Turnkey Wireless Development

Northeast Site Solutions
Denise Sabo
199 Brickyard Rd Farmington, CT 06032 860-209-4690
denise@northeastsitesolutions.com

October 19, 2017

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Exempt Modification Application
293 Elm Street, Enfield CT 06082
Latitude: 41.997659
Longitude: -72.552918
T-Mobile Site\#: CTHA029A-MWAAV

Dear Ms. Bachman:

T-Mobile is requesting to file an exempt modification for an existing 160-foot lattice tower located at 293 Elm Street, Enfield CT 06082. T-Mobile currently has approval for nine (9) antennas at the 140 -foot level of the existing 160foot tower. The property and tower are owned by The Town of Enfield. T-Mobile now intends to install one (1) IBR1300 Dish. The new dish would be installed at the 143.5 -foot and level of the tower.

Planned Modifications:
Remove:
NONE

Remove and Replace:
NONE
Install New:
(1)IBR1300 Dish
(1)Fiber line
(2)CAT6 Cables

Existing to Remain:
(1) Hybrid line
(3) RRU
(3) AIR32 Antenna - 1900/2100 Mhz
(3) LNX6515 Antenna - 700 Mhz
(3) APX16 Antenna - 1900/2100 Mhz

This facility was approved by the Town of Enfield PZC. The PZ approved to replace the existing 120 -foot tower and replace it with 160 -foot tower. Please see attached.

Turnkey Wireless Development

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent Mayor Scott R. Kaupin, Elected Official and Roger J. O'Brien, Director of Planning for the Town of Enfield, as well as the property owner and the tower owner (Town of Enfield).

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site. •
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under
R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Denise Sabo

Mobile: 860-209-4690
Fax: 413-521-0558
Office: 199 Brickyard Rd, Farmington, CT 06032
Email: denise@northeastsitesolutions.com

Attachments
cc: Mayor Scott R. Kaupin - as elected official
Roger J. O’Brien, Director of Planning
Town of Enfield - as tower owner and property owner

Exhibit A

ZONING CERTIFICATE

- SPECIAL USE PERMIT -

Planning and Zoning File: XSU \#09-06

OWNERS OF RECORD (Grantors) Town of Enfield

PREMISES: 293 Elm Street; Assessors Map 75, Lot 103
I, Peter Falk, Secretary, hereby certify that on July 23, 2009, the Planning and Zoning Commission of the Town of Enfield did approve XSU \#09-06 - Special Use Permit to replace an existing 120' high communications antenna with a 160^{\prime} high antenna at the Public Safety Complex located at 293 Elm Street, in an I-1 District, Assessors Map 75, Lot 103, Town of Enfield applicant/owner. This approval is subject to conformance with the submitted plans and the following conditions:

Conditions to be met. prior to the issuance of permits:

1. This approval will become effective upon the filing of a Special Use Zoning Certificate signed by the Commission Secretary in the office of the Town Clerk. Proof of such filing shall be in the file prior to the issuance of any permits.

General Conditions:

2. This approval is for the specific use and structures identified in the application. Any change in the nature of the use or the structures will require new approvals from the Enfield Planning and Zoning Commission.
3. This project shall be constructed and maintained in accordance with the referenced plans. Minor modifications to the approved plans may be allowed in accordance with the regulatlons, subject to staff review and approval.
4. A Special Permit is valid for a period of one year from the effective date of approval A zoning permit must be obtained within this period or this approval shall be rendered null and void, unless an extension is granted by the Commission.
The reasons for approval of the use and the accompanying Site Plan, including any conditions relating to either, are part of the record of the July 23, 2009 Enfield Planning and Zoning Commission meeting.
In accordance with Section 8-3c and Section 8-3d of Connecticut General Statues as amended, the effective date of this approval shall the date of recording of this Certificate on the land records of the Enfield Town Clerk. A Special Permit approved by the Commission is valid for a period of one year from the effective date of approval unless an extension is granted by the Commission.
Dated at Enfield, Connecticut this \qquad 27
day of August 2009.

Exhibit B

Location	293 ELM ST	Mblu	075/ / 0103/ /
Acct\#	000600010333	Owner	ENFIELD TOWN OF
Assessment	\$2,784,150	Appraisal	\$3,977,340
PID	85	Building Count	1
Fire District	3		

Current Value

Appraisal				
	Valuation Year	Improvements	Land	Total
2016		$\$ 3,179,430$	$\$ 797,910$	
Assessment				
Valuation Year	Improvements			
2016		$\$ 2,225,610$	Land	Total

Owner of Record

Owner	ENFIELD TOWN OF	Sale Price	$\$ 0$
Co-Owner	PUBLIC SAFETY COMPLX	Certificate	1
Address	820 ENFIELD ST	Book \& Page	$626 / 14$
	ENFIELD, CT 06082	Sale Date	

Ownership History

Ownership History										
Owner	Sale Price	Certificate							Book \& Page	Sale Date
ENFIELD TOWN OF		$\$ 0$	1	$626 / 14$						

Building Information

Building 1 : Section 1

Year Built:	1991
Living Area:	23,348
Replacement Cost:	$\$ 3,735,400$
Building Percent	73
Good:	
Replacement Cost Less Depreciation: $\$ 2,726,840$ Building Attributes	

Field	Description
STYLE	Police Station
MODEL	Comm/Ind
Grade	Average +10
Stories:	1
Occupancy	1
Exterior Wall 1	Brick
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar \& Gravel
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Vinyl/Asphalt
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Hot Air-no Duc
AC Type	Central
Bldg Use	Exempt Comm
Total Rooms	
Total Bedrms	
Total Baths	
Total H Bths	
Extra Fixtures	
1st Floor Use:	
Heat/AC	Ht/AC Package
Frame Type	Masonry
Baths/Plumbing	Average
Ceiling/Wall	Sus Ceil Wall
Rooms/Prtns	Average
Wall Height	8
\% Comn Wall	

Building Photo

(http://images.vgsi.com/photos2/EnfieldCTPhotos//\00\01\70/90
Building Layout

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	23,348	23,348
SLB	Slab	22,798	0
		46,146	23,348

Extra Features

Extra Features Legend				
Code	Description	Size	Value	Bldg \#
SPR1	SPRINKLERS-WET	23348 SF	\$17,040	1

Land

Use Code	925	Size (Acres)	7.43
Description	Exempt Comm	Frontage	
Zone	I-1	Depth	
Neighborhood	C110	Assessed Value	$\$ 558,540$
Alt Land Appr	No	Appraised Value	$\$ 797,910$
Category			

Outbuildings

Outbuildings						Legend Bldg \#
Code	Description	Sub Code	Sub Description	Size	Value	
PAV1	Paving	AS	Asphalt	40000 S.F.	\$43,000	1
FN4	FENCE-10'CHAIN			2500 L.F.	\$32,500	1
SHD1	Shed	FR	Frame	480 S.F.	\$2,940	1
LT1	LIGHTS-IN W/PL			14 UNITS	\$11,200	1
TWR1	Cell Twr 1 Carrier			2 UNITS	\$150,100	1
TWR1	Cell Twr 1 Carrier			2 UNITS	\$190,000	1
SHD2	Shed gd	MS	Masonry	220 S.F.	\$3,100	1
PAV1	Paving	AS	Asphalt	2520 S.F.	\$2,710	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2016	\$3,179,430	\$797,910	\$3,977,340
2015	\$3,227,090	\$797,910	\$4,025,000
2014	\$3,227,090	\$797,910	\$4,025,000

Assessment						
	Valuation Year					
2016		Improvements	Land	Total		
2015	$\$ 2,225,610$	$\$ 558,540$	$\$ 2,784,150$			
2014	$\$ 2,258,970$	$\$ 558,540$	$\$ 2,817,510$			

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Enfield CT GIS Data Viewer

Exhibit C

.. T. .-Mobile•• momenest.Le
 NEW SITE DEVELOPMENT (NSD) "ENFIELD"
 CTHA029A
 293 ELM STREET ENFIELD, CT 06082

VICINITY MAP

DRAWING INDEX
T-1 TITLE SHEET \& INDEX
sp-1 SITE PLAN
A-1 PLAN \& ELEVAtion
a- 2 antenna detalls

SITE INFORMATION
T-MOBILE SITE NUMEER: CTHAROROA
SITE ADDRESS: 293 ELM STREET,
STE TYPEIDESCRRTION: INSTALL (1) NEW MICROWAVE ANTENNA AND ASSOCIATED CABLING

Exhibit D

STRUCTURAL ANALYSIS REPORT 160' SELF-SUPPORTING TOWER ENFIELD, CONNECTICUT

Prepared for
Northeast Site Solutions, LLC

T-Mobile Site \#CTHA029A

September 29, 2017

APT Project \#CT411260

STRUCTURAL ANALYSIS REPORT 160' PiROD SELF-SUPPORTING TOWER ENFIELD, CONNECTICUT
 prepared for
 Northeast Site Solutions, LLC

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of this 160foot self-supporting tower. The analysis was performed for T-Mobile's proposed installation of one Fastback Networks IBR 1300 compact radio as detailed below. The antenna is to be fed by one $1 / 4$ " fiber and two Cat 6 cables, and will be mounted on an existing mount.

APT's analysis indicates the tower meets the requirements of the Connecticut State Building Code and TIA-222 Revision G with the proposed equipment.

Evaluation of the existing base foundation was performed from original Valmont design drawings. The foundation was found to be adequately sized for the proposed equipment.

INTRODUCTION:

A structural analysis was performed on the above-mentioned communications tower by APT for Northeast Site Solutions, LLC. The tower is located at the Enfield Police Department at 293 Elm Street in Enfield, Connecticut. APT previously visited the tower site on June 22, 2016 to record physical and dimensional properties of the structure and its appurtenances, and to assess the condition of the tower.

The structure is a 160 -foot galvanized steel guyed tower manufactured by Valmont/PiROD. The tower features truss legs with angle steel bracing members from 0'-110', and solid rod legs and bracing members from $110^{\prime}-160^{\prime}$. The following documents were utilized:

Document	Remarks	Date	Source
Valmont tower \& foundation drawings	Valmont Eng. File \#A-168131	$10 / 27 / 2011$	Owner
Lease exhibit	APT Project no. CT409190	$5 / 31 / 2016$	APT
Antenna design	Listing of proposed equipment	$4 / 15 / 2016$	T-Mobile

The analysis was performed in accordance with TIA-222 Revisions G using the following antenna inventory (proposed equipment shown in bold text):

Carrier	Elev.	Antenna	Mount	Coax.
	170'	Lightning rod	14' pipe extension	N.A.
Enfield PD	158'	3', 2' high-performance dishes, 2' dish w/out radome, 1 ' square panel, 10 ' omnidirectional whip	(3) 3' sidearms	(5) $7 / 8 ", 1 / 4 "$
T-Mobile	143.5'	(1) IBR 1300 compact radio	On sector mount below	(1) fiber, (2) Cat 6
T-Mobile	140'	(3) LNX-6515DS, (3) APX16DWV16DWVS, (3) AIR 32 B66Aa B2a panels, (3) RRUS-11, (3) RRUS-32 RRHs	(3) 10'-6" sector mounts	(1) 9×18 hybrid
Enfield PD	133'	2' high-performance dish, 1' square panel	(2) 3' sidearms	(2) $7 / 8 \prime \prime,(2)^{1 / 4 "}$
Enfield PD	114'	3', (2) 12' omnidirectional whips	(3) 3' sidearms	(3) $7 / 8^{\prime \prime}$
Enfield PD	99'	1' square panel	Leg	$1 / 4 "$
Enfield PD	88'	2', (2) 3' yagis	(3) 3' sidearms	(3) $7 / 8 ", 1 / 4 "$
Enfield PD	58'	12', (2) 20' omnidirectional whips	(3) 3' sidearms	(3) $1 / 2$ "
Enfield PD	18'	GPS	3' sidearm	$1 / 2 "$

STRUCTURAL ANALYSIS:

Methodology:

The structural analysis was done in accordance with the Connecticut State Building Code and TIA-222, Revision G (TIA), Structural Standard for Antenna Supporting Structures and Antennas.

The analysis was conducted using a 3 -second gust wind speed of 105 miles per hour with no ice and $50-\mathrm{mph}$ with $1 "$ radial ice in accordance with the TIA-222-G standard for Hartford County, Connecticut. The following additional design criteria were used:

$$
\begin{array}{lc}
\text { Structure Class: } & \text { II } \\
\text { Topographic Category: } & 1 \\
\text { Exposure Category: } & \mathrm{B}
\end{array}
$$

Analysis Results:

Analysis of the tower was conducted in accordance with the criteria outlined herein with antenna changes as previously described. The following table summarizes the results of the analysis based on stresses of individual leg and bracing members:

All-Points Technology Corporation

116 Grandview Road Conway, NH 03818 (603) 496-5853

Elevation	Leg Capacity	Bracing Capacity
$150^{\prime}-160^{\prime}$	4%	5%
$130^{\prime}-150^{\prime}$	19%	22%
$110^{\prime}-130^{\prime}$	37%	18%
$100^{\prime}-110^{\prime}$	39%	31%
$80^{\prime}-100^{\prime}$	35%	29%
$60^{\prime}-80^{\prime}$	43%	39%
$40^{\prime}-60^{\prime}$	51%	55%
$20^{\prime}-40^{\prime}$	43%	69%
$0^{\prime}-20^{\prime}$	48%	62%

Bracing, Splice and Anchor Bolts:

Connection bolts were evaluated under the proposed loading. All bolts were found to be adequately sized to support the proposed loads.

Base Foundation:

Evaluation of the existing base foundation was performed from original design drawings. The foundation was determined to be adequately sized for the proposed equipment. Factored base reactions imposed with the additional antennas were calculated as follows:

Compression:	149.9 kips
Uplift:	-130.7 kips
Shear:	15.1 kips
Overturning Moment:	$1958 \mathrm{ft}-\mathrm{kips}$

CONCLUSIONS AND RECOMMENDATIONS:

APT's structural analysis indicates that the 160 -foot self-supporting tower located at the Enfield Police Department at 293 Elm Street in Enfield, Connecticut meets the requirements of the Connecticut State Building Code with T-Mobile's proposed antenna and associated feed lines.

LIMITATIONS:

This report is based on the following:

1. Tower is properly installed and maintained.
2. All members are in an undeteriorated condition.
3. All required members are in place.
4. All bolts are in place and are properly tightened.
5. Tower is in plumb condition.
6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.

All-Points Technology Corporation, P.C. (APT) is not responsible for modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

1. Replacing or strengthening bracing members.
2. Reinforcing vertical members in any manner.
3. Adding or relocating torque arms or guys.
4. Installing antenna mounting gates or side arms.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Tower Schematic

All-Points Technology Corporation 116 Grandview Road	Ob: 160' PiROD Tower		
	Project: CT411260 Enfield		
Conway, NH 03818	${ }^{\text {Client: }}$ NSS	Dram by: Rob Adair	App'd:
Phone: (603) 496-5853	Code: TIA-222-G	Date: 09/29/17	Scale: NT
FAX: (603) 447-2124	Path: ${ }_{2}$		Dwg N

Appendix B

Calculations

Search Results

Query Date: Thu Dec 082016
Latitude: 41.9974
Longitude: -72.5539
ASCE 7-10 Windspeeds (3-sec peak gust in mph*):

Risk Category I: 110
Risk Category II: 121
Risk Category III-IV: 130
MRI** 10-Year: 76
MRI** 25-Year: 86
MRI** 50-Year: 92
MRI** 100-Year: 98
ASCE 7-05 Windspeed:
97 (3-sec peak gust in mph)
ASCE 7-93 Windspeed:
79 (fastest mile in mph)

*Miles per hour
**Mean Recurrence Interval

Users should consult with local building officials
to determine if there are community-specific wind speed
requirements that govern.

Print your results

WINDSPEED WEBSITE DISCLAIMER

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report.

tnxTOWer	Job	Page	
All-Points Technology Corporation	Project	160' PiROD Tower	1 of 6
116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124	Client	CT411260 Enfield	Date
		NSS	Designed by Rob Adair

Tower Input Data

The main tower is a $3 x$ free standing tower with an overall height of 160.00 ft above the ground line.
The face width of the tower is 5.00 ft at the top and 16.00 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Basic wind speed of 105 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Deflections calculated using a wind speed of 60 mph
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.
Feed Line/Linear Appurtenances

| Description | Face
 or
 Leg | Allow
 Shield | Component
 Type | Placement | Face
 Offset
 in | Lateral
 Offset
 (Frac FW) | \# | \#
 Per
 Row | Clear
 Spacing
 in | Width or Perimeter
 Diameter
 in | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | ft | in | | | | | | | | |

Discrete Tower Loads

Description	Face or Leg	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$	Azimuth Adjustment	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side	Weight
Generic Lightning Rod 4' copper	A	From Leg	0.00	0.0000	160.00	No Ice	0.50	0.50	0.00
			0.00			1/2" Ice	1.00	1.00	0.00
			14.00			$1{ }^{\prime \prime}$ Ice	1.50	1.50	0.00
14^{\prime} x 2-7/8" pipe mount	A	From Leg	0.00	0.0000	160.00	No Ice	4.03	4.03	107.00
			0.00			1/2" Ice	5.46	5.46	136.25

tnxTower All-Points Technology Corporation 116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124	Job	160' PiROD Tower	$\text { Page } 2 \text { of } 6$
	Project	CT411260 Enfield	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:14:52 09/29/17 } \end{array}$
	Client	NSS	Designed by Rob Adair

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustment 0	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
1 ' square panel	B	From Leg	6.00	0.0000	158.00	1" Ice	6.91	6.91	174.49
			3.00			No Ice	1.20	0.32	15.00
			0.00			1/2" Ice	1.34	0.40	22.91
	B	From Leg	0.00	0.0000	158.00	$1{ }^{\prime \prime}$ Ice	1.48	0.49	32.76
$10^{\prime} \times 2$ ' omni whip			3.00			No Ice	2.00	2.00	60.00
			0.00			1/2" Ice	3.02	3.02	75.50
	A	None	5.00	0.0000	158.00	1" Ice	4.07	4.07	97.47
2' sidearm						No Ice	0.95	0.48	20.00
						1/2" Ice	1.45	0.73	35.00
	B	None		0.0000	158.00	$1{ }^{\prime \prime}$ Ice	2.25	1.13	50.00
2' sidearm						No Ice	0.95	0.48	20.00
						1/2" Ice	1.45	0.73	35.00
	C	None		0.0000	158.00	1" Ice	2.25	1.13	50.00
2' sidearm						No Ice	0.95	0.48	20.00
						1/2" Ice	1.45	0.73	35.00
	A	From Leg		0.0000	140.00	1" Ice	2.25	1.13	50.00
LNX-6515DS-T4M			4.00			No Ice	11.39	7.66	50.00
			0.00			1/2" Ice	12.01	8.25	115.61
	B	From Leg	0.00	0.0000	140.00	1" Ice	12.63	8.84	188.87
LNX-6515DS-T4M			4.00			No Ice	11.39	7.66	50.00
			0.00			1/2" Ice	12.01	8.25	115.61
	C	From Leg	0.00	0.0000	140.00	1" Ice	12.63	8.84	188.87
LNX-6515DS-T4M			4.00			No Ice	11.39	7.66	50.00
			0.00			1/2" Ice	12.01	8.25	115.61
	A	From Leg	0.00	0.0000	140.00	1 " Ice	12.63	8.84	188.87
APX16DWV-16DWVS			4.00			No Ice	6.08	2.00	25.00
			0.00			1/2" Ice	6.44	2.33	56.34
	B	From Leg	0.00	0.0000	140.00	$1{ }^{\prime \prime}$ Ice	6.80	2.66	92.36
APX16DWV-16DWVS			4.00			No Ice	6.08	2.00	25.00
			0.00			1/2" Ice	6.44	2.33	56.34
	C	From Leg	0.00	0.0000	140.00	1" Ice	6.80	2.66	92.36
APX16DWV-16DWVS			4.00			No Ice	6.08	2.00	25.00
			0.00			1/2" Ice	6.44	2.33	56.34
	A	From Leg	0.00	0.0000	140.00	1" Ice	6.80	2.66	92.36
AIR 32 B66Aa B2a			4.00			No Ice	7.10	4.79	133.00
			0.00			1/2" Ice	7.55	5.21	178.82
AIR 32 B66Aa B2a	B	From Leg	0.00	0.0000	140.00	1 'Ice	8.02	5.65	229.91
			4.00			No Ice	7.10	4.79	133.00
			0.00			1/2" Ice	7.55	5.21	178.82
AIR 32 B66Aa B2a	C	From Leg	0.00	0.0000	140.00	1" Ice	8.02	5.65	229.91
			4.00			No Ice	7.10	4.79	133.00
			0.00			1/2" Ice	7.55	5.21	178.82
Fastback IBR 1300	C	From Leg	0.00	0.0000	143.50	$1{ }^{\prime \prime}$ Ice	8.02	5.65	229.91
			4.00			No Ice	0.67	0.31	10.00
			0.00			1/2" Ice	0.78	0.38	15.42
Ericsson RRUS-11	A	From Leg	0.00	0.0000	140.00	$1{ }^{\prime \prime}$ Ice	0.89	0.47	22.44
			3.50			No Ice	2.78	1.19	55.00
			0.00			1/2" Ice	2.99	1.33	75.80
Ericsson RRUS-11	B	From Leg	0.00	0.0000	140.00	$1{ }^{\prime \prime}$ Ice	3.21	1.49	99.63
			3.50			No Ice	2.78	1.19	55.00
			0.00			1/2" Ice	2.99	1.33	75.80
Ericsson RRUS-11	C	From Leg	0.00	0.0000	140.00	$1{ }^{\prime \prime}$ Ice	3.21	1.49	99.63
			3.50			No Ice	2.78	1.19	55.00
			0.00			1/2" Ice	2.99	1.33	75.80
Ericsson RRUS-32	A	From Leg	0.00	0.0000	140.00	1 " Ice	3.21	1.49	99.63
			3.50			No Ice	3.31	2.42	80.00
			0.00			1/2" Ice	3.56	2.64	107.93
			0.00			$1{ }^{\prime \prime}$ Ice	3.81	2.86	139.47
Ericsson RRUS-32	B	From Leg	3.50	0.0000	140.00	No Ice	3.31	2.42	80.00

tnxTower All-Points Technology Corporation 116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124	Job	160' PiROD Tower	$\text { Page } 3 \text { of } 6$
	Project	CT411260 Enfield	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:14:52 09/29/17 } \end{array}$
	Client	NSS	Designed by Rob Adair

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$	Azimuth Adjustment	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight $l b$
Ericsson RRUS-32	C	From Leg	0.00			1/2" Ice	3.56	2.64	107.93
			0.00			$1{ }^{\prime \prime}$ Ice	3.81	2.86	139.47
			3.50	0.0000	140.00	No Ice	3.31	2.42	80.00
			0.00			1/2" Ice	3.56	2.64	107.93
	A	None	0.00			1 " Ice	3.81	2.86	139.47
10^{\prime} sector mount				0.0000	140.00	No Ice	7.58	3.79	300.00
						1/2" Ice	10.73	5.36	350.00
						1" Ice	13.88	6.94	425.00
10^{\prime} sector mount	B	None		0.0000	140.00	No Ice	7.58	3.79	300.00
						$1 / 2^{\prime \prime} \text { Ice }$	10.73	5.36	350.00
						1" Ice	13.88	6.94	425.00
10^{\prime} sector mount	C	None		0.0000	140.00	No Ice	7.58	3.79	300.00
						1/2" Ice	10.73	5.36	350.00
						$1{ }^{\prime \prime}$ Ice	13.88	6.94	425.00
1 ' square panel	C	From Leg	3.00	0.0000	133.00	No Ice	1.20	0.32	15.00
			0.00			1/2" Ice	1.34	0.40	22.91
			0.00			1" Ice	1.48	0.49	32.76
3' sidearm	B	None		0.0000	133.00	No Ice	1.43	0.72	30.00
						1/2" Ice	2.18	1.09	65.00
						1" Ice	2.93	1.47	105.00
3' sidearm	C	None		0.0000	133.00	No Ice	1.43	0.72	30.00
						1/2" Ice	2.18	1.09	65.00
						1" Ice	2.93	1.47	105.00
3' x 1' omni whip	A	From Leg		0.0000	117.00-114.00	No Ice	0.30	0.30	15.00
			0.00			1/2" Ice	0.54	0.54	17.85
			0.00			1" Ice	0.73	0.73	22.79
6 6' sidearm	A	None		0.0000	114.00	No Ice	4.17	2.09	75.00
						1/2" Ice	6.17	3.09	125.00
						1 Ice	8.17	4.09	200.00
$12^{\prime} \times 2^{\prime \prime}$ omni whip	B	From Leg	6.00	0.0000	126.00-114.00	No Ice	2.40	2.40	70.00
			0.00			1/2" Ice	3.63	3.63	88.56
			0.00			1" Ice	4.87	4.87	114.80
6' sidearm	B	None		0.0000	114.00	No Ice	4.17	2.09	75.00
						1/2" Ice	6.17	3.09	125.00
						1" Ice	8.17	4.09	200.00
$12^{\prime} \times 2^{\prime \prime}$ omni whip	C	From Leg	6.00	0.0000	126.00-114.00	No Ice	2.40	2.40	70.00
			0.00			1/2" Ice	3.63	3.63	88.56
			0.00			$1{ }^{\prime \prime}$ Ice	4.87	4.87	114.80
6 6 sidearm	C	None		0.0000	114.00	No Ice	4.17	2.09	75.00
						1/2" Ice	6.17	3.09	125.00
						1" Ice	8.17	4.09	200.00
1' square panel	B	None		0.0000	99.00	No Ice	1.20	0.32	15.00
						$1 / 2^{\prime \prime} \text { Ice }$	1.34	0.40	22.91
						1" Ice	1.48	0.49	32.76
2' yagi	A	From Leg	3.00	0.0000	88.00	No Ice	0.20	0.20	10.00
			0.00			1/2" Ice	0.32	0.32	11.93
			0.00			1" Ice	0.45	0.45	15.35
3' sidearm	A	None		0.0000	88.00	No Ice	1.43	0.72	30.00
						1/2" Ice	2.18	1.09	65.00
						1" Ice	2.93	1.47	105.00
3' Yagi	B	From Leg	3.00	0.0000	88.00	No Ice	2.08	2.08	30.95
			0.00			1/2" Ice	3.79	3.79	52.87
			0.00			1" Ice	5.52	5.52	85.27
3' sidearm	B	None		0.0000	88.00	No Ice	1.43	0.72	30.00
						1/2" Ice	2.18	1.09	65.00
						1" Ice	2.93	1.47	105.00
3' Yagi	C	From Leg	3.00	0.0000	88.00	No Ice	2.08	2.08	30.95
			0.00			1/2" Ice	3.79	3.79	52.87
			0.00			1 " Ice	5.52	5.52	85.27

tnxTower All-Points Technology Corporation 116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124	Job	160' PiROD Tower	$\begin{aligned} & \text { Page } \\ & \\ & \hline \text { of } 6 \end{aligned}$
	Client	NSS	Designed by Rob Adair

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{3' sidearm} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{88.00} \& No Ice \& 1.43 \& 0.72 \& 30.00

\hline \& \& \& \& \& \& 1/2" Ice \& 2.18 \& 1.09 \& 65.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.93 \& 1.47 \& 105.00

\hline \multirow[t]{3}{*}{$12^{\prime} \times 2$ ' omni whip} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 6.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{70.00-58.00} \& No Ice \& 2.40 \& 2.40 \& 70.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.63 \& 3.63 \& 88.56

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.87 \& 4.87 \& 114.80

\hline \multirow[t]{3}{*}{6 6 sidearm} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{58.00} \& No Ice \& 4.17 \& 2.09 \& 75.00

\hline \& \& \& \& \& \& 1/2" Ice \& 6.17 \& 3.09 \& 125.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.17 \& 4.09 \& 200.00

\hline \multirow[t]{3}{*}{$20^{\prime} \times 2.5$ " omni whip} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 6.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{78.00-58.00} \& No Ice \& 5.00 \& 5.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 7.03 \& 86.96

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.07 \& 9.07 \& 136.55

\hline \multirow[t]{3}{*}{6 6 sidearm} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{58.00} \& No Ice \& 4.17 \& 2.09 \& 75.00

\hline \& \& \& \& \& \& 1/2" Ice \& 6.17 \& 3.09 \& 125.00

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 8.17 \& 4.09 \& 200.00

\hline \multirow[t]{3}{*}{$20^{\prime} \times 2.5$ " omni whip} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 6.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{78.00-58.00} \& No Ice \& 5.00 \& 5.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 7.03 \& 86.96

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.07 \& 9.07 \& 136.55

\hline \multirow[t]{3}{*}{6 ' sidearm} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{58.00} \& No Ice \& 4.17 \& 2.09 \& 75.00

\hline \& \& \& \& \& \& 1/2" Ice \& 6.17 \& 3.09 \& 125.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.17 \& 4.09 \& 200.00

\hline \multirow[t]{3}{*}{GPS on 3' standoff} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{18.00} \& No Ice \& 0.60 \& 0.60 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.79 \& 0.79 \& 55.81

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.99 \& 0.99 \& 63.86

\hline
\end{tabular}

Dishes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& Dish Type \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& \begin{tabular}{l}
\(3 d B\) \\
Beam \\
Width
\end{tabular} \& Elevation

$f t$ \& | Outside Diameter |
| :--- |
| ft | \& \& | Aperture |
| :--- |
| Area |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{3' HP dish} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{Paraboloid w/Shroud (HP)} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{158.00} \& \multirow[t]{3}{*}{3.00} \& No Ice \& 7.07 \& 75.00

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 7.47 \& 113.33

\hline \& \& \& \& 0.00 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.86 \& 153.33

\hline \multirow[t]{3}{*}{2 ' dish, no radome} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{Paraboloid w/o Radome} \& \multirow[t]{3}{*}{| From |
| :--- |
| Leg |} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{158.00} \& \multirow[t]{3}{*}{2.00} \& No Ice \& 3.14 \& 50.00

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 3.41 \& 67.50

\hline \& \& \& \& 0.00 \& \& \& \& \& 1" Ice \& 3.68 \& 85.00

\hline \multirow[t]{3}{*}{2' HP dish} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{Paraboloid w/Shroud (HP)} \& \multirow[t]{3}{*}{| From |
| :--- |
| Leg |} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{158.00} \& \multirow[t]{3}{*}{2.00} \& No Ice \& 3.14 \& 50.00

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 3.41 \& 67.50

\hline \& \& \& \& 0.00 \& \& \& \& \& 1 " Ice \& 3.68 \& 85.00

\hline \multirow[t]{3}{*}{2' HP dish} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{Paraboloid w/Shroud (HP)} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{133.00} \& \multirow[t]{3}{*}{2.00} \& No Ice \& 3.14 \& 50.00

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 3.41 \& 67.50

\hline \& \& \& \& 0.00 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.68 \& 85.00

\hline
\end{tabular}

tnxTower All-Points Technology Corporation 116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124	Job	160' PiROD Tower	$\text { Page } 5 \text { of } 6$
	Project	CT411260 Enfield	$\begin{array}{\|l\|} \hline \text { Date } \\ 15: 14: 5209 / 29 / 17 \end{array}$
	Client	NSS	Designed by Rob Adair

Solution Summary

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
160.00	Generic Lightning Rod 4' copper	12	2.914	0.1579	0.0164	747913
158.00	3' HP dish	12	2.847	0.1578	0.0161	747913
143.50	Fastback IBR 1300	12	2.365	0.1556	0.0133	410844
140.00	LNX-6515DS-T4M	12	2.249	0.1545	0.0126	208820
133.00	2' HP dish	12	2.019	0.1510	0.0113	105008
126.00	$12^{\prime} \times 2$ ' omni whip	12	1.795	0.1456	0.0102	62256
120.00	$12^{\prime} \times 2$ ' omni whip	12	1.610	0.1391	0.0095	43675
115.50	$3 ' \times 1$ ' omni whip	12	1.478	0.1331	0.0090	35591
99.00	1 ' square panel	12	1.055	0.1046	0.0066	38428
88.00	2^{\prime} yagi	12	0.823	0.0902	0.0053	45364
78.00	$20^{\prime} \times 2.5{ }^{\prime \prime}$ omni whip	12	0.640	0.0795	0.0045	50912
73.00	$20^{\prime} \times 2.5{ }^{\prime \prime}$ omni whip	12	0.558	0.0737	0.0042	49495
70.00	$12^{\prime} \times 2$ ' omni whip	12	0.511	0.0701	0.0040	48561
68.00	$20^{\prime} \times 2.5$ " omni whip	12	0.481	0.0677	0.0039	47958
64.00	$12^{\prime} \times 2$ ' omni whip	12	0.425	0.0627	0.0037	46801
63.00	$20^{\prime} \times 2.5$ " omni whip	12	0.411	0.0615	0.0036	46562
58.00	$12^{\prime} \times 2$ ' omni whip	12	0.347	0.0552	0.0033	47092
18.00	GPS on 3' standoff	12	0.040	0.0152	0.0009	59824

Bolt Design Data

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load $l b$	Ratio Load Allowable	Allowable Ratio	Criteria
T1	160	Leg	A325N	0.6250	5	446.86	24850.50	0.018	1	Bolt DS
T2	150	Leg	A325N	0.7500	5	3656.05	35784.70	0.102	1	Bolt DS
T3	130	Leg	A325N	1.0000	6	8247.52	53014.40	0.156	1	Bolt Tension
T4	110	Leg	A325N	1.0000	6	8426.10	53014.40	0.159	1	Bolt Tension
		Diagonal	A325N	1.0000	1	3504.08	12723.80	,	1	Member Bearing
		Top Girt	A325N	1.0000	1	721.57	12723.80	0.057	1	Member Bearing
T5	100	Leg	A325N	1.0000	6	11286.20	53014.40	0.213	1	Bolt Tension

tnxTower All-Points Technology Corporation 116 Grandview Road Conway, NH 03818 Phone: (603) 496-5853 FAX: (603) 447-2124	Job	160' PiROD Tower	$\text { Page } 6 \text { of } 6$
	Project	CT411260 Enfield	$\begin{array}{\|l\|} \hline \text { Date } \\ 15: 14: 5209 / 29 / 17 \end{array}$
	Client	NSS	Designed by Rob Adair

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt $l b$	Allowable Load $l b$	Ratio Load Allowable	Allowable Ratio	Criteria
T6	80	Diagonal	A325N	1.0000	1	3069.45	12723.80	0.2410.261	1	Member Bearing
		Leg	A325N	1.0000	6	13823.00	53014.40		1	Bolt Tension
		Diagonal	A325N	1.0000	1	2999.57	12723.80	0.236	1	Member Bearing
T7	60	Leg	A325N	1.0000	6	16362.40	53014.40	0.309	1	Bolt Tension
		Diagonal	A325N	1.0000	1	3341.55	12723.80	. 0.263	1	Member Bearing
T8	40	Leg	A325N	1.0000	6	18839.00	53014.40	0.355	1	Bolt Tension
	20	Diagonal	A325N	1.0000	1	3419.65	12723.80	0.269	1	Member Bearing
T9		Leg	A325N	1.0000	6	21124.80	53014.40	0.398	1	Bolt Tension
		Diagonal	A325N	1.0000	1	4311.66	12723.80	0.339	1	Member Bearing

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \\ \hline \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} ø P_{\text {allow }} \\ l b \end{gathered}$	$\%$ Capacity	Pass Fail
T1	160-150	Leg	13/4	3	-3074.22	80225.50	3.8	Pass
		Diagonal	7/8	13	-587.78	11163.70	5.3	Pass
		Top Girt	1	4	-47.53	6669.94	0.7	Pass
		Bottom Girt	1	7	-229.98	6669.94	3.4	Pass
T2	150-130	Leg	2	36	-21430.30	110545.00	19.4	Pass
		Diagonal	7/8	44	-2425.27	11136.80	21.8	Pass
		Top Girt	1	37	-260.36	6727.56	3.9	Pass
		Bottom Girt	1	40	-950.92	6727.56	14.1	Pass
T3	130-110	Leg	$21 / 4$	93	-54099.50	147321.00	36.7	Pass
		Diagonal	1	101	-2930.04	16644.50	17.6	Pass
		Top Girt	$11 / 4$	94	-938.71	16476.40	5.7	Pass
		Bottom Girt	$11 / 4$	97	-421.45	16476.40	2.6	Pass
T4	110-100	Leg	Pirod 105216	150	-54968.70	142493.00	38.6	Pass
		Diagonal	L2 1/2x2 1/2x3/16	156	-3905.79	12697.80	30.8	Pass
		Top Girt	L3x3x3/16	151	-608.88	21165.30	2.9	Pass
T5	100-80	Leg	Pirod 105217	162	-74670.60	214859.00	34.8	Pass
		Diagonal	L2 1/2x2 1/2x3/16	166	-2935.76	10182.10	28.8	Pass
T6	80-60	Leg	Pirod 105217	177	-92429.60	214859.00	43.0	Pass
		Diagonal	L2 1/2x2 1/2x3/16	181	-3154.31	8118.15	38.9	Pass
T7	60-40	Leg	Pirod 105217	192	-110500.00	214859.00	51.4	Pass
		Diagonal	L2 1/2x2 1/2x3/16	196	-3568.85	6524.21	54.7	Pass
T8	40-20	Leg	Pirod 105218	207	-128298.00	300681.00	42.7	Pass
		Diagonal	L2 1/2x2 1/2x3/16	211	-3663.25	5297.34	69.2	Pass
T9	20-0	Leg	Pirod 105218	222	-145007.00	300681.00	48.2	Pass
		Diagonal	L3x3x3/16	226	-4758.89	7622.94	62.4	Pass
							Summary	
							51.4	Pass
						Diagonal (T8)	69.2	Pass
						Top Girt (T3)	5.7	Pass
						Bottom Girt (T2)	14.1	Pass
						Bolt Checks	39.8	Pass
						RATING =	69.2	Pass

All-Points Technology Corp., P.C.

116 Grandview Road
Conway, NH 03818
(603) 496-5853

Client:
Job:
Calculated By:

NSS
Enfield, CT
R. Adair

Site No.: CTHA029A
Job No.: CT411260
Date: 29-Sep-17

Program assumes:

Mat is square in plan view.
Water table is below bottom of mat.
Unit weight of concrete $=\quad 150 \mathrm{pcf}$
Unit weight of soil $=\quad 100 \mathrm{pcf}$
Self-supporting tower with 3 piers

Information to be provided:

Pier is round or square in plan dimension ("R" or "S")
OTM = Overturning Moment to be resisted
$\mathrm{H}=$ Height from ground surface to top of mat (if buried
$\mathrm{P}_{\mathrm{M}}=$ Projection of pier above mat
$y=$ Thickness of mat
$\mathrm{x}=$ Width of mat
d = Diameter of round pier
S = Size of pier vertical bars
Mass of tower and appurtenances (below)

Shape $=$	R
OTM $=$	$1958 \mathrm{ft}-\mathrm{kips}$
$\mathrm{H}=$	4.0 ft.
$\mathrm{P}_{\mathrm{M}}=$	4.5 ft.
$\mathrm{y}=$	1.50 ft.
$\mathrm{x}=$	23.50 ft.
$\mathrm{d}=$	3.5 ft.
$\mathrm{S}=$	6

$\mathrm{H}=\quad 4.0 \mathrm{ft}$.
$\mathrm{P}_{\mathrm{M}}=$
4.5 ft .
$y=\quad 1.50 \mathrm{ft}$.
$x=23.50 \mathrm{ft}$.
$\mathrm{d}=3.5 \mathrm{ft}$.
$S=\quad 6$

Mass oftorer and appurtenan
Results:

Component	Mass	Moment Arm	Moment Resist.
Pier	6.5 kips	11.75 ft.	76.3 ft -kips
Overburden	264.7 kips	11.75 ft.	3110.3 ft -kips
Mat	124.3 kips	11.75 ft.	1460.0 ft -kips

Overturning Moment Resistance : 4646.58 ft -kips
Factor of Safety =
Concrete Quantity =
2.37
35.5 c.y.

Exhibit E

EBI Consulting
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA029A

Enfield
293 Elm Street
Enfield, CT 06082

September 26, 2017
EBI Project Number: 6217004210

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{2 . 2 9 2 \%}$

EBI Consulting
environmental | engineering | due diligence

September 26, 2017
T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTHA029A - Enfield

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 293 Elm Street, Enfield, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 5 GHz microwave bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

EBI Consulting

environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 293 Elm Street, Enfield, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel and microwave antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 UMTS channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
5) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
6) 1 microwave backhaul channel (5 GHz) was considered for the microwave backhaul. This microwave channel has a transmit power of 1 Watt.

EBI Consulting
environmental | engineering | due diligence
7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
8) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antennas used in this modeling are the RFS APX16DWV-16DWVS-E-A20 \& Ericsson AIR32 B66A/B2A for 1900 MHz (PCS) and 2100 MHz (AWS) channels, the Commscope LNX-6515DS-A1M for 700 MHz channels and the Fastback Networks IBR 1300 for 5 GHz microwave backhaul. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APX16DWV-16DWVS-E-A20 has a maximum gain of $\mathbf{1 6 . 3} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Ericsson AIR32 B66A/B2A has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Commscope LNX-6515DS-A1M has a maximum gain of $\mathbf{1 4 . 6} \mathbf{~ d B d}$ at its main lobe at 700 MHz . the Fastback Networks IBR $\mathbf{1 3 0 0}$ antenna has a maximum gain of $\mathbf{1 0} \mathbf{~ d B d}$ at 5 GHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 4 0}$ feet above ground level (AGL) for all standard panel antennas and for the proposed 5 GHz microwave radio / antenna.
11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
12) All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { RFS } \\ \text { APX16DWV- } \\ \text { 16DWVS-E-A20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS } \\ \text { APX16DWV- } \\ \text { 16DWVS-E-A20 } \end{gathered}$	Make / Model:	$\begin{gathered} \text { RFS } \\ \text { APX16DWV- } \\ \text { 16DWVS-E-A20 } \end{gathered}$
Gain:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	140	Height (AGL):	140	Height (AGL):	140
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \\ & \hline \end{aligned}$
Channel Count	3	Channel Count	2	Channel Count	2
Total TX Power(W):	61	Total TX Power(W):	60	Total TX Power(W):	60
ERP (W):	2,569.48	ERP (W):	2,559.48	ERP (W):	2,559.48
Antenna A1 MPE\%	0.51	Antenna B1 MPE\%	0.51	Antenna C1 MPE\%	0.51
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \hline \text { Ericsson AIR32 } \\ \text { B66A/B2A } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { Ericsson AIR32 } \\ \text { B66A/B2A } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { Ericsson AIR32 } \\ \text { B66A/B2A } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	140	Height (AGL):	140	Height (AGL):	140
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	Channel Count	6
Total TX Power(W):	180	Total TX Power(W):	180	Total TX Power(W):	180
ERP (W):	7,002.81	ERP (W):	7,002.81	ERP (W):	7,002.81
Antenna A2 MPE\%	1.40	Antenna B2 MPE\%	1.40	Antenna C2 MPE\%	1.40
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	Commscope LNX-6515DS-A1M	Make / Model:	Commscope LNX-6515DS-A1M	Make / Model:	Commscope LNX-6515DS-A1M
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	140	Height (AGL):	140	Height (AGL):	140
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
$\begin{array}{r} \text { Total TX } \\ \text { Power }(\mathrm{W}): \end{array}$	30	$\begin{array}{r} \text { Total TX } \\ \text { Power(W): } \end{array}$	30	$\begin{array}{r} \text { Total TX } \\ \text { Power(W): } \end{array}$	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A3 MPE\%	0.37	Antenna B3 MPE\%	0.37	Antenna C3 MPE\%	0.37
Antenna \#:	4 (Microwave)				
Make / Model:	Fastback Networks IBR 1300				
Gain:	10.0 dBd				
Height (AGL):	140				
Frequency Bands	5.0 GHz				
Channel Count	1				
Total TX Power(W):	1				
ERP (W):	10 W				
Antenna A4 MPE\%	0.002				

EBI Consulting
environmental | engineering | due diligence

T-Mobile Sector A Total:	2.292%
T-Mobile Sector B Total:	2.29%
T-Mobile Sector C Total:	2.29%
Site Total:	
2.292%	

Site Composite MPE\%	
Carrier	MPE\%
T-Mobile (Per Sector Max)	$\mathbf{2 . 2 9 2 \%}$
No Additional Carriers Listed in the CSC Active MPE Database	NA
Site Total MPE \%:	$\mathbf{2 . 2 9 2 \%}$

T-Mobile _Max Values per sector (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	$\begin{gathered} \hline \text { Total Power } \\ \text { Density } \\ \left(\mu \mathrm{W} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	Frequency (MHz)	$\begin{gathered} \hline \text { Allowable } \\ \text { MPE } \\ \left(\mu \mathrm{W} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	Calculated \% MPE
T-Mobile AWS - 2100 MHz UMTS	2	1,279.74	140	5.12	AWS - 2100 MHz	1000	0.51\%
T-Mobile AWS - 2100 MHz LTE	2	1,167.14	140	4.67	AWS - 2100 MHz	1000	0.47\%
T-Mobile PCS - 1900 MHz UMTS	2	1,167.14	140	4.67	PCS - 1900 MHz	1000	0.47\%
T-Mobile PCS - 1900 MHz LTE	2	1,167.14	140	4.67	PCS - 1900 MHz	1000	0.47\%
T-Mobile 700 MHz LTE	1	865.21	140	1.73	700 MHz	467	0.37\%
T-Mobile 5 GHz Microwave	1	10	140	0.02	5 GHz Microwave	1000	0.002\%
						Total:*	$\mathbf{2 . 2 9 2 \%}$

*NOTE: Totals may vary by 0.01% due to summing of remainders

EBI Consulting
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	2.292%
Sector B:	2.29%
Sector C:	2.29%
T-Mobile Per Sector	
Maximum:	2.292%
Site Total:	2.292%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 . 2 9 2} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit F

MA
01518-9998
2427030518
10/19/2017 (800)275-8777 1:22 PM

Product Description	Sale Qty	Final Price
PM 2-Day	1	$\$ 6.65$

Flat Rate Env
(Domestic)
(ENFIELD, CT 06082)
(Flat Rate)
Expected Delivery Day)
(Saturday 10/21/2017)
(USPS Tracking \#)
(9505 511240917292093040)
Insurance $1 \quad \$ 0.00$
(Up to $\$ 50.00$ included)
PM 2-Day $11 \begin{aligned} & \text { - }\end{aligned}$
Flat Rate Env
(Domestic)
(ENFIELD, CT 06082)
(Flat Rate)
(Expected Delivery Day)
(Saturday 10/21/2017)
(USPS Tracking \#)
(9505 5112 409172920930 57)
Insurance 1 \$0.00
(Up to $\$ 50.00$ included)
PM 2-Day $1 \quad \$ 6.65$

Flat Rate Env
(Domestic)
(ENFIELD, CT 06082)
(Flat Rate)
(Expected Delivery Day)
(Saturday 10/21/2017)
(USPS Tracking \#)
(9505 5112409172920930 64)
Insurance 1 \$0.00
(Up to $\$ 50.00$ included)

Total	$\$ 19.95$
Credit Card Remitd	$\$ 19.95$

(Card Name:VISA)

(Approval \#:07669G)
(Transaction \#:081)
Includes up to $\$ 50$ insurance

 BRIGHTEN SOMEONE'S MAILBOK. Greeting cards avallable for purchase at select Post Offices.***
\qquad

