Melanie A. Bachman, Esq.
Executive Director/Staff Attorney
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Modification Exemption - Facility Modification
 Rattlesnake Mountain (near 200 Colt Highway, Rte. 6) Farmington, CT 06032

Dear Ms. Bachman,

NBC Telemundo License LLC c/o ("NBC Universal") currently maintains a single broadcast antenna located on the 1000' guyed tower of Highway 166 in Farmington, Connecticut ("the property"). The tower is owned by: Outlet Broadcasting Inc c/o NBC Universal, Washington DC 20001. It is unknown if this was previously approved by the Council as it first went on air in 1953. NBC Universal intends to replace the broadcast antenna with a like-for-like shape and size broadcast antenna at the same level on the tower. This is simply a technology change as the Federal Communication Commission ("FCC") has asked for the frequency currently used to be returned and reassigned to another wireless provider. Included in Attachment 1 are the specifications for NBC Universal's replacement antenna.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes and exemption pursuant to the R.C.S.A. § 16-50j-72 (b)(2)). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is sent to Kathleen A. Eagen, Town Manager of Farmington, William Warner, Farmington Planning Manager, Outlet Broadcasting Inc, the tower and property owner.

The planned modification to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72 (b)(2).

1. The proposed modifications will not result in an increase in height of the existing tower. NBC Universal's replacement antenna will be installed at the same elevation at the top of the existing tower.
2. The proposed modifications will not involve any change to ground based equipment as the equipment swap will be like-for-like in the same existing equipment building and, therefore, will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antenna will not increase radio frequency (RF) emissions at the facility to a level at or above the "FCC" safety standards. NO General Power Density study is being provided as the antennas are so far removed from the ground, levels are far below federal or local standards
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The tower and its foundation, with certain modifications described in the Structural Analysis Report included in Attachment 2, can support NBC Universal's proposed modifications.

A copy of the parcel map and owner information for the "Property" is included in Attachment 3. A Certification of mailing verifying that this filing was sent to municipal officials and the owner of the "Property" in included in Attachment 4.

For the foregoing reasons, NBC Universal submits that this proposed modification to the above reference broadcast communications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72 (b)(2).

Sincerely,

Anthony F. Flores

Enclosures

Copy to:
Kathleen A Eagen, Farmington Town Manager
William Warner, Farmington Planning Manager
Outlet Broadcasting, Inc., Tower and Property Owner

ANTENNA MODIFICATIONS
 AT 200 COLT HIGHWAY
 FARMINGTON, CT 06032 FOR
 WVIT TV

E」L
INTERNATONAL SERVICES, LIC

30 GALESI DRIVE
SUITE $202 B$
WAYNE, NJ 07470
(973) $785-4545$

ISSUED FOR PERMIT
FEBRUARY 13, 2018
\qquad
sis NBC
CONNECTICUT

1422 New Britain Ave,

LEGEND

\square new antenna	\square	grout or
ExSting antenna	－	（E）BrCK
ground roo		（E）Masoner
ground bus bar	\square	Concrete
		EARTH
－MECHANCCAL GRND． －Cadwelo	F\％\％	grat
（⿴囗⿰丨丨⿹勹冫	\square	SAND
	＊	wood continuous
T Telephone box		wooo blockng
－＊）LGGH POLE		
O．fno．Monument		
－spot elevation		LINE
\triangle set pont	a	work pont
A reusion	－－	grouno conouc
grio reference	－	telephone Con
	－－	Electrack con
	－－－	Coxal Coble
	－om om－	
		CHAIN LINK FENCING

ABBREVIATIONS

旁	

CONSTRUCTION NOTES
1－Not UsED
 3－ 00 not ercanate or dosurb bevovo the propergr lines or lease Lines umess omierves notel

DRAWING SPECIFICATIONS

CONTRACTOR SPECIFICATIONS

B．Tit woamushl rirochour shl

 Sanal

NGINEERING REQUIREMENTS

GENERAL REQUIREMENTS

 Hill

Eปᄃ

O GALESIDRIVE 30 GALESI DRIVE，
SIITE $202 B$ $\underset{(973)}{\text { WAYE，NS－4545 }} 0$ consultants
\qquad

general notes

T－001．00
SHEET 2 OF

ISSUED FOR PERMIT

sis NBC CONNECTICUT

1422 New Britian Ave,
west
,
West Hartford, CT 06107

EJC
international services, lle
30 GALESI DRIVE,
SUITE 202B SUITE $202 B$
WAYNE, NJ 07470 $\underset{(973) \text {) } 785-4545}{\text { WAYNE }}$
consultants
\qquad ANTENNA PLAN
AND ELEVATONS

King of Prussia, PA 19406
DESIGN DRAWINGS
1106.0' GUYED G7 TOWER

NEW BRITAIN, CT

INDEX							
DESCRIPTION	DWG	REV	DATE	DESCRIPTION	DWG	REV	DATE
GENERAL ARRANGEMENT	D01.00		11/8/2017	base assembly sub-bracing detats	D05.01		11/8/2017
GENERAL NOTES	D01.01		11/8/2017	SUb-bRACING DETAILS	${ }^{\text {D }} 0.02$		1118/2017
general notes	D01.02		11/8/2017	diagonal replacement	D05.03		11/8/2017
base foundation modification	D02.00		11/8/2017	vertical leg reinforcement detalis	D05.04		11/8/2017
FOUNDATION NOTES	D03.00		11/8/2017	vertical leg reinforcement details	D05.05		11/8/2017
TOWER PROFLLE	D04.00		11/8/2017	Top antenna adapter plate detals	D05.06		11/8/2017
Tower profle	D04.01		11/8/2017	COAX ARRANGEMENT	D06.00		11/8/2017
LINEAR APPURTENANCES	D05.00		11/8/2017	INTERCEPTS \& ERECTION TENSIONS	D08.00		11/8/2017

The tower is a guyed, triangular, non-insulated, open face structure
2. The tower was analyzed per Stainless Rigorous Structural Analysis Report 258113 Rev. A, dated 6/30/2017 in accordance with the 2016 Connecticut State Building Code and ANSI/TIA 222-G-2005, Structural Standard for Antenna Supporting Structures and antennas, including addenda 1 and 2, dated 20
2009 respectively, for the following analysis parameters while supporting
equipment as listed below:

- Structure Classification II

125 mph ultimate wind speed with no ice
Exposure Category \quad B wind speed with $1^{\prime \prime}$ design ice thickness

- Topographic Category 5 (Flat topped hill, $\mathrm{H}=220^{\prime}, \mathrm{L}=1670^{\prime}, \mathrm{x}=0^{\prime}$)
: 0.18 earthquake spectral response acceleration at short periods (S s
a. One (1) top mounted TFU-20ETT/VP-R 06 antenna (NB: replaces existing TFU-28Gantenna), fed by one (
$8-3 / 16$ " rigid coax). (Proposed)
b. One (1) TFU-22GTH/VP-R 4C140 antenna at the 1025' level, fed by one (1
-4-1/16" rigid coax.
c. One (1) Proscan III ENG antenna at the 1020^{\prime} level, fed by one (1) $1-5 / 8^{\prime \prime}$
line and one (1) $1^{1 "}$ control cable
d. One (1) Outside transfer platform at the 1000^{\prime} level
. One (1) Step down transformer at the 945^{\prime} level. (Proposed)
Three (3) 3×4 ice shields at the 945 level. (Proposed)
. Six (6) ENGensis panel antennas and three (3) ENGensis radios at the 940°
One (1) Station Master omni antenna at the 520^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line.
One (1) 8'x 9' ice shield at the 360 ' level
i. One (1) PA4-65 dish with radome at the 350^{\prime} level, fed by one (1) WEP65
k. One (1) ENGensis ENG antenna at the 335^{\prime} level, fed by one (1) $7 / 8^{\prime \prime}$ line One (1) ENGensis ENG antenna
and one (1) 1 "control cable. One (1) DB-408 omni antenna
m. One (1) PA4.65 dish with radome at the 320' level, fed by one (1) WEP65
line. (1) Diamond X-50A omni antenna at the 140 ' level, fed by one (1) $7 / 8^{\prime \prime}$
. One (1) Diamond X-50A omni antenna at the 140^{\prime} level, fed by one (1) 718 . One (1) $6^{\prime} \times 7^{\prime}$ ice shield at the 110^{\prime} level.
p. One (1) PAG-65 dish with radome at the 100^{\prime} level, fed by one (1) WEP65
q. One (1) inside ladder w/cable safety device for the full height of the tower. One (1) 1-1/4" existing conduit to top.
. One (1) TechnoStrobe LED lighting system with armored cable, diameters vary up the
(Proposed)

3. In order for the tower to achieve a 125 mph ultimate wind speed with no ice and a 50 mph normal design wind speed with $1^{\prime \prime}$ design ice thickness in accordance with the 2016 Connecticut State Building Code and ANSI/TIA 222-G for a
maximum rating of 100%, the following modifications are required:
a. Reinforce the tower base. It is assumed there are no physical obstructions modification.
b. Remove existing tower leg sub-horizontal bracing members between levels 704.6' thru 717.1' and 935.9^{\prime} thru 948.4 ,
c. Reinforce tower legs with full pipe sleeves at the following bays:

Location	No.of bays
$704.0^{\prime}-718.0^{\prime}$	2
$935.3^{\prime}-949.0^{\prime}$	2

d. Install additional horizontal sub-horizontal bracing members at the

Location	No.of bays
$0.0^{\prime}-10.0^{\prime}$	2
$158.8^{\prime}-183.8^{\prime}$	4
$233.8^{\prime}-2713^{\prime}$	6
$358.8^{\prime}-3650^{\prime}$	1
$598.4^{\prime}-6046^{\prime}$	1
$648.4^{\prime}-654.6^{\prime}$	1
$679.6^{\prime}-698.4^{\prime}$	3
$729.6^{\prime}-754.6^{\prime}$	4
$760.9^{\prime}-779.6^{\prime}$	3

e. Replace the existing diagonal braces with new, higher capacity members Replace the existing diag
at the following locations:

Location	No.of bays
$290.0^{\prime}-271.3^{\prime}$	3
$998.4^{\prime}-948.4^{\prime}$	2

Provide new
4. The design of the tower modifications above has been based upon Stainless The design of the tower modifications above has been based upon Stainles
Reprt 258113 Rev A, dated $6 / 30 / 2017$. The details contained within this designdrawing package are included for information and are not intended to be used as shop or final fabrication drawings. The Contractor shall fie
verify all dimensions, elevations and existing site conditions and notify Stainless immediately of any site discrepancies or variances. Contracto shall not scale dimensions from the design drawings. It shall be the responsibility of the Con
modification materials.
5. All work shown on this design drawing package shall be performed by qualified contractor (s)
foundation construction.
6. All material shall be in accordance with the notes, specifications and drawings. All deviations and substitutions must be approved by a registered Professional Engineer in the state where the work is being done contractorshall furnish satisfactory evidence as to the kind and qualityo the materials and equipment being substituted. Contractorshall also be
responsible for obtaining all necessary permits, licenses and any other responsible for obtaining all necessary permits, licenses and any other
requirements for the construction. Submit all necessary calculations fo requirements for the construction
substitutions and design detalls.
7. Contractor shall observe safe construction practices and shall be responsible for all methods of construction, including proper and adequate bracing to the tower and excavationsupportshall be installed before any towe Adequateny is removed and replaced. All means and methods of comstruction, including construction and soil pressure
properly calculated and documented bythe Contractor.
8. If the construction activities require a rigging plan per the requirements of developed by a Qualified Person, submitted to the Owner for review and implemented by a competentrigger. The Qualified Person shall coordinate Class IV rigging plans with a Qualified Engineer for a structural analysis of the structure considering the construction loading. A properly detaily
rigging plan shall include, as a minimum, a review of the following:

- Operational and non-operational construction loads
- Equipment used, and Supporting structure
- Construction sequence and durations

9. Stainless assumes no responsibility for the structural adequacy of the if non-conforming modification materials are supplied and/or installed by
others, and shall have no liability whatsoever to owner or to others for an work performed by any persons other than Stainless in connection with the implementation of any structural changes or modifications not specifically agrees that any riggers, erectiors or subcontractors retained or employed by
 work performed by them and that Stainless shall have no liabiety or
responsibility whatsoever as a result of any negligence or breach of contract by such rigger, erector or subcontractor.
10. The modification drawings contained herein are based on the assumption tha the tower has been properly installed and maintained, including, but no to the following:
a. Proper alignment and plumbness
b. Correct bolt tightness
c. Nosignificant deterioration or damage to any component

APPLICABLE CODES AND STANDARDS

Use latest editions of the following Codes and Standards unless noted otherwise.

1. ANSI/TIA-222-G 2005 Structural Standards for Antenna Supporting Structures 2. AndAntennas including Addenda 1 \& 2, dated 2007 and 2009 . Loading, Analysis and Design Criteria Related to the Installation, Alteration and Maintenance Communication Structures
AISC Manual of Steel Construction. $\begin{aligned} & \text { R } \\ & \text { RCSC Specification for Structural }\end{aligned}$ ACl 301 Specifications for Structural Concrete
ACI 318 Building Code Requirements for Structural Concrete
CRSI Manual of Standard Practice.
ASTM C260 Standard Specification for Air-Entraining Admixtures for Concrete ASTM C494 Standard Specification for Chemical Admixtures for Concrete ASTM A
Vanadium Structural Stee ASTM A 325 Standard Specification for Structural Bolts, Steel, Heat Treated, ASTM A194 Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High Pressure or High Temperature Service, or Both
ASTMF436 Standard Specification for Hardened Steel Washers
(Hot-Dip Galvanized) Coatings on
. ASTMA153 Standard Specification for Zinc Coating (Hot-Dip) on Iron and
Steel Hardware. ASTM A780 Standard Practice for Repair of Damage and Uncoated Areas of
Hot-Dip Galvanized Coatings.
2. ASTM AG615 Standard Specification for Deformed and Plain Carbon Steel Bars

STRUCTURAL STEEL

- The fabrication and erection of structural steel shall conform to the AISC

Repair all damaged or uncoated areas of galvanized coatings in accordance
With ASTM A780.
otherwise
All A325 high strength bolts shall be tightened by the "snugtightening"
method as specified in the RCSC Specification for Structural Joints Using ASTM A 325 Bolts unless noted otherwise on the design drawings
5. Malerialgrades shall
a. Bolts-A325X
b. U-Bolts - A307 min.
c. HSS - A500 Gr.B (min. 42 ksi)
d. Plates and angles-A36

PLUMBING LINES

1. The tower is designed for initial tension as specified in the erection drawings. It is important that the guys be tensioned accurately to assure the 2. Uneven terrain, temperature, plumbness of tower and wind are factors which affect guy tensions. If the tower site is evel and anchor distances are is plumb. If the terrain of the tower site is uneven, the guys are not perfectly symmetrical and tensions in guys vary in the three directions. For
this reason initial guy tensions are specified in one direction only. The this reason initial guy tensions are specified in one direction only. The
tower should be plumbed with the specified tensions in the given guy direction.
Wind load
2. Wind load on tower and guys changes the tension in all guys; therefore,

REINFORCED CONCRETE

1. All concrete shall be in accordance with ACI 318 and ACI 301 and have a All
2. All concrete shall be sampled and tested in accordance with ACI 301
3. Concreteshall not contain calcium chloride or any admixtures that contain and ASTM C494 (water reducing and/or accelerating)
4. All reinforcing bars shall be Grade 60 deformed bars in accordance with 315, ACI 318 and CRSI's Manual of Standard Practice.
5. Minimum cover of the reinforcing bars for foundation concrete shall be $3^{\prime \prime}$
6. All formwork shall conform to ACl 318. No rough lumber shall be used
7. Concrete shall be placed monolithically unless noted otherwise on the
drawings.
8. All exposed concrete corners shall be beveled neatly with approximately 1
9. Reinforcing bars shall be positioned as shown on the drawings and shall be adequately supported against displacement during concreting. Tack
10. Backfill near and around the foundation with a reasonably well graded fill and compact to original density.

WELDING

1. All welding shall be in accordance with AWS D1.1 Structural Welding Code-
2. All welding shall be performed by welders certified by the AWS in both type of weld and posign drawings package
3. All weld electrodes shall be low hydrogen E70xX or equal
prepare weld areas-Areas to be welded are to be free of scale, rust, galvanizing, and slag. All base metals shall be prepared in accordance to
4. Remove any galvanizing finish completely within a 2 " perimeter of any weld
5. Preh Preheat material to 70 degree (F) if air temperature is below 32 degree (F)
Material should be heat soaked through or a $3^{\prime \prime}$ minimum in every direction.
6. Refer to AWS D1.1 for general workmanship and technique. No starts and stops are allowed at the end of the pipe corners. Weld wraps must begin and end at a $1^{\prime \prime}$ minimum away from the corners.

FOUNDATION NOTES

1. All concrete to be in accordance with the current edition of ACI 318 and ACI 301 and have a minimum compressive strength of 4000 PSI after 28 days
2. Concrete to be sampled and tested in accordance with ACI 301, paragraphs 16.3, 16.4, and 16.5. Testing to be performed by an independent testing laboratory.
3. All reinforcing shall be deformed steel bars in accordance with ASTM A615, Grade 60.
4. Concrete and reinforcing bars furnished by foundation contractor
5. No rough lumber to be used where concrete surface is visible
6. All exposed concrete corners shall be beveled neatly with
approximately $1^{\prime \prime}$ chamfer.
Reinforcing shall be positioned as shown and adequately supported against displacement. Tack welding is not permitted.
Bend all reinforcing cold and remove all scale
7. Minimum cover for reinforcing bars is $3^{\prime \prime}$
8. The foundation must rest on undisturbed soil.
9. Backfill near and around all foundations with a reasonable well graded fill and compact to original density
10. Elevation and flatness of base foundation top to be within plus or minus $1 / 4^{\prime \prime}$.
11. Foundation design is based upon the subsurface analysis performed by Clarence Welti Associates, Inc. dated July 19, 1976 for Connecticut Television Inc. tower project. Test boring data was forwarded to Stainless Inc for job \#2581.
12. If the actual subsurface conditions deviate from those described in the subsurface investigation or any other soil information provided, contact Stainless immediately.
13. Bill of Material is approximat must verify all quantities.

	0 DEG. F		20 DEG. F		40 DEG. F		60 DEG. F		80 DEG. F		100 DEG. F	
	$\begin{aligned} & \text { ERECT. } \\ & \text { TENSION } \\ & \text { (LBS) } \end{aligned}$	INTERCEPT (FT)	ERECT TENSION (LBS)	INTERCEPT (FT)	ERECT. TENSION (LBS)	INTERCEPT (FT)						
1A	10451	6.2	9522	6.9	8616	7.6	7760	8.4	6958	9.3	6220	10.4
2A	11499	14.9	10815	15.8	10154	16.8	9520	17.9	8934	19.1	8375	20.3
3A	14913	29.7	14410	30.6	13915	31.7	13420	32.8	12968	33.9	12516	35.0
4A	16544	48.8	16151	49.9	15758	51.0	15360	52.3	15011	53.4	14646	54.7
5A	31608	55.3	31143	56.1	30678	56.9	30200	57.7	29780	58.5	29346	59.3
6A	49621	60.0	49222	60.5	48823	60.9	48360	61.5	48025	61.9	47626	62.4

NOTES

1. DURING THE INITIAL GUY TENSIONING PROCEDURES AND AT THE TIME OF INSPECTION, THE GUY TENSIONS AND/OR INTERCEPTS SHOULD BE IN ACCORDANCE WITH THE VALUES SHOWN ABOVE. USE THE TEMPERATURE WHICH ACTUALLY EXISTS AT THE TIME THE TENSION IS BEING CHECKED. FOR TEMPERATURES OTHER THAN THOSE SHOWN ABOVE, INTERPOLATE OR EXTRAPOLATE OTHER VALUES
2. TOWER PLUMBING AND INITIAL TENSIONING OF GUYS SHOULD BE DONE ONLY IN CALM WEATHER AND WITH NO ICE ON GUYS.
3. USE INTERCEPTS AND TENSIONS IN GUY DIRECTION "A" ONLY.
4. GUY \#1 IS BOTTOM GUY; GUY \#2 IS NEXT, ETC.
5. USE SIGHT BAR FOR DETERMINING GUY INTERCEPTS.
6. TENSION AND/OR INTERCEPT TOLERANCES $+/-5 \%$.

Attachment 1

Dielectric

TFU-20ETT/VP-R O6

Proposal Number:

Date:
Customer:
Location:
$\square-7 \square \square \square-7$
마-ㅁำ- 7
ロ
$\square \square \square \square \mathrm{rmman}$

Electrical Specifications

Polarization
Azimuth Pattern
Antenna Input
VSWR
Bandwidth
Rated Input Power
\square पालायाप
ㅁㅁㅁ

- - ロा"

$\square \mathrm{M} \square \square$
ㅁㅁ

Mechanical Specifications

Mounting

Environmental Protection
Height
Weight
Effective Projected Area

Bottom of a Stack

멤

Channel Specifications

Call	CH	Freq	Hpol ERP	Vpol ERP	TPO	Hpol Gain	Mpol Gain	Hpol Gain	Vpol Gain

Dielectric

AZIMUTH PATTERN Horizontal Polarization

$\square \mathrm{r} \square \square \square \square \square \square \square \square$	C－70211－7
$\square \square ⿴ 囗 十$	15－Feb－17
	WVIT 31
$\square \mathrm{r} \square \square \square \square \square \square$	575 MHz
प	TFU－20ETT／VP－R 06
$\square \square \square$	1 （0dB）
	Calculated
$\square \mathbf{r} \square \square \mathbf{r}$ 皿	＋／－1．0 dB

Deg	due	Deg	Value	Deg	value	Deg	Value	Deg	value		Value	Deg	value		Value	Deg	value	Deg	
				7		mm	\square	Ш1				${ }_{27}^{217}$		${ }_{21}^{20}$		2		${ }_{2}^{2}$	
								17		12		$\stackrel{2}{2 \pm}$		$\stackrel{2}{2}$		$\stackrel{2}{2}$		${ }_{27}^{27}$	
			［imo	177		12						22	－			22		2	
	Iun	2		7		Tm		\％	Tim			${ }_{222}^{222}$	－170	27		20		2	
7	mm					II				$\square 7$						2			
	ㅁmT	四	III	＋	＋min	m	III	12	amm	四		${ }_{22}^{22}$	${ }_{\text {미I }}$	2	Tum	${ }_{27}^{2 T}$		2	
！	－	1	IIIm	2		m	－	［⿴囗十	TIL	mome	Imin	${ }_{2}^{22}$	－	22	W	2	＋	\＃	
2	넨			『		2	4in	IT		2		${ }_{22}^{22}$	ITI	${ }_{2}^{2}$		$\underline{\text { III }}$	unim	m	
			Tm	－		${ }_{22}^{20}$		17	Tm			${ }^{22}$	Tim	20					
\pm	IIII			\square		2	IIII			m		2		27		1			
7	ㅁmm	2	IIm	＋		2	mmim	－m	Imu	$1{ }^{1}$		22	TIT	${ }^{2 \pi}$	ITI	피		m	
		－		［00	amm	12		12				2		27				2	
						${ }^{27}$								${ }^{27 \square}$		7			
${ }_{2}$	पint	$\stackrel{\square}{7}$		\％		${ }_{2}^{27}$		\＃1T		2	Tim	$2 \pm$ 27		${ }_{270}^{272}$				픆	
22	वmim		пा⿴囗十	区		\％	Tmm	I		${ }_{2}^{212}$	T⿴囗十	${ }_{2}^{2 \pm}$	\square	27		m	\square	m	
${ }_{2}^{2}$	－	$\stackrel{\square}{\square 1}$	umin	1		12		\＃	－	2		${ }_{2}^{2}$	Intin	${ }_{27}^{27}$		12		7	
${ }^{2}$				\square						2		2		277					
${ }_{2}^{2}$		2				IT			III	2		22		${ }_{27}^{27}$				ITI	
${ }_{2}^{27}$						II		72		2.7		${ }^{2}$		27		T			
${ }_{2}^{2}$		Ш		而				72		${ }_{2}^{2}$		2		2				2	
	ㄴun			12		\＃7	피픞	7		${ }_{2}^{2}$	num	${ }_{2 \pi}^{2 \pm}$	－	22		${ }_{7}^{17}$	TITI	\％	
12						ITI	保	17		${ }_{22}^{2 \pm}$		27 27							
								$\square 7$		2		${ }^{2}$		$2 \pm$		${ }^{20}$		17	
		7		$\square 7$		［1］		7		2		2		27		${ }^{22}$		W	

Dielectric

Dielectric

ELEVATION PATTERN

	C－70211－7
－	15－Feb－17
	WVIT 31
$\square \mathrm{ram}$	575 MHz
¢	TFU－20ETT／VP－R 06

C－70211－7
15－Feb－17
WVIT 31
575 MHz
TFU－20ETT／VP－R O6

$$
\begin{aligned}
& \square \mathrm{M} \square \mathrm{ar} \boldsymbol{\square}
\end{aligned}
$$

$19.60(12.92 \mathrm{~dB})$
$13.20(11.21 \mathrm{~dB})$
Calculated
$19.60(12.92 \mathrm{~dB})$
$13.20(11.21 \mathrm{~dB})$
Calculated
$19.60(12.92 \mathrm{~dB})$
$13.20(11.21 \mathrm{~dB})$
Calculated

ㅁำ

Angle	Field
－प［1］	$\square 17 \square$
－WITI	－ 1 IT
－$\square_{\text {IT }}$	पाप｜
－7	पा1］
	$\square \square \square \square$
－\square IT	－171
－\quad ITI	प1111
－$\square_{\text {IT }}$	$\square 27 \square$
－2	
－\square IT	पा12
미］	$\square 1 \square$
［1］1］	पाप｜
2 II	$\square 1122$
$\square 17$	$\square 17 \square$
$\square 1]$	$\square 2 \square$
메	$\square 2 \square$
［1］1］	पा17
7 W	पाप｜
$\square \square$	पा17］
－11］	पापा

Angle Field	
प［1］	$\square 171$
미II	पा12
2	पा1］
$\square 1]$	$\square 171$
미II	प111
$\square]$	$\square 117$
ㅁㅔㅣ	$\square \square 7 \square$
$\square 7 \square$	$\square \square 7 \square$
미I	$\square 1127$
$\square \square 1]$	$\square 111$
$2 \square 11$	$\square 1772$
$2 \square 1]$	$\square 11{ }^{\square}$
22 II	$\square \square$
$2 \square 1]$	$\square 171$
2 III	$\square 1 \square$
$2 \square 11$	$\square 110$
$2 \square 11$	प111］
27 TIT	पा1］
2 IIT	$\square 1127$
$2 \square 1]$	पा1］

Angle	Field	
－11］	$\square \\|\|1\|$	
미］	प｜｜｜1	
2］	प｜1－1	
$\square \square 1]$	प｜1｜｜	
प｜1］	$\square \\| 2 \square$	
	$\square 172$	
$\square \square 1]$	प｜1｜｜	
$\square 7 \square$	प｜｜10	
	प｜ा｜｜	
－ITII	प｜1｜｜1	
$\square \square 1]$	$\square \mathrm{\\|}$	
प｜1］	멘 2	
2四	प｜1｜	
	पापा｜	
$\square \square 1]$	메｜｜ 7	
प｜1］	$\square 17$	
메	प｜1｜｜	
$\square 7 \square$	प｜101	
－［1］	प｜ा｜｜	
$\square \square \square$	प｜1｜｜1	

Angle	Field
$7 \square 11$	$\square 12$
$7 \square \square$	$\square 1 \square$
72円	$\square \square \square$
$7 \square 11$	$\square 1 \square$
$7 \square 11$	
$7 \square \square$	－ 1
$7 \square \square$	प｜ा｜｜l｜l
77 W	－ 2
$7 \square 11$	$\square \mathrm{m}$
$7 \square \square$	$\square \mathrm{T}$
$\square \square$	미Iㅣㅁ
	प｜10｜｜l｜l
2	－112
	$\square \mathrm{m}$
ㅁㅔㅣ	प｜
$\square \square 11]$	$\square \mathrm{T}$
$\square \square 1]$	प｜1｜｜l｜l｜
$\square 7 \square$	－112
$\square \square \square$	$\square \square \square$
$\square \square]$	$\square \square \square$
$\square \square 11$	ㅁㅣㅔ

Dielectric

Mechanical Specifications
ם
ם

$\mathrm{M} \square \square \square \square \square$
$\square \square \square$


```
Prepared by: \(\quad\) 미
Rev. No. 7 by:
미
Date: 마-ดำ-7
Date: 2-
ME:
\(S P J C\)
EE:
```


Dielectric

Summary


```
C-70211-7
```



```
\squareप|ा\\\r\square WVIT
WVIT
15-Feb-1731

\section*{Antenna}

ERP:
\(\square \mathrm{M} \square \square \square \square \square\)

Hpol
374.0 kW ( 25.73 dBk )
\(\square \square \square 7 \quad \square \square \square ा \square d \square \square\)

Vpol
187.0 kW ( 22.72 dBk )


\section*{Antenna Input Power}
28.6 kW ( 14.57 dBk )

\section*{Transmission Line}
\(\square \square \square\)
\(\square \square\)
\(\square \mathrm{m}\)

 7 밈

ा

늠
\(2 \square \square \square\)

\section*{Transmitter Output}



\section*{Attachment 2}


\section*{REPORT 258113}

DATE: 5/12/2017

\section*{RIGOROUS STRUCTURAL ANALYSIS}

FOR A 1057’ STEEL HEIGHT G-7 GUYED TOWER

NEW BRITAIN, CT
\begin{tabular}{ll} 
PREPARED BY: & AP \\
CHECKED BY: & PCC \\
\hline
\end{tabular}

APPROVED: DDA

\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\hline \(\square\) & \(\square \mathrm{m} \mid 17\) &  \\
\hline
\end{tabular}

\section*{SECTION}

PAGE
\(\qquad\)
A. AUTHORIZATION/PURPOSE .1
B. TOWER HISTORY .1
C. CONDITIONS INVESTIGATED ..... 2
D. LOADS AND STRESSES ..... 3
E. METHOD OF ANALYSIS ..... 4
F. RESULTS ..... 4
G. CONCLUSIONS AND RECOMMENDATIONS ..... 5
H. PROVISIONS OF ANALYSIS ..... 7
APPENDIX
GENERAL ARRANGEMENT ..... E-1
LINEAR APPURTENANCES ..... A-2

\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\(\square\) & \(\square\|\square\| 7\)
\end{tabular} \begin{tabular}{c}
\(\square \square \| ा \mathrm{~d} \square \square ा ⿴ 囗 \square \square \square \square\) \\
\hline
\end{tabular}

\section*{A. AUTHORIZATION/PURPOSE}

As authorized by Joe DiMaggio of WVIT-TV, a structural analysis was performed to investigate the adequacy of a 1057' steel height Stainless G-7 guyed tower near New Britain, Connecticut to support specified equipment.

\section*{B. TOWER HISTORY}

The tower was originally designed and furnished in 1976 by Stainless, Inc. It was designed in accordance with EIA Standard RS-222-C for a wind load rating of 50 psf with no ice, 40 psf with \(1 / 2\) " of radial ice, and 30 psf with 1 " of radial ice while supporting the following equipment:
1. One (1) top mounted RCA Channel 30 Zee panel antenna with radome, fed by one (1) 8\(3 / 16\) " rigid coax.
2. Two (2) 8 ' \(\times 12\) ' reflectors at the first and second guy levels.
3. One (1) high intensity strobe lighting system for the full height of the tower.
4. One (1) inside climbing ladder for the full height of the tower.

In December 1978, the tower was extended to 1057’ per Stainless Inc. Report 258102. The extended tower was designed to support the following:
1. One (1) top mounted RCA TFU 28G Channel 30 antenna, fed by one (1) \(8-3 / 16\) " rigid coax.
2. Two (2) 8 'x12' reflectors at the first and second guy levels.
3. One (1) high intensity strobe lighting system for the full height of the tower.
4. One (1) inside climbing ladder for the full height of the tower.
* In 2004, the tower was modified by Stainless LLC per Report 258108. The modifications consisted of the following:
- Replaced Levels 5 and 6 (topmost) guys with new, higher capacity guys.
- Adjusted initial tensions in all guy levels.
- Replaced existing diagonals with new, higher capacity members at the following bay:
\begin{tabular}{|c|c|}
\hline Location & No of bays \\
\hline \(1035.9^{\prime}-1010.9^{\prime}\) & 4 \\
\hline \(910.9^{\prime}-842.1^{\prime}\) & 11 \\
\hline \(517.1^{\prime}-511.5^{\prime}\) & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\hline \(\square\) &  & \(\square \square \square ा \mathrm{~d}\) \\
\hline
\end{tabular}
- Replaced existing horizontals with new, higher capacity members at the following levels:
\begin{tabular}{|c|c|}
\hline Location & No of levels \\
\hline \(1023.4^{\prime}\) & 1 \\
\hline \(885.9^{\prime}-848.4^{\prime}\) & 7 \\
\hline \(842.1^{\prime}\) & 1 \\
\hline
\end{tabular}
- Installed additional horizontal sub-bracing at the midpoints of the following bays:
\begin{tabular}{|c|c|}
\hline Location & No of bays \\
\hline \(1023.4^{\prime}-879.6^{\prime}\) & 23 \\
\hline \(860.9^{\prime}-779.6^{\prime}\) & 13 \\
\hline \(760.9^{\prime}-754.6^{\prime}\) & 1 \\
\hline \(729.6^{\prime}-704.6^{\prime}\) & 4 \\
\hline \(679.6^{\prime}-654.6^{\prime}\) & 4 \\
\hline \(629.6^{\prime}-604.6^{\prime}\) & 4 \\
\hline \(560.9^{\prime}-554.6^{\prime}\) & 1 \\
\hline \(508.8^{\prime}-496.3^{\prime}\) & 2 \\
\hline \(490.0^{\prime}-433.8^{\prime}\) & 9 \\
\hline \(358.8^{\prime}-271.3^{\prime}\) & 14 \\
\hline \(233.8^{\prime}-208.8^{\prime}\) & 4 \\
\hline \(158.8^{\prime}-108.8^{\prime}\) & 8 \\
\hline \(15.0^{\prime}-33.8^{\prime}\) & 3 \\
\hline
\end{tabular}

\section*{C. CONDITION INVESTIGATED}

The analysis was performed for the tower supporting equipment based upon the following sources:
- Stainless Proposal P16_2581_001 dated 10/28/2016.
- Stainless LLC Report 258110 dated 6/4/2003.
- Stainless LLC Report 258108 dated March 2002.
- Email from Rick Smart of Dielectric dated 3/17/2017 with mechanical specifications for the proposed top antenna.
- Equipment schedule WVIT Stainless G-7 Tower 2016, undated.
- Emails from Joe DiMaggio of WVIT dated 11/2, 11/18, and 11/23/2016 with details of existing tower loading.
- Email from Joe DiMaggio dated 6/15/2017 with details of original tower geotechnical design information.
- Email from Joe DiMaggio dated \(6 / 27 / 2017\) with details of final tower loading condition.
- Email from David Shepeard of Drake Lighting dated 6/28/2017 with details of TechnoStrobe high intensity LED lighting system.
\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\hline \(\square\) & प|ד107 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline APPURTENANCE & ELEVATION, ft. & FEED LINES \\
\hline TFU-22GTH/VP-R 4C140 & 1025 & 4-1/16" rigid \\
\hline Proscan III ENG & 1020 & 1-5/8" \& 1" control cable \\
\hline Outside transfer platform & 1000 & -- \\
\hline Station Master omni & 520 & 7/8" \\
\hline 8' x 9' ice shield & 360 & -- \\
\hline PA4-65 dish/radome & 350 & WEP65 \\
\hline ENGensis ENG & 335 & 7/8" \& 1" control cable \\
\hline DB-408 omni & 330 & 7/8" \\
\hline PA4-65 dish/radome & 320 & WEP65 \\
\hline Diamond X-50A omni & 140 & 7/8" \\
\hline 6' x 7' ice shield & 110 & -- \\
\hline PA6-65 dish/radome & 100 & WEP65 \\
\hline Ladder with cable safety device & Full height of tower & 3/8" safety cable \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Proposed equipment:} \\
\hline TFU-20ETT/VP-R O6 (NB: replaces existing TFU-28G) & Tower top & 6-1/8" rigid (NB: replaces existing 8-3/16" rigid) \\
\hline Step down transformer & 945 & -- \\
\hline (3) \(3^{\prime} \times 4^{\prime}\) iceshieds & 945 & -- \\
\hline (6) ENGensis panel antennas (3) ENGensis radios & 940 & \begin{tabular}{l}
1/2" fiber \\
1-1/4" conchuit (existing)
\end{tabular} \\
\hline TechnoStrobe LED lighting system (NB: replaces existing strobes) & Full height of tower & Armored cable, diameters vary up the tower \\
\hline
\end{tabular}

The transmission line arrangement was based upon Stainless LLC Report 258110 dated 6/4/2003. Lines with unknown locations on the cross section are conservatively assumed to be fully exposed to wind. The locations of all existing and proposed transmission lines are shown on page A-2 of the report. Deviating from this arrangement may invalidate the results of the analysis presented in this report.

\section*{D. LOADS AND STRESSES}

The analysis was performed using the following design parameters in accordance with the 2016 Connecticut State Building Code and ANSI/TIA 222-G-2005, Structural Standard for Antenna Supporting Structures and Antennas, including Addenda 1 and 2 dated 2007 and 2009 respectively:
- Risk Category II
- 125 mph ultimate design wind speed with no ice
- 50 mph nominal design wind speed with 1 " design ice thickness
- Exposure Category B
- Topographic Category 5 (Flat topped hill, \(\mathrm{H}=220^{\prime}\), \(\mathrm{L}=1670^{\prime}\), \(\mathrm{x}=0^{\prime}\) )
- 0.18 earthquake spectral response acceleration at short periods \(\left(\mathrm{S}_{\mathrm{s}}\right)\)
- Earthquake Site Class D
\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\hline \(\square\) & - 7 & प प|l|l \\
\hline
\end{tabular}

The ultimate design wind speed is converted to a nominal design wind speed for use in ANSI/TIA 222-G based upon the following formula:
\[
\begin{aligned}
\mathrm{V}_{\text {asd }} & =\mathrm{V}_{\text {ult }} *(0.6)^{1 / 2} \\
& =125 *(0.6)^{1 / 2} \\
& =97 \mathrm{mph}
\end{aligned}
\]

Seismic effects need not be considered as the value of Ss is less than 1.0 per Section 2.7.3 of ANSI/TIA 222-G. Load and resistance factors used to evaluate the adequacy of the structure were in accordance with ANSI/TIA 222-G.

\section*{E. METHOD OF ANALYSIS}

The analysis was performed using tnxTower, a computerized program which idealizes the tower as a structure consisting of finite elements, and subjected to simultaneous transverse and axial loads.

\section*{F. RESULTS}

The results of the analysis show the following ratings:
\begin{tabular}{|c|c|c|}
\hline COMPONENT & SPAN & RATING \% \\
\hline Tower top & -- & 30 \\
\hline \multirow{7}{*}{Leg compression} & Cantilever & 33 \\
\hline & 6 & 105 \\
\hline & 5 & 154 \\
\hline & 4 & 105 \\
\hline & 3 & 92 \\
\hline & 2 & 103 \\
\hline & 1 & 103 \\
\hline \multirow{7}{*}{Leg tension} & Cantilever & 30 \\
\hline & 6 & 46 \\
\hline & 5 & 11 \\
\hline & 4 & -- \\
\hline & 3 & -- \\
\hline & 2 & -- \\
\hline & 1 & -- \\
\hline \multirow{7}{*}{Diagonals} & Cantilever & 52 \\
\hline & 6 & 105 \\
\hline & 5 & 87 \\
\hline & 4 & 80 \\
\hline & 3 & 88 \\
\hline & 2 & 107 \\
\hline & 1 & 92 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\hline \(\square\) & - 7 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{7}{*}{Horizontals} & Cantilever & 52 \\
\hline & 6 & 93 \\
\hline & 5 & 87 \\
\hline & 4 & 65 \\
\hline & 3 & 62 \\
\hline & 2 & 69 \\
\hline & 1 & 67 \\
\hline \multirow{6}{*}{Guys} & 6 & 87 \\
\hline & 5 & 82 \\
\hline & 4 & 86 \\
\hline & 3 & 75 \\
\hline & 2 & 72 \\
\hline & 1 & 70 \\
\hline \multirow{3}{*}{Foundations} & Tower base & 147 \\
\hline & Inner anchors & 94 \\
\hline & Outer anchors & 46 \\
\hline
\end{tabular}

The rating is defined as the percentage of the component design capacity that is used up in supporting itself and the loading from the antennas and transmission lines under the design wind and ice loading conditions. Ratings of up to \(105 \%\) are considered acceptable due to tolerances in calculating the applied loads on the tower as well as component design capacities.

A second set of tower and foundation modifications have also been shown in the following section for a maximum acceptance rating of \(100 \%\).

Foundations have been reviewed based upon the original geotechnical information dated 7/19/1976 and 4/23/1979 by Clarence Welti Associates, Inc., and a geotechnical report dated 19/1/199 by Haley and Aldrich, Inc. for an adjacent tower site.

\section*{G. CONCLUSIONS AND RECOMMENDATIONS}

Based on the preceding results, the following conclusions may be drawn:
1. The tower, supporting the equipment as specified in section \(C\) of this report, is not adequate to achieve an ultimate design wind speed of 125 mph with no ice, and 50 mph nominal design wind speed with 1" design ice thickness in accordance with the 2016 Connecticut State Building Code, and ANSI/TIA 222-G with the analysis parameters of Section D.
2. In order for the tower to achieve an ultimate design wind speed of 125 mph with no ice, and 50 mph nominal design wind speed with 1" design ice thickness in accordance with the 2016 Connecticut State Building Code, and ANSI/TIA 222-G with the analysis parameters of Section D for a maximum rating of \(105 \%\), the following modifications are required:
\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\(\square\) & \(\square\) आाप7 & \(\square \square \square ा \mathrm{~d} \square \square ा ⿴ 囗 \square \square \square \square\) \\
\hline
\end{tabular}
a. Strengthen the tower base. It is assumed there are no physical obstructions preventing the tower base remediation.
b. Adjust the initial tension in all guy levels.
c. Install additional horizontal sub-bracing at the midpoints of the following bays:
\begin{tabular}{|c|c|}
\hline Location & No. of bays \\
\hline \(779.6^{\prime}-760.9^{\prime}\) & 3 \\
\hline \(754.6^{\prime}-729.6^{\prime}\) & 4 \\
\hline \(692.1^{\prime}-679.6^{\prime}\) & 2 \\
\hline \(271.3^{\prime}-265.0^{\prime}\) & 1 \\
\hline
\end{tabular}
d. Replace the existing diagonal braces at the following locations with higher capacity members:
\begin{tabular}{|c|c|}
\hline Location & No. of bays \\
\hline \(1010.9^{\prime}-998.4^{\prime}\) & 2 \\
\hline \(290.0^{\prime}-277.5^{\prime}\) & 2 \\
\hline
\end{tabular}
3. In order for the tower to achieve an ultimate design wind speed of 125 mph with no ice, and 50 mph nominal design wind speed with 1 " design ice thickness in accordance with the 2016 Connecticut State Building Code, and ANSI/TIA 222-G with the analysis parameters of Section D for a maximum rating of \(100 \%\), the following modifications are required:
a. Strengthen the tower base. It is assumed there are no physical obstructions preventing the tower base remediation.
b. Adjust the initial tension in all guy levels.
c. Install additional horizontal sub-bracing at the midpoints of the following bays:
\begin{tabular}{|c|c|}
\hline Location & No. of bays \\
\hline \(779.6^{\prime}-760.9^{\prime}\) & 3 \\
\hline \(754.6^{\prime}-729.6^{\prime}\) & 4 \\
\hline \(698.4^{\prime}-679.6^{\prime}\) & 3 \\
\hline \(654.6^{\prime}-648.4^{\prime}\) & 1 \\
\hline \(604.6^{\prime}-598.4^{\prime}\) & 1 \\
\hline \(365.0^{\prime}-358.8^{\prime}\) & 1 \\
\hline \(271.3^{\prime}-233.8^{\prime}\) & 6 \\
\hline \(183.8^{\prime}-158.8^{\prime}\) & 4 \\
\hline \(10.0^{\prime}-0.0^{\prime}\) & 1 \\
\hline
\end{tabular}
d. Remove existing sub-bracing and install reinforcing to the legs at the following bays:
\begin{tabular}{|c|c|}
\hline Location & No. of bays \\
\hline \(948.4^{\prime}-935.9^{\prime}\) & 2 \\
\hline \(717.1^{\prime}-704.6^{\prime}\) & 2 \\
\hline
\end{tabular}
e. Replace the existing diagonal braces at the following locations with new, higher capacity members:
\begin{tabular}{|c|c|}
\hline Location & No. of bays \\
\hline \(1010.9^{\prime}-998.4^{\prime}\) & 2 \\
\hline \(290.0^{\prime}-271.3^{\prime}\) & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Rev. & Date & Description \\
\hline \(\square\) &  &  \\
\hline
\end{tabular}
4. After the modifications are completed, the tower twist and sway at the elevations of the proposed dish under a service wind speed of 60 mph are as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Dish } & \multirow{2}{*}{ Elev, ft. } & \multicolumn{2}{|c|}{ Twist, degrees } & \multicolumn{2}{c|}{ Sway, degrees } \\
\cline { 3 - 6 } & & \(\mathbf{1 0 5 \%}\) & \(\mathbf{1 0 0 \%}\) & \(\mathbf{1 0 5 \%}\) & \(\mathbf{1 0 0 \%}\) \\
\hline 4' dish/radome & 350 & 0.59 & 0.61 & 0.10 & 0.10 \\
\hline 4' dish/radome & 320 & 0.54 & 0.56 & 0.08 & 0.09 \\
\hline 6' dish/radome & 100 & 0.24 & 0.24 & 0.10 & 0.10 \\
\hline
\end{tabular}

\section*{H. PROVISIONS OF ANALYSIS}

The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:
1. Proper alignment and plumbness.
2. Correct guy tensions.
3. Correct bolt tightness.
4. No significant deterioration or damage to any component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-arts" engineering and analysis procedures and formulae, and Stainless assumes no obligations to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Stainless have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Stainless, if any, pursuant to this Report shall be limited to the total funds actually received by Stainless for preparation of this Report.

Customer has requested Stainless to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested Stainless to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of Stainless, Customer has informed Stainless that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by Stainless and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice.

Customer hereby agrees and acknowledges that Stainless shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than Stainless in connection with the implementation of any structural changes or modifications recommended by Stainless including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that Stainless shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor.



\section*{Attachment 3}


The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at \(70 \%\) of the estimated market value of real property at the time of the last revaluation which was 2012.


Information on the Property Records for the Municipality of Farmington was last updated on 2/13/2018.

\section*{Property Summary Information}
Parcel Data And Values Building * Outbuildings Sales Google Map

\section*{Parcel Information}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Location: & 200 COLT HIGHWAY & Property Use: & Industrial & Primary Use: & Utility Building \\
\hline Unique ID: & 03750200 & Map Block Lot: & 0141 7B & Acres: & 10.00 \\
\hline 490 Acres: & 0.00 & Zone: & EE & Volume / Page: & 0554/0608 \\
\hline \begin{tabular}{l}
Developers \\
Map / Lot:
\end{tabular} & & Census: & 4602-02 & & \\
\hline
\end{tabular}

\section*{Value Information}
\begin{tabular}{|l|l|l|}
\hline & Appraised Value & Assessed Value \\
\hline Land & 600,000 & 420,000 \\
\hline Buildings & 291,886 & 204,320 \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|}
\hline & Appraised Value & Assessed Value \\
\hline Detached Outbuildings & 0 & 0 \\
\hline Total & 891,886 & 624,320 \\
\hline & Owner's Information & \\
\hline
\end{tabular}

Back To Search (JavaScript:window.history.back(1);)
Print View (PrintPage.aspx?towncode=052 \&uniqueid=03750200)

Information Published With Permission From The Assessor

\section*{Town of Farmington, Connecticut - Assessment Parcel Map}

UNIQUE ID: 03750200 Address: 200 COLT HIGHWAY


\section*{Attachment 4}

Shipment Receipt

\section*{Address Information}

\section*{Ship to:}
c/o NBC Universal - WVIT
Outlet Broadcasting Inc
Attn: Jim Moyer
1422 New Britain Ave
WEST HARTFORD, CT
06110

\section*{Ship from:}

Anthony Flores
21 Ridgecrest Drive
Napa, CA
94558
US 2025246401

Shipment Information:
Tracking no.: 771487090551
Ship date: 02/15/2018
Estimated shipping charges: 63.78 USD

\section*{Package Information}

Pricing option: FedEx Standard Rate
Service type: Standard Overnight
Package type: FedEx Box
Number of packages: 1
Total weight: 2 LBS
Declared Value: 0.00 USD
Special Services:
Pickup/Drop-off: Drop off package at FedEx location

\section*{Billing Information:}

Bill transportation to:
Your reference:
P.O. no.:

Invoice no.:
Department no.:

Thank you for shipping online with FedEx ShipManager at fedex.com.
Please Note



 The estimated shipping charge may be different than the act
Sheets for detalls on how shipping chargos are calcutated.

\section*{Address Information}

\section*{Ship to:}

Melanie Bachman
Connecticut Siting Council
Ten Franklin Square

\section*{Ship from:}

Anthony Fores
21 Ridgecrest Drive
\begin{tabular}{ll} 
NEW BRITAIN, CT & Napa, CA \\
06051 & 94558 \\
US & US \\
8608272935 & 7078121311
\end{tabular}

\section*{Shipment Information:}

Tracking no.: 771487143033
Ship date: 02/15/2018
Estimated shipping charges: 63.78 USD

\section*{Package Information}

Pricing option: FedEx Standard Rate
Service type: Standard Overnight
Package type: FedEx Box
Number of packages: 1
Total weight: 2 LBS
Declared Value: 0.00 USD
Special Services:
Pickup/Drop-off: Drop off package at FedEx location
Billing Information:
Bill transportation to:
Your reference:
P.O. no.:

Invoice no.:
Department no.:

Thank you for shipping online with FedEx ShipManager at fedex.com.
Please Note
Please Note


 The astimated shlpping chargo may be different than the aco
Sheets for details on how shipping charges are calculated.

\section*{Address Information \\ Ship to: \\ William Warner \\ Town of Farmington \\ 1 Monteith Drive}
\begin{tabular}{ll} 
FARMINGTON, CT & Napa, CA \\
06032 & 94558 \\
US & US \\
8606752325 & 7078121311
\end{tabular}

\section*{Shipment Information:}

Tracking no.: 771487139968
Ship date: 02/15/2018
Estimated shipping charges: 63.78 USD
Package Information
Pricing option: FedEx Standard Rate
Service type: Standard Overnight
Package type: FedEx Box
Number of packages: 1
Total weight: 2 LBS
Declared Value: 0.00 USD
Special Services:
Pickup/Drop-off: Drop off package at FedEx location
Billing Information:
Bill transportation to:
Your reference:
P.O. no.:

Invoice no.:
Department no:

Thank you for shipping online with FedEx ShipManager at fedex.com.
Please Note



 The estimated shipping charge may be different than the aclu
\begin{tabular}{ll}
\begin{tabular}{l} 
Address Information \\
Ship to: \\
Kathleen Eagen \\
City of Farmington
\end{tabular} & Ship from: \\
1 Monteith Drive & Anthony Flores \\
& 21 Ridgecrest Drive \\
FARMINGTON, CT & Napa, CA \\
06032 & 94558 \\
US & US \\
8606752325 & 7078121311
\end{tabular}

\section*{Shipment Information:}

Tracking no.: 771487164991
Ship date: 02/15/2018
Estimated shipping charges: 63.78 USD

\section*{Package Information}

Pricing option: FedEx Standard Rate
Service type: Standard Overnight
Package type: FedEx Box
Number of packages: 1
Total weight: 2 LBS
Declared Value: 0.00 USD
Special Services:
Pickup/Drop-off: Drop off package at FedEx location

\section*{Billing Information:}

Bill transportation to:
Your reference:
P.O. no.:

Invoice no.:
Department no.:

Thank you for shipping online with FedEx ShipManager at fedex.com.
Please Note



 The estimated shipping charge may be different than the acd
Sheets for details on how shipping charges are calculated.```

