

May 5, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding: Notice of Exempt Modification – AT&T Site CT2120 / FA# 10035074

Address: 55 Walls Drive, Fairfield, CT 06824

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT&T") currently maintains a wireless telecommunications facility on an existing +/- 22' self-support tower on a +/- 50' rooftop at the above-referenced address, latitude 41.1478250, longitude -73.2514711. Said tower is owned by Robert D. Scinto c/o RD Scinto, Inc.

AT&T desires to modify its existing telecommunications facility by swapping nine (9) antennas, adding three (3) antennas, swapping six (6) remote radio units (RRUS), and swapping three (3) surge arrestors and accompanying feedlines as more particularly detailed and described on the enclosed Construction Drawings prepared by Hudson Design Group, LLC, last revised March 28, 2022. The centerline height of the existing antennas is and will remain at the 70' foot level. This modification may include B2, B5, B17, B14, B29, B30, B66, & n77 hardware that is 4G(LTE) and/or 5GNR capable through remote software configuration and either or both services may be turned on or off at various times.

Please accept this letter as notification pursuant to R.C.S.A §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the following individuals: The Honorable Brenda L. Kupchick, First Selectwoman of the Town of Fairfield, as elected official. Matt Decker, Zoning Enforcement Officer and Jim Wendt, Planning Director of the Town of Fairfield. Robert D. Scinto c/o RD Scinto, Inc., property and tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Specifically:

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

- 4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. *Please see the RF emissions calculation for AT&T's modified facility enclosed herewith.*
- 5. The proposed modifications will not cause an ineligible change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading. *Please see the structural analysis dated January 27, 2022, and prepared by Hudson Design Group, LLC, enclosed herewith.*

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Evan Renwick

Evan Renwick Site Acquisition Specialist Centerline Communications, LLC 750 West Center Street, Suite 301 West Bridgewater, MA 02379 erenwick@clinellc.com

Enclosures: Exhibit 1 – Construction Drawings

Exhibit 2 – Property Card and GIS Exhibit 3 – Structural Analysis

Exhibit 4 – Tower Structural Analysis

Exhibit 5 – RF Emissions Analysis Report Evaluation

Exhibit 6 – Original Tower Approval

Exhibit 7 – Notice Delivery Confirmations

cc: The Brenda L. Kupchick, First Selectwoman, Town of Fairfield, elected official

Matt Decker, Zoning Enforcement Officer, Town of Fairfield

Jim Wendt, Planning Director, Town of Fairfield

Robert D. Scinto c/o RD Scinto, Inc., property and tower owner.

EXHIBIT 1

PROJECT INFORMATION

- ITEMS TO BE MOUNTED ON THE EXISTING TOWER ON ROOF TOP:

 NEW AT&T ANTENNAS: TPA-65R-BU6DA-K (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- NEW AT&T ANTENNAS: AIR6449 N77D (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- NEW AT&T ANTENNAS: AIR6419 N77G (TYP. OF 1 PER SECTOR, TOTAL OF 3). • NEW AT&T ANTENNAS: DMP65R-BU6DA (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- NEW AT&T RRU: 4478 B14 (700) (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- NEW AT&T RRU: 4449 B5/B12 (700) (TYP. OF 1 PER SECTOR, TOTAL OF 3). • NEW AT&T SQUID: DC9-48-60-24-8C-EV (TYP. OF 1 PER SECTOR, TOTAL OF 3)
- NEW AT&T (9) #6 AWG DC POWER TRUNKS & (3) 24 PAIR FIBER TRUNKS.
- NEW AT&T (3) Y-CABLES.

ITEMS TO BE MOUNTED AT EQUIPMENT LOCATION: • ADD 6648 + XCEDE CABLE • ADD 6630 + IDLE CABLE.

- NEW AT&T DC12 IN EXISTING POWER RACK.

ITEMS TO BE REMOVED:

- EXISTING AT&T UMTS ANTENNA: 7770 (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- EXISTING AT&T LTE ANTENNA: HPA-65R-BUU-H6 (TYP. OF 1 PER SECTOR,
- EXISTING AT&T LTE ANTENNA: 800-10798 (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- EXISTING AT&T RRUS: RRUS-11 B12 (TYP. OF 1 PER SECTOR, TOTAL OF 3).
- EXISTING AT&T SURGE ARRESTORS: (2) DC6-48-60-18-8F • EXISTING AT&T SURGE: APTDC-BDFDM-DB (TYP. OF 2 PER SECTOR, TOTAL OF 6).
- EXISTING AT&T DIPLEXER: LGP21901 (TYP. OF 2 PER SECTOR, TOTAL OF 6).
- EXISTING AT&T DIPLEXER: DBC0061F1V51-2 (TYP. OF 2 PER SECTOR, TOTAL OF 6).
- EXISTING AT&T TMA: LGP21401 (TYP. OF 2 PER SECTOR, TOTAL OF 6).
- EXISTING AT&T (4) DC POWER TRUNKS & (2) FIBER

ITEMS TO REMAIN:
• (9) RRU'S, (6) COAX CABLES,

SITE ADDRESS:

55 WALLS DRIVE

FAIRFIELD, CT 06824

LATITUDE: 41.1478250° N, 41° 8' 52.17" N LONGITUDE: 73.2514711° W, 73° 15' 5.29" W

ROOF TOP / INDOOR EQUIPMENT TYPE OF SITE:

STRUCTURE HEIGHT: 50'-0"±

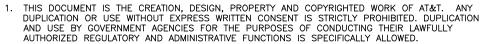
RAD CENTER:

CURRENT USE: TELECOMMUNICATIONS FACILITY

PROPOSED USE: TELECOMMUNICATIONS FACILITY

DRAWING INDEX

SHEET NO.	DESCRIPTION	REV.
T-1	TITLE SHEET	1
GN-1	GENERAL NOTES	1
A-1	ROOFTOP & EQUIPMENT PLANS	1
A-2	ANTENNA LAYOUT PLANS	1
A-3	ELEVATION	1
A-4	DETAILS	1
A-5	DETAILS	1
G-1	GROUNDING DETAILS	1
RF-1	RF PLUMBING DIAGRAM	1


SITE NUMBER: CT2120 SITE NAME: FAIRFIELD CENTRAL FA CODE: 10035074

PACE ID: MRCTB052110, MRCTB050856, MRCTB051179, MRCTB050993, MRCTB050953, MRCTB050871

PROJECT: 5G NR 1SR CBAND BBU UPGRADE, 4TXRX ANTENNA RETROFIT, **5G NR RADIO, 6C UPGRADE, 5G NR SOFTWARE UPGRADE**

VICINITY MAP

START OUT GOING EAST ON ENTERPRISE DR TOWARD CAPITAL BLVD.TURN LEFT ONTO CAPITAL BLVD.TURN LEFT ONTO WEST ST.MERGE ONTO I-91 S VIA THE RAMP ON THE LEFT TOWARD NEW HAVEN.MERGE ONTO CT-15 S VIA EXIT 17 TOWARD E MAIN ST.MERGE ONTO CT-8 S VIA EXIT 52 TOWARD BRIDGEPORT.MERGE ONTO I-95 S TOWARD NY CITY.TAKE THE CT-135/N BENSON ROAD EXIT, EXIT 22.TURN LEFT ONTO N BENSON RD/CT-135.TAKE THE 1ST RIGHT ONTO KINNIE DR.TAKE THE 1ST LEFT ONTO ROUND HILL RD.TAKE THE 1ST LEFT ONTO WALLS DR.55 WALLS DR, FAIRFIELD, CT 06824-5139, 55 WALLS DR IS ON THE RIGHT.

THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. IT IS ONLY ACCESSED BY TRAINED TECHNICIANS FOR PERIODIC ROUTINE MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS.

GENERAL NOTES

- CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE AT&T MOBILITY REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.
- CONSTRUCTION DRAWINGS ARE VALID FOR SIX MONTHS AFTER ENGINEER OF RECORD'S STAMPED AND SIGNED SUBMITTAL DATE LISTED HEREIN.

72 HOURS

CALL TOLL FREE 1-800-922-4455

OR CALL 811 MINDE CONNECTION OF CONNE

UNDERGROUND SERVICE ALERT

CT2120

SITE NUMBER: CT2120 SITE NAME: FAIRFIELD CENTRAL

DIRECTIONS TO SITE:

55 WALLS DRIVE FAIRFIELD, CT 06824 FAIRFIELD COUNTY

							; S	\OL	DA E	14	\mathcal{L}	•
					<i>/</i>	Ш	*	\mathbf{I}_{I}	-50	2		×
					Η,	=	$\vdash \vdash$	$\mathbf{d}I$	No. 14	128	\mathcal{L}	H
03/28/22	ISSUED FOR	CONSTRUCTION	١		W	as	109(V. /	1W		K
12/16/21	ISSUED FOR	REVIEW			мв	HC	DPH		LCEN	S C	$\langle \mathcal{V} \rangle$	۲
DATE		REVISION	ONS		BY	снк	APP*		S/ONAL	ENC!	111	Š
LE: AS S	HOWN	DESIGNED BY:	HC	DRAW	N BY:	MRK		1 ′′	//////	111111	•	

AT&T TITLE SHEET TISC NR 1SR CBAND BBU UPGRADE, 4TXRX ENTENNA RETROFIT, 5G NR RADIO, 6C UPGRADE 5G NR SOFTWARE UPGRADE

Design Group LLC

NORTH ANDOVER, MA 01845

CENTERLINE

750 WEST CENTER STREET, SUITE #301 WEST BRIDGEWATER, MA 02379"

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HILL, CT 06067

GROUNDING NOTES

- 1. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM AND LIGHTNING PROTECTION SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AHJ), THE SITE—SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION
- 2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81 STANDARDS) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS AND #2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- APPROVED ANTIOXIDANT COATINGS (I.E., CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO GROUND BAR.
- ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING. IN ACCORDANCE WITH THE NEC.
- 11. METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 12. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/2 IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50

GENERAL NOTES

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR - CENTERLINE SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION) OWNER - AT&T MOBILITY

- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR.
- 3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 4. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS
- "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.
- 7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 8. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.

- 14. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR—ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS. ALL CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
- 15. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCH UP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 16. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T SITES."
- 17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT
- 19. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.

20. APPLICABLE BUILDING CODES:

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE, AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION (AHJ) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.

BUILDING CODE: IBC 2015 WITH 2018 CT STATE BUILDING CODE AMENDMENTS ELECTRICAL CODE: 2017 NATIONAL ELECTRICAL CODE (NFPA 70-2017)

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING STANDARDS:

AMERICAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE;

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION, ASD, FOURTEENTH EDITION;

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-H, STRUCTURAL STANDARDS FOR STEEL

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.

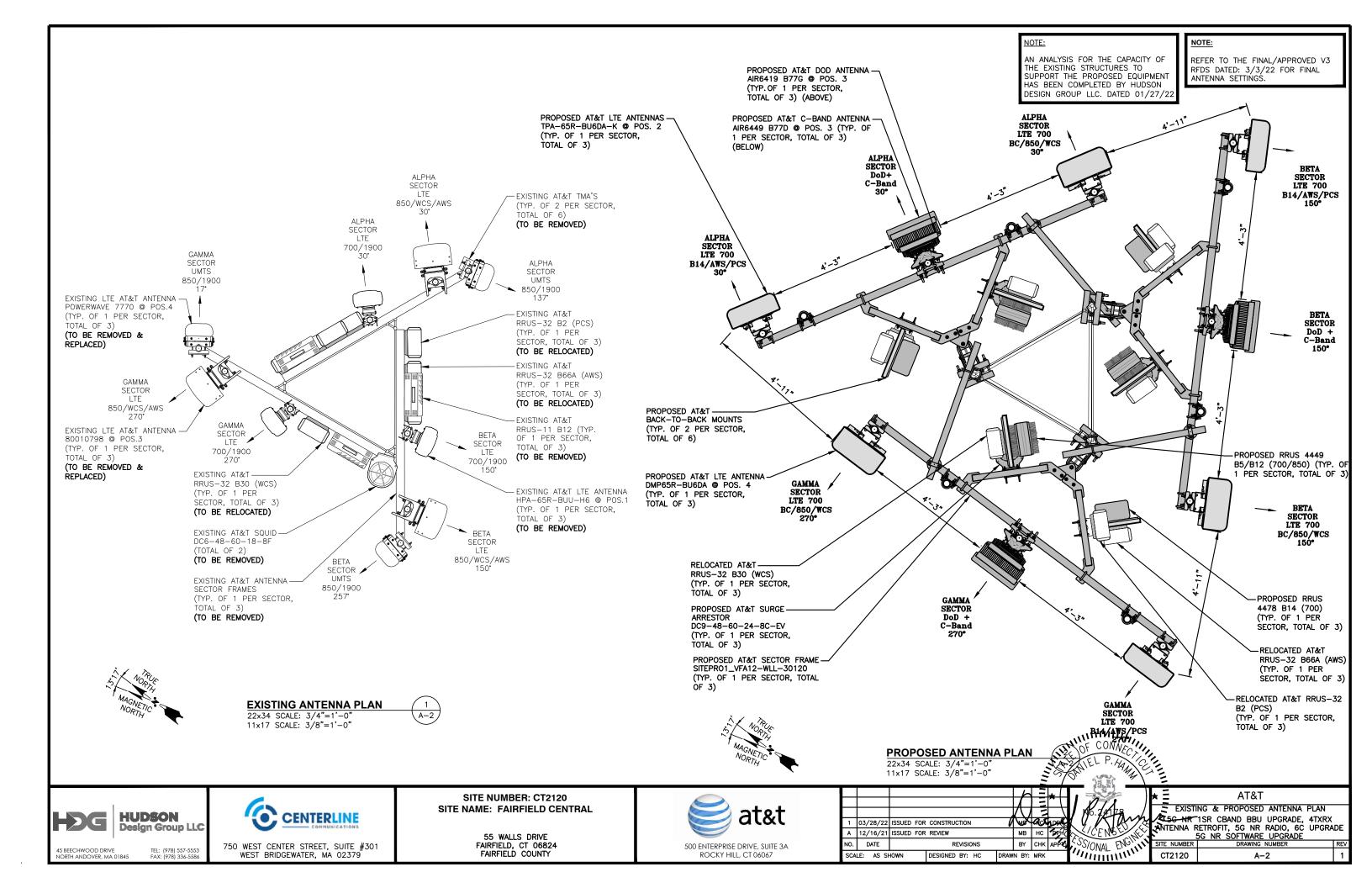
			ABBREVIATIONS		
AGL	ABOVE GRADE LEVEL	EQ	EQUAL	REQ	REQUIRED
AWG	AMERICAN WIRE GAUGE	GC	GENERAL CONTRACTOR	RF	RADIO FREQUENCY
BBU	BATTERY BACKUP UNIT	GRC	GALVANIZED RIGID CONDUIT	TBD	TO BE DETERMINED
втсм	BARE TINNED SOLID COPPER WIRE	MGB	MASTER GROUND BAR	TBR	TO BE REMOVED
BGR	BURIED GROUND RING	MIN	MINIMUM	TBRR	TO BE REMOVED AND REPLACED
BTS	BASE TRANSCEIVER STATION	Р	PROPOSED	TYP	TYPICAL
E	EXISTING		MOTITO AGALE	UG	UNDER GROUND
EGB	EQUIPMENT GROUND BAR	RAD	RADIATION CEMPER LINE VANTENNA)	VIF	VERIFY IN FIELD
EGR	EQUIPMENT GROUND RING	REAL	THE WALL THE		

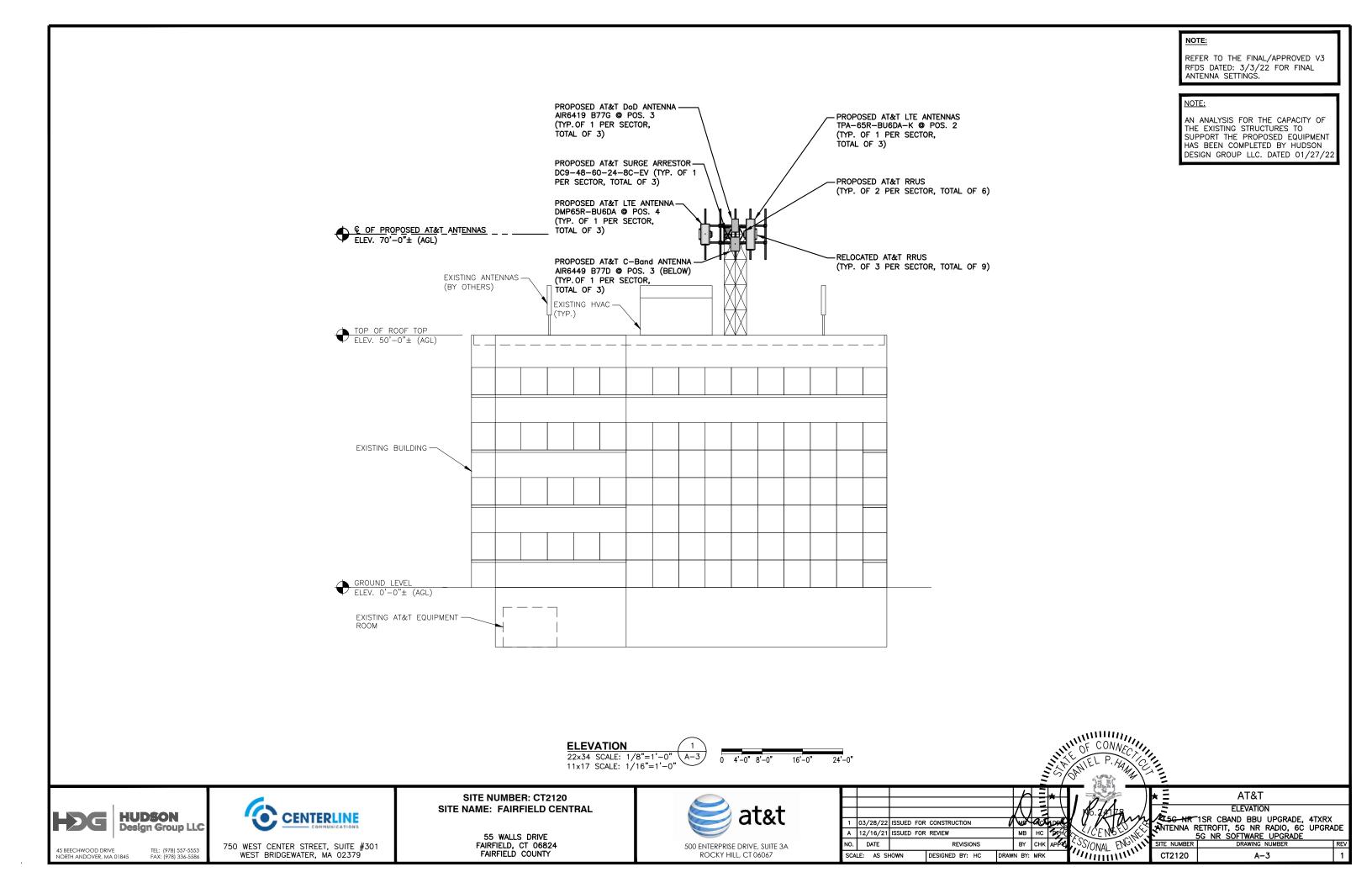
NORTH ANDOVER, MA 01845

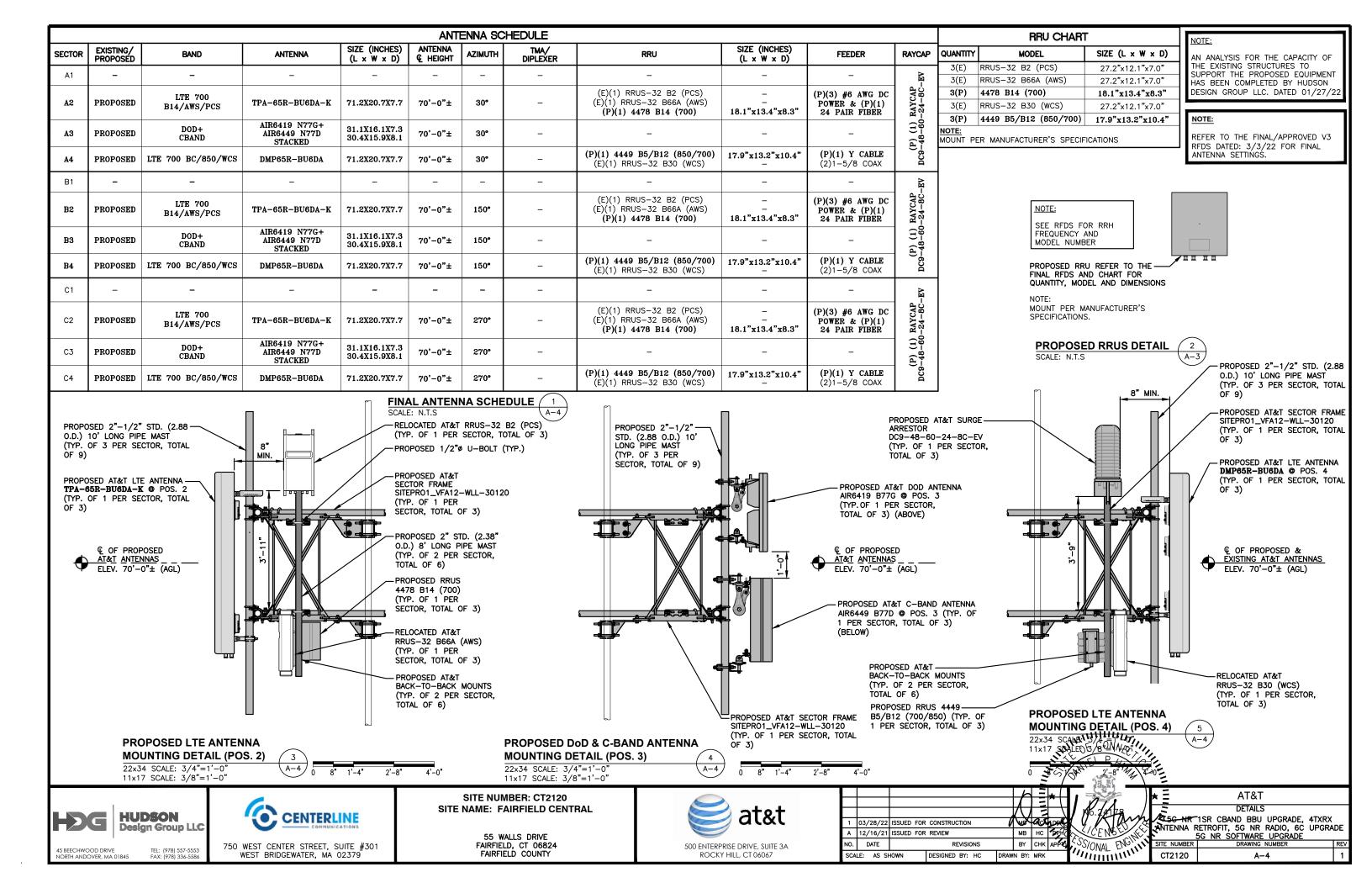
TEL: (978) 557-5553 FAX: (978) 336-5586

750 WEST CENTER STREET, SUITE #301

WEST BRIDGEWATER, MA 02379

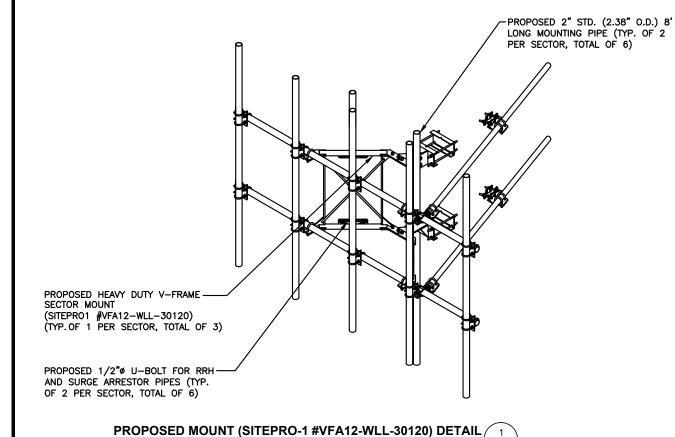

SITE NUMBER: CT2120 SITE NAME: FAIRFIELD CENTRAL

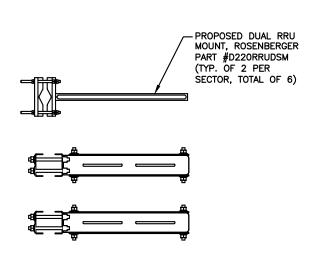

> 55 WALLS DRIVE FAIRFIELD, CT 06824 FAIRFIELD COUNTY



		EGR	EQUIPMENT	GROUN	וא ט	NG =	· RE	Ю,	57	I E(199	7	=				
					<u> </u>	Ш	*	Γ,	=		2.	1	⋆ Ξ		AT	&T	
					1	 =	$\vdash \vdash$	/		1/2	2	7	111		GENERA	NOTES	
1	03/28/22	ISSUED FOR	CONSTRUCTION	- 1		aá	1000	K	()			K	ANTEN		ISR CBAND E ETROFIT, 5G		
Α	12/16/21	ISSUED FOR	REVIEW		MB	НС	DPHZ		£/C1	- NRZ		\times	ZIVIEIVI			ARE UPGRA	ADE
NO.	DATE		REVISIONS		BY	СНК	APP 0	S	SION	IAI F	MCIL	11)	SITE NUI			ING NUMBER	 REV
SCA	LE: AS SI	HOWN	DESIGNED BY: HC	DRAW	N BY:	MRK		"	/////		1111,	Ť	CT21:	20		GN-1	1

NOTE: REFER TO THE FINAL/APPROVED V3 RFDS DATED: 3/3/22 FOR FINAL ANTENNA SETTINGS. NOTE: AN ANALYSIS FOR THE CAPACITY OF THE EXISTING STRUCTURES TO SUPPORT THE PROPOSED EQUIPMENT HAS BEEN COMPLETED BY HUDSON DESIGN GROUP LLC. DATED 01/27/22 EXISTING (12) 1 5/8" Ø COAX -(6) TO REMAIN -EXISTING AT&T EQUIPMENT ROOM (6) TO BE REMOVED TO BE REMOVED & REPLACED (2) 18 PAIR FIBER
TO BE REMOVED & REPLACED PROPOSED (9) #6 AWG DC TRUNKS — & (3) 24 PAIR FIBER TRUNKS - EXISTING EQUIPMENT (TO FOLLOW EXISTING ROUTE) (BY OTHERS) EXISTING TELCO -- EXISTING STEEL FRAME BACKBOARD EXISTING ANTENNA -BY OTHERS ALPHA EXISTING FIF RACK SECTOR EXISTING HVAC - CONTROLLER \bigcirc EXISTING INFINITY POWER PLANET - EXISTING ENTRY EXISTING A/C-PORT EXISTING AT&T RRUS -PANEL (TYP. OF 3 PER SECTOR, TOTAL OF 9) EXISTING RRUW 02 B5 MOUNTED ON RRUW RACK PROPOSED AT&T RRUS (TYP. OF 2 PER EXISTING RBS -EXISTING RRU -3206 BETA ADD (1) 6648 XCEDE CABLE SECTOR, TOTAL OF 6) MOUNTED ON SECTOR RRUW RACK 150° ADD (1) 6630 IDLe CABLE - EXISTING HVAC (TYP.) **GAMMA** PROPOSED AT&T — EXISTING RRUS 12 MOUNTED ON PROPOSED UNISTRUT ON SECTOR 270° ANTENNAS -EXISTING LTE (TYP. OF 4 PER SECTOR, INTERIOR WALL (TYP. OF 1 RACK TOTAL OF 12) PER SECTOR, TOTAL OF 3) EXISTING POWER (TO BE REMOVED) PROPOSED DC12 EXISTING HVAC IN EXISTING POWER RACK EXISTING GSM -CABINET EXISTING -DEHUMIDIFIER 22x34 SCALE: 3/8"=1'-0" COVMACY 2-8" **ROOF PLAN** 22x34 SCALE: 3/32"=1'-0" 11x17 SCALE: 3/64"=1'-0" 0 5'-4" 10'-8" AT&T **SITE NUMBER: CT2120** ROOFTOP & EQUIPMENT PLANS SITE NAME: FAIRFIELD CENTRAL at&t HUDSON TSC NR 1SR CBAND BBU UPGRADE, 4TXRX
NTENNA RETROFIT, 5G NR RADIO, 6C UPGRADE
5G NR SOFTWARE UPGRADE
SITE NUMBER DRAWING NUMBER REV CENTERLINE 1 03/28/22 ISSUED FOR CONSTRUCTION **Design Group LLC** A 12/16/21 ISSUED FOR REVIEW MB HC DA 55 WALLS DRIVE FAIRFIELD, CT 06824 FAIRFIELD COUNTY BY CHK APP 750 WEST CENTER STREET, SUITE #301 WEST BRIDGEWATER, MA 02379 REVISIONS 500 ENTERPRISE DRIVE, SUITE 3A WIND CHAIN TEL: (978) 557-5553 FAX: (978) 336-5586 45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 ROCKY HILL, CT 06067 DESIGNED BY: HC DRAWN BY: MRK CT2120





REFER TO THE FINAL/APPROVED V3 RFDS DATED: 3/3/22 FOR FINAL ANTENNA SETTINGS.

NOTE:

AN ANALYSIS FOR THE CAPACITY OF THE EXISTING STRUCTURES TO SUPPORT THE PROPOSED EQUIPMENT HAS BEEN COMPLETED BY HUDSON DESIGN GROUP LLC. DATED 01/27/22

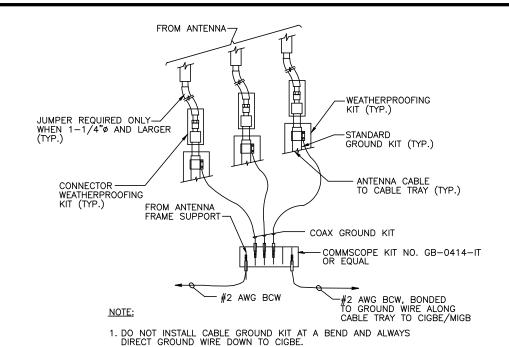
PROPOSED SURGE -SUPPRESSOR MODEL NUMBERS: DC9-48-60-24-8C-EV DIMENSIONS: H17.90"x10.24"ø WITH BRACKET: H17.90"X10.24"ø STRIKESORB 30-V1 SURGE PROTECTIVE DEVICE

BACK TO BACK RRU MOUNT DETAIL SCALE: N.T.S

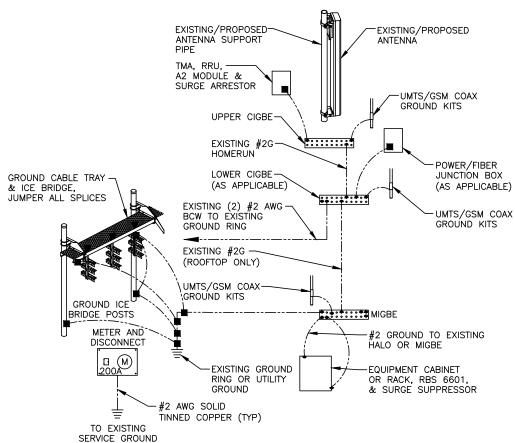
DC SURGE SUPPRESSOR DETAIL SCALE: N.T.S

MOUNT PER MANUFACTURER'S SPECIFICATIONS.

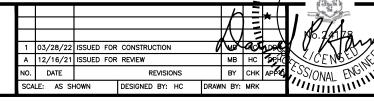
SCALE: N.T.S

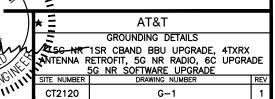


SITE NUMBER: CT2120 SITE NAME: FAIRFIELD CENTRAL


55 WALLS DRIVE FAIRFIELD, CT 06824 FAIRFIELD COUNTY

					1111		E OF	CON EL P.	INECTION HAMA				
				r	1111	*	\int_{0}^{1}	011		* <u> </u>	AT&T DETAILS		
				\triangle	1	\rightarrow	V X	6.7 <i>4</i> 1	Bash.	PISC NR	1SR CBAND BBU UPGRADE,	ATVDV	
03/28/22	ISSUED FOR	CONSTRUCTION	4	MB/	40	1096	ΚV		KY/X		RETROFIT, 5G NR RADIO, 6C		
12/16/21	ISSUED FOR	REVIEW		MB	нс	DPHO		CEN			5G NR SOFTWARE UPGRADE	OI GIVA	⁻
DATE		REVISIONS		BY	снк	APP 0	$\mathcal{SS}^{\circ}_{\mathcal{S}}$	ΊΩΝΔΙ	ENC//11	SITE NUMBER	DRAWING NUMBER		REV
E: AS SH	HOWN	DESIGNED BY: HC	DRAW	N BY:	MRK		111	111111	111111	CT2120	A-5		1




GROUNDING RISER DIAGRAM / 2 SCALE: N.T.S

SITE NUMBER: CT2120 SITE NAME: FAIRFIELD CENTRAL

> 55 WALLS DRIVE FAIRFIELD, CT 06824 FAIRFIELD COUNTY

NOTES:

STAINLESS:

HARDWARE

FLAT WASHER, TYP.

LOCK WASHER, TYP.

3/8"x1-1/4" HEX

GROUNDING CABLE-

ELEVATION

SECTION "A-A"

BOLT

GROUNDING CABLE-

STEEL

"DOUBLING UP" OR "STACKING" OF CONNECTION IS NOT PERMITTED.

TWO HOLE COPPER

GROUND BAR

COMPRESSION TERMINAL

EXPOSED BARE COPPER TO BE

KEPT TO ABSOLUTE MINIMUM, NO INSULATION ALLOWED WITHIN THE COMPRESSION TERMINAL (TYPICAL)

OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATION. CADWELD DOWNLEADS FROM UPPER EGB, LOWER EGB, AND MGB

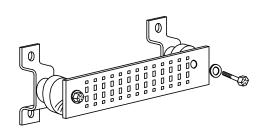
FLAT WASHER,

NUT, TYP.

GROUND BAR

TYPICAL GROUND BAR CONNECTION DETAIL SCALE: N.T.S

EACH GROUND CONDUCTOR TERMINATING ON ANY GROUND BAR SHALL HAVE AN IDENTIFICATION TAG ATTACHED AT EACH END THAT WILL IDENTIFY ITS ORIGIN AND DESTINATION.


SECTION "P" - SURGE PRODUCERS

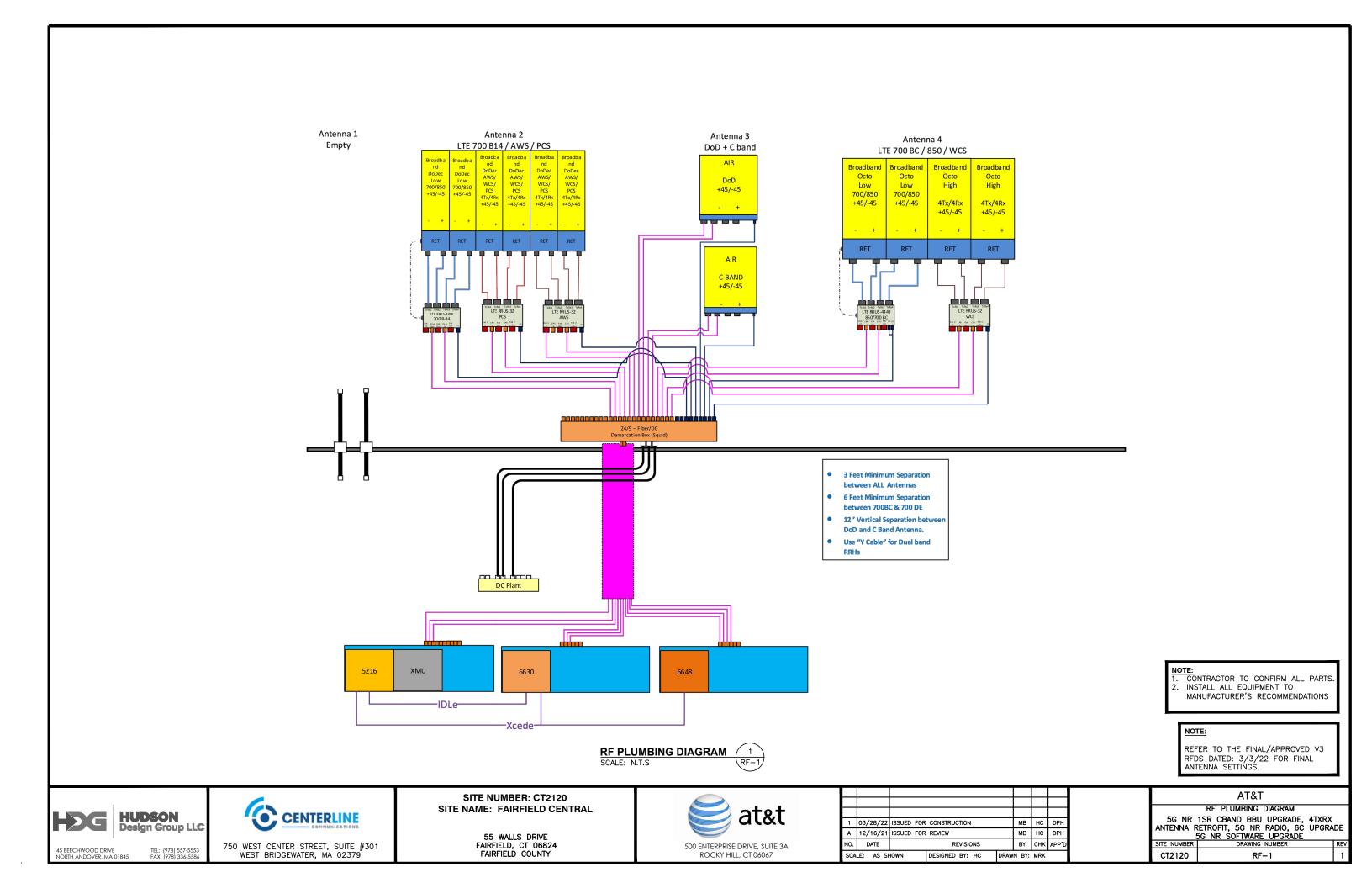
CABLE ENTRY PORTS (HATCH PLATES) (#2 AWG) GENERATOR FRAMEWORK (IF AVAILABLE) (#2 AWG) TELCO GROUND BAR COMMERCIAL POWER COMMON NEUTRAL/GROUND BOND (#2 AWG) +24V POWER SUPPLY RETURN BAR (#2 AWG) -48V POWER SUPPLY RETURN BAR (#2 AWG) RECTIFIER FRAMES.

SECTION "A" - SURGE ABSORBERS

INTERIOR GROUND RING (#2 AWG)
EXTERNAL EARTH GROUND FIELD (BURIED GROUND RING) (#2 AWG)
METALLIC COLD WATER PIPE (IF AVAILABLE) (#2 AWG) BUILDING STEEL (IF AVAILABLE) (#2 AWG)

GROUND BAR - DETAIL (AS REQUIRED)

SCALE: N.T.S


NORTH ANDOVER, MA 01845

750 WEST CENTER STREET, SUITE #301

WEST BRIDGEWATER, MA 02379"

EXHIBIT 2

Proper Vision		tion 55 V 2330	VALLS	DRIVE	Account #	04050		Map ID	141/		Bldg #	1			Bldg Namec # 1		Card #	1 of	1		e Use 3 t Date 3		5:36:01 AM
	CU	RRENT O	WNER		T	OPO	U	TILITIES	STRT	/ROA	D	LOCA	TION			CURREN	IT ASSE	SSMEN	T				
55 WA	LLS DE	RIVE LLC			1 Level		1 All	Public	1 Paved	I		Bus. Di	istrict	Des	scription	Code	App	raised	A	Assessed	d	6	051
		_			4 Rollin	g					X			COM L		2-1		1,451,20		1,015	, I	0	001
		NTO INC						SUPPLEMEN	ITAL D	A T A	K			СОМ В		2-2		8,949,00	1	6,264		EAIDE	IELD OT
ONE C	ORPO	RATE DRI	VΕ		Alt Prcl	ID 001		30PPLEMEN 97 00000	Lec		13/	4,2R		СОМС	UTBL	2-5		247,00	0	172	2,900	FAIRE	ELD, CT
					Assoc.	יטט טו	41 0003	77 00000	, ,	gai Scrip		7,21\ /T ST.									-		
CLIELT	ON	СТ	0	6484	Lots					scrip	DAV												
SHELT	ON	CI	U	0464	I&E Sup	pF				cord Ma	a											1/10	101
					Notice		_		Mu	lti Fam												VI2	ION
					Census	615)																
					GIS ID	141	0970000)	Ass	soc Pid	#					l Tota	1	0,647,20	0	7,453	3 040		
	REC	CORD OF	OWNE	RSHIP		BK-VO	L/PAGE	SALE DATE	E Q/U	V/I	SALE	PRIC	E VC				VIOUS	4SSESS	MENTS				
55 WA	LLS DE	RIVE LLC					0115	06-02-2003		1			0	Year	Code	Assessed	Year	Code		essed	Year	Code	Assessed
	O ROB					0826	0146	12-02-1987				2,358,3	- 1	2020	2-1	1,015,84	2020	2-1	1,0	015,840	2019	2-1	967,540
												,,-			2-2	6,264,30		2-2		264,300		2-2	6,178,340
															2-5	172,90	0	2-5	1	172,900		2-5	162,960
															Total	745304	-0	Total	7	7453040		Total	7308840
			EXE	MPTIC	NS					ОТ	HER A	ISSES	SMENT	Ś								or Assessor	
Year	Code	e	De	scriptio	n	Α	mount	Code	Descri	ption	Nur	mber	Am	ount	Comm	n Int							
																		APPR	AISED	VALUE	SUMI	IARY	
																Apprai	sed Bldg.	Value (C	ard)				8,533,600
					Tot			00 NEIGHBORF	IOOD		<u> </u>				1		sed Xf (B	•	,				415,400
	Nbh	d	T	Nlbh	d Name	ASSI		B		Tra	cing		<u> </u>	Bat	ch	Apprai	seu Ai (D) value (E	olug)				·
	0020		1	TADIT	a rianic			В		110	onig			Dai	·OII	——— Apprai	sed Ob (E	3) Value ((Bldg)				247,000
	0020	<u> </u>						IOTES								——Apprai	sed Land	Value (B	ldg)				1,451,200
1CT EI	D OEE	-3 & CAFE	TEDIA	OND E	D OEE 4			C/O 3/27/	12 1460	EG DEI	O 2 AI	NIT 9 A	DD 2			Specia	I Land Va	alue					0
					•								נ טטו			1 '			_1				40.047.000
3RD-O)FF-4,4 ⁻	TH FLR-O	FF-2 PA	W2-UP	PER LEVEL			ANT.& RA	DIO HE	ADS (N	NOTE:	P.P.) *				l otal A	ppraised	Parcei v	alue				10,647,200
PARKI	NG100	% SPR1-IN	ICL-P S	FB-LO	WER ENTF	RC .		10/22/12 (C/O 1464	407 148	3039 AI	LT(OLE	WORK	()		Valuat	on Metho	d					С
FI FV=	5 STPS	S,125FPM,	P 1=500	00#.1=4	1000.			C/O'S 151	140 & 1	51141 2	ND FI	R RFN	NO-*N/C										
				,																			
		RED 93+L						159561/15	9495/15	942b (JUIVIP '	10/1/19	NC										
C/O 10)/20/11	147043 IN	ΓALT (N	NOTE F	P.P) *											Total	Appraised						10,647,200
								PERMIT REC												ANGE I			
Perm		Issue Date		/pe	Descriptio	n /	Amount	Insp Date			Date C		*T 1.400	Commo			Date		Туре	Is Co		Purpost	
161003		08-04-202					,	0 10-01-2020		-	10-01-2				O 6 ANTE		1-2019	KBC					einspection/
159561 159495		09-05-201 08-22-201					- ,	0 10-01-2019 0 10-01-2019		-	10-01-2 10-01-2				SOURCE AP 6 ANT		9-2018 9-2018	KC KC			No cl		
159426		08-06-201						5 10-01-2019							**BUILD 1		8-2017	l id l			No cl		
156429		11-27-201	7 CM				25.00	0 04-09-2018	10	ŏ l	04-09-2	2018	**AT & T	**REPL 3	RADIO A	ANT 09-1	5-2015	JW		22	Blda	Permit Lis	ted
156160		10-02-201						0 04-09-2018	10	0	11-08-2	2017 I	NT FIT-U	JP-CTR	FOR PED	DIAT 04-3	0-2015	KC		40	No cl	nange	
154687		11-02-201	6 RE	IR	temodel		38,00	<u>0 04-18-2017</u>	10	0 .	12-14-2	<u> 2016 l</u>	NT ALTS	S-ACME	UNITED	01-1	4-2015	ES		00	Meas	ur+Listed	
		1		_		1		1			T										T		
B Use	e Code	Descri	ption	Zone	Land Type	e Lan	d Units	Unit Price	I. Factor	r Site	Index	Cond.	Nbhd.	Nhbd Ad	dj	Notes		Lo	cation A	djustmer	nt Adj	Unit Pric	Land Value
1 3	3400	Office C		DID	1	76.	665 SF	18.03	1.00000			1.00	C4	1.050				+		1	0		1,451,200
						' ']	.5.55		`	-												.,,_00
				otal Ca	rd Land Uni	c 1	760 AC	Pa	rcel Tota	al I and	Area:	1 7600			i						Totall	and Value	1,451,200

 Property Location
 55 WALLS DRIVE
 Map ID
 141/97//
 Bldg Name
 State Use 3400

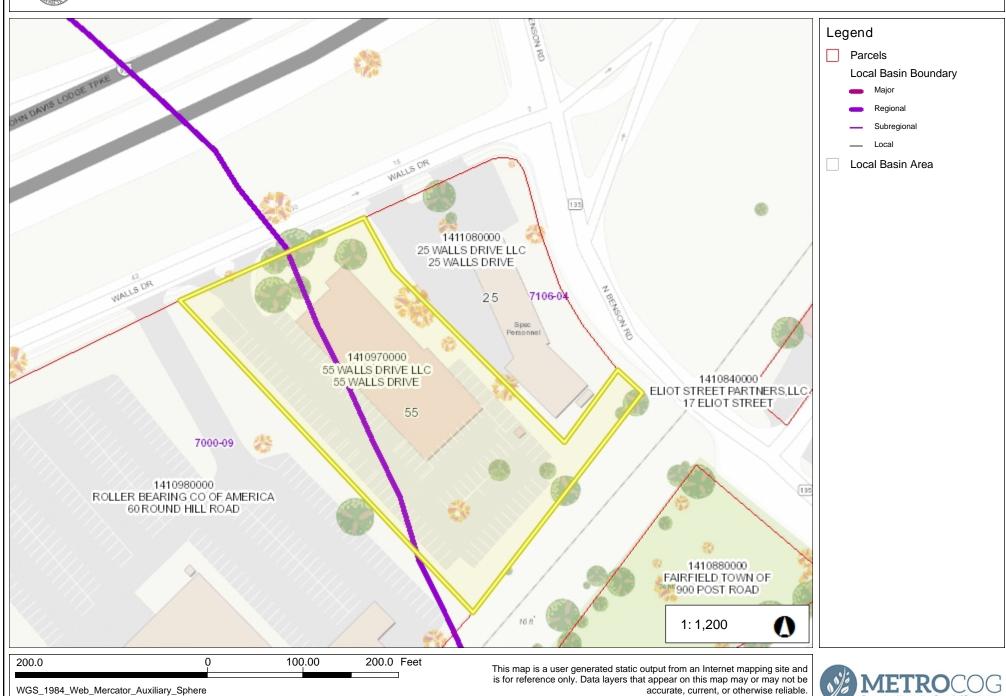
 Vision ID
 12330
 Account #
 04050
 Bldg #
 1
 Sec #
 1 of 1
 Card #
 1 of 1
 Print Date 3/18/2021 5:36:02 AM

VISION ID 123	30	Account # 0405	U				Blag #	7 1	
С	ONSTRU	CTION DETAIL	CONSTRUCTION DETAIL (CONTINUED)						
Element	Cd	Description	Elem	nent	Cd		Descr	ription	
Style:	500	Office							
Model	94	Comm/Ind							
Grade	04	Average Plus							
Stories:	4								
Occupancy	8.00			,	MIXE		SE		
Exterior Wall 1	21	Stone/Masonry	Code		Descrip	otion		Percentage	
Exterior Wall 2	28	Glass/Thermo.	3400	Office C)			100	
Roof Structure	01	Flat						0	
Roof Cover	04	Rubber						0	
Interior Wall 1	05	Drywall		COS	I/MARK	EIV	ALUATIO)N	
Interior Wall 2			DOM				44 050 07	•	
Interior Floor 1	14	Carpet	RCN				11,852,27	8	
Interior Floor 2	19	Marble							
Heating Fuel	03	Gas	V D11				1988		
Heating Type	04	Forced Air-Duc	Year Built	-	lı.		1988		
AC Type	03	Central	Effective				5		
Bldg Use	3400	Office C	Depreciat		3		5		
Total Rooms			Remodel Year Rem						
Total Bedrms	00		Depreciat				18		
Total Baths	0		Functiona				0		
Liv Area			External (10		
Effect Area			Trend Fa				10		
Heat/AC	01	Heat/AC Pkgs	Condition				•		
Frame Type	06	Fireprf Steel	Condition						
Baths/Plumbing	02	Average	Percent C				72		
Ceiling/Wall	05	Sus-Ceil & WI	Cns Sect				8,533,600		
Rooms/Prtns	02	Average	Dep % O				-,,		
Wall Height	12.00		Dep Ovr		t				
% Comn Wall	0.00		Misc Imp		-				
1st Floor Use:	3400		Misc Imp		nment				
			Cost to C						
			Cost to C						
		UILDING & YARD ITEMS(L)							
Code Decer		/D Unite Unit Drice Vr Dlt	Canal C	1 0/ 0-	0	0.	l - A -l:	A \ / = l =	

UGR 106 17 52 FUS (x3) 28 AS 107 FUS (x3) 28 AS 108 FUS (x3) FUS (x3	
6 51 51 51 51 63 63 81 81 81 49 44 44 44 44 44 48 6 1 FUS (X3) 17 7 17 47 18 9 9 52	159
61 261	

	OB - OUTBUILDING & YARD ITEMS(L) / XF - BUILDING EXTRA FEATURES(B)												
Code	Description	L/B	Units	Unit Price	Yr Blt	Cond. Cd	% Good	Grade	Grade Adj	Appr. Value			
SPR1	SPRINKLERS-	В	86,226	2.40	1999	İ	72		0.00	149,000			
LT1	LIGHTS-IN W/P	L	10	840.00	2001		90		0.00	7,600			
PAV1	PAVING-ASPH	L	23,000	3.70	2001		90		0.00	76,600			
PAV2	PAVING-CONC	L	28,700	4.70	2001		90		0.00	121,400			
ELV1	PASS ELEV	В	5	37000.00	1999		72		0.00	133,200			
ELV1	PASS ELEV	В	5	37000.00	1999		72		0.00	133,200			
MSC4	UTIL BLDG	L	1	31000.00	2001		90		0.00	27,900			
GEN1	GENERATOR	L	1	15000.00	2015		90		0.00	13,500			

	J		1 1	1	1 1							
		BUILDING SUB-AREA SUMMARY SECTION										
	Code		Description		Living Area	ı Floo	or Area	Eff Area	Unit Cost	Undeprec Value		
Р	BAS	First Floor			7,692	2	7,692		177.05	1,361,830		
F	FBM	Basement, Finis	shed		554	4	1,107		61.89	68,516		
F	-CP	Carport			1 /	0	5,346		44.28	236,709		
F	FOP	Porch, Open, F	inished		1 '	0	2,262		44.30	100,207		
F	-US	Upper Story, Fir	nished		46,434	4	46,434		177.05	8,220,908		
Ľ	JBM	Basement, Unfi	inished		1 /	ა	7,164		44.26	317,088		
U	JGR	Garage, Under			'	0	29,126		53.11	1,547,019		
					1		I					
							ļ					
							I					
							I					
F			Ttl Cross Line	/ L 0000 A 700	F4.60	 -	00 121	66.045		44.050.077		
L			Ttl Gross Liv /	/Lease Area	54 680		99 131	66 945		11 852 1		



Created by Greater Bridgeport Regional Council

Town of Fairfield

Title

THIS MAP IS NOT TO BE USED FOR NAVIGATION

EXHIBIT 3

STRUCTURAL ANALYSIS REPORT

For

CT2120

FAIRFIELD CENTRAL

55 Walls Drive Fairfield, CT 06824

Antennas Mounted on Tower Supported by Steel Platform

Prepared for:

Dated: January 27, 2022

Prepared by:

45 Beechwood Drive North Andover, MA 01845 (P) 978.557.5553 (F) 978.336.5586

www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the structure supporting the proposed equipment located in the areas depicted in the latest HDG construction drawings.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT&T's proposed antennas listed below.

This office conducted an on-site visual survey of the above site on March 23, 2021. Attendees included Patrick Barrett (HDG – Field Technician).

The following documents were used for our reference:

- Previous HDG Structural Analysis dated July 6, 2016.
- HDG Tower Structural Analysis dated January 10, 2022.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing structure **IS CAPABLE** of supporting the proposed equipment loading.

	Member	Stress Ratio	Pass/Fail
Building Column	W12x65	67%	PASS

Based on our evaluation, we have determined that the existing connections **ARE CAPABLE** of supporting the proposed equipment loading.

	Member	Stress Ratio	Pass/Fail
Existing Tower Connection	5/8" Thru Bolt	69%	PASS

Based on our evaluation, we have determined that the existing mounts **ARE CAPABLE** of supporting the proposed equipment loading.

	Member	Controlling Load Case	Stress Ratio	Pass/Fail
Steel Platform	11	LC20	78%	PASS
Platform Support	2-1/2" std	Axial & Bending	87%	PASS

<u>Note:</u> Reference HDG Tower Structural Analysis dated January 10, 2022, for appurtenances and tower reactions.

^{*}Reference documents attached.

DESIGN CRITERIA:

International Building Code (IBC) 2015 with 2018 Connecticut State Building Code Amendments, and ASCE 7-10 (Minimum Design Loads for Buildings and Other Structures).					
Wind					
Reference Wind Speed:	125 mph	(2018 CSBC Appendix N)			
Exposure Category:	В	(ASCE 7-10 Chapter 26)			
Risk Category:	II	(ASCE 7-10 Table 1.5-1)			
Snow					
Ground Snow, Pg:	30	(2018 CSBC Appendix N)			
Importance Factor (Is):	1.0	(ASCE 7-10 Table 1.5-2)			
Exposure Factor (C _e):	0.9	(Fully Exposed, Table 7-2)			
Thermal Factor (C _t):	1.0	(ASCE 7-10 Table 7-3)			
Flat Roof Snow Load:	19 psf	(ASCE 7-10 Equation 7.3-1)			
Min. Flat Roof Snow Load:	30 psf				
EIA/TIA-222-H Structural Stand Structures	dards for Steel Ant	enna Towers and Antenna Supporting			
Wind					
City/Town:	Fairfield				
County:	Fairfield				
Wind Load:	125 mph	(TIA-222-H Figure B-2)			
Ice					
Design Ice Thickness (t _i):	1.0 in	(TIA-222-H Figure B-9)			
Structure Class:	II	(TIA-222-H Table 2-1)			
Importance Factor (I _i):	1.0	(TIA-222-H Table 2-3)			
Factored Thickness of Radial Ice (tiz):	1.08 in	(TIA-222-H Sec. 2.6.10)			

EXISTING ROOF CONSTRUCTION:

The existing roof construction consists of a roofing membrane over rigid insulation over metal decking supported by steel beams and columns.

TOWER SUPPORT RECOMMENDATIONS:

The existing tower is supported by the existing steel platform located on the roof of the existing building supported on existing steel columns.

Limitations and Assumptions:

- 1. Reference the latest HDG construction drawings for all the equipment locations and details.
- 2. All detail requirements will be designed and furnished in the construction drawings.
- 3. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 4. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 5. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
- 6. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

FIELD PHOTOS:

Photo 1: Sample photo illustrating the existing tower and steel platform.

Tower Connection Calculations

Date: 1/27/2022

Project Name: FAIRFIELD CENTRAL

Project No.: CT2120

Designed By: ID Checked By: MSC

CHECK CONNECTION CAPACITY (Worst Case - Tower Leg)

Reference: AISC Steel Construction Manual 14th Edition (ASD)

Bolt Type = A325 5/8" Threaded Rod

Allowable Tensile Load =

 $\mathbf{F}_{\mathsf{Tall}} = 13806 \; \mathsf{lbs}.$

Allowable Shear Load =

F_{Vall}= 8283 lbs.

TENSILE FORCES

Reaction F = 31662 lbs. (See HDG Tower Analysis Report dated January 10, 2022)

SHEAR FORCES

Reaction 3812 lbs. (See HDG Tower Analysis Report dated January 10, 2022)

No. of Supports = 1 No. of Bolts / Support = 4

Tension Design Load /Bolts =

 f_t = 7915.50 lbs. < 13806 lbs. Therefore, OK!

Shear Design Load / Bolts=

 f_v = 953.00 lbs. < 8283 lbs. Therefore, OK!

CHECK COMBINED TENSION AND SHEAR

 f_t / F_T + f_v / F_V \leq 1.0

0.573 + 0.115 = 0.688 < 1.0 Therefore, OK!

Steel Platform Calculations

Date: 1/27/2022

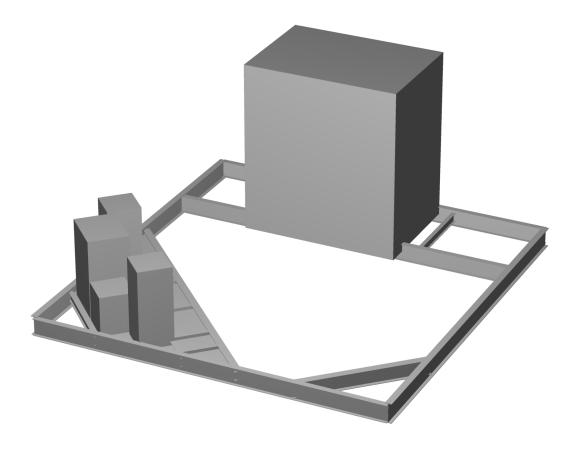
Project Name: FAIRFIELD CENTRAL

Project No.: CT2120

Designed By: ID Checked By: MSC

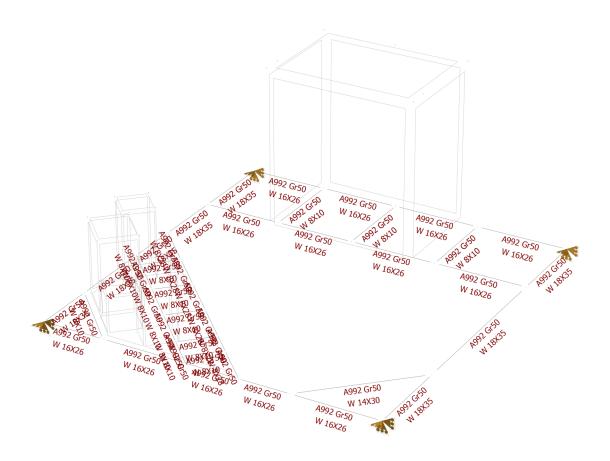
Wind Analysis → Equipment on Platform

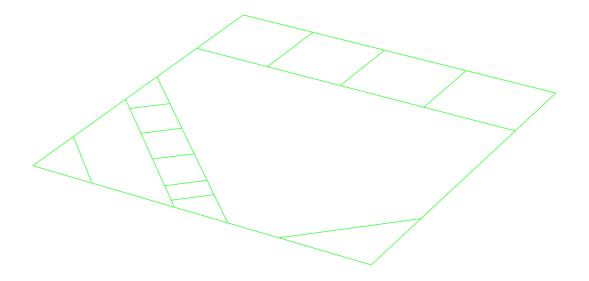
Reference Codes:

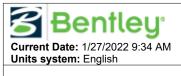

-Connecticut State Building Code

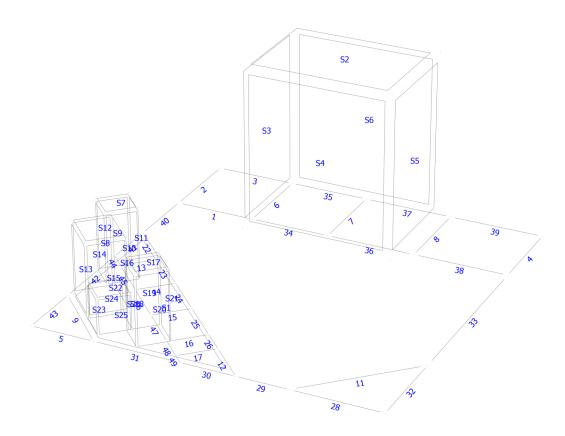
-International Building Code 2018 (IBC 2018)

-Minimum Design Loads for Buildings and Other Structures (ASCE 7-10)


Structure Classification		II	(ASCE 7-10 Table 1.5-1)
Basic Wind Speed, V		125 mph	(CT Building Code Appendix N)
Importance Factor, I		1	(ASCE 7-10 Table 1.5-2)
Exposure Category		В	(ASCE 7-10 Section 26.7)
Height Above Ground Level, z		60 ft	(Center of Enclosure)
Exposure Coefficient, K _z		0.85	(ASCE 7-10 Table 29-3.1)
Wind Directionality Coef., K_{d}		0.90	(ASCE 7-10 Table 26.6-1)
Topographic Factor, K _{zt}		1.00	(ASCE 7-10 Section 26.8.2)
Velocity Pressure, q _z	$= 0.00256K_zK_z$ = 30.6	_t K _d V ² <u>0 psf</u>	(ASCE 7-10 Equation 29.3-1)
Gust Factor, G		0.85	(ASCE 7-10 Section 26.9)
Enclosure Shape:		Square	
Net Force Coefficient, C _f		1.31	(ASCE 7-10 Figure 29.5-1)
Area Wind Force, F	$= q_zGG$ $= 34.0$	3 psf	(ASCE 7-10 Equation 29.5-2)







Current Date: 1/27/2022 3:41 PM

Units system: English

Load data

GLOSSARY

Comb : Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
 DL	Dead Load	 No	DL
LL	Live Load	No	LL
WL1	Wind Load Side 1	No	WIND
WL2	Wind Load Side 2	No	WIND
WL3	Wind Load Side 3	No	WIND
WL4	Wind Load Side 4	No	WIND
DL1	Leg A Loads	No	DL
DL2	Leg B Loads	No	DL
DL3	Leg CLoads	No	DL

Load on nodes

Condition	Node	FX [Kip]	FY [Kip]	FZ [Kip]	MX [Kip*ft]	MY [Kip*ft]	MZ [Kip*ft]
DL	17	0.00	-3.55	0.00	0.00	0.00	0.00
	20	0.00	-3.55	0.00	0.00	0.00	0.00
	24	0.00	-0.50	0.00	0.00	0.00	0.00
	38	0.00	-3.55	0.00	0.00	0.00	0.00
	40	0.00	-3.55	0.00	0.00	0.00	0.00
	48	0.00	-0.25	0.00	0.00	0.00	0.00
	49	0.00	-0.25	0.00	0.00	0.00	0.00
	50	0.00	-0.25	0.00	0.00	0.00	0.00
	51	0.00	-0.25	0.00	0.00	0.00	0.00
	56	0.00	-0.50	0.00	0.00	0.00	0.00
	57	0.00	-0.50	0.00	0.00	0.00	0.00
	58	0.00	-0.50	0.00	0.00	0.00	0.00
	59	0.00	-0.50	0.00	0.00	0.00	0.00
	64	0.00	-0.25	0.00	0.00	0.00	0.00
	65	0.00	-0.25	0.00	0.00	0.00	0.00
	66	0.00	-0.25	0.00	0.00	0.00	0.00
	67	0.00	-0.25	0.00	0.00	0.00	0.00
	72	0.00	-0.15	0.00	0.00	0.00	0.00
	73	0.00	-0.15	0.00	0.00	0.00	0.00
	74	0.00	-0.15	0.00	0.00	0.00	0.00
	75	0.00	-0.15	0.00	0.00	0.00	0.00
	81	0.00	-0.50	0.00	0.00	0.00	0.00
DL1	6	0.0901	-35.9994	3.9498	0.00	0.00	0.00
	16	1.2221	14.2289	1.8649	0.00	0.00	0.00
	80	-1.3517	15.6031	1.7183	0.00	0.00	0.00
DL2	6	-0.8142	15.2863	-1.9937	0.00	0.00	0.00
	16	-3.4333	-36.685	-1.8883	0.00	0.00	0.00
	80	-2.2169	15.2313	0.1498	0.00	0.00	0.00

DL3	6	0.7297	15.6586	-2.0294	0.00	0.00	0.00
	16	2.2677	14.229	0.0552	0.00	0.00	0.00
	80	3.5065	-36.055	-1.8266	0.00	0.00	0.00

Load on shells

Condition	Shell	Pressure [Kip/ft2]	Temp. [F]
 L	 1	0.015	0.00
.L	1	0.025	0.00
VL1	4	0.034	0.00
	8	0.034	0.00
	13	0.034	0.00
	18	0.034	0.00
	23	0.034	0.00
NL2	5	-0.034	0.00
	10	0.034	0.00
	15	0.034	0.00
	20	0.034	0.00
	25	0.034	0.00
VL3	6	0.034	0.00
	11	0.034	0.00
	16	0.034	0.00
	21	0.034	0.00
	26	0.034	0.00
NL4	3	0.034	0.00
	9	0.034	0.00
	14	0.034	0.00
	19	0.034	0.00

Self weight multipliers for load conditions

			Self weight multiplier				
Condition	Description	Comb.	MultX	MultY	MultZ		
 DL	Dead Load	 No	0.00	 -1.00	0.00		
LL	Live Load	No	0.00	0.00	0.00		
WL1	Wind Load Side 1	No	0.00	0.00	0.00		
WL2	Wind Load Side 2	No	0.00	0.00	0.00		
WL3	Wind Load Side 3	No	0.00	0.00	0.00		
WL4	Wind Load Side 4	No	0.00	0.00	0.00		
DL1	Leg A Loads	No	0.00	0.00	0.00		
DL2	Leg B Loads	No	0.00	0.00	0.00		
DL3	Leg CLoads	No	0.00	0.00	0.00		

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]
DL	0.00	0.00	0.00
LL	0.00	0.00	0.00
WL1	0.00	0.00	0.00
WL2	0.00	0.00	0.00
WL3	0.00	0.00	0.00
WL4	0.00	0.00	0.00
DL1	0.00	0.00	0.00
DL2	0.00	0.00	0.00
DL3	0.00	0.00	0.00

Current Date: 1/27/2022 3:41 PM

Units system: English

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

LC1=1.4DL+DL1

LC2=1.4DL+DL2

LC3=1.4DL+DL3

LC4=1.2DL+1.6LL+DL1

LC5=1.2DL+1.6LL+DL2

LC6=1.2DL+1.6LL+DL3

LC7=1.2DL+LL+DL1

LC8=1.2DL+LL+DL2

LC9=1.2DL+LL+DL3

LC10=1.2DL+0.5WL1+DL1

LC11=1.2DL+0.5WL1+DL2

LC12=1.2DL+0.5WL1+DL3

LC13=1.2DL+0.5WL2+DL1

LC14=1.2DL+0.5WL2+DL2

LC15=1.2DL+0.5WL2+DL3

LC16=1.2DL+LL+WL1+DL1

LC17=1.2DL+LL+WL1+DL2

LC18=1.2DL+LL+WL1+DL3

LC19=1.2DL+LL+WL2+DL1

LC20=1.2DL+LL+WL2+DL2

LC21=1.2DL+LL+WL2+DL3

LC22=1.2DL+LL+WL3+DL1

LC23=1.2DL+LL+WL3+DL2

LC24=1.2DL+LL+WL3+DL3

LC25=1.2DL+LL+WL4+DL1

LC26=1.2DL+LL+WL4+DL2

LC27=1.2DL+LL+WL4+DL3

LC28=1.2DL+LL+DL1

LC29=1.2DL+LL+DL2

LC30=1.2DL+LL+DL3

LC31=0.9DL+WL1+DL1

LC32=0.9DL+WL1+DL2

LC33=0.9DL+WL1+DL3

LC34=0.9DL+WL2+DL1 LC35=0.9DL+WL2+DL2

LC36=0.9DL+WL2+DL3

LC37=0.9DL+WL3+DL1

LC38=0.9DL+WL3+DL2

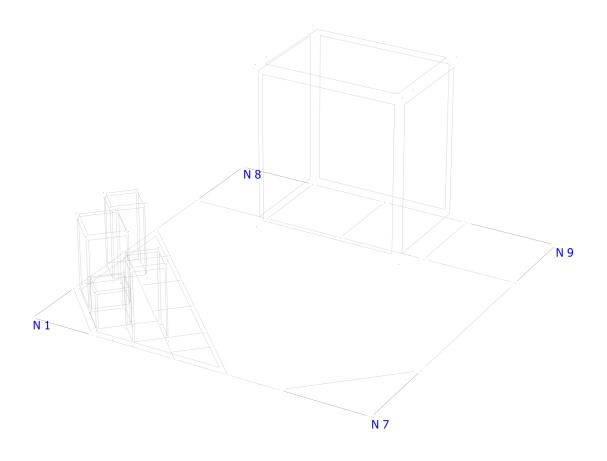
L39=0.9DL+WL3+DL3

LC40=0.9DL+WL4+DL1

LC41=0.9DL+WL4+DL2

LC42=0.9DL+WL4+DL3

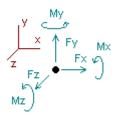
LC43=0.9DL+DL1


LC44=0.9DL+DL2

LC45=0.9DL+DL3

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	W 14X30	11	LC20 at 50.00%	0.78	OK	
	W 16X26	1	LC24 at 100.00%	0.44	OK	
		3	LC16 at 100.00%	0.63	OK	
		5	LC5 at 100.00%	0.27	OK	

	28	LC23 at 0.00%	0.70	OK	
	29	LC23 at 100.00%	0.69	OK	
	30	LC5 at 100.00%	0.59	OK	
	31	LC5 at 100.00%	0.50	OK	
	34	LC23 at 100.00%	0.66	OK	
	35	LC16 at 0.00%	0.51	OK	
	36	LC22 at 0.00%	0.68	OK	
	37	LC17 at 83.33%	0.61	OK	
	38	LC22 at 0.00%	0.39	OK	
	39	LC17 at 0.00%	0.59	OK	
W 18X35	2	LC22 at 0.00%	0.40	 OK	
	4	LC24 at 100.00%	0.43	OK	
	32	LC21 at 50.00%	0.67	OK	
	33	LC21 at 100.00%	0.72	OK	
	40	LC21 at 100.00%	0.46	OK	
	41	LC22 at 0.00%	0.35	OK	
	42	LC24 at 0.00%	0.24	OK	
	43	LC23 at 0.00%	0.14	OK	
W 8X10	6	LC26 at 50.00%	0.09	OK	
	7	LC37 at 0.00%	0.01	OK	
	8	LC16 at 0.00%	0.05	OK	
	9	LC25 at 50.00%	0.08	OK	
	13	LC18 at 46.88%	0.01	OK	
	14	LC17 at 50.00%	0.01	OK	
	15	LC25 at 100.00%	0.01	OK	
	16	LC17 at 100.00%	0.44	OK	
	17	LC6 at 50.00%	0.01	OK	
	44	LC18 at 100.00%	0.13	OK	
	45	LC18 at 100.00%	0.37	OK	
	46	LC18 at 50.00%	0.40	OK	
	47	LC18 at 0.00%	0.36	OK	
	48	LC17 at 12.50%	0.46	OK	
	49	LC18 at 0.00%	0.03	OK	
W 8X28	12	LC5 at 100.00%	0.10	 OK	
	22	LC5 at 0.00%	0.07	OK	
	23	LC5 at 0.00%	0.11	OK	
	24	LC5 at 0.00%	0.14	OK	
	25	LC5 at 46.88%	0.14	OK	
	26	LC5 at 100.00%	0.14	OK	


Current Date: 1/27/2022 3:41 PM

Units system: English

Analysis result

Envelope for nodal reactions

Ic is the controlling load condition Note.-

Direction of positive forces and moments

Envelope of nodal reactions for

LC1=1.4DL+DL1

LC2=1.4DL+DL2

LC3=1.4DL+DL3

LC4=1.2DL+1.6LL+DL1

LC5=1.2DL+1.6LL+DL2

LC6=1.2DL+1.6LL+DL3

LC7=1.2DL+LL+DL1

LC8=1.2DL+LL+DL2

LC9=1.2DL+LL+DL3

LC10=1.2DL+0.5WL1+DL1 LC11=1.2DL+0.5WL1+DL2

LC12=1.2DL+0.5WL1+DL3

LC13=1.2DL+0.5WL2+DL1

LC14=1.2DL+0.5WL2+DL2 LC15=1.2DL+0.5WL2+DL3

LC16=1.2DL+LL+WL1+DL1

LC17=1.2DL+LL+WL1+DL2

LC18=1.2DL+LL+WL1+DL3

LC19=1.2DL+LL+WL2+DL1

LC20=1.2DL+LL+WL2+DL2

LC21=1.2DL+LL+WL2+DL3

LC22=1.2DL+LL+WL3+DL1

LC23=1.2DL+LL+WL3+DL2

LC24=1.2DL+LL+WL3+DL3

LC25=1.2DL+LL+WL4+DL1

LC26=1.2DL+LL+WL4+DL2

LC27=1.2DL+LL+WL4+DL3

LC28=1.2DL+LL+DL1

LC29=1.2DL+LL+DL2

LC30=1.2DL+LL+DL3

LC31=0.9DL+WL1+DL1

LC32=0.9DL+WL1+DL2

LC33=0.9DL+WL1+DL3

LC34=0.9DL+WL2+DL1

LC35=0.9DL+WL2+DL2

LC36=0.9DL+WL2+DL3

LC37=0.9DL+WL3+DL1

LC38=0.9DL+WL3+DL2

L39=0.9DL+WL3+DL3

LC40=0.9DL+WL4+DL1

LC41=0.9DL+WL4+DL2

LC42=0.9DL+WL4+DL3

			Fo			Moments							
Node		Fx [Kip]	lc	Fy [Kip]	lc	Fz [Kip]	lc	Mx [Kip*ft]	lc	My [Kip*ft]	lc	Mz [Kip*ft]	lc
1	Max	2.418	LC38	15.104	LC23	1.210	LC18	0.00000	LC1	0.00000	LC1	0.00000	LC1
	Min	-2.212	LC18	2.388	LC33	-1.193	LC38	0.00000	LC1	0.00000	LC1	0.00000	LC1
7	Max	6.269	LC35	14.497	LC4	3.950	LC35	0.00000	LC1	0.00000	LC1	0.00000	LC1
	Min	-6.854	LC27	2.660	LC32	-6.346	LC25	0.00000	LC1	0.00000	LC1	0.00000	LC1
8	Max	5.280	LC16	13.288	LC1	5.187	LC18	0.00000	LC1	0.00000	LC1	0.00000	LC1
	Min	-1.752	LC38	7.190	LC41	-4.499	LC37	0.00000	LC1	0.00000	LC1	0.00000	LC1
9	Max	2.299	L39	12.362	LC2	3.088	LC32	0.00000	LC1	0.00000	LC1	0.00000	LC1
	Min	-5.405	LC16	1.480	LC34	-2.813	LC22	0.00000	LC1	0.00000	LC1	0.00000	LC1

Project Title: FAIRFIELD CENTRAL

Engineer:

Project ID: CT2120

Project Descr:

Printed: 27 JAN 2022, 3:44PM

Steel Column Lic. # : KW-06013026

File: STUB UP.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 **Hudson Design Group LLC**

DESCRIPTION: Steel Platform Support (Worse Case)

Code References

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

Pipe2-1/2 Std Steel Section Name: Analysis Method: Allowable Strength

Steel Stress Grade

Fy: Steel Yield 35.0 ksi E: Elastic Bending Modulus 29,000.0 ksi Overall Column Height 0.750 ft Top & Bottom Fixity Top Pinned, Bottom Fixed

Brace condition for deflection (buckling) along columns:

X-X (width) axis:

Fully braced against buckling ABOUT Y-Y Axis

Y-Y (depth) axis:

Fully braced against buckling ABOUT X-X Axis

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Column self weight included: 4.360 lbs * Dead Load Factor

AXIAL LOADS . . .

Steel Platform Reactions (See Bentley Output): Axial Load at 0.750 ft, Xecc = 0.480 in, Yecc = 0.480 in, D = 14.497 k

BENDING LOADS . . .

Steel Platform Reactions (See Bentley Output): Lat. Point Load at 1.50 ft creating Mx-x, D = 6.346 k Steel Platform Reactions (See Bentley Output): Lat. Point Load at 1.50 ft creating My-y, D = 6.854 k

DESIGN SUMMARY

0.8617 : 1	Maximum Load Reactions	
D Only	Top along X-X	8.014 k
0.7450 ft	Bottom along X-X	1.160 k
	Top along Y-Y	7.506 k
14.501 k		1.160 k
33.323 k	g	
	Maximum Load Deflections	
	Along Y-Y -0.000496 in at	0.5034ft above base
2.393 k-ft		olooo iii abolo baco
-0.5740 k-ft	Tor Toda Combination . D Offic	
2.393 k-ft	Along X-X -0.000496 in at	0.5034ft above base
	for load combination : D Only	
0.8016 : 1	•	
D Only		
0.750 ft		
8.014 k		
9.997 k		
	D Only 0.7450 ft 14.501 k 33.323 k -0.5740 k-ft 2.393 k-ft -0.5740 k-ft 2.393 k-ft 0.8016 :1 D Only 0.750 ft 8.014 k	D Only 0.7450 ft Bottom along X-X Top along Y-Y Bottom along Y-Y Bottom along Y-Y Bottom along Y-Y Bottom along Y-Y 14.501 k Bottom along Y-Y Bottom along Y-Y Bottom along Y-Y Along Y-Y -0.000496 in at for load combination: D Only Along X-X Along X-X Along Y-Y -0.000496 in at for load combination: D Only 0.8016: 1 D Only 0.750 ft 8.014 k

Load Combination Results

	Maximum Ax	kial + Bending S	tress Ratios					Maximum	Shear Ratio	<u>s</u>
Load Combination	Stress I	Ratio Status	Location	Cbx	Cby	KxLx/Rx	KyLy/Ry	Stress Ratio	Status Lo	ocation
D Only	0.0	B62 PASS	0.74 f	t 1.00	1.00	0.00	0.00	0.802	PASS	0.75 ft
+0.60D	0.8	517 PASS	0. 74 f	t 1.00	1.00	0.00	0.00	0.481	PASS	0.75 ft
Maximum Reactions							Note:	Only non-zero	reactions	are listed.
		Axial Reaction	X-X Axis R	eaction k	Y-Y Axis	Reaction	Mx - End N	Noments k-ft	: My - En	d Moments
Load Combination		@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top
D Only		14.501	1.160	8.014	-1.160	7.506	0.290		0.29)
+0.60D		8.701	0.696	4.808	-0.696	4.503	0.174		0.17	4
Extreme Reactions										
	,	Axial Reaction	X-X Axis R	Reaction k	Y-Y Axis	Reaction	Mx - End N	Moments k-ft	: My - En	d Moments
Item	Extreme Value	@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top
Axial @ Base	Maximum	14.501	1.160	8.014	-1.160	7.506	0.290	1	0.29	0
п	Minimum	8.701	0.696	4.808	-0.696	4.503	0.174		0.17	4
Reaction, X-X Axis Base	Maximum	14.501	1.160	8.014	-1.160	7.506	0.290	1	0.29	0
н	Minimum	8.701	0.696	4.808	-0.696	4.503	0.174		0.17	4

Project Title: FAIRFIELD CENTRAL

Engineer:

Project ID: CT2120

Project Descr:

Printed: 27 JAN 2022, 3:44PM

Steel Column

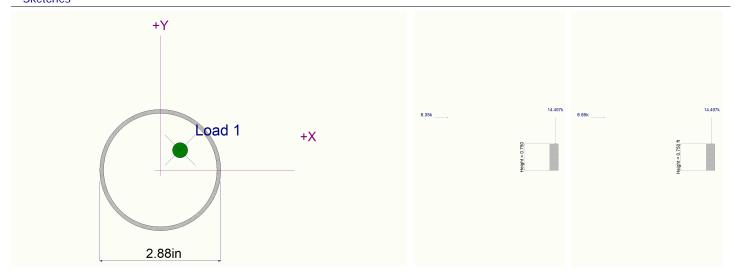
File: STUB UP.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 Hudson Design Group LLC

Lic. # : KW-06013026

DESCRIPTION: Steel Platform Support (Worse Case)

Extreme Reactions

		Axial Reaction	X-X Axis Re	eaction k	Y-Y Axis R	Reaction	Mx - End Mom	nents k-ft	My - End M	loments
Item	Extreme Value	@ Base	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top	@ Base	@ Top
Reaction, Y-Y Axis Base	Maximum	8.701	0.696	4.808	-0.696	4.503	0.174		0.174	
ıı	Minimum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	
Reaction, X-X Axis Top	Maximum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	
	Minimum	8.701	0.696	4.808	-0.696	4.503	0.174		0.174	
Reaction, Y-Y Axis Top	Maximum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	
ıı .	Minimum	8.701	0.696	4.808	-0.696	4.503	0.174		0.174	
Moment, X-X Axis Base	Maximum	14.501	0.290	8.014	-1.160	7.506	0.290		0.290	
II	Minimum	8.701	0.174	4.808	-0.696	4.503	0.174		0.174	
Moment, Y-Y Axis Base	Maximum	14.501	1.160	8.014	-1.160	7.506	0.174		0.290	
ıı	Minimum	8.701	0.696	4.808	-0.696	4.503	0.174		0.174	
Moment, X-X Axis Top	Maximum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	
	Minimum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	
Moment, Y-Y Axis Top	Maximum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	
	Minimum	14.501	1.160	8.014	-1.160	7.506	0.290		0.290	


Maximum Deflections for Load Combinations

Load Combination	Max. X-X Deflection	Distance	Max. Y-Y Deflection	Distance	
D Only	-0.0005 in	0.503 ft	-0.000 in	0.503 ft	
+0.60D	-0.0003 in	0.503 ft	-0.000 in	0.503 ft	
Steel Section Properties:	Pipe2-1/2 Std				
Depth =	2.875 in 1 xx	=	1.45 in^4	J	= 2.890 in^4

S xx 1.01 in^3 Diameter 2.875 in R xx 0.952 in Wall Thick 0.203 in Zx 1.370 in^3 Area 1.590 in^2 l yy 1.450 in^4 Weight 5.813 plf S yy 1.010 in^3 0.952 in R yy

Ycg = 0.000 in

Sketches

Roof Framing Calculations

Project Title: FAIRFIELD CENTRAL

Engineer:

CT2120 Project ID:

Project Descr:

Printed: 27 JAN 2022, 3:48PM

Steel Column Lic. # : KW-06013026

File: STUB UP.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 **Hudson Design Group LLC**

DESCRIPTION: Building Column (Worse Case)

Code References

Calculations per AISC 360-10, IBC 2015, CBC 2016, ASCE 7-10

Load Combinations Used: ASCE 7-10

General Information

W12x65 Steel Section Name:

Analysis Method: Allowable Strength

Steel Stress Grade A-572, High Strength, Low Alloy, Fy =

Fy: Steel Yield 50.0 ksi

E: Elastic Bending Modulus 29,000.0 ksi Overall Column Height 14.0 ft

Top & Bottom Pinned Top & Bottom Fixity Brace condition for deflection (buckling) along columns:

X-X (width) axis:

Fully braced against buckling ABOUT Y-Y Axis

Y-Y (depth) axis:

Fully braced against buckling ABOUT X-X Axis

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

0.6651:1

Column self weight included: 910.23 lbs * Dead Load Factor AXIAL LOADS . . .

Steel Platform Reactions (See Bentley Output): Axial Load at 14.0 ft, D = 15.104 k Roof Load (Trib Area: 819 sq ft.): Axial Load at 14.0 ft, D = 32.80, S = 28.70 k 3rd Floor Load (Trib Area: 819 sq ft.): Axial Load at 14.0 ft, D = 61.40, L = 49.10 k 2nd Floor Load (Trib Area: 819 sq ft.): Axial Load at 14.0 ft, D = 61.40, L = 49.10 k 1st Floor Load (Trib Area: 819 sq ft.): Axial Load at 14.0 ft, D = 61.40, L = 49.10 k

DESIGN SUMMARY

Bendin	g & Shear Check Results
PASS	Max. Axial+Bending Stress Ratio =

17133 Wax. 7 Mai Denaing Stress Ratio =	0.0001
Load Combination	+D+L
Location of max.above base	0.0 ft
At maximum location values are	
Pa : Axial	380.314 k
Pn / Omega : Allowable	571.86 k
Ma-x : Applied	0.0 k-ft
Mn-x / Omega : Allowable	237.004 k-ft
Ma-y : Applied	0.0 k-ft
Mn-y / Omega : Allowable	106.994 k-ft
PASS Maximum Shear Stress Ratio =	0.0 : 1
Load Combination	0.0
Location of max.above base At maximum location values are	0.0 ft
Va : Applied	0.0 k
Vn / Omega : Allowable	0.0 k
-	

Maximum Load Reactions . .

Top along X-X 0.0 kBottom along X-X 0.0 kTop along Y-Y 0.0 kBottom along Y-Y 0.0 k

Maximum Load Deflections . . .

Along Y-Y 0.0 in at 0.0ft above base

for load combination:

0.0 in at 0.0ft above base Along X-X

for load combination:

Load Combination Results

	Maximum Axial +	Bending S	tress Ratios					<u>Maximum</u>	Shear R	atios_
Load Combination	Stress Ratio	Status	Location	Cbx	Cby	KxLx/Rx	KyLy/Ry	Stress Ratio	Status	Location
D Only	0.407	PASS	0.00 ft	1.00	1.00	0.00	0.00	0.000	PASS	0.00 ft
+D+L	0.665	PASS	0.00 ft	1.00	1.00	0.00	0.00	0.000	PASS	0.00 ft
+D+S	0.458	PASS	0.00 ft	1.00	1.00	0.00	0.00	0.000	PASS	0.00 ft
+D+0.750L	0.601	PASS	0.00 ft	1.00	1.00	0.00	0.00	0.000	PASS	0.00 ft
+D+0.750L+0.750S	0.638	PASS	0.00 ft	1.00	1.00	0.00	0.00	0.000	PASS	0.00 ft
+0.60D	0.244	PASS	0.00 ft	1.00	1.00	0.00	0.00	0.000	PASS	0.00 ft
Maximum Reactions							Note	e: Onlv non-zer	o reactio	ns are listed.

Maximum Redeficins							14010. 0	my 11011 2010	1000010110	aro notoa.
	Axial Reaction	X-X Axis Re	eaction	k	Y-Y Axis	Reaction	Mx - End M	oments k-ft	My - End	Moments
Load Combination	@ Base	@ Base	@ Top		@ Base	@ Top	@ Base	@ Top	@ Base	@ Top

D Only	233.014
+D+L	380.314
+D+S	261.714
+D+0.750L	343.489

Project Title: FAIRFIELD CENTRAL Engineer:
Project ID: CT2120
Project Descr:

Printed: 27 JAN 2022, 3:48PM

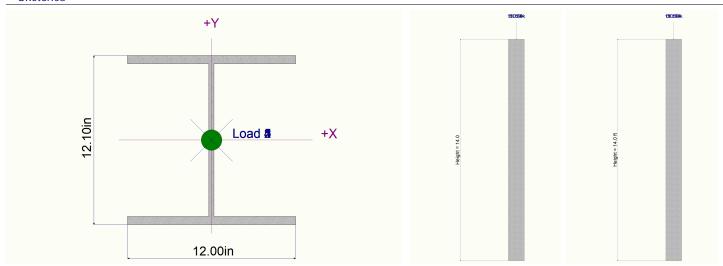
Steel Column							Software convidet El	NEDCVI C IV	File: STUB UP.ed NC. 1983-2020, Build:12.20.8.2
Lic. # : KW-06013026							Johnware copyright El		Hudson Design Group
DESCRIPTION: Bui	lding Column (Wo	orse Case)							
Maximum Reactions	5						Note: O	nly non-z	ero reactions are liste
		Axial Reaction	X-X Axis Reac	tion !	k Y-Y Axis R	Reaction	Mx - End M	oments	k-ft My - End Momen
Load Combination		@ Base	@ Base @	Top	@ Base	@ Top	@ Base	@ Top	@ Base
+D+0.750L+0.750S		365.014							
+0.60D		139.809							
L Only		147.300							
S Only		28.700							
Extreme Reactions									
Item	Extreme Value	Axial Reaction @ Base	X-X Axis Read @ Base @	ction ? Top	k Y-Y Axis R @ Base	Reaction @ Top	Mx - End Mo @ Base	oments @ Top	k-ft My - End Momen @ Base @ To
				———					
Axial @ Base	Maximum Minimum	380.314 28.700							
Reaction, X-X Axis Base	Maximum	233.014							
"	Minimum	233.014							
Reaction, Y-Y Axis Base	Maximum	233.014							
	Minimum	233.014							
Reaction, X-X Axis Top	Maximum	233.014							
	Minimum	233.014							
Reaction, Y-Y Axis Top	Maximum	233.014							
II .	Minimum	233.014							
Moment, X-X Axis Base	Maximum	233.014							
	Minimum	233.014							
Moment, Y-Y Axis Base	Maximum	233.014							
"	Minimum	233.014							
Moment, X-X Axis Top	Maximum	233.014 233.014							
Moment, Y-Y Axis Top	Minimum Maximum	233.014							
" " Axis Top	Minimum	233.014							
Maximum Deflection									
			n Distance		Max. Y-Y De	flootion	Distance		
Load Combination		Max. X-X Deflection					Distance 0.000 ft		
D Only		0.0000 in		ft	0.000	in	0.000 ft		
+D+L		0.0000 :		EL.					
. D. C		0.0000 in		ft	0.000		0.000 ft		
+D+S		0.0000 in	0.000	ft	0.000 0.000	in	0.000 ft 0.000 ft		
+D+0.750L		0.0000 in 0.0000 in	0.000 0.000	ft ft	0.000 0.000 0.000	in in	0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S		0.0000 in 0.0000 in 0.0000 in	0.000 0.000 0.000	ft ft ft	0.000 0.000 0.000 0.000	in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D		0.0000 ir 0.0000 ir 0.0000 ir 0.0000 ir	0.000 0.000 0.000 0.000	ft ft ft ft	0.000 0.000 0.000 0.000 0.000	in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S		0.0000 in 0.0000 in 0.0000 in	0.000 0.000 0.000 0.000 0.000	ft ft ft	0.000 0.000 0.000 0.000	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D L Only	rties: W	0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in	0.000 0.000 0.000 0.000 0.000	ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Propel	rties: W = 12.100 ir	0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 12x65	0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft	=	2.180 in^4
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Proper Depth		0.0000 in 0.0000 ir 0.0000 ir 0.0000 ir 0.0000 ir 0.0000 ir	0.000 0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft ft ft	0.000 0.000 0.000 0.000 0.000 0.000	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft	=	2.180 in^4 5,780.00 in^6
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Propel Depth Web Thick	= 12.100 ir	0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 12x65	0.000 0.000 0.000 0.000 0.000 0.000	ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Proper Depth Web Thick Flange Width	= 12.100 ir = 0.390 ir	0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 12x65	0.000 0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft ft ft 53	0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.00 in^4 87.90 in^3	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Propel Depth Web Thick Flange Width Flange Thick	= 12.100 ir = 0.390 ir = 12.000 ir	0.0000 in 12x65	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft ft ft ft ft st ft	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.00 in^4 37.90 in^3 5.280 in	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Proper Depth Web Thick Flange Width Flange Thick Area	= 12.100 ir = 0.390 ir = 12.000 ir = 0.605 ir	0.0000 in XX	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft f	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 83.00 in^4 87.90 in^3 5.280 in 5.800 in^3	in in in in in	0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft		
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Proper Depth Web Thick Flange Width Flange Thick Area Weight	= 12.100 ir = 0.390 ir = 12.000 ir = 0.605 ir = 19.100 ir	0.0000 in X	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft f	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.00 in^4 87.90 in^3 5.280 in 5.800 in^3	in in in in in	0.000 ft C.000 ft	=	5,780.00 in^6
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Proper Depth Web Thick Flange Width Flange Thick Area Weight Kdesign	= 12.100 ir = 0.390 ir = 12.000 ir = 0.605 ir = 19.100 ir = 65.016 p = 1.200 ir	0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0000 in 12x65 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft f	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 83.00 in^4 87.90 in^3 6.280 in 6.800 in^3 1.000 in^4 9.100 in^3	in in in in in	0.000 ft Compared to the second	=	5,780.00 in^6 34.500 in^2
+D+0.750L +D+0.750L+0.750S +0.60D L Only S Only Steel Section Propel Depth Web Thick Flange Width Flange Thick Area Weight Kdesign K1	= 12.100 ir = 0.390 ir = 12.000 ir = 0.605 ir = 19.100 ir = 65.016 p = 1.200 ir	0.0000 in 2x65 1	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ft f	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33.00 in^4 37.90 in^3 5.280 in 5.800 in^3 4.000 in^4 9.100 in^3 8.020 in	in in in in in	0.000 ft Cow	= = =	5,780.00 in^6 34.500 in^2 62.600 in^4

Project Title: FAIRFIELD CENTRAL Engineer: Project ID: CT2120 Project Descr:

Printed: 27 JAN 2022, 3:48PM

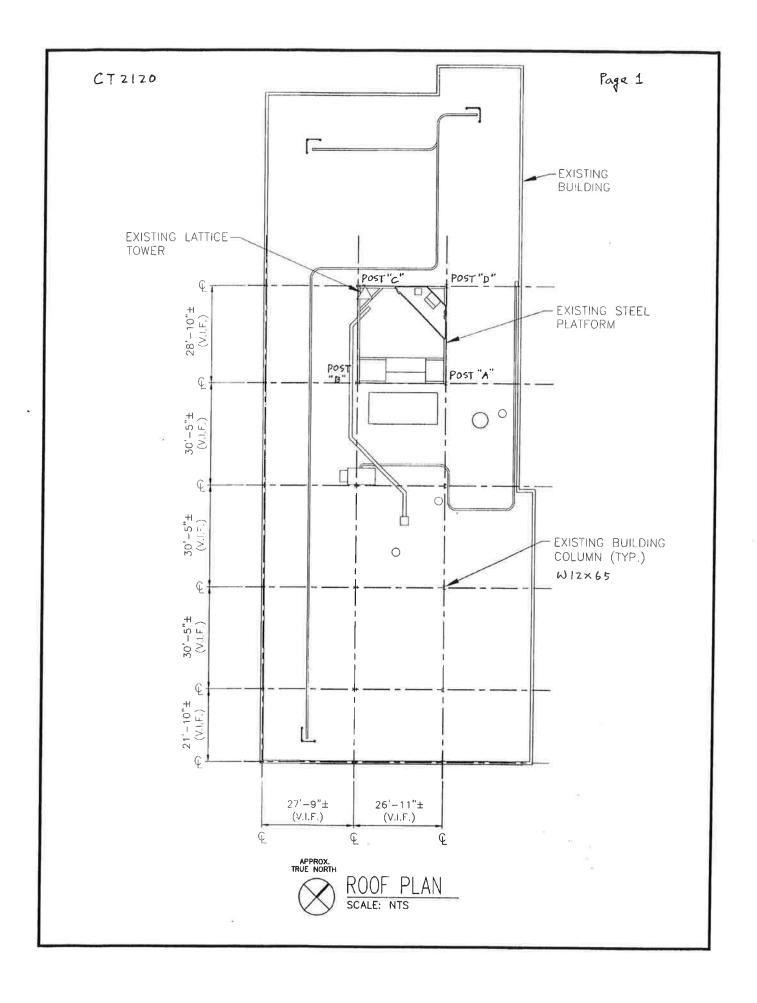
Steel Column

File: STUB UP.ec6


Software copyright ENERCALC, INC. 1983-2020, Build:12:20:8:24

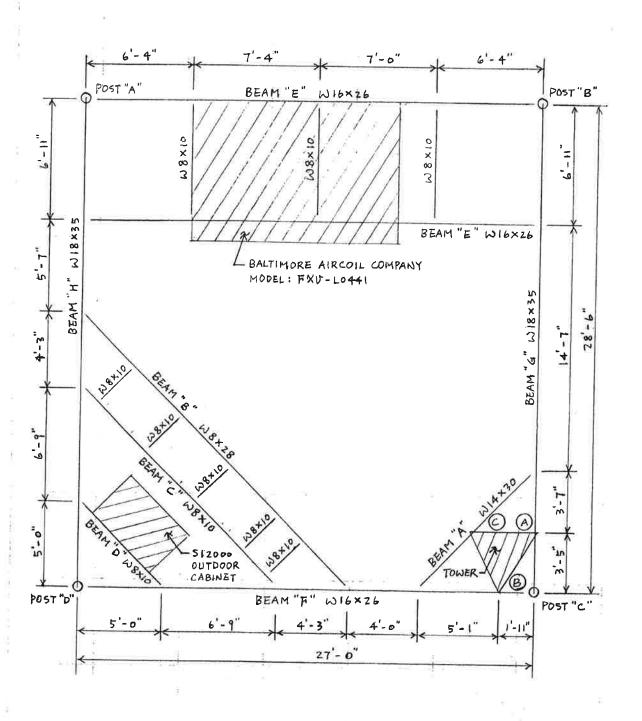
Hudson Design Group LLC

DESCRIPTION: Building Column (Worse Case)


Sketches

Lic. # : KW-06013026

Reference	Documents



DATE: 7/6/2016
Project Name: FAIRFIELD - CENTRAL
Project No.: CT 2120

Design By: KW Chk'd By:_

Page_2_ of ___

EXHIBIT 4

STRUCTURAL ANALYSIS REPORT

For

SITE NUMBER: CT2120
SITE NAME: FAIRFIELD CENTRAL

55 Walls Drive Fairfield, CT 06824

Antennas Mounted on the Tower

Prepared for:

Dated: January 10, 2022

Prepared by:

HUDSONDesign Group LLC

45 Beechwood Drive North Andover, MA 01845 (P) 978.557.5553 (F) 978.336.5586

www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT&T to conduct a structural evaluation of the 20' self-supporting tower supporting the proposed AT&T's antennas located at elevation 70' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT&T's existing and proposed antennas listed below.

The following documents were used for our reference:

- Previous HDG Structural Analysis dated July 6, 2016.
- Tower Structural Analysis prepared by Maser Consulting dated August 21, 2017.
- Tower Mapping Report prepared by Provertic LLC dated December 22, 2021.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower <u>is in conformance</u> with the ANSI/TIA-222-H Standard for the loading considered under the criteria listed in this report. <u>The tower structure is rated at 51.9 % - (Legs at Tower Section T4 from EL.53.75' to EL.58.75' Controlling).</u>

<u>Note:</u> This structural analysis report is for the tower structure ONLY. A separate structural analysis will be required to determine the capacity of the tower base supporting structure.

APPURTENANCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
	(1) 27' Whip Antenna	84.75'	Tower Leg
	(1) GPS	73.25'	Tower Leg
AT&T	(3) RRUS 32 B2 RRH's	70'	Sector Frame
AT&T	(3) RRUS 32 B66A RRH's	70'	Sector Frame
AT&T	(3) RRUS 32 B30 RRH's	70'	Sector Frame
AT&T	(3) TPA65R-BU6DA-K Antennas	70'	Sector Frame
AT&T	(3) AIR 6419 Antennas	70'	Sector Frame
AT&T	(3) AIR 6449 Antennas	70'	Sector Frame
AT&T	(3) DMP65R-BU6DA Antennas	70'	Sector Frame
AT&T	(3) DC6 Surge Arrestors	70'	Sector Frame
AT&T	(3) B14 4478 RRH's	70'	Sector Frame
AT&T	(3) 4449 B5/B12 RRH's	70'	Sector Frame
	(1) GPS	60'	Tower Leg

^{*}Proposed AT&T Appurtenances shown in Bold.

AT&T EXISTING COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
AT&T	(6) 1-1/4" Coax Cables	70'	Tower Face
AT&T	(2) 1/2" Coax Cables	70'	Tower Face
AT&T	(1) RET Cable	70'	Tower Face
AT&T	(4) DC Power Cables	70'	Tower Face
AT&T	(2) Fiber Cable	70'	Tower Face
AT&T	(5) DC Power Cables	70'	Tower Face
AT&T	(1) Fiber Cable	70'	Tower Face

^{*}Proposed AT&T Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	51.9 %	53.75 – 58.75	PASS	Controlling
Diagonals	31.3 %	53.75 – 58.75	PASS	
Secondary Horizontal	0.5 %	63.75 – 68.75	PASS	
Top Girt	1.4 %	68.75 – 71.25	PASS	

^{**}This page contains confidential, proprietary or trade secret information exempt from disclosure under applicable law.

DESIGN CRITERIA:

1. EIA/TIA-222-H Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: Fairfield

Ultimate Wind Speed: 125 mph (3 second gust)

Structural Class: II
Exposure Category: B
Topographic Category: 1
Nominal Ice Thickness: 1 inch

2. Approximate height above grade to proposed antennas: 70'

ASSUMPTIONS:

- 1. The appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
- 2. The tower and supporting structure are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas, RRH's and surge arrestors be mounted on the proposed sector frame supported by the tower.

Reference HDG's Latest Construction Drawings for all component and connection requirements (attached).

^{*}Calculations and referenced documents are attached.

Photo 1: Photo illustrating the Tower with Appurtenances shown.

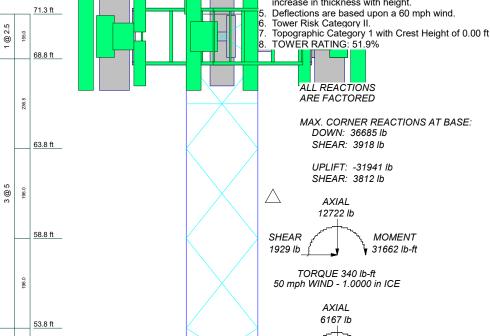
DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
27' Whip Antenna	84.75	AIR 6419 Antenna w/ Mounting Pipe	70	
GPS	73.25	(ATI)		
RRUS 32 B30	70	AIR 6419 Antenna w/ Mounting Pipe	70	
RRUS 32 B30	70	(ATI)		
RRUS 32 B30	70	AIR 6449 Antenna (ATI)	70	
RRUS 32 B2	70	AIR 6449 Antenna (ATI)	70	
RRUS 32 B2	70	AIR 6449 Antenna (ATI)	70	
RRUS 32 B2	70	DMP65R-BU6DA Antenna	70	
RRUS 32 B66A	70	DMP65R-BU6DA Antenna	70	
RRUS 32 B66A	70	DMP65R-BU6DA Antenna	70	
RRUS 32 B66A	70	B14 4478 RRH	70	
VFA12-WLL-30120	70	B14 4478 RRH	70	
******		B14 4478 RRH	70	
VFA12-WLL-30120	70	4449 B5/B12 RRH	70	
VFA12-WLL-30120	70	4449 B5/B12 RRH	70	
TPA65R-BU6DA-K Antenna w/ Mounting Pipe	70	4449 B5/B12 RRH	70	
TPA65R-BU6DA-K Antenna w/	70	DC6 Surge Arrestor	70	
Mounting Pipe	"	DC6 Surge Arrestor	70	
TPA65R-BU6DA-K Antenna w/	70	DC6 Surge Arrestor	70	
Mounting Pipe		GPS	60	
AIR 6419 Antenna w/ Mounting Pipe (ATT)	70			

SYMBOL LIST

	OTHE	OL LIU I			
MARK	SIZE	MARK	SIZE		
Α	L2 1/2x2 1/2x3/16				

MATERIAL STRENGTH


GRADE	Fy	Fu	GRADE	Fy	Fu
V36	36 kei	EQ kai			

TOWER DESIGN NOTES

- Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
 Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- Tower last light basic will all accordance with the 114-222-H standard Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

 Deflections are based upon a 60 mph wind.

 Tower Risk Category II.

Ą.

1/2x2 1/2x3/16

2

51.3 ft

897.9

Sec. Horizontals

Top Girts

Diagonal Grade

Leg Grade

Legs

Diagonals

Face Width (ft)

Panels @ (ft) Weight (Ib)

bent plate (1/4")

A36

L2x2x1/8

A36

⋖

SHEAR MOMENT 119959 lb-ft 7533 lb TORQUE 1219 lb-ft

REACTIONS - 125 mph WIND

Job: CT2120 Hudson Design Group Project: FAIRFILED CENTRAL 45 Beechwood Drive Client: AT&T Drawn by: ID App'd: North Andover, MA Date: 01/10/22 Scale: NTS Code: TIA-222-H Phone: 978.557.5553 Dwg No. E-1 FAX: 978.336.5586

Job		Page
	CT2120	1 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client		Designed by
	AT&T	ID
	Project	CT2120 Project FAIRFILED CENTRAL Client

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 71.25 ft above the ground line.

The base of the tower is set at an elevation of 51.25 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 4.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Tower base elevation above sea level: 51.25 ft.

Basic wind speed of 125 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

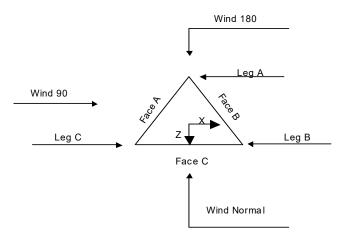
Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.


Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Triangular Tower

Hudson Design Group

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	2 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client	AT&T	Designed by
	711 0.1	ID

Tower	Section	Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ft			ft		ft
T1	71.25-68.75			4.00	1	2.50
T2	68.75-63.75			4.00	1	5.00
Т3	63.75-58.75			4.00	1	5.00
T4	58.75-53.75			4.00	1	5.00
T5	53.75-51.25			4.00	1	2.50

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Giri
Section	Elevation	Spacing	Type	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	71.25-68.75	2.50	X Brace	No	No	0.0000	0.0000
T2	68.75-63.75	5.00	X Brace	No	Yes	0.0000	0.0000
T3	63.75-58.75	5.00	X Brace	No	No	0.0000	0.0000
T4	58.75-53.75	5.00	X Brace	No	No	0.0000	0.0000
T5	53.75-51.25	2.50	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 71.25-68.75	Arbitrary Shape	bent plate (1/4")	A36 (36 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)
T2 68.75-63.75	Arbitrary Shape	bent plate (1/4")	A36 (36 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)
T3 63.75-58.75	Arbitrary Shape	bent plate (1/4")	A36 (36 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)
T4 58.75-53.75	Arbitrary Shape	bent plate (1/4")	A36 (36 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)
T5 53.75-51.25	Arbitrary Shape	bent plate (1/4")	A36 (36 ksi)	Single Angle	L2x2x1/8	A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 71.25-68.75	Single Angle	L2 1/2x2 1/2x3/16	A36	Pipe		A36
			(36 ksi)			(36 ksi)

Hudson Design Group 45 Beechwood Drive

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	3 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client	A T.O.T.	Designed by
	AT&T	ID

	Tower Section Geometry (cont'd)								
Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade			
ft T2 68.75-63.75	Equal Angle	L2 1/2x2 1/2x3/16	A36	Solid Round		A572-50			
	1 8		(36 ksi)			(50 ksi)			

Feed Line/Linear	Annurtenances.	Fntered As Area
I CCU LIIIC/LIIICAI	Appultinances.	LIIIGIGU AS AIGA

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#		C_AA_A	Weight
	Leg		Torque Calculation	-) _F -	ft	in	(Frac FW)			ft²/ft	plf
1 1/4	A	No	No	CaAa (Out	70.00 - 51.25	0.0000	0	6	No	0.16	0.66
				Of Face)					Ice	0.25	1.91
									1/2"	0.35	3.78
									Ice		
									1" Ice		
1/2	Α	No	No	CaAa (Out	70.00 - 51.25	0.0000	0	2	No	0.06	0.25
				Of Face)					Ice	0.16	0.91
									1/2"	0.26	2.18
									Ice		
									1" Ice		
RET Cable	Α	No	No	CaAa (Out	70.00 - 51.25	0.0000	0	1	No	0.03	1.32
				Of Face)					Ice	0.13	1.81
									1/2"	0.23	2.92
									Ice		
									1" Ice		
DC Cable	C	No	No	CaAa (Out	70.00 - 51.25	0.0000	0	4	No	0.10	0.88
				Of Face)					Ice	0.20	2.59
									1/2"	0.30	4.09
									Ice		
									1" Ice		
Fiber Cable	C	No	No	CaAa (Out	70.00 - 51.25	0.0000	0.1	2	No	0.13	0.48
(1-1/4")				Of Face)					Ice	0.23	1.55
									1/2"	0.32	3.23
									Ice		
									1" Ice		
**											
DC Cable	C	No	No	CaAa (Out	70.00 - 51.25	0.0000	0	5	No	0.10	0.88
				Of Face)					Ice	0.20	2.59
									1/2"	0.30	4.09
									Ice		
									1" Ice		
Fiber Cable	C	No	No	CaAa (Out	70.00 - 51.25	0.0000	0.1	1	No	0.13	0.48
(1-1/4")				Of Face)					Ice	0.23	1.55
									1/2"	0.32	3.23
									Ice		
									1" Ice		

Hudson Design Group

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	4 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client		Designed by
	AT&T	ID

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	C_AA_A	C_AA_A	Weight
Section	Elevation				In Face	Out Face	
	ft		ft²	ft²	ft^2	ft²	lb
T1	71.25-68.75	A	0.000	0.000	0.000	1.346	7.22
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	1.545	11.68
T2	68.75-63.75	A	0.000	0.000	0.000	5.385	28.90
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	6.182	46.73
T3	63.75-58.75	A	0.000	0.000	0.000	5.385	28.90
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	6.182	46.73
T4	58.75-53.75	A	0.000	0.000	0.000	5.385	28.90
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	6.182	46.73
T5	53.75-51.25	A	0.000	0.000	0.000	2.693	14.45
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	3.091	23.36

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	_
	ft	Leg	in	ft^2	ft^2	ft²	ft²	lb
T1	71.25-68.75	A	1.078	0.000	0.000	0.000	3.772	41.92
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	4.780	63.91
T2	68.75-63.75	A	1.072	0.000	0.000	0.000	15.035	166.32
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	19.048	253.91
T3	63.75-58.75	A	1.064	0.000	0.000	0.000	14.959	164.39
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	18.947	251.43
T4	58.75-53.75	A	1.055	0.000	0.000	0.000	14.878	162.31
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	18.839	248.77
T5	53.75-51.25	A	1.048	0.000	0.000	0.000	7.406	80.32
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	9.376	123.31

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	71.25-68.75	-3.1165	-1.3330	-5.6381	-1.7749
T2	68.75-63.75	-5.4647	-2.2704	-8.7269	-2.6887
T3	63.75-58.75	-5.6861	-2.3560	-8.9790	-2.7669
T4	58.75-53.75	-5.6861	-2.3560	-8.9647	-2.7653
T5	53.75-51.25	-5.4216	-2.2536	-8.6046	-2.6575

Hudson Design Group 45 Beechwood Drive

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	5 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client		Designed by
	AT&T	ID

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg	71	Lateral Vert	J					
			ft	0	ft		ft^2	ft^2	lb
			ft ft		v			v	
27' Whip Antenna	С	From Leg	0.00	0.0000	84.75	No Ice	8.10	8.10	30.00
			0.00			1/2" Ice	10.83	10.83	88.13
ana.			0.00	0.0000	50.05	1" Ice	13.58	13.58	163.22
GPS	C	From Leg	0.50	0.0000	73.25	No Ice	0.21	0.21	5.00
			0.00			1/2" Ice 1" Ice	0.32	0.32	7.52
GPS	C	Enom I aa	0.00 0.50	0.0000	60.00	No Ice	0.44 0.21	0.44 0.21	11.31 5.00
Grs	C	From Leg	0.00	0.0000	00.00	1/2" Ice	0.21	0.21	7.52
			0.00			1" Ice	0.32	0.32	11.31
****							****		
RRUS 32 B30	A	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			6.50			1/2" Ice	2.96	1.86	81.11
			0.00			1" Ice	3.19	2.05	105.42
RRUS 32 B30	В	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			6.50			1/2" Ice	2.96	1.86	81.11
DD110 00 D00			0.00	0.0000	5 0.00	1" Ice	3.19	2.05	105.42
RRUS 32 B30	C	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			6.50			1/2" Ice	2.96	1.86	81.11
RRUS 32 B2	В	From Face	0.00 2.00	0.0000	70.00	1" Ice No Ice	3.19 2.74	2.05 1.67	105.42
RRUS 32 B2	Ь	From Face	5.00	0.0000	70.00	1/2" Ice	2.74	1.86	60.00 81.11
			0.00			1" Ice	3.19	2.05	105.42
RRUS 32 B2	В	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
KKO5 32 B2	Б	1 Iom 1 acc	5.00	0.0000	70.00	1/2" Ice	2.96	1.86	81.11
			0.00			1" Ice	3.19	2.05	105.42
RRUS 32 B2	В	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			5.00			1/2" Ice	2.96	1.86	81.11
			0.00			1" Ice	3.19	2.05	105.42
RRUS 32 B66A	C	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			-6.50			1/2" Ice	2.96	1.86	81.11
			0.00			1" Ice	3.19	2.05	105.42
RRUS 32 B66A	C	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			-6.50			1/2" Ice	2.96	1.86	81.11
	_		0.00			1" Ice	3.19	2.05	105.42
RRUS 32 B66A	C	From Face	2.00	0.0000	70.00	No Ice	2.74	1.67	60.00
			-6.50 0.00			1/2" Ice 1" Ice	2.96 3.19	1.86 2.05	81.11 105.42
****			0.00			1 ice	3.19	2.03	103.42
VFA12-WLL-30120	A	From Leg	0.00	0.0000	70.00	No Ice	13.20	9.20	658.00
V17112 WEE 30120	71	Trom Leg	0.00	0.0000	70.00	1/2" Ice	19.50	14.60	804.00
			0.00			1" Ice	25.80	19.50	1015.00
VFA12-WLL-30120	В	From Leg	0.00	0.0000	70.00	No Ice	13.20	9.20	658.00
		8	0.00			1/2" Ice	19.50	14.60	804.00
			0.00			1" Ice	25.80	19.50	1015.00
VFA12-WLL-30120	C	From Leg	0.00	0.0000	70.00	No Ice	13.20	9.20	658.00
			0.00			1/2" Ice	19.50	14.60	804.00
			0.00			1" Ice	25.80	19.50	1015.00
TPA65R-BU6DA-K Antenna	A	From Leg	3.00	0.0000	70.00	No Ice	12.73	7.04	90.90
w/ Mounting Pipe			-6.00			1/2" Ice	13.23	7.99	180.74
TRACER DIVERS W.	Б	ь .	0.00	0.0000	7 0.00	1" Ice	13.73	8.82	278.91
TPA65R-BU6DA-K Antenna	В	From Leg	3.00	0.0000	70.00	No Ice	12.73	7.04	90.90
w/ Mounting Pipe			-6.00			1/2" Ice	13.23	7.99	180.74
TPA65R-BU6DA-K Antenna	C	Eron I aa	0.00	0.0000	70.00	1" Ice	13.73	8.82	278.91
TEAUNK-DUUDA-K Antenna	C	From Leg	3.00	0.0000	70.00	No Ice	12.73	7.04	90.90

Hudson Design Group 45 Beechwood Drive

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	6 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client	AT&T	Designed by ID

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weigh
	Leg		Lateral Vert	0	ft		ft²	ft²	lb
			ft ft ft		Ji		Ji	Ji	ib
w/ Mounting Pipe			-6.00 0.00			1/2" Ice 1" Ice	13.23 13.73	7.99 8.82	180.74 278.91
AIR 6419 Antenna w/	A	From Leg	3.00	0.0000	70.00	No Ice	4.97	3.43	87.90
Mounting Pipe (AT&T)	2 1	Trom Leg	0.00	0.0000	70.00	1/2" Ice	5.52	4.14	132.90
meaning ripe (creer)			1.50			1" Ice	6.00	4.73	183.30
AIR 6419 Antenna w/	В	From Leg	3.00	0.0000	70.00	No Ice	4.97	3.43	87.90
Mounting Pipe (AT&T)		C	0.00			1/2" Ice	5.52	4.14	132.90
			1.50			1" Ice	6.00	4.73	183.30
AIR 6419 Antenna w/	C	From Leg	3.00	0.0000	70.00	No Ice	4.97	3.43	87.90
Mounting Pipe (AT&T)			0.00			1/2" Ice	5.52	4.14	132.90
			1.50			1" Ice	6.00	4.73	183.30
AIR 6449 Antenna (AT&T)	Α	From Leg	3.00	0.0000	70.00	No Ice	4.05	2.74	82.00
			0.00			1/2" Ice	4.32	2.97	115.62
			-1.50			1" Ice	4.59	3.20	153.14
AIR 6449 Antenna (AT&T)	В	From Leg	3.00	0.0000	70.00	No Ice	4.05	2.74	82.00
			0.00			1/2" Ice	4.32	2.97	115.62
TD (110 1) (1 TO T)			-1.50	0.0000	5 0.00	1" Ice	4.59	3.20	153.14
AIR 6449 Antenna (AT&T)	C	From Leg	3.00	0.0000	70.00	No Ice	4.05	2.74	82.00
			0.00			1/2" Ice	4.32	2.97	115.62
DMD(SD DIJ(DA Antonio		F I	-1.50	0.0000	70.00	1" Ice	4.59	3.20	153.14
OMP65R-BU6DA Antenna	A	From Leg	3.00	0.0000	70.00	No Ice 1/2" Ice	12.71	5.62	96.00
			6.00 0.00			1" Ice	13.21 13.71	6.07 6.53	169.96 250.56
OMP65R-BU6DA Antenna	В	Enoma I ao	3.00	0.0000	70.00	No Ice	13.71	5.62	96.00
DMP03R-BU0DA Amenna	Ь	From Leg	6.00	0.0000	70.00	1/2" Ice	13.21	6.07	169.90
			0.00			1" Ice	13.71	6.53	250.56
OMP65R-BU6DA Antenna	С	From Leg	3.00	0.0000	70.00	No Ice	12.71	5.62	96.00
JWI OJK-BOODA Amemia	C	1 Ioni Leg	6.00	0.0000	70.00	1/2" Ice	13.21	6.07	169.96
			0.00			1" Ice	13.71	6.53	250.56
B14 4478 RRH	Α	From Face	2.00	0.0000	70.00	No Ice	2.02	1.25	60.00
Bir inoladi	11	Trom ruce	5.50	0.0000	70.00	1/2" Ice	2.20	1.40	77.66
			0.00			1" Ice	2.39	1.56	98.08
B14 4478 RRH	В	From Face	2.00	0.0000	70.00	No Ice	2.02	1.25	60.00
	_		5.50	******	, , , , ,	1/2" Ice	2.20	1.40	77.66
			0.00			1" Ice	2.39	1.56	98.08
B14 4478 RRH	C	From Face	2.00	0.0000	70.00	No Ice	2.02	1.25	60.00
			5.50			1/2" Ice	2.20	1.40	77.66
			0.00			1" Ice	2.39	1.56	98.08
4449 B5/B12 RRH	Α	From Face	2.00	0.0000	70.00	No Ice	1.97	1.40	7.20
			-5.50			1/2" Ice	2.15	1.56	25.68
			0.00			1" Ice	2.33	1.72	46.97
4449 B5/B12 RRH	В	From Face	2.00	0.0000	70.00	No Ice	1.97	1.40	7.20
			-5.50			1/2" Ice	2.15	1.56	25.68
			0.00			1" Ice	2.33	1.72	46.97
4449 B5/B12 RRH	C	From Face	2.00	0.0000	70.00	No Ice	1.97	1.40	7.20
			-5.50			1/2" Ice	2.15	1.56	25.68
Data :			0.00	0.0000	5 0.00	1" Ice	2.33	1.72	46.97
DC6 Surge Arrestor	Α	From Face	1.00	0.0000	70.00	No Ice	3.05	1.10	44.00
			1.00			1/2" Ice	3.26	1.24	65.28
DCC Same A	P	E E	0.00	0.0000	70.00	1" Ice	3.49	1.40	89.65
DC6 Surge Arrestor	В	From Face	1.00	0.0000	70.00	No Ice	3.05	1.10	44.00
			1.00			1/2" Ice	3.26	1.24	65.28
DC6 Surga Amastan	C	From Foos	0.00	0.0000	70.00	1" Ice	3.49	1.40	89.65
DC6 Surge Arrestor	С	From Face	1.00 1.00	0.0000	70.00	No Ice 1/2" Ice	3.05 3.26	1.10 1.24	44.00 65.28
									0 1 /X

Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	7 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client		Designed by
	AT&T	ID

Load Combinations

Comb.	Description
No.	··· · · · · ·
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33 34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34 35	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
	-			Comb.	lh	lh-ft	lb-ft

Hudson Design Group 45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	8 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client	AT&T	Designed by ID

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	<i>J</i> •	-77		Comb.	lb	lb-ft	lb-ft
T1	71.25 - 68.75	Leg	Max Tension	15	1607.48	-0.00	0.00
			Max. Compression	31	-4862.51	52.87	3.03
			Max. Mx	2	-2960.56	-744.45	15.03
			Max. My	16	-2450.34	-7.85	-1166.02
			Max. Vy	3	-865.47	323.65	12.85
			Max. Vx	16	939.45	0.00	0.00
		Diagonal	Max Tension	6	1161.02	0.00	0.00
			Max. Compression	19	-1133.57	0.00	0.00
			Max. Mx	28	56.80	-4.27	-0.24
			Max. My	18	-735.60	0.84	1.87
			Max. Vy	31	-8.78	3.44	-0.15
			Max. Vx	18	-0.79	0.84	1.87
		Top Girt	Max Tension	3	280.37	0.00	0.00
			Max. Compression	6	-313.10	0.00	0.00
			Max. Mx	26	-136.63	-20.26	0.00
			Max. My	16	-19.99	0.00	0.00
			Max. Vy	26	20.26	0.00	0.00
			Max. Vx	16	-0.00	0.00	0.00
T2	68.75 - 63.75	Leg	Max Tension	7	5391.64	-330.71	4.17
			Max. Compression	10	-8751.18	43.44	-2.22
			Max. Mx	14	5058.80	-332.28	2.45
			Max. My	4	-2431.69	-6.98	-105.49
			Max. Vy	22	-175.98	-328.75	-4.50
			Max. Vx	4	42.98	-7.85	21.26
		Diagonal	Max Tension	9	3098.58	0.00	0.00
			Max. Compression	20	-3165.58	-8.02	3.72
			Max. Mx	8	3086.12	13.41	-2.46
			Max. My	18	-3072.11	1.84	6.71
			Max. Vy	30	-10.73	11.01	-0.08
			Max. Vx	18	2.10	1.84	6.71
		Secondary Horizontal	Max Tension	2	160.19	0.00	0.00
			Max. Compression	15	-128.49	-11.59	-2.15
			Max. Mx	18	-77.34	-18.38	-0.93
			Max. My	8	-104.04	-13.35	-3.13
			Max. Vy	33	16.02	11.86	0.48
			Max. Vx	12	1.57	0.00	0.00
T3	63.75 - 58.75	Leg	Max Tension	7	13390.77	-49.28	-2.46
			Max. Compression	10	-17228.47	68.18	-1.75
			Max. Mx	10	-17228.47	68.18	-1.75
			Max. My	12	-1650.41	0.73	-318.66
			Max. Vy	10	-57.93	68.18	-1.75
			Max. Vx	2	-114.77	-32.39	277.19
		Diagonal	Max Tension	20	3428.31	0.00	0.00
			Max. Compression	9	-3379.62	0.00	0.00
			Max. Mx	10	2706.76	12.56	0.73
			Max. My	19	-3100.72	-11.07	5.86
			Max. Vy	31	-9.83	8.29	0.11
			Max. Vx	18	1.83	-10.94	5.86
T4	58.75 - 53.75	Leg	Max Tension	15	21880.38	-55.46	-12.93
			Max. Compression	10	-25938.74	82.62	-5.21
			Max. Mx	31	-9992.74	102.72	0.49
			Max. My	12	-1752.26	-1.91	-508.56
			Max. Vy	19	-53.57	82.26	-4.05
			Max. Vx	2	-100.23	-44.62	435.20
		Diagonal	Max Tension	9	3687.06	14.58	-0.35
		3	Max. Compression	20	-3778.52	0.00	0.00
			Max. Mx	10	2987.57	20.06	0.24
			Max. My	16	-3195.54	-10.92	4.63
			Max. Vy	31	-13.07	18.84	-0.04
			Max. Vx	16	-1.45	-10.92	4.63

Hudson Design Group 45 Beechwood Drive

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	9 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client		Designed by
	AT&T	ID

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
	·			Comb.	lb	lb-ft	lb-ft
T5	53.75 - 51.25	Leg	Max Tension	15	29243.60	-78.11	2.43
			Max. Compression	10	-33835.87	-0.00	-0.00
			Max. Mx	31	-12898.78	102.72	0.49
			Max. My	12	-1905.77	-1.91	-508.56
			Max. Vy	11	56.65	82.79	-5.30
			Max. Vx	12	-231.74	-1.91	-508.56
		Diagonal	Max Tension	8	3103.88	0.00	0.00
			Max. Compression	9	-3096.31	0.00	0.00
			Max. Mx	32	-422.94	-23.00	-1.33
			Max. My	16	-2717.67	-9.57	5.37
			Max. Vy	32	-16.89	0.00	0.00
			Max. Vx	16	-2.28	-9.57	5.37

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ oldsymbol{\emptyset} P_{allow} $	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
T1	71.25 - 68.75	Leg	bent plate (1/4")	1	-2989.45	66337.00	4.5	Pass
		Leg	bent plate (1/4")	2	-4862.51	66337.00	7.3	Pass
		Leg	bent plate (1/4")	3	-2960.56	66337.00	4.5	Pass
		Diagonal	L2x2x1/8	7	-1133.57	14253.20	8.0	Pass
		Diagonal	L2x2x1/8	8	-1055.60	14253.20	7.4	Pass
		Diagonal	L2x2x1/8	9	-928.40	14253.20	6.5	Pass
		Diagonal	L2x2x1/8	10	-1060.10	14253.20	7.4	Pass
		Diagonal	L2x2x1/8	11	-822.59	14253.20	5.8	Pass
		Diagonal	L2x2x1/8	12	-749.46	14253.20	5.3	Pass
		Top Girt	L2 1/2x2 1/2x3/16	4	-312.85	22870.80	1.4	Pass
		Top Girt	L2 1/2x2 1/2x3/16	5	-313.10	22870.80	1.4	Pass
		Top Girt	L2 1/2x2 1/2x3/16	6	-310.30	22870.80	1.4	Pass
T2	68.75 - 63.75	Leg	bent plate (1/4")	13	-7695.19	49985.10	15.4	Pass
		Leg	bent plate (1/4")	14	-8751.18	49985.10	17.5	Pass
		Leg	bent plate (1/4")	15	-7703.73	49985.10	15.4	Pass
		Diagonal	L2x2x1/8	16	-3165.58	12067.10	26.2	Pass
		Diagonal	L2x2x1/8	17	-3163.46	12067.10	26.2	Pass
		Diagonal	L2x2x1/8	18	-3026.24	12067.10	25.1	Pass
		Diagonal	L2x2x1/8	19	-3028.26	12067.10	25.1	Pass
		Diagonal	L2x2x1/8	20	-2341.20	12067.10	19.4	Pass
		Diagonal	L2x2x1/8	21	-2341.29	12067.10	19.4	Pass
		Secondary Horizontal	L2 1/2x2 1/2x3/16	22	160.19	29224.80	0.5	Pass
		Secondary Horizontal	L2 1/2x2 1/2x3/16	23	155.66	29224.80	0.5	Pass
		Secondary Horizontal	L2 1/2x2 1/2x3/16	24	-133.29	28585.30	0.5	Pass
T3	63.75 - 58.75	Leg	bent plate (1/4")	25	-16316.40	49985.10	32.6	Pass
		Leg	bent plate (1/4")	26	-17228.50	49985.10	34.5	Pass
		Leg	bent plate (1/4")	27	-16295.20	49985.10	32.6	Pass
		Diagonal	L2x2x1/8	28	-3374.70	12067.10	28.0	Pass
		Diagonal	L2x2x1/8	29	-3379.62	12067.10	28.0	Pass
		Diagonal	L2x2x1/8	30	-3205.99	12067.10	26.6	Pass
		Diagonal	L2x2x1/8	31	-3201.23	12067.10	26.5	Pass
		Diagonal	L2x2x1/8	32	-2704.06	12067.10	22.4	Pass
		Diagonal	L2x2x1/8	33	-2703.88	12067.10	22.4	Pass
T4	58.75 - 53.75	Leg	bent plate (1/4")	34	-25191.60	49985.10	50.4	Pass
		Leg	bent plate (1/4")	35	-25938.70	49985.10	51.9	Pass
		Leg	bent plate (1/4")	36	-25148.10	49985.10	50.3	Pass
		Diagonal	L2x2x1/8	37	-3778.52	12067.10	31.3	Pass
		Diagonal	L2x2x1/8	38	-3777.09	12067.10	31.3	Pass
		Diagonal	L2x2x1/8	39	-3576.48	12067.10	29.6	Pass
		Diagonal	L2x2x1/8	40	-3577.93	12067.10	29.7	Pass

4	7
THY	<i>ower</i>

Hudson Design Group 45 Beechwood Drive

45 Beechwood Drive North Andover, MA Phone: 978.557.5553 FAX: 978.336.5586

Job		Page
	CT2120	10 of 10
Project		Date
	FAIRFILED CENTRAL	17:02:30 01/10/22
Client	AT&T	Designed by

Section	Elevation	Component	Size	Critical	P	$ otagP_{allow} $	%	Pass
No.	ft	Туре		Element	lb	lb	Capacity	Fail
		Diagonal	L2x2x1/8	41	-3218.22	12067.10	26.7	Pass
		Diagonal	L2x2x1/8	42	-3218.21	12067.10	26.7	Pass
T5	53.75 - 51.25	Leg	bent plate (1/4")	43	-33183.30	66337.00	50.0	Pass
		Leg	bent plate (1/4")	44	-33835.90	66337.00	51.0	Pass
		Leg	bent plate (1/4")	45	-33127.90	66337.00	49.9	Pass
		Diagonal	L2x2x1/8	46	-3093.31	14253.20	21.7	Pass
		Diagonal	L2x2x1/8	47	-3096.31	14253.20	21.7	Pass
		Diagonal	L2x2x1/8	48	-2929.75	14253.20	20.6	Pass
		Diagonal	L2x2x1/8	49	-2926.56	14253.20	20.5	Pass
		Diagonal	L2x2x1/8	50	-2741.18	14253.20	19.2	Pass
		Diagonal	L2x2x1/8	51	-2741.36	14253.20	19.2	Pass
		C					Summary	
						Leg (T4)	51.9	Pass
						Diagonal (T4)	31.3	Pass
						Secondary Horizontal	0.5	Pass
						(T2) Top Girt (T1)	1.4	Pass
						RATING =	51.9	Pass

EXHIBIT 5

Radio Frequency Exposure Analysis Report

May 2, 2022

Centerline on behalf of AT&T Centerline Communications Project Number: 566540

> AT&T Site Name: FAIRFIELD CENTRAL **Site Number: CT2120** FA#: 10035074 USID: 60405

Site Address: 55 WALLS DRIVE, FAIRFIELD, CT 06824

Site Compliance Summary

AT&T Compliance Status: Compliant

Cumulative Calculated Power Density (Ground Level): 96.74641 μW/cm²

Cumulative General Population % MPE (Ground Level): 9.6750600000000002%

May 2, 2022

Centerline Attn: Jennifer Iliades, Project Manager 750 W Center St, Suite 301 West Bridgewater, MA 02379

RF Exposure Analysis for Site: FAIRFIELD CENTRAL

Centerline Communications, LLC ("Centerline") was contracted to analyze the proposed AT&T facility at **55 WALLS DRIVE, FAIRFIELD, CT 06824** for the purpose of determining whether the predictive exposure from the proposed facility is within specified federal limits.

All information used in this report was analyzed as a percentage of the Maximum Permissible Exposure (% MPE) limits as detailed in 47 CFR § 1.1310 as well as Federal Communications Commission (FCC) OET Bulletin 65 Edition 97-01. The FCC MPE limits are typically expressed in units of milliwatts per square centimeter (mW/cm²) or microwatts per square centimeter (μ W/cm²). The exposure limits vary depending upon the frequencies being utilized. The General Population/Uncontrolled MPE limit (in mW/cm²) for frequencies between 300 and 1500 is defined as frequency (in MHz) divided by 1500 ($f_{MHz}/1500$). Frequencies between 1500 and 100,000 MHz have a General Population/Uncontrolled MPE limit of 1 mW/cm² (1000 μ W/cm²). The calculated power density at each sample point divided by the limit at each calculated frequency provides a result in % MPE. Summing the calculated % MPE from all contributors provides a cumulative % MPE at a particular sample point. Wireless carriers use different frequency bands with varying MPE limits; therefore, it is useful to report results in terms of % MPE as opposed to power density.

All results were compared to the FCC radio frequency exposure rules as detailed in 47 CFR § 1.1307(b) to determine compliance with the MPE limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits, as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Additional details can be found in FCC OET 65.

Calculation Methodology

Centerline Communications, LLC has performed theoretical modeling of the site using a software tool, RoofMaster®, which incorporates calculation methodologies detailed in FCC OET 65. RoofMaster® uses a cylindrical model for conservative power density predictions within the near field of the antenna where the antenna pattern has not truly formed yet. Within this area power density values tend to decrease based upon an inverse distance function. At the point where it is appropriate for modeling to change from near-field calculations to far-field calculations, the power decreases inversely with the square of the distance. The modeling is based on worst-case assumptions in terms of transmitter power and duty cycle. No losses were included in the power calculations unless they were specifically provided for the project.

In OET 65, a far field model is presented to calculate the spatial peak power density. The RoofMaster® implementation of this model incorporates antenna manufacturer's horizontal and vertical pattern data to determine the power density in all directions. This model yields the power density at a single point in space. In order to determine the spatial power density for comparison to the FCC limits, the average of several points calculated within the human profile (0-6') must be conducted. RoofMaster® calculates seven power density values between 0-6' above the specified study plane and performs a linear spatial average.

Data & Results

The following table details the antennas and operating parameters for the AT&T antenna system as well as any other antenna systems at the site. This is based on antenna information provided by the client and data compiled from other sources where necessary. The data below was input into Roofmaster® to perform the theoretical exposure calculations at the ground.

The theoretical calculations performed in Roofmaster® determine the cumulative exposure at all sample points at ground level (0-6' spatial average). The results from highest cumulative sample point at ground level surrounding the site are displayed in the table below. The contribution from directional antennas to the maximum cumulative totals varies greatly depending on location; therefore, the contribution from one antenna sector at the highest calculated exposure point may be greater or less than other sectors since sectorized directional antennas are pointed in different directions and there is not much overlapping exposure.

The contribution to the cumulative power density and % MPE for each antenna/frequency band is listed in the table. The cumulative power density and cumulative % MPE are displayed at the bottom of the table.

Maximum Calculated Cumulative Power Density (Location: approximately 200' northwest of site)

Antenna ID	Make / Model	Frequency Band (MHz)	Antenna Gain (dBd)	Antenna Centerline (ft)	Channel Count	TX Power/ Channel (watts)	ERP (watts)	Calculated Power Density (μW/cm²)	General Population MPE Limit (μW/cm²)	General Population % MPE
AT&T A 1	CCI TPA65R-BU6D	700	11.45	69.30	4.00	40.00	2234.19	0.00058	466.67	0.00012
AT&T A 1	CCI TPA65R-BU6D	1900	15.25	69.30	4.00	40.00	5359.45	0.00029	1000.00	0.00003
AT&T A 1	CCI TPA65R-BU6D	2100	15.95	69.30	4.00	40.00	6296.80	0.00028	1000.00	0.00003
AT&T A 2	ERICSSON AIR6449	3700	23.55	69.30	1.00	108.40	24548.74	0.00500	1000.00	0.00050
AT&T A 3	ERICSSON AIR6419	3450	22.85	72.30	1.00	54.20	10447.19	24.16858	1000.00	2.41686
AT&T A 3	ERICSSON AIR6419	3450	22.85	72.30	1.00	54.00	10408.63	24.16858	1000.00	2.41686
AT&T A 4	CCI DMP65R-BU6D	700	11.35	69.30	4.00	40.00	2183.33	0.00072	466.67	0.00015
AT&T A 4	CCI DMP65R-BU6D	850	11.35	69.30	4.00	40.00	2183.33	0.00052	566.67	0.00009
AT&T A 4	CCI DMP65R-BU6D	2300	15.25	69.30	4.00	25.00	3349.65	0.00013	1000.00	0.00001
AT&T B 5	CCI TPA65R-BU6D	700	11.75	69.30	4.00	40.00	2393.98	0.00000	466.67	0.00000
AT&T B 5	CCI TPA65R-BU6D	1900	15.25	69.30	4.00	40.00	5359.45	0.00000	1000.00	0.00000
AT&T B 5	CCI TPA65R-BU6D	2100	15.95	69.30	4.00	40.00	6296.80	0.00000	1000.00	0.00000
AT&T B 6	ERICSSON AIR6449	3700	23.55	69.30	1.00	108.40	24548.74	0.00002	1000.00	0.00000
AT&T B 7	ERICSSON AIR6419	3450	22.85	72.30	1.00	54.20	10447.19	0.02827	1000.00	0.00283
AT&T B 7	ERICSSON AIR6419	3450	22.85	72.30	1.00	54.00	10408.63	0.02827	1000.00	0.00283
AT&T B 8	CCI DMP65R-BU6D	700	11.75	69.30	4.00	40.00	2393.98	0.00000	466.67	0.00000
AT&T B 8	CCI DMP65R-BU6D	850	11.45	69.30	4.00	40.00	2234.19	0.00000	566.67	0.00000
AT&T B 8	CCI DMP65R-BU6D	2300	15.25	69.30	4.00	25.00	3349.65	0.00000	1000.00	0.00000
AT&T C 9	CCI TPA65R-BU6D	700	11.65	69.30	4.00	40.00	2339.48	0.00040	466.67	0.00009
AT&T C 9	CCI TPA65R-BU6D	1900	15.45	69.30	4.00	40.00	5612.03	0.00026	1000.00	0.00003
AT&T C 9	CCI TPA65R-BU6D	2100	15.95	69.30	4.00	40.00	6296.80	0.00024	1000.00	0.00002
AT&T C 10	ERICSSON AIR6449	3700	23.55	69.30	1.00	108.40	24548.74	0.00500	1000.00	0.00050
AT&T C 11	ERICSSON AIR6419	3450	22.85	72.30	1.00	54.20	10447.19	24.16858	1000.00	2.41686
AT&T C 11	ERICSSON AIR6419	3450	22.85	72.30	1.00	54.00	10408.63	24.16858	1000.00	2.41686
AT&T C 12	CCI DMP65R-BU6D	700	11.65	69.30	4.00	40.00	2339.48	0.00048	466.67	0.00010
AT&T C 12	CCI DMP65R-BU6D	850	11.35	69.30	4.00	40.00	2183.33	0.00013	566.67	0.00002
AT&T C 12	CCI DMP65R-BU6D	2300	15.25	69.30	4.00	25.00	3349.65	0.00012	1000.00	0.00001
Unknown A 13	GENERIC OMNI 12FT	850	8.96	85.30	1.00	12.70	99.95	0.00002	566.67	0.00000
T-Mobile A 14	GENERIC PANEL 6FT	1900	15.84	56.20	2.00	60.00	4604.49	0.00005	1000.00	0.00001
T-Mobile A 15	GENERIC PANEL 6FT	600	12.33	56.20	2.00	60.00	2052.02	0.00008	400.00	0.00002
T-Mobile A 16	GENERIC PANEL 6FT	700	12.33	56.20	2.00	60.00	2052.02	0.00008	466.67	0.00002
T-Mobile A 17	GENERIC PANEL 6FT	2100	15.84	56.20	2.00	60.00	4604.49	0.00005	1000.00	0.00001
T-Mobile B 18	GENERIC PANEL 6FT	1900	15.84	56.20	2.00	60.00	4604.49	0.00000	1000.00	0.00000
T-Mobile B 19	GENERIC PANEL 6FT	600	12.33	56.20	2.00	60.00	2052.02	0.00000	400.00	0.00000
T-Mobile B 20	GENERIC PANEL 6FT	700	12.33	56.20	2.00	60.00	2052.02	0.00000	466.67	0.00000

Antenna ID	Make / Model	Frequency Band (MHz)	Antenna Gain (dBd)	Antenna Centerline (ft)	Channel Count	TX Power/ Channel (watts)	ERP (watts)	Calculated Power Density (μW/cm²)	General Population MPE Limit (μW/cm²)	General Population % MPE
T-Mobile B 21	GENERIC PANEL 6FT	2100	15.84	56.20	2.00	60.00	4604.49	0.00000	1000.00	0.00000
T-Mobile C 22	GENERIC PANEL 6FT	1900	15.84	56.20	2.00	60.00	4604.49	0.00019	1000.00	0.00002
T-Mobile C 23	GENERIC PANEL 6FT	600	12.33	56.20	2.00	60.00	2052.02	0.00037	400.00	0.00009
T-Mobile C 24	GENERIC PANEL 6FT	700	12.33	56.20	2.00	60.00	2052.02	0.00037	466.67	0.00008
T-Mobile C 25	GENERIC PANEL 6FT	2100	15.84	56.20	2.00	60.00	4604.49	0.00019	1000.00	0.00002
							Cumulative Power Density:	96.74641 μW/cm²	Cumulative % MPE:	9.67506%

Summary

The theoretical calculations performed for this analysis yielded cumulative power density totals in all areas at ground that are within the allowable federal limits for public exposure to RF energy. Therefore, the site is **Compliant** with FCC rules and regulations.

Katrina Styx RF EME Technical Writer Centerline Communications, LLC

Kal Ster

EXHIBIT 6

Town of Fairfield Building Department

725 Old Post Road · Fairfield, CT 06824 · 203.256.3036

PERM# 24676

TYPE BUI

MAP/LOT/EX 141

097

HSE#/STREET/UNIT/UN 0055 WALLS DRIVE

0000

OWNER

NAME: SCINTO ROBERT D

ADDRESS: ONE CORPORATE DRIVE

SHELTON

06484-6208 CT

PHONE: 000 9296300

CONTRACTOR

NAME: PETRA CORP

ADDRESS: 153 EAST STREET

NEW HAVEN, CT

PHONE: 203 8656043

LICENSE#: 00000025B1

DESCRIPTION

INTERIOR RENOVATONS FOR SNET CELLULAR RADIO CELL SITE

+ REPLACE TOWER

DATE

ENTERED 02Nov1995

ISSUED 02Nov1995

EXPIRED 30Apr1996

COST

\$23,000.00 **RECEIPT** 10387 **FEE** \$186.00 **PEN**

\$0.00

BPERM# 00000

CTYPE ALT OCCUP NRNH

EXHIBIT 7

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030324832454

Date: Monday, May 9, 2022 10:18:16 AM

Hello, your package has been delivered.

Delivery Date: Monday, 05/09/2022

Delivery Time: 10:10 AM **Left At:** FRONT DESK **Signed by:** BRENDA K

Set Delivery Instructions

Manage Preferences

View My Packages

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030324832454</u>

OFFICE OF THE FIRST SELECTWOMAN

725 OLD POST ROAD

Ship To: 2ND FLOOR

FAIRFIELD, CT 068246684

US

Number of Packages: 1

UPS Service: UPS Ground Package Weight: 1.0 LBS

Reference Number: CT2120- FIRST SELECTWOMAN

Download the UPS mobile app

© 2022 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email.

Manage Your UPS My Choice Delivery Alerts

Review the UPS Privacy Notice

Review the UPS My Choice Service Terms

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030335234679

Date: Monday, May 9, 2022 10:18:14 AM

Hello, your package has been delivered.

Delivery Date: Monday, 05/09/2022

Delivery Time: 10:09 AM **Left At:** FRONT DESK **Signed by:** RECEP

Set Delivery Instructions

Manage Preferences

View My Packages

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030335234679</u>

PLANNING & ZONING DEPARTMENT

725 OLD POST ROAD

Ship To: SULLIVAN INDEPENDENCE HALL

FAIRFIELD, CT 068246684

US

Number of Packages: 1

UPS Service: UPS Ground
Package Weight: 1.0 LBS

Reference Number: CT2120- CSC PLANNING DIRECTOR

Download the UPS mobile app

© 2022 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email.

Manage Your UPS My Choice Delivery Alerts

Review the UPS Privacy Notice

Review the UPS My Choice Service Terms

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030320325287

Date: Monday, May 9, 2022 12:42:09 PM

Hello, your package has been delivered.

Delivery Date: Monday, 05/09/2022

Delivery Time: 12:40 PM

Left At: OFFICE **Signed by:** POSADA

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030320325287</u>

RD SCINTO, INC

Ship To: 1 CORPORATE DRIVE SHELTON, CT 064846208

SHELTON, CT 064846208

US

Number of Packages: 1

UPS Service: UPS Ground
Package Weight: 1.0 LBS

Reference Number: CT2120-CSC ROBERT D. SCINTO

Discover more about UPS:

Visit https://link.edgepilot.com/s/e2373292/Quq5lnQ-jU bdx6cnMnMMq?u=http://www.ups.com/

Sign Up For Additional E-Mail From UPS

Read Compass Online

Download the UPS mobile app

© 2022 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email. UPS will not receive any reply message.

Review the UPS Privacy Notice

For Questions, Visit Our Help and Support Center

Subject: UPS Delivery Notification, Tracking Number 1Z9Y45030327037068

Date: Monday, May 9, 2022 10:18:14 AM

Hello, your package has been delivered.

Delivery Date: Monday, 05/09/2022

Delivery Time: 10:09 AM **Left At:** FRONT DESK **Signed by:** RECEP

Set Delivery Instructions

Manage Preferences

View My Packages

CENTERLINE SITE ACQUISITION

Tracking Number: <u>1Z9Y45030327037068</u>

PLANNING & ZONING DEPARTMENT

725 OLD POST ROAD

Ship To: SULLIVAN INDEPENDENCE HALL

FAIRFIELD, CT 068246684

US

Number of Packages: 1

UPS Service: UPS Ground
Package Weight: 1.0 LBS

Reference Number: CT2120-CSC ZEO

Download the UPS mobile app

© 2022 United Parcel Service of America, Inc. UPS, the UPS brandmark, and the color brown are trademarks of United Parcel Service of America, Inc. All rights reserved.

All trademarks, trade names, or service marks that appear in connection with UPS's services are the property of their respective owners.

Please do not reply directly to this email.

Manage Your UPS My Choice Delivery Alerts

Review the UPS Privacy Notice

Review the UPS My Choice Service Terms

