- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point™ CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02358

UPS Access PointTM
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
 print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
 print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM
CVS STORE # 972
555 WASHINGTON ST
SOUTH EASTON .MA 02375

UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point[™]
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
 print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
 print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM
CVS STORE # 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON .MA 02356

UPS Access Point[™]
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
 print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
 print the label.
- Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access Point™ CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM
CVS STORE # 7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access PointTM
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

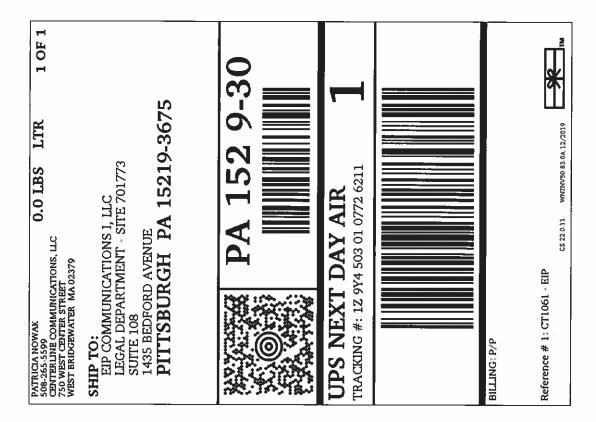
- Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the
 print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to
 print the label.
- Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup


Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM
CVS STORE # 972
555 WASHINGTON ST
SOUTH EASTON ,MA 02375

UPS Access PointTM
CVS STORE #7232
689 DEPOT ST
NORTH EASTON ,MA 02356

UPS Access Point™
TOWN LINE GENERAL STORE
450 E CENTER ST
WEST BRIDGEWATER ,MA 02379

April 14, 2020

VIA ELECTRONIC MAIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding: Notice of Exempt Modification – AT&T Site CT1061

Address: 82 Lovely Street, Farmington, CT 06085

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC (hereinafter "AT&T") currently maintains a wireless telecommunications facility on an existing 101' Monopole Tower (the "Tower") at the above-referenced address, latitude 41.761381, longitude -72.887526. Said Tower is owned by EIP Communications I, LLC.

AT&T desires to modify its existing telecommunications facility on the Tower by swapping (3) antennas, swapping (6) remote radio heads, and adding (1) surge arrestor with (2) DC power lines and (1) Fiber, as more particularly detailed and described in the enclosed Construction Drawings prepared by Hudson Design Group LLC, dated January 14, 2019 and last revised April 3, 2020. Enclosed please also find a Mount Analysis prepared by Hudson Design Group LLC dated January 16, 2020. The centerline height of the antennas will be at 98'.

I spoke with the Planning and Zoning Department of the Town of Farmington, CT and they did not have any copies of original approvals for the construction of the Tower. I also called and emailed the Building Department and they were not able to provide the building permit or any other documentation for the construction of the Tower.

Please accept this letter as notification pursuant to R.C.S.A §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the following individuals: Kathleen A. Blonski, Town Manager of the Town of Farmington; Bruce C. Cyr, Zoning Enforcement Officer of the Town of Farmington; Mark DeVoe, Town Planner of the Town of Farmington; Southern New England as the property owner and EIP Communications I, LLC as the tower owner. Enclosed please find a property card and a GIS map of the property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Specifically:

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. Please see the RF Emissions Analysis Report for AT&T's modified facility enclosed herewith.
- 5. The proposed modifications will not cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. Please see the Rigorous Structural Analysis Report dated March 10, 2020 and prepared by Malouf Engineering Intl., Inc. enclosed herewith.

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely

Patricia Nowak

Site Acquisition Consultant

Centerline Communications, LLC

750 West Center Street, Suite 301

West Bridgewater, MA 02379

pnowak@clinellc.com

Enclosures: Exhibit 1 – Construction Drawings

Exhibit 2 - Mount Analysis

Exhibit 3- Property Card and GIS Map Exhibit 4 - RF Emissions Analysis Report

Exhibit 5 – Structural Analysis

cc: Kathleen A. Blonski, Town Manager of the Town of Farmington

Bruce C. Cyr, Zoning Enforcement Officer of the Town of Farmington

Mark DeVoe, Town Planner of the Town of Farmington

Southern New England as the property owner EIP Communications I, LLC as the tower owner

EXHIBIT 1

PROJECT INFORMATION

ITEMS TO BE MOUNTED ON THE EXISTING MONOPOLE:

- NEW AT&T MOUNT: C10855721C (TOTAL OF 1) TO REPLACE EXISTING MOUNT. • NEW AT&T ANTENNAS: DMP65R-BU8DA @ POS. 4 (TYP. OF 1 PER ALPHA AND BETA SECTORS, TOTAL OF 2).
- NEW AT&T ANTENNAS: DMP65R-BU6DA @ POS. 4 (TOTAL OF 1 PER GAMMA SECTOR). • NEW AT&T RRUS: 4449 B5/B12 (700/850) @ POS. 4 (TYP. OF 1 PER SECTOR,
- NEW AT&T RRUS: 8843 B2/B66A (PCS/AWS) @ POS. 3 (TYP. OF 1 PER SECTOR,
- NEW AT&T DC & FIBER SURGE ARRESTOR DC6-48-60-18-8C-EV
- (TOTAL OF 1) WITH (2) DC POWER & (1) FIBER RUN.

ITEMS TO BE MOUNTED AT EQUIPMENT LOCATION:

- SWAP BB WITH 6630.
- ADD (1) IDLe.
- INSTALL (1) FIBER MANAGEMENT BOX.

ITEMS TO BE REMOVED:

- EXISTING AT&T ANTENNAS: P65-15-XLH-RR @ POS. 3 (TYP. OF 1 PER SECTOR,
- EXISTING AT&T RRUS: RRUS-11 B12 (700) (TYP. OF 1 PER SECTOR, TOTAL OF 3). • EXISTING AT&T RRUS: RRUS-12 B2 + A2 B25 MODULE (1900) (TYP. OF 1 PER
- SECTOR, TOTAL OF 3). • EXISTING AT&T DIPLEXER: TT19-08BP111-001 (TYP. OF 1 PER SECTOR, TOTAL OF 3).

ITEMS TO REMAIN:

•(6) ANTENNAS, (3) TMA'S (1) SURGE ARRESTOR, (12) COAX CABLES, (2) DC POWER & (1) FIBER.

SITE ADDRESS:

82 LOVELY STREET UNIONVILLE, CT 06085

LATITUDE: 41.761381° N, 41° 45' 40.97" N

LONGITUDE: 72.887526° W, 72° 53' 15.09" W

MONOPOLE / INDOOR

STRUCTURE HEIGHT: 101'-0"±

98'-0"± @ POS. 1 (ALPHA, BETA, AND GAMMA SECTORS)/97'-7" @ POS. 2 (ALPHA, RAD CENTER:

AND BETA SECTORS)/97'-6" @ POS. 4 (ALPHA, AND BETA SECTORS)

CURRENT USE:

TYPE OF SITE:

TELECOMMUNICATIONS FACILITY

PROPOSED USE:

TELECOMMUNICATIONS FACILITY

ACILII	T	

SHEET NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	1
GN-1	GENERAL NOTES	1
A-1	COMPOUND & EQUIPMENT PLANS	1
A-2	ANTENNA LAYOUTS & ELEVATION	1
A-3	DETAILS	1
G-1	GROUNDING DETAILS	1
RF-1	RF PLUMBING DIAGRAM	1

SITE NUMBER: CT1061

SITE NAME: UNIONVILLE SBC CO

FA CODE: 10035037

PACE ID: MRCTB043989,MRCTB043995,MRCTB043998

PROJECT: LTE 3C_5G_BWE_2020 UPGRADE

GENERAL NOTES

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF AT&T. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

- 2. THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.
- 3. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T MOBILITY REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.
- CONSTRUCTION DRAWINGS ARE VALID FOR SIX MONTHS AFTER ENGINEER OF RECORD'S STAMPED AND SIGNED SUBMITTAL DATE LISTED HEREIN.

DRAWING INDEX

VICINITY MAP

HEAD NORTHEAST ON ENTERPRISE DR TOWARD CAPITAL BLVD (0.31 MILES), TURN LEFT ONTO CAPITAL BLVD (0.27MI). TURN LEFT ONTO WEST ST (0.30 MILES), TURN LEFT TO MERGE ONTO I-91 S

(11.08 MILES), MERGE ONTO I-84 W/US-6 VIA EXIT 32 ON LEFT TOWARD WATERBURY (1.15 MILES),

TOWARD NEW HAVEN (1.63 MILES). MERGE ONTO CT-9 N VIA EXIT 22N TOWARD NEW BRITAIN

MERGE ONTO CT-508/FARMINGTON AVE VIA EXIT 39 TOWARD CT-4/FARMINGTON (1.07 MILES).

STAY STRAIGHT TO GO ONTO CT-4/FARMINGTON AVE (4.87 MILES), TURN RIGHT ONTO LOVELY

ST/CT-177 (0.23 MILES). 82 LOVELY STREET IS ON THE RIGHT

72 HOURS

CALL TOLL FREE 1 - 800 - 922 - 4455

or call 811

UNDERGROUND SERVICE ALERT

HUDSON Design Group LLC

45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

CENTERLINE

750 WEST CENTER STREET, SUITE #301

WEST BRIDGEWATER, MA 02379"

SITE NUMBER: CT1061 SITE NAME: UNIONVILLE SBC CO

DIRECTIONS TO SITE:

82 LOVELY STREET UNIONVILLE, CT 06085 HARTFORD COUNTY

	NEW COMMENS	PK-31 - 10 V							_		
							\mathcal{I}		П		7
							7	W	2	امط	/
1	04/03/20	ISSUED FOR	ZONING			U	æ	AT	DPH	V	
0	03/11/20	ISSUED FOR	REVIEW				TR	ΑT	Ð₽H	V	
Α	01/14/19	ISSUED FOR	REVIEW				TR	AT	DPH	70	
NO.	DATE			REVISIO	ONS		BY	СНК	APP'D		E
SCA	LE: AS SH	HOWN	DESIGNE	D BY:	AT	DRAWN	N BY:	TR		' /	1/

AT&T TITLE SHEET LTE 3C_5G_BWE_2020 UPGRADE CT1061

GROUNDING NOTES

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE—SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81 STANDARDS) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS AND #2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 7. APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO GROUND BAR.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 12. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/2 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50

GENERAL NOTES

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - CENTERLINE SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T MOBILITY

- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS
- 4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS
- 6. "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.
- 7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

- 14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR—ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- 15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 16. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T SITES."
- 17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

20. APPLICABLE BUILDING CODES:

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

BUILDING CODE: IBC 2015 WITH 2018 CT STATE BUILDING CODE AMENDMENTS ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE (NFPA 70-2017)

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:

AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE;

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION. ASD. FOURTEENTH EDITION:

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-H, STRUCTURAL STANDARDS FOR STEEL

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

			ABBREVIATIONS		
AGL	ABOVE GRADE LEVEL	EQ	EQUAL	REQ	REQUIRED
AWG	AMERICAN WIRE GAUGE	GC	GENERAL CONTRACTOR	RF	RADIO FREQUENCY
BBU	BATTERY BACKUP UNIT	GRC	GALVANIZED RIGID CONDUIT	TBD	TO BE DETERMINED
втсш	BARE TINNED SOLID COPPER WIRE	MGB	MASTER GROUND BAR	TBR	TO BE REMOVED
BGR	BURIED GROUND RING	MIN	MINIMUM	TBRR	TO BE REMOVED AND REPLACED
BTS	BASE TRANSCEIVER STATION	Р	PROPOSED	TYP	TYPICAL
E	EXISTING	NTS	NOTI TO ISCALE	UG	UNDER GROUND
EGB	EQUIPMENT GROUND BAR	RAD	RADIATION/CENTER LINE (ANTENNA)	VIF	VERIFY IN FIELD
EGR	EQUIPMENT GROUND RING	REF	REFERENCE		

FAX: (978) 336-5586

NORTH ANDOVER, MA 01845

750 WEST CENTER STREET, SUITE #301

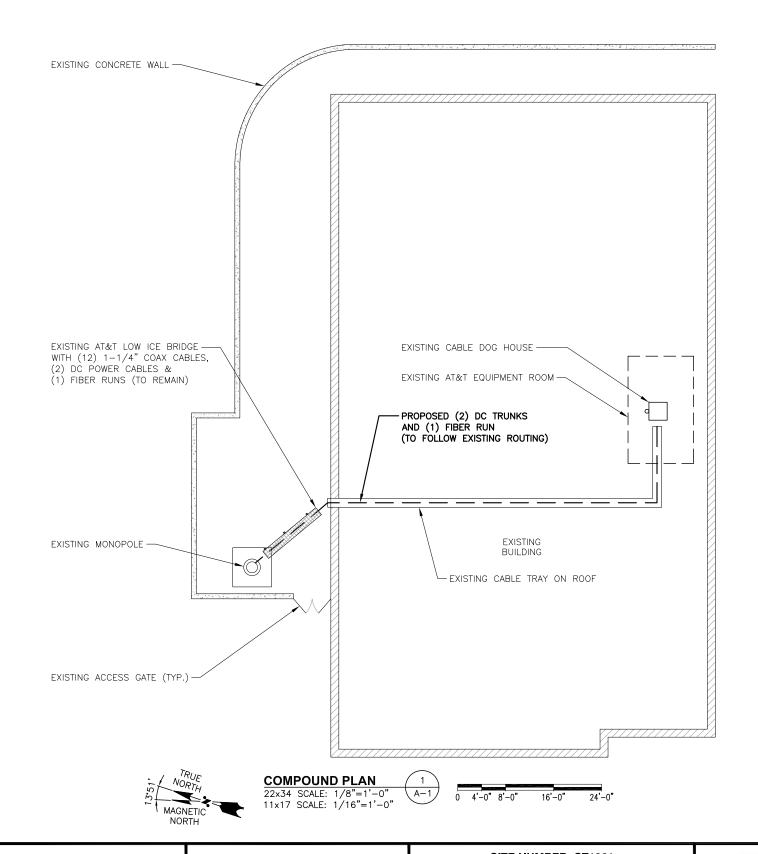
WEST BRIDGEWATER, MA 02379

SITE NUMBER: CT1061 SITE NAME: UNIONVILLE SBC CO

> 82 LOVELY STREET UNIONVILLE, CT 06085 HARTFORD COUNTY

					<u> </u>	_	
				I	/	11	
ı				KΥ	N	1	b/
ı	1	04/03/20	ISSUED FOR ZONING	ΆŔ	AT	H	V
I	0	03/11/20	ISSUED FOR REVIEW	TR	AT	6PH	Λ
ı	Α	01/14/19	ISSUED FOR REVIEW	TR	AT	DPH	79)
ı	NO.	DATE	REVISIONS	BY	снк	APP'D	1
	SCA	LE: AS SI	HOWN DESIGNED BY: AT DRAW	N BY:	TR		1

AT&T


NO.24178

GENERAL NOTES

LTE 3C_5G_BWE_2020 UPGRADE

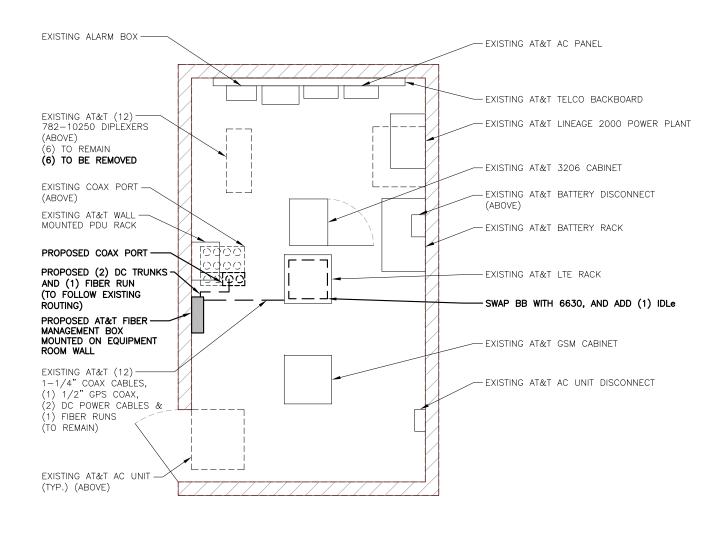
STITE NUMBER DRAWING NUMBER RE

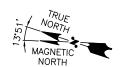
CT1061 GN-1

NOTE:

1. REMOVE ABANDONED ANTENNAS LEFT IN

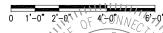
(OR HAVE SOMEONE GRAB THE COMPOUND (OR HAVE SOMEONE GRAB THEM SOON AS THEY HAVE BEEN THERE FOR WELL OVER A YEAR)


2. REPAINT EXISTING ANTENNAS WHEN NEW ANTENNAS PAINTED SO THEY ALL MATCH


AN ANALYSIS FOR THE CAPACITY OF THE EXISTING STRUCTURES TO SUPPORT THE PROPOSED EQUIPMENT SHALL BE DETERMINED PRIOR TO CONSTRUCTION.

NOTE:

AN ANALYSIS FOR THE CAPACITY OF THE EXISTING ANTENNA MOUNT TO SUPPORT THE PROPOSED LOADING HAS BEEN COMPLETED BY: HUDSON DESIGN GROUP, LLC. DATED: FEBRUARY 03, 2020 (REV 1)


REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS.

EQUIPMENT PLAN

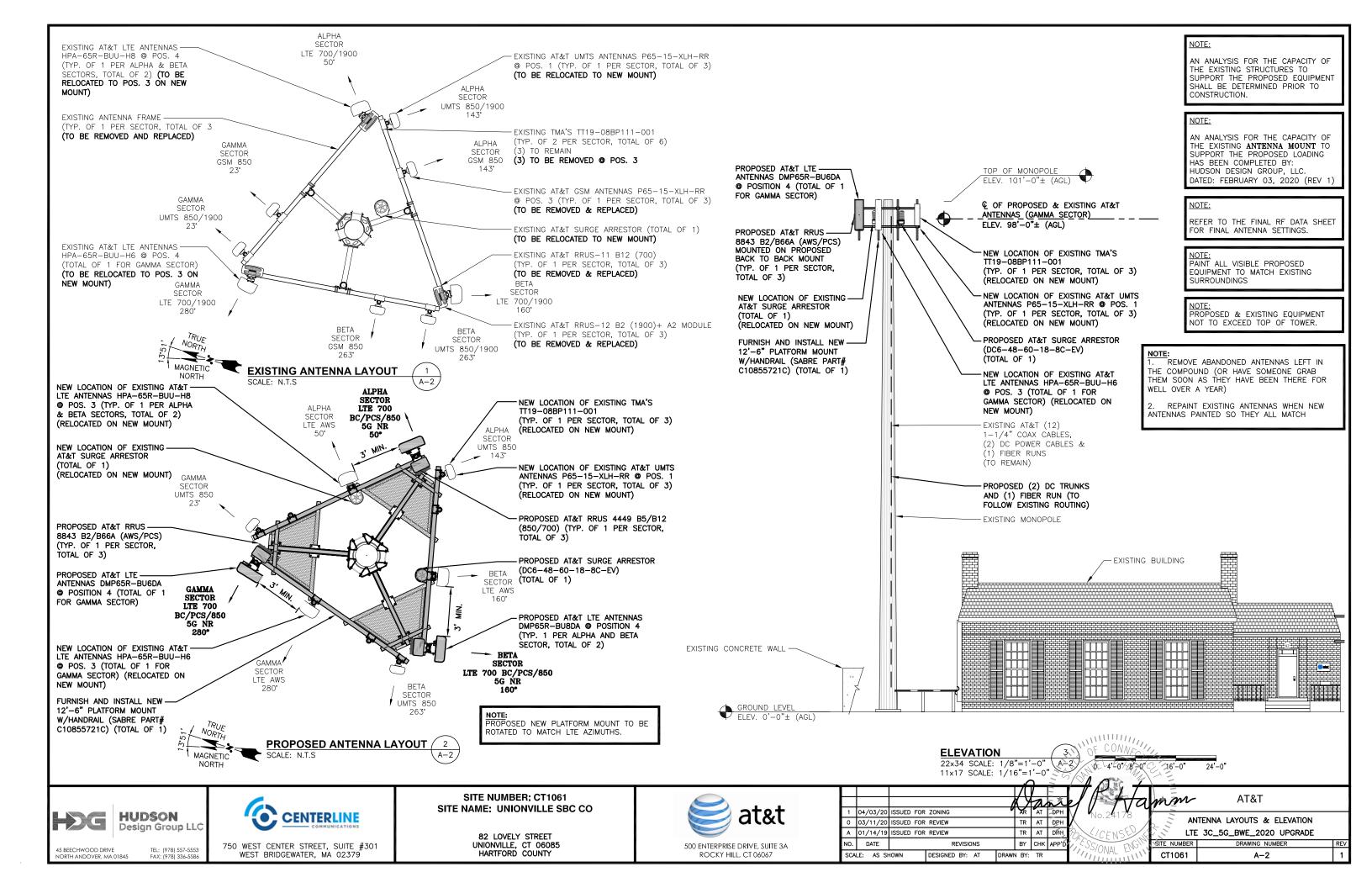
22x34 SCALE: 1/2"=1'-0" 11x17 SCALE: 1/4"=1'-0"

45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 TEL: (978) 557-5553 FAX: (978) 336-5586 CENTERLINE

750 WEST CENTER STREET, SUITE #301 WEST BRIDGEWATER, MA 02379

SITE NUMBER: CT1061 SITE NAME: UNIONVILLE SBC CO

> 82 LOVELY STREET UNIONVILLE, CT 06085 HARTFORD COUNTY



ROCKY HILL, CT 06067

			IX	/	11	<i>'</i>
		,	λY	N	Ž	6/
1	04/03/20	ISSUED FOR ZONING	AR	AT	DPH	
0	03/11/20	ISSUED FOR REVIEW	TR	AT	Ð₽H	Λ
Α	01/14/19	ISSUED FOR REVIEW	TR	AT	DPH	78)
NO.	DATE	REVISIONS	BY	СНК	APP'D	11:
SCA	LE: AS SH	OWN DESIGNED BY: AT DRAW	N BY:	TR		1

AT&T COMPOUND & EQUIPMENT PLANS LTE 3C_5G_BWE_2020 UPGRADE

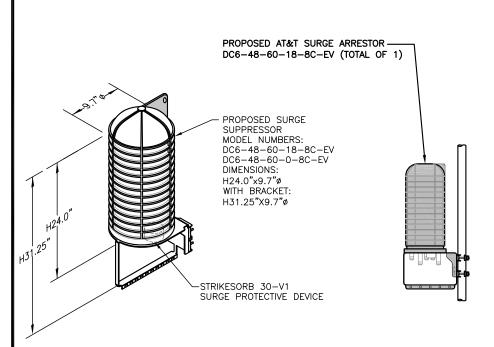
CT1061

					AN	TENNA S	CHEDULE					RRU CHART		 ₹T
SECTOR	EXISTING/ PROPOSED	BAND	ANTENNA	SIZE (INCHES) (L x W x D)	ANTENNA & HEIGHT	AZIMUTH	TMA/ DIPLEXER	RRU	SIZE (INCHES) (L x W x D)	FEEDER	RAYCAP	QUANTITY	MODEL	SIZE (L >
A1	EXISTING	UMTS 850	P65-15-XLH-RR	51X12X6	98'-0"±	143°	(1)(E) TT19-08BP111-001	-	_	(2)1-1/4 COAX	48-	3(P) 3(P)	4449 (700/850) 8843 (PCS/AWS)	17.9"x13
A2	-	-	_	-	_	_	_	-	_	(2) DC POWER (1) FIBER	RAYCAP 30-18-8F	NOTE:	MANUFACTURER'S SPEC	
A2	EXISTING	LTE AWS	HPA-65R-BUU-H8	92.4X14.8X7.4	97'-7"±	50°	-	-	_	(2)1-1/4 COAX (SPARE)	(1) 48-6			
A4	PROPOSED	LTE 700 BC/PCS/850 5G NR	DMP65R-BU8DA	96.0X20.7X7.7	97'-6"±	50°	-	(1)(P) 4449 B5/B12 (850/700) (1)(P) 8843 B2/B66A (AWS/PCS)	17.9X13.9X9.4 14.9X13.2X10.9	-	(E) DC6-	NOTE:		
B1	EXISTING	UMTS 850	P65-15-XLH-RR	51X12X6	98'-0"±	263°	(1)(E) TT19-08BP111-001	-	_	(2)1-1/4 COAX	AP 3C-EV	SEE F FREQU	RFDS FOR RRH JENCY AND	
B2	-	_	_	-	-	_	-	-	_	-	RAYCAP -18-8C-	MODE	L NUMBER	7"
В3	EXISTING	LTE AWS	HPA-65R-BUU-H8	92.4X14.8X7.4	97'-7"±	160°	-	-	_	(2)1-1/4 COAX (SPARE)	<u>Ξ</u> φ	FINAL	DSED RRU REFER TO THE RFDS AND CHART FOR TTY, MODEL AND DIMEN	₹
B4	PROPOSED	LTE 700 BC/PCS/850 5G NR	DMP65R-BU8DA	96.0X20.7X7.7	97'-6"±	160°	-	(1)(P) 4449 B5/B12 (850/700) (1)(P) 8843 B2/B66A (AWS/PCS)	17.9X13.9X9.4 14.9X13.2X10.9	(P)(2) DC (P)(1) FIBER	(P) (DC6-48-	NOTE:		
C1	EXISTING	UMTS 850	P65-15-XLH-RR	51X12X6	98'-0"±	23°	(1)(E) TT19-08BP111-001	-	_	(2)1-1/4 COAX			FPER MANUFACTURER'S FICATIONS.	S
C2	-	-	-	_	_	-	-	-	_	-			SED RRUS DETAI	
С3	EXISTING	LTE AWS	HPA-65R-BUU-H6	72X14.8X9	98'-0"±	280°	-	-	-	(2)1-1/4 COAX (SPARE)	SHARED	SCALE: N.	ſ.S	A-3
C4	PROPOSED	LTE 700 BC/PCS/850 5G NR	DMP65R-BU6DA	71.2X20.7X7.7	98'-0"±	280°	-	(1)(P) 4449 B5/B12 (850/700) (1)(P) 8843 B2/B66A (AWS/PCS)	17.9X13.9X9.4 14.9X13.2X10.9	-				

RRU CHART QUANTITY MODEL SIZE (L x W x D) 3(P) 4449 (700/850) 17.9"x13.9"x9.4" 3(P) 8843 (PCS/AWS) 14.9"x13.2"x10.9"

AN ANALYSIS FOR THE CAPACITY OF THE EXISTING STRUCTURES TO SUPPORT THE PROPOSED EQUIPMENT SHALL BE DETERMINED PRIOR TO

NOTE:


AN ANALYSIS FOR THE CAPACITY OF THE EXISTING ANTENNA MOUNT TO SUPPORT THE PROPOSED LOADING HAS BEEN COMPLETED BY: HUDSON DESIGN GROUP, LLC. DATED: FEBRUARY 03, 2020 (REV 1)

NOTE:

REFER TO THE FINAL RF DATA SHEET FOR FINAL ANTENNA SETTINGS.

FINAL ANTENNA SCHEDULE SCALE: N.T.S

FURNISH AND INSTALL NEW 12'-6"-PLATFORM MOUNT W/HANDRAIL (SABRE PART# C10855721C) (TOTAL OF 1)

€ OF PROPOSED & EXISTING AT&T ANTENNAS (ALPHA & BETA SECTORS) ELEV. 97'-6"± (AGL)

PROPOSED AT&T RRUS 4449 -B5/B12 (850/700) (TYP. OF 1 PER SECTOR, TOTAL OF 3)

PROPOSED AT&T RRUS -

TOTAL OF 3)

8843 B2/B66A (AWS/PCS) (TYP. OF 1 PER SECTOR,

FURNISH AND INSTALL NEW -12'-6" PLATFORM MOUNT W/HANDRAIL (SABRE PART# C10855721C) (TOTAL OF 1)

> PROPOSED AT&T LTE ANTENNAS DMP65R-BU8DA @ POSITION 4 (TYP. 1 PER ALPHA AND BETA SECTOR, TOTAL OF 2)

PROPOSED LTE ANTENNA & RRUS MOUNTING DETAIL

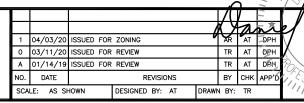
22x34 SCALE: 1"=1'-0" 11x17 SCALE: 1/2"=1'-0" C6) M 0'-6" 1'-0"

MOUNT PER MANUFACTURER'S SPECIFICATIONS.

DC SURGE SUPPRESSOR DETAIL SCALE: N.T.S

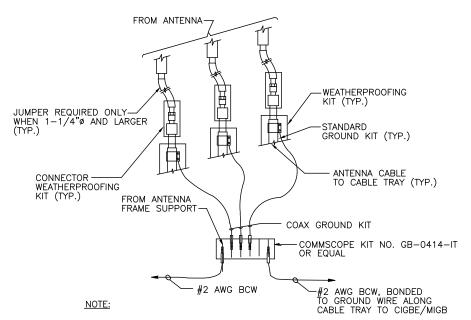
PROPOSED SURGE ARRESTOR MOUNTING DETAIL SCALE: N.T.S

PROPOSED PLATFORM MOUNT DETAIL SCALE: N.T.S

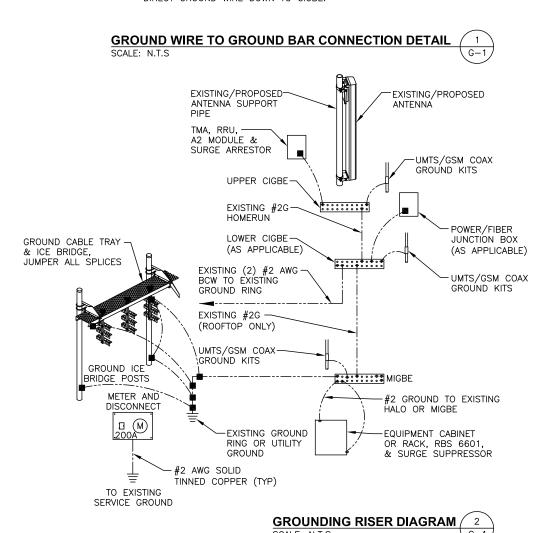

HUDSON Design Group LLC

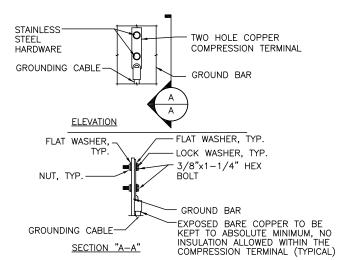
SITE NUMBER: CT1061 SITE NAME: UNIONVILLE SBC CO

> 82 LOVELY STREET UNIONVILLE, CT 06085 HARTFORD COUNTY



AT&T DETAILS LTE 3C_5G_BWE_2020 UPGRADE DRAWING NUMBER CT1061


NORTH ANDOVER, MA 01845


TEL: (978) 557-5553 FAX: (978) 336-5586

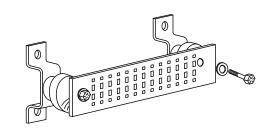
750 WEST CENTER STREET, SUITE #301 WEST BRIDGEWATER, MA 02379

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE.

NOTES:

- "DOUBLING UP" OR "STACKING" OF CONNECTION IS NOT PERMITTED.
- OX STACKING OF CONTROL OF CO

TYPICAL GROUND BAR CONNECTION DETAIL SCALE: N.T.S


EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.

SECTION "P" - SURGE PRODUCERS

CABLE ENTRY PORTS (HATCH PLATES) (#2 AWG) GENERATOR FRAMEWORK (IF AVAILABLE) "(#2 AWG) TELCO GROUND BAR COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2 AWG) +24V POWER SUPPLY RETURN BAR (#2 AWG) -48V POWER SUPPLY RETURN BAR (#2 AWG) RECTIFIER FRAMES.

SECTION "A" - SURGE ABSORBERS

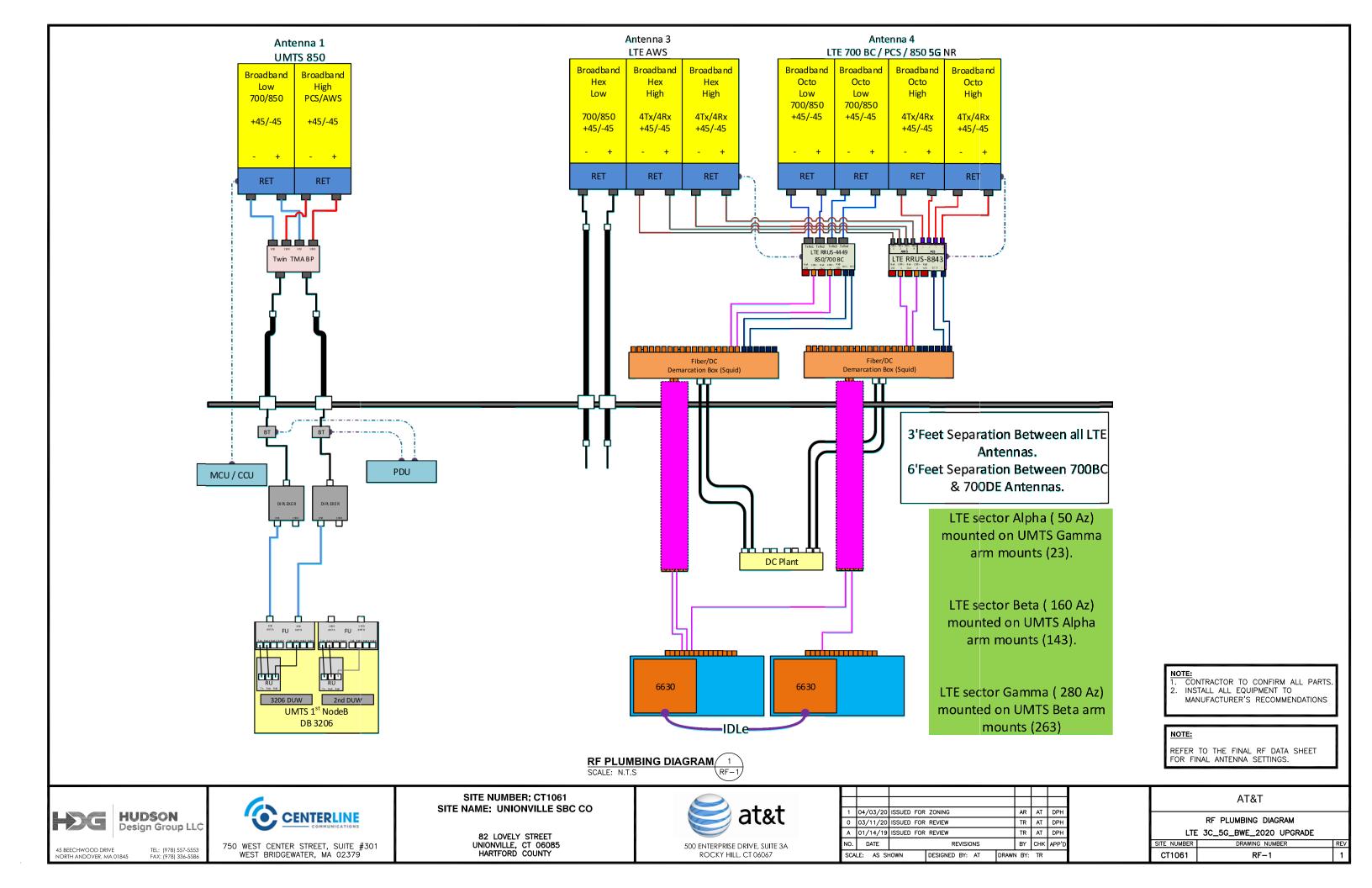
INTERIOR GROUND RING (#2 AWG) EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2 AWG)
METALLIC COLD WATER PIPE (IF AVAILABLE) (#2 AWG) BUILDING STEEL (IF AVAILABLE) (#2 AWG)

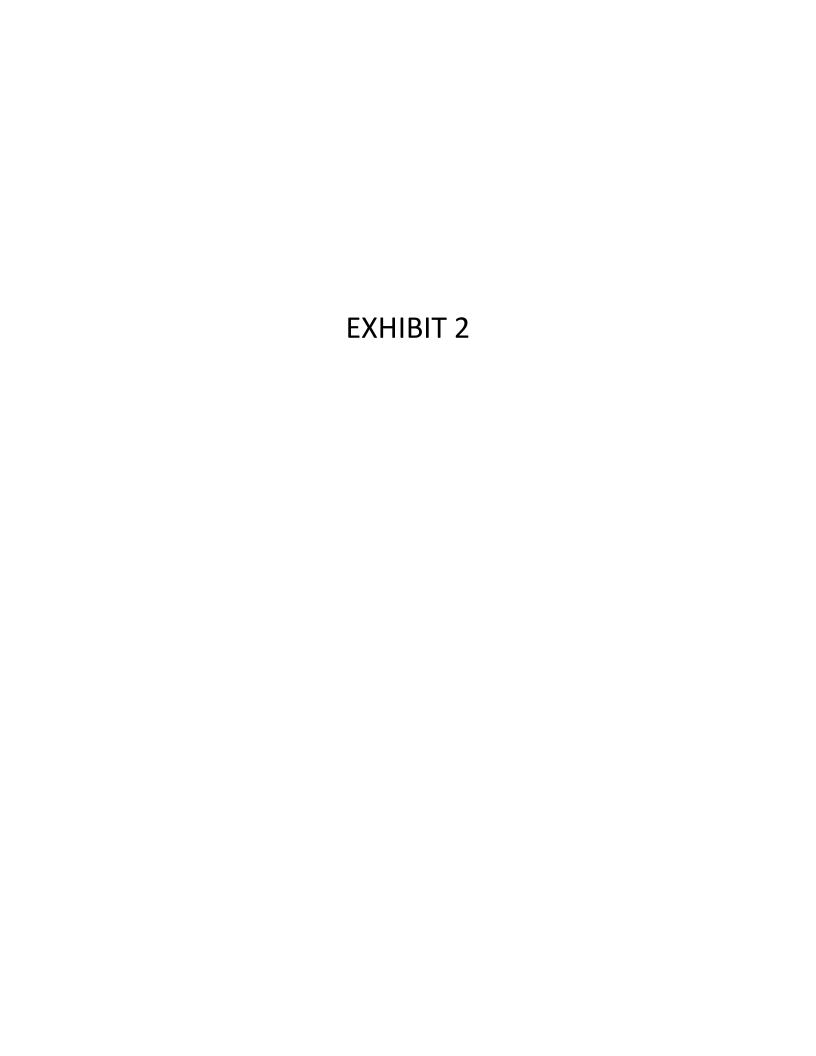
SCALE: N.T.S

SITE NUMBER: CT1061 SITE NAME: UNIONVILLE SBC CO

> 82 LOVELY STREET UNIONVILLE, CT 06085 HARTFORD COUNTY

											-	/ ~//
									7(T	П	
ı									$\langle \cdot \rangle$	Aa	1	e/ /
	1	04/03/20	ISSUED	FOR	ZONING			V	ΆR	AT	DPH	(/ V
I	0	03/11/20	ISSUED	FOR	REVIEW				TR	AT	€PH	V
ı	Α	01/14/19	ISSUED	FOR	REVIEW				TR	AT	DPH	Por
	NO.	DATE				REVISIO	NS		BY	СНК	APP'D	1,55
	SCA	LE: AS SI	HOWN		DESIGNE	D BY:	AT	DRAWN	I BY	: TR		1///


AT&T GROUNDING DETAILS LTE 3C_5G_BWE_2020 UPGRADE CT1061


NORTH ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

750 WEST CENTER STREET, SUITE #301 WEST BRIDGEWATER, MA 02379

ROCKY HILL, CT 06067

January 16, 2020

Centerline Communications 750 West Center Street, Suite #301 West Bridgewater, MA 02379

RE: Site Number:

CT1061 (LTE 3C/BWE/5G)

FA Number:

10035037 MRCTB043989

PACE Number: PT Number:

2051AORWZF

Site Name:

UNIONVILLE SBC CO

Site Address:

82 Lovely Street Unionville, CT 06085

To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by Centerline Communications to perform a mount analysis on the proposed AT&T antenna/RRH mounts to determine their capability of supporting the following additional loading:

- (3) P65-15-XLH-RR Antennas (51.0"x12.0"x6.0"– Wt. = 30 lbs. /each)
- (2) HPA-65R-BUU-H8 Antennas (92.4"x14.8"x7.4" Wt. = 68 lbs. /each)
- (1) HPA-65R-BUU-H6 Antennas (72.0"x14.8"x7.4" Wt. = 51 lbs. /each)
- (3) TT19-08BP111-001 TMA's (9.9"x6.7"x5.4" Wt. = 16 lbs. /each)
- (1) Squid Surge Arrestor (24.0"x9.7" Φ Wt. = 33 lbs. /each)
- (2) DMP65R-BU8DA Antennas (96.0"x20.7"x7.7" Wt. = 96 lbs. /each)
- (1) DMP65R-BU6DA Antennas (71.2"x20.7"x7.7" Wt. = 80 lbs. /each)
- (3) B5/B12 4449 RRH's (17.9"x13.2"x9.5" Wt. = 71 lbs. /each)
- (3) B2/B66A 8843 RRH's (14.9"x13.2"x10.9" Wt. = 72 lbs. /each)
- (1) Squid Surge Arrestor (24.0"x9.7" Φ Wt. = 33 lbs. /each)

Assembly drawings prepared by SitePr1o, P/N VFA12-M3-WLL, dated October 29, 2018 were available for the proposed mount. HDG's subconsultant, ProVertic LLC, conducted a survey climb and mapping of the existing AT&T antenna mounts on November 19, 2019.

^{*}Proposed equipment shown in bold

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-H, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, the International Building Code 2015 with 2018 Connecticut State Building Code, and AT&T Mount Technical Directive R13.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments
 all around the mount. Per TIA-222-H and Appendix N of the Connecticut State Building Code, the
 max basic wind speed for this site is equal to 125 mph with a max basic wind speed with ice of 50
 mph and a max ice thickness of 1.5 in. An escalated ice thickness of 1.67 in was used for this
 analysis.
- HDG considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom
 of a hill or ridge.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 4.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst
 case location on the mount.

Based on our evaluation, we have determined that the <u>new SitePro1 VFA12-M3-WLL</u> mounts <u>ARE CAPABLE</u> of supporting the proposed installation with the following modifications:

Install new platform reinforcement kit, SitePro1 P/N PRK-1245LW (or approved equal).

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
Proposed (LTE 3C/5G) Mount Rating	94	LC11	104%	FAIL
Modified (LTE 3C/5G) Mount Rating	94	LC11	78%	PASS

Reference Documents:

- Mount mapping report prepared by ProVertic LLC.
- Assembly drawings prepared by SitePr1o, P/N VFA12-M3-WLL, dated October 29, 2018.

This determination was based on the following limitations and assumptions:

- HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 4. The existing mount has been adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to AT&T's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.

Respectfully Submitted, Hudson Design Group LLC

Michael Cabral Vice President Daniel P. Hamm, PE Principal

FIELD PHOTOS: (Existing mounts to be removed)



Wind & Ice Calculations **Date:** 1/17/2020

Project Name: UNIONVILLE SBC CO

Project No.: CT1061

Designed By: ISD Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

$K_z = 2.01 (z/z_g)^{2/\alpha}$		Z=	98 (ft)
		$z_g =$	1200 (ft)
K _z =	0.983	α=	7.0

$Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z _g	α	K _{zmin}	K _c
В	1200 ft	7.0	0.70	0.9
С	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.2 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

$$K_{zt} = [1 + (K_c K_t/K_h)]^2$$
 $K_h = e^{(f^*z/H)}$

K _{zt} =	IDIV/0!	K _h =	#DIV/0!
		K _c =	(from Table 2-4)
(If Category 1 then K zt	<u>=1.0)</u>	K _t =	(from Table 2-5)
		f=	(from Table 2-5)
Category=	1	z=	98
		Z _s =	260 (Mean elevation of base of structure above sea level)
		H=	0 (Ht. of the crest above surrounding terrain)
		K _{zt} =	1.00 (from 2.6.6.2.1)
		K _e =	0.99 (from 2.6.8)

2.6.10 Design Ice Thickness

Date:

1/17/2020

Project Name: UNIONVILLE SBC CO

Project No.: CT1061

Designed By: ISD Checked By: MSC

2.6.9 Gust Effect Factor

2.6.9.1 Self Supporting Lattice Structures

G_h = 1.0 Latticed Structures > 600 ft

G_h = 0.85 Latticed Structures 450 ft or less

 $G_h = 0.85 + 0.15 [h/150 - 3.0]$

h= ht. of structure

h=

101

G_h= 0.85

2.6.9.2 Guyed Masts

G_h= 0.85

2.6.9.3 Pole Structures

G_h= 1.1

2.6.9 Appurtenances

G_h= 1.0

2.6.9.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

1.35

Gh=

1.00

2.6.11.2 Design Wind Force on Appurtenances

F= qz*Gh*(EPA)A

 $q_z = 0.00256*K_z*K_{zt}*K_s*K_e*K_d*V_{max}^2$

K,= 0.983 (from 2.6.5.2)

 $K_{zt} =$ K_s= 1.0 (from 2.6.6.2.1)

1.0 (from 2.6.7)

0.99 (from 2.6.8) K_e=

q_{z (ice)}=

qz=

5.92

36.99

0.95 (from Table 2-2)

 $q_{z(30)} =$

2.13

 $K_d =$

 $V_{max} =$

125 mph (Ultimate Wind Speed)

V_{max (ice)}=

50 mph

V₃₀= 30 mph

Table 2-2

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95
Tubular pole structures supporting antennas enclosed within a cylindrical shroud	1.00

Date: 1/17/2020

Project Name: UNIONVILLE SBC CO

Project No.: CT1061

Designed By: ISD Checked By: MSC

<u>Determine Ca:</u>

Table 2-9

	Ford	e Coefficients (Ca) for App	ourtenances			
	Marchar Turns	Aspect Ratio ≤ 2.5	Aspect Ratio = 7	Aspect Ratio ≥ 25		
	Member Type	Ca	Ca	Ca		
Flat		1.2	1.4	2.0		
Square/Rectangular HSS		$1.2 - 2.8(r_s) \ge 0.85$	$1.4 - 4.0(r_s) \ge 0.90$	$2.0 - 6.0(r_s) \ge 1.2$		
Round	C < 39	0.7	0.8	1.2		
	(Subcritical)	0.7	0.8	1.2		
	39 ≤ C ≤ 78	0.485	0.415	u - 1.0s		
	(Transitional)	4.14/(C ^{0.485})	3.66/(C ^{0.415})	46.8/(C ^{1.0})		
Γ	C > 78	0.5				
	(Supercritical)	0.5	0.6	0.6		

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown.

Ice Thickness =	1.67	1.67 in		0 (deg)	Ī	Equival	180 (deg)		
Appurtenances	<u>Height</u>	Width	<u>Depth</u>	Flat Area	Aspect Ratio	<u>Ca</u>	Force (lbs)	Force (lbs) (w/ lce)	Force (lbs) (30 mph)
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	4.25	1.28	201	44	12
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	6.24	1.37	480	98	28
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	4.86	1.31	357	73	21
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	4.64	1.30	661	127	38
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.44	1.24	470	91	27
B5/B12 4449 RRH	17.9	9.5	13.2	1.18	1.88	1.20	52	13	3
B5/B12 4449 RRH (Shielded)	17.9	4.8	13.2	0.59	3.77	1.26	27	9	2
B2/B66A 8843 RRH	14.9	10.9	13.2	1.13	1.37	1.20	50	13	3
B2/B66A 8843 RRH (Shielded)	14.9	5.5	13.2	0.56	2.73	1.21	25	8	1
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	1.83	1.20	16	6	1
Surge Arrestor	24.0	9.7	9.7	1.62	2.47	1.20	72	18	4
2" Pipe	2.4	12.0		0.20	0.20	1.20	9	4	1
2-1/2" pipe	2.9	12.0		0.24	0.24	2.00	18	8	1
3/4" Round Bar	0.8	12.0		0.06	0.06	1.25	3	3	0
5/8" Round Bar	0.6	12.0		0.05	0.05	1.25	2	3	0
PL 3-1/2X5/8	0.6	12.0		0.05	0.05	1.25	2	3	0
PL 11-1/4X5/8	0.6	12.0		0.05	0.05	1.25	2	3	0
L 2-1/2x2-1/2 Angles	2.5	12.0		0.21	0.21	1.25	10	5	1

Date: 1/17/2020

Project Name: UNIONVILLE SBC CO Project No.: CT1061

Angle = 30	(deg)	1	Ice Thick	ness =	1.67	in.	1	1	Equiva	lent Angle =	210	(deg)
		1 0:				i.	•	9				
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	Depth	Flat Area (normal)	Flat Area (side)	Aspect Ratio	Aspect Ratio	Ca (normal)	<u>Ca</u> (side)	(normal)	Force (lbs) (side)	Force (lbs) (angle)
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8.50	1,28	1.45	201	114	179
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6,24	12,49	1,37	1,58	480	278	429
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4,86	9.73	1.31	1.49	357	204	319
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	661	300	571
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9,25	1,24	1,47	470	208	404
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9,5 4,8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1,36 1,36	1.20 1.26	1.20 1.20	52 27	73 73	58 39
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1.37 2.73	1.13 1.13	1.20 1.21	1.20 1.20	50 25	61 61	53 34
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1,83	1,48	1,20	1,20	16	20	17
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1.20	1.20	72	72	72
WIND LOADS WITH ICE:												
P65-15-XLH-RR Antenna	54.3	15.3	9.3	5.79	3.53	3,54	5.82	1.25	1,35	43	28	39
HPA-65R-BUU-H8 Antenna	95.7	18.1	10.7	12.06	7.14	5,28	8.91	1.32	1.46	94	62	86
HPA-65R-BUU-H6 Antenna	75.3	18.1	10.7	9.49	5,62	4.15	7.01	1.27	1,40	72	47	65
DMP65R-BU8DA Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	125	66	110
DMP65R-BU6DA Antenna	74.5	24.0	11.0	12.45	5.72	3.10	6.75	1.23	1.39	90	47	80
B5/B12 4449 RRH	21.2 21.2	12.8 8.1	16.5 16.5	1.90 1.19	2.44 2.44	1.65	1.28	1.20	1.20 1.20	13 9	17 17	14 11
B5/B12 4449 RRH (Shielded)						2.62	1.28	1.21				
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	18.2 18.2	14.2 8.8	16.5 16.5	1.80 1.11	2.10 2.10	1.28 2.07	1.10 1.10	1.20 1.20	1.20 1.20	13 8	15 15	13 10
TT19-08BP111-001 TMA	13.2	8.7	10.0	08.0	0.92	1,51	1,32	1.20	1,20	6	7	6
Surge Arrestor	27.3	13.0	13.0	2.48	2.48	2.10	2.10	1.20	1.20	18	18	18
WIND LOADS AT 30 MPH:												
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8.50	1.28	1.45	12	7	10
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1.58	28	16	25
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1,31	1,49	21	12	18
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	38	17	33
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9,25	1.24	1.47	27	12	23
B5/B12 4449 RRH	17.9	9.5	13.2	1.18	1.64	1.88	1.36	1.20	1,20	3	4	3
B5/B12 4449 RRH (Shielded)	17.9	4.8	13.2	0.59	1.64	3.77	1,36	1.26	1.20	2	4	2
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1.37 2.73	1.13 1.13	1.20 1.21	1.20 1.20	3	3	3 2
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	1	1	1
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	1.03	2.47	1.20	1,20	4	4	4

Date:

1/17/2020

Project Name: UNIONVILLE SBC CO

Project No.: CT1061

		6			IND LOADS							
Angle = 60	(deg)		Ice Thick	ness =	1.67	in.		[Equiva	lent Angle =	240	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs (angle)
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8.50	1.28	1.45	201	114	136
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1.58	480	278	328
HPA-65R-BUU-H6 Antenna	72,0	14.8	7.4	7.40	3.70	4,86	9.73	1,31	1.49	357	204	242
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4_64	12,47	1,30	1.58	661	300	391
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3,44	9.25	1.24	1.47	470	208	273
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1.36 1,36	1.20 1.26	1.20 1.20	52 27	73 73	68 61
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1,37 2.73	1,13 1.13	1,20 1.21	1,20 1,20	50 25	61 61	58 52
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	16	20	19
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1,20	1,20	72	72	72
WIND LOADS WITH ICE:												
P65-15-XLH-RR Antenna	54.3	15,3	9.3	5.79	3.53	3.54	5.82	1.25	1.35	43	28	32
HPA-65R-BUU-H8 Antenna	95.7	18.1	10.7	12.06	7.14	5,28	8.91	1,32	1,46	94	62	70
HPA-65R-BUU-H6 Antenna	75.3	18.1	10.7	9.49	5.62	4,15	7.01	1.27	1.40	72	47	53
DMP65R-BU8DA Antenna	99,3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	125	66	81
DMP65R-BU6DA Antenna	74.5	24.0	11.0	12.45	5.72	3.10	6,75	1.23	1,39	90	47	58
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	21.2 21.2	12.8 8.1	16.5 16.5	1.90 1.19	2.44 2.44	1.65 2.62	1.28 1.28	1.20 1.21	1.20 1.20	13 9	17 17	16 15
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	18.2 18.2	14.2 8.8	16.5 16.5	1.80 1.11	2.10 2.10	1,28 2,07	1.10 1.10	1,20 1,20	1,20 1,20	13 8	15 15	14 13
TT19-08BP111-001 TMA	13.2	8.7	10.0	0.80	0.92	1.51	1.32	1.20	1.20	6	7	6
Surge Arrestor	27.3	13.0	13.0	2.48	2.48	2,10	2,10	1,20	1,20	18	18	18
WIND LOADS AT 30 MPH:												
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8.50	1.28	1.45	12	7	8
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1,58	28	16	19
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1.31	1.49	21	12	14
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1,30	1,58	38	17	22
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	27	12	16
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17,9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1.36 1.36	1.20 1.26	1.20 1.20	3 2	4	4
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1,37 2.73	1.13 1.13	1.20 1.21	1.20 1.20	3	3	3
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1,83	1,48	1,20	1.20	1	1	1
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1.20	1,20	4	4	4

Date:

1/17/2020

Project Name: UNIONVILLE SBC CO
Project No.: CT1061

					IND LOADS							
Angle = 90	(deg)		Ice Thick	ness =	1.67	in.		[Equiva	lent Angle =	270	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	Width	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4,25	8.50	1.28	1,45	201	114	114
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1.58	480	278	278
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1,31	1.49	357	204	204
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12,47	1.30	1,58	661	300	300
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3,44	9.25	1.24	1.47	470	208	208
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1.36 1,36	1,20 1,26	1.20 1.20	52 27	73 73	73 73
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1.37 2.73	1,13 1,13	1.20 1.21	1,20 1,20	50 25	61 61	61 61
TT19-08BP111-001 TMA	9,9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	16	20	20
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1,20	1,20	72	72	72
WIND LOADS WITH ICE:												
P65-15-XLH-RR Antenna	54.3	15.3	9,3	5.79	3,53	3,54	5.82	1.25	1.35	43	28	28
HPA-65R-BUU-H8 Antenna	95.7	18.1	10.7	12.06	7.14	5.28	8.91	1,32	1.46	94	62	62
HPA-65R-8UU-H6 Antenna	75.3	18.1	10.7	9.49	5.62	4.15	7.01	1.27	1.40	72	47	47
DMP65R-BU8DA Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	125	66	66
DMP65R-BU6DA Antenna	74.5	24.0	11.0	12.45	5.72	3.10	6,75	1,23	1.39	90	47	47
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	21.2 21,2	12.8 8.1	16.5 16.5	1.90 1.19	2.44 2.44	1.65 2.62	1.28 1.28	1.20 1.21	1.20 1.20	13 9	17 17	17 17
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	18.2 18.2	14.2 8.8	16.5 16.5	1.80 1.11	2.10 2.10	1.28 2.07	1.10 1.10	1.20 1.20	1.20 1.20	13	15 15	15 15
TT19-08BP111-001 TMA	13.2	8.7	10.0	0.80	0.92	1.51	1.32	1.20	1.20	6	7	7
Surge Arrestor	27.3	13.0	13.0	2.48	2.48	2,10	2.10	1,20	1,20	18	18	18
WIND LOADS AT 30 MPH:												
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8,50	1.28	1,45	12	7	7
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1,37	1.58	28	16	16
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1.31	1.49	21	12	12
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	38	17	17
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	27	12	12
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1.36 1.36	1.20 1.26	1.20 1.20	3 2	4	4
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1.37 2.73	1.13 1.13	1.20 1.21	1.20 1.20	3 1	3	3
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1,20	1	1	1
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1,20	1.20	4	4	4

Date: 1/17/2020

By: ISD Checked By: MSC				w	IND LOADS							
Angle = 120	(deg)		Ice Thick	ness =	1.67	in.		I	Equiva	lent Angle =	300	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	Width	Depth	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (ibs) (normal)	Force (lbs (side)	Force (lbs) (angle)
P65-15-XLH-RR Antenna	51,0	12.0	6.0	4.25	2.13	4.25	8,50	1,28	1.45	201	114	136
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6,24	12,49	1.37	1,58	480	278	328
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1,31	1.49	357	204	242
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1.30	1.58	661	300	391
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	470	208	273
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9,5 4,8	13.2 13.2	1.18 0.59	1.64 1.64	1,88 3.77	1.36 1.36	1,20 1,26	1,20 1,20	52 27	73 73	68 61
B2/B66A 8843 RRH	14.9	10.9	13,2	1.13	1.37	1.37	1.13	1.20	1.20	50	61	58
B2/B66A 8843 RRH (Shielded)	14.9	5,5	13.2	0.56	1.37	2,73	1,13	1,21	1.20	25	61	52
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1,48	1,20	1.20	16	20	19
Surge Arrestor	24.0	9.7	9.7	1,52	1.62	2.47	2.47	1.20	1.20	72	72	72
WIND LOADS WITH ICE:												
P65-15-XLH-RR Antenna	54.3	15.3	9.3	5.79	3.53	3,54	5,82	1,25	1,35	43	28	32
HPA-65R-BUU-H8 Antenna	95.7	18.1	10.7	12.06	7.14	5.28	8.91	1.32	1.46	94	62	70
HPA-65R-BUU-H6 Antenna	75.3	18.1	10.7	9.49	5.62	4.15	7.01	1,27	1.40	72	47	53
DMP65R-BU8DA Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8,99	1,27	1,47	125	66	81
DMP65R-BU6DA Antenna	74.5	24.0	11.0	12.45	5.72	3.10	6.75	1.23	1.39	90	47	58
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	21.2 21.2	12.8 8.1	16.5 16.5	1.90 1.19	2.44 2.44	1,65 2.62	1,28 1.28	1,20 1,21	1.20 1.20	13 9	17 17	16 15
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	18.2 18.2	14.2 8.8	16,5 16.5	1.80 1.11	2.10 2.10	1.28 2.07	1.10 1.10	1.20 1.20	1.20 1.20	13 8	15 15	14 13
TT19-08BP111-001 TMA	13.2	8.7	10.0	0.80	0.92	1.51	1,32	1.20	1.20	6	7	6
Surge Arrestor	27.3	13.0	13.0	2.48	2.48	2.10	2.10	1,20	1.20	18	18	18
WIND LOADS AT 30 MPH:												
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8,50	1,28	1,45	12	7	8
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1.58	28	16	19
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9,73	1,31	1.49	21	12	14
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1,30	1,58	38	17	22
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	27	12	16
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1.36 1.36	1,20 1.26	1.20 1.20	3 2	4	4
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1.37 2.73	1.13 1.13	1,20 1,21	1.20 1.20	3	3	3
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1,83	1.48	1.20	1,20	1	1	1

Date: 1/17/2020

Project Name: UNIONVILLE SBC CO
Project No.: CT1061

Angle = 150	(deg)		Ice Thick	ness =	1.67	in.		1	Equiva	lent Angle =	330	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs) (normal)	Force (lbs) (side)	Force (lbs) (angle)
P65-15-XLH-RR Antenna	51.0	12.0	6,0	4.25	2.13	4,25	8.50	1.28	1.45	201	114	179
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1.58	480	278	429
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9,73	1,31	1,49	357	204	319
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12,47	1,30	1.58	661	300	571
DMP65R-BU6DA Antenna	71.2	20,7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	470	208	404
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1.36 1,36	1.20 1.26	1.20 1,20	52 27	73 73	58 39
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1,37 2.73	1,13 1,13	1.20 1.21	1.20 1.20	50 25	61 61	53 34
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	16	20	17
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1,20	1,20	72	72	72
WIND LOADS WITH ICE:												
P65-15-XLH-RR Antenna	54.3	15.3	9.3	5.79	3.53	3.54	5.82	1.25	1.35	43	28	39
HPA-65R-BUU-H8 Antenna	95.7	18.1	10.7	12.06	7.14	5.28	8.91	1.32	1.46	94	62	86
HPA-65R-BUU-H6 Antenna	75.3	18.1	10.7	9.49	5.62	4,15	7,01	1.27	1.40	72	47	65
DMP65R-BU8DA Antenna	99.3	24.0	11.0	16.59	7.62	4.13	8.99	1.27	1.47	125	66	110
DMP65R-BU6DA Antenna	74.5	24.0	11.0	12.45	5.72	3.10	6.75	1.23	1.39	90	47	80
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	21.2 21.2	12.8 8.1	16.5 16.5	1.90 1.19	2.44 2.44	1.65 2.62	1.28 1.28	1.20 1.21	1.20 1.20	13 9	17 17	14 11
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	18.2 18.2	14.2 8.8	16.5 16.5	1.80 1.11	2.10 2.10	1.28 2.07	1,10 1,10	1,20 1,20	1,20 1,20	13 8	15 15	13 10
TT19-08BP111-001 TMA	13.2	8.7	10.0	0.80	0.92	1.51	1.32	1.20	1.20	6	7	6
Surge Arrestor	27.3	13.0	13.0	2.48	2.48	2.10	2,10	1,20	1.20	18	18	18
WIND LOADS AT 30 MPH:												
P65-15-XLH-RR Antenna	51.0	12.0	6.0	4.25	2.13	4.25	8,50	1.28	1.45	12	7	10
HPA-65R-BUU-H8 Antenna	92.4	14.8	7.4	9.50	4.75	6.24	12.49	1.37	1.58	28	16	25
HPA-65R-BUU-H6 Antenna	72.0	14.8	7.4	7.40	3.70	4.86	9.73	1.31	1.49	21	12	18
DMP65R-BU8DA Antenna	96.0	20.7	7.7	13.80	5.13	4.64	12.47	1130	1.58	38	17	33
DMP65R-BU6DA Antenna	71.2	20.7	7.7	10.24	3.81	3.44	9.25	1.24	1.47	27	12	23
B5/B12 4449 RRH B5/B12 4449 RRH (Shielded)	17.9 17.9	9.5 4.8	13.2 13.2	1.18 0.59	1.64 1.64	1.88 3.77	1,36 1.36	1.20 1.26	1,20 1.20	3 2	4	3 2
B2/B66A 8843 RRH B2/B66A 8843 RRH (Shielded)	14.9 14.9	10.9 5.5	13.2 13.2	1.13 0.56	1.37 1.37	1.37 2.73	1.13 1.13	1.20 1.21	1.20 1.20	3	3	3 2
TT19-08BP111-001 TMA	9.9	5.4	6.7	0.37	0.46	1.83	1.48	1.20	1.20	1	1	1
Surge Arrestor	24.0	9.7	9.7	1.62	1.62	2.47	2.47	1.20	1.20	4	4	4

Date: 1/22/2020

Project Name: UNIONVILLE SBC CO

Project No.: CT1061

Checked By: MSC Designed By: ISD

ICE WEIGHT CALCULATIONS

Thickness of ice: 1.67 in. Density of ice: 56 pcf

P65-15-XLH-RR Antenna

Weight of ice based on total radial SF area:

Height (in): Width (in): 12.0 Depth (in): 6.0

Total weight of ice on object: 131 lbs

30.0 lbs Weight of object:

Combined weight of ice and object: 161 lbs

HPA-65R-BUU-H6 Antenna

Weight of ice based on total radial SF area:

Height (in): Width (in): 14.8 Depth (in): 7.4

Total weight of ice on object: 223 lbs

Weight of object:

Combined weight of ice and object: 274 lbs

51.0 lbs

DMP65R-BU6DA Antenna

Weight of ice based on total radial SF area:

Height (in): 71.2 Width (in): 20.7 Depth (in): 7.7

Total weight of ice on object: 288 lbs 80.0 lbs

Weight of object:

Combined weight of ice and object: 368 lbs

B2/B66A 8843 RRH

Weight of ice based on total radial SF area:

Height (in): 14.9 Width (in): 13.2 Depth (in): 10.9

Total weight of ice on object: 48 lbs

Weight of object: 72.0 lbs

120 lbs Combined weight of ice and object:

Squid Surge Arrestor

Weight of ice based on total radial SF area:

Depth (in): 24.0 Diameter(in): 9.7

Total weight of ice on object: 46 lbs

Weight of object: 33 lbs

Combined weight of ice and object: 79 lbs

2" pipe

Per foot weight of ice:

diameter (in): 2.38

Per foot weight of ice on object: 8 plf

2-1/2" pipe

Per foot weight of ice:

diameter (in):

Per foot weight of ice on object: 9 plf

PL 11-1/4X5/8

Weight of ice based on total radial SF area:

Height (in): 11.25 Width (in): 0.625

Per foot weight of ice on object: 26 plf HPA-65R-BUU-H8 Antenna

Weight of ice based on total radial SF area: Height (in): 92.4 Width (in): 14.8 Depth (in): 7.4

HUDSON

Design Group LLC

286 lbs

Total weight of ice on object:

Weight of object: 68.0 lbs

Combined weight of ice and object: 354 lbs

DMP65R-BU8DA Antenna

Weight of ice based on total radial SF area: Height (in): 96.0 Width (in): 20.7

Depth (in): 7.7

Total weight of ice on object: 388 lbs 96.0 lbs

Weight of object:

Combined weight of ice and object: 484 lbs

B5/B12 4449 RRH

Weight of ice based on total radial SF area:

Height (in): 17.9 Width (in): 13.2 Depth (in): 9.5

Total weight of ice on object: 55 lbs

Weight of object: 71.0 lbs

Combined weight of ice and object: 126 lbs

TT19-08BP111-001 TMA

Weight of ice based on total radial SF area:

Height (in): 9.9 Width (in): 5.4 Depth (in): 6.7

Total weight of ice on object: 17 lbs

Weight of object: 16.0 lbs

Combined weight of ice and object: 33 lbs

3/4" Round Bar

Per foot weight of ice:

diameter (in): 0.75

Per foot weight of ice on object: 5 plf

5/8" Round Bar

Per foot weight of ice:

diameter (in): 0.625 5 plf Per foot weight of ice on object:

PL 3-1/2X5/8

Weight of ice based on total radial SF area:

Height (in): Width (in):

Per foot weight of ice on object: 11 plf

3.5

0.625

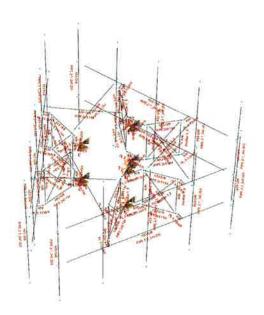
L 2-1/2x2-1/2 Angles

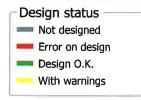
Weight of ice based on total radial SF area:

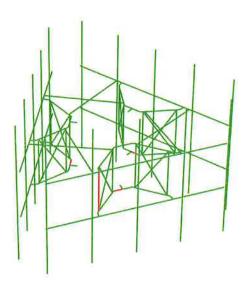
Height (in): 2.5 Width (in): 2.5

Per foot weight of ice on object: 11 plf

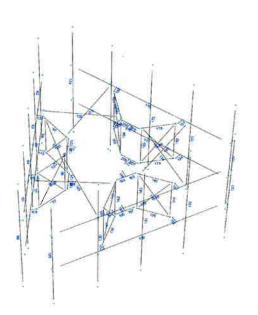
Mount Calculations (Proposed Conditions)


Bentley*
Current Date: 1/17/2020 4:13 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx


Current Date: 1/17/2020 4:12 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx



Current Date: 1/17/2020 4:15 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx



Current Date: 1/17/2020 4:12 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx

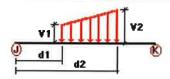
Current Date: 1/17/2020 4:13 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx

Load data

GLOSSARY


Comb

Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
 DL	Dead Load	No	DL
W0	Wind Load 0/60/120 deg	No	WIND
W30	Wind Load 30/90/150 deg	No	WIND
Di	Ice Load	No	LL
Wi0	Ice Wind Load 0/60/120 deg	No	WIND
Wi30	Ice Wind Load 30/90/150 deg	No	WIND
WL0	WL 30 mph 0/60/120 deg	No	WIND
WL30	WL 30 mph 30/90/150 deg	No	WIND
LL1	250 lb Live Load Center of Mount	No	LL
LL2	250 lb Live Load End of Mount	No	LL
LLa1	250 lb Live Load Antenna 1	No	LL
LLa2	250 lb Live Load Antenna 2	No	LL
La3	250 lb Live Load Antenna 3	No	LL
_La4	250 lb Live Load Antenna 4	No	LL

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
W0	62	z	-0.018	0.00	0.00	No	0.00	No
	63	Z	-0.018	0.00	0.00	No	0.00	No
	64	Z	-0.018	0.00	0.00	No	0.00	No
	65	Z	-0.018	0.00	0.00	No	0.00	No
	66	z	-0.018	0.00	0.00	No	0.00	No
	87	Z	-0.009	0.00	0.00	No	0.00	No
	88	z	-0.018	0.00	0.00	No	0.00	No
	89	Z	-0.018	0.00	0.00	No	0.00	No
	90	z	-0.009	0.00	0.00	No	0.00	No
	91	z	-0.009	0.00	0.00	No	0.00	No
	92	Z	-0.009	0.00	0.00	No	0.00	No
	93	z	-0.009	0.00	0.00	No	0.00	No
	94	Z	-0.002	0.00	0.00	No	0.00	No
	95	Z	-0.002	0.00	0.00	No	0.00	No
	96	Z	-0.002	0.00	0.00	No	0.00	No

97	z	-0.002	0.00	0.00	No	0.00	No
98	z	-0.003	0.00	0.00	No	0.00	No
99	Z	-0.003	0.00	0.00	No	0.00	No
100	Z	-0.003	0.00	0.00	No	0.00	No
101	Z	-0.003	0.00	0.00	No	0.00	No
102	z	-0.009	0.00	0.00	No	0.00	No
107	z	-0.002	0.00	0.00	No	0.00	No
108	z	-0.002	0.00	0.00	No	0.00	No
109	Z	-0.002	0.00	0.00	No	0.00	No
110	Z	-0.002	0.00	0.00	No	0.00	No
123	Z	-0.002	0.00	0.00	No	0.00	No
124	Z	-0.002	0.00	0.00	No	0.00	No
125	Z	-0.002	0.00	0.00	No	0.00	No
126	Z	-0.002	0.00	0.00	No	0.00	No
127	Z	-0.002	0.00	0.00	No	0.00	No
128	Z	-0.002	0.00	0.00	No	0.00	No
130	Z	-0.018	0.00	0.00	No	0.00	No
132	Z	-0.018	0.00	0.00	No	0.00	No
135	z	-0.018	0.00	0.00	No	0.00	No
136	Z	-0.018	0.00	0.00	No	0.00	No
137	Z	-0.009	0.00	0.00	No	0.00	No
138	z	-0.009	0.00	0.00	No	0.00	No
139	Z	-0.009	0.00	0.00	No	0.00	No
140	Z	-0.009	0.00	0.00	No	0.00	No
141	Z	-0.002	0.00	0.00	No	0.00	No
142	Z	-0.002	0.00	0.00	No	0.00	No
143	z	-0.002	0.00	0.00	No	0.00	No
144	Z	-0.002	0.00	0.00	No	0.00	No
145	Z	-0.003	0.00	0.00	No	0.00	No
146	Z	-0.003	0.00	0.00	No	0.00	No
147	z	-0.003	0.00	0.00	No	0.00	No
148	Z	-0.003	0.00	0.00	No	0.00	No
164	Z	-0.002	0.00	0.00	No	0.00	No
165	Z	-0.002	0.00	0.00	No	0.00	No
166	Z	-0.002	0.00	0.00	No	0.00	No
167	Z	-0.002	0.00	0.00	No	0.00	No
168	z	-0.002	0.00	0.00	No	0.00	No
169	Z	-0.002	0.00	0.00	No	0.00	No
170	Z	-0.018	0.00	0.00	No	0.00	No
171	z	-0.018	0.00	0.00	No	0.00	No
172	z	-0.018	0.00	0.00	No	0.00	No
173	z	-0.018	0.00	0.00	No	0.00	No
174	z	-0.018	0.00	0.00	No	0.00	No
175 176	z	-0.009	0.00	0.00	No	0.00	No
176 177	z	-0.018	0.00	0.00	No	0.00	No
177	z	-0.018	0.00	0.00	No	0.00	No
178	Z	-0.009	0.00	0.00	No	0.00	No
179	z	-0.009	0.00	0.00	No	0.00	No
180	z	-0.009	0.00	0.00	No	0.00	No
181	z	-0.009	0.00	0.00	No	0.00	No
182	z	-0.002 -0.002	0.00	0.00	No	0.00	No
183	z		0.00	0.00	No	0.00	No
184	z	-0.002	0.00	0.00	No	0.00	No
185 186	z	-0.002	0.00	0.00	No	0.00	No
186	z	-0.003	0.00	0.00	No	0.00	No
187	z	-0.003	0.00	0.00	No	0.00	No
188	z	-0.003	0.00	0.00	No	0.00	No
189 190	z	-0.003	0.00	0.00	No	0.00	No
190	Z	-0.009 -0.003	0.00	0.00	No No	0.00	No
וטו	z	-0.002	0.00	0.00	No	0.00	No

192	z	-0.002	0.00	0.00	No	0.00	No
193	z	-0.002	0.00	0.00	No	0.00	No
194	z	-0.002	0.00	0.00	No	0.00	No
205	z	-0.002	0.00	0.00	No	0.00	No
206	Z	-0.002	0.00	0.00	No	0.00	No
207	z	-0.002	0.00	0.00	No	0.00	No
208	z	-0.002	0.00	0.00	No	0.00	No
209	z	-0.002	0.00	0.00	No	0.00	No
210	Z	-0.002	0.00	0.00	No	0.00	No
62	×	-0.018	0.00	0.00	No	0.00	No
63	×	-0.018	0.00	0.00	No	0.00	No
64	×	-0.018	0.00	0.00	No	0.00	No
65	×	-0.018	0.00	0.00	No	0.00	No
66	×	-0.018	0.00	0.00	No	0.00	No
87	×	-0.008	0.00	0.00	No	0.00	No
88	×	-0.018	0.00	0.00	No	0.00	No
89	×	-0.018	0.00	0.00	No	0.00	No
90	×	-0.008	0.00	0.00	No	0.00	No
91	×	-0.008	0.00	0.00	No	0.00	No
92	×	-0.008	0.00	0.00	No	0.00	No
93	×	-0.008	0.00	0.00	No	0.00	No
94	×	-0.002	0.00	0.00	No	0.00	No
95	×	-0.002	0.00	0.00	No	0.00	No
96	×	-0.002	0.00	0.00	No	0.00	No
97	×	-0.002	0.00	0.00	No	0.00	No
98	×	-0.003	0.00	0.00	No	0.00	No
99	×	-0.003	0.00	0.00	No	0.00	No
100	×	-0.003	0.00	0.00	No	0.00	No
101	×	-0.003	0.00	0.00	No	0.00	No
102	×	-0.008	0.00	0.00	No	0.00	No
107	×	-0.002	0.00	0.00	No	0.00	No
108	×	-0.002	0.00	0.00	No	0.00	No
109	×	-0.002	0.00	0.00	No	0.00	No
110	×	-0.002	0.00	0.00	No	0.00	No
123	×	-0.002	0.00	0.00	No	0.00	No
124	×	-0.002	0.00	0.00	No	0.00	No
125	×	-0.002	0.00	0.00	No	0.00	No
126	×	-0.002	0.00	0.00	No	0.00	No
127	×	-0.002	0.00	0.00	No	0.00	No
128	×	-0.002	0.00	0.00	No	0.00	No
129	×	-0.018	0.00	0.00	No	0.00	No
130	×	-0.018	0.00	0.00	No	0.00	No
131	×	-0.018	0.00	0.00	No	0.00	No
132	×	-0.018	0.00	0.00	No	0.00	No
133	x	-0.018	0.00	0.00	No	0.00	No
134	×	-0.008	0.00	0.00	No	0.00	No
137	x	-0.008	0.00	0.00	No	0.00	No
138	×	-0.008	0.00	0.00	No	0.00	No
139	×	-0.008	0.00	0.00	No	0.00	No
140	×	-0.008	0.00	0.00	No	0.00	No
141	×	-0.002	0.00	0.00	No	0.00	No
142	x	-0.002	0.00	0.00	No	0.00	No
143	×	-0.002	0.00	0.00	No	0.00	No
144	x	-0.002	0.00	0.00	No	0.00	No
145	×	-0.002	0.00	0.00	No	0.00	No
146	x	-0.003	0.00	0.00	No	0.00	No
147	×	-0.003	0.00	0.00	No		
148	×	-0.003	0.00	0.00		0.00	No
149		-0.003	0.00		No No	0.00	No No
150	×	-0.008	0.00	0.00	No No	0.00	No
100	•	-0.002	0.00	0.00	No	0.00	No

W30

101

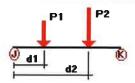
y

-0.005

0.00

No

0.00


No

0.00

102	у	-0.008	0.00	0.00	No	0.00	No
107	У	-0.011	0.00	0.00	No	0.00	No
108	У	-0.011	0.00	0.00	No	0.00	No
109	У	-0.011	0.00	0.00	No	0.00	No
110	y	-0.011	0.00	0.00	No	0.00	No
123	У	-0.011	0.00	0.00	No	0.00	No
124	У	-0.011	0.00	0.00	No	0.00	No
125	У	-0.011	0.00	0.00	No	0.00	No
126	У	-0.011	0.00	0.00	No	0.00	No
127	У	-0.026	0.00	0.00	No	0.00	No
128	У	-0.026	0.00	0.00	No	0.00	No
129	У	-0.09	0.00	0.00	No	0.00	No
130	У	-0.09	0.00	0.00	No	0.00	No
131	У	-0.09	0.00	0.00	No	0.00	No
132	У	-0.09	0.00	0.00	No	0.00	No
133	У	-0.09	0.00	0.00	No	0.00	No
134	У	-0.008	0.00	0.00	No	0.00	No
135	У	-0.09	0.00	0.00	No	0.00	No
136 137	У	-0.09	0.00 0.00	0.00	No	0.00	No
137	У	-0.008		0.00	No	0.00	No
139	У	-0.008	0.00 0.00	0.00 0.00	No	0.00	No
140	У	-0.008 -0.008	0.00	0.00	No No	0.00 0.00	No No
141	У	-0.005	0.00	0.00	No	0.00	No
142	У	-0.005	0.00	0.00	No	0.00	No
143	y y	-0.005	0.00	0.00	No	0.00	No
144	y	-0.005	0.00	0.00	No	0.00	No
145	y	-0.005	0.00	0.00	No	0.00	No
146	y	-0.005	0.00	0.00	No	0.00	No
147	y	-0.005	0.00	0.00	No	0.00	No
148	ý	-0.005	0.00	0.00	No	- 0.00	No
149	ý	-0.008	0.00	0.00	No	0.00	No
150	y	-0.011	0.00	0.00	No	0.00	No
151	y	-0.011	0.00	0.00	No	0.00	No
152	y	-0.011	0.00	0.00	No	0.00	No
153	у	-0.011	0.00	0.00	No	0.00	No
164	у	-0.011	0.00	0.00	No	0.00	No
165	У	-0.011	0.00	0.00	No	0.00	No
166	У	-0.011	0.00	0.00	No	0.00	No
167	У	-0.011	0.00	0.00	No	0.00	No
168	у	-0.026	0.00	0.00	No	0.00	No
169	У	-0.026	0.00	0.00	No	0.00	No
170	У	-0.09	0.00	0.00	No	0.00	No
171	У	-0.09	0.00	0.00	No	0.00	No
172	У	-0.09	0.00	0.00	No	0.00	No
173	У	-0.09	0.00	0.00	No	0.00	No
174	У	-0.09	0.00	0.00	No	0.00	No
175	У	-0.008	0.00	0.00	No	0.00	No
176	У	-0.09	0.00	0.00	No	0.00	No
177	У	-0.09	0.00	0.00	No	0.00	No
178	У	-0.008	0.00	0.00	No	0.00	No
179	У	-0.008	0.00	0.00	No	0.00	No
180	У	-0.008	0.00	0.00	No	0.00	No
181	У	-0.008	0.00	0.00	No	0.00	No
182	У	-0.005	0.00	0.00	No	0.00	No
183	У	-0.005	0.00	0.00	No	0.00	No
184	У	-0.005	0.00	0.00	No	0.00	No
185	У	-0.005	0.00	0.00	No	0.00	No
186	У	-0.005	0.00	0.00	No	0.00	No
187	У	-0.005	0.00	0.00	No	0.00	No

	188	у	-0.005	0.00	0.00	No	0.00	No
	189	У	-0.005	0.00	0.00	No	0.00	No
	190	у	-0.008	0.00	0.00	No	0.00	No
	191	у	-0.011	0.00	0.00	No	0.00	No
	192	у	-0.011	0.00	0.00	No	0.00	No
	193	У	-0.011	0.00	0.00	No	0.00	No
	194	У	-0.011	0.00	0.00	No	0.00	No
	205	У	-0.011	0.00	0.00	No	0.00	No
	206	У	-0.011	0.00	0.00	No	0.00	No
	207	У	-0.011	0.00	0.00	No	0.00	No
	208	у	-0.011	0.00	0.00	No	0.00	No
	209	У	-0.026	0.00	0.00	No	0.00	No
	210	у	-0.026	0.00	0.00	No	0.00	No

Concentrated forces on members

Condition	Member	Dir1	Value1	Dist1	%
02:00	000000000000000000000000000000000000000	опроценения	[Kip]	[ft]	
DL	62	у	-0.048	1.50	No
		y	-0.048	8.50	No
	64	у	-0.034	2.00	No
		у	-0.034	8.00	No
		у	-0.143	50.00	Yes
	66	у	-0.015	3.00	No
		у	-0.015	7.00	No
		у	-0.016	50.00	Yes
	129	у	-0.048	1.50	No
		у	-0.048	8.50	No
	131	у	-0.034	2.00	No
		у	-0.034	8.00	No
		у	-0.143	50.00	Yes
	133	у	-0.015	3.00	No
		у	-0.015	7.00	No
		у	-0.016	50.00	Yes
	140	у	-0.033	50.00	Yes
93	170	у	-0.048	1.50	No
		у	-0.048	8.50	No
	172	у	-0.034	2.00	No
		У	-0.034	8.00	No
		у	-0.143	50.00	Yes
	174	у	-0.015	3.00	No
		у	-0.015	7.00	No
		у	-0.016	50.00	Yes
	181	у	-0.033	50.00	Yes
W0	62	Z	-0.196	1.50	No
		Z	-0.196	8.50	No
	64	z	-0.165	2.00	No
		Z	-0.165	8.00	No
		z	-0.061	50.00	Yes
	66	z	-0.068	3.00	No

		Z	-0.068	7.00	No
		Z	-0.019	50.00	Yes
	129	Z	-0.331	1.50	No
		Z	-0.331	8.50	No
	131	Z	-0.24	2.00	No
		Z	-0.24	8.00	No
		Z	-0.027	50.00	Yes
		Z	-0.025	50.00	Yes
	133	Z	-0.101	3.00	No
		Z	-0.101	7.00	No
	140	z	-0.072	50.00	Yes
	170	Z	-0.196	1.50	No
		Z	-0.196	8.50	No
	172	z	-0.165	2.00	No
		Z	-0.165	8.00	No
		Z	-0.061	50.00	Yes
	174	Z	-0.068	3.00	No
		Z	-0.068	7.00	No
		Z	-0.019	50.00	Yes
	181	z	-0.072	50.00	Yes
W30	62	×	-0.286	1.50	No
		×	-0.286	8.50	No
	64	x	-0.215	2.00	No
		×	-0.215	8.00	No
		×	-0.039	50.00	Yes
		×	-0.034	50.00	Yes
	66	x	-0.09	3.00	No
		x	-0.09	7.00	No
		×	-0.017	50.00	Yes
	129	×	-0.151	1.50	No
		x	-0.151	8.50	No
	131	×	-0.139	2.00	No
		×	-0.139	8.00	No
		x	-0.073	50.00	Yes
	133	×	-0.057	3.00	No
		x	-0.057	7.00	No
		×	-0.02	50.00	Yes
	140	×	-0.072	50.00	Yes
	170	x	-0.286	1.50	No
		x	-0.286	8.50	No
	172	×	-0.215	2.00	No
		×	-0.215	8.00	No
		×	-0.039	50.00	Yes
		x	-0.034	50.00	Yes
	174	x	-0.09	3.00	No
		×	-0.09	7.00	No
		×	-0.017	50.00	Yes
	181	×	-0.072	50.00	Yes
Di	62	у	-0.194	1.50	No
		ý	-0.194	8.50	No
	64	y	-0.143	2.00	No
	•	y	-0.143	8.00	No
		y	-0.103	50.00	Yes
	66	y	-0.066	3.00	No
	00	У	-0.066	7.00	No
		y	-0.017	50.00	Yes
	129		-0.194		
	148	У		1.50	No No
	131	У	-0.194 0.142	8.50	No No
	131	У	-0.143 0.143	2.00	No No
		У	-0.143	8.00	No

		У	-0.103	50.00	Yes
	133	У	-0.066	3.00	No
		У	-0.066	7.00	No
		У	-0.017	50.00	Yes
	140	У	-0.046	50.00	Yes
či.	170	У	-0.194	1.50	No
		У	-0.194	8.50	No
	172	У	-0.143	2.00	No
		У	-0.143	8.00	No
	4=4	У	-0.103	50.00	Yes
	174	У	-0.066	3.00	No
		У	-0.066	7.00	No
	404	У	-0.017	50.00	Yes
1400	181	У	-0.046	50.00	Yes
WiO	62	Z	-0.041	1.50	No
	0.4	Z	-0.041	8.50	No
	64	Z	-0.036	2.00	No
		Z	-0.036	8.00	No
	66	Z	-0.015	50.00	Yes
	66	z	-0.016	3.00	No
		z	-0.016	7.00	No
	129	z	-0.006	50.00	Yes
	129	z	-0.064	1.50	No
	131	z	-0.064	8.50	No
	131	z	-0.049	2.00	No
		z	-0.049 -0.009	8.00	No
		z	-0.009	50.00	Yes
	133	z	-0.022	50.00	Yes No
	133	z	-0.022	3.00 7.00	No
		z	-0.006	50.00	Yes
	140	z	-0.018	50.00	Yes
	170	z	-0.041	1.50	No
	170	z	-0.041	8.50	No
	172	z	-0.036	2.00	No
		z	-0.036	8.00	No
		z	-0.015	50.00	Yes
	174	z	-0.016	3.00	No
		z	-0.016	7.00	No
		z	-0.006	50.00	Yes
	181	z	-0.018	50.00	Yes
Wi30	62	×	-0.056	1.50	No
		×	-0.056	8.50	No
	64	x	-0.044	2.00	No
		×	-0.044	8.00	No
		×	-0.011	50.00	Yes
		×	-0.01	50.00	Yes
	66	×	-0.02	3.00	No
		x	-0.02	7.00	No
		×	-0.006	50.00	Yes
	129	X	-0.034	1.50	No
		X	-0.034	8.50	No
	131	X.	-0.031	2.00	No
		×	-0.031	8.00	No
		×	-0.017	50.00	Yes
	133	×	-0.015	3.00	No
		×	-0.015	7.00	No
		x	-0.007	50.00	Yes
	140	×	-0.018	50.00	Yes
	170	×	-0.056	1.50	No

		×	-0.056	8.50	No
	172	×	-0.044	2.00	No
		×	-0.044	8.00	No
		×	-0.011	50.00	Yes
		×	-0.01	50.00	Yes
	174	x	-0.02	3.00	No
	117	x	-0.02	7.00	No
		×	-0.006	50.00	Yes
	181	x	-0.018	50.00	Yes
WL0	62	ž	-0.012	1.50	No
VVLO	02	z	-0.012	8.50	No
	64	z	-0.012	2.00	No
	04	z	-0.01	8.00	No
		z	-0.004	50.00	Yes
	66	z	-0.004	3.00	No
	00	z	-0.004	7.00	No
		z	-0.004	50.00	Yes
	129		-0.02	1.50	No
	123	Z	-0.02		No
	131	z	-0.02	8.50 2.00	
	131	z	-0.014		No
				8.00	No
		z	-0.002 -0.001	50.00	Yes
	133	z	-0.001	50.00	Yes
	133	z		3.00	No
		z	-0.006	7.00	No
	140	z	-0.001	50.00	Yes
		z	-0.004	50.00	Yes
	170	z	-0.012	1.50	No
	170	z	-0.012	8.50	No
	172	z	-0.01	2.00	No
		z	-0.01	8.00	No
	474	z	-0.004	50.00	Yes
	174	z	-0.004	3.00	No
		z	-0.004	7.00	No
	404	z	-0.001	50.00	Yes
WL30	181	Z	-0.004	50.00	Yes
VVLSU	62	x	-0.017	1.50	No
	64	×	-0.017	8.50	No
	64	×	-0.013	2.00	No
		x	-0.013	8.00	No
		x	-0.002	50.00 50.00	Yes
	66	×	-0.002		Yes
	66	×	-0.006	3.00	No
		×	-0.006	7.00	No
	120	x	-0.001	50.00	Yes
	129	×	-0.009	1.50	No
	424	×	-0.009	8.50	No "
	131	×	-0.009	2.00	No
		×	-0.009	8.00	No
	122	×	-0.004	50.00	Yes
	133	×	-0.004	3.00	No
		×	-0.004	7.00	No
	140	X	-0.001	50.00	Yes
	140	X	-0.004	50.00	Yes
	170	×	-0.017	1.50	No
	170	×	-0.017	8.50	No
	172	×	-0.013	2.00	No
		×	-0.013	8.00	No
		×	-0.002	50.00	Yes
		x	-0.002	50.00	Yes

	174	х	-0.006	3.00	No
		x	-0.006	7.00	No
		x	-0.001	50.00	Yes
	181	x	-0.004	50.00	Yes
LL1	135	У	-0.25	50.00	Yes
LL2	135	У	-0.25	100.00	Yes
LLa1	133	У	-0.25	50.00	Yes
LLa2	131	У	-0.25	50.00	Yes
LLa3	129	У	-0.25	50.00	Yes

Self weight multipliers for load conditions

		Self weight multiplier				
Condition	Description	Comb.	MultX	MultY	MultZ	
DL	Dead Load	No	0.00	-1.00	0.00	
W0	Wind Load 0/60/120 deg	No	0.00	0.00	0.00	
W30	Wind Load 30/90/150 deg	No	0.00	0.00	0.00	
Di	Ice Load	No	0.00	0.00	0.00	
Wi0	Ice Wind Load 0/60/120 deg	No	0.00	0.00	0.00	
Wi30	Ice Wind Load 30/90/150 deg	No	0.00	0.00	0.00	
WL0	WL 30 mph 0/60/120 deg	No	0.00	0.00	0.00	
WL30	WL 30 mph 30/90/150 deg	No	0.00	0.00	0.00	
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00	
LL2	250 lb Live Load End of Mount	No	0.00	0.00	0.00	
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00	
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00	
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00	
LLa4	250 lb Live Load Antenna 4	No	0.00	0.00	0.00	

Earthquake (Dynamic analysis only)

Condition	a/g	Ang.	Damp.
		[Deg]	[%]
DL	0.00	0.00	0.00
W0	0.00	0.00	0.00
W30	0.00	0.00	0.00
Di	0.00	0.00	0.00
Wi0	0.00	0.00	0.00
Wi30	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00
LLa4	0.00	0.00	0.00

Current Date: 1/17/2020 4:15 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

LC1=1.2DL+W0

LC2=1.2DL+W30

LC3=1.2DL-W0

LC4=1.2DL-W30

LC5=0.9DL+W0

LC6=0.9DL+W30

LC0=0.9DL+W30

LC7=0.9DL-W0

LC8=0.9DL-W30

LC9=1.2DL+Di+Wi0

LC10=1.2DL+Di+Wi30

LC11=1.2DL+Di-Wi0

LC12=1.2DL+Di-Wi30

LC13=1.2DL

LC15=1.2DL+1.5LL1

LC16=1.2DL+1.5LL2

LC17=1.2DL+WL0+1.5LLa1

LC18=1.2DL+WL30+1.5LLa1

LC19=1.2DL-WL0+1.5LLa1

LC20=1.2DL-WL30+1.5LLa1

LC21=1.2DL+WL0+1.5LLa2

LC22=1.2DL+WL30+1.5LLa2

LC23=1.2DL-WL0+1.5LLa2 LC24=1.2DL-WL30+1.5LLa2

LC25=1.2DL+WL0+1.5LLa3

LC26=1.2DL+WL30+1.5LLa3

LC27=1.2DL-WL0+1.5LLa3

LC28=1.2DL-WL30+1.5LLa3

LC29=1.2DL+WL0+1.5LLa4

LC30=1.2DL+WL30+1.5LLa4

LC31=1.2DL-WL0+1.5LLa4 LC32=1.2DL-WL30+1.5LLa4

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	PIPE 2-1_2x0.203	62	LC9 at 33.33%	0.33	 ОК	Eq. H1-1b
		63	LC12 at 33.33%	0.26	OK	Eq. H1-1b
		64	LC2 at 33.33%	0.27	OK	Eq. H1-1b
		65	LC10 at 33.33%	0.20	OK	Eq. H1-1b
		66	LC10 at 33.33%	0.21	OK	Eq. H1-1b
		88	LC2 at 25.78%	0.78	ОК	Eq. H1-1b
		89	LC2 at 29.17%	0.61	OK	Eq. H1-1b
		129	LC3 at 66.67%	0.36	OK	Eq. H1-1b
		130	LC9 at 33.33%	0.26	OK	Eq. H1-1b
		131	LC4 at 33.33%	0.27	OK	Eq. H1-1b
		132	LC12 at 33.33%	0.20	OK	Eq. H1-1b
		133	LC12 at 33.33%	0.20	OK	Eq. H1-1b
		135	LC3 at 25.78%	0.64	OK	Eq. H1-1b
		136	LC3 at 29.17%	0.59	OK	Eq. H1-1b
		170	LC11 at 33.33%	0.33	OK	Eq. H1-1b
		171	LC11 at 33.33%	0.26	OK	Eq. H1-1b
		172	LC1 at 33.33%	0.28	OK	Eq. H1-1b
		173	LC9 at 33.33%	0.21	OK	Eq. H1-1b

	174	LC9 at 33.33%	0.21	OK	Eq. H1-1b
	176	LC2 at 28.91%	0.56	OK	Eq. H1-1b
	177	LC2 at 29.17%	0.65	OK	Eq. H1-1b
	177	LOZ at 29.17 /0	0.00	OK	Eq. m 1-1b
PIPE 2x0.154	07	1.04 -4.400.000/	0.00	O14	
PIPE 2X0.154	87	LC4 at 100.00%	0.20	OK	Eq. H1-1b
	90	LC10 at 93.75%	0.63	ОК	Eq. H1-1b
	91	LC11 at 93.75%	0.42	OK	Eq. H1-1b
	92	LC12 at 93.75%	0.33	OK	Eq. H1-1b
	93	LC9 at 93.75%	0.50	OK	Eq. H1-1b
	102	LC2 at 100.00%	0.31	OK	Eq. H1-1b
	134	LC2 at 100.00%	0.24	OK	Eq. H1-1b
	137	LC11 at 93.75%	0.62	OK	Eq. H1-1b
	138	LC9 at 93.75%	0.42	OK	Eq. H1-1b
	139	LC9 at 93.75%	0.35	OK	· ·
					Eq. H1-1b
	140	LC9 at 93.75%	0.46	OK	Eq. H1-1b
	149	LC3 at 100.00%	0.30	OK	Eq. H1-1b
	175	LC6 at 100.00%	0.21	OK	Eq. H1-1b
	178	LC10 at 93.75%	0.59	OK	Eq. H1-1b
	179	LC10 at 93.75%	0.43	OK	Eq. H1-1b
	180	LC11 at 93.75%	0.34	OK	Eq. H1-1b
	181	LC12 at 93.75%	0.49	OK	Eq. H1-1b
	190	LC1 at 100.00%	0.15	OK	Eg. H1-1b
PL 11-1/4x5/8	127	LC11 at 100.00%	0.65	OK	Eq. H1-1b
	128	LC10 at 100.00%	0.37	OK	Eq. H1-1b
	168	LC11 at 100.00%	0.64	OK	Eq. H1-1b
	169	LC11 at 100.00%	0.38	ok	Eq. H1-1b
	209				
	210	LC12 at 100.00%	0.62	OK	Eq. H1-1b
	210	LC9 at 100.00%	0.38	OK	Eq. H1-1b
PL 3-1/2x5/8	107	LC11 at 100.00%	0.72	OK	Fa U1 15
1 L 3-1/2X3/0	108				Eq. H1-1b
		LC12 at 100.00%	0.61	OK	Eq. H1-1b
	109	LC12 at 100.00%	0.67	OK	Eq. H1-1b
	110	LC10 at 100.00%	0.87	OK	Eq. H1-1b
	123	LC10 at 100.00%	0.98	OK	Eq. H1-1b
	124	LC9 at 0.00%	0.78	OK	Eq. H1-1b
	125	LC11 at 100.00%	1.04	N.G.	Eq. H1-1b
	126	LC12 at 0.00%	0.87	OK	Eq. H1-1b
	150	LC9 at 100.00%	0.68	OK	Eq. H1-1b
	151	LC10 at 100.00%	0.61	OK	Eq. H1-1b
	152	LC10 at 100.00%	0.67	OK	Eq. H1-1b
	153	LC11 at 100.00%	0.91	OK	Eq. H1-1b
	164	LC11 at 100.00%	0.95	OK	Eq. H1-1b
	165	LC10 at 0.00%	0.83	OK	Eq. H1-1b
	166	LC12 at 100.00%	1.04	N.G.	•
	167	LC10 at 0.00%			Eq. H1-1b
			0.90	OK	Eq. H1-1b
	191	LC10 at 100.00%	0.69	OK	Eq. H1-1b
	192	LC11 at 100.00%	0.56	OK	Eq. H1-1b
	193	LC11 at 100.00%	0.73	OK	Eq. H1-1b
	194	LC9 at 100.00%	0.93	OK	Eq. H1-1b
	205	LC12 at 100.00%	0.97	OK	Eq. H1-1b
	206	LC9 at 0.00%	0.79	OK	Eq. H1-1b
	207	LC10 at 100.00%	1.04	N.G.	Eq. H1-1b
	208	LC11 at 0.00%	0.89	OK	Eg. H1-1b
					5517122255551712251711111100000000000000
RndBar 3_4	98	LC9 at 100.00%	0.46	OK	Eq. H1-1a
	99	LC12 at 0.00%	0.37	OK	Eq. H1-1b
	100	LC10 at 0.00%	0.58	OK	Eq. H1-1a
	101	LC10 at 100.00%	0.46	OK	Eq. H1-1b
	145	LC10 at 100.00%	0.48	ok	Eq. H1-1a
	146	LC10 at 0.00%			
			0.39	OK	Eq. H1-1b
	147	LC9 at 0.00%	0.58	OK	Eq. H1-1a
	148	LC9 at 100.00%	0.46	OK	Eq. H1-1b
	186	LC10 at 100.00%	0.48	OK	Eq. H1-1a

	187 188 189	LC10 at 0.00% LC10 at 0.00% LC10 at 100.00%	0.39 0.58 0.46	ок ок ок	Eq. H1-1b Eq. H1-1a Eq. H1-1b
RndBar 5_8	94	LC11 at 87.50%	1.04	N.G.	Eq. H1-1a
	95	LC10 at 87.50%	0.90	OK	Eq. H1-1a
	96	LC12 at 87.50%	0.76	OK	Eq. H1-1a
	97	LC12 at 87.50%	0.86	OK	Eg. H1-1a
	141	LC9 at 87.50%	0.99	OK	Eg. H1-1a
	142	LC12 at 87.50%	0.89	OK	Eg. H1-1a
	143	LC10 at 87.50%	0.79	OK	Eq. H1-1a
	144	LC9 at 87.50%	0.89	OK	Eq. H1-1a
	182	LC10 at 87.50%	0.98	OK	Eq. H1-1a
	183	LC9 at 87.50%	0.90	OK	Eg. H1-1a
	184	LC10 at 87.50%	0.80	OK	Eq. H1-1a
	185	LC10 at 87.50%	0.82	OK	Eq. H1-1a

Current Date: 1/17/2020 4:13 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061.retx

Geometry data

GLOSSARY

Cb22, Cb33 : Moment gradient coefficients

Cm22, Cm33 ; Coefficients applied to bending term in interaction formula d0 *Tapered member section depth at J end of member DJX Rigid end offset distance measured from J node in axis X DJY Rigid end offset distance measured from J node in axis Y DJZ Rigid end offset distance measured from J node in axis Z DKX Rigid end offset distance measured from K node in axis X DKY Rigid end offset distance measured from K node in axis Y DKZ Rigid end offset distance measured from K node in axis Z :Tapered member section depth at K end of member dL

Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members

K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3

L22 : Member length for calculation of axial capacity
L33 : Member length for calculation of axial capacity

LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2

RX : Rotation about X
RY : Rotation about Y
RZ : Rotation about Z

TO 11 = Tension only member 0 = Normal member

TX : Translation in X
TY : Translation in Y
TZ : Translation in Z

Nodes

Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
142	-1.7321	0.00	-1.00	0
143	-1.8282	0.00	-1.7901	0
144	-1.7321	-3.3333	-1.00	0
145	-1.8282	-3.3333	-1.7901	0
146	-2.4644	-3.3333	-0.6882	0
147	-2.4644	0.00	-0.6882	0
152	-1.1829	-6.6667	-7.6112	0
153	-1.1829	3.3333	-7.6112	0
154	-7.1829	-6.6667	2.7811	0
155	-7.1829	3.3333	2.7811	0
156	-5.4576	0.00	0.1929	0
157	-0.8376	0.00	2.6778	0
158	-1.0097	0.00	-7.5112	0
159	-7.0097	0.00	2.8812	0
160	-1.0097	-3.3333	-7.5112	0
161	-7.0097	-3.3333	2.8812	0
162	-2.4634	0.00	-4.2081	0
163	-2.4634	-3.3333	-4.2081	0
164	-4.876	-3.3333	-0.0293	0
165	-4.876	0.00	-0.0293	0
166	-2.4173	0.00	-4.0324	0
167	-2.4173	-3.3333	-4.0324	0

168	-1.8744	0.00	-1.9658	0
169	-1.8744	-3.3333	-1.9658	0
170	-2.6396	0.00	-0.6404	0
171	-2.6396	-3.3333	-0.6404	0
172	-4.7008	0.00	-0.0772	0
173	-4.7008	-3.3333	-0.0772	0
174	-2.5618	0.00	-4.8229	0
175	1.9002	0.00	-2.0642	0
176	-5.6829	-6.6667	0.1831	0
177	-5.6829	3.3333	0.1831	0
180	-2.6829	-6.6667	-5.0131	0
181	-2.6829	3.3333	-5.0131	0
184	-2.7701	0.00	-4.462	0
185	-5.2493	0.00	-0.168	0
186	-5.2493	-3.3333	-0.168	0
187	-2.7701	-3.3333	-4.462	0
188	-4.1829	-6.6667	-2.415	0
189	-4.1829	3.3333	-2.415	0
192	-1.1829	3.33E-06	-7.6112	0
193	-7.1829	3.33E-06	2.7812	0
194	-2.6829	3.33E-06	-5.0131	0
195	-2.5097	3.33E-06	-4.9131	0
196	-5.5097	3.33E-06	0.2831	0
197	-5.6829	3.33E-06	0.1831	0
198	-4.1829	3.33E-06	-2.415	0
199	-4.0097	3.33E-06	-2.315	0
200	-1.1829	-3.3333	-7.6112	0
201	-2.6829	-3.3333	-5.0131	0
202	-2.5097	-3.3333	-4.9131	0
203	-4.1829	-3.3333	-2.415	0
204 205	-4.0097 5.5007	-3.3333	-2.315	0
206	-5.5097 -5.6829	-3.3333	0.2831	0
207	-7.1829	-3.3333 -3.3333	0.1831	0
208	-2.1463	0.00	2.7812 -1.2392	0
209	-2.1463	-3.3333	-1.2392	0
210	0.00	0.00	0.00	0
211	0.00	0.00	2.00	0
212	-0.6362	0.00	2.4783	0
213	0.00	-3.3333	2.00	ō
214	-0.6362	-3.3333	2.4783	Ö
215	0.6362	-3.3333	2.4783	Ö
216	0.6362	0.00	2.4783	0
217	-6.00	-6.6667	4.83	0
218	-6.00	3.3333	4.83	0
219	6.00	-6.6667	4.83	0
220	6.00	3.3333	4.83	0
221	2.8958	0.00	4.63	0
222	2.7378	0.00	-0.6135	0
223	-6.00	0.00	4.63	0
224	6.00	0.00	4.63	0
225	-6.00	-3.3333	4.63	0
226	6.00	-3.3333	4.63	0
227	-2.4126	0.00	4.2374	0
228	-2.4126	-3.3333	4.2374	0
229	2.4126	-3.3333	4.2374	0
230	2.4126	0.00	4.2374	0
231	-2.2835	0.00	4.1096	0
232	-2.2835	-3.3333	4.1096	0
233	-0.7653	0.00	2.6062	0

234	-0.7653	-3.3333	2.6062	0
235	0.7653	0.00	2.6062	0
236	0.7653	-3.3333	2.6062	0
237	2.2835	0.00	4.1096	0
238	2.2835	-3.3333	4.1096	0
239	-2.8958	0.00	4.63	0
240	<i>-</i> 2.7378	0.00	-0.6135	0
241	3.00	-6.6667	4.83	0
242	3.00	3.3333	4.83	0
243	-3.00	-6.6667	4.83	0
244	-3.00	3.3333	4.83	0
245	-2.4792	0.00	4.63	0
246	2.4792	0.00	4.63	0
247	2.4792	-3.3333	4.63	0
248	-2.4792	-3.3333	4.63	0
249	0.00	-6.6667	4.83	0
250	0.00	3.3333	4.83	0
251	-6.00	3.33E-06	4.83	0
252	6.00	3.33E-06	4.83	0
253	-3.00	3.33E-06	4.83	0
254	-3.00	3.33E-06	4.63	0
255	3.00	3.33E-06	4.63	0
256 257	3.00 0.00	3.33E-06	4.83	0
258	0.00	3.33E-06 3.33E-06	4.83	0
259	-6.00	-3.3333	4.63 4.83	0
260	-3.00	-3.3333	4.83	0
261	-3.00	-3.3333	4.63	0
262	0.00	-3.3333	4.83	0
263	0.00	-3.3333	4.63	0
264	3.00	-3.3333	4.63	0
265	3.00	-3.3333	4.83	o
266	6.00	-3.3333	4.83	o
267	0.00	0.00	2.4783	0
268	0.00	-3.3333	2.4783	0
270	1.7321	0.00	-1.00	0
271	2.4644	0.00	-0.6882	0
272	1.7321	-3.3333	-1.00	0
273	2.4644	-3.3333	-0.6882	0
274	1.8282	-3.3333	-1.7901	0
275	1.8282	0.00	-1.7901	0
276	7.1829	-6.6667	2.7811	0
277	7.1829	3.3333	2.7811	0
278	1.1829	-6.6667	-7.6112	0
279	1.1829	3.3333	-7.6112	0
280	2.5618	0.00	-4.8229	0
281	-1.9002	0.00	-2.0642	0
282	7.0097	0.00	2.8812	0
283	1.0097	0.00	-7.5112	0
284	7.0097	-3.3333	2.8812	0
285 286	1.0097 4.876	-3.3333	-7.5112	0
287	4.876	0.00 -3.3333	-0.0293	0
288	2.4634		-0.0293	0
289	2.4634	-3.3333 0.00	-4.2081 -4.2081	0
290	4.7008	0.00	-4.2081 -0.0772	0
291	4.7008	-3.3333	-0.0772 -0.0772	0
292	2.6396	0.00	-0.6404	0
293	2.6396	-3.3333	-0.6404	0
294	1.8744	0.00	-1.9658	0
		0.00		

295	1.8744	-3.3333	-1.9658	0
296	2.4173	0.00	-4.0324	0
297	2.4173	-3.3333	-4.0324	0
298	5.4576	0.00	0.1929	0
299	0.8376	0.00	2.6778	0
300	2.6829	-6.6667	-5.0131	0
301	2.6829	3.3333	-5.0131	0
302	5.6829	-6.6667	0.1831	0
303	5.6829	3.3333	0.1831	0
304	5.2493	0.00	-0.168	0
305	2.7701	0.00	-4.462	0
306	2.7701	-3.3333	-4.462	0
307	5.2493	-3.3333	-0.168	0
308	4.1829	-6.6667	-2.415	0
309	4.1829	3.3333	-2.415	0
310	7.1829	3.33E-06	2.7812	0
311	1.1829	3.33E-06	-7.6112	0
312	5.6829	3.33E-06	0.1831	0
313	5.5097	3.33E-06	0.2831	0
314	2.5097	3.33E-06	-4.9131	0
315	2.6829	3.33E-06	-5.0131	0
316	4.1829	3.33E-06	-2.415	0
317	4.0097	3.33E-06	-2.315	0
318	7.1829	-3.3333	2.7812	0
319	5.6829	-3.3333	0.1831	0
320	5.5097	-3.3333	0.2831	0
321	4.1829	-3.3333	-2.415	0
322	4.0097	-3.3333	-2.315	0
323	2.5097	-3.3333	-4.9131	0
324	2.6829	-3.3333	-5.0131	0
325	1.1829	-3.3333	-7.6112	0
326	2.1463	0.00	-1.2392	0
327	2.1463	-3.3333	-1.2392	0
2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				

Restraints

Node	TX	TY	TZ	RX	RY	RZ
142	1	1	1	1	0	1
144	1	1	1	1	0	া
211	1	1	1	1	0	1
213	1	1	1	1	0	1
270	1	1	1	1	0	1
272	1	1	1	1	0	1

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
62	153	152	*************************	PIPE 2-1_2x0.203	 А53 GгВ	0.00	0.00	0.00
63	181	180		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
64	189	188		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
65	177	176		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
66	155	154		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
87	156	157		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
88	158	159		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
89	160	161		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
90	162	143		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
91	163	145		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
92	164	146		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
93	165	147		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
94	166	167		RndBar 5_8	A36	0.00	0.00	0.00
95	168 170	169		RndBar 5_8	A36	0.00	0.00	0.00
96 97	170	171 173		RndBar 5_8	A36	0.00	0.00	0.00
98	172	173		RndBar 5_8	A36	0.00	0.00	0.00
99	170	173		RndBar 3_4	A36	0.00	0.00	0.00
100	167	168		RndBar 3_4	A36	0.00	0.00	0.00
101	166	169		RndBar 3_4	A36	0.00	0.00	0.00
102	174	175		RndBar 3_4 PIPE 2x0.154	A36 A53 GrB	0.00	0.00	0.00
107	162	184		PL 3-1/2x5/8	A36	0.00 0.00	0.00 0.00	0.00
108	165	185		PL 3-1/2x5/8	A36	0.00	0.00	0.00
109	164	186		PL 3-1/2x5/8	A36	0.00	0.00	
110	163	187		PL 3-1/2x5/8	A36	0.00	0.00	0.00 0.00
123	143	208		PL 3-1/2x5/8	A36	0.00	0.00	0.00
124	208	147		PL 3-1/2x5/8	A36	0.00	0.00	0.00
125	145	209		PL 3-1/2x5/8	A36	0.00	0.00	0.00
126	209	146		PL 3-1/2x5/8	A36	0.00	0.00	0.00
127	208	142		PL 11-1/4x5/8	A36	11.25	9.25	0.00
128	209	144		PL 11-1/4x5/8	A36	11.25	9.25	0.00
129	218	217		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
130	244	243		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
131	250	249		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
132	242	241		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
133	220	219		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
134	221	222		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
135	223	224		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
136	225	226		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
137	227	212		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
138	228	214		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
139	229	215		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
140	230	216		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
141	231	232		RndBar 5_8	A36	0.00	0.00	0.00
142	233	234		RndBar 5_8	A36	0.00	0.00	0.00
143	235	236		RndBar 5_8	A36	0.00	0.00	0.00
144	237	238		RndBar 5_8	A36	0.00	0.00	0.00
145	235	238		RndBar 3_4	A36	0.00	0.00	0.00
146	236	237		RndBar 3_4	A36	0.00	0.00	0.00
147	232	233		RndBar 3_4	A36	0.00	0.00	0.00
148	231	234		RndBar 3_4	A36	0.00	0.00	0.00
149	239	240		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
150	227	245		PL 3-1/2x5/8	A36	0.00	0.00	0.00
151	230	246		PL 3-1/2x5/8	A36	0.00	0.00	0.00
152	229	247		PL 3-1/2x5/8	A36	0.00	0.00	0.00
153	228	248		PL 3-1/2x5/8	A36	0.00	0.00	0.00
164	212	267		PL 3-1/2x5/8	A36	0.00	0.00	0.00
165	267	216		PL 3-1/2x5/8	A36	0.00	0.00	0.00
166	214	268		PL 3-1/2x5/8	A36	0.00	0.00	0.00
167	268	215		PL 3-1/2x5/8	A36	0.00	0.00	0.00

168	267	211	PL 11-1/4x5/8	A36	11.25	9.25	0.00
169	268	213	PL 11-1/4x5/8	A36	11.25	9.25	0.00
170	277	276	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
171	303	302	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
172	309	308	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
173	301	300	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
174	279	278	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
175	280	281	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
176	282	283	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
177	284	285	PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
178	286	271	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
179	287	273	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
180	288	274	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
181	289	275	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
182	290	291	RndBar 5_8	A36	0.00	0.00	0.00
183	292	293	RndBar 5_8	A36	0.00	0.00	0.00
184	294	295	RndBar 5_8	A36	0.00	0.00	0.00
185	296	297	RndBar 5_8	A36	0.00	0.00	0.00
186	294	297	RndBar 3_4	A36	0.00	0.00	0.00
187	295	296	RndBar 3_4	A36	0.00	0.00	0.00
188	291	292	RndBar 3_4	A36	0.00	0.00	0.00
189	290	293	RndBar 3_4	A36	0.00	0.00	0.00
190	298	299	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
191	286	304	PL 3-1/2x5/8	A36	0.00	0.00	0.00
192	289	305	PL 3-1/2x5/8	A36	0.00	0.00	0.00
193	288	306	PL 3-1/2x5/8	A36	0.00	0.00	0.00
194	287	307	PL 3-1/2x5/8	A36	0.00	0.00	0.00
205	271	326	PL 3-1/2x5/8	A36	0.00	0.00	0.00
206	326	275	PL 3-1/2x5/8	A36	0.00	0.00	0.00
207	273	327	PL 3-1/2x5/8	A36	0.00	0.00	0.00
208	327	274	PL 3-1/2x5/8	A36	0.00	0.00	0.00
209	326	270	PL 11-1/4x5/8	A36	11.25	9.25	0.00
210	327	272	PL 11-1/4x5/8	A36	11.25	9.25	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ
2	0.00	2	0.2588	0.00	0.9659
3	0.00	2	0.2588	0.00	0.9659
4	0.00	2	0.2588	0.00	0.9659
5	0.00	2	0.2588	0.00	0.9659
6	0.00	2	0.2588	0.00	0.9659
4	0.00	2	-0.866	0.00	-0.50
5	0.00	2	-0.866	0.00	-0.50
6	0.00	2	-0.866	0.00	-0.50
7	0.00	2	-0.866	0.00	-0.50
07	90.00	0	0.00	0.00	0.00
08	90.00	0	0.00	0.00	0.00
09	90.00	0	0.00	0.00	0.00
10	90.00	0	0.00	0.00	0.00
23	90.00	0	0.00	0.00	0.00
24	90.00	0	0.00	0.00	0.00
25	90.00	0	0.00	0.00	0.00
26	90.00	0	0.00	0.00	0.00
27	90.00	0	0.00	0.00	0.00

128	90.00	0	0.00	0.00	0.00
129	315.00	0	0.00	0.00	0.00
130	315.00	0	0.00	0.00	0.00
131	315.00	0	0.00	0.00	0.00
132	315.00	0	0.00	0.00	0.00
133	315.00	0	0.00	0.00	0.00
141	0.00	2	0.00	0.00	1.00
142	0.00	2	0.00	0.00	1.00
143	0.00	2 2	0.00	0.00	1.00
144	0.00		0.00	0.00	1.00
150	90.00	0	0.00	0.00	0.00
151	90.00	0	0.00	0.00	0.00
152	90.00	0	0.00	0.00	0.00
153	90.00	0	0.00	0.00	0.00
164	90.00	0	0.00	0.00	0.00
165	90.00	0	0.00	0.00	0.00
166	90.00	0	0.00	0.00	0.00
167	90.00	0	0.00	0.00	0.00
168	90.00	0	0.00	0.00	0.00
169	90.00	0	0.00	0.00	0.00
170	0.00	2	-0.9659	0.00	-0.2588
171	0.00	2	-0.9659	0.00	-0.2588
172	0.00	2	-0.9659	0.00	-0.2588
173	0.00	2	-0.9659	0.00	-0.2588
174	0.00	2	-0.9659	0.00	-0.2588
182	0.00	2	0.866	0.00	-0.50
183	0.00	2	0.866	0.00	-0.50
184	0.00	2	0.866	0.00	-0.50
185	0.00	2	0.866	0.00	-0.50
191	90.00	0	0.00	0.00	0.00
192	90.00	0	0.00	0.00	0.00
193	90.00	0	0.00	0.00	0.00
194	90.00	0	0.00	0.00	0.00
205	90.00	0	0.00	0.00	0.00
206	90.00	0	0.00	0.00	0.00
207	90.00	0	0.00	0.00	0.00
208	90.00	0	0.00	0.00	0.00
209	90.00	0	0.00	0.00	0.00
210	90.00	0	0.00	0.00	0.00

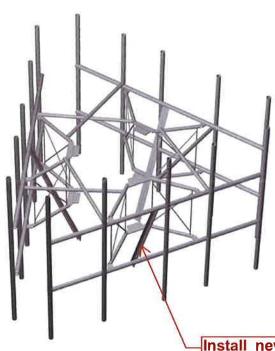
Rigid end offsets

Member	DJX	DJY	DJZ	DKX	DKY	DKZ
	[in]	(in)	[in]	[in]	[in]	[in]
7	0.00	2.00	0.00	0.00	2.00	0.00
}	0.00	-3.50	0.00	0.00	3.50	0.00
)	0.00	3.50	0.00	0.00	-3.50	0.00
00	0.00	3.50	0.00	0.00	-3.50	0.00
01	0.00	-3.50	0.00	0.00	3.50	0.00
2	0.00	2.00	0.00	0.00	2.00	0.00
7	0.00	-0.625	0.00	0.00	-0.625	0.00
28	0.00	-0.625	0.00	0.00	-0.625	0.00
34	0.00	2.00	0.00	0.00	2.00	0.00
15	0.00	-3.50	0.00	0.00	3.50	0.00
6	0.00	3.50	0.00	0.00	-3.50	0.00
7	0.00	3.50	0.00	0.00	-3.50	0.00

175 186	0.00 0.00	-2.00	0.00	0.00	-2.00	0.00	
	0.00	-3.50	0.00	0.00	3.50	0.00	
187	0.00	3.50	0.00	0.00	-3.50	0.00	
188	0.00	3.50	0.00	0.00	-3.50	0.00	
189	0.00	-3.50	0.00	0.00	3.50	0.00	
190	0.00	-2.00	0.00	0.00	-2.00	0.00	
209	0.00	-0.625	0.00	0.00	-0.625	0.00	
210	0.00	-0.625	0.00	0.00	-0.625	0.00	

Hinges

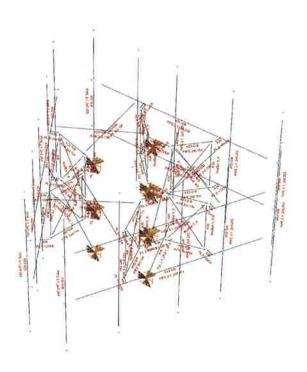
	_	Node	e-J			Node	-K				
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
87	1	1	0	0	0	0	0	0	0	0	Full
99	0	0	0	0	0	0	0	0	0	0	Tension only
101	0	0	0	0	0	0	0	0	0	0	Tension only
102	1	1	0	0	0	0	0	0	0	0	Full
107	1	1	0	0	0	0	0	0	0	0	Full
108	1	1	0	0	0	0	0	0	0	0	Full
109	1	1	0	0	0	0	0	0	0	0	Full
110	1	1	0	0	0	0	0	0	0	0	Full
134	1	1	0	0	0	0	0	0	0	0	Full
46	0	0	0	0	0	0	0	0	0	0	Tension only
148	0	0	0	0	0	0	0	0	0	0	Tension only
149	1	1	0	0	0	0	0	0	0	0	Full
150	1	1	0	0	0	0	0	0	0	0	Full
51	1	1	0	0	0	0	0	0	0	0	Full
52	1	1	0	0	0	0	0	0	0	0	Full
153	1	1	0	0	0	0	0	0	0	0	Full
75	1	1	0	0	0	0	0	0	0	0	Full
187	0	0	0	0	0	0	0	0	0	0	Tension only
189	0	0	0	0	0	0	0	0	0	0	Tension only
190	1	1	0	0	0	0	0	0	0	0	Full
91	1	1	0	0	0	0	0	0	0	0	Full
92	1	1	0	0	0	0	0	0	0	0	Full
93	1	1	0	0	0	0	Ö	0	Ö	Ö	Full
94	1	1	0	0	0	0	0	0	0	0	Full



Mount Calculations (Modified Conditions)

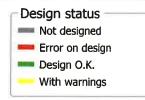
Current Date: 1/17/2020 4:42 PM

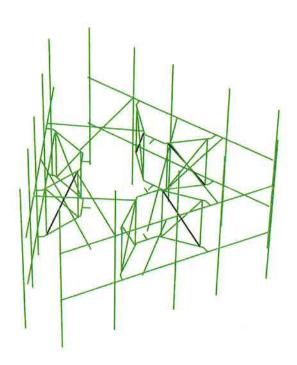
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx



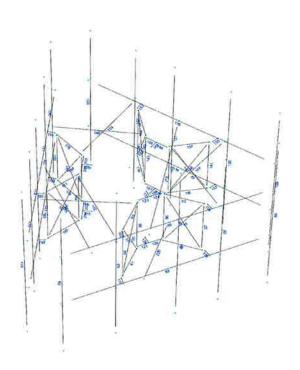
X X Z

Install new platform reinforcement kit, SitePro1 P/N PRK-1245LW (or approved equal).


Current Date: 1/17/2020 4:19 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx



Current Date: 1/17/2020 4:20 PM
Units system: English
File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx



Bentley

Current Date: 1/17/2020 4:19 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx

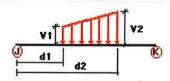
Current Date: 1/17/2020 4:21 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx

Load data

GLOSSARY


Comb

: Indicates if load condition is a load combination

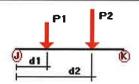
Load Conditions

Condition	Description	Comb.	Category
:)L	Dead Load	No	DL
VO	Wind Load 0/60/120 deg	No	WIND
/ 30	Wind Load 30/90/150 deg	No	WIND
i	Ice Load	No	LL
i0	Ice Wind Load 0/60/120 deg	No	WIND
i30	Ice Wind Load 30/90/150 deg	No	WIND
)	WL 30 mph 0/60/120 deg	No	WIND
30	WL 30 mph 30/90/150 deg	No	WIND
	250 lb Live Load Center of Mount	No	LL
2	250 lb Live Load End of Mount	No	LL
a1	250 lb Live Load Antenna 1	No	LL
12	250 lb Live Load Antenna 2	No	LL
3	250 lb Live Load Antenna 3	No	LL
a4	250 lb Live Load Antenna 4	No	LL

Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft]	Dist1 [ft]	%	Dist2 [ft]	%
W0	62	z	-0.018	0.00	0.00	No	0.00	No
	63	Z	-0.018	0.00	0.00	No	0.00	No
	64	Z	-0.018	0.00	0.00	No	0.00	No
	65	Z	-0.018	0.00	0.00	No	0.00	No
	66	z	-0.018	0.00	0.00	No	0.00	No
	87	z	-0.009	0.00	0.00	No	0.00	No
	88	Z	-0.018	0.00	0.00	No	0.00	No
	89	z	-0.018	0.00	0.00	No	0.00	No
	90	z	-0.009	0.00	0.00	No	0.00	No
	91	Z	-0.009	0.00	0.00	No	0.00	No
	92	z	-0.009	0.00	0.00	No	0.00	No
	93	Z	-0.009	0.00	0.00	No	0.00	No
	94	Z	-0.002	0.00	0.00	No	0.00	No
	95	Z	-0.002	0.00	0.00	No	0.00	No
	96	Z	-0.002	0.00	0.00	No	0.00	No

97	Z	-0.002	0.00	0.00	No	0.00	No
98	Z	-0.003	0.00	0.00	No	0.00	No
99	Z	-0.003	0.00	0.00	No	0.00	No
100	Z	-0.003	0.00	0.00	No	0.00	No
101	Z	-0.003	0.00	0.00	No	0.00	No
102	Z	-0.009	0.00	0.00	No	0.00	No
107	Z	-0.002	0.00	0.00	No	0.00	No
108	Z	-0.002	0.00	0.00	No	0.00	No
109	z	-0.002	0.00	0.00	No	0.00	No
110	Z	-0.002	0.00	0.00	No	0.00	No
123	Z	-0.002	0.00	0.00	No	0.00	No
124	Z	-0.002	0.00	0.00	No	0.00	No
125	Z	-0.002	0.00	0.00	No	0.00	No
126	z	-0.002	0.00	0.00	No	0.00	No
127	z	-0.002	0.00	0.00	No	0.00	No
128	z	-0.002	0.00	0.00	No	0.00	No
130	z	-0.018	0.00	0.00	No	0.00	No
132	z	-0.018	0.00	0.00	No	0.00	No
135	z	-0.018	0.00	0.00	No	0.00	No
136	z	-0.018	0.00	0.00	No	0.00	No
137	z	-0.009	0.00	0.00	No	0.00	No
138	z	-0.009	0.00	0.00	No	0.00	No
139	z	-0.009	0.00	0.00	No	0.00	No
140	z	-0.009	0.00	0.00	No	0.00	No
141	z	-0.002	0.00	0.00	No	0.00	No
142 143	z	-0.002	0.00	0.00	No	0.00	No
143	z	-0.002	0.00	0.00	No	0.00	No
144	z	-0.002	0.00	0.00	No	0.00	No
146	z	-0.003 -0.003	0.00	0.00	No	0.00	No
147	Z	-0.003	0.00 0.00	0.00	No No	0.00	No
148	z z	-0.003	0.00	0.00 0.00	No	0.00 0.00	No
164	z	-0.003	0.00	0.00	No	0.00	No
165	z	-0.002	0.00	0.00	No	0.00	No No
166	z	-0.002	0.00	0.00	No	0.00	No
167	z	-0.002	0.00	0.00	No	0.00	No
168	z	-0.002	0.00	0.00	No	0.00	No
169	z	-0.002	0.00	0.00	No	0.00	No
170	z	-0.018	0.00	0.00	No	0.00	No
171	z	-0.018	0.00	0.00	No	0.00	No
172	z	-0.018	0.00	0.00	No	0.00	No
173	z	-0.018	0.00	0.00	No	0.00	No
174	z	-0.018	0.00	0.00	No	0.00	No
175	z	-0.009	0.00	0.00	No	0.00	No
176	z	-0.018	0.00	0.00	No	0.00	No
177	z	-0.018	0.00	0.00	No	0.00	No
178	Z	-0.009	0.00	0.00	No	0.00	No
179	z	-0.009	0.00	0.00	No	0.00	No
180	z	-0.009	0.00	0.00	No	0.00	No
181	z	-0.009	0.00	0.00	No	0.00	No
182	Z	-0.002	0.00	0.00	No	0.00	No
183	z	-0.002	0.00	0.00	No	0.00	No
184	z	-0.002	0.00	0.00	No	0.00	No
185	z	-0.002	0.00	0.00	No	0.00	No
186	Z	-0.003	0.00	0.00	No	0.00	No
187	Z	-0.003	0.00	0.00	No	0.00	No
188	Z	-0.003	0.00	0.00	No	0.00	No
189	z	-0.003	0.00	0.00	No	0.00	No
190	z	-0.009	0.00	0.00	No	0.00	No
191	Z	-0.002	0.00	0.00	No	0.00	No


	192	Z	-0.002	0.00	0.00	No	0.00	No
	193	z	-0.002	0.00	0.00	No	0.00	No
	194	z	-0.002	0.00	0.00	No	0.00	No
	205	z	-0.002	0.00	0.00	No	0.00	No
	206	z	-0.002	0.00	0.00	No	0.00	No
	207	z	-0.002	0.00	0.00	No	0.00	No
	208	z	-0.002	0.00	0.00	No	0.00	No
	209	z	-0.002	0.00	0.00	No	0.00	No
	210	z	-0.002	0.00	0.00	No	0.00	No
	218	z	-0.01	0.00	0.00	No	0.00	No
	219		-0.01	0.00	0.00	No	0.00	
	220	z	-0.01	0.00	0.00	No	0.00	No
W30	62	z						No
VV30	63	×	-0.018	0.00	0.00	No	0.00	No
		×	-0.018	0.00	0.00	No	0.00	No
	64	x	-0.018	0.00	0.00	No	0.00	No
	65	x	-0.018	0.00	0.00	No	0.00	No
	66	×	-0.018	0.00	0.00	No	0.00	No
	87	x	-0.008	0.00	0.00	No	0.00	No
	88	x	-0.018	0.00	0.00	No	0.00	No
	89	x	-0.018	0.00	0.00	No	0.00	No
	90	x	-0.008	0.00	0.00	No	0.00	No
	91	×	-0.008	0.00	0.00	No	0.00	No
	92	×	-0.008	0.00	0.00	No	0.00	No
	93	x	-0.008	0.00	0.00	No	0.00	No
	94	x	-0.002	0.00	0.00	No	0.00	No
	95	×	-0.002	0.00	0.00	No	0.00	No
	96	×	-0.002	0.00	0.00	No	0.00	No
	97	×	-0.002	0.00	0.00	No	0.00	No
	98	×	-0.003	0.00	0.00	No	0.00	No
	99	x	-0.003	0.00	0.00	No	0.00	No
	100	x	-0.003	0.00	0.00	No	0.00	No
	101	x	-0.003	0.00	0.00	No	0.00	No
	102	×	-0.008	0.00	0.00	No	0.00	No
	107	×	-0.002	0.00	0.00	No	0.00	No
	108	×	-0.002	0.00	0.00	No	0.00	No
	109	x	-0.002	0.00	0.00	No	0.00	No
	110	×	-0.002	0.00	0.00	No	0.00	No
	123	×	-0.002	0.00	0.00	No	0.00	No
	124	×	-0.002	0.00	0.00	No	0.00	No
	125	x	-0.002	0.00	0.00	No	0.00	No
	126	x	-0.002	0.00	0.00	No	0.00	No
	127	×	-0.002	0.00	0.00	No	0.00	No
	128			0.00				
	129	×	-0.002		0.00	No	0.00	No
		×	-0.018	0.00	0.00	No	0.00	No
	130	X	-0.018	0.00	0.00	No	0.00	No
	131	×	-0.018	0.00	0.00	No	0.00	No
	132	×	-0.018	0.00	0.00	No	0.00	No
	133	×	-0.018	0.00	0.00	No	0.00	No
	134	X	-0.008	0.00	0.00	No	0.00	No
	137	X	-0.008	0.00	0.00	No	0.00	No
	138	×	-0.008	0.00	0.00	No	0.00	No
	139	×	-0.008	0.00	0.00	No	0.00	No
	140	×	-0.008	0.00	0.00	No	0.00	No
	141	X	-0.002	0.00	0.00	No	0.00	No
	142	×	-0.002	0.00	0.00	No	0.00	No
	143	X	-0.002	0.00	0.00	No	0.00	No
	144	x	-0.002	0.00	0.00	No	0.00	No
	145	x	-0.003	0.00	0.00	No	0.00	No
	146	×	-0.003	0.00	0.00	No	0.00	No
	147	×	-0.003	0.00	0.00	No	0.00	No

148	×	-0.003	0.00	0.00	No	0.00	No
149	×	-0.008	0.00	0.00	No	0.00	No
150	×	-0.002	0.00	0.00	No	0.00	No
151	x	-0.002	0.00	0.00	No	0.00	No
152	×	-0.002	0.00	0.00	No	0.00	No
153	x	-0.002	0.00	0.00	No	0.00	No
164	x	-0.002	0.00	0.00	No	0.00	No
165	x	-0.002	0.00	0.00	No	0.00	No
166	×	-0.002	0.00	0.00	No	0.00	No
167	x	-0.002	0.00	0.00	No	0.00	No
168	×	-0.002	0.00	0.00	No	0.00	No
169	X	-0.002	0.00	0.00	No	0.00	No
170	×	-0.018	0.00	0.00	No	0.00	No
171	×	-0.018	0.00	0.00	No	0.00	No
172	×	-0.018	0.00	0.00	No	0.00	No
173	×	-0.018	0.00	0.00	No	0.00	No
174	×	-0.018	0.00	0.00	No	0.00	No
175 176	×	-0.008	0.00	0.00	No	0.00	No
176 177	×	-0.018	0.00	0.00	No	0.00	No
177 178	×	-0.018	0.00	0.00	No	0.00	No
179	×	-0.008 -0.008	0.00 0.00	0.00	No	0.00	No
180		-0.008	0.00	0.00 0.00	No No	0.00 0.00	No No
181	×	-0.008	0.00	0.00	No	0.00	No
182	x	-0.002	0.00	0.00	No	0.00	No
183	×	-0.002	0.00	0.00	No	0.00	No
184	×	-0.002	0.00	0.00	No	0.00	No
185	x	-0.002	0.00	0.00	No	0.00	No
186	x	-0.003	0.00	0.00	No	0.00	No
187	×	-0.003	0.00	0.00	No	0.00	No
188	×	-0.003	0.00	0.00	No	0.00	No
189	x	-0.003	0.00	0.00	No	0.00	No
190	×	-0.008	0.00	0.00	No	0.00	No
191	×	-0.002	0.00	0.00	No	0.00	No
192	×	-0.002	0.00	0.00	No	0.00	No
193	×	-0.002	0.00	0.00	No	0.00	No
194	x	-0.002	0.00	0.00	No	0.00	No
205	×	-0.002	0.00	0.00	No	0.00	No
206	×	-0.002	0.00	0.00	No	0.00	No
207	×	-0.002	0.00	0.00	No	0.00	No
208	X	-0.002	0.00	0.00	No	0.00	No
209	×	-0.002	0.00	0.00	No	0.00	No
210	×	-0.002	0.00	0.00	No	0.00	No
218	X	-0.01	0.00	0.00	No	0.00	No
219	x	-0.01	0.00	0.00	No	0.00	No
220	X	-0.01	0.00	0.00	No	0.00	No
62	У	-0.09	0.00	0.00	No	0.00	No
63	У	-0.09	0.00	0.00	No	0.00	No
64	У	-0.09	0.00	0.00	No	0.00	No
65	y	-0.09	0.00	0.00	No	0.00	No
66	У	-0.09	0.00	0.00	No	0.00	No
87	У	-0.008	0.00	0.00	No	0.00	No
88	У	-0.09	0.00	0.00	No	0.00	No
89	У	-0.09	0.00	0.00	No	0.00	No
90	y	-0.008	0.00	0.00	No	0.00	No
91	У	-0.008	0.00	0.00	No	0.00	No
92	У	-0.008	0.00	0.00	No	0.00	No
93	У	-0.008	0.00	0.00	No	0.00	No
94 05	У	-0.005	0.00	0.00	No	0.00	No
95	У	-0.005	0.00	0.00	No	0.00	No

96	У	-0.005	0.00	0.00	No	0.00	No
97	У	-0.005	0.00	0.00	No	0.00	No
98	У	-0.005	0.00	0.00	No	0.00	No
99	У	-0.005	0.00	0.00	No	0.00	No
100	У	-0.005	0.00	0.00	No	0.00	No
101	У	-0.005	0.00	0.00	No	0.00	No
102	У	-0.008	0.00	0.00	No	0.00	No
107	У	-0.011	0.00	0.00	No	0.00	No
108	У	-0.011	0.00	0.00	No	0.00	No
109	У	-0.011	0.00	0.00	No	0.00	No
110	У	-0.011	0.00	0.00	No	0.00	No
123	У	-0.011	0.00	0.00	No	0.00	No
124 125	У	-0.011	0.00	0.00	No	0.00	No
126	У	-0.011	0.00	0.00	No	0.00	No
127	У	-0.011	0.00	0.00	No	0.00	No
128	У	-0.026 -0.026	0.00 0.00	0.00	No	0.00	No
129	У	-0.09	0.00	0.00 0.00	No	0.00	No
130	У	-0.09	0.00		No No	0.00	No
131	У	-0.09	0.00	0.00	No	0.00	No
132	У	-0.09	0.00	0.00	No	0.00	No
133	У	-0.09	0.00	0.00	No	0.00	No
134	У	-0.008	0.00	0.00	No No	0.00	No
135	y y	-0.09	0.00	0.00	No	0.00 0.00	No No
136	y	-0.09	0.00	0.00	No	0.00	No
137	y	-0.008	0.00	0.00	No	0.00	No
138	y	-0.008	0.00	0.00	No	0.00	No
139	ý	-0.008	0.00	0.00	No	0.00	No
140	У	-0.008	0.00	0.00	No	0.00	No
141	у	-0.005	0.00	0.00	No	0.00	No
142	y	-0.005	0.00	0.00	No	0.00	No
143	ý	-0.005	0.00	0.00	No	0.00	No
144	ý	-0.005	0.00	0.00	No	0.00	No
145	У	-0.005	0.00	0.00	No	0.00	No
146	у	-0.005	0.00	0.00	No	0.00	No
147	у	-0.005	0.00	0.00	No	0.00	No
148	у	-0.005	0.00	0.00	No	0.00	No
149	У	-0.008	0.00	0.00	No	0.00	No
150	У	-0.011	0.00	0.00	No	0.00	No
151	У	-0.011	0.00	0.00	No	0.00	No
152	у	-0.011	0.00	0.00	No	0.00	No
153	у	-0.011	0.00	0.00	No	0.00	No
164	У	-0.011	0.00	0.00	No	0.00	No
165	у	-0.011	0.00	0.00	No	0.00	No
166	у	-0.011	0.00	0.00	No	0.00	No
167	У	-0.011	0.00	0.00	No	0.00	No
168	У	-0.026	0.00	0.00	No	0.00	No
169	У	-0.026	0.00	0.00	No	0.00	No
170	У	-0.09	0.00	0.00	No	0.00	No
171	У	-0.09	0.00	0.00	No	0.00	No
172	У	-0.09	0.00	0.00	No	0.00	No
173	У	-0.09	0.00	0.00	No	0.00	No
174	У	-0.09	0.00	0.00	No	0.00	No
175	У	-0.008	0.00	0.00	No	0.00	No
176	У	-0.09	0.00	0.00	No	0.00	No
177	У	-0.09	0.00	0.00	No	0.00	No
178	У	-0.008	0.00	0.00	No	0.00	No
179	У	-0.008	0.00	0.00	No	0.00	No
180	У	-0.008	0.00	0.00	No	0.00	No
181	У	-0.008	0.00	0.00	No	0.00	No

182	у	-0.005	0.00	0.00	No	0.00	No
183	У	-0.005	0.00	0.00	No	0.00	No
184	У	-0.005	0.00	0.00	No	0.00	No
185	у	-0.005	0.00	0.00	No	0.00	No
186	у	-0.005	0.00	0.00	No	0.00	No
187	у	-0.005	0.00	0.00	No	0.00	No
188	У	-0.005	0.00	0.00	No	0.00	No
189	у	-0.005	0.00	0.00	No	0.00	No
190	у	-0.008	0.00	0.00	No	0.00	No
191	У	-0.011	0.00	0.00	No	0.00	No
192	у	-0.011	0.00	0.00	No	0.00	No
193	у	-0.011	0.00	0.00	No	0.00	No
194	у	-0.011	0.00	0.00	No	0.00	No
205	у	-0.011	0.00	0.00	No	0.00	No
206	у	-0.011	0.00	0.00	No	0.00	No
207	у	-0.011	0.00	0.00	No	0.00	No
208	у	-0.011	0.00	0.00	No	0.00	No
209	у	-0.026	0.00	0.00	No	0.00	No
210	У	-0.026	0.00	0.00	No	0.00	No
218	У	-0.011	0.00	0.00	No	0.00	No
219	у	-0.011	0.00	0.00	No	0.00	No
220	у	-0.011	0.00	0.00	No	0.00	No

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft]	%
DL	62	у	-0.048	1.50	No
		У	-0.048	8.50	No
	64	у	-0.034	2.00	No
		У	-0.034	8.00	No
		У	-0.143	50.00	Yes
	66	у	-0.015	3.00	No
		У	-0.015	7.00	No
		У	-0.016	50.00	Yes
	129	У	-0.048	1.50	No
		у	-0.048	8.50	No
	131	у	-0.034	2.00	No
		у	-0.034	8.00	No
		у	-0.143	50.00	Yes
	133	У	-0.015	3.00	No
		у	-0.015	7.00	No
		у	-0.016	50.00	Yes
	140	у	-0.033	50.00	Yes
	170	у	-0.048	1.50	No
		у	-0.048	8.50	No
	172	у	-0.034	2.00	No
		у	-0.034	8.00	No
		У	-0.143	50.00	Yes
	174	У	-0.015	3.00	No

		у	-0.015	7.00	No
		У	-0.016	50.00	Yes
	181	У	-0.033	50.00	Yes
W0	62	Z	-0.196	1.50	No
		z	-0.196	8.50	No
	64 =	Z	-0.165	2.00	No
		z	-0.165	8.00	No
		z	-0.061	50.00	Yes
	66	Z	-0.068	3.00	No
		Z	-0.068	7.00	No
		Z	-0.019	50.00	Yes
	129	z	-0.331	1.50	No
	404	Z	-0.331	8.50	No
	131	z	-0.24	2.00	No
		Z	-0.24	8.00	No
		z	-0.027	50.00	Yes
	400	z	-0.025	50.00	Yes
	133	z	-0.101	3.00	No
	4.40	z	-0.101	7.00	No
	140	z	-0.072	50.00	Yes
	170	z	-0.196	1.50	No
	172	z	-0.196 0.165	8.50	No
	172	z	-0.165 -0.165	2.00 8.00	No No
		z	-0.061	50.00	Yes
	174	z	-0.068	3.00	No
	174	z	-0.068	7.00	No
		z	-0.019	50.00	Yes
	181	z	-0.072	50.00	Yes
W30	62	×	-0.286	1.50	No
*****	02	x	-0.286	8.50	No
	64	x	-0.215	2.00	No
	٠.	x	-0.215	8.00	No
		x	-0.039	50.00	Yes
		×	-0.034	50.00	Yes
	66	×	-0.09	3.00	No
		x	-0.09	7.00	No
		×	-0.017	50.00	Yes
	129	×	-0.151	1.50	No
		×	-0.151	8.50	No
	131	×	-0.139	2.00	No
		×	-0.139	8.00	No
		×	-0.073	50.00	Yes
	133	x	-0.057	3.00	No
		x	-0.057	7.00	No
		x	-0.02	50.00	Yes
	140	×	-0.072	50.00	Yes
	170	×	-0.286	1.50	No
		×	-0.286	8.50	No
	172	x	-0.215	2.00	No
		x	-0.215	8.00	No
		x	-0.039	50.00	Yes
		×	-0.034	50.00	Yes
	174	×	-0.09	3.00	No
		×	-0.09	7.00	No
		×	-0.017	50.00	Yes
	181	×	-0.072	50.00	Yes
Di	62	У	-0.194	1.50	No
		У	-0.194	8.50	No
	64	У	-0.143	2.00	No

		20	0.442	0.00	Nia
		У	-0.143	8.00	No
	66	У	-0.103	50.00	Yes
	66	У	-0.066	3.00	No
		У	-0.066	7.00	No
	120	У	-0.017	50.00	Yes
	129	У	-0.194	1.50	No
	121	У	-0.194	8.50	No
	131	У	-0.143	2.00	No
		У	-0.143	8.00	No
	400	У	-0.103	50.00	Yes
	133	У	-0.066	3.00	No
		У	-0.066	7.00	No
	4.40	У	-0.017	50.00	Yes
	140	У	-0.046	50.00	Yes
	170	У	-0.194	1.50	No
	470	У	-0.194	8.50	No
	172	У	-0.143	2.00	No
		У	-0.143	8.00	No
		У	-0.103	50.00	Yes
	174	У	-0.066	3.00	No
		У	-0.066	7.00	No
		У	-0.017	50.00	Yes
	181	У	-0.046	50.00	Yes
Wi0	62	z	-0.041	1.50	No
		Z	-0.041	8.50	No
	64	Z	-0.036	2.00	No
		Z	-0.036	8.00	No
		Z	-0.015	50.00	Yes
	66	Z	-0.016	3.00	No
		Z	-0.016	7.00	No
		Z	-0.006	50.00	Yes
	129	Z	-0.064	1.50	No
		Z	-0.064	8.50	No
	131	Z	-0.049	2.00	No
		Z	-0.049	8.00	No
		Z	-0.009	50.00	Yes
		Z	-0.008	50.00	Yes
	133	Z	-0.022	3.00	No
		Z	-0.022	7.00	No
		Z	-0.006	50.00	Yes
	140	Z	-0.018	50.00	Yes
	170	Z	-0.041	1.50	No
		Z	-0.041	8.50	No
	172	Z	-0.036	2.00	No
		Z	-0.036	8.00	No
		Z	-0.015	50.00	Yes
	174	Z	-0.016	3.00	No
		Z	-0.016	7.00	No
		Z	-0.006	50.00	Yes
	181	z	-0.018	50.00	Yes
Wi30	62	×	-0.056	1.50	No
		×	-0.056	8.50	No
	64	×	-0.044	2.00	No
		×	-0.044	8.00	No
		×	-0.011	50.00	Yes
		×	-0.01	50.00	Yes
	66	×	-0.02	3.00	No
		x	-0.02	7.00	No
		×	-0.006	50.00	Yes
	129	×	-0.034	1.50	No
		ne.	0.00		. 10

200					
		×	-0.034	8.50	No
	131	×	-0.031	2.00	No
		×	-0.031	8.00	No
		x	-0.017	50.00	Yes
	133	×	-0.015	3.00	No
		×	-0.015	7.00	No
		×	-0.007	50.00	Yes
	140	×	-0.018	50.00	Yes
	170	×	-0.056	1.50	No
		×	-0.056	8.50	No
	172	x	-0.044	2.00	No
	.,_	x	-0.044	8.00	No
		×	-0.011	50.00	Yes
			-0.01		
	174	×		50.00	Yes
	174	×	-0.02	3.00	No
		x	-0.02	7.00	No
	404	x	-0.006	50.00	Yes
14/1.0	181	x	-0.018	50.00	Yes
WL0	62	z	-0.012	1.50	No
		Z	-0.012	8.50	No
	64	Z	-0.01	2.00	No
		Z	-0.01	8.00	No
		z	-0.004	50.00	Yes
	66	z	-0.004	3.00	No
		Z	-0.004	7.00	No
		Z	-0.001	50.00	Yes
	129	Z	-0.02	1.50	No
		Z	-0.02	8.50	No
	131	z	-0.014	2.00	No
		Z	-0.014	8.00	No
		z	-0.002	50.00	Yes
		z	-0.001	50.00	Yes
	133	Z	-0.006	3.00	No
		Z	-0.006	7.00	No
		Z	-0.001	50.00	Yes
	140	z	-0.004	50.00	Yes
	170	z	-0.012	1.50	No
		z	-0.012	8.50	No
	172	z	-0.01	2.00	No
		z	-0.01	8.00	No
		z	-0.004	50.00	Yes
	174	z	-0.004	3.00	No
		z	-0.004	7.00	No
		z	-0.001	50.00	Yes
	181	z	-0.004	50.00	Yes
WL30	62	x	-0.017	1.50	No
VVLSU	02		-0.017		
	64	X		8.50	No
	04	×	-0.013	2.00	No
		×	-0.013	8.00	No
		×	-0.002	50.00	Yes
	66	×	-0.002	50.00	Yes
	66	×	-0.006	3.00	No
		×	-0.006	7.00	No
	,	x	-0.001	50.00	Yes
	129	×	-0.009	1.50	No
		×	-0.009	8.50	No
	131	×	-0.009	2.00	No
		x	-0.009	8.00	No
		x	-0.004	50.00	Yes
	133	x	-0.004	3.00	No

		x	-0.004	7.00	No
		x	-0.001	50.00	Yes
	140	х	-0.004	50.00	Yes
	170	X	-0.017	1.50	No
		x	-0.017	8.50	No
	172	x	-0.013	2.00	No
		×	-0.013	8.00	No
		x	-0.002	50.00	Yes
		x	-0.002	50.00	Yes
	174	x	-0.006	3.00	No
		x	-0.006	7.00	No
		x	-0.001	50.00	Yes
	181	x	-0.004	50.00	Yes
LL1	135	У	-0.25	50.00	Yes
LL2	135	У	-0.25	100.00	Yes
LLa1	133	у	-0.25	50.00	Yes
LLa2	131	у	-0.25	50.00	Yes
LLa3	129	у	-0.25	50.00	Yes

Self weight multipliers for load conditions

Condition		Self weight multiplier			
	Description	Comb.	MultX	MultY	MultZ
DL	Dead Load		0.00	-1.00	0.00
W0	Wind Load 0/60/120 deg	No	0.00	0.00	0.00
W30	Wind Load 30/90/150 deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
Wi0	Ice Wind Load 0/60/120 deg	No	0.00	0.00	0.00
Wi30	Ice Wind Load 30/90/150 deg	No	0.00	0.00	0.00
WL0	WL 30 mph 0/60/120 deg	No	0.00	0.00	0.00
WL30	WL 30 mph 30/90/150 deg	No	0.00	0.00	0.00
LL1	250 lb Live Load Center of Mount	No	0.00	0.00	0.00
LL2	250 lb Live Load End of Mount	No	0.00	0.00	0.00
LLa1	250 lb Live Load Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load Antenna 2	No	0.00	0.00	0.00
LLa3	250 lb Live Load Antenna 3	No	0.00	0.00	0.00
LLa4	250 lb Live Load Antenna 4	No	0.00	0.00	0.00

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]
DL	0.00	0.00	0.00
W0	0.00	0.00	0.00
W30	0.00	0.00	0.00
Di	0.00	0.00	0.00
Wi0	0.00	0.00	0.00
Wi30	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
LL1	0.00	0.00	0.00

LL2	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00
LLa3	0.00	0.00	0.00
LLa4	0.00	0.00	0.00

Current Date: 1/17/2020 4:21 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

LC1=1.2DL+W0

LC2=1.2DL+W30

LC3=1.2DL-W0

LC4=1.2DL-W30

LC5=0.9DL+W0

LC6=0.9DL+W30

LC7=0.9DL-W0

LC8=0.9DL-W30

LC9=1.2DL+Di+Wi0

LC10=1.2DL+Di+Wi30

LC11=1.2DL+Di-Wi0

LC12=1.2DL+Di-Wi30

LC13=1.2DL

LC15=1.2DL+1.5LL1

LC16=1.2DL+1.5LL2

LC17=1.2DL+WL0+1.5LLa1

LC18=1.2DL+WL30+1.5LLa1

LC19=1.2DL-WL0+1.5LLa1

LC20=1.2DL-WL30+1.5LLa1

LC21=1.2DL+WL0+1.5LLa2

LC22=1.2DL+WL30+1.5LLa2

LC23=1.2DL-WL0+1.5LLa2

LC24=1.2DL-WL30+1.5LLa2

LC25=1.2DL+WL0+1.5LLa3

LC26=1.2DL+WL30+1.5LLa3

LC27=1.2DL-WL0+1.5LLa3

LC28=1.2DL-WL30+1.5LLa3

LC29=1.2DL+WL0+1.5LLa4 LC30=1.2DL+WL30+1.5LLa4

LC31=1.2DL-WL0+1.5LLa4

LC32=1.2DL-WL30+1.5LLa4

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	PIPE 2-1_2x0.203	62	LC9 at 33.33%	0.36	OK	Eq. H1-1b
		63	LC12 at 33.33%	0.34	OK	Eq. H1-1b
		64	LC2 at 33.33%	0.31	OK	Eq. H1-1b
		65	LC10 at 33.33%	0.27	OK	Eq. H1-1b
		66	LC10 at 33.33%	0.24	OK	Eq. H1-1b
		88	LC2 at 25.69%	0.73	OK	Eq. H1-1b
		89	LC2 at 29.17%	0.56	OK	Eq. H1-1b
		129	LC10 at 33.33%	0.36	OK	Eq. H1-1b
		130	LC10 at 33.33%	0.34	OK	Eq. H1-1b
		131	LC4 at 33.33%	0.29	OK	Eg. H1-1b
		132	LC11 at 33.33%	0.27	OK	Eg. H1-1b
		133	LC12 at 33.33%	0.24	OK	Eq. H1-1b
		135	LC3 at 25.69%	0.60	OK	Eq. H1-1b
		136	LC3 at 29.17%	0.55	OK	Eq. H1-1b
		170	LC11 at 33.33%	0.36	OK	Eq. H1-1b
		171	LC11 at 33.33%	0.34	ОК	Eq. H1-1b
		172	LC1 at 33.33%	0.31	OK	Eq. H1-1b
		173	LC9 at 33.33%	0.27	OK	Eg. H1-1b

	174	LC9 at 33.33%	0.24	OK	Eq. H1-1b
	176	LC10 at 50.00%	0.58	OK	Eq. H1-1b
	177	LC2 at 29.17%	0.66	OK	Eq. H1-1b
PIPE 2x0.154	87	LC9 at 100.00%	0.18	OK	Eq. H1-1b
	90	LC11 at 93.75%	0.45	OK	Eq. H1-1b
	91	LC11 at 93.75%	0.33	OK	Eq. H1-1b
	92	LC4 at 93.75%	0.27	OK	Eq. H1-1b
	93	LC9 at 93.75%	0.34	OK	Eq. H1-1b
	102	LC8 at 100.00%	0.29	OK	Eq. H1-1b
	134	LC2 at 100.00%	0.23	OK	Eq. H1-1b
	137	LC10 at 93.75%	0.44	OK	Eq. H1-1b
	138	LC9 at 93.75%	0.34	OK	•
					Eq. H1-1b
	139	LC9 at 93.75%	0.28	OK	Eq. H1-1b
	140	LC9 at 93.75%	0.35	OK	Eq. H1-1b
	149	LC5 at 100.00%	0.27	ОК	Eq. H1-1b
	175	LC2 at 100.00%	0.22	OK	Eq. H1-1b
	178	LC10 at 93.75%	0.42	OK	Eq. H1-1b
	179	LC10 at 93.75%	0.34	OK	Eq. H1-1b
	180	LC11 at 93.75%	0.27	OK	Eq. H1-1b
	181	LC4 at 89.06%	0.40	OK	Eq. H1-1b
	190	LC7 at 100.00%	0.15	ОК	Eq. H1-1b
PL 11-1/4x5/8	127	LC12 at 100.00%	0.47	ОК	Eq. H1-1b
	128	LC12 at 100.00%	0.25	OK	Eq. H1-1b
	168	LC9 at 100.00%	0.46	OK	Eq. H1-1b
	169	LC9 at 100.00%	0.26	OK	Eq. H1-1b
	209	LC11 at 100.00%	0.44	OK	Eq. H1-1b
	210	LC10 at 100.00%	0.26	OK	Eq. H1-1b
	_,,	2010 00100:0070		***************************************	Eq. 111-10
PL 3-1/2x5/8	107	LC11 at 100.00%	0.45	ОК	Eq. H1-1b
	108	LC4 at 100.00%	0.38	OK	Eq. H1-1b
	109	LC12 at 100.00%	0.46	ОК	Eq. H1-1b
	110	LC11 at 100.00%	0.64	OK	Eq. H1-1b
	123	LC10 at 100.00%	0.75	OK	Eq. H1-1b
	124	LC12 at 0.00%	0.59	OK	Eq. H1-1b
	125	LC11 at 100.00%	0.75	OK	Eq. H1-1b
	126	LC12 at 0.00%	0.62	OK OK	Eq. H1-1b
	150	LC9 at 100.00%			'
			0.44	OK	Eq. H1-1b
	151	LC9 at 100.00%	0.37	OK	Eq. H1-1b
	152	LC9 at 100.00%	0.46	OK	Eq. H1-1b
	153	LC12 at 100.00%	0.67	OK	Eq. H1-1b
	164	LC10 at 100.00%	0.72	OK	Eq. H1-1b
	165	LC10 at 0.00%	0.63	OK	Eq. H1-1b
	166	LC9 at 100.00%	0.75	OK	Eq. H1-1b
	167	LC9 at 0.00%	0.64	OK	Eq. H1-1b
	191	LC10 at 100.00%	0.43	OK	Eq. H1-1b
	192	LC11 at 100.00%	0.35	OK	Eq. H1-1b
	193	LC11 at 100.00%	0.50	OK	Eq. H1-1b
	194	LC9 at 100.00%	0.68	OK	Eq. H1-1b
	205	LC12 at 100.00%	0.74	OK	Eq. H1-1b
	206	LC10 at 0.00%	0.61	OK	Eq. H1-1b
	207	LC10 at 100.00%	0.76	OK OK	Eq. H1-1b
	208	LC11 at 0.00%	0.64	OK	Eq. H1-1b
			···		Eq. (11-10
RndBar 3_4	98	LC9 at 100.00%	0.29	With warnings	Eq. H1-1b
	99	LC12 at 0.00%	0.28	OK	Eq. H1-1b
	100	LC11 at 0.00%	0.45	OK	Eq. H1-1a
	101	LC11 at 100.00%	0.34	OK	Eq. H1-1b
	145	LC9 at 100.00%	0.31	With warnings	Eq. H1-1b
	146	LC9 at 0.00%	0.29	OK	Eq. H1-1b
	147	LC9 at 0.00%	0.46	With warnings	Eq. H1-1a
15	148	LC9 at 100.00%	0.36	OK	Eq. H1-1b
	186	LC10 at 100.00%			· ·
	100	LO 10 dt 100.00%	0.32	With warnings	Eq. H1-1b

	187 188 189	LC10 at 0.00% LC10 at 0.00% LC10 at 100.00%	0.30 0.46 0.35	OK OK OK	Eq. H1-1b Eq. H1-1a Eq. H1-1b
RndBar 5 8	94	LC11 at 87.50%	0.78	OK	Eq. H1-1a
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	95	LC10 at 87.50%	0.66	OK	Eq. H1-1a
	96	LC12 at 87.50%	0.56	OK	Eq. H1-1a
	97	LC9 at 87.50%	0.64	OK OK	Eq. H1-1a
	141	LC9 at 87.50%	0.77	OK	Eq. H1-1a
	142	LC9 at 87.50%	0.67	OK	Eq. H1-1a
	143	LC10 at 87.50%	0.58	OK	Eq. H1-1a
	144	LC12 at 87.50%	0.66	OK	Eq. H1-1a
	182	LC10 at 87.50%	0.75	OK	Eq. H1-1a
	183	LC10 at 87.50%	0.67	OK	Eq. H1-1a
	184	LC10 at 87.50%	0.59	OK	Eg. H1-1a
	185	LC10 at 87.50%	0.65	ОК	Eq. H1-1a
T2L 2-1_2X2-1_2X3_16	218	LC9 at 0.00%	0.31	OK	Eq. H2-1
_	219	LC4 at 100.00%	0.30	OK	Eq. H2-1
	220	LC12 at 0.00%	0.30	OK	Eq. H2-1

Current Date: 1/17/2020 4:20 PM

Units system: English

File name: W:\STRUCTURAL DEPARTMENT\ANALYSIS SOFTWARE\RAM Elements\RAM Projects\AT&T\CT\CT1061\CT1061 MOD 2L.retx

Geometry data

GLOSSARY

Cb22, Cb33 Moment gradient coefficients

Cm22, Cm33 *Coefficients applied to bending term in interaction formula d0 Tapered member section depth at J end of member DJX Rigid end offset distance measured from J node in axis X DJY Rigid end offset distance measured from J node in axis Y DJZ ; Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY Rigid end offset distance measured from K node in axis Y DKZ Rigid end offset distance measured from K node in axis Z dL Tapered member section depth at K end of member

Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members

K22 : Effective length factor about axis 2
K33 : Effective length factor about axis 3

L22 : Member length for calculation of axial capacity
L33 : Member length for calculation of axial capacity

LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2

RX : Rotation about X
RY : Rotation about Y
RZ : Rotation about Z

TO 1 = Tension only member 0 = Normal member

TX : Translation in X
TY : Translation in Y
TZ : Translation in Z

Nodes

Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
142	-1.7321	0.00	-1.00	0
143	-1.8282	0.00	-1.7901	0
144	-1.7321	-3.3333	-1.00	0
145	-1.8282	-3.3333	-1.7901	0
146	-2.4644	-3.3333	-0.6882	0
147	-2.4644	0.00	-0.6882	0
152	-1.1829	-6.6667	-7.6112	0
153	-1.1829	3.3333	-7.6112	0
154	-7.1829	-6.6667	2.7811	0
155	-7.1829	3.3333	2.7811	0
156	-5.4576	0.00	0.1929	0
157	-0.8376	0.00	2.6778	0
158	-1.0097	0.00	-7.5112	0
159	-7.0097	0.00	2.8812	0
160	-1.0097	-3.3333	-7.5112	0
161	-7.0097	-3.3333	2.8812	0
162	-2.4634	0.00	-4.2081	0
163	-2.4634	-3.3333	-4.2081	0
164	-4.876	-3.3333	-0.0293	0
165	-4.876	0.00	-0.0293	0
166	-2.4173	0.00	-4.0324	0
167	-2.4173	-3.3333	-4.0324	0

168	-1.8744	0.00	-1.9658	0
169	-1.8744	-3.3333	-1.9658	0
170	-2.6396	0.00	-0.6404	0
171	-2.6396	-3.3333	-0.6404	0
172	-4.7008	0.00	-0.0772	0
173	-4.7008	-3.3333	-0.0772	0
174	-2.5618	0.00	-4.8229	0
175	1.9002	0.00	-2.0642	0
176	-5.6829	-6.6667	0.1831	0
177	-5.6829	3.3333	0.1831	0
180	-2.6829	-6.6667	-5.0131	0
181	-2.6829	3.3333	-5.0131	0
184	-2.7701	0.00	-4.462	0
185	-5.2493	0.00	-0.168	0
186	-5.2493	-3.3333	-0.168	0
187	-2.7701	-3.3333	-4.462	0
188	-4.4329	-6.6667	-1.982	0
189	-4.4329	3.3333	-1.982	0
192	-1.1829	3.33E-06	-7.6112	0
193	-7.1829	3.33E-06	2.7812	0
194	-2.6829	3.33E-06	-5.0131	0
195	-2.5097	3.33E-06	-4.9131	0
196	-5.5097	3.33E-06	0.2831	0
197	-5.6829	3.33E-06	0.1831	0
198	-4.4329	3.33E-06	-1.982	0
199 200	-4.0097 4.1820	3.33E-06	-2.315	0
201	-1.1829 -2.6829	-3.3333	-7.6112 5.0124	0
202	-2.5097	-3.3333 -3.3333	-5.0131 -4.9131	0
203	-4.4329	-3.3333	-4.9131	0
204	-4.2597	-3.3333	-1.882	0
205	-5.5097	-3.3333	0.2831	0
206	-5.6829	-3.3333	0.1831	0
207	-7.1829	-3.3333	2.7812	0
208	-2.1463	0.00	-1.2392	0
209	-2.1463	-3.3333	-1.2392	0
210	0.00	0.00	0.00	0
211	0.00	0.00	2.00	0
212	-0.6362	0.00	2.4783	0
213	0.00	-3.3333	2.00	0
214	-0.6362	-3.3333	2.4783	0
215	0.6362	-3.3333	2.4783	0
216	0.6362	0.00	2.4783	0
217	-6.00	-6.6667	4.83	0
218	-6.00	3.3333	4.83	0
219	6.00	-6.6667	4.83	0
220	6.00	3.3333	4.83	0
221	2.8958	0.00	4.63	0
222	2.7378	0.00	-0.6135	0
223	-6.00	0.00	4.63	0
224	6.00	0.00	4.63	0
225	-6.00	-3.3333	4.63	0
226	6.00	-3.3333	4.63	0
227	-2.4126 2.4126	0.00	4.2374	0
228 229	-2.4126 2.4126	-3.3333	4.2374	0
	2.4126	-3.3333	4.2374	0
230 231	2.4126	0.00	4.2374	0
232	-2.2835 -2.2835	0.00	4.1096	0
232	-2.2655 -0.7653	-3.3333 0.00	4.1096 2.6062	0
200	-0.7000	0.00	2.0002	0.0

234	-0.7653	-3.3333	2.6062	0
235	0.7653	0.00	2.6062	0
236	0.7653	-3.3333	2.6062	0
237	2.2835	0.00	4.1096	0
238	2.2835	-3.3333	4.1096	0
239	-2.8958	0.00	4.63	0
240	-2.7378	0.00	-0.6135	0
241	3.00	-6.6667	4.83	0
242	3.00	3.3333	4.83	0
243	-3.00	-6.6667	4.83	0
244	-3.00	3.3333	4.83	ō
245	-2.4792	0.00	4.63	o
246	2.4792	0.00	4.63	o
247	2.4792	-3.3333	4.63	0
248	-2.4792	-3.3333	4.63	0
249	0.50	-6.6667	4.83	0
250	0.50	3.3333	4.83	0
251	-6.00	3.33E-06	4.83	0
252	6.00			0
		3.33E-06	4.83	0
253	-3.00	3.33E-06	4.83	0
254	-3.00	3.33E-06	4.63	0
255	3.00	3.33E-06	4.63	0
256	3.00	3.33E-06	4.83	0
257	0.50	3.33E-06	4.83	0
259	-6.00	-3.3333	4.83	0
260	-3.00	-3.3333	4.83	0
261	-3.00	-3.3333	4.63	0
262	0.50	-3.3333	4.83	0
263	0.50	-3.3333	4.63	0
264	3.00	-3.3333	4.63	0
265	3.00	-3.3333	4.83	0
266	6.00	-3.3333	4.83	0
267	0.00	0.00	2.4783	0
268	0.00	-3.3333	2.4783	0
270	1.7321	0.00	-1.00	0
271	2.4644	0.00	-0.6882	0
272	1.7321	-3.3333	-1.00	0
273	2.4644	-3.3333	-0.6882	0
274	1.8282	-3.3333	-1.7901	0
275	1.8282	0.00	-1.7901	0
276	7.1829	-6.6667	2.7811	0
277	7.1829	3.3333	2.7811	0
278	1.1829	-6.6667	-7.6112	0
279	1.1829	3.3333	-7.6112	0
280	2.5618	0.00	-4.8229	0
281	-1.9002	0.00	-2.0642	0
282	7.0097		2.8812	
		0.00		0
283	1.0097	0.00	-7.5112	0
284	7.0097	-3.3333	2.8812	0
285	1.0097	-3.3333	-7.5112	0
286	4.876	0.00	-0.0293	0
287	4.876	-3.3333	-0.0293	0
288	2.4634	-3.3333	-4.2081	0
289	2.4634	0.00	-4.2081	0
290	4.7008	0.00	-0.0772	0
291	4.7008	-3.3333	-0.0772	0
292	2.6396	0.00	-0.6404	0
293	2.6396	-3.3333	-0.6404	0
294	1.8744	0.00	-1.9658	0
295	1.8744	-3.3333	-1.9658	0

296	2.4173	0.00	-4.0324	0
297	2.4173	-3.3333	-4.0324	0
298	5.4576	0.00	0.1929	0
299	0.8376	0.00	2.6778	0
300	2.6829	-6.6667	-5.0131	0
301	2.6829	3.3333	-5.0131	- 0
302	5.6829	-6.6667	0.1831	0
303	5.6829	3.3333	0.1831	0
304	5.2493	0.00	-0.168	0
305	2.7701	0.00	-4.462	0
306	2.7701	-3.3333	-4.462	0
307	5.2493	-3.3333	-0.168	0
308	3.9329	-6.6667	-2.848	0
309	3.9329	3.3333	-2.848	0
310	7.1829	3.33E-06	2.7812	0
311	1.1829	3.33E-06	-7.6112	0
312	5.6829	3.33E-06	0.1831	0
313	5.5097	3.33E-06	0.2831	0
314	2.5097	3.33E-06	-4.9131	0
315	2.6829	3.33E-06	-5.0131	0
316	3.9329	3.33E-06	-2.848	0
317	4.0097	3.33E-06	-2.315	0
318	7.1829	-3.3333	2.7812	0
319	5.6829	-3.3333	0.1831	0
320	5.5097	-3.3333	0.2831	0
321	3.9329	-3.3333	-2.848	0
322	3.7597	-3.3333	-2.748	0
323	2.5097	-3.3333	-4.9131	Ō
324	2.6829	-3.3333	-5.0131	0
325	1.1829	-3.3333	-7.6112	0
326	2,1463	0.00	-1.2392	0
327	2.1463	-3.3333	-1.2392	0
334	1.7321	-6.4667	-1.00	0
341	-1.7321	-6.4667	-1.00	0
342	0.00	-6.4667	2.00	0
344	0.50	3.33E-06	4.63	0
345	0.00	3.33E-06	4.63	0
358	3.7597	3.33E-06	-2.748	0
359	-4.2597	3.33E-06	-1.882	0
54444444444444444444444444444444444444				

Restraints

Node	TX	TY	TZ	RX	RY	RZ
 142	1	1	1	1	0	1
144	1	1	1	1	0	1
211	1	1	1	1	0	1
213	1	1	1	1	0 ::::	1
270	1	1	1	1	0	1
272	1	1	1	1	0	1
334	1	1	1	1	1	1
341	1	1	1	1	1	1
342	1	1	1	1	1	1

63 18	89 188 77 176 55 154 56 157 58 159 60 161 62 143 63 145 64 146 65 147 66 167 70 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8 PL 3-1/2x5/8	A53 GrB A56 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
64 18 65 17 66 15 87 15 88 15 89 16 90 16 91 16 92 16 93 16 94 16 95 16 96 17 97 17 98 17 100 16 101 166 102 17 107 162 108 163 109 164 110 163 123 143 124 208 125 145 126 209 127 208 129 218 120 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	89 188 77 176 55 154 56 157 58 159 60 161 62 143 63 145 64 146 65 147 66 167 70 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PIPE 2x0.154	A53 GrB A56 A36 A36 A36 A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
65 17 66 15 87 15 88 15 89 16 90 16 91 16 92 16 93 16 94 16 95 16 96 17 97 17 98 17 99 17 100 16 101 166 102 17 107 162 108 163 109 164 110 163 123 143 124 208 125 145 126 209 127 208 129 218 120 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	77 176 55 154 56 157 58 159 60 161 62 143 63 145 64 146 65 147 66 167 70 171 72 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A56 A36 A36 A36 A36 A36 A36 A36 A36 A36 A3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
66 15 87 15 88 15 89 16 90 16 91 16 91 16 92 16 93 16 94 16 95 16 96 17 97 17 98 17 99 17 100 16 101 166 102 17 107 16 108 16 109 16 110 16 11	55 154 56 157 58 159 60 161 62 143 63 145 64 146 65 147 66 167 70 171 72 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RIGHER 2x0.154 RIGHER 2x0.154 RIGHER 3_8 RIGHER 3_4 RIGHER 3_4 RIGHER 3_4 RIGHER 3_4 RIGHER 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A56 A36 A36 A36 A36 A36 A36 A36 A36 A36 A3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
87 15 88 15 89 16 90 16 91 16 92 16 93 16 94 16 95 16 96 17 97 17 98 17 100 16 101 16 102 17 108 16 109 16 110 16 123 14 124 208 125 14 126 209 127 208 129 21 130 24 131 250 132 24 133 20 134 221 135 223 136 225 137 227	56 157 58 159 60 161 62 143 63 145 64 146 65 147 66 169 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2x0.154 PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
88 15 89 16 90 16 91 16 92 16 93 16 94 16 95 16 96 17 97 17 98 17 100 16 101 16 102 17 108 16 109 16 110 16 123 14 124 20 125 14 126 20 127 20 128 20 129 21 130 24 131 25 132 24 133 22 134 22 135 22 136 22 137 22	58		PIPE 2-1_2x0.203 PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A53 GrB A53 GrB A53 GrB A53 GrB A53 GrB A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
89 16 90 16 91 16 91 16 92 16 93 16 94 16 95 16 96 17 97 17 98 17 99 17 100 16 101 16 102 17 108 16 109 16 110 16 123 14 124 208 125 14 126 209 127 208 129 21 130 24 131 250 132 24 133 22 134 221 135 223 136 225 137 227	60 161 62 143 63 145 64 146 65 147 66 167 68 169 70 171 72 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2-1_2x0.203 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RIGHER 2x0.154 RIGHER 2x0.154 RIGHER 3_4 RIGHER 3_1/2x5/8	A53 GrB A53 GrB A53 GrB A53 GrB A53 GrB A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
90 16. 91 16. 91 16. 92 16. 93 16. 94 16. 95 16. 96 17. 97 17. 98 17. 99 17. 100 16. 101 16. 102 17. 108 16. 109 16. 110 16. 110 16. 123 14. 124 20. 125 14. 126 20. 127 20. 128 20. 129 21. 130 24. 131 25. 132 24. 133 22. 133 22. 134 22. 133 22. 134 22. 135 22. 136 22. 137 22.	62 143 63 145 64 146 65 147 66 167 68 169 70 171 72 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RINGBAR 5_8 RINGBAR 5_8 RINGBAR 5_8 RINGBAR 3_4 RINGBAR 3_4 RINGBAR 3_4 RINGBAR 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A53 GrB A53 GrB A53 GrB A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
91 16. 92 16. 93 16. 94 16. 95 16. 96 17. 97 17. 98 17. 99 17. 100 16. 101 16. 102 17. 107 16. 108 16. 110 16. 110 16. 1123 14. 124 20. 125 14. 126 20. 127 20. 128 20. 127 20. 128 20. 129 21. 130 24. 131 25. 132 24. 133 22. 134 22. 133 22. 134 22. 133 22. 134 22. 135 22. 136 22. 137 22.	63 145 64 146 65 147 66 167 68 169 70 171 72 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2x0.154 PIPE 2x0.154 PIPE 2x0.154 RINGBAR 5_8 RINGBAR 5_8 RINGBAR 5_8 RINGBAR 3_4 RINGBAR 3_4 RINGBAR 3_4 RINGBAR 3_4 RINGBAR 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A53 GrB A53 GrB A36 A36 A36 A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
92 16. 93 16. 93 16. 94 16. 95 16. 96 17. 97 17. 98 17. 99 17. 100 16. 101 16. 102 17. 107 16. 108 16. 110 16. 110 16. 1123 14. 124 20. 125 14. 126 20. 127 20. 128 20. 129 21. 130 24. 131 25. 132 24. 133 22. 133 22. 134 22. 133 22. 134 22. 135 22. 136 22. 137 22.	64 146 65 147 66 167 68 169 70 171 72 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2x0.154 PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A53 GrB A36 A36 A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
93 16: 94 16: 95 16: 96 17: 97 17: 98 17: 99 17: 100 16: 101 16: 102 17: 107 16: 108 16: 109 16: 110 16: 123 14: 124 208 125 14: 126 209 127 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	65 147 66 167 68 169 70 171 72 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2x0.154 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A53 GrB A36 A36 A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
94 1695 1695 1696 17797 17298 17799 17799 17799 17799 17799 17799 17799 17799 17799 179999 179999 179999 179999 179999 179999 179999 179999 179999 1799999 179999 179999 179999 179999 179999 179999 179999 179999 17999999 1799999 1799999 1799999 1799999 1799999 1799999 1799999 17999999 179999 1799999 179999 179999 179999 179999 179999 179999 179999 179999 1799999 179999 179999 179999 179999 179999 179999 17999 17999 17999 179999 179999 179999 17999 17999 17999 17999 17999 17999 17999 17	66 167 68 169 70 171 72 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36 A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
95 1696 17997 17598 177998 177999 177999 1779100 165100 16	68 169 70 171 72 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 5_8 RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
96 176 97 175 98 176 99 177 100 166 101 166 101 166 102 177 107 166 1108 166 1109 166 1110 166 1123 146 1124 208 1125 148 1126 208 1127 208 1128 208 1129 218 1130 244 1131 250 1132 242 1133 220 1134 221 1135 223 1136 225 1137 227	70 171 72 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 5_8 RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
97 17: 98 17: 998 17: 100 16: 100 16: 101 16: 102 17: 107 16: 108 16: 1109 16: 110 16: 1123 14: 124 208 125 14: 126 209 127 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225	72 173 70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 5_8 RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36 A36 A36 A36	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
98 176 99 177 100 166 101 166 101 166 102 177 107 166 1108 166 1109 166 110 166 1123 143 124 208 125 148 126 208 127 208 128 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	70 173 71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 3_4 RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36 A36 A36	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
99 17: 100 16: 101 16: 102 17: 107 16: 108 16: 1109 16: 110 16: 1123 14: 124 208 125 14: 126 209 127 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225	71 172 67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 3_4 RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36 A36	0.00 0.00 0.00	0.00 0.00	0.00 0.00
100 16: 101 16: 102 17- 107 16: 108 16: 109 16- 110 16: 123 14: 124 208 125 14: 126 209 127 208 129 218 130 24- 131 250 132 24- 133 220 134 221 135 223 136 225 137 227	67 168 66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 3_4 RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36 A36	0.00 0.00	0.00	0.00
101 166 102 174 107 162 108 169 109 16- 110 163 123 143 124 208 125 145 126 208 127 208 128 209 128 209 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	66 169 74 175 62 184 65 185 64 186 63 187 43 208		RndBar 3_4 PIPE 2x0.154 PL 3-1/2x5/8	A36	0.00		
102 174 107 162 108 169 109 16- 110 163 123 143 124 208 125 145 126 205 127 208 128 209 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	74 175 62 184 65 185 64 186 63 187 43 208		PIPE 2x0.154 PL 3-1/2x5/8			0.00	
107 162 108 168 109 164 110 163 123 143 124 208 125 145 126 208 127 208 128 209 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	62 184 65 185 64 186 63 187 43 208		PL 3-1/2x5/8	A53 GrB	0.00		0.00
108 169 109 164 110 163 123 143 124 208 125 145 126 208 127 208 128 209 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	65 185 64 186 63 187 43 208	a.			0.00	0.00	0.00
109 164 110 163 123 143 124 208 125 145 126 208 127 208 128 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	64 186 63 187 43 208	a a	PL 3-1/2x5/8	A36	0.00	0.00	0.00
110 163 123 143 124 208 125 145 126 208 127 208 128 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	63 187 43 208			A36	0.00	0.00	0.00
123 143 124 208 125 145 126 208 127 208 128 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	43 208		PL 3-1/2x5/8	A36	0.00	0.00	0.00
124 208 125 145 126 208 127 208 128 208 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227			PL 3-1/2x5/8	A36	0.00	0.00	0.00
125 145 126 205 127 208 128 205 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	08 147		PL 3-1/2x5/8	A36	0.00	0.00	0.00
126 209 127 208 128 209 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227			PL 3-1/2x5/8	A36	0.00	0.00	0.00
127 208 128 209 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	45 209		PL 3-1/2x5/8	A36	0.00	0.00	0.00
128 209 129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	09 146		PL 3-1/2x5/8	A36	0.00	0.00	0.00
129 218 130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	08 142		PL 11-1/4x5/8	A36	11.25	9.25	0.00
130 244 131 250 132 242 133 220 134 221 135 223 136 225 137 227	09 144		PL 11-1/4x5/8	A36	11.25	9.25	0.00
131 250 132 242 133 220 134 221 135 223 136 225 137 227	18 217		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
132 242 133 220 134 221 135 223 136 225 137 227	44 243		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
133 220 134 221 135 223 136 225 137 227	50 249		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
134 221 135 223 136 225 137 227	42 241		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
135 223 136 225 137 227	20 219		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
136 225 137 227	21 222		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
137 227	23 224		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
	25 226		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
138 228	27 212		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
			PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
139 229	29 215		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
140 230	30 216		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
141 231			RndBar 5_8	A36	0.00	0.00	0.00
142 233			RndBar 5_8	A36	0.00	0.00	0.00
143 235			RndBar 5_8	A36	0.00	0.00	0.00
144 237			RndBar 5_8	A36	0.00	0.00	0.00
145 235			RndBar 3_4	A36	0.00	0.00	0.00
146 236			RndBar 3_4	A36	0.00	0.00	0.00
147 232			RndBar 3_4	A36	0.00	0.00	0.00
148 231			RndBar 3_4	A36	0.00	0.00	0.00
49 239			PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
50 227			PL 3-1/2x5/8	A36	0.00	0.00	0.00
151 230			PL 3-1/2x5/8	A36	0.00	0.00	
151 230 152 229			PL 3-1/2x5/8	A36	0.00	0.00	0.00
53 228			PL 3-1/2x5/8				0.00
64 212				A36	0.00	0.00	0.00
65 267			PL 3-1/2x5/8	A36	0.00	0.00	0.00
			PL 3-1/2x5/8	A36	0.00	0.00	0.00
66 214 67 268	4 050		PL 3-1/2x5/8 PL 3-1/2x5/8	A36 A36	0.00 0.00	0.00 0.00	0.00 0.00

168	267	211		PL 11-1/4x5/8	A36	11.25	9.25	0.00
169	268	213		PL 11-1/4x5/8	A36	11.25	9.25	0.00
170	277	276		PIPE 2-1, 2x0,203	A53 GrB	0.00	0.00	0.00
171	303	302		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
172	309	308		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
173	301	300		PIPE 2-1 2x0.203	A53 GrB	0.00	0.00	0.00
174	279	278		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
175	280	281		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
176	282	283		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
177	284	285		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
178	286	271		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
179	287	273		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
180	288	274	77	PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
181	289	275		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
182	290	291		RndBar 5_8	A36	0.00	0.00	0.00
183	292	293		RndBar 5_8	A36	0.00	0.00	0.00
184	294	295		RndBar 5_8	A36	0.00	0.00	0.00
185	296	297		RndBar 5_8	A36	0.00	0.00	0.00
186	294	297		RndBar 3_4	A36	0.00	0.00	0.00
187	295	296		RndBar 3_4	A36	0.00	0.00	0.00
188	291	292		RndBar 3_4	A36	0.00	0.00	0.00
189	290	293		RndBar 3_4	A36	0.00	0.00	0.00
190	298	299		PIPE 2x0.154	A53 GrB	0.00	0.00	0.00
191	286	304		PL 3-1/2x5/8	A36	0.00	0.00	0.00
192	289	305		PL 3-1/2x5/8	A36	0.00	0.00	0.00
193	288	306		PL 3-1/2x5/8	A36	0.00	0.00	0.00
194	287	307		PL 3-1/2x5/8	A36	0.00	0.00	0.00
205	271	326		PL 3-1/2x5/8	A36	0.00	0.00	0.00
206	326	275		PL 3-1/2x5/8	A36	0.00	0.00	0.00
207	273	327		PL 3-1/2x5/8	A36	0.00	0.00	0.00
208	327	274		PL 3-1/2x5/8	A36	0.00	0.00	0.00
209	326	270		PL 11-1/4x5/8	A36	11.25	9.25	0.00
210	327	272		PL 11-1/4x5/8	A36	11.25	9.25	0.00
218	342	345		T2L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
219	334	317		T2L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
220	341	199		T2L 2-1 2X2-1 2X3 16	A36	0.00	0.00	0.00

Orientation of local axes

/lember	Rotation [Deg]	Axes23	NX	NY	NZ
<u>-</u> 2	0.00	2	0.2588	0.00	0.9659
3	0.00	2	0.2588	0.00	0.9659
4	0.00	2	0.2588	0.00	0.9659
5	0.00	2	0.2588	0.00	0.9659
6	0.00	2	0.2588	0.00	0.9659
4	0.00	2	-0.866	0.00	-0.50
5	0.00	2	-0.866	0.00	-0.50
6	0.00	2	-0.866	0.00	-0.50
7	0.00	2	-0.866	0.00	-0.50
)7	90.00	0	0.00	0.00	0.00
08	90.00	0	0.00	0.00	0.00
09	90.00	0	0.00	0.00	0.00
10	90.00	0	0.00	0.00	0.00
23	90.00	0	0.00	0.00	0.00
24	90.00	0	0.00	0.00	0.00

125	90.00	0	0.00	0.00	0.00
126	90.00	0	0.00	0.00	0.00
127	90.00	0	0.00	0.00	0.00
128	90.00	0	0.00	0.00	0.00
129	315.00	0	0.00	0.00	0.00
130	315.00	0	0.00	0.00	0.00
131	315.00	0	0.00	0.00	0.00
132	315.00	0	0.00	0.00	0.00
133	315.00	0	0.00	0.00	0.00
141	0.00	2	0.00	0.00	1.00
142	0.00	2	0.00	0.00	1.00
143	0.00	2	0.00	0.00	1.00
144	0.00	2	0.00	0.00	1.00
150	90.00	0	0.00	0.00	0.00
151	90.00	0	0.00	0.00	0.00
152	90.00	0	0.00	0.00	0.00
153	90.00	0	0.00	0.00	0.00
164	90.00	0	0.00	0.00	0.00
165	90.00	0	0.00	0.00	0.00
166	90.00	0	0.00	0.00	0.00
167	90.00	0	0.00	0.00	0.00
168	90.00	0	0.00	0.00	0.00
169	90.00	0	0.00	0.00	0.00
170	0.00	2	-0.9659	0.00	-0.2588
171	0.00	2	-0.9659	0.00	-0.2588
172	0.00	2	-0.9659	0.00	-0.2588
173	0.00	2	-0.9659	0.00	-0.2588
174	0.00	2	-0.9659	0.00	-0.2588
182	0.00	2	0.866	0.00	-0.50
183	0.00	2	0.866	0.00	-0.50
184	0.00	2	0.866	0.00	-0.50
185	0.00	2	0.866	0.00	-0.50
191	90.00	0	0.00	0.00	0.00
192	90.00	0	0.00	0.00	0.00
193	90.00	0	0.00	0.00	0.00
194	90.00	0	0.00	0.00	0.00
205	90.00	0	0.00	0.00	0.00
206	90.00	0	0.00	0.00	0.00
207	90.00	0	0.00	0.00	0.00
208	90.00	0	0.00	0.00	0.00
209	90.00	0	0.00	0.00	0.00
210	90.00	0	0.00	0.00	0.00

Rigid end offsets

Member	DJX [in]	DJY [in]	DJZ [in]	DKX [in]	DKY [in]	DKZ [in]
************			*****		F	*******
87	0.00	2.00	0.00	0.00	2.00	0.00
98	0.00	-3.50	0.00	0.00	3.50	0.00
99	0.00	3.50	0.00	0.00	-3.50	0.00
100	0.00	3.50	0.00	0.00	-3.50	0.00
101	0.00	-3.50	0.00	0.00	3.50	0.00
102	0.00	2.00	0.00	0.00	2.00	0.00
127	0.00	-0.625	0.00	0.00	-0.625	0.00
128	0.00	-0.625	0.00	0.00	-0.625	0.00
134	0.00	2.00	0.00	0.00	2.00	0.00

210	0.00	-0.625	0.00	0.00	-0.625	0.00	
209	0.00	-0.625	0.00	0.00	-0.625	0.00	
190	0.00	-2.00	0.00	0.00	-2.00	0.00	
189	0.00	-3.50	0.00	0.00	3.50	0.00	
188	0.00	3.50	0.00	0.00	-3.50	0.00	
187	0.00	3.50	0.00	0.00	-3.50	0.00	
186	0.00	-3.50	0.00	0.00	3.50	0.00	
175	0.00	-2.00	0.00	0.00	-2.00	0.00	
169	0.00	-0.625	0.00	0.00	-0.625	0.00	
168	0.00	-0.625	0.00	0.00	-0.625	0.00	
149	0.00	-2.00	0.00	0.00	-2.00	0.00	
148	0.00	-3.50	0.00	0.00	3.50	0.00	
147	0.00	3.50	0.00	0.00	-3.50	0.00	
146	0.00	3.50	0.00	0.00	-3.50	0.00	
145	0.00	-3.50	0.00	0.00	3.50	0.00	

Hinges

		Node-J				Node-K					
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
87	1	1	0	0	0	0	0	0	0	 0	Full
99	0	0	0	0	0	0	0	0	0	0	Tension only
101	0	0	0	0	0	0	0	0	0	0	Tension only
102	1	1	0	0	0	0	0	0	0	0	Full
107	1	1	0	0	0	0	0	0	0	0	Full
108	1	1	0	0	0	0	0	0	0	0	Full
109	1	1	0	0	0	0	0	0	0	0	Full
110	1	1	0	0	0	0	0	0	0	0	Full
134	1	1	0	0	0	0	0	0	0	0	Full
146	0	0	0	0	0	0	0	0	0	0	Tension only
148	0	0	0	0	0	0	0	0	0	0	Tension only
149	1	1	0	0	0	0	0	0	0	0	Full
150	1	1	0	0	0	0	0	0	0	0	Full
151	1	1	0	0	0	0	0	0	0	0	Full
152	1	1	0	_ 0	0	0	0	0	0	0	Full
153	1	1	0	0	0	0	0	0	0	0	Full
175	1	1	0	0	0	0	0	0	0	0	Full
187	0	0	0	0	0	0	0	0	0	0	Tension only
189	0	0	0	0	0	0	0	0	0	0	Tension only
190	1	1	0	0	0	0	0	0	0	0	Full
191	1	1	0	0	0	0	0	0	0	0	Full
192	1	1	0	0	0	0	0	0	0	0	Full
193	1	1	0	0	0	0	0	0	0	0	Full
194	1	1	0	0	0	0	0	0	0	0	Full

Property Listing Report

Map Block Lot

006 1

Building #

Unique Identifier

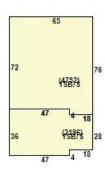
11350082

Property Information

Property Location	82 LOVELY ST				
Mailing Address	401 MERRITT 7 - TAX DEPT				
Mailing Address	NORWALK CT 06851				
Land Use	Utility Building				
Zoning Code	R20				
Neighborhood	95				

Owner	SOUTHERN NEW ENGLAND
Co-Owner	
Book / Page	0114/0169
Land Class	Commercial
Census Tract	4603
Acreage	0.67

Valuation Summary


(Assessed value = 70% of Appraised Value)

Item	Appraised	Assessed
Buildings	359244	251470
Outbuildings	0	0
Land	243880	170720
Total	603124	422190

Utility Information

<u> </u>	
Electric	No
Gas	No
Sewer	No
Public Water	No
Well	No

Primary Construction Details

Year Built	1965
Building Desc.	Commercial
Building Style	
Stories	1
Exterior Walls	Brick
Exterior Walls 2	
Interior Walls	Painted Concrete
Interior Walls 2	
Interior Floors 1	Tile
Interior Floors 2	

Heating Fuel	Natural Gas
Heating Type	FHA
AC Type	Central
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	
Occupancy	0

Building Use	Light Industrial
Building Condition	Average
Frame Type	C+
Fireplaces	0
Bsmt Gar	0
Fin Bsmt Area	
Fin Bsmt Quality	
Building Grade	0
Roof Style	
Roof Cover	Arch Shingles
eport Created On	4/9/2020

Report Created On

Town of Farmington, CT

Property Listing Report

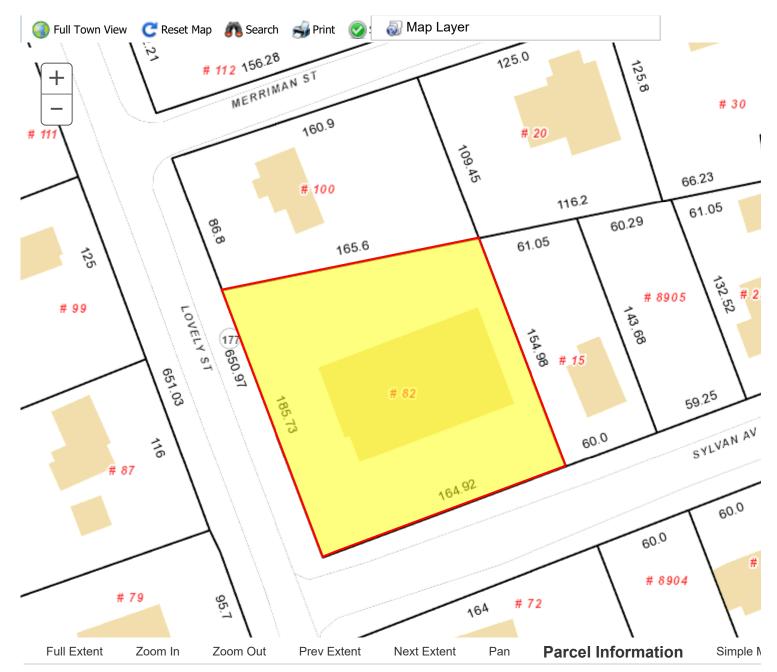
SOUTHERN NEW ENGLAND

Map Block Lot

006 1

Building #

Unique Identifier


11350082

Type	Description	Area (sq ft)	Condition	Year Built
••		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
_				
Attached Extra Features	<u> </u>			
Type	Description	Area (sq ft)	Condition	Year Built
	<u> </u>			
vales History				


0114_0169

1/1/1900

0

MapXpress v1.2

Radio Frequency Emissions Analysis Report

Site Name: CT1061

82 Lovely Street Unionville, Connecticut 06085

February 5, 2020

Centerline Communications Project Number: 950012-334

Site Compliance Summary				
Compliance Status:	Compliant			
Site total MPE% of FCC general population allowable limit:	21.45%			

February 5, 2020

AT&T Mobility – New England Attn: John Benedetto, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 01701

Emissions Analysis for Site: CT1061

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT&T facility to be located on a monopole at 82 Lovely Street, Unionville Connecticut 06085 for the purpose of determining whether the emissions from the proposed facility are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (∞ W/cm2). The number of ∞ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 1900 MHz (PCS) and 5 GHz (B46) bands is 1000 μ W/cm².

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits, as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed facility using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing focused omnidirectional antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. This is a very conservative estimate since the gain reduction in actual applications is typically greater than 10 dB in the direction of ground immediately surrounding the facility. Real world emissions values from this facility are expected to be lower than values listed in this report at ground level. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Antenna				Transmit Power per
	Technology	Frequency Band	Channel Count	Channel (W)
ATT A1	LTE	850	1	40
ATT A2	LTE	2100	4	40
ATT A3	LTE	700	2	40
ATT A3	LTE	850	1	40
ATT A3	LTE	1900	2	40
ATT A3	LTE	1900	2	40
ATT A3	LTE	850	1	40
ATT B1	LTE	850	1	40
ATT B2	LTE	2100	4	40
ATT B3	LTE	700	2	40
ATT B3	LTE	850	1	40
ATT B3	LTE	1900	2	40
ATT B3	LTE	1900	2	40
ATT B3	LTE	850	1	40
ATT C1	LTE	850	1	40
ATT C2	LTE	2100	4	40
ATT C3	LTE	700	2	40
ATT C3	LTE	850	1	40
ATT C3	LTE	1900	2	40
ATT C3	LTE	1900	2	40

ATT C3	LTE	850	1	40
--------	-----	-----	---	----

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 1900 MHz (PCS), 2100 MHz (AWS) and 5 GHz (Band 46) frequency bands. This is based on information from the carrier with regard to anticipated antenna selection. Maximum gain values for all antennas are listed in the AT&T Antenna Inventory & Power Levels table (Table 3) below in the Results section. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

	Antenna		Antenna Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	Powerwave P65-15-XLH-RR	98
A	2	CCI HPA-65R-BUU-H8	98
A	3	CCI DMP65R-BU8DA	98
В	4	Powerwave P65-15-XLH-RR	98
В	5	CCI HPA-65R-BUU-H8	98
В	6	CCI DMP65R-BU8DA	98
C	7	Powerwave P65-15-XLH-RR	98
C	8	CCI HPA-65R-BUU-H6	98
C	9	CCI DMP65R-BU6DA	98

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT&T configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Antenna Height (ft)	Channel Count	Total TX Power (W)	ERP (W)	MPE %
ATT A1	Powerwave P65-15-XLH-RR	850	12.9	98	1	40	779.94	0.5149%
ATT A2	CCI HPA-65R-BUU-H8	850	12.9	98	4	40	5359.45	2.0062%
ATT A3	CCI DMP65R-BU8DA	2100	15.25	98	2	40	1577.94	1.2648%
ATT A3	CCI DMP65R-BU8DA	700	12.95	98	1	40	970.64	0.6408%
ATT A3	CCI DMP65R-BU8DA	850	13.85	98	2	40	3221.74	1.2060%
ATT A3	CCI DMP65R-BU8DA	1900	16.05	98	2	40	3221.74	1.2060%
ATT A3	CCI DMP65R-BU8DA	1900	16.05	98	1	40	970.64	0.6408%
ATT B1	Powerwave P65-15-XLH-RR	850	13.85	98	1	40	779.94	0.5149%
ATT B2	CCI HPA-65R-BUU-H8	850	12.9	98	4	40	5359.45	2.0062%
ATT B3	CCI DMP65R-BU8DA	2100	15.25	98	2	40	1577.94	1.2648%
ATT B3	CCI DMP65R-BU8DA	700	12.95	98	1	40	970.64	0.6408%
ATT B3	CCI DMP65R-BU8DA	850	13.85	98	2	40	3221.74	1.2060%
ATT B3	CCI DMP65R-BU8DA	1900	16.05	98	2	40	3221.74	1.2060%
ATT B3	CCI DMP65R-BU8DA	1900	16.05	98	1	40	970.64	0.6408%
ATT C1	Powerwave P65-15-XLH-RR	850	13.85	98	1	40	779.94	0.5149%
ATT C2	CCI HPA-65R-BUU-H8	850	12.9	98	4	40	5118.23	1.9160%
ATT C3	CCI DMP65R-BU8DA	2100	15.05	98	2	40	1224.87	0.9818%
ATT C3	CCI DMP65R-BU8DA	700	11.85	98	1	40	703.17	0.4642%
ATT C3	CCI DMP65R-BU8DA	850	12.45	98	2	40	2871.38	1.0749%
ATT C3	CCI DMP65R-BU8DA	1900	15.55	98	2	40	2871.38	1.0749%
ATT C3	CCI DMP65R-BU8DA	1900	15.55	98	1	40	703.17	0.4642%
All Sectors Composite MPE%							21.45 %	

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT&T sector(s). Since this proposed facility is utilizing an omnidirectional antenna there is only one sector for this site (Sector A).

AT&T _ Frequency Band / Technology	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (□W/cm²)	Frequency (MHz)	Allowable MPE (□W/cm²)	Calculated % MPE
AT&T 850 MHz	1	779.94	98	2.9196	850 MHz	1000	0.5149%
AT&T 2100 MHz	4	5359.45	98	20.0625	2100 MHz	1000	2.0062%
AT&T 700 MHz	2	1577.94	98	5.9068	700 MHz	1000	1.2648%
AT&T 850 MHz	1	970.64	98	3.6335	850 MHz	1000	0.6408%
AT&T 1900 MHz	2	3221.74	98	12.0602	1900 MHz	1000	1.2060%
AT&T 1900 MHz	2	3221.74	98	12.0602	1900 MHz	1000	1.2060%
AT&T 850 MHz	1	970.64	98	3.6335	850 MHz	1000	0.6408%
AT&T 850 MHz	1	779.94	98	2.9196	850 MHz	1000	0.5149%
AT&T 2100 MHz	4	5359.45	98	20.0625	2100 MHz	1000	2.0062%
AT&T 700 MHz	2	1577.94	98	5.9068	700 MHz	1000	1.2648%
AT&T 850 MHz	1	970.64	98	3.6335	850 MHz	1000	0.6408%
AT&T 1900 MHz	2	3221.74	98	12.0602	1900 MHz	1000	1.2060%
AT&T 1900 MHz	2	3221.74	98	12.0602	1900 MHz	1000	1.2060%
AT&T 850 MHz	1	970.64	98	3.6335	850 MHz	1000	0.6408%
AT&T 850 MHz	1	779.94	98	2.9196	850 MHz	1000	0.5149%
AT&T 2100 MHz	4	5118.23	98	19.1595	2100 MHz	1000	1.9160%
AT&T 700 MHz	2	1224.87	98	4.5852	700 MHz	1000	0.9818%
AT&T 850 MHz	1	703.17	98	2.6322	850 MHz	1000	0.4642%
AT&T 1900 MHz	2	2871.38	98	10.7487	1900 MHz	1000	1.0749%
AT&T 1900 MHz	2	2871.38	98	10.7487	1900 MHz	1000	1.0749%
AT&T 850 MHz	1	703.17	98	2.6322	850 MHz	1000	0.4642%
	Total:	21.45%					

Table 6: AT&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
All Sectors:	21.45%
AT&T Maximum Site Total:	21.45%
Site Total:	21.45%
Site Compliance Status:	Compliant

The anticipated composite MPE value for this site assuming all carriers present is **21.45%** of the allowable FCC established general population limit sampled at the ground level.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Modelle A Store Michelle L. Stone

RF Compliance Consultant

Centerline Communications, LLC

750 West Center St. Suite 301 West Bridgewater, MA 02379

Rigorous Structural Analysis Report

AT&T | Unionville SBC CO Site | CT1061 / FA 10035037

Owner: Everest Infrastructure Partners - Unionville CO Site 701773
Unionville, Connecticut

March 10, 2020

MEI PROJECT ID: CT05229M-20V0

MALOUF ENGINEERING INTL., INC.

17950 Preston Road, Suite 720 Dallas, Texas 75252 Tel. 972 -783-2578 Fax 972-783-2583 **www.maloufengineering.com**

March 10, 2020

Mr. Tom Rigg

Everest infrastructure Partners

Email: tom.riag@everestinfrastructure.com

RIGOROUS STRUCTURAL ANALYSIS

Structure/Make/Model:	100 ft M	onopole	Engineered Endeavors Inc. / 18-Si		
Client/Site Name/#:	Everest li AT&T	nfrastructure Partners	Unionville SBC CO CT1061 / FA 10035037		
Owner/Site Name/#:	Everest Ir	nfrastructure Partners	Unionville CO - #701773		
MEI Project ID:	CT05229M-20V0				
Location:	82 Lovely	82 Lovely \$t		County	
	Unionville, Connecticut 06085		FCC #N/	'A	
	LAT	41-45-40.97 N	LON	72-53-15.1 W	

EXECUTIVE SUMMARY:

Malouf Engineering Int'l (MEI), as requested, has performed a rigorous structural analysis of the above-mentioned structure to assess the impact of the changed condition as noted in Table 1.

Based on the stress analysis performed, the existing structure is in conformance with the Int'l Building Code (IBC) / ANSI/TIA-222-G Standard for the loading considered under the criteria listed and referenced in the report sections – tower rated at 93.2% - Base Plate.

The installation of the proposed changed condition as noted in Table 1 is structurally acceptable. Please refer to Appendix 1 for Schematic Lines Layout.

MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or other projects, please contact us.

Respectfully submitted,

MALOUF ENGINEERING INT'L, INC.

Analysis performed by:

Reviewed & Approved by:

Luan Nguyen, OE Sr. Project Engineer

Connecticut #17715 972-783-2578 ext. 106

E. Mark Malouf, F

mmalouf@maloufengineering.com

3/10/2020

TABLE OF CONTENTS

1.	INTRODUCTION & SCOPE	4
2.	SOURCE OF DATA	4
	Background Information:	4
3 .	ANALYSIS CRITERIA	5
	Appurtenances Configuration	5
4.	ANALYSIS PROCEDURE	6
	Analysis Program	6
	Assumptions	6
5 .	ANALYSIS RESULTS	7
6.	FINDINGS & RECOMMENDATIONS	8
7.	REPORT DISCLAIMER	9
APP	ENDIX 1 - ANALYSIS PRINTOUT & GRAPHICS	10
ΔPP	ENDIX 2 – SOURCE / CHANGED CONDITION	11

1. INTRODUCTION & SCOPE

A rigorous structural analysis was performed by Malouf Engineering Int'l (MEI), as requested and authorized by Mr. Tom Rigg, Everest Infrastructure Partners, on behalf of AT&T, to determine the acceptance of the proposed changed conditions in conformance with the IBC / ANSI/TIA-222-G Standard, "Structural Standard for Antenna Supporting Structures and Antennas".

The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not within the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

2. SOURCE OF DATA

The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

	Source	Information	Reference			
STRUCTURE	<u> </u>	<u></u>				
Tower	MEI Records	Previous SA	Dated 08/02/2017			
Foundation	1	MEI ID# CT05229M-17V0				
Geotech	<u>L</u>					
Material Grade	Available from supplied documents noted above-refer to Appendix					
CURRENT APPURTENANCES	_	-				
	MEI Records	Previous SA MEI ID# CT05229M-17V0	Dated 08/02/2017			
CHANGED CONDITION			· ·			
	Everest Infrastructures Mr. Tom Rigg	AT&T Collocation Application	Dated 02/20/2020			

Background Information:

Based on available information, the following is known regarding this structure:

DESIGNER / FABRICATOR	Engineered Endeavors Inc. / 18-Sided
ORIGINAL DESIGN CRITERIA	TIA 222-F- 85 Mph + 0.50" Ice
PRIOR STRUCTURAL MODIFICATIONS	Not Known

3. ANALYSIS CRITERIA

The structural analysis performed used the following criteria:

CODE / STANDARD	2018 CT Buildi	2018 CT Building Code / 2015 Int'l Building Code / ANSI/TIA-222-G-4 Standard			
LOADING CASES	Full Wind:	125 Mph ultimate gust (equiv. 97 Mph (3-sec gust)) w/No Radial Ice**			
,	Iced Case:	Iced Case: 50 Mph + 1" Radial Ice			
	Service:	Service: 60 Mph			
	Seismic:	S _s = 0.182 / S ₁ = 0.064 / Site Class: Default Soil			
STRUCTURE CRITERIA	Risk Category	Risk Category (Structural Class): Class II			
	Exposure Cate	egory: 'B' - Topographic Category: 1			

Appurtenances Configuration

The following appurtenances configuration is denoted by the summation of Tables 1 & 2:

Table 1: Tenant with Changed Condition Appurtenances Configuration

Elev (ff)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Qty	Line size & Location
98	AT&T	2	DMP65R-BU8DA Panel Antennas	[Existing/New Platform Mount]	1	5/8" Fiber
		1	DMP65R-BU6DA Panel Antennas		1	Cable - (I)
		3	RRUS-8843 B2/B66A RRH Boxes	1	2	3/4" DC Power
		3	RRUS-4449 B5/B12 RRH Boxes	1	١.	Cables -(I)
		1	DC6-48-60-18-8C-EV Supressor Box	1		2.32" FLEX Conduit}-(I)
			Appurtenances 1	o Remain		1
98	AT&T	3	P65-15-XLH-RR Panel Antennas	New 12' Platform Mount w/	12	1-1/4"-(I)
	1	2	HPA-65R-BUU-H8 Panel Antennas	Rails (Sabre #C10855721C)	1	5/8" Fiber
		1	HPA-65R-BUU-H6 Panel Antenna	1		Cable - (I)
		3	TT19-08BP111-001 TMA's	1	2	3/4" DC Power
		1	DC6-48-60-18-8F Supressor Box	1		Cables -(I)
				i	1	2.32" FLEX
			Appurtenances To I	Re Personal		Conduit)-(I)
98	AT&T	3	P65-15-XLH-RR Panel Antenna	Po Kellioted		
. •	1	3	TT19-08BP111-001 TMA's	1		
		3	RRUS-12 w/ A2 Backpack Boxes	1		
	ľ	3	RRUS11 boxes	1		

Notes:

- **As per 2015 IBC for ultimate 3-sec gust wind speed converted to nominal 3-sec gust wind speed as per Sect. 1609.3.1 as required to be used in ANSI/TIA-222-G Standard per exception 5 of Sect. 1609.1.1.
- 2. All elevations are measured from tower base.
- 3. Please note appurtenances not listed above are to be removed/not present as per data supplied.
- 4. (I) = Internal; (E) = External; (FZ) = Within Face Zone; (OFZ) = Outside Face Zone as per TIA-222-G.
- 5. The above appurtenances represent MEI's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please contact MEI if any discrepancies are found.

4. ANALYSIS PROCEDURE

The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the TIA-222 Standard provisions and with the agreed scope of work terms and the results of this analysis are reported.

Analysis Program

The computer program used to model the structure is a rigorous Finite Element Analysis program, tnxTower (ver. 8.05), a commercially available program by Tower Numerics Inc. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. The structural parameters and geometry of the members are included in the model. The dead loads, temperature loads and the wind loads are internally calculated by the program for the different wind directions and then applied as external loads on the structure. Any applicable exemptions, as per Section 15.6 of the TIA-222-G Standard for existing structures originally designed in accordance with a previous revision of the TIA-222 Standard, have been taken.

Assumptions

This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities ('asnew' condition).
- The member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, feed lines are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type & industry practice.
- Mounts/Platforms are considered adequate to support the loading. No actual analysis of the platform/mount itself is performed, with the analysis being limited to analyzing the structure.
- The soil parameters are as per data supplied or as assumed and as stated. If no data is available, the
 foundation system is assumed to support the structure with its new reactions.
- All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

5. ANALYSIS RESULTS

The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

Note: The Wind loading controls over the Seismic loading as per TIA Section 2.7.

Table 3: Stress Analysis Results

Component Type	Maximum Stress Ratio	Controlling Elev. (ft) / Component	Pass/Fail	Comment
POLE	64.3%	45.52 - 0	Pass	
BASE PLATE	93.2%	Bending	Pass	
ANCHOR RODS	25.2%	Tension	Pass	
FOUNDATION	20.0%	OTM	Pass	

Table 4: Serviceability Requirements

	Maximum Value	TIA Requirement (10dB)	Pass/Fall	Comment
TWIST/SWAY	1.6194 Deg.	4 Deg. from Vert. or Horiz. Axis	Pass	
HORIZONTAL DISPLACEMENT	18.474 ln./ 1.53% of Ht.	3.0% of Height	Pass	

<u>Notes:</u>

^{1.} The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.

^{2.} Refer to the Appendix 1 for more details on the member loads.

^{3.} A maximum stress ratio between 100% and 105% may be considered as Acceptable according to industry standard practice.

FINDINGS & RECOMMENDATIONS

- Based on the rigorous stress analysis results, the subject structure is **rated at 93.2%** of its support capacity (controlling component: Base Plate) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 1 for more details of the analysis results.
- Based on the stress analysis performed, the existing structure is in conformance with the IBC / ANSI/TIA 222-G Standard for the loading considered under the criteria listed and referenced in the report sections.
- The installation of the proposed changed condition as noted in Table 1 is structurally acceptable. Please refer to Appendix 1 for Schematic Lines Layout.
- This structure is near its support capacity for the appurtenances and loading criteria considered. Therefore, no changes to the configuration considered should be made without performing a new proper evaluation.

Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

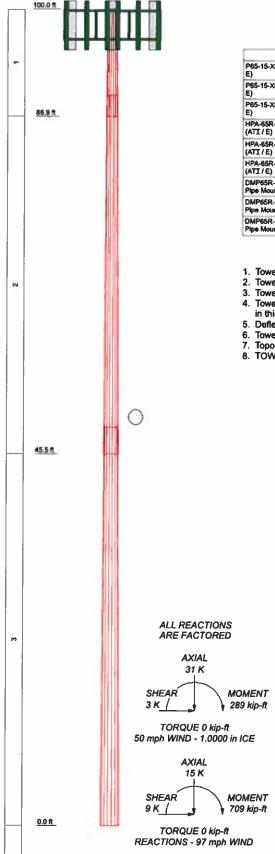
7. REPORT DISCLAIMER

The engineering services rendered by Malouf Engineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.

The analysis performed, and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

- 1. Proper alignment and plumbness.
- 2. Correct guy tensions, as applicable.
- 3. Correct bolt tightness or slip jacking of sleeved connections.
- 4. No significant deterioration or damage to any structural component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. MALOUF ENGINEERING INTERNATIONAL, INC. assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will MALOUF ENGINEERING INTERNATIONAL, INC. have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of MALOUF ENGINEERING INTERNATIONAL, INC., if any, pursuant to this Report shall be limited to the total funds actually received by MALOUF ENGINEERING INTERNATIONAL, INC. for preparation of this Report.


Customer has requested MALOUF ENGINEERING INTERNATIONAL, INC. to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested MALOUF ENGINEERING INTERNATIONAL, INC. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of MALOUF ENGINEERING INTERNATIONAL, INC., Customer has informed MALOUF ENGINEERING INTERNATIONAL, INC. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by MALOUF ENGINEERING INTERNATIONAL, INC. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. MALOUF ENGINEERING INTERNATIONAL, INC. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

Customer hereby agrees and acknowledges that MALOUF ENGINEERING INTERNATIONAL, Inc. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than MALOUF ENGINEERING INTERNATIONAL, Inc. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that MALOUF ENGINEERING INTERNATIONAL, Inc. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide MALOUF ENGINEERING INTERNATIONAL, Inc. with a Certificate of Insurance naming MALOUF ENGINEERING INTERNATIONAL, Inc. as additional insured.

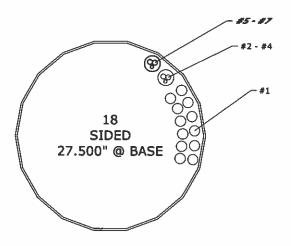
APPENDIX 1 - ANALYSIS PRINTOUT & GRAPHICS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
P65-15-XLH-RR w/ Pipe Mount (ATI /	98	TT19-08BP111-001 (ATT / E)	98
E)		TT19-08BP111-001 (ATI / E)	98
P65-15-XLH-RR w/ Pipe Mount (ATT / E)	98	TT19-08BP111-001 (ATI / E)	98
70.0	**	RRUS-8843 B2/B66A RRH's (ATI / P)	98
P65-15-XLH-RR w/ Pipe Mount (ATI / E)	98	RRUS-8843 B2/B66A RRH*s (ATT / P)	98
HPA-65R-BUU-H8 w/ Pipe Mounts	98	RRUS-8843 82/866A RRH's (ATI / P)	98
(ATI/E)	**	RRUS-4449 B5/B12 RRH's (ATI / P)	98
HPA-65R-BUU-H8 w/ Pipe Mounts	98	RRUS-4449 85/B12 RRH's (ATI / P)	98
(ATI/E)		RRUS-4449 B5/B12 RRH's (ATI / P)	98
HPA-65R-BUU-H6 w/ Pipe Mounts (ATI / E)	98	Raycap DC8-48-60-18-8F Supressor (ATI / E)	98
DMP65R-BU8DA Panel Antenna w/ Pipe Mount (ATI / P)	98	Raycap DC6-48-60-18-8C-EV Supressor (ATI / P)	98
DMP65R-BU8DA Panel Antenna w/ Pipe Mount (ATI / P)	98	12' Platform Mount w/ Rails (Sabre #C10855721C) (ATI / New)	98
OMP65R-BU6OA Panel Antenna w/ Pipe Mount (ATI / P)	98		

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- Tower designed for Exposure B to the TIA-222-G Standard.
- 3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind-
- Tower Structure Class II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 93.2%


No.	QTY.	DESCRIPTION	ELEV.	TENANT
1	12	1 1/4	98'	AT&T / E
2	1	2.32" Flex Conduit	98'	AT&T / E
3	2	3/4* DC Power Cable (Inside Flex)	98'	AT&T / E
4	1	5/8" Fiber Cable (Inside Flex)	98'	AT&T / E
5	1	2.32" Flex Conduit	98'	AT&T / P
6	2	3/4" DC Power Cable (Inside Flex)	98'	AT&T / P
7	1	5/8" Fiber Cable (Inside Flex)	98'	AT&T / P

CONTACT MEI IF LINE LAYOUT IS DIFFERENT FROM WHAT IS SHOWN BELOW.

LEGEND:

AL RICHTS RESERVED. THIS DRAWING SHALL REMAIN THE PROPERTY OF WALOUF ENGINEERING INTERNATIONAL, INC. NO PART THEREOF SHALL BE REPRODUCED, COPIED, ADAPTED, OSCLOSED, OR DISTRIBUTED TO DIHERS WITHOUT WRITTEN PERMISSION OF ME, INC.

E = EXISTING P = PROPOSED F = FUTURER = REMOVE TO RELOCATE

PLAN: SCHEMATIC TX-LINE LAYOUT SCALE: NOT TO SCALE

- NOTES:

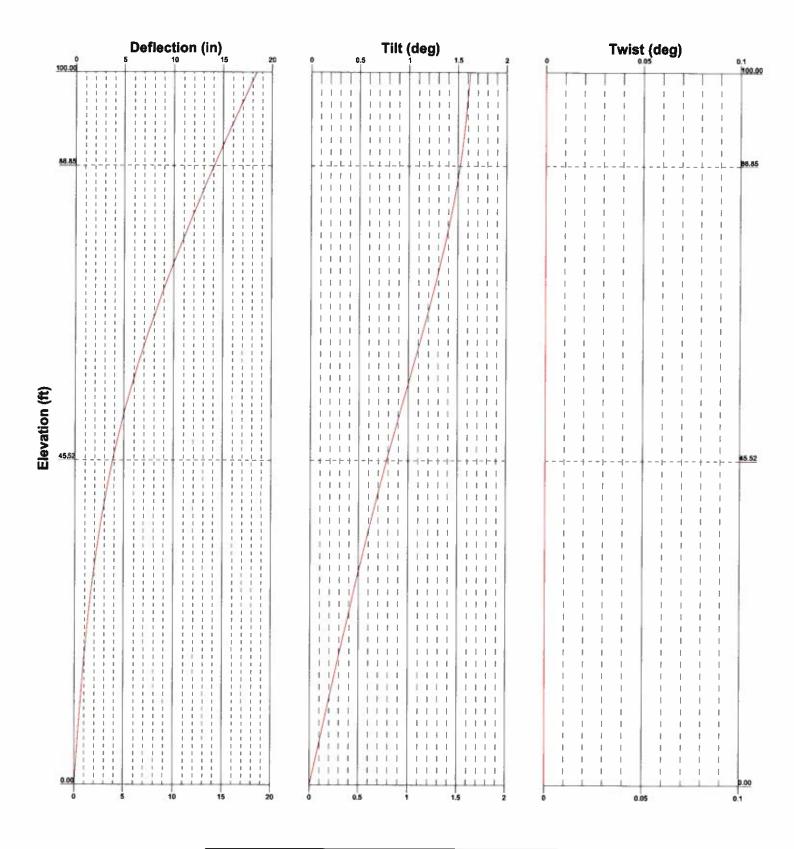
 1. TX LINE LAYOUT IS SCHEMATIC ONLY, BASED UPON MEI RECORDS. NO NEW SITE PHOTOS PROVIDED.

 2. NEW BRACKET SUPPORT SPECIFICATION BY OTHERS..

MAR 10, 2020

MALOUF ENGINEERING INTERNATIONAL, INC. STRUCTURAL CONSULTANTS

17950 PRESTON ROAD SUITE 720 DALLAS, TEXAS 75252-5635 972-783-2578 (fox: 2583) www.maloufengineering.com


@ MEI, INC.2020

100 FT MNP, UNIONVILLE SBC CO SITE #CT1061

MONOPOLE TXLINE LAYOUT

MEI PROJECT ID SHEET NUMBER REV. CT05229M-20V0 L01 0

M ACOM BUCHMER ME HETL, MC.	Malouf Engineering Intl., Inc.	ob 100 FT MNP, UNIONVILLE SBC	CO SITE #CT10	5 1
	17950 Preston Road, Suite #720	Project: CT05229M-20V0		
CHAUCTURAL PRINCIPALITY	Dallas, TX 75252	Client: EVEREST INFRASTRUCTURE / AT&T	Drawn by: Luan Nguyen	App'd:
maloufengineering.com	Phone: (972) 783-2578	Code: TIA-222-G	Date: 03/10/20	Scale: NTS
	FAX: (972) 783-2583	Path; E:WEIProjects/20 DATAWMPICT05229M-20V0CT05229M-20V1	0.eri	Dwg No. E-5

Malouf Engineering Intl., Inc. 17950 Preston Road, Suite #720

> Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job	· · · · · · · · · · · · · · · · · · ·	Page
10	0 FT MNP, UNIONVILLE SBC CO SITE #CT1061	1 of 4
Project		Date
	CT05229M-20V0	12:17:22 03/10/20
Client	EVEREST INFRASTRUCTURE / AT&T	Designed by Luan Nguyen

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 97 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Area

Description	Placement	Total Number	Description	Placement	Total Number
	ft			ft	
Step Bolts	100.00 - 0.00	1	Conduit)		
(E)			(AT&T/E)		
Safety Line 3/8	100.00 - 0.00	1	2.32" FLEX Conduit	98.00 - 0.00	1
(E)			(AT&T/P)		
1 1/4	98.00 - 0,00	12	3/4" DC Power	98.00 - 0.00	2
(AT&T / E)			Cable (Inside Flex		
2.32" FLEX Conduit	98.00 - 0.00	1	Conduit)		
(AT&T / E)			(AT&T / P)		
3/4" DC Power	98.00 - 0.00	2	5/8" Fiber Cable	98.00 - 0.00	1
Cable (Inside Flex			(Inside Flex		
Conduit)			Conduit)		
(AT&T/E)			(AT&T/P)		
5/8" Fiber Cable	98.00 - 0.00	1			
(Inside Flex					

Discrete Tower Loads

Description	Placement	Weight	Description	Placement	Weight
	ſ	<u> </u>		ft	K
P65-15-XLH-RR w/ Pipe	98.00	0.07	(AT&T/E)		0.18
Mount		0.12	P65-15-XLH-RR w/ Pipe	98.00	0.07
(AT&T / E)		0.18	Mount		0.12
P65-15-XLH-RR w/ Pipe	98.00	0.07	(AT&T / E)		0.18
Mount		0.12	HPA-65R-BUU-H8 w/ Pipe	98.00	0.09

Malouf Engineering Intl., Inc. 17950 Preston Road, Suite #720

Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
100	FT MNP, UNIONVILLE SBC CO SITE #CT1061	2 of 4
Project		Date
	CT05229M-20V0	12:17:22 03/10/20
Client	EVEREST INFRASTRUCTURE / AT&T	Designed by Luan Nguyen

Description	Placement	Weight	Description	Placement	Weigh
	ſŧ	K		ft	K
Mounts		0.18			0.11
(AT&T / E)		0.28	RRUS-8843 B2/B66A RRH's	98.00	0.07
HPA-65R-BUU-H8 w/ Pipe	98.00	0.09	(AT&T/P)		0.09
Mounts		0.18	,		0.11
(AT&T / E)		0.28	RRUS-8843 B2/B66A RRH's	98.00	0.07
HPA-65R-BUU-H6 w/ Pipe	98.00	0.09	(AT&T/P)		0.09
Mounts		0.17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.11
(AT&T / E)		0.26	RRUS-4449 B5/B12 RRH's	98.00	0.07
DMP65R-BU8DA Panel	98.00	0.13	(AT&T/P)	20.00	0.09
Antenna w/ Pipe Mount		0.25	(0-1-1-1-1)		0.11
(AT&T/P)		0.38	RRUS-4449 B5/B12 RRH's	98.00	0.07
DMP65R-BU8DA Panel	98.00	0.13	(AT&T/P)	, , , ,	0.09
Antenna w/ Pipe Mount		0.25	()		0.11
(AT&T / P)		0.38	RRUS-4449 B5/B12 RRH's	98.00	0.07
DMP65R-BU6DA Panel	98.00	0.93	(AT&T/P)	70.00	0.09
Antenna w/ Pipe Mount		1.02	(,		0.11
(AT&T / P)		1.13	Raycap DC6-48-60-18-8F	98.00	0.02
TT19-08BP111-001	98.00	0.02	Supressor	7 0.00	0.04
(AT&T / E)		0.03	(AT&T/E)		0.05
,		0.03	Raycap	98.00	0.03
TT19-08BP111-001	98.00	0.02	DC6-48-60-18-8C-EV	70.00	0.05
(AT&T / E)		0.03	Supressor		0.07
· -,		0.03	(AT&T/P)		3.07
TT19-08BP111-001	98.00	0.02	12' Platform Mount w/ Rails	98.00	2.50
(AT&T / E)		0.03	(Sabre #C10855721C)	, 0.00	3.50
, , , ,		0.03	(AT&T / New)		4.50
RUS-8843 B2/B66A RRH's	98.00	0.07	G-11-001)		1.50
(AT&T / P)	,	0.09			

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
Pole	Max. Vert	26	31.40	-0.00	0.00
	Max. H _x	21	11.35	8.65	0.05
	Max, H,	2	15.14	0.05	8.71
	Max. Mr	2	704.13	0.05	8.71
	Max. M _z	8	696.54	-8.65	-0.05
	Max. Torsion	38	0.07	1.63	2.83
	Min. Vert	15	11.35	-0.05	-8.71
	Min. H _x	8	15.14	-8.65	-0.05
	Min. Hz	15	11.35	-0.05	-8.71
	Min. Mx	14	-708.28	-0.05	-8.71
	Min, Mz	20	-703.79	8.65	0.05
	Min. Torsion	32	-0.07	-1.63	-2.83

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	0
Ll	100 - 86.8542	18.474	47	1.6194	0.0020
L2	89.3985 - 45.5209	14.934	47	1.5467	0.0012

Malouf Engineering Intl., Inc. 17950 Preston Road, Suite #720 Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
100	FT MNP, UNIONVILLE SBC CO SITE #CT1061	3 of 4
Project	· · · · · · · · · · · · · · · · · · ·	Date
	CT05229M-20V0	12:17:22 03/10/20
Client	EVEREST INFRASTRUCTURE / AT&T	Designed by Luan Nguyen

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	0
L3	48.7344 - 0	4.404	48	0.8472	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature	
ft		Comb.	in	¢	0	ft	
98.00	P65-15-XLH-RR w/ Pipe Mount	47	17.798	1.6079	0.0018	10819	

Base Plate Design Data

Plate Thickness in	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Critica
	of Anchor Bolts	Size -	Allowable Ratio Bolt Tension K	Allowable Ratio Concrete Stress ksi	Allowable Ratio Plate Stress ksi	Allowable Ratio Stiffener Stress ksi	Condition	Ratio
2.5000	8	2.2500	56.34 223.65 0.25	0.849 4.080 0.21	50.347 54.000 0.93		Plate	0.93

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	Lu	KUr	A	P _u	ϕP_n	Ratio P.
ſŧ	ſŧ		ft	ft		in ²	K	K	φ <i>P</i> ,
LI	100 - 86.8542 (1)	TP16.3487x14.5x0.1875	13.15	0.00	0.0	9.4050	-5.53	698.74	0.008
L2	86.8542 - 45.5209 (2)	TP21.7155x15.6159x0.25	43.88	0.00	0.0	16.6784	-8.88	1239.12	0.007
L3	45.5209 - 0 (3)	TP27.5x20.7688x0.3125	48.73	0.00	0.0	26.9666	-15.12	2003.48	0.008

Pole Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio Mux	M_{uy}	ϕM_{ny}	Ratio M _{uy}
ft	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
LI	100 - 86.8542 (1)	TP16.3487x14.5x0.1875	50.85	226.17	0.225	0.00	226.17	0.000
L2	86.8542 - 45.5209 (2)	TP21.7155x15.6159x0.25	316.11	533.43	0.593	0.00	533.43	0.000
L3	45.5209 - 0 (3)	TP27.5x20.7688x0.3125	709.40	1116.05	0.636	0.00	1116.05	0.000

Malouf Engineering Intl., Inc. 17950 Preston Road, Suite #720 Dallas, TX 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
100	FT MNP, UNIONVILLE SBC CO SITE #CT1061	4 of 4
Project		Date
	CT05229M-20V0	12:17:22 03/10/20
Client	EVEREST INFRASTRUCTURE / AT&T	Designed by Luan Nouven

Pole Shear	Design Dat	a
------------	-------------------	---

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V.	Actual T _u	ϕT_n	Ratio T _u
	ft K K V_0	kip-ft	kip-ft	φ <i>T</i> _*				
L1	100 - 86.8542 (1)	TP16.3487x14.5x0,1875	5.66	349.37	0.016	0.00	453.71	0.000
L2	86.8542 - 45.5209 (2)	TP21.7155x15.6159x0,25	7.31	619.56	0.012	0.01	1070.08	0.000
L3	45.5209 - Ò (3)	TP27.5x20,7688x0,3125	8.77	1001.74	0.009	0.01	2238.70	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{ssy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φP _n	ϕM_{nz}	ϕM_{nv}	ψV.	φT _n	Ratio	Ratio	
Ll	100 - 86.8542 (1)	0.008	0.225	0.000	0.016	0.000	0.233	1.000	4.8.2
L2	86.8542 - 45.5209 (2)	0.007	0.593	0.000	0.012	0.000	0.600	1.000	4.8.2
L3	45.5209 - 0 (3)	800.0	0.636	0.000	0.009	0.000	0.643	1,000	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
Ll	100 - 86.8542	Pole	TP16.3487x14.5x0.1875	1	-5.53	698.74	23.3	Pass
L2	86.8542 - 45.5209	Pole	TP21.7155x15.6159x0.25	2	-8.88	1239.12	60.0	Pass
L3	45.5209 - 0	Pole	TP27.5x20.7688x0.3125	3	-15.12	2003.48	64.3	Pass
							Summary	
						Pole (L3)	64.3	Pass
						Base Plate	93.2	Pass
						RATING =	93.2	Pass

```
Version: FDN2-D72/AP
 **************
                 FOUNDATION ANALYSIS PROGRAM
                   Spread Footing Analysis
         (c) 2006, Malouf Engineering Intl., Inc.
*****************
MEI PROJECT ID - CT05229M-20V0
DESCRIPTION = 100 FT MONOPOLE FDN CHECK
              - UNIONVILLE SBC CO SITE
SITE NAME
CLIENT NAME = EVEREST INFRASTRUCTURE / AT&T
CHECK CODE = TIA/EIA-222-REV. G
TIME/DATE/FILE = 12:03:50 / 03-10-2020 / CT05229M.dat
INPUT DATA
*LOADS*
COMPRESSION FORCE (1 PEDESTAL) = 15.000 KIPS
UPLIFT FORCE (1 PEDESTAL) = .000 KIPS
SHEAR FORCE (1 PEDESTAL) = 9.000 KIPS
                                = 709.000 KIP-FT
ECCENTRICTY OF AXIAL LOADS
                                       .000 FT
*FOOTING DIMENSIONS AND PROPERTIES*
                     =
DEPTH OF FOOTING
FOOTING DIMENSIONS (L X B) = 17.000 x 17.000 FT

THICKNESS OF FOOTING = 4.500 FT (FOOTING HAS NO TOE)

NUMBER OF PEDESTALS / TYPE = 1 / SQUARE

PEDESTAL WIDTH = 6.500 FT

EXTENSION ABOVE GRADE = .500 FT

CONCRETE DENSITY = .150 KCF
                                     9.500 FT
GROUNDWATER LEVEL BELOW BOTTOM OF FOUNDATION
*RESISTANCE FACTORS*
PHI BEARING GUYED
                                       .750
PHI BEARING SST
                                =
                                        .750
                              =
                                       .750
PHI BEARING MONOPOLE
PHI UPLIFT
                                       .750
                                        .750
PHI LATERAL/FRICTION
*SOIL PROPERTIES*
ULTIMATE BEARING CAPACITY = 15.000 KSF
SOIL DENSITY
                                =
                                      .120 KCF
INTERNAL ANGLE OF FRICTION = 34.000 DEG

SOIL COHESION (FOR UPLIFT) = 1.000 KSF (PAD PERIMETER)

ULTIMATE PASSIVE PRESSURE = .424 KCF (Kp= 3.54)

DEPTH NEGLECTED FOR PASSIVE PR.= 3.000 FT

BASE SOIL CONCRETE EDICTION = .350
BASE SOIL/CONCRETE FRICTION =
                                       .350
```

*** COMMENTS ***

FDN DATA AS PER FDN MAPPING BY WILKINSON ENGR. PROJECT NO. 2010-1010 DATED 02/SOIL PARAMETERS AS PER GEOTECH REPORT BY WILKINSON ENGR. PROJECT NO. 2010-1010 DATED 02/16/10. NO REBAR INFORMATION GIVEN. STABILITY CHECK ONLY.

```
_____
```

RESULTS

--------------VOL./WT. OF SOIL ABOVE = 1233.8 FT3 / 148.050 KIPS VOL./WT. OF SOIL WEDGE = 172.0 FT3 / 20.640 KIPS (FOR OVERTURNING) = 632.9 FT3 / 75.946 KIPS (FOR UPLIFT) VOL./WT. OF PEDESTAL(S) = 232.4 FT3 / 34.856 KIPSVOL./WT. OF FOOTING = 1300.5 FT3 / 195.075 KIPS TOTAL RESISTING MOMENT = 4002.5 KIP-FT TOTAL OVERTURNING MOMENT = 799.0 KIP-FT RATIO OF RESIST MON TO OTM= 5.009 > 1.000 (OK) SOIL PRESSURES (KSF) 1.651 GROSS / 1.211 IN-SITU / 1.651 PMIN FRICTION DESIGN STRENGTH = 226.120 KIPS (SKF .739KSF) DOWNLOAD DESIGN STRENGTH = $11.250~\rm KSF$ > $.440~\rm KSF$ (OK) R= $.039~\rm SOIL$ SHEAR DESIGN STRENGTH= $103.50~\rm (PASSIVE)$ + $85.73~\rm (FRICTION)$ = 167.8 KIPS > 9.0 KIPS (OK) R = .054UPLIFT DESIGN STRENGTH = 544.5 KIPS > .0 KIPS (OK) R= .000
PUNCHING CHECK (WIDE BEAM) = 93.1 PSI > .8 PSI (OK) R= .009
(2-WAY) = 186.2 PSI > 4.0 PSI (OK) R= .022 .0 KIPS (OK)

APPENDIX 2 - SOURCE / CHANGED CONDITION

Everest Infrastructure Partners Colocation Application

EVEREST

TOWER EQUIPMENT (UST ALL TOWER EQUIPMENT FROM HIGHEST TO LOWEST)

List ALL equipment components installed on the tower or ground space area, including mounting apparatus, ice bridges, etc. Size 11/4" 3/4" 2/8" 3/4" 2/8" 5 7 Flex Conduit Flex Conduit Type DC Power DC Power Fiber Coax Fiber Leg or Face (e.g. NE) Equip. Centerline (or ground) 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 Centerline Antenna AGL (ft) 50/160/280 143/263/23 143/263/23 50/160/280 50/160/280 Degrees (a/b/c/d) Azimuths 50/16/280 50/160/280 50/160 50/160 280 280 41.0 41.0 50.0 50.0 22.0 68.0 79.4 72.0 71.0 Weight 51.0 95.7 16.0 16.0 20.0 33.0 (Sec **Equipment Dimensions** Depth (inches) 6,0 6.0 7.4 3.4 10.9 9.4 9.0 7.7 5.4 7.7 (inches) 12.0 12.0 14.8 17.0 18.5 14.8 20.7 15.2 13.9 Width 6.7 20.7 6.7 13.2 9.7 9.7 (inches) 51.0 Height 92.4 72.0 51.0 96.0 71.2 17.0 20.4 14.9 17.9 24.0 24.0 9.9 9.9 Remo To be ved **Equipment Status** (mark with "x") × × × × × × Exist × × ×× # Units DC6-48-60-18-8F DC6-48-60-18-Towers and Poles P/N C10855721C DMP65R-BUSDA HPA-65R-BUU-H6 001 TT19-088P111-P65-15-XLH-RR P65-15-XLH-RR TT19-08BP111-HPA-65R-BUU-Model RRUS-4449 DUMP65R-RRUS-8843 RRUS-A2 RRUS-12 RRUS-11 BU6DA 82/866 85/812 8C-EV 901 **Tower Equipment** Manufacturer Sabre Industries Powerwave Powerwave Powerwave Powerwave Ericsson Ericsson Ericsson Ericsson Ericsson Raycap Raycap 8 8 8 S Component Type (Ant. type, RRU, mount, etc.) Antenna Antenna Antenna Antenna Antenna Antenna Mount Squid Squid TMA TMA RRU RRU RRD RRU RRU