.37 | -0.06 | 64.22 | -21.47 | 10.3 | -18.88 | 10.48 | -0.13 | -0.60 | 3.99 | 0.18 | 0.30 | 4.66 | 7.2 | 2 | | Tube 1 | End | 18.50 | 5.90 | 0.31 | -0.05 | 116.63 | -22.12 | 10.3 | -18.88 | 10.48 | -0.13 | -0.56 | 6.19 | 0.17 | 0.27 | 6.79 | 10.4 | 2 | | Tube 1 | Origin | 18.50 | 5.90 | 0.31 | -0.05 | 116.63 | -22.13 | 10.3 | -19.84 | 10.68 | -0.14 | -0.59 | 6.19 | 0.17 | 0.27 | 6.82 | 10.5 | 2 | | Tube 1 | End | 23.50 | 4.99 | 0.25 | -0.04 | 170.02 | -22.80 | 10.3 | -19.84 | 10.68 | -0.14 | -0.56 | 7.93 | 0.16 | 0.24 | 8.51 | 13.1 | 2 | | Tube 1 | Origin | 23.50 | 4.99 | 0.25 | -0.04 | 170.02 | -22.81 | 10.3 | -20.85 | 10.88 | -0.14 | -0.58 | 7.93 | 0.16 | 0.24 | 8.54 | 13.1 | 2 | | Tube 1 | End | 28.50 | 4.15 | 0.20 | -0.03 | 224.40 | -23.48 | 10.3 | -20.85 | 10.88 | -0.14 | -0.55 | 9.31 | 0.15 | 0.21 | 9.89 | 15.2 | 2 | | Tube 1 | Origin | 28.50 | 4.15 | 0.20 | -0.03 | 224.40 | -23.49 | 10.3 | -21.93 | 11.08 | -0.14 | -0.58 | 9.31 | 0.16 | 0.21 | 9.92 | 15.3 | 2 | | Tube 1 | End | 33.50 | 3.38 | 0.16 | -0.02 | 279.81 | -24.18 | 10.3 | -21.93 | 11.08 | -0.14 | -0.55 | 10.42 | 0.15 | 0.19 | 10.99 | 16.9 | 2 | | Tube 1 | Origin | 33.50 | 3.38 | 0.16 | -0.02 | 279.81 | -24.19 | 10.3 | -22.85 | 11.26 | -0.14 | -0.58 | 10.42 | 0.15 | 0.19 | 11.02 | 16.9 | 2 | | | LP:t LP:SW LP:SW Tube 1 Tube 1 LP:C LP:C Tube 1 | LP:t Origin LP:SW End LP:SW Origin Tube 1 End Tube 1 Origin LP:C End LP:C Origin Tube 1 End Tube 1 | Label Position (ft) LP:t Origin 0.00 LP:SW End 0.75 LP:SW Origin 0.75 Tube 1 End 4.63 Tube 1 Origin 4.63 LP:C End 8.50 LP:C Origin 8.50 Tube 1 End 13.50 Tube 1 End 13.50 Tube 1 Origin 18.50 Tube 1 End 23.50 Tube 1 End 23.50 Tube 1 End 23.50 Tube 1 Origin 23.50 Tube 1 Origin 23.50 Tube 1 End 28.50 Tube 1 Origin 23.50 Tube 1 End 28.50 Tube 1 Origin 28.50 | Label Position (ft) (in) LP:t Origin 0.00 9.55 LP:SW End 0.75 9.40 LP:SW Origin 0.75 9.40 Tube 1 End 4.63 8.62 Tube 1 Origin 4.63 8.62 LP:C End 8.50 7.84 LP:C Origin 8.50 7.84 LP:C Origin 13.50 6.86 Tube 1 Origin 13.50 6.86 Tube 1 End 13.50 6.86 Tube 1 Origin 13.50 5.90 Tube 1 End 18.50 5.90 Tube 1 Origin 18.50 5.90 Tube 1 Origin 23.50 4.99 Tube 1 Origin 23.50 4.99 Tube 1 Origin 28.50 4.15 Tube 1 Origin 28.50 4.15 Tube 1 Origin 28.50 4.15 Tube 1 End 33.50 3.38 | Label Position (ft) (in) Defl. (in) LP:t Origin 0.00 9.55 0.60 LP:SW End 0.75 9.40 0.58 LP:SW Origin 0.75 9.40 0.58 Tube 1 End 4.63 8.62 0.52 Tube 1 Origin 4.63 8.62 0.52 LP:C End 8.50 7.84 0.45 LP:C Origin 8.50 7.84 0.45 Tube 1 End 13.50 6.86 0.37 Tube 1 Origin 13.50 6.86 0.37 Tube 1 Origin 13.50 6.86 0.37 Tube 1 End 18.50 5.90 0.31 Tube 1 Origin 18.50 5.90 0.31 Tube 1 Origin 23.50 4.99 0.25 Tube 1 Origin 23.50 4.99 0.25 Tube 1 End 28.50 4.15 0.20 Tube 1 Origin 28.50 4.15 0.20 Tube 1 Origin 28.50 4.15 0.20 Tube 1 End 33.50 3.38 0.16 | Label Position (ft) (in) Defl. (in) (in) (in) LP:t Origin 0.00 9.55 0.60 -0.08 LP:SW End 0.75 9.40 0.58 -0.08 LP:SW Origin 0.75 9.40 0.58 -0.08 Tube 1 End 4.63 8.62 0.52 -0.07 Tube 1 Origin 4.63 8.62 0.52 -0.07 LP:C End 8.50 7.84 0.45 -0.06 LP:C Origin 8.50 7.84 0.45 -0.06 Tube 1 End 13.50 6.86 0.37 -0.06 Tube 1 Origin 13.50 6.86 0.37 -0.06 Tube 1 End 18.50 5.90 0.31 -0.05 Tube 1 Origin 18.50 5.90 0.31 -0.05 Tube 1 End 23.50 4.99 0.25 -0.04 Tube 1 Origin 23.50 4.99 0.25 -0.04 Tube 1 End 28.50 4.15 0.20 -0.03 Tube 1 Origin 28.50 4.15 0.20 -0.03 Tube 1 Origin 28.50 4.15 0.20 -0.03 Tube 1 End 33.50 3.38 0.16 -0.02 | Label Position (ft) (in) (in) (local Mx) (ft-k) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 LP:SW End 0.75 9.40 0.58 -0.08 0.01 LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 Tube 1 End 4.63 8.62 0.52 -0.07 4.37 Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 LP:C End 8.50 7.84 0.45 -0.06 12.75 LP:C Origin 8.50 7.84 0.45 -0.06 12.75 Tube 1 End 13.50 6.86 0.37 -0.06 64.22 Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 Tube 1 End 18.50 5.90 0.31 -0.05 116.63 Tube 1 Origin 18.50 5.90 0.31 -0.05 116.63 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 Tube 1 End 33.50 3.38 0.16 -0.02 279.81 | Label Position (ft) (in) (in) (in) (Local Mx) (Local My) (ft-k) (ft) (in) (in) (in) (in) (ft-k) (ft- | Label Position (ft) (in) (in) (local Mx) (Local My) Mom. (ft-k) (ft) (in) (in) (ft-k) (ft-k) (ft-k) (ft-k) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.00 -0.0 LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 0.0 LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 0.00 0.0 Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 LP:C Origin 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 LDE:C Origin 8.50 6.86 0.37 -0.06 64.22 -21.46 10.3 Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 -21.47 10.3 Tube 1 End 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 Tube 1 Origin 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 Tube 1 End 23.50 4.99 0.25 -0.04 170.02 -22.80 10.3 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 Tube 1 End 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.49 10.3 Tube 1 End 33.50 3.38 0.16 -0.02 279.81 -24.18 10.3 | Label Position (ft) (in) (in) (in) (Local Mx) (Local My) Mom. Force (ft) (in) (in) (in) (ft-k) (Local Mx) (Local My) Mom. Force (ft-k) (ft-k) (in) (in) (in) (ft-k) (ft-k) (ft-k) (kips) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.00 -0.0 -0.06 LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 -0.00 -0.06 LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 0.00 0.0 0.0 -2.80 Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -2.80 Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -3.42 LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 LP:C Origin 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 LP:C Origin 8.50 7.84 0.45 -0.06 12.74 -20.81 10.3 -17.98 Tube 1 End 13.50 6.86 0.37 -0.06 64.22 -21.46 10.3 -17.98 Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 -21.47 10.3 -18.88 Tube 1 End 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 -18.88 Tube 1 End 23.50 4.99 0.25 -0.04 170.02 -22.80 10.3 -19.84 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85 Tube 1 Origin 23.50 4.15 0.20 -0.03 224.40 -23.48 10.3 -20.85 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3 -21.93 Tube 1 End 33.50 3.38 0.16 -0.02 279.81 -24.18 10.3 -21.93 | Label Position (ft) (in) (in) (in) (Local Mx) (Local My) Mom. Force Shear (ft) (in) (in) (in) (in) (ft-k) (Local My) Mom. Force Shear (kips) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.0 -0.06 0.01 LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 -0.00 -0.0 -0.06 0.01 LP:SW Origin 0.75 9.40 0.58 -0.08 -3.47 0.00 0.0 0.0 -2.80 2.02 Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -2.80 2.02 Tube 1 Origin 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -3.42 2.16 LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 2.16 LP:C Origin 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 2.16 LP:C Origin 8.50 7.84 0.45 -0.06 12.74 -20.81 10.3 -17.98 10.29 Tube 1 End 13.50 6.86 0.37 -0.06 64.22 -21.46 10.3 -17.98 10.29 Tube 1 Origin 13.50 6.86 0.37 -0.06 64.22 -21.47 10.3 -18.88 10.48 Tube 1 End 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 -18.88 10.48 Tube 1 Origin 18.50 5.90 0.31 -0.05 116.63 -22.12 10.3 -18.88 10.48 Tube 1 End 23.50 4.99 0.25 -0.04 170.02 -22.80 10.3 -19.84 10.68 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85 10.88 Tube 1 Origin 23.50 4.99 0.25 -0.04 170.02 -22.81 10.3 -20.85 10.88 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.48 10.3 -20.85 10.88 Tube 1 Origin 28.50 4.15 0.20 -0.03 224.40 -23.49 10.3 -21.93 11.08 Tube 1 End 33.50 3.38 0.16 -0.02 279.81 -24.18 10.3 -21.93 11.08 | Label Position Dist. (ft) Defl. (in) Defl. (in) Local Mx (ft-k) (Local My) Mom. Force (kips) Shear (kips) Shear (kips) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.0 -0.06 0.01 -0.00 LP:SW End 0.75 9.40 0.58 -0.08 0.01 -0.00 -0.0 -0.06 0.01 -0.00 LP:SW Origin 0.75 9.40 0.58 -0.08 0.01 -0.00 -0.0 -0.06 0.01 -0.00 LP:SW Origin 0.75 9.40 0.58 -0.08 0.01 -0.00 0.0 -2.80 2.02 -0.01 Tube 1 End 4.63 8.62 0.52 -0.07 4.37 -0.03 0.0 -2.80 2.02 -0.01 LP:C End 8.50 7.84 0.45 -0.06 12.75 -0.08 0.0 -3.42 2.16 -0.01 LP:C< | Label Position Dist. (ft) Defl. (in) Defl. (in) Clocal Mx (ft-k) (Local My) Mom. (ft-k) Force (kips) Shear <td>Label Position Dist. (ft) Defl. (in) Defl. (in) Local Mx (ft-k) Mom. (ft-k) (ft-k) Force (kips) (kips) Shear (kips) (ksi) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.00 0.01 -0.00 -0.00 0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00</td> <td>Label Position (ft) (in) (in) (in) (10) (Local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (k</td> <td>Label Position (ft) (in) (in) (in) (local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ks</td> <td>Label Position (ft) (in) (in) (in) (in) (ft-k) (Local My) Mom. Force Shear (kips) (ksi) (s</td> <td>Label Position Dist. (ft) Defl. (in) Defl. (in) (local Mx) (ft-k) Mom. (ft-k) (ft-k) Shear (kips) Shear (kips) (ksi) (ksi)</td> | Label Position Dist. (ft) Defl. (in) Defl. (in) Local Mx (ft-k) Mom. (ft-k) (ft-k) Force (kips) (kips) Shear (kips) (ksi) LP:t Origin 0.00 9.55 0.60 -0.08 0.00 0.00 -0.00 0.01 -0.00 -0.00 0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00 0.00 -0.06 0.01 -0.00 -0.00 0.00 0.00 0.00
0.00 -0.06 0.01 -0.00 -0.00 | Label Position (ft) (in) (in) (in) (10) (Local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi) (Local My) Mom. Force Shear (kips) (ksi) (k | Label Position (ft) (in) (in) (in) (local Mx) (Local My) Mom. Force Shear (kips) (ksi) (ks | Label Position (ft) (in) (in) (in) (in) (ft-k) (Local My) Mom. Force Shear (kips) (ksi) (s | Label Position Dist. (ft) Defl. (in) Defl. (in) (local Mx) (ft-k) Mom. (ft-k) (ft-k) Shear (kips) Shear (kips) (ksi) | | LP | Tube 1 | End | 36.75 | 2.92 | 0.13 | -0.02 | 316.40 | -24.65 | 10.3 -22.85 | 11.26 | -0.14 -0.56 11.03 | 0.15 | 0.18 11.60 | 17.8 | 2 | |------------|-----------|--------|-------|-------|------|-------|--------|--------|-------------|-------|-------------------|-------|------------|------|---| | LP | Tube 1 | Origin | 36.75 | 2.92 | 0.13 | -0.02 | 316.40 | -24.66 | 10.3 -23.61 | 11.40 | -0.15 -0.58 11.03 | 0.15 | 0.18 11.62 | 17.9 | 2 | | LP | SpliceT | End | 40.00 | 2.50 | 0.11 | -0.02 | 353.45 | -25.12 | 10.3 -23.61 | 11.40 | -0.15 -0.56 11.56 | 0.14 | 0.17 12.13 | 18.7 | 2 | | | - | | | 2.50 | 0.11 | -0.02 | | -25.12 | 10.3 -24.61 | 11.58 | | 0.15 | | 18.7 | 2 | | LP | SpliceT | Origin | 40.00 | | | | 353.45 | | | | -0.15 -0.58 11.56 | | 0.17 12.15 | | | | LP | Tube 2 | End | 45.00 | 1.90 | 0.08 | -0.01 | 411.37 | -25.87 | 10.3 -24.61 | 11.58 | -0.15 -0.56 12.24 | 0.14 | 0.16 12.81 | 19.7 | 2 | | $_{ m LP}$ | Tube 2 | Origin | 45.00 | 1.90 | 0.08 | -0.01 | 411.37 | -25.88 | 10.3 -25.88 | 11.82 | -0.16 -0.59 12.24 | 0.14 | 0.16 12.84 | 19.7 | 2 | | LP | Tube 2 | End | 50.00 | 1.39 | 0.06 | -0.01 | 470.45 | -26.64 | 10.3 -25.88 | 11.82 | -0.16 -0.56 12.80 | 0.14 | 0.14 13.37 | 20.6 | 2 | | LP | Tube 2 | Origin | 50.00 | 1.39 | 0.06 | -0.01 | 470.45 | -26.65 | 10.3 -27.19 | 12.05 | -0.16 -0.59 12.80 | 0.14 | 0.14 13.39 | 20.6 | 2 | | LP | Tube 2 | End | 55.00 | 0.96 | 0.04 | -0.01 | 530.72 | -27.43 | 10.3 -27.19 | 12.05 | -0.16 -0.56 13.25 | 0.13 | 0.13 13.82 | 21.3 | 2 | | | | | | | | | | | | | | | | | | | LP | Tube 2 | Origin | 55.00 | 0.96 | 0.04 | -0.01 | 530.72 | -27.45 | 10.3 -28.57 | 12.30 | -0.17 -0.59 13.25 | 0.14 | 0.13 13.85 | 21.3 | 2 | | LP | Tube 2 | End | 60.00 | 0.61 | 0.02 | -0.01 | 592.22 | -28.25 | 10.3 -28.57 | 12.30 | -0.17 -0.57 13.62 | 0.13 | 0.12 14.20 | 21.8 | 2 | | $_{ m LP}$ | Tube 2 | Origin | 60.00 | 0.61 | 0.02 | -0.01 | 592.22 | -28.27 | 10.3 -29.99 | 12.56 | -0.17 -0.60 13.62 | 0.13 | 0.12 14.23 | 21.9 | 2 | | LP | Tube 2 | End | 65.00 | 0.34 | 0.01 | -0.00 | 655.00 | -29.10 | 10.3 -29.99 | 12.56 | -0.17 -0.58 13.93 | 0.13 | 0.11 14.51 | 22.3 | 2 | | LP | Tube 2 | Origin | 65.00 | 0.34 | 0.01 | -0.00 | 655.00 | -29.12 | 10.3 -31.48 | 12.82 | -0.18 -0.60 13.93 | 0.13 | 0.11 14.54 | 22.4 | 2 | | LP | Tube 2 | End | 70.00 | 0.15 | 0.01 | -0.00 | 719.09 | -29.98 | 10.3 -31.48 | 12.82 | -0.18 -0.58 14.18 | 0.13 | 0.10 14.76 | 22.7 | 2 | | LP | Tube 2 | Origin | 70.00 | 0.15 | 0.01 | -0.00 | 719.09 | -29.99 | 10.3 -33.02 | 13.09 | -0.18 -0.61 14.18 | 0.13 | 0.10 14.79 | 22.8 | 2 | | | | _ | | | | | | | | | | | | 23.4 | 2 | | LP | Tube 2 | End | 75.00 | 0.04 | 0.00 | -0.00 | 784.53 | -30.89 | 10.3 -33.02 | 13.09 | -0.18 -0.59 14.38 | 0.12 | 0.10 14.97 | | | | LP | Tube 2 | Origin | 75.00 | 0.04 | 0.00 | -0.00 | 784.53 | -30.90 | 10.3 -34.61 | 13.37 | -0.19 -0.62 14.38 | 0.13 | 0.10 15.00 | 23.4 | 2 | | LP | LP:g | End | 80.00 | 0.00 | 0.00 | 0.00 | 851.37 | -31.83 | 10.3 -34.61 | 13.37 | -0.19 -0.60 14.55 | 0.12 | 0.09 15.15 | 24.1 | 2 | | | | | | | | | | | | | | | | | | | RP | RP:t | Origin | 0.00 | 16.22 | 0.85 | -0.16 | -0.00 | 0.00 | 0.0 -0.07 | 0.03 | -0.00 -0.01 0.00 | 0.01 | 0.00 0.02 | 0.0 | 5 | | | RP:ANTFUT | End | 3.00 | 15.49 | 0.80 | -0.15 | 0.09 | -0.00 | 0.0 -0.07 | 0.03 | -0.00 -0.01 0.04 | 0.00 | 0.00 0.05 | 0.1 | 2 | | | RP:ANTFUT | | 3.00 | 15.49 | | -0.15 | 0.09 | -0.00 | | | -0.00 -0.03 0.04 | | | | 2 | | | | Origin | | | 0.80 | | | | | 0.11 | | 0.01 | 0.00 0.07 | 0.1 | | | RP | Tube 1 | End | 7.50 | 14.40 | 0.74 | -0.14 | 0.59 | -0.02 | -0.0 -0.27 | 0.11 | -0.00 -0.03 0.20 | 0.01 | 0.00 0.23 | 0.4 | 2 | | RP | Tube 1 | Origin | 7.50 | 14.40 | 0.74 | -0.14 | 0.59 | -0.02 | -0.0 -0.53 | 0.21 | -0.01 -0.06 0.20 | 0.01 | 0.00 0.26 | 0.4 | 2 | | RP | SpliceT | End | 12.00 | 13.31 | 0.67 | -0.13 | 1.55 | -0.04 | -0.0 -0.53 | 0.21 | -0.01 -0.05 0.44 | 0.01 | 0.00 0.49 | 0.8 | 2 | | RP | SpliceT | Origin | 12.00 | 13.31 | 0.67 | -0.13 | 1.55 | -0.04 | -0.0 -0.81 | 0.31 | -0.01 -0.05 0.26 | 0.01 | 0.00 0.31 | 0.5 | 2 | | RP | RP:ANT | End | 15.00 | 12.59 | 0.63 | -0.12 | 2.48 | -0.07 | -0.0 -0.81 | 0.31 | -0.01 -0.05 0.37 | 0.01 | 0.00 0.42 | 0.6 | 2 | | RP | RP:ANT | Origin | 15.00 | 12.59 | 0.63 | -0.12 | 2.48 | -0.07 | -0.0 -8.47 | 2.28 | -0.02 -0.47 0.37 | 0.07 | 0.00 0.85 | 1.3 | 2 | | RP | | End | | | | | | | | | | | | | 2 | | | Tube 2 | | 18.50 | 11.75 | 0.58 | -0.12 | 10.46 | -0.14 | | 2.28 | -0.02 -0.44 1.38 | 0.06 | | 2.8 | | | RP | Tube 2 | Origin | 18.50 | 11.75 | 0.58 | -0.12 | 10.46 | -0.14 | -0.0 -8.85 | 2.38 | -0.02 -0.46 1.38 | 0.07 | 0.00 1.84 | 2.8 | 2 | | RP | RP:Coax9 | End | 22.00 | 10.92 | 0.53 | -0.11 | 18.79 | -0.23 | -0.0 -8.85 | 2.38 | -0.02 -0.44 2.20 | 0.06 | 0.00 2.64 | 4.1 | 2 | | RP | RP:Coax9 | Origin | 22.00 | 10.92 | 0.53 | -0.11 | 18.79 | -0.23 | -0.0 -10.27 | 2.70 | -0.03 -0.51 2.20 | 0.07 | 0.00 2.71 | 4.2 | 2 | | RP | SpliceT | End | 27.00 | 9.75 | 0.46 | -0.09 | 32.29 | -0.37 | -0.0 -10.27 | 2.70 | -0.03 -0.47 3.22 | 0.07 | 0.00 3.70 | 5.7 | 2 | | RP | SpliceT | Origin | 27.00 | 9.75 | 0.46 | -0.09 | 32.29 | -0.37 | -0.0 -10.63 | 2.79 | -0.03 -0.40 2.68 | 0.06 | 0.00 3.08 | 4.7 | 2 | | RP | RP:SW | End | 27.75 | 9.58 | 0.45 | -0.09 | 34.39 | -0.39 | -0.0 -10.63 | 2.79 | -0.03 -0.40 2.79 | 0.06 | 0.00 3.19 | 4.9 | 2 | | RP | RP:SW | Origin | 27.75 | 9.58 | 0.45 | -0.09 | 37.87 | -0.40 | -0.0 -13.41 | 4.81 | -0.04 -0.50 3.07 | 0.10 | 0.00 3.19 | 5.5 | 2 | | | | _ | | | | | | | | | | | | | | | RP | RP:Coax8 | End | 32.00 | 8.62 | 0.39 | -0.08 | 58.31 | -0.56 | -0.0 -13.41 | 4.81 | -0.04 -0.47 4.18 | 0.09 | 0.00 4.65 | 7.2 | 2 | | RP | RP:Coax8 | Origin | 32.00 | 8.62 | 0.39 | -0.08 | 58.31 | -0.56 | -0.0 -14.94 | 5.13 | -0.04 -0.53 4.18 | 0.10 | 0.00 4.71 | 7.2 | 2 | | RP | RP:C | End | 35.50 | 7.85 | 0.34 | -0.07 | 76.26 | -0.71 | -0.0 -14.94 | 5.13 | -0.04 -0.50 4.96 | 0.09 | 0.00 5.47 | 8.4 | 2 | | RP | RP:C | Origin | 35.50 | 7.85 | 0.34 | -0.07 | 76.26 | -20.54 | 5.4 - 27.97 | 8.33 | 0.03 -0.94 5.31 | 0.15 | 0.18 6.28 | 9.7 | 2 | | RP | Tube 3 | End | 38.75 | 7.16 | 0.29 | -0.07 | 103.35 | -20.43 | 5.4 -27.97 | 8.33 | 0.03 -0.90 6.49 | 0.14 | 0.17 7.41 | 11.4 | 2 | | RP | Tube 3 | Origin | 38.75 | 7.16 | 0.29 | -0.07 | 103.34 | -20.44 | 5.4 -28.54 | 8.44 | 0.03 -0.92 6.49 | 0.14 | 0.17 7.43 | 11.4 | 2 | | RP | RP:Coax7 | End | 42.00 | 6.50 | 0.26 | -0.06 | 130.78 | -20.33 | 5.4 -28.54 | 8.44 | 0.03 -0.88 7.48 | 0.14 | 0.15 8.38 | 12.9 | 2 | | | | | | | | | | | | | | | | 13.0 | | | RP | RP:Coax7 | Origin | 42.00 | 6.50 | 0.26 | -0.06 | 130.78 | -20.34 | 5.4 -30.22 | 8.77 | 0.03 -0.94 7.48 | 0.14 | 0.15 8.43 | | 2 | | RP | Tube 3 | End | 47.00 | 5.52 | 0.21 | -0.05 | 174.64 | -20.18 | 5.4 -30.22 | 8.77 | 0.03 -0.88 8.77 | 0.14 | 0.14 9.67 | 14.9 | 2 | | RP | Tube 3 | Origin | 47.00 | 5.52 | 0.21 | -0.05 | 174.64 | -20.19 | 5.4 -31.20 | 8.95 | 0.03 -0.91 8.77 | 0.14 | 0.14 9.70 | 14.9 | 2 | | RP | RP:Coax6 | End | 52.00 | 4.63 | 0.16 | -0.04 | 219.38 | -20.04 | 5.4 - 31.20 | 8.95 | 0.03 -0.86 9.78 | 0.13 | 0.12 10.65 | 16.4 | 2 | | RP | RP:Coax6 | Origin | 52.00 | 4.63 | 0.16 | -0.04 | 219.38 | -20.05 | 5.4 - 33.15 | 9.32 | 0.03 -0.91 9.78 | 0.14 | 0.12 10.71 | 16.5 | 2 | | RP | Tube 3 | End | 57.00 | 3.81 | 0.13 | -0.03 | 265.96 | -19.91 | 5.4 -33.15 | 9.32 | 0.03 -0.87 10.61 | 0.13 | 0.11 11.49 | 17.7 | 2 | | RP | Tube 3 | Origin | 57.00 | 3.81 | 0.13 | -0.03 | 265.95 | -19.92 | 5.4 -34.24 | 9.51 | 0.02 -0.90 10.61 | 0.13 | 0.11 11.51 | | 2 | | | | _ | | | | | | | | | | | | | | | RP | RP:Coax5 | End | 62.00 | 3.07 | 0.10 | -0.03 | 313.48 | -19.80 | 5.4 -34.24 | 9.51 | 0.02 -0.85 11.27 | 0.13 | 0.10 12.12 | 18.7 | 2 | | RP | RP:Coax5 | Origin | 62.00 | 3.07 | 0.10 | -0.03 | 313.48 | -19.80 | 5.4 -36.31 | 9.88 | 0.02 -0.90 11.27 | 0.13 | 0.10 12.17 | 18.7 | 2 | | RP | SpliceT | End | 67.00 | 2.41 | 0.07 | -0.02 | 362.90 | -19.70 | 5.4 -36.31 | 9.88 | 0.02 -0.86 11.81 | 0.12 | 0.09 12.68 | 19.5 | 2 | | RP | SpliceT | Origin | 67.00 | 2.41 | 0.07 | -0.02 | 362.90 | -19.71 | 5.4 - 37.51 | 10.09 | 0.01 -0.89 11.81 | 0.13 | 0.09 12.71 | 19.5 | 2 | | RP | RP:Coax4 | End | 72.00 | 1.83 | 0.05 | -0.02 | 413.34 | -19.62 | 5.4 -37.51 | 10.09 | 0.01 -0.85 12.25 | 0.12 | 0.08 13.10 | 20.2 | 2 | | RP | RP:Coax4 | Origin | 72.00 | 1.83 | 0.05 | -0.02 | 413.34 | -19.63 | 5.4 -39.69 | 10.48 | 0.01 -0.90 12.25 | 0.13 | 0.08 13.15 | 20.2 | 2 | | RP | Tube 4 | End | 77.00 | 1.34 | 0.03 | -0.02 | 465.75 | -19.57 | 5.4 -39.69 | 10.48 | 0.01 -0.86 12.62 | 0.13 | 0.00 13.13 | 20.2 | 2 | | RP | Tube 4 | | | | | | | | | 10.48 | | | | 20.7 | 2 | | KΡ | TUDE 4 | Origin | 77.00 | 1.34 | 0.04 | -0.01 | 465.75 | -19.58 | 5.4 - 41.00 | 10.70 | 0.01 -0.89 12.62 | U. 12 | 0.07 13.51 | ∠∪.0 | 4 | | RP | RP:Coax3 | End | 82.00 | 0.92 | 0.03 | -0.01 | 519.26 | -19.54 | 5.4 -41.00 | 10.70 | 0.01 -0.85 12.92 | 0.12 | 0.07 13.77 | 21.2 | 2 | |----|----------|--------|--------|------|------|-------|--------|--------|-------------|-------|-------------------|------|------------|------|---| | RP | RP:Coax3 | Origin | 82.00 | 0.92 | 0.03 | -0.01 | 519.26
| -19.54 | 5.4 -43.29 | 11.11 | 0.00 -0.90 12.92 | 0.12 | 0.07 13.82 | 21.3 | 2 | | RP | Tube 4 | End | 87.00 | 0.59 | 0.02 | -0.01 | 574.80 | -19.53 | 5.4 - 43.29 | 11.11 | 0.00 -0.86 13.17 | 0.12 | 0.06 14.04 | 21.6 | 2 | | RP | Tube 4 | Origin | 87.00 | 0.59 | 0.02 | -0.01 | 574.80 | -19.54 | 5.4 -44.72 | 11.34 | -0.01 -0.89 13.17 | 0.12 | 0.06 14.07 | 21.6 | 2 | | RP | RP:Coax2 | End | 92.00 | 0.33 | 0.01 | -0.01 | 631.52 | -19.56 | 5.4 -44.72 | 11.34 | -0.01 -0.86 13.38 | 0.11 | 0.06 14.24 | 21.9 | 2 | | RP | RP:Coax2 | Origin | 92.00 | 0.33 | 0.01 | -0.01 | 631.52 | -19.57 | 5.4 -47.12 | 11.76 | -0.01 -0.90 13.38 | 0.12 | 0.06 14.29 | 22.0 | 2 | | RP | Tube 4 | End | 97.00 | 0.15 | 0.00 | -0.00 | 690.34 | -19.61 | 5.4 -47.12 | 11.76 | -0.01 -0.87 13.56 | 0.11 | 0.05 14.43 | 22.2 | 2 | | RP | Tube 4 | Origin | 97.00 | 0.15 | 0.00 | -0.00 | 690.34 | -19.62 | 5.4 -48.66 | 12.02 | -0.02 -0.90 13.56 | 0.12 | 0.05 14.46 | 22.3 | 2 | | RP | RP:Coax1 | End | 102.00 | 0.04 | 0.00 | -0.00 | 750.42 | -19.70 | 5.4 -48.66 | 12.02 | -0.02 -0.87 13.71 | 0.11 | 0.05 14.58 | 22.8 | 2 | | RP | RP:Coax1 | Origin | 102.00 | 0.04 | 0.00 | -0.00 | 750.42 | -19.71 | 5.4 -51.17 | 12.45 | -0.02 -0.91 13.71 | 0.12 | 0.05 14.62 | 22.8 | 2 | | RP | RP:g | End | 107.00 | 0.00 | 0.00 | 0.00 | 812.68 | -19.82 | 5.4 -51.17 | 12.45 | -0.02 -0.88 13.84 | 0.11 | 0.05 14.72 | 23.4 | 2 | | | | | | | | | | | | | | | | | | Detailed Tubular X-Arm Usages for Load Case "NESC Rule 250B": | Element | Joint | Joint | | Trans. | Long. | Vert. | Vert. | | | Axial | | Horz. | P/A | M/S. | V/Q. | T/R. | Res. | | | |---------|----------|----------|-------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|-----| | Label | Label | Position | Dist. | | Defl. | Defl. | Mom. | Mom. | | Force | | | (legi) | (l-ai) | (l-ai) | (l-ai) | (l-ai) | Usage
% | Pt. | | | | | (ft) | (in) | (in) | (in) | (ft-k) | (IC-K) | (IC-K) | (KIPS) | (kips) | (kips) | (KSI) | (KSI) | (KSI) | (KSI) | (KSI) | ა
 | | | XArm | XArm:O | Origin | 0.00 | 7.87 | 0.53 | -1.09 | -3.53 | -0.01 | 0.0 | -3.43 | -8.24 | -0.02 | -0.24 | 0.00 | 1.19 | 0.00 | 2.07 | 3.2 | 4 | | XArm | #sXArm:0 | End | 3.87 | 7.86 | 0.49 | -0.53 | -35.46 | -0.07 | 0.0 | -3.43 | -8.24 | -0.02 | -0.24 | 9.90 | 0.46 | 0.00 | 10.16 | 15.6 | 2 | | XArm | #sXArm:0 | Origin | 3.87 | 7.86 | 0.49 | -0.53 | -35.46 | -0.07 | 0.0 | -3.45 | -8.52 | -0.02 | -0.24 | 9.90 | 0.48 | 0.00 | 10.17 | 15.6 | 2 | | XArm | XArm:LP | End | 7.75 | 7.86 | 0.45 | -0.09 | -68.46 | -0.13 | 0.0 | -3.45 | -8.52 | -0.02 | -0.24 | 19.10 | 0.48 | 0.00 | 19.36 | 29.8 | 2 | | XArm | XArm:LP | Origin | 7.75 | 7.86 | 0.45 | -0.09 | -68.46 | -2.15 | -0.6 | 4.18 | 5.19 | 0.10 | 0.29 | 19.34 | 0.29 | 0.09 | 19.64 | 30.2 | 2 | | XArm | #sXArm:1 | End | 11.63 | 7.86 | 0.42 | 0.13 | -48.35 | -1.75 | -0.6 | 4.18 | 5.19 | 0.10 | 0.29 | 13.68 | 0.29 | 0.09 | 13.99 | 21.5 | 2 | | XArm | #sXArm:1 | Origin | 11.63 | 7.86 | 0.42 | 0.13 | -48.35 | -1.75 | -0.6 | 4.20 | 4.89 | 0.10 | 0.29 | 13.68 | 0.27 | 0.09 | 13.99 | 21.5 | 2 | | XArm | XArm:ML | End | 15.50 | 7.86 | 0.39 | 0.19 | -29.39 | -1.36 | -0.6 | 4.20 | 4.89 | 0.10 | 0.29 | 8.35 | 0.27 | 0.09 | 8.67 | 13.3 | 2 | | XArm | XArm:ML | Origin | 15.50 | 7.86 | 0.39 | 0.19 | -32.93 | -1.36 | -0.6 | 0.67 | -3.46 | 0.09 | 0.05 | 9.34 | 0.19 | 0.09 | 9.40 | 14.5 | 2 | | XArm | #sXArm:2 | End | 19.38 | 7.86 | 0.36 | 0.13 | -46.32 | -1.03 | -0.6 | 0.67 | -3.46 | 0.09 | 0.05 | 13.03 | 0.19 | 0.09 | 13.09 | 20.1 | 2 | | XArm | #sXArm:2 | Origin | 19.38 | 7.86 | 0.36 | 0.13 | -46.32 | -1.03 | -0.6 | 0.65 | -3.74 | 0.09 | 0.05 | 13.03 | 0.21 | 0.09 | 13.09 | 20.1 | 2 | | XArm | XArm:RP | End | 23.25 | 7.86 | 0.34 | -0.10 | -60.83 | -0.69 | -0.6 | 0.65 | -3.74 | 0.09 | 0.05 | 17.04 | 0.21 | 0.09 | 17.09 | 26.3 | 2 | | XArm | XArm:RP | Origin | 23.25 | 7.86 | 0.34 | -0.10 | -60.83 | -0.09 | -0.0 | 3.61 | 8.45 | 0.01 | 0.25 | 16.97 | 0.47 | 0.00 | 17.24 | 26.5 | 2 | | XArm | #sXArm:3 | End | 27.13 | 7.86 | 0.32 | -0.51 | -28.08 | -0.04 | -0.0 | 3.61 | 8.45 | 0.01 | 0.25 | 7.83 | 0.47 | 0.00 | 8.13 | 12.5 | 2 | | XArm | #sXArm:3 | Origin | 27.13 | 7.86 | 0.32 | -0.51 | -28.08 | -0.04 | -0.0 | 3.62 | 8.16 | 0.01 | 0.25 | 7.83 | 0.46 | 0.00 | 8.12 | 12.5 | 2 | | XArm | XArm:E | End | 31.00 | 7.86 | 0.29 | -1.02 | 3.53 | 0.00 | -0.0 | 3.62 | 8.16 | 0.01 | 0.25 | 0.00 | 1.18 | 0.00 | 2.05 | 3.2 | 4 | Summary of Clamp Capacities and Usages for Load Case "NESC Rule 250B": | Clamp Force
Label | Holding | Factored
Holding
Capacity | Usage | Hardware | Factored
Hardware
Capacity | | | |----------------------|----------|---------------------------------|-------|----------|----------------------------------|------|------| | (kips |) (kips) | (kips) | % | (kips) | (kips) | % | % | | RAntFUT 0.00 | 0 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RAnt 7.56 | 1 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax1 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax2 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax3 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax4 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax5 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax6 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax7 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax8 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax9 0.93 | 5 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Summary of Suspension Capacities and Usages for Load Case "NESC Rule 250B": Suspension Tension Input Factored Tension Input Factored Hardware Max. | Label | | Tension
Capacity | Tension
Capacity | Usage | Hardware
Capacity | Hardware
Capacity | Usage | Usage | |-------|--------|---------------------|---------------------|-------|----------------------|----------------------|-------|-------| | | (kips) | (kips) | (kips) | % | (kips) | (kips) | % | % | | SWL | 3.073 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SWR | 3.073 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | PHL | 8.796 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | PHM | 8.796 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | PHR | 8.796 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Equilibrium Joint Positions and Rotations for Load Case "NESC 250C": | Joint
Label | X-Displ
(ft) | Y-Displ
(ft) | Z-Displ
(ft) | X-Rot
(deg) | Y-Rot
(deg) | Z-Rot
(deg) | X-Pos
(ft) | Y-Pos
(ft) | Z-Pos
(ft) | |----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|---------------|---------------|---------------| | LP:g | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0 | -7.75 | 0 | | LP:t | 0.02889 | 1.31 | -0.01455 | -1.5625 | 0.0467 | 0.0768 | 0.02889 | -6.44 | 79.99 | | LP:SW | 0.02831 | 1.289 | -0.01427 | -1.5625 | 0.0467 | 0.0768 | 0.02831 | -6.461 | 79.24 | | LP:C | 0.02228 | 1.078 | -0.01138 | -1.5554 | 0.0466 | 0.0768 | 0.02228 | -6.672 | 71.49 | | RP:g | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0 | 7.75 | 0 | | RP:t | 0.02615 | 2.298 | -0.03313 | -2.0448 | 0.0290 | 0.0207 | 0.02615 | 10.05 | 107 | | RP:ANTFUT | 0.02467 | 2.191 | -0.03122 | -2.0444 | 0.0290 | 0.0207 | 0.02467 | 9.941 | 104 | | RP:ANT | 0.01875 | 1.764 | -0.02362 | -2.0287 | 0.0290 | 0.0207 | 0.01875 | 9.514 | 91.98 | | RP:Coax9 | 0.01532 | 1.519 | -0.01926 | | | | 0.01532 | 9.269 | 84.98 | | RP:SW | 0.01257 | 1.325 | -0.01595 | -1.8794 | 0.0276 | 0.0206 | 0.01257 | 9.075 | 79.23 | | RP:Coax8 | 0.0106 | 1.188 | -0.01371 | -1.8061 | 0.0269 | 0.0206 | 0.0106 | 8.938 | 74.99 | | RP:C | 0.00901 | 1.08 | -0.012 | -1.7376 | 0.0263 | 0.0206 | 0.00901 | 8.83 | 71.49 | | RP:Coax7 | 0.006558 | 0.8906 | -0.009147 | | | | 0.006558 | 8.641 | | | RP:Coax6 | 0.003917 | 0.633 | -0.005686 | | | | 0.003917 | 8.383 | 54.99 | | RP:Coax5 | 0.002221 | 0.4196 | -0.003266 | | | | 0.002221 | 8.17 | 45 | | RP:Coax4 | 0.001152 | 0.2511 | -0.001702 | | | | 0.001152 | 8.001 | 35 | | RP:Coax3 | | | -0.0007849 | | | | | 7.877 | 25 | | RP:Coax2 | 0.0001601 | | -0.0003064 | | | | | 7.795 | 15 | | RP:Coax1 | 1.55e-05 | 0.005135 | | | | | 1.55e-05 | 7.755 | 5 | | SWLVANG | 0.03027 | 1.29 | | -1.5625 | | | 0.03027 | | 79.27 | | SWRVANG | 0.01203 | 1.325 | -0.06307 | | | | 0.01203 | 10.51 | 79.19 | | XArm:O | 0.03338 | 1.081 | -0.05241 | | 0.0506 | | | -14.42 | 71.45 | | XArm:LP | 0.02228 | 1.08 | -0.01284 | 0.1884 | 0.0505 | 0.0821 | 1.565 | -6.67 | 71.49 | | XArm:ML | 0.01367 | 1.081 | -0.00244 | | 0.0403 | | 1.557 | 1.081 | 71.5 | | XArm:RP | 0.009009 | 1.081 | -0.01284 | | | | 1.552 | 8.831 | | | XArm:E | 0.005831 | 1.081 | -0.04295 | | | | 1.549 | 16.58 | 71.46 | | VangCL | 0.03248 | 1.087 | -0.05239 | | 0.0506 | | 1.575 | -14.41 | 70.45 | | VangCM | 0.01297 | 1.081 | -0.00244 | | 0.0403 | | 1.556 | 1.081 | 70.5 | | VangCR | 0.005305 | 1.077 | -0.04294 | -0.2382 | 0.0302 | 0.0234 | 1.548 | 16.58 | 70.46 | Joint Support Reactions for Load Case "NESC 250C": | Joint | х | х | Y | Y | H-Shear | Z | Comp. | Uplift | Result. | Result. | х | X-M. | Y | Y-M. | H-Bend-M | Z | Z-M. | Max. | |-------|--------|-------|--------|-------|---------|--------|-------|--------|---------|---------|---------|-------|--------|-------|----------|--------|-------|-------| | Label | Force | Usage | Force | Usage | Usage | Force | Usage | Usage | Force | Usage | Moment | Usage | Moment | Usage | Usage | Moment | Usage | Usage | | | (kips) | % | (kips) | % | % | (kips) | 8 | % | (kips) | % | (ft-k) | 8 | (ft-k) | % | % | (ft-k) | 8 | % | LP:g | -0.18 | 0.0 | -23.37 | 0.0 | 0.0 | -20.49 | 0.0 | 0.0 | 0.00 | 0.0 | 1424.12 | 0.0 | -22.5 | 0.0 | 0.0 | -17.47 | 0.0 | 0.0 | | RP:a | 0.07 | 0.0 | -21.86 | 0.0 | 0.0 | -26.09 | 0.0 | 0.0 | 0.00 | 0.0 | 1344.14 | 0.0 | -4.1 | 0.0 | 0.0 | -4.74 | 0.0 |
0.0 | Detailed Steel Pole Usages for Load Case "NESC 250C": | Element
Label | Joint
Label | Joint
Position | | Trans. Defl. | _ | Vert.
Defl. | Trans. Mom. (Local Mx) | _ | | | | _ | | M/S. | V/Q. | T/R. | Res. | Max.
Usage | | |------------------|----------------|-------------------|------|--------------|------|----------------|------------------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|---------------|---| | | | | (ft) | (in) | (in) | (in) | (ft-k) | (ft-k) | (ft-k) | (kips) | (kips) | (kips) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | % | | | LP | LP:t | Origin | 0.00 | 15.72 | 0.35 | -0.17 | -0.00 | 0.00 | -0.0 | -0.03 | 0.02 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 5 | | LP | LP:SW | End | 0.75 | 15.47 | 0.34 | -0.17 | 0.02 | -0.00 | -0.0 | -0.03 | 0.02 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 4 | | LP | LP:SW | Origin | 0.75 | 15.47 | 0.34 | -0.17 | -0.95 | 0.00 | 0.0 | -0.87 | 1.90 | -0.00 | -0.03 | 0.00 | 0.15 | 0.00 | 0.25 | 0.4 | 5 | | LP | Tube 1 | End | 4.63 | 14.20 | 0.30 | -0.15 | 6.41 | -0.01 | 0.0 | -0.87 | 1.90 | -0.00 | -0.03 | 0.46 | 0.04 | 0.00 | 0.50 | 0.8 | 2 | | LP | 6 19.6 2 9 23.2 2 1 23.2 2 9 26.1 2 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 7 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | |--|---| | LP LP: C Sind 8.50 12.94 0.27 -0.14 14.74 -0.03 0.0 -1.25 2.15 -0.01 -0.04 0.96 0.04 0.00 0.05 LP Tube End 13.55 11.32 0.23 -0.11 98.97 -10.39 17.5 -8.30 16.85 -0.19 -0.28 0.87 1.2 0.59 LP Tube Origin 13.55 11.32 0.23 -0.11 98.97 -10.39 17.5 -8.30 16.85 -0.19 -0.26 5.80 0.28 0.52 0.25 LP Tube Origin 13.55 11.32 0.23 -0.11 98.97 -10.39 17.5 -8.86 17.20 -0.19 -0.26 5.80 0.28 0.52 0.25 LP Tube Origin 18.50 9.75 0.19 -0.09 184.99 -11.31 17.5 -8.86 17.20 -0.19 -0.26 9.49 0.27 0.46 9.25 LP Tube Origin 18.50 9.75 0.19 -0.09 184.99 -11.31 17.5 -8.86 17.20 -0.19 -0.26 9.49 0.27 0.46 9.25 LP Tube Origin 23.55 8.26 0.16 -0.07 272.88 -12.23 17.5 -9.45 17.58 -0.19 -0.22 9.49 0.27 0.46 9.25 LP Tube Origin 23.55 8.26 0.16 -0.07 272.88 -12.23 17.5 -9.45 17.58 -0.19 -0.22 12.43 0.26 0.41 LP Tube Origin 28.55 6.88 0.13 -0.06 362.74 -13.14 17.5 -10.09 17.97 -0.19 -0.22 14.78 0.25 0.37 12.14 LP Tube Origin 28.55 6.88 0.13 -0.06 362.74 -13.14 17.5 -10.09 17.97 -0.19 -0.27 14.78 0.25 0.37 12.14 LP Tube Origin 33.55 5.61 0.10 -0.04 454.64 -14.04 17.5 -10.76 18.38 -0.18 -0.27 16.69 0.25 0.33 12.14 LP Tube Origin 33.55 5.61 0.10 -0.04 454.64 -14.04 17.5 -10.76 18.38 -0.18 -0.29 16.69 0.25 0.33 12.14 LP Tube Origin 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 16.69 0.25 0.33 12.14 LP Splicer End Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.35 18.73 -0.18 -0.29 16.79 0.25 0.33 12.14 LP Splicer End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.38 18.73 -0.18 -0.29 17.74 0.24 0.31 LP Tube Origin 36.75 4.85 0. | 0 1.5 2 7 4.9 4 2 9.6 2 4 9.6 2 3 15.1 2 5 19.6 2 4 19.6 2 9 23.2 2 1 23.2 2 1 23.2 2 1 26.2 2 2 26.1 2 2 6.2 2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 8 31.0 2 8 31.0 2 8 31.0 2 8 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | LP | 7 4.9 4
2 9.6 2
4 9.6 2
3 15.1 2
15.2 2
4 19.6 2
9 23.2 2
1 23.2 2
9 26.1 2
1 26.2 2
4 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
8 31.0 2
8 31.0 2
8 32.5 2
7 32.6 2
8 33.8 2 | | Fig. Tube | 2 9.6 2
4 9.6 2
3 15.1 2
5 15.2 2
4 19.6 2
6 19.6 2
9 23.2 2
1 23.2 2
9 26.1 2
1 26.2 2
4 27.8 2
5 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
8 31.0 2
8 32.5 2
7 32.6 2
8 33.8 2 | | Tube 1 | 4 9.6 2 3 15.1 2 5 15.2 2 4 19.6 2 6 19.6 2 9 23.2 2 9 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 7 29.2 2 6 31.0 2 8 31.0 2 5 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | Tube 1 | 4 9.6 2 3 15.1 2 5 15.2 2 4 19.6 2 6 19.6 2 9 23.2 2 9 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 7 29.2 2 6 31.0 2 8 31.0 2 5 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | Tube 1 | 3 15.1 2
5 15.2 2
4 19.6 2
9 23.2 2
1 23.2 2
9 26.1 2
1 26.2 2
4 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2 | | Tube 1 | 5 15.2 2 4 19.6 2 6 19.6 2 9 23.2 2 1 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 8 31.0 2 5 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | Tube 1 | 4 19.6 2
6 19.6 2
9 23.2 2
1 23.2 2
9 26.1 2
1 26.2 2
4 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
8 32.5 2
7 32.6 2
8 33.8 2 | | Tube 1 | 6 19.6 2 9 23.2 2 1 23.2 2 9 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 7 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | Tube 1 | 6 19.6 2 9 23.2 2 1 23.2 2 9 26.1 2 1 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 8 31.0 2 8 31.0 2 7 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | LP Tube 1 | 9 23.2 2
1 23.2 2
9 26.1 2
1 26.2 2
4 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2 | | Tube 1 | 1 23.2 2
9 26.1 2
1 26.2 2
4 27.8 2
5 29.2 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2 | | LP Tube 1 Origin 33.50 5.61 0.10 -0.04 454.64 -14.04 17.5 -10.76 18.38 -0.18 -0.27 16.69 0.25 0.33 1' LP Tube 1 Bnd 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 16.69 0.25 0.33 1' LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 17.74 0.24 0.31 18 LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.28 17.74 0.24 0.31 18 LP Splicer End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.28 18.65 0.24 0.26 28 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.94 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.36 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.34 0.21 0.18 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.44 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -16.78 21.93 -0.18 -0.33 23.44 0.21 0.18 2 LP Tu | 9 26.1 2
1 26.2 2
4 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2 | | LP Tube 1 Origin 33.50 5.61 0.10 -0.04 454.64 -14.04 17.5 -10.76 18.38 -0.18 -0.27 16.69 0.25 0.33 1' LP Tube 1 Bnd 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 16.69 0.25 0.33 1' LP Tube 1 Origin 36.75 4.85 0.09 -0.04
515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.29 17.74 0.24 0.31 18 LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.28 17.74 0.24 0.31 18 LP Splicer End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.28 18.65 0.24 0.29 18 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.28 18.65 0.24 0.26 28 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.22 0.22 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.94 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.36 0.22 0.12 22 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.33 22.34 0.21 0.18 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.44 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.21 0.18 2 LP Tube 2 Origin 75.00 0.026 0.00 -0.00 1308.74 -21.56 17.5 -16.78 21.93 -0.18 -0.33 23.44 0.21 0.18 2 LP Tu | 9 26.1 2
1 26.2 2
4 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2 | | LP Tube 1 | 1 26.2 2 4 27.8 2 5 27.8 2 6 29.2 2 7 29.2 2 6 31.0 2 5 32.5 2 7 32.6 2 8 33.8 2 0 33.8 2 | | LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.63 17.5 -11.35 18.73 -0.18 -0.28 17.74 0.24 0.31 14 LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.29 17.74 0.25 0.31 14 LP SpliceT End 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 14 LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.28 18.65 0.24 0.29 14 LP Tube 2 End 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.24 0.29 14 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.24 0.26 24 LP Tube 2 End 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 2 LP Tube 2 End 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 End 65.00 0.161 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 21.68 0.23 0.22 2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.21 2 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.21 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.21 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -14.95 20.86 -0.18 -0.32 22.36 0.22 0.19 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.84 21.39 -0.18 -0.32 22.36 0.22 0.19 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.84 21.39 -0.18 -0.32 22.36 0.22 0.19 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.78 21.93 -0.18 -0.32 22.36 0.22 0.19 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -16.78 21.93 -0.18 -0.32 22.36 0.22 0.19 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 0.00 1086.62 -19.71 17.5 -16.78 21.93 -0.18 -0.32 22.34 0.22 0.19 2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 4 27.8 2
5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 1 Origin 36.75 4.85 0.09 -0.04 515.52 -14.66 17.5 -11.83 19.02 -0.18 -0.29 17.74 0.25 0.31 14 LP SpliceT | 5 27.8 2
6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 11 LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.29 11 LP Tube 2 End 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.23 0.26 21 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.26 21 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.30 19.86 0.24 0.26 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 50.00 1.61 0.03 -0.01 875.38 -1.791 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 21.68 0.23 0.22 2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.31 22.36 0.22 0.22 2 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 23.84 0.21 0.18 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.19 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 0.75 -18.75 20.99 -0.00 -0.00 0.00 0.00 0.00 0.00 0.0 | 6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.22 17.5 -11.83 19.02 -0.18 -0.28 18.65 0.24 0.29 11 LP SpliceT Origin 40.00 4.14 0.07 -0.03 577.33 -15.25 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.29 11 LP Tube 2 End 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.23 0.26 21 LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.11 17.5 -12.46 19.39 -0.18 -0.30 18.65 0.24 0.26 21 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.30 19.86 0.24 0.26 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.01 17.5 -13.25 19.86 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 50.00 1.61 0.03 -0.01 875.38 -1.791 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 2 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 21.68 0.23 0.22 2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.31 22.36 0.22 0.22 2 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 60.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 23.84 0.21 0.18 2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.19 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 0.75 -18.75 20.99 -0.00 -0.00 0.00 0.00 0.00 0.00 0.0 | 6 29.2 2
7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 | 7 29.2 2
6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.05 17.5 -12.46 19.39 -0.18 -0.28 19.86 0.23 0.26 20 1 | 6 31.0 2
8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 Origin 45.00 3.17 0.05 -0.02 674.30 -16.15 17.5 -13.25 19.86 -0.18 -0.30 19.86 0.24 0.26 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.05 17.5 -13.25 19.86 -0.18 -0.29 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 2.32 0.04 -0.01 875.38 -17.05 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 End 55.00 1.61 0.03 -0.01 875.38 -17.91 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 Origin 50.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.31 21.68 0.23 0.22 22 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -15.84 21.39 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74
-21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.22 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.15 24 LP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 8 31.0 2
5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 | 5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 | 5 32.5 2
7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 Origin 50.00 2.32 0.04 -0.01 773.62 -17.05 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 End 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.31 20.85 0.23 0.24 22 LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.08 20.35 -0.18 -0.32 21.67 0.22 0.22 22 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 22 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.22 0.21 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 22 LP Tube 1 Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 7 32.6 2
8 33.8 2
0 33.8 2 | | LP Tube 2 | 8 33.8 2
0 33.8 2 | | LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.95 20.86 -0.18 -0.31 21.68 0.23 0.22 2.2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 2.2 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.85 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.22 0.21 2.2 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.16 2.2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2 LP End 80.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.15 2.8 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 0 33.8 2 | | LP Tube 2 Origin 55.00 1.61 0.03 -0.01 875.38 -17.95 17.5 -14.95 20.86 -0.18 -0.31 21.68 0.23 0.22 2.2 LP Tube 2 End 60.00 1.02 0.02 -0.01 979.69 -18.81 17.5 -14.95 20.86 -0.18 -0.30 22.36 0.22 0.21 2.2 LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.85 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.22 0.21 2.2 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 2.2 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 2.2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 2.2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.16 2.2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.16 2.2 LP End 80.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.21 0.15 2.8 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 0 33.8 2 | | LP Tube 2 | | | LP Tube 2 Origin 60.00 1.02 0.02 -0.01 979.69 -18.85 17.5 -15.84 21.39 -0.18 -0.32 22.36 0.23 0.21 22 LP Tube 2 End 65.00 0.58 0.01 -0.00 1086.62 -19.71 17.5 -15.84 21.39 -0.18 -0.30 22.94 0.22 0.19 22 LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.33 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.55 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP Tube 2 Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.05 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.00 0.00 0.00 0.00 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0.00 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.03 0.36 0.02 0.00 0.00 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0.00 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | / 34.9 2 | | LP Tube 2 | | | LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 9 34.9 2 | | LP Tube 2 Origin 65.00 0.58 0.01 -0.00 1086.62 -19.75 17.5 -16.78 21.93 -0.18 -0.32 22.94 0.22 0.19 22 LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 6 35.8 2 | | LP Tube 2 End 70.00 0.26 0.00 -0.00 1196.27 -20.62 17.5 -16.78 21.93 -0.18 -0.31 23.43 0.21 0.18 22 LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 End 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP Tube 2 End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24 RP RP: ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.07 0.00 0.00 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.02 0.05 0.03 0.00 0 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | | LP Tube 2 Origin 70.00 0.26 0.00 -0.00 1196.27 -20.66 17.5 -17.75 22.49 -0.18 -0.33 23.43 0.22 0.18 22 LP Tube 2 End 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 RP RP:t Origin 0.00
27.58 0.31 -0.40 -0.00 0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0.0 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.0 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0.00 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0.0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.00 -0.00 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0.00 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | | LP Tube 2 End 75.00 0.07 0.00 -0.00 1308.74 -21.53 17.5 -17.75 22.49 -0.18 -0.32 23.84 0.21 0.16 24 LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24 RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.00 0.00 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0.0 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.0 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.03 0.36 0.02 0.00 0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1 | | | LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24 RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 1 | 7 36.6 2 | | LP Tube 2 Origin 75.00 0.07 0.00 -0.00 1308.74 -21.56 17.5 -18.75 23.07 -0.19 -0.33 23.84 0.22 0.16 24 LP LP:g End 80.00 0.00 0.00 0.00 1424.12 -22.44 17.5 -18.75 23.07 -0.19 -0.32 24.19 0.21 0.15 24 RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.01 0.00 0 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.44 6.28 -0.07 -0.25 0.18 0.69 0.00 1 | 7 37.8 2 | | RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.00 0.00 0.00 0.00 0. | | | RP RP:t Origin 0.00 27.58 0.31 -0.40 -0.00 0.00 0.0 -0.04 0.05 -0.00 -0.01 0.00 0.00 0.00 RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0.00 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0.00 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0.00 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.00 -0.29 0.39 -0.00 -0.03 0.36 0.02 0.00 0.00 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.47 0.02 0.00 0.00 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0.00 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | | | RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 2 39.0 2 | | RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | | | RP RP:ANTFUT End 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.04 0.05 -0.00 -0.00 0.07 0.00 0.00 0.00 0.00 0. | 3 0.0 5 | | RP RP:ANTFUT Origin 3.00 26.29 0.30 -0.37 0.16 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.05 0.03 0.00 0 RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 -0.00 -0.0 -0.29 0.39 -0.00 -0.03 0.36 0.02 0.00 0 RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1 | | | RP Tube 1 End 7.50 24.37 0.27 -0.34 1.06 -0.00 0.0 -0.15 0.20 -0.00 -0.02 0.36 0.01 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | RP Tube 1 Origin 7.50 24.37 0.27 -0.34 1.06 -0.00 -0.0 -0.29 0.39 -0.00 -0.03 0.36 0.02 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 0.1 3 | | RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0 | 7 0.6 2 | | RP SpliceT End 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.29 0.39 -0.00 -0.03 0.79 0.02 0.00 0 RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 0 | 9 0.6 2 | | RP SpliceT Origin 12.00 22.45 0.24 -0.31 2.80 -0.01 -0.0 -0.45 0.56 -0.00 -0.03 0.47 0.02 0.00 0 RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1 | | | RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | RP RP:ANT End 15.00 21.17 0.22 -0.28 4.48 -0.02 -0.0 -0.45 0.56 -0.00 -0.03 0.67 0.02 0.00 (RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 1 | 0 0.8 2 | | RP RP:ANT Origin 15.00 21.17 0.22 -0.28 4.48 -0.02 0.0 -4.48 6.28 -0.07 -0.25 0.18 0.69 0.00 | 9 1.1 2 | | | 7 2.0 4 | | RP TUDE 2 ENG 18.50 19.69 0.20 -0.26 26.46 -0.26 0.0 -4.48 6.28 -0.07 -0.23 3.48 0.18 0.00 . | | | | 3 5.7 2 | | RP Tube 2 Origin 18.50 19.69 0.20 -0.26 26.46 -0.26 -0.0 -4.71 6.46 -0.07 -0.25 3.48 0.18 0.00 3 | 4 5.8 2 | | RP RP:Coax9 End 22.00 18.23 0.18 -0.23 49.09 -0.50 -0.0 -4.71 6.46 -0.07 -0.23 5.74 0.17 0.00 9 | 8 9.2 2 | | | 0 9.2 2 | | | | | • | 4 13.5 2 | | RP SpliceT Origin 27.00 16.20 0.16 -0.20 85.14 -0.85 -0.0 -5.46 7.38 -0.07 -0.21 7.06 0.15 0.00 ' | 7 11.2 2 | | RP RP:SW End 27.75 15.91 0.15 -0.19 90.67 -0.90 -0.0 -5.46 7.38 -0.07 -0.20 7.35 0.15 0.00 ' | 6 11.6 2 | | | | | | 7 11 2 つ | | | 7 11.8 2 | | RP RP:Coax8 Origin 32.00 14.26 0.13 -0.16 131.01 -1.21 -0.0 -6.94 10.02 -0.07 -0.24 9.39 0.19 0.00 9 | 1 14.8 2 | | RP RP:C End 35.50 12.96 0.11 -0.14 166.07 -1.46 -0.0 -6.94 10.02 -0.07 -0.23 10.81 0.18 0.00 1 | | | RP RP:C Origin 35.50 12.96 0.11 -0.14 166.07 -9.81 4.7 -12.16 11.90 0.08 -0.41 10.95 0.21 0.16 11. | 1 14.8 2
4 14.8 2 | | | 1 14.8 2
4 14.8 2
5 17.0 2 | | RP Tube 3 End 38.75 11.80 0.09 -0.13 204.76 -9.54 4.7 -12.16 11.90 0.08 -0.39 12.36 0.20 0.15 12 | 1 14.8 2
4 14.8 2
5 17.0 2
8 17.5 2 | | RP Tube 3 Origin 38.75 11.80 0.09 -0.13 204.76 -9.54 4.7 -12.52 12.12 0.08 -0.40 12.36 0.21 0.15 12 | 1 14.8 2
4 14.8 2
5 17.0 2
8 17.5 2
7 19.6 2 | | RP RP:Coax7 End 42.00 10.69 0.08 -0.11 244.16 -9.26 4.7 -12.52 12.12 0.08 -0.39 13.55 0.20 0.13 13 | 1 14.8 2
4 14.8 2
5 17.0 2
8 17.5 2
7 19.6 2 | | | 1 14.8 2
4 14.8 2
5 17.0 2
8 17.5 2
7 19.6 2
8 19.7 2 | | | 1 14.8 2 4 14.8 2 5 17.0 2 8 17.5 2 7 19.6 2 8 19.7 2 5 21.5 2 | | RP Tube 3 End 47.00 9.08 0.06 -0.09 308.76 -8.84 4.7 -13.23 12.92 0.08 -0.39 15.16 0.20 0.12 19 | 1 14.8 2 4 14.8 2 5 17.0 2 8 17.5 2 19.6 2 8 19.7 2 5 21.5 2 7 21.5 2 | | RP | Tube 3 | Origin | 47.00 | 9.08 | 0.06 | -0.09 | 308.76 | -8.85 | 4.7 -13.85 | 13.28 | 0.08 -0.40 15.16 | 0.21 | 0.12 15.58 | 24.0 | 2 | |----|----------|--------|--------|------|------|-------|---------|-------|-------------|-------|------------------|------|------------|------|---| | RP | RP:Coax6 | End | 52.00 | 7.60 | 0.05 | -0.07 | 375.18 | -8.42 | 4.7 -13.85 | 13.28 | 0.08 -0.38 16.43 | 0.19 | 0.11 16.82 | 25.9 | 2 | | RP | RP:Coax6 | Origin | 52.00 | 7.60 | 0.05 | -0.07 | 375.18 | -8.43 | 4.7 -14.73 | 14.17 | 0.08 -0.41 16.43 | 0.21 | 0.11 16.84 | 25.9 | 2 | | RP | Tube 3 | End | 57.00 | 6.25 | 0.04 | -0.05 | 446.05 | -8.00 | 4.7 -14.73 | 14.17 | 0.08 -0.39 17.53 | 0.20 | 0.10 17.92 | 27.6 | 2 | | RP | Tube 3 | Origin | 57.00 | 6.25 | 0.04 | -0.05 | 446.05 | -8.01 | 4.7 -15.41 | 14.58 | 0.08 -0.40 17.53 | 0.20 | 0.10 17.94 | 27.6 | 2 | | RP | RP:Coax5 | End | 62.00 | 5.04 | 0.03 | -0.04 |
518.94 | -7.59 | 4.7 -15.41 | 14.58 | 0.08 -0.38 18.41 | 0.19 | 0.09 18.80 | 28.9 | 2 | | RP | RP:Coax5 | Origin | 62.00 | 5.04 | 0.03 | -0.04 | 518.94 | -7.60 | 4.7 -16.37 | 15.50 | 0.08 -0.41 18.41 | 0.20 | 0.09 18.82 | 29.0 | 2 | | RP | SpliceT | End | 67.00 | 3.96 | 0.02 | -0.03 | 596.46 | -7.18 | 4.7 -16.37 | 15.50 | 0.08 -0.39 19.20 | 0.19 | 0.08 19.59 | 30.1 | 2 | | RP | SpliceT | Origin | 67.00 | 3.96 | 0.02 | -0.03 | 596.46 | -7.19 | 4.7 -17.13 | 15.94 | 0.08 -0.41 19.20 | 0.20 | 0.08 19.61 | 30.2 | 2 | | RP | RP:Coax4 | End | 72.00 | 3.01 | 0.01 | -0.02 | 676.18 | -6.77 | 4.7 -17.13 | 15.94 | 0.08 -0.39 19.84 | 0.19 | 0.07 20.23 | 31.1 | 2 | | RP | RP:Coax4 | Origin | 72.00 | 3.01 | 0.01 | -0.02 | 676.18 | -6.79 | 4.7 -18.16 | 16.91 | 0.08 -0.41 19.84 | 0.20 | 0.07 20.26 | 31.2 | 2 | | RP | Tube 4 | End | 77.00 | 2.20 | 0.01 | -0.02 | 760.72 | -6.38 | 4.7 -18.16 | 16.91 | 0.08 -0.39 20.43 | 0.19 | 0.07 20.20 | 32.0 | 2 | | RP | Tube 4 | | 77.00 | 2.20 | 0.01 | -0.01 | 760.72 | -6.39 | 4.7 -18.10 | 17.39 | 0.08 -0.39 20.43 | 0.19 | 0.07 20.83 | 32.1 | 2 | | | | Origin | | | | | | | | | | | | | | | RP | RP:Coax3 | End | 82.00 | 1.52 | 0.01 | -0.01 | 847.66 | -5.98 | 4.7 -18.98 | 17.39 | 0.08 -0.39 20.91 | 0.19 | 0.06 21.31 | 32.8 | 2 | | RP | RP:Coax3 | Origin | 82.00 | 1.52 | 0.01 | -0.01 | 847.66 | -5.99 | 4.7 -20.08 | 18.39 | 0.08 -0.42 20.91 | 0.20 | 0.06 21.34 | 32.8 | 2 | | RP | Tube 4 | End | 87.00 | 0.97 | 0.00 | -0.01 | 939.60 | -5.60 | 4.7 -20.08 | 18.39 | 0.08 -0.40 21.37 | 0.19 | 0.06 21.78 | 33.5 | 2 | | RP | Tube 4 | Origin | 87.00 | 0.97 | 0.00 | -0.01 | 939.60 | -5.60 | 4.7 -20.97 | 18.90 | 0.08 -0.42 21.37 | 0.20 | 0.06 21.80 | 33.5 | 2 | | RP | RP:Coax2 | End | 92.00 | 0.54 | 0.00 | -0.00 | 1034.12 | -5.22 | 4.7 - 20.97 | 18.90 | 0.08 -0.40 21.76 | 0.19 | 0.05 22.16 | 34.1 | 2 | | RP | RP:Coax2 | Origin | 92.00 | 0.54 | 0.00 | -0.00 | 1034.12 | -5.23 | 4.7 - 22.15 | 19.94 | 0.07 -0.43 21.76 | 0.20 | 0.05 22.19 | 34.1 | 2 | | RP | Tube 4 | End | 97.00 | 0.24 | 0.00 | -0.00 | 1133.82 | -4.84 | 4.7 - 22.15 | 19.94 | 0.07 -0.41 22.13 | 0.19 | 0.05 22.54 | 34.7 | 2 | | RP | Tube 4 | Origin | 97.00 | 0.24 | 0.00 | -0.00 | 1133.82 | -4.85 | 4.7 -23.11 | 20.50 | 0.07 -0.43 22.13 | 0.20 | 0.05 22.56 | 34.7 | 2 | | RP | RP:Coax1 | End | 102.00 | 0.06 | 0.00 | -0.00 | 1236.30 | -4.48 | 4.7 -23.11 | 20.50 | 0.07 -0.41 22.44 | 0.19 | 0.04 22.86 | 35.7 | 2 | | RP | RP:Coax1 | Origin | 102.00 | 0.06 | 0.00 | -0.00 | 1236.30 | -4.49 | 4.7 -24.35 | 21.57 | 0.07 -0.43 22.44 | 0.20 | 0.04 22.88 | 35.7 | 2 | | RP | RP:g | End | 107.00 | 0.00 | 0.00 | 0.00 | 1344.14 | -4.12 | 4.7 -24.35 | 21.57 | 0.07 -0.42 22.76 | 0.20 | 0.04 23.18 | 36.9 | 2 | | | | | | | | | | | | | | | | | | Detailed Tubular X-Arm Usages for Load Case "NESC 250C": | Element | Joint | Joint | | Trans. | Long. | Vert. | Vert. | | | Axial | | Horz. | P/A | M/S. | V/Q. | T/R. | | | | |---------|----------|----------|---------------|---------------|---------------|------------|----------------|----------------|------|-----------------|-----------------|-----------------|-------|-------|-------|-------|-------|------------|-----| | Label | Label | Position | Dist.
(ft) | Defl.
(in) | Defl.
(in) | Defl. (in) | Mom.
(ft-k) | Mom.
(ft-k) | | Force
(kips) | Shear
(kips) | Shear
(kips) | (ksi) | (ksi) | (ksi) | (ksi) | | Usage
% | Pt. | | XArm | XArm:O | Origin | 0.00 | 12.97 | 0.40 | -0.63 | -5.24 | -0.00 | 0.0 | -5.22 | -3.59 | -0.01 | -0.36 | 1.46 | 0.20 | 0.00 | 1.86 | 2.9 | 2 | | XArm | #sXArm:0 | End | 3.87 | 12.97 | 0.33 | -0.36 | -19.14 | -0.05 | 0.0 | -5.22 | -3.59 | -0.01 | -0.36 | 5.34 | 0.20 | 0.00 | 5.71 | 8.8 | 2 | | XArm | #sXArm:0 | Origin | 3.87 | 12.97 | 0.33 | -0.36 | -19.14 | -0.05 | 0.0 | -5.22 | -3.77 | -0.01 | -0.36 | 5.34 | 0.21 | 0.00 | 5.72 | 8.8 | 2 | | XArm | XArm:LP | End | 7.75 | 12.97 | 0.27 | -0.15 | -33.75 | -0.09 | 0.0 | -5.22 | -3.77 | -0.01 | -0.36 | 9.42 | 0.21 | 0.00 | 9.79 | 15.1 | 2 | | XArm | XArm:LP | Origin | 7.75 | 12.97 | 0.27 | -0.15 | -33.75 | -4.77 | -0.9 | 8.96 | 3.07 | 0.17 | 0.62 | 9.96 | 0.17 | 0.14 | 10.59 | 16.3 | 2 | | XArm | #sXArm:1 | End | 11.63 | 12.97 | 0.21 | -0.05 | -21.85 | -4.09 | -0.9 | 8.96 | 3.07 | 0.17 | 0.62 | 6.57 | 0.17 | 0.14 | 7.21 | 11.1 | 2 | | XArm | #sXArm:1 | Origin | 11.63 | 12.97 | 0.21 | -0.05 | -21.85 | -4.09 | -0.9 | 8.96 | 2.87 | 0.17 | 0.62 | 6.57 | 0.16 | 0.14 | 7.20 | 11.1 | 2 | | XArm | XArm:ML | End | 15.50 | 12.97 | 0.16 | -0.03 | -10.75 | -3.43 | -0.9 | 8.96 | 2.87 | 0.17 | 0.62 | 3.39 | 0.16 | 0.14 | 4.05 | 6.2 | 2 | | XArm | XArm:ML | Origin | 15.50 | 12.97 | 0.16 | -0.03 | -15.99 | -3.44 | -0.9 | 3.72 | -0.79 | 0.16 | 0.26 | 4.86 | 0.05 | 0.13 | 5.12 | 7.9 | 2 | | XArm | #sXArm:2 | End | 19.38 | 12.97 | 0.13 | -0.06 | -19.07 | -2.81 | -0.9 | 3.72 | -0.79 | 0.16 | 0.26 | 5.64 | 0.05 | 0.13 | 5.91 | 9.1 | 2 | | XArm | #sXArm:2 | Origin | 19.38 | 12.97 | 0.13 | -0.06 | -19.07 | -2.81 | -0.9 | 3.72 | -0.99 | 0.16 | 0.26 | 5.64 | 0.06 | 0.13 | 5.91 | 9.1 | 2 | | | XArm:RP | End | 23.25 | 12.97 | 0.11 | -0.15 | -22.91 | -2.18 | -0.9 | 3.72 | -0.99 | 0.16 | 0.26 | 6.64 | 0.06 | 0.13 | 6.90 | 10.6 | 2 | | XArm | XArm:RP | Origin | 23.25 | 12.97 | 0.11 | -0.15 | -22.91 | -0.03 | -0.0 | 5.25 | 3.73 | 0.00 | 0.36 | 6.39 | 0.21 | 0.00 | 6.76 | 10.4 | 2 | | XArm | #sXArm:3 | End | 27.13 | 12.97 | 0.09 | -0.32 | -8.46 | -0.01 | -0.0 | 5.25 | 3.73 | 0.00 | 0.36 | 2.36 | 0.21 | 0.00 | 2.75 | 4.2 | 2 | | | #sXArm:3 | Origin | 27.13 | 12.97 | 0.09 | -0.32 | -8.46 | -0.01 | -0.0 | | 3.54 | 0.00 | 0.36 | 2.36 | 0.20 | 0.00 | 2.75 | 4.2 | 2 | | | XArm:E | End | 31.00 | 12.97 | 0.07 | -0.52 | 5.24 | 0.00 | -0.0 | 5.26 | 3.54 | 0.00 | 0.36 | 1.46 | 0.20 | 0.00 | 1.86 | 2.9 | 2 | Summary of Clamp Capacities and Usages for Load Case "NESC 250C": | Clamp Force
Label | - | Factored
Holding | _ | Input
Hardware | | Hardware
Usage | | |-----------------------------|--------------------|---------------------|------|--------------------|--------------------|-------------------|------| | (kips) | Capacity
(kips) | Capacity
(kips) | % | Capacity
(kips) | Capacity
(kips) | % | % | | RAntFUT 0.000
RAnt 6.748 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax1 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |-------|-------|--------|------|------|------|------|------|------| | Coax2 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax3 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax4 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax5 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax6 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax7 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax8 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax9 | 0.560 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Summary of Suspension Capacities and Usages for Load Case "NESC 250C": | Suspension
Label | Tension | Tension | Factored
Tension
Capacity | | Hardware | Factored
Hardware
Capacity | | Max.
Usage | |---------------------|----------------|----------------|---------------------------------|------|----------|----------------------------------|------|---------------| | | (kips) | (kips) | (kips) | % | (kips) | (kips) | % | % | | SWL | 1.840 | 25.00
25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SWR
PHL | 1.840
6.281 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | PHM
PHR | 6.281
6.281 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Equilibrium Joint Positions and Rotations for Load Case "NESC Rule 250D": | Joint
Label | X-Displ
(ft) | Y-Displ
(ft) | Z-Displ
(ft) | X-Rot
(deg) | Y-Rot
(deg) | Z-Rot
(deg) | X-Pos
(ft) | Y-Pos
(ft) | Z-Pos
(ft) | |----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|---------------|---------------|---------------| | LP:g | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0 | -7.75 | 0 | | LP:t | 0.04863 | 0.53 | -0.003716 | -0.6385 | 0.0805 | 0.0297 | 0.04863 | -7.22 | 80 | | LP:SW | 0.04758 | 0.5216 | -0.003668 | -0.6385 | 0.0805 | 0.0297 | 0.04758 | -7.228 | 79.25 | | LP:C | 0.03673 | 0.4351 | -0.00314 | -0.6371 | 0.0805 | 0.0297 | 0.03673 | -7.315 | 71.5 | | RP:g | 0 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0 | 7.75 | 0 | | RP:t | 0.07578 | 0.8873 | -0.007117 | -0.7445 | 0.0746 | 0.0195 | 0.07578 | 8.637 | 107 | | RP:ANTFUT | 0.07188 | 0.8483 | -0.00686 | | | | 0.07188 | 8.598 | 104 | | RP:ANT | 0.05631 | 0.6927 | -0.005825 | -0.7406 | 0.0745 | 0.0195 | 0.05631 | 8.443 | 91.99 | | RP:Coax9 | 0.04726 | 0.6027 | -0.005151 | -0.7306 | 0.0740 | 0.0195 | 0.04726 | 8.353 | 84.99 | | RP:SW | 0.03991 | 0.5301 | -0.004607 | -0.7153 | 0.0730 | 0.0194 | 0.03991 | | 79.25 | | RP:Coax8 | 0.03453 | 0.4776 | -0.004211 | | | | 0.03453 | 8.228 | 75 | | RP:C | 0.03015 | 0.4354 | -0.003895 | -0.6806 | 0.0717 | 0.0194 | 0.03015 | 8.185 | 71.5 | | RP:Coax7 | 0.02294 | 0.3604 | -0.003258 | | | | 0.02294 | 8.11 | 65 | | RP:Coax6 | 0.01463 | 0.2566 | -0.002414 | | | | 0.01463 | 8.007 | 55 | | RP:Coax5 | 0.008836 | 0.1699 | -0.00174 | | | | 0.008836 | 7.92 | 45 | | RP:Coax4 | 0.004871 | 0.1013 | -0.001212 | | | | 0.004871 | 7.851 | 35 | | RP:Coax3 | 0.002284 | | -0.0007947 | | | | 0.002284 | 7.801 | 25 | | | 0.0007621 | | -0.0004507 | | | | 0.0007621 | 7.768 | 15 | | RP:Coax1 | 7.968e-05 | | -0.0001469 | | | | | 7.752 | 5 | | SWLVANG | 0.04835 | 0.5217 | | -0.6385 | | | 0.04835 | | | | SWRVANG | 0.0394 | 0.53 | -0.02255 | | | | 0.0394 | 9.717 | | | XArm:O | 0.04093 | 0.4365 | -0.08896 | | 0.0893 | | | -15.06 | | | XArm:LP | 0.03673 | 0.436 | -0.005604 | | 0.0891 | | | -7.314 | | | XArm:ML | 0.03311 | 0.436 | | -0.0020 | | | 1.576 | 0.436 | | | XArm:RP | 0.03014 | 0.436 | -0.006104 | | | | 1.573 | 8.186 | | | XArm:E | 0.02717 | 0.4356 | -0.08496 | | | | 1.57 | |
71.42 | | VangCL | 0.03936 | 0.449 | -0.08888 | | 0.0893 | | | -15.05 | | | VangCM | 0.03163 | 0.436 | | -0.0020 | | | 1.574 | | 70.52 | | VangCR | 0.02578 | 0.4241 | -0.08489 | -0.6602 | 0.0801 | 0.0211 | 1.569 | 15.92 | 70.42 | Joint Support Reactions for Load Case "NESC Rule 250D": | Joint | х | х | Y | Y | H-Shear | Z | Comp. | Uplift | Result. | Result. | х | X-M. | Y | Y-M. | H-Bend-M | Z | Z-M. | Max. | |-------|--------|---------|-------|-------|---------|--------|-------|--------|---------|---------|--------|-------|--------|-------|----------|--------|-------|-------| | Label | Force | Usage I | Force | Usage | Usage | Force | Usage | Usage | Force | Usage | Moment | Usage | Moment | Usage | Usage | Moment | Usage | Usage | | (| (kips) | %(] | kips) | % | % | (kips) | % | % | (kips) | % | (ft-k) | % | (ft-k) | % | % | (ft-k) | % | % | LP:g | -0.14 | 0.0 - | -8.34 | 0.0 | 0.0 | -33.44 | 0.0 | 0.0 | 0.00 | 0.0 | 556.13 | 0.0 | -29.9 | 0.0 | 0.0 | -6.81 | 0.0 | 0.0 | | RP:a | -0.00 | 0.0 - | -7.72 | 0.0 | 0.0 | -50.34 | 0.0 | 0.0 | 0.00 | 0.0 | 532.91 | 0.0 | -21.0 | 0.0 | 0.0 | -4.47 | 0.0 | 0.0 | Detailed Steel Pole Usages for Load Case "NESC Rule 250D": | Element
Label | Joint
Label | Joint
Position | | Trans. Defl. (in) | Long.
Defl.
(in) | | Trans. Mom. (Local Mx) (ft-k) | (Local My) | Mom. | Force | | Shear | | | - | | | Max.
Usage
% | | |------------------|----------------|-------------------|------|-------------------|------------------------|-------|-------------------------------|------------|------|-------|------|-------|-------|------|------|------|------|--------------------|---| LP | LP:t | Origin | 0.00 | 6.36 | 0.58 | -0.04 | 0.00 | 0.00 | -0.0 | -0.04 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 5 | | LP | LP:SW | End | 0.75 | 6.26 | 0.57 | -0.04 | 0.00 | -0.00 | -0.0 | -0.04 | 0.01 | -0.00 | -0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 2 | | LP | LP:SW | Origin | 0.75 | 6.26 | 0.57 | -0.04 | -5.01 | 0.00 | 0.0 | -3.80 | 1.67 | -0.01 | -0.14 | 0.41 | 0.03 | 0.00 | 0.55 | 0.8 | 2 | | LP | Tube 1 | End | 4.63 | 5.74 | 0.51 | -0.04 | 1.45 | -0.03 | 0.0 | -3.80 | 1.67 | -0.01 | -0.13 | 0.03 | 0.12 | 0.00 | 0.26 | 0.4 | 4 | | Expression Property Propert | | | | | | | | | | | | | | | | | | |--|---|--|---|--|--|--|--|--|--|--|--|---|--|--|--|--|---| | LIPPO | LP | Tube 1 | Origin | 4.63 | 5.74 | 0.51 | -0.04 | 1.45 | -0.03 | 0.0 - 4.29 | 1.73 | -0.01 -0.15 | 0.03 | 0.12 | 0.00 0.28 | 0.4 | 4 | | In | | | | | | | | | | | | | | | | | 2 | | In | | | | | | | | | | | | | | | | | | | Image Tube Fragman | LP | LP:C | Origin | 8.50 | 5.22 | 0.44 | -0.04 | 8.14 | -20.62 | 6.8 -18.44 | 7.11 | -0.13 -0.62 | 1.48 | 0.47 | 0.23 2.43 | 3.7 | 4 | | Image Tube Fragman | LP | Tube 1 | End | 13.50 | 4.56 | 0.36 | -0.03 | 43.67 | -21.26 | 6.8 -18.44 | 7.11 | -0.13 -0.58 | 2.82 | 0.12 | 0.20 3.44 | 5.3 | 2 | | In Tube Tube Tube Tube Cristin 18,50 3,92 0.30 -0.03 79,59 -21,90 6.8 -19,15 7.18 -0.13 -0.57 4.31 0.11 0.18
4,93 7.6 2 LP Tube 1 | T.D | Tube 1 | Origin | | 4 56 | 0.36 | -0 03 | | _21 27 | 6 9 _10 15 | 7 1 2 | _0 13 _0 60 | | 0 12 | | | | | LP Tube 1 | | | _ | | | | | | | | | | | | | | | | The Tube Send 23.50 3.31 0.24 -0.02 115.89 -22.54 6.8 -19.71 7.26 -0.13 -0.56 5.49 0.11 0.16 6.08 9.3 2.15 1.07 | ЬΡ | Tube I | | | 3.92 | 0.30 | -0.03 | 79.59 | -21.90 | 6.8 -19.15 | 7.18 | -0.13 -0.57 | 4.31 | 0.11 | 0.18 4.91 | 7.6 | 2 | | Tube 1 | LP | Tube 1 | Origin | 18.50 | 3.92 | 0.30 | -0.03 | 79.59 | -21.91 | 6.8 -19.91 | 7.26 | -0.13 -0.59 | 4.31 | 0.11 | 0.18 4.93 | 7.6 | 2 | | Tube 1 | T.D | Tube 1 | End | 23 50 | 3 31 | 0 24 | -0 02 | 115 89 | -22 54 | 6 8 -19 91 | 7 26 | -0 13 -0 56 | 5 49 | 0 11 | 0 16 6 06 | 93 | 2 | | LP Tube 1 | | | | | | | | | | | | | | | | | | | The Let Tube 1 Control Contr | | | _ | | | | | | | | | | | | | | | | The Tube 1 bright 3,500 2,24 0,15 -0.02 189.68 -3.81 6.8 -21.95 7.42 -0.13 -0.54 7.14 0.10 0.13 7.69 11.8 2 Lp Tube 1 bright 35.50 2,24 0,15 -0.02 189.67 -33.81 6.8 -21.95 7.42 -0.13 -0.54 7.53 0.10 0.13 7.07 11.9 2 Lp Tube 1 bright 35.50 2.40 0.15 -0.02 189.67 -32.81 6.8 -22.93 7.49 -0.13 -0.54 7.53 0.10 0.13 7.01 11.9 2 Lp Tube 1 bright 36.75 1.93 0.13 -0.01 214.00 -42.22 6.8 -22.23 7.49 -0.13 -0.54 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0 | LP | Tube 1 | End | 28.50 | 2.75 | 0.19 | -0.02 | 152.58 | -23.17 | 6.8 -20.71 | 7.34 | -0.13 -0.55 | 6.41 | 0.10 | 0.14 6.97 | 10.7 | 2 | | The Tube 1 bright 3,500 2,24 0,15 -0.02 189.68 -3.81 6.8 -21.95 7.42 -0.13 -0.54 7.14 0.10 0.13 7.69 11.8 2 Lp Tube 1 bright 35.50 2,24 0,15 -0.02 189.67 -33.81 6.8 -21.95 7.42 -0.13 -0.54 7.53 0.10 0.13 7.07 11.9 2 Lp Tube 1 bright 35.50 2.40 0.15 -0.02 189.67 -32.81 6.8 -22.93 7.49 -0.13 -0.54 7.53 0.10 0.13 7.01 11.9 2 Lp Tube 1 bright 36.75 1.93 0.13 -0.01 214.00 -42.22 6.8 -22.23 7.49 -0.13 -0.54 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 7.53 0.10 0.12 8.08 12.4 2 Lp Tube 2 bright 40.00 1.05 0.13 -0.01 21.50 0.13 -0.01 21.50 0.14 7.50 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0 | LP | Tube 1 | Origin | 28.50 | 2.75 | 0.19 | -0.02 | 152.58 | -23.18 | 6.8 -21.56 | 7.42 | -0.13 -0.57 | 6.41 | 0.10 | 0.14 7.00 | 10.8 | 2 | | Tube 1 | T.D | | | | | | | | | | | | | | | | | | Fig. Fube | | | | | | | | | | | | | | | | | | | Tube 1 | БΡ | | _ | | | | | | | | | | | | | | | | LP Splicer | LP | Tube 1 | End | 36.75 | 1.93 | 0.13 | -0.01 | 214.00 | -24.22 | 6.8 -22.29 | 7.49 | -0.13 -0.54 | 7.53 | 0.10 | 0.12 8.08 | 12.4 | 2 | | LP Splicer | LP | Tube 1 | Origin | 36.75 | 1.93 | 0.13 | -0.01 | 214.00 | -24.23 | 6.8 -22.89 | 7.54 | -0.13 - 0.56 | 7.53 | 0.10 | 0.12 8.10 | 12.5 | 2. | | LP SpliceT Origin 40.00 1.65 0.11 -0.01 238.51 -24.64 6.8 -23.68 7.61 -0.13 -0.56 7.86 0.10 0.11 8.43 13.0 2 LP Tube 2 CHigh 45.00 1.26 0.08 -0.01 276.57 -25.28 6.8 -23.68 7.61 -0.13 -0.56 8.29 0.09 0.10 8.83 13.6 2 LP Tube 2 CHigh 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -24.67 7.70 -0.13 -0.56 8.29 0.09 0.10 8.87 13.6 2 LP Tube 2 CHigh 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -24.67 7.70 -0.13 -0.56 8.29 0.09 0.10 8.81 13.6 2 LP Tube 2 CHIGH 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -24.67 7.70 -0.13 -0.58 8.63 0.09 0.09 9.17 14.1 2 LP Tube 2 CHIGH 50.00 0.92 0.06 -0.01 315.07 -25.93 6.8 -25.71 7.79 -0.13 -0.56 8.63 0.09 0.09 9.17 14.1 2 LP Tube 2 CHIGH 50.00 0.02 0.04 0.01 354.02 22.57 6.8 25.71 7.79 -0.13 -0.56 8.63 0.09 0.09 9.45 14.1 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 393.44 -27.23 6.8 -25.71 7.79 -0.13 -0.56 8.63 0.09 0.09 9.45 14.1 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 393.44 -27.23 6.8 -26.79 7.89 -0.13 -0.59 9.10 0.08 0.08 9.64 14.8 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 393.44 -27.23 6.8 -27.92 7.98 -0.13 -0.59 9.10 0.08 0.08 9.64 14.8 2 LP Tube 2 CHIGH 50.00 0.03 0.01 -0.00 433.35 -27.90 6.8 -27.92 7.98 -0.13 -0.59 9.10 0.08 0.08 9.64 14.8 2 LP Tube 2 CHIGH 50.00 0.04 0.02 -0.00 433.35 -27.90 6.8 -27.92 7.98 -0.13 -0.54 9.26 0.08 0.07 9.80 15.1 2 LP Tube 2 CHIGH 50.00 0.03 0.00 -0.00 473.66 -28.57 6.8 -29.99 8.08 -0.14 -0.54 9.39 0.08 0.07 9.95 15.1 2 LP Tube 2 CHIGH 50.00 0.03 0.00 -0.00 473.66 -28.57 6.8 -29.99 8.08 -0.14 -0.54 9.39 0.08 0.07 9.95 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.54 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.55 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.56 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.03 0.00 0.00 0.00 514.68 -29.25 6.8 -30.31 8.18 -0.14 -0.56 9.39 0.08 0.07 9.93 15.3 2 LP Tube 2 CHIGH 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | T.D | | _ | | | | | | | | 7 54 | | | | | | | | LP Tube 2 | | _ | | | | | | | | | | | | | | | | | Fig. Tube 2 | LP | SpliceT | Origin | 40.00 | 1.65 | 0.11 | -0.01 | | -24.64 | | 7.61 | -0.13 - 0.56 | | | 0.11 8.43 | | | | Fig. | LP | Tube 2 | End | 45.00 | 1.26 | 0.08 | -0.01 | 276.57 | -25.28 | 6.8 -23.68 | 7.61 | -0.13 -0.54 | 8.29 | 0.09 | 0.10 8.83 | 13.6 | 2 | | Fig. | T.P | Tube 2 | Origin | 45.00 | 1.26 | 0.08 | -0.01 | 276.57 | -25.28 | 6.8 -24.67 | 7.70 | -0.13 -0.56 | 8.29 | 0.09 | 0.10 8.86 | 13.6 | 2 | | LP | | | _ | | | | | | | | | | | | | | | | Provide 2 | | | | | | | | | | | | | | | | | | | Tube 2 | LP | Tube 2 | Origin | 50.00 | 0.92 | 0.06 | -0.01 | 315.07 | -25.93 | 6.8 -25.71 | 7.79 | -0.13 -0.56 | 8.63 | 0.09 | 0.09 9.19 | 14.1 | 2 | | Property Tube 2 | LP | Tube 2 | End | 55.00 | 0.63 | 0.04 | -0.01 | 354.02 | -26.57 | 6.8 -25.71 | 7.79 | -0.13 -0.53 | 8.89 | 0.09 | 0.09 9.43 | 14.5 | 2 | | Property Tube 2 | T.D | Tube 2 | Origin | 55 00 | 0.63 | 0 04 | -0.01 | 354 02 | -26 58 | 6 8 -26 79 | 7 88 | -0 13 -0 56 | 8 89 | 0 09 | 0 09 9 45 | 14 5 | 2 | | Tube 2 | | | _ | | | | | | | | | | | | | | | | Tube 2 | | | | | | | | | | | | | | | | | | | Tube 2 | LP | Tube 2 | Origin | 60.00 | 0.40 | 0.02 | -0.00 | 393.44 | -27.24 | 6.8 -27.92 | 7.98 | -0.13 -0.56 | 9.10 | 0.08 | 0.08 9.66 | 14.9 | 2 | | Tube 2 | LP | Tube 2 | End | 65.00 | 0.23 | 0.01 | -0.00 | 433.35 | -27.90 | 6.8 -27.92 | 7.98 | -0.13 -0.54 | 9.26 | 0.08 | 0.07 9.80 | 15.1 | 2 | | Tube 2 | T.D | | | | | | | | | | α Λα | | | | | | | | LP Tube 2 Origin 70.00 0.01 0.01 -0.00 514.68 -29.26 6.8 -30.31 8.18 -0.14 -0.56 9.39 0.08 0.07 9.95 15.3 2 LP Tube 2 Origin 75.00 0.03 0.00 -0.00 514.68 -29.26 6.8 -30.31 8.18 -0.14 -0.56 9.48 0.08 0.06 10.02 15.7 2 LP Tube 2 Origin 75.00 0.03 0.00 -0.00 514.68 -29.26 6.8 -31.56 8.29 -0.14 -0.56 9.48 0.08 0.06 10.02 15.7 2 LP LP LP:g End 80.00 0.00 0.00 0.00 556.13 -29.94 6.8 -31.56 8.29 -0.14 -0.56 9.48 0.08 0.06 10.09 16.1 2 LP LP:g End 80.00 0.00 0.00 0.00 556.13 -29.94 6.8 -31.56 8.29 -0.14 -0.56 9.48 0.08 0.06 10.09 16.1 2 LP LP:g End 80.00 10.65 0.91 -0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | | | | | | | | | | | | | | | | | | | LP Tube 2 | ЪΡ | | | | | | | | | | | | | | | | | | Tube 2 Origin 75.00 O.03 O.00 O.00 O.00 O.00 S14.68 -29.26 6.8 -31.56 8.29 -0.14 -0.56 9.48 O.08 O.06 I.0.04 15.7 2 | LP | Tube 2 | Origin | 70.00 | 0.10 | 0.01 | -0.00 | 473.76 | -28.58 | 6.8 -30.31 | 8.18 | -0.14 -0.56 | 9.39 | 0.08 | 0.07 9.95 | 15.3 | 2 | | Tube 2 Origin 75.00 O.03 O.00 O.00 O.00 O.00 S14.68 -29.26 6.8 -31.56 8.29 -0.14 -0.56 9.48 O.08 O.06 I.0.04 15.7 2 | LP | Tube 2 | End | 75.00 | 0.03 | 0.00 | -0.00 | 514.68 | -29.25 | 6.8 - 30.31 | 8.18 | -0.14 - 0.54 | 9.48 | 0.08 | 0.06 10.02 | 15.7 | 2. | | LP LP End 80.00 0.00 0.00 0.00 0.00 556.13 -29.94 6.8 -31.56 8.29 -0.14 -0.54 9.54 0.08 0.06 10.09 16.1 2 | | | | | | | | | | | | | | | | | | | RP RP: ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.24 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.02 -0.07 0.01 -0.00 -0.04 0.16 0.00 0.00 0.00 0.15 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.02 -0.00 -0.07 0.01 -0.00 -0.04 0.16 0.00 0.00 0.15 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.02 -0.0 -0.07 0.00 -0.07 0.00 -0.00 0.00 0 | | | _ | | | | | | | | | | | | | | | | RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 0.0 -0.07 0.01 -0.00 -0.01 0.02 0.00 0.00 0.00 0.02 0.0 2 RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.00 -0.04 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.0 2 RP TUBE 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.05 0.09 0.00 0.00 0.01 10.2 RP TUBE 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.01 0.00 0.14 0.2 2 RP
SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.00 0.16 0.2 2 RP RP:ANT DEAD 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.07 0.07 0.07 0.07 0.03 0.00 0.00 0.00 | LP | LP:g | End | 80.00 | 0.00 | 0.00 | 0.00 | 556.13 | -29.94 | 6.8 - 31.56 | 8.29 | -0.14 -0.54 | 9.54 | 0.08 | 0.06 10.09 | 16.1 | 2 | | RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 0.0 -0.07 0.01 -0.00 -0.01 0.02 0.00 0.00 0.00 0.02 0.0 2 RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.00 -0.04 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.0 2 RP TUBE 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.05 0.09 0.00 0.00 0.01 10.2 RP TUBE 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.00 0.16 0.2 2 RP RP:ANT DEAD 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.07 0.07 0.07 0.07 0.03 0.00 0.00 0.00 | | | | | | | | | | | | | | | | | | | RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 0.0 -0.07 0.01 -0.00 -0.01 0.02 0.00 0.00 0.00 0.02 0.0 2 RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.00 -0.04 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.0 2 RP TUBE 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.05 0.09 0.00 0.00 0.01 10.2 RP TUBE 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.00 0.00 0.16 0.2 2 RP RP:ANT DEAD 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.07 0.07 0.07 0.07 0.03 0.00 0.00 0.00 | RP | DD • + | | 0 00 | 10 65 | 0.91 | -0.09 | 0.00 | 0 00 | 0.0 -0.07 | 0.01 | -0.00 -0.01 | 0.00 | 0 00 | 0 00 0 01 | 0.0 | 5 | | RP RP:ANTFUT Origin 3.00 10.18 0.86 -0.08 0.04 -0.00 -0.0 -0.24 0.05 -0.00 -0.03 0.02 0.00 0.00 0.05 0.1 2 RP Tube 1 End 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.03 0.09 0.00 0.00 0.01 10.2 2 RP Tube 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.01 0.00 0.14 0.2 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.26 0.2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.25 0.3 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.61 0.03 0.00 0.97 1.5 2 RP RP:COax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -0.72 0.10 4 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.53 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.06 -0.00 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.09 -0.00 -0.00 -0.08 0.40 0.00 0.00 0.279 4.3 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.09 -0.00 -0.00 -0.08 0.40 0.00 0.00 0.55 0.8 2 RP RP:SW End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:SW End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:COax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:SW End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:COax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:COax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.05 0.00 2 | | | Origin | | | | | | | | | | | 0.00 | | | | | RP Tube 1 Origin 7.50 9.48 0.79 -0.08 0.26 -0.01 -0.0 -0.24 0.05 -0.00 -0.03 0.09 0.00 0.00 0.11 0.2 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.09 0.01 0.00 0.14 0.2 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.20 0.3 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.03 0.00 0.50 0.8 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.44 1.24 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.09 -0.00 -0.00 -0.04 0.14 0.03 0.00 1.53 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 1.53 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 - | מם | | | | | 0 06 | \cap \cap \circ | | | 0 0 0 07 | 0 01 | 0 00 0 01 | 0 02 | | | 0 0 | _ | | RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.07 -0.07 0.09 -0.00 -0.05 0.09 0.01 0.00 0.14 0.2 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.20 0.3 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.03 0.00 0.20 0.3 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.95 0.8 2 RP RP:COASP End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:COASP End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.83 2.8 2 RP RP:COASP End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.00 0.00 1.53 2.4 2 RP RP:COASP Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.00 0.00 2.79 4.3 2 RP RP:COASP Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.01 2.13 3.3 2 RP RP:COASP End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.01 2.13 5.73 8.8 2 RP RP:COASP Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.08 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.08 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.09 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.08 4.08 0.10 0.14 5.00 7.7 2 RP RP:COASP Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.36 6.07 -0.00 -0.09 4.85 0.10 0.13 5.73 8.8 9 | | RP:ANTFUT | End | 3.00 | 10.18 | | | 0.04 | -0.00 | | | | | 0.00 | 0.00 0.02 | | | | RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.16 0.2 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.07 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.16 0.2 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.97 1.5 2 RP RP:Coax9 End 2.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 1.33 2.0 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.41 2.2 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 4.98 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2 | | RP:ANTFUT
RP:ANTFUT | End
Origin | 3.00
3.00 | 10.18
10.18 | 0.86 | -0.08 | $0.04 \\ 0.04$ | -0.00
-0.00 | -0.0 -0.24 | | -0.00 -0.03 | 0.02
 0.00 | 0.00 0.02
0.00 0.05 | 0.1 | 2 | | RP SpliceT End 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.47 0.09 -0.00 -0.05 0.19 0.00 0.00 0.24 0.4 2 RP SpliceT Origin 12.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.16 0.2 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.07 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.16 0.2 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.97 1.5 2 RP RP:Coax9 End 2.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 1.33 2.0 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.41 2.2 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.79 4.3 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 4.98 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.13 5.78 8.9 2 | RP | RP:ANTFUT
RP:ANTFUT | End
Origin | 3.00
3.00 | 10.18
10.18 | 0.86 | -0.08 | $0.04 \\ 0.04$ | -0.00
-0.00 | -0.0 -0.24 | 0.05 | -0.00 -0.03 | 0.02 | 0.00 | 0.00 0.02
0.00 0.05 | 0.1 | 2 | | RP RP:ANT End 15.00 8.78 0.72 -0.07 0.67 -0.02 -0.0 -0.72 0.13 -0.00 -0.04 0.11 0.00 0.00 0.16 0.2 2 RP RP:ANT End 15.00 8.31 0.68 -0.07 1.07 -0.03 -0.0 -0.72 0.13 -0.00 -0.04 0.16 0.00 0.00 0.20 0.3 2 RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.97 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.16 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.44 1.19 0.03 0.00 1.58 2.4 2 RP RP:Coax8 Origin 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.53 2.4 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 2.79 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.85 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.85 0.10 0.13 5.78 8.9 2 | RP
RP | RP:ANTFUT
RP:ANTFUT
Tube 1 | End
Origin
End | 3.00
3.00
7.50 | 10.18
10.18
9.48 | 0.86
0.79 | -0.08
-0.08 | 0.04
0.04
0.26 | -0.00
-0.00
-0.01 | $ \begin{array}{rrr} -0.0 & -0.24 \\ -0.0 & -0.24 \end{array} $ | 0.05
0.05 | -0.00 -0.03
-0.00 -0.03 | 0.02 | 0.00
0.00
0.00 | 0.00 0.02
0.00 0.05
0.00 0.11 | 0.1
0.2 | 2
2 | | RP RP:ANT | RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 | End
Origin
End
Origin | 3.00
3.00
7.50
7.50 | 10.18
10.18
9.48
9.48 | 0.86
0.79
0.79 | -0.08
-0.08
-0.08 | 0.04
0.04
0.26
0.26 | -0.00
-0.00
-0.01
-0.01 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \end{array}$ | 0.05
0.05
0.09 | -0.00 -0.03
-0.00 -0.03
-0.00 -0.05 | 0.02
0.09
0.09 | 0.00
0.00
0.00
0.01 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14 | 0.1
0.2
0.2 | 2
2
2 | | RP RP:ANT Origin 15.00 8.31 0.68 -0.07 1.07 -0.03 0.0 -6.89 1.00 -0.07 -0.38 0.16 0.03 0.00 0.55 0.8 2 RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.36 0.61 0.03 0.00 0.97 1.5 2 RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP RP:Coax9 Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.05 6.36 0.48 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.44 1.43 0.03 0.00 1.83 2.8 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -1.441 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax8 End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -1.441 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -1.441 3.04 -0.08 -0.48 2.82 0.55 0.00 3.31 5.1 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.88 0.10 0.14 4.98 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.09 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT | End
Origin
End
Origin
End | 3.00
3.00
7.50
7.50
12.00 | 10.18
10.18
9.48
9.48
8.78 | 0.86
0.79
0.79
0.72 | -0.08
-0.08
-0.08
-0.07 | 0.04
0.04
0.26
0.26
0.67 | -0.00
-0.00
-0.01
-0.01
-0.02 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \end{array}$ | 0.05
0.05
0.09
0.09 | -0.00 -0.03
-0.00 -0.03
-0.00 -0.05
-0.00 -0.05 | 0.02
0.09
0.09
0.19 | 0.00
0.00
0.00
0.01
0.00 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24 | 0.1
0.2
0.2
0.4 | 2
2
2
2 | | RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.36 0.61 0.03 0.00 0.97 1.5 2 RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.06 0.00 2.85 4.4 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax7 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 | RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT | End
Origin
End
Origin
End | 3.00
3.00
7.50
7.50
12.00
12.00 | 10.18
10.18
9.48
9.48
8.78 | 0.86
0.79
0.79
0.72 | -0.08
-0.08
-0.08
-0.07 | 0.04
0.04
0.26
0.26
0.67
0.67 | -0.00
-0.00
-0.01
-0.01
-0.02 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \end{array}$ | 0.05
0.05
0.09
0.09 | -0.00 -0.03
-0.00 -0.03
-0.00 -0.05
-0.00 -0.05 | 0.02
0.09
0.09
0.19 | 0.00
0.00
0.00
0.01
0.00 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24 | 0.1
0.2
0.2
0.4
0.2 | 2
2
2
2
2 | | RP Tube 2 End 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -6.89 1.00 -0.07 -0.36 0.61 0.03 0.00 0.97 1.5 2 RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.58 2.4 2 RP
RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.45 2.34 0.06 0.00 2.85 4.4 2 RP RP:Coax8 Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:Coax7 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 | RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT | End
Origin
End
Origin
End
Origin | 3.00
3.00
7.50
7.50
12.00
12.00 | 10.18
10.18
9.48
9.48
8.78
8.78 | 0.86
0.79
0.79
0.72
0.72 | -0.08
-0.08
-0.08
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
0.67 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \end{array}$ | 0.05
0.05
0.09
0.09 | -0.00 -0.03
-0.00 -0.03
-0.00 -0.05
-0.00 -0.05
-0.00 -0.04 | 0.02
0.09
0.09
0.19
0.11 | 0.00
0.00
0.00
0.01
0.00
0.00 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.16 | 0.1
0.2
0.2
0.4
0.2 | 2
2
2
2
2 | | RP Tube 2 Origin 18.50 7.77 0.62 -0.07 4.58 -0.27 0.0 -7.20 1.04 -0.07 -0.38 0.61 0.03 0.00 0.99 1.5 2 RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.85 4.4 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 | RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT | End
Origin
End
Origin
End
Origin
End | 3.00
3.00
7.50
7.50
12.00
12.00
15.00 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31 | 0.86
0.79
0.79
0.72
0.72
0.68 | -0.08
-0.08
-0.08
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
0.67 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13 | -0.00 -0.03
-0.00 -0.03
-0.00 -0.05
-0.00 -0.05
-0.00 -0.04
-0.00 -0.04 | 0.02
0.09
0.09
0.19
0.11
0.16 | 0.00
0.00
0.00
0.01
0.00
0.00 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.16
0.00 0.20 | 0.1
0.2
0.2
0.4
0.2 | 2
2
2
2
2
2 | | RP RP:Coax9 End 22.00 7.23 0.57 -0.06 8.24 -0.50 0.0 -7.20 1.04 -0.07 -0.36 0.98 0.03 0.00 1.33 2.0 2 RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C Dorigin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.9 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.9 2 | RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT RP:ANT | End Origin End Origin End Origin End Origin End | 3.00
3.00
7.50
7.50
12.00
12.00
15.00 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
8.31 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
0.67 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.16 | 0.00
0.00
0.00
0.01
0.00
0.00
0.00 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.20
0.00 0.55 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8 | 2
2
2
2
2
2
2 | | RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 2.79 4.3 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 | RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2 | End Origin End Origin End Origin End Origin End Origin | 3.00
3.00
7.50
7.50
12.00
12.00
15.00
15.00
18.50 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68 | -0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03
-0.03 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.16 | 0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.03 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.26
0.00 0.20
0.00 0.55 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5 | 2
2
2
2
2
2
2
2
2 | | RP RP:Coax9 Origin 22.00 7.23 0.57 -0.06 8.24 -0.50 -0.0 -8.73 1.19 -0.07 -0.43 0.98 0.03 0.00 1.41 2.2 2 RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21
4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2 | End Origin End Origin End Origin End Origin End Origin | 3.00
3.00
7.50
7.50
12.00
12.00
15.00
15.00
18.50 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68 | -0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03
-0.03 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -7.20 | 0.05
0.05
0.09
0.09
0.13
0.13
1.00 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.16 | 0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.03 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.26
0.00 0.20
0.00 0.55 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5 | 2
2
2
2
2
2
2
2
2 | | RP SpliceT End 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -8.73 1.19 -0.07 -0.40 1.43 0.03 0.00 1.83 2.8 2 RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2 Tube 2 | End Origin End Origin End Origin End Origin End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.77 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.62 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03
-0.03
-0.27
-0.27 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -7.20 | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.00 | -0.00 -0.03
-0.00 -0.03
-0.00 -0.05
-0.00 -0.05
-0.00 -0.04
-0.00 -0.04
-0.07 -0.38
-0.07 -0.38 | 0.02
0.09
0.09
0.19
0.11
0.16
0.16
0.61 | 0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.20
0.00 0.55
0.00 0.97
0.00 0.99 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5 | 2
2
2
2
2
2
2
2
2
2 | | RP SpliceT Origin 27.00 6.47 0.49 -0.06 14.18 -0.86 -0.0 -9.02 1.23 -0.07 -0.34 1.19 0.03 0.00 1.53 2.4 2 RP RP:SW End 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT PR:ANT Tube 2 Tube 2 RP:Coax9 | End
Origin
End
Origin
End
Origin
End
Origin
End
Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
18.50
22.00 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.77
7.23 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.62 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.07 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
1.07
4.58
4.58
8.24 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03
-0.03
-0.27
-0.27
-0.50 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.00 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.16
0.61
0.61 | 0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.24
0.00 0.20
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5 | 2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:SW Origin 27.75 6.36 0.48 -0.06 15.10 -0.91 -0.0 -9.02 1.23 -0.07 -0.34 1.24 0.03 0.00 1.58 2.4 2 RP RP:SW Origin 27.75 6.36 0.48 -0.06 20.11 -0.92 -0.0 -12.80 2.90 -0.08 -0.48 1.65 0.06 0.00 2.13 3.3 2 RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.91 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
18.50
22.00
22.00 | 10.18
10.18
9.48
9.48
8.78
8.31
8.31
7.77
7.77
7.23
7.23 | 0.86
0.79
0.79
0.72
0.68
0.68
0.62
0.62
0.57 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24 | -0.00
-0.00
-0.01
-0.01
-0.02
-0.02
-0.03
-0.03
-0.27
-0.27
-0.50 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -7.20
0.0 -7.20
-0.0 -8.73 | 0.05
0.09
0.09
0.13
0.13
1.00
1.00
1.04
1.04 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.36 \\ -0.07 & -0.36 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \\ -0.07 & -0.43 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.16
0.61
0.61
0.98 | 0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.05
0.00 0.11
0.00 0.24
0.00 0.20
0.00 0.55
0.00 0.99
0.00 0.99
0.00 1.33
0.00 1.41 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.86 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT | End Origin |
3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
18.50
22.00
27.00 | 10.18
10.18
9.48
9.48
8.78
8.31
7.77
7.77
7.23
7.23
6.47 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.62
0.57
0.57 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24 | -0.00
-0.01
-0.01
-0.02
-0.03
-0.03
-0.27
-0.27
-0.50
-0.50
-0.86 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -6.89
0.0 -7.20
0.0 -7.20
-0.0 -8.73
-0.0 -8.73 | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.00
1.04
1.19 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \\ -0.07 & -0.36 \\ -0.07 & -0.43 \\ -0.07 & -0.40 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.61
0.98
0.98
1.43 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.26
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.83 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax8 End 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.13 3.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -12.80 2.90 -0.08 -0.45 2.34 0.05 0.00 2.79 4.3 2 RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.86 6.07 -0.00 -0.90 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
18.50
22.00
27.00 | 10.18
10.18
9.48
9.48
8.78
8.31
7.77
7.77
7.23
7.23
6.47 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.62
0.57
0.57 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24 | -0.00
-0.01
-0.01
-0.02
-0.03
-0.03
-0.27
-0.27
-0.50
-0.50
-0.86 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -6.89
0.0 -7.20
0.0 -7.20
-0.0 -8.73
-0.0 -8.73 | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.00
1.04
1.19 | $\begin{array}{ccccc} -0.00 & -0.03 \\ -0.00 & -0.03 \\ -0.00 & -0.05 \\ -0.00 & -0.05 \\ -0.00 & -0.04 \\ -0.00 & -0.04 \\ -0.07 & -0.38 \\ -0.07 & -0.38 \\ -0.07 & -0.36 \\ -0.07 & -0.36 \\ -0.07 & -0.43 \\ -0.07 & -0.40 \end{array}$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.61
0.98
0.98
1.43 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.26
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.83 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax8 | RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
18.50
22.00
27.00
27.00 | 10.18
10.18
9.48
9.48
8.78
8.31
7.77
7.77
7.23
7.23
6.47
6.47 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.57
0.57
0.49 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24
14.18 | -0.00 -0.01 -0.01 -0.01 -0.02 -0.03 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.86 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -6.89
0.0 -6.89
0.0 -6.89
0.0 -7.20
0.0 -7.20
-0.0 -8.73
-0.0 -8.73
-0.0 -9.02 | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.00
1.04
1.19
1.19 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.61
0.98
0.98
1.43
1.19 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.26
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.41
0.00 1.83
0.00 1.83 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax8 Origin 32.00 5.73 0.41 -0.05 32.41 -1.25 -0.0 -14.41 3.04 -0.08 -0.51 2.34 0.06 0.00 2.85 4.4 2 RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.88 4.08 0.10 0.14 4.98 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.85 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT RP:ANT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
22.00
27.00
27.75 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.77
7.23
7.23
6.47
6.47
6.36 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.48 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24
14.18
14.18 | -0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -6.89
0.0 -6.89
0.0 -7.20
0.0 -7.20
-0.0 -8.73
-0.0 -8.73
-0.0 -9.02
-0.0 -9.02 | 0.05
0.05
0.09
0.09
0.13
1.00
1.00
1.04
1.04
1.19
1.19 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.61
0.98
0.98
1.43
1.19 | 0.00
0.00
0.00
0.01
0.00
0.03
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.20
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.53
0.00 1.53 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
2.4 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:C End 35.50 5.22 0.36 -0.05 43.05 -1.54 -0.0 -14.41 3.04 -0.08 -0.48 2.82 0.05 0.00 3.31 5.1 2 RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.88 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
22.00
27.00
27.75
27.75 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.27
7.23
6.47
6.47
6.36
6.36 | 0.86
0.79
0.79
0.72
0.68
0.68
0.62
0.62
0.57
0.57
0.49
0.48 | -0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
14.18
14.18
14.18 | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.91 -0.92 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -6.89
0.0 -7.20
0.0 -7.20
-0.0 -8.73
-0.0 -8.73
-0.0 -9.02
-0.0 -9.02
-0.0 -12.80 | 0.05
0.05
0.09
0.09
0.13
1.00
1.00
1.04
1.19
1.19
1.23
2.90 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.16
0.61
0.98
0.98
1.43
1.19
1.24 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.20
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.58
0.00 1.58 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
2.4 |
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
22.00
27.00
27.00
27.75
32.00 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.77
7.23
7.23
6.47
6.36
6.36
5.73 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.49
0.48
0.48 | -0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24
14.18
14.18
15.10
20.11
32.41 | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.04
1.19
1.19
1.23
2.90
2.90 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.98
0.98
1.43
1.19
1.24
1.65
2.34 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.83
0.00 1.53
0.00 1.53
0.00 2.79 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
3.3 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:C Origin 35.50 5.22 0.36 -0.05 43.05 -21.21 4.5 -27.36 6.07 -0.00 -0.92 3.16 0.11 0.15 4.11 6.3 2 RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.98 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
22.00
27.00
27.00
27.75
32.00 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.77
7.23
7.23
6.47
6.36
6.36
5.73 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.49
0.48
0.48 | -0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05 | 0.04
0.04
0.26
0.26
0.67
1.07
1.07
4.58
4.58
8.24
8.24
14.18
14.18
15.10
20.11
32.41 | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 | $\begin{array}{cccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.04
1.19
1.19
1.23
2.90
2.90 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.98
0.98
1.43
1.19
1.24
1.65
2.34 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.83
0.00 1.53
0.00 1.53
0.00 2.79 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
3.3 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP Tube 3 End 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.36 6.07 -0.00 -0.88 4.08 0.10 0.14 4.98 7.7 2 RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8 RP:Coax8 RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
32.00 | 10.18
10.18
9.48
9.48
8.78
8.31
8.31
7.77
7.77
7.23
7.23
6.47
6.47
6.36
6.36
5.73
5.73 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.48
0.41 | -0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41 | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 | -0.0 -0.24
-0.0 -0.24
-0.0 -0.47
-0.0 -0.47
-0.0 -0.72
-0.0 -0.72
0.0 -6.89
0.0 -6.89
0.0 -7.20
-0.0 -7.20
-0.0 -8.73
-0.0 -8.73
-0.0 -9.02
-0.0 -9.02
-0.0 -12.80
-0.0 -12.80
-0.0 -14.41 | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.19
1.19
1.23
2.90
2.90
3.04 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.98
0.98
1.43
1.19
1.24
1.65
2.34
2.34 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.41 0.00 1.83 0.00 1.53 0.00 2.79 0.00 2.79 0.00 2.85 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
3.3
4.3 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP Tube 3 Origin 38.75 4.77 0.32 -0.04 62.79 -21.21 4.5 -27.82 6.12 0.00 -0.90 4.08 0.10 0.14 5.00 7.7 2 RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT Tube 1 Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT RP:SW RP:SW RP:Coax8 RP:Coax8 RP:Coax8 RP:Coax8 RP:Coax8 RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
22.00
27.00
27.75
27.75
32.00
35.50 | 10.18
10.18
9.48
9.48
8.78
8.31
7.77
7.77
7.23
7.23
6.47
6.36
6.36
5.73
5.73
5.22 | 0.86
0.79
0.79
0.72
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.49
0.48
0.41
0.41 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41
43.05 | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 -1.54 | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ -0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \end{array}$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.19
1.19
1.23
2.90
2.90
3.04
3.04 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.16
0.61
0.98
1.43
1.19
1.24
1.65
2.34
2.82 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.55
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.83
0.00 1.58
0.00 1.58
0.00 2.13
0.00 2.85
0.00 2.85
0.00 3.31 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
3.3
4.4
5.1 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 Tube 1 SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT RP:SW RP:SW RP:Coax8 | End Origin |
3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
35.50
35.50 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.23
7.23
6.47
6.36
6.36
6.36
5.73
5.73
5.22
5.22 | 0.86
0.79
0.79
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.48
0.48
0.41
0.36
0.36 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41
43.05
43.05 | -0.00 -0.01 -0.01 -0.01 -0.02 -0.03 -0.27 -0.27 -0.50 -0.86 -0.91 -0.92 -1.25 -1.54 -21.21 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.19
1.23
1.23
2.90
2.90
3.04
3.04
6.07 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.61
0.61
0.98
1.43
1.19
1.24
1.65
2.34
2.34
2.34
2.34
2.34 | 0.00
0.00
0.00
0.01
0.00
0.03
0.03
0.03 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.41 0.00 1.83 0.00 1.58 0.00 2.13 0.00 2.13 0.00 2.85 0.00 3.31 0.15 4.11 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
2.4
3.3
4.3
4.3
5.1
6.3 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax7 End 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -27.82 6.12 0.00 -0.86 4.85 0.10 0.13 5.73 8.8 2 RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT SpliceT RP:SW RP:SW RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
35.50
35.50
38.75 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.23
7.23
6.47
6.36
6.36
6.36
5.73
5.73
5.22
5.22
4.77 | 0.86
0.79
0.79
0.72
0.72
0.68
0.62
0.62
0.57
0.49
0.48
0.48
0.41
0.36
0.36
0.32 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05
-0.05
-0.04 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41
32.41
43.05
43.05
62.79 | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.21 | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ 4.5 & -27.36 \\ 4.5 & -27.36 \end{array}$ | 0.05
0.05
0.09
0.09
0.13
1.00
1.04
1.04
1.19
1.23
1.23
2.90
2.90
3.04
3.04
6.07
6.07 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.61
0.61
0.98
1.43
1.19
1.24
1.65
2.34
2.34
2.34
2.34 | 0.00
0.00
0.00
0.01
0.00
0.03
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.25
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.58
0.00 2.79
0.00 2.79
0.00 2.85
0.00 2.85
0.01 4.11
0.14 4.98 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.4
2.4
3.3
4.3
4.3
7.7 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP RP:Coax7 Origin 42.00 4.32 0.28 -0.04 82.67 -21.21 4.5 -29.55 6.26 0.00 -0.91 4.85 0.10 0.13 5.78 8.9 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 SpliceT SpliceT SpliceT RP:SW RP:SW RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
35.50
35.50
38.75 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.23
7.23
6.47
6.36
6.36
6.36
5.73
5.73
5.22
5.22
4.77 | 0.86
0.79
0.79
0.72
0.72
0.68
0.62
0.62
0.57
0.49
0.48
0.48
0.41
0.36
0.36
0.32 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05
-0.05
-0.04 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41
32.41
43.05
43.05
62.79 | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.21 | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ 0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ 4.5 & -27.36 \\ 4.5 & -27.36 \end{array}$ | 0.05
0.05
0.09
0.09
0.13
1.00
1.04
1.04
1.19
1.23
1.23
2.90
2.90
3.04
3.04
6.07
6.07 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.61
0.61
0.98
1.43
1.19
1.24
1.65
2.34
2.34
2.34
2.34 | 0.00
0.00
0.00
0.01
0.00
0.03
0.03
0.03 | 0.00 0.02
0.00 0.11
0.00 0.14
0.00 0.24
0.00 0.25
0.00 0.97
0.00 0.99
0.00 1.33
0.00 1.41
0.00 1.58
0.00 2.79
0.00 2.79
0.00 2.85
0.00 2.85
0.01 4.11
0.14 4.98 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.4
2.4
3.3
4.3
4.3
7.7 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
R | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 RP:Coax9 RP:Coax8 RP:Coax8 RP:SW RP:SW RP:SW RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
35.50
38.75
38.75 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.77
7.23
7.23
6.47
6.36
6.36
5.73
5.73
5.22
5.22
4.77
4.77 | 0.86
0.79
0.79
0.72
0.68
0.62
0.62
0.57
0.57
0.49
0.48
0.41
0.41
0.36
0.36
0.32 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05
-0.04
-0.04 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41
32.41
43.05
43.05
62.79
62.79 | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.27 -0.27 -0.50 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.21 -21.21 | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.5 & -27.36 \\ 4.5 & -27.36 \\ 4.5 & -27.82 \\ \end{array}$ | 0.05
0.05
0.09
0.09
0.13
1.00
1.04
1.04
1.19
1.23
1.23
2.90
2.90
3.04
6.07
6.07
6.07 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.61
0.61
0.98
0.98
1.43
1.19
1.24
1.65
2.34
2.34
2.32
4.08 | 0.00
0.00
0.00
0.01
0.00
0.03
0.03
0.03
0.03
0.03
0.03
0.05
0.06
0.05
0.05
0.01
0.10 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.43 0.00 1.58 0.00 1.58 0.00 2.79 0.00 2.85 0.00 2.85 0.00 2.85 0.01 4.98 0.14 5.00 | 0.1
0.2
0.2
0.4
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
2.4
3.3
4.3
4.3
7.7 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP Tube 3 End 47.00 3.68 0.22 -0.03 113.96 -21.19 4.5 -29.55 6.26 0.00 -0.86 5.83 0.10 0.11 6.70 10.3 2 | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
R | RP:ANTFUT RP:ANTFUT Tube 1 SpliceT SpliceT RP:ANT Tube 2 Tube 2 Tube 2 RP:Coax9 RP:Coax9 RP:Coax9 RP:Coax8 RP:SW RP:SW RP:SW RP:Coax8 | End Origin | 3.00
3.00
7.50
7.50
12.00
12.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
35.50
38.75
38.75
42.00 | 10.18
10.18
9.48
9.48
8.78
8.78
8.31
7.77
7.27
7.23
6.47
6.36
6.36
5.73
5.73
5.22
5.22
4.77
4.77 | 0.86
0.79
0.79
0.72
0.68
0.68
0.62
0.57
0.57
0.49
0.48
0.41
0.41
0.36
0.36
0.32
0.32 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05
-0.05
-0.05
-0.04
-0.04 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
1.07
4.58
4.58
8.24
14.18
14.18
15.10
20.11
32.41
43.05
43.05
43.05
62.79
62.79
82.67 | -0.00 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.27 -0.27 -0.50 -0.50 -0.86 -0.91 -0.92 -1.25 -1.25 -1.25 -1.25 -1.21 -21.21 | $\begin{array}{ccccc} -0.0 & -0.24 \\ -0.0 & -0.24 \\
-0.0 & -0.47 \\ -0.0 & -0.47 \\ -0.0 & -0.72 \\ -0.0 & -0.72 \\ -0.0 & -6.89 \\ 0.0 & -6.89 \\ 0.0 & -7.20 \\ 0.0 & -7.20 \\ -0.0 & -8.73 \\ -0.0 & -8.73 \\ -0.0 & -9.02 \\ -0.0 & -9.02 \\ -0.0 & -12.80 \\ -0.0 & -12.80 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.0 & -14.41 \\ -0.5 & -27.36 \\ -0.5 & -27.36 \\ -0.5 & -27.82 \\ -0.5$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.19
1.19
1.23
2.90
2.90
3.04
6.07
6.12
6.12 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.16
0.16
0.61
0.98
0.98
1.43
1.24
1.65
2.34
2.32
3.40
4.08
4.08 | 0.00
0.00
0.00
0.01
0.00
0.03
0.03
0.03
0.03
0.03
0.03
0.05
0.06
0.05
0.11
0.10
0.10 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.99 0.00 1.33 0.00 1.41 0.00 1.58 0.00 2.13 0.00 2.79 0.00 2.85 0.00 2.85 0.01 4 4.98 0.14 5.00 0.13 5.73 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
2.4
3.3
4.3
4.3
7.7
7.7
8.8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | | RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
RP
R | RP:ANTFUT RP:ANTFUT SpliceT SpliceT RP:ANT Tube 1 SpliceT RP:ANT Tube 2 Tube 2 RP:Coax9 RP:Coax9 RP:Coax9 RP:SW RP:SW RP:SW RP:Coax8 RP:Coax7 RP:Coax7 | End Origin | 3.00
3.00
7.50
7.50
12.00
15.00
15.00
18.50
22.00
27.00
27.75
27.75
32.00
35.50
35.50
38.75
42.00
42.00 | 10.18
10.18
9.48
9.48
8.78
8.31
8.31
7.77
7.77
7.23
6.47
6.36
6.36
5.73
5.73
5.22
5.22
4.77
4.77
4.32
4.32 | 0.86
0.79
0.79
0.72
0.72
0.68
0.62
0.62
0.57
0.57
0.49
0.48
0.41
0.36
0.36
0.36
0.32
0.32 | -0.08
-0.08
-0.08
-0.07
-0.07
-0.07
-0.07
-0.06
-0.06
-0.06
-0.06
-0.05
-0.05
-0.05
-0.05
-0.04
-0.04
-0.04 | 0.04
0.04
0.26
0.26
0.67
0.67
1.07
1.07
4.58
4.58
8.24
14.18
14.18
14.18
15.10
20.11
32.41
43.05
43.05
62.79
62.79
82.67
82.67 | -0.00 -0.01 -0.01 -0.02 -0.03 -0.27 -0.50 -0.86 -0.86 -0.91 -0.92 -1.25 -1.25 -1.54 -21.21 -21.21 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.05
0.05
0.09
0.09
0.13
0.13
1.00
1.04
1.19
1.23
1.23
2.90
2.90
3.04
3.04
6.07
6.07
6.12
6.12
6.26 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.02
0.09
0.09
0.19
0.11
0.16
0.61
0.98
0.98
1.43
1.19
1.24
1.65
2.34
2.82
3.16
4.08
4.08
4.85 | 0.00
0.00
0.00
0.01
0.00
0.00
0.03
0.03
0.03
0.03
0.03
0.03
0.05
0.06
0.05
0.11
0.10
0.10
0.10 | 0.00 0.02 0.00 0.11 0.00 0.14 0.00 0.24 0.00 0.55 0.00 0.97 0.00 0.97 0.00 1.33 0.00 1.41 0.00 1.83 0.00 1.53 0.00 2.79 0.00 2.85 0.00 2.73 0.13 5.73 0.13 5.73 | 0.1
0.2
0.2
0.4
0.2
0.3
0.8
1.5
1.5
2.0
2.2
2.8
2.4
2.4
3.3
4.3
4.3
4.7
7.7
7.7
8.8
8.9 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | RP | Tube 3 | Origin | 47.00 | 3.68 | 0.22 | -0.03 | 113.96 | -21.19 | 4.5 -30.32 | 6.33 | 0.00 -0.88 | 5.83 | 0.10 | 0.11 | 6.72 | 10.3 | 2 | |----|----------|--------|--------|------|------|-------|--------|--------|------------|------|-------------|------|------|------|------|------|---| | RP | RP:Coax6 | End | 52.00 | 3.08 | 0.18 | -0.03 | 145.59 | -21.17 | 4.5 -30.32 | 6.33 | 0.00 - 0.84 | 6.58 | 0.09 | 0.10 | 7.43 | 11.4 | 2 | | RP | RP:Coax6 | Origin | 52.00 | 3.08 | 0.18 | -0.03 | 145.59 | -21.17 | 4.5 -32.26 | 6.48 | 0.00 -0.89 | 6.58 | 0.09 | 0.10 | 7.48 | 11.5 | 2 | | RP | Tube 3 | End | 57.00 | 2.53 | 0.14 | -0.02 | 177.97 | -21.14 | 4.5 -32.26 | 6.48 | 0.00 -0.84 | 7.18 | 0.09 | 0.09 | 8.03 | 12.4 | 2 | | RP | Tube 3 | Origin | 57.00 | 2.53 | 0.14 | -0.02 | 177.97 | -21.14 | 4.5 -33.12 | 6.55 | 0.01 -0.87 | 7.18 | 0.09 | 0.09 | 8.05 | 12.4 | 2 | | RP | RP:Coax5 | End | 62.00 | 2.04 | 0.11 | -0.02 | 210.70 | -21.11 | 4.5 -33.12 | 6.55 | 0.01 -0.82 | 7.65 | 0.09 | 0.08 | 8.47 | 13.0 | 2 | | RP | RP:Coax5 | Origin | 62.00 | 2.04 | 0.11 | -0.02 | 210.70 | -21.11 | 4.5 -35.14 | 6.70 | 0.01 -0.87 | 7.65 | 0.09 | 0.08 | 8.52 | 13.1 | 2 | | RP | SpliceT | End | 67.00 | 1.60 | 0.08 | -0.02 | 244.20 | -21.08 | 4.5 -35.14 | 6.70 | 0.01 -0.83 | 8.02 | 0.08 | 0.07 | 8.85 | 13.6 | 2 | | RP | SpliceT | Origin | 67.00 | 1.60 | 0.08 | -0.02 | 244.20 | -21.09 | 4.5 -36.09 | 6.77 | 0.01 -0.86 | 8.02 | 0.08 | 0.07 | 8.88 | 13.7 | 2 | | RP | RP:Coax4 | End | 72.00 | 1.22 | 0.06 | -0.01 | 278.07 | -21.05 | 4.5 -36.09 | 6.77 | 0.01 -0.82 | 8.30 | 0.08 | 0.07 | 9.12 | 14.0 | 2 | | RP | RP:Coax4 | Origin | 72.00 | 1.22 | 0.06 | -0.01 | 278.07 | -21.06 | 4.5 -38.21 | 6.93 | 0.00 -0.86 | 8.30 | 0.08 | 0.07 | 9.17 | 14.1 | 2 | | RP | Tube 4 | End | 77.00 | 0.89 | 0.04 | -0.01 | 312.72 | -21.03 | 4.5 -38.21 | 6.93 | 0.00 -0.83 | 8.53 | 0.08 | 0.06 | 9.36 | 14.4 | 2 | | RP | Tube 4 | Origin | 77.00 | 0.89 | 0.04 | -0.01 | 312.72 | -21.03 | 4.5 -39.25 | 7.01 | 0.00 -0.85 | 8.53 | 0.08 | 0.06 | 9.38 | 14.4 | 2 | | RP | RP:Coax3 | End | 82.00 | 0.61 | 0.01 | -0.01 | 347.76 | -21.03 | 4.5 -39.25 | 7.01 | 0.00 -0.82 | 8.70 | 0.08 | 0.06 | 9.52 | 14.6 | 2 | | RP | RP:Coax3 | Origin | 82.00 | 0.61 | 0.03 | -0.01 | 347.76 | -21.01 | 4.5 -41.45 | 7.17 | 0.00 -0.86 | 8.70 | 0.08 | 0.06 | 9.57 | 14.7 | 2 | | RP | Tube 4 | End | 87.00 | 0.39 | 0.03 | -0.01 | 383.61 | -20.99 | 4.5 -41.45 | 7.17 | 0.00 -0.83 | 8.84 | 0.08 | 0.05 | 9.67 | 14.9 | 2 | | RP | Tube 4 | Origin | 87.00 | 0.39 | 0.02 | -0.01 | 383.61 | -20.99 | 4.5 -42.58 | 7.25 | 0.00 -0.85 | 8.84 | 0.08 | 0.05 | 9.69 | 14.9 | 2 | | RP | RP:Coax2 | End | 92.00 | 0.22 | 0.02 | -0.01 | 419.88 | -20.99 | 4.5 -42.58 | 7.25 | 0.00 -0.83 | 8.94 | 0.00 | 0.05 | 9.76 | 15.0 | 2 | | RP | RP:Coax2 | | 92.00 | 0.22 | 0.01 | -0.01 | 419.88 | -20.98 | 4.5 -44.87 | 7.42 | 0.00 -0.82 | 8.94 | 0.07 | 0.05 | 9.80 | 15.1 | 2 | | | | Origin | | | | | | | | | | | | | | | | | RP | Tube 4 | End | 97.00 | 0.10 | 0.00 | -0.00 | 456.97 | -20.98 | 4.5 -44.87 | 7.42 | 0.00 -0.83 | 9.02 | 0.07 | 0.05 | 9.85 | 15.2 | 2 | | RP | Tube 4 | Origin | 97.00 | 0.10 | 0.00 | -0.00 | 456.97 | -20.98 | 4.5 -46.08 | 7.51 | -0.00 -0.85 | 9.02 | 0.07 | 0.05 | 9.87 | 15.2 | 2 | | RP | RP:Coax1 | | 102.00 | 0.02 | 0.00 | -0.00 | 494.52 | -20.98 | 4.5 -46.08 | 7.51 | -0.00 -0.82 | 9.07 | 0.07 | 0.04 | 9.90 | 15.5 | 2 | | RP | RP:Coax1 | Origin | | 0.02 | 0.00 | -0.00 | 494.52 | -20.99 | 4.5 -48.46 | 7.68 | -0.00 -0.86 | 9.07 | 0.07 | 0.04 | 9.94 | 15.5 | 2 | | RP | RP:g | End | 107.00 | 0.00 | 0.00 | 0.00 | 532.91 | -21.00 | 4.5 -48.46 | 7.68 | -0.00 -0.84 | 9.11 | 0.07 | 0.04 | 9.95 | 15.8 | 2 | Detailed Tubular X-Arm Usages for Load Case "NESC Rule 250D": | Element | Joint | Joint | | Trans. | Long. | Vert. | Vert. | | | Axial | | | P/A | M/S. | V/Q. | T/R. | Res. | | | |---------|----------|----------|---------------|---------------|---------------|---------------|----------------|----------------|------|-----------------|-----------------|-----------------|-------|-------|-------|-------|-------|------------|-----| | Label | Label | Position | Dist.
(ft) | Defl.
(in) | Defl.
(in) | Defl.
(in) | Mom.
(ft-k) | Mom.
(ft-k) | | Force
(kips) | Shear
(kips) | Shear
(kips) | (ksi) | (ksi) | (ksi) | (ksi) | (ksi) | Usage
% | Pt. | | XArm | XArm:O | Origin | 0.00 | 5.24 | 0.49 | -1.07 | -2.67 | -0.00 | 0.0 | -2.57 | -8.34 | -0.01 | -0.18 | 0.00 | 1.20 | 0.00 | 2.09 | 3.2 | 4 | | XArm | #sXArm:0 | End | 3.87 | 5.23 | 0.47 | -0.51 | -34.98 | -0.06 | 0.0 | -2.57 | -8.34 | -0.01 | -0.18 | 9.76 | 0.47 | 0.00 | 9.97 | 15.3 | 2 | | XArm | #sXArm:0 | Origin | 3.87 | 5.23 | 0.47 | -0.51 | -34.98 | -0.06 | 0.0 | -2.59 | -8.52 | -0.01 | -0.18 | 9.76 | 0.48 | 0.00 | 9.97 | 15.3 | 2 | | XArm | XArm:LP | End | 7.75 | 5.23 | 0.44 | -0.07 | -68.00 |
-0.12 | 0.0 | -2.59 | -8.52 | -0.01 | -0.18 | 18.97 | 0.48 | 0.00 | 19.17 | 29.5 | 2 | | XArm | XArm:LP | Origin | 7.75 | 5.23 | 0.44 | -0.07 | -67.99 | -1.50 | -0.4 | 2.47 | 4.94 | 0.11 | 0.17 | 19.13 | 0.28 | 0.06 | 19.31 | 29.7 | 2 | | XArm | #sXArm:1 | End | 11.63 | 5.23 | 0.42 | 0.16 | -48.84 | -1.08 | -0.4 | 2.47 | 4.94 | 0.11 | 0.17 | 13.74 | 0.28 | 0.06 | 13.92 | 21.4 | 2 | | XArm | #sXArm:1 | Origin | 11.63 | 5.23 | 0.42 | 0.16 | -48.84 | -1.08 | -0.4 | 2.49 | 4.74 | 0.11 | 0.17 | 13.74 | 0.27 | 0.06 | 13.93 | 21.4 | 2 | | XArm | XArm:ML | End | 15.50 | 5.23 | 0.40 | 0.22 | -30.46 | -0.67 | -0.4 | 2.49 | 4.74 | 0.11 | 0.17 | 8.57 | 0.27 | 0.06 | 8.76 | 13.5 | 2 | | XArm | XArm:ML | Origin | 15.50 | 5.23 | 0.40 | 0.22 | -33.12 | -0.68 | -0.4 | -0.18 | -3.66 | 0.09 | -0.01 | 9.31 | 0.21 | 0.06 | 9.34 | 14.4 | 2 | | XArm | #sXArm:2 | End | 19.38 | 5.23 | 0.38 | 0.16 | -47.31 | -0.32 | -0.4 | -0.18 | -3.66 | 0.09 | -0.01 | 13.23 | 0.21 | 0.06 | 13.25 | 20.4 | 2 | | | #sXArm:2 | Origin | 19.38 | 5.23 | 0.38 | 0.16 | -47.31 | -0.32 | -0.4 | -0.19 | -3.85 | 0.09 | -0.01 | 13.23 | 0.22 | 0.06 | 13.25 | 20.4 | 2 | | XArm | | End | 23.25 | 5.23 | 0.36 | -0.07 | -62.23 | 0.04 | -0.4 | -0.19 | -3.85 | 0.09 | -0.01 | 17.36 | 0.22 | 0.06 | 17.38 | 26.7 | 2. | | XArm | | Origin | 23.25 | | 0.36 | -0.07 | -62.23 | -0.10 | | | 8.47 | 0.01 | 0.19 | 17.36 | 0.47 | 0.00 | 17.57 | 27.0 | 2 | | | #sXArm:3 | End | 27.13 | 5.23 | 0.34 | -0.50 | -29.40 | -0.05 | | | 8.47 | 0.01 | 0.19 | 8.20 | 0.47 | 0.00 | 8.43 | 13.0 | 2 | | | #sXArm:3 | Origin | 27.13 | | 0.34 | -0.50 | -29.40 | -0.05 | | | | 0.01 | 0.19 | 8.20 | 0.46 | 0.00 | 8.43 | 13.0 | 2 | | XArm | | End | 31.00 | | 0.33 | -1.02 | 2.67 | 0.00 | | | | 0.01 | 0.19 | 0.00 | 1.19 | 0.00 | 2.08 | 3.2 | 4 | Summary of Clamp Capacities and Usages for Load Case "NESC Rule 250D": | Clamp Forc
Label | | | - | Factored Holding | _ | Input
Hardware | | Hardware
Usage | | | |---------------------|-----------------|--------|--------------------|--------------------|------|--------------------|--------------------|-------------------|------|--| | | | (kips) | Capacity
(kips) | Capacity
(kips) | % | Capacity
(kips) | Capacity
(kips) | 8 | % | | | | RAntFUT
RAnt | 0.000 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Coax1 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |-------|-------|--------|------|------|------|------|------|------| | Coax2 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax3 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax4 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax5 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax6 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax7 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax8 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Coax9 | 1.125 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | Summary of Suspension Capacities and Usages for Load Case "NESC Rule 250D": | | Suspension
Label | Tension | Tension | Factored
Tension
Capacity | | Hardware | Factored
Hardware
Capacity | | Max.
Usage | |---|---------------------|---------|---------|---------------------------------|------|----------|----------------------------------|------|---------------| | | | (kips) | (kips) | (kips) | % | (kips) | (kips) | % | % | | _ | SWL | 3.834 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | SWR | 3.834 | 25.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | PHL | 8.633 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | PHM | 8.633 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | PHR | 8.633 | 30.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ## Summary of Steel Pole Usages: | Steel | Pole | Maximum | Load | Case | H€ | eight | Segment | Weight | |-------|-------|---------|------|------|-----|-------|---------|---------| | 1 | Label | Usage % | | | AGL | (ft) | Number | (lbs) | | | LP | 39.01 | NESC | 250C | | 2.5 | 18 | 12719.3 | | | RP | 36.88 | NESC | 250C | | 2.5 | 25 | 14075.1 | #### Base Plate Results by Bend Line: | Pole
Label | Load Cas | Line | Start
X
(ft) | Start
Y
(ft) | | End
Y
(ft) | (in) | (ksi) | Mom. Sum (ft-k) | _ | Max Load
(kips) | Min Plate
Thickness
(in) | (in) | Usage
% | | |-----------------------|-----------------------|----------|--------------------|--------------------|-----------------------|------------------|---------|--------------------|----------------------|-----------------|--------------------|--------------------------------|-------|------------|-------------------| | LP NESC
overridden | Rule 250 | | | | | | 12.996 | 33.029 | 45.084 | -1.5 | 118.589 | | 2.750 | | Note: actual load | | | Rule 250 |)B 2 | -1.479 | 1.479 | -2.021 | 0.541 | 12.996 | 24.745 | 33.777 | -1.5 | 101.318 | 1.935 | 2.750 | 49.49 | Note: actual load | | LP NESC
overridden | Rule 250
by one ha | | | | -1.479 -
pacity at | | | | 28.240
S/SEI 48-1 | | -88.323 | 1.769 | 2.750 | 41.38 | Note: actual load | | LP NESC
overridden | Rule 250
by one ha | alf of p | ole mom | ent car | | the b | oase as | per ASCE | 40.426
SEI 48-1 | | -107.310 | 2.116 | 2.750 | | Note: actual load | | overridden | - | alf of p | ole mom | ent car | | the b | oase as | per ASCE | | 1 6.4.2 | -112.684 | 2.176 | 2.750 | | Note: actual load | | overridden | - | alf of p | ole mom | ent car | | the b | oase as | per ASCE | | | | 1.866 | 2.750 | | Note: actual load | | overridden | | alf of p | ole mom | ent car | | the h | oase as | per ASCE | | | 94.227 | 1.841 | 2.750 | | Note: actual load | | overridden | Rule 250
by one ha | | | | 0.541
pacity at | | | | 42.765
S/SEI 48-1 | | 113.215 | 2.177 | 2.750 | 62.66 | Note: actual load | | LP
overridden | NESC 250 | | | | -1.479 | | | | 43.904 | | 115.752 | 2.206 | 2.750 | 64.33 | Note: actual load | | LP
overridden | NESC 250 | C 2 | -1.479 | 1.479 | -2.021 | 0.541 | 12.996 | 23.690 | 32.336 | -1.5 | 97.975 | 1.893 | 2.750 | 47.38 | Note: actual load | | LP
overridden | NESC 250 | C 3 | -2.021 | -0.541 | -1.479 - | -1.479 | 12.996 | 21.771 | 29.716 | -1.5 | -91.775 | 1.815 | 2.750 | 43.54 | Note: actual load | | LP
overridden | NESC 250 | C 4 | -1.479 | -1.479 | -0.541 - | -2.021 | 12.996 | 30.517 | 41.655 | -1.5 | -110.277 | 2.148 | 2.750 | 61.03 | Note: actual load | | LP
overridden | NESC 250
by one ha | | | | 1.479 -
pacity at | | | | 42.632
SEI 48-1 | | -112.543 | 2.173 | 2.750 | 62.47 | Note: actual load | | LP
overridden | NESC 250
by one ha | | | | 2.021 -
pacity at | | | | | -1.5
1 6.4.2 | -94.765 | 1.855 | 2.750 | | Note: actual load | | LP
overridden | - | alf of p | ole mom | ent car | | the b | oase as | per ASCE | | | | 1.853 | 2.750 | | Note: actual load | | LP
overridden | NESC 250
by one ha | | | | | | | 31.448
per ASCE | 42.926
SEI 48-1 | | 113.486 | 2.181 | 2.750 | 62.90 | Note: actual load | | LP NESC | Rule 250 | | | | | | | 33.301 | 45.455 | | 119.416 | 2.244 | 2.750 | 66.60 | Note: actual load | | | Rule 250 | D 2 | -1.479 | 1.479 | -2.021 | 0.541 | 12.996 | 25.165 | 34.349 | -1.5 | 102.535 | 1.951 | 2.750 | 50.33 | Note: actual load | | | Rule 250 | D 3 | -2.021 | -0.541 | -1.479 - | -1.479 | 12.996 | 20.236 | 27.622 | -1.5 | -86.964 | 1.749 | 2.750 | 40.47 | Note: actual load | | | Rule 250 | _ | • | _ | -0.541 - | | | - | 39.991 | | -106.314 | 2.105 | 2.750 | 58.60 | Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | |--|-------|-------|--------------------------| | LP NESC Rule 250D 5 0.541 -2.021 1.479 -1.479 12.996 31.743 43.328 -1.5 -114.048 | 2.191 | 2.750 | 63.49 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2
LP NESC Rule 250D 6 1.479 -1.479 2.021 -0.541 12.996 23.606 32.222 -1.5 -97.167 | 1 000 | 2.750 | 47 21 Note: agtual load | | LP NESC Rule 250D 6 1.479 -1.479 2.021 -0.541 12.996 23.606 32.222 -1.5 -97.167 overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 1.890 | 2.750 | 47.21 Note: actual load | | LP NESC Rule 250D 7 2.021 0.541 1.479 1.479 12.996 21.794 29.748 -1.5 92.332 | 1.816 | 2.750 | 43.59 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 1.010 | 2.750 | 13.33 Noce accual road | | LP NESC Rule 250D 8 1.479 1.479 0.541 2.021 12.996 30.856 42.118 -1.5 111.682 | 2.160 | 2.750 | 61.71 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | | | | | | | RP NESC Rule 250B 1 -0.541 2.021 -1.479 1.479 12.996 33.147 45.245 -1.5 119.081 | 2.239 | 2.750 | 66.29 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11$ $6.4.2$ | | | | | RP NESC Rule 250B 2 -1.479 1.479 -2.021 0.541 12.996 24.748 33.781 -1.5 101.504 | 1.935 | 2.750 | 49.50 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 4 ==0 | | | | RP NESC Rule 250B 3 -2.021 -0.541 -1.479 -1.479 12.996 20.705 28.261 -1.5 -88.213 | 1.770 | 2.750 | 41.41 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 0 112 | 2 750 | FO OF Make: askural land | | RP NESC Rule 250B 4 -1.479 -1.479 -0.541 -2.021 12.996 29.523 40.299 -1.5 -106.909 overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 2.113 | 2.750 | 59.05 Note: actual load | | RP NESC Rule 250B 5 0.541 -2.021 1.479 -1.479 12.996 30.632 41.812 -1.5 -110.416 | 2.152 | 2.750 | 61.26 Note: actual load | |
overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 2.132 | 2.750 | 01.20 Nocci accuai ioaa | | RP NESC Rule 250B 6 1.479 -1.479 2.021 -0.541 12.996 22.233 30.348 -1.5 -92.840 | 1.834 | 2.750 | 44.47 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | | RP NESC Rule 250B 7 2.021 0.541 1.479 1.479 12.996 23.220 31.694 -1.5 96.877 | 1.874 | 2.750 | 46.44 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI $48 ext{-}11$ $6.4.2$ | | | | | RP NESC Rule 250B 8 1.479 1.479 0.541 2.021 12.996 32.039 43.732 -1.5 115.573 | 2.201 | 2.750 | 64.08 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI $48 ext{-}11$ $6.4.2$ | | | | | | 0.001 | 0 550 | 64.00 77.1 | | RP NESC 250C 1 -0.541 2.021 -1.479 1.479 12.996 32.016 43.701 -1.5 115.320 | 2.201 | 2.750 | 64.03 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2
RP NESC 250C 2 -1.479 1.479 -2.021 0.541 12.996 23.431 31.982 -1.5 97.249 | 1.883 | 2.750 | 46.86 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 1.003 | 2.750 | 40.00 Note: actual load | | RP NESC 250C 3 -2.021 -0.541 -1.479 -1.479 12.996 22.036 30.078 -1.5 -92.524 | 1.826 | 2.750 | 44.07 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | | RP NESC 250C 4 -1.479 -1.479 -0.541 -2.021 12.996 30.673 41.868 -1.5 -110.736 | 2.154 | 2.750 | 61.35 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11$ $6.4.2$ | | | | | RP NESC 250C 5 0.541 -2.021 1.479 -1.479 12.996 30.813 42.059 -1.5 -111.177 | 2.159 | 2.750 | 61.63 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | | RP NESC 250C 6 1.479 -1.479 2.021 -0.541 12.996 22.228 30.341 -1.5 -93.106 | 1.834 | 2.750 | 44.46 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 1 075 | 2 750 | 46 40 Nata: astural land | | RP NESC 250C 7 2.021 0.541 1.479 1.479 12.996 23.238 31.720 -1.5 96.667 overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 1.875 | 2.750 | 46.48 Note: actual load | | RP NESC 250C 8 1.479 1.479 0.541 2.021 12.996 31.876 43.510 -1.5 114.879 | 2.196 | 2.750 | 63.75 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 2.170 | 2.750 | 03.73 Noce accual road | | 0, | | | | | RP NESC Rule 250D 1 -0.541 2.021 -1.479 1.479 12.996 33.403 45.595 -1.5 119.864 | 2.248 | 2.750 | 66.81 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11 6.4.2$ | | | | | RP NESC Rule 250D 2 -1.479 1.479 -2.021 0.541 12.996 25.137 34.312 -1.5 102.641 | 1.950 | 2.750 | 50.27 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | | RP NESC Rule 250D 3 -2.021 -0.541 -1.479 -1.479 12.996 20.294 27.700 -1.5 -86.986 | 1.752 | 2.750 | 40.59 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 0 100 | 0 550 | 50 40 27 1 1 1 1 | | RP NESC Rule 250D 4 -1.479 -1.479 -0.541 -2.021 12.996 29.238 39.909 -1.5 -106.017 | 2.103 | 2.750 | 58.48 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2
RP NESC Rule 250D 5 0.541 -2.021 1.479 -1.479 12.996 31.028 42.352 -1.5 -111.680 | 2.166 | 2.750 | 62.06 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | 2.100 | 4./50 | 02.00 Note: actual 10ad | | RP NESC Rule 250D 6 1.479 -1.479 2.021 -0.541 12.996 22.762 31.069 -1.5 -94.457 | 1.855 | 2.750 | 45.52 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 | | | | | RP NESC Rule 250D 7 2.021 0.541 1.479 1.479 12.996 22.669 30.943 -1.5 95.169 | 1.852 | 2.750 | 45.34 Note: actual load | | overridden by one half of pole moment capacity at the base as per ASCE/SEI $48-11\ 6.4.2$ | | | | | RP NESC Rule 250D 8 1.479 1.479 0.541 2.021 12.996 31.613 43.151 -1.5 114.201 | 2.187 | 2.750 | 63.23 Note: actual load | | | | | | overridden by one half of pole moment capacity at the base as per ASCE/SEI 48-11 6.4.2 #### Summary of Tubular X-Arm Usages: | Tubular X-Ar | m Maximum | ximum Load Case | | | Height | | Segment | Weight | | |--------------|-----------|-----------------|------|------|--------|------|---------|--------|--| | Labe | l Usage % | | | | AGL | (ft) | Number | (lbs) | | | XArı | m 30.21 | NESC | Rule | 250B | | 71.5 | 3 | 1523.8 | | *** Maximum Stress Summary for Each Load Case #### Summary of Maximum Usages by Load Case: | | Load | Case | Maximum
Usage % | Element
Label | E | Lement
Type | |------|------|------|--------------------|------------------|------|----------------| | NESC | Rule | 250B | 66.29 | RP | Base | Plate | | | NESC | 250C | 64.33 | LP | Base | Plate | | NESC | Rule | 250D | 66.81 | RP | Base | Plate | ## Summary of Steel Pole Usages by Load Case: | | Load | Case | Maximum
Usage % | Steel Pole
Label | Height
AGL (ft) | - | |------|------|------|--------------------|---------------------|--------------------|----| | NESC | Rule | 250B | 24.10 | LP | 2.5 | 18 | | | NESC | 250C | 39.01 | LP | 2.5 | 18 | | NESC | Rule | 250D | 16.05 | LP | 2.5 | 18 | ## Summary of Base Plate Usages by Load Case: | | Load | Case | Pole
Label | | - | Vertical
Load | X
Moment | | Bending
Stress | Bolt
Moment | # Bolts
Acting On | | Minimum
Plate | Usage | |------|------|------|---------------|---|--------|------------------|-------------|------------|-------------------|----------------|----------------------|-----------|------------------|-------| | | | | Luber | # | | Loud | 1101110110 | 1101110110 | 501055 | | - | Bend Line | | | | | | | | | (in) | (kips) | (ft-k) | (ft-k) | (ksi) | (ft-k) | | (kips) | (in) | % | | NESC | Rule | 250B | LP | 1 | 12.996 | 35.427 | 1856.686 | -69.421 | 33.029 | 45.084 | -1.5 | 118.589 | 2.235 | 66.06 | | | NESC | 250C | LP | 1 | 12.996 | 19.257 | 1857.753 | -29.274 | 32.165 | 43.904 | -1.5 | 115.752 | 2.206 | 64.33 | | NESC | Rule | 250D | LP | 1 | 12.996 | 32.205 | 1855.296 | -99.895 | 33.301 | 45.455 | -1.5 | 119.416 | 2.244 | 66.60 | | NESC | Rule | 250B | RP | 1 | 12.996 | 51.986 | 1857.431 | -45.302 | 33.147 | 45.245 | -1.5 | 119.081 | 2.239 | 66.29 | | | NESC | 250C | RP | 1 | 12.996 | 24.858 | 1857.975 | -5.701 | 32.016 | 43.701 | -1.5 | 115.320 | 2.201 | 64.03 | | NESC | Rule | 250D | RP | 1 | 12.996 | 49.103 | 1856.543 | -73.149 | 33.403 | 45.595 | -1.5 | 119.864 | 2.248 | 66.81 | ## Summary of Tubular X-Arm Usages by Load Case: | | Load | Case | Maximum
Usage % | Tubular | | Height
AGL (ft) | - | |------|------|------|--------------------|---------|------|--------------------|---| | NESC | Rule | 250B | 30.21 | | XArm | 71.5 | 3 | | | NESC | 250C | 16.30 | | XArm | 71.5 | 3 | | NESC | Rule | 250D | 29.71 | | XArm | 71.5 | 3 | #### Summary of Insulator Usages: | Insulator | Insulator | Maximum | Load | Case Weight | |-----------|-----------|---------|------|-------------| | Label | Type | Usage % | | (lbs) | | RAntFUT | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | |---------|------------|------|------|------|------|------| | RAnt | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax1 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax2 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax3 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax4 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax5 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax6 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax7 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax8 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | Coax9 | Clamp | 0.00 | NESC | Rule | 250B | 0.0 | | SWL | Suspension | 0.00 | NESC | Rule | 250B | 1.0 | | SWR | Suspension | 0.00 | NESC | Rule | 250B | 1.0 | | PHL | Suspension | 0.00 | NESC | Rule | 250B | 50.0 | | PHM | Suspension | 0.00 | NESC | Rule | 250B | 50.0 | | PHR | Suspension | 0.00 | NESC | Rule | 250B | 50.0 | Loads At Insulator Attachments For All Load Cases: | Load
Case | Insulator
Label | Insulator
Type | Structure
Attach
Label | Structure
Attach
Load X
(kips) | Structure
Attach
Load Y
(kips) | Attach | Structure
Attach
Load Res.
(kips) | |----------------|--------------------|-------------------|------------------------------|---|---|--------|--| | NESC Rule 250B | RAntFUT | Clamp | RP:ANTFUT | 0.000 | 0.000 | -0.000 | 0.000 | | NESC Rule 250B | RAnt | Clamp | RP:ANT | 0.000 | 1.734 | 7.359 | 7.561 | | NESC Rule 250B | Coax1 | Clamp | RP:Coax1 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax2 | Clamp | RP:Coax2 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax3 | Clamp | RP:Coax3 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax4 | Clamp | RP:Coax4 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax5 | Clamp | RP:Coax5 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Соахб | Clamp | RP:Coax6 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax7 | Clamp | RP:Coax7 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax8 | Clamp | RP:Coax8 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | Coax9 | Clamp | RP:Coax9 | 0.000 | 0.172 | 0.920 | 0.936 | | NESC Rule 250B | | Suspension | | 0.000 | 1.891 | 2.422 | 3.073 | | NESC Rule 250B | | Suspension | | 0.000 | 1.891 | 2.422 | 3.073 | | NESC Rule 250B | | Suspension | _ | 0.000 | 3.533 | 8.055 | 8.796 | | NESC Rule 250B
 | Suspension | VangCM | 0.000 | 3.533 | 8.055 | 8.796 | | NESC Rule 250B | | Suspension | VangCR | 0.000 | 3.533 | 8.055 | 8.796 | | NESC 250C | RAntFUT | _ | RP:ANTFUT | 0.000 | 0.000 | -0.000 | 0.000 | | NESC 250C | RAnt | Clamp | RP:ANT | 0.061 | 5.421 | 4.018 | 6.748 | | NESC 250C | Coaxl | Clamp | RP:Coax1 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax2 | Clamp | RP:Coax2 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax3 | Clamp | RP:Coax3 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax4 | Clamp | RP:Coax4 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax5 | Clamp | RP:Coax5 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax6 | Clamp | RP:Coax6 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax7 | Clamp | RP:Coax7 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax8 | Clamp | RP:Coax8 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | Coax9 | Clamp | RP:Coax9 | 0.000 | 0.501 | 0.250 | 0.560 | | NESC 250C | | Suspension | | 0.000 | 1.712 | 0.673 | 1.840 | | NESC 250C | | Suspension | | 0.000 | 1.712 | 0.673 | 1.840 | | NESC 250C | | Suspension | VangCL | 0.000 | 5.241 | 3.462 | 6.281 | | NESC 250C | | Suspension | VangCM | 0.000 | 5.241 | 3.462 | 6.281 | | NESC 250C | | Suspension | VangCR | 0.000 | 5.241 | 3.462 | 6.281 | | NESC Rule 250D | RAntFUT | _ | RP:ANTFUT | 0.000 | 0.000 | -0.000 | 0.000 | | NESC Rule 250D | RAnt | Clamp | RP:ANT | 0.053 | 0.753 | 5.907 | 5.955 | | NESC Rule | | Coax1 | Clamp | RP:Coax1 | 0.000 | 0.074 | 1.123 | 1.125 | |-----------|------|-------|------------|----------|-------|-------|-------|-------| | NESC Rule | 250D | Coax2 | Clamp | RP:Coax2 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax3 | Clamp | RP:Coax3 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax4 | Clamp | RP:Coax4 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax5 | Clamp | RP:Coax5 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax6 | Clamp | RP:Coax6 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax7 | Clamp | RP:Coax7 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax8 | Clamp | RP:Coax8 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | Coax9 | Clamp | RP:Coax9 | 0.000 | 0.074 | 1.123 | 1.125 | | NESC Rule | 250D | SWL | Suspension | SWLVANG | 0.000 | 1.590 | 3.489 | 3.834 | | NESC Rule | 250D | SWR | Suspension | SWRVANG | 0.000 | 1.590 | 3.489 | 3.834 | | NESC Rule | 250D | PHL | Suspension | VangCL | 0.000 | 2.666 | 8.211 | 8.633 | | NESC Rule | 250D | PHM | Suspension | VangCM | 0.000 | 2.666 | 8.211 | 8.633 | | NESC Rule | 250D | PHR | Suspension | VangCR | 0.000 | 2.666 | 8.211 | 8.633 | #### Overturning Moments For User Input Concentrated Loads: Moments are static equivalents based on central axis of 0,0 (i.e. a single pole). 28470.2 | | Load | Case | Tran.
Load | Long.
Load | Vert.
Load | | Longitudinal
Overturning
Moment
(ft-k) | Moment | |----------|----------------|-------|------------------------------------|-----------------|---------------|----------------------------|---|---------| | | NESC | 250C | 17.664
29.076
12.597 | 0.061 | 18.001 | | -37.284
-21.637
-42.882 | -23.784 | | We
We | eight
eight | of Ti | ructure ubular N teel Pol uspensio | K-Arms:
Les: | : | 1523.8
26794.4
152.0 | | | ^{***} End of Report Total: Centered on Solutions www.centekeng.com 43-3 North Branford Road P: (203) 488-0580 Branford, CT 06405 F: (203) 488-8587 Subject: Anchor Bolt Analysis CL&P Pole #8012 Farmington, CT Location: Prepared by: T.J.L. Checked by: C.F.C. Rev. 0: 10/14/21 Job No. 21122.00 # Anchor Bolt Analysis: ## Input Data: **Bolt Force:** Maximum Tensile Force = $T_{Max} := 120 \cdot kips$ (User Input from PLS-Pole) Maximum Shear Force at Base = V_{base} := 24·kips (User Input from PLS-Pole) Anchor Bolt Data: Use AST MA615 Grade 75 Number of Anc hor Bolts= N := 12(User Input) Bolt "Column" Distance = I:= 3.0·in (User Input) Bolt Ultimate Strength = $F_u := 100 \cdot ksi$ (User Input) Bolt Yeild Strength= $F_V := 75 \cdot ksi$ (User Input) Bolt Modulus = E := 29000·ksi (User Input) Diameter of Anchor Bolts = (User Input) D := 2.25·in Threads per Inch = n:= 4.5 (User Input) ## **Anchor Bolt Analysis:** $A_S := \frac{\pi}{4} \cdot \left(D - \frac{0.9743 \cdot in}{n} \right)^2 = 3.248 \cdot in^2$ StressArea of Bolt = $V_{Max} := \frac{V_{base}}{N} = 2 \times 10^3 lbf$ Maximum Shear Force per Bolt = > $f_V := \frac{V_{\text{Max}}}{A_s} = 615.8 \, \text{psi}$ Shear Stress per Bolt = Tensile Stress Permitted = $F_t := 0.75 \cdot F_U = 75 \cdot ksi$ Shear Stress Permitted = $F_V := 0.35F_V = 26.25 \cdot ksi$ $F_{tv} := F_{t'} \sqrt{1 - \left(\frac{f_v}{F_v}\right)^2} = 74.98 \cdot ksi$ Permitted Axi at Tensile Stress in Conjuction with Shear = > $\frac{\mathsf{T}_{\mathsf{Max}}}{\mathsf{F}_{\mathsf{tv}}\cdot\mathsf{A}_{\mathsf{s}}} = 49.28 \cdot \%$ Bolt Tension % of Capacity = > > Condition1 := if $\left(\frac{T_{Max}}{F_{tv} \cdot A_s} \le 1.00, "OK", "Overstressed"\right)$ Condition1 = > > > Condition1 = "OK" | RFDS NAME: | ICTI 01104 | DATE: 3/10/2020 | | | F DESIGN ENG: Omair Mohamr | nod. | Section 1 - RFDS (| ENERAL INFO | DRMATION | REDS PROGRAM TYPE | 12024 LTE Most Cord | |--|--|---|---------------------|------------------|----------------------------------|------------------|-------------------------|-------------------------|------------|------------------------------------|---| | | Preliminary | Approved?
(Y/N): | | | DESIGN PHONE: (860) 513-7598 | | RF PERF PHONE | Polann Ayo | | RFDS TECHNOLOGY | | | PEVISION | Bronze Standard | RF MANAGER: John Benedetto | | RF | DESIGN EMAIL: OM636A@US. | ATT COM | RF PERF EMAIL | | | STATE/STATUS | Final/Approved | | REVISION | . Diorizo diandard | RF MARAGER. BOTT DETECTION | | | DECIGIT EMPLE. | 111.00m | ADDITIONAL WORKFLOW | | | | | | | | | | | | | NOTIFICATIONS | | | RFDS ID | | | | | | | | | | RFDS VERSIO | | | Created By: OM636A | Updated By: sp656b | | | | | | | | | UMTS FREQUENCY | 850
700,850,1900,WCS | | Created: 3/9/2020 EXPIRATION DATE | Updated: 10/11/2021 | | | | | | | | | 5G FREQUENCY | | | ESTIMATED SQIN: 10,322 | Calculation ID: 202110111325119363 | | | | | | | | | | NER-RCTB-20-013 | 13 | PRD SUB GRP # | LTE Next Carrier II LTE 6C | | | LTE 6C[700 UP | PER DJ, 4TX4RX Software Retrofit[700 B- | C], 5G NR Upgrade[| 850 B(U)], BWE S | oftware Carrier[1900 A3-A4 & E & | C5] | | NER-RCTB-20-013 | | PRD SUB GRP # | Antenna Modifications 4TX4RX Software | | | | | | | | | | NER-RCTB-20-013 | | DDD II OUD ODD # | Cell Site RF Modifications 5G NR Upgrade | | | | | | | | | IPLAN JOB # 4 | NER-RCTB-20-016 | 30 | | | | | | | | | | | IPLAN JOB # 6 | • | | PRD SUB GRP # | | | | | | | | | | IPLAN JOB # | | | PRD SUB GRP # | | | | | | | | | | IPLAN JOB # 8 | • | | PRD SUB GRP # | | | | | | | | | | Section 2 - LOC | _ | MATION | | | | USID: | 59423 | FA LOCATION CODE: | 10035295 | | LOCATION FARMINGTON NAME: DR | NU MAPLE RIDGE | ORACLE PRJT # 1 | 2051A0V4N7 | | | : MRCTB046571 | | REGION: | NORTHEAST | MARKET CLUSTER: | NEW ENGLAND | | MARKET: CONNECTICU | | ORACLE PRJT # 2 | 2051A0V4AC | | PACE JOB #2 | MRCTB047034 | | ADDRESS: | 45 MAPLE RIDGE DRIVE | CITY: | FARMINGTON | | STATE: CT | | ORACLE PRJT # 3 | 2051A0V4RN | | PACE JOB #3 | MRCTB047029 | | ZIP CODE: | : 06032 | COUNTY: | HARTFORD | | LONG (DEC. DEG.): -72.7693019 | | ORACLE PRJT # 4 | 2051A0VNBT | | PACE JOB #4 | : MRCTB047537 | | LATITUDE (D-M-S): | 41d 43m 4.692s | LONGITUDE (D-M-S): | -72d -46m -9.48684s | | LAT (DEC.
DEG.): 41.7179700 | | ORACLE PRJT # 5 | | | PACE JOB #5 | | | | | | l . | J | DEG.J. | | ORACLE PRJT#6 | | | PACE JOB #6 | : | | | | | | | | | ORACLE PRJT # 1 | | | PACE JOB #7 | | | | ROUTE 9 NORTH TOWARD NEW | V BRITIAN TAKE THE CT 71 EXIT NUME | BER 30 TOWARD CO | RBINS CORNER | TURN RIGHT ONTO CT 71 TUR | N LEFT ONTO | ORACLE PRJT #8 | | | PACE JOB #8 | | | | SOUTH RD TURN LEFT ONTO N | IAPLE RIDGE DR. SHELTER SITE ON T | HE RIGHT DOWN TO | HE ROAD N/U PO | WER MOUNT GATE COMBO 50 | 00 | BORDER CELL WITH CONTOU | 2 | | SEARCH RING NAME | | | | METER # 89 094 946 POWER C | | | | | | AM STUDY REQ'D (Y/N | No | | SEARCH RING NAME | | | | T-1 ARE IN HOFFMANN BOX OL | RSIDE COMPOUND | | | | | FREQ COORE | . INC | | BTA: | MSA / RSA: | | DIRECTIONS, ACCESS AND EQUIPMENT LOCATION: | GMS T-1 1 DHXV 295358 ET-60
2 DHXV 295359 | | | | | | FREQ COORE | | | BTA: | MSA / RSA: | | | 3 HCGS 725802 | | | | | | | | | | | | | UMTS IS ON FIBER | | | | | | | | | LAC(UMTS) | 05986 | | | ET 60
HCGS295358SN | TTWS.COM:7777/PLS/ENGDB/XPERWI | | | | | RF DISTRICT | | | | | | | HTTP://ALNXNGWB1.WNSNET. | ATTWS.COM:7777/PLS/ENGDB/XPERWI | EB.PATH_DEF?IPAT | HINSTID=111942 | 0 | | RF ZONE | TBD | | | MIDDLETOWN RNC06 | | | | | | | | | | | | MME POOL ID(LTE) | FF01 | | | | | | | | | PARENT NAME(UMTS | | | | | | | | | | <u> </u> | | | ection 3 - LICENSE CO | ERAGE/FILIN | G INFORMA | ATION | | | CGSA - NO FILING TRIG | | CGSA LOSS: | | | PCS REDUCED - UPS Z | | | | | | | | CGSA - MINOR FILING N | | CGSA EXT AGMT NEEDED: | | | PCS POPS REDUCE | D: | CGSA CALL SIGNS | | | | | | CGSA - MAJOR FILING N | NEEDED (Yes/No): No | CGSA SCORECARD UPDATED: | | | | | | | | | | | | | | | | ethictupe! | | Section 4 - TOWER/RI | | NFORMATI | ON | | | | E AT&T OWNED?: Yes | GROUND ELEVATION (ft): | | | STRUCTURE
TYPE: | | MARKET LOCAT | | | | 1 | | | L REGULATORY?: Yes | HEIGHT OVERALL (ft): | | | FCC ASR
NUMBER: | | | ON 850 MHz Band: | | | | | SUB- | -LEASE RIGHTS?: Yes | STRUCTURE HEIGHT (ft): | 62.00 | | | | MARKET LOCATIO | N 1900 MHz Band: | n-Air | | | | | LIGHTING TYPE: NOT REQUIRE | ED | | | | | MARKET LOC | ATION AWS Band: | | | | | | | | | | | | MARKET LOC | ATION WCS Band: | | | | | | | | | | | | MARKET LOCA | TION Future Band: | | | 1 | | | | | |
| | | Section 5 - E-911 | | - existing | | | | | PS. | AP NAME: | PSAP ID: | E911 PHASE: | MPC SVC PROVIDER: | LMU
REQUIRED: | ESRN: DATE LIVE PH1 | DATE LIVE PH2: | | | | | ECTOR A E-911 | 1 | | | | NTRADO_MIAMI | | 0 | | | | | | ECTOR B | | | | | NTRADO_MIAMI | | 0 | | | | | | ECTOR C | | | | | NTRADO_MIAMI | | 0 | | | | | | ECTOR D | | | | | | | | | | | | | ECTOR E | | | | | | | | | | | | | MNI | | | | | | | | | | | | | | 1 | | | | | | Section 5 - E-91 | INFORMATIO | N - final | | | | | | AP NAME: | PSAP ID: | E911 PHASE: | MPC SVC PROVIDER: | LMU
REQUIRED: | ESRN: DATE LIVE PH1: | | | | | | | PS. | n man. | | | NTRADO MIAMI | REQUIRED: | PH1: | FH4. | | | | | ECTOR A E-911 | | n mane. | | Į! | NTRADO_MIAMI | | 0 | | | | | | ECTOR B | | TOTAL . | | | NTRADO_MIAMI | | 0 | | | | | | ECTOR B | | S. Osmo. | | | | | 0 | | | | | | CTOR B | | W WORLD | | | NTRADO_MIAMI | | 0 | | | | | | SECTOR F | | | | | | | | | | | | | | |-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------|---------------|---------------|------|--|------|--|--|--| | OMNI | Section 6/7 - | BBU INFORMATI | ON - existing | | | | | | | | | BBU 1 | BBU 2 | BBU 3 | BBU 4 | | | | | | | | | | | BBU ID | 172525 | 229472 | 366891 | 551242 | | | | | | | | | | | TECHNOLOGY | r: umts | UMTS | LTE | LTE,5G | | | | | | | | | | | BBU NAME | CTU1104 | CTV1104 | CTL01104 | CTL00104R,CTCN001104 | | | | | | | | | | | BBU USID | 59423 | 59423 | 59423 | 59423 | | | | | | | | | | | CELL ID / BCF | CTU1104 | CTU1104 | CTL01104 | CTL00104R | | | | | | | | | | | BTA/TID | 0:
184V | 184U | 184L | 184L | | | | | | | | | | | 4-9 DIGIT SITE ID | 1104 | 1104 | 1104 | 0104 | | | | | | | | | | | COW OR TOY? | P: No | No | No | No | | | | | | | | | | | CELL SITE TYPE | SECTORIZED | SECTORIZED | SECTORIZED | SECTORIZED | | | | | | | | | | | | MACRO-CONVENTIONAL | MACRO-CONVENTIONAL | MACRO-CONVENTIONAL | MACRO-CONVENTIONAL | | | | | | | | | | | BTS LOCATION ID | D: INTERNAL | INTERNAL | INTERNAL | | | | | | | | | | | | BASE STATION TYPE | BASE | OVERLAY | BASE | OVERLAY | | | | | | | | | | | EQUIPMENT NAME | FARMINGTON NU MAPLE RIDGE DR | | | | | | | | | | | DISASTER PRIORITY | <mark>f:</mark> 1 | 1 | 3 | 3 | | | | | | | | | | | EQUIPMENT VENDOR | R: ERICSSON | ERICSSON | ERICSSON | ERICSSON | | | | | | | | | | | EQUIPMENT TYPE (Model) |): | | 6601 INDOOR MU | | | | | | | | | | | | BASEBAND CONFIGURATION | | | | | | | | | | | | | | | MARKET STATE CODE | • | | ст | ст,стс | | | | | | | | | | | NODE B NUMBER | t: 0 | 0 | 1104 | 104,1104 | | | | | | | | | | | SIDEHAUL SWITCH VENDOR | R: | | | | | | | | | | | | | | SIDEHAUL SWITCH MODEL | _ | | | | | | | | | | | | | | SIDEHAUL SWITCH NAME | <u>:</u> | | | | | | | | | | | | | | CSS - CTS COMMON IE | CTU1104 | CTV1104 | CTL01104 | CTL00104R | | | | | | | | | | | CSS - SECONDARY FUNCTION ID | o: | | | CTCN001104 | | | |
 | | | | | | | | | | | | Section 6/7 | - BBU INFORMA | TION - final | | | | | | | | | BBU 1 | BBU 2 | BBU 3 | | | | | | | | | | | | BBU ID | 229472 | 366891 | 551242 | | | | | | |
 | | | | | TECHNOLOGY | | LTE | LTE,5G | | | | | | | | | | | | BBU NAME | CTV1104 | CTL01104 | CTL00104R,CTCN001104 | | | | | | | | | | | | BBU USID | | 59423 | 59423 | | | | | | | | | | | | CELL ID / BCF | CTU1104 | CTL01104 | CTL00104R | | | | | | | | | | | | BTA/TID | 0: 184W | 184L | 184L | | | | | | | | | | | | 4-9 DIGIT SITE ID | 1104 | 1104 | 0104 | | | | | | | | | | | | COW OR TOY? | P: No | No | No | | | | | | | | | | | | CELL SITE TYPE | SECTORIZED | SECTORIZED | SECTORIZED | | | | | | | | | | | | SITE TYPE | MACRO-CONVENTIONAL | MACRO-CONVENTIONAL | MACRO-CONVENTIONAL | | | | | | | | | | | | PTC LOCATION IS | | | | 7 | | | | | | | | | | SITE TYPE: MACRO-CONVENTIONAL BTS LOCATION ID: INTERNAL BASE STATION TYPE: OVERLAY DISASTER PRIORITY: EQUIPMENT VENDOR: ERICSSON EQUIPMENT TYPE (Model): BASEBAND CONFIGURATION: MARKET STATE CODE: NODE B NUMBER: SIDEHAUL SWITCH VENDOR: SIDEHAUL SWITCH MODEL: SIDEHAUL SWITCH NAME: CSS - CTS COMMON ID: CTV1104 CSS - SECONDARY FUNCTION ID: INTERNAL EQUIPMENT NAME: FARMINGTON NU MAPLE RIDGE DR. FARMINGTON NU MAPLE RIDGE DR. FARMINGTON NU MAPLE RIDGE DR. ERICSSON CTL01104 BASEBAND 6630 x6601 / 2x6630 / 1xXMU03 + IDLe OVERLAY ERICSSON 104,1104 CTL00104R BASEBAND 6630 | | | | | | | | Section 7b - Rad | dio INFORMATIO | ON - existing | | | | | | | | |----------------|-------------|----------|--------------------------------|--------------------|----|-----|------------------|----------------|---------------|------|--|---|---|--|---|--| | | | | | | | | Section 7b - R | adio INFORMAT | TION - final | | | | | | | | | | | | | | | Sec | tion 8 - RBS/SE | CTOR ASSOCIA | ATION - exis | ting | | | | | | | | | BBU 1 | BBU 2 | BBU 3 | BBU | 4 | | | | | | | | | | | | | CTS Common I | CTU1104 | CTV1104 | CTL01104 | CTL00104R,CTCN0011 | 04 | | | | | | | • | | | • | | | Soft Sector IE | OS CTU11044 | CTV11041 | CTL01104_2A_2 | CTL00104_3A_1 | | | | | | | | | | | | | | | CTU11045 | CTV11042 | CTL01104_2B_2 | CTL00104_7A_1 | | | | | | | | | | | | | | | CTU11046 | CTV11043 | CTL01104_2C_2 | CTL00104_9A_1 | | | | | | | | | | | | | | | CTU11047 | CTV1104A | CTL01104_3A_1 | | | | | | | | | | | | | | | | CTU11048 | CTV1104B | CTL01104_3B_1 | | | | | | | | | | | | | | | | CTU11049 | CTV1104C | CTL01104_3C_1 | | | | | | | | | | | | | | | | | | CTL01104_7A_1 | | | | | | | | | | | | | | | | | | CTL01104_7A_2_E | | | | | | | | | | | | | | | | | | CTL01104_7B_1 | | | | | | | | | | | | | | | | | | CTL01104_7B_2_E | | | | | | | | | | | | | | | | | | CTL01104_7C_1 | | | | | | | | | | | | | | | | | | CTL01104_7C_2_E | | | | | | | | | | | | | | | | | | CTL01104_8A_1 | | | | | | | | | | | | | | | | | | CTL01104_8B_1 | | | | | | | | | | | | | | | | | | CTL01104_8C_1 | | | | | | | | | | | | | | | | | | CTL01104_9A_1
CTL01104_9A_2 | | | | | | | | | | | | | | | | | | CTL01104_9A_2
CTL01104_9B_1 | | | | | | | | | | | | | | | | | | CTL01104_9B_1
CTL01104_9B_2 | | | | | | | | | | | | | | | | | | CTL01104_9C_1 | | | | | | | | | | | | | | | | | | CTL01104_9C_2 | | | | | | | | | | | | | | | | | • | , | | I | S | ection 8 - RBS/S | SECTOR ASSOC | CIATION - fir | al | | | | | | | | | BBU 1 | BBU 2 | BBU 3 | | | | | | | | | | | | | | | CTS Common I | D CD(1104 | CTL01104 | CTL00104R,CTCN001104 | | | | | | | | | _ | _ | | | | CTL01104_3B_1 CTL01104_3C_1 CTCN001104_N005B_1 CTCN001104_N005C_1 CTV11042 CTV11043 | | | | | | | | | | | Sect | ion 9 - SOFT | SECTOR ID | - existing | | | | | | | | | | | |-------------------------------|-----------------|------------------|-----------------|------------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|-----------------|-----------------|------------------|----|---|---|---| | | UMTS
1ST 850 | UMTS
1ST 1900 | UMTS
2ND 850 | UMTS
2ND 1900 | LTE
1ST 700 | LTE
1ST 850 | LTE
1ST 1900 | LTE
1ST AWS | LTE
1ST WCS | LTE
2ND 700 | LTE
2ND 1900 | LTE
2ND WCS | LTE
3RD 700 | LTE
3RD 1900 | LTE
4TH 1900 | LTE
4TH AWS | LTE
STH 700 | LTE
5TH 1900 | 5G
1ST 850 | | | | | | USEID (excluding Hard Sector) | 59423.850.3G.1 | 59423.1900.3G.1 | 59423.850.3G.2 | 59423.1900.3G.2 | SECTOR A SOFT SECTOR ID | CTV11041 | CTU11047 | CTV1104A | CTU11044 | CTL01104_7A_1 | CTL01104_8A_1 | CTL01104_9A_1 | CTL01104_2A_2 | CTL01104_3A_1 | CTL01104_7A_2_E | CTL01104_9A_2 | CTL00104_3A_1 | CTL00104_7A_1 | CTL00104_9A_1 | | | | | | | | | | | SECTOR B | CTV11042 | CTU11048 | CTV1104B | CTU11045 | CTL01104_7B_1 | CTL01104_8B_1 | CTL01104_9B_1 | CTL01104_2B_2 | CTL01104_3B_1 | CTL01104_7B_2_E | CTL01104_9B_2 | | | | | | | | | | | | | | SECTOR C | CTV11043 | CTU11049 | CTV1104C | CTU11046 | CTL01104_7C_1 | CTL01104_8C_1 | CTL01104_9C_1 | CTL01104_2C_2 | CTL01104_3C_1 | CTL01104_7C_2_E | CTL01104_9C_2 | | | | | | | | | | | | | | SECTOR D | SECTOR E | SECTOR F | OMNI | Se | ction 9 - SO | FT SECTOR I | D - final | | | | | | | | | | | | | UMTS
1ST 850 | UMTS
1ST 1900 | UMTS
2ND 850 | UMTS
2ND 1900 | LTE
1ST 700 | LTE
1ST 850 | LTE
1ST 1900 | LTE
1ST AWS | LTE
1ST WCS | LTE
2ND 700 | LTE
2ND 1900 | LTE
2ND WCS | LTE
3RD 700 | LTE
3RD 1900 | LTE
4TH 1900 | LTE
4TH AWS | LTE
STH 700 | LTE
5TH 1900 | 5G
1ST 850 | | | | | | USEID (excluding Hard Sector) | 59423.850.3G.1 | • | • | - | | SECTOR A SOFT SECTOR ID | CTV11041 | | | | CTL01104_7A_1 | CTL01104_8A_1 | | | CTL01104_3A_1 | | | | | CTL00104_9A_1 | CTL00104_9A_2 | CTL00104_2A_2 | CTL01104_7A_3_F | CTL00104_9A_3 | CTCN001104_N005 | _1 | | | | | SECTOR B | CTV11042 | | | | CTL01104 7B 1 | CTL01104 8B 1 | CTL00104 9B 1 | | CTL01104 3B 1 | | | | | | CTL00104 9B 2 | CTL00104 2B 2 | CTL01104 7B 3 F | CTL00104 9B 3 | CTCN001104 N0058 | 1 | | | | | SECTOR C | CTV11043 | | | | CTL01104 7C 1 | CTL01104 8C 1 | CTL00104 9C 1 | | CTL01104 3C 1 | | | | | | CTL00104 9C 2 | CTL00104 2C 2 | CTL01104 7C 3 F | CTL00104 9C 3 | CTCN001104 N0056 | 1 | | | | | SECTOR D | SECTOR E | SECTOR F | OMNI | S | ection 9 - Cel | l Number - e | xisting | | | | | | | | | | |-------------------------------|-----------------|------------------|-----------------
------------------|----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------|---------------|---|---|--| | | UMTS
1ST 850 | UMTS
1ST 1900 | UMTS
2ND 850 | UMTS
2ND 1900 | LTE
1ST 700 | LTE
1ST 850 | LTE
1ST 1900 | LTE
1ST AWS | LTE
1ST WCS | LTE
2ND 700 | LTE
2ND 1900 | LTE
2ND WCS | LTE
3RD 700 | LTE
3RD 1900 | LTE
4TH 1900 | LTE
4TH AWS | LTE
5TH 700 | LTE
5TH 1900 | 5G
1ST 850 | | | | | USEID (excluding Hard Sector) | 59423.850.3G.1 | 59423.1900.3G.1 | 59423.850.3G.2 | 59423.1900.3G.2 | SECTOR A CELL NUMBER | | | | | 15 | 1 | 8 | 192 | 149 | 185 | 178 | 149 | 15 | 8 | | | | | | | | | | SECTOR B | | | | | 16 | 2 | 9 | 193 | 150 | 186 | 179 | | | | | | | | | | | | | SECTOR C | | | | | 17 | 3 | 10 | 194 | 151 | 187 | 180 | | | | | | | | | | | | | SECTOR D | SECTOR E | SECTOR F | OMNI | Section 9 - C | ell Number - | final | | | | | | | | | | | | UMTS
1ST 850 | UMTS
1ST 1900 | UMTS
2ND 850 | UMTS
2ND 1900 | LTE
1ST 700 | LTE
1ST 850 | LTE
1ST 1900 | LTE
1ST AWS | LTE
1ST WCS | LTE
2ND 700 | LTE
2ND 1900 | LTE
2ND WCS | LTE
3RD 700 | LTE
3RD 1900 | LTE
4TH 1900 | LTE
4TH AWS | LTE
5TH 700 | LTE
5TH 1900 | 5G
1ST 850 | | | | | USEID (excluding Hard Sector) | 59423.850.3G.1 | | | | | | | | | | | | | | | | | | | ' | ' | | | SECTOR A CELL NUMBER | | | | | 15 | 1 | | | 149 | | | | | 8 | 178 | 192 | 171 | 203 | 25 | | | | | SECTOR B | | | | | 16 | 2 | 9 | | 150 | | | | | | 179 | 193 | 172 | 204 | 49 | | | | | SECTOR C | | | | | 17 | 3 | 10 | | 151 | | | | | | 180 | 194 | 173 | 205 | 73 | | | | | SECTOR D | SECTOR E | SECTOR F | OMNI | S | ection 10 - C | CID/SAC - exi | sting | | | | | | | | | | |------------------|-----------------|------------------|-----------------|------------------|----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|-----------------|---------------|---|--|--| | | UMTS
1ST 850 | UMTS
1ST 1900 | UMTS
2ND 850 | UMTS
2ND 1900 | LTE
1ST 700 | LTE
1ST 850 | LTE
1ST 1900 | LTE
1ST AWS | LTE
1ST WCS | LTE
2ND 700 | LTE
2ND 1900 | LTE
2ND WCS | LTE
3RD 700 | LTE
3RD 1900 | LTE
4TH 1900 | LTE
4TH AWS | LTE
5TH 700 | LTE
5TH 1900 | 5G
1ST 850 | | | | | SECTOR A CID/SAC | 11041 | 11047 | 01041 | 11044 | SECTOR B | 11042 | 11048 | 01042 | 11045 | SECTOR C | 11043 | 11049 | 01043 | 11046 | SECTOR D | SECTOR E | SECTOR F | OMNI | Section 10 | - CID/SAC - fi | nal | | | | | | | | | | | | UMTS
1ST 850 | UMTS
1ST 1900 | UMTS
2ND 850 | UMTS
2ND 1900 | LTE
1ST 700 | LTE
1ST 850 | LTE
1ST 1900 | LTE
1ST AWS | LTE
1ST WCS | LTE
2ND 700 | LTE
2ND 1900 | LTE
2ND WCS | LTE
3RD 700 | LTE
3RD 1900 | LTE
4TH 1900 | LTE
4TH AWS | LTE
5TH 700 | LTE
5TH 1900 | 5G
1ST 850 | | | | | SECTOR A CID/SAC | 11041 | SECTOR B | 11042 | SECTOR C | 11043 | SECTOR D | SECTOR E | SECTOR F |] | | | | OMNI | Section 15/ | A - CURREN | TOWER CO | UNFIGURAT | ION - SECTO | R A (OR OMNI) | | | | | |--|--|------------------------|--|-----------|--------------------|--|--|--|-----------------------|--|--|--------------------|--|--|---|---------------------------| | ANTENNA POSITION is LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENNA P | POSITION 1 | ANTENNA PO | OSITION 2 | ANTENNA F | POSITION 3 | ANTENNA | POSITION 4 | ANTENNA | POSITION 5 | ANTE | NNA POSITION 6 | ANTENN | A POSITION 7 | i | | | ANTENNA MAKE - MODE | HPA-65R-BUU-H6 | 3 | | | QS66512-2 | | | - | | | | | | | | | | ANTENNA VENDOI | | - | | | Quintel | | | - | | | | | | | | | | | | - | | | | | | | l | | 1 | | | | - | | | ANTENNA SIZE (H x W x D | | | | | 72X12X9.6 | | | |
I | | + | | | | - | | | ANTENNA WEIGH | | | | | 111 | | | | | | + | | | | - | | | AZIMUTI | 160 | | | | 50 | | | | | | + | | | | _ | | | MAGNETIC DECLINATION | <u> </u> | | | | | | | | | | | | | | - | | | RADIATION CENTER (feet | 88 | | | | 88 | | | | | | | | | | _ | | | ANTENNA TIP HEIGH | <u> </u> | | | | | | | | | | | | | | _ | | | MECHANICAL DOWNTIL | 0 | | | | 0 | | | | | | | | | | | | | FEEDER AMOUN | 4 | Į. | | | 8 | | | I. | i | | | | | | | | | VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP | 4 | Į. | | | | | | I. | i | | | | | | | | | VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP | | | | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to | | | | | | | | | | | | | | | | | | CENTERLINE | <u> </u> | | | | | | | | | | | | | | _ | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLIN) | | Ų. | | | | | | Ų. | li | | | | | | | | | to CENTERLINE HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # o | r | | | | † | | <u> </u> | |
I | | + | | <u> </u> | | | 1 | | inches |) | | | | + | | | |
I | | + | | | | | 1 | | Antenna RET Motor (QTY/MODEL | | Internal | + | | + | Internal
Andrew APTDC- | | | | | + | | | - | | - | | SURGE ARRESTOR (QTY/MODEL | | TSXDC-4310FM
Kaelus | | | 12 | BDFDM-DB
Kaelus | | ' | | | + | | | 1 | | 4 | | DIPLEXER (QTY/MODEL | 4 | DBC2055F1V1-2 | | | 8 | DBC2055F1V1-2 | | <u> </u> | | | | | | | | | | DUPLEXER (QTY/MODEL | | | | . | | | | | | | | | | | | | | Antenna RET CONTROL UNIT (QTY/MODEL | 1 | Powerwave /
7070 | | ı | | RRH
CONTROLLED | | | | | | | | | | | | DC BLOCK (QTY/MODEL | , | | | 1 | | | | | 1 | | | | | | | | | TMA/LNA (QTY/MODEL | , , | DTMABP0721VG
12A | | | 4 | TMA2117F00V1-
1 (Twin PCS- | | | | | | | | | | | | | F | Powerwave AISG | |
I | | KATHREIN 860- | | | | | 1 | | | | ٠ | | | CURRENT INJECTORS FOR TMA (QTY/MODEL | | Diplexer (Built In) | | | - | 10006 | | | | | + | | | | ٠ | - | | PDU FOR TMAS (QTY/MODEL | | | | | | | | | | | + | | | | | | | FILTER (QTY/MODEL | <u> </u> | <u> </u> | | | | | | ļ | | | | | | | - | | | SQUID (QTY/MODEL | <u>4</u> | <u> </u> | | | | - | | | | | | | | | - | | | FIBER TRUNK (QTY/MODEL | į. | | | . | | | | | | | | | | | | | | DC TRUNK (QTY/MODEL | , | | | ı | | | | | | | | | | | | | | REPEATER (QTY/MODEL | 8 | [| | I | | | |] |
 | | | | | | | | | RRH - 700 band (QTY/MODEL | | | | 1 | 1 | RRUS-11 B12 | | | 1 | | | | | | | | | | | | | | | RRUS-12 B5 | | | | | | | | | | | | RRH - 850 band (QTY/MODEL | | | | | <u> </u> | | | | | | † | | | | | | | RRH - 1900 band (QTY/MODEL | 1 | | | i | 1 | RRUS-32 B2 | | | | | + | | | | ٠ | | | RRH - AWS band (QTY/MODEL | 1 4 | 4426 B66 | | | | | - | | | | | | - | | - | - | | RRH - WCS band (QTY/MODEL | 4 | <u> </u> | | | 1 | RRUS-32 B30 | | <u> </u> | | | + | | | | - | | | Additional RRH #1 - any band (QTY/MODEL | 4 | <u> </u> | | | | | - | | | | | | - | | - | 1 | | Additional RRH #2 - any band (QTY/MODEL | <u>, </u> | ļ | | | | | | | | | | | | | _ | | | RRH_7B_1 (QTY/MODEL | į . | | | L | | | | | | | | | | | | | | RRH_7B_2 (QTY/MODEL | , | [| | I | | | |] |
 | | | | | | | | | RRH_7B_3 (QTY/MODEL | | | | 1 | | | | | 1 | ٠ | | | Additional Component 1 (QTY/MODEL | | | |
I | | | | | | | + | | | | ٠ | | | Additional Component 2 (QTY/MODEL | 1 | | | i | | | | | | | + | | | | ٠ | | | Additional Component 3 (QTY/MODEL | <u> </u> | | | | | | | <u> </u> | | | | | | | - | | | Local Market Note | <u> </u> | | | | | | | | | | | | | | _ | | | Local Market Note | <u> </u> | | | | | | | | | | | | | | _ | | | Local Market Note | <u> </u> | Ì | | | PORT SPECIFIC FIELDS PORT NUMBER USEID (CSSng | USEID (Atoli) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY | / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | | TRIPLEXER or LLC
(QTY) | | |
 | | | | | 4 | | | | Integrated/None) | | | | | | | ANTENNA POSITION 4 PORT 1 | 59423.A.850.3G.
1 | CTV11041 | CTV11041 | | UMTS 850 | | | 14.6 | 160 | 10 | None | 1 5/8" -
Andrew | 130 | | | | | AN IENNA PUSITION 1 | 1 | | OT1 04404 04 0 | ı | LTE AWS | | H6_2170MHz_04
DT | 17.3 | 50 | 4 | Bottom | 1 5/8"
- Andrew | 130 | <u></u> | | | | ANTENNA POSITION 1 PORT 3 | | CTL01104_2A_2 | CILUTIU4_ZA_Z | | | | | | | | | | | | | | | ANTENNA POSITION 1 | | CTL01104_2A_2 | CILUTIU4_ZA_Z | | | | | | | | | | | | | | | PORT 3 | 59423.A.700.4G. | | | | | | QS66512-
2 722MHz 10DT | 13.1 | 50 | 10 | Rottom | 1.5/8": - Andrew | 130 | 1 | - | | | ANTENNA POSITION 1 | 59423.A.700.4G.
1 (0.59423.A.850.4G) | CTL01104_7A_1 | CTL01104_7A_1 CTL01104_8A_1 | | LTE 700
LTE 850 | | QS66512-
2_722MHz_10DT
QS66512-
2_850MHz_10DT | | 50 | 10 | Bottom
None | 1 5/8" - Andrew | 130 | | | | Section 15A - CURRENT TOWER CONFIGURATION - SECTOR A (OR OMNI) | | | | | | | | | Secti | on 15B - CUR | RRENT TOW | ER CONFIG | URATION - SI | ECTOR B | | | |--|--------------------------|-----------------|---------------------------------------|--|--|------------|-------------------------------------|--|--------------|------------|--|--|-----------------------------|--|----------------------| | ANTENNA POSITION is LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) |) | ANTENNA P | POSITION 1 | ANTENNA F | POSITION 2 | ANTENNA | POSITION 3 | | POSITION 4 | | POSITION 5 | | NNA POSITION 6 | ANTENNA | A POSITION 7 | | ANTENNA MAK | KE - MODEL H | HPA-65R-BUU-H6 | j | | | QS66512-2 | | | | | | | | | | | ANTENN | NA VENDOR C | CCI Antennas | ļ | | | Quintel | ļ | | | | | | | | | | ANTENNA SIZE | | | | | | 72X12X9.6 | | | | | | | | | | | | NA WEIGHT 50 | | | | | 111 | | | | | | | | | | | | AZIMUTH 28 | | | | | 160 | | | | | | | | | | | MAGNETIC DE | | - | | | | 100 | | | | | | | | | | | RADIATION CEI | | | | | | | | | | | | | | | | | | | .8 | | | | 88 | | | | | | | | | | | ANTENNA 1 | | | | | | + | | | | | | | | | | | MECHANICAL | | | | | | 0 | | | | | | | | | | | | R AMOUNT 4 | | | | | 8 | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA ABOVE | | | | | | + | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA BELOW | | | | | | + | | <u> </u> | | | | | | | | | NTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENT
CE | TERLINE to
ENTERLINE) | | | | | | | | | | | | | | | | ZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CE | ENTERLINE | | - | | | | - | | | | | | | | | | to CEI
ZONTAL SEPARATION from ANOTHER ANTENNA (which ante | NTERLINE) | | | | | + | | <u> </u> | | <u> </u> | | | | | | | | | | | | | + | - | | | | | | | | | | Antenna RET Motor (Q | TY/MODEL) | | Internal | | | ├ | Internal | | \vdash | \vdash | | | | \vdash | | | SURGE ARRESTOR (Q | TY/MODEL) 4 | | TSXDC-4310FM
Kaelus | | | 12 | Andrew APTDC-
BDFDM-DB
Kaelus | | | | | | | | | | DIPLEXER (Q1 | TY/MODEL) 4 | í | DBC2055F1V1-2 | | | 8 | DBC2055F1V1-2 | - | | | | | ļ | | | | DUPLEXER (QT | TY/MODEL) | | | | | | | | \sqcup | \sqcup | | | ļ | | | | Antenna RET CONTROL UNIT (Q | TY/MODEL) | | <u> </u> | | | | RRH
CONTROLLED | | | | | | | | | | DC BLOCK (Q1 | TY/MODEL) | | | | | | | | | | | | <u> </u> | | | | TMA/LNA (QT | TY/MODEL) 2 | 2 | DTMABP0721VG
12A | | | 4 | TMA2117F00V1-
1 (Twin PCS- | | | | | | <u> </u> | | ļ | | CURRENT INJECTORS FOR TMA (Q1 | TY/MODEL) | | Powerwave AISG
Diplexer (Built In) | | | | | | | | | | | | | | PDU FOR TMAS (Q | TY/MODEL) | | | | | | | | | | | | | | | | FILTER (Q1 | TY/MODEL) | | | | | | | | | | | | <u> </u> | | <u> </u> | | SQUID (Q1 | TY/MODEL) | | | | | | | | | | | | | | | | FIBER TRUNK (QT | | | | | | | ļ. | | | | | | | | Ì | | DC TRUNK (QT | TY/MODEL) | | | | | | | | | | | | | | | | REPEATER (Q1 | | | | | | | | | | | | | | | | | RRH - 700 band (Q | | | | | | 1 | RRUS-11 B12 | | | | | | | | | | RRH - 850 band (Q1 | | | | | | 1 | RRUS-12 B5 | | | | | | | | | | RRH - 1900 band (Q1 | | | | | | 1 | RRUS-32 B2 | | | | | | | | | | RRH - AWS band (Q) | | 1 | 4426 B66 | | | 1 | | | | | | | | | | | | | | T-10 D00 | | | 1 | RRUS-32 B30 | | | | | | | | | | RRH - WCS band (Q) | | | | | | † | 10103°32 B30 | | | | | | | | | | Additional RRH #1 - any band (Q | | | | | | † | | | | | | | | | | | Additional RRH #2 - any band (Q | | | | | — | + | | | | | — | | | | | | RRH_7B_1 (Q1 | | | | | | + | | | | | | | | | | | RRH_7B_2 (Q1 | | | | | | + | | | | | | | | | | | RRH_7B_3 (Q1 | | | | | | + | - | | \vdash | \vdash | \vdash | | | \vdash | | | Additional Component 1 (Q1 | | | | | | + | | <u> </u> | | | | | | \vdash | | | Additional Component 2 (Q | TY/MODEL) | | | | | + | | | | | | | | | | | Additional Component 3 (Q1 | TY/MODEL) | | | | | 1 | L | L | | | | | L | | | | Local Ma | arket Note 1 | | | | | | | | | | | | | | | | Local Ma | arket Note 2 | | | | | | | | | | | | | | | | Local Ma | arket Note 3 | ANTENNA | | ELECTRICAL | EI ECTRICAL | RRH LOCATION | | FEEDER | DYAIT KIT | | PORT SPECIFIC FIELDS PORT NUMBER USEI | ID (CSSng) | USEID (Atoll) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY | / / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | AZIMUTH | ELECTRICAL
TILT | (Top/Bottom/
Integrated/None) | FEEDERS TYPE | LENGTH (feet) | RXAIT KIT
MODULE? | | | | | | | | | | | | | | | | | | | ANTENNA POSITION 1 PORT 1 | 55 | 59423.B.850.3G. | CTV11042 | CTV11042 | | UMTS 850 | | H6_849MHz_00D
T
H6_2170MHz_02 | 14.8 | 280 | 0 | None | 1 5/8" - Andrew
1 5/8" - | 130 | | | PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng) | USEID (Atoli) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or
LLC (MODEL) | SCPA/MCPA
MODULE? | HATCHPLATE
POWER (Watts) | ERP (Watts) | Antenna RET
Name | CABLE
NUMBER | CABLE
ID(cssng) | |----------------------|-------------|---------------|-----------------------|---------------|---------------|--------|------------------------|---------------------------|--------------|-----------------------|---------------|--|--------------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------| | | PORT 1 | | 59423.B.850.3G.
1 | CTV11042 | CTV11042 | | UMTS 850 | H6_849MHz_00D
T | 14.8 | 280 | 0 | None | 1 5/8" - Andrew | 130 | | | | | | 449.78 | | 9 | | | ANTENNA POSITION 1 | PORT 3 | 8 | | CTL01104_2B_2 | CTL01104_2B_2 | | | H6_2170MHz_02
DT | 17.24 | 160 | 2 | | 1 5/8" -
Andrew | 130 | | | | | | 2535.1286 | | 10 | | | | | | | | • | PORT 1 | | 59423.B.700.4G.
1 | CTL01104_7B_1 | CTL01104_7B_1 | | LTE 700 | QS66512-
2_722MHz_02DT | 13.6 | 160 | 2 | Bottom | 1 5/8" - Andrew | 130 | | | | | | 1475.7065 | | 13 | | | | PORT 2 | | 59423.B.850.4G.
1 | CTL01104_8B_1 | CTL01104_8B_1 | | LTE 850 | QS66512-
2_850MHz_02DT | 13.2 | 160 | 2 | None | 1 5/8" - Andrew | 130 | | | | | | 1000 | | 13 | | | ANTENNA POSITION 3 | PORT 3 | | 59423.B.WCS.4G
.1 | CTL01104_3B_1 | CTL01104_3B_1 | | LTE WCS | 2_2355MHz_03D
T | 16.7 | 160 | 3 | Bottom | 1 5/8" - Andrew | 130 | | | | | | 1285.2866 | | 14 | | | | PORT 4 | | 59423.B.1900.4G
.1 | CTL01104_9B_1 | CTL01104_9B_1 | | LTE 1900 | 2_1930MHz_02D
T | 16 | 160 | 2 | Bottom | 1 5/8" - Andrew | 130 | | | | | | 4842.058 | | 14 | l | | | PORT 7 | | 59423.B.1900.4G
.2 | | CTL01104_9B_2 | | LTE 1900 | 2_1930MHz_02D
T | 16 | 160 | 2 | Bottom | 1 5/8" - Andrew | 130 | | | | | | 4842.058 | | 14 | | | | | | | | | | | | | | Page 12 of 30 | Secti | on 15C - CU | RRENT TOW | ER CONFIG | URATION - S | SECTOR C | _ | | | | | |--|-------------------------------|---------------------------------|----------------------------|-------------------------------|---------------------------|------------|-----------|-------------------------------|---------------------------|--------------|-----------------------|--------------------|--|--------------------------|-------------------------|----------------------|---|------------------------|---| | ANTENNA POSITIO
LEFT to RIGHT from BACK OF ANTENNA (L | ON is
unless otherwise spe | ecified) | ANTENNA POSITIO | ON 1 | ANTENNA | POSITION 2 | ANTENNA | A POSITION 3 | ANTENNA | POSITION 4 | ANTENNA | POSITION 5 | ANTE | NNA POSITION 6 | ANTENNA | A POSITION 7 | | | | | | ANTENNA | MAKE - MODEL | HPA-65R-BUU-H6 | | | | QS66512-2 | | | | | | | | | | | | | | | AN | TENNA VENDOR | CCI Antennas | | | | Quintel | | | | | | | | | | l | | | | | ANTENNA | SIZE (H x W x D) | 72X14.8X9 | | | | 72X12X9.6 | | | | | | | | | | | | | | | AN | ITENNA WEIGHT | 50.7 | | | | 111 | | | | | | | | | | 1 | | | | | | AZIMUTH | 50 | | | | 280 | | | | | | | | | | 1 | | | | | | C DECLINATION |
 | | | | | | | | | | | | | 1 | | | | | RADIATIO | N CENTER (feet) | 88 | | | | 88 | | | | | | | | | | | | | | | | NNA TIP HEIGHT | ICAL DOWNTILT | 0 | | | | 0 | | | | | | | | | | 1 | | | | | | EEDER AMOUNT | | | | | 8 | | | | | | | | | | 1 | | | | VERTICAL SEPARATION fr | | | | | | | | | | | | | | | | | 1 | | | | VERTICAL SEPARATION from CLOSEST AN | ORIZONTAL SEPARATION from CLOSEST AF | N I ENNA to LEFT | (CENTERLINE to
CENTERLINE) | | | | | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST A | ANTENNA to RIGH | T (CENTERLINE
to CENTERLINE) | | | | | | | | | | | | | <u> </u> | | | | | | HORIZONTAL SEPARATION from ANOTHER | ANTENNA (which | h antenna # / # of
inches) | | | | | | | | | | | | | | | | |] | | | Antenna RET Mot | or (QTY/MODEL) | Interna | nal | | | | Internal | | | | | | | | | | | | | | SURGE ARRESTO | OR (QTY/MODEL) | | OC-4310FM | | | 12 | Andrew APTDC-
BDFDM-DB | | | | | | | | | | | | | | DIPLEXE | ER (QTY/MODEL) | Kaelus
4 DBC2 | is
2055F1V1-2 | | | 8 | Kaelus
DBC2055F1V1-2 | | | | | | | | | | | I | | | DUPLEXE | ER (QTY/MODEL) | | | | | | | | | | | | | | | | | | | Antenna R | RET CONTROL UN | IIT (QTY/MODEL) | | | | | | RRH
CONTROLLED | | | | | | | 1 | | | | | | | DC BLOC | CK (QTY/MODEL) | | | | | | | | | | | | | | | | | l | | | TMA/LN | NA (QTY/MODEL) | 2 12A | ABP0721VG | | | 4 | TMA2117F00V1-
1 (Twin PCS- | | | | | | | | | | | 1 | | CURRENT IN. | JECTORS FOR TN | MA (QTY/MODEL) | Diplex | erwave AISG
xer (Built In) | | | | | | | | | | | | | | - | | | | | AS (QTY/MODEL) | | | | | | | | | | | | | | | | - | | | | | ER (QTY/MODEL) | | | | | | | | | | | | | | | | | 1 | | | | IID (QTY/MODEL) | | | | | | | | | | | | | | | | | 1 | | | | NK (QTY/MODEL) | | | | | | | | | | | | | | | | | 1 | | | | NK (QTY/MODEL) | | | | | | | | | | | | | | | | | l | | | | ER (QTY/MODEL) | nd (QTY/MODEL) | | | | | | RRUS-11 B12 | | | | | | | | | | | | | | RRH - 850 bar | nd (QTY/MODEL) | | | | | , | RRUS-12 B5
RRUS-32 B2 | | | | | | | | | | | | | | | nd (QTY/MODEL) | 1 4426 8 | B66 | | | | RRUS-32 B2 | | | | | | | | | | | | | | RRH - WCS bar | | . 14420 0 | | | | 1 | RRUS-32 B30 | | | | | | | | | | | | | Additional | RRH #1 - any bar | | | | | | ĺ | 02 000 | | | | | | | | | | | | | | I RRH #2 - any ba | 1 (QTY/MODEL) | | | | | | | | | | | | | | | | | ١ | | | | 2 (QTY/MODEL) | RRH_7B | _3 (QTY/MODEL) | | | | | | | | | | | | | | | | | ļ | | Addi | itional Componen | t 1 (QTY/MODEL) | | | | | | | | | | | | | | | | | ļ | | Addi | itional Componen | t 2 (QTY/MODEL) | | | | | | | | | | | | | | | | | l | | Addi | itional Componen | t 3 (QTY/MODEL) | | | | | | | | | | | | | | | | | l | | | Loc | cal Market Note 1 | | | | | | | | | | | | | | | | - | 1 | | | Loc | cal Market Note 2 | Loc | cal Market Note 3 | | | | | | | | | | | | | | | | | | | PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng) | USEID (Atoli) ATO | OLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOG | Y / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | | TRIPLEXER or LLC (QTY) | | | | | | 59423.C.850.3G. | 14040 | OT (4404 | | | | H6_849MHz_10D | | 50 | 40 | | 4.5/0.4 | 420 | | | | l | | ANTENNA POSITION 1 | PORT 1 | | | | CTV11043
CTL01104_2C_2 | | UMTS 850 | | T
H6_2170MHz_07
DT | 114.6 | 280 | 7 | None
Bottom | 1 5/8 Andrew
1 5/8" - | 130 | | | | l | | | PORT 3 | | I CTL01 | 11104_2U_2 C | U1201104_2U_2 | 1 | LTE AWS | | lo. | 11.2 | 1200 | ľ | Lottom | Andrew | 130 | 1 | | | 1 | | | PORT 1 | | 59423.C.700.4G.
1 CTL01 | 1104 70 1 | CTL01104_7C_1 | | LTE 700 | | QS66512-
2_722MHz_06DT | 13.1 | 280 | 6 | Bottom | 1 5/8" - Andrew | 130 | | | | Ī | | | 10.11 | | 59423.C.850.4G. | | | | | | QS66512- | | | | | | | | | | t | 59423.C.WCS.4G 59423.C.1900.4G LTE WCS LTE 1900 T 2_1930MHz_07D T 1 2_1930MHz_07D T PORT 3 CABLE ID(cssng) 1285.2866 | | | | | | | | Secti | on 16A - PL | ANNED/PRO | POSED TOW | ER CONFIG | URATION - S | SECTOR A (OR ON | INI) | | |--|--------------------------------|----------------------------------|----------------|---------------|------------------------------------|----------------|----------------------------|------------------|--|-----------------------|--------------------|--|-----------------|-------------------------|----------------------| | ANTENNA POSITION is LEFT to RIGHT from BACK OF ANTENNA (unless otherwise spec | cified) | ANTENNA P | OSITION 1 | ANTENNA | POSITION 2 | ANTENNA | POSITION 3 | ANTENNA | POSITION 4 | ANTENNA I | POSITION 5 | ANTEN | NNA POSITION 6 | ANTENN | A POSITION 7 | | | isting Antenna? | | | | | | | | | | | | | | | | | MAKE - MODEL | | | DMP65R-BU6DA | | TPA-65R-BU6DA- | v | | | | | | | | | | | ENNA VENDOR | | | CCI | | CCI | K. | | | | | | | | | | | SIZE (H x W x D) | | | 71.2X20.7X7.7 | | 71.2X20.7X7.7 | | | | | | | | | | | | TENNA WEIGHT | | | 79.4 | | 69 | | | | | | | | | | | | AZIMUTH | | | 50 | | 50 | | | | | | | | | | | MAGNETIC | DECLINATION | | | | | | | | | | | | | | | | RADIATION | N CENTER (feet) | | | 92' | | 92' | | | | | | | | | | | ANTEN | INA TIP HEIGHT | | | 95' | | 95' | | | | | | | | | | | MECHANIC | CAL DOWNTILT | | | 0 | | 0 | | | | | | | | | | | FE | EDER AMOUNT | | | | | Fiber | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA ABO | OVE (TIP to TIP) | | | | | | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA BEL | OW (TIP to TIP) | | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (0 | CENTERLINE to
CENTERLINE) | | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT | T (CENTERLINE | | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from ANOTHER ANTENNA (which | | | | | | | | | | | | | | | | | Antenna RET Moto | | | | | Internal | | Built in | | | | | | | | | | SURGE ARRESTO | | | | 4 | TSXDC-4310FM | 4 | TSXDC-4310FM | | | | | | | | | | | R (QTY/MODEL) | | | | | | | | | | | | | | | | | R (QTY/MODEL) | | | | | | | | | | | | | | | | Antenna RET CONTROL UNI | | | | | | | | | | | | | | | | | DC BLOCK | K (QTY/MODEL) | | | | | | | | | | | | | | | | TMA/LN/ | A (QTY/MODEL) | | | 2 | TMABPD7823VG
12A | 2 | TMA2124F03V5-
1D | | | | | | | | | | CURRENT INJECTORS FOR TMA | A (QTY/MODEL) | | | | | | | | | | | | | | | | PDU FOR TMA: | S (QTY/MODEL) | | | | | | | | | | | | | | | | FILTER | R (QTY/MODEL) | | | | | | | | | | | | | | | | SQUII | D (QTY/MODEL) | | | | | | | | | | | | | | | | FIBER TRUN | K (QTY/MODEL) | | | | | | | | | | | | | | | | DC TRUN | K (QTY/MODEL) | | | | | | | | | | | | | | | | REPEATE | R (QTY/MODEL) | | | | | | | | | | | | | | | | RRH - 700 band | | | | 1 | 4449 B5/B12
RRH is shared | 1 | 4478 B14 | | | | | | | | | | RRH - 850 band | | | | | RRH is shared
with another band | | | | | | | | | | | | RRH - 1900 ban | | | | | | 1 | 4415 B25 | | | | | | | | | | RRH - AWS band | | | | | | | | | | | | | | | | | RRH - WCS band | | | | | | | | | | | | | | | | | Additional RRH #1 - any ban | | | | | | | | | | | | | | | | | Additional RRH #2 - any band | | | | | | | | | | | | | | | | | | 1 (QTY/MODEL)
2 (QTY/MODEL) | | | | | | | | | | | | | | | | | 3 (QTY/MODEL) | | | | | | | | | | | | | | | | Additional Component | | | | | | 4 | Pentaplexer 5PX-
0726-O | | | | | | | | | | Additional Component | | | | | | 2 | K SBT 782-11055 | | | | | | | | | | Additional Component | | | | | | 2 | Polyphaser
1000860 | | | | | | | | | | Loca | al Market Note 1 | - Antennae and Ra
- Move UMTS | dios as per PD | | | | | | | | | | | | | | | | Configure each sec | | fiagram. | | | | | | | | | | | | | | | 1x6601 / 2x6630 / | | | | - | - | - | | - | | - | | | | | PORT SPECIFIC FIELDS PORT NUMBER | USEID (CSSng) | USEID (Atoll) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY | / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | | | 0423 A 700 4C | E0422 A 700 4C | | | | | | DISCO 725MUs | | | | g.zzJiio) | | | | | PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng) | USEID (Atoli) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or
LLC (MODEL) | SCPA/MCPA
MODULE? | HATCHPLATE
POWER (Watts) | ERP (Watts) | Antenna RET
Name | CABLE
NUMBER | CABLE
ID(cssng) | |----------------------|-------------|--------------------------|-----------------------|------------------------|------------------------|--------|------------------------|----------------------|--------------|-----------------------|--------------------|--|--------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------| | | PORT 1 | 59423.A.700.4G.
1 | 59423.A.700.4G.
1 | CTL01104_7A_1 | CTL01104_7A_1 | | LTE 700 | BU6D_725MHz_
10DT | 12.7 | 50 | 10 | воттом | 1-5/8 Coax | 130 | | | | | | 1475.71 | 1 | | | | ANTENNA POSITION 2 | PORT 2 | 59423.A.850.4G.
1 | | CTL01104_8A_1 | CTL01104_8A_1 | | LTE 850 | BU6D_850MHz_
10DT | 13.3 | 50 | 10 | воттом | 1-5/8 Coax | 130
 | | | | | 1000 | 1 | | | | | PORT 5 | 59423.A.850.5G.t
mp1 | 59423.A.850.5G.
1 | CTCN001104_N0
05A_1 | CTCN001104_N0
05A_1 | | 5G 850 | BU6D_850MHz_
10DT | 13.3 | 50 | 10 | воттом | 1-5/8 Coax | 130 | | | | | | 1000 | 1 | PORT 1 | 59423.A.700.4G.t
mp5 | 59423.A.700.4G.
5 | CTL01104_7A_3
_F | CTL01104_7A_3
_F | | LTE 700 | TPA65R-BU6DA-
K | 14.7 | 50 | 10 | Bottom | 1-5/8 Coax | 130 | | | | | | 2951.41 | 5 | | | | | PORT 3 | 59423.A.1900.4G
.2 | 59423.A.1900.4G
.2 | CTL08104_9A_1 | CTL08104_9A_1 | | LTE 1900 | TPA65R-BU6DA-
K | 17.15 | 50 | 4 | Bottom | 1-5/8 Coax | 130 | | | | | | 4842.06 | 6 | | | | ANTENNA POSITION 3 | PORT 4 | 59423.A.1900.4G
.tmp4 | | CTL08104_9A_2 | CTL08104_9A_2 | | LTE 1900 | TPA65R-BU6DA-
K | 17.15 | 50 | 4 | воттом | 1-5/8 Coax | 130 | | | | | | | 4 | | | | | 59423.A.AWS.40 | 59423.A.AWS.40 | 3 | | | TPA65R-BU6DA- | | | | | | | | | | |--------|-----------------|-----------------|---------------|---------------|----------|---------------|-------|----|---|--------|------------|-----|--|---|---| | PORT 7 | .tmp4 | .1 | CTL08104_2A_2 | CTL08104_2A_2 | LTE AWS | K | 17.15 | 50 | 4 | Bottom | 1-5/8 Coax | 130 | | 7 | | | | 59423.A.1900.40 | 59423.A.1900.40 | 3 | | | TPA65R-BU6DA- | | | | | | | | | | | PORT 8 | .tmp5 | .tmp5 | CTL08104_9A_3 | CTL08104_9A_3 | LTE 1900 | K | 17.15 | 50 | 4 | Bottom | 1-5/8 Coax | 130 | | 8 | 1 | | | | | | | | | | Section 16 | 3 - PLANNED | PROPOSED | TOWER CO | NFIGURATION | ON - SECTOR B | | | |---|------------------------------|----------------------|----------------------------------|--|--------------------------------|------------------------------------|------------------------------|--------------------------------------|--|--|--------------|----------------------------------|----------------|--|--------------| | ANTENNA POSITION
LEFT to RIGHT from BACK OF ANTENNA (u | ON is
unless otherwise sp | pecified) | ANTENNA | POSITION 1 | ANTENNA P | POSITION 2 | ANTENNA POSITION 3 | ANTENNA | POSITION 4 | ANTENNA | POSITION 5 | ANTEN | NNA POSITION 6 | ANTENNA | A POSITION 7 | | | E | Existing Antenna? | | | | | | | | | | | | | | | | ANTENN | IA MAKE - MODEL | | | DMP65R-BU6DA | | TPA-65R-BU6DA-K | | | | | | | | | | | AA. | NTENNA VENDOR | | | CCI | | CCI | | | | | | | <u> </u> | | | | ANTENNA | A SIZE (H x W x D) | | | 71.2X20.7X7.7 | | 71.2X20.7X7.7 | | | | | | | | | | | A | NTENNA WEIGHT | | | 79.4 | | 69 | | | | | | | | | | | | AZIMUTH | | | 160 | | 160 | | | | | | | + | | | | | TIC DECLINATION | | | 92' | | 92' | | | | | | | + | | | | | ON CENTER (feet) | | | 92 | | 92 | | | | | | | + | | | | | NICAL DOWNTILT | | | 0 | | | | | | | | | | | | | | FEEDER AMOUNT | | | | | | | | | | | | | | | VERTICAL SEPARATION fro | rom ANTENNA A | BOVE (TIP to TIP) | | | | | | | | | | | | | | | VERTICAL SEPARATION fro | om ANTENNA BI | ELOW (TIP to TIP) | | | <u> </u> | | | | | <u> </u> | | <u> </u> | | | | | RIZONTAL SEPARATION from CLOSEST AN | NTENNA to LEFT | T (CENTERLINE to | | | | | | | ļ | | | | | | | | ORIZONTAL SEPARATION from CLOSEST A | ANTENNA to RIG | | | - | | | | | | | - | | | 1 | | | ORIZONTAL SEPARATION from ANOTHER | ANTENNA (whice | ch antenna # / # of | | | | | | | | | T | | | + | | | | A DET 11- | inches) | | | | Internal | | | | | | | | + | | | | | OTY/MODEL) | | | 4 | Internal TSXDC-4310FM | 4 TSXDC-4310FM | | | | | | | | | | | | KER (QTY/MODEL) | | | | | . PONDO-45TOPM | | | | | | | | | | | | KER (QTY/MODEL) | | | | | | | | | | | | | | | Antenna R | RET CONTROL U | INIT (QTY/MODEL) | | | | | | | | | | | | | | | | DC BLO | OCK (QTY/MODEL) | | | | | | | ļ | | | | | | | | | TMA/L | LNA (QTY/MODEL) | | | 2 | TMABPD7823VG
12A | TMA2124F03V5-
2 1D | | | | | | ļ | | | | CURRENT INJ | JECTORS FOR T | MA (QTY/MODEL) | | | | | | | | | | | | | | | | | MAS (QTY/MODEL) | | | | | | | | | | | | | | | | | TER (QTY/MODEL) | | | | | | | | | | | | | | | | | UID (QTY/MODEL) | | | | | | | | | | | | | | | | | JNK (QTY/MODEL) | | | | | | | | | | | | + | | | | | TER (QTY/MODEL) | | | | | | | | | | | | | | | | | and (QTY/MODEL) | | | 1 | 4449 B5/B12 | 1 4478 B14 | | | | | | | | | | | | and (QTY/MODEL) | | | ļ | RRH is shared
with another band | | | | | | | | | | | | RRH - 1900 ba | and (QTY/MODEL) | | | | | 1 4415 B25 | | | | | | | | | | | RRH - AWS ba | and (QTY/MODEL) | | | | | | | | | | | <u> </u> | | | | | RRH - WCS ba | and (QTY/MODEL) | | | | | | | | | | | ļ | | | | Additional | RRH #1 - any ba | and (QTY/MODEL) | | | | | | | - | | | | | | | | Additional | | and (QTY/MODEL) | | | | | | | | | | <u> </u> | | | | | | | B_1 (QTY/MODEL) | | | | | | | | | | | | | | | | | B_2 (QTY/MODEL) | | | | | | | | | | | | _ | | | 0 ddi | | nt 1 (QTY/MODEL) | | | | | Pentaplexer 5PX-
4 0726-O | | | | | | | + | | | | | nt 2 (QTY/MODEL) | | | | | 2 K SBT 782-11055 | | | | | | | | | | | | nt 3 (QTY/MODEL) | | | | | Polyphaser
2 1000860 | | | | | | | | | | | | ocal Market Note 1 | - Antennae and Ra
- Move UMTS | adios as per PD | | | * | | | | | | | | | | | Lo | ocal Market Note 2 | Configure per PD | | | | | | | | | | | | | | | Lo | ocal Market Note 3 | 1x6601 / 2x6630 / | 1xXMU03 + IDLe | | | | | | | | | | | | | DODT SPECIEIC FIFE DO | DODT NUMBER | LIGEID (CCC. | HOEID (Assi) | ATOL: TVIC | ATOLL OF L | TV/DVA | TECHNOLOGY / EDECHIEROY | ANTENNA | ANTENNA GAIN | ELECTRICAL | ELECTRICAL | RRH LOCATION | EEEDEDO TVOS | FEEDER | RXAIT KIT | | PORT SPECIFIC FIELDS F | | USEID (CSSng) | | | ATOLL CELL ID | TX/RX? | TECHNOLOGY / FREQUENCY | ATOLL | ANTENNA GAIN | AZIMUTH | TILT | (Top/Bottom/
Integrated/None) | FEEDERS TYPE | LENGTH (feet) | MODULE? | | | PORT 1 | 59423.B.700.4G. | 1 | CTL01104_7B_1 | CTL01104_7B_1 | | LTE 700 | BU6D_725MHz_
02DT | 13.2 | 160 | 2 | воттом | 1-5/8 Coax | 130 | | | ANTENNA POSITION 2 | PORT 2 | 59423.B.850.4G.
1 | 1 | CTL01104_8B_1 | CTL01104_8B_1
CTCN001104_N0 | | LTE 850 | BU6D_850MHz_
02DT
BU6D_850MHz_ | 13.1 | 160 | 2 | воттом | 1-5/8 Coax | 130 | | | | | 59423.B.850.5G.t | | | | | | | | | | | | | | TPA65R-BU6DA- TPA65R-BU6DA-K 1 TPA65R-BU6DA-K LTE 700 LTE 1900 LTE 1900 | S9423 B 700 4G | S9423 B 700 4G | S70 1-5/8 Coax 130 SCPA/MCPA HATCHPLATE POWER (Watts) ERP (Watts) 1475.71 2951.41 CABLE ID(cssng) | | | | 4.500.0000 | | | | | |--|--|--|------------|--|--|--|--| Section 16C - PLANNED | PROPOSED TO | WER CO | ONFIGURAT | ON - SECTOR C | | | | | | | | | | |--|--|--|------------------------------------|--|-------------------------------|---|----------------|--------------|---------------------------------|----------------|-------------------------|----------------------|---------------------------|-----------------------------|----------------------|---------------|-------------|---------------------|--------| | ANTENNA POSITION is LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENNA POSITION 1 | ANTENNA | POSITION 2 | ANTENNA P | OSITION 3 | ANTENNA POSITION 4 | ANTENNA POSITI | ION 5 | ANTE | NNA POSITION 6 | ANTENN | A POSITION 7 | | | | | | | | | LEFT to KIGHT HOILI BACK OF ARTENWA (UIIIESS OUIEWISE SPECIFICA) | Existing Antenna? | ANTENNA MAKE - MODEL | | DMP65R-BU6DA | | TPA-65R-BU6DA-K | | | | | | | | | | | | | | | | | ANTENNA VENDOR | | CCI | | CCI | | | | | | | | | | | | | | | | | ANTENNA SIZE (H x W x D | | 71.2X20.7X7.7 | | 71.2X20.7X7.7 | | | | | | | | | | | | | | | | | ANTENNA WEIGHT | | 79.4 | | 69 | | | | | | | | | | | | | | | | | AZIMUTH | | 280 | | 280 | | | | | | | | | | | | | | | | | MAGNETIC DECLINATION | RADIATION CENTER (feet | | 92' | | 92' | | | | | | | | | | | | | | | | | ANTENNA TIP HEIGHT | | 95' | | 95' | 00 | | | | | | | | | | | | | | | | | MECHANICAL DOWNTILT | | 0 | | | | | | | | | | | | | | | | | | | FEEDER AMOUNT | | | | Fiber | | | | | | | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP | VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP) | HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE) | HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE | to CENTERLINE HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of | • | - | | | | | | | | | | | | | | | | | | | inches | | | | | | | | | - | | | | | | | | | | | | Antenna RET Motor (QTY/MODEL | | | Internal | | Built in | | | | | | | | | | | | | | | | SURGE ARRESTOR (QTY/MODEL) | | 4 | TSXDC-4310FM | | | | | | | | | | | | | | | | | | DIPLEXER (QTY/MODEL) | DUPLEXER (QTY/MODEL) | Antenna RET CONTROL UNIT (QTY/MODEL) | DC BLOCK (QTY/MODEL) | TMA/LNA (QTY/MODEL | | 2 | TMABPD7823VG | 2 | TMA2124F03V5- | | | | | | | | | | | | | | | | CURRENT INJECTORS FOR TMA (QTY/MODEL) | | | I.D. | - | PDU FOR
TMAS (QTY/MODEL | FILTER (QTY/MODEL | SQUID (QTY/MODEL | FIBER TRUNK (QTY/MODEL) | DC TRUNK (QTY/MODEL) | REPEATER (QTY/MODEL) | RRH - 700 band (QTY/MODEL | | 1 | 4449 B5/B12 | | 4478 B14 | | | | | | | | | | | | | | | | RRH - 850 band (QTY/MODEL) | | | RRH is shared
with another band | 1 | | | | | | | | | | | | | | | | | RRH - 1900 band (QTY/MODEL) | | | | 1 . | 4415 B25 | | | | | | | | | | | | | | | | RRH - AWS band (QTY/MODEL) | RRH - WCS band (QTY/MODEL) | Additional RRH #1 - any band (QTY/MODEL) | Additional RRH #2 - any band (QTY/MODEL) | RRH_7B_1 (QTY/MODEL | RRH_7B_2 (QTY/MODEL) | RRH_7B_3 (QTY/MODEL | | | | | Pentaplexer 5PX-
0726-O | | | | | | | | | | | | | | | | Additional Component 1 (QTY/MODEL | | | | 4 | | | | | | | | | | | | | | | | | Additional Component 2 (QTY/MODEL | | | | 2 | K SBT 782-11055
Polyphaser | | | | | | | | | | | | | | | | Additional Component 3 (QTY/MODEL | - Antennae and | | | 2 | 1000860 | | | | | | | | | | | | | | | | Local Market Note 1 | Radios as per PD | Local Market Note 2 | Configure per PD
1x6601 / 2x6630 / | - | | | | | | | | | | | | | | | | | | | Local Market Note 3 | 1xXMU03 + IDLe | ANTENNA | ELECTRICAL EL | ECTRICAL | RRH LOCATION | | FEEDER | RXAIT KIT | TDIDI EVEN | TRIDI EVEN | SCDA TION : | HATCHPLATE | | Antonno Dev | CABLE | | PORT SPECIFIC FIELDS PORT NUMBER USEID (CSSng) | USEID (Atoll) ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY | FREQUENCY | ATOLL ANTENNA GAIN | AZIMUTH ELI | TILT | (Top/Bottom/
Integrated/None | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | TRIPLEXER or LLC
(QTY) | TRIPLEXER or
LLC (MODEL) | SCPA/MCPA
MODULE? | POWER (Watts) | ERP (Watts) | Antenna RET
Name | NUMBER | | 59423.C.700.4G. | 59423.C.700.4G. | | | | | BU6D_725MHz_ | | | | | | | | | | | | | | | PORT 1 | 1 CTL01104_7C_1
59423 C 850 4G | | | LTE 700 | | 06DT 12.8 | 50 6 | | воттом | 1-5/8 Coax | 130 | | | | | | 1475.71 | 17 | · | | PORT 2 | 1 CTL01104_8C_1
59423.C.850.5G. CTCN001104_N0 | CTL01104_8C_1 | | LTE 850 | | BU6D_850MHz_
06DT 13.2
BU6D_850MHz_ | 50 6 | | воттом | 1-5/8 Coax | 130 | | | | | | 1000 | 17 | | | 9923.C.850.5G.1
PORT 5 mp1 | 1 05C_1 | 05C_1 | | 5G 850 | | 06DT 13.2 | 50 6 | | воттом | 1-5/8 Coax | 130 | | | | | <u> </u> | 1000 | 17 | , | | | L | I | ı | | | I | 1 | | 1 | | 1 | | | 1 | 1 | 1 | | | | | 59423.C.700.4G.t | 59423.C.700.4G. CTL01104_7C_3
5 _F | CFL01104_7C_3
_F | | LTE 700 | | TPA65R-BU6DA-
K 13.5 | 280 6 | | Bottom | 1-5/8 Coax | 130 | | | | | | 2951.41 | 21 | | | 59423.C.1900.4G ANTENNA POSITION 3 PORT 4 Imp1 | CTL00104_9C_1 | CTL00104_9C_1 | | LTE 1900 | | TPA65R-BU6DA-
K 15.9 | 280 7 | | Bottom | 1-5/8 Coax | 130 | | | | | | | 23 | 3 | | 59423.C.1900.4G
PORT 7 | CTL00104_9C_2 | CTL00104_9C_2 | | LTE 1900 | | TPA65R-BU6DA-
K 15.9 | 280 7 | | Bottom | 1-5/8 Coax | 130 | | | | | | | 24 | 4 | | | | | | | | | | ige 18 of 30 | 4942.00 | | |--|--|--|--|--|--|--|--|---------|--| | | | | | | | | | | | #### Section 16.5A - SCOPING TOWER CONFIGURATION - SECTOR A (OR OMNI) Section 17A - FINAL TOWER CONFIGURATION - SECTOR A (OR OMNI) | ANTENNA POSITION is
LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENN | NA POSITION 1 | ANTENNA I | POSITION 2 | ANTENNA I | POSITION 3 | ANTENNA POSITION 4 | ANTENN | A POSITION 5 | ANTI | ENNA POSITION 6 | ANTENNA | A POSITION 7 | |--|---|------------------|--|---|----------------|--|---|------------------------|--------------------|---|--------------------------|-------------------------|----------------------| | ANTENNA MAKE | MODEL | | DMP65R-BU6DA | | TPA-65R-BU6DA- | к | | | | | | | | | ANTENNA | ENDOR | | CCI | | CCI | | | | | | | | | | ANTENNA SIZE (H | x W x D) | | 71.2X20.7X7.7 | | 71.2X20.7X7.7 | | | | | | | | | | ANTENNA | NEIGHT | | 79.4 | | 69 | | | | | | | | | | | ZIMUTH | | 50 | | 50 | | | | | | | | | | MAGNETIC DECL | | | 001 | | 001 | | | | | | | | | | RADIATION CENT | | | 92'
95' | | 92'
95' | | | | | | | | | | ANTENNA TIF | | | 95 | | 95 | | | | | | | | | | MECHANICAL DO | | | 0 | | 0 | | | | | | | | | | FEEDER. VERTICAL SEPARATION from ANTENNA ABOVE (T | | | 4 | | 4 | | | | | | | | | | VERTICAL SEPARATION from ANTENNA BELOW (T | | | | | | | | | | | | | | | ORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTE | RLINE to | | | | | | | | | | | | | | CENT | ERLINE) | | + | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CEN | | | | 1 | | | | | | 1 | 1 | 1 | ı | | HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenn | inches) | + | | | | | | | | 1 | | - | | | Antenna RET Motor (QTY | | + | + | Internal | | Internal
BDFDM-DB (10) | | | | 1 | | 1 | | | SURGE ARRESTOR (QTY | | + | 8 | TSXDC-4310FM | 14 | + TSXDC- | | | | 1 | | 1 | | | DIPLEXER (QTY | | + | 2 | DBC2055F1V1-2 | | | | | | + | | 1 | | | DUPLEXER (QTY | | + | t | | | RRH
CONTROLLED | | | | 1 | | 1 | | | Antenna RET CONTROL UNIT (QTY | | + | 1 | | | CONTROLLED | | | | | | | | | TMA/LNA (QTY | | | 2 | TMABPD7823VG
12A | 2 | TMA2124F03V5-
1D | | | | | | | | | CURRENT INJECTORS FOR TMA (QTY | | | | | 1 | KATHREIN 860-
10006 | | | | | | | | | PDU FOR TMAS (QTY | | | | | | | | | | | | | | | FILTER (QTY | MODEL) | | | | | | | | | | | | | | SQUID (QTY | MODEL) | | | | | | | | | | | | | | FIBER TRUNK (QTY | MODEL) | | | | | | | | | | | | | | DC TRUNK (QTY | MODEL) | + | | | | | | | | | | | | | REPEATER (QTY | | + | <u> </u> | | | | | | | | | | | | RRH - 700 band (QTY | | + | | 4449 B5/B12
RRH is shared
with another band | 1 | 4478 B14 | | | | | | | | | RRH - 850 band (QTY | | + | + | with another band | | 4415 B25 | | | | | | | | | RRH - AWS band (QTY | | + | + | | 1 | 4415 B25
4426 B66 | | | | | | | | | RRH - WCS band (QTY | | 1 | 1 | RRUS-32 B30 | - | 20 500 | | | | | | | | | Additional RRH #1 - any band (QTY | | | | | | | | | | | | | | | Additional RRH #2 - any band (QTY | | | | | | | | | | | | | | | RRH_7B_1 (QTY | MODEL) | | | | | | | | | | | | | | RRH_7B_2 (QTY | MODEL) | | | | | | | | | 1 | | 1 | | | RRH_7B_3 (QTY | MODEL) | + | | | | Pentanlever 5DV | | | | 1 | | 1 | | | Additional Component 1 (QTY | MODEL) | + | + | | 4 | Pentaplexer 5PX-
0726-O | | | | 1 | | 1 | | | Additional Component 2 (QTY | | + | | | 2 | K SBT 782-11055
Polyphaser
1000860 | | | | 1 | | 1 | | | Additional Component 3 (QTY | - Antennae and | Radios as per PD | 1 | | 2 | 1000860 | | | | | | | | | | t Note 1 - Move UMTS | | | | | | | | | | | | | | | ot Note 2 Configure per Pi | | | | | | | | | | | | | | Local Mark | | | | | | | | | | | | | | | PORT SPECIFIC FIELDS PORT NUMBER USEID | | | ATOLL CELL ID | TX/RX? | TECHNOLOGY | | ANTENNA ANTENNA G | AIN ELECTRICAL AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | | PORT 1 1 | 700.4G. 59423.A.700.4G | CTL01104_7A_1 | CTL01104_7A_1 | | LTE 700 | | BU6D_725MHz_
10DT 12.7 | 160 | 10 | воттом | 1-5/8 Coax | 130 | | | ANTENNA POSITION 2 PORT 2 1 | 850.4G. 59423.A.850.4G | á. | 1 | 1 | LTE 850 | | BU6D_850MHz_
10DT 13.3 | 160 | 10 | воттом | 1-5/8 Coax | 130 | | | | 1 | 10 | CTL01104_8A_1 | | L1E 000 | | DUIGN 2255MU2 | | | | | | | | PORT 3 .1 | 1
WCS.4G 59423.A.WCS.4
.1
850.5G.t 59423.A.850.5G
1 | 10 | | | LTE WCS | | BU6D_2355MHz
_04DT 17.7
BU6D_850MHz | 160 | 4 | Bottom
BOTTOM | 1-5/8 Coax
1-5/8 Coax | 130 | | TPA65R-BU6DA-K 13.1 K TPA65R-BU6DA-K UMTS 850 59423 A 700.4G1 59423 A 700.4G. CTL01104_7A_3 CTL01104_7A_3 F 59423 A 850.3G 59423 A 850.3G. CTV11041 CTV11041 CTV11041 CABLE ID(cssng) ERP (Watts) 1475.71 5070.26 2951.413 | | 59423.A.AWS.4G 59423.A.AWS.4G PORT 31, tmp4 4 CTL00104 2A 2 CTL00104 2A 2 ITF AWS | TPA65R-BU6DA- | Bottom 1 Elif Conv. 190 | 1285.2866 6 | |--------------------|---|------------------------------|-------------------------|-------------| | ANTENNA POSITION 3 | 59423.A.1900.4G 59423.A.1900.4G PORT 4.2 | TPA65R-BU6DA-
K 15.6 50 4 | Bottom 1-5/8 Coax 130 | 4842.058 6 | | | 59423 A.1900.4G 59423.A.1900.4G PORT 7, Imp4 | TPA65R-BU6DA-
K 15.6 50 4 | Bottom 1-5/8 Coax 130 | 4842.058 6 | | | . tmp4, 59423.A.1900.4G
PORT 8 59423.A.1900.4G | TPA6SR-BU6DA-
K 15.6 50 4 | Bottom 1-5/8 Coax 130 | 4842.058 6 | | | | | | | | Sec | tion 17B - F | INAL TOWER | R CONFIGUE | RATION - SEC | CTOR B | | | |---|----------------------------------|---------------|------------------------------------|---------------|----------------------------|---------|--------------|------------|------------|--------------|----------------|--------|--------------| | ANTENNA POSITION is LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENNA POSITION 1 | ANTENNA | POSITION 2 |
ANTENNA | POSITION 3 | ANTENNA | POSITION 4 | ANTENNA | POSITION 5 | ANTE | NNA POSITION 6 | ANTENN | A POSITION 7 | | ANTENNA MAKE - MODEL | | DMP65R-BU6DA | | TPA-65R-BU6DA | -K | | | | | | | | | | ANTENNA VENDOR | | CCI | | CCI | | | | | | | | | | | ANTENNA SIZE (H x W x D) | | 71.2X20.7X7.7 | | 71.2X20.7X7.7 | | | | | | | | | | | ANTENNA WEIGHT | | 79.4 | | 69 | | | | | | | | | | | AZIMUTH | | 160 | | 160 | | | | | | | | | | | MAGNETIC DECLINATION | | | | | | | | | | | | | | | RADIATION CENTER (feet) | | 92' | | 92' | | | | | | | | | | | ANTENNA TIP HEIGHT | | 95' | | 95' | | | | | | | | | | | MECHANICAL DOWNTILT | | 0 | | 0 | | | | | | | | | | | FEEDER AMOUNT | | 4 | | 4 | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP) | | | | | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP) | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE) | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE | | | | | | | | | | | | | | | to CENTERLINE) HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches) | | | | | | | | | | | | | | | | | | Internal | | | | | | | | | | | | Antenna RET Motor (QTY/MODEL) SURGE ARRESTOR (QTY/MODEL) | | | TSXDC-4310FM | 14 | BDFDM-DB (10)
+ TSXDC- | | | | | | | | | | SURGE ARRESTOR (QTT/MODEL) DIPLEXER (QTY/MODEL) | | 2 | | 14 | + ISADC* | | | | | | | | | | | | 2 | DBC2055F1V1-2 | | | | | | | | | | | | DUPLEXER (QTY/MODEL) | | | | | RRH
CONTROLLED | | | | | | | | | | Antenna RET CONTROL UNIT (QTY/MODEL) | | | | | CONTROLLED | | | | | | | | | | DC BLOCK (QTY/MODEL) | | | TMABPD7823VG
12A | | TMA2124F03V5-
1D | | | | | | | | | | TMA/LNA (QTY/MODEL) CURRENT INJECTORS FOR TMA (QTY/MODEL) | | 2 | IZA | 2 | ID | | | | | | | | | | PDU FOR TMAS (QTY/MODEL) | | | | | | | | | | | | | | | FILTER (QTY/MODEL) | | | | | | | | | | | | | | | SQUID (QTY/MODEL) | | | | | | | | | | | | | | | FIBER TRUNK (QTY/MODEL) | | | | | | | | | | | | | | | DC TRUNK (QTY/MODEL) | | | | | | | | | | | | | | | REPEATER (QTY/MODEL) | | | | | | | | | | | | | | | RRH - 700 band (QTY/MODEL) | | 1 | 4449 B5/B12 | | 4478 B14 | | | | | | | | | | RRH - 850 band (QTY/MODEL) | | | RRH is shared
with another band | | 4470 014 | | | | | | | | | | RRH - 1900 band (QTY/MODEL) | | | another ballo | 1 | 4415 B25 | | | | | | | | | | RRH - AWS band (QTY/MODEL) | | | | 1 | 4415 B25
4426 B66 | | | | | | | | | | RRH - WCS band (QTY/MODEL) | | 1 | RRUS-32 B30 | | ++20 B00 | | | | | | | | | | Additional RRH #1 - any band (QTY/MODEL) | | 1 | | | | | | | | | | | | | Additional RRH #2 - any band (QTY/MODEL) | | | | | | | | | | | | | | | RRH_7B_1 (QTY/MODEL) | | | | | | | | | | | | | | | RRH_7B_1 (QTY/MODEL) | | | | | | | | | | | | | | | RRH_7B_3 (QTY/MODEL) | | | | | | | | | | | | | | | Additional Component 1 (QTY/MODEL) | | | | 4 | Pentaplexer 5PX-
0726-O | | | | | | | | | | Additional Component 1 (QTY/MODEL) Additional Component 2 (QTY/MODEL) | | | | 2 | K SBT 782-11055 | | | | | | | | | | Additional Component 3 (QTY/MODEL) | | | | 2 | Polyphaser
1000860 | | | | | | | | | | Additional Component's (QTY/MODEL) Local Market Note 1 | - Antennae and Radios as per PD | 1 | 1 | 1* | 1.000000 | 1 | 1 | l | 1 | 1 | | l | 1 | | Local Market Note 1 Local Market Note 2 | | | | | | | | | | | | | | | | 1x6601 / 2x6630 / 1xXMU03 + IDL | | | | | | | | | | | | | | Local market Note 3 | 10000 1 / 200030 / 1AAMOUS * IDE | PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng) | USEID (Atoli) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or
LLC (MODEL) | SCPA/MCPA
MODULE? | HATCHPLATE
POWER (Watts) | ERP (Watts) | Antenna RET
Name | CABLE
NUMBER | CABLE
ID(cssng) | |----------------------|-------------|-------------------------|----------------------|------------------------|------------------------|--------|------------------------|-----------------------|--------------|-----------------------|--------------------|--|--------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------| | | PORT 1 | 59423.B.700.4G.
1 | | CTL01104 7B 1 | CTL01104 7B 1 | | LTE 700 | BU6D_725MHz_
02DT | 13.2 | 160 | 2 | воттом | 1-5/8 Coax | 130 | | | | | | 1475.71 | | 9 | | | ANTENNA POSITION 2 | PORT 2 | 59423.B.850.4G.
1 | | CTL01104_8B_1 | CTL01104_8B_1 | | LTE 850 | BU6D_850MHz_
02DT | 13.1 | 160 | 2 | воттом | 1-5/8 Coax | 130 | | | | | | 1000 | | 9 | | | ANTENNA POSITION 2 | PORT 3 | 59423.B.WCS.4G
.1 | | CTL01104_3B_1 | CTL01104_3B_1 | | LTE WCS | BU6D_2355MHz
_02DT | 18.5 | 160 | 2 | Bottom | 1-5/8 Coax | 130 | | | | | | 5070.26 | | 10 | | | | PORT 5 | 59423.B.850.5G.t
mp1 | 59423.B.850.5G.
1 | CTCN001104_N0
05B_1 | CTCN001104_N0
05B_1 | | 5G 850 | BU6D_850MHz_
02DT | 13.1 | 160 | 2 | воттом | 1-5/8 Coax | 130 | | | | | | 1000 | | 9 | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | 59423.B.700.4G.t | 59423.B.700.4G. | CTL01104_7B_3 | CTL01104_7B_3 | | | TPA65R-BU6DA- | | | | | | | | | | | | | | | | PORT 2 1 C 1/1/10/2 | ANTENNA POSITIONS | | | | | | | | | | | | | | | | | |--------------------|--------|-----------------|-----------------|-----------------------------|----------|---------------|----|-----|---|--------|------------|-----|--|--|----------|----| | ARTEMIA I CONTON S | | 59423.B.1900.4G | 59423.B.1900.4G | | | TPA65R-BU6DA- | | | | | | | | | | | | | PORT 4 | .tmp1 | .1 | CTL00104_9B_1 CTL00104_9B_1 | LTE 1900 | K | 16 | 160 | 2 | Bottom | 1-5/8 Coax | 130 | | | 4842.058 | 14 | | | | 59423.B.1900.4G | 59423.B.1900.4G | | | TPA65R-BU6DA- | | | | | | | | | | | | | PORT 7 | .tmp4 | .4 | CTL00104_9B_2 CTL00104_9B_2 | LTE 1900 | K | 16 | 160 | 2 | Bottom | 1-5/8 Coax | 130 | | | 4842.058 | 14 | | | | .tmp4, | 59423.B.1900.4G | | | TPA65R-BU6DA- | | | | | | | | | | | | | PORT 8 | 59423.B.1900.4G | .4 | CTL00104_9B_3 CTL00104_9B_3 | LTE 1900 | K | 16 | 160 | 2 | Bottom | 1-5/8 Coax | 130 | | | 4842.058 | 14 | | | | | | | | Sec | tion 17C - F | INAL TOWER | CONFIGUE | RATION - SEC | CTOR C | | | |--|--|---------------|---|----------------|---------------------------|---------|--------------|------------|------------|--------------|----------------|--------|--------------| | ANTENNA POSITION is LEFT to RIGHT from BACK OF ANTENNA (unless otherwise specified) | ANTENNA POSITION 1 | ANTENNA | POSITION 2 | ANTENNA | POSITION 3 | ANTENNA | POSITION 4 | ANTENNA | POSITION 5 | ANTE | NNA POSITION 6 | ANTENN | A POSITION 7 | | | | | | | | | | | | | | | | | ANTENNA MAKE - MODEL | | DMP65R-BU6DA | | TPA-65R-BU6DA- | К | | | | | | | | | | ANTENNA VENDOR | | CCI | | CCI | | | | | | | | | | | ANTENNA SIZE (H x W x D | | 71.2X20.7X7.7 | | 71.2X20.7X7.7 | | | | | | | | | | | ANTENNA WEIGHT | | 79.4 | | 69 | | | | | | | | | | | AZIMUTH | | 280 | | 280 | | | | | | | | | | | MAGNETIC DECLINATION | | 001 | | 92' | | | | | | | | | | | RADIATION CENTER (feet | | 92'
95' | | 95' | | | | | | | | | | | ANTENNA TIP HEIGHT | | 90 | | 90 | | | | | | | | | | | MECHANICAL DOWNTILT | | 0 | | 0 | | | | | | | | | | | FEEDER AMOUNT | | 4 | | 4 | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP | | | | | | | | | | | | | | | VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE) | | | | | | | | | | | | | | | HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE | | | | | | | | | | | | | | | to CENTERLINE HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # o inches | | | | | | | | | | | | | | | | | | Internal | | lata-sal | | | | | | | | | | Antenna RET Motor (QTY/MODEL | | | TSXDC-4310FM | 10 | Andrew APTDC-
BDFDM-DB | | | | | | | | | | SURGE ARRESTOR (QTY/MODEL) | | | | 10 | BDFUM-UB | | | | | | | | | | DIPLEXER (QTY/MODEL) | | 2 | DBC2055F1V1-2 | | | | | | | | | | | | DUPLEXER (QTY/MODEL | | | | | RRH | | | | | | | | | | Antenna RET CONTROL UNIT (QTY/MODEL | | | | | CONTROLLED | | | | | | | | | | DC BLOCK (QTY/MODEL) | | | TMABPD7823VG | | TMA2124F03V5-
1D | | | | | | | | | | TMA/LNA (QTY/MODEL | | 2 | 12A | 2 | טו | | | | | | | | | | CURRENT INJECTORS FOR TMA (QTY/MODEL | | | | | | | | | | | | | | | PDU FOR TMAS (QTY/MODEL) | | | | | | | | | | | | | | | FILTER (QTY/MODEL) | | | | | | | | | | | | | | | SQUID (QTY/MODEL) | | | | | | | | | | | | | | | FIBER TRUNK (QTY/MODEL) | | | | | | | | | | | | | | | DC TRUNK (QTY/MODEL | | | | | | | | | | | | | | | REPEATER (QTY/MODEL) | | | | | | | | | | | | | | | RRH - 700 band (QTY/MODEL) | | 1 | 4449 B5/B12
RRH is shared
with another band | 1 | 4478 B14 | | | | | | | | | | RRH - 850 band (QTY/MODEL) | | | with another band | | 4415 B25 | | | | | | | | | | RRH - 1900 band (QTY/MODEL) | | | | | | | | | | | | | | | RRH - AWS band (QTY/MODEL) | | | RRUS-32 B30 | | 4426 B66 | | | | | | | | | | RRH - WCS band (QTY/MODEL | | | | | | | | | | | | | | | Additional RRH #1 - any band (QTY/MODEL) | | | | | | | | | | | | | | | Additional RRH #2 - any band (QTY/MODEL: | | | | | | | | | | | | | | | RRH_7B_1 (QTY/MODEL) | | | | | | | | | | | | | | | RRH_7B_2 (QTY/MODEL) | | | | | | | | | | | | | | | RRH_7B_3 (QTY/MODEL) | | | | | Pentaplexer 5PX- | | | | | | | | | | Additional
Component 1 (QTY/MODEL) | | | | 2 | 0726-Ö
K SBT 782-11055 | | | | | | | | | | Additional Component 2 (QTY/MODEL) | | | | 2 | Polyphaser
1000860 | | | | | | | | | | Additional Component 3 (QTY/MODEL) | - Antennae and Radios as per PD | 1 | I . | <u> -</u> | 1000000 | | I . | l . | 1 | 1 | | l . | 1 | | Local Market Note 1 | | | | | | | | | | | | | | | Local Market Note 2 | Configure per PD
1x6601 / 2x6630 / 1xXMU03 + IDLe | | | | | | | | | | | | | | Local Market Note 3 | | | | | | | | | | | | | | 59423.C.850.3G. 59423.C.850.3G. CTL00104_2C_2 CTL00104_2C_2 59423.C.AWS.4G 59423.C.AWS.4G PORT 3 .tmp4 .tmp4 | | | ocui mui net ivote e | 18000172800307 | IXMINOUS - IDEC |----------------------|-------------|-------------------------|----------------------|------------------------|------------------------|--------|------------------------|-----------------------|--------------|-----------------------|--------------------|--|--------------|-------------------------|----------------------|------------------------|-----------------------------|----------------------|-----------------------------|-------------|---------------------|-----------------|--------------------| PORT SPECIFIC FIELDS | PORT NUMBER | USEID (CSSng) | USEID (Atoli) | ATOLL TXID | ATOLL CELL ID | TX/RX? | TECHNOLOGY / FREQUENCY | ANTENNA
ATOLL | ANTENNA GAIN | ELECTRICAL
AZIMUTH | ELECTRICAL
TILT | RRH LOCATION
(Top/Bottom/
Integrated/None) | FEEDERS TYPE | FEEDER
LENGTH (feet) | RXAIT KIT
MODULE? | TRIPLEXER or LLC (QTY) | TRIPLEXER or
LLC (MODEL) | SCPA/MCPA
MODULE? | HATCHPLATE
POWER (Watts) | ERP (Watts) | Antenna RET
Name | CABLE
NUMBER | CABLE
ID(cssng) | | | PORT | 59423.C.700.4G. | | CTL01104_7C_1 | CTL01104_7C_1 | | | BU6D_725MHz_
06DT | 12.8 | 280 | 6 | воттом | 1-5/8 Coax | 130 | | | | | | 1475.71 | | 17 | 1 | | ANTENNA POSITION 2 | PORT: | 59423.C.850.4G. | | CTL01104_8C_1 | CTL01104_8C_1 | | | BU6D_850MHz_
06DT | 13.2 | 280 | 6 | воттом | 1-5/8 Coax | 130 | | | | | | 1000 | | 17 |
I | | ANTENNA POSITION 2 | PORT: | 59423.C.WCS.4G | 59423.C.WCS.4G
.1 | CTL01104_3C_1 | CTL01104_3C_1 | | LTE WCS | BU6D_2355MHz
_07DT | 17.2 | 280 | 7 | Bottom | 1-5/8 Coax | 130 | | | | | | 5070.26 | | 18 | 1 | | | PORT | 59423.C.850.5G.t
mp1 | 59423.C.850.5G.
1 | CTCN001104_N0
05C_1 | CTCN001104_N0
05C_1 | | | BU6D_850MHz_
06DT | 13.2 | 280 | 6 | воттом | 1-5/8 Coax | 130 | | | | | | 1000 | | 17 | 1 | DODT | 59423.C.700.4G.t | 59423.C.700.4G. | CTL01104_7C_3 | CTL01104_7C_3 | | I TE 700 | TPA65R-BU6DA- | 13.5 | 280 | 6 | Rottom | 1-5/8 Cnay | 130 | | | | | | 2051 413 | | 21 | ı | Page 24 of 30 TPA65R-BU6DA-K TPA65R-BU6DA-K LTE AWS | ANTENNA FOSITION S |--------------------|--------|--------------------|----------------|---------------|---------------|----------|---------------|------|-----|---|--------|------------|-----|--|--|----------|---|----|--| | ANTENNA POSITION 3 | | 59423.C.1900.4G 5 | 9423.C.1900.4G | | | | TPA65R-BU6DA- | | | | | | | | | | | | | | | PORT 4 | .tmp1 .1 | 1 | CTL00104_9C_1 | CTL00104_9C_1 | LTE 1900 | K | 15.9 | 280 | 7 | Bottom | 1-5/8 Coax | 130 | | | 4842.058 | | 22 | | | | | 59423.C.1900.4G 5 | 9423.C.1900.4G | | | | TPA65R-BU6DA- | | | | | | | | | | | | | | | PORT 7 | .tmp4 .4 | 1 | CTL00104_9C_2 | CTL00104_9C_2 | LTE 1900 | K | 15.9 | 280 | 7 | Bottom | 1-5/8 Coax | 130 | | | 4842.058 | | 22 | | | | | .tmp4, 5 | 9423.C.1900.4G | | | | TPA65R-BU6DA- | | | | | | | | | | | 1 | | | | PORT 8 | 59423.C.1900.4G .4 | 1 | CTL00104_9C_3 | CTL00104_9C_3 | LTE 1900 | K | 15.9 | 280 | 7 | Bottom | 1-5/8 Coax | 130 | | | 4842.058 | l | 22 | | Diagram Sector: A Diagram File Name: CT1104_A_B_C_6C_5G_NR_RRHBottomRev Atoll Site Name: CTL01104 Location Name: FARMINGTON NU MAPLE RIDGE DR Market: CONNECTICUT Market Cluster: NEW ENGLAND Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna Radio Connection Dra ANTENNA POSITION 1 **EMPTY** Diagram Sector: B Atoll Site Name: CTL01104 Market: CONNECTICUT Diagram File Name: CT1104_A_B_C_6C_5G_NR_RRHBottomRev Location Name: FARMINGTON NU MAPLE RIDGE DR Market Cluster: NEW ENGLAND Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna Radio Connection Dra Diagram Sector: C Atoll Site Name: CTL01104 Market: CONNECTICUT Diagram File Name: CT1104_A_B_C_6C_5G_NR_RRHBottomRev Location Name: FARMINGTON NU MAPLE RIDGE DR Market Cluster: NEW ENGLAND Comments: Important Note: For detailed radio to antenna wiring refer to the latest field notice - Antenna Radio Connection Dra | Date / Time
(Eastern) | Version | ATTUID | Note | |--------------------------|---------|--------|---------------------------| | 11/13/2020 3:59:2 | 2.00 | om636a | RFDS VERSION incremented. | | 11/13/2020 3:59:2 | 2.00 | om636a | Updated PCS radio to 4415 | | 10/11/2021 12:07: | 2.00 | sp656b | Revised by Jobet | | | | | | | | | - | |--------------------------|---|------------------|-------------------------------------|------------------|--------------------|--|--| | Date | FROM State / Status | FROM | TO State / Status | TO | Operation | n Comments | PACE Status | | 03/27/2020 | Preliminary In Progress | OM636A | Preliminary Submitted for A | | | Preliminary RFDS | NER-RCTB-20-01313 MRCTB046571 SUCCESS 03/27/2020 6:38 | | 04/07/2020 | Preliminary Submitted for Apr | | Preliminary In Progress | om636a | | incorrect iplan. | | | 4/07/2020 | Preliminary In Progress | om636a | Preliminary Submitted for A | Appro KG0839 | Promote | iplan corrected | NER-RCTB-20-01313 FAILURE 04/07/2020 12:09:05 PMNER-R | | /20/2020 | Preliminary Submitted for App | pro KG0839 | Preliminary Modification Re | ecomr OM636a | Demote | 4/20/2020 - please refresh PACE & iPlan. N | EF | | 4/20/2020 | Preliminary Modification Reco | omr OM636a | Preliminary Submitted for A | Appro KG0839 | Promote | Mentioned iplan and pace are not found in | R | | /21/2020 | Preliminary Submitted for App | | Preliminary Approved | FC091G | Promote | 4/21/2020 - promoted without review, plea | | | 5/14/2020 | Preliminary Approved | FC091G | Preliminary Modification Re | | | Plumbing Diagram (Incorrect) - PD Note ind | lic | | 15/15/2020 | Preliminary Modification Reco | | Preliminary Submitted for A | | Promote | updated separation notes in PD | | | 05/18/2020 | Preliminary Submitted for App | | Preliminary Approved | FC091G
OM636A | Promote | 5/18/2020 - re-promoting without review | | | 05/19/2020
08/11/2020 | Preliminary Approved
Final RF Approval | FC091G
OM636A | Final RF Approval
Final Approved | FC091G | Promote
Promote | Refreshed CSS | NER-RCTB-20-01313 MRCTB046571 SUCCESS 08/11/2020 6:59 | | 11/13/2020 | Final Approved | FC091G | Final RF Approval | om636a | Pull Back | Replace PCS radio to 4415 | NER-NC18-20-01313 WINC18040371 30CCE33 00/11/2020 0.35 | | 11/13/2020 | Final RF Approval | om636a | Final Approved | fc091g | Promote | updated PCS to 4415 | NER-RCTB-20-01313 PENDING 11/13/2020 4:05:19 PMNER-R | | -, -,, | | | | | | Scoping Change – Revise Sect 16, 17, LMN | | | | | | | | | & to show the following Final Configuration | 1 | | | | | | | | for all Sectors: | | | | | | | | | Pos. 2 | | | | | | | | | (3) DMP65R-BU6DA (Tower) | | | | | | | | | (6) TMABPD7823VG12A (Tower) | | | | | | | | | (6) DBC2055F1V1-2 (Shelter) | | | | | | | | | (3) 4449 (Shelter)
(3) RRUS-32B30 (Shelter) | | | | | | | | | (4) Lines of coax | | | | | | | | | (4) Lilies of Coax | | | | | | | | | Pos. 4 | | | 10/07/2021 | Final Approved | fc091g | Final Modification Recomme | iender SP656B | Demote | (3) TPA65R-BU6DA-K (Tower) | | | | | | | | | (6) TMA2124F03V5-1D (Tower) | | | | | | | | | (6) K SBT 782-11055 (Shelter) | | | | | | | | | (6) Polyphaser 1000860 (Shelter) | | | | | | | | | (12) Pentaplexer 5PX-0726-O (Shelter) | | | | | | | | | (3) 4478 -B14(Shelter) | | | | | | | | | (3) 4415-B25 (Shelter) | | | | | | | | | (3) 4426-B66 (Shelter)
(4) lines of coax | | | | | | | | | (4) lines of coax | | | | | | | | | ALL Rad Centers to be 92'. | | | | | | | | | | | | 10/11/2021 | Final Modification Recommer | nderSP656B | Final Approved | FC091G | Promote | Revised as requested. | DATA SHEET # Diplexed Multi-Band Antenna DMP65R-BU6D - Six foot (1.8 m) internally multiplexed MultiBand antenna, including eight external RF ports (12 RF ports internal), with a 65° azimuth beamwidth covering 698-896 MHz and 1695-2400 MHz frequencies - Four wide high band ports covering 1695-2400 MHz and four wide low band ports covering 698-896 MHz in a single antenna enclosure - Innovative Multiplexed/RET Control configuration, supporting Dual Band Radio Configurations (B12/B5 and B29/B5). The antenna provides Dual 4T4R (4x4 MIMO) capability, while providing independent RET control, an Industry First - Innovative Low and High Band Array configuration allows for 4T4R (4x4 MIMO) on Low Band and 4T4R (4x4 MIMO) High Band Arrays, using full length arrays (non stacked), all in a 20.7" (525 mm) width enclosure, an Industry First - Industry leading antenna topology and RET shielding techniques drastically mitigate PIM propagation from B12/B14/B29 operations, allowing for superior Network performance - Full Spectrum Compliance for PCS, AWS-3 and WCS frequencies and 700/850 MHz Dual Band Radio Configurations - LTE Optimized FBR and SPR performance, providing for an efficient use of valuable radio capacity - LTE Optimized Boresight and Sector XPD and USL performance, essential for LTE Performance - Exceeds minimum PIM
performance requirements - Equipped with new 4.3-10 connector, which is 40% smaller than traditional 7/16 DIN connector - Ordering options for External RET Controllers (Type 1) or Internally Integrated RET Controllers (Type 17) # Overview The CCI internally multiplexed MultiBand array is an eight port (12 RF ports internal) antenna, with four wide band ports covering 1695-2400 MHz and four low band ports covering 698-896 MHz. The antenna provides the capability to deploy 4T4R (4x4 MIMO) in the high band, with separate RET control. The antenna also provides the capability to provide independent RET control for 700/850 MHz Dual Band Radio Configurations, while maintaining 4T4R (4x4 MIMO) across the low band ports. CCI antennas are designed and produced to ISO 9001 certification standards for reliability and quality in our state-of-the-art manufacturing facilities. # **Applications** - 4x4 MIMO for the High Band and 4X4 MIMO Low Band ports - Ready for Network Standardization on 4.3-10 DIN connectors - With CCI's multiband antennas, wireless providers can connect multiple platforms to a single antenna, reducing tower load, lease expense, deployment time and installation costs # **SPECIFICATIONS** # Diplexed Multi-Band Antenna DMP65R-BU6D # Mechanical | Dimensions (L×W×D) | 71.2×20.7×7.7 in (1808×525×197 mm) | | Survival Wind Speed | > 150 mph (> 241 kph) | | Front Wind Load | 325 lbs (1446 N) @ 100 mph (161 kph) | | Side Wind Load | 144 lbs (642 N) @ 100 mph (161 kph) | | Equivalent Flat Plate Area | Weight * 96.0 lbs (43.6 kg) | | Connector | 8 × 4.3-10 female | | Mounting Pole | 2 to 5 in (5 to 12 cm) | #### **Bottom View** ### Connector Spacing ^{*} Weight excludes mounting DATA SHEET # Multi-Band Twelve-Port Antenna TPA65R-BU6D - Six foot (1.8 m) multiband, twelve port antenna with a 65° azimuth beamwidth covering 698-896 MHz and 1695-2400 MHz frequencies - Eight high band ports covering 1695-2400 MHz and four low band ports covering 698-896 MHz in a single antenna enclosure - Innovative Low and High Band Array configuration allows for 4T4R (4x4 MIMO) on Low Band and Dual 4T4R (4x4 MIMO) High Band Arrays, using full length arrays (non stacked), all in a 20.7" (525 mm) width enclosure, an Industry First - Full Spectrum Compliance for WCS and AWS-3 frequencies and Band 14 Operations - Array configuration allows for 4T4R (4X4 MIMO) on Low Band, essential for Band 14 Operations - LTE Optimized FBR and SPR performance, providing for an efficient use of valuable radio capacity - LTE Optimized Boresight and Sector XPD and USL performance, essential for LTE Performance - Exceeds minimum PIM performance requirements - Equipped with new 4.3-10 connector, which is 40% smaller than traditional 7/16 DIN connector - Ordering options for External RET Controllers (Type 1) or Internally Integrated RET Controllers (Type 17) ### Overview The CCI 12-Port multiband array is a twelve port antenna, with eight wide band ports covering 1695-2400 MHz and four low band ports covering 698-896 MHz. The antenna provides the capability to deploy Dual 4x4 Multiple-input Multiple-output (MIMO) in the high band and 4X4 Multiple-input Multiple-output (MIMO) across low band ports. The CCI 12-Port allows independent tilt control between the low band ports and high band ports and independent tilt control between left and right antenna arrays. In this three RET configuration, the 1st RET is dedicated for the four Low Band ports. The 2nd RET is dedicated for the four Left High Band ports and the 3th RET is dedicated for the four Right High Band ports. This RET arrangement allows for complete flexibility in coverage control between left and right antenna arrays. CCI antennas are designed and produced to ISO 9001 certification standards for reliability and quality in our state-of-the-art manufacturing facilities. # **Applications** - Dual 4x4 MIMO for the High Band and 4X4 MIMO Low Band ports - Ready for Network Standardization on 4.3-10 DIN connectors - With CCI's multiband antennas, wireless providers can connect multiple platforms to a single antenna, reducing tower load, lease expense, deployment time and installation costs # **SPECIFICATIONS** # Multi-Band Twelve-Port Antenna Mounting Pole 2 to 5 in (5 to 12 cm) TPA65R-BU6D # Mechanical | Dimensions (L×W×D) | 71.2×20.7×7.7 in (1808×525×197 mm) | |------------------------------|--| | Survival Wind Speed | > 150 mph (> 241 kph) | | Front Wind Load | 325 lbs (1446 N) @ 100 mph (161 kph) | | Side Wind Load | 144 lbs (642 N) @ 100 mph (161 kph) | | Equivalent Flat Plate Area | 12.7 ft ² (1.2 m ²) | | Weight * | 68.3 lbs (31.0 kg) | | Packaging Dimensions (L×W×D) | 81.4×25.2×13.9 in (2067×641×354 mm) | | Packaged Weight ~ | 116.8 lbs (53.0 kg) | | Connector | 12 × 4.3-10 female | * Weight excludes mounting Bottom View # TPA65R-BU6DA Connector Spacing # Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass Tel: 201-342-3338 Fax: 201-342-3339 www.cciproducts.com # **General Information** CCI's Triple Band TMA with 700/850 bypass contains two triple band TMA's in a single housing. The TMA's are fully duplexed and share a single LNA for all three bands. The bypass path provides excellent isolation to the TMA path. Separate antenna ports for the bypass path and TMA path are combined onto a single BTS port. Low noise high linearity amplifiers improve the uplink sensitivity and the receive performance of base stations. The TMA is fully compliant with the latest AISG 2.0 specification. The TMA supports CDMA, EDGE/GSM, UMTS and LTE BTS equipment. The TMA is ideally suited for sites upgraded to quadband using the existing infrastructure. The TMA allows the sharing of feeder lines for both AWS and PCS bands thus reducing tower loading, leasing, and installation costs. The input and output connectors are located inline for ease of installation in space constrained areas such as uni-pole structures and stealth antennas. # AISGY Antenna Interface Standards Group 3 # ModelTMABPDB7823VG12A # **Contents:** | General Info and Technical
Description | | |---|---| | Elect & Mech. Specs | 2 | Block Diagram & Outline Drawing # **Features:** - Small lightweight unit - Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass - Independent Gain Control - High linearity - Lightning protected - Fail-safe bypass mode - High reliability # **Technical Description** The TMA system is an outdoor quad band tower mount unit which provides low noise amplification of PCS, AWS, and WCS uplink signals combined with 700/850 bypassed signals from separate antenna ports to a common BTS port. The tower mount unit consists of 14 band-pass filters, two redundant low noise amplifiers (LNA) with bypass failure circuitry, two bias tees, AISG control circuitry, and lightning protection circuitry all housed in an IP68 enclosure suited to long life masthead mounting. The AWS, PCS and WCS paths are dual duplexed to separate the low power uplink signals from the high power down link signals at the BTS and antenna ports. The AWS, PCS, and WCS uplink signals are amplified with a dedicated ultralow noise PHEMT LNA with adjustable gain control. The unit provides protection against lightning strikes via a multistage surge protection circuit. DC power and AISG 2.0 control is provided via the BTS feeder cable. The unit operates in current window alarm (CWA) mode until a valid AISG message is detected, at which point it automatically switches to AISG mode. Once in AISG mode, the unit can only switch back to CWA mode with the receipt of an AISG CCI vendor defined command. In CWA mode, the unit requires 12VDC at each BTS port and follows typical current window convention. In AISG mode, the unit will accept 10-30 VDC from either BTS port. In AISG mode, the unit does not require an AISG 2.0 compatible site control unit (SCU) and may also be powered by a standard power distribution unit (PDU). An optional Site Control Unit (SCU) is available to power up to 32 AISG modules per sector and to provide the monitoring and alarm functions for the system. The SCU is housed in a single (1U) 1.75" x 19" rack and contains dual redundant power supplies capable of being "hot swapped" that provide a regulated DC supply voltage on the RF coax for the tower mount amplifiers. # CCI Triple Band (AWS/PCS/WCS) Twin TMA with 700/850 Bypass Typical Specifications | Description | Typical Specifications | | | | |---|---|---|---|---| | Electrical Specifications | 700/850 | PCS | AWS | wcs | | Receive Frequency Range | - 1850 – 1910 MHz | | 1710 – 1755 MHz | 2305 – 2320 MHz | | Transmit Frequency Range | - | 1930 – 1990 MHz | 2110 – 2155 MHz | 2345 – 2360 MHz | | Bypass Frequency Range | 698 - 894 MHz | - | - | - | | Amplifier Gain | - | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | 6 to 12 dB Adjustable in 0.25 dB steps via AISG | | Gain Variation | - | ±1.0 dB | ±1.0 dB | ±1.0 dB | | System Noise Figure | - | 1.4 dB Typ. | 1.3 dB Typ. | 1.3 dB Typ. | | Input Third Order Intercept Point | - | | +12 dBm Min at Max. Gain | | | Input / Output Return Loss | | 18 dB Min all por | ts, 12 dB Min. Bypass Mod | е | | Insertion Loss | 0.25 dB Typ. | | | | | Transmit Passband | - | 0.5 dB Typical | 0.4 dB Typical | 0.4 dB Typical | | Bypass Mode, (PCS/AWS/WCS)
Rx Passband | - | 2.5 dB Typ. | 2.5 dB Typ. | 2.5 dB Typ. | | Filter Characteristics | | | | | | Continuous Average Power | | 20 | 00 Watts max | | | Peak Envelope Power | 2 KW max | | | | | Intermodulation Performance | | | | | | IMD at ANT port in Rx Band | < -112 dBm (-155 dBc) [2 tones at +43 dBm] | | | | | Operating Voltage | +10V to +30V DC
provided via coax or AISG | | | | | Power Consumption | <2.0 Watts | | | | | Mechanical Specifications | | | | | | Connectors | | DIN 7-16 | female x 2; AISG x 1 | | | Dimensions (Body Only) | 10.63" (H) x 11.024" (W) x 3.72" (D); (290.60 (H) x 280.00 (W) x 95.0 (D) mm) | | | | | Dimensions (with Conn. & Bracket) | 14.25" (H) x 11.024" (W) x 4.11" (D); (362.00 (H) x 280.00 (W) x 104.40 (D) mm) | | | | | Weight | 23.1 Lbs. (10.5 Kg) - with Brackets; 22 Lbs. (10 Kg) - without brackets | | | | | Mounting | Pole/Wall Mounting Bracket | | | | | Environmental Specifications | | | | | | Operating Temperature | -40° C to +65°C | | | | | Lightning Protection | 8/20us, ±2KA max, 10 strikes each, IEC61000-4-5 | | | | | Enclosure | IP68 | | | | | MTBF | >500,000 hours | | | | All specifications are subject to change. The latest specifications are available at www.cciproducts.com # Communication Components Inc. # TMA2124F03V5-1D # TWIN TMA 1900/AWS/LOWPASS 555-960MHZ 6 ANT NON-DIPLEXED 1900/AWS ANTENNA PORTS Designed to be deployed in co-located AWS & 1900 networks, the Kaelus TMA2124 provides gain in 1900 and AWS uplink, using independent LNAs per band and per channel. Low loss bypass 555-960MHz signal to low band antennas is also provided. # **FEATURES** - Improved base station sensitivity through excellent noise figure performance and linearity - AISG 2.0 compatible, full software upgradable using AISG "personality" upload - DC/AISG passthrough to AWS antenna (port 5) - AISG OUT connector disabled when AISG device (SBT equipped antenna) present on Port 3 +R1/+R1 - One AISG subunit per LNA, 4 in total. All fixed gain - 555-960 bypass to low band antenna # **TECHNICAL SPECIFICATIONS** | 1900 | AWS | | | |---|---|--|--| | | | | | | 1930 - 1990MHz | 2110 - 2200MHz | | | | 0.4dB typical | 0.3dB typical | | | | 22dB t | ypical | | | | 160W (average) / 2kW (PEP) | 160W (average) / 2kW (PEP) | | | | -155dBc maximum, at antenna port in RX band with 2 x 20W carriers | -163dBc maximum, at antenna port in RX band with 2 x 20W carriers | | | | | | | | | 1850 - 1910MHz | 1695 - 1780MHz | | | | 13 | dB | | | | ±1dB maximum | | | | | 22dB typical | | | | | 14dB typical | | | | | 3dB typical | | | | | 1.2dB typical @ 13dB gain | 1.0dB typical @ 13dB gain | | | | +28dBm typical | | | | | +12dBm | | | | | | | | | | 555 - 9 | 60MHz | | | | 0.2dB typical | | | | | 21dB typical | | | | | 250W (average) / 2.5kW (PEP) | | | | | -155dBc maximum, at antenna port with 2 x 20W carriers | | | | | | | | | | 50Ohms | | | | | | 1930 - 1990MHz 0.4dB typical 22dB to 160W (average) / 2kW (PEP) -155dBc maximum, at antenna port in RX band with 2 x 20W carriers 1850 - 1910MHz 134 | | | # POWER SUPPLY AND ALARM (CURRENT WINDOW ALARM MODE, DEFAULT) Current window alarm mode (CWA) is the default operating mode and can be configured to specific customer requirements. The TMA2124F03V4 is configured so that both channels are independently powered and monitored via their respective BTS port, 7 or 8. The BTS port sinks additional current to indicate an alarm state in its uplink path. Normal operating and alarm current values are configured independently via a field-loadable personality file. Please contact Kaelus for more information. | DC supply voltage | +8.5 to +18V DC, case is DC ground | | | |--------------------------------|--|--|--| | DC supply | Each BTS port powered individually | | | | DC supply current, normal mode | le 200mA per port typical (both ports are powered) | | | | DC supply current, alarm mode | 300mA per port typical (both ports are powered) | | | ### AISG MODE OF OPERATION (AUTO SELECTED ON VALID AISG 2.0 FRAMES) AISG signals can be applied to port 7 or port 8. The TMA unit switches to AISG mode when valid frames are detected on either port 7 or 8. All LNAs take DC power from the port with the AISG frames or, if DC is present on both ports, power will be supplied equally between the ports. Each LNA is controlled uniquely by its sub-unit number. | DC supply voltage | +7.5V to +30V DC | | | |-----------------------------------|---|--|--| | AISG version | 2.0 (1.1 optional) | | | | Supply current, AISG mode | 500mA @ 7.5V, 135mA @ 30V typical | | | | AISG connector, current rating | IEC60130-9, 8-pin female, < 4A peak, 2A continuous, pin 6 | | | | Field firmware upgradable | Yes (R951022ATA2.0 Rev 2.9.12) | | | | AISG pass through to antenna port | Yes | | | ### ANTENNA AISG OOK + DC When DC is applied it is quickly switched through to port 5. If an over-current condition is detected, DC & AISG are disconnected from port 5. If DC remains connected to the load at port 5, DC and AISG are disconnected from the AISG OUT 8 pin connector. If DC is disconnected from port 5, DC and AISG are enabled at the AISG OUT 8 pin connector. If a short circuit is detected at the AISG OUT 8 pin connector, DC and AISG are disabled. | Mode of Operation | Voltage at
Port 5 | Assumption | "Autosense + Protection"
Switch Status | Comment | |-------------------|----------------------|--|---|--| | AISG or CWA | High | Device present or open circuit | Close | DC & AISG OOK will be
supplied to port 5.
DC & AISG is removed
from the AISG OUT 8 pin
port | | AISG or CWA | Low | DC short circuit or low
DC resistance | Open | DC & AISG OOK will not be
supplied to port 5.
DC & AISG are supplied
to the AISG OUT 8 pin port | | ENVIRONMENTAL | | | | | |---|--|--|--|--| | For further details of environmental compliance, please contact Kaelus. | | | | | | Temperature range | -40°C to +65°C -40°F to +149°F | | | | | Ingress protection | IP67 | | | | | Altitude | 3,000m 10,000ft | | | | | Lightning protection | IEC61312-1, RF: ±5kA maximum (8/20us), AISG: ±2kA maximum (8/20us) | | | | | MTBF | >1,000,000 hours | | | | | Compliance | FCC Part 15 subpart B | | | | | MECHANICAL | | |----------------------|--| | Dimensions H x D x W | 245 x 128 x 210mm 9.65 x 5.04 x 8.27in Excluding connectors | | Weight | 8.1kg 17.86lbs | | Finish | Painted, light grey (RAL 7035) | | Connectors | 4.3-10 (F) x 8 long neck, AISG (F) x 1 | | Wind Load | Front 390N, Side 147N (Single)
Front 251N, Side 409N (Twin)
At 74m/s (AS/NZS 1170-2-2011 Structural design - Wind actions - Cyclone areas) | | Mounting | Pole/wall bracket supplied with two metal clamps 45-178mm diameter poles | # ORDERING INFORMATION | PART NUMBER | CONFIGURATION | OPTIONAL FEATURES | CONNECTORS | |-----------------|--------------------|-------------------|------------| | TMA2124F03V5-1D | TWIN 2 in / 6 out | STANDARD | 4.3-10 (F) | | TMA2124F03V5-2D | QUAD 4 in / 12 out | STANDARD | 4.3-10 (F) | TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES ($\pm\,0.030$ ") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS AND ANGLES ARE ± 1/2 DEGREE ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060") PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT NDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF WITH TWELVE 2-7/8" ANTENNA MOUTING PIPES, REINFORCED HANDRAIL, AND CABLE DRAWING USAGE **CUSTOMER** 87 02 valmont **valmont** DWG. NO. Support Team: 1-888-753-7446 Tampa, FL | | | |) | |---------|----------------|---------------|------| | CPD NO. | DRAWN BY | ENG. APPROVAL | PART | | | CSL 10/17/2019 | 10/18/2019 | | **CHECKED BY** BMC 10/18/2019 RMQLP-4120-H10 RMQLP-4120-H10 OF G # September 30, 2021 (Rev. 1) June 05, 2020 SAI Communications 12 Industrial Way Salem NH, 03079 RE: Site Number: CT1104 (LTE 6C/5G/BWE) FA Number: 10035295 PACE Number: MRCTB046571 PT Number: 2051A0V4N7 Site Name: FARMINGTON NU MAPLE RIDGE DR Site Address: 45 Maple Ridge Drive Farmington, CT 06032 # To Whom It May Concern: Hudson Design Group LLC (HDG) has been authorized by SAI Communications to perform a mount analysis on the proposed AT&T antenna/RRH mount to determine their capability of supporting the following additional loading: - (3) TPA65R-BU6DA-K Antennas (71.2"x20.7"x7.7" Wt. = 68 lbs. /each) - (3) DMP65R-BU6DA Antennas (71.2"x20.7"x7.7" Wt. = 80 lbs. /each) - (6) TMABPD7823VG12A TMA's (10.7"x11.1"x3.8" Wt. = 25 lbs. /each) - (6) TMA2124F03V5 TMA's (9.7"x5.0"x8.3" Wt. = 18 lbs. /each) *Proposed equipment shown in bold Mount fabrication drawings prepared by SitePro1 P/N RMQLP-4120-H10, dated October 17, 2019, were used to perform this analysis. # Mount Analysis Methods: - This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive R13. - HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the max basic wind speed for this site is equal to 125 mph with a max basic wind speed with ice of 50 mph and a max ice thickness of 1.5 in. An escalated ice thickness of 1.65 in was used for this analysis. - HDG considers this site to be
exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions. - HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom of a hill or ridge. - HDG considers this site to have a spectral response acceleration parameter at short periods, S_S, of 0.183 and a spectral response acceleration parameter at a period of 1 second, S₁, of 0.064. - The mount has been analyzed with load combinations consisting of 500 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 3. - The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount. Based on our evaluation, we have determined that the <u>Proposed RMQLP-4120-H10</u> mount <u>IS CAPABLE</u> of supporting the proposed installation. | | Component | Controlling Load Case | Stress Ratio | Pass/Fail | |-----------------------------------|-----------|-----------------------|--------------|-----------| | New (LTE 6C/5G/BWE) Mount Rating | 37 | LC4 | 56% | PASS | # **Reference Documents:** Fabrication drawings prepared by SitePro1 P/N RMQLP-4120-H10, dated October 17, 2019. # This determination was based on the following limitations and assumptions: - 1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved. - 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities. - 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements. - 4. The proposed mount will be adequately secured to the tower structure per the mount manufacturer's specifications. - 5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances. - 6. HDG performed a localized analysis on the mount itself and not on the supporting monopole. Please feel free to contact our office should you have any questions. Respectfully Submitted, Hudson Design Group LLC Yuland al Michael Cabral Vice President Daniel P. Hamm, PE Principal # FIELD PHOTOS: *Existing mounts to be removed and replaced. # FIELD PHOTOS (CONT.): Wind & Ice Calculations **Project Name:** FARMINGTON NU MAPLE RIDGE DR Project No.: CT1104 Designed By: RL Checked By: MSC # 2.6.5.2 Velocity Pressure Coeff: | $K_z = 2.01 (z/z_g)^{2/\alpha}$ | | z= | 88 (ft) | |---------------------------------|-------|------------------|-----------| | | | z _g = | 1200 (ft) | | K _z = | 0.953 | α= | 7.0 | $Kzmin \le Kz \le 2.01$ # Table 2-4 | Exposure | \mathbf{Z}_{g} | α | K_{zmin} | K _c | |----------|---------------------------|------|------------|----------------| | В | 1200 ft | 7.0 | 0.70 | 0.9 | | С | 900 ft | 9.5 | 0.85 | 1.0 | | D | 700 ft | 11.5 | 1.03 | 1.1 | # 2.6.6.2 Topographic Factor: # Table 2-5 | Topo. Category | K _t | f | |----------------|----------------|------| | 2 | 0.43 | 1.25 | | 3 | 0.53 | 2.0 | | 4 | 0.72 | 1.5 | $$K_{zt} = [1 + (K_c K_t / K_h)]^2$$ $K_h = e^{-(f^*z/H)}$ 1 $K_{zt} =$ 1 $K_h =$ 0.9 (from Table 2-4) $K_c =$ (If Category 1 then $K_{zt} = 1.0$) $K_t =$ (from Table 2-5) f= (from Table 2-5) Category= 1 z= $z_s =$ 240 (Mean elevation of base of structure above sea level) (Ht. of the crest above surrounding terrain) H= 1.00 (from 2.6.6.2.1) $K_{zt} =$ 0.99 (from 2.6.8) $K_e =$ # 2.6.10 Design Ice Thickness Project Name: FARMINGTON NU MAPLE RIDGE DR Project No.: CT1104 Designed By: RL Checked By: MSC # 2.6.9 Gust Effect Factor # 2.6.9.1 Self Supporting Lattice Structures G_h = 1.0 Latticed Structures > 600 ft G_h = 0.85 Latticed Structures 450 ft or less $G_h = 0.85 + 0.15 [h/150 - 3.0]$ h= ht. of structure h= 102 G_h= 0.85 2.6.9.2 Guyed Masts $G_h = 0.85$ 2.6.9.3 Pole Structures $G_h = 1.1$ 2.6.9 Appurtenances G_h= 1.0 # 2.6.9.4 Structures Supported on Other Structures (Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5) G_h= 1.35 Gh= 1.00 # 2.6.11.2 Design Wind Force on Appurtenances $F = q_z * G_h * (EPA)_A$ $q_z = 0.00256*K_z*K_{zt}*K_s*K_e*K_d*V_{max}^2$ K_z = 0.953 (from 2.6.5.2) K_{zt} = 1.0 (from 2.6.6.2.1) $K_s = 1.0 \text{ (from 2.6.7)}$ $K_e = 0.99 \text{ (from 2.6.8)}$ K_d = 0.95 (from Table 2-2) V_{max}= 125 mph (Ultimate Wind Speed) $V_{\text{max (ice)}} = 50 \text{ mph}$ V₃₀= 30 mph 35.89 5.74 2.07 ### Table 2-2 $q_z =$ $q_{z (ice)} =$ $q_{z(30)} =$ | Structure Type | Wind Direction Probability Factor, Kd | |---|---------------------------------------| | Latticed structures with triangular, square or rectangular cross sections | 0.85 | | Tubular pole structures, latticed structures with other cross sections, appurtenances | 0.95 | | Tubular pole structures supporting antennas enclosed within a cylindrical shroud | 1.00 | Project Name: FARMINGTON NU MAPLE RIDGE DR Project No.: CT1104 Designed By: RL Checked By: MSC # <u>Determine Ca:</u> Table 2-9 | | Ford | e Coefficients (Ca) for App | ourtenances | | |-------|--------------------|-----------------------------|----------------------------|---------------------------| | | Member Type | Aspect Ratio ≤ 2.5 | Aspect Ratio = 7 | Aspect Ratio ≥ 25 | | ' | Member Type | Ca | Ca | a | | | Flat | 1.2 | 1.4 | 2.0 | | Squar | re/Rectangular HSS | $1.2 - 2.8(r_s) \ge 0.85$ | $1.4 - 4.0(r_s) \ge 0.90$ | $2.0 - 6.0(r_s) \ge 1.25$ | | Round | C < 39 | 0.7 | 0.8 | 1.2 | | | (Subcritical) | 0.7 | 0.8 | 1.2 | | | 39 ≤ C ≤ 78 | 0.485 | 0.66.460.415 | 10.0 (10.1.0) | | | (Transitional) | 4.14/(C ^{0.485}) | 3.66/(C ^{0.415}) | 46.8/(C ^{.1.0}) | | | C > 78 | 0.5 | 0.6 | 0.6 | | | (Supercritical) | 0.5 | 0.6 | 0.6 | Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction. (Aspect ratio is independent of the spacing between support points of a linear appurtenance, Note: Linear interpolation may be used for aspect ratios other than those shown. | Ice Thickness = | 1.65 | in | Angle = | 0 (deg) | | Equival | ent Angle = | 180 (deg) | | |------------------------|---------------|--------------|--------------|-----------|-----------------|-----------|-------------|-------------------------|-------------------------| | <u>Appurtenances</u> | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area | Aspect
Ratio | <u>Ca</u> | Force (lbs) | Force (lbs)
(w/ lce) | Force (lbs)
(30 mph) | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.44 | 1.24 | 456 | 89 | 26 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.44 | 1.24 | 456 | 89 | 26 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.96 | 1.20 | 36 | 10 | 2 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 1.17 | 1.20 | 24 | 7 | 1 | | 2-1/2" Pipe | 2.9 | 12.0 | - | 0.24 | 0.24 | 1.20 | 10 | | | | 3" Pipe | 3.5 | 12.0 | - | 0.29 | 0.29 | 1.20 | 13 | | | | L 2x2 Angles | 2.0 | 12.0 | - | 0.17 | 0.17 | 1.25 | 7 | | | | L 2-1/2x2-1/2 Angles | 2.5 | 12.0 | - | 0.21 | 0.21 | 1.25 | 9 | | | | PL 6x3/8 | 0.4 | 12.0 | - | 0.03 | 0.03 | 2.00 | 2 | | | | HSS 4x4 | 4.0 | 12.0 | - | 0.33 | 0.33 | 1.25 | 15 | | | Project Name: FARMINGTON NU MAPLE RIDGE DR | | | | | | WIND LOAD | S | | | | | | | |-------------------------|---------------|--------------|--------------|-----------------------|---------------------|-----------------|-----------------|-------------|---------------------|-------------------------|-----------------------|------------------------| | Angle = 30 | (deg) | | Ice Thick | ness = | 1.65 | in. | | [| Equiva | lent Angle = | 210 | (deg) | | WIND LOADS WITH NO ICE: | | | | | | | | | | | | | | <u>Appurtenances</u> | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area
(normal) | Flat Area
(side) | Aspect
Ratio | Aspect
Ratio | Ca (normal) | <u>Ca</u>
(side) | Force (lbs)
(normal) | Force (lbs)
(side) | Force (lbs)
(angle) | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 393 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 393 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 36 | 12 | 30 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 24 | 15 | 22 | | WIND LOADS WITH ICE: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 77 | | TPA65R-BU6DA-K Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 77 | | TMABPD7823VG12A TMA | 14.0 | 14.4 | 7.1 | 1.40 | 0.69 | 0.97 | 1.97 | 1.20 | 1.20 | 10 | 5 | 8 | | TMA2124F03V5 TMA | 13.0 | 11.6 | 8.3 | 1.05 | 0.75 | 1.12 | 1.57 | 1.20 | 1.20 | 7 | 5 | 7 | | WIND LOADS AT 30 MPH: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 23 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 23 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 2 | 1 | 2 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 1 | 1 | 1 | Project Name: FARMINGTON NU MAPLE RIDGE DR | Angle = 60 | (deg) | | Ice Thick | ness = | 1.65 | in. | | Γ | Equiva | lent Angle = | 240 | (deg) | |-------------------------|---------------|--------------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|-----------------------| | Angle - 00 | (ucg) | | ice mick | | 1.03 | | | L | Lyuiva | iciit Aligie – | 270 | (ucg) | | WIND
LOADS WITH NO ICE: | | | | | | | | | | | | | | <u>Appurtenances</u> | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area
(normal) | Flat Area
(side) | Ratio
(normal) | Ratio
(side) | <u>Ca</u>
(normal) | <u>Ca</u>
(side) | Force (lbs)
(normal) | Force (lbs)
(side) | Force (lbs
(angle) | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 265 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 265 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 36 | 12 | 18 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 24 | 15 | 17 | | WIND LOADS WITH ICE: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 56 | | TPA65R-BU6DA-K Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 56 | | TMABPD7823VG12A TMA | 14.0 | 14.4 | 7.1 | 1.40 | 0.69 | 0.97 | 1.97 | 1.20 | 1.20 | 10 | 5 | 6 | | TMA2124F03V5 TMA | 13.0 | 11.6 | 8.3 | 1.05 | 0.75 | 1.12 | 1.57 | 1.20 | 1.20 | 7 | 5 | 6 | | WIND LOADS AT 30 MPH: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 15 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 15 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 2 | 1 | 1 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 1 | 1 | 1 | Project Name: FARMINGTON NU MAPLE RIDGE DR | | | | | ' | VIND LOAD | S | | | | | | | |-------------------------|---------------|-------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|------------------------| | Angle = 90 | (deg) | | Ice Thick | ness = | 1.65 | in. | | | Equiva | lent Angle = | 270 | (deg) | | WIND LOADS WITH NO ICE: | | | | | | | | | | | | | | <u>Appurtenances</u> | <u>Height</u> | Width | <u>Depth</u> | Flat Area
(normal) | Flat Area
(side) | Ratio
(normal) | Ratio
(side) | <u>Ca</u>
(normal) | <u>Ca</u>
(side) | Force (lbs)
(normal) | Force (lbs)
(side) | Force (lbs)
(angle) | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 202 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 202 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 36 | 12 | 12 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 24 | 15 | 15 | | WIND LOADS WITH ICE: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 45 | | TPA65R-BU6DA-K Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 45 | | TMABPD7823VG12A TMA | 14.0 | 14.4 | 7.1 | 1.40 | 0.69 | 0.97 | 1.97 | 1.20 | 1.20 | 10 | 5 | 5 | | TMA2124F03V5 TMA | 13.0 | 11.6 | 8.3 | 1.05 | 0.75 | 1.12 | 1.57 | 1.20 | 1.20 | 7 | 5 | 5 | | WIND LOADS AT 30 MPH: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 12 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 12 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 2 | 1 | 1 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 1 | 1 | 1 | Project Name: FARMINGTON NU MAPLE RIDGE DR | 420 | / I \ | İ | | | 4.65 | . 1 | | Ī | | | 200 | / I \ | |-------------------------|---------------|--------------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|------------------------| | Angle = 120 | (deg) | | Ice Thick | ness = | 1.65 | in. | | <u>.</u> | Equiva | lent Angle = | 300 | (deg) | | WIND LOADS WITH NO ICE: | | | | | | | | | | | | | | <u>Appurtenances</u> | <u>Height</u> | <u>Width</u> | <u>Depth</u> | Flat Area
(normal) | Flat Area
(side) | Ratio
(normal) | Ratio
(side) | <u>Ca</u>
(normal) | <u>Ca</u>
(side) | Force (lbs)
(normal) | Force (lbs)
(side) | Force (lbs)
(angle) | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 265 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 265 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 36 | 12 | 18 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 24 | 15 | 17 | | WIND LOADS WITH ICE: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 56 | | TPA65R-BU6DA-K Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 56 | | TMABPD7823VG12A TMA | 14.0 | 14.4 | 7.1 | 1.40 | 0.69 | 0.97 | 1.97 | 1.20 | 1.20 | 10 | 5 | 6 | | TMA2124F03V5 TMA | 13.0 | 11.6 | 8.3 | 1.05 | 0.75 | 1.12 | 1.57 | 1.20 | 1.20 | 7 | 5 | 6 | | WIND LOADS AT 30 MPH: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 15 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 15 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 2 | 1 | 1 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 1 | 1 | 1 | Project Name: FARMINGTON NU MAPLE RIDGE DR | | | | | N | IND LOAD | S | | | | | | | |-------------------------|---------------|-------|--------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------------|-----------------------|------------------------| | Angle = 150 | (deg) | | Ice Thick | ness = | 1.65 | in. | | I | Equiva | lent Angle = | 330 | (deg) | | WIND LOADS WITH NO ICE: | | | | | | | | | | | | | | <u>Appurtenances</u> | <u>Height</u> | Width | <u>Depth</u> | Flat Area
(normal) | Flat Area
(side) | Ratio
(normal) | Ratio
(side) | <u>Ca</u>
(normal) | <u>Ca</u>
(side) | Force (lbs)
(normal) | Force (lbs)
(side) | Force (lbs)
(angle) | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 393 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 456 | 202 | 393 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 36 | 12 | 30 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 24 | 15 | 22 | | WIND LOADS WITH ICE: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 77 | | TPA65R-BU6DA-K Antenna | 74.5 | 24.0 | 11.0 | 12.42 | 5.70 | 3.10 | 6.77 | 1.23 | 1.39 | 88 | 45 | 77 | | TMABPD7823VG12A TMA | 14.0 | 14.4 | 7.1 | 1.40 | 0.69 | 0.97 | 1.97 | 1.20 | 1.20 | 10 | 5 | 8 | | TMA2124F03V5 TMA | 13.0 | 11.6 | 8.3 | 1.05 | 0.75 | 1.12 | 1.57 | 1.20 | 1.20 | 7 | 5 | 7 | | WIND LOADS AT 30 MPH: | | | | | | | | | | | | | | DMP65R-BU6DA Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 23 | | TPA65R-BU6DA-K Antenna | 71.2 | 20.7 | 7.7 | 10.24 | 3.81 | 3.44 | 9.25 | 1.24 | 1.47 | 26 | 12 | 23 | | TMABPD7823VG12A TMA | 10.7 | 11.1 | 3.8 | 0.82 | 0.28 | 0.96 | 2.82 | 1.20 | 1.21 | 2 | 1 | 2 | | TMA2124F03V5 TMA | 9.7 | 8.3 | 5.0 | 0.56 | 0.34 | 1.17 | 1.94 | 1.20 | 1.20 | 1 | 1 | 1 | Project Name: FARMINGTON NU MAPLE RIDGE DR Project No.: CT1104 Designed By: RL Checked By: MSC #### ICE WEIGHT CALCULATIONS Thickness of ice: 1.65 in. Density of ice: 56 pcf #### DMP65R-BU6DA Antenna Weight of ice based on total radial SF area: Height (in): 71.2 Width (in): 20.7 Depth (in): 7.7 Total weight of ice on object: 284 lbs Weight of object: 80.0 lbs Combined weight of ice and object: 364 lbs ### TMABPD7823VG12A TMA Weight of ice based on total radial SF area: Height (in): 10.7 Width (in): 3.8 Depth (in): 11.1 Total weight of ice on object: 24 lbs Weight of object: 25.0 lbs Combined weight of ice and object: 49 lbs # 2-1/2" Pipe Per foot weight of ice: diameter (in): Per foot weight of ice on object: 9 plf # L 2x2 Angles Weight of ice based on total radial SF area: Height (in): 2 Width (in): 2 Per foot weight of ice on object: 9 plf # PL 6x3/8 Weight of ice based on total radial SF area: Height (in): 6 Width (in): 0.38 Per foot weight of ice on object: 15 plf #### TPA65R-BU6DA-K Antenna Weight of ice based on total radial SF area: Height (in): 71.2 Width (in): 20.7 Depth (in): 7.7 Total weight of ice on object: 284 lbs Weight of object: 69.0 lbs Combined weight of ice and object: 353 lbs ### **TMA2124F03V5 TMA** Weight of ice based on total radial SF area: Height (in): 9.7 Width (in): 5.0 Depth (in): 8.3 Total weight of ice on object: 18 lbs Weight of object: 18.0 lbs Combined weight of ice and object: 36 lbs # 3" Pipe Per foot weight of ice: diameter (in): Per foot weight of ice on object: 10 plf # L 2-1/2x2-1/2 Angles Weight of ice based on total radial SF area: Height (in): 2.5 Width (in): 2.5 Per foot weight of ice on object: 10 plf # HSS 4x4 Weight of ice based on total radial SF area: Height (in): 4 Width (in): 4 Per foot weight of ice on object: 15 plf Mount Calculations (New Conditions) Bentley Current Date: 9/30/2021 10:44 AM Units system: English File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx File
name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx Current Date: 9/30/2021 10:45 AM Units system: English File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx Bentley Current Date: 9/30/2021 10:45 AM Units system: English File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx Current Date: 9/30/2021 10:49 AM Units system: English File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx # **Load data** **GLOSSARY** Comb : Indicates if load condition is a load combination # **Load Conditions** | Condition | Description | Comb. | Category | |-----------|----------------------------------|--------|----------| |
DL | Dead Load |
No | DL | | W0 | Wind Load 0/60/120 deg | No | WIND | | W30 | Wind Load 30/90/120 deg | No | WIND | | Di | Ice Load | No | LL | | Wi0 | Ice Wind Load 0/60/120 deg | No | WIND | | Wi30 | Ice Wind Load 30/90/150 deg | No | WIND | | WL0 | WL 30 mph 0/60/120 deg | No | WIND | | WL30 | WL 30 mph 30/90/150 deg | No | WIND | | LL1 | 250 lb Live Load Center of Mount | No | LL | | LL2 | 250 lb Live Load End of Mount | No | LL | | LLa1 | 500 lb Live Load on Antenna 1 | No | LL | | LLa2 | 500 lb Live Load on Antenna 2 | No | LL | | LLa3 | 500 lb Live Load on Antenna 3 | No | LL | | LLa4 | 500 lb Live Load on Antenna 4 | No | LL | # Distributed force on members | Condition | Member | Dir1 | Val1
[Kip/ft] | Val2
[Kip/ft] | Dist1
[ft] | % | Dist2
[ft] | % | |-----------|--------|------|-------------------------|-------------------------|---------------|----|---------------|-----| | DL | 24 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 25 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 26 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 27 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 28 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 29 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 18 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 19 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 20 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | W0 | 2 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 4 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 5 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 6 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 7 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 8 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | |-------|----------|--------|------------------|------------------|--------------|----------|------------------|------------| | | 9 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 10 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 11 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 12 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 61 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 62 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 63 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 64 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 65 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 66 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 35 | Z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 37 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 39 | z | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 13 | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes | | | 14 | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes | | | 34 | z | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes | | | 24 | z | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 25 | Z | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 26 | Z | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 27 | Z | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 28 | Z | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 29 | Z | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 36 | Z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 38 | Z | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 40 | z
- | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 21
22 | Z | -0.002 | -0.002 | 0.00 | No | 100.00 | Yes | | | 23 | Z
- | -0.002
-0.002 | -0.002
-0.002 | 0.00
0.00 | No
No | 100.00
100.00 | Yes
Yes | | | 23
15 | z
z | -0.002 | -0.002
-0.015 | 0.00 | No | 100.00 | Yes | | | 17 | Z | -0.015 | -0.015
-0.015 | 0.00 | No | 100.00 | Yes | | | 18 | Z | -0.015 | -0.015
-0.015 | 0.00 | No | 100.00 | Yes | | | 19 | Z | -0.015 | -0.015
-0.015 | 0.00 | No | 100.00 | Yes | | | 20 | Z | -0.015 | -0.015
-0.015 | 0.00 | No | 100.00 | Yes | | W30 | 1 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | ***** | 2 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 3 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 4 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 5 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 6 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 7 | X | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 8 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 10 | х | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 12 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 61 | Х | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 62 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 63 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 64 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 65 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 66 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 37 | x | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 39 | х | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 13 | х | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes | | | 14 | х | -0.013 | -0.013 | 0.00 | No | 100.00 | Yes | | | 25 | Х | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 26 | Х | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 27 | Х | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 28 | Х | -0.007 | -0.007 | 0.00 | No | 100.00 | Yes | | | 36 | Х | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 40 | X | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | | | | | | | | | | | 21 | × | -0.002 | -0.002 | 0.00 | No | 100.00 | Yes | |----|----------------------|---|--------|-----------------|--------------|----------|--------|-----| | | 23 | × | -0.002 | -0.002 | 0.00 | No | 100.00 | Yes | | | 15 | x | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 16 | x | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 17 | x | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 18 | x | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 20 | × | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | Di | 1 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 2 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 3 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 4 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 5 | ý | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 6 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 7 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 8 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 9 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 10 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 11 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 12 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 61 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 62 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 63 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 64 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 65 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 66 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 35 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 37 | y | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 39 | | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 13 | у | -0.009 | -0.01 | 0.00 | No | 100.00 | Yes | | | 14 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 34 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 24 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 2 4
25 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 26
26 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 20
27 | у | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | | у | | | | | | | | | 28 | У | -0.009 | -0.009 | 0.00 | No | 100.00 | Yes | | | 29
36 | у | -0.009 | -0.009
-0.01 | 0.00
0.00 | No
No | 100.00 | Yes | | | | У | -0.01 | | | | 100.00 | Yes | | | 38 | у | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 40 | У | -0.01 | -0.01 | 0.00 | No | 100.00 | Yes | | | 21 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 22 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 23 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 15 | у | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 16 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 17 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 18 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 19 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | 20 | У | -0.015 | -0.015 | 0.00 | No | 100.00 | Yes | | | | | | | | | | | | Condition | Member | Dir1 | Value1
[Kip] | Dist1
[ft] | % | |-----------|--------|------|------------------------|---------------|----| | DL | 1 | у | -0.04 | 3.00 | No | | | | у | -0.04 | 8.00 | No | | | | у | -0.025 | 4.00 | No | | | | у | -0.025 | 6.00 | No | | | 3 | У | -0.035 | 3.00 | No | | | | У | -0.035 | 8.00 | No | | | | У | -0.018 | 4.00 | No | | | | У | -0.018 | 6.00 | No | | | 5 | У | -0.04 | 3.00 | No | | | | У | -0.04 | 8.00 | No | | | | У | -0.025 | 4.00 | No | | | | У | -0.025 | 6.00 | No | | | 7 | У | -0.035 | 3.00 | No | | | | У | -0.035 | 8.00 | No | | | | У | -0.018 | 4.00 | No | | | | У | -0.018 | 6.00 | No | | | 9 | У | -0.04 | 3.00 | No | | | | У |
-0.04 | 8.00 | No | | | | У | -0.025 | 4.00 | No | | | | У | -0.025 | 6.00 | No | | | 11 | У | -0.035 | 3.00 | No | | | | У | -0.035 | 8.00 | No | | | | У | -0.018 | 4.00 | No | | | | У | -0.018 | 6.00 | No | | W0 | 1 | Z | -0.229 | 3.00 | No | | | | Z | -0.229 | 8.00 | No | | | 3 | Z | -0.229 | 3.00 | No | | | | Z | -0.229 | 8.00 | No | | | 5 | Z | -0.133 | 3.00 | No | | | | Z | -0.133 | 8.00 | No | | | | Z | -0.018 | 4.00 | No | | | | Z | -0.018 | 6.00 | No | | | 7 | Z | -0.133 | 3.00 | No | | | | Z | -0.133 | 8.00 | No | | | | Z | -0.017 | 4.00 | No | | | | Z | -0.017 | 6.00 | No | | | 9 | Z | -0.133 | 3.00 | No | | | | Z | -0.133 | 8.00 | No | | | | Z | -0.018 | 4.00 | No | | | | Z | -0.018 | 6.00 | No | | | 11 | Z | -0.133 | 3.00 | No | | | | Z | -0.133 | 8.00 | No | | | | Z | -0.017 | 4.00 | No | | | | Z | -0.017 | 6.00 | No | | W30 | 1 | Х | -0.101 | 3.00 | No | | | | Х | -0.101 | 8.00 | No | | | | Х | -0.012 | 4.00 | No | | | | Х | -0.012 | 6.00 | No | | | 3 | Х | -0.101 | 3.00 | No | | | | Х | -0.101 | 8.00 | No | | | | Х | -0.015 | 4.00 | No | | | | Х | -0.015 | 6.00 | No | | | 5 | Х | -0.197 | 3.00 | No | | | | X | -0.197 | 8.00 | No | | | | X | -0.03 | 4.00 | No | |------|-----|----------|--------|--------------|----------| | | | X | -0.03 | 6.00 | No | | | 7 | x | -0.197 | 3.00 | No | | | | x | -0.197 | 8.00 | No | | | | x | -0.022 | 4.00 | No | | | | x | -0.022 | 6.00 | No | | | 9 | X | -0.197 | 3.00 | No | | | · · | X | -0.197 | 8.00 | No | | | | X | -0.03 | 4.00 | No | | | | | -0.03 | 6.00 | No | | | 11 | X | | | | | | 11 | X | -0.197 | 3.00 | No
No | | | | X | -0.197 | 8.00 | | | | | X | -0.022 | 4.00 | No | | Б. | | x | -0.022 | 6.00 | No | | Di | 1 | У | -0.142 | 3.00 | No | | | | У | -0.142 | 8.00 | No | | | | У | -0.024 | 4.00 | No | | | | У | -0.024 | 6.00 | No | | | 3 | У | -0.142 | 3.00 | No | | | | У | -0.142 | 8.00 | No | | | | У | -0.018 | 4.00 | No | | | | У | -0.018 | 6.00 | No | | | 5 | у | -0.142 | 3.00 | No | | | | у | -0.142 | 8.00 | No | | | | У | -0.024 | 4.00 | No | | | | У | -0.024 | 6.00 | No | | | 7 | у | -0.142 | 3.00 | No | | | | у | -0.142 | 8.00 | No | | | | y | -0.018 | 4.00 | No | | | | y | -0.018 | 6.00 | No | | | 9 | y | -0.142 | 3.00 | No | | | | y | -0.142 | 8.00 | No | | | | y | -0.024 | 4.00 | No | | | | y | -0.024 | 6.00 | No | | | 11 | y | -0.142 | 3.00 | No | | | | y | -0.142 | 8.00 | No | | | | y | -0.018 | 4.00 | No | | | | | -0.018 | 6.00 | No | | Wi0 | 1 | y
z | -0.045 | 3.00 | No | | VVIO | ' | | -0.045 | 8.00 | | | | 3 | Z | -0.045 | 3.00 | No
No | | | 3 | Z | | | | | | _ | Z | -0.045 | 8.00 | No | | | 5 | Z | -0.028 | 3.00 | No | | | | Z | -0.028 | 8.00 | No | | | | Z | -0.006 | 4.00 | No | | | _ | Z | -0.006 | 6.00 | No | | | 7 | Z | -0.028 | 3.00 | No | | | | Z | -0.028 | 8.00 | No | | | | Z | -0.006 | 4.00 | No | | | | Z | -0.006 | 6.00 | No | | | 9 | Z | -0.028 | 3.00 | No | | | | Z | -0.028 | 8.00 | No | | | | Z | -0.006 | 4.00 | No | | | | z | -0.006 | 6.00 | No | | | 11 | z | -0.028 | 3.00 | No | | | | z | -0.028 | 8.00 | No | | | | z | -0.006 | 4.00 | No | | | | z | -0.006 | 6.00 | No | | Wi30 | 1 | x | -0.023 | 3.00 | No | | | | x | -0.023 | 8.00 | No | | | | | . === | - | | | | | X | -0.005 | 4.00 | No | |--------|----|---|--------|------|----| | | | X | -0.005 | 6.00 | No | | | 3 | x | -0.023 | 3.00 | No | | | _ | X | -0.023 | 8.00 | No | | | | | | | No | | | | Х | -0.005 | 4.00 | | | | _ | X | -0.005 | 6.00 | No | | | 5 | X | -0.039 | 3.00 | No | | | | X | -0.039 | 8.00 | No | | | | X | -0.008 | 4.00 | No | | | | x | -0.008 | 6.00 | No | | | 7 | x | -0.039 | 3.00 | No | | | | X | -0.039 | 8.00 | No | | | | X | -0.007 | 4.00 | No | | | | | | | | | | _ | X | -0.007 | 6.00 | No | | | 9 | X | -0.039 | 3.00 | No | | | | X | -0.039 | 8.00 | No | | | | X | -0.008 | 4.00 | No | | | | Х | -0.008 | 6.00 | No | | | 11 | x | -0.039 | 3.00 | No | | | | × | -0.039 | 8.00 | No | | | | X | -0.007 | 4.00 | No | | | | | | | | | 14/1 0 | 4 | X | -0.007 | 6.00 | No | | WL0 | 1 | Z | -0.014 | 3.00 | No | | | | Z | -0.014 | 8.00 | No | | | 3 | Z | -0.014 | 3.00 | No | | | | Z | -0.014 | 8.00 | No | | | 5 | Z | -0.008 | 3.00 | No | | | | Z | -0.008 | 8.00 | No | | | | Z | -0.001 | 4.00 | No | | | | z | -0.001 | 6.00 | No | | | 7 | z | -0.008 | 3.00 | No | | | | Z | -0.008 | 8.00 | No | | | | Z | -0.001 | 4.00 | No | | | | Z | -0.001 | 6.00 | No | | | 0 | | | | | | | 9 | Z | -0.008 | 3.00 | No | | | | Z | -0.008 | 8.00 | No | | | | Z | -0.001 | 4.00 | No | | | | Z | -0.001 | 6.00 | No | | | 11 | Z | -0.008 | 3.00 | No | | | | Z | -0.008 | 8.00 | No | | | | Z | -0.001 | 4.00 | No | | | | z | -0.001 | 6.00 | No | | WL30 | 1 | x | -0.006 | 3.00 | No | | | | X | -0.006 | 8.00 | No | | | | X | -0.001 | 4.00 | No | | | | | | | | | | 0 | X | -0.001 | 6.00 | No | | | 3 | X | -0.006 | 3.00 | No | | | | Х | -0.006 | 8.00 | No | | | | Х | -0.001 | 4.00 | No | | | | X | -0.001 | 6.00 | No | | | 5 | x | -0.012 | 3.00 | No | | | | x | -0.012 | 8.00 | No | | | | x | -0.002 | 4.00 | No | | | | x | -0.002 | 6.00 | No | | | 7 | X | -0.012 | 3.00 | No | | | • | X | -0.012 | 8.00 | No | | | | | -0.012 | 4.00 | No | | | | X | | | | | | 0 | X | -0.001 | 6.00 | No | | | 9 | X | -0.012 | 3.00 | No | | | | X | -0.012 | 8.00 | No | | | | х | -0.002 | 4.00 | No | |------|----|---|--------|--------|-----| | | | × | -0.002 | 6.00 | No | | | 11 | x | -0.012 | 3.00 | No | | | | x | -0.012 | 8.00 | No | | | | х | -0.001 | 4.00 | No | | | | x | -0.001 | 6.00 | No | | LL1 | 35 | У | -0.25 | 50.00 | Yes | | LL2 | 35 | У | -0.25 | 100.00 | Yes | | LLa1 | 1 | У | -0.50 | 50.00 | Yes | | LLa2 | 2 | У | -0.50 | 50.00 | Yes | | LLa3 | 3 | y | -0.50 | 50.00 | Yes | | LLa4 | 4 | У | -0.50 | 50.00 | Yes | | | | | | | | # Self weight multipliers for load conditions | | | Self weight multiplier | | | | | |-----------|----------------------------------|------------------------|-------|-------|-------|--| | Condition | Description | Comb. | MultX | MultY | MultZ | | | | Dead Load |
No | 0.00 | -1.00 | 0.00 | | | W0 | Wind Load 0/60/120 deg | No | 0.00 | 0.00 | 0.00 | | | W30 | Wind Load 30/90/150 deg | No | 0.00 | 0.00 | 0.00 | | | Di | Ice Load | No | 0.00 | 0.00 | 0.00 | | | Wi0 | Ice Wind Load 0/60/120 deg | No | 0.00 | 0.00 | 0.00 | | | Wi30 | Ice Wind Load 30/90/150 deg | No | 0.00 | 0.00 | 0.00 | | | WL0 | WL 30 mph 0/60/120 deg | No | 0.00 | 0.00 | 0.00 | | | WL30 | WL 30 mph 30/90/150 deg | No | 0.00 | 0.00 | 0.00 | | | LL1 | 250 lb Live Load Center of Mount | No | 0.00 | 0.00 | 0.00 | | | LL2 | 250 lb Live Load End of Mount | No | 0.00 | 0.00 | 0.00 | | | LLa1 | 500 lb Live Load on Antenna 1 | No | 0.00 | 0.00 | 0.00 | | | LLa2 | 500 lb Live Load on Antenna 2 | No | 0.00 | 0.00 | 0.00 | | | LLa3 | 500 lb Live Load on Antenna 3 | No | 0.00 | 0.00 | 0.00 | | | LLa4 | 500 lb Live Load on Antenna 4 | No | 0.00 | 0.00 | 0.00 | | # Earthquake (Dynamic analysis only) | Condition | a/g | Ang .
[Deg] | Damp.
[%] | |-----------|------|-----------------------|--------------| | DL | 0.00 | 0.00 | 0.00 | | W0 | 0.00 | 0.00 | 0.00 | | W30 | 0.00 | 0.00 | 0.00 | | Di | 0.00 | 0.00 | 0.00 | | Wi0 | 0.00 | 0.00 | 0.00 | | Wi30 | 0.00 | 0.00 | 0.00 | | WL0 | 0.00 | 0.00 | 0.00 | | WL30 | 0.00 | 0.00 | 0.00 | | LL1 | 0.00 | 0.00 | 0.00 | | LL2 | 0.00 | 0.00 | 0.00 | | LLa1 | 0.00 | 0.00 | 0.00 | | LLa2 | 0.00 | 0.00 | 0.00 | | LLa3 | 0.00 | 0.00 | 0.00 | | LLa4 | 0.00 | 0.00 | 0.00 | Page7 Current Date: 9/30/2021 10:55 AM Units system: English File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx ### **Steel Code Check** Report: Summary - Group by member ### Load conditions to be included in design : LC1=1.2DL+1.6W0 LC2=1.2DL+1.6W30 LC3=1.2DL-1.6W0 LC4=1.2DL-1.6W30 LC5=0.9DL+1.6W0 LC6=0.9DL+1.6W30 LC7=0.9DL-1.6W0 LC8=0.9DL-1.6W30 LC9=1.2DL+Di+Wi0 LC10=1.2DL+Di+Wi30 LC11=1.2DL+Di-Wi0 LC12=1.2DL+Di-Wi30 LC13=1.2DL LC14=0.9DL LC15=1.2DL+1.6LL1 LC16=1.2DL+1.6LL2 LC17=1.2DL+WL0+LLa1 LC18=1.2DL+WL30+LLa1 LC19=1.2DL-WL0+LLa1 LC20=1.2DL-WL30+LLa1 LC21=1.2DL+WL0+LLa2 LC22=1.2DL+WL30+LLa2 LC23=1.2DL-WL0+LLa2 LC24=1.2DL-WL30+LLa2 LC25=1.2DL+WL0+LLa3 LC26=1.2DL+WL30+LLa3 LC27=1.2DL-WL0+LLa3 LC28=1.2DL-WL30+LLa3 LC29=1.2DL+WL0+LLa4 LC30=1.2DL+WL30+LLa4 LC31=1.2DL-WL0+LLa4 LC32=1.2DL-WL30+LLa4 | Description | Section | Member | Ctrl Eq. | Ratio | Status | Reference | |--------------------|--------------------|--------|----------------|-------|--------|-----------| | | HSS_SQR 4X4X1_4 | 15 | LC3 at 100.00% | 0.17 | OK | Eq. H1-1b | | | | 16 | LC2 at 100.00% | 0.23 | OK | Eq. H1-1b | | | | 17 | LC3 at 100.00% | 0.18 | OK | Eq. H1-1b | | | | 18 | LC2 at 50.00% | 0.18 | OK | Eq. H1-1b | | | | 19 | LC1 at 48.44% | 0.16 | OK | Eq. H1-1b | | | | 20 | LC4 at 48.44% | 0.18 | OK | Eq. H1-1b | | L 2-1_2X2-1_2X3_16 | L 2-1_2X2-1_2X3_16 | 36 | LC4 at 100.00% | 0.52 | OK | Eq. H2-1 | | | | 38 | LC3 at 100.00% | 0.53 | ок | Sec. F1 | | | | 40 | LC2 at 100.00% | 0.46 | OK | Sec. F1 | | L 2X2 | L 2X2X1_4 | 24 | LC3 at 100.00% | 0.20 | OK | Eq. H2-1 | | | | 25 | LC1 at 100.00% | 0.22 | OK | Eq. H2-1 | | | | 26 | LC4 at 100.00% | 0.23 | OK | Eq. H2-1 | | | | 27 | LC2 at 0.00% | 0.22 | OK | Eq. H2-1 | | | | 28 | LC1 at 0.00% | 0.21 | OK | Eq. H2-1 | | | 29 | LC3 at 0.00% | 0.20 | ОК | Eq. H2-1 | |------------------|----|---------------|------|----|-----------| | PIPE 2-1_2x0.203 | 1 | LC3 at 31.25% | 0.16 | OK | Eq. H1-1b | | | 2 | LC4 at 89.58% | 0.10 | OK | Eq. H1-1b | | | 3 | LC2 at 89.58% | 0.15 | OK | Eq. H1-1b | | | 4 | LC2 at 89.58% | 0.10 | OK | Eq. H1-1b | | | 5 | LC2 at 89.58% | 0.25 | OK | Eq. H1-1b | | | 6 | LC2 at 89.58% | 0.10 | OK | Eq. H1-1b | | | 7 | LC1 at 89.58% | 0.19 | OK | Eq. H1-1b | | | 8 | LC1 at 89.58% | 0.13 | OK | Eq. H1-1b | | | 9 | LC1 at 89.58% | 0.21 | OK | Eq. H1-1b | | | 10 | LC1 at 89.58% | 0.13 | OK | Eq. H1-1b | | | 11 | LC4 at 89.58% | 0.16 | OK | Eq. H1-1b | | | 12 | LC4 at 89.58% |
0.14 | OK | Eq. H1-1b | | | 61 | LC2 at 0.00% | 0.40 | OK | Eq. H1-1b | | | 62 | LC1 at 0.00% | 0.35 | OK | Eq. H1-1b | | | 63 | LC1 at 0.00% | 0.32 | OK | Eq. H1-1b | | | 64 | LC2 at 0.00% | 0.38 | OK | Eq. H1-1b | | | 65 | LC3 at 0.00% | 0.23 | OK | Eq. H1-1b | | | 66 | LC4 at 0.00% | 0.23 | OK | Eq. H1-1b | | | 35 | LC1 at 22.32% | 0.41 | OK | Eq. H1-1b | | | 37 | LC4 at 22.32% | 0.56 | OK | Eq. H1-1b | | | 39 | LC3 at 22.32% | 0.52 | OK | Eq. H1-1b | | PIPE 3x0.216 | 13 | LC2 at 8.04% | 0.18 | ОК | Eq. H1-1b | | | 14 | LC4 at 64.29% | 0.15 | OK | Eq. H1-1b | | | 34 | LC3 at 8.04% | 0.15 | OK | Eq. H1-1b | | PL 6x3/8 | 21 | LC2 at 50.00% | 0.20 | OK | Eq. H1-1b | | | 22 | LC1 at 50.00% | 0.22 | OK | Eq. H1-1b | | | 23 | LC4 at 50.00% | 0.20 | OK | Eq. H1-1b | Current Date: 9/30/2021 10:50 AM Units system: English File name: Z:\Shared\Work2.0\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1104\Rev. 1\Option 2\CT1104.retx ### **Geometry data** **GLOSSARY** Cb22, Cb33 : Moment gradient coefficients Cm22, Cm33 : Coefficients applied to bending term in interaction formula d0 : Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL : Tapered member section depth at K end of member Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3 L22 : Member length for calculation of axial capacity L33 : Member length for calculation of axial capacity LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2 LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2 RX : Rotation about X RY : Rotation about Y RZ : Rotation about Z TO : 1 = Tension only member 0 = Normal member TX : Translation in X TY : Translation in Y TZ : Translation in Z ### **Nodes** | Node | X
[ft] | Y
[ft] | Z
[ft] | Rigid Floor | |------|------------------|------------------|------------------|-------------| | 21 | 0.00 | -4.00 | -2.0457 | 0 | | 15 | 1.7716 | -4.00 | 1.0228 | 0 | | 19 | -1.7716 | -4.00 | 1.0228 | 0 | | 114 | -1.7716 | 0.00 | 1.0228 | 0 | | 116 | 1.7716 | 0.00 | 1.0228 | 0 | | 115 | 0.00 | 0.00 | -2.0457 | 0 | ### Restraints | Node | TX | TY | TZ | RX | RY | RZ | |------|----|----|----|----|----|----| | | | | | | | | | 21 | 1 | 1 | 1 | 1 | 1 | 1 | | 15 | 1 | 1 | 1 | 1 | 1 | 1 | | 19 | 1 | 1 | 1 | 1 | 1 | 1 | | 114 | 1 | 1 | 1 | 1 | 1 | 1 | | 116 | 1 | 1 | 1 | 1 | 1 | 1 | | 115 | 1 | 1 | 1 | 1 | 1 | 1 | _____ ### Members | Member | NJ | NK | Description | Section | Material | d0
[in] | dL
[in] | lg factor | |--------|-----|-----|-------------|--------------------|----------------------|-------------------|-------------------|-----------| | 1 | 100 | 104 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 2 | 101 | 105 | | PIPE 2-1 2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 3 | 102 | 106 | | PIPE 2-1 2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 4 | 103 | 107 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 5 | 145 | 146 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 6 | 139 | 140 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 7 | 133 | 134 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 8 | 127 | 128 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 9 | 169 | 170 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 10 | 163 | 164 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 11 | 157 | 158 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 12 | 151 | 152 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 61 | 115 | 175 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 62 | 115 | 178 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 63 | 116 | 173 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 64 | 114 | 177 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 65 | 114 | 174 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 66 | 116 | 176 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 35 | 112 | 108 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 37 | 109 | 110 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 39 | 111 | 113 | | PIPE 2-1_2x0.203 | A53 GrB | 0.00 | 0.00 | 0.00 | | 13 | 9 | 10 | | PIPE 3x0.216 | A53 GrB | 0.00 | 0.00 | 0.00 | | 14 | 3 | 4 | | PIPE 3x0.216 | A53 GrB | 0.00 | 0.00 | 0.00 | | 34 | 12 | 13 | | PIPE 3x0.216 | A53 GrB | 0.00 | 0.00 | 0.00 | | 24 | 34 | 18 | | L 2X2X1_4 | A36 | 0.00 | 0.00 | 0.00 | | 25 | 36 | 20 | | L 2X2X1_4 | A36 | 0.00 | 0.00 | 0.00 | | 26 | 30 | 14 | | L 2X2X1_4 | A36 | 0.00 | 0.00 | 0.00 | | 27 | 18 | 35 | | L 2X2X1_4 | A36 | 0.00 | 0.00 | 0.00 | | 28 | 20 | 37 | | L 2X2X1_4 | A36 | 0.00 | 0.00 | 0.00 | | 29 | 14 | 31 | | L 2X2X1_4 | A36 | 0.00 | 0.00 | 0.00 | | 36 | 108 | 109 | | L 2-1_2X2-1_2X3_16 | A36 | 0.00 | 0.00 | 0.00 | | 38 | 110 | 111 | | L 2-1_2X2-1_2X3_16 | A36 | 0.00 | 0.00 | 0.00 | | 40 | 112 | 113 | | L 2-1_2X2-1_2X3_16 | A36 | 0.00 | 0.00 | 0.00 | | 21 | 13 | 9 | | PL 6x3/8 | A36 | 0.00 | 0.00 | 0.00 | | 22 | 10 | 3 | | PL 6x3/8 | A36 | 0.00 | 0.00 | 0.00 | | 23 | 12 | 4 | | PL 6x3/8 | A36 | 0.00 | 0.00 | 0.00 | | 15 | 18 | 19 | | HSS_SQR 4X4X1_4 | A500 GrB rectangular | | 0.00 | 0.00 | | 16 | 20 | 21 | | HSS_SQR 4X4X1_4 | A500 GrB rectangular | | 0.00 | 0.00 | | 17 | 14 | 15 | | HSS_SQR 4X4X1_4 | A500 GrB rectangular | | 0.00 | 0.00 | | 18 | 28 | 27 | | HSS_SQR 4X4X1_4 | A500 GrB rectangular | | 0.00 | 0.00 | | 19 | 26 | 22 | | HSS_SQR 4X4X1_4 | A500 GrB rectangular | | 0.00 | 0.00 | | 20 | 23 | 29 | | HSS_SQR 4X4X1_4 | A500 GrB rectangular | 0.00 | 0.00 | 0.00 | ### Orientation of local axes | Member | Rotation
[Deg] | Axes23 | NX | NY | NZ | | |--------|-------------------|--------|------|------|------|--| | 36 | 180.00 | 0 | 0.00 | 0.00 | 0.00 | | | 38 | 180.00 | 0 | 0.00 | 0.00 | 0.00 | | | 40 | 90.00 | 0 | 0.00 | 0.00 | 0.00 | | | | | | | | | | ### Rigid end offsets | Member | DJX
[in] | DJY
[in] | DJZ
[in] | DKX
[in] | DKY
[in] | DKZ
[in] | |--------|-------------|-------------|--------------------|-------------|-------------|--------------------| | 24 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | | 25 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | | 26 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | | 27 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | | 28 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | | 29 | 0.00 | 3.00 | 0.00 | 0.00 | 3.00 | 0.00 | **Property Listing Report** Map Block Lot 109 37A Building # Unique Identifier 11950045 ### **Property Information** | Property Location | 45 MAPLE RIDGE DR | | | | |-------------------|------------------------|--|--|--| | Mailing Address | POST OFFICE BOX 270 | | | | | Mailing Address | HARTFORD CT 06141 | | | | | Land Use | Commercial Vacant Land | | | | | Zoning Code | R20 | | | | | Neighborhood | 97 | | | | | Owner | CONN LIGHT & POWER CO | |--------------|-----------------------| | Co-Owner | | | Book / Page | 0288/0347 | | Land Class | Public Utility | | Census Tract | 4601 | | Acreage | 2 | ### **Valuation Summary** (Assessed value = 70% of Appraised Value) | Item | Appraised | Assessed | |--------------|-----------|----------| | Buildings | 0 | 0 | | Outbuildings | 2400 | 1680 | | Land | 275000 | 192500 | | Total | 277400 | 194180 | ### **Utility Information** | Electric | No | |--------------|----| | Gas | No | | Sewer | No | | Public Water | No | | Well | No | ### **Primary Construction Details** | Year Built | | |-------------------|--| | Building Desc. | | | Building Style | | | Stories | | | Exterior Walls | | | Exterior Walls 2 | | | Interior Walls | | | Interior Walls 2 | | | Interior Floors 1 | | | Interior Floors 2 | | | Heating Fuel | | |----------------|--| | Heating Type | | | AC Type | | | Bedrooms | | | Full Bathrooms | | | Half Bathrooms | | | Extra Fixtures | | | Total Rooms | | | Bath Style | | | Kitchen Style | | | Occupancy | | | | | | Building Use | | | | | |---------------------------|--|--|--|--| | Building Condition | | | | | | Frame Type | | | | | | Fireplaces | | | | | | Bsmt Gar | | | | | | Fin Bsmt Area | | | | | | Fin Bsmt Quality | | | | | | Building Grade | | | | | | Roof Style | | | | | | Roof Cover | | | | | | 10/19/2021 | | | | | Report Created On 10/18/2021 ### Town of Farmington, CT **Property Listing Report** **CONN LIGHT & POWER CO** Map Block Lot 109 37A Building # Unique Identifier 11950045 | Detached Outbuildings | <u>3</u> | | | | |------------------------|-------------|--------------|-----------|------------| | Type | Description | Area (sq ft) | Condition | Year Built | | Utility | Pump House | 240 | Average | 1960 | Attached Extra Feature | <u>es</u> | | | | | Type | Description | Area (sq ft) | Condition | Year Built | vales History | | Book/ Page | Sale Date | Sale Price | 0288_0347 1/1/1900 0 ### STATE OF CONNECTICUT ### CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm ### CERTIFIED MAIL RETURN RECEIPT REQUESTED November 6, 2003 Thomas J. Regan, Esq. Brown Rudnick Berlack Israels LLP 185 Asylum Street, CityPlace I Hartford, CT 06103-3402 RE: **PETITION NO. 644** - Sprint Spectrum, L.P., d/b/a
Sprint PCS and Southwestern Bell Mobile Systems, LLC, d/b/a Cingular Wireless petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the addition of Sprint PCS and Cingular Wireless Antennas to an existing Connecticut Light & Power Company electrical transmission structure at 45 Maple Ridge Drive, Farmington, Connecticut. ### Dear Attorney Regan: At a public meeting held on October 29, 2003, the Connecticut Siting Council (Council) considered and ruled that this proposal would not have a substantial adverse environmental effect, and pursuant to General Statutes § 16-50k would not require a Certificate of Environmental Compatibility and Public Need. This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the supplemental filing dated September 22, 2003 and with the condition that the color of the equipment building, equipment cabinets, and bollards conform with the surrounding landscape. Enclosed for your information is a copy of the staff report on this project. Very truly yours, Pamela B. Katz, P.E. Chairman PBK/laf Enclosure: Staff Report dated October 29, 2003 c: Honorable Arline B. Whitaker, Chairman Town Council, Town of Farmington Jeffrey Ollendorf, Planning and Zoning Official, Town of Farmington L:\siting\petition\644\dc102903.doc ### STATE OF CONNECTICUT ### CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us Web Site: www.state.ct.us/csc/index.htm Petition No. 644 Sprint Spectrum, L.P. and Southwestern Bell Mobile System, LLC Maple Ridge Drive, Farmington Staff Report October 29, 2003 On August 27, 2003, Connecticut Siting Council (Council) member Edward Wilinsky and Robert Mercier of Council staff met with Sprint Spectrum, L.P d/b/a Sprint PCS (Sprint) representative Thomas Regan at a Connecticut Light & Power Company (CL&P) right-of-way on Maple Ridge Drive in Farmington for the inspection of an electric transmission structure owned by CL&P. Sprint and Southwestern Bell Mobile System, LLC d/b/a Cingular Wireless (Cingular), with the agreement of CL&P, propose to redesign and replace CL&P transmission tower #8012 to allow for the installation of telecommunication equipment at this location. Sprint and Cingular (Applicant) are petitioning the Council for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) is required for the redesign and replacement of the transmission structure. The Applicant proposes to replace an existing 61-foot H-frame transmission line structure with a new laminated wood structure. The new H-frame structure would consist of two poles, an 86-foot pole and a 100-foot pole connected by diagonal and horizontal cross beams. The 100-foot pole would accommodate 3 panel antennas owned by Sprint at a centerline height of 100 feet and 3 panel antennas owned by Cingular at a centerline height of 88 feet. The total height of the structure with antennas would be approximately 102 feet. The antennas of both carriers would be flush mounted to the pole. A 42-foot by 33-foot equipment compound enclosed with six-foot high chain link fence would be constructed at the base of the transmission tower. Sprint would place four cabinets, no taller than six feet, on a concrete pad within the compound. Cingular would place a 20-foot by 12-foot by 11.75-foot equipment building within the compound. Access to the site would be via a 12-foot wide, 125-foot long gravel driveway that would extend from Maple Ridge Drive within the existing CL&P right-of-way. No wetlands or watercourses are within or adjacent to the proposed construction area. Soil and erosion controls would be installed prior to construction. Land use in the immediate area is residential. The two nearest residences are 37 Maple Ridge Drive, approximately 186 feet north of the site, and 51 Maple Ridge Drive, approximately 153 feet south of the site. Visual simulations indicate the residence at 37 Maple Ridge Drive would have year round views of most of the structure. The residence at 51 Maple Ridge Drive would have mostly winter views of the structure. The structure and compound would be visible from Maple Ridge Drive where the transmission line crosses the road. No landscaping is planned; existing shrubby vegetation in the right-of-way would provide limited screening. A 65-foot CL&P structure east of site and adjacent to Maple Ridge Drive was replaced with an 80-foot structure in 1999 to accommodate three flush mounted antennas owned by Omnipoint Communications Inc. (Petition 423). ### STATE OF CONNECTICUT ### CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc ### VIA ELECTRONIC MAIL September 20, 2021 Kathleen M. Shanley Manager – Transmission Siting Eversource Energy P.O. Box 270 Hartford, CT 06141 RE: SUB-PETITION NO. 1293- FA-02 (Farmington) – Eversource Energy declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for all transmission facility asset condition maintenance improvements statewide to comply with the updated National Electrical Safety Code clearance requirements. Dear Ms. Shanley: The Connecticut Siting Council (Council) hereby acknowledges your notice to replace 2 transmission structures at various locations along Eversource transmission line right-of-way in the Town of Farmington pursuant to National Electrical Safety Code standards, with the following conditions: - 1. Any deviation from the proposed transmission line maintenance activity as specified in this notice and supporting materials filed with the Council shall render this acknowledgement invalid; - 2. Any material changes to this transmission line maintenance activity as proposed shall require the filing of a new notice with the Council; - 3. Not less than 45 days after completion of the transmission line maintenance activity, the Council shall be notified in writing that construction has been completed; - 4. The validity of this action shall expire one year from the date of this letter; and - 5. The petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration. The proposed transmission line maintenance activities are to be implemented as specified here and in your notice dated August 9, 2021. This decision is under the exclusive jurisdiction of the Council. Thank you for your attention and cooperation. Sincerely, Melanie Bachman Executive Director c: Honorable C.J. Thomas, Town Council Chairman, Town of Farmington (towncouncil@farmington-ct.org) 56 Prospect Street, Hartford, CT 06103 P.O. Box 270 Hartford, CT 06141-0270 (860) 665-5000 November 12, 2021 Mr. Tim Burks SAI Communications 12 Industrial Way Salem, NH 03079 RE: AT&T Antenna Site CT1104, Maple Ridge Drive, Farmington CT, Eversource Structure 8012 Dear Mr. Burks: Based on our reviews of the site drawings, the structural analysis and foundation review provided by Centek Engineering, along with a third party review performed by Paul J. Ford and Company, we accept the proposed modification. Please work with Christopher Gelinas of Eversource Real Estate to process the site lease amendment. Please do not hesitate to contact us with questions or concerns. Christopher can be contacted at 860-665-2008, and I can be contacted at (203) 623-0409. Sincerely, Richard Badon Richard Badon Transmission Line Engineering Ref: 2021-1109 - CT1104 Structural Analysis Rev2 (21122.00) 2021-1109_21122.00 CT1104 Rev0 CDs (S&S) Click-N-Ship® U.S. POSTAGE PAID Mailed from 03079 11/12/2021 # PRIORITY MAIL 2-DAYTM SALEM NH 03079-2837 12 INDUSTRIAL WAY SAI GROUP HOLLIS M REDDING > Expected Delivery Date: 11/15/21 Ref#: CT1104 **R001** SHIP **USPS TRACKING #** Electronic Rate Approved #038555749 Cut on dotted line. TO: KATHLEEN BRONSKI, TOWN MANAGER SHANNON TOWN OF FARMINGTON 1 MONTIETH DR FARMINGTON CT 06032-1082 ## Click-N-Ship® \$8.70 94 Flat Rate Env U.S. POSTAGE PAID Mailed from 03079 11/12/2021 ### **PRIORITY** MAIL 2-DAY™ SAI GROUP **HOLLIS M REDDING** SALEM NH 03079-2837 12 INDUSTRIAL WAY 0006 Expected Delivery Date: 11/15/21 Ref#: CT1104 C015 **USPS TRACKING #** TO: CHRIS GELINAS EVERSOURCE 107 SELDEN ST BERLIN CT 06037-1616 Electronic Rate Approved #038555749 From: auto-reply@usps.com To: Hollis Redding Subject: USPS® Expected Delivery by Saturday, November 13, 2021 arriving by 9:00pm 9405503699300060273801 **Date:** Friday, November 12, 2021 3:31:33 PM ### Hello HOLLIS M REDDING, USPS is now in possession of your item as of 2:35 pm on November 12, 2021 in MERIDEN, CT 06450. Tracking Number: 9405503699300060273801 ### **Hollis Redding** **From:** auto-reply@usps.com Sent: Friday, November 12, 2021 3:31 PM **To:** Hollis Redding Subject: USPS® Expected Delivery by Saturday, November 13, 2021 arriving by 9:00pm 9405503699300060273818 ### Hello HOLLIS M REDDING, USPS is now in possession of your item as of 2:35 pm on November 12, 2021 in MERIDEN, CT 06450. Tracking Number: 9405503699300060273818 ### **Expected Delivery By** ### By 9:00pm ### **Tracking & Delivery Options** ### My Account Visit <u>USPS Tracking</u>® to check the most up-to-date status of your package. Sign up for <u>Informed Delivery</u>® to digitally preview the address side of your incoming letter-