Kenneth C. Baldwin
280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

EM-VEEC-003-048-146-049-060803
Via Hand Delivery
S. Derek Phelps

Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Re: Notice of Exempt Modification - Antenna Swaps
Westford- Janoski Road, Ashford, CT
Ellington- 101 Burbank Road, Ellington, CT
Vernon 2-60 Industrial Park Road, Vernon, CT North Thompsonville- Bright Meadow Road, Enfield, CT

Dear Mr. Phelps:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at each of the above referenced locations. In its continuing effort to improve the quality and reliability of its wireless service, Cellco intends to replace and upgrade its antennas at each of these existing facility locations.

Westford

The Council originally approved Cellco's Westford facility on September 19, 2000. Cellco now intends to modify this facility by replacing the twelve cellular antennas with six newer model cellular antennas and six PCS antennas at the same location on the tower. Attached behind Tab 1 are specifications for the existing and proposed replacement antennas as well as a structural report verifying that the Janoski Road tower can support the proposed modification.

Ellington

The Council originally approved Cellco's Ellington facility on November 2, 2000. On November 17, 2004, the Council approved Cellco's request to replace six of its cellular antennas with six PCS antennas. Cellco now intends to modify this facility further by replacing the six cellular antennas with six newer model cellular antennas at the same location on the tower. Attached behind Tab 2 are specifications

Law Offices
Boston
Hartford
NEw LONDON
Stamford
White Plains
New York City
SARASOTA

w.rc.com

ROBINSON \& COLE

S. Derek Phelps

August 3, 2006
Page 2
for the existing and proposed replacement antennas as well as a structural report verifying that the Burbank Road tower can support the proposed modification.

Vernon 2

The Council originally approved Cellco's Vernon 2 facility on November 30, 2000. On November 17, 2004, the Council approved Cellco's request to replace six of its cellular antennas with six PCS antennas. Cellco now intends to modify this facility further by replacing the six cellular antennas with six newer model cellular antennas at the same location on the tower. Attached behind Tab 3 are specifications for the existing and proposed replacement antennas as well as a structural report verifying that the Industrial Park Road tower can support the proposed modification.

North Thompsonville

The Council originally approved Cellco's North Thompsonville facility on July 15, 1999. On March 3, 2005, the Council approved Cellco's request to replace six of its cellular antennas with six PCS antennas. Cellco now intends to modify this facility further by replacing the six cellular antennas with six newer model cellular antennas at the same location on the tower. Attached behind Tab 4 are specifications for the existing and proposed replacement antennas as well as a structural report verifying that the Bright Meadow Road tower can support the proposed modification.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. $\S 16-50 \mathrm{j}-$ 72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the chief elected official for each of the affected municipalities.

The planned modifications to each facility falls squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in any increase in the overall height of the existing structures. Cellco's replacement antennas will be located at the same heights and locations as the existing antennas.
2. The proposed modifications will not affect associated equipment areas and will not require the extension of the site boundaries.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more.

ROBINSON \& COLE

S. Derek Phelps

August 3, 2006
Page 3
4. The proposed modifications will not result in changes to radio frequency (RF) power density levels at either facility. Therefore, no new Power Density Calculation Tables are provided.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the each of the above-referenced telecommunications facilities constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Kenneth C. Baldwin
Enclosures
cc: Richard H. Fletcher, Ashford First Selectman
Michael P. Stupinski, Ellington First Selectman
Dr. Ellen Marmer, Vernon Mayor
Patrick L. Tallarita, Enfield Mayor
Sandy M. Carter
Michelle Kababik

Features:

Small Size
O. Aesthetically Pleasing

Suitable For TDMA/COMA
a High Return Lass
Cow Intermodulation
0 High FTB
O Broadbanded
0 Side-lobe Suppression
C Sturdy Design
D Down-Tilt Brackets Incl.

The distance between the center of the bolts (on the back of the antenna) are shown in the drawing above.

Bolt diameter is: 3/8-16
[comes with lock nut].

Frequency Range:	800-900 MHz
Impedance:	50 ohti
Conaector Type:	$7 / 16$ Dia
Retura Loss:	20 dB
Polarization:	Vertical
Gaia:	$>11 \mathrm{dBd}$
Front To Back Ratio:	$>30 \mathrm{~dB}$
Side-Lobe Suppression:	18 dB
Internodulation ($2 \times 25 \mathrm{~W}$)	$\mathrm{LM3}>146 \mathrm{~dB}$
	IMS $>153 \mathrm{~dB}$
	[M7/9 > 163 dB
Power Rating:	500 W
H-Plane (-3 dB point):	85.92 ${ }^{\circ}$
V-Plane (-3 dB poiat):	16-18 ${ }^{\circ}$
Lightaing Protection:	DC Grounded

The ALP-E 9011-Din is made in U.S.A.

Product Description

The Celwave ${ }^{\circledR}$ M Maximizer series is a log periodic dipole array which uses a patent pending design to achieve a front-to-back ratio of 45 dB , the highest front-to-back ratio in the industry. Maximizers are available to cover ESMR, AMPS, PCS and DCS frequency ranges. They use Celwave's patented monolithic CELlite $®$ technology, which eliminates cable and soldered joints to reduce the possibility of inter-modulation products. The CELite technology assures high reliability and excellent repeatability of electrical characteristics. The cellular Maximizers are available in $65^{\circ}, 80^{\circ}$ and 90° horizontal beamwidths and the PCS/DCS Maximizers are available in 65° and 90° horizontal beamwidths.

Features/Benefits

- Monolithic construction reduces IM.
- No solder joints, high reliability.
- Surface treated components prevent galvanic corrosion.
- UV stabilized radome assures long life without radome deterioration due to UV exposure.

Technical Features

Frequency Band
Trunking/SMR (806-824, 851-869 MHz), Cellular (824-849, 869-894 MHz)
Horizontal Pattern Directional

Antenna Type	Pane
Electrical Down Tilt Option	Fixed

Gain, dBi (dBd) 14.1 (12)
Frequency Range, MHz 806-894

Connector Type	$7-16$
Connector Location	Back

Maximizer $®$ Directional Panel Antenna

Vertical Pattern

This is a general representation of the antenna family pattern. For the latest detailed pattern contact Applications Engineering. You may also download the CELplot(TM) pattern reader and antenna pattern data fields from our website.)

Product Description

The Celwave ${ }^{8}$ Maximizer series is a log periodic dipole array which uses a patent pending design to achieve a front-to-back ratio of 45 dB , the highest front-to-back ratio in the industry. Maximizers are available to cover ESMR, AMPS, PCS and DCS frequency ranges. They use RFS's patented monolithic CELlite $®$ technology, which eliminates cable and soldered joints to reduce the possibility of intermodulation products. The CELlite technology assures high reliability and excellent repeatability of electrical characteristics. The cellular Maximizers are available in $65^{\circ}, 80^{\circ}$ and 90° horizontal beamwidths and the PCS/DCS Maximizers are available in 65° and 90° horizontal beamwidths.

Features/Benefits

- 45 dB front-to-back ratio reduces co-channel interference.
- Monolithic construction reduces IM.
- No solder joints, high reliability.
- Surface treated components prevent galvanic corrosion.
- UV stabilized radome assures long life without radome deterioration due to UV exposure.

Technical Features

Frequency Band	PCS $1900(1850-1990 \mathrm{MHz})$
Horizontal Pattern	Directional
Antenna Type	Panel Log Periodic
Electrical Down Tilt Option	Fixed
Gain, dBi (dBd)	$18.1(16)$
Frequency Range, MHz	$1850-1990$
Connector Type	$7-16$ DIN Female
Connector Location	Back
Mount Type	Downtilt
Electrical Downtilt, deg	2

	RFS The Clear Choice ${ }^{\text {TM }}$	APL199016-42T2
Print Date: 02.08.2006		

Please visit us on the internet at http://www.rfsworld.com

Vertical Pattern

You may is alseral representation of the antenna family pattern. For the latest detailed pattern contact Applicaulons Engineering

RFS The Clear Choice ${ }^{\mathrm{mm}}$ APL199016-42T2
Print Date: 02.08 .2006
Please visit us on the intemet at http://www.rfsworld.com

Horizontal Pattern

This is a general representation of the antenna family pattern. For the latest detailed pattern contact Applications Engineering You may also download the CELplot(TM) pattern reader and antenna pattern data fields from our website.)

DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF 192' SELF-SUPPORTING LATTICE TOWER FOR NEW ANTENNA ARRANGEMENT

Janoski Road
Ashford, Connecticut

prepared for

Verizon Wireless 99 East River Drive
East Hartford, Connecticut 06108
prepared by

URS CORPORATION

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. INTRODUCTION
3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
4. FINDINGS AND EVALUATION

5. CONCLUSIONS AND RECOMMENDATIONS

6. DRAWINGS AND DATA

- RISA TOWER INPUT / OUTPUT SUMMARY
- RISA TOWER FEEDLINE DISTRIBUTION
- RISA TOWER FEEDLINE PLAN
- RISA TOWER DETAILED OUTPUT
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

This report summarizes the structural analysis of the existing 192' self supporting lattice tower located at Janoski Road in Ashford, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code and the TIA/EIA-222-F standard for wind velocity of 80 mph (fastest mile) and 69 mph (fastest mile) concurrent with $1 / 2^{\prime \prime}$ ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed Verizon modification is as follows:

Proposed Antenna and Mount
 Carrier Antenna Center Elevation

Remove:
(12) existing Swedcom ALP-E-9011 antennas

Install:
(6) Celwave APL869012-42T0 antennas and
(6) Celwave APL199016-42T2 antennas on (3)
existing T-Frames with (12) existing $15 / 8$ "
coax cables
The results of the analysis indicate that the tower structure, anchor bolts, and foundation are in compliance with the proposed loading conditions. The tower is considered structurally adequate with the wind load classification specified above and all the existing and proposed antenna loading.

This analysis is based on:

1) The tower structure's theoretical capacity, not including any assessment of the condition of the tower.
2) Tower geometry and structural member sizes taken from a tower report prepared by Rohn Industries, Inc, engineering file number 34589 PH , signed and sealed December 17, 1996.
3) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration as well as the physical condition of the tower and connections. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

cc:
AA, DR, IA, CF/Book - URS

2. INTRODUCTION

The subject tower is located at Janoski Road in Ashford, Connecticut. The structure is a 192' self-supporting lattice tower designed and manufactured Rohn Industries, Inc.

The inventory is summarized in the table below:

Antenna Type	Carrier	Mount	Antenna Centerline Elevation	Cable
(6) DB980H90T2E-M antennas	$\begin{gathered} \text { Sprint } \\ \text { (existing) } \end{gathered}$	(3) T-Frames	192'	(6) $15 / 8^{\prime \prime}$ coax cables
(6) Celwave APL869012-42T0 antennas (6) Celwave APL199016-42T2 antennas	Verizon (proposed)	(3) T-Frames	180'	(12) 1 5/8" coax cables
(9) ALP 9212-N antennas	Nextel (existing) (existing)	(3) T-Frames	170'	(9)15/8" coax cables
(3) Allgon 7250.03 antennas	$\begin{gathered} \text { Cingular } \\ \text { Blue } \\ \text { (existing) } \end{gathered}$	Mounted to legs	160'	(6) dead $15 / 8^{\prime \prime}$ coax cables
(6) DAPA 79210 antennas	T-Mobile (existing)	(3) Sidearms	150'	(6) $1 / 2$ " coax cables
(9) CSS DUO14178686 antennas (9) ADC MHAs	Cingular (existing)	(3) T-Frames	140'	(12) $15 / 8^{\prime \prime}$ coax cables
(1) Catrain 738449 antenna	Cingular (existing)	Sidearm	110'	(1) $1 / 2^{n \prime}$ coax cable

This structural analysis of the communications tower was performed by URS Corporation (URS) for Verizon Wireless. The purpose of this analysis was to investigate the structural integrity of the existing tower with its existing and proposed antenna loads. This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2005 Connecticut State Building Code, TIA/EIA-222-F-Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction-Allowable Stress Design (ASD).

The analysis was conducted using RISA Tower 4.5. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIAVEIA.

Load Condition $1=80 \mathrm{mph}$ (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition $2=69 \mathrm{mph}$ (fastest mile) Wind Load (with ice) + Ice Load + Tower Dead Load

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25 percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Stresses on the tower structure were evaluated to compare with allowable stresses in accordance with AISC. The calculated stresses under the proposed loading were within the allowable stresses. Detailed analysis and calculations for the proposed load condition are provided in section 6 of this report. The anchor bolts and foundation were also found to be within the allowable limits.

5. CONCLUSIONS AND RECOMMENDATIONS

The results of the analysis indicate that the tower structure, anchor bolts, and foundation are in compliance with the proposed loading conditions. The tower is structurally adequate under the wind load classification specified above and the proposed antenna loadings.

Limitations/Assumptions:

This report is based on the following:

1. Tower inventory as listed in this report.
2. Tower is properly installed and maintained.
3. All members are as specified in the original design documents and are in good condition.
4. All required members are in place.
5. All bolts are in place and are properly tightened.
6. Tower is in plumb condition.
7. All member protective coatings are in good condition.
8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
9. Foundations were properly constructed to support original design loads as specified in the original design documents.
10. All coaxial cable is installed as specified in Section 6 of this report.

URS is not responsible for any modifications completed prior to or hereafter in which URS is not or was not directly involved. Modifications include but are not limited to:
A. Adding antennas
B. Removing/replacing antennas
C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.
6. DRAWINGS AND DATA

RISA TOWER INPUT/OUTPUT SUMMARY

RISA TOWER FEEDLINE DISTRIBUTION

Feedline Distribution Chart

\qquad Flat \qquad 0' - 192'

Face A

Face B

RISA TOWER FEEDLINE PLAN

```
Feedline Plan
20' App Out Face
```

\qquad Flat \qquad App \ln Face

URS Corporation
${ }^{\text {lob: }} 192$ ' Self-Supporting Lattice Towe,
500 Enterprise Drive, Suite 3B

Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991 Project: Janoski Road Ashford, CT Client: Verizon Wireless ${ }^{\text {Drawn by: }}$ Staff	Code: TIAVIA-222-F	Date: 08/01/06	Scale: NTS
Path: P.io8ERI Filest192: Self-Supportina Latice Tower.orl	Dwg No. E-7		

RISA TOWER DETAILED OUTPUT

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Job 192' Self-Supporting Lattice Tower			$\text { Page } \quad 1 \text { of } 34$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

Tower Input Data

The main tower is a $3 x$ free standing tower with an overall height of 192.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 6.65 ft at the top and 25.00 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Basic wind speed of 80 mph .
Nominal ice thickness of 0.5000 in .
Ice density of 56 pcf.
A wind speed of 69 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Weld together tower sections have flange connections.
Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC
Specifications..
Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..
Welds are fabricated with ER-70S-6 electrodes..
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz
Use Special Wind Profile
\checkmark Include Bolts In Member Capacity
$\sqrt{ }$ Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC . 6D +W Combination

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas
$\sqrt{ }$ SR Members Have Cut Ends
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder
Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
$\sqrt{ }$ SR Leg Bolts Resist Compression
$\sqrt{ }$ All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feedline Torque
Include Angle Block Shear Check

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	192' Self-Supporting Lattice Tower			$\text { Page } 2 \text { of } 34$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	Wireless	Designed by Staff

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation f	Assembly Database	Description	Section Width fi		Section Length
T1	192.00-180.00			6.65	1	12.00
T2	180.00-160.00			6.65	1	20.00
T3	160.00-140.00			8.69	1	20.00
T4	140.00-120.00			10.76	1	20.00
T5	120.00-100.00			12.83	1	20.00
T6	100.00-80.00			14.85	1	20.00
T7	80.00-60.00			16.85	I	20.00
T8	60.00-40.00			19.00	,	20.00
T9	40.00-20.00			21.00	1	20.00
T10	20.00-0.00			23.00	1	20.00

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	$f t$		$f t$		Panels		in

RISATOwer	192' Self-Supporting Lattice Tower			$\text { Page } 3 \text { of } 34$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	Janoski Road	Ashford, CT	Date 10:25:40 08/01/06
Rocky Hill. CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Tower Section	Tower Elevation ft	Diagonal Spacing $f t$	Bracing Type	Has KBrace End Panels	Has Horizontals	Top Girt Offset in	Boltom Girl Offset in
T6	100.00-80.00	10.00	X Brace	No	No	0.0000	0.0000
T7	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
T8	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
T9	40.00-20.00	10.00	X Brace	No	- No	0.0000	0.0000
T10	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation \qquad ft	Leg Type	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	$\begin{gathered} \text { Diagonal } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$	Diagonal Grade
$\begin{gathered} \text { T1 } 192.00- \\ 180.00 \end{gathered}$	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L1 3/4xI 3/4x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T2 } 180.00- \\ 160.00 \end{gathered}$	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L2 $2 \times 3 / 16$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T3 } 160.00- \\ 140.00 \end{gathered}$	Pipe	ROHN 3 EH	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L2 $1 / 2 \times 21 / 2 \times 1 / 4$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T4 140.00- } \\ 120.00 \end{gathered}$	Pipe	ROHN 4 EH	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L2 1/2x2 1/2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T5 } 120.00- \\ 100.00 \end{gathered}$	Pipe	ROHN 5 EH	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L3x $3 \times 1 / 4$	$\begin{aligned} & \text { AS72-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$
T6 100.00-80.00	Pipe	ROHN 6 EHS	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L3 $1 / 2 \times 31 / 2 \times 1 / 4$	$\begin{gathered} \text { A } 572-50 \\ (50 \mathrm{ksi}) \end{gathered}$
T7 80.00-60.00	Pipe	ROHN 6 EH	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L4×4x1/4	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T8 60.00-40.00	Pipe	ROHN 8 EHS	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L4x4x5/16	$\begin{gathered} \text { AS72-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T9 40.00-20.00	Pipe	ROHN 8 EHS	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L4x4x5/16	$\begin{aligned} & \text { AS72-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$
T10 20.00-0.00	Pipe	ROHN 8 EHS	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \\ & \hline \end{aligned}$	Single Angle	L4x4x $3 / 8$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
$\begin{gathered} \text { T1 } 192.00- \\ 180.00 \\ \hline \end{gathered}$	Single Angle	L1 3/4×1 3/4×3/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mull	Double Angle Double Angle
Elevation	Area					
(per face)	Thickness		A_{f}	Factor	Stitch Bolt	Stitch Bolt
				A_{r}	Spacing	Spacing
					Diagonals	Horizontals

Tower Elevation \qquad ft	Gusset Area (per face) \qquad	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
$\begin{gathered} \text { T1 } 192.00- \\ 180.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T2 180.00- } \\ 160.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T3 } 160.00- \\ 140.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T4 140.00- } \\ 120.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { TS } 120.00- \\ 100.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T6 } 100.00- \\ 80.00 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T7 80.00-60.00	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T8 60.00-40.00	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T9 40.00-20.00	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	I	36.0000	36.0000
T10 20.00-0.00	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$	1	1	1	36.0000	36.0000

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors							
			Legs	X Brace		Single Diags	Girts	Horiz.	Sec. Horiz	Inner Brace
				Diags	Diags					
				X	X	X	X	X	X	X
$f t$				Y						
T1 192.00-	Yes	Yes	1	1	1	1	1	1	1	1
180.00				1	1	1	1	1	1	1
T2 180.00-	Yes	Yes	1	1	1	1	1	I	1	1
160.00				1	1	1	1	1	1	1
T3160.00-	Yes	Yes	1	1	1	1	1	I	1	1
140.00				1	1	1	1	1	1	1
T4 140.00-	Yes	Yes	1	1	1	1	1	1	1	1
120.00				1	1	1	I	I	1	1
T5 120.00-	Yes	Yes	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T6 100.00-	Yes	Yes	1	1	1	1	,	1	1	1
80.00				1	1	1	1	1	1	1
T7 80.00-	Yes	Yes	1	1	I	1	1	1	1	1
60.00				1	1	1	1	1	1	,
T8 60.00-	Yes	Yes	1	1	1	1	1	1	1	1
40.00				,		1	1	1	1	1
T9 40.00-	Yes	Yes	1	1	1	1	1	1	1	1
20.00				1	I	1	1	1	1	1
T10 20.00-	Yes	Yes	1	1	1	1	1	1	1	1
0.00				1	1	1	1	1	1	1

${ }^{7}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

RISATower	Job 192' Self-Supporting Lattice Towe			$\text { Page } 5 \text { of } 34$
URS Corporation 500 Enterprise Drive. Suite 3B	Janoski Road Ashford, CT			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

Tower Section Geometry (cont'd)

Tower Elevation fi	Leg		Diagonal		Top Girt		Bottom Girt		Mid Giri		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { TI } 192.00- \\ 180.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T2 180.00- } \\ 160.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T3 } 160.00- \\ 140.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T4 } 140.00- \\ 120.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T5 } 120.00- \\ 100.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T6 } 100.00 \\ 80.00 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T1020.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
		Bolt Size in	No.	Bolt Size in		Bolt Size		Boll Size in							
T1 192.00-	Flange	0.6250	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00		A 325 N		A325N		A 325 N									
T2 180.00-	Flange	0.6250	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00		A325N		A 325 N		A 325 N									
T3160.00-	Flange	0.8750	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00		A325N		A325N		A 325 N		A325N		A325N		A 325 N		A 325 N	
T4 140.00-	Flange	1.0000	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00		A325N		A325N		A 325 N		A325N		A 325 N		A 325 N		A 325 N	
T5 120.00-	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00		A325N		A325N		A 325 N									
T6 100.00-	Flange	1.0000	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
80.00		A325N		A325N		A 325 N		A 325 N		A325N		A 325 N		A 325 N	
T7 80.00-60.00	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A 325 N		A325N		A325N		A 325 N		A 325 N	
T8 60.00-40.00	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325X		A 325 N									
T9 40.00-20.00	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325X		A 325 N		A325N		A 325 N		A 325 N		A 325 N	
T10 20.00-0.00	Flange	1.0000	10	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325X		A325N		A 325 N							

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 192' Self-Supporting Lattice Tower			$\text { Page } 6 \text { of } 34$
	Project	Janoski Road	Ashford, CT	$\begin{aligned} & \text { Date } \\ & \text { 10:25:40 08/01/06 } \end{aligned}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#	$\#$ Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
$\begin{gathered} 15 / 8 \\ \text { (Nextel) } \end{gathered}$	C	Yes	Ar (CfAe)	170.00-7.75	0.0000	-0.42	9	9	$\begin{aligned} & 0.5000 \\ & 1.9800 \end{aligned}$	1.9800		1.04
$15 / 8$	C	Yes	Ar (CfAe)	160.00-7.00	0.0000	0.42	6	6	0.5000	1.9800		1.04
(Abandoned)									1.9800			
$15 / 8$	B	Yes	Ar (CfAe)	180.00-7.75	0.0000	0.42	12	12	0.5000	1.9800		1.04
(Verizon)									1.9800			
$15 / 8$	B	Yes	Ar (CfAe)	192.00-2.00	0.0000	-0.42	6	6	0.5000	1.9800		1.04
(Sprint)									1.9800			
1/2	A	Yes	Ar (CfAe)	150.00-3.00	0.0000	0.42	6	6	0.5800	0.5800		0.25
(T-Mobile)												
$15 / 8$	A	Yes	Ar (CfAe)	140.00-8.00	0.0000	-0.42	9	9	0.5000	1.9800		1.04
(Cingular)									1.9800			
1/2	B	No	Ar (Leg)	110.00-3.00	0.0000	0	1	1	0.5800	0.5800		0.25
(Cingular)												
Climbing	B	No	Af(Leg)	192.00-0.00	0.0000	0.3	1	1	0.2500	0.0000	0.0000	7.90
Ladder												

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face }
\end{gathered}
$$

\] $f t^{\prime}$ \& $C_{A} A_{A}$ Out Face f^{2} \& | Weight |
| :--- |
| lb |

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{192.00-180.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 11.880 \& 0.000 \& 0.000 \& 0.000 \& 169.68

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{180.00-160.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 59.400 \& 0.000 \& 0.000 \& 0.000 \& 532.40

\hline \& \& C \& 14.850 \& 0.000 \& 0.000 \& 0.000 \& 93.60

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{160.00-140.00} \& A \& 2.900 \& 0.000 \& 0.000 \& 0.000 \& 15.00

\hline \& \& B \& 59.400 \& 0.000 \& 0.000 \& 0.000 \& 532.40

\hline \& \& C \& 49.500 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& 35.500 \& 0.000 \& 0.000 \& 0.000 \& 217.20

\hline \& \& B \& 59.400 \& 0.000 \& 0.000 \& 0.000 \& 532.40

\hline \& \& C \& 49.500 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& 35.500 \& 0.000 \& 0.000 \& 0.000 \& 217.20

\hline \& \& B \& 59.883 \& 0.000 \& 0.000 \& 0.000 \& 534.90

\hline \& \& C \& 49.983 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{$100.00-80.00$} \& A \& 35.500 \& 0.000 \& 0.000 \& 0.000 \& 217.20

\hline \& \& B \& 60.367 \& 0.000 \& 0.000 \& 0.000 \& 537.40

\hline \& \& C \& 50.467 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& 35.500 \& 0.000 \& 0.000 \& 0.000 \& 217.20

\hline \& \& B \& 60.367 \& 0.000 \& 0.000 \& 0.000 \& 537.40

\hline \& \& C \& 50.467 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& 35.500 \& 0.000 \& 0.000 \& 0.000 \& 217.20

\hline \& \& B \& 60.367 \& 0.000 \& 0.000 \& 0.000 \& 537.40

\hline \& \& C \& 50.467 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T9} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& 35.500 \& 0.000 \& 0.000 \& 0.000 \& 217.20

\hline \& \& B \& 60.367 \& 0.000 \& 0.000 \& 0.000 \& 537.40

\hline \& \& C \& 50.467 \& 0.000 \& 0.000 \& 0.000 \& 312.00

\hline \multirow[t]{3}{*}{T10} \& \multirow[t]{3}{*}{20.00-0.00} \& A \& 22.750 \& 0.000 \& 0.000 \& 0.000 \& 137.82

\hline \& \& B \& 42.897 \& 0.000 \& 0.000 \& 0.000 \& 427.45

\hline \& \& C \& 31.883 \& 0.000 \& 0.000 \& 0.000 \& 195.78

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 192' Self-Supporting Lattice Tower			$\text { Page } 7 \text { of } 34$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation \qquad	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Ice Thickness in	A_{R} $\frac{f t^{2}}{}$	A_{F} f^{\prime}	$C_{A} A_{A}$ In Face $f t^{2}$	$C_{A} A_{A}$ Out Face $f t^{\prime}$	Weight $l b$
T1	192.00-180.00	A	0.500	0.000	0.000	0.000	0.000	0.00
		B		2.980	13.067	0.000	0.000	292.87
		C		0.000	0.667	0.000	0.000	0.00
T2	180.00-160.00	A	0.500	0.000	0.000	0.000	0.000	0.00
		B		9.933	67.244	0.000	0.000	1136.88
		C		2.483	17.644	0.000	0.000	242.88
T3	160.00-140.00	A	0.500	1.317	4.833	0.000	0.000	52.10
		B		9.933	67.244	0.000	0.000	1136.88
		C		9.933	54.844	0.000	0.000	808.52
T4	140.00-120.00	A	0.500	7.600	42.733	0.000	0.000	589.95
		B		9.933	67.244	0.000	0.000	1136.88
		C		9.933	54.844	0.000	0.000	808.52
T5	120.00-100.00	A	0.500	7.600	42.733	0.000	0.000	589.95
		B		11.250	67.244	0.000	0.000	1145.98
		C		11.250	54.844	0.000	0.000	808.52
T6	100.00-80.00	A	0.500	7.600	42.733	0.000	0.000	589.95
		B		12.567	67.244	0.000	0.000	1155.07
		C		12.567	54.844	0.000	0.000	808.52
T7	80.00-60.00	A	0.500	7.600	42.733	0.000	0.000	589.95
		B		12.567	67.244	0.000	0.000	1155.07
		C		12.567	54.844	0.000	0.000	808.52
T8	60.00-40.00	A	0.500	7.600	42.733	0.000	0.000	589.95
		B		12.567	67.244	0.000	0.000	1155.07
		C		12.567	54.844	0.000	0.000	808.52
T9	40.00-20.00	A	0.500	7.600	42.733	0.000	0.000	589.95
		B		12.567	67.244	0.000	0.000	1155.07
		C		12.567	54.844	0.000	0.000	808.52
T10	20.00-0.00	A	0.500	5.218	28.057	0.000	0.000	380.02
		B		9.750	47.559	0.000	0.000	868.67
		C		8.509	34.798	0.000	0.000	507.32

Feed Line Shielding

Section	Elevation ft	Face	A_{R} f^{\prime}	$\begin{aligned} & A_{R} \\ & I c e \\ & f^{2} \\ & \hline \end{aligned}$	A_{F} $f t^{\prime}$	A_{F} Ice f^{2}
T1	192.00-180.00	A	0.000	0.000	0.000	0.000
		B	0.000	0.000	1.155	2.065
		C	0.000	0.000	0.000	0.000
T 2	180.00-160.00	A	0.000	0.000	0.000	0.000
		B	0.000	0.000	4.737	8.089
		C	0.000	0.000	1.184	2.022
T3	160.00-140.00	A	0.000	0.000	0.220	0.591
		B	0.000	0.000	4.507	7.311
		C	0.000	0.000	3.756	6.119
T4	140.00-120.00	A	0.000	0.000	2.550	4.581
		B	0.000	0.000	4.268	6.922
		C	0.000	0.000	3.556	5.794
TS	120.00-100.00	A	0.000	0.000	2.956	5.123
		B	0.000	0.000	4.947	7.743
		C	0.000	0.000	4.122	6.480
T6	100.00-80.00	A	0.000	0.000	2.449	4.134
		B	0.000	0.000	4.098	6.248
		C	0.000	0.000	3.415	5.229

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & 8 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

Section	Elevation $f l$	Face	A_{R} $f f^{\prime}$	A_{R} Ice $f t^{2}$	A_{F} $\frac{f t^{2}}{7}$	$\begin{aligned} & A_{F} \\ & I c e \\ & \text { fir } \end{aligned}$
T7	80.00-60.00	A	0.000	0.000	2.711	4.484
		B	0.000	0.000	4.536	6.776
		C	0.000	0.000	3.780	5.672
T8	60.00-40.00	A	0.000	0.000	2.646	4.378
		B	0.000	0.000	4.428	6.616
		C	0.000	0.000	3.690	5.537
T9	40.00-20.00	A	0.000	0.000	2.600	4.301
		B	0.000	0.000	4.350	6.500
		C	0.000	0.000	3.625	5.440
T10	20.00-0.00	A	0.000	0.000	1.643	2.804
		B	0.000	0.000	3.039	4.547
		C	0.000	0.000	2.243	3.367

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice	$C P_{Z}$ Ice
	ft	in	in	in	in
T1	$192.00-180.00$	0.8614	-8.7299	0.7930	-6.0495
T2	$180.00-160.00$	16.7399	1.9416	14.0558	2.2028
T3	$160.00-140.00$	13.9611	6.8575	12.3070	5.7166
T4	$140.00-120.00$	5.4312	9.5005	5.1978	7.6528
T5	$120.00-100.00$	5.7635	9.9147	5.7955	8.2280
T6	$100.00-80.00$	6.5984	11.1830	6.9051	9.5354
T7	$80.00-60.00$	6.9976	11.8720	7.3924	10.2087
T8	$60.00-40.00$	7.1261	12.1035	7.6374	10.5596
T9	$40.00-20.00$	7.6612	13.0238	8.2212	11.3773
T10	$20.00-0.00$	5.8929	6.4016	6.5884	5.6306

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\hline \text { Face } \\
o r \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
fl
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{\prime}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{\prime}$ | \& Weight

$l b$

\hline (2) DB980H90T2E-M (Sprint) \& A \& From Leg \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 192.00 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 3.80 \\
& 4.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.19 \\
& 2.56
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
28.62
\end{gathered}
$$
\]

\hline (2) DB980H90T2E-M (Sprint) \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 192.00 \& No Ice 1/2" Ice \& \[

$$
\begin{aligned}
& 3.80 \\
& 4.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.19 \\
& 2.56
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
28.62
\end{gathered}
$$
\]

\hline (2) DB980H90T2E-M (Sprint) \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 192.00 \& No Ice $1 / 2^{11}$ Ice \& \[

$$
\begin{aligned}
& 3.80 \\
& 4.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.19 \\
& 2.56
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
28.62
\end{gathered}
$$
\]

\hline T-Frame (Sprint) \& A \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 190.00 \& No Ice 1/2" Ice \& \[

$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 465.00 \\
& 600.00
\end{aligned}
$$
\]

\hline T-Frame (Sprint) \& B \& From Leg \& \[
$$
\begin{aligned}
& 1.50 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 190.00 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 465.00 \\
& 600.00
\end{aligned}
$$
\]

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Job 192' Self-Supporting Lattice Tower			$\begin{array}{ll} \text { Page } \\ & \\ & \\ \text { of } 34 \end{array}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

RISATower	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 10 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	Vireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offet } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& CA \(A_{A}\)
Side

$f t^{\prime}$ \& Weight

$l b$

\hline \multirow{4}{*}{T-Frame (Nextel)} \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{170.00} \& \multirow[b]{3}{*}{No Ice
1/2" Ice} \& \& \&

\hline \& \& \& 1.50 \& \& \& \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{T-Frame (Nextel)} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{170.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{T-Frame
(Nextel)} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{170.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{1 \prime}$ Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{7250.03 w/Mount Pipe (Cingular Blue)} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 1.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{160.00} \& No Ice \& 4.45 \& 3.54 \& 40.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.03 \& 4.72 \& 76.25

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{7250.03 w/Mount Pipe (Cingular Blue)} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 1.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{160.00} \& No Ice \& 4.45 \& 3.54 \& 40.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.03 \& 4.72 \& 76.25

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{7250.03 w/Mount Pipe (Cingular Blue)} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 1.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{160.00} \& No Ice \& 4.45 \& 3.54 \& 40.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.03 \& 4.72 \& 76.25

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline (2) 79210 \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{150.00} \& No Ice \& 8.32 \& 2.77 \& 27.60

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.86 \& 3.22 \& 65.71

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| (2) 79210 |
| :--- |
| (T-Mobile) |} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{150.00} \& No Ice \& 8.32 \& 2.77 \& 27.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.86 \& 3.22 \& 65.71

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline (2) 79210 \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{150.00} \& No Ice \& 8.32 \& 2.77 \& 27.60

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.86 \& 3.22 \& 65.71

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| 3' Sidearm |
| :--- |
| (T-Mobile) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{150.00} \& No Ice \& 5.90 \& 5.90 \& 130.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.60 \& 6.60 \& 145.60

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| 3' Sidearm |
| :--- |
| (T-Mobile) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{150.00} \& No Ice \& 5.90 \& 5.90 \& 130.00

\hline \& \& \& 0.00 \& \& \& $1 / 2$ " Ice \& 6.60 \& 6.60 \& 145.60

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| 3' Sidearm |
| :--- |
| (T-Mobile) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{150.00} \& No Ice \& 5.90 \& 5.90 \& 130.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 6.60 \& 6.60 \& 145.60

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) DUO1417-8686 (Cingular)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{140.00} \& No Ice \& 6.53 \& 4.20 \& 20.30

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.94 \& 4.57 \& 62.49

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) DUO1417-8686 (Cingular)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{140.00} \& No Ice \& 6.53 \& 4.20 \& 20.30

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.94 \& 4.57 \& 62.49

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) DUOI 417-8686 (Cingular)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{140.00} \& No Ice \& 6.53 \& 4.20 \& 20.30

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.94 \& 4.57 \& 62.49

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| (3) MHA |
| :--- |
| (Cingular) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{140.00} \& No Ice \& 0.95 \& 0.29 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.08 \& 0.39 \& 20.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline (3) MHA \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{140.00} \& No Ice \& 0.95 \& 0.29 \& 10.00

\hline \multirow[t]{2}{*}{(Cingular)} \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.08 \& 0.39 \& 20.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| (3) MHA |
| :--- |
| (Cingular) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{140.00} \& No Ice \& 0.95 \& 0.29 \& 10.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.08 \& 0.39 \& 20.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{T-Frame (Cingular)} \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{140.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.40 \& 18.40 \& 600.00

\hline
\end{tabular}

Job		Page
	192' Self-Supporting Lattice Tower	
Project	Janoski Road	Ashford, CT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side \& Weight

$l b$

\hline \multirow{4}{*}{T-Frame (Cingular)} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{140.00} \& \multirow[b]{3}{*}{No Ice 1/2" Ice} \& \multirow[b]{3}{*}{$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$} \& \multirow[b]{3}{*}{\[

$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$

\]} \& \multirow[b]{3}{*}{\[

$$
\begin{aligned}
& 465.00 \\
& 600.00
\end{aligned}
$$
\]}

\hline \& \& \& 1.50 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{140.00} \& \multirow[b]{3}{*}{No Ice 1/2" Ice} \& \multirow[b]{3}{*}{$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$} \& \multirow{4}{*}{\[

$$
\begin{aligned}
& 13.60 \\
& 18.40
\end{aligned}
$$

\]} \& \multirow{4}{*}{\[

$$
\begin{aligned}
& 465.00 \\
& 600.00
\end{aligned}
$$
\]}

\hline \multirow[t]{3}{*}{T-Frame (Cingular)} \& \& \& 1.50 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{110.00} \& \multirow[b]{3}{*}{No Ice 1/2" Ice} \& \multirow[b]{3}{*}{0.44
0.62} \& \&

\hline \multirow[t]{3}{*}{Catrain 738449 (Cingular)} \& \& \& 3.00 \& \& \& \& \& \multirow[t]{2}{*}{0.44
0.62} \& \multirow[t]{2}{*}{0.00
0.00}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{108.00} \& \multirow{4}{*}{No Ice 1/2" Ice} \& \& \&

\hline \multirow[t]{3}{*}{3' Sidearm (Cingular)} \& \& \& 1.50 \& \& \& \& 5.90 \& 5.90 \& 130.00

\hline \& \& \& 0.00 \& \& \& \& 6.60 \& 6.60 \& 145.60

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.117
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad
$$
f t
$$ \& 2
$f t$ \& K_{Z} \& q_{z}
$p s f$ \& A_{G}

$f t^{\prime}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{\prime}$ \& A_{R}

$f t^{3}$ \& $A_{\text {leg }}$

$f t^{\prime}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{\prime}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{\prime}$ |

\hline T1 192.00- \& 186.00 \& 1.639 \& 27 \& 82.675 \& A \& 7.480
6.325 \& 5.750
17.630 \& 5.750 \& 43.46
24.00 \& 0.000 \& 0.000

\hline 180.00 \& \& \& \& \& B \& 6.325 \& 17.630 \& \& 24.00 \& \&

\hline \& \& \& \& \& C \& 7.480 \& 5.750 \& \& 43.46 \& \&

\hline T2 180.00- \& 170.00 \& 1.597 \& 26 \& 158.198 \& A \& 11.834 \& 9.600 \& 9.600 \& 44.79 \& 0.000 \& 0.000

\hline 160.00 \& \& \& \& \& B \& 7.097 \& 69.000 \& \& 12.62 \& \&

\hline \& \& \& \& \& C \& 10.650 \& 24.450 \& \& 27.35 \& \&

\hline T3 160.00- \& 150.00 \& 1.541 \& 25 \& 200.341 \& A \& 14.097 \& 14.587 \& 11.687 \& 40.75 \& 0.000 \& 0.000

\hline 140.00 \& \& \& \& \& B \& 9.809 \& 71.087 \& \& 14.45 \& \&

\hline \& \& \& \& \& C \& 10.561 \& 61.187 \& \& 16.29 \& \&

\hline T4 140.00- \& 130.00 \& 1.48 \& 24 \& 243.410 \& A \& 13.872 \& 50.527 \& 15.027 \& 23.33 \& 0.000 \& 0.000

\hline 120.00 \& \& \& \& \& B \& 12.155 \& 74.427 \& \& 17.36 \& \&

\hline \& \& \& \& \& C \& 12.866 \& 64.527 \& \& 19.42 \& \&

\hline T5 120.00- \& 110.00 \& 1.411 \& 23 \& 286.083 \& A \& 19.344 \& 54.075 \& 18.575 \& 25.30 \& 0.000 \& 0.000

\hline 100.00 \& \& \& \& \& B \& 17.353 \& 78.458 \& \& 19.39 \& \&

\hline \& \& \& \& \& C \& 18.178 \& 68.558 \& \& 21.42 \& \&

\hline T6 100.00- \& 90.00 \& 1.332 \& 22 \& 328.055 \& A \& 18.689 \& 57.620 \& 22.120 \& 28.99 \& 0.000 \& 0.000

\hline 80.00 \& \& \& \& \& B \& 17.040 \& 82.487 \& \& 22.23 \& \&

\hline \& \& \& \& \& C \& 17.723 \& 72.587 \& \& 24.49 \& \&

\hline T7 80.00-60.00 \& 70.00 \& 1.24 \& 20 \& 369.558 \& A \& 23.819 \& 57.626 \& 22.126 \& 27.17 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 21.994 \& 82.492 \& \& 21.18 \& \&

\hline \& \& \& \& \& C \& 22.750 \& 72.592 \& \& 23.21 \& \&

\hline T8 60.00-40.00 \& 50.00 \& 1.126 \& 18 \& 414.393 \& A \& 26.163 \& 64.298 \& 28.798 \& 31.83 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 24.381 \& 89.165 \& \& 25.36 \& \&

\hline \& \& \& \& \& C \& 25.119 \& 79.265 \& \& 27.59 \& \&

\hline T9 40.00-20.00 \& 30.00 \& 1 \& 16 \& 454.393 \& A \& 28.572 \& 64.298 \& 28.798 \& 31.01 \& 0.000 \& 0.000

\hline \& \& \& \& \& B \& 26.822 \& 89.165 \& \& 24.83 \& \&

\hline \& \& \& \& \& C \& 27.547 \& 79.265 \& \& 26.96 \& \&

\hline T10 20.00-0.00 \& 10.00 \& 1 \& 16 \& 494.393 \& A \& 31.988 \& 51.548 \& 28.798 \& 34.47 \& 0.000 \& 0.000

\hline
\end{tabular}

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 12 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I	Project	Janoski Road	Ashford, CT	Date 10:25:40 08/01/06
	Verizon Wireless			Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \(f t\) \& \(f\) \& \(K_{z}\) \& \begin{tabular}{l}
\(q_{x}\) \\
\(p s f\)
\end{tabular} \& \(A_{G}\)

$f f^{2}$ \& F
a
c
c
e

e \& $$
\overline{A_{F}}
$$

$$
f t^{2}
$$ \& A_{R}

$f t^{\prime}$ \& $$
A_{\log }
$$

$$
f t^{2}
$$ \& Leg

$\%$ \& $C_{N} A_{A}$
$I n$
Face

f^{\prime} \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out } \\
\text { Face } \\
\text { fft }^{\prime} \\
\hline
\end{gathered}
$$

\hline \& \& \& \& \& ${ }_{\text {B }}^{\text {C }}$ \& 30.592
31.388 \& 71.695

60.681 \& \& $$
\begin{aligned}
& 28.15 \\
& 31.28
\end{aligned}
$$ \& \&

\hline
\end{tabular}

Tower Pressure - With Ice

$$
G_{H}=1.117
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& \begin{tabular}{l}
\(z\) \\
\(f t\) \\
\hline 18600
\end{tabular} \& \(K_{z}\) \& \(q_{z}\)
\(p s f\) \& \(t_{2}\)

in \& A_{G}

$f t^{\prime}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f f^{\prime}$ \& A_{R}

$f t^{\prime}$ \& $A_{\text {leg }}$

$f t^{2}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
{f f^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline T1 192.00- \& \multirow[t]{2}{*}{186.00} \& \multirow[t]{2}{*}{1.639} \& \multirow[t]{2}{*}{20} \& \multirow[t]{2}{*}{0.5000} \& \multirow[t]{2}{*}{83.675} \& A \& 10.330 \& 7.750 \& 7.750 \& 42.86
24.17 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& C \& 10.997 \& 7.750 \& \& 41.34 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T2 180.00- \& \multirow[t]{2}{*}{170.00} \& \multirow[t]{2}{*}{1.597} \& \multirow[t]{2}{*}{20} \& \multirow[t]{2}{*}{0.5000} \& \multirow[t]{2}{*}{159.867} \& A \& 15.779 \& 12.939 \& \multirow[t]{2}{*}{12.939} \& 45.06 \& \&

\hline \& \& \& \& \& \& B \& 74.934 \& 22.872 \& \& 13.23 \& \&

\hline \& \multirow[t]{3}{*}{150.00} \& \multirow{3}{*}{1.541} \& \multirow{3}{*}{19} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{202.010} \& C \& 31.401 \& 15.422 \& \multirow{3}{*}{15.027} \& 27.63 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T3 160.00- \& \& \& \& \& \& A \& 22.377 \& 16.343 \& \& 38.81 \& \&

\hline 140.00 \& \& \& \& \& \& B \& 78.068 \& 24.960 \& \& 14.59 \& \&

\hline \& \multirow{3}{*}{130.00} \& \multirow{3}{*}{1.48} \& \multirow{3}{*}{18} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{245.079} \& C \& 66.860 \& 24.960 \& \multirow{3}{*}{18.366} \& 16.37 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T4 140.00- \& \& \& \& \& \& A \& 58.955 \& 25.966 \& \& 21.63 \& \&

\hline 120.00 \& \& \& \& \& \& B \& 81.124 \& 28.299 \& \& 16.78 \& \&

\hline \& \multirow{3}{*}{110.00} \& \multirow{3}{*}{1.411} \& \multirow{3}{*}{17} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{287.752} \& C \& 69.853 \& 28.299 \& \multirow{3}{*}{21.914} \& 18.71 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T5 $120.00-1$ \& \& \& \& \& \& A \& 64.866 \& 29.514 \& \& 23.22 \& \&

\hline \& \& \& \& \& \& B \& 86.758 \& 33.164 \& \& 18.27 \& \&

\hline T6 100.00-80.00 \& \multirow[t]{3}{*}{90.00} \& \multirow{3}{*}{1.332} \& \multirow{3}{*}{16} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{329.724} \& C \& 75.620 \& 33.164 \& \multirow{3}{*}{25.459} \& 20.14 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T6 100.00-80.00 \& \& \& \& \& \& A \& 63.764 \& 33.059 \& \& 26.29 \& \&

\hline \& \& \& \& \& \& B \& 86.161 \& 38.026 \& \& 20.50 \& \&

\hline \& \multirow{3}{*}{70.00} \& \multirow{3}{*}{1.24} \& \multirow{3}{*}{15} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{371.227} \& C \& 74.779 \& 38.026 \& \multirow{3}{*}{25.466} \& 22.57 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T7 80.00-60.00 \& \& \& \& \& \& A \& 69.201 \& 33.066 \& \& 24.90 \& \&

\hline \& \& \& \& \& \& B \& 91.420 \& 38.032 \& \& 19.67 \& \&

\hline \& \multirow{3}{*}{50.00} \& \multirow{3}{*}{1.126} \& \multirow{3}{*}{14} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{416.062} \& C \& 80.124 \& 38.032 \& \multirow{3}{*}{32.137} \& 21.55 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T8 60.00-40.00 \& \& \& \& \& \& A \& 71.966 \& 39.737 \& \& 28.77 \& \&

\hline \& \& \& \& \& \& B \& 94.239 \& 44.703 \& \& 23.13 \& \&

\hline \& \multirow{3}{*}{30.00} \& \multirow{3}{*}{1} \& \multirow{3}{*}{12} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{456.062} \& C \& 82.918 \& 44.703 \& \multirow{3}{*}{32.137} \& 25.18 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T9 40.00-20.00 \& \& \& \& \& \& A \& 74.800 \& 39.737 \& \& 28.06 \& \&

\hline \& \& \& \& \& \& B \& 97.112 \& 44.703 \& \& 22.66 \& \&

\hline \& \multirow{4}{*}{10.00} \& \multirow{4}{*}{1} \& \multirow{4}{*}{12} \& \multirow{4}{*}{0.5000} \& \multirow{4}{*}{496.062} \& C \& 85.772 \& 44.703 \& \multirow{4}{*}{32.137} \& 24.63 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline T10 20.00-0.00 \& \& \& \& \& \& A \& 64.489 \& 37.355 \& \& 31.55 \& \&

\hline \& \& \& \& \& \& B \& 82.249 \& 41.887 \& \& 25.89 \& \&

\hline \& \& \& \& \& \& C \& 70.667 \& 40.646 \& \& 28.87 \& \&

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.117
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& \(f 1\) \& Kz \& \[
q_{\bar{z}}
\]
\[
p s f
\] \& \[
A_{G}
\]
\[
f t^{\prime}
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \[
\overline{A_{F}}
\]
\[
f t^{\prime}
\] \& \[
\overline{A_{R}}
\]
\[
f t^{2}
\] \& \(A_{l o g}\)

$f i^{\prime}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
o,
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{\prime}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{\prime}$ |

\hline T1 192.00- \& 186.00 \& 1.639 \& 10 \& 82.675 \& A \& 7.480
6.325 \& 5.750
17.630 \& 5.750 \& 43.46
24.00 \& 0.000 \& 0.000

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 13 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I	Client	Verizon	ireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad \& $f t$ \& K_{Z} \& q_{z}
$p s f$ \& A_{G}

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{\prime}$ \& A_{R}

$f t^{\prime}$ \& $A_{l e g}$

$f t^{\prime}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
f^{\prime} \\
\hline
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow{3}{*}{170.00} \& \multirow{3}{*}{1.597} \& \multirow{3}{*}{' 10} \& \multirow{3}{*}{158.198} \& C \& 7.480 \& 5.750 \& \multirow{3}{*}{9.600} \& 43.46 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline \& \& \& \& \& A \& 11.834 \& 9.600 \& \& 44.79 \& \&

\hline \& \& \& \& \& B \& 7.097 \& 69.000 \& \& 12.62 \& \&

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow{3}{*}{150.00} \& \multirow{3}{*}{1.541} \& \multirow{3}{*}{10} \& \multirow{3}{*}{200.341} \& C \& 10.650 \& 24.450 \& \multirow{3}{*}{11.687} \& 27.35 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline \& \& \& \& \& A \& 14.097 \& 14.587 \& \& 40.75 \& \&

\hline \& \& \& \& \& B \& 9.809 \& 71.087 \& \& 14.45 \& \&

\hline \& \multirow{3}{*}{130.00} \& \multirow{3}{*}{1.48} \& \multirow{3}{*}{9} \& \multirow{3}{*}{243.410} \& C \& 10.561 \& 61.187 \& \multirow{3}{*}{15.027} \& 16.29 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T4 140.00- \& \& \& \& \& A \& 13.872 \& 50.527 \& \& 23.33 \& \&

\hline 120.00 \& \& \& \& \& B \& 12.155 \& 74.427 \& \& 17.36 \& \&

\hline \& \multirow{3}{*}{110.00} \& \multirow{3}{*}{1.411} \& \multirow{3}{*}{9} \& \multirow{3}{*}{286.083} \& C \& 12.866 \& 64.527 \& \multirow{3}{*}{18.575} \& 19.42 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T5 120.00- \& \& \& \& \& A \& 19.344 \& 54.075 \& \& 25.30 \& \&

\hline 100.00 \& \& \& \& \& B \& 17.353 \& 78.458 \& \& 19.39 \& \&

\hline \& \multirow{3}{*}{90.00} \& \multirow{3}{*}{1.332} \& \multirow{3}{*}{9} \& \multirow{3}{*}{328.055} \& C \& 18.178 \& 68.558 \& \multirow{3}{*}{22.120} \& 21.42 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T6 100.00- \& \& \& \& \& A \& 18.689 \& 57.620 \& \& 28.99 \& \&

\hline 80.00 \& \& \& \& \& B \& 17.040 \& 82.487 \& \& 22.23 \& \&

\hline \& \multirow{3}{*}{70.00} \& \multirow{3}{*}{1.24} \& \multirow{3}{*}{8} \& \multirow{3}{*}{369.558} \& C \& 17.723 \& 72.587 \& \multirow{3}{*}{22.126} \& 24.49 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T7 80.00-60.00 \& \& \& \& \& A \& 23.819 \& 57.626 \& \& 27.17 \& \&

\hline \& \& \& \& \& B \& 21.994 \& 82.492 \& \& 21.18 \& \&

\hline \& \multirow{3}{*}{50.00} \& \multirow{3}{*}{1.126} \& \multirow{3}{*}{7} \& \multirow{3}{*}{414.393} \& C \& 22.750 \& 72.592 \& \multirow{3}{*}{28.798} \& 23.21 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T8 60.00-40.00 \& \& \& \& \& A \& 26.163 \& 64.298 \& \& 31.83 \& \&

\hline \& \& \& \& \& B \& 24.381 \& 89.165 \& \& 25.36 \& \&

\hline \& \multirow{3}{*}{30.00} \& \multirow{3}{*}{1} \& \multirow{3}{*}{6} \& \multirow{3}{*}{454.393} \& C \& 25.119 \& 79.265 \& \multirow{3}{*}{28.798} \& 27.59 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T9 40.00-20.00 \& \& \& \& \& A \& 28.572 \& 64.298 \& \& 31.01 \& \&

\hline \& \& \& \& \& B \& 26.822 \& 89.165 \& \& 24.83 \& \&

\hline \& \multirow{4}{*}{10.00} \& \multirow{4}{*}{1} \& \multirow{4}{*}{6} \& \multirow{4}{*}{494.393} \& C \& 27.547 \& 79.265 \& \multirow{4}{*}{28.798} \& 26.96 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline T10 20.00-0.00 \& \& \& \& \& A \& 31.988 \& 51.548 \& \& 34.47 \& \&

\hline \& \& \& \& \& B \& 30.592 \& 71.695 \& \& 28.15 \& \&

\hline \& \& \& \& \& C \& 31.388 \& 60.681 \& \& 31.28 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

URS Corporation
500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I

Job	192' Self-Supporting Lattice Tower	Page
Project	Janoski Road \quad Ashford, CT	Date 10:25:40 08/01/06
Client	Verizon Wireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{2}{*}{40.00} \& \multirow{4}{*}{1066.60} \& \multirow{4}{*}{4356.19} \& B \& 0.274 \& 2.367 \& 0.608 \& 1 \& 1 \& 78.619 \& \multirow{4}{*}{3571.25} \& \multirow[t]{4}{*}{178.56} \& \multirow{4}{*}{B}

\hline \& \& \& C \& 0.252 \& 2.432 \& 0.602 \& 1 \& 1 \& 72.865 \& \& \&

\hline T9 40.00- \& \& \& A \& 0.204 \& 2.581 \& 0.591 \& 1 \& 1 \& 66.592 \& \& \&

\hline 20.00 \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 1 \& 1 \& 80.608 \& \& \&

\hline \& \multirow{3}{*}{761.05} \& \multirow{3}{*}{5024.30} \& C \& 0.235 \& 2.483 \& 0.598 \& 1 \& 1 \& 74.961 \& \multirow{3}{*}{3437.34} \& \multirow{3}{*}{171.87} \& \multirow[b]{3}{*}{B}

\hline T10 20.00- \& \& \& A \& 0.169 \& 2.703 \& 0.585 \& 1 \& 1 \& 62.121 \& \& \&

\hline 0.00 \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 1 \& 1 \& 73.024 \& \& \&

\hline \multirow{3}{*}{Sum Weight:} \& \multirow{3}{*}{8808.23} \& \multirow{3}{*}{26972.68} \& C \& 0.186 \& 2.643 \& 0.588 \& 1 \& 1 \& 67.049 \& \multirow{3}{*}{33259.51} \& \&

\hline \& \& \& \& \& \& \& \& OTM \& 3044308.2 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $6 \mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad fi \& Add Weight
\qquad
$$
\ldots
$$ \& $$
\begin{gathered}
\hline \text { Self } \\
\text { Weight } \\
\\
l b \\
\hline
\end{gathered}
$$ \& F
a
c
e \& e \& C_{F} \& R_{R} \& D_{F} \& D_{R} \& A_{E}

$f{ }^{\prime}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { Ti } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{169.68} \& \multirow[t]{3}{*}{546.13} \& A \& 0.16 \& 2.735 \& 0.583 \& 0.825 \& 1 \& 9.524 \& 1116.24 \& 93.02 \& B

\hline \& \& \& B \& 0.29 \& 2.324 \& 0.613 \& 0.825 \& 1 \& 16.022 \& \& \&

\hline \& \& \& C \& 0.16 \& 2.735 \& 0.583 \& 0.825 \& 1 \& 9.524 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{626.00} \& \multirow[t]{3}{*}{883.52} \& A \& 0.135 \& 2.826 \& 0.579 \& 0.825 \& 1 \& 15.325 \& 3001.15 \& 150.06 \& B

\hline \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 0.825 \& 1 \& 53.327 \& \& \&

\hline \& \& \& C \& 0.222 \& 2.525 \& 0.595 \& 0.825 \& 1 \& 23.336 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{859.40} \& \multirow[t]{3}{*}{1476.68} \& A \& 0.143 \& 2.797 \& 0.58 \& 0.825 \& 1 \& 20.097 \& 3161.55 \& 158.08 \& B

\hline \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 0.825 \& 1 \& 54.524 \& \& \&

\hline \& \& \& C \& 0.358 \& 2.153 \& 0.635 \& 0.825 \& 1 \& 47.592 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{1061.60} \& \multirow[t]{3}{*}{1889.30} \& A \& 0.265 \& 2.395 \& 0.606 \& 0.825 \& 1 \& 42.048 \& 3344.66 \& 167.23 \& B

\hline \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 0.825 \& 1 \& 57.254 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.825 \& 1 \& 50.722 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{1064.10} \& \multirow[t]{3}{*}{2605.18} \& A \& 0.257 \& 2.418 \& 0.604 \& 0.825 \& 1 \& 48.598 \& 3618.26 \& 180.91 \& B

\hline \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 0.825 \& 1 \& 63.526 \& \& \&

\hline \& \& \& C \& 0.303 \& 2.288 \& 0.617 \& 0.825 \& 1 \& 57.289 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 6100.00 \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{2666.47} \& A \& 0.233 \& 2.491 \& 0.598 \& 0.825 \& 1 \& 49.852 \& 3619.31 \& 180.97 \& B

\hline \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 0.825 \& 1 \& 64.947 \& \& \&

\hline \& \& \& C \& 0.275 \& 2.364 \& 0.609 \& 0.825 \& 1 \& 58.801 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 80.00- } \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{3345.61} \& A \& 0.22 \& 2.529 \& 0.595 \& 0.825 \& 1 \& 53.925 \& 3641.18 \& 182.06 \& B

\hline \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 0.825 \& 1 \& 68.529 \& \& \&

\hline \& \& \& C \& 0.258 \& 2.414 \& 0.604 \& 0.825 \& 1 \& 62.611 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 } 60.00- \\
40.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4179.30} \& A \& 0.218 \& 2.536 \& 0.594 \& 0.825 \& 1 \& 59.797 \& 3626.02 \& 181.30 \& B

\hline \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 0.825 \& 1 \& 74.352 \& \& \&

\hline \& \& \& C \& 0.252 \& 2.432 \& 0.602 \& 0.825 \& 1 \& 68.469 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T9 40.00- } \\
20.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4356.19} \& A \& 0.204 \& 2.581 \& 0.591 \& 0.825 \& 1 \& 61.592 \& 3363.30 \& 168.17 \& B

\hline \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 0.825 \& 1 \& 75.915 \& \& \&

\hline \& \& \& C \& 0.235 \& 2.483 \& 0.598 \& 0.825 \& 1 \& 70.141 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T10 } 20.00- \\
0.00
\end{array}
$$} \& \multirow[t]{3}{*}{761.05} \& \multirow[t]{3}{*}{5024.30} \& A \& 0.169 \& 2.703 \& 0.585 \& 0.825 \& 1 \& 56.523 \& 3185.33 \& 159.27 \& B

\hline \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 0.825 \& 1 \& 67.670 \& \& \&

\hline \& \& \& C \& 0.186 \& 2.643 \& 0.588 \& 0.825 \& 1 \& 61.556 \& \& \&

\hline \multirow[t]{2}{*}{Sum Weight:} \& \multirow[t]{2}{*}{8808.23} \& \multirow[t]{2}{*}{26972.68} \& \& \& \& \& \& OTM \& 2919536.8 \& 31677.00 \& \&

\hline \& \& \& \& \& \& \& \& \& $4 \mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Job 192' Self-Supporting Lattice Tower			$\text { Page } 15 \text { of } 34$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{169.68} \& \multirow[t]{3}{*}{546.13} \& A \& 0.16 \& 2.735 \& 0.583 \& 0.8 \& 1 \& 9.337 \& \multirow[t]{3}{*}{1105.22} \& \multirow[t]{3}{*}{92.10} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.29 \& 2.324 \& 0.613 \& 0.8 \& 1 \& 15.864 \& \& \&

\hline \& \& \& C \& 0.16 \& 2.735 \& 0.583 \& 0.8 \& 1 \& 9.337 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{626.00} \& \multirow[t]{3}{*}{883.52} \& A \& 0.135 \& 2.826 \& 0.579 \& 0.8 \& 1 \& 15.029 \& \multirow[t]{3}{*}{2991.17} \& \multirow[t]{3}{*}{149.56} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 0.8 \& 1 \& 53.150 \& \& \&

\hline \& \& \& C \& 0.222 \& 2.525 \& 0.595 \& 0.8 \& 1 \& 23.070 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{859.40} \& \multirow[t]{3}{*}{1476.68} \& A \& 0.143 \& 2.797 \& 0.58 \& 0.8 \& 1 \& 19.745 \& \multirow[t]{3}{*}{3147.33} \& \multirow[t]{3}{*}{157.37} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 0.8 \& 1 \& 54.279 \& \& \&

\hline \& \& \& C \& 0.358 \& 2.153 \& 0.635 \& 0.8 \& 1 \& 47.328 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{1061.60} \& \multirow[t]{3}{*}{1889.30} \& A \& 0.265 \& 2.395 \& 0.606 \& 0.8 \& 1 \& 41.702 \& \multirow[t]{3}{*}{3326.90} \& \multirow[t]{3}{*}{166.35} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 0.8 \& 1 \& 56.950 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.8 \& 1 \& 50.400 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TS } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{1064.10} \& \multirow[t]{3}{*}{2605.18} \& A \& 0.257 \& 2.418 \& 0.604 \& 0.8 \& 1 \& 48.114 \& \multirow[t]{3}{*}{3593.55} \& \multirow[t]{3}{*}{179.68} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 0.8 \& 1 \& 63.092 \& \& \&

\hline \& \& \& C \& 0.303 \& 2.288 \& 0.617 \& 0.8 \& 1 \& 56.834 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 } 100.00 \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{2666.47} \& A \& 0.233 \& 2.491 \& 0.598 \& 0.8 \& 1 \& 49.385 \& \multirow[t]{3}{*}{3595.57} \& \multirow[t]{3}{*}{179.78} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 0.8 \& 1 \& 64.521 \& \& \&

\hline \& \& \& C \& 0.275 \& 2.364 \& 0.609 \& 0.8 \& 1 \& 58.358 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 80.00- } \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{3345.61} \& A \& 0.22 \& 2.529 \& 0.595 \& 0.8 \& 1 \& 53.329 \& \multirow[t]{3}{*}{3611.97} \& \multirow[t]{3}{*}{180.60} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 0.8 \& 1 \& 67.979 \& \& \&

\hline \& \& \& C \& 0.258 \& 2.414 \& 0.604 \& 0.8 \& 1 \& 62.042 \& \& \&

\hline T8 60.00- \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4179.30} \& A \& 0.218 \& 2.536 \& 0.594 \& 0.8 \& 1 \& 59.143 \& \multirow[t]{3}{*}{3596.29} \& \multirow[t]{3}{*}{179.81} \& \multirow[t]{3}{*}{B}

\hline 40.00 \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 0.8 \& 1 \& 73.743 \& \& \&

\hline \& \& \& C \& 0.252 \& 2.432 \& 0.602 \& 0.8 \& 1 \& 67.841 \& \& \&

\hline T9 40.00- \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4356.19} \& A \& 0.204 \& 2.581 \& 0.591 \& 0.8 \& 1 \& 60.877 \& \multirow[t]{3}{*}{3333.59} \& \multirow[t]{3}{*}{166.68} \& \multirow[t]{3}{*}{B}

\hline 20.00 \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 0.8 \& 1 \& 75.244 \& \& \&

\hline \& \& \& C \& 0.235 \& 2.483 \& 0.598 \& 0.8 \& 1 \& 69.452 \& \& \&

\hline T10 20.00- \& \multirow[t]{3}{*}{761.05} \& \multirow[t]{3}{*}{5024.30} \& A \& 0.169 \& 2.703 \& 0.585 \& 0.8 \& 1 \& 55.723 \& \multirow[t]{3}{*}{3149.33} \& \multirow[t]{3}{*}{157.47} \& \multirow[t]{5}{*}{B}

\hline 0.00 \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 0.8 \& 1 \& 66.905 \& \& \&

\hline \& \& \& C \& 0.186 \& 2.643 \& 0.588 \& 0.8 \& 1 \& \multirow[t]{3}{*}{$$
\begin{array}{r}
60.772 \\
2901712.3 \\
6 \mathrm{lb}-\mathrm{ft}
\end{array}
$$} \& \& \&

\hline Sum Weight: \& \multirow[t]{2}{*}{8808.23} \& \multirow[t]{2}{*}{26972.68} \& \& \& \& \& \& \multirow[t]{2}{*}{OTM} \& \& \multirow[t]{2}{*}{31450.93} \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& ${ }^{w}$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline \text { TI } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{169.68} \& \multirow[t]{3}{*}{546.13} \& A \& 0.16 \& 2.735 \& 0.583 \& 0.85 \& 1 \& 9.711 \& 1127.26 \& 93.94 \& B

\hline \& \& \& B \& 0.29 \& 2.324 \& 0.613 \& 0.85 \& 1 \& 16.180 \& \& \&

\hline \& \& \& C \& 0.16 \& 2.735 \& 0.583 \& 0.85 \& 1 \& 9.711 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{626.00} \& \multirow[t]{3}{*}{883.52} \& A \& 0.135 \& 2.826 \& 0.579 \& 0.85 \& 1 \& 15.621 \& 3011.14 \& 150.56 \& B

\hline \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 0.85 \& 1 \& 53.505 \& \& \&

\hline \& \& \& C \& 0.222 \& 2.525 \& 0.595 \& 0.85 \& 1 \& 23.603 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{859.40} \& \multirow[t]{3}{*}{1476.68} \& A \& 0.143 \& 2.797 \& 0.58 \& 0.85 \& 1 \& 20.450 \& 3175:77 \& 158.79 \& B

\hline \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 0.85 \& 1 \& 54.769 \& \& \&

\hline \& \& \& C \& 0.358 \& 2.153 \& 0.635 \& 0.85 \& 1 \& 47.856 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 4140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{1061.60} \& \multirow[t]{3}{*}{1889.30} \& A \& 0.265 \& 2.395 \& 0.606 \& 0.85 \& 1 \& 42.395 \& 3362.41 \& 168.12 \& B

\hline \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 0.85 \& 1 \& 57.558 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.85 \& 1 \& 51.043 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 120.00 \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{1064.10} \& \multirow[t]{3}{*}{2605.18} \& A \& 0.257 \& 2.418 \& 0.604 \& 0.85 \& 1 \& 49.081 \& 3642.97 \& 182.15 \& B

\hline \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 0.85 \& 1 \& 63.960 \& \& \&

\hline \& \& \& C \& 0.303 \& 2.288 \& 0.617 \& 0.85 \& 1 \& 57.743 \& \& \&

\hline \multirow[t]{2}{*}{$$
\begin{array}{r}
\mathrm{T} 6100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{2}{*}{1066.60} \& \multirow[t]{2}{*}{2666.47} \& A \& 0.233 \& 2.491 \& 0.598 \& 0.85 \& 1 \& 50.319 \& 3643.05 \& 182.15 \& B

\hline \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 0.85 \& 1 \& 65.373 \& \& \&

\hline
\end{tabular}

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	'Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow{4}{*}{$$
\begin{array}{r}
\mathrm{T} 780.00- \\
60.00
\end{array}
$$} \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{3345.61} \& C \& 0.275 \& 2.364 \& 0.609 \& 0.85 \& 1 \& 59.244 \& \multirow{3}{*}{3670.40} \& \multirow{3}{*}{183.52} \& \multirow{3}{*}{B}

\hline \& \& \& A \& 0.22 \& 2.529 \& 0.595 \& 0.85 \& 1 \& 54.520 \& \& \&

\hline \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 0.85 \& 1 \& 69.079 \& \& \&

\hline \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{4179.30} \& C \& 0.258 \& 2.414 \& 0.604 \& 0.85 \& 1 \& 63.179 \& \multirow{3}{*}{3655.74} \& \multirow{3}{*}{182.79} \& \multirow{3}{*}{B}

\hline \multirow[t]{2}{*}{$$
\begin{array}{r}
\text { T8 60.00- } \\
40.00
\end{array}
$$} \& \& \& A \& 0.218 \& 2.536 \& 0.594 \& 0.85 \& 1 \& 60.451 \& \& \&

\hline \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 0.85 \& 1 \& 74.962 \& \& \&

\hline \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{4356.19} \& C \& 0.252 \& 2.432 \& 0.602 \& 0.85 \& 1 \& 69.097 \& \multirow{3}{*}{3393.01} \& \multirow{3}{*}{169.65} \& \multirow{3}{*}{B}

\hline T9 40.00- \& \& \& A \& 0.204 \& 2.581 \& 0.591 \& 0.85 \& 1 \& 62.306 \& \& \&

\hline 20.00 \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 0.85 \& 1 \& 76.585 \& \& \&

\hline \& \multirow{3}{*}{761.05} \& \multirow{3}{*}{5024.30} \& C \& 0.235 \& 2.483 \& 0.598 \& 0.85 \& 1 \& 70.829 \& \multirow{3}{*}{3221.33} \& \multirow{3}{*}{161.07} \& \multirow{3}{*}{B}

\hline T10 20.00- \& \& \& A \& 0.169 \& 2.703 \& 0.585 \& 0.85 \& 1 \& 57.323 \& \& \&

\hline 0.00 \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 0.85 \& 1 \& 68.435 \& \& \&

\hline \& \multirow{3}{*}{8808.23} \& \multirow{3}{*}{26972.68} \& C \& 0.186 \& 2.643 \& 0.588 \& 0.85 \& 1 \& 62.341 \& \multirow{3}{*}{31903.07} \& \&

\hline Sum Weight: \& \& \& \& \& \& \& \& OTM \& 2937361.3 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $3 \mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\[
l b
\]
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{292.87} \& \multirow[t]{3}{*}{898.58} \& A \& 0.216 \& 2.543 \& 0.594 \& 1 \& 1 \& 14.932 \& 1333.00 \& 111.08 \& B

\hline \& \& \& B \& 0.383 \& 2.098 \& 0.645 \& 1 \& 1 \& 28.251 \& \& \&

\hline \& \& \& C \& 0.224 \& 2.518 \& 0.596 \& 1 \& 1 \& 15.613 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T } 2180.00 \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{1379.76} \& \multirow[t]{3}{*}{1433.44} \& A \& 0.18 \& 2.665 \& 0.586 \& 1 \& 1 \& 23.367 \& 3636.92 \& 181.85 \& B

\hline \& \& \& B \& 0.612 \& 1.797 \& 0.761 \& I \& 1 \& 92.338 \& \& \&

\hline \& \& \& C \& 0.293 \& 2.315 \& 0.614 \& 1 \& 1 \& 40.867 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{1997.50} \& \multirow[t]{3}{*}{2117.50} \& A \& 0.192 \& 2.624 \& 0.589 \& 1 \& 1 \& 31.999 \& 3815.66 \& 190.78 \& B

\hline \& \& \& B \& 0.51 \& 1.887 \& 0.703 \& 1 \& 1 \& 95.606 \& \& \&

\hline \& \& \& C \& 0.455 \& 1.966 \& 0.675 \& 1 \& 1 \& 83.717 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{2535.35} \& \multirow[t]{3}{*}{2640.38} \& A \& 0.347 \& 2.18 \& 0.631 \& 1 \& 1 \& 75.345 \& 4023.16 \& 201.16 \& B

\hline \& \& \& B \& 0.446 \& 1.979 \& 0.672 \& 1 \& 1 \& 100.132 \& \& \&

\hline \& \& \& C \& 0.4 \& 2.063 \& 0.652 \& 1 \& 1 \& 88.298 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{2544.45} \& \multirow[t]{3}{*}{3578.70} \& A \& 0.328 \& 2.224 \& 0.625 \& 1 \& 1 \& 83.308 \& 4270.26 \& 213.51 \& B

\hline \& \& \& B \& 0.417 \& 2.032 \& 0.659 \& 1 \& 1 \& 108.599 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 1 \& 1 \& 96.940 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 } 100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{3626.27} \& A \& 0.294 \& 2.313 \& 0.614 \& 1 \& 1 \& 84.061 \& 4268.46 \& 213.42 \& B

\hline \& \& \& B \& 0.377 \& 2.112 \& 0.642 \& 1 \& 1 \& 110.587 \& \& \&

\hline \& \& \& C \& 0.342 \& 2.19 \& 0.63 \& 1 \& 1 \& 98.724 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 80.00- } \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{4467.76} \& A \& 0.275 \& 2.363 \& 0.609 \& 1 \& 1 \& 89.328 \& 4270.16 \& 213.51 \& B

\hline \& \& \& B \& 0.349 \& 2.174 \& 0.632 \& 1 \& 1 \& 115.457 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.248 \& 0.622 \& 1 \& 1 \& 103.768 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 60.00- } \\
40.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{5451.68} \& A \& 0.268 \& 2.383 \& 0.607 \& 1 \& 1 \& 96.077 \& 4173.77 \& 208.69 \& B

\hline \& \& \& B \& 0.334 \& 2.21 \& 0.627 \& 1 \& 1 \& 122.263 \& \& \&

\hline \& \& \& C \& 0.307 \& 2.278 \& 0.618 \& 1 \& 1 \& 110.544 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T9 } 40.00- \\
20.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{5704.23} \& A \& 0.251 \& 2.434 \& 0.602 \& 1 \& 1 \& 98.728 \& 3882.10 \& 194.11 \& B

\hline \& \& \& B \& 0.311 \& 2.267 \& 0.619 \& 1 \& 1 \& 124.798 \& \& \&

\hline \& \& \& C \& 0.286 \& 2.334 \& 0.612 \& 1 \& 1 \& 113.119 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T10 } 20.00 \\
0.00
\end{array}
$$} \& \multirow[t]{3}{*}{1756.02} \& \multirow[t]{3}{*}{6449.19} \& A \& 0.205 \& 2.578 \& 0.591 \& 1 \& 1 \& 86.585 \& 3592.77 \& 179.64 \& B

\hline \& \& \& B \& 0.25 \& 2.437 \& 0.602 \& 1 \& 1 \& 107.463 \& \& \&

\hline \& \& \& C \& 0.224 \& 2.517 \& 0.596 \& 1 \& 1 \& 94.879 \& \& \&

\hline Sum Weight: \& 20720.15 \& 36367.72 \& \& \& \& \& \& OTM \& | 3475453.3 |
| ---: |
| $5 \mathrm{lb-ft}$ | \& 37266.25 \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 17 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	Date 10:25:40 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	ireless	Designed by Staff

Tower Forces - With lce - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
lb
\end{tabular} \& Self Weight
\(\qquad\)
\[
1 b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$\prime t^{2}$ \& F
$l b$ \& plf \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{292.87} \& \multirow[t]{3}{*}{898.58} \& A \& 0.216 \& 2.543 \& 0.594 \& 0.825 \& 1 \& 13.124 \& \multirow[t]{3}{*}{1156.86} \& \multirow[t]{3}{*}{96.40} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.383 \& 2.098 \& 0.645 \& 0.825 \& 1 \& 24.518 \& \& \&

\hline \& \& \& C \& 0.224 \& 2.518 \& 0.596 \& 0.825 \& 1 \& 13.688 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{1379.76} \& \multirow[t]{3}{*}{1433.44} \& A \& 0.18 \& 2.665 \& 0.586 \& 0.825 \& 1 \& 20.606 \& \multirow[t]{3}{*}{3120.42} \& \multirow[t]{3}{*}{156.02} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.612 \& 1.797 \& 0.761 \& 0.825 \& 1 \& 79.224 \& \& \&

\hline \& \& \& C \& 0.293 \& 2.315 \& 0.614 \& 0.825 \& 1 \& 35.371 \& \& \&

\hline \multirow[t]{3}{*}{T3 160.00-} \& \multirow[t]{3}{*}{1997.50} \& \multirow[t]{3}{*}{2117.50} \& A \& 0.192 \& 2.624 \& 0.589 \& 0.825 \& 1 \& 28.083 \& \multirow[t]{3}{*}{3270.41} \& \multirow[t]{3}{*}{163.52} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.51 \& 1.887 \& 0.703 \& 0.825 \& 1 \& 81.944 \& \& \&

\hline \& \& \& C \& 0.455 \& 1.966 \& 0.675 \& 0.825 \& 1 \& 72.016 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 140.00- } \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{2535.35} \& \multirow[t]{3}{*}{2640.38} \& A \& 0.347 \& 2.18 \& 0.631 \& 0.825 \& 1 \& 65.028 \& \multirow[t]{3}{*}{3452.75} \& \multirow[t]{3}{*}{172.64} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.446 \& 1.979 \& 0.672 \& 0.825 \& 1 \& 85.935 \& \& \&

\hline \& \& \& C \& 0.4 \& 2.063 \& 0.652 \& 0.825 \& 1 \& 76.074 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TS } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{2544.45} \& \multirow[t]{3}{*}{3578.70} \& A \& 0.328 \& 2.224 \& 0.625 \& 0.825 \& 1 \& 71.956 \& \multirow[t]{3}{*}{3673.25} \& \multirow[t]{3}{*}{183.66} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.417 \& 2.032 \& 0.659 \& 0.825 \& 1 \& 93.416 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 0.825 \& 1 \& 83.707 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 6100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{3626.27} \& A \& 0.294 \& 2.313 \& 0.614 \& 0.825 \& 1 \& 72.902 \& \multirow[t]{3}{*}{3686.47} \& \multirow[t]{3}{*}{184.32} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.377 \& 2.112 \& 0.642 \& 0.825 \& 1 \& 95.508 \& \& \&

\hline \& \& \& C \& 0.342 \& 2.19 \& 0.63 \& 0.825 \& 1 \& 85.638 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 780.00 \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{4467.76} \& A \& 0.275 \& 2.363 \& 0.609 \& 0.825 \& 1 \& 77.218 \& \multirow[t]{3}{*}{3678.45} \& \multirow[t]{3}{*}{183.92} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.349 \& 2.174 \& 0.632 \& 0.825 \& 1 \& 99.458 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.248 \& 0.622 \& 0.825 \& 1 \& 89.746 \& \& \&

\hline T8 60.00- \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{5451.68} \& A \& 0.268 \& 2.383 \& 0.607 \& 0.825 \& 1 \& 83.483 \& \multirow[t]{3}{*}{3610.78} \& \multirow[t]{3}{*}{180.54} \& \multirow[t]{3}{*}{B}

\hline 40.00 \& \& \& B \& 0.334 \& 2.21 \& 0.627 \& 0.825 \& 1 \& 105.771 \& \& \&

\hline \& \& \& C \& 0.307 \& 2.278 \& 0.618 \& 0.825 \& 1 \& 96.033 \& \& \&

\hline T9 40.00- \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{5704.23} \& A \& 0.251 \& 2.434 \& 0.602 \& 0.825 \& 1 \& 85.638 \& \multirow[t]{3}{*}{3353.45} \& \multirow[t]{3}{*}{167.67} \& \multirow[t]{3}{*}{B}

\hline 20.00 \& \& \& B \& 0.311 \& 2.267 \& 0.619 \& 0.825 \& 1 \& 107.803 \& \& \&

\hline \& \& \& C \& 0.286 \& 2.334 \& 0.612 \& 0.825 \& 1 \& 98.109 \& \& \&

\hline T10 20.00- \& \multirow[t]{3}{*}{1756.02} \& \multirow[t]{3}{*}{6449.19} \& A \& 0.205 \& 2.578 \& 0.591 \& 0.825 \& 1 \& 75.299 \& \multirow[t]{3}{*}{3111.55} \& \multirow[t]{4}{*}{155.58} \& \multirow[t]{4}{*}{B}

\hline 0.00 \& \& \& B \& 0.25 \& 2.437 \& 0.602 \& 0.825 \& 1 \& 93.069 \& \& \&

\hline \& \& \& C \& 0.224 \& 2.517 \& 0.596 \& 0.825 \& 1 \& 82.512 \& \& \&

\hline Sum Weight: \& 20720.15 \& 36367.72 \& \& \& \& \& \& OTM \& 2990656.1
$8 \mathrm{lb}-\mathrm{tt}$ \& 32114.40 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{292.87} \& \multirow[t]{3}{*}{898.58} \& A \& 0.216 \& 2.543 \& 0.594 \& 0.8 \& 1 \& 12.866 \& \multirow[t]{3}{*}{1131.70} \& \multirow[t]{3}{*}{94.31} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.383 \& 2.098 \& 0.645 \& 0.8 \& 1 \& 23.985 \& \& \&

\hline \& \& \& C \& 0.224 \& 2.518 \& 0.596 \& 0.8 \& 1 \& 13.413 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{1379.76} \& \multirow[t]{3}{*}{1433.44} \& A \& 0.18 \& 2.665 \& 0.586 \& 0.8 \& 1 \& 20.211 \& \multirow[t]{3}{*}{3046.63} \& \multirow[t]{3}{*}{152.33} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.612 \& 1.797 \& 0.761 \& 0.8 \& 1 \& 77.351 \& \& \&

\hline \& \& \& C \& 0.293 \& 2.315 \& 0.614 \& 0.8 \& 1 \& 34.586 \& \& \&

\hline T3 160.00- \& \multirow[t]{3}{*}{1997.50} \& \multirow[t]{3}{*}{2117.50} \& A \& 0.192 \& 2.624 \& 0.589 \& 0.8 \& 1 \& 27.523 \& \multirow[t]{3}{*}{3192.52} \& \multirow[t]{3}{*}{159.63} \& \multirow[t]{3}{*}{B}

\hline 140.00 \& \& \& B \& 0.51 \& 1.887 \& 0.703 \& 0.8 \& 1 \& 79.993 \& \& \&

\hline \& \& \& C \& 0.455 \& 1.966 \& 0.675 \& 0.8 \& 1 \& 70.345 \& \& \&

\hline T4 140.00- \& \multirow[t]{2}{*}{2535.35} \& \multirow[t]{2}{*}{2640.38} \& A \& 0.347 \& 2.18 \& 0.631 \& 0.8 \& 1 \& 63.554 \& \multirow[t]{2}{*}{3371.27} \& \multirow[t]{2}{*}{168.56} \& \multirow[t]{2}{*}{B}

\hline 120.00 \& \& \& B \& 0.446 \& 1.979 \& 0.672 \& 0.8 \& 1 \& 83.907 \& \& \&

\hline
\end{tabular}

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 18 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill. CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Verizon Wireless			Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& \begin{tabular}{l}
Add Weight \\
\(l b\)
\end{tabular} \& Self Weight \(l b\) \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f r^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T5 } 120.00- \\
100.00
\end{array}
$$} \& \multirow{3}{*}{2544.45} \& \multirow{3}{*}{3578.70} \& C \& 0.4 \& 2.063 \& 0.652 \& 0.8 \& 1 \& 74.328 \& \multirow[t]{3}{*}{3587.97} \& \multirow{3}{*}{179.40} \& \multirow[b]{3}{*}{B}

\hline \& \& \& A \& 0.328 \& 2.224 \& 0.625 \& 0.8 \& 1 \& 70.335 \& \& \&

\hline \& \& \& B \& 0.417 \& 2.032 \& 0.659 \& 0.8 \& 1 \& 91.247 \& \& \&

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T6 } 100.00- \\
80.00
\end{array}
$$} \& \multirow{3}{*}{2553.55} \& \multirow{3}{*}{3626.27} \& C \& 0.378 \& 2.109 \& 0.643 \& 0.8 \& 1 \& 81.816 \& \multirow[b]{3}{*}{3603.33} \& \multirow[b]{3}{*}{180.17} \& \multirow[b]{3}{*}{B}

\hline \& \& \& A \& 0.294 \& 2.313 \& 0.614 \& 0.8 \& 1 \& 71.308 \& \& \&

\hline \& \& \& B \& 0.377 \& 2.112 \& 0.642 \& 0.8 \& 1 \& 93.354 \& \& \&

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T7 80.00 } \\
60.00
\end{array}
$$} \& \multirow{3}{*}{2553.55} \& \multirow{3}{*}{4467.76} \& C \& 0.342 \& 2.19 \& 0.63 \& 0.8 \& 1 \& 83.768 \& \multirow{3}{*}{3593.93} \& \multirow{3}{*}{179.70} \& \multirow[b]{3}{*}{B}

\hline \& \& \& A \& 0.275 \& 2.363 \& 0.609 \& 0.8 \& 1 \& 75.488 \& \& \&

\hline \& \& \& B \& 0.349 \& 2.174 \& 0.632 \& 0.8 \& 1 \& 97.173 \& \& \&

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T8 60.00- } \\
40.00
\end{array}
$$} \& \multirow{3}{*}{2553.55} \& \multirow{3}{*}{5451.68} \& C \& 0.318 \& 2.248 \& 0.622 \& 0.8 \& 1 \& 87.743 \& \multirow{3}{*}{3530.35} \& \multirow[b]{3}{*}{176.52} \& \multirow[b]{3}{*}{B}

\hline \& \& \& A \& 0.268 \& 2.383 \& 0.607 \& 0.8 \& 1 \& 81.684 \& \& \&

\hline \& \& \& B \& 0.334 \& 2.21 \& 0.627 \& 0.8 \& 1 \& 103.415 \& \& \&

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { T9 } 40.00- \\
20.00
\end{array}
$$} \& \multirow{3}{*}{2553.55} \& \multirow{3}{*}{5704.23} \& C \& 0.307 \& 2.278 \& 0.618 \& 0.8 \& 1 \& 93.960 \& \multirow{3}{*}{3277.92} \& \multirow{3}{*}{163.90} \& \multirow[b]{3}{*}{B}

\hline \& \& \& A \& 0.251 \& 2.434 \& 0.602 \& 0.8 \& 1 \& 83.768 \& \& \&

\hline \& \& \& B \& 0.311 \& 2.267 \& 0.619 \& 0.8 \& 1 \& 105.375 \& \& \&

\hline \& \multirow{3}{*}{1756.02} \& \multirow{3}{*}{6449.19} \& C \& 0.286 \& 2.334 \& 0.612 \& 0.8 \& 1 \& 95.965 \& \multirow{3}{*}{3042.81} \& \multirow{3}{*}{152.14} \& \multirow[b]{3}{*}{B}

\hline T10 20.00- \& \& \& A \& 0.205 \& 2.578 \& 0.591 \& 0.8 \& 1 \& 73.687 \& \& \&

\hline 0.00 \& \& \& B \& 0.25 \& 2.437 \& 0.602 \& 0.8 \& 1 \& 91.013 \& \& \&

\hline \multirow{3}{*}{Sum Weight:} \& \multirow{3}{*}{20720.15} \& \multirow{3}{*}{36367.72} \& C \& 0.224 \& 2.517 \& 0.596 \& 0.8 \& 1 \& 80.746 \& \multirow{3}{*}{31378.42} \& \&

\hline \& \& \& \& \& \& \& \& OTM \& 2921399.4 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $4 \mathrm{lb-ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\(\qquad\) \& \begin{tabular}{l}
Self Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{T1 192.00-} \& \multirow[t]{3}{*}{292.87} \& \multirow[t]{3}{*}{898.58} \& A \& 0.216 \& 2.543 \& 0.594 \& 0.85 \& 1 \& 13.383 \& 1182.02 \& 98.50 \& B

\hline \& \& \& B \& 0.383 \& 2.098 \& 0.645 \& 0.85 \& 1 \& 25.051 \& \& \&

\hline \& \& \& C \& 0.224 \& 2.518 \& 0.596 \& 0.85 \& 1 \& 13.963 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{1379.76} \& \multirow[t]{3}{*}{1433.44} \& A \& 0.18 \& 2.665 \& 0.586 \& 0.85 \& 1 \& 21.000 \& 3194.20 \& 159.71 \& B

\hline \& \& \& B \& 0.612 \& 1.797 \& 0.761 \& 0.85 \& 1 \& 81.098 \& \& \&

\hline \& \& \& C \& 0.293 \& 2.315 \& 0.614 \& 0.85 \& 1 \& 36.157 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{1997.50} \& \multirow[t]{3}{*}{2117.50} \& A \& 0.192 \& 2.624 \& 0.589 \& 0.85 \& 1 \& 28.642 \& 3348.30 \& 167.42 \& B

\hline \& \& \& B \& 0.51 \& 1.887 \& 0.703 \& 0.85 \& 1 \& 83.896 \& \& \&

\hline \& \& \& C \& 0.455 \& 1.966 \& 0.675 \& 0.85 \& 1 \& 73.688 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 140.00 \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{2535.35} \& \multirow[t]{3}{*}{2640.38} \& A \& 0.347 \& 2.18 \& 0.631 \& 0.85 \& 1 \& 66.502 \& 3534.24 \& 176.71 \& B

\hline \& \& \& B \& 0.446 \& 1.979 \& 0.672 \& 0.85 \& 1 \& 87.963 \& \& \&

\hline \& \& \& C \& 0.4 \& 2.063 \& 0.652 \& 0.85 \& 1 \& 77.820 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TS } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{2544.45} \& \multirow[t]{3}{*}{3578.70} \& A \& 0.328 \& 2.224 \& 0.625 \& 0.85 \& 1 \& 73.578 \& 3758.54 \& 187.93 \& B

\hline \& \& \& B \& 0.417 \& 2.032 \& 0.659 \& 0.85 \& 1 \& 95.585 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 0.85 \& 1 \& 85.597 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 } 100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{3626.27} \& A \& 0.294 \& 2.313 \& 0.614 \& 0.85 \& 1 \& 74.496 \& 3769.61 \& 188.48 \& B

\hline \& \& \& B \& 0.377 \& 2.112 \& 0.642 \& 0.85 \& 1 \& 97.662 \& \& \& B

\hline \& \& \& C \& 0.342 \& 2.19 \& 0.63 \& 0.85 \& 1 \& 87.507 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 80.00- } \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{4467.76} \& A \& 0.275 \& 2.363 \& 0.609 \& 0.85 \& 1 \& 78.948 \& 3762.98 \& 188.15 \& B

\hline \& \& \& B \& 0.349 \& 2.174 \& 0.632 \& 0.85 \& 1 \& 101.744 \& \& \& B

\hline \& \& \& C \& 0.318 \& 2.248 \& 0.622 \& 0.85 \& 1 \& 91.749 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 } 60.00- \\
40.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{5451.68} \& A \& 0.268 \& 2.383 \& 0.607 \& 0.85 \& 1 \& 85.282 \& 3691.20 \& 184.56 \& B

\hline \& \& \& B \& 0.334 \& 2.21 \& 0.627 \& 0.85 \& 1 \& 108.127 \& \& \&

\hline \& \& \& C \& 0.307 \& 2.278 \& 0.618 \& 0.85 \& 1 \& 98.106 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T9 } 40.00- \\
20.00
\end{array}
$$} \& \multirow[t]{3}{*}{2553.55} \& \multirow[t]{3}{*}{5704.23} \& A \& 0.251 \& 2.434 \& 0.602 \& 0.85 \& 1 \& 87.508 \& 3428.97 \& 171.45 \& B

\hline \& \& \& B \& 0.311 \& 2.267 \& 0.619 \& 0.85 \& 1 \& 110.231 \& \& \&

\hline \& \& \& C \& 0.286 \& 2.334 \& 0.612 \& 0.85 \& 1 \& 100.253 \& \& \&

\hline T10 20.00- \& 1756.02 \& 6449.19 \& A \& 0.205 \& 2.578 \& 0.591 \& 0.85 \& 1 \& 76.911 \& 3180.30 \& 159.01 \& B

\hline
\end{tabular}

RISATower	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{aligned} & \text { Date } \\ & 10: 25: 40 \quad 08 / 01 / 06 \end{aligned}$
	Client	Verizon	ireless	Designed by Staff

Section Elevation \qquad	Add Weight \qquad $l b$	Self Weight \qquad $\quad l b$	F a c e	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} $f t^{2}$	F $l b$	w plf	Ctrl. Face
Sum Weight:	20720.15	36367.72	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{r} 0.25 \\ 0.224 \end{array}$	$\begin{aligned} & 2.437 \\ & 2.517 \end{aligned}$	$\begin{aligned} & \hline 0.602 \\ & 0.596 \end{aligned}$	$\begin{aligned} & \hline 0.85 \\ & 0.85 \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ \text { OTM } \end{array}$	95.125 84.279 3059912.9 $2 \mathrm{lb}-\mathrm{ft}$	32850.38		

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \(f i\) \& Add Weight
\(\qquad\) \& \begin{tabular}{l}
Self \\
Weight \\
lb
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{3}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{169.68} \& \multirow[t]{3}{*}{546.13} \& A \& 0.16 \& 2.735 \& 0.583 \& 1 \& 1 \& 10.833 \& 466.15 \& 38.85 \& B

\hline \& \& \& B \& 0.29 \& 2.324 \& 0.613 \& 1 \& 1 \& 17.129 \& \& \&

\hline \& \& \& C \& 0.16 \& 2.735 \& 0.583 \& 1 \& 1 \& 10.833 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{626.00} \& \multirow[t]{3}{*}{883.52} \& A \& 0.135 \& 2.826 \& 0.579 \& 1 \& 1 \& 17.396 \& 1199.63 \& 59.98 \& B

\hline \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 1 \& 1 \& 54.569 \& \& \&

\hline \& \& \& C \& 0.222 \& 2.525 \& 0.595 \& 1 \& 1 \& 25.200 \& \& \&

\hline \multirow[t]{3}{*}{T3 160.00-} \& \multirow[t]{3}{*}{859.40} \& \multirow[t]{3}{*}{1476.68} \& A \& 0.143 \& 2.797 \& 0.58 \& 1 \& 1 \& 22.564 \& 1273.86 \& 63.69 \& B

\hline \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 1 \& 1 \& 56.241 \& \& \&

\hline \& \& \& C \& 0.358 \& 2.153 \& 0.635 \& 1 \& 1 \& 49.440 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{1061.60} \& \multirow[t]{3}{*}{1889.30} \& A \& 0.265 \& 2.395 \& 0.606 \& 1 \& 1 \& 44.476 \& 1355.05 \& 67.75 \& B

\hline \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 1 \& 1 \& 59.381 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 1 \& 1 \& 52.973 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 120.00 \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{1064.10} \& \multirow[t]{3}{*}{2605.18} \& A \& 0.257 \& 2.418 \& 0.604 \& 1 \& 1 \& 51.983 \& 1480.95 \& 74.05 \& B

\hline \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 1 \& 1 \& 66.563 \& \& \&

\hline \& \& \& C \& 0.303 \& 2.288 \& 0.617 \& 1 \& 1 \& 60.470 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 } 100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{2666.47} \& A \& 0.233 \& 2.491 \& 0.598 \& 1 \& 1 \& 53.122 \& 1478.71 \& 73.94 \& B

\hline \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 1 \& 1 \& 67.929 \& \& \&

\hline \& \& \& C \& 0.275 \& 2.364 \& 0.609 \& 1 \& 1 \& 61.903 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 780.00- \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{3345.61} \& A \& 0.22 \& 2.529 \& 0.595 \& 1 \& 1 \& 58.093 \& 1502.22 \& 75.11 \& B

\hline \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 1 \& 1 \& 72.378 \& \& \&

\hline \& \& \& C \& 0.258 \& 2.414 \& 0.604 \& 1 \& 1 \& 66.592 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 60.00- } \\
40.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4179.30} \& A \& 0.218 \& 2.536 \& 0.594 \& 1 \& 1 \& 64.375 \& 1497.69 \& 74.88 \& B

\hline \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 1 \& 1 \& 78.619 \& \& \&

\hline \& \& \& C \& 0.252 \& 2.432 \& 0.602 \& 1 \& 1 \& 72.865 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T9 40.00- } \\
20.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4356.19} \& A \& 0.204 \& 2.581 \& 0.591 \& 1 \& 1 \& 66.592 \& 1395.02 \& 69.75 \& B

\hline \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 1 \& 1 \& 80.608 \& \& \&

\hline \& \& \& C \& 0.235 \& 2.483 \& 0.598 \& 1 \& 1 \& 74.961 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T10 } 20.00- \\
0.00
\end{array}
$$} \& \multirow[t]{3}{*}{761.05} \& \multirow[t]{3}{*}{5024.30} \& A \& 0.169 \& 2.703 \& 0.585 \& 1 \& 1 \& 62.121 \& 1342.71 \& 67.14 \& B

\hline \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 1 \& 1 \& 73.024 \& \& \&

\hline \& \& \& C \& 0.186 \& 2.643 \& 0.588 \& 1 \& 1 \& 67.049 \& \& \&

\hline \multirow[t]{2}{*}{Sum Weight:} \& \multirow[t]{2}{*}{8808.23} \& \multirow[t]{2}{*}{26972.68} \& \& \& \& \& \& OTM \& 1189182.9 \& 12992.00 \& \&

\hline \& \& \& \& \& \& \& \& \& $1 \mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 45 To Face

Section Elevation \qquad ft	Add Weight \qquad lb	Self Weight $l b$	F a c e	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} $f t^{2}$	F $l b$	w $p l f$	Ctrl. Face
T1 192.00-	169.68	546.13	A	0.16	2.735	0.583	0.825	1	9.524	436.03	36.34	B

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & 20 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{aligned} & \text { Date } \\ & \text { 10:25:40 08/01/06 } \end{aligned}$
	Verizon Wireless			Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

f^{\prime} \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{2}{*}{180.00} \& \multirow{5}{*}{626.00} \& \multirow{4}{*}{883.52} \& B \& 0.29 \& 2.324 \& 0.613 \& 0.825 \& 1 \& 16.022 \& \multirow{4}{*}{1172.33} \& \multirow{4}{*}{58.62} \& \multirow{4}{*}{B}

\hline \& \& \& C \& 0.16 \& 2.735 \& 0.583 \& 0.825 \& 1 \& 9.524 \& \& \&

\hline \multirow[t]{3}{*}{T2 180.00-
160.00} \& \& \& A \& 0.135 \& 2.826 \& 0.579 \& 0.825 \& 1 \& 15.325 \& \& \&

\hline \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 0.825 \& 1 \& 53.327 \& \& \&

\hline \& \& \multirow{3}{*}{1476.68} \& C \& 0.222 \& 2.525 \& 0.595 \& 0.825 \& 1 \& 23.336 \& \multirow{3}{*}{1234.98} \& \multirow{3}{*}{61.75} \& \multirow{3}{*}{B}

\hline \multirow[t]{3}{*}{T3160.00-} \& \multirow[t]{2}{*}{859.40} \& \& A \& 0.143 \& 2.797 \& 0.58 \& 0.825 \& 1 \& 20.097 \& \& \&

\hline \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 0.825 \& 1 \& 54.524 \& \& \&

\hline \& \multirow{3}{*}{1061.60} \& \multirow{3}{*}{1889.30} \& C \& 0.358 \& 2.153 \& 0.635 \& 0.825 \& 1 \& 47.592 \& \multirow{3}{*}{1306.51} \& \multirow{3}{*}{65.33} \& \multirow{3}{*}{B}

\hline \multirow[t]{3}{*}{T4 140.00- 120.00} \& \& \& A \& 0.265 \& 2.395 \& 0.606 \& 0.825 \& 1 \& 42.048 \& \& \&

\hline \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 0.825 \& 1 \& 57.254 \& \& \&

\hline \& \multirow{3}{*}{1064.10} \& \multirow{3}{*}{2605.18} \& C \& 0.318 \& 2.249 \& 0.622 \& 0.825 \& 1 \& 50.722 \& \multirow{3}{*}{1413.38} \& \multirow{3}{*}{70.67} \& \multirow{3}{*}{B}

\hline T5 120.00- \& \& \& A \& 0.257 \& 2.418 \& 0.604 \& 0.825 \& 1 \& 48.598 \& \& \&

\hline 100.00 \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 0.825 \& 1 \& 63.526 \& \& \&

\hline \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{2666.47} \& C \& 0.303 \& 2.288 \& 0.617 \& 0.825 \& 1 \& 57.289 \& \multirow{3}{*}{1413.79} \& \multirow{3}{*}{70.69} \& \multirow{3}{*}{B}

\hline T6 100.00- \& \& \& A \& 0.233 \& 2.491 \& 0.598 \& 0.825 \& 1 \& 49.852 \& \& \&

\hline 80.00 \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 0.825 \& 1 \& 64.947 \& \& \&

\hline \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{3345.61} \& C \& 0.275 \& 2.364 \& 0.609 \& 0.825 \& 1 \& 58.801 \& \multirow{3}{*}{1422.34} \& \multirow{3}{*}{71.12} \& \multirow{3}{*}{B}

\hline T7 80.00- \& \& \& A \& 0.22 \& 2.529 \& 0.595 \& 0.825 \& 1 \& 53.925 \& \& \&

\hline 60.00 \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 0.825 \& 1 \& 68.529 \& \& \&

\hline \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{4179.30} \& C \& 0.258 \& 2.414 \& 0.604 \& 0.825 \& 1 \& 62.611 \& \multirow{3}{*}{1416.41} \& \multirow{3}{*}{70.82} \& \multirow{3}{*}{B}

\hline T8 60.00- \& \& \& A \& 0.218 \& 2.536 \& 0.594 \& 0.825 \& 1 \& 59.797 \& \& \&

\hline 40.00 \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 0.825 \& 1 \& 74.352 \& \& \&

\hline \& \multirow{3}{*}{1066.60} \& \multirow{3}{*}{4356.19} \& C \& 0.252 \& 2.432 \& 0.602 \& 0.825 \& 1 \& 68.469 \& \multirow{3}{*}{1313.79} \& \multirow{3}{*}{65.69} \& \multirow{3}{*}{B}

\hline T9 40.00- \& \& \& A \& 0.204 \& 2.581 \& 0.591 \& 0.825 \& 1 \& 61.592 \& \& \&

\hline 20.00 \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 0.825 \& 1 \& 75.915 \& \& \&

\hline \& \multirow{3}{*}{761.05} \& \multirow{3}{*}{5024.30} \& C \& 0.235 \& 2.483 \& 0.598 \& 0.825 \& 1 \& 70.141 \& \multirow{3}{*}{1244.27} \& \multirow{3}{*}{62.21} \& \multirow{6}{*}{B}

\hline T10 20.00- \& \& \& \& 0.169 \& 2.703 \& 0.585 \& 0.825 \& 1 \& 56.523 \& \& \&

\hline 0.00 \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 0.825 \& 1 \& 67.670 \& \& \&

\hline \& \multirow{3}{*}{8808.23} \& \multirow{3}{*}{26972.68} \& C \& 0.186 \& 2.643 \& 0.588 \& 0.825 \& 1 \& 61.556 \& \multirow{3}{*}{12373.83} \& \&

\hline Sum Weight: \& \& \& \& \& \& \& \& OTM \& 1140444.0 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $8 \mathrm{lb-ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
fi
\end{tabular} \& Add Weight
\(\qquad\) \& Self Weight
\(\qquad\) \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

ft^{2} \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline T1 192.00- \& \multirow[t]{2}{*}{169.68} \& \multirow[t]{3}{*}{546.13} \& A \& 0.16 \& 2.735 \& 0.583 \& 0.8 \& 1 \& 9.337 \& \multirow[t]{3}{*}{431.73} \& \multirow[t]{3}{*}{35.98} \& \multirow[t]{3}{*}{B}

\hline 180.00 \& \& \& B \& 0.29 \& 2.324 \& 0.613 \& 0.8 \& 1 \& 15.864 \& \& \&

\hline \& \multirow{4}{*}{626.00} \& \& C \& 0.16 \& 2.735 \& 0.583 \& 0.8 \& 1 \& 9.337 \& \& \&

\hline T2 180.00- \& \& \multirow[t]{3}{*}{883.52} \& A \& 0.135 \& 2.826 \& 0.579 \& 0.8 \& 1 \& 15.029 \& \multirow[t]{3}{*}{1168.42} \& \multirow[t]{3}{*}{58.42} \& \multirow[t]{3}{*}{B}

\hline 160.00 \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 0.8 \& 1 \& 53.150 \& \& \&

\hline \& \& \& C \& 0.222 \& 2.525 \& 0.595 \& 0.8 \& 1 \& 23.070 \& \& \&

\hline T3 160.00- \& \multirow[t]{3}{*}{859.40} \& \multirow[t]{3}{*}{1476.68} \& A \& 0.143 \& 2.797 \& 0.58 \& 0.8 \& 1 \& 19.745 \& \multirow[t]{3}{*}{1229.43} \& \multirow[t]{3}{*}{61.47} \& \multirow[t]{3}{*}{B}

\hline 140.00 \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 0.8 \& I \& 54.279 \& \& \&

\hline \& \& \& C \& 0.358 \& 2.153 \& 0.635 \& 0.8 \& 1 \& 47.328 \& \& \&

\hline T4 140.00- \& \multirow[t]{3}{*}{1061.60} \& \multirow[t]{3}{*}{1889.30} \& A \& 0.265 \& 2.395 \& 0.606 \& 0.8 \& 1 \& 41.702 \& \multirow[t]{3}{*}{1299.57} \& \multirow[t]{3}{*}{64.98} \& \multirow[t]{3}{*}{B}

\hline 120.00 \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 0.8 \& 1 \& 56.950 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.8 \& 1 \& 50.400 \& \& \&

\hline T5 120.00. \& \multirow[t]{3}{*}{1064.10} \& \multirow[t]{3}{*}{2605.18} \& A \& 0.257 \& 2.418 \& 0.604 \& 0.8 \& 1 \& 48.114 \& \multirow[t]{3}{*}{1403.73} \& \multirow[t]{3}{*}{70.19} \& \multirow[t]{3}{*}{B}

\hline 100.00 \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 0.8 \& 1 \& 63.092 \& \& \&

\hline \& \& \& C \& 0.303 \& 2.288 \& 0.617 \& 0.8 \& 1 \& 56.834 \& \& \&

\hline T6 100.00- \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{2666.47} \& A \& 0.233 \& 2.491 \& 0.598 \& 0.8 \& 1 \& 49.385 \& \multirow[t]{3}{*}{1404.52} \& \multirow[t]{3}{*}{70.23} \& \multirow[t]{3}{*}{B}

\hline 80.00 \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 0.8 \& 1 \& 64.521 \& \& \&

\hline \& \& \& C \& 0.275 \& 2.364 \& 0.609 \& 0.8 \& 1 \& 58.358 \& \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Job 192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & 21 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l} \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\)
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 } 80.00- \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{3345.61} \& A \& 0.22 \& 2.529 \& 0.595 \& 0.8 \& 1 \& 53.329 \& 1410.92 \& 70.55 \& B

\hline \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 0.8 \& 1 \& 67.979 \& \& \&

\hline \& \& \& C \& 0.258 \& 2.414 \& 0.604 \& 0.8 \& 1 \& 62.042 \& \& \&

\hline \multirow[t]{3}{*}{T8 60.00-} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4179.30} \& A \& 0.218 \& 2.536 \& 0.594 \& 0.8 \& 1 \& 59.143 \& 1404.80 \& 70.24 \& B

\hline \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 0.8 \& 1 \& 73.743 \& \& \&

\hline \& \& \& C \& 0.252 \& 2.432 \& 0.602 \& 0.8 \& 1 \& 67.841 \& \& \&

\hline \multirow[t]{3}{*}{T9 40.00-} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4356.19} \& A \& 0.204 \& 2.581 \& 0.591 \& 0.8 \& 1 \& 60.877 \& 1302.18 \& 65.11 \& B

\hline \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 0.8 \& 1 \& 75.244 \& \& \&

\hline \& \& \& C \& 0.235 \& 2.483 \& 0.598 \& 0.8 \& 1 \& 69.452 \& \& \&

\hline \multirow[t]{3}{*}{T10 20.00-
0.00} \& \multirow[t]{3}{*}{761.05} \& \multirow[t]{3}{*}{5024.30} \& A \& 0.169 \& 2.703 \& 0.585 \& 0.8 \& 1 \& 55.723 \& 1230.21 \& 61.51 \& B

\hline \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 0.8 \& 1 \& 66.905 \& \& \&

\hline \& \& \& C \& 0.186 \& 2.643 \& 0.588 \& 0.8 \& 1 \& 60.772 \& \& \&

\hline \multirow[t]{2}{*}{Sum Weight:} \& \multirow[t]{2}{*}{8808.23} \& \multirow[t]{2}{*}{26972.68} \& \& \& \& \& \& OTM \& 1133481.3 \& 12285.52 \& \&

\hline \& \& \& \& \& \& \& \& \& $9 \mathrm{lb-ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& \[
\begin{gathered}
\text { Add } \\
\text { Weight } \\
l b \\
\hline
\end{gathered}
\] \& \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f t^{2}$ \& F
$l b$ \& plf \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 192.00- \\
180.00
\end{array}
$$} \& \multirow[t]{3}{*}{169.68} \& \multirow[t]{3}{*}{546.13} \& A \& 0.16 \& 2.735 \& 0.583 \& 0.85 \& 1 \& 9.711 \& \multirow[t]{3}{*}{440.33} \& \multirow[t]{3}{*}{36.69} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.29 \& 2.324 \& 0.613 \& 0.85 \& 1 \& 16.180 \& \& \&

\hline \& \& \& C \& 0.16 \& 2.735 \& 0.583 \& 0.85 \& 1 \& 9.711 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 180.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{626.00} \& \multirow[t]{3}{*}{883.52} \& A \& 0.135 \& 2.826 \& 0.579 \& 0.85 \& 1 \& 15.621 \& \multirow[t]{3}{*}{1176.23} \& \multirow[t]{3}{*}{58.81} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.481 \& 1.926 \& 0.688 \& 0.85 \& 1 \& 53.505 \& \& \&

\hline \& \& \& C \& 0.222 \& 2.525 \& 0.595 \& 0.85 \& 1 \& 23.603 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{859.40} \& \multirow[t]{3}{*}{1476.68} \& A \& 0.143 \& 2.797 \& 0.58 \& 0.85 \& 1 \& 20.450 \& \multirow[t]{3}{*}{1240.53} \& \multirow[t]{3}{*}{62.03} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.404 \& 2.057 \& 0.653 \& 0.85 \& 1 \& 54.769 \& \& \&

\hline \& \& \& C \& 0.358 \& 2.153 \& 0.635 \& 0.85 \& 1 \& 47.856 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{1061.60} \& \multirow[t]{3}{*}{1889.30} \& A \& 0.265 \& 2.395 \& 0.606 \& 0.85 \& 1 \& 42.395 \& \multirow[t]{3}{*}{1313.44} \& \multirow[t]{3}{*}{65.67} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.356 \& 2.158 \& 0.635 \& 0.85 \& 1 \& 57.558 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.85 \& 1 \& 51.043 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{1064.10} \& \multirow[t]{3}{*}{2605.18} \& A \& 0.257 \& 2.418 \& 0.604 \& 0.85 \& 1 \& 49.081 \& \multirow[t]{3}{*}{1423.04} \& \multirow[t]{3}{*}{71.15} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.335 \& 2.207 \& 0.627 \& 0.85 \& 1 \& 63.960 \& \& \&

\hline \& \& \& C \& 0.303 \& 2.288 \& 0.617 \& 0.85 \& 1 \& 57.743 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 } 100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{2666.47} \& A \& 0.233 \& 2.491 \& 0.598 \& 0.85 \& 1 \& 50.319 \& \multirow[t]{3}{*}{1423.07} \& \multirow[t]{3}{*}{71.15} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.303 \& 2.287 \& 0.617 \& 0.85 \& 1 \& 65.373 \& \& \&

\hline \& \& \& C \& 0.275 \& 2.364 \& 0.609 \& 0.85 \& 1 \& 59.244 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 80.00- } \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{3345.61} \& A \& 0.22 \& 2.529 \& 0.595 \& 0.85 \& 1 \& 54.520 \& \multirow[t]{3}{*}{1433.75} \& \multirow[t]{3}{*}{71.69} \& \multirow[t]{3}{*}{B}

\hline \& \& \& B \& 0.283 \& 2.343 \& 0.611 \& 0.85 \& 1 \& 69.079 \& \& \&

\hline \& \& \& C \& 0.258 \& 2.414 \& 0.604 \& 0.85 \& 1 \& 63.179 \& \& \&

\hline T8 60.00- \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4179.30} \& A \& 0.218 \& 2.536 \& \& \& 1 \& 60.451 \& \multirow[t]{3}{*}{1428.02} \& \multirow[t]{3}{*}{71.40} \& \multirow[t]{3}{*}{B}

\hline 40.00 \& \& \& B \& 0.274 \& 2.367 \& 0.608 \& 0.85 \& I \& 74.962 \& \& \&

\hline \& \& \& C \& 0.252 \& 2.432 \& 0.602 \& 0.85 \& 1 \& 69.097 \& \& \&

\hline T9 40.00- \& \multirow[t]{3}{*}{1066.60} \& \multirow[t]{3}{*}{4356.19} \& A \& 0.204 \& 2.581 \& 0.591 \& 0.85 \& 1 \& 62.306 \& \multirow[t]{3}{*}{1325.39} \& \multirow[t]{3}{*}{66.27} \& \multirow[t]{3}{*}{B}

\hline 20.00 \& \& \& B \& 0.255 \& 2.422 \& 0.603 \& 0.85 \& 1 \& 76.585 \& \& \&

\hline \& \& \& C \& 0.235 \& 2.483 \& 0.598 \& 0.85 \& 1 \& 70.829 \& \& \&

\hline T10 20.00- \& \multirow[t]{3}{*}{761.05} \& \multirow[t]{3}{*}{5024.30} \& A \& 0.169 \& 2.703 \& 0.585 \& 0.85 \& 1 \& 57.323 \& \multirow[t]{3}{*}{1258.33} \& \multirow[t]{4}{*}{62.92} \& \multirow[t]{4}{*}{B}

\hline 0.00 \& \& \& B \& 0.207 \& 2.573 \& 0.592 \& 0.85 \& 1 \& 68.435 \& \& \&

\hline \& \& \& C \& 0.186 \& 2.643 \& 0.588 \& 0.85 \& 1 \& 62.341 \& \& \&

\hline Sum Weight: \& 8808.23 \& 26972.68 \& \& \& \& \& \& OTM \& 1147406.7
$7 \mathrm{lb-f}$ \& 12462.14 \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 22 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Force Totals

Load Case	Vertical Forces lb	Sum of Forces X $l b$	Sum of Forces Z lb	Sum of Overturning Moments, M_{x} $l b-f t$	Sum of Overturning Moments, M = $l b-f t$	Sum of Torques lb-ft
Leg Weight Bracing Weight Total Member Self-Weight Total Weight	12380.75 14591.93 26972.68 42733.42					
Wind 0 deg - No Ice		0.00	-44790.58	-4928681.42	-14375.83	20755.50
Wind 30 deg - No Ice		21717.07	-37615.07	-4173529.93	-2433508.20	29299.58
Wind 45 deg - No Ice		30552.72	-30552.72	-3392035.74	-3422941.83	30897.92
Wind 60 deg - No Ice		37223.50	-21491.00	-2384777.63	-4173563.09	30378.51
Wind 90 deg - No lce		43434.14	0.00	16530.26	-4852640.58	24058.29
Wind 120 deg - No Ice		38789.78	22395.29	2489136.10	-4297054.77	11333.68
Wind 135 deg- No Ice	,	30552.72	30552.72	3425096.26	-3422941.83	2887.12
Wind 150 deg - No Ice		21717.07	37615.07	4206590.45	-2433508.20	-5241.29
Wind 180 deg - No Ice		0.00	42982.00	4819146.04	-14375.83	-19671.08
Wind 210 deg - No Ice		-21717.07	37615.07	4206590.45	2404756.55	-29299.58
Wind 225 dcg - No Ice		-30552.72	30552.72	3425096.26	3394190.17	-30897.92
Wind 240 deg - No Ice		-38789.78	22395.29	2489136.10	4268303.11	-32089.19
Wind 270 deg - No Ice		-43434.14	0.00	16530.26	4823888.93	-24058.29
Wind 300 deg - No Ice		-37223.50	-21491.00	-2384777.63	4144811.44	-10707.43
Wind 315 deg - No Ice		-30552.72	-30552.72	-3392035.74	3394190.17	-2887.12
Wind 330 deg - No Ice		-21717.07	-37615.07	-4173529.93	2404756.55	5241.29
Member Ice	9395.04			2kexemaxex		
Total Weight Ice	67353.22	2		35519.15	-30522.00	
Wind 0 deg - Ice		0.00	-47687.25	-5163296.72	-30522.00	23270.28
Wind 30 deg - Ice		21635.69	-37474.11	-4106918.89	-2422159.72	28272.75
Wind 45 deg - Ice		30077.06	-30077.06	-3297795.44	-3363836.59	28775.62
Wind 60 deg - Ice	4	36199.35	-20899.71	-2286861.83	-4053003.85	27326.27
Wind 90 deg - Ice	20	43271.37	0.00	35519.15	-4813797.44	21280.93
Wind 120 deg - Ice		41298.37	23843.62	2634927.09	-4532828.61	9190.22
Wind 135 deg - Ice		30077.06	30077.06	3368833.74	-3363836.59	668.19
Wind 150 deg - Ice		21635.69	37474.11	4177957.20	-2422159.72	-6991.81
Wind 180 deg - Ice		0.00	41799.41	4680281.12	-30522.00	-19389.91
Wind 210 deg - Ice		-21635.69	37474.11	4177957.20	2361115.72	-28272.75
Wind 225 deg - Ice	,	-30077.06	30077.06	3368833.74	3302792.60	-28775.62
Wind 240 deg - Ice	,	41298.37	23843.62	2634927.09	4471784.62	-32460.51
Wind 270 deg - Ice		-43271.37	0.00	35519.15	4752753.44	-21280.93
Wind 300 deg - Ice	15	-36199.35	-20899.71	-2286861.83	3991959.86	-7936.36
Wind 315 deg - Ice		-30077.06	-30077.06	-3297795.44	3302792.60	-668.19
Wind 330 deg - Ice		-21635.69	-37474.11	-4106918.89	2361115.72	6991.81
Total Weight	42733.42		-3	16530.26	-14375.83	
Wind 0 deg - Service		0.00	-17496.32	-1931098.85	1081.60	8107.62
Wind 30 deg - Service		8483.23	-14693.39	-1636117.80	-943891.98	11445.15
Wind 45 deg - Service	-8\%	11934.66	-11934.66	-1330846.63	-1330389.49	12069.50
Wind 60 deg - Service		14540.43	-8394.92	-937386.43	-1623600.92	11866.60
Wind 90 deg - Service	,	16966.46	0.00	624.46	-1888865.56	9397.77
Wind 120 deg - Service	540:	15152.26	8748.16	966486.12	-1671839.86	4427.22
Wind 135 deg - Service		11934.66	11934.66	1332095.56	-1330389.49	1127.78
Wind 150 deg - Service		8483.23	14693.39	1637366.73	-943891.98	-2047.38
Wind 180 deg - Service		0.00	16789.84	1876646.25	1081.60	-7684.01
Wind 210 deg - Service		-8483.23	14693.39	1637366.73	946055.19	-11445.15
Wind 225 deg - Service		-11934.66	11934.66	1332095.56	1332552.70	-12069.50
Wind 240 deg - Service		-15152.26	8748.16	966486.12	1674003.07	-12534.84
Wind 270 deg - Service		-16966.46	0.00	624.46	1891028.77	-9397.77
Wind 300 deg - Service		-14540.43	-8394.92	-937386.43	1625764.13	-4182.59
Wind 315 deg - Service Wind 330 deg - Service	,	-11934.66	-11934.66	-1330846.63	1332552.70	-1127.78
Wind 330 deg - Service		-8483.23	-14693.39	-1636117.80	946055.19	2047.38

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 192' Self-Supporting Lattice Tower			$\text { Page } \begin{aligned} & \\ & \\ & 23 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	reless	Designed by Staff

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	192' Self-Supporting Lattice Tower			$\text { Page } 24 \text { of } 34$
	Project	Janoski Road	Ashford, CT	$\begin{aligned} & \text { Date } \\ & \text { 10:25:40 08/01/06 } \end{aligned}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	ireless	Designed by Staff

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force $l b$	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
TI	192-180	Leg	Max Tension	5	2693.65	64.00	-25.20
			Max. Compression	19	-4446.51	24.24	81.99
			Max. Mx	23	-760.89	393.26	2.99
			Max. My	19	-621.93	38.26	-377.94
			Max. Vy	6	-389.99	0.00	-0.00
			Max. Vx	2	375.53	0.00	-0.00
		Diagonal	Max Tension	4	1184.02	0.00	0.00
			Max. Compression	30	-1263.92	0.00	0.00
			Max. Mx	21	-174.37	12.72	0.42
			Max. My	6	-1028.41	2.47	3.92
			Max. Vy	21	9.70	12.72	0.42
			Max. Vx	6	1.01	0.00	0.00
		Top Girt	Max Tension	22	117.95	0.00	0.00
			Max. Compression	19	-106.27	0.00	0.00
			Max. Mx	18	3.63	-21.32	0.00
			Max. My	20	2.34	0.00	0.00
			Max. Vy	18	12.82	0.00	0.00
			Max. Vx	20	-0.00	0.00	0.00
T2	180-160	Leg	Max Tension	5	20575.58	-36.10	-26.83
			Max. Compression	24	-26847.72	60.08	11.08
			Max. Mx	30	-7572.99	82.59	14.60
			Max. My	3	-1454.94	-11.10	-193.15
			Max. Vy	15	-962.29	-52.26	-12.38
			Max. Vx	11	917.22	6.79	-72.52
		Diagonal	Max Tension	17	3733.33	0.00	0.00
			Max. Compression	17	-3712.37	0.00	0.00
			Max. Mx	24	3034.42	23.07	1.99
			Max. My	9	-2230.74	1.18	7.76
			Max. Vy	24	-13.84	23.07	1.99
			Max. Vx	34	2.14	0.00	0.00
T3	160-140	Leg	Max Tension	5	42839.41	-343.14	-36.72
			Max. Compression	24	-52882.89	23.32	-1.17
			Max. Mx	15	34274.42	528.22	-4.80
			Max. My	11	-3236.99	-7.89	-514.97
			Max. Vy	15	277.12	-346.54	-4.80
			Max. Vx	11	-316.00	-7.89	428.68
		Diagonal	Max Tension	17	5001.93	0.00	0.00
			Max. Compression	17	-5088.19	0.00	0.00
			Max. Mx	24	3701.48	51.08	4.18
			Max. My	27	-3896.70	13.33	7.70
			Max. Vy	24	-24.67	51.08	4.18
			Max. Vx	27	-1.91	0.00	0.00
T4	140-120	Leg	Max Tension	5	69815.54	-157.16	-25.63
			Max. Compression	24	-85306.98	291.26	-8.13
			Max. Mx	19	-83720.13	295.14	-21.41
			Max. My	3	-5157.07	4.08	-264.77
			Max. Vy	15	-917.74	-15.38	1.75
			Max. Vx	3	-894.41	-5.46	8.82
		Diagonal	Max Tension	17	5994.77	0.00	0.00
			Max. Compression	17	-6040.61	0.00	0.00
			Max. Mx	24	4904.37	55.18	4.25
			Max. My	28	-3204.54	32.00	8.26
			Max. Vy	22	27.77	52.84	-6.09
			Max. Vx	27	-1.92	0.00	0.00
T5	120-100	Leg		10	95530.84	-282.27	-12.17
			Max. Compression	24	-116336.06	527.67	-13.41
			Max. Mx	32	86053.41	-577.93	12.58
			Max. My	11	-6465.53	3.88	465.43
			Max. Vy	32	98.65	-577.93	12.58
			Max. Vx	16	-118.76	70.76	239.36

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Job 192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 25 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

RISATower	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 26 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill. CT 06067 Phone: (850) 529-8882 FAX: (800) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

Section No.	Elevation $f t$	Component Type	Condition	Gov.	Force	Major Axis Moment	Minor Axis Moment

Maximum Reactions					
Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{aligned} & \text { Horizontal. } X \\ & \quad l b \end{aligned}$	$\begin{gathered} \text { Horizontal, Z } \\ l b \end{gathered}$
$\operatorname{Leg} C$	Max. Vert	30	263225.34	21831.83	-11698.89
	Max. H_{x}	13	243129.98	24456.02	-13250.88
	Max. H_{z}	21	-189191.67	-24261.77	14171.22
	Min. Vert	5	-208426.92	-21422.51	11567.50
	Min. H_{x}	22	-193431.33	-25012.91	13746.40
	Min. Hz_{z}	13	243129.98	24456.02	-13250.88
Leg B	Max. Vert	24	265684.66	-21591.97	-12207.56
	Max. $\mathrm{H}_{\mathbf{x}}$	32	-190970.96	24757.82	14094.48
	Max. $\mathrm{H}_{\mathbf{z}}$	33	-186730.29	23906.05	14697.90
	Min. Vert	15	-207272.87	21179.50	11945.44
	Min. H_{x}	7	244283.55	-24230.85	-13683.52
	Min. H_{2}	7	244283.55	-24230.85	-13683.52
Leg A	Max. Vert	19	261981.03	560.46	24732.86
	Max. H_{x}	14	13476.41	2594.66	1237.22
	Max. H_{2}	2	242558.24	487.26	27794.44
	Min. Vert	10	-208998.31	-448.81	-24346.69
	Min. H_{x}	24	-99778.73	-2735.32	-17795.27
	Min. H_{z}	27	-194674.98	-429.00	-28558.45

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear: $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M = $l b-f t$	Torque $l b-f t$
Dead Only	42733.42	0.00	-0.00	16530.35	-14376.04	0.03
Dead+Wind 0 deg - No Ice	42733.42	0.00	-44790.58	-4943138.08	-14487.70	20828.75
Dead+Wind 30 deg - No Ice	42733.42	21717.07	-37615.07	-4185778.49	-2440752.34	29397.46
Dead+Wind 45 deg - No Ice	42733.42	30552.72	-30552.72	-3401976.56	-3433086.39	30997.25
Dead+Wind 60 deg - No Ice	42733.42	37223.50	-21491.00	-2391749.35	-4185907.71	30470.12
Dead+ Wind 90 deg - No Ice	42733.42	43434.14	-0.00	16623.51	-4866929.05	24119.24
Dead+ Wind 120 deg - No Ice	42733.42	38789.78	22395.29	2496444.70	-4309653.90	11359.48
Dead + Wind 135 deg - No Ice	42733.80	30552.24	30553.20	3435167.98	-3433033.70	2884.77
Dead+Wind 150 deg - No Ice	42733.42	21717.06	37615.07	4218955.47	-2440694.87	-5260.62
Dead+Wind 180 deg - No Ice	42733.42	-0.00	42982.00	4833347.97	-14477.26	-19739.31
Dead+Wind 210 deg - No Ice	42733.42	-21717.07	37615.07	4219014.96	2411762.90	-29397.46
Dead+Wind 225 deg - No lce	42733.37	-30552.72	30552.72	3435236.34	3404135.15	-30990.69
Dead+Wind 240 deg - No Ice	42733.42	-38789.78	22395.29	2496503.04	4280780.88	-32188.26
Dead+Wind 270 deg - No Ice	42733.42	-43434.14	-0.00	16629.07	4838083.51	-24119.37
Dead+Wind 300 deg - No Ice	42733.42	-37223.50	-21491.00	-2391794.55	4157030.23	-10730.80
Dead+Wind 315 deg - No Ice	42733.42	-30552.72	-30552.72	-3402030.72	3404178.14	-2889.33
Dead+Wind 330 deg - No Ice	42733.42	-21717.07	-37615.06	-4185827.00	2411806.13	5260.75
Dead+lce+Temp	67371.89	-0.00	-0.00	35607.49	-30656.02	-1.05

RISATower URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Job 192' Self-Supporting Lattice Tower			Page 27 of 34 Date 10:25:40 08/01/06
	Project	Janoski Road	Ashford, CT	
	Verizon Wireless			Designed by Staff

Load Combination	Vertical $l b$	Shear ${ }_{x}$ $l b$	Shear ${ }_{\text {\% }}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} \qquad	Torque $l b-f t$
Dead+Wind 0 deg + Ice + Temp	67371.89	-0.00	-47687.22	-5185840.99	- 30826.34	23423.21
Dead+Wind 30 deg+Ice + Temp	67371.89	21635.67	-37474.09	-4124982.33	-2433019.58	28467.11
Dead+Wind 45 deg+Ice+Temp Dead+Wind 60 deg+lce + Temp	67371.89 67371.89	30077.05	-30077.05	-3312302.14	-3378865.69	28970.87
Dead+Wind 90 deg + Ice + Temp	67371.89 67371.89	36199.33 43271.34	-20899.70 -0.02	-2296913.85 3574723	-4071091.90	27507.74
Dead+Wind 120 deg+Ice+Temp	67371.89	41298.34	23843.61	264648748	-4835138.11	21395.21
Dead+Wind $135 \mathrm{deg}+$ Ice + Temp	67371.89	30077.04	30077.05	3383754.09	-3378801.63	9236.96 66387
Dead+Wind $150 \mathrm{deg}+$ Ice+Temp	67371.87	21635.76	37474.02	4196421.09	-2432958.80	663.87 -7048.54
Dead+Wind $180 \mathrm{deg}+\mathrm{Ice}+$ Temp	67371.89	-0.00	41799.39	4701051.67	-30795.73	-19529.36
Dead+Wind 210 deg+Ice + Temp	67371.89	-21635.67	37474.09	4196475.80	2371387.05	-28467.12
Dead + Wind $225 \mathrm{deg}+$ Ice + Temp	67371.89	-30077.05	30077.05	3383819.81	3317255.75	-28971.65
Dead + Wind 240 deg+lce + Temp	67371.89	-41298.34	23843.61	2646559.12	4491209.44	-32660.16
Dead+Wind 270 deg+Ice+Temp	67371.89	-43271.35	-0.02	35758.40	4773639.22	-21395.50
Dead+Wind 300 deg+Ice+Temp	67371.89	-36199.33	-20899.70	-2296950.67	4009561.24	-7978.38
Dead + Wind $315 \mathrm{deg}+$ Ice + Temp Dead + Wind 330 deg+Ice ${ }^{\text {a }}$ Temp	67371.89	-30077.05	-30077.05	-3312349.57	3317303.71	-663.75
Dead + Wind 330 deg + Ice + Temp Dead + Wind 0 deg - Service	67371.87	-21635.58	-37474.13	-4125026.26	2371424.94	7048.79
Dead+Wind 30 deg - Service	42733.42 42733.45	0.00 8483.11	-17496.32	-1920830.15	-14434.01	8135.18
Dead+Wind 45 deg - Service	42733.42	11934.66	-14693.33	-1624994.51	-962200.42	11484.76
Dead+Wind 60 deg - Service	42733.42	14540.43	--8394.92	-1318822.97 -92419974	-1349839.31	12109.30
Dead+Wind 90 deg - Service	42733.42	16966.46	-0.00	16583.61	-1909954.26	11903.22 9420.03
Dead+Wind 120 deg - Service	42733.42	15152.26	8748.16	985281.87	-1992266.13	9420.03 4436.68
Dead+Wind 135 deg - Service	42733.42	11934.66	11934.66	1351983.24	-1349826.99	1128.68
Dead + Wind 150 deg - Service	42733.42	8483.23	14693.39	1658152.17	-962191.01	-2053.41
Dead+Wind 180 deg - Service	42733.42	-0.00	16789.84	1898148.18	-14430.95	-7711.25
Dead+Wind 210 deg - Service	42733.45	-8483.25	14693.26	1658161.15	933332.53	-11484.75
Dead+Wind 225 deg - Service	42733.42	-11934.66	11934.66	1351993.36	1320972.25	-12106.59
Dead+Wind 240 deg - Service	42733.42	-15152.26	8748.16	985291.93	1663416.06	-12571.85
Dead+Wind 270 deg - Service	42733.42	-16966.46	-0.00	16585.77	1881107.50	-9419.98
Dead+Wind 300 deg - Service Dead+Wind 315 deg - Service	42733.42	-14540.43	-8394.92	-924205.52	1615065.81	-1191.94
Dead+Wind 330 deg - Service	42733.42	-11934.66	-11934.66	-1318830.14	1320982.11	-1129.21
	42733.42	-8483.23	-14693.39	-1625001.52	933337.71	2053.33

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			
	PX	PY	$P Z$	PX	PY	PZ	\% Error
	$1 b$	$l b$	\% Error				
2	0.00	-42733.42	-0.00	-0.00	42733.42	0.00	0.000\%
2	0.00	-42733.42	-44790.58	-0.00	42733.42	44790.58	0.000\%
3	21717.07	-42733.42	-37615.07	-21717.07	42733.42	37615.07	0.000\%
4	30552.72	-42733.42	-30552.72	-30552.72	42733.42	30552.72	0.000\%
5	37223.50	-42733.42	-21491.00	-37223.50	42733.42	21491.00	0.000\%
6	43434.14	-42733.42	-0.00	-43434.14	42733.42	0.00	0.000\%
7	38789.78	-42733.42	22395.29	-38789.78	42733.42	-22395.29	0.000\%
8	30552.72	-42733.42	30552.72	-30552.24	42733.80	-30553.20	0.001\%
9	21717.07	-42733.42	37615.07	-21717.06	42733.42	-37615.07	0.000\%
10	0.00	-42733.42	42982.00	0.00	42733.42	-42982.00	0.000\%
11	-21717.07	-42733.42	37615.07	21717.07	42733.42	-37615.07	0.000\%
12	-30552.72	-42733.42	30552.72	30552.72	42733.37	-30552.72	0.000\%
13	-38789.78	-42733.42	22395.29	38789.78	42733.42	-22395.29	0.000\%
14	-43434.14	-42733.42	-0.00	43434.14	42733.42	0.00	0.000\%
15	-37223.50	-42733.42	-21491.00	37223.50	42733.42	21491.00	0.000\%
16	-30552.72	-42733.42	-30552.72	30552.72	42733.42	30552.72	0.000\%
17	-21717.07	-42733.42	-37615.07	21717.07	42733.42	37615.06	0.000\%
18	0.00	-67371.89	-0.00	0.00	67371.89	0.00	0.000\%
19	0.00	-67371.89	-47687.25	0.00	67371.89	47687.22	0.000\%
20	21635.69	-67371.89	-37474.11	-21635.67	67371.89	37474.09	0.000\%

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 28 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) $529-3991$	Client	Verizon	ireless	Designed by Staff

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$	$l b$	$l b$	$1 b$	$l b$	$l b$	
21	30077.06	-67371.89	-30077.06	-30077.05	67371.89	30077.05	0.000\%
22	36199.35	-67371.89	-20899.71	-36199.33	67371.89	20899.70	0.000\%
23	43271.37	-67371.89	-0.00	-43271.34	67371.89	0.02	0.000\%
24	41298.37	-67371.89	23843.62	-41298.34	67371.89	-23843.61	0.000\%
25	30077.06	-67371.89	30077.06	-30077.04	67371.89	-30077.05	0.000\%
26	21635.69	-67371.89	37474.11	-21635.76	67371.87	-37474.02	0.000\%
27	-0.00	-67371.89	41799.41	0.00	67371.89	-41799.39	0.000\%
28	-21635.69	-67371.89	37474.11	21635.67	67371.89	-37474.09	0.000\%
29	-30077.06	-67371.89	30077.06	30077.05	67371.89	-30077.05	0.000\%
30	-41298.37	-67371.89	23843.62	41298.34	67371.89	-23843.61	0.000\%
31	-43271.37	-67371.89	-0.00	43271.35	67371.89	0.02	0.000\%
32	-36199.35	-67371.89	-20899.71	36199.33	67371.89	20899.70	0.000\%
33	-30077.06	-67371.89	-30077.06	30077.05	67371.89	30077.05	0.000\%
34	-21635.69	-67371.89	-37474.11	21635.58	67371.87	37474.13	0.000\%
35	0.00	-42733.42	-17496.32	-0.00	42733.42	17496.32	0.000\%
36	8483.23	-42733.42	-14693.39	-8483.11	42733.45	14693.33	0.000\%
37	11934.66	-42733.42	-11934.66	-11934.66	42733.42	11934.66	0.000\%
38	14540.43	-42733.42	-8394.92	-14540.43	42733.42	8394.92	0.000\%
39	16966.46	-42733.42	-0.00	-16966.46	42733.42	0.00	0.000\%
40	15152.26	-42733.42	8748.16	-15152.26	42733.42	-8748.16	0.000\%
41	11934.66	-42733.42	11934.66	-11934.66	42733.42	-11934.66	0.000\%
42	8483.23	-42733.42	14693.39	-8483.23	42733.42	-14693.39	0.000\%
43	-0.00	-42733.42	16789.84	0.00	42733.42	-16789.84	0.000\%
44	-8483.23	-42733.42	14693.39	8483.25	42733.45	-14693.26	0.000\%
45	-11934.66	-42733.42	11934.66	11934.66	42733.42	-11934.66	0.000\%
46	-15152.26	-42733.42	8748.16	15152.26	42733.42	-8748.16	0.000\%
47	-16966.46	-42733.42	-0.00	16966.46	42733.42	0.00	0.000\%
48	-14540.43	-42733.42	-8394.92	14540.43	42733.42	8394.92	0.000\%
49	-11934.66	-42733.42	-11934.66	11934.66	42733.42	11934.66	0.000\%
50	-8483.23	-42733.42	-14693.39	8483.23	42733.42	14693.39	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00000001
3	Yes	4	0.00000001	0.00000001
4	Yes	4	0.00000001	0.00000001
5	Yes	4	0.00000001	0.00000001
6	Yes	4	0.00000001	0.00000001
7	Yes	4	0.00000001	0.00000001
8	Yes	4	0.00000001	0.00000105
9	Yes	4	0.0000001	0.00000133
10	Yes	4	0.00000001	0.00000001
11	Yes	4	0.00000001	0.00000001
12	Yes	4	0.00000001	0.00000001
13	Yes	4	0.00000001	0.00000001
14	Yes	4	0.00000001	0.00000001
15	Yes	4	0.00000001	0.00000001
16	Yes	4	0.00000001	0.00000001
17	Yes	4	0.0000001	0.00000134
18	Yes	4	0.00000001	0.00003515
19	Yes	4	0.00000001	0.00000001
20	Yes	4	0.00000001	0.0000001
21	Yes	4	0.00000001	0.00000001

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 29 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{aligned} & \text { Date } \\ & \text { 10:25:40 08/01/06 } \end{aligned}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	ireless	Designed by Staff

22		4	0.00000001	0.00000001
23	Yes	4	0.00000001	0.00000001
24	Yes	4	0.00000001	0.00000001
25	Yes	4	0.00000001	0.00000001
26	Yes	4	0.00000001	0.00000270
27	Yes	4	0.00000001	0.00000001
28	Yes	4	0.00000001	0.00000001
29	Yes	4	0.00000001	0.00000001
30	Yes	4	0.00000001	0.00000001
31	Yes	4	0.00000001	0.00000001
32	Yes	4	0.00000001	0.00000001
33	Yes	4	0.00000001	0.00000001
34	Yes	4	0.00000001	0.00000292
35	Yes	4	0.00000001	0.00000001
36	Yes	4	0.00000001	0.00000001
37	Yes	4	0.00000001	0.00000001
38	Yes	4	0.00000001	0.00000001
39	Yes	4	0.00000001	0.00000001
40	Yes	4	0.00000001	0.00000001
41	Yes	4	0.00000001	0.00000001
42	Yes	4	0.00000001	0.00000001
43	Yes	4	0.00000001	0.00000001
44	Yes	4	0.00000001	0.00000001
45	Yes	4	0.00000001	0.00000001
46	Yes	4	0.00000001	0.00000001
47	Yes	4	0.00000001	0.00000001
48	Yes	4	0.00000001	0.00000001
49	Yes	4	0.00000001	0.00000001
50		0.00000001	0.00000001	

Maximum Tower Deflections - Service Wind

| Section
 No. | Elevation | Horz.
 Deflection
 in | Gov.
 Load
 Comb. | Tilt | \circ |
| :---: | :---: | :---: | :---: | :---: | :---: | | Twist |
| :---: |

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
192.00		Comb.	in	0	0	ont
190.00	(2) DB980H90T2E-M	40	5.366	0.2526	0.0250	Inf
180.00	T-Frame	40	5.260	0.2526	0.0251	Inf
170.00	APL869012-42T0	40	4.728	0.2500	0.0253	526133
160.00	(3) ALP 9212-N	40	4.201	0.2390	0.0244	52403
	7250.03 w/Mount Pipe	40	3.697	0.2226	0.0227	28016

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } 30 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
$\begin{aligned} & \text { Rocky Hill, CT 06067 } \\ & \text { Phone: (850) 529-8882 } \end{aligned}$ FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

Elevation ft 150.00	Appurtenance	Gov. Load Comb	Deflection in	Tilt	Twist 0	Radius of Curvature $f t$
150.00	(2) 79210	40	3.233	0.2056	0.0208	32192
140.00	(3) DUO1417-8686	40	2.806	0.1887	0.0188	39924
110.00	Catrain 738449	40	1.716	0.1412	0.0127	36113
108.00	3' Sidearm	40	1.654	0.1383	0.0124	36330

Critical Deflections and Radius of Curvature - Design Wind

Elevation $f t$	Appurtenance		Deflection in in	Tilt	Twist 	Radius of Curvature $f t$
192.00	(2) DB980H90T2E-M	24	14.209	0.6628	0.0642	Inf
190.00	T-Frame	24	13.931	0.6628	0.0644	Inf
180.00	APL869012-42T0	24	12.537	0.6563	0.0648	193617
170.00	(3) ALP 9212-N	24	11.154	0.6282	0.0624	20603
160.00	7250.03 w/Mount Pipe	24	9.829	0.5863	0.0581	10994
150.00	(2) 79210	24	8.607	0.5424	0.0533	12525
140.00	(3) DUO1417-8686	24	7.481	0.4986	0.048 .1	15349
110.00	Catrain 738449	24	4.593	0.3751	0.0333	13897
108.00	3' Sidearm	24	4.428	0.3677	0.0324	13951

Bolt Design Data

Section No.	Elevation fi	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Boll $l b$	Allowable Load $l b$	Ratio Load	Allowable Ratio	Criteria
T]	192	Leg	A325N	0.6250	4	47.15	13497.70	0.003	1.333	Bolt Tension
T2	180	Diagonal	A325N	0.6250	1	1263.92	6442.72	0.196	1.333	Bolt Shear
		Leg	A 325 N	0.6250	4	1437.09	13491.00	0.107	1.333	Boht Tension
		Diagonal	A325N	0.6250	1	3733.33	6442.72	0.579 V	1.333	Bolt Shear

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & 31 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill. CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:25:40 08/01/06 } \end{array}$
	Client	Verizon	ireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation

$f t$ \& Component Type \& Bolt Grade \& Bolt Size

in \& Number Of Bolts \& Maximum Load per Bolt $l b$ \& Allowable Load $l b$ \& \begin{tabular}{l}

Ratio
Load

\hline Allowable
\end{tabular} \& Allowable Ratio \& Criteria

\hline \multirow[t]{2}{*}{T3} \& 160 \& Leg \& A325N \& 0.8750 \& 4 \& 6746.59 \& 26458.00 \& 0.255 \& 1.333 \& Bolt Tension

\hline \& \multirow[b]{2}{*}{140} \& Diagonal \& A325N \& 0.6250 \& 1 \& 5088.19 \& 6442.72 \& \multirow[b]{2}{*}{$$
\begin{aligned}
& 0.790 \\
& 0.375
\end{aligned}
$$} \& 1.333 \& Bolt Shear

\hline \multirow[t]{2}{*}{T4} \& \& Leg \& A325N \& 1.0000 \& 4 \& 12967.20 \& 34554.20 \& \& 1.333 \& Bolt Tension

\hline \& \multirow[b]{2}{*}{120} \& Diagonal \& A325N \& 0.6250 \& 1 \& 6040.61 \& 6442.72 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 0.938 \\
& 0.379
\end{aligned}
$$} \& 1.333 \& Bolt Shear

\hline T5 \& \& Leg \& A325N \& 1.0000 \& 6 \& 13102.50 \& 34557.50 \& \& 1.333 \& Bolt Tension

\hline \multirow[b]{2}{*}{T6} \& \multirow[b]{2}{*}{100} \& Diagonal \& A325N \& 0.7500 \& 1 \& 6441.54 \& 9277.52 \& \multirow[t]{2}{*}{0.694
0.510} \& 1.333 \& Bolt Shear

\hline \& \& Leg \& A 325 N \& 1.0000 \& 6 \& 17609.00 \& 34557.50 \& \& 1.333 \& Bolt Tension

\hline \multirow[b]{2}{*}{T7} \& \multirow[b]{2}{*}{80} \& Diagonal \& A325N \& 0.7500 \& 1 \& 7597.55 \& 9277.52 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 0.819 \\
& 0.468
\end{aligned}
$$} \& 1.333 \& Bolt Shear

\hline \& \& Leg \& A 325 N \& 1.0000 \& 8 \& 16170.80 \& 34557.50 \& \& 1.333 \& Bolt Tension

\hline \multirow[b]{2}{*}{T8} \& \multirow[b]{2}{*}{60} \& Diagonal \& A 325 N \& 0.7500 \& 1 \& 7776.11 \& 9277.52 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 0.838 \\
& 0.547
\end{aligned}
$$} \& 1.333 \& Bolt Shear

\hline \& \& Leg \& A325N \& 1.0000 \& 8 \& 18905.60 \& 34557.50 \& \& 1.333 \& Bolt Tension

\hline \multirow[b]{2}{*}{T9} \& \multirow[b]{2}{*}{40} \& Diagonal \& A325X \& 0.7500 \& 1 \& 9060.49 \& 13253.60 \& \multirow[t]{2}{*}{$$
0.684
$$} \& 1.333 \& Bolt Shear

\hline \& \& Leg \& A 325 N \& 1.0000 \& 8 \& 21633.60 \& 34557.50 \& \& 1.333 \& Bolt Tension

\hline \multirow{3}{*}{T10} \& \multirow{3}{*}{20} \& Diagonal \& A325X \& 0.7500 \& 1 \& 10552.30 \& 13253.60 \& 0.796 V \& 1.333 \& Bolt Shear

\hline \& \& Leg \& A325N \& 1.0000 \& 10 \& 19428.70 \& 34557.50 \& . \& 1.333 \& Bolt Tension

\hline \& \& Diagonal \& A325X \& 0.7500 \& 1 \& 12504.50 \& 13253.60 \& 0.943 V \& 1.333 \& Bolt Shear

\hline
\end{tabular}

Compression Checks

Leg Design Data (Compression)										
Section	Elevation	Size	${ }^{\text {L }}$	${ }_{\text {L }}^{\text {L }}$	Kl/	F_{a}	${ }^{1}$	Actual	Allow.	Ratio
	π		A	f		${ }_{k i}$	$i n^{2}$	16	${ }_{l b}{ }_{l b}$	P
T1	192-180	ROHN 2.5 STD	12.00	4.00	${ }^{50.7}$	24.247	1.7040	-446.51	41317.80	${ }_{0}{ }_{0} 0.108$
${ }^{12}$	180-160	ROHN 2.5 Sti	20.03	5.01	$\mathrm{k}=1.00$ 63.4	22.122	1.7040	-26847.70	3769.50	$\stackrel{V}{2}$
${ }^{13}$	140	ROHN 3EH	20.04	6.68	-	20.840	3.0159	-52882.90	6281.50	$\stackrel{V}{181}$
${ }^{1} 4$	140-120	ROHN 4EH	20.04	6.68	${ }_{\substack{\mathrm{K}=1.00 \\ 54.3}}$	23.67	4.4074	-85307.00	10438.00	$\stackrel{\square}{0.818}$
TS	$120-100$	ROHN 5 EH	20.03	6.68	$\mathrm{K}=1.00$ 43.6	25.320	6.1120	-1633600	15475700	\checkmark
					$\mathrm{K}=1.00$					
T6	$100-80$	ROHN 6 EHS	20.03	10.02	${ }_{\substack{\text { S4.0 }}}^{\mathrm{K}=1.00}$	23.73	6.7133	-143956.00	15999.00	0.904
T7	$80-60$	ROHN 6 EH	20.04	10.02	$\begin{gathered} 54.8 \\ K=1.00 \end{gathered}$	23.589	8.4049	-173021.00	198263.00	0.873
${ }^{18}$	60.40	ROHN 8 EHS	20.03	10.0	$\begin{gathered} 4.2 \\ \mathrm{~K}=1.00 \end{gathered}$	25.667	9.7193	-202315.00	244468.00	0.811
т9	40	ROHN 8 Ehs	20.03	10.02	$\substack{41.2 \\ \\ K=1.100}$	25.667	9.7193	-232112.00	249468.00	0.930

RISATower URS Corporation 500 Enterprise Drive. Suite $3 B$	Job 192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & 32 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	Date 10:25:40 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	ireless	Designed by Staff

Section No.	Elevation ft	Size	L $f t$	L_{u} $f t$	Kl/r	F_{a} $k s i$	A $i n^{2}$	$\begin{gathered} \hline \text { Actual } \\ P \\ l b \\ \hline \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$
T10	20-0	ROHN 8 EHS	20.03	10.02	$\begin{gathered} 41.2 \\ \mathrm{~K}=1.00 \end{gathered}$	25.667	9.7193	-261140.00	249468.00	$\begin{gathered} 7 \\ 1.047 \\ \end{gathered}$

Diagonal Design Data (Compression)										
Section No.	Elevation ft	Size	L $f t$	L_{u} $f i$	Kl/r	F_{a} $k s i$	A in	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	$\begin{gathered} \text { Allow } \\ P_{a} \\ l b \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P \\ \hline \end{gathered}$
T1	192-180	L1 3/4×13/4×3/16	7.76	3.57	$\begin{gathered} 124.9 \\ \mathrm{~K}=1.00 \end{gathered}$	${ }_{9} 9.575$	(${ }^{\text {2 }}$	-1263.92	$\stackrel{l b}{5946.71}$	$\frac{P_{0}}{0.213}$
T2	180-160	L2x2x $3 / 16$	9.81	4.75	$\begin{gathered} 144.5 \\ \mathrm{~K}=1.00 \end{gathered}$	7.148	0.7150	-3712.37	5110.87	${ }^{7} 726$
T3	160-140	L2 $1 / 2 \times 21 / 2 \times 1 / 4$	12.37	6.05	$\begin{gathered} 147.8 \\ \mathrm{~K}=1.00 \end{gathered}$	6.833	1.1900	-5088.19	8131.28	${ }^{0}$
$\begin{array}{r}14 \\ \hline 5\end{array}$	140-120	L2 1/2x2 1/2x1/4	14.15	6.89	$\begin{gathered} 168.5 \\ \mathrm{~K}=1.00 \end{gathered}$	5.261	1.1900	-6040.46	6260.15	0.965
T5	120-100	L3x3x1/4	15.97	7.75	$\begin{gathered} 157.1 \\ \mathrm{~K}=1.00 \end{gathered}$	6.051	1.4400	-6441.54	8714.05	$\stackrel{7}{8}$
T6	100-80	L3 1/2x $31 / 2 \times 1 / 4$	19.17	9.39	$\begin{gathered} 162.3 \\ \mathrm{~K}=1.00 \end{gathered}$	5.669	1.6900	-7597.55	9579.92	0.793
T7 T8	$80-60$ $60-40$	L4x4x1/4	21.00	10.32	$\begin{gathered} 155.8 \\ \mathbf{K}=1.00 \end{gathered}$	6.149	1.9400	-7671.11	11928.30	${ }^{0}$
T8	$60-40$ $40-20$	L4x4x5/16	22.81	11.12	$\begin{gathered} 168.7 \\ \mathrm{~K}=1.00 \end{gathered}$	5.250	2.4000	-8620.35	12600.00	${ }^{0.684}$
T9	40-20	L4x4x5/16	23.71	11.57	$\begin{gathered} 175.6 \\ \mathrm{~K}=1.00 \end{gathered}$	4.845	2.4000	-9901.74	11627.60	0.852
T10	20-0	L4x4x3/8	25.54	12.49	$\begin{gathered} 190.2 \\ \mathrm{~K}=1.00 \end{gathered}$	4.130	2.8600	-11835.80	11810.50	$\stackrel{1.002}{\square}$

Top Girt Design Data (Compression)

Section No.	Elevation $\frac{f t}{102-180}$	Size	L $f t$	$L_{i \prime}$ $f 1$	Kl/r	F_{a} $k s i$	A in	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{n} \end{gathered}$
TI	192-180	L1 3/4×1 3/4×3/16	6.65	6.41	$\begin{gathered} 183.9 \\ \mathrm{~K}=0.82 \end{gathered}$	4.413	0.6211	-106.27	2741.10	$\frac{a}{0.039}$

Tension Checks

Leg Design Data (Tension)

RISATOwer	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & \\ & 33 \text { of } 34 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	Janoski Road	Ashford, CT	\|Date
	Client	Verizon Wireless		Designed by Staff

Section No.	Elevation $f t$	Size	$\begin{gathered} L \\ f t \end{gathered}$	$\begin{gathered} L_{u} \\ f f \end{gathered}$	Kl/r	F_{a} ksi	A $i n^{2}$	Actual P $l b$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{\sigma} \\ \hline \end{gathered}$
T1	192-180	ROHN 2.5 STD	12.00	4.00	50.7	30.000	1.7040	2693.65	51121.50	0.053
T2	180-160	ROHN 2.5 STD	20.03	5.01	63.4	30.000	1.7040	20575.60	51121.50	$\stackrel{Y}{0.402}$
T3	160-140	ROHN 3 EH	20.04	6.68	70.5	30.000	3.0159	42839.40	90477.90	$\stackrel{Y}{7}$
T4	140-120	ROHN 4 EH	20.04	6.68	54.3	30.000	4.4074	69815.50	132223.00	$\underset{0.528}{7}$
T5	120-100	ROHN 5 EH	20.03	6.68	43.6	30.000	6.1120	95530.80	183359.00	${ }_{0.521}$
T6	100-80	ROHN 6 EHS	20.03	10.02	54.0	30.000	6.7133	117859.00	201398.00	$\stackrel{y}{0.585}$
T7	80-60	ROHN 6 EH	20.04	10.02	54.8	30.000	8.4049	140345.00	252148.00	$\underset{0.557}{\gamma}$
T8	60-40	ROHN 8 EHS	20.03	10.02	41.2	30.000	9.7193	162130.00	291579.00	$\underset{0.556}{7}$
T9	40-20	ROHN 8 EHS	20.03	10.02	41.2	30.000	9.7193	183579.00	291579.00	$\gamma_{0.630}$
T10	20-0	ROHN 8 EHS	20.03	10.02	41.2	30.000	9.7193	204018.00	291579.00	$\frac{V}{0.700}$

Diagonal Design Data (Tension)										
Section No.	Elevation $f t$	Size	L $f t$	L_{u} ft	Kl/r	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	Allow. P_{a} $1 b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \end{gathered}$
TI	192-180	L1 3/4×1 3/4×3/16	7.76	3.57	83.6	29.000	0.3604	1184.02	10450.20	$\begin{gathered} 0.113 \\ y \end{gathered}$
T2	180-160	L2x $2 \times 3 / 16$	9.81	4.75	95.5	29.000	0.4308	3733.33	12492.70	0.299
T3	160-140	L2 1/2x2 1/2x1/4	12.37	6.05	97.0	29.000	0.7519	5001.93	21804.40	$\begin{gathered} Y \\ 0.229 \end{gathered}$
T4	140-120	L2 $1 / 2 \times 21 / 2 \times 1 / 4$	13.55	6.59	105.5	29.000	0.7519	5994.77	21804.40	O.275
T5	120-100	L3 $3 \times 1 / 4$	15.97	7.75	102.1	32.500	0.9159	6394.84	29768.00	$0 .$
T6	100-80	L3 1/2x $31 / 2 \times 1 / 4$	19.17	9.39	105.2	32.500	1.1034	7513.51	35861.70	${ }_{0.210}^{7}$
T7	80-60	L4x4x1/4	21.00	10.32	100.7	32.500	1.2909	7770.39	41955.50	$\stackrel{V}{0.185}$
T8	60-40	L4x4x5/16	22.81	11.12	109.2	32.500	1.5949	9060.49	51835.00	$\underset{0.175}{ }$
T9	40-20	L4×4×5/16	24.62	12.03	118.0	32.500	1.5949	10552.30	51835.00	0.204
T10	20-0	L4×4×3/8	26.46	12.95	127.9	32.500	1.8989	12504.50	61714.50	$\stackrel{y}{7}$

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	192' Self-Supporting Lattice Tower			$\begin{aligned} & \text { Page } \\ & \\ & 34 \text { of } 34 \end{aligned}$
	Project	Janoski Road	Ashford, CT	Date 10:25:40 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon	ireless	Designed by Staff

Top Girt Design Data (Tension)

Section No.	Elevation $f t$	Size	L $f t$	$\begin{gathered} L_{u} \\ f t \\ \hline \end{gathered}$	Kl/r	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	$\begin{gathered} \text { Allow. } \\ P_{a} \\ l b \end{gathered}$	$\left.\begin{array}{c}\text { Ratio } \\ P \\ P \\ P_{a} \\ \hline\end{array}\right]$
T1	192-180	L1 3/4x13/4x3/16	6.65	6.41	143.3	21.600	0.6211	117.95	13415.60	$\begin{gathered} 0.009 \\ y \end{gathered}$

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & f t \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{a l l o w} \\ l b \end{gathered}$	Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
T1	192-180	Leg	ROHN 2.5 STD	3	-4446.51	55076.63	8.1	Pass
T2	180-160	Leg	ROHN 2.5 STD	26	-26847.70	50249.43	53.4	Pass
T3	160-140	Leg	ROHN 3 EH	53	-52882.90	83781.05	63.1	Pass
T4	140-120	Leg	ROHN 4 EH	74	-85307.00	139069.22	61.3	Pass
T5	120-100	Leg	ROHN 5 EH	95	-116336.00	206291.07	56.4	Pass
T6	100-80	Leg	ROHN 6 EHS	116	-143956.00	212201.59	67.8	Pass
T7	80-60	Leg	ROHN 6 EH	131	-173021.00	264284.57	65.5	Pass
T8	60-40	Leg	ROHN 8 EHS	146	-202315.00	332540.83	60.8	Pass
T9	40-20	Leg	ROHN 8 EHS	161	-232112.00	332540.83	69.8	Pass
T10	20-0	Leg	ROHN 8 EHS	176	-261140.00	332540.83	78.5	Pass
TI	192-180	Diagonal	L1 $3 / 4 \times 13 / 4 \times 3 / 16$	12	-1263.92	7926.96	15.9	Pass
T2	180-160	Diagonal	L2x2x3/16	31	-3712.37	6812.79	54.5	Pass
T3	160-140	Diagonal	L2 1/2x2 1/2x1/4	58	-5088.19	10839.00	46.9	Pass
							59.2 (b)	
T4	140-120	Diagonal	L2 1/2x2 1/2x1/4	79	-6040.46	8344.78	72.4	Pass
T5	120-100	Diagonal	L3x3x1/4	97	-6441.54	11615.83	55.5	Pass
T6	100-80	Diagonal	L3 1/2x3 1/2x1/4	118	-7597.55	12770.03	59.5	Pass
							61.4 (b)	
T7	80-60	Diagonal	L4x4x1/4	133	-7671.11	15900.42	48.2	Pass
							62.9 (b)	
T8	60-40	Diagonal	L4x4x5/16	148	-8620.35	16795.80	51.3	Pass
T9	40-20	Diagonal	L4×4x5/16	169	-9901.74	15499.59	63.9	Pass
T10	20-0	Diagonal	L4x4x3/8	184	-11835.80	15743.40	75.2	Pass
T1	192-180	Top Girt	LI $3 / 4 \times 13 / 4 \times 3 / 16$	4	-106.27	3653.89	2.9	Pass
							Summary	
						Leg (T10)	78.5	Pass
						Diagonal (T10)	75.2	Pass
						Top Girt (T1)	2.9	Pass
						Bolt Checks	70.8	Pass
						RATING =	78.5	Pass

ANCHOR BOLT ANALYSIS

 Job 192' Rohn SSV - Ashford, CTJob 192' Rohn SSV - Ashford, CT Project No.
\qquad of
\qquad Sheet 1 of 3
Description
Anchor Bolt Analysis
Janoski Road Computed by \qquad Date 08/01/06
Janoski Road Checked by \qquad Date \qquad

ANCHOR BOLT ANALYSIS

Input Data

Max Pier Reactions:

Uplift:
Shear:
Compression:

Uplift := 209•kips
Shear $:=29 \cdot$ kips
Compression := $266 \cdot \mathrm{kips}$
user input
user input
user input

Anchor Bolt Data:

Use ASTM A354 Grade BC		
Number of Anchor Bolts = N	$\mathrm{N}:=10$	user input
Bolt Ultimate Strength:	$\mathrm{F}_{\mathrm{u}}:=125 \cdot \mathrm{ksi}$	user input
Bolt Yield Strength:	$\mathrm{Fy}:=109 \cdot \mathrm{ksi}$	user input
Bolt Modulus:	$\mathrm{E}:=29000 \cdot \mathrm{ksi}$	user input
Thickness of Anchor Bolts	$\mathrm{D}:=1 \mathrm{in}$	user input
Threads per Inch:	$\mathrm{n}:=8$	user input
Coefficient of Friction:	$\mu:=0.55$	user input

(for baseplate with grout ASCE 10-97)

Page \qquad of
Job 192' Rohn SSV - Ashford, CT P

Description
Anchor Bolt Analysis

Janoski Road

	Page	
Project No.	VZ1-200	of
Sheet $\frac{2}{2}$ of $\frac{3}{3}$		
Computed by	JEK	DateO8/01/06
Checked by	Date	

Anchor Bolt Area:

Gross Area of Bolt:

$$
\mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{D}^{2} \quad \mathrm{~A}_{\mathrm{g}}=0.785 \mathrm{in}^{2}
$$

Net Area of Bolt:

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2} \quad \mathrm{~A}_{\mathrm{n}}=0.606 \mathrm{in}^{2}
$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):

AllowableTension :=1.33. $\left(0.33 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{F}_{\mathrm{u}}\right) \quad$ AllowableTension $=43.1 \mathrm{kips}$
Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):
$\mathrm{F}_{\text {net.area }}:=1.33 \cdot\left(0.60 \cdot \mathrm{~A}_{\mathrm{n}} \cdot \mathrm{Fy}\right) \quad \mathrm{F}_{\text {net.area }}=52.7 \mathrm{kips}$
Note: 1.33 increase allowed per TIA/EIA

Applied Tension:
MaxTension := Uplift \quad MaxTension $=20.9 \mathrm{kips}$

Check Stresses:
$\frac{\text { MaxTension }}{\text { AllowableTension }}=0.49$
Condition I $:=$ if $\left(\frac{\text { MaxTension }}{\mathrm{F}_{\text {net.area }}} \leq 1.00\right.$, "OK", "Overstressed" $)$
Condition $1=$ " OK "

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Stell Transmission Structures
Required Area:

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{s} 1}:=\frac{\text { Uplift }}{\text { Fy }}+\frac{\text { Shear }}{\mu \cdot 0.85 \cdot \mathrm{Fy}} & \mathrm{~A}_{\mathrm{s} 1}=2.5 \mathrm{in}^{2} \\
\mathrm{~A}_{\mathrm{s} 2}:=\left|\frac{\text { Shear }-(0.3 \cdot \text { Compression })}{\mu \cdot 0.85 \cdot \mathrm{Fy}}\right| & \mathrm{A}_{\mathrm{s} 2}=1.0 \mathrm{in}^{2}
\end{array}
$$

Provided Area:

$$
\begin{aligned}
& \mathrm{A}_{\text {sprovided }}:=\mathrm{A}_{\mathrm{n}} \cdot \mathrm{~N} \quad \mathrm{~A}_{\text {sprovided }}=6.1 \mathrm{in}^{2} \\
& \text { Condition2 }:=\text { if }\left(\frac{\mathrm{A}_{\text {s1 }}}{\mathrm{A}_{\text {sprovided }}} \leq 1.00, \text { "OK", "Overstressed" }\right) \quad \frac{\mathrm{A}_{\mathrm{s} 1}}{\mathrm{~A}_{\text {sprovided }}}=0.4 \\
& \text { Condition2 }=\text { "OK" } \\
& \text { Condition3 }:=\mathrm{if}\left(\frac{\mathrm{~A}_{\mathrm{s} 2}}{\mathrm{~A}_{\text {sprovided }}} \leq 1.00, \text { "OK" , "Overstressed" }\right) \\
& \text { Condition3 }=\text { "OK" }
\end{aligned}
$$

FOUNDATION ANALYSIS

URS

Job	192' Rohn SSV - Ashford, CT	Project No.	VZ1-200	Sheet 1 of 2
Description	Foundation Analysis	Computed by	JEK	Date 08/01/06
	Janoski Road	Checked by		Date

3 Sided self supporting Tower Foundation drilled Pier

Compression:	DownLoad $:=266 \cdot \mathrm{kips}$	$\gamma \mathrm{c}:=150 \mathrm{pcf}$	Concrete unit weight
Uplift:	uplift $:=209 \cdot \mathrm{kips}$	$\gamma \mathrm{w}:=62.4 \mathrm{pcf}$	Water unit weight
Depth Neglected for Skin Friction at the top	Depthunbond $:=4 \cdot \mathrm{ft}$	$\gamma \mathrm{s}:=120 \mathrm{pcf}$	Soil unit weight
Drill Caisson length	CasissonLength $:=26.5 \cdot \mathrm{ft}$	$\mathrm{Pier} \phi:=5 \cdot \mathrm{ft}$	Pier diameter
Water Table Below grade:	$\mathrm{Wd}:=19 \cdot \mathrm{ft}$	hg $:=0.5 \cdot \mathrm{ft}$	Height of Pier Above grade
Ave allowable Shear at Depth of 4^{\prime} to 19^{\prime}	$\mathrm{fl}:=1050 \mathrm{psf}$	SoilBearingCapaciy $:=10 \mathrm{ksf}$	
Ave allowable Shear at Depth of $19^{\prime} \mathrm{to.26}$	$\mathrm{f} 2:=1500 \mathrm{psf}$		

Loading:

TotalDownLoad $:=$ DownLoad $+\pi \cdot \frac{\text { Pier }^{2}}{4} \cdot[\operatorname{hg} \cdot \gamma \mathrm{c}+[(\gamma \mathrm{c}-\gamma \mathrm{s}) \cdot($ CasissonLength -hg$)]] *$
TotalDownLoad $=282.79 \mathrm{kips}$

Pierweight $:=\pi \cdot \frac{\text { Pier }^{2}}{4} \cdot\left[(\mathrm{Wd}+\mathrm{hg}) \cdot \gamma \mathrm{c}+(\right.$ CasissonLength $\left.-\mathrm{Wd}-\mathrm{hg}) \cdot\left(\gamma \mathrm{c}-\gamma_{\mathrm{W}}\right)\right] *$
Pierweight $=69.47 \mathrm{kips}$

Soilshear $:=\pi \cdot \operatorname{Pier} \phi \cdot[\mathrm{fl} \cdot(\mathrm{Wd}-$ Depthunbond $)+\mathrm{f} 2 \cdot($ CasissonLength $-\mathrm{Wd}-\mathrm{hg})] *$
Soilshear $=412.33$ kips

Compression Capacity:

TotalDownLoadCapacity $:=$ Soilshear + SoilBearingCapaciy. $\left(\pi \cdot \frac{\text { Pier }^{2}}{4}\right) *$
TotalDownLoadCapacity $=608.68 \mathrm{kips}$
CheckDownLoadCapacity := if (TotalDownLoad < TotalDownLoadCapacity, "Okay" , "No Good")
CheckDownLoadCapacity $=$ "Okay"

Job 192' Rohn SSV - Ashford, CT

	Page
Project No. of	
Computed by \quad VZ1-200	Sheet $\frac{2}{2}$ of $\frac{2}{2}$
Cher	Date$08 / 01 / 06$

Tension Capacity:
TotalUpLiftCapacity := Soilshear + Pierweight
TotalUpLiftCapacity $=481.81 \mathrm{kips}$
CkeckUpLiftCapacity := if (2uplift < TotalUpLiftCapacity, "Okay" , "No Good")
CkeckUpLiftCapacity $=$ "Okay"
SafetyFactor provided $:=\frac{\text { TotalUpLiftCapacity }}{\text { uplift }} \quad$ SafetyFactor $_{\text {provided }}=2.31$

Check Cone Failure
ConeFailureCapacity $:=\frac{[(\text { CasissonLength }-\mathrm{hg}) \cdot \tan (30 \cdot \mathrm{deg}) \cdot 2+\mathrm{Pier} \phi]^{2} \cdot \pi}{4} \cdot \frac{\text { CasissonLength }-\mathrm{hg}}{3} \cdot \gamma \mathrm{~s} *$
ConeFailureCapacity $=1001.87 \mathrm{kips}$
CheckConeFailureCapacity := if(uplift < ConeFailureCapacity, "Okay", "No Good")
CkeckUpLiffCapacity = "Okay"
ConeSafetyFactor provided $:=\frac{\text { ConeFailureCapacity }}{\text { uplift }} \quad$ ConeSafetyFactor $_{\text {provided }}=4.79$

ALP-E 9011-Din

Features:

a Small Size

O Aesthetically Pleasing
Suitable For Toma/COMA

High Return Lass
Low Intermodulation

High FTB
Broadbanded

Side-lobe Suppression
Sturdy Design
Down-Tilt Brackets Incl.

The distance between the center of the bolts (on the back of the antenna) are shown ia the drawing above.

Bolt diameter is: 3/8-16 \{comes with lock aut].

Frequency Range:	$800-900 \mathrm{MHz}$
Impedance:	50 ohm
Connector Type:	$7 / 16 \mathrm{Dia}$
Return Loss:	20 dB
Polarization:	Vertical
Gain:	>11 dBd
Front To Back Ratio:	$>30 \mathrm{~dB}$
Side-Lobe Suppressioa:	18 dB
Intermodulation ($2 \times 25 \mathrm{~W}$) :	$\mathrm{IM} 3>146 \mathrm{~dB}$
	[MS $>153 \mathrm{~dB}$
	$\mathrm{CM} 7 / 9>163 \mathrm{~dB}$
Power Rating:	500 W
H-Plane (-3 dB poind):	85.92 ${ }^{\circ}$
$V-P l a n e ~(-3 d B ~ p o i n t): ~$	$16.18{ }^{\circ}$
Lightoing Protection:	DC Grounded

Overall Height:	43 in	[1092 mal
Width:	6.5 in	[165 mm]
Depth:	8 in	[203 mma]
Weight [acluding Tilt-Brackets:	201 bs	$[9.1 \mathrm{Kg}]$
Rated Wind Velocity:	113 mph	[180 Kin/h]
Wind Area (CxA/Side):	2.3 sq.ft.	[0.22 sq.m]
Lateral Thrust At Rated Wind		[0.22sq.m]
Worst Case:	112 lbs	[500 N]
Radiatiog Elements:	Aluminu	
Extrusion:	Aluminut	
Radome:	Grey PVC	
Tilf-Bracket:	Hot Dip	vanized Steel
Antenna Bolts:	Staimess	

The ALP-E 9011-Din is made in U.S.A.

Mechanical specifications

Electreal specifications

THguEh Batide

4 +5 bimedanco

Vswh
eotaratnon,
SWIM

1 Wate
EVande

NEWG1

36thert hat

WPA-80090/4CF

When ordering, replace "__ with connector type

Radiation-pattern ${ }^{11}$

Featuring upper side lobe suppression.

Radiation patterns for all antennas are measured with the antenna mounted on a fiberglass pole.

Mounting on a metal pole will typically improve the Front-toBack Ratio.

CF Denotes a Center-Fed Connector.

Amphenol Antel's Exclusive 3T (True Transmission Line Technology) Antenna Design:

- Watercut brass feedline assembly for consistent performance.
- Unique feedline design eliminates the need for conventional solder joints in the signal path.
- A non-collinear system with access to every radiating element for broad bandwidth and superior performance.
- Air as insulation for virtually no internal signal loss.

Every Amphenol Antel antenna is under a five-year limited warranty for repair or replacement.

Antenna available with center-fed connector only.

Revision Date: 6/3/04

DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF 180' SELF-SUPPORTING LATTICE TOWER FOR NEW ANTENNA ARRANGEMENT

101 Burbank Road
Ellington, Connecticut

prepared for

veri
 Onwireless

Verizon Wireless
99 East River Drive
East Hartford, Connecticut 06108

URS CORPORATION

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. INTRODUCTION
3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
4. FINDINGS AND EVALUATION
5. CONCLUSIONS AND RECOMMENDATIONS
6. DRAWINGS AND DATA

- RISA TOWER INPUT I OUTPUT SUMMARY
- RISA TOWER FEEDLINE DISTRIBUTION
- RISA TOWER FEEDLINE PLAN
- RISA TOWER DETAILED OUTPUT
- ANCHOR BOLT ANALYSIS
- FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the existing 180' self supporting lattice tower located at 101 Burbank Road in Ellington, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code and the TIAJEIA-222-F standard for wind velocity of 80 mph and 69 mph concurrent with $1 / 2^{\prime \prime}$ ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed Verizon modification is as follows:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
Remove: (6) existing Swedcom ALP-E-9011 antennas		
Install:	Verizon	
(6) Antel WPA-80090/4 antennas on the existing T-Booms with (6) existing 15/8" coax cables	(Proposed)	

The results of the analysis indicate that the tower structure, anchor bolts, and foundation are in compliance with the proposed loading conditions. The tower is considered structurally adequate with the wind load classification specified above and all the existing and proposed antenna loading.

This analysis is based on:

1) The tower structure's theoretical capacity, not including any assessment of the condition of the tower.
2) Tower geometry and structural member sizes taken from a tower report prepared by Rohn Industries, Inc, engineering file number 42895AE, dated April 3, 2000.
3) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration as well as the physical condition of the tower and connections. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

$$
\text { cc: } \quad A A, D R, I A, C F / B o o k ~-~ U R S ~
$$

2. INTRODUCTION

The subject tower is located at 101 Burbank Road in Ellington, Connecticut. The structure is a 180' self-supporting lattice tower designed and manufactured Rohn Industries, Inc.

The inventory is summarized in the table below:

Antenna TYpe	Carrier	Mount	Antenna Centerline Elevation	Cable
(1) DB222 antenna	NESM (existing)	Directly mounted	196'-6"	(1) $11 / 4^{\prime \prime}$ coax cable
(1) PD220 antenna	NESM (existing)	Directly mounted	191'-6"	(1) $11 / 4$ " coax cable
(9) EMS RR90-1702 antennas	T-Mobile (existing)	(3) T-Booms	$186{ }^{\prime}-6{ }^{\prime \prime}$	(6) $15 / 8^{\prime \prime}$ coax cables
(6) existing Decibel DB948F85T2E-M antennas (6) Antel WPA80090/4 antennas	Verizon (proposed)	(3) existing TBooms	176'-6"	(12) 1 5/8" coax cables
(6) Allgon 7250.03 antennas	Cingular Blue (existing)	(3) T-Arms	$166^{\prime}-6{ }^{\prime \prime}$	(6) dead $15 / 8^{\prime \prime}$ coax cables
(12) CSS DUO14178686 antennas (6) TMAs	Cingular (existing)	(3) T-Booms	$156{ }^{\prime}-6{ }^{\prime \prime}$	(9) $15 / 8^{\prime \prime}$ coax cables
(1) GPS antenna	(existing)	Stand-Off	$76^{\prime}-6^{\prime \prime}$	(1) $1 / 2^{\prime \prime}$ coax cable
(1) GPS antenna	(existing)	Stand-Off	$36^{\prime}-6$ "'	(1) 1/2" coax cable

This structural analysis of the communications tower was performed by URS Corporation (URS) for Verizon Wireless. The purpose of this analysis was to investigate the structural integrity of the existing tower with its existing and proposed antenna loads. This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2005 Connecticut State Building Code, TIA/EIA-222-F-Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction-Allowable Stress Design (ASD).

The analysis was conducted using RISA Tower 4.5. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIAEIA.

```
Load Condition 1 = 80 mph Wind Load (without ice) + Tower Dead Load
Load Condition 2 = 69 mph Wind Load (with ice) + Ice Load + Tower Dead Load
```

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25 percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Stresses on the tower structure were evaluated to compare with allowable stresses in accordance with AISC. The calculated stresses under the proposed loading were within the allowable stresses. Detailed analysis and calculations for the proposed load condition are provided in section 6 of this report. The anchor bolts and foundation were also found to be within the allowable limits.

5. CONCLUSIONS AND RECOMMENDATIONS

The results of the analysis indicate that the tower structure, anchor bolts, and foundation are in compliance with the proposed loading conditions. The tower is structurally adequate under the wind load classification specified above and the proposed antenna loadings.

Limitations/Assumptions:

This report is based on the following:

1. Tower inventory as listed in this report.
2. Tower is properly installed and maintained.
3. All members are as specified in the original design documents and are in good condition.
4. All required members are in place.
5. All bolts are in place and are properly tightened.
6. Tower is in plumb condition.
7. All member protective coatings are in good condition.
8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
9. Foundations were properly constructed to support original design loads as specified in the original design documents.
10. All coaxial cable is installed as specified in Section 6 of this report.

URS is not responsible for any modifications completed prior to or hereafter in which URS is not or was not directly involved. Modifications include but are not limited to:
A. Adding antennas
B. Removing/replacing antennas
C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.
6. DRAWINGS AND DATA

RISA TOWER INPUT/OUTPUT SUMMARY

RISA TOWER FEEDLINE DISTRIBUTION

Feedline Distribution Chart
\qquad Fat \qquad App in Face App Oliface

URS Corporation	${ }^{\text {Pob: }} 180$ ' Self Supporter		
500 Enterprise Drive, Suite 3B	Project: 101 Burbank Road Ellington, CT		
Rocky Hill, CT 06067	Client: Verizon Wireless	Dram by: Craig Thomas	App'd:
Phone: (850) 529-8882	Code: TIA/EIA-222-F	Date: 07/31/06	Scale: NTS
FAX: (860) 529-3991	Path: Pioe	ei	Dwg No. E-7

RISA TOWER FEEDLINE PLAN

Feedline Plan

26'6"
\qquad Round \qquad Fat \qquad App in Face

RISA TOWER DETAILED OUTPUT

Job	180' Self Supporter	Page 1 of 33
Project	101 Burbank Road	Ellington, CT

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 186.50 ft above the ground line.
The base of the tower is set at an elevation of 6.50 ft above the ground line.
The face width of the tower is 4.65 ft at the top and 21.00 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Basic wind speed of 80 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56 pcf .
A wind speed of 69 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Weld together tower sections have flange connections..
Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC
Specifications..
Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
Welds are fabricated with ER-70S-6 electrodes..
A non-linear (P -delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

[^0]$\begin{array}{ll} & \text { Distribute Leg Loads As Uniform } \\ & \text { Assume Legs Pinned } \\ \sqrt{ } \text { Assume Rigid Index Plate } \\ \sqrt{ } \text { Use Clear Spans For Wind Area } \\ \sqrt{ } \text { Use Clear Spans For KL/r } \\ & \text { Retension Guys To Initial Tension } \\ \text { Bypass Mast Stability Checks } \\ & \text { Use Azimuth Dish Coefficients } \\ \sqrt{ } \text { Project Wind Area of Appurt. } \\ \sqrt{ } \text { Autocalc Torque Arm Areas } \\ \sqrt{ } \text { SR Members Have Cut Ends } \\ \sqrt{ } \text { Sort Capacity Reports By Component } \\ & \text { Triangulate Diamond Inner Bracing }\end{array}$

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
\checkmark SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feedline Torque
Include Angle Block Shear Check
MYe, ॠय Poles,
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 180' Self Supporter		$\begin{array}{ll} \text { Page } \\ & 2 \text { of } 33 \end{array}$
	Project	101 Burbank Road Ellington, CT	\|Date
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless	Designed by Craig Thomas

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Giri Offset	Bottom Girt Offset
	$f t$	$f t$			Panels		in
T1	$186.50-166.50$	4.00	X Brace	No	No	0.0000	0.0000
T2	$166.50-146.50$	4.00	X Brace	No	No	0.0000	0.0000
T3	$146.50-126.50$	5.00	X Brace	No	No	0.0000	0.0000
T4	$126.50-106.50$	6.67	X Brace	No	No	0.0000	0.0000
T5	$106.50-86.50$	6.67	X Brace	No	No	0.000	0.0000
T6	$86.50-66.50$	6.67	X Brace	No	No	0.0000	0.0000

RISATower	Job 180' Self Supporter			$\text { Page } 3 \text { of } 33$
URS Corporation 500 Enterprise Drive, Suite $3 B$	101 Burbank Road Ellington, CT			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Tower Section	Tower Elevalion $f t$	Diagonal Spacing $f t$	Bracing Type	Has K Brace End Panels	Has Horizontals	Top Girt Offset in	Boltom Girt Offset in
T7	66.50-46.50	10.00	X Brace	No	No	0.0000	0.0000
T8	46.50-26.50	10.00	X Brace	No	No	0.0000	0.0000
T9	26.50-6.50	10.00	X Brace	No	No	0.0000	0.0000

Tower Section Geometry (cont'd)

Tower Elevation $f t$	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \hline \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
$\begin{gathered} \text { T1 } 186.50- \\ 166.50 \end{gathered}$	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L2 $\times 2 \times 1 / 4$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \mathrm{T} 2166.50 \\ 146.50 \end{gathered}$	Pipe	ROHN 3 EH	$\begin{aligned} & \text { AS72-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L2 $\times 2 \times 1 / 4$	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T3 } 146.50- \\ 126.50 \end{gathered}$	Pipe	ROHN 4 EH	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L2x2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
$\begin{gathered} \text { T4 } 126.50- \\ 106.50 \end{gathered}$	Pipe	ROHN 5 STD	A572-50 (50 ksi)	Single Angle	L2 1/2x2 1/2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T5 106.50-86.50	Pipe	ROHN 6 EHS	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Single Angle	L2 1/2x2 1/2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T6 86.50-66.50	Pipe	ROHN 6 EH	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L3 1/2x2 1/2x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T7 66.50-46.50	Pipe	ROHN 8 EHS	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Single Angle	L3 1/2x2 1/2x1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T8 46.50-26.50	Pipe	ROHN 8 EH	A572-50 (50 ksi)	Single Angle	L4×4×1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T9 26.50-6.50	Pipe	ROHN 8 EH	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	Single Angle	L4×4x1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation ft	Gusset Area (perface) \qquad	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
$\begin{gathered} \text { T1186.50- } \\ 166.50 \end{gathered}$	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T2 } 166.50- \\ 146.50 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T3 } 146.50- \\ 126.50 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T4 } 126.50- \\ 106.50 \end{gathered}$	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
$\begin{gathered} \text { T5 } 106.50- \\ 86.50 \end{gathered}$	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T6 86.50-66.50	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T7 66.50-46.50	0.00	0.0000	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T8 46.50-26.50	0.00	0.0000	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	1	1	1	36.0000	36.0000
T9 26.50-6.50	0.00	0.0000	A36	1	1	1	36.0000	36.0000

RISATower	Job 180' Self Supporter			$\text { Page } 4 \text { of } 33$
URS Corporation 500 Enterprise Drive Suite $3 B$	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Craig Thomas

Tower	Gusset	Gusset	Gussel Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle Double Angle
Elevation	Area					
(per face)	Thickness		A_{f}	Factor	Stitch Bolt	Stitch Bolt

Tower Section Geometry (cont'd)

Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	K Factors							
			Legs	X	K	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
				Diags	Diags					
				X	X	X	X	${ }_{Y}$	$\underset{Y}{X}$	X
$f t$				Y						
T1 186.50-	Yes	Yes	1	1	1	1	1	1	1	1
166.50				1	1	1	1	1	1	1
T2 166.50-	Yes	Yes	1	1	1	1	1	1	1	1
146.50				1	1	1	1	1	1	1
T3 146.50-	Yes	Yes	1	1	1	1	1	1	1	1
126.50				1	1	1	1	1	1	1
T4 126.50-	Yes	Yes	1	1	1	1	1	1	1	1
106.50				1	1	1	1	1	1	1
T5 106.50-	Yes	Yes	1	1	1	1	1	1	1	1
86.50				1	1	1	1	1	1	1
T6 86.50-	Yes	Yes	1	1	1	1	,	1	1	1
66.50				1	1	1	1	1	1	1
T7 66.50-	Yes	Yes	1	1	1	1	1	1	1	1
46.50				1	1	1	1	1	1	1
T846.50-	Yes	Yes	1	1	1	1	1	1	1	1
26.50				1	1	1	1	1	1	,
T9 26.50-6.50	Yes	Yes	1	1	1	1	1	1	1	1
1926.50-6.50				1	1	1	1	1	1	1

${ }^{T}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { T1 } 186.50- \\ 166.50 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T2 166.50 } \\ 146.50 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { T3 } 146.50- \\ 126.50 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 0.75	0.0000	0.75
$\begin{gathered} \text { T4 } 126.50- \\ 106.50 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
$\begin{gathered} \text { TS 106.50- } \\ 86.50 \end{gathered}$	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75 0	0.0000 0.0000	0.75 0	0.0000 0.0000	0.75 0.75	0.0000 0.0000	0.75 0.75
T6 86.50-66.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

RISATOwer	180' Self Supporter			$\text { Page } 5 \text { of } 33$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in			U		U		U		U
T766.50-46.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 46.50-26.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 26.50-6.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Connection Type	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Shart Horizontal	
		Bolt Size in	No.	Bolt Size in		Bolt Size in		Boll Size in		Bolt Size in		$\begin{gathered} \text { Bolt Size } \\ \text { in } \\ \hline \end{gathered}$		Bolt Size in	No.
T1 186.50-	Flange	0.7500	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
166.50		A 325 N													
T2 166.50-	Flange	0.8750	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
146.50		A325N		A 325 N		A 325 N		A 325 N		A325N		A 325 N		A 325 N	
T3 146.50-	Flange	1.0000	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
126.50		A 325 N		A 325 N		A325N		A 325 N							
T4 126.50-	Flange	1.0000	6	0.6250	I	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
106.50		A325N		A 325 N											
T5 106.50-	Flange	1.0000	6	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
86.50		A325N		A 325 N		A325N		A 325 N							
T6 86.50-66.50	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A325N		A 325 N		A 325 N		A 325 N	
T7 66.50-46.50	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A 325 N		A325N		A 325 N							
T8 46.50-26.50	Flange	1.0000	8	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325N		A325N		A325N		A 325 N							
T9 26.50-6.50	Flange	1.0000	10	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A 325 N													

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac $F W$)	\#	$\#$ Per Row		Width or Diameter in	Perimeter in	Weight plf
$\begin{gathered} 15 / 8 \\ \text { (Cingular } \end{gathered}$ Blue)	A	Yes	Ar (CfAe)	166.50-15.00	0.0000	-0.4	6	6	1.9800	1.9800		1.04
$\begin{gathered} 11 / 4 \\ \text { (NESM) } \end{gathered}$	A	Yes	Ar (CfAe)	186.50-15.00	0.0000	-0.2	2	2	1.5500	1.5500		0.66
$\begin{gathered} 15 / 8 \\ \text { (T-Mobile) } \end{gathered}$	B	Yes	Ar (CfAe)	186.50-15.00	0.0000	-0.4	6	6	1.9800	1.9800		1.04
$\begin{gathered} 15 / 8 \\ \text { (Verizon) } \end{gathered}$	C	Yes	Ar (CfAe)	176.50-15.00	0.0000	-0.35	12	12	1.9800	1.9800		1.04
$\begin{gathered} 15 / 8 \\ \text { (Cingular) } \end{gathered}$	A	Yes	Ar (CfAe)	156.50-15.00	0.0000	-0.3	9	5	1.9800	1.9800		1.04
$\begin{gathered} 1 / 2 \\ (\mathrm{GPS}) \end{gathered}$	C	Yes	Ar (CfAe)	76.50-6.50	0.0000	-0.25	1	1	0.5800	0.5800		0.25

URS Corporation
500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067
Phone: (850) 529-8882
FAX: (860) 529-3991

Job	180' Self Supporter	Page
Project	101 Burbank Road Ellington, CT	Date $10: 26: 00 ~ 07 / 31 / 06 ~$
Client	Verizon Wireless	Designed by Craig Thomas

Description	Face or Leg	Allow Shield	Component Type	Placement fi	Face Offset in	Lateral Offset (Frac FW)	\#	$\begin{gathered} \# \\ \text { Per } \\ \text { Row } \end{gathered}$	Clear Spacing in	Width or Diameter in	Perimeter in	Weight $p l f$
$\begin{gathered} 1 / 2 \\ \text { (GPS) } \end{gathered}$	A	Yes	Ar (CfAe)	36.50-6.50	0.0000	-0.24	1	1	0.5800	0.5800		0.25

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation $f t$	Face	A_{R} $f t^{\prime}$	A_{F} $f t^{2}$	$\begin{gathered} C_{A} A_{A} \\ \text { In Face } \\ {f t^{2}}^{2} \end{gathered}$	$C_{A} A_{A}$ Out Face $f t^{2}$	Weight lb
T1	186.50-166.50	A	5.167	0.000	0.000	0.000	26.40
		B	19.800	0.000	0.000	0.000	124.80
		C	19.800	0.000	0.000	0.000	124.80
T2	166.50-146.50	A	33.217	0.000	0.000	0.000	244.80
		B	19.800	0.000	0.000	0.000	124.80
		C	39.600	0.000	0.000	0.000	249.60
T3	146.50-126.50	A	41.467	0.000	0.000	0.000	338.40
		B	19.800	0.000	0.000	0.000	124.80
		C	39.600	0.000	0.000	0.000	249.60
T4	126.50-106.50	A	41.467	0.000	0.000	0.000	338.40
		B	19.800	0.000	0.000	0.000	124.80
		C	39.600	0.000	0.000	0.000	249.60
T5	$106.50-86.50$	A	41.467	0.000	0.000	0.000	338.40
		B	19.800	0.000	0.000	0.000	124.80
		C	39.600	0.000	0.000	0.000	249.60
T6	86.50-66.50	A	41.467	0.000	0.000	0.000	338.40
		B	19.800	0.000	0.000	0.000	124.80
		C	40.083	0.000	0.000	0.000	252.10
T7	66.50-46.50	A	41.467	0.000	0.000	0.000	338.40
		B	19.800	0.000	0.000	0.000	124.80
		C	40.567	0.000	0.000	0.000	254.60
T8	46.50-26.50	A	41.950	0.000	0.000	0.000	340.90
		B	19.800	0.000	0.000	0.000	124.80
		C	40.567	0.000	0.000	0.000	254.60
T9	26.50-6.50	A	24.810	0.000	0.000	0.000	199.58
		B	11.385	0.000	0.000	0.000	71.76
		C	23.737	0.000	0.000	0.000	148.52

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& \begin{tabular}{l}
Face or \\
Leg
\end{tabular} \& \begin{tabular}{l}
Ice \\
Thickness in
\end{tabular} \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$\prime t^{\prime}$ \& $C_{A} A_{A}$ In Face $f t^{\prime}$ \& $C_{A} A_{A}$ Out Face $f t^{\prime}$ \& Weight
lb

\hline \multirow[t]{3}{*}{TI} \& \multirow[t]{3}{*}{186.50-166.50} \& A \& \multirow[t]{3}{*}{0.500} \& 8.500 \& 0.000 \& 0.000 \& 0.000 \& 76.49

\hline \& \& B \& \& 29.800 \& 0.000 \& 0.000 \& 0.000 \& 306.59

\hline \& \& C \& \& 29.800 \& 0.000 \& 0.000 \& 0.000 \& 306.59

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{$166.50-146.50$} \& A \& \multirow[t]{3}{*}{0.500} \& 50.717 \& 0.000 \& 0.000 \& 0.000 \& 613.03

\hline \& \& B \& \& 29.800 \& 0.000 \& 0.000 \& 0.000 \& 306.59

\hline \& \& C \& \& 59.600 \& 0.000 \& 0.000 \& 0.000 \& 613.19

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{146.50-126.50} \& A \& \multirow[t]{3}{*}{0.500} \& 63.133 \& 0.000 \& 0.000 \& 0.000 \& 842.97

\hline \& \& B \& \& 29.800 \& 0.000 \& 0.000 \& 0.000 \& 306.59

\hline \& \& C \& \& 59.600 \& 0.000 \& 0.000 \& 0.000 \& 613.19

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{126.50-106.50} \& A \& \multirow[t]{3}{*}{0.500} \& 63.133 \& 0.000 \& 0.000 \& 0.000 \& 842.97

\hline \& \& B \& \& 29.800 \& 0.000 \& 0.000 \& 0.000 \& 306.59

\hline \& \& C \& \& 59.600 \& 0.000 \& 0.000 \& 0.000 \& 613.19

\hline T5 \& 106.50-86.50 \& A \& 0.500 \& 63.133 \& 0.000 \& 0.000 \& 0.000 \& 842.97

\hline
\end{tabular}

RISATower	Job 180' Self Supporter			$\begin{aligned} & \text { Page } \\ & 7 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
	Client	Verizon W	eless	Designed by Craig Thomas

Tower Section	Tower Elevation ft	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Ice Thickness in	A_{R} $\frac{f t^{2}}{}$	A_{F} $f t^{2}$	$C_{A} A_{A}$ In Face f^{2}	$\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f l^{2} \\ \hline \end{gathered}$	Weight $l b$
T6	86.50-66.50	B	0.500	29.800	0.000	0.000	0.000	306.59
		C		59.600	0.000	0.000	0.000	613.19
		A		63.133	0.000	0.000	0.000	842.97
		B		29.800	0.000	0.000	0.000	306.59
T7	66.50-46.50	C	0.500	60.917	0.000	0.000	0.000	622.28
		A		63.133	0.000	0.000	0.000	842.97
		B		29.800	0.000	0.000	0.000	306.59
T8	46.50-26.50	C	0.500	62.233	0.000	0.000	0.000	631.38
		A		64.450	0.000	0.000	0.000	852.07
		B		29.800	0.000	0.000	0.000	306.59
T9	26.50-6.50	C	0.500	62.233	0.000	0.000	0.000	631.38
		A		38.935	0.000	0.000	0.000	502.91
		B		17.135	0.000	0.000	0.000	176.29
		C		36.903	0.000	0.000	0.000	370.78

Feed Line Shielding

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Section \& \begin{tabular}{l}
Elevation
\(\qquad\) \\
fi
\end{tabular} \& Face \& \(A_{R}\)

$f t^{2}$ \& $$
\begin{aligned}
& A_{R} \\
& \text { Ice } \\
& \mathrm{ff}^{2} \\
& \hline
\end{aligned}
$$ \& A_{F}

$f t^{2}$ \& $$
\begin{aligned}
& A_{F} \\
& \text { Ice } \\
& f^{2}
\end{aligned}
$$

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{186.50-166.50} \& A \& 0.000 \& 0.000 \& 0.631 \& 1.373

\hline \& \& B \& 0.000 \& 0.000 \& 2.420 \& 4.815

\hline \& \& C \& 0.000 \& 0.000 \& 2.420 \& 4.815

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{166.50-146.50} \& A \& 0.000 \& 0.000 \& 3.392 \& 6.906

\hline \& \& B \& 0.000 \& 0.000 \& 2.022 \& 4.058

\hline \& \& C \& 0.000 \& 0.000 \& 4.044 \& 8.116

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{146.50-126.50} \& A \& 0.000 \& 0.000 \& 3.291 \& 6.681

\hline \& \& B \& 0.000 \& 0.000 \& 1.572 \& 3.154

\hline \& \& C \& 0.000 \& 0.000 \& 3.143 \& 6.307

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{126.50-106.50} \& A \& 0.000 \& 0.000 \& 3.131 \& 6.038

\hline \& \& B \& 0.000 \& 0.000 \& 1.495 \& 2.850

\hline \& \& C \& 0.000 \& 0.000 \& 2.990 \& 5.701

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{106.50-86.50} \& A \& 0.000 \& 0.000 \& 2.971 \& 5.730

\hline \& \& B \& 0.000 \& 0.000 \& 1.419 \& 2.705

\hline \& \& C \& 0.000 \& 0.000 \& 2.838 \& 5.410

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{86.50-66.50} \& A \& 0.000 \& 0.000 \& 4.023 \& 7.291

\hline \& \& B \& 0.000 \& 0.000 \& 1.921 \& 3.442

\hline \& \& C \& 0.000 \& 0.000 \& 3.889 \& 7.035

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{66.50-46.50} \& A \& 0.000 \& 0.000 \& 2.854 \& 5.173

\hline \& \& B \& 0.000 \& 0.000 \& 1.363 \& 2.442

\hline \& \& C \& 0.000 \& 0.000 \& 2.792 \& 5.099

\hline \multirow[t]{3}{*}{T8} \& \multirow[t]{3}{*}{46.50-26.50} \& A \& 0.000 \& 0.000 \& 3.200 \& 5.736

\hline \& \& B \& 0.000 \& 0.000 \& 1.510 \& 2.652

\hline \& \& C \& 0.000 \& 0.000 \& 3.095 \& 5.539

\hline \multirow[t]{3}{*}{T9} \& \multirow[t]{3}{*}{26.50-6.50} \& A \& 0.000 \& 0.000 \& 1.850 \& 3.386

\hline \& \& B \& 0.000 \& 0.000 \& 0.849 \& 1.490

\hline \& \& C \& 0.000 \& 0.000 \& 1.769 \& 3.210

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job	180' Self Supporter		$\begin{aligned} & \text { Page } \\ & 8 \text { of } 33 \end{aligned}$
	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I	Client	Verizon W	eless	Designed by Craig Thomas

Section	Elevation ft	$C P_{X}$ in	$\begin{gathered} C P_{Z} \\ \text { in } \end{gathered}$	$\begin{gathered} C P_{X} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$	$\begin{gathered} C P_{Z} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$
TI	186.50-166.50	3.1160	-1.8109	3.1559	-1.8802
T2	166.50-146.50	0.0709	2.8438	0.0004	2.9685
T3	146.50-126.50	-1.4706	3.8250	-1.6518	4.0668
T4	126.50-106.50	-1.6324	4.4083	-1.8941	4.8337
T5	106.50-86.50	-1.7729	4.9081	-2.0913	5.4649
T6	86.50-66.50	-1.6777	5.0480	-1.9611	5.8449
T7	66.50-46.50	-1.8024	5.8582	-2.0595	6.9670
T8	46.50-26.50	-2.0130	6.1762	-2.4556	7.4329
T9	26.50-6.50	-1.5737	4.5741	-2.1133	5.8271

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f f$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{\prime}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\hline \text { DB222 } \\
\text { (NESM) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{196.50} \& No Ice \& 1.60 \& 1.60 \& 16.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{$1 / 2$ " Ice} \& \multirow[t]{2}{*}{2.88} \& \multirow[t]{2}{*}{2.88} \& \multirow[t]{2}{*}{20.80}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { PD220 } \\
& \text { (NESM) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{192.25} \& No Ice \& 3.08 \& 3.08 \& 23.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{5.30} \& \multirow[t]{2}{*}{5.30} \& \multirow[t]{2}{*}{48.68}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) RR90-17-02DP (T-Mobile)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& No Ice \& 4.36 \& 1.97 \& 18.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{4.77} \& \multirow[t]{2}{*}{2.31} \& \multirow[t]{2}{*}{40.42}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) RR90-17-02DP (T-Mobile)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice |} \& 4.36 \& 1.97 \& 18.00

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{4.77} \& \multirow[t]{2}{*}{2.31} \& \multirow[t]{2}{*}{40.42}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) RR90-17-02DP (T-Mobile)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& No Ice \& 4.36 \& 1.97 \& 18.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{4.77} \& \multirow[t]{2}{*}{2.31} \& \multirow[t]{2}{*}{40.42}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{T-Frame (T-Mobile)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{17.60} \& \multirow[t]{2}{*}{17.60} \& \multirow[t]{2}{*}{490.00}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{T-Frame (T-Mobile)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{17.60} \& \multirow[t]{2}{*}{17.60} \& \multirow[t]{2}{*}{490.00}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{T-Frame (T-Mobile)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{186.50} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\text {" }}$ Ice} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{176.50} \& \multirow[t]{3}{*}{No Ice

1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 3.01
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 12.00 \\
& 36.71
\end{aligned}
$$
\]}

\hline \& \& \& 6.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{176.50} \& \multirow[t]{3}{*}{No Ice 1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]}

\hline \& \& \& 4.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{176.50} \& No Ice \& 3.73 \& 2.71 \& 12.00

\hline \& \& \& -6.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{4.10} \& \multirow[t]{2}{*}{3.01} \& \multirow[t]{2}{*}{36.71}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{176.50} \& \multirow[t]{3}{*}{No Ice 1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]}

\hline \& \& \& 4.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline WPA-80090/4CF \& B \& From Leg \& 3.00 \& 0.0000 \& 176.50 \& No Ice \& 3.73 \& 2.71 \& 12.00

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job	180' Self Supporter		$\text { Page } \quad 9 \text { of } 33$
	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I	Client	Verizon W	eless	Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline (Verizon) \& \& \& $$
\begin{aligned}
& 6.00 \\
& 0.00
\end{aligned}
$$ \& \& \& 1/2" Ice \& 4.10 \& 3.01 \& 36.71

\hline | DB948F85T2E-M |
| :--- |
| (Verizon) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 4.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 176.50 \& | No Ice |
| :--- |
| $1 / 2^{\text {" Ice }}$ | \& \[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]

\hline WPA-80090/4CF (Verizon) \& B \& From Leg \& \[
$$
\begin{gathered}
3.00 \\
-6.00 \\
0.00
\end{gathered}
$$

\] \& 0.0000 \& 176.50 \& | No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice | \& \[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.71 \\
& 3.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.00 \\
& 36.71
\end{aligned}
$$
\]

\hline DB948F85T2E-M (Verizon) \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 4.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 176.50 \& No Ice

$$
1 / 2^{11} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]

\hline WPA-80090/4CF (Verizon) \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 6.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 176.50 \& No Ice

$$
1 / 2^{11} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.71 \\
& 3.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.00 \\
& 36.71
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& \text { DB948F85T2E-M } \\
& \text { (Verizon) }
\end{aligned}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 4.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 176.50 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]

\hline WPA-80090/4CF (Verizon) \& C \& From Leg \& $$
\begin{gathered}
3.00 \\
-6.00 \\
0.00
\end{gathered}
$$ \& 0.0000 \& 176.50 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
2.71 \\
3.01
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 12.00 \\
& 36.71
\end{aligned}
$$
\]

\hline DB948F85T2E-M (Verizon) \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 4.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 176.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]

\hline T-Frame (Verizon) \& A \& From Leg \& \[
$$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 176.50 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline T-Frame (Verizon) \& B \& From Leg \& \[
$$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 176.50 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline T-Frame (Verizon) \& C \& From Leg \& \[
$$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 176.50 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline | (2) 7250.03 |
| :--- |
| (Cingular Blue) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 166.50 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.00 \\
& 4.39
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.87 \\
& 2.33
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.40 \\
& 35.03
\end{aligned}
$$
\]

\hline | (2) 7250.03 |
| :--- |
| (Cingular Blue) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 166.50 \& | No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice | \& \[

$$
\begin{aligned}
& 4.00 \\
& 4.39
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.87 \\
& 2.33
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.40 \\
& 35.03
\end{aligned}
$$
\]

\hline | (2) 7250.03 |
| :--- |
| (Cingular Blue) | \& C \& From Leg \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 166.50 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 4.00 \\
& 4.39
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.87 \\
& 2.33
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.40 \\
& 35.03
\end{aligned}
$$
\]

\hline | T-Arm |
| :--- |
| (Cingular Blue) | \& A \& From Leg \& \[

$$
\begin{aligned}
& 1.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 166.50 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 5.50 \\
& 6.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 6.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 129.00 \\
& 170.00
\end{aligned}
$$
\]

\hline | T-Arm |
| :--- |
| (Cingular Blue) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 1.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 166.50 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 5.50 \\
& 6.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 6.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 129.00 \\
& 170.00
\end{aligned}
$$
\]

\hline | T-Arm |
| :--- |
| (Cingular Blue) | \& C \& From Leg \& \[

$$
\begin{aligned}
& 1.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 166.50 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 5.50 \\
& 6.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 6.90
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 129.00 \\
& 170.00
\end{aligned}
$$
\]

\hline (4) DUO1417-8686 (Cingular) \& A \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 156.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 6.53 \\
& 6.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.20 \\
& 4.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.30 \\
& 62.49
\end{aligned}
$$
\]

\hline | (4) DUO1417-8686 |
| :--- |
| (Cingular) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 156.50 \& No Ice 1/2" Ice \& \[

$$
\begin{aligned}
& 6.53 \\
& 6.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.20 \\
& 4.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.30 \\
& 62.49
\end{aligned}
$$
\]

\hline (4) DUO1417-8686 \& C \& From Leg \& 3.00 \& 0.0000 \& 156.50 \& No Ice \& 6.53 \& 4.20 \& 20.30

\hline
\end{tabular}

RHSATOwer	Job 180' Self Supporter			$\begin{aligned} & \text { Page } \\ & 10 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side \& Weight

$l b$

\hline (Cingular) \& \& \& $$
\begin{aligned}
& 0.00 \\
& 0.00
\end{aligned}
$$ \& \& \& 1/2" Ice \& 6.94 \& 4.57 \& 62.49

\hline T-Frame (Cingular) \& A \& From Leg \& \[
$$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 156.50 \& | No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice | \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline T-Frame (Cingular) \& B \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 156.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline T-Frame (Cingular) \& C \& From Leg \& $$
\begin{aligned}
& 1.50 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 156.50 \& No Ice $1 / 2^{\text {" Ice }}$ \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.20 \\
& 17.60
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 360.00 \\
& 490.00
\end{aligned}
$$
\]

\hline (2) Generic TMA (Cingular) \& A \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 156.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 1.05 \\
& 1.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.35 \\
& 0.45
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 21.35
\end{aligned}
$$
\]

\hline (2) Generic TMA (Cingular) \& B \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 156.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 1.05 \\
& 1.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.35 \\
& 0.45
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 21.35
\end{aligned}
$$
\]

\hline (2) Generic TMA (Cingular) \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 156.50 \& No Ice

$$
1 / 2^{1 "} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 1.05 \\
& 1.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.35 \\
& 0.45
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 21.35
\end{aligned}
$$
\]

\hline GPS \& B \& From Leg \& \[
$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 76.50 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.00 \\
& 15.00
\end{aligned}
$$
\]

\hline GPS \& C \& From Leg \& \[
$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 36.50 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.00 \\
& 1.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.00 \\
& 15.00
\end{aligned}
$$
\]

\hline 2' Sidearm \& B \& From Leg \& $$
\begin{aligned}
& 1.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 75.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 3.90 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.90 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 87.00 \\
& 97.00
\end{aligned}
$$
\]

\hline 2' Sidearm \& C \& From Leg \& \[
$$
\begin{aligned}
& 1.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 35.50 \& | NoIce |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 3.90 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.90 \\
& 4.40
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 87.00 \\
& 97.00
\end{aligned}
$$
\]

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.121
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad
$$
f t
$$ \& 2
$f t$ \& K_{z} \& q_{2}
$p s f$ \& A_{G}

$f i^{2}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
f^{\prime} \\
\hline
\end{gathered}
$$
\] \& $C_{A} A_{A}$ Out Face $f{ }^{2}$

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { Ti } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{176.50} \& \multirow[t]{3}{*}{1.615} \& \multirow[t]{3}{*}{26} \& \multirow[t]{3}{*}{98.192} \& A \& 10.194 \& 14.750 \& \multirow[t]{3}{*}{9.583} \& 38.42 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 8.405 \& 29.383 \& \& 25.36 \& \&

\hline \& \& \& \& \& C \& 8.405 \& 29.383 \& \& 25.36 \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{156.50} \& \multirow[t]{3}{*}{1.56} \& \multirow[t]{3}{*}{26} \& \multirow[t]{3}{*}{120.341} \& A \& 7.678 \& 44.904 \& \multirow[t]{3}{*}{11.687} \& 22.23 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 9.048 \& 31.487 \& \& 28.83 \& \&

\hline \& \& \& \& \& C \& 7.026 \& 51.287 \& \& 20.04 \& \&

\hline T3 146.50- \& \multirow[t]{3}{*}{136.50} \& \multirow[t]{3}{*}{1.5} \& \multirow[t]{3}{*}{25} \& \multirow[t]{3}{*}{163.410} \& A \& 8.487 \& 56.493 \& \multirow[t]{3}{*}{15.027} \& 23.13 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 126.50 \& \& \& \& \& B \& 10.207 \& 34.827 \& \& 33.37 \& \&

\hline \& \& \& \& \& C \& 8.635 \& 54.627 \& \& 23.75 \& \&

\hline
\end{tabular}

RISATower	Job 180' Self Supporter			$\begin{aligned} & \text { Page } 11 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$	101 Burbank Road Ellington, CT			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			$\begin{aligned} & \text { Designed by } \\ & \text { Craig Thomas } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
ft
\end{tabular} \& \(z\)
\(f t\) \& \(K_{z}\) \& \(q_{z}\)
\(p s f\) \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e
e \& A_{F}

$f t^{2}$ \& A_{R}

$f f^{\prime}$ \& $A_{\text {leg }}$

$f t^{\prime}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
I n \\
F a c e \\
f f^{2} \\
\hline
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline T4 126.50- \& \multirow[t]{3}{*}{116.50} \& \multirow[t]{3}{*}{1.434} \& \multirow[t]{3}{*}{23} \& \multirow[t]{3}{*}{206.784} \& A \& 11.092 \& 60.044 \& \multirow[t]{3}{*}{18.577} \& 26.11 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 106.50 \& \& \& \& \& B \& 12.728 \& 38.377 \& \& 36.35 \& \&

\hline \& \& \& \& \& C \& 11.233 \& 58.177 \& \& 26.76 \& \&

\hline T5 106.50- \& \multirow[t]{3}{*}{96.50} \& \multirow[t]{3}{*}{1.359} \& \multirow[t]{3}{*}{22} \& \multirow[t]{3}{*}{249.455} \& A \& 13.336 \& 63.587 \& \multirow[t]{3}{*}{22.120} \& 28.76 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 86.50 \& \& \& \& \& B \& 14.888 \& 41.920 \& \& 38.94 \& \&

\hline \& \& \& \& \& C \& 13.470 \& 61.720 \& \& 29.42 \& \&

\hline \multirow[t]{3}{*}{T6 86.50-66.50} \& \multirow[t]{3}{*}{76.50} \& \multirow[t]{3}{*}{1.272} \& \multirow[t]{3}{*}{21} \& \multirow[t]{3}{*}{290.156} \& A \& 21.977 \& 63.589 \& \multirow[t]{3}{*}{22.123} \& 25.85 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 24.078 \& 41.923 \& \& 33.52 \& \&

\hline \& \& \& \& \& C \& 22.111 \& 62.206 \& \& 26.24 \& \&

\hline \multirow[t]{3}{*}{T7 66.50-46.50} \& \multirow[t]{3}{*}{56.50} \& \multirow[t]{3}{*}{1.166} \& \multirow[t]{3}{*}{19} \& \multirow[t]{3}{*}{334.193} \& A \& 18.222 \& 70.265 \& \multirow[t]{3}{*}{28.798} \& 32.54 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 19.713 \& 48.598 \& \& 42.16 \& \&

\hline \& \& \& \& \& C \& 18.284 \& 69.365 \& \& 32.86 \& \&

\hline T8 46.50-26.50 \& \multirow[t]{3}{*}{36.50} \& \multirow[t]{3}{*}{1.029} \& \multirow[t]{3}{*}{17} \& \multirow[t]{3}{*}{374.293} \& A \& 23.157 \& 70.748 \& \multirow[t]{3}{*}{28.798} \& 30.67 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 24.847 \& 48.598 \& \& 39.21 \& \&

\hline \& \& \& \& \& C \& 23.263 \& 69.365 \& \& 31.09 \& \&

\hline T9 26.50-6.50 \& \multirow[t]{3}{*}{16.50} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{16} \& \multirow[t]{3}{*}{414.393} \& A \& 26.897 \& 53.608 \& \multirow[t]{3}{*}{28.798} \& 35.77 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 27.898 \& 40.183 \& \& 42.30 \& \&

\hline \& \& \& \& \& C \& 26.977 \& 52.535 \& \& 36.22 \& \&

\hline
\end{tabular}

Tower Pressure - With Ice

$$
G_{H}=1.12 I
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad $f t$ \& z
$f t$ \& K_{2} \& q_{2}
$p s f$ \& t_{Z}
$i n$ \& A_{G}

$f f^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{\prime}$ \& $A_{l e g}$

$f t^{\prime}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| ft^{2} |

\hline T1 $186.50-166.50$ \& \multirow[t]{2}{*}{176.50} \& \multirow[t]{2}{*}{1.615} \& \multirow[t]{2}{*}{20} \& \multirow[t]{2}{*}{0.5000} \& \multirow[t]{2}{*}{99.858} \& A \& 12.937 \& 21.417 \& 12.917 \& 37.60 \& 0.000 \& 0.000

\hline T2 \& \& \& \& \& \& C \& 9.496 \& 42.717 \& \& 24.74 \& \&

\hline T2 166.50- \& \multirow[t]{2}{*}{156.50} \& \multirow[t]{2}{*}{1.56} \& \multirow[t]{2}{*}{19} \& \multirow[t]{2}{*}{0.5000} \& \multirow[t]{2}{*}{122.010} \& A \& 7.855 \& 65.743 \& 15.027 \& 20.42 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{0.000}

\hline 146.50 \& \& \& \& \& \& B \& 10.703 \& 44.827 \& \& 27.06 \& \&

\hline \& \multirow{3}{*}{136.50} \& \& \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{165.079} \& C \& 6.645 \& 74.627 \& \& 18.49 \& \multirow[b]{2}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T3 146.50- \& \& \multirow[t]{2}{*}{1.5} \& \multirow[t]{3}{*}{18} \& \& \& A \& 9.023 \& 81.499 \& 18.366 \& 20.29 \& \&

\hline 126.50 \& \& \& \& \& \& B \& 12.550 \& 48.166 \& \& 30.25 \& \&

\hline \& \multirow{3}{*}{116.50} \& \multirow{3}{*}{1.434} \& \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{208.453} \& \multirow[t]{2}{*}{A} \& 9.397 \& 77.966 \& \multirow{3}{*}{21.916} \& 21.02 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T4 126.50- \& \& \& \multirow[t]{2}{*}{18} \& \& \& \& 11.978 \& 85.050 \& \& 22.59 \& \&

\hline 106.50 \& \& \& \& \& \& B \& 15.166 \& 51.716 \& \& 32.77 \& \&

\hline \& \multirow{3}{*}{96.50} \& \multirow{3}{*}{1.359} \& \multirow{3}{*}{17} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{251.124} \& C \& 12.316 \& 81.516 \& \multirow{3}{*}{25.459} \& 23.36 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T5 106.50-86.50 \& \& \& \& \& \& A \& 14.925 \& 88.592 \& \& 24.59 \& \&

\hline \& \& \& \& \& \& B \& 17.951 \& 55.259 \& \& 34.78 \& \&

\hline \& \multirow{3}{*}{76.50} \& \multirow{3}{*}{1.272} \& \multirow{3}{*}{16} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{291.825} \& C \& 15.246 \& 85.059 \& \multirow{3}{*}{25.462} \& 25.38 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T6 86.50-66.50 \& \& \& \& \& \& A \& 23.660 \& 88.595 \& \& 22.68 \& \&

\hline \& \& \& \& \& \& B \& 27.510 \& 55.262 \& \& 30.76 \& \&

\hline \& \multirow{3}{*}{56.50} \& \multirow{3}{*}{1.166} \& \multirow{3}{*}{14} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{335.862} \& C \& 23.916 \& 86.379 \& \multirow{3}{*}{32.137} \& 23.09 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T7 66.50-46.50 \& \& \& \& \& \& A \& 19.918 \& 95.270 \& \& 27.90 \& \&

\hline \& \& \& \& \& \& B \& 22.649 \& 61.937 \& \& 37.99 \& \&

\hline \& \multirow{3}{*}{36.50} \& \multirow{3}{*}{1.029} \& \multirow{3}{*}{13} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{375.962} \& C \& 19.991 \& 94.370 \& \multirow{3}{*}{32.137} \& 28.10 \& \multirow[b]{2}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline T8 46.50-26.50 \& \& \& \& \& \& A \& 25.014 \& 96.587 \& \& 26.43 \& \&

\hline \& \& \& \& \& \& B \& 28.098 \& 61.937 \& \& 35.69 \& \&

\hline \& \multirow{4}{*}{16.50} \& \multirow{4}{*}{1} \& \multirow{4}{*}{12} \& \multirow{4}{*}{0.5000} \& \multirow{4}{*}{416.062} \& C \& 25.211 \& 94.371 \& \multirow{4}{*}{32.137} \& 26.87 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline T9 26.50-6.50 \& \& \& \& \& \& A \& 30.151 \& 71.072 \& \& 31.75 \& \&

\hline \& \& \& \& \& \& B \& 32.047 \& 49.272 \& \& 39.52 \& \&

\hline \& \& \& \& \& \& C \& 30.328 \& 69.040 \& \& 32.34 \& \&

\hline
\end{tabular}

RISATower	Job 180' Self Supporter			$\text { Page } 12 \text { of } 33$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Tower Pressure - Service

$$
G_{H}=1.121
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
$$
f t
$$ \& z
$f t$ \& K_{z} \& q_{τ}
$p s f$ \& A_{G}

$f t^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{2}$ \& A_{R}

$f r^{\prime}$ \& $A_{\text {leg }}$

$f t^{2}$ \& \[
$$
\begin{gathered}
\text { Leg } \\
\%
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f f^{\prime}$ |

\hline T1 186.50- \& \multirow[t]{3}{*}{176.50} \& \multirow[t]{3}{*}{1.615} \& \multirow[t]{3}{*}{10} \& \multirow[t]{3}{*}{98.192} \& A \& 10.194 \& 14.750 \& \multirow[t]{3}{*}{9.583} \& 38.42 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 166.50 \& \& \& \& \& B \& 8.405 \& 29.383 \& \& 25.36 \& \&

\hline \& \& \& \& \& C \& 8.405 \& 29.383 \& \& 25.36 \& \&

\hline T2 166.50- \& \multirow[t]{3}{*}{156.50} \& \multirow[t]{3}{*}{1.56} \& \multirow[t]{3}{*}{10} \& \multirow[t]{3}{*}{120.341} \& A \& 7.678 \& 44.904 \& \multirow[t]{3}{*}{11.687} \& 22.23 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 146.50 \& \& \& \& \& B \& 9.048 \& 31.487 \& \& 28.83 \& \&

\hline \& \& \& \& \& C \& 7.026 \& 51.287 \& \& 20.04 \& \&

\hline T3 146.50- \& \multirow[t]{3}{*}{136.50} \& \multirow[t]{3}{*}{1.5} \& \multirow[t]{3}{*}{10} \& \multirow[t]{3}{*}{163.410} \& A \& 8.487 \& 56.493 \& \multirow[t]{3}{*}{15.027} \& 23.13 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 126.50 \& \& \& \& \& B \& 10.207 \& 34.827 \& \& 33.37 \& \&

\hline \& \& \& \& \& C \& 8.635 \& 54.627 \& \& 23.75 \& \&

\hline T4 126.50- \& \multirow[t]{3}{*}{116.50} \& \multirow[t]{3}{*}{1.434} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{206.784} \& A \& 11.092 \& 60.044 \& \multirow[t]{3}{*}{18.577} \& 26.11 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 106.50 \& \& \& \& \& B \& 12.728 \& 38.377 \& \& 36.35 \& \&

\hline \& \& \& \& \& C \& 11.233 \& 58.177 \& \& 26.76 \& \&

\hline TS 106.50- \& \multirow[t]{3}{*}{96.50} \& \multirow[t]{3}{*}{1.359} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{249.455} \& A \& 13.336 \& 63.587 \& \multirow[t]{3}{*}{22.120} \& 28.76 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 86.50 \& \& \& \& \& B \& 14.888 \& 41.920 \& \& 38.94 \& \&

\hline \& \& \& \& \& C \& 13.470 \& 61.720 \& \& 29.42 \& \&

\hline \multirow[t]{3}{*}{T6 86.50-66.50} \& \multirow[t]{3}{*}{76.50} \& \multirow[t]{3}{*}{1.272} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{290.156} \& A \& 21.977 \& 63.589 \& \multirow[t]{3}{*}{22.123} \& 25.85 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 24.078 \& 41.923 \& \& 33.52 \& \&

\hline \& \& \& \& \& C \& 22.111 \& 62.206 \& \& 26.24 \& \&

\hline \multirow[t]{3}{*}{T7 66.50-46.50} \& \multirow[t]{3}{*}{56.50} \& \multirow[t]{3}{*}{1.166} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{334.193} \& A \& 18.222 \& 70.265 \& \multirow[t]{3}{*}{28.798} \& 32.54 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 19.713 \& 48.598 \& \& 42.16 \& \&

\hline \& \& \& \& \& C \& 18.284 \& 69.365 \& \& 32.86 \& \&

\hline T8 46.50-26.50 \& \multirow[t]{3}{*}{36.50} \& \multirow[t]{3}{*}{1.029} \& \multirow[t]{3}{*}{7} \& \multirow[t]{3}{*}{374.293} \& A \& 23.157 \& 70.748 \& \multirow[t]{3}{*}{28.798} \& 30.67 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 24.847 \& 48.598 \& \& 39.21 \& \&

\hline \& \& \& \& \& C \& 23.263 \& 69.365 \& \& 31.09 \& \&

\hline T9 26.50-6.50 \& \multirow[t]{3}{*}{16.50} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{6} \& \multirow[t]{3}{*}{414.393} \& A \& 26.897 \& 53.608 \& \multirow[t]{3}{*}{28.798} \& 35.77 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 27.898 \& 40.183 \& \& 42.30 \& \&

\hline \& \& \& \& \& C \& 26.977 \& 52.535 \& \& 36.22 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\[
l b
\]
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TI } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 1 \& 1 \& 19.086 \& 1700.21 \& 85.01 \& C

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 1 \& 1 \& 27.373 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 1 \& 1 \& 27.373 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 1 \& 1 \& 37.646 \& 2333.47 \& 116.67 \& C

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 1 \& 1 \& 28.818 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 1 \& 1 \& 42.402 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 1 \& 1 \& 45.244 \& 2578.71 \& 128.94 \& A

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 1 \& 1 \& 31.407 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 1 \& 1 \& 43.948 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 1 \& 1 \& 48.941 \& 2816.58 \& 140.83 \& A

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 1 \& 1 \& 35.799 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 1 \& 1 \& 47.737 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 1 \& 1 \& 52.664 \& 2988.29 \& 149.41 \& A

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 1 \& 1 \& 39.892 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 1 \& 1 \& 51.510 \& \& \&

\hline T6 86.50- \& 715.30 \& 3083.42 \& A \& 0.295 \& 2.31 \& 0.614 \& 1 \& 1 \& 61.043 \& 3292.20 \& 164.61 \& A

\hline
\end{tabular}

RISATower	180' Self Supporter			$\begin{aligned} & \text { Page } 13 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad
$$
f
$$ \& Add Weight
\qquad $l b$ \& $$
\begin{gathered}
\text { Self } \\
\text { Weight } \\
l b \\
\hline
\end{gathered}
$$ \& F
a
c
e \& e \& C_{F} \& R_{R} \& D_{F} \& D_{R} \& A_{E}

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{2}{*}{66.50} \& \multirow{4}{*}{717.80} \& \multirow{4}{*}{3096.84} \& B \& 0.227 \& 2.507 \& 0.596 \& 1 \& 1 \& 49.081 \& \multirow{4}{*}{3116.05} \& \multirow{4}{*}{155.80} \& \multirow{4}{*}{A}

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 1 \& 1 \& 60.247 \& \& \&

\hline T7 66.50- \& \& \& A \& 0.265 \& 2.394 \& 0.606 \& 1 \& 1 \& 60.785 \& \& \&

\hline 46.50 \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 1 \& 1 \& 48.450 \& \& \&

\hline \& \multirow{3}{*}{720.30} \& \multirow{3}{*}{4241.21} \& C \& 0.262 \& 2.401 \& 0.605 \& 1 \& 1 \& 60.255 \& \multirow{3}{*}{3026.08} \& \multirow{3}{*}{151.30} \& \multirow{3}{*}{A}

\hline T8 46.50- \& \& \& A \& 0.251 \& 2.435 \& 0.602 \& 1 \& 1 \& 65.755 \& \& \&

\hline 26.50 \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& 1 \& 1 \& 53.502 \& \& \&

\hline \multirow{3}{*}{T9 26.50-6.50} \& \multirow{3}{*}{419.86} \& \multirow{3}{*}{4381.64} \& C \& 0.247 \& 2.445 \& 0.601 \& 1 \& 1 \& 64.967 \& \multirow{3}{*}{2808.89} \& \multirow{3}{*}{140.44} \& \multirow{3}{*}{A}

\hline \& \& \& A \& 0.194 \& 2.615 \& 0.589 \& 1 \& 1 \& 58.485 \& \& \&

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 1 \& 1 \& 51.355 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 1 \& 1 \& 57.908 \& \multirow{3}{*}{24660.48} \& \&

\hline Sum Weight: \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& 2058186.1 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $7 \mathrm{lb-ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - No lce - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad
$$
f t
$$ \& Add Weight
\qquad
$$
l b
$$ \& Self Weight $l b$ \& F
a
c
e \& e \& C_{F} \& R_{R} \& D_{F} \& D_{R} \& A_{E}

$f f^{2}$ \& F
$l b$ \& w

plf \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TI } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 0.825 \& 1 \& 17.303 \& 1608.85 \& 80.44 \& C

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 0.825 \& 1 \& 25.902 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 0.825 \& 1 \& 25.902 \& \& \&

\hline \multirow[t]{3}{*}{T2 166.50-} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 0.825 \& 1 \& 36.302 \& 2265.80 \& 113.29 \& C

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 0.825 \& 1 \& 27.235 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 0.825 \& 1 \& 41.172 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50 \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 0.825 \& 1 \& 43.759 \& 2494.06 \& 124.70 \& A

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 0.825 \& 1 \& 29.621 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 0.825 \& 1 \& 42.437 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 0.825 \& 1 \& 47.000 \& 2704.86 \& 135.24 \& A

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 0.825 \& 1 \& 33.571 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 0.825 \& 1 \& 45.771 \& \& \&

\hline \multirow[t]{3}{*}{T5 106.50-} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 0.825 \& 1 \& 50.330 \& 2855.87 \& 142.79 \& A

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 0.825 \& 1 \& 37.286 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 0.825 \& 1 \& 49.153 \& \& \&

\hline \multirow[t]{3}{*}{T6 86.50-} \& \multirow[t]{3}{*}{715.30} \& \multirow[t]{3}{*}{3083.42} \& A \& 0.295 \& 2.31 \& 0.614 \& 0.825 \& 1 \& 57.197 \& 3084.78 \& 154.24 \& A

\hline \& \& \& B \& 0.227 \& 2.507 \& 0.596 \& 0.825 \& 1 \& 44.867 \& \& \&

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 0.825 \& 1 \& 56.378 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 } 66.50- \\
46.50
\end{array}
$$} \& \multirow[t]{3}{*}{717.80} \& \multirow[t]{3}{*}{3096.84} \& A \& 0.265 \& 2.394 \& 0.606 \& 0.825 \& 1 \& 57.596 \& 2952.58 \& 147.63 \& A

\hline \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 0.825 \& 1 \& 45.000 \& \& \&

\hline \& \& \& C \& 0.262 \& 2.401 \& 0.605 \& 0.825 \& 1 \& 57.055 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 } 46.50- \\
26.50
\end{array}
$$} \& \multirow[t]{3}{*}{720.30} \& \multirow[t]{3}{*}{4241.21} \& A \& 0.251 \& 2.435 \& 0.602 \& 0.825 \& 1 \& 61.702 \& 2839.58 \& 141.98 \& A

\hline \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& 0.825 \& 1 \& 49.154 \& \& \&

\hline \& \& \& C \& 0.247 \& 2.445 \& 0.601 \& 0.825 \& 1 \& 60.896 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{419.86} \& \multirow[t]{3}{*}{4381.64} \& A \& 0.194 \& 2.615 \& 0.589 \& 0.825 \& 1 \& 53.778 \& 2582.83 \& 129.14 \& A

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 0.825 \& 1 \& 46.473 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 0.825 \& 1 \& 53.187 \& \& \&

\hline Sum Weight: \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& $$
\begin{array}{r}
1966745.0 \\
2 \text { lh. } \mathrm{A}
\end{array}
$$ \& 23389.21 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 60 To Face

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 180' Self Supporter		$\text { Page } 14 \text { of } 33$
	Project	101 Burbank Road Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I	Client	Verizon Wireless	Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 0.8 \& 1 \& 17.048 \& 1595.80 \& 79.79 \& C

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 0.8 \& 1 \& 25.692 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 0.8 \& 1 \& 25.692 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 0.8 \& 1 \& 36.110 \& 2256.13 \& 112.81 \& C

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 0.8 \& 1 \& 27.009 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 0.8 \& 1 \& 40.997 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 0.8 \& 1 \& 43.547 \& 2481.97 \& 124.10 \& A

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 0.8 \& 1 \& 29.365 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 0.8 \& 1 \& 42.221 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 0.8 \& 1 \& 46.723 \& 2688.90 \& 134.45 \& A

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 0.8 \& 1 \& 33.253 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 0.8 \& 1 \& 45.491 \& \& \&

\hline \multirow[t]{3}{*}{T5 106.50-} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 0.8 \& 1 \& 49.997 \& 2836.95 \& 141.85 \& A

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 0.8 \& 1 \& 36.914 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 0.8 \& 1 \& 48.816 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{715.30} \& \multirow[t]{3}{*}{3083.42} \& A \& 0.295 \& 2.31 \& 0.614 \& 0.8 \& 1 \& 56.647 \& 3055.15 \& 152.76 \& A

\hline \& \& \& B \& 0.227 \& 2.507 \& 0.596 \& 0.8 \& 1 \& 44.265 \& \& \&

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 0.8 \& 1 \& 55.825 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 } 66.50- \\
46.50
\end{array}
$$} \& \multirow[t]{3}{*}{717.80} \& \multirow[t]{3}{*}{3096.84} \& A \& 0.265 \& 2.394 \& 0.606 \& 0.8 \& 1 \& 57.141 \& 2929.23 \& 146.46 \& A

\hline \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 0.8 \& 1 \& 44.507 \& \& \&

\hline \& \& \& C \& 0.262 \& 2.401 \& 0.605 \& 0.8 \& 1 \& 56.598 \& \& \&

\hline \multirow[t]{3}{*}{T8 46.50-
26.50} \& \multirow[t]{3}{*}{720.30} \& \multirow[t]{3}{*}{4241.21} \& A \& 0.251 \& 2.435 \& 0.602 \& 0.8 \& 1 \& 61.123 \& 2812.94 \& 140.65 \& A

\hline \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& 0.8 \& 1 \& 48.533 \& \& \&

\hline \& \& \& C \& 0.247 \& 2.445 \& 0.601 \& 0.8 \& 1 \& 60.315 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{419.86} \& \multirow[t]{3}{*}{4381.64} \& A \& 0.194 \& 2.615 \& 0.589 \& 0.8 \& 1 \& 53.106 \& 2550.53 \& 127.53 \& A

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 0.8 \& 1 \& 45.776 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 0.8 \& 1 \& 52.513 \& \& \&

\hline Sum Weight: \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& 1953682.0
$0 \mathrm{lb-ft}$ \& 23207.60 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\)
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& ${ }^{w}$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r|}
\hline \text { TI } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 0.85 \& 1 \& 17.557 \& \multirow[t]{3}{*}{1621.90} \& \multirow[t]{3}{*}{81.10} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 0.85 \& 1 \& 26.112 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 0.85 \& 1 \& 26.112 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 0.85 \& 1 \& 36.494 \& \multirow[t]{3}{*}{2275.47} \& \multirow[t]{3}{*}{113.77} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 0.85 \& 1 \& 27.461 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 0.85 \& 1 \& 41.348 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50 \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 0.85 \& 1 \& 43.971 \& \multirow[t]{3}{*}{2506.16} \& \multirow[t]{3}{*}{125.31} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 0.85 \& 1 \& 29.876 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 0.85 \& 1 \& 42.652 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50 \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 0.85 \& 1 \& 47.277 \& \multirow[t]{3}{*}{2720.82} \& \multirow[t]{3}{*}{136.04} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 0.85 \& 1 \& 33.890 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 0.85 \& 1 \& 46.052 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 0.85 \& 1 \& 50.663 \& \multirow[t]{3}{*}{2874.79} \& \multirow[t]{3}{*}{143.74} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 0.85 \& 1 \& 37.658 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 0.85 \& 1 \& 49.489 \& \& \&

\hline T6 86.50- \& \multirow[t]{3}{*}{715.30} \& \multirow[t]{3}{*}{3083.42} \& A \& 0.295 \& 2.31 \& 0.614 \& 0.85 \& 1 \& 57.746 \& \multirow[t]{3}{*}{3114.41} \& \multirow[t]{3}{*}{155.72} \& \multirow[t]{3}{*}{A}

\hline 66.50 \& \& \& B \& 0.227 \& 2.507 \& 0.596 \& 0.85 \& 1 \& 45.469 \& \& \&

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 0.85 \& 1 \& 56.931 \& \& \&

\hline T7 66.50- \& \multirow[t]{2}{*}{717.80} \& \multirow[t]{2}{*}{3096.84} \& A \& 0.265 \& 2.394 \& 0.606 \& 0.85 \& 1 \& 58.052 \& \multirow[t]{2}{*}{2975.93} \& \multirow[t]{2}{*}{148.80} \& \multirow[t]{2}{*}{A}

\hline 46.50 \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 0.85 \& 1 \& 45.493 \& \& \&

\hline
\end{tabular}

RISATOwer	180' Self Supporter			$\begin{aligned} & \text { Page } \\ & 15 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			$\begin{aligned} & \text { Designed by } \\ & \text { Craig Thomas } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f
\] \& \begin{tabular}{l}
Add Weight \\
\(l b\)
\end{tabular} \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \& \multirow{4}{*}{720.30} \& \multirow{3}{*}{4241.21} \& C \& 0.262 \& 2.401 \& 0.605 \& 0.85 \& 1 \& 57.513 \& \multirow{3}{*}{2866.23} \& \multirow{3}{*}{143.31} \& \multirow{3}{*}{A}

\hline T8 46.50- \& \& \& A \& 0.251 \& 2.435 \& 0.602 \& 0.85 \& 1 \& 62.281 \& \& \&

\hline 26.50 \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& 0.85 \& 1 \& 49.775 \& \& \&

\hline \multirow{4}{*}{T9 26.50-6.50} \& \& \multirow{3}{*}{4381.64} \& C \& 0.247 \& 2.445 \& 0.601 \& 0.85 \& 1 \& 61.478 \& \multirow{3}{*}{2615.12} \& \multirow{3}{*}{130.76} \& \multirow{3}{*}{A}

\hline \& \multirow[t]{2}{*}{419.86} \& \& A \& 0.194 \& 2.615 \& 0.589 \& 0.85 \& 1 \& 54.451 \& \& \&

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 0.85 \& 1 \& 47.171 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 0.85 \& 1 \& 53.862 \& \multirow{3}{*}{23570.82} \& \&

\hline Sum Weight: \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& 1979808.0 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $4 \mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight \\
lb
\end{tabular} \& Self Weight
\[
l b
\]
\(\qquad\) \& \begin{tabular}{|c}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{689.68} \& \multirow[t]{3}{*}{1524.00} \& A \& 0.344 \& 2.185 \& 0.63 \& 1 \& 1 \& 26.438 \& 1656.94 \& 82.85 \& C

\hline \& \& \& B \& 0.523 \& 1.872 \& 0.709 \& 1 \& 1 \& 39.800 \& \& \&

\hline \& \& \& C \& 0.523 \& 1.872 \& 0.709 \& 1 \& 1 \& 39.800 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 166.50 \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{1532.81} \& \multirow[t]{3}{*}{1839.78} \& A \& 0.603 \& 1.802 \& 0.756 \& 1 \& 1 \& 57.529 \& 2523.94 \& 126.20 \& C

\hline \& \& \& B \& 0.455 \& 1.965 \& 0.676 \& 1 \& 1 \& 40.990 \& \& \&

\hline \& \& \& C \& 0.666 \& 1.778 \& 0.796 \& 1 \& 1 \& 66.069 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2225.84} \& A \& 0.548 \& 1.845 \& 0.723 \& 1 \& 1 \& 67.976 \& 2591.69 \& 129.58 \& A

\hline \& \& \& B \& 0.368 \& 2.131 \& 0.639 \& 1 \& 1 \& 43.328 \& \& \&

\hline \& \& \& C \& 0.529 \& 1.865 \& 0.713 \& 1 \& 1 \& 64.974 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 126.50- } \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2470.12} \& A \& 0.465 \& 1.949 \& 0.68 \& 1 \& 1 \& 69.854 \& 2688.72 \& 134.44 \& A

\hline \& \& \& B \& 0.321 \& 2.242 \& 0.623 \& 1 \& 1 \& 47.360 \& \& \&

\hline \& \& \& C \& 0.45 \& 1.973 \& 0.673 \& 1 \& 1 \& 67.204 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{3202.29} \& A \& 0.412 \& 2.04 \& 0.657 \& 1 \& 1 \& 73.100 \& 2791.26 \& 139.56 \& A

\hline \& \& \& B \& 0.292 \& 2.319 \& 0.613 \& 1 \& 1 \& 51.844 \& \& \&

\hline \& \& \& C \& 0.399 \& 2.065 \& 0.651 \& 1 \& 1 \& 70.651 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{1771.85} \& \multirow[t]{3}{*}{4101.03} \& A \& 0.385 \& 2.095 \& 0.645 \& 1 \& 1 \& 80.845 \& 2966.44 \& 148.32 \& A

\hline \& \& \& B \& 0.284 \& 2.34 \& 0.611 \& 1 \& 1 \& 61.277 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 1 \& 1 \& 79.445 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 } 66.50- \\
46.50
\end{array}
$$} \& \multirow[t]{3}{*}{1780.95} \& \multirow[t]{3}{*}{4046.45} \& A \& 0.343 \& 2.188 \& 0.63 \& 1 \& 1 \& 79.937 \& 2809.01 \& 140.45 \& A

\hline \& \& \& B \& 0.252 \& 2.432 \& 0.602 \& 1 \& 1 \& 59.956 \& \& \&

\hline \& \& \& C \& 0.341 \& 2.194 \& 0.629 \& 1 \& 1 \& 79.363 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 } 46.50- \\
26.50
\end{array}
$$} \& \multirow[t]{3}{*}{1790.05} \& \multirow[t]{3}{*}{5439.26} \& A \& 0.323 \& 2.236 \& 0.623 \& 1 \& 1 \& 85.222 \& 2700.68 \& 135.03 \& A

\hline \& \& \& B \& 0.239 \& 2.469 \& 0.599 \& 1 \& 1 \& 65.214 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 1 \& 1 \& 83.872 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{1049.97} \& \multirow[t]{3}{*}{5654.01} \& A \& 0.243 \& 2.458 \& 0.6 \& 1 \& 1 \& 72.808 \& 2464.66 \& 123.23 \& A

\hline \& \& \& B \& 0.195 \& 2.611 \& 0.589 \& 1 \& 1 \& 61.092 \& \& \&

\hline \& \& \& C \& 0.239 \& 2.471 \& 0.599 \& 1 \& 1 \& 71.689 \& \& \&

\hline Sum Weight: \& 13903.58 \& 30502.78 \& \& \& \& \& \& OTM \& $$
1997930.4
$$

$$
\mathrm{l} \mathrm{lb-ft}
$$ \& 23193.34 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 45 To Face

RISATower	Job 180' Self Supporter			$\begin{aligned} & \text { Page } \\ & 16 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive. Suite $3 B$	Project	101 Burbank Road Ellington, CT	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& Add Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
Self \\
Weight \\
\(l b\)
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{689.68} \& \multirow[t]{3}{*}{1524.00} \& A \& 0.344 \& 2.185 \& 0.63 \& 0.825 \& 1 \& 24.174 \& \multirow[t]{3}{*}{1587.75} \& \multirow[t]{3}{*}{79.39} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.523 \& 1.872 \& 0.709 \& 0.825 \& 1 \& 38.139 \& \& \&

\hline \& \& \& C \& 0.523 \& 1.872 \& 0.709 \& 0.825 \& 1 \& 38.139 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2166.50 \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{1532.81} \& \multirow[t]{3}{*}{1839.78} \& A \& 0.603 \& 1.802 \& 0.756 \& 0.825 \& 1 \& 56.154 \& \multirow[t]{3}{*}{2479.52} \& \multirow[t]{3}{*}{123.98} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.455 \& 1.965 \& 0.676 \& 0.825 \& 1 \& 39.117 \& \& \&

\hline \& \& \& C \& 0.666 \& 1.778 \& 0.796 \& 0.825 \& 1 \& 64.906 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2225.84} \& A \& 0.548 \& 1.845 \& 0.723 \& 0.825 \& 1 \& 66.397 \& \multirow[t]{3}{*}{2531.49} \& \multirow[t]{3}{*}{126.57} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.368 \& 2.131 \& 0.639 \& 0.825 \& 1 \& 41.132 \& \& \&

\hline \& \& \& C \& 0.529 \& 1.865 \& 0.713 \& 0.825 \& 1 \& 63.329 \& \& \&

\hline \multirow[t]{3}{*}{T4 126.50- 106.50} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2470.12} \& A \& 0.465 \& 1.949 \& 0.68 \& 0.825 \& 1 \& 67.758 \& \multirow[t]{3}{*}{2608.04} \& \multirow[t]{3}{*}{130.40} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.321 \& 2.242 \& 0.623 \& 0.825 \& 1 \& 44.706 \& \& \&

\hline \& \& \& C \& 0.45 \& 1.973 \& 0.673 \& 0.825 \& 1 \& 65.049 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{3202.29} \& A \& 0.412 \& 2.04 \& 0.657 \& 0.825 \& 1 \& 70.489 \& \multirow[t]{3}{*}{2691.53} \& \multirow[t]{3}{*}{134.58} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.292 \& 2.319 \& 0.613 \& 0.825 \& 1 \& 48.702 \& \& \&

\hline \& \& \& C \& 0.399 \& 2.065 \& 0.651 \& 0.825 \& 1 \& 67.982 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{1771.85} \& \multirow[t]{3}{*}{4101.03} \& A \& 0.385 \& 2.095 \& 0.645 \& 0.825 \& 1 \& 76.705 \& \multirow[t]{3}{*}{2814.51} \& \multirow[t]{3}{*}{140.73} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.284 \& 2.34 \& 0.611 \& 0.825 \& 1 \& 56.462 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 0.825 \& 1 \& 75.260 \& \& \&

\hline T7 66.50- \& \multirow[t]{3}{*}{1780.95} \& \multirow[t]{3}{*}{4046.45} \& A \& 0.343 \& 2.188 \& 0.63 \& 0.825 \& 1 \& 76.451 \& \multirow[t]{3}{*}{2686.52} \& \multirow[t]{3}{*}{134.33} \& \multirow[t]{3}{*}{A}

\hline 46.50 \& \& \& B \& 0.252 \& 2.432 \& 0.602 \& 0.825 \& 1 \& 55.993 \& \& \&

\hline \& \& \& C \& 0.341 \& 2.194 \& 0.629 \& 0.825 \& 1 \& 75.864 \& \& \&

\hline T8 46.50- \& \multirow[t]{3}{*}{1790.05} \& \multirow[t]{3}{*}{5439.26} \& A \& 0.323 \& 2.236 \& 0.623 \& 0.825 \& 1 \& 80.845 \& \multirow[t]{3}{*}{2561.96} \& \multirow[t]{3}{*}{128.10} \& \multirow[t]{3}{*}{A}

\hline 26.50 \& \& \& B \& 0.239 \& 2.469 \& 0.599 \& 0.825 \& 1 \& 60.297 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.825 \& 1 \& 79.460 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{1049.97} \& \multirow[t]{3}{*}{5654.01} \& A \& 0.243 \& 2.458 \& 0.6 \& 0.825 \& 1 \& 67.531 \& \multirow[t]{3}{*}{2286.04} \& \multirow[t]{3}{*}{114.30} \& \multirow[t]{4}{*}{A}

\hline \& \& \& B \& 0.195 \& 2.611 \& 0.589 \& 0.825 \& 1 \& 55.484 \& \& \&

\hline \& \& \& C \& 0.239 \& 2.471 \& 0.599 \& 0.825 \& 1. \& 66.382 \& \& \&

\hline Sum Weight: \& 13903.58 \& 30502.78 \& \& \& \& \& \& OTM \& | 1931121.5 |
| ---: |
| $9 \mathrm{lb}-\mathrm{ft}$ | \& 22247.36 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f\)
\end{tabular} \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\)
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f r^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TI } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{689.68} \& \multirow[t]{3}{*}{1524.00} \& A \& 0.344 \& 2.185 \& 0.63 \& 0.8 \& 1 \& 23.850 \& 1577.87 \& 78.89 \& C

\hline \& \& \& B \& 0.523 \& 1.872 \& 0.709 \& 0.8 \& 1 \& 37.901 \& \& \&

\hline \& \& \& C \& 0.523 \& 1.872 \& 0.709 \& 0.8 \& 1 \& 37.901 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{1532.81} \& \multirow[t]{3}{*}{1839.78} \& A \& 0.603 \& 1.802 \& 0.756 \& 0.8 \& 1 \& 55.958 \& 2473.17 \& 123.66 \& C

\hline \& \& \& B \& 0.455 \& 1.965 \& 0.676 \& 0.8 \& 1 \& 38.849 \& \& \&

\hline \& \& \& C \& 0.666 \& 1.778 \& 0.796 \& 0.8 \& 1 \& 64.740 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 3146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2225.84} \& A \& 0.548 \& 1.845 \& 0.723 \& 0.8 \& 1 \& 66.171 \& 2522.89 \& 126.14 \& A

\hline \& \& \& B \& 0.368 \& 2.131 \& 0.639 \& 0.8 \& 1 \& 40.818 \& \& \&

\hline \& \& \& C \& 0.529 \& 1.865 \& 0.713 \& 0.8 \& 1 \& 63.094 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2470.12} \& A \& 0.465 \& 1.949 \& 0.68 \& 0.8 \& 1 \& 67.458 \& 2596.51 \& 129.83 \& A

\hline \& \& \& B \& 0.321 \& 2.242 \& 0.623 \& 0.8 \& 1 \& 44.327 \& \& \&

\hline \& \& \& C \& 0.45 \& 1.973 \& 0.673 \& 0.8 \& 1 \& 64.741 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{3202.29} \& A \& 0.412 \& 2.04 \& 0.657 \& 0.8 \& 1 \& 70.115 \& 2677.28 \& 133.86 \& A

\hline \& \& \& B \& 0.292 \& 2.319 \& 0.613 \& 0.8 \& 1 \& 48.254 \& \& \&

\hline \& \& \& C \& 0.399 \& 2.065 \& 0.651 \& 0.8 \& 1 \& 67.601 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{1771.85} \& \multirow[t]{3}{*}{4101.03} \& A \& 0.385 \& 2.095 \& 0.645 \& 0.8 \& 1 \& 76.113 \& 2792.81 \& 139.64 \& A

\hline \& \& \& B \& 0.284 \& 2.34 \& 0.611 \& 0.8 \& 1 \& 55.775 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 0.8 \& 1 \& 74.662 \& \& \&

\hline T766.50- \& \multirow[t]{2}{*}{1780.95} \& \multirow[t]{2}{*}{4046.45} \& A \& 0.343 \& 2.188 \& 0.63 \& 0.8 \& 1 \& 75.953 \& 2669.02 \& 133.45 \& A

\hline 46.50 \& \& \& B \& 0.252 \& 2.432 \& 0.602 \& 0.8 \& 1 \& 55.427 \& \& \&

\hline
\end{tabular}

RISATower	180' Self Supporter			$\text { Page } 17 \text { of } 33$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& Add Weight \(l b\) \& Self Weight lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& ${ }^{w}$ \& Cirl. Face

\hline \multirow{7}{*}{T8 46.50-
26.50
T9 26.50-6.50} \& \multirow{4}{*}{1790.05} \& \multirow{3}{*}{5439.26} \& C \& 0.341 \& 2.194 \& 0.629 \& 0.8 \& 1 \& 75.364 \& \multirow{4}{*}{2542.14} \& \multirow{4}{*}{127.11} \& \multirow{4}{*}{A}

\hline \& \& \& A \& 0.323 \& 2.236 \& 0.623 \& 0.8 \& 1 \& 80.219 \& \& \&

\hline \& \& \& B \& 0.239 \& 2.469 \& 0.599 \& 0.8 \& 1 \& 59.594 \& \& \&

\hline \& \& \multirow{3}{*}{5654.01} \& C \& 0.318 \& 2.249 \& 0.622 \& 0.8 \& 1 \& 78.829 \& \& \&

\hline \& \multirow[t]{2}{*}{1049.97} \& \& A \& 0.243 \& 2.458 \& 0.6 \& 0.8 \& 1 \& 66.777 \& \multirow[t]{2}{*}{2260.53} \& \multirow[t]{2}{*}{113.03} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.195 \& 2.611 \& 0.589 \& 0.8 \& 1 \& 54.683 \& \& \&

\hline \& \& \& C \& 0.239 \& 2.471 \& 0.599 \& 0.8 \& 1 \& 65.624 \& \& \&

\hline Sum Weight: \& 13903.58 \& 30502.78 \& \& \& \& \& \& OTM \& 1921577.4
$8 \mathrm{lb-ft}$ \& 22112.22 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight
\[
l b
\]
\(\qquad\) \& Self Weight
\(\qquad\) lb \& \begin{tabular}{|l|}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{\text {R }}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{689.68} \& \multirow[t]{3}{*}{1524.00} \& A \& 0.344 \& 2.185 \& 0.63 \& 0.85 \& 1 \& 24.497 \& 1597.64 \& 79.88 \& C

\hline \& \& \& B \& 0.523 \& 1.872 \& 0.709 \& 0.85 \& 1 \& 38.376 \& \& \&

\hline \& \& \& C \& 0.523 \& 1.872 \& 0.709 \& 0.85 \& 1 \& 38.376 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T2 } 166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{1532.81} \& \multirow[t]{3}{*}{1839.78} \& A \& 0.603 \& 1.802 \& 0.756 \& 0.85 \& 1 \& 56.350 \& 2485.86 \& 124.29 \& C

\hline \& \& \& B \& 0.455 \& 1.965 \& 0.676 \& 0.85 \& 1 \& 39.384 \& \& \&

\hline \& \& \& C \& 0.666 \& 1.778 \& 0.796 \& 0.85 \& 1 \& 65.073 \& \& \&

\hline \multirow[t]{3}{*}{T3 146.50-
126.50} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2225.84} \& A \& 0.548 \& 1.845 \& 0.723 \& 0.85 \& 1 \& 66.622 \& 2540.09 \& 127.00 \& A

\hline \& \& \& B \& 0.368 \& 2.131 \& 0.639 \& 0.85 \& 1 \& 41.446 \& \& \&

\hline \& \& \& C \& 0.529 \& 1.865 \& 0.713 \& 0.85 \& 1 \& 63.564 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{2470.12} \& A \& 0.465 \& 1.949 \& 0.68 \& 0.85 \& 1 \& 68.057 \& 2619.56 \& 130.98 \& A

\hline \& \& \& B \& 0.321 \& 2.242 \& 0.623 \& 0.85 \& 1 \& 45.085 \& \& \&

\hline \& \& \& C \& 0.45 \& 1.973 \& 0.673 \& 0.85 \& 1 \& 65.357 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50 \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{1762.76} \& \multirow[t]{3}{*}{3202.29} \& A \& 0.412 \& 2.04 \& 0.657 \& 0.85 \& 1 \& 70.862 \& 2705.77 \& 135.29 \& A

\hline \& \& \& B \& 0.292 \& 2.319 \& 0.613 \& 0.85 \& 1 \& 49.151 \& \& \&

\hline \& \& \& C \& 0.399 \& 2.065 \& 0.651 \& 0.85 \& 1 \& 68.364 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{1771.85} \& \multirow[t]{3}{*}{4101.03} \& A \& 0.385 \& 2.095 \& 0.645 \& 0.85 \& 1 \& 77.296 \& 2836.22 \& 141.81 \& A

\hline \& \& \& B \& 0.284 \& 2.34 \& 0.611 \& 0.85 \& 1 \& 57.150 \& \& \&

\hline \& \& \& C \& 0.378 \& 2.109 \& 0.643 \& 0.85 \& 1 \& 75.857 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 766.50- \\
46.50
\end{array}
$$} \& \multirow[t]{3}{*}{1780.95} \& \multirow[t]{3}{*}{4046.45} \& A \& 0.343 \& 2.188 \& 0.63 \& 0.85 \& 1 \& 76.949 \& 2704.02 \& 135.20 \& A

\hline \& \& \& B \& 0.252 \& 2.432 \& 0.602 \& 0.85 \& 1 \& 56.559 \& \& \&

\hline \& \& \& C \& 0.341 \& 2.194 \& 0.629 \& 0.85 \& 1 \& 76.364 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 46.50- } \\
26.50
\end{array}
$$} \& \multirow[t]{3}{*}{1790.05} \& \multirow[t]{3}{*}{5439.26} \& A \& 0.323 \& 2.236 \& 0.623 \& 0.85 \& 1 \& 81.470 \& 2581.78 \& 129.09 \& A

\hline \& \& \& B \& 0.239 \& 2.469 \& 0.599 \& 0.85 \& 1 \& 60.999 \& \& \&

\hline \& \& \& C \& 0.318 \& 2.249 \& 0.622 \& 0.85 \& , \& 80.090 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{1049.97} \& \multirow[t]{3}{*}{5654.01} \& A \& 0.243 \& 2.458 \& 0.6 \& 0.85 \& 1 \& 68.285 \& 2311.56 \& 115.58 \& A

\hline \& \& \& B \& 0.195 \& 2.611 \& 0.589 \& 0.85 \& 1 \& 56.285 \& \& \&

\hline \& \& \& C \& 0.239 \& 2.471 \& 0.599 \& 0.85 \& 1 \& 67.140 \& \& \&

\hline Sum Weight: \& 13903.58 \& 30502.78 \& \& \& \& \& \& OTM \& 1940665.7
$1 \mathrm{lb-ft}$ \& 22382.50 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	180' Self Supporter			$\begin{gathered} \text { Page } \\ 18 \text { of } 33 \end{gathered}$
	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon W	eless	$\begin{aligned} & \text { Designed by } \\ & \text { Craig Thomas } \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight \(l b\)
\(\qquad\) \& Self Weight \(l b\) \& \begin{tabular}{|l|}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{2}$ \& F

$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { TI } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 1 \& 1 \& 19.086 \& 664.14 \& 33.21 \& C

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 1 \& 1 \& 27.373 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 1 \& 1 \& 27.373 \& \& \&

\hline \multirow[t]{3}{*}{T2 166.50-} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 1 \& 1 \& 37.646 \& 911.51 \& 45.58 \& C

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 1 \& 1 \& 28.818 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 1 \& 1 \& 42.402 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 3146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 1 \& 1 \& 45.244 \& 1007.31 \& 50.37 \& A

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 1 \& 1 \& 31.407 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 1 \& 1 \& 43.948 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 1 \& 1 \& 48.941 \& 1100.22 \& 55.01 \& A

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 1 \& 1 \& 35.799 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 1 \& 1 \& 47.737 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 1 \& 1 \& 52.664 \& 1167.30 \& 58.37 \& A

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 1 \& 1 \& 39.892 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 1 \& 1 \& 51.510 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{715.30} \& \multirow[t]{3}{*}{3083.42} \& A \& 0.295 \& 2.31 \& 0.614 \& 1 \& 1 \& 61.043 \& 1286.02 \& 64.30 \& A

\hline \& \& \& B \& 0.227 \& 2.507 \& 0.596 \& 1 \& 1 \& 49.081 \& \& \&

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 1 \& 1 \& 60.247 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 766.50- \\
46.50
\end{array}
$$} \& \multirow[t]{3}{*}{717.80} \& \multirow[t]{3}{*}{3096.84} \& A \& 0.265 \& 2.394 \& 0.606 \& 1 \& 1 \& 60.785 \& 1217.21 \& 60.86 \& A

\hline \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 1 \& 1 \& 48.450 \& \& \&

\hline \& \& \& C \& 0.262 \& 2.401 \& 0.605 \& 1 \& 1 \& 60.255 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T8 46.50- } \\
26.50
\end{array}
$$} \& \multirow[t]{3}{*}{720.30} \& \multirow[t]{3}{*}{4241.21} \& A \& 0.251 \& 2.435 \& 0.602 \& 1 \& 1 \& 65.755 \& 1182.06 \& 59.10 \& A

\hline \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& I \& 1 \& 53.502 \& \& \&

\hline \& \& \& C \& 0.247 \& 2.445 \& 0.601 \& 1 \& 1 \& 64.967 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{419.86} \& \multirow[t]{3}{*}{4381.64} \& A \& 0.194 \& 2.615 \& 0.589 \& 1 \& 1 \& 58.485 \& 1097.22 \& 54.86 \& A

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 1 \& 1 \& 51.355 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 1 \& 1 \& 57.908 \& \& \&

\hline \multirow[t]{2}{*}{Sum Weight:} \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& 803978.97 \& 9633.00 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
lb
\end{tabular} \& Self Weight
\(\qquad\)
\[
\quad l b
\] \& \begin{tabular}{l}
F \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 0.825 \& 1 \& 17.303 \& 628.46 \& 31.42 \& C

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 0.825 \& 1 \& 25.902 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 0.825 \& 1 \& 25.902 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2166.50- \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 0.825 \& 1 \& 36.302 \& 885.08 \& 44.25 \& C

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 0.825 \& 1 \& 27.235 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 0.825 \& 1 \& 41.172 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50- \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 0.825 \& 1 \& 43.759 \& 974.24 \& 48.71 \& A

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 0.825 \& 1 \& 29.621 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 0.825 \& 1 \& 42.437 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50- \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 0.825 \& 1 \& 47.000 \& 1056.59 \& 52.83 \& A

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 0.825 \& 1 \& 33.571 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 0.825 \& 1 \& 45.771 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T5 } 106.50- \\
86.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 0.825 \& 1 \& 50.330 \& 1115.57 \& 55.78 \& A

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 0.825 \& 1 \& 37.286 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 0.825 \& 1 \& 49.153 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{715.30} \& \multirow[t]{3}{*}{3083.42} \& A \& 0.295 \& 2.31 \& 0.614 \& 0.825 \& 1 \& 57.197 \& 1204.99 \& 60.25 \& A

\hline \& \& \& B \& 0.227 \& 2.507 \& 0.596 \& 0.825 \& 1 \& 44.867 \& \& \&

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 0.825 \& 1 \& 56.378 \& \& \&

\hline T7 66.50- \& \multirow[t]{2}{*}{717.80} \& \multirow[t]{2}{*}{3096.84} \& A \& 0.265 \& 2.394 \& 0.606 \& 0.825 \& 1 \& 57.596 \& 1153.35 \& 57.67 \& A

\hline 46.50 \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 0.825 \& 1 \& 45.000 \& \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job	180' Self Supporter		Page 19 of 33
	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wi	eless	Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f t
\]
\(\qquad\) \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\) \& \(F\)
\(a\)
\(c\)
\(e\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f r^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \& \multirow{4}{*}{720.30} \& \multirow{4}{*}{4241.21} \& C \& 0.262 \& 2.401 \& 0.605 \& 0.825 \& 1 \& 57.055 \& \multirow{4}{*}{1109.21} \& \multirow{4}{*}{55.46} \& \multirow{4}{*}{A}

\hline T8 46.50- \& \& \& A \& 0.251 \& 2.435 \& 0.602 \& 0.825 \& 1 \& 61.702 \& \& \&

\hline 26.50 \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& 0.825 \& 1 \& 49.154 \& \& \&

\hline \& \& \& C \& 0.247 \& 2.445 \& 0.601 \& 0.825 \& 1 \& 60.896 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{2}{*}{419.86} \& \multirow[t]{2}{*}{4381.64} \& A \& 0.194 \& 2.615 \& 0.589 \& 0.825 \& 1 \& 53.778 \& \multirow[t]{2}{*}{1008.92} \& \multirow[t]{2}{*}{50.45} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 0.825 \& 1 \& 46.473 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 0.825 \& 1 \& 53.187 \& \multirow[b]{2}{*}{9136.41} \& \&

\hline Sum Weight: \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& 768259.77
$\mathrm{lb-ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 60 To Face

Section Elevation \qquad $f t$	Add Weight \qquad $l b$	Self Weighi \qquad	F a c e	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} t^{\prime}	F $l b$	w $p l f$	Ctrl. Face
$\begin{array}{r} \text { TI } 186.50- \\ 166.50 \end{array}$	276.00	1005.05	A	0.254	2.425	0.603	0.8	1	17.048	623.36	31.17	C
			B	0.385	2.095	0.646	0.8	1	25.692			
			C	0.385	2.095	0.646	0.8	1	25.692			
$\begin{array}{r} \text { T2 } 166.50- \\ 146.50 \end{array}$	619.20	1286.47	A	0.437	1.995	0.667	0.8	1	36.110	881.30	44.07	C
			B	0.337	2.203	0.628	0.8	1	27.009			
			C	0.485	1.921	0.69	0.8	1	40.997			
T3 146.50- 126.50	712.80	1611.36	A	0.398	2.069	0.651	0.8	1	43.547	969.52	48.48	A
			B	0.276	2.363	0.609	0.8	1	29.365			
			C	0.387	2.09	0.646	0.8	1	42.221			
T4 126.50- 106.50	712.80	1748.35	A	0.344	2.186	0.63	0.8	1	46.723	1050.35	52.52	A
			B	0.247	2.446	0.601	0.8	1	33.253			
			C	0.336	2.205	0.627	0.8	1	45.491			
T5 106.50-	712.80	2368.67	A	0.308	2.274	0.618	0.8	1	49.997	1108.18	55.41	A
			B	0.228	2.506	0.596	0.8	1	36.914			
			C	0.301	2.292	0.616	0.8	1	48.816			
$\begin{array}{r} \text { T6 86.50- } \\ 66.50 \end{array}$	715.30	3083.42	A	0.295	2.31	0.614	0.8	1	56.647	1193.42	59.67	A
			B	0.227	2.507	0.596	0.8	1	44.265			
			C	0.291	2.321	0.613	0.8	1	55.825			
T7 66.50-	717.80	3096.84	A	0.265	2.394	0.606	0.8	1	57.141	1144.23	57.21	A
			B	0.204	2.581	0.591	0.8	1	44.507			
			C	0.262	2.401	0.605	0.8	1	56.598			
T8 46.50-	720.30	4241.21	A	0.251	2.435	0.602	0.8	1	61.123	1098.81	54.94	A
			B	0.196	2.609	0.59	0.8	1	48.533			
			C	0.247	2.445	0.601	0.8	1	60.315			
T9 26.50-6.50	419.86	4381.64	A	0.194	2.615	0.589	0.8	1	53.106	996.30	49.82	A
			B	0.164	2.72	0.584	0.8	1	45.776			
			C	0.192	2.623	0.589	0.8	1	52.513			
Sum Weight:	5606.86	22823.00						OTM	763157.03 $1 \mathrm{~b}-\mathrm{ft}$	9065.47		

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 180' Self Supporter		$\text { Page } 20 \text { of } 33$
	Project	101 Burbank Road Ellington, CT	Date 10:26:00 07/31/06
Rocky Hill. CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless	Designed by Craig Thomas

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
\(f t\)
\end{tabular} \& Add Weight \(l b\) \& \begin{tabular}{l}
Self Weight \\
\(l b\)
\end{tabular} \& \(F\)
\(a\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T1 } 186.50- \\
166.50
\end{array}
$$} \& \multirow[t]{3}{*}{276.00} \& \multirow[t]{3}{*}{1005.05} \& A \& 0.254 \& 2.425 \& 0.603 \& 0.85 \& 1 \& 17.557 \& \multirow[t]{3}{*}{633.56} \& \multirow[t]{3}{*}{31.68} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.385 \& 2.095 \& 0.646 \& 0.85 \& 1 \& 26.112 \& \& \&

\hline \& \& \& C \& 0.385 \& 2.095 \& 0.646 \& 0.85 \& 1 \& 26.112 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{T} 2166.50 \\
146.50
\end{array}
$$} \& \multirow[t]{3}{*}{619.20} \& \multirow[t]{3}{*}{1286.47} \& A \& 0.437 \& 1.995 \& 0.667 \& 0.85 \& 1 \& 36.494 \& \multirow[t]{3}{*}{888.85} \& \multirow[t]{3}{*}{44.44} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 0.337 \& 2.203 \& 0.628 \& 0.85 \& 1 \& 27.461 \& \& \&

\hline \& \& \& C \& 0.485 \& 1.921 \& 0.69 \& 0.85 \& 1 \& 41.348 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T3 } 146.50 \\
126.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1611.36} \& A \& 0.398 \& 2.069 \& 0.651 \& 0.85 \& 1 \& 43.971 \& \multirow[t]{3}{*}{978.97} \& \multirow[t]{3}{*}{48.95} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.276 \& 2.363 \& 0.609 \& 0.85 \& 1 \& 29.876 \& \& \&

\hline \& \& \& C \& 0.387 \& 2.09 \& 0.646 \& 0.85 \& 1 \& 42.652 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T4 } 126.50 \\
106.50
\end{array}
$$} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{1748.35} \& A \& 0.344 \& 2.186 \& 0.63 \& 0.85 \& 1 \& 47.277 \& \multirow[t]{3}{*}{1062.82} \& \multirow[t]{3}{*}{53.14} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.247 \& 2.446 \& 0.601 \& 0.85 \& 1 \& 33.890 \& \& \&

\hline \& \& \& C \& 0.336 \& 2.205 \& 0.627 \& 0.85 \& 1 \& 46.052 \& \& \&

\hline \multirow[t]{3}{*}{T5 106.50-} \& \multirow[t]{3}{*}{712.80} \& \multirow[t]{3}{*}{2368.67} \& A \& 0.308 \& 2.274 \& 0.618 \& 0.85 \& 1 \& 50.663 \& \multirow[t]{3}{*}{1122.96} \& \multirow[t]{3}{*}{56.15} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.228 \& 2.506 \& 0.596 \& 0.85 \& 1 \& 37.658 \& \& \&

\hline \& \& \& C \& 0.301 \& 2.292 \& 0.616 \& 0.85 \& 1 \& 49.489 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T6 86.50- } \\
66.50
\end{array}
$$} \& \multirow[t]{3}{*}{715.30} \& \multirow[t]{3}{*}{3083.42} \& A \& 0.295 \& 2.31 \& 0.614 \& 0.85 \& 1 \& 57.746 \& \multirow[t]{3}{*}{1216.57} \& \multirow[t]{3}{*}{60.83} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.227 \& 2.507 \& 0.596 \& 0.85 \& 1 \& 45.469 \& \& \&

\hline \& \& \& C \& 0.291 \& 2.321 \& 0.613 \& 0.85 \& 1 \& 56.931 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { T7 } 66.50- \\
46.50
\end{array}
$$} \& \multirow[t]{3}{*}{717.80} \& \multirow[t]{3}{*}{3096.84} \& A \& 0.265 \& 2.394 \& 0.606 \& 0.85 \& 1 \& 58.052 \& \multirow[t]{3}{*}{1162.47} \& \multirow[t]{3}{*}{58.12} \& \multirow[t]{3}{*}{A}

\hline \& \& \& B \& 0.204 \& 2.581 \& 0.591 \& 0.85 \& 1 \& 45.493 \& \& \&

\hline \& \& \& C \& 0.262 \& 2.401 \& 0.605 \& 0.85 \& 1 \& 57.513 \& \& \&

\hline T8 46.50- \& \multirow[t]{3}{*}{720.30} \& \multirow[t]{3}{*}{4241.21} \& A \& 0.251 \& 2.435 \& 0.602 \& 0.85 \& 1 \& 62.281 \& \multirow[t]{3}{*}{1119.62} \& \multirow[t]{3}{*}{55.98} \& \multirow[t]{3}{*}{A}

\hline 26.50 \& \& \& B \& 0.196 \& 2.609 \& 0.59 \& 0.85 \& 1 \& 49.775 \& \& \&

\hline \& \& \& C \& 0.247 \& 2.445 \& 0.601 \& 0.85 \& 1 \& 61.478 \& \& \&

\hline \multirow[t]{3}{*}{T9 26.50-6.50} \& \multirow[t]{3}{*}{419.86} \& \multirow[t]{3}{*}{4381.64} \& A \& 0.194 \& 2.615 \& 0.589 \& 0.85 \& 1 \& 54.451 \& \multirow[t]{3}{*}{1021.53} \& \multirow[t]{3}{*}{51.08} \& \multirow[t]{4}{*}{A}

\hline \& \& \& B \& 0.164 \& 2.72 \& 0.584 \& 0.85 \& 1 \& 47.171 \& \& \&

\hline \& \& \& C \& 0.192 \& 2.623 \& 0.589 \& 0.85 \& 1 \& 53.862 \& \& \&

\hline Sum Weight: \& 5606.86 \& 22823.00 \& \& \& \& \& \& OTM \& $$
\begin{array}{r}
773362.52 \\
\text { lh. }
\end{array}
$$ \& 9207.35 \& \&

\hline
\end{tabular}

Force Totals

Load Case	Vertical Forces lb	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Overturning Moments, M_{x} $l b-f i$	Sum of Overturning Moments, $M_{=}$ $l b-f t$	Sum of Torques $l b-f t$
Leg Weight Bracing Weight Total Member Self-Weight Total Weight	13045.51 9777.49 22823.00 33000.86					
Wind 0 deg - No Ice	230wxek	0.00	-33096.85	-3413323.05	4503.83	-2601.65
Wind 30 deg - No Ice		16003.60	-27719.04	-2887287.07	-1666178.02	2728.24
Wind 45 deg - No Ice	星	22504.08	-22504.08	-2347045.21	-2348960.15	5110.75
Wind 60 deg - No Ice		27404.48	-15821.99	-1651200.06	-2866576.20	7113.12
Wind 90 deg - No Ice		32007.19	0.00	6418.77	-3336859.87	9761.51
Wind 120 deg - No Ice		28662.71	16548.43	1716289.68	-2957079.47	10106.13
Wind 135 deg - No Ice	3 ${ }^{2}$	22504.08	22504.08	2359882.75	-2348960.15	8598.42
Wind 150 deg - No Ice		16003.60	27719.04	2900124.62	-1666178.02	7033.27
Wind 180 deg - No Ice		0.00	31643.97	3321656.43	4503.83	2446.80
Wind 210 deg - No Ice		-16003.60	27719.04	2900124.62	1675185.68	-2728.24
Wind 225 deg - No Ice		-22504.08	22504.08	2359882.75	2357967.81	-5110.75
Wind 240 deg - No Ice		-28662.71	16548.43	1716289.68	2966087.12	-7504.48
Wind 270 deg - No Ice		-32007.19	0.00	6418.77	3345867.53	-9761.51
Wind 300 deg - No Ice		-27404.48	-15821.99	-1651200.06	2875583.86	-9559.92
Wind 315 deg - No Ice	\% 4	-22504.08	-22504.08	-2347045.21	2357967.81	-8598.42
Wind 330 deg - No lce		-16003.60	-27719.04	-2887287.07	1675185.68	-7033.27

RISATower URS Corporation 500 Enterprise Drive，Suite $3 B$	Job 180＇Self Supporter		$\begin{aligned} & \text { Page } 21 \text { of } 33 \end{aligned}$
	Project	101 Burbank Road Ellington，CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill，CT 06067 Phone：（850）529－8882 FAX：（860）529－3991	Client	Verizon Wireless	Designed by Craig Thomas

Load Case	Vertical Forces $l b$	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Overturning Moments．M_{x} $l b-f t$	Sum of Overturning Moments，$M_{\text {：}}$ $l b-f t$	Sum of Torgues $l b-f t$
Member Ice Total Weight Ice	$\begin{array}{r} 7679.78 \\ 51457.50 \end{array}$					14636
Wind 0 deg－Ice		0.00	－31135．50	－3270373．57	11217.49	－2919．31
Wind 30 deg －Ice		15162.33	－26261．93	－2780681．64	－1602622．87	2767.55
Wind 45 deg －Ice		21347.22	－21347．22	－2260994．36	－2264348．72	5339.87
Wind 60 deg－Ice		26027.86	－15027．19	－1589724．39	－2767505．11	7519.93
Wind 90 deg－Ice	3zhat ${ }^{\text {a }}$	30324.67	0.00	14571.85	－3216463．22	10404.58
Wind 120 deg －Ice		26964.14	15567.75	1657044.56	－2833628．69	10779.27
Wind 135 deg －Ice	単䜌䜌	21347.22	21347.22	2290138.06	－2264348．72	9290.34
Wind 150 deg －Ice		15162.33	26261.93	2809825.34	－1602622．87	7637.03
Wind 180 deg －Ice		0.00	30054.39	3223164.33	11217.49	2775.42
Wind 210 deg －Ice		－15162．33	26261.93	2809825.34	1625057.85	－2767．55
Wind 225 deg －Ice		－21347．22	21347.22	2290138.06	2286783.70	－5339．87
Wind 240 deg －Ice		－26964．14	15567.75	1657044.56	2856063.67	－7859．96
Wind 270 deg－Ice		－30324．67	0.00	14571.85	3238898.20	－10404．58
Wind 300 deg －Ice		－26027．86	－15027．19	－1589724．39	2789940.09	－10295．35
Wind 315 deg －Ice		－21347．22	－21347．22	－2260994．36	2286783.70	－9290．34
Wind 330 deg －Ice		－15162．33	－26261．93	－2780681．64	1625057.85	－7637．03
Total Weight	33000.86			6418.77	4503.83	2xyuaty
Wind 0 deg－Service	，	0.00	－12928．46	－1334777．53	212.08	－1016．27
Wind 30 deg－Service	，	6251.40	－10827．75	－1129294．72	－652398．01	1065.72
Wind 45 deg－Service		8790.66	－8790．66	－918262．74	－919109．78	1996.39
Wind 60 deg－Service		10704.88	－6180．46	－646448．23	－1121303．55	2778.56
Wind 90 deg－Service		12502.81	0.00	1059.12	－1305008．11	3813.09
Wind 120 deg －Service		11196.37	6464.23	668977.45	－1156656．39	3947.71
Wind 135 deg －Service	4	8790.66	8790.66	920380.99	－919109．78	3358.76
Wind 150 deg －Service		6251.40	10827.75	1131412.97	－652398．01	2747.37
Wind 180 deg －Service	，	0.00	12360.93	1296073.83	212.08	955.78
Wind 210 deg－Service		－6251．40	10827.75	1131412.97	652822.18	－1065．72
Wind 225 deg －Service		－8790．66	8790.66	920380.99	919533.95	－1996．39
Wind 240 deg－Service		－11196．37	6464.23	668977.45	1157080.56	－2931．44
Wind 270 deg－Service		－12502．81	0.00	1059．12	1305432.28	－3813．09
Wind 300 deg－Service		－10704．88	－6180．46	－646448．23	1121727.72	－3734．34
Wind 315 deg －Service		－8790．66	－8790．66	－918262．74	919533.95	－3358．76
Wind 330 deg －Service		－6251．40	－10827．75	－1129294．72	652822.18	－2747．37

Load Combinations

Comb． No．	
1	Dead Only
2	Dead＋Wind 0 deg－No Ice
3	Dead＋Wind 30 deg －No Ice
4	Dead＋Wind 45 deg －No Ice
5	Dead＋Wind 60 deg －No Ice
6	Dead＋Wind 90 deg －No Ice
7	Dead＋Wind 120 deg －No Ice
8	Dead＋Wind 135 deg －No Ice
9	Dead＋Wind 150 deg －No lce
10	Dead＋Wind 180 deg －No Ice
11	Dead＋Wind 210 deg －No Ice
12	Dead＋Wind 225 deg －No Ice
13	Dead＋Wind 240 deg－No Ice
14	Dead＋Wind 270 deg－No Ice
15	Dead＋Wind 300 deg－No Ice
16	Dead＋Wind 315 deg－No Ice

URS Corporation 500 Enterprise Drive, Suite $3 B$ Rocky Hill, CT 06067
Phone: (850) 529-8882
FAX: (860) 529-3991

Job	180' Self Supporter	Page
Project	101 Burbank Road Ellington, CT	Date $10: 26: 00 ~ 07 / 31 / 06$
Client	Verizon Wireless	Designed by Craig Thomas

Comb. No.	Description
17	Dead+Wind 330 deg - No lce
18	Dead+Ice+Temp
19	Dead+Wind 0 deg + Ice + Temp
20	Dead + Wind $30 \mathrm{deg}+$ Ice + Temp
21	Dead+Wind $45 \mathrm{deg}+$ Ice+Temp
22	Dead+Wind 60 deg+Ice+Temp
23	Dead + Wind 90 deg + Ice + Temp
24	Dead+Wind 120 deg+Ice + Temp
25	Dead + Wind 135 deg+Ice + Temp
26	Dead + Wind 150 deg+Ice + Temp
27	Dead + Wind 180 deg + Ice + Temp
28	Dead+Wind 210 deg+lce + Temp
29	Dead + Wind 225 deg+Ice + Temp
30	Dead+Wind 240 deg+lce +Temp
31	Dead+Wind 270 deg+Ice + Temp
32	Dead + Wind 300 deg+Ice + Temp
33	Dead+Wind 315 deg+lce+Temp
34	Dead+Wind 330 deg+Ice + Temp
35	Dead+Wind 0 deg - Service
36	Dead+Wind 30 deg - Service
37	Dead+Wind 45 deg - Service
38	Dead+Wind 60 deg - Service
39	Dead+Wind 90 deg - Service
40	Dead+Wind 120 deg - Service
41	Dead+Wind 135 deg - Service
42	Dead+Wind 150 deg - Service
43	Dead+Wind 180 deg - Service
44	Dead+Wind 210 deg - Service
45	Dead+Wind 225 deg - Service
46	Dead+Wind 240 deg - Service
47	Dead+Wind 270 deg - Service
48	Dead+Wind 300 deg - Service
49	Dead+Wind 315 deg - Service
50	Dead+Wind 330 deg - Service

		Maximum Member Forces					
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force lb	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
TI	186.5-166.5	Leg	Max Tension	5	15744.52	53.30	1.07
			Max. Compression	24	-18856.92	149.93	-2.75
			Max. Mx	15	5504.86	476.17	-2.95
			Max. My	14	-589.64	-1.38	501.18
			Max. Vy	7	-382.80	277.63	3.20
			Max. Vx	6	393.14	-1.38	268.25
		Diagonal	Max Tension	9	2491.15	0.00	0.00
			Max. Compression	9	-2576.07	0.00	0.00
			Max. Mx	25	1410.93	31.98	3.52
			Max. My	9	-2442.51	-11.21	6.91
			Max. Vy	25	-16.44	31.98	3.52
			Max. Vx	9	-2.25	0.00	0.00
		Top Girt	Max Tension	19	399.07	0.00	0.00
			Max. Compression	15	-369.73	0.00	0.00
			Max. Mx	18	17.22	-20.58	0.00
			Max. My	32	209.75	0.00	0.01
			Max. Vy	18	17.71	0.00	0.00
			Max. Vx	32	${ }_{-0.01}$	0.00	0.00
T2	166.5-146.5	Leg	Max Tension	10	41140.82	-9.82	0.26

RISATower	180' Self Supporter			$\text { Page } 23 \text { of } 33$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

RISATOwer	180' Self Supporter			$\begin{aligned} & \text { Page } \\ & 24 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
	Client	Verizon W	ess	$\begin{aligned} & \text { Designed by } \\ & \text { Craig Thomas } \end{aligned}$

	Maximum Reactions				
Location	Condition		Vertical lb	$\begin{aligned} & \text { Horizontal. } X \\ & l b \end{aligned}$	$\begin{aligned} & \text { Horizontal. Z } \\ & \quad l b \end{aligned}$
Leg C	Max. Vert	13	199952.56	18070.09	-10193.61
	Max. H_{s}	13	199952.56	18070.09	-10193.61
	Max. H_{z}	21	-153567.91	-17677.85	10593.30
	Min. Vert	5	-171409.54	-15869.12	8936.71
	Min. H_{x}	22	-159096.76	-18422.08	10401.74
	Min. H_{2}	13	199952.56	18070.09	-10193.61
Leg B	Max. Vert	7	199522.82	-18101.10	-10124.48
	Max. $\mathrm{H}_{\text {x }}$	32	-160168.45	18472.47	10353.70
	Max. $\mathrm{Hz}_{\mathbf{z}}$	33	-154639.64	17744.43	10516.42
	Min. Vert	15	-171839.28	15907.86	8885.17
	Min. H_{x}	7	199522.82	-18101.10	-10124.48
	Min. H_{2}	7	199522.82	-18101.10	-10124.48
Leg A	Max. Vert	2	199206.99	-75.37	20732.60
	Max. $\mathrm{H}_{\text {x }}$	14	10645.45	1790.58	873.58
	Max. $\mathrm{H}_{\mathbf{z}}$	2	199206.99	-75.37	20732.60
	Min. Vert	10	-172154.96	64.00	-18224.84
	Min. $\mathrm{H}_{\text {s }}$	6	10645.43	-1799.52	873.67

RISATOwer	180' Self Supporter			$\begin{aligned} & \text { Page } 25 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B	101 Burbank Road		Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Craig Thomas

Location	Condition	Gov. Load Comb.	Vertical $l b$	Horizontal. X $l b$	Morizontal. Z $l b$
	Min. H_{z}	27	-160838.55	66.79	-21186.66

Tower Mast Reaction Summary

Load Combination	Vertical $l b$	Shear ${ }_{x}$ $l b$	Shear: $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f i$	Torque $l b-f t$
Dead Only	33000.86	-0.00	0.00	6418.75	4503.87	-0.08
Dead+Wind 0 deg - No Ice	33000.86	0.00	-33096.42	-3422827.54	4514.29	-2613.93
Dead+Wind 30 deg - No Ice	33000.86	16003.35	-27718.66	-2895365.83	-1670850.86	2719.62
Dead+Wind 45 deg - No Ice	33000.86	22503.74	-22503.77	-2353612.10	-2355547.02	5117.17
Dead+Wind 60 deg - No Ice	33000.86	27404.07	-15821.75	-1655817.46	-2874619.63	7124.76
Dead+Wind 90 deg - No Ice	33000.51	32006.60	0.50	6451.58	-3346201.20	9792.08
Dead+Wind 120 deg - No Ice	33000.86	28662.34	16548.21	1721078.49	-2965308.04	10131.28
Dead+Wind 135 deg - No Ice	33000.86	22503.79	22503.76	2366496.12	-2355537.54	8619.15
Dead+Wind 150 deg - No Ice	33000.86	16003.39	27718.63	2908241.39	-1670836.36	7045.99
Dead+Wind 180 deg - No lce	33000.86	0.00	31643.49	3330958.94	4514.51	2458.54
Dead+Wind 210 deg - No Ice	33000.86	-16003.39	27718.63	2908239.12	1679864.35	-2719.68
Dead+Wind 225 deg - No Ice	33000.86	-22503.79	22503.76	2366493.70	2364564.40	-5114.21
Dead+Wind 240 deg - No Ice	33000.86	-28662.34	16548.21	1721076.18	2974333.96	-7517.30
Dead+Wind 270 deg - No lce	33000.52	-32006.60	0.50	6451.10	3355225.85	-9792.03
Dead+Wind 300 deg - No Ice	33000.86	-27404.07	-15821.75	-1655816.14	2883645.08	-9583.26
Dead+Wind 315 deg - No Ice	33000.86	-22503.74	-22503.77	-2353610.44	2364573.42	-8621.48
Dead+Wind 330 deg - No Ice	33000.86	-16003.35	-27718.66	-2895364.49	1679878.42	-7045.96
Dead+Ice+Temp	51457.50	0.00	-0.01	14582.49	11217.00	0.06
Dead + Wind 0 deg + lce + Temp	51457.50	0.00	-31134.79	-3284389.28	11255.19	-2950.83
Dead+Wind $30 \mathrm{deg}+\mathrm{Ice}+$ Temp	51457.50	15161.95	-26261.31	-2792647.32	-1609533.93	2769.77
Dead+Wind 45 deg+lce + Temp	51457.50	21346.68	-21346.70	-2270731.24	-2274121.34	5350.95
Dead+Wind 60 deg+Ice+Temp	51457.50	26027.21	-15026.82	-1596571.92	-2779453.24	7542.23
Dead+Wind 90 deg + Ice + Temp	51457.50	30323.93	0.02	14643.67	-3230312.18	10443.19
Dead+Wind 120 deg+Ice+Temp	51457.49	26963.51	15567.43	1664146.03	-2845771.07	10834.75
Dead+Wind 135 deg+Ice+Temp	51457.50	21346.73	21346.70	2299997.03	-2274101.34	9348.08
Dead+Wind $150 \mathrm{deg}+$ Ice + Temp	51457.50	15161.99	26261.28	2821902.10	-1609521.54	7693.75
Dead+Wind $180 \mathrm{deg}+$ lce + Temp	51457.50	0.00	30053.63	3237040.19	11255.76	2806.38
Dead+Wind 210 deg+lce+Temp	51457.50	-15161.99	26261.28	2821899.01	1632031.41	-2769.83
Dead+Wind 225 deg+Ice+Temp	51457.49	-21346.76	21346.67	2299993.41	2296611.07	-5349.66
Dead+Wind $240 \mathrm{deg}+$ lce + Temp	51457.50	-26963.51	15567.39	1664141.81	2868277.89	-7882.58
Dead+Wind 270 deg+Ice+Temp	51457.50	-30323.93	0.02	14641.86	3252817.39	-10443.12
Dead+Wind $300 \mathrm{deg}+$ lce + Temp	51457.50	-26027.21	-15026.82	-1596570.94	2801959.25	-10348.53
Dead+Wind $315 \mathrm{deg}+$ lce + Temp	51457.50	-21346.67	-21346.70	-2270729.57	2296628.68	-9345.20
Dead+Wind 330 deg+Ice + Temp	51457.50	-15161.94	-26261.31	-2792645.85	1632042.34	-7693.74
Dead+Wind 0 deg - Service	33000.86	0.00	-12928.28	-1333135.82	4512.63	-1021.12
Dead+Wind 30 deg - Service	33000.86	6251.31	-10827.60	-1127093.97	-649931.93	1061.23
Dead+Wind 45 deg - Service	33000.86	8790.53	-8790.53	-915471.18	-917394.43	1999.03
Dead+Wind 60 deg - Service	33000.86	10704.72	-6180.37	-642893.32	-1120159.69	2783.30
Dead+Wind 90 deg - Service	33000.86	12502.63	0.00	6436.12	-1304374.00	3826.08
Dead+Wind 120 deg - Service	33000.86	11196.22	6464.14	676220.42	-1155588.19	3957.74
Dead+Wind 135 deg - Service	33000.86	8790.54	8790.53	928341.44	-917392.08	3366.22
Dead+Wind 150 deg - Service	33000.86	6251.32	10827.59	1139962.79	-649929.15	2751.08
Dead+Wind 180 deg - Service	33000.86	0.00	12360.75	1305091.15	4512.79	960.42
Dead+Wind 210 deg - Service	33000.86	-6251.32	10827.59	1139962.41	658954.60	-1061.27
Dead+Wind 225 deg - Service	33000.86	-8790.54	8790.53	928340.98	926417.35	-1997.16
Dead+Wind 240 deg - Service	33000.86	-11196.22	6464.14	676219.99	1164613.23	-2936.61
Dead+Wind 270 deg - Service	33000.86	-12502.63	0.00	6435.93	1313398.83	-3826.06
Dead+Wind 300 deg - Service	33000.86	-10704.72	-6180.37	-642893.22	1129184.60	-3743.72
Dead+Wind 315 deg - Service	33000.86	-8790.53	-8790.53	-915471.01	926419.42	-3367.93
Dead+Wind 330 deg - Service	33000.86	-6251.31	-10827.60	-1127093.79	658957.11	-2751.06

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 180' Self Supporter			$\begin{aligned} & \text { Page } 26 \text { of } 33 \end{aligned}$
	101 Burbank Road Ellington, CT		Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	$P Z$	$P X$	PY	PZ	
Comb.	$l b$						
1	-0.00	-33000.86	0.00	0.00	33000.86	-0.00	0.000\%
2	-0.00	-33000.86	-33096.85	-0.00	33000.86	33096.42	0.001\%
3	16003.60	-33000.86	-27719.04	-16003.35	33000.86	27718.66	0.001\%
4	22504.08	-33000.86	-22504.08	-22503.74	33000.86	22503.77	0.001\%
5	27404.48	-33000.86	-15821.99	-27404.07	33000.86	15821.75	0.001\%
6	32007.19	-33000.86	0.00	-32006.60	33000.51	-0.50	0.002\%
7	28662.71	-33000.86	16548.43	-28662.34	33000.86	-16548.21	0.001\%
8	22504.08	-33000.86	22504.08	-22503.79	33000.86	-22503.76	0.001\%
9	16003.60	-33000.86	27719.04	-16003.39	33000.86	-27718.63	0.001\%
10	0.00	-33000.86	31643.97	-0.00	33000.86	-31643.49	0.001\%
11	-16003.60	-33000.86	27719.04	16003.39	33000.86	-27718.63	0.001\%
12	-22504.08	-33000.86	22504.08	22503.79	33000.86	-22503.76	0.001\%
13	-28662.71	-33000.86	16548.43	28662.34	33000.86	-16548.21	0.001\%
14	-32007.19	-33000.86	0.00	32006.60	33000.52	-0.50	0.002\%
15	-27404.48	-33000.86	-15821.99	27404.07	33000.86	15821.75	0.001\%
16	-22504.08	-33000.86	-22504.08	22503.74	33000.86	22503.77	0.001\%
17	-16003.60	-33000.86	-27719.04	16003.35	33000.86	27718.66	0.001\%
18	-0.00	-51457.50	0.00	-0.00	51457.50	0.01	0.000\%
19	0.00	-51457.50	-31135.50	-0.00	51457.50	31134.79	0.001\%
20	15162.33	-51457.50	-26261.93	-15161.95	51457.50	26261.31	0.001\%
21	21347.22	-51457.50	-21347.22	-21346.68	51457.50	21346.70	0.001\%
22	26027.86	-51457.50	-15027.19	-26027.21	51457.50	15026.82	0.001\%
23	30324.67	-51457.50	0.00	-30323.93	51457.50	-0.02	0.001\%
24	26964.14	-51457.50	15567.75	-26963.51	51457.49	-15567.43	0.001\%
25	21347.22	-51457.50	21347.22	-21346.73	51457.50	-21346.70	0.001\%
26	15162.33	-51457.50	26261.93	-15161.99	51457.50	-26261.28	0.001\%
27	-0.00	-51457.50	30054.39	-0.00	51457.50	-30053.63	0.001\%
28	-15162.33	-51457.50	26261.93	15161.99	51457.50	-26261.28	0.001\%
29	-21347.22	-51457.50	21347.22	21346.76	51457.49	-21346.67	0.001\%
30	-26964.14	-51457.50	15567.75	26963.51	51457.50	-15567.39	0.001\%
31	-30324.67	-51457.50	0.00	30323.93	51457.50	-0.02	0.001\%
32	-26027.86	-51457.50	-15027.19	26027.21	51457.50	15026.82	0.001\%
33	-21347.22	-51457.50	-21347.22	21346.67	51457.50	21346.70	0.001\%
34	-15162.33	-51457.50	-26261.93	15161.94	51457.50	26261.31	0.001\%
35	0.00	-33000.86	-12928.46	-0.00	33000.86	12928.28	0.000\%
36	6251.40	-33000.86	-10827.75	-6251.31	33000.86	10827.60	0.001\%
37	8790.66	-33000.86	-8790.66	-8790.53	33000.86	8790.53	0.001\%
38	10704.88	-33000.86	-6180.46	-10704.72	33000.86	6180.37	0.001\%
39	12502.81	-33000.86	0.00	-12502.63	33000.86	-0.00	0.001\%
40	11196.37	-33000.86	6464.23	-11196.22	33000.86	-6464.14	0.000\%
41	8790.66	-33000.86	8790.66	-8790.54	33000.86	-8790.53	0.000\%
42	6251.40	-33000.86	10827.75	-6251.32	33000.86	-10827.59	0.001\%
43	-0.00	-33000.86	12360.93	-0.00	33000.86	-12360.75	0.001\%
44	-6251.40	-33000.86	10827.75	6251.32	33000.86	-10827.59	0.001\%
45	- 8790.66	-33000.86	8790.66	8790.54	33000.86	-8790.53	0.000\%
46	-11196.37	-33000.86	6464.23	11196.22	33000.86	-6464.14	0.001\%
47	-12502.81	-33000.86	0.00	12502.63	33000.86	-0.00	0.001\%
48	-10704.88	-33000.86	-6180.46	10704.72	33000.86	6180.37	0.001\%
49	-8790.66	-33000.86	-8790.66	8790.53	33000.86	8790.53	0.001\%
50	-6251.40	-33000.86	-10827.75	6251.31	33000.86	10827.60	0.001\%

RISATOwer	180' Self Supporter			$\begin{aligned} & \text { Page } 27 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$	101 Burbank Road Ellington, CT		Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	10	0.00000001	0.00005326
3	Yes	10	0.00000001	0.00005678
4	Yes	10	0.00000001	0.00005905
5	Yes	10	0.00000001	0.00005997
6	Yes	10	0.00000001	0.00005677
7	Yes	10	0.00000001	0.00005326
8	Yes	10	0.00000001	0.00005445
9	Yes	10	0.00000001	0.00005678
10	Yes	10	0.00000001	0.00005995
11	Yes	10	0.00000001	0.00005676
12	Yes	10	0.00000001	0.00005443
13	Yes	10	0.00000001	0.00005324
14	Yes	10	0.00000001	0.00005675
15	Yes	10	0.00000001	0.00005996
16	Yes	10	0.00000001	0.00005905
17	Yes	10	0.00000001	0.00005678
18	Yes	6	0.00000001	0.00000001
19	Yes	10	0.00000001	0.00008983
20	Yes	10	0.00000001	0.00009336
21	Yes	10	0.00000001	0.00009570
22	Yes	10	0.00000001	0.00009665
23	Yes	10	0.00000001	0.00009334
24	Yes	10	0.00000001	0.00008984
25	Yes	10	0.00000001	0.00009102
26	Yes	10	0.00000001	0.00009336
27	Yes	10	0.00000001	0.00009659
28	Yes	10	0.00000001	0.00009329
29	Yes	10	0.00000001	0.00009099
30	Yes	10	0.00000001	0.00008977
31	Yes	10	0.00000001	0.00009328
32	Yes	10	0.00000001	0.00009661
33	Yes	10	0.00000001	0.00009569
34	Yes	10	0.00000001	0.00009337
35	Yes	10	0.00000001	0.00005463
36	Yes	10	0.00000001	0.00005601
37	Yes	10	0.00000001	0.00005690
38	Yes	10	0.00000001	0.00005727
39	Yes	10	0.00000001	0.00005599
40	Yes	10	0.00000001	0.00005463
41	Yes	10	0.00000001	0.00005512
42	Yes	10	0.00000001	0.00005600
43	Yes	10	0.00000001	0.00005724
44	Yes	10	0.00000001	0.00005597
45	Yes	10	0.00000001	0.00005509
46	Yes	10	0.00000001	0.00005460
47	Yes	10	0.00000001	0.00005596
48	Yes	10	0.00000001	0.00005725
49	Yes	10	0.00000001	0.00005689
50	Yes	10	0.00000001	0.00005600

RISATower	Job 180' Self Supporter			$\begin{aligned} & \text { Page } 28 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Till	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature ft
196.50	DB222	46	4.939	0.2925	0.0093	95570
192.25	PD220	46	4.939	0.2925	0.0093	95570
186.50	(3) RR90-17-02DP	46	4.939	0.2925	0.0093	95570
176.50	WPA-80090/4CF	46	4.325	0.2813	0.0092	47785
166.50	(2) 7250.03	46	3.736	0.2654	0.0090	24988
156.50	(4) DUO1417-8686	46	3.192	0.2423	0.0089	24538
76.50	GPS	46	0.580	0.0736	0.0041	42578
75.50	2' Sidearm	46	0.563	0.0722	0.0040	42856
36.50	GPS	46	0.119	0.0271	0.0016	53611
35.50	2' Sidearm	46	0.112	0.0262	0.0015	53604

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
196.50		Comb.	in	\circ	0	fl
192.25	DB222	13	12.613	0.7477	0.0273	37401
186.50	PD220	13	12.613	0.7477	0.0273	37401
	(3) RR90-17-02DP	13	12.613	0.7477	0.0273	37401

RYSATOwer	Job 180' Self Supporter			$\begin{aligned} & \text { Page } 29 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B	101 Burbank Road Ellington, CT			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Elevation	Appurtenance		Gov. Load	Deflection	Till	Twist

Bolt Design Data										
Section No.	$f t$	Type	Bolt Grade	Boll Size in	Number Of Bolls	Maximum Load per Bolt lb	Allowable Load $l b$	Ratio Load Allowable	Allowable Ratio	Criteria
T1	186.5	Leg	A325N	0.7500	4	229.82	19438.60	0.012	1.333	Bolt Tension
		Diagonal	A 325 N	0.6250	1	2576.07	6442.72	$0.400 \text { V }$	1.333	Bolt Shear
T2	166.5	Leg	A325N	0.8750	4	5221.45	26457.30	0.197	1.333	Bolt Tension
		Diagonal	A 325 N	0.6250	1	3420.37	6442.72	0.5317	1.333	Bolt Shear
T3	146.5	Leg	A 325 N	1.0000	4	11753.20	34557.50	0.340 V	1.333	Bolt Tension
		Diagonal	A 325 N	0.6250	1	3385.64	6442.72	0.525	1.333	Bolt Shear
T4	126.5	Leg	A325N	1.0000	6	11761.40	34557.50	0.340	1.333	Bolt Tension
		Diagonal	A325N	0.6250	1	3779.27	6442.72	0.587	1.333	Bolt Shear
T5	106.5	Leg	A 325 N	1.0000	6	15016.00	34557.50	0.435	1.333	Bolt Tension
		Diagonal	A 325 N	0.6250	1	4224.63	6442.72	0.656	1.333	Bolt Shear
T6	86.5	Leg	A325N	1.0000	8	13530.80	34557.50	0.392	1.333	Bolt Tension
	;	Diagonal	A325N	0.7500	1	4540.35	9277.52	0.489	1.333	Bolt Shear
T7	66.5	Leg	A 325 N	1.0000	8	15836.50	34557.50	0.458	1.333	Bolt Tension
		Diagonal	A 325 N	0.7500	1	5606.69	9277.52	0.604	1.333	Bolt Shear
T8	46.5	Leg	A 325 N	1.0000	8	17996.30	34557.50	0.521%	1.333	Bolt Tension
		Diagonal	A 325 N	0.7500	1	6740.30	9277.52	0.727	1.333	Bolt Shear
T9	26.5	Leg	A 325 N	1.0000	10	16053.40	34557.50	0.465	1.333	Bolt Tension
		Diagonal	A 325 N	0.7500	1	8444.98	9277.52	0.910	1.333	Bolt Shear

Compression Checks

Leg Design Data (Compression)

$\begin{aligned} & \text { Section } \\ & \text { No. } \end{aligned}$	Elevation	Size	f	L_{u} $f t$	K//r	F_{u} $k s i$	in^{2}	$\begin{gathered} \text { Actual } \\ P \end{gathered}$	Allow. P_{a}	$\begin{gathered} \text { Ratio } \\ P \\ \hline \end{gathered}$
				f		ksi				$P_{\text {a }}$

RYSATOwer	180' Self Supporter			$\begin{aligned} & \text { Page } 30 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Section No.	Elevation $f t$	Size	\bar{L} ft	$\overline{L_{u}}$ $f t$	Kl/r	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	$\begin{gathered} \text { Allow. } \\ P_{a} \\ l b \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$
Tl	186.5-166.5	ROHN 2.5 STD	20.00	4.00	$\begin{gathered} 50.7 \\ K=1.00 \end{gathered}$	24.247	1.7040	-18856.90	41317.80	$\begin{gathered} 0.456 \\ y \end{gathered}$
T2	166.5-146.5	ROHN 3 EH	20.04	4.01	$\begin{gathered} 42.3 \\ K=1.00 \end{gathered}$	25.503	3.0159	-47341.10	76914.70	$\begin{gathered} 0.616 \\ 7 \end{gathered}$
T3	146.5-126.5	ROHN 4 EH	20.04	5.01	$\begin{gathered} 40.7 \\ \mathrm{~K}=1.00 \end{gathered}$	25.733	4.4074	-72978.50	113416.00	0.643
T4	126.5-106.5	ROHN 5 STD	20.04	6.68	$\begin{gathered} 42.7 \\ \mathrm{~K}=1.00 \end{gathered}$	25.450	4.2999	-94155.90	109433.00	$\begin{gathered} 0.860 \\ y \end{gathered}$
T5	106.5-86.5	ROHN 6 EHS	20.03	6.68	$\begin{gathered} 36.0 \\ \mathrm{~K}=1.00 \end{gathered}$	26.379	6.7133	-115575.00	177090.00	0.653
T6	86.5-66.5	ROHN 6 EH	20.04	6.68	$\begin{gathered} 36.5 \\ \mathrm{~K}=1.00 \end{gathered}$	26.311	8.4049	-136206.00	221146.00	$\begin{gathered} 0.616 \\ y \end{gathered}$
T7	66.5-46.5	ROHN 8 EHS	20.03	10.02	$\begin{gathered} 41.2 \\ \mathrm{~K}=1.00 \end{gathered}$	25.667	9.7193	-154972.00	249468.00	0.621
T8	46.5-26.5	ROHN 8 EH	20.03	10.02	$\begin{gathered} 41.8 \\ \mathrm{~K}=1.00 \end{gathered}$	25.582	12.7627	-176190.00	326496.00	$\begin{gathered} 0.540 \\ \end{gathered}$
T9	26.5-6.5	ROHN 8 EH	20.03	10.02	$\begin{gathered} 41.8 \\ \mathrm{~K}=1.00 \end{gathered}$	25.582	12.7627	-196896.00	326497.00	0.603

Diagonal Design Data (Compression)

Section No.	Elevation $f t$	Size	L fi	L_{v} ft	Kl/r	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{g} \end{gathered}$
T1	186.5-166.5	L2 $2 \times 2 \times 1 / 4$	6.16	2.76	$\begin{gathered} 93.5 \\ \mathrm{~K}=1.10 \end{gathered}$	13.783	0.9380	-2576.07	12928.70	$\begin{gathered} 0.199 \\ y \end{gathered}$
T2	166.5-146.5	L2x2x1/4	7.33	3.45	$\begin{gathered} 109.4 \\ K=1.03 \end{gathered}$	11.751	0.9380	-3420.37	11022.10	$\begin{gathered} 0.310 \\ \end{gathered}$
T3	146.5-126.5	L2x2x1/4	9.92	4.73	$\begin{gathered} 145.1 \\ K=1.00 \end{gathered}$	7.092	0.9380	-3293.51	6652.19	0.495
T4	126.5-106.5	L2 1/2x2 1/2x1/4	12.50	6.02	$\begin{gathered} 147.0 \\ K=1.00 \end{gathered}$	6.910	1.1900	-3779.27	8222.54	0.460
T5	106.5-86.5	L2 1/2x2 1/2x1/4	14.24	6.83	$\begin{gathered} 167.0 \\ K=1.00 \end{gathered}$	5.356	1.1900	-4224.63	6374.17	$\begin{gathered} 0.663 \\ y \end{gathered}$
T6	86.5-66.5	L3 1/2x2 1/2x1/4	16.09	7.77	$\begin{gathered} 171.3 \\ \mathrm{~K}=1.00 \end{gathered}$	5.089	1.4400	-4540.35	7328.02	0.620
T7	66.5-46.5	L3 1/2x2 1/2x1/4	19.29	9.35	$\begin{gathered} 206.2 \\ \mathrm{~K}=1.00 \end{gathered}$	3.511	1.4400	-5606.69	5055.96	1.109
T8	46.5-26.5	$\begin{gathered} \mathrm{KL} / \mathrm{R}>200(\mathrm{C})-164 \\ \mathrm{~L} 4 \times 4 \times 1 / 4 \end{gathered}$	21.03	10.23	$\begin{gathered} 154.3 \\ K=1.00 \end{gathered}$	6.269	1.9400	-6042.40	12161.30	0.497
T9	26.5-6.5	L4x4x1/4	21.92	10.67	$\begin{gathered} 161.1 \\ \mathrm{~K}=1.00 \end{gathered}$	5.754	1.9400	-7746.91	11162.80	$\begin{gathered} 0.694 \\ \% \end{gathered}$

Top Girt Design Data (Compression)

RISATOwer	Job 180' Self Supporter			$\begin{aligned} & \text { Page } \\ & 31 \text { of } 33 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Craig Thomas

Section No.	Elevation $f t$	Size		$\begin{aligned} & L_{u} \\ & f t \end{aligned}$	Kl/r	F_{a} $k s i$	$\begin{aligned} & \text { A } \\ & i n^{2} \end{aligned}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	$\begin{gathered} \text { Allow. } \\ P_{a} \\ l b \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \end{gathered}$
T1	186.5-166.5	L3 $\times 3 \times 1 / 4$	4.65	4.41	$\begin{gathered} 104.7 \\ \mathrm{~K}=1.17 \end{gathered}$	12.374	1.4400	-369.73	17818.60	$\begin{gathered} 0.021 \\ \square \end{gathered}$

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation $f t$	Size	$\begin{aligned} & \bar{L} \\ & f t \end{aligned}$	L_{u} $f t$	Kl / r	F_{a} $k s i$	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{o} \\ \hline \end{gathered}$
TI	186.5-166.5	ROHN 2.5 STD	20.00	4.00	50.7	30.000	1.7040	15744.50	51121.50	$\begin{gathered} 0.308 \\ 5 \end{gathered}$
T2	166.5-146.5	ROHN 3 EH	20.04	4.01	42.3	30.000	3.0159	41140.80	90477.90	0.455
T3	146.5-126.5	ROHN 4 EH	20.04	5.01	40.7	30.000	4.4074	64734.30	132223.00	0.490
T4	126.5-106.5	ROHN 5 STD	20.04	6.68	42.7	30.000	4.2999	83666.70	128996.00	0.649
T5	106.5-86.5	ROHN 6 EHS	20.03	6.68	36.0	30.000	6.7133	102307.00	201398.00	0.508
T6	86.5-66.5	ROHN 6 EH	20.04	6.68	36.5	30.000	8.4049	119682.00	252148.00	0.475
T7	66.5-46.5	ROHN 8 EHS	20.03	10.02	41.2	30.000	9.7193	135442.00	291579.00	$\begin{gathered} 0.465 \\ y \end{gathered}$
T8	46.5-26.5	ROHN 8 EH	20.03	10.02	41.8	30.000	12.7627	152160.00	382882.00	0.397
T9	26.5-6.5	ROHN 8 EH	20.03	10.02	41.8	30.000	12.7627	168269.00	382882.00	0.439

Diagonal Design Data (Tension)										
Section No.	Elevation	Size	L	L_{n}	Kl / r	F_{a}	A	$\begin{gathered} \text { Actual } \\ P \end{gathered}$	$\begin{gathered} \text { Allow. } \\ P_{a} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P \end{gathered}$
	$f t$		f	$f t$		$k s i$	in ${ }^{2}$	$l b$	$l b$	P_{a}
Tl	186.5-166.5	L2 $\times 2 \times 1 / 4$	6.16	2.76	57.6	29.000	0.5629	2491.15	16323.40	$\begin{gathered} 0.153 \\ y \end{gathered}$
T2	166.5-146.5	L2 $2 \times 1 / 4$	7.33	3.45	71.3	29.000	0.5629	3394.81	16323.40	$\begin{gathered} 0.208 \\ 7 \end{gathered}$
T3	146.5-126.5	L2 $2 \times 2 \times 1 / 4$	8.62	4.08	83.8	29.000	0.5629	3344.79	16323.40	0.205
T4	126.5-106.5	L2 1/2x2 1/2x1/4	12.50	6.02	96.5	29.000	0.7519	3670.80	21804.40	$\begin{gathered} 0.168 \\ y \end{gathered}$
T5	106.5-86.5	L2 1/2x2 1/2x1/4	14.24	6.83	109.2	29.000	0.7519	4139.76	21804.40	$\begin{gathered} 0.190 \\ y \end{gathered}$
T6	86.5-66.5	L3 1/2x2 1/2x1/4	16.09	7.77	129.3	29.000	0.9159	4501.29	26562.20	0.169

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	180' Self Supporter		$\begin{aligned} & \text { Page } \\ & 32 \text { of } 33 \end{aligned}$
	Project	101 Burbank Road	Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-399I	Client	Verizon W	less	Designed by Craig Thomas

Section No.	Elevation $f t$	Size	L $f t$	L_{u} $f t$	$K l / r$	F_{a} $k s i$	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$
T7	66.5-46.5	L3 1/2x2 1/2x1/4	19.29	9.35	155.2	29.000	0.9159	5539.45	26562.20	${ }_{0.209}$
T8	46.5-26.5	L4x4x1/4	21.03	10.23	99.8	29.000	1.2909	6740.30	37437.20	$\begin{gathered} Y \\ 0.180 \\ \% \end{gathered}$
T9	26.5-6.5	L4x4x1/4	22.81	11.12	108.3	29.000	1.2909	8444.98	37437.20	$\begin{gathered} 0.226 \\ y \end{gathered}$

Top Girt Design Data (Tension)

Section No.	Elevation ft	Size	L $f t$	L_{u} $f t$	$K l / r$	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \\ \hline \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \end{gathered}$
TI	186.5-166.5	L $3 \times 3 \times 1 / 4$	4.65	4.41	56.9	21.600	1.4400	399.07	31104.00	$\begin{gathered} 0.013 \\ \gamma \end{gathered}$

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	$\%$ Capacity	Pass Fail
T1	186.5-166.5	Leg	ROHN 2.5 STD	2	-18856.90	55076.63	34.2	Pass
T2	166.5-146.5	Leg	ROHN 3 EH	38	-47341.10	102527.30	46.2	Pass
T3	146.5-126.5	Leg	ROHN 4 EH	70	-72978.50	151183.52	48.3	Pass
T4	126.5-106.5	Leg	ROHN 5 STD	97	-94155.90	145874.18	64.5	Pass
T5	106.5-86.5	Leg	ROHN 6 EHS	118	-115575.00	236060.96	49.0	Pass
T6	86.5-66.5	Leg	ROHN 6 EH	139	-136206.00	294787.61	46.2	Pass
T7	66.5-46.5	Leg	ROHN 8 EHS	160	-154972.00	332540.83	46.6	Pass
T8	46.5-26.5	Leg	ROHN 8 EH	175	-176190.00	435219.15	40.5	Pass
T9	26.5-6.5	Leg	ROHN 8 EH	190	-196896.00	435220.48	45.2	Pass
T1	186.5-166.5	Diagonal	L2x2x1/4	9	-2576.07	17233.96	14.9	Pass
							30.0 (b)	
T2	166.5-146.5	Diagonal	L2x2x1/4	46	-3420.37	14692.46	23.3	Pass
							39.8 (b)	
T3	146.5-126.5	Diagonal	L2x2x1/4	74	-3293.51	8867.37	37.1	Pass
							39.4 (b)	
T4	126:5-106.5	Diagonal	L2 1/2x21/2×1/4	101	-3779.27	10960.65	34.5	Pass
							44.0 (b)	
T5	106.5-86.5	Diagonal	L2 1/2x2 1/2x1/4	122	-4224.63	8496.77	49.7	Pass
T6	86.5-66.5	Diagonal	L3 $1 / 2 \times 21 / 2 \times 1 / 4$	143	-4540.35	9768.25	46.5	Pass
T7	66.5-46.5	Diagonal	L3 1/2x2 1/2x1/4	164	-5606.69	6739.59	83.2	Pass
T8	46.5-26.5	Diagonal	L4x4x1/4	179	-6042.40	16211.01	37.3	Pass
							54.5 (b)	
T9	26.5-6.5	Diagonal	L4×4x1/4	200	-7746.91	14880.01	52.1	Pass
							68.3 (b)	
T1	186.5-166.5	Top Girt	L3 $3 \times 3 \times 1 / 4$	6	-369.73	23752.19	1.6	Pass
							Summary	
						Leg (T4)	64.5	Pass
						Diagonal (T7)	83.2	Pass
						Top Girt (T1)	1.6	Pass

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 180' Self Supporter		Page $33 \text { of } 33$
	Project	101 Burbank Road Ellington, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:26:00 07/31/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless	Designed by Craig Thomas

Program Version 4.5.0.0-4/12/2006 File:P:/08/ERIFiles/180' Self-Supporting Lattice Tower.eri

ANCHOR BOLT ANALYSIS

7is				Page of
Job	180' Rohn SSV - Ellington, CT	Project No.	VZ1-201	Sheet 1 of 3
Description	Anchor Bolt Analysis	Computed by	JEK	Date 07/31/06
	Burbank Road	Checked by		Date

Input Data

Max Pier Reactions:

Uplift:
Shear:

Compression:

Use ASTM A354 Grade BC
Number of Anchor Bolts $=\mathrm{N}$

Bolt Ultimate Strength:
Bolt Yield Strength:

Bolt Modulus:

Thickness of Anchor Bolts

Threads per Inch:
Coefficient of Friction:

Anchor Bolt Data:

Uplift := 173-kips
Shear := $22 \cdot \mathrm{kips}$
Compression : $=200 \cdot \mathrm{kips}$
user input
$N:=10$
user input
user input
user input
user input
user input
user input
user input (for baseplate with grout ASCE 10-97)

Job	180' Rohn SSV - Ellington, CT	Project No.	VZ1-201	Sheet	2 of 3
Description	Anchor Boit Analysis	Computed by	JEK	Date	07/31/06
	Burbank Road	Checked by		Date	

Anchor Bolt Area:

Gross Area of Bolt:

$$
A_{g}:=\frac{\pi}{4} \cdot D^{2} \quad A_{g}=0.785 \text { in }^{2}
$$

Net Area of Bolt:

$$
A_{n}:=\frac{\pi}{4} \cdot\left(D-\frac{0.9743 \cdot i n}{n}\right)^{2} \quad A_{n}=0.606 \mathrm{in}^{2}
$$

Check Tensile Forces:

Maximum Tensile Force (Gross Area):
AllowableTension $:=1.33 \cdot\left(0.33 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{F}_{\mathrm{u}}\right) \quad$ AllowableTension $=43.1 \mathrm{kips}$
Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

$$
\mathrm{F}_{\text {net.area }}:=1.33 \cdot\left(0.60 \cdot \mathrm{~A}_{\mathrm{n}} \cdot \mathrm{Fy}\right) \quad \mathrm{F}_{\text {net.area }}=52.7 \mathrm{kips}
$$

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:

$$
\text { MaxTension := } \frac{\text { Uplift }}{\mathrm{N}} \quad \text { MaxTension }=17.3 \mathrm{kips}
$$

Check Stresses:
$\frac{\text { MaxTension }}{\text { AllowableTension }}=0.40$
Conditionl := if $\left(\frac{\text { MaxTension }}{\mathrm{F}_{\text {net.area }}} \leq 1.00\right.$, "OK", "Overstressed" $)$
Condition $=$ "OK"

Oin		Project No.	VZ1-201	Page	of
Job	180' Rohn SSV - Ellington, CT			Sheet	3 of 3
Description	Anchor Bolt Analysis	Computed by	JEK	Date	07/31/06
	Burbank Road	Checked by		Date	

Check Anchor Bolt Area:

Based on the ASCE 10-97 Design of Latticed Stell Transmission Structures
Required Area:

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{s} 1}:=\frac{\text { Uplift }}{\text { Fy }}+\frac{\text { Shear }}{\mu \cdot 0.85 \cdot \mathrm{Fy}} & \mathrm{~A}_{\mathrm{s} 1}=2.0 \mathrm{in}^{2} \\
\mathrm{~A}_{\mathrm{s} 2}:=\left|\frac{\text { Shear }-(0.3 \cdot \text { Compression })}{\mu \cdot 0.85 \cdot \mathrm{Fy}}\right| & \mathrm{A}_{\mathrm{s} 2}=0.7 \mathrm{in}^{2}
\end{array}
$$

Provided Area:

$$
\begin{aligned}
& \mathrm{A}_{\text {sprovided }}:=\mathrm{A}_{\mathrm{n}} \cdot \mathrm{~N} \quad \mathrm{~A}_{\text {sprovided }}=6.1 \mathrm{in}^{2} \\
& \text { Condition2 }:=\text { if }\left(\frac{\mathrm{A}_{\mathrm{s} 1}}{\mathrm{~A}_{\text {sprovided }}} \leq 1.00, \text { "OK", "Overstressed" }\right) \quad \frac{\mathrm{A}_{\mathrm{s} 1}}{\mathrm{~A}_{\text {sprovided }}}=0.3 \\
& \text { Condition2 }=\text { "OK" } \\
& \text { Condition } 3:=\text { if }\left(\frac{\mathrm{A}_{\mathrm{s} 2}}{\mathrm{~A}_{\text {sprovided }}} \leq 1.00, \text { "OK" , "Overstressed" }\right) \quad \frac{\mathrm{A}_{\mathrm{s} 2}}{\mathrm{~A}_{\text {sprovided }}}=0.1 \\
& \text { Condition } 3=\text { "OK" }
\end{aligned}
$$

FOUNDATION ANALYSIS
180' Self-Support Lattice - Ellington, CT
Foundation Analysis
Burbank Road

VZ1-201	Page
SEK	Dateof $07 / 31 / 06$

Foundation Analysis

INPUT DATA

Max Pier Reactions:

Compression:
Uplift:
Shear:

Structure:

Footing Diameter::	$\mathrm{B}_{\mathrm{fg}}:=6 \mathrm{ft}$
Footing Length:	$\mathrm{L}_{\mathrm{ftg}}:=6.5 \mathrm{ft}$

Depths:

Depth to Bottom of Footing: $\quad D_{\text {ftg }}:=0 f t$ (from grade line)
Depth to Suitable Rock:
(from grade line)
Depth to Suitable Earth: (from grade line)
Anchor Depth:
$\mathrm{D}_{\text {anchor }}:=19 \mathrm{ft}$

Soil Properties:

Internal Friction Angle: $\quad \phi:=38 \mathrm{deg}$
Unit Weight of Earth: $\quad \gamma_{\text {earth }}:=100 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
Unit Weight of Rock: $\quad \gamma_{\text {rock }}:=150 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$
Unit Weight of Concrete:
$\gamma_{\text {conc }}:=150 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$

Anchors:

Number of Anchors:	$\mathrm{N}_{\text {anchor }}:=16$
Anchor Spacing:	$\mathrm{S}_{\text {anchor }}:=4.25 \mathrm{ft}$
Hole Diameter:	hole $_{\mathrm{d}}:=4 \mathrm{in}$
Bond Strength:	$\sigma_{\text {bond }}:=100 \mathrm{psi}$
Design Force: (per anchor)	$\mathrm{P}_{\text {design }}:=21 \mathrm{kips}$

Job
$\frac{180^{\prime} \text { Self-Support Lattice - Ellington, CT }}{\text { Foundation Analysis }}$ Project No. \qquad
Page of Sheet 2 of 2 Burbank Road Computed by JEK Date 07/31/06
Description Checked by \qquad Date \qquad

Resisting

Forces:

Embedment Length:

$$
\begin{array}{lll}
\text { Required Embedment: } & \mathrm{L}_{\mathrm{b}}:=\frac{\mathrm{P}_{\text {design }}}{\pi \cdot \text { hole }_{\mathrm{d}} \cdot \sigma_{\text {bond }}} & \mathrm{L}_{\mathrm{b}}=1.4 \mathrm{ft} \\
& \text { Condition2 }:=\text { if }\left[\left(\mathrm{D}_{\text {anchor }}-\mathrm{D}_{\text {rock }}\right) \geq \mathrm{L}_{\mathrm{b}}, \text { "OK" }, \text { "Overstressed" }\right] & \text { Condition2 }=\text { "OK" }
\end{array}
$$

ALP-E 9011-Din

Features:

Small Size

Aesthetically Pleasing
Suitable For toma/coma
High Return Lass

Low Intermodulation

High FTB
O Broadbanded
a Side-lobe Suppression
\square Sturdy Design
Down-Tilt Brackets Incl.

Frequency Range:	800-900 MHz
Impedance:	50 ohm
Connector Type:	$7 / 16$ Dia
Retum Loss:	20 dB
Polarization:	Vertical
Gain:	>11 dBd
Front To Back Ratio:	$>30 \mathrm{~dB}$
Side-Lobe Suppression:	18 dB
Internodulation (2x25W):	$\mathrm{IM} 3>146 \mathrm{~dB}$
	IMS $>153 \mathrm{~dB}$
	$(\mathrm{M} 7 / 9>163 \mathrm{~dB}$
Power Rating:	500 W
H-Plane (-3 dB point)	85-92 ${ }^{\circ}$
\checkmark Plane (-3 dB poinu):	16-18 ${ }^{\circ}$
Lightning Protection:	DC Grounded

Overall Height:	43 in	[1092 mm]
Width:	6.5 in	[165 mma]
Depth:	8 in	[203 mma
Weight Including Tilt-Brackets:	20 lbs	[9.1 Kg]
Rated Wind Velocity:	113 mph	[$180 \mathrm{Km} / \mathrm{h}$]
Wind Area (CxA/Side):	$2.3 \mathrm{sq.ft}$.	[0.22 sq.m]
Lateral Thrust At Rated Wiad		
Worst Case:	112 lbs	$[500 \mathrm{~N}]$
Radiating Elements:	Afuminuo	
Extrusion:	Alumiaum	
Radome:	Grey PVC	
Tilf-Bracket:	Hot Dip	vanized Steel
Antenna Bolts:	Stainiess	

The ALP-E 9011-Din is made in U.S.A.

Mechanical specifications

- Luntith

LPA-185080/8CF

When ordering, replace "___ with connector type.

Radiation-pattern ${ }^{1)}$

Radiation patterns for all antennas are measured with the antenna mounted on a fiberglass pole.

Mounting on a metal pole will typically improve the Front-toBack Ratio.

Amphenol Antel's Exclusive 3 T (True Transmission Line Technology)
Antenna Design:

- True log-periodic design allows for superior front-to-side characteristics to minimize sector overlap.
- Unique feedline design eliminates the need for conventional solder joints in the signal path.
- A non-collinear system with access to every radiating element for broad bandwidth and superior performance.
- Air as insulation for virtually no internal signal loss.

Every Amphenol Antel antenna is under a five-year limited warranty for repair or replacement.

Antenna available with center-fed connector only.

Electical specifications

\qquad

Mounting ${ }^{2}$ dovitiling

Walmounted of pole ower mount with mounting
brackets

Downill bracketkt 426799999
1 he dovinglit brakedkincludes themounting bracketitit

45 施
608 b l l s

CF Denotes a Center-Fed Connector.
$1850-1990 \mathrm{MHz}$

DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF 176' MONOPOLE FOR NEW ANTENNA ARRANGEMENT

60 Industrial Park
Vernon, Connecticut
prepared for

Verizon Wireless 99 East River Drive
East Hartford, Connecticut 06108

URS CORPORATION
500 ENTERPRISE DRIVE, SUITE 3B
ROCKY HILL, CT 06067
TEL. 860-529-8882

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY
2. INTRODUCTION
3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
4. FINDINGS AND EVALUATION
5. CONCLUSIONS
6. DRAWINGS AND DATA

- RISA TOWER INPUT / OUTPUT SUMMARY
- RISA TOWER DETAILED OUTPUT
- ANCHOR BOLT AND BASE PLATE ANALYSIS
- FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the 176 ' monopole located at 60 Industrial Park in Vernon, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code and the TIA/EIA-222-F standard for a wind velocity of 80 mph (fastest mile) and 69 mph (fastest mile) concurrent with $1 / 2^{n}$ ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed Verizon Wireless modification is as follows:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
Remove: (6) existing Swedcom ALP-E-9011 antennas		
Install: (6) Antel LPA-185090-8CF_2 antennas on existing low profile platform with (6) existing 15/8" coax cables	Verizon (Proposed)	@ 155'

The results of the analysis indicate that the existing tower structure is in compliance with the proposed loading conditions. The tower and foundation are considered structurally adequate under the wind load specified above and the existing, future, and proposed antenna loadings.

This analysis is based on:

1) The tower structure's theoretical capacity not including any assessment of the condition of the tower.
2) Tower geometry, member sizes and foundation taken from Tower and Foundation reports prepared by PiROD, Inc. Engineering File No. A-116329 dated January 28, 2000.
3) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration as well as the physical condition of the tower. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.
Sincerely,

$$
c c: \quad D R, A A, I A, C F / B o o k-U R S
$$

2. INTRODUCTION

The subject tower is located at 60 Industrial Park in Vernon, Connecticut. The structure is a 176 , monopole manufactured by PiROD Incorporated.

The tower geometry and structure member sizes were taken from the original construction drawings (PiROD Eng. File \#: A-116329) prepared by PiROD Inc., dated January 28, 2000.

The inventory is summarized in the table below:

Antemna Type	Carrier	Mount	Centerline Elevation	Cable
(6) EMS RR90-1702DP antennas	T-Mobile (existing)	Low Profile Platform	173'	(12) $15 / 8^{n}$ coax cables (within monopole)
(3) Allgon 7250.03 antennas	Cingular Blue (existing)	Flush Mounts	165'	(6) $15 / 8^{n}$ coax cables (within monopole)
$\begin{gathered} \text { (6) Decibel } \\ \text { DB948F85T2E-M } \\ \text { antennas } \end{gathered}$	Verizon (existing)	Low Profile Platform	155'	(6) $15 / 8^{\prime \prime}$ coax cables (within monopole)
$\begin{aligned} & \text { (6) Antel WPA- } \\ & 80090 / 4 \mathrm{CF} \\ & \text { antennas } \\ & \hline \end{aligned}$	Verizon (proposed)	Low Profile Platform (listed above)	155'	(6) $15 / 8^{\prime \prime}$ coax cables (within monopole)
(12) Decibel DB844H90 antennas	Nextel (existing)	Low Profile Platform	$145{ }^{\prime}$	(12) $15 / 8^{\prime \prime}$ coax cables (within monopole)

This structural analysis of the communications tower was performed by URS Corporation (URS) for Verizon Wireless. The purpose of this analysis was to investigate the structural integrity of the existing tower with its existing and proposed antenna loads. This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2005 Connecticut State Building Code, TIA/EIA-222-F-Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction-Allowable Stress Design (ASD).

The analysis was conducted using RISA Tower 4.5. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition $1=80 \mathrm{mph}($ fastest mile $)$ Wind Load (without ice) + Tower Dead Load Load Condition $2=69 \mathrm{mph}($ fastest mile Wind Load (with ice) + Ice Load + Tower Dead Load

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25 percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIA/EIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Combined axial and bending stresses on the monopole structure were evaluated to compare with allowable stresses in accordance with AISC. The calculated stresses under the proposed loading were below the allowable stresses. Detailed analysis and calculations for the proposed load condition are provided in section 6 of this report. Additionally, the anchor bolts, base plate, and foundation were found to be structurally adequate.

5. CONCLUSIONS

The results of the analysis indicate that the tower structure is in compliance with the proposed loading conditions. The tower and its foundation are considered structurally adequate with the TIA/EIA-222-F wind load classification specified above and all the existing and proposed antenna loading.

Limitations/Assumptions:

This report is based on the following:

1. Tower inventory as listed in this report.
2. Tower is properly installed and maintained.
3. All members are as specified in the original design documents and are in good condition.
4. All required members are in place.
5. All bolts are in place and are properly tightened.
6. Tower is in plumb condition.
7. All member protective coatings are in good condition.
8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
9. Foundations were properly constructed to support original design loads as specified in the original design documents.
10. All coaxial cable is installed within the monopole unless specified otherwise.

URS is not responsible for any modifications completed prior to or hereafter in which URS is not or was not directly involved. Modifications include but are not limited to:
A. Adding antennas
B. Removing/replacing antennas
C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions
6. DRAWINGS AND DATA

RISA TOWER INPUT / OUTPUT SUMMARY

Section	9	8	7	\cdots	5	4	3	2	1
Size	P60x5/8	P60x1/2	P60x3/8	P54x3/8	$948 \times 3 / 8$	P42x3/8	P36x3/8	P30x3/8	P24*3/8
Lengit (i)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	15.00
Grade	A53-B-42								
Weight (b) 37182.5	7934.1	6360.6	4780.5	4299.4	3818.4	3337.3	2856.3	2375.2	1420,6

69 mph WIND - 0.5000 in ICE AXIAL

REACTIONS - 80 mph WND

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(2) RR90-17-02DP (T-Mobille)	173	DB948F85T2E-M (Verizon)	155
(2) RR90-17-02DP (T-Mobile)	173	WPA-80090/4CF (Verizon)	155
(2) RR90-17-02DP (T-Motile)	173	DB948F85T2E-M (Varizon)	155
Low Profile Platform(T-Mobile)	173	WPA-80090/4CF (Verizon)	155
7250.03 wiMourt Pipe (Cingular Bkue)	165	DB948F85T2E-M (Verizon)	155
7250.03 w/Mout Pipe (Cingular Bke)	165	WPA-80090/4CF (Verizon)	155
7250.03 w/Mount Pipe (Cingular Bke)	165	PiROD 15' Low Profile Platiorm	155
DB948F85T2E-M (Verizon)	155	(Verizon)	
WPA-80090/4CF (Verizon)	155	PiROD 15' Low Profile Platiom	145
O8948F85T2E-M (Verizon)	155		
WPA-80090/4CF (Verizon)	155	(4) DB844H90 (Nextel)	145
DB948F85T2E-M (Verizon)	155	(4) DB844H90 (Nexdel)	145
WPA-80090/4CF (Verizon)	155	(4) D8844H90 (Nextel)	145

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A433 -42	42 ksi	63 ksi			

TOWER DESIGN NOTES

1. Tower designed for a 80 mph basic wind in accordance with the TIAVEIA-222-F Standard.
2. Tower is also designed for a 69 mph basic wind with 0.50 in ice.
3. Deflections are based upon a 50 mph wind.
4. Weld together tower sections have flange connections.
5. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIAVEIA-222 and AISC Specifications.
6. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153
7. Welds are fabricated with ER-70S-6 electrodes.
8. TOWER RATING: 63.2%

URS Corporation	${ }^{\text {Iob: }} 176$ ' Monopole		
500 Enterprise Drive, Suite 3B Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Project: 60 Industrial Park Vernon, $C T$		
	Cliert: Verizon Wireless	Drawn by Staff	App'
	Code: TIA EIA-222-F	Date:	NTS
	P:		${ }^{\text {No. }}$.

RISA TOWER DETAILED OUTPUT

Job	Page	
Project	176' Monopole	1 of 25
Client	V0 Industrial Park Vernon, CT	Date $12: 13: 38 ~ 07 / 27 / 06$
	Verizon Wireless	Designed by Staff

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Basic wind speed of 80 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56 pcf.
A wind speed of 69 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Weld together tower sections have flange connections..
Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC
Specifications..
Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..
Welds are fabricated with ER-70S-6 electrodes..
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333.
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs

Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
\checkmark Use Code Stress Ratios
\checkmark Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
Add IBC. 6D +W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
Use Clear Spans For Wind Area
Use Clear Spans For KL/r
Retension Guys To Initial Tension
Bypass Mast Stability Checks
Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
\checkmark Consider Feedline Torque Include Angle Block Shear Check
ॠ\#.,
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Pole Section Geometry

Section	Elevation	Section Length $f t$	Pole Size	Pole Grade	Socket Length $f f$
L1	$175.00-160.00$	15.00	P24x3/8	A53-B-42 $(42 \mathrm{ksi})$	
L2	$160.00-140.00$	20.00	P30×3/8	A53-B-42 $(42 \mathrm{ksi})$	
L3	$140.00-120.00$	20.00	P36x3/8	A53-B-42 $(42 \mathrm{ksi})$	

RISATOwer	Job 176' Monopole			$\text { Page } 2 \text { of } 25$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	60 Industrial Park	Vernon, CT	Date $12: 13: 3807 / 27 / 06$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

Section	Elevation \qquad	Section Length $f i$	Pole Size	Pole Grade	Socket Length $f t$
L4	120.00-100.00	20.00	P42x3/8	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	
L5	100.00-80.00	20.00	$\mathrm{P} 48 \times 3 / 8$	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	
L6	80.00-60.00	20.00	P54x3/8	$\begin{gathered} \text { AS3-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	
L7	60.00-40.00	20.00	P60x3/8	$\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$	
L8	40.00-20.00	20.00	P60x1/2	$\begin{aligned} & \text { A53-B-42 } \\ & (42 \mathrm{ksi}) \end{aligned}$	
L9	20.00-0.00	20.00	P60x5/8	$\begin{aligned} & \text { A53-B-42 } \\ & (42 \mathrm{ksi}) \\ & \hline \end{aligned}$	

Tower Elevation ft	Gusset Area (per face) \qquad	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weighi Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
$\begin{gathered} \mathrm{LI} 175.00- \\ 160.00 \end{gathered}$				1	1	1		
$\begin{gathered} \mathrm{L} 2160.00- \\ 140.00 \end{gathered}$				1	1	1		
$\begin{gathered} \text { L3 } 140.00- \\ 120.00 \end{gathered}$				1	1	1		
$\begin{gathered} \text { L4 } 120.00- \\ 100.00 \end{gathered}$				1	1	1		
$\begin{gathered} \text { LS } 100.00- \\ 80.00 \end{gathered}$				1	1	1		
L6 80.00-60.00				1	1	,		
L7 60.00-40.00			.	1	1	I		
L8 40.00-20.00				1	1	1		
L9 20.00-0.00				1	1	1		

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & {f t^{2} / f t}^{2} \end{aligned}$	Weight plf
15/8	C	No	Inside Pole	165.00-9.00	6	No Ice	0.00	1.04
(Cingular Blue)						1/2" Ice	0.00	1.04
$15 / 8$	C	No	Inside Pole	175.00-2.00	12	No Ice	0.00	1.04
(T-Mobile)						1/2" Ice	0.00	1.04
$15 / 8$	C	No	Inside Pole	124.00-9.00	12	No Ice	0.00	1.04
(Nextel)						1/2" lce	0.00	1.04
$15 / 8$	C	No	Inside Pole	155.00-9.00	12	No lce	0.00	1.04
(Verizon)						1/2" Ice	0.00	1.04
$15 / 8$	A	No	CaAa (Out Of	145.00-124.00	1	No Ice	0.20	1.04
(Nextel)			Face)			1/2" Ice	0.30	2.55
15/8	B	No	CaAa (Out Of	145.00-124.00	1	No Ice	0.20	1.04
(Nextel)			Face)			1/2" Ice	0.30	2.55
$15 / 8$	C	No	CaAa (Out Of	145.00-124.00	1	No Ice	0.20	1.04
(Nextel)			Face)			1/2" Ice	0.30	2.55
$15 / 8$	A	No	CaAa (Out Of	145.00-124.00	3	No Ice	0.00	1.04
(Nextel)			Face)			1/2" Ice	0.00	2.55
$15 / 8$	B	No	CaAa (Out Of	145.00-124.00	3	No lce	0.00	1.04

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	176' Monopole		$\text { Page } 3 \text { of } 25$
	Project	60 Industrial Park	Vernon, CT	\|Date
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & {f t^{2} f f}^{\prime} \end{aligned}$	Weight plf
(Nextel)			Face)			1/2" Ice	0.00	2.55
15/8	C	No	CaAa (Out Of	145.00-124.00	3	No Ice	0.00	1.04
(Nextel)			Face)			1/2" Ice	0.00	2.55

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{Feed Line/Linear Appurtenances} \& \multirow[t]{2}{*}{} \\
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)
\(f^{3}\) \& \(A_{F}\)

$f t^{\prime}$ \& $C_{A} A_{A}$ In Face ft^{2} \& \&

\hline \multirow[t]{3}{*}{L1} \& 175.00-160.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 218.40

\hline \multirow[t]{3}{*}{L2} \& 160.00-140.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.990 \& 20.80

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.990 \& 20.80

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.990 \& 582.40

\hline \multirow[t]{3}{*}{L3} \& 140.00-120.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 3.168 \& 66.56

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 3.168 \& 66.56

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 3.168 \& 740.48

\hline \multirow[t]{3}{*}{L4} \& 120.00-100.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 873.60

\hline \multirow[t]{3}{*}{L5} \& 100.00-80.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 873.60

\hline \multirow[t]{3}{*}{L6} \& 80.00-60.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 873.60

\hline \multirow[t]{3}{*}{L7} \& 60.00-40.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 873.60

\hline \multirow[t]{3}{*}{L8} \& 40.00-20.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 873.60

\hline \multirow[t]{3}{*}{L9} \& 20.00-0.00 \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 567.84

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation \(f t\) \& \begin{tabular}{l}
Face or \\
Leg
\end{tabular} \& \begin{tabular}{l}
Ice \\
Thickness in
\end{tabular} \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f f^{\prime}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
f^{\prime}
\end{gathered}
$$ \& $C_{A} A_{A}$ Out Face $f t$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{175.00-160.00} \& A \& \multirow[t]{3}{*}{0.500} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 218.40

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{160.00-140.00} \& A \& \multirow[t]{3}{*}{0.500} \& 0.000 \& 0.000 \& 0.000 \& 1.490 \& 51.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 1.490 \& 51.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 1.490 \& 612.60

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& \multirow[t]{3}{*}{0.500} \& 0.000 \& 0.000 \& 0.000 \& 4.768 \& 163.20

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 4.768 \& 163.20

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 4.768 \& 837.12

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& \multirow[t]{3}{*}{0.500} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 873.60

\hline L. 5 \& 100.00-80.00 \& A \& 0.500 \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	176' Monopole		$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-399I	Client	Verizon Wireless		Designed by Staff

Tower Section	Tower Elevation fi	Face or Leg	Ice Thickness in	A_{R} f^{2}	A_{F} f^{\prime}	$C_{A} A_{A}$ In Face ft°	$C_{A} A_{A}$ Out Face f^{\prime}	Weight $l b$
L6	$80.00-60.00$	B	0.500	0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	873.60
		A		0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
L7	60.00-40.00	C	0.500	0.000	0.000	0.000	0.000	873.60
		A		0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
L8	40.00-20.00	C	0.500	0.000	0.000	0.000	0.000	873.60
		A		0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
L9	20.00-0.00	C	0.500	0.000	0.000	0.000	0.000	873.60
		A		0.000	0.000	0.000	0.000	0.00
		B		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	567.84

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ Ice in	$C P_{Z}$ Ice in
L1	$175.00-160.00$	0.0000	0.0000	0.0000	0.0000
L2	$160.00-140.00$	0.0000	0.0000	0.0000	0.0000
L3	$140.00-120.00$	0.0000	0.0000	0.0000	0.0000
L4	$120.00-100.00$	0.0000	0.0000	0.0000	0.0000
L5	$100.00-80.00$	0.0000	0.0000	0.0000	0.0000
L6	$80.00-60.00$	0.0000	0.0000	0.0000	0.0000
L7	$60.00-40.00$	0.0000	0.0000	0.0000	0.0000
L8	$40.00-20.00$	0.0000	0.0000	0.0000	0.0000
L9	$20.00-0.00$	0.0000	0.0000	0.0000	0.0000

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
fl \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{\prime}$ | \& $C_{A} A_{A}$ Side

$$
f f^{\prime}
$$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{(2) RR90-17-02DP (T-Mobile)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 173.00 \& No Ice \& 4.36 \& 1.97 \& 18.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.77 \& 2.31 \& 40.42

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) RR90-17-02DP (T-Mobile)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 173.00 \& No lce \& 4.36 \& 1.97 \& 18.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.77 \& 2.31 \& 40.42

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) RR90-17-02DP (T-Mobile)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 173.00 \& No Ice \& 4.36 \& 1.97 \& 18.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.77 \& 2.31 \& 40.42

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{Low Profile Platform (T-Mobile)} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{None} \& \& 0.0000 \& 173.00 \& No Ice \& 8.00 \& 8.00 \& 1200.00

\hline \& \& \& \& \& \& 1/2" Ice \& 9.00 \& 9.00 \& 1900.00

\hline (4) DB844H90 \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 3.50 \& 0.0000 \& 145.00 \& No lce \& 2.87 \& 3.97 \& 10.00

\hline (Nextel) \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.18 \& 4.34 \& 36.27

\hline
\end{tabular}

RLSATower	Job 176' Monopole			$\text { Page } 5 \text { of } 25$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	60 Industrial Park	Vernon, CT	Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\hline \text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline \multirow{4}{*}{(4) DB844H90 (Nextel)} \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{145.00} \& \multirow[b]{3}{*}{| No Ice |
| :--- |
| $1 / 2^{11}$ Ice |} \& \multirow[b]{3}{*}{2.87

3.18} \& \multirow[b]{2}{*}{3.97} \& \multirow[b]{3}{*}{10.00
36.27}

\hline \& \& \& 3.50 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& 4.34 \&

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 0.00 \& \multirow{3}{*}{0.0000} \& \& \& \& \multirow{4}{*}{$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$} \& \multirow{4}{*}{10.00

36.27}

\hline \multirow[t]{3}{*}{(4) DB844H90 (Nextel)} \& \& \& 3.50 \& \& \multirow[t]{2}{*}{145.00} \& \multirow[t]{2}{*}{| No Ice |
| :--- |
| $1 / 2^{11}$ Ice |} \& \multirow[t]{3}{*}{2.87

3.18} \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{PiROD 15' Low Profile Platform (Nextel)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{145.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{11}$ Ice} \& \multirow[t]{3}{*}{17.30
22.10} \& \multirow[t]{3}{*}{17.30
22.10} \& \multirow[t]{3}{*}{1500.00
2030.00}

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{No Ice 1/2" Ice} \& \multirow[t]{3}{*}{1.92
2.22} \& \multirow[t]{3}{*}{3.26
3.62} \& \multirow[t]{3}{*}{8.50
27.57}

\hline \& \& \& 4.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{No Ice 1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$} \& 2.71 \& 12.00

\hline \& \& \& 6.00 \& \& \& \& \& \multirow[t]{2}{*}{3.01} \& \multirow[t]{2}{*}{36.71}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\prime \prime}$ Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$} \& 3.26 \& 8.50

\hline \& \& \& -4.00 \& \& \& \& \& \multirow[t]{2}{*}{3.62} \& \multirow[t]{2}{*}{27.57}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{No Ice $1 / 2^{\prime \prime}$ Ice} \& \multirow[t]{3}{*}{3.73
4.10} \& 2.71 \& 12.00

\hline \& \& \& -6.00 \& \& \& \& \& \multirow[t]{2}{*}{3.01} \& \multirow[t]{2}{*}{36.71}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]}

\hline \& \& \& 4.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 3.01
\end{aligned}
$$
\]} \& 12.00

\hline \& \& \& 6.00 \& \& \& \& \& \& \multirow[t]{2}{*}{36.71}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{3.26

3.62} \& 8.50

\hline \& \& \& 4.00 \& \& \& \& \& \& \multirow[t]{2}{*}{27.57}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{2.71

3.01} \& 12.00

\hline \& \& \& -6.00 \& \& \& \& \& \& \multirow[t]{2}{*}{36.71}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DB948F85T2E-M (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]}

\hline \& \& \& 4.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 3.01
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 12.00 \\
& 36.71
\end{aligned}
$$
\]}

\hline \& \& \& 6.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| DB948F85T2E-M |
| :--- |
| (Verizon) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1.92 \\
& 2.22
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 3.26 \\
& 3.62
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
8.50 \\
27.57
\end{gathered}
$$
\]}

\hline \& \& \& -4.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{WPA-80090/4CF (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.73 \\
& 4.10
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.71 \\
& 3.01
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{12.00

36.71}

\hline \& \& \& -6.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{PiROD 15' Low Profile Platform (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{155.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| 1/2" Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 17.30 \\
& 22.10
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 17.30 \\
& 22.10
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1500.00 \\
& 2030.00
\end{aligned}
$$
\]}

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{7250.03 w/Mount Pipe (Cingular Blue)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& \multirow[t]{3}{*}{No Ice 1/2" lce} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4.45 \\
& 5.03
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 3.54 \\
& 4.72
\end{aligned}
$$
\]} \& 40.95

\hline \& \& \& 0.00 \& \& \& \& \& \& \multirow[t]{2}{*}{76.25}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{7250.03 w/Mount Pipe (Cingular Blue)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{165.00} \& \multirow[t]{3}{*}{| No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4.45 \\
& 5.03
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 3.54 \\
& 4.72
\end{aligned}
$$
\]} \& 40.95

\hline \& \& \& 0.00 \& \& \& \& \& \& \multirow[t]{2}{*}{76.25}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{7250.03 w/Mount Pipe (Cingular Blue)} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 1.00 \& 0.0000 \& 165.00 \& No lce \& 4.45 \& 3.54 \& 40.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.03 \& 4.72 \& 76.25

\hline
\end{tabular}

RISATOwer	Job	176' Monopole		$\text { Page } \quad 6 \text { of } 25$
URS Corporation 500 Enterprise Drive, Suite 3B	Project	60 Industrial Park	Vernon, CT	Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
o r \\
\text { Leg }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Offset } \\
& \text { Type }
\end{aligned}
$$ \& $$
\begin{gathered}
\hline \text { Offsets: } \\
\text { Horz } \\
\text { Lateral } \\
\text { Vert } \\
f t \\
f t \\
f t \\
\hline
\end{gathered}
$$ \& Azimuth Adjustment \& Placement

$f t$ \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

$l b$

\hline \& \& \& 0.00 \& \& \& \& \&

\hline
\end{tabular}

Tower Pressures - No Ice

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& \(z\)
\(f t\) \& \(K_{Z}\) \& \(q_{z}\)
\(p s f\) \& \(A_{G}\)

$f i^{\prime}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{\prime}$ \& A_{R}

$f t^{2}$ \& $A_{\text {leg }}$

$f t^{2}$ \& Leg

$\%$ \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| f^{2} | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{2}$ |

\hline \multirow[t]{3}{*}{L1 175.00-} \& \multirow[t]{3}{*}{167.50} \& \multirow[t]{3}{*}{1.591} \& \multirow[t]{3}{*}{26} \& \multirow[t]{3}{*}{30.000} \& \& A 0.000 \& $$
\frac{\mu}{30.000}
$$ \& \multirow[t]{3}{*}{30.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& $$
\begin{aligned}
& 30.000 \\
& 30.000
\end{aligned}
$$ \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 30.000 \& \& \multirow[t]{2}{*}{} \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L2 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.541} \& \multirow[t]{3}{*}{25} \& \multirow[t]{3}{*}{50.000} \& \multirow[t]{2}{*}{A} \& 0.000 \& 50.000 \& \multirow[t]{2}{*}{50.000} \& \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{2.970}

\hline \& \& \& \& \& \& 0.000 \& 50.000 \& \& 100.00
100.00 \& \&

\hline \& \& \& \& \& B \& 0.000 \& 50.000 \& \& $$
\begin{aligned}
& 100.00 \\
& 100.00
\end{aligned}
$$ \& \multirow[t]{3}{*}{} \&

\hline L3 140.00- \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.48} \& \multirow[t]{3}{*}{24} \& \multirow[t]{3}{*}{60.000} \& \& 0.000 \& 60.000 \& \multirow[t]{2}{*}{60.000} \& 100.00 \& \& \multirow[t]{2}{*}{9.504}

\hline 120.00 \& \& \& \& \& A \& 0.000 \& 60.000 \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 100.00 \\
& 100.00
\end{aligned}
$$} \& \&

\hline \& \& \& \& \& C \& 0.000 \& 60.000 \& \& \& 0.000 \&

\hline L4 120.00- \& \multirow[t]{3}{*}{110.00} \& \multirow[t]{3}{*}{1.411} \& \multirow[t]{3}{*}{23} \& \multirow[t]{3}{*}{70.000} \& A \& 0.000 \& 70.000 \& 70.000 \& 100.00 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{0.000}

\hline 100.00 \& \& \& \& \& B \& 0.000 \& 70.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 70.000 \& \& 100.00 \& \&

\hline L5 100.00- \& \multirow[t]{3}{*}{90.00} \& \multirow[t]{3}{*}{1.332} \& \multirow[t]{3}{*}{22} \& \multirow[t]{3}{*}{80.000} \& A \& 0.000 \& 80.000 \& \multirow[t]{2}{*}{80.000} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 100.00 \\
& 100.00
\end{aligned}
$$} \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{0.000}

\hline 80.00 \& \& \& \& \& B \& 0.000 \& 80.000 \& \& \& \&

\hline \& \& \& \& \& C \& 0.000 \& 80.000 \& \& $$
\begin{aligned}
& 100.00 \\
& 100.00
\end{aligned}
$$ \& \&

\hline L6 80.00-60.00 \& \multirow[t]{3}{*}{70.00} \& \multirow[t]{3}{*}{1.24} \& \multirow[t]{3}{*}{20} \& \multirow[t]{3}{*}{90.000} \& A \& 0.000 \& 90.000 \& \multirow[t]{2}{*}{90.000} \& 100.00 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& 90.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& \multirow[t]{2}{*}{$$
\begin{array}{r}
90.000 \\
100.000
\end{array}
$$} \& \& 100.00 \& \multirow{3}{*}{0.000} \&

\hline L7 60.00-40.00 \& \multirow[t]{3}{*}{50.00} \& \multirow[t]{3}{*}{1.126} \& \multirow[t]{2}{*}{18} \& \multirow[t]{3}{*}{100.000} \& A \& 0.000 \& \& \multirow[t]{2}{*}{100.000} \& \multirow[t]{2}{*}{100.00
100.00} \& \& \multirow[t]{2}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& 100.000 \& \& \& \&

\hline \& \& \& \& \& C \& 0.000 \& 100.000 \& \& \multirow[t]{2}{*}{100.00
100.00} \& \&

\hline L8 40.00-20.00 \& \multirow[t]{3}{*}{30.00} \& \multirow[t]{3}{*}{1} \& \multirow[t]{2}{*}{16} \& \multirow[t]{2}{*}{100.000} \& A \& 0.000 \& 100.000 \& 100.000 \& \& 0.000 \& \multirow[t]{2}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 100.000 \& \& 100.00 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline L9 20.00-0.00 \& \multirow[t]{3}{*}{10.00} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{16} \& \multirow[t]{3}{*}{100.000} \& A \& 0.000 \& 100.000 \& \multirow[t]{3}{*}{100.000} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 100.00 \\
& 100.00 \\
& 100.00
\end{aligned}
$$} \& \&

\hline \& \& \& \& \& B \& 0.000 \& 100.000 \& \& \& \&

\hline \& \& \& \& \& C \& 0.000 \& 100.000 \& \& \& \&

\hline
\end{tabular}

Tower Pressure - With Ice

$$
G_{H}=1.690
$$

Section Elevation $f t$	ft	K_{z}	q_{z} psf	t_{2} in	$\overline{A_{G}}$ $f t^{2}$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \\ & \hline \end{aligned}$	$\overline{A_{F}}$ $f t^{\prime}$	$\overline{A_{R}}$ $f f^{\prime}$	$\begin{aligned} & A_{\text {leg }} \\ & {f r^{\prime}}^{\prime} \end{aligned}$	$\begin{gathered} \hline \text { Leg } \\ \% \end{gathered}$	$C_{4} A_{A}$ In Face ft	$C_{A} A_{A}$ Out Face $f t^{\prime}$
L1 175.00	167.50	1.591	20	0.5000	31.250	A	0.000	31.250	31.250	100.00	0.000	0.000

RISATOwer	176' Monopole			$\text { Page } 7 \text { of } 25$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	60 Industrial Park	Vernon, CT	Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\[
f i
\] \& \(z\)
\(f t\) \& \(K_{Z}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(t_{2}\)
in \& \(A_{G}\)

$f f^{\prime}$ \& F
a
c
e \& A_{F}

$f t^{2}$ \& A_{R}

$f f^{2}$ \& $A_{\text {leg }}$

$f t^{\prime}$ \& \[
$$
\begin{gathered}
\overline{L e g} \\
\%
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
f^{\prime} \\
\hline
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{\prime}$ |

\hline 160.00 \& \& \& \& \& \& B \& 0.000 \& 31.250 \& \& 100.00 \& \&

\hline - \& \& \& \& \& \& C \& 0.000 \& 31.250 \& \& 100.00 \& \&

\hline L2 160.00- \& 150.00 \& 1.541 \& 19 \& 0.5000 \& 51.667 \& A \& 0.000 \& 51.667 \& 51.667 \& 100.00 \& 0.000 \& 4.470

\hline 140.00 \& \& \& \& \& \& B \& 0.000 \& 51.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 51.667 \& \& 100.00 \& \&

\hline L3 140.00- \& 130.00 \& 1.48 \& 18 \& 0.5000 \& 61.667 \& A \& 0.000 \& 61.667 \& 61.667 \& 100.00 \& 0.000 \& 14.304

\hline 120.00 \& \& \& \& \& \& B \& 0.000 \& 61.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 61.667 \& \& 100.00 \& \&

\hline L4 120.00- \& 110.00 \& 1.411 \& 17 \& 0.5000 \& 71.667 \& A \& 0.000 \& 71.667 \& 71.667 \& 100.00 \& 0.000 \& 0.000

\hline 100.00 \& \& \& \& \& \& B \& 0.000 \& 71.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 71.667 \& \& 100.00 \& \&

\hline L5 100.00-80.00 \& 90.00 \& 1.332 \& 16 \& 0.5000 \& 81.667 \& A \& 0.000 \& 81.667 \& 81.667 \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 81.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 81.667 \& \& 100.00 \& \&

\hline L6 80.00-60.00 \& 70.00 \& 1.24 \& 15 \& 0.5000 \& 91.667 \& A \& 0.000 \& 91.667 \& 91.667 \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 91.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 91.667 \& \& 100.00 \& \&

\hline L7 60.00-40.00 \& 50.00 \& 1.126 \& 14 \& 0.5000 \& 101.667 \& A \& 0.000 \& 101.667 \& 101.667 \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 101.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 101.667 \& \& 100.00 \& \&

\hline L8 40.00-20.00 \& 30.00 \& 1 \& 12 \& 0.5000 \& 101.667 \& A \& 0.000 \& 101.667 \& 101.667 \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 101.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 101.667 \& \& 100.00 \& \&

\hline L9 20.00-0.00 \& 10.00 \& 1 \& 12 \& 0.5000 \& 101.667 \& A \& 0.000 \& 101.667 \& 101.667 \& 100.00 \& 0.000 \& 0.000

\hline \& \& \& \& \& \& B \& 0.000 \& 101.667 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 101.667 \& \& 100.00 \& \&

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\qquad
$$
f t
$$ \& z
$f t$ \& K_{z} \& q_{z}
$p s f$ \& A_{G}

${f t^{2}}^{2}$ \& | F |
| :--- |
| a |
| c |
| e | \& A_{F}

$f t^{\prime}$ \& A_{R}

$f t^{\prime}$ \& $A_{\text {leg }}$

$f t^{2}$ \& Leg

$\%$ \& | $C_{A} A_{A}$ |
| :--- |
| In |
| Face |
| $f{ }^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f t^{\prime}$ |

\hline \multirow[t]{3}{*}{L1 175.00-} \& \multirow[t]{3}{*}{167.50} \& \multirow[t]{3}{*}{1.591} \& \multirow[t]{3}{*}{10} \& \multirow[t]{3}{*}{30.000} \& A \& 0.000 \& 30.000 \& \multirow[t]{3}{*}{30.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& 30.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 30.000 \& \& 100.00 \& \&

\hline \multirow[t]{3}{*}{L2 $160.00-$
140.00} \& \multirow[t]{3}{*}{150.00} \& \multirow[t]{3}{*}{1.541} \& \multirow[t]{3}{*}{10} \& \multirow[t]{3}{*}{50.000} \& A \& 0.000 \& 50.000 \& \multirow[t]{3}{*}{50.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{2.970}

\hline \& \& \& \& \& B \& 0.000 \& 50.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 50.000 \& \& 100.00 \& \&

\hline L3 140.00- \& \multirow[t]{3}{*}{130.00} \& \multirow[t]{3}{*}{1.48} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{60.000} \& A \& 0.000 \& 60.000 \& \multirow[t]{3}{*}{60.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{9.504}

\hline 120.00 \& \& \& \& \& B \& 0.000 \& 60.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 60.000 \& \& 100.00 \& \&

\hline L4 120.00- \& \multirow[t]{3}{*}{110.00} \& \multirow[t]{3}{*}{1.411} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{70.000} \& A \& 0.000 \& 70.000 \& \multirow[t]{3}{*}{70.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 100.00 \& \& \& \& \& B \& 0.000 \& 70.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 70.000 \& \& 100.00 \& \&

\hline L5 100.00- \& \multirow[t]{3}{*}{90.00} \& \multirow[t]{3}{*}{1.332} \& \multirow[t]{3}{*}{9} \& \multirow[t]{3}{*}{80.000} \& A \& 0.000 \& 80.000 \& \multirow[t]{3}{*}{80.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline 80.00 \& \& \& \& \& B \& 0.000 \& 80.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 80.000 \& \& 100.00 \& \&

\hline \multirow[t]{3}{*}{L6 80.00-60.00} \& \multirow[t]{3}{*}{70.00} \& \multirow[t]{3}{*}{1.24} \& \multirow[t]{3}{*}{8} \& \multirow[t]{3}{*}{90.000} \& A \& 0.000 \& 90.000 \& \multirow[t]{3}{*}{90.000} \& 100.00 \& \multirow[t]{3}{*}{0.000} \& \multirow[t]{3}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& 90.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 90.000 \& \& 100.00 \& \&

\hline L7 60.00-40.00 \& \multirow[t]{2}{*}{50.00} \& \multirow[t]{2}{*}{1.126} \& \multirow[t]{2}{*}{7} \& \multirow[t]{2}{*}{100.000} \& A \& 0.000 \& 100.000 \& \multirow[t]{2}{*}{100.000} \& 100.00 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{0.000}

\hline \& \& \& \& \& B \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	176' Monopole		Page 8 of 25
	Project	60 Industrial Park	Vernon, CT	\|Date
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \(f t\) \& \(K_{z}\) \& \begin{tabular}{l}
\(q_{z}\) \\
psf
\end{tabular} \& \(A_{G}\)

$f t^{2}$ \& F
a
c
e
e \& A_{F}

$f t^{2}$ \& A_{R}

$f t^{2}$ \& $A_{l e g}$

$f f^{\prime}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
I n \\
\text { Face } \\
f t^{\prime} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline C_{A} A_{A} \\
\text { Out } \\
\text { Face } \\
f^{\prime} ?^{\prime}
\end{gathered}
$$
\]

\hline \multirow{4}{*}{L8 40.00-20.00} \& \multirow{4}{*}{30.00} \& \multirow{3}{*}{1} \& \multirow{3}{*}{6} \& \multirow{3}{*}{100.000} \& C \& 0.000 \& 100.000 \& \multirow{3}{*}{100.000} \& 100.00 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline \& \& \& \& \& A \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& B \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline \& \& \multirow{4}{*}{1} \& \multirow{4}{*}{6} \& \multirow{4}{*}{100.000} \& C \& 0.000 \& 100.000 \& \multirow{4}{*}{100.000} \& 100.00 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline L9 20.00-0.00 \& \multirow[t]{3}{*}{10.00} \& \& \& \& A \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& ${ }_{\text {B }}^{\text {B }}$ \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 100.000 \& \& 100.00 \& \&

\hline
\end{tabular}

Tower Forces - No lce - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& Add Weight lb \& \begin{tabular}{l}
Self Weight \\
lb
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$\hat{12}^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{L1 175.00- 160.00} \& \multirow[t]{3}{*}{218.40} \& \multirow[t]{3}{*}{1420.62} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \multirow[t]{3}{*}{779.56} \& \multirow[t]{3}{*}{51.97} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \multirow[t]{3}{*}{L2 $\begin{array}{r}160.00- \\ 140.00\end{array}$} \& \multirow[t]{3}{*}{624.00} \& \multirow[t]{3}{*}{2375.22} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \multirow[t]{3}{*}{1385.70} \& \multirow[t]{3}{*}{69.28} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L3 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{2856.27} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \multirow[t]{3}{*}{1839.56} \& \multirow[t]{3}{*}{91.98} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L4 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3337.33} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \multirow[t]{3}{*}{1613.06} \& \multirow[t]{3}{*}{80.65} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \multirow[t]{3}{*}{L5 100.00-} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3818.38} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \multirow[t]{3}{*}{1740.77} \& \multirow[t]{3}{*}{87.04} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \multirow[t]{3}{*}{L6 80.00-
60.00} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4299.44} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \multirow[t]{3}{*}{1822.68} \& \multirow[t]{3}{*}{91.13} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline L7 60.00- \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4780.50} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1839.58} \& \multirow[t]{3}{*}{91.98} \& \multirow[t]{3}{*}{C}

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline L8 40.00- \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{6360.63} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1633.65} \& \multirow[t]{3}{*}{81.68} \& \multirow[t]{3}{*}{C}

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \multirow[t]{3}{*}{L9 20.00-0.00} \& \multirow[t]{3}{*}{567.84} \& \multirow[t]{3}{*}{7934.09} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1633.65} \& \multirow[t]{5}{*}{81.68} \& \multirow[t]{5}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& I \& 100.000 \& \& \&

\hline Sum Weight: \& \multirow[t]{2}{*}{6651.84} \& \multirow[t]{2}{*}{37182.48} \& \& \& \& \& \& OTM \& $$
\begin{array}{r}
1196593.2 \\
7 \mathrm{lh}-\mathrm{f}
\end{array}
$$ \& \multirow[t]{2}{*}{14288.21} \& \&

\hline \& \& \& \& \& \& \& \& \& $2 \mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 45 To Face

Section Elevation fi	Add Weight lb	Self Weight lb	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} $f t^{\prime}$	F $l b$	w $p l f$	Ctrl. Face
L1 $175.00-$ 160.00	218.40	1420.62	A	1 1 1	0.59 0.59 0.59	1 1 1	1 1 1	1	30.000 30.000 30.000	779.56	51.97	C

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	176' Monopole		Page Date 12:13:38 25 $07 / 27 / 06$
	Project	60 Industrial Park	Vernon, CT	
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\[
l b
\]
\(\qquad\) \& \begin{tabular}{l}
F \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{L2 160.00-} \& \multirow[t]{3}{*}{624.00} \& \multirow[t]{3}{*}{2375.22} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \multirow[t]{3}{*}{1385.70} \& \multirow[t]{3}{*}{69.28} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L3 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{2856.27} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \multirow[t]{3}{*}{1839.56} \& \multirow[t]{3}{*}{91.98} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \multirow[t]{3}{*}{L4 120.00-
100.00} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3337.33} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \multirow[t]{3}{*}{1613.06} \& \multirow[t]{3}{*}{80.65} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \multirow[t]{3}{*}{L5 100.00-} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3818.38} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \multirow[t]{3}{*}{1740.77} \& \multirow[t]{3}{*}{87.04} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
1680.00- \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4299.44} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \multirow[t]{3}{*}{1822.68} \& \multirow[t]{3}{*}{91.13} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline L7 60.00- \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4780.50} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1839.58} \& \multirow[t]{3}{*}{91.98} \& \multirow[t]{3}{*}{C}

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline L8 40.00- \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{6360.63} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1633.65} \& \multirow[t]{3}{*}{81.68} \& \multirow[t]{3}{*}{C}

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \multirow[t]{4}{*}{L9 20.00-0.00} \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \multirow[t]{3}{*}{567.84} \& \multirow[t]{3}{*}{7934.09} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1633.65} \& \multirow[t]{4}{*}{81.68} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline Sum Weight: \& 6651.84 \& 37182.48 \& \& \& \& \& \& OTM \& 1196593.2
$2 \mathrm{lb-ft}$ \& 14288.21 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& Add Weight
\[
l b
\]
\(\qquad\) \& Self Weight
\[
l b
\]
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\hline \text { LI } 175.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{218.40} \& \multirow[t]{3}{*}{1420.62} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \multirow[t]{3}{*}{779.56} \& \multirow[t]{3}{*}{51.97} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L2 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{624.00} \& \multirow[t]{3}{*}{2375.22} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \multirow[t]{3}{*}{1385.70} \& \multirow[t]{3}{*}{69.28} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L3 } 140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{2856.27} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \multirow[t]{3}{*}{1839.56} \& \multirow[t]{3}{*}{91.98} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L4 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3337.33} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \multirow[t]{3}{*}{1613.06} \& \multirow[t]{3}{*}{80.65} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L5 } 100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3818.38} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \multirow[t]{3}{*}{1740.77} \& \multirow[t]{3}{*}{87.04} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L6 } 80.00- \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4299.44} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \multirow[t]{3}{*}{1822.68} \& \multirow[t]{3}{*}{91.13} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline L7 60.00- \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4780.50} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{1839.58} \& \multirow[t]{3}{*}{91.98} \& \multirow[t]{3}{*}{C}

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline L8 40.00- \& \multirow[t]{2}{*}{873.60} \& \multirow[t]{2}{*}{6360.63} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{2}{*}{1633.65} \& \multirow[t]{2}{*}{81.68} \& \multirow[t]{2}{*}{C}

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 176' Monopole			$\text { Page } 10 \text { of } 25$
	Project	60 Industrial Park	Vernon, CT	Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) $529-8882$ FAX: (860) $529-3991$	Client	Verizon W	less	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevalion
\(\qquad\) \\
\(f l\)
\end{tabular} \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& AE

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow{4}{*}{L9 20.00-0.00} \& \multirow{4}{*}{567.84} \& \multirow{3}{*}{7934.09} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow{3}{*}{1633.65} \& \multirow{4}{*}{81.68} \& \multirow{5}{*}{C}

\hline \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline Sum Weight: \& 6651.84 \& 37182.48 \& \& \& \& \& \& OTM \& 1196593.2
$2 \mathrm{lb-ft}$ \& 14288.21 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

Section Elevation \qquad	Add Weight $l b$ \qquad	Self Weight \qquad $l b$	F a c e	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} t^{2}	F $l b$	w p / f	Cirl. Face
$\begin{array}{r} \hline \mathrm{L} 175.00- \\ 160.00 \end{array}$	218.40	1420.62	A	1	0.59	1	1	1	30.000	779.56	51.97	C
			B	1	0.59	1	1	1	30.000			
			C	1	0.59	1	1	1	30.000			
$\begin{array}{r} \text { L2 } 160.00- \\ 140.00 \end{array}$	624.00	2375.22	A	1	0.59	1	1	1	50.000	1385.70	69.28	C
			B	1	0.59	1	1	1	50.000			
			C	1	0.59	1	1	1	50.000			
L3 140.00-120.00	873.60	2856.27	A	1	0.59	1	1	1	60.000	1839.56	91.98	C
			B	1	0.59	1	1	1	60.000			
			C	1	0.59	1	1	1	60.000			
L4 $120.00-1$	873.60	3337.33	A	1	0.59	1	1	1	70.000	1613.06	80.65	C
			B	1	0.59	1	1	1	70.000			
			C	1	0.59	1	1	1	70.000			
L5 $100.00-180.00$	873.60	3818.38	A	1	0.59	1	1	1	80.000	1740.77	87.04	C
			B	1	0.59	1	1	1	80.000			
			C	1	0.59	1	1	1	80.000			
L6 80.00-60.00	873.60	4299.44	A	1	0.59	1	1	1	90.000	1822.68	91.13	C
			B	1	0.59	1	1	1	90.000			
			C	1	0.59	1	1	1	90.000			
L7 60.00-40.00	873.60	4780.50	A	1	0.59	1	1	1	100.000	1839.58	91.98	C
			B	1	0.59	1	1	1	100.000			
			C	1	0.59	1	1	1	100.000			
L8 40.00-20.00	873.60	6360.63	A	1	0.59	1	1	1	100.000	1633.65	81.68	C
			B	1	0.59	1	1	1	100.000			
			C	1	0.59	1	1	1	100.000			
L9 20.00-0.00	567.84	7934.09	A	1	0.59	1	1	1	100.000	1633.65	81.68	C
			B	1	0.59	1	1	1	100.000			
			C	1	0.59	1	1	1	100.000			
Sum Weight:	6651.84	37182.48						OTM	1196593.2 $2 \mathrm{lb}-\mathrm{ft}$	14288.21		

Tower Forces - With Ice - Wind Normal To Face

Section Elevation $f t$	Add Weight lb	Self Weight lb	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	$R_{\text {R }}$	D_{F}	D_{R}	A_{E} $f f^{\prime}$	F lb	w plf	Ctrl. Face
$\begin{array}{r} 175.00- \\ 160.00 \end{array}$	218.40	1645.11	A	1	0.59 0.59	1	1	1	31.250 31.250	609.03	40.60	C

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	176' Monopole		$\begin{aligned} & \text { Page } 11 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
ft
\end{tabular} \& \begin{tabular}{l}
Add Weight \\
\(l b\)
\end{tabular} \& Self Weight \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

f^{2} \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow{4}{*}{L2 160.00-
140.00} \& \multirow{4}{*}{714.60} \& \multirow{4}{*}{2747.84} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \multirow{4}{*}{1118.75} \& \multirow{3}{*}{55.94} \& \multirow{3}{*}{C}

\hline \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \multirow{3}{*}{77.87} \& \multirow{3}{*}{C}

\hline \multirow[t]{3}{*}{L3 140.00- $\begin{array}{r}120.00\end{array}$} \& \multirow[t]{2}{*}{1163.52} \& \multirow[t]{2}{*}{3302.20} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \multirow[t]{2}{*}{1557.36} \& \&

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline \& \multirow{3}{*}{873.60} \& \multirow{3}{*}{3856.56} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \multirow{3}{*}{1238.60} \& \multirow{3}{*}{61.93} \& \multirow{3}{*}{C}

\hline \multirow[t]{2}{*}{L4 120.00-} \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline \& \multirow{3}{*}{873.60} \& \multirow{3}{*}{4410.92} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \multirow{3}{*}{1332.78} \& \multirow{3}{*}{66.64} \& \multirow{3}{*}{C}

\hline L5 100.00- \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline 80.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline \& \multirow{3}{*}{873.60} \& \multirow{3}{*}{4965.28} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \multirow{3}{*}{1392.33} \& \multirow{3}{*}{69.62} \& \multirow{3}{*}{C}

\hline L6 80.00- \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline 60.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline \& \multirow{3}{*}{873.60} \& \multirow{3}{*}{5519.64} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \multirow{3}{*}{1402.67} \& \multirow{3}{*}{70.13} \& \multirow{3}{*}{C}

\hline L7 60.00- \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \multirow{3}{*}{873.60} \& \multirow{3}{*}{7099.78} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \multirow{3}{*}{1245.66} \& \multirow{3}{*}{62.28} \& \multirow{3}{*}{C}

\hline L8 40.00- \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \multirow{3}{*}{567.84} \& \multirow{3}{*}{8673.24} \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \multirow{3}{*}{1245.66} \& \multirow{3}{*}{62.28} \& \multirow{3}{*}{C}

\hline L9 20.00-0.00 \& \& \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \multirow{3}{*}{11142.83} \& \&

\hline Sum Weight: \& 7032.36 \& 42220.60 \& \& \& \& \& \& OTM \& 945901.27 \& \& \&

\hline \& \& \& \& \& \& \& \& \& $\mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& Add Weight
\[
l b
\]
\(\qquad\) \& Self Weight
\[
l b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L1 } 175.00 \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{218.40} \& \multirow[t]{3}{*}{1645.11} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \multirow[t]{3}{*}{609.03} \& \multirow[t]{3}{*}{\[

40.60
\]} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L2 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{714.60} \& \multirow[t]{3}{*}{2747.84} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \multirow[t]{3}{*}{1118.75} \& \multirow[t]{3}{*}{55.94} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L } 3140.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{1163.52} \& \multirow[t]{3}{*}{3302.20} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \multirow[t]{3}{*}{1557.36} \& \multirow[t]{3}{*}{77.87} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L4 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3856.56} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \multirow[t]{3}{*}{1238.60} \& \multirow[t]{3}{*}{61.93} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
L 5100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4410.92} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \multirow[t]{3}{*}{1332.78} \& \multirow[t]{3}{*}{66.64} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathrm{L} 680.00- \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4965.28} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \multirow[t]{3}{*}{1392.33} \& \multirow[t]{3}{*}{69.62} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline L7 $60.00-$ \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{5519.64} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \multirow[t]{3}{*}{1402.67} \& \multirow[t]{3}{*}{70.13} \& \multirow[t]{3}{*}{C}

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline L8 40.00- \& 873.60 \& 7099.78 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1245.66 \& 62.28 \& C

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job $176{ }^{\text {' Monopole }}$			$\begin{aligned} & \text { Page } 12 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park Vernon, CT		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
ft
\end{tabular} \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& ${ }^{w}$ \& Ctrl. Face

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline L9 20.00-0.00 \& 567.84 \& 8673.24 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1245.66 \& 62.28 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline Sum Weight: \& 7032.36 \& 42220.60 \& \& \& \& \& \& OTM \& 945901.27 \& 11142.83 \& \&

\hline \& \& \& \& \& \& \& \& \& $\mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \& Add Weight
\[
l b
\]
\(\qquad\) \& Self Weight
\[
l b
\] \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 $175.00-$ \& 218.40 \& 1645.11 \& A \& 1 \& 0.59 \& I \& 1 \& 1 \& 31.250 \& 609.03 \& 40.60 \& C

\hline 160.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \& \&

\hline \& \& \& C \& I \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \& \&

\hline L2 160.00- \& 714.60 \& 2747.84 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& 1118.75 \& 55.94 \& C

\hline 140.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline L3140.00- \& 1163.52 \& 3302.20 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& 1557.36 \& 77.87 \& C

\hline 120.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline L4 120.00- \& 873.60 \& 3856.56 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& 1238.60 \& 61.93 \& C

\hline 100.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline LS 100.00- \& 873.60 \& 4410.92 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& 1332.78 \& 66.64 \& C

\hline 80.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline L6 80.00- \& 873.60 \& 4965.28 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& 1392.33 \& 69.62 \& C

\hline 60.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline L7 $60.00-$ \& 873.60 \& 5519.64 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1402.67 \& 70.13 \& C

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1. \& 1 \& 101.667 \& \& \&

\hline L8 40.00- \& 873.60 \& 7099.78 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1245.66 \& 62.28 \& c

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline L9 20.00-0.00 \& 567.84 \& 8673.24 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1245.66 \& 62.28 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline Sum Weight: \& 7032.36 \& 42220.60 \& \& \& \& \& \& OTM \& 945901.27 \& 11142.83 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 90 To Face

Section Elevation ft	Add Weight $l b$	Self Weight lb	$\begin{aligned} & F \\ & a \\ & c \\ & e \end{aligned}$	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} $f t^{\prime}$	F $l b$	w plj	Cirl. Face
L1 175.00	218.40	1645.11	A	1	0.59	1	1	1	31.250	609.03	40.60	C

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	176' Monopole		$\begin{aligned} & \text { Page } 13 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation
\(\qquad\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\[
l b
\] \& \begin{tabular}{|l|}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F

$l b$ \& ${ }^{w}$ \& | Ctrl. |
| :--- |
| Face |

\hline 160.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 31.250 \& \& \&

\hline L2 160.00- \& 714.60 \& 2747.84 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& 1118.75 \& 55.94 \& C

\hline 140.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 51.667 \& \& \&

\hline L3 140.00- \& 1163.52 \& 3302.20 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& 1557.36 \& 77.87 \& C

\hline 120.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 61.667 \& \& \&

\hline L4 120.00- \& 873.60 \& 3856.56 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& 1238.60 \& 61.93 \& C

\hline 100.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 71.667 \& \& \&

\hline L5 100.00- \& 873.60 \& 4410.92 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& 1332.78 \& 66.64 \& C

\hline 80.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 81.667 \& \& \&

\hline L6 80.00- \& 873.60 \& 4965.28 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& 1392.33 \& 69.62 \& C

\hline 60.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 91.667 \& \& \&

\hline L7 60.00- \& 873.60 \& 5519.64 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1402.67 \& 70.13 \& C

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline L8 40.00- \& 873.60 \& 7099.78 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1245.66 \& 62.28 \& C

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline L9 20.00-0.00 \& 567.84 \& 8673.24 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& 1245.66 \& 62.28 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 101.667 \& \& \&

\hline Sum Weight: \& 7032.36 \& 42220.60 \& \& \& \& \& \& OTM \& 945901.27 \& 11142.83 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \(f t\) \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\) lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L1 } 175.00- \\
160.00
\end{array}
$$} \& \multirow[t]{3}{*}{218.40} \& \multirow[t]{3}{*}{1420.62} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& 304.52 \& 20.30 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L2 } 160.00- \\
140.00
\end{array}
$$} \& \multirow[t]{3}{*}{624.00} \& \multirow[t]{3}{*}{2375.22} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& 541.29 \& 27.06 \& c

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L } 3 \text { I } 40.00- \\
120.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{2856.27} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& 718.58 \& 35.93 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L4 } 120.00- \\
100.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3337.33} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& 630.10 \& 31.51 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L5 } 100.00- \\
80.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{3818.38} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& 679.99 \& 34.00 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L } 680.00 \\
60.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4299.44} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& 711.99 \& 35.60 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{array}{r}
\text { L7 } 60.00 \\
40.00
\end{array}
$$} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{4780.50} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& 718.58 \& 35.93 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job	$176{ }^{\prime}$ Monopole		$\text { Page } \begin{aligned} & \\ & \\ & \\ & \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\text { \|Date } \begin{aligned} & \text { 12:13:38 07/27/06 } \end{aligned}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f t
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
16
\end{tabular} \& Self Weight
\(\qquad\)
\[
l b
\] \& \(F\)
\(a\)
\(c\)
\(c\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{L8 40.00-} \& \multirow[t]{3}{*}{873.60} \& \multirow[t]{3}{*}{6360.63} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{638.14} \& \multirow[t]{3}{*}{31.91} \& \multirow[t]{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \multirow[t]{3}{*}{L9 20.00-0.00} \& \multirow[t]{3}{*}{567.84} \& \multirow[t]{3}{*}{7934.09} \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \multirow[t]{3}{*}{638.14} \& \multirow[t]{3}{*}{31.91} \& \multirow[t]{4}{*}{C}

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline Sum Weight: \& 6651.84 \& 37182.48 \& \& \& \& \& \& OTM \& 467419.23
$\mathrm{lb-ft}$ \& 5581.33 \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 45 To Face

Section Elevation \qquad ft	Add Weight lb	Self Weight \qquad lb	F a c e	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} 1	F $l b$	w $p l f$	Ctrl. Face
$\begin{array}{r} \text { L1 } 175.00- \\ 160.00 \end{array}$	218.40	1420.62	A	1	0.59	1	1	1	30.000	304.52	20.30	C
			B	1	0.59	1	1	1	30.000			
			C	1	0.59	1	1	1	30.000			
L2 $160.00-$140.00	624.00	2375.22	A	1	0.59	1	1	1	50.000	541.29	27.06	C
			B	1	0.59	1	1	1	50.000			
			C	1	0.59	1	1	1	50.000			
L $3140.00-$120.00	873.60	2856.27	A	1	0.59	1	1	1	60.000	718.58	35.93	C
			B	1	0.59	1	1	1	60.000			
			C	1	0.59	1	1	1	60.000			
L4 $120.00-1$	873.60	3337.33	A	1	0.59	1	1	1	70.000	630.10	31.51	C
			B	1	0.59	1	1	1	70.000			
			C	1	0.59	1	1	1	70.000			
L5 100.00-	873.60	3818.38	A	1	0.59	1	1	1	80.000	679.99	34.00	C
			B	1	0.59	1	1	1	80.000			
			C	1	0.59	1	1	1	80.000			
L6 80.00-60.00	873.60	4299.44	A	1	0.59	1	1	1	90.000	711.99	35.60	C
			B	1	0.59	1	1	1	90.000			
			C	1	0.59	1	1	1	90.000			
L7 60.00-	873.60	4780.50	A	1	0.59	1	1	1	100.000	718.58	35.93	C
40.00			B	1	0.59	1	1	1	100.000			
			C	1	0.59	1	1	1	100.000			
L8 40.00-	873.60	6360.63	A	1	0.59	1	1	1	100.000	638.14	31.91	C
20.00			B	1	0.59	1	1	1	100.000			
			C	1	0.59	1	1	1	100.000			
L9 20.00-0.00	567.84	7934.09	A	1	0.59	1	1	1	100.000	638.14	31.91	C
			B	1	0.59	1	1	1	100.000			
			C	1	0.59	1	1	1	100.000			
Sum Weight:	6651.84	37182.48						OTM	467419.23	5581.33		
									lb-ft			

Tower Forces - Service - Wind 60 To Face

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 176' Monopole			$\begin{aligned} & \text { Page } 15 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \\ \hline \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-399I	Client	Verizon W	ess	Designed by Staff

Tower Forces - Service - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
$$
f t
$$ \& Add Weight
\qquad lb \& Self Weight
\qquad \& F
a
c
e \& e \& CF \& R_{R} \& D_{F} \& D_{R} \& $A E$

t^{2} \& | F |
| :--- |
| $l b$ | \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline LI 175.00- \& 218.40 \& 1420.62 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& 304.52 \& 20.30 \& C

\hline 160.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 30.000 \& \& \&

\hline L2 160.00- \& 624.00 \& 2375.22 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& 541.29 \& 27.06 \& C

\hline 140.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 50.000 \& \& \&

\hline L3 140.00- \& 873.60 \& 2856.27 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& 718.58 \& 35.93 \& C

\hline 120.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 60.000 \& \& \&

\hline L4 120.00- \& 873.60 \& 3337.33 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& 630.10 \& 31.51 \& C

\hline 100.00 \& \& \& B \& 1 \& 0.59 \& I \& 1 \& 1 \& 70.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 70.000 \& \& \&

\hline L5 100.00- \& 873.60 \& 3818.38 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& 679.99 \& 34.00 \& C

\hline 80.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 80.000 \& \& \&

\hline L6 80.00- \& 873.60 \& 4299.44 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& 711.99 \& 35.60 \& C

\hline 60.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 90.000 \& \& \&

\hline L7 60.00 - \& 873.60 \& 4780.50 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& 718.58 \& 35.93 \& C

\hline 40.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline
\end{tabular}

RISATower URS Corporation 500 Enterprise Drive，Suite $3 B$	Job 176＇Monopole			$\text { Page } 16 \text { of } 25$
	Project	60 Industrial Park	Vernon，CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill，CT 06067 Phone：（860）529－8882 FAX：（860）529－399I	Verizon Wireless			Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section Elevation \\
fi
\end{tabular} \& Add Weight lb \& Self Weight \(l b\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w
$p l f$ \& Ctrl． Face

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline L8 40．00－ \& 873.60 \& 6360.63 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& 638.14 \& 31.91 \& C

\hline 20.00 \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline L9 20．00－0．00 \& 567.84 \& 7934.09 \& A \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& 638.14 \& 31.91 \& C

\hline \& \& \& B \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline \& \& \& C \& 1 \& 0.59 \& 1 \& 1 \& 1 \& 100.000 \& \& \&

\hline Sum Weight： \& 6651.84 \& 37182.48 \& \& \& \& \& \& OTM \& 467419.23 \& 5581.33 \& \&

\hline \& \& \& \& \& \& \& \& \& $\mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Force Totals

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load Case \& \begin{tabular}{l}
Vertical Forces
\(\qquad\) \\
\(l b\)
\end{tabular} \& Sum of Forces X \(l b\) \& Sum of Forces Z \(l b\) \& Sum of Overturning Moments，\(M_{x}\) \(l b-f t\) \& Sum of Overturning Moments，\(M_{z}\) \(l b-f t\) \& Sum ofTorques

$l b-f t$

\hline | Leg Weight |
| :--- |
| Bracing Weight |
| Total Member Self－Weight |
| Total Weight | \& \[

$$
\begin{array}{r}
37182.48 \\
0.00 \\
37182.48 \\
48508.17 \\
\hline
\end{array}
$$
\] \& \& \& \& \&

\hline Wind 0 deg－No Ice \& Wx \& 0.00 \& －20723．66 \& －2196292．55 \& 0.00 \& 0.00

\hline Wind 30 deg －No Ice \& \& 10361.83 \& －17947．22 \& －1902045．14 \& －1098146．27 \& 0.00

\hline Wind 45 deg －No Ice \& NH： \& 14653.84 \& －14653．84 \& －1553013．35 \& －1553013．35 \& 0.00

\hline Wind 60 deg －No Ice \& \& 17947.22 \& －10361．83 \& －1098146．27 \& －1902045．14 \& 0.00

\hline Wind 90 deg －No Ice \& \& 20723.66 \& 0.00 \& 0.00 \& －2196292．55 \& 0.00

\hline Wind 120 deg －No Ice \& \& 17947.22 \& 10361.83 \& 1098146.27 \& －1902045．14 \& 0.00

\hline Wind 135 deg－No Ice \& \& 14653.84 \& 14653.84 \& 1553013.35 \& －1553013．35 \& 0.00

\hline Wind 150 deg－No Ice \& \& 10361.83 \& 17947.22 \& 1902045.14 \& －1098146．27 \& 0.00

\hline Wind 180 deg －No Ice \& \& 0.00 \& 20723.66 \& 2196292.55 \& 0.00 \& 0.00

\hline Wind 210 deg－No Ice \& \& －10361．83 \& 17947.22 \& 1902045.14 \& 1098146.27 \& 0.00

\hline Wind 225 deg－No Ice \& \& －14653．84 \& 14653.84 \& 1553013.35 \& 15530［3．35 \& 0.00

\hline Wind 240 deg－No Ice \& 䜌䜌 \& －17947．22 \& 10361.83 \& 1098146.27 \& 1902045.14 \& 0.00

\hline Wind 270 deg－No Ice \& \& －20723．66 \& 0.00 \& 0.00 \& 2196292.55 \& 0.00

\hline Wind 300 deg －No Ice \& \％ \& －17947．22 \& －10361．83 \& －1098146．27 \& 1902045.14 \& 0.00

\hline Wind 315 deg －No Ice \& ： \& －14653．84 \& －14653．84 \& －1553013．35 \& 1553013.35 \& 0.00

\hline Wind 330 deg －No Ice \& \& －10361．83 \& －17947．22 \& －1902045．14 \& 1098146.27 \& 0.00

\hline Member Ice

Total Weight lce \& $$
\begin{array}{r}
5038.11 \\
56505.08
\end{array}
$$ \& \& \& \& \&

\hline Wind 0 deg－Ice \& \& 0.00 \& －16731．32 \& －1813789．18 \& 0.00 \& 0.00

\hline Wind 30 deg －Ice \& 8 \& 8365.66 \& －14489．74 \& －1570787．51 \& －906894．59 \& 0.00

\hline Wind 45 deg－Ice \& \& 11830.83 \& －11830．83 \& －1282542．63 \& －1282542．63 \& 0.00

\hline Wind 60 deg－Ice \& 5 \& 14489.74 \& －8365．66 \& －906894．59 \& －1570787．51 \& 0.00

\hline Wind 90 deg－Ice \& \& 16731.32 \& 0.00 \& 0.00 \& －1813789．18 \& 0.00

\hline Wind 120 deg－Ice \& \& 14489.74 \& 8365.66 \& 906894.59 \& －1570787．51 \& 0.00

\hline Wind 135 deg－Ice \& ） \& 11830.83 \& 11830.83 \& 1282542.63 \& －1282542．63 \& 0.00

\hline Wind 150 deg－Ice \& 2 \& 8365.66 \& 14489.74 \& 1570787.51 \& －906894．59 \& 0.00

\hline Wind 180 deg －Ice \& 䜌 \& 0.00 \& 16731.32 \& 1813789.18 \& 0.00 \& 0.00

\hline Wind 210 deg－Ice \& \& －8365．66 \& 14489.74 \& 1570787.51 \& 906894.59 \& 0.00

\hline Wind 225 deg－Ice \& \& －11830．83 \& 11830.83 \& 1282542.63 \& 1282542.63 \& 0.00

\hline Wind 240 deg－Ice \& \& －14489．74 \& 8365.66 \& 906894.59 \& 1570787.51 \& 0.00

\hline Wind 270 deg－Ice \& \& －16731．32 \& 0.00 \& 0.00 \& 1813789.18 \& 0.00

\hline Wind 300 deg－Ice \& \& －14489．74 \& －8365．66 \& －906894．59 \& 1570787.51 \& 0.00

\hline Wind 315 deg －Ice \& \& －11830．83 \& －11830．83 \& －1282542．63 \& 1282542.63 \& 0.00

\hline Wind 330 deg－Ice \& \& －8365．66 \& －14489．74 \& －1570787．51 \& 906894.59 \& 0.00

\hline Total Weight \& 48508.17 \& V2 dxakuk \& \& 0.00 \& 0.00 \&

\hline Wind 0 deg－Service \& \& 0.00 \& －8095．18 \& －857926．78 \& 0.00 \& 0.00

\hline
\end{tabular}

RISATower URS Corporation 500 Entexprise Drive, Suite $3 B$	Job 176' Monopole			$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

Load Case	Vertical Forces. lb	Sum of Forces X $l b$	Sum of Forces Z $l b$	Sum of Overturning Moments, M_{x} $l b-f t$	Sum of Overturning Moments, M_{z} $l b-f t$	Sum of Torques $l b-f t$
Wind 30 deg - Service		4047.59	-7010.63	-742986.38	-428963.39	0.00
Wind 45 deg - Service		5724.16	-5724.16	-606645.84	-606645.84	0.00
Wind 60 deg - Service		7010.63	-4047.59	-428963.39	-742986.38	0.00
Wind 90 deg - Service		8095.18	0.00	0.00	-857926.78	0.00
Wind 120 deg - Service		7010.63	4047.59	428963.39	-742986.38	0.00
Wind 135 deg - Service		5724.16	5724.16	606645.84	-606645.84	0.00
Wind 150 deg - Service		4047.59	7010.63	742986.38	-428963.39	0.00
Wind 180 deg - Service		0.00	8095.18	857926.78	0.00	0.00
Wind 210 deg - Service		-4047.59	7010.63	742986.38	428963.39	0.00
Wind 225 deg - Service		-5724.16	5724.16	606645.84	606645.84	0.00
Wind 240 deg - Service		-7010.63	4047.59	428963.39	742986.38	0.00
Wind 270 deg - Service		-8095.18	0.00	0.00	857926.78	0.00
Wind 300 deg - Service		-7010.63	-4047.59	-428963.39	742986.38	0.00
Wind 315 deg - Service		-5724.16	-5724.16	-606645.84	606645.84	0.00
Wind 330 deg - Service		-4047.59	-7010.63	-742986.38	428963.39	0.00

Load Combinations

Comb. No.		Description
1	Dead Only	
2	Dead+Wind 0 deg - No lce	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 45 deg - No Ice	
5	Dead+Wind 60 deg - No lce	
6	Dead+ Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
8	Dead+Wind 135 deg - No lce	
9	Dead+Wind 150 deg - No Ice	
10	Dead+Wind 180 deg - No lce	
11	Dead+Wind 210 deg - No Ice	
12	Dead+Wind 225 deg - No lce	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No lce	
15	Dead+Wind 300 deg - No Ice	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice+Temp	
19	Dead+Wind 0 deg+Ice + Temp	
20	Dead+Wind 30 deg+Ice+Temp	
21	Dead+Wind 45 deg+Ice + Temp	
22	Dead+Wind $60 \mathrm{deg}+$ Ice + Temp	
23	Dead+Wind 90 deg + Ice + Temp	
24	Dead+Wind 120 deg + lce + Temp	
25	Dead + Wind $135 \mathrm{deg}+$ lce + Temp	
26	Dead + Wind $150 \mathrm{deg}+$ Ice + Temp	
27	Dead+Wind $180 \mathrm{deg}+$ Ice + Temp	
28	Dead + Wind $210 \mathrm{deg}+$ Ice + Temp	
29	Dead + Wind 225 deg + lce + Temp	
30	Dead + Wind $240 \mathrm{deg}+$ Ice + Temp	
31	Dead+Wind $270 \mathrm{deg}+$ Ice + Temp	
32	Dead + Wind $300 \mathrm{deg}+$ Ice + Temp	
33	Dead + Wind $315 \mathrm{deg}+$ Ice + Temp	
34	Dead + Wind 330 deg + Ice + Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	Job 176' Monopole			$\text { Page } 18 \text { of } 25$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

Comb. No.	
37	Dead+Wind 45 deg - Service
38	Dead+Wind 60 deg - Service
39	Dead+Wind 90 deg - Service
40	Dead+Wind 120 deg - Service
41	Dead+Wind 135 deg - Service
42	Dead+Wind 150 deg - Service
43	Dead+Wind 180 deg - Service
44	Dead+Wind 210 deg - Service
45	Dead+Wind 225 deg - Service
46	Dead+Wind 240 deg - Service
47	Dead+Wind 270 deg - Service
48	Dead+Wind 300 deg - Service
49	Dead+Wind 315 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	$\begin{gathered} \text { Elevation } \\ f l \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Force $l b$	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
L1	175-160	Pole	Max Tension	6	0.00	0.00	0.00
			Max. Compression	18	-4234.76	0.00	0.00
			Max. Mx	6	-2992.86	-24965.72	0.00
			Max. My	2	-2992.86	0.00	24965.72
			Max. Vy	6	2595.92	-24965.72	0.00
			Max. Vx	2	-2595.92	0.00	24965.72
			Max. Torque	20			-0.00
L2	160-140	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-12578.08	0.00	0.00
			Max. Mx	6	-9063.85	-138514.74	0.00
			Max. My	2	-9063.85	0.00	138514.74
			Max. Vy	6	8861.97	-138514.74	0.00
			Max. Vx	2	-8861.97	0.00	138514.74
			Max. Torque	34			0.00
L3	140-120	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-17043.80	0.00	0.00
			Max. Mx	6	-12777.09	-334834.59	0.00
			Max. My	2	-12777.09	0.00	334834.59
			Max. Vy	6	10762.87	-334834.59	0.00
			Max. Vx	2	-10762.87	0.00	334834.59
			Max. Torque	34			0.00
L4	120-100	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-21773.97	0.00	0.00
			Max. Mx	6	-16998.44	-566632.77	0.00
			Max. My	2	-16998.44	0.00	566632.77
			Max. Vy	6	12409.69	-566632.77	0.00
			Max. Vx	2	-12409.69	0.00	566632.77
			Max. Torque	34			0.00
LS	100-80	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-27058.49	0.00	0.00
			Max. Mx	6	-21714.99	-832332.17	0.00
			Max. My	2	-21714.99	0.00	832332.17
			Max. Vy	6	14153.37	-832332.17	0.00
			Max. Vx	2	-14153.37	0.00	832332.17
			Max. Torque	34			0.00
L6	80-60	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-32897.38	0.00	0.00
			Max. Mx	6	-26926.01	-	0.00
						1133384.54	

RISATower URS Corporation 500 Enterprise Drive. Suite 3B	Job	176' Monopole		$\text { Page } 19 \text { of } 25$
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \\ \hline \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Force lb	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
L7	60-40	Pole	Max. My	2	-26926.01	0.00	1133384.54
			Max. Vy	6	15945.53	1133384.54	0.00
			Max. Vx	2	-15945.53	0.00	1133384.54
			Max. Torque	34			0.00
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-39290.62	0.00	0.00
			Max. Mx	6	-32630.93	1470085.33	0.00
			Max. My	2	-32630.93	0.00	1470085.33
			Max. Vy	6	17718.82	1470085.33	0.00
L8	40-20	Pole	Max. Vx	2	-17718.82	0.00	1470085.33
			Max. Torque	34			0.00
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-47264.00	0.00	0.00
			Max. Mx	6	-39928.64	1839857.95	0.00
L9	20-0	Pole	Max. My	2	-39928.64	0.00	1839857.95
			Max. Vy	6	19251.87	1839857.95	0.00
			Max. Vx	2	-19251.87	0.00	1839857.95
			Max. Torque	30			0.00
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-56505.08	0.00	0.00
			Max. Mx	6	-48505.94	2239737.69	0.00
			Max. My	2	-48505.94	0.00	2239737.69
			Max. Vy	6	20728.90	2239737.69	0.00
			Max. Vx	2	-20728.90	0.00	2239737.69
			Max. Torque	30			0.00

	Maximum Reactions				
Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{aligned} & \text { Horizontal, } X \\ & l b \end{aligned}$	$\begin{gathered} \text { Horizontal. Z } \\ l b \end{gathered}$
Pole	Max. Vert	18	56505.08	0.00	0.00
	Max. H_{x}	14	48508.17	20723.66	0.00
	Max. H_{7}	2	48508.17	0.00	20723.66
	Max. M_{x}	2	2239737.69	0.00	20723.66
	Max. M_{2}	6	2239737.69	-20723.66	0.00
	Max. Torsion	30	0.00	14489.75	-8365.66
	Min. Vert	39	48508.17	-8095.18	0.00
	Min. H_{x}	6	48508.17	-20723.66	0.00
	Min. H_{2}	10	48508.17	0.00	-20723.66
	Min. M_{x}	10	-2239737.69	0.00	-20723.66
	Min. $\mathrm{M}_{\mathbf{z}}$	14	-2239737.69	20723.66	0.00
	Min. Torsion	24	-0.00	-14489.75	-8365.66

Tower Mast Reaction Summary

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job	176' Monopole		$\begin{aligned} & \text { Page } 20 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	$\left\lvert\, \begin{aligned} & \text { Date } \\ & \text { 12:13:38 07/27/06 } \end{aligned}\right.$
Rocky Hill, CT06067 Phone: (860) $529-8882$ FAX: (860) $529-3991$	Client	Verizon Wireless		Designed by Staff

Load Combination	Vertical lb	Shear $_{x}$ $l b$	Shear ${ }_{\text {- }}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, $M_{\text {s }}$ $l b f t$	Torque lb-fI
Dead Only	48508.17	0.00	0.00	0.00	0.00	0.00
Dead+Wind 0 deg - No Ice	48508.17	0.00	-20723.66	-2239737.69	0.00	0.00
Dead + Wind 30 deg - No Ice	48508.17	10361.83	-17947.22	-1939670.35	-1119869.20	0.00
Dead+Wind 45 deg - No Ice	48508.17	14653.84	-14653.84	-1583734.21	-1583734.21	0.00
Dead+Wind 60 deg - No Ice	48508.17	17947.22	-10361.83	-1119869.20	-1939670.35	-0.00
Dead+Wind 90 deg - No Ice	48508.17	20723.66	0.00	0.00	-2239737.69	0.00
Dead+Wind 120 deg - No Ice	48508.17	17947.22	10361.83	1119869.20	-1939670.35	0.00
Dead+Wind 135 deg - No Ice	48508.17	14653.84	14653.84	1583734.21	-1583734.21	0.00
Dead+Wind 150 deg - No Ice	48508.17	10361.83	17947.22	1939670.35	-1119869.20	-0.00
Dead+Wind 180 deg - No Ice	48508.17	0.00	20723.66	2239737.69	0.00	0.00
Dead + Wind 210 deg - No Ice	48508.17	-10361.83	17947.22	1939670.35	1119869.20	0.00
Dead+Wind 225 deg - No Ice	48508.17	-14653.84	14653.84	1583734.21	1583734.21	0.00
Dead+Wind 240 deg - No Ice	48508.17	-17947.22	10361.83	1119869.20	1939670.35	-0.00
Dead+Wind 270 deg - No lce	48508.17	-20723.66	0.00	0.00	2239737.69	0.00
Dead+Wind 300 deg - No Ice	48508.17	-17947.22	-10361.83	-1119869.20	1939670.35	0.00
Dead+Wind 315 deg - No Ice	48508.17	-14653.84	-14653.84	-1583734.21	1583734.21	0.00
Dead+Wind 330 deg - No Ice	48508.17	-10361.83	-17947.22	-1939670.35	1119869.20	-0.00
Dead+Ice+Temp	56505.08	0.00	0.00	0.00	0.00	0.00
Dead + Wind 0 deg + lce + Temp	56505.08	0.00	-16731.32	-1859884.27	0.00	0.00
Dead+Wind $30 \mathrm{deg}+$ Ice + Temp	56505.08	8365.66	-14489.75	-1610707.03	-929942.14	0.00
Dead+Wind 45 deg + Ice + Temp	56505.08	11830.83	-11830.83	-1315136.78	-1315136.78	0.00
Dead+Wind 60 deg+Ice + Temp	56505.08	14489.75	-8365.66	-929942.14	-1610707.03	-0.00
Dead + Wind 90 deg + Ice + Temp	56505.08	16731.32	0.00	0.00	-1859884.27	0.00
Dead + Wind $120 \mathrm{deg}+$ Ice + Temp	56505.08	14489.75	8365.66	929942.14	-1610707.03	0.00
Dead + Wind $135 \mathrm{deg}+$ Ice + Temp	56505.08	11830.83	11830.83	1315136.78	-1315136.78	0.00
Dead+Wind $150 \mathrm{deg}+$ Ice + Temp	56505.08	8365.66	14489.75	1610707.03	-929942.14	-0.00
Dead + Wind $180 \mathrm{deg}+$ Ice + Temp	56505.08	0.00	16731.32	1859884.27	0.00	0.00
Dead + Wind $210 \mathrm{deg}+$ Ice + Temp	56505.08	-8365.66	14489.75	1610707.03	929942.14	0.00
Dead + Wind $225 \mathrm{deg}+$ Ice + Temp	56505.08	-11830.83	11830.83	1315136.78	1315136.78	0.00
Dead + Wind 240 deg+Ice + Temp	56505.08	-14489.75	8365.66	929942.14	1610707.03	-0.00
Dead + Wind 270 deg + Ice + Temp	56505.08	-16731.32	0.00	0.00	1859884.27	0.00
Dead+Wind $300 \mathrm{deg}+$ Ice + Temp	56505.08	-14489.75	-8365.66	-929942.14	1610707.03	0.00
Dead+Wind $315 \mathrm{deg}+$ lce + Temp	56505.08	-11830.83	-11830.83	-1315136.78	1315136.78	0.00
Dead + Wind $330 \mathrm{deg}+$ Ice + Temp	56505.08	-8365.66	-14489.75	-1610707.03	929942.14	-0.00
Dead+Wind 0 deg - Service	48508.17	0.00	-8095.18	-874993.97	0.00	0.00
Dead+Wind 30 deg - Service	48508.17	4047.59	-7010.63	-757767.01	-437496.99	0.00
Dead + Wind 45 deg - Service	48508.17	5724.16	-5724.16	-618714.17	-618714.17	0.00
Dead+Wind 60 deg - Service	48508.17	7010.63	-4047.59	437496.99	-757767.01	-0.00
Dead+Wind 90 deg - Service	48508.17	8095.18	0.00	0.00	-874993.97	0.00
Dead+Wind 120 deg - Service	48508.17	7010.63	4047.59	437496.99	-757767.01	0.00
Dead+Wind 135 deg - Service	48508.17	5724.16	5724.16	618714.17	-618714.17	0.00
Dead+Wind 150 deg - Service	48508.17	4047.59	7010.63	757767.01	-437496.99	-0.00
Dead+Wind 180 deg - Service	48508.17	0.00	8095.18	874993.97	0.00	0.00
Dead+Wind 210 deg - Service	48508.17	-4047.59	7010.63	757767.01	437496.99	0.00
Dead+Wind 225 deg - Service	48508.17	-5724.16	5724.16	618714.17	618714.17	0.00
Dead+Wind 240 deg - Service	48508.17	-7010.63	4047.59	437496.99	757767.01	-0.00
Dead+Wind 270 deg - Service	48508.17	-8095.18	0.00	0.00	874993.97	0.00
Dead+Wind 300 deg - Service	48508.17	-7010.63	-4047.59	-437496.99	757767.01	0.00
Dead+Wind 315 deg - Service	48508.17	-5724.16	-5724.16	-618714.17	618714.17	0.00
Dead+Wind 330 deg - Service	48508.17	4047.59	-7010.63	-757767.01	437496.99	-0.00

Solution Summary

Load	Sum of Applied Forces			Sum of Reactions			\% Error
	$P X$	PY	$P Z$	$P X$	$P Y$	$P Z$	
Comb.	$l b$						
1	0.00	-48508.17	0.00	0.00	48508.17	0.00	0.000\%
2	0.00	-48508.17	-20723.66	0.00	48508.17	20723.66	0.000\%

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job	176' Monopole		$\text { Page } 21 \text { of } 25$
	Project	60 Industrial Park	Vernon, CT	Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-399I	Client	Verizon W	less	Designed by Staff

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	$P X$	PY	$P Z$	
Comb.	$l b$						
3	10361.83	-48508.17	-17947.22	-10361.83	48508.17	17947.22	0.000\%
4	14653.84	-48508.17	-14653.84	-14653.84	48508.17	14653.84	0.000\%
5	17947.22	-48508.17	-10361.83	-17947.22	48508.17	10361.83	0.000\%
6	20723.66	-48508.17	0.00	-20723.66	48508.17	0.00	0.000\%
7	17947.22	-48508.17	10361.83	-17947.22	48508.17	-10361.83	0.000\%
8	14653.84	-48508.17	14653.84	-14653.84	48508.17	-14653.84	0.000\%
9	10361.83	-48508.17	17947.22	-10361.83	48508.17	-17947.22	0.000\%
10	0.00	-48508.17	20723.66	0.00	48508.17	-20723.66	0.000\%
11	-10361.83	-48508.17	17947.22	10361.83	48508.17	-17947.22	0.000\%
12	-14653.84	-48508.17	14653.84	14653.84	48508.17	-14653.84	0.000\%
13	-17947.22	-48508.17	10361.83	17947.22	48508.17	-10361.83	0.000\%
14	-20723.66	-48508.17	0.00	20723.66	48508.17	0.00	0.000\%
15	-17947.22	-48508.17	-10361.83	17947.22	48508.17	10361.83	0.000\%
16	-14653.84	-48508.17	-14653.84	14653.84	48508.17	14653.84	0.000\%
17	-10361.83	-48508.17	-17947.22	10361.83	48508.17	17947.22	0.000\%
18	0.00	-56505.08	0.00	0.00	56505.08	0.00	0.000\%
19	0.00	-56505.08	-16731.32	0.00	56505.08	16731.32	0.000\%
20	8365.66	-56505.08	-14489.74	-8365.66	56505.08	14489.75	0.000\%
21	11830.83	-56505.08	-11830.83	-11830.83	56505.08	11830.83	0.000\%
22	14489.74	-56505.08	-8365.66	-14489.75	56505.08	8365.66	0.000\%
23	16731.32	-56505.08	0.00	-16731.32	56505.08	0.00	0.000\%
24	14489.74	-56505.08	8365.66	-14489.75	56505.08	-8365.66	0.000\%
25	11830.83	-56505.08	11830.83	-11830.83	56505.08	-11830.83	0.000\%
26	8365.66	-56505.08	14489.74	-8365.66	56505.08	-14489.75	0.000\%
27	0.00	-56505.08	16731.32	0.00	56505.08	-16731.32	0.000\%
28	-8365.66	-56505.08	14489.74	8365.66	56505.08	-14489.75	0.000\%
29	-11830.83	-56505.08	11830.83	11830.83	56505.08	-11830.83	0.000\%
30	-14489.74	-56505.08	8365.66	14489.75	56505.08	-8365.66	0.000\%
31	-16731.32	-56505.08	0.00	16731.32	56505.08	0.00	0.000\%
32	-14489.74	-56505.08	-8365.66	14489.75	56505.08	8365.66	0.000\%
33	-11830.83	-56505.08	-11830.83	11830.83	56505.08	11830.83	0.000\%
34	-8365.66	-56505.08	-14489.74	8365.66	56505.08	14489.75	0.000\%
35	0.00	-48508.17	-8095.18	0.00	48508.17	8095.18	0.000\%
36	4047.59	-48508.17	-7010.63	-4047.59	48508.17	7010.63	0.000\%
37	5724.16	-48508.17	-5724.16	-5724.16	48508.17	5724.16	0.000\%
38	7010.63	-48508.17	-4047.59	-7010.63	48508.17	4047.59	0.000\%
39	8095.18	-48508.17	0.00	-8095.18	48508.17	0.00	0.000\%
40	7010.63	-48508.17	4047.59	-7010.63	48508.17	-4047.59	0.000\%
41	5724.16	-48508.17	5724.16	-5724.16	48508.17	-5724.16	0.000\%
42	4047.59	-48508.17	7010.63	-4047.59	48508.17	-7010.63	0.000\%
43	0.00	-48508.17	8095.18	0.00	48508.17	-8095.18	0.000\%
44	-4047.59	-48508.17	7010.63	4047.59	48508.17	-7010.63	0.000\%
45	-5724.16	-48508.17	5724.16	5724.16	48508.17	-5724.16	0.000\%
46	-7010.63	-48508.17	4047.59	7010.63	48508.17	-4047.59	0.000\%
47	-8095.18	-48508.17	0.00	8095.18	48508.17	0.00	0.000\%
48	-7010.63	-48508.17	-4047.59	7010.63	48508.17	4047.59	0.000\%
49	-5724.16	-48508.17	-5724.16	5724.16	48508.17	5724.16	0.000\%
50	-4047.59	-48508.17	-7010.63	4047.59	48508.17	7010.63	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number ofCycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00013930
3	Yes	5	0.00000001	0.00005465

RISATower URS Corporation 500 Enterprise Drive. Suite $3 B$	Job 176' Monopole			$\begin{aligned} & \text { Page } 22 \text { of } 25 \end{aligned}$
	Project	60 Industrial Park	Vernon, CT	Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-399I	Verizon Wireless			Designed by Staff

4			0.00000001	0.00006271
5	Yes	5	0.00000001	0.00005465
6	Yes	5	0.00000001	0.00013930
7	Yes	4	0.00000001	0.0005465
8	Yes	5	0.00000001	0.00006271
9	Yes	5	0.00000001	0.00005465
10	Yes	5	0.00000001	0.00013930
11	Yes	4	0.00000001	0.00005465
12	Yes	5	0.00000001	0.00006271
13	Yes	5	0.00000001	0.0005465
14	Yes	5	0.00000001	0.00013930
15	Yes	4	0.00000001	0.00005465
16	Yes	5	0.00000001	0.00006271
17	Yes	5	0.00000001	0.00005465
18	Yes	5	0.00000001	0.00000001
19	Yes	4	0.00000001	0.00016166
20	Yes	5	0.00000001	0.00020593
21	Yes	5	0.00000001	0.00021864
22	Yes	5	0.00000001	0.0020593
23	Yes	Yes	5	0.00000001

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz Deflection in	Gov. Load Comb.	Tilt	0

RISATower URS Corporation 500 Enterprise Drive, Suile 3B	Job	176' Monopole		Page 23 of 25
	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
	$f t$	0.753	Comb.	0	\circ
L8	$40-20$	0.191	39	0.1770	0.0000
L9	$20-0$			0.0881	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
173.00	(2) RR90-17-02DP	39	14.072	0.6828	0.0000	189861
165.00	7250.03 w/Mount Pipe	39	12.928	0.6794	0.0000	94930
155.00	DB948F85T2E-M	39	11.512	0.6689	0.0000	39474
145.00	(4) DB844H90	39	10.126	0.6485	0.0000	22524

Maximum Tower Deflections - Design V					
Section No.	Elevation	Horz.	Gov.	Tilt	Twist
		Deflection	Load		
	$f t$	in	Comb.	\bigcirc	-
LI	175-160	36.746	6	1.7492	0.0000
L2	160-140	31.269	6	1.7283	0.0000
L3	140-120	24.191	6	1.6239	0.0000
L4	120-100	17.749	6	1.4243	0.0000
L5	100-80	12.242	6	1.1843	0.0000
L6	80-60	7.771	6	0.9352	0.0000
L7	60-40	4.341	6	0.6897	0.0000
L8	40-20	1.927	6	0.4529	0.0000
L9	20-0	0.488	6	0.2256	0.0000

Critical Deflections and Radius of Curvature - Design Wind

Elevation $f t$	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature fi
173.00	(2) RR90-17-02DP	6	36.013	1.7476	0.0000	74312
165.00	7250.03 w/Mount Pipe	6	33.088	1.7387	0.0000	37155
155.00	DB948F85T2E-M	6	29.463	1.7119	0.0000	15449
145.00	(4) DB844H90	6	25.916	1.6599	0.0000	8814

Compression Checks

Pole Design Data

RISATOwer	176' Monopole			$\text { Page } 24 \text { of } 25$
URS Corporation 500 Enterprise Drive, Suite 3B	60 Industrial Park Vernon, CT			Date 12:13:38 07/27/06
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

Section No.	Elevation f	Size	L $f i$	$\begin{gathered} L_{u} \\ f t \end{gathered}$	Kl / r	F_{a} $k s i$	A $i n^{2}$	$\begin{gathered} \hline \text { Actual } \\ P \\ l b \end{gathered}$	Allow. P_{a} $l b$	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{n} \\ \hline \end{gathered}$
LI	175-160(1)	$\mathrm{P} 24 \times 3 / 8$	15.00	175.00	251.4	2.363	27.8325	-4179.70	65770.10	0.064
L2.	160-140 (2)	P30x3/8	20.00	175.00	200.5	3.715	34.9011	-9063.84	129673.00	0.070
L3	140-120 (3)	P36x3/8	20.00	175.00	166.7	5.373	41.9697	-12777.10	225484.00	0.057
L4	120-100 (4)	P42x3/8	20.00	175.00	142.7	7.334	49.0383	-16998.40	359668.00	0.047
L5	100-80 (5)	P48x3/8	20.00	175.00	124.7	9.601	56.1069	-21715.00	538686.00	0.040
L6	80-60 (6)	P54×3/8	20.00	175.00	110.8	12.057	63.1755	-26926.00	761712.00	0.035
L7	60-40 (7)	P60x3/8	20.00	175.00	99.6	13.992	70.2440	-32630.90	982850.00	0.033
L8	40-20(8)	P60x1/2	20.00	175.00	99.8	13.957	93.4624	-39928.60	1304470.00	0.031
L9	20-0 (9)	P60x5/8	20.00	175.00	100.0	13.922	116.5830	-48505.90	1623100.00	0.030

Pole Bending Design Data

Section No.	Elevation $f i$	Size	$\begin{gathered} \text { Actual } \\ M_{x} \\ l b-f t \\ \hline \end{gathered}$	Actual $f_{b x}$ ksi	Allow. $F_{b x}$ ksi		$\begin{gathered} \text { Actual } \\ M_{y} \\ \text { lb-ft } \end{gathered}$	Actual $f_{b v}$ ksi	Allow. $F_{b y}$ ksi	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b y} \end{array} \\ \hline F_{b y} \end{gathered}$
LI	175-160(1)	P24x3/8	$\begin{gathered} 21187.5 \\ 8 \end{gathered}$	-1.571	27.720	0.057	0.00	0.000	27.720	0.000
L2	160-140 (2)	P30x3/8	$\begin{gathered} 138515 . \\ 00 \end{gathered}$	-6.511	25.075	0.260	0.00	0.000	25.075	0.000
L3	140-120(3)	P36x3/8	$\begin{gathered} 334835 . \\ 00 \end{gathered}$	-10.861	23.696	0.458	0.00	0.000	23.696	0.000
L4	120-100 (4)	P42x3/8	$\begin{gathered} 566633 . \\ 33 \end{gathered}$	-13.444	22.711	0.592	0.00	0.000	22.711	0.000
L5	100-80 (5)	P48x3/8	$\begin{gathered} 832332 . \\ 50 \end{gathered}$	-15.068	21.972	0.686	0.00	0.000	21.972	0.000
L6	80-60(6)	P54×3/8	$\begin{gathered} 1133383 \\ .33 \end{gathered}$	-16.170	21.397	0.756	0.00	0.000	21.397	0.000
L7	60-40 (7)	P60x3/8	$\begin{gathered} 1470083 \\ .33 \end{gathered}$	-16.953	20.938	0.810	0.00	0.000	20.938	0.000
L8	40-20(8)	P60x1/2	$\begin{gathered} 1839858 \\ .33 \end{gathered}$	-16.013	22.317	0.718	0.00	0.000	22.317	0.000
L9	20-0(9)	P60x5/8	$\begin{gathered} 2239741 \\ .67 \end{gathered}$	-15.693	23.696	0.662	0.00	0.000	23.696	0.000

Pole Interaction Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b x} \end{array} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ f_{b y} \end{array} \\ \hline F_{b v} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
LI	175-160(1)	P24x3/8	0.064	0.057	0.000	0.120 /	1.333	H1-3 7
L2	160-140(2)	P30x3/8	0.070	0.260	0.000	0.330	1.333	H1-3
L3	140-120(3)	P36x3/8	0.057	0.458	0.000	0.515	1.333	H1-3
L4	120-100(4)	P42x3/8	0.047	0.592	0.000	0.639	1.333	
L5	100-80 (5)	$\mathrm{P} 48 \times 3 / 8$	0.040	0.686	0.000	0.726	1.333	H1-3
L6	80-60 (6)	P54×3/8	0.035	0.756	0.000	0.791 V	1.333	H1-3
L7	60-40(7)	P60x3/8	0.033	0.810	0.000	0.843 /	1.333	H1-3
L8	40-20(8)	P60x1/2	0.031	0.718	0.000	0.748	1.333	H1-3
L9	20-0 (9)	P60x5/8	0.030	0.662	0.000	0.692	1.333	H1-3

RHSATOwer	176' Monopole			$\begin{aligned} & \text { Page } \\ & 25 \text { of } 25 \end{aligned}$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	60 Industrial Park	Vernon, CT	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 12:13:38 07/27/06 } \end{array}$
Rocky Hill, CT 06067 Phone: (860) 529-8882 FAX: (860) 529-3991	Client	Verizon W	less	Designed by Staff

Section No.	Elevation ft	Size	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \end{gathered}$	$\begin{gathered} \hline \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Ratio } \\ & f_{b y} \\ & \hline F_{b y} \\ & \hline \end{aligned}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	$\%$ Capacity	Pass Fail
Ll	175-160	Pole	P24×3/8	1	-4179.70	87671.54	9.0	Pass
L2	160-140	Pole	P30x3/8	2	-9063.84	172854.10	24.7	Pass
L3	140-120	Pole	P36x3/8	3	-12777.10	300570.16	38.6	Pass
LA	120-100	Pole	P42x $3 / 8$	4	-16998.40	479437.42	48.0	Pass
L5	100-80	Pole	$\mathrm{P} 48 \times 3 / 8$	5	-21715.00	718068.41	54.5	Pass
L6	80-60	Pole	P54x3/8	6	-26926.00	1015362.05	59.3	Pass
L7	60-40	Pole	P60x3/8	7	-32630.90	1310139.00	63.2	Pass
L8	40-20	Pole	P60xI/2	8	-39928.60	1738858.44	56.1	Pass
L9	20-0	Pole	P60x5/8	9	-48505.90	2163592.21	51.9	Pass
							Summary	
						Pole (L7)	63.2	Pass
						RATING =	63.2	Pass

Program Version 4.5.0.0-4/12/2006 File:P:/08/ERIFiles/176' Monopole.eri

ANCHOR BOLT AND BASE PLATE ANALYSIS

Page \qquad of Sheet 1 of 6 Description
\qquad Project No. \qquad Computed by \qquad Date 07/27/06 Checked by \qquad Date \qquad

ANCHOR BOLT AND BASE PLATE ANALYSIS

Input Data

Tower Reactions:

Overturning Moment:	OM $:=2250 \cdot \mathrm{ff} \cdot \mathrm{kips}$	user input
Shear Force:	Shear $:=21 \cdot \mathrm{kips}$	user input
Axial Force:	Axial $:=50 \cdot \mathrm{kips}$	user input

Anchor Bolt Data:

Use ASTM A615 Grade 75

Number of Anchor Bolts $=\mathrm{N}$	$\mathrm{N}:=52$	user input
Diameter of Bolt Circle:	$\mathrm{D}_{\mathrm{bc}}:=67 \mathrm{in}$	user input
Bolt "Column" Distance:	$1=3 \mathrm{in}$	user input
Bolt Ultimate Strength:	$\mathrm{F}_{\mathrm{u}}:=150 \cdot \mathrm{ksi}$	user input
Bolt Yield Strength:	$\mathrm{Fy}:=105 \cdot \mathrm{ksi}$	user input
Bolt Modulus:	$\mathrm{E}:=29000 \cdot \mathrm{ksi}$	user input
Thickness Of Anchor Bolts	$\mathrm{D}:=1.25 \mathrm{in}$	user input
Threads per Inch:	$\mathrm{n}:=7$	user input

Base Plate Data:

Plate Yield Strength:
Base Plate Thickness:
Base Plate Diameter:
$\mathrm{D}_{\mathrm{bp}}:=73 \cdot \mathrm{in}$
$\mathrm{D}_{\text {pole }}:=60 \mathrm{in}$
user input
user input
user input
user input

Job 176' Monopole - Vernon, CT
Description \qquad Project No. \qquad Page \qquad of \qquad Anchor Bolt and Base Plate Analysis Computed by \qquad Sheet 2 of 6
\qquad Checked by \qquad Date都
\qquad

Geometric Layout Data:

Distance from the center of gravity of the group to bolt in question $=\mathrm{d}(\mathrm{i})$
Radius of Bolt Circle: $\quad \mathrm{R}_{\mathrm{bc}}:=\frac{\mathrm{D}_{\mathrm{bc}}}{2}$

Distance to Bolts:

$$
\mathrm{i}:=1 . . \mathrm{N}
$$

$$
\mathrm{d}_{\mathrm{i}}:=\left\lvert\, \begin{array}{lll}
\theta \leftarrow 2 \cdot \pi \cdot\left(\frac{\mathrm{i}}{\mathrm{~N}}\right) & \mathrm{d}_{1}=4.04 \mathrm{in} & \mathrm{~d}_{7}=25.08 \mathrm{in} \\
\mathrm{~d} \leftarrow \mathrm{R}_{\mathrm{bc}} \cdot \sin (\theta) & \mathrm{d}_{2}=8.02 \mathrm{in} & \mathrm{~d}_{8}=27.57 \mathrm{in} \\
& \mathrm{~d}_{3}=11.88 \mathrm{in} & \mathrm{~d}_{9}=29.66 \mathrm{in} \\
& \mathrm{~d}_{4}=15.57 \mathrm{in} & \mathrm{~d}_{10}=31.32 \mathrm{in} \\
& \mathrm{~d}_{5}=19.03 \mathrm{in} & \mathrm{~d}_{11}=32.53 \mathrm{in} \\
& \mathrm{~d}_{6}=22.21 \mathrm{in} & \text { etc. }
\end{array}\right.
$$

Critical Distances For Bending in Plate:
Outer Pole Radius: $\quad \mathrm{R}_{\text {pole }}:=\frac{\mathrm{D}_{\text {pole }}}{2} \quad \mathrm{R}_{\text {pole }}=30.00 \mathrm{in}$

Moment Arms of Bolts about Neutral Axis:	$M A_{i}:=i f\left(d_{i} \geq R_{\text {pole }}, d_{i}-R_{\text {pole }}, 0\right.$ in $)$	$\mathrm{MA}_{1}=0.00 \mathrm{in}$	$\mathrm{MA}_{7}=0.00 \mathrm{in}$
		$\mathrm{MA}_{2}=0.00 \mathrm{in}$	$\mathrm{MA}_{8}=0.00 \mathrm{in}$
		$\mathrm{MA}_{3}=0.00 \mathrm{in}$	$\mathrm{MA}_{9}=0.00 \mathrm{in}$
		$\mathrm{MA}_{4}=0.00 \mathrm{in}$	$\mathrm{MA}_{10}=1.32 \mathrm{in}$
		$\mathrm{MA}_{5}=0.00 \mathrm{in}$	$\mathrm{MA}_{11}=2.53 \mathrm{in}$
		$\mathrm{MA}_{6}=0.00 \mathrm{in}$	etc.

Effective Width of Baseplate EffectiveWidth :=.95.2• $\sqrt{\left(\frac{D_{b p}}{2}\right)^{2}-\left(\frac{D_{\text {pole }}}{2}\right)^{2}} \quad$ EffectiveWidth $=39.50$ in
for Bending:

Job	176' Monopole - Vernon, CT	Project No.	VZ1-199	S	3 of 6
Description	Anchor Bolt and Base Plate Analysis	Computed by	JEK	Date	07/27/06
		Checked by		Date	

Anchor Bolt Analysis:

Polar Moment of Inertia l_{p} :

$$
I_{p}:=\sum_{i}\left(d_{i}\right)^{2} \quad I_{p}=2.918 \times 10^{4} \mathrm{in}^{2}
$$

Gross Area of Bolt:

$$
\mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{D}^{2} \quad \mathrm{~A}_{\mathrm{g}}=1.227 \mathrm{in}^{2}
$$

Net Area of Bolt:

$$
\mathrm{A}_{\mathrm{n}}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2} \quad \mathrm{~A}_{\mathrm{n}}=0.969 \mathrm{in}^{2}
$$

Net Diameter:

$$
D_{n}:=\frac{2 \cdot \sqrt{A_{n}}}{\sqrt{\pi}} \quad D_{n}=1.11 \mathrm{in}
$$

Radius of Gyration of Bolt:

$$
\mathrm{r}:=\frac{\mathrm{D}_{\mathrm{n}}}{4}
$$

$$
\mathrm{r}=0.28 \mathrm{in}
$$

Section Modulus of Bolt:

$$
\mathrm{S}_{\mathrm{x}}:=\frac{\pi \cdot \mathrm{D}_{\mathrm{n}}^{3}}{32} \quad \mathrm{~S}_{\mathrm{x}}=0.135 \mathrm{in}^{3}
$$

Anchor Bolt Bending Stress:

Maximum Applied Bending:

$$
\begin{array}{ll}
M_{x}:=\left(\frac{\text { Shear }}{N}\right) \cdot 1 & M_{x}=0.101 \mathrm{ft} \cdot \mathrm{kips} \\
f_{b x}:=\frac{M_{x}}{S_{x}} & f_{b x}=9.0 \mathrm{ksi}
\end{array}
$$

Allowable Bending

$$
\mathrm{F}_{\mathrm{bx}}:=1.33 \cdot 0.60 \cdot \mathrm{Fy} \quad \mathrm{~F}_{\mathrm{bx}}=83.8 \mathrm{ksi}
$$

Note: 1.33 increase allowed per TIA/EIA

Job \quad 176' Monopole - Vernon, CT
Project No. \qquad Sheet 4 of 6 Description Computed by \qquad Date 07/27/06
\qquad Checked by \qquad Date \qquad

Check Tensile Forces:

Allowable Tensile Force:
AllowableTension $:=1.33 \cdot\left(0.33 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{F}_{\mathrm{u}}\right) \quad$ AllowableTension $=80.8 \mathrm{kips}$
Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

$$
\mathrm{F}_{\text {net.area }}:=1.33 \cdot\left(0.60 \cdot \mathrm{~A}_{\mathrm{n}} \cdot \mathrm{Fy}\right) \quad \mathrm{F}_{\text {net.area }}=81.2 \mathrm{kips}
$$

Note: 1.33 increase allowed per TIA/EIA

Applied Tension:
MaxTension $:=\frac{\mathrm{OM} \cdot \mathrm{R}_{\mathrm{bc}}}{\mathrm{I}_{\mathrm{p}}}-\frac{\text { Axial }}{\mathrm{N}} \quad$ MaxTension $=30.0 \mathrm{kips}$

Check Stresses:

```
\(\frac{\text { MaxTension }}{\text { AllowableTension }}=0.37\)
Condition := if \(\left(\frac{\text { MaxTension }}{\mathrm{F}_{\text {net.area }}} \leq 1.00\right.\), "OK", "Overstressed" \()\)
Condition \(=\) " OK "
```

Job \qquad

Page of Project No. \qquad Sheet 5 of 6
Description Computed by \qquad Date 07/27/06 Checked by \qquad

Check Compression \& Combined Stresses (if required):

Check to see if a complete combined stress analysis is required:
Per ASCE Manual 72: "If the clearance between the base plate and concrete does not exceed two times the bolt diameter a bending stress analysis of the bolts is NOT normally required."
Set the clear space between the plate and bolt to zero and remove bending stresses if a combined stress
analysis is not required:

$$
1:=\left\lvert\, \begin{aligned}
& 1 \text { if } 1>2 \cdot \mathrm{D}_{\mathrm{n}} \\
& 0.00 \text { in otherwise }
\end{aligned} \quad \mathrm{L}=3.00\right. \text { in } \quad \mathrm{f}_{\mathrm{bx}}:=\left\{\begin{array}{l}
\mathrm{f}_{\mathrm{bx}} \text { if } \mathrm{l}>2 \cdot \mathrm{D}_{\mathrm{n}} \quad \mathrm{f}_{\mathrm{bx}}=9.0 \mathrm{ksi} \\
0.0 \mathrm{ksi} \text { otherwise }
\end{array}\right.
$$

Allowable Compressive Force:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}:=0.65 \\
& \mathrm{C}_{\mathrm{c}}:=\sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{Fy}}}\left[\begin{array}{l}
\left.1-\frac{\left(\frac{\mathrm{K} \cdot \mathrm{I}}{\mathrm{r}}\right)^{2}}{2 \cdot \mathrm{C}_{\mathrm{c}}^{2}}\right] \cdot \mathrm{Fy} \\
\mathrm{~F}_{\mathrm{a}}:=\mathrm{C}_{\mathrm{c}}=73.84 \\
\frac{5}{\frac{5}{3}+\frac{\mathrm{K} \cdot\left(\frac{\mathrm{~K} \cdot \mathrm{I}}{\mathrm{r}}\right)}{8 \cdot \mathrm{C}_{\mathrm{c}}}-\frac{\left(\frac{\mathrm{K} \cdot \mathrm{l}}{\mathrm{r}}\right)^{3}}{8 \cdot \mathrm{C}_{\mathrm{c}}^{3}}} \text { if } \frac{\mathrm{K} \cdot \mathrm{I}}{\mathrm{r}} \leq \mathrm{C}_{\mathrm{c}} \\
\frac{12 \cdot \pi^{2} \cdot \mathrm{E}}{23 \cdot\left(\frac{\mathrm{~K} \cdot \mathrm{I}}{\mathrm{r}}\right)^{2}} \text { if } \frac{\mathrm{K} \cdot \mathrm{I}}{\mathrm{r}}>\mathrm{C}_{\mathrm{c}}
\end{array}\right.
\end{aligned}
$$

$$
\mathrm{F}_{3}:=1.33 \cdot \mathrm{~F}_{\mathrm{a}} \quad \text { Note: } 1.33 \text { increase allowed per TIA/EIA } \quad \mathrm{F}_{\mathrm{a}}=81.7 \mathrm{ksi}
$$

Applied Compressive Force:

$$
\begin{array}{ll}
\text { MaxCompression }:=\frac{O M \cdot R_{b c}}{I_{p}}+\frac{\text { Axial }}{N} & \text { MaxCompression }=32.0 \mathrm{kips} \\
\mathrm{f}_{\mathrm{a}}:=\frac{\text { MaxCompression }}{\mathrm{A}_{\mathrm{n}}} & \mathrm{f}_{\mathrm{a}}=33.0 \mathrm{ksi}
\end{array}
$$

Check Combined Stresses:

$$
\begin{aligned}
& \frac{f_{a}}{F_{a}}+\frac{f_{b x}}{F_{b x}}=0.51 \\
& \text { Condition }:=\text { if }\left(\frac{f_{a}}{F_{a}}+\frac{f_{b x}}{F_{b x}} \leq 1.00, \text { "OK" " "Overstressed" }\right) \text { Condition = "OK" }
\end{aligned}
$$

Base Plate Analysis:

Force from Bolt(s):

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{ip}}:=\frac{\mathrm{OM} \cdot \mathrm{~d}_{\mathrm{i}}}{\mathrm{I}_{\mathrm{p}}}+\frac{\text { Axial }}{\mathrm{N}} & \mathrm{C}_{1}=4.7 \mathrm{kips} & \mathrm{C}_{7}=24.2 \mathrm{kips} \\
& \mathrm{C}_{2}=8.4 \mathrm{kips} & \mathrm{C}_{8}=26.5 \mathrm{kips} \\
& \mathrm{C}_{3}=12.0 \mathrm{kips} & \mathrm{C}_{9}=28.4 \mathrm{kips} \\
& \mathrm{C}_{4}=15.4 \mathrm{kips} & \mathrm{C}_{10}=29.9 \mathrm{kips} \\
& \mathrm{C}_{5}=18.6 \mathrm{kips} & \mathrm{C}_{11}=31.1 \mathrm{kips} \\
\mathrm{C}_{6}=21.5 \mathrm{kips} & \text { etc. }
\end{array}
$$

Bending Stress in Plate:

$$
\mathrm{f}_{\mathrm{bp}}:=\sum_{\mathbf{i}} \frac{6 \cdot \mathrm{C}_{\mathbf{i}} \cdot \mathrm{MA}_{\mathrm{i}}}{\text { EffectiveWidth } \text { PlateThickness }^{2}} \quad \mathrm{f}_{\mathrm{bp}}=37.4 \mathrm{ksi}
$$

Check Stresses:

$$
\frac{\mathrm{f}_{\mathrm{bp}}}{1.33 \cdot 0.75 \mathrm{Fy}_{\mathrm{bp}}}=1.04
$$

$$
\begin{aligned}
& \text { Condition: }=\operatorname{if}\left(\frac{\mathrm{f}_{\mathrm{bp}}}{1.33 \cdot 0.75 \mathrm{Fy}}<1.00, \text { "OK" , "Overstressed" }\right) \\
& \text { Condition }=\text { "Overstressed" } \quad \text { Note: Gussets are used }
\end{aligned}
$$

Gusset Spacing:

$$
\begin{array}{ll}
\text { GussetSpacing }:=\frac{\pi \cdot D_{\mathrm{bc}}}{\mathrm{~N}} & \text { GussetSpacing }=4.0 \mathrm{in} \\
\text { GussetLength }:=\frac{\mathrm{D}_{\mathrm{bp}}-D_{\text {pole }}}{2} & \text { GussetLength }=6.5 \mathrm{in} \\
\frac{\text { GussetLength }}{\text { GussetSpacing }}=1.6 &
\end{array}
$$

Revised Stress In Plate: (From Theory of Plates and Shells, by Timoshenko)

$$
f_{\mathrm{bp} 2}:=\frac{6 \cdot\left(.133 \cdot \mathrm{C}_{13}+.125 \cdot \mathrm{C}_{13}\right)}{\text { PlateThickness }^{2}} \quad \mathrm{f}_{\mathrm{bp} 2}=22.0 \mathrm{ksi}
$$

Check Revised Stresses:

$$
\frac{\mathrm{f}_{\mathrm{bp} 2}}{1.33 \cdot 0.75 \mathrm{Fy} \mathrm{y}_{\mathrm{bp}}}=0.61 \quad \text { Condition3 }:=\mathrm{if}\left(\frac{\mathrm{f}_{\mathrm{bp} 2}}{1.33 \cdot 0.75 \mathrm{Fy}_{\mathrm{bp}}}<1.00 \text {, "OK" , "Overstressed" }\right)
$$

FOUNDATION ANALYSIS

Job	176' Monopole - Vernon, CT
Description	

Computed by

	Page
VZ1-199	of
Sheet $\frac{1}{2}$ of $\frac{9}{9}$	
DaK	Date $07 / 27 / 06$

MONOPOLE FOUNDATION ANALYSIS

TOWER FORCES:

Moment Caused by Tower	$\mathrm{M}_{\mathrm{t}}:=2150 \cdot \mathrm{ff} \cdot \mathrm{kips}$
Shear at Base of Tower	$\mathrm{S}_{\mathrm{t}}:=21 \mathrm{kip}$
Max Compressive Force	$\mathrm{C}_{\mathrm{t}}:=50 \cdot \mathrm{kip}$
Height of Tower	$\mathrm{H}_{\mathrm{t}}:=176 \cdot \mathrm{ft}$
Base Plate Bolt Circle	$\mathrm{MP}:=5.58 \mathrm{ft}$

FOOTING DIMENSIONS:

Overall Depth of Footing
Length of Pier
Extension of Pier Above Grade
Diameter of Pier
Thickness of Footing
Width of Footing:
Length of Anchor Bolts:

PROPERTIES:

Compressive Strength of Concrete fec: $=3000 \mathrm{psi}$
Yield Strength of Steel Reinforcement fy $:=60000 \cdot \mathrm{psi}$
Yield Strength of Anchor Bolt \quad fa $:=105000 \cdot \mathrm{psi}$
Internal Friction Angle of Soil $\quad \phi_{\mathrm{S}}:=30 \cdot \mathrm{deg}$
Allowable Bearing Capacity $\quad q_{s}:=4800 \cdot \mathrm{psf}$
Unit Weight of Soil
$\gamma_{\mathrm{S}}:=120 \cdot \mathrm{pcf}$
$\gamma_{c}:=150 \cdot \mathrm{pcf}$
$\mathrm{n}:=0 \mathrm{ft}$
$\mathrm{c}=0 \cdot \mathrm{ksf}$
$Z:=2$
UBC Fig 23-2
Coefficient of Friction
between soil and Concrete:
Clear Cover of Reinforcement Pier:
$\mathrm{Cvr}_{\text {pier }}:=3 \cdot \mathrm{in}$
Clear Cover of Reinforcement Pier: $\quad \mathrm{Cvr}_{\mathrm{pad}}:=3$-in
Anchor Bolt Diameter

Projection of anchor bolts above pier $\mathrm{A}_{\mathrm{BP}}:=8.5 \cdot \mathrm{in}$
Anchor bolts area
PIER REINFORCEMENT:

$$
A_{\text {anchor }}:=1.23 \cdot \mathrm{in}^{2}
$$

Bar Diameter
$\mathrm{d}_{\text {bpier }}:=1.128 \cdot \mathrm{in}$
Bar Area $\quad A_{\text {brier }}:=1 \cdot \mathrm{in}^{2}$
PAD REINFORCEMENT:

Coefficient of Lateral Soil Pressure: $\quad K_{p}:=\frac{1+\sin \left(\phi_{s}\right)}{1-\sin \left(\phi_{s}\right)} \quad K_{p}=3$
Load Factor (EIA 3.1.1): $L F:=$ if $\left[H_{t} \leq 700 \cdot f t, 1.3\right.$, if $\left.\left[H_{t} \geq 1200,1.7,1.3+\left(\frac{H_{t}-700}{1200-700}\right) \cdot 0.4\right]\right] \quad L F=1.3$

URS

Job	176^{\prime} Monopole - Vernon, CT
Description	

CHECK ANCHOR STEEL EMBEDMENT

Depth:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ab}}:=\mathrm{L}_{\mathrm{st}}-A_{B P} \quad \mathrm{D}_{\mathrm{ab}}=5.2917 \mathrm{ft} \quad \mathrm{~L}_{\text {anchor }}:=\frac{(0.11 \cdot \mathrm{fy}) \cdot \mathrm{in}}{\sqrt{\mathrm{fc} \cdot \mathrm{psi}}} \quad \mathrm{~L}_{\text {anchor }}=10.0416 \mathrm{ft} \\
& \text { DepthCheck }:=\operatorname{if}\left(\mathrm{D}_{\mathrm{ab}} \geq \mathrm{L}_{\text {anchor }}, \text { "Okay", "No Good" }\right) \\
& \text { DepthCheck }=\text { "No Good" } \quad \text { Note: anchor plate is provided }
\end{aligned}
$$

STABILITY OF FOOTING

Passive Pressure:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{pn}}:=\mathrm{K}_{\mathrm{p}} \cdot \gamma_{\mathrm{s}} \cdot \mathrm{n}+\mathrm{c} \cdot 2 \cdot \sqrt{\mathrm{~K}_{\mathrm{p}}} \\
& P_{p t}:=K_{p} \cdot \gamma_{s} \cdot\left(D_{f}-T_{f}\right)+c \cdot 2 \cdot \sqrt{K_{p}} \\
& \mathrm{P}_{\text {top }}:=\mathrm{if}\left[\mathrm{n}<\left(\mathrm{D}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}\right), \mathrm{P}_{\mathrm{pt}}, \mathrm{P}_{\mathrm{pn}}\right] \\
& P_{\text {bot }}:=K_{p} \cdot \gamma_{s} \cdot D_{f}+c \cdot 2 \cdot \sqrt{K_{p}} \\
& P_{\text {ave }}:=\frac{P_{\text {top }}+P_{\text {bot }}}{2} \\
& T_{p}:=i\left[n<\left(D_{f}-T_{f}\right), T_{f},\left(D_{f}-n\right)\right] \\
& A_{p}:=W_{f} T_{p} \\
& W T_{c}:=\left[\left(W_{f}^{2} \cdot T_{f}\right)+d_{p}{ }^{2} L_{p}\right] \cdot \gamma_{c}
\end{aligned}
$$

Ultimate Shear: $\quad S_{\mathbf{u}}:=P_{\text {ave }} \cdot A_{\mathrm{p}}$
$\mathrm{P}_{\mathrm{pn}}=0 \mathrm{ksf}$
$\mathrm{P}_{\mathrm{pt}}=2.52 \mathrm{ksf}$
$\mathrm{P}_{\text {top }}=2.52 \mathrm{ksf}$
$P_{\text {bot }}=3.6 \mathrm{ksf}$
$\mathrm{P}_{\mathrm{ave}}=3.06 \mathrm{ksf}$
$\mathrm{T}_{\mathrm{p}}=3 \mathrm{ft}$
$A_{p}=60 f t^{2}$
$S_{u}=183.6 \mathrm{kip}$
Weight of
Concrete Pad:
$\mathrm{WT}_{\mathrm{c}}=235.125 \mathrm{kip}$

Weight of Soil:
above Footing:
$W T_{s I}:=\left[W_{f}^{2} \cdot\left(\left|L_{p}-L_{p a g}\right|\right)-\frac{d_{p}^{2} \cdot \pi}{4} \cdot\left(\left|L_{p}-L_{p a g}\right|\right)\right] \cdot \gamma_{s}$
$W \mathrm{~T}_{\mathrm{s} 1}=303.673 \mathrm{kip}$
Weight of Soil
Wedge at back face: $\quad \mathrm{WT}_{\mathrm{s} 2}:=\left(\frac{\mathrm{D}_{\mathrm{f}}^{2} \cdot \tan \left(\phi_{\mathrm{s}}\right)}{2} \cdot \mathrm{~W}_{\mathrm{f}}\right) \cdot \gamma_{\mathrm{s}}$,
$\mathrm{WT}_{\mathrm{s} 2}=69.282 \mathrm{kip}$
Total Weight:
$W T_{\text {tot }}:=W T_{c}+W T_{s 1}+C_{t}$
$\mathrm{WT}_{\mathrm{tot}}=588.798 \mathrm{kip}$

Resisting Moment:

$$
\mathrm{M}_{\mathrm{r}}:=\left(\mathrm{WT} \mathrm{tot} \cdot \frac{\mathrm{~W}_{\mathrm{f}}}{2}+\mathrm{S}_{\mathrm{u}} \cdot \frac{\mathrm{~T}_{\mathrm{f}}}{3}+\mathrm{WT}_{\mathrm{s} 2} \cdot\left(\mathrm{~W}_{\mathrm{f}}+\frac{\mathrm{D}_{\mathrm{f}} \tan \left(\phi_{\mathrm{s}}\right)}{3}\right)\right.
$$

Overturning Moment: $\quad M_{o t}:=M_{t}+S_{t}\left(L_{p}+T_{f}\right)$
$\mathrm{M}_{\mathrm{r}}=7590.5541 \mathrm{kip} \cdot \mathrm{ft}$

Factor of Safety:
FS $:=\frac{M_{r}}{M_{\text {ot }}} \quad \quad$ FS $_{\text {req }}:=2$
$\mathrm{M}_{\mathrm{ot}}=2370.5 \mathrm{kip} \cdot \mathrm{ft}$

SafetyCheck $:=\mathrm{if}\left(\mathrm{FS}>\mathrm{FS}_{\text {req }}\right.$, "Okay", "No Good" $)$
$\mathrm{FS}=3.2$
SafetyCheck = "Okay"
$\begin{array}{ll}\text { Job } & \text { 176' Monopole - Vermon, CT } \\ \text { Description } \\ & \end{array}$
Project No.
\qquad of -
\qquad Computed by \qquad Sheet $\frac{3}{07 / 27 / 06}$ Checked by \qquad Date \qquad

SHEAR CAPACITY IN PIER
 $$
F S:=2
$$

$$
S_{p}:=\frac{P_{\text {ave }} \cdot A_{\mathrm{p}}+\mu \cdot W T_{\text {tot }}}{F S}
$$

$$
\text { ShearCheck := if }\left(S_{p}>S_{t}, \text { "Okay", "No Good" }\right)
$$

$$
\begin{aligned}
& S_{p}=224.2796 \mathrm{kips} \\
& \text { ShearCheck = "Okay" }
\end{aligned}
$$

BEARING PRESSURE CAUSED BY FOOTING

Distance to Resultant of Pressure Distribution:

$$
X_{p}:=\frac{\mathrm{P}_{\max }}{\frac{\mathrm{P}_{\max }-\mathrm{P}_{\min }}{W_{\mathrm{f}}}} \cdot \frac{1}{3}
$$

$$
\mathrm{X}_{\mathrm{p}}=6.0932 \mathrm{ft}
$$

Distance to Kern: $\quad X_{k}:=\frac{W_{f}}{6}$
$X_{k}=3.3333 \mathrm{ft}$
Since Resultant Force is Not in Kern, Area to which Pressure is Applied Must be Reduced.
Eccentricity:

$$
\mathrm{e}:=\frac{\mathrm{M}_{\mathrm{ot}}}{\mathrm{WT}_{\mathrm{tot}}}
$$

$$
\mathrm{e}=4.026
$$

Adjusted Soil Pressure: $\quad \mathrm{P}_{\mathrm{a}}:=\frac{2 \cdot \mathrm{WT}_{\mathrm{tot}}}{3 \cdot \mathrm{~W}_{\mathrm{f}}\left(\frac{\mathrm{W}_{\mathrm{f}}}{2}-\mathrm{e}\right)}$

$$
\mathrm{P}_{\mathrm{a}}=3.2853 \mathrm{ksf}
$$

$\mathrm{q}_{\mathrm{adj}}:=\mathrm{if}\left(\mathrm{P}_{\min }<0, \mathrm{P}_{\mathrm{a}}, \frac{\mathrm{P}_{\max }}{\mathrm{ft}^{2}}\right)$
$q_{a d j}=3.2853 \mathrm{ksf}$

PressureCheck :=if($\mathrm{q}_{\mathrm{adj}}<\mathrm{q}_{\mathrm{S}}$, "Okay", "No Good")
PressureCheck $=$ "Okay"

$$
\begin{aligned}
& A_{\text {mat }}:=W_{f}^{2} \\
& S:=\frac{W_{f}^{3}}{6} \\
& A_{\text {mat }}=400 \mathrm{ft}^{2} \\
& \mathrm{~S}=1333.3333 \mathrm{ft}^{3} \\
& P_{\text {max }}:=\frac{W T_{\text {tot }}}{A_{\text {mat }}}+\frac{\mathrm{M}_{\mathrm{ot}}}{\mathrm{~S}} \\
& P_{\text {min }}:=\frac{W_{\text {tot }}}{A_{\text {mat }}}-\frac{M_{\text {ot }}}{S} \\
& \text { MaxPressure := if }\left(\mathrm{P}_{\max }<\mathrm{q}_{\mathrm{S}} \text {, "Okay", "No Good" }\right) \quad \text { MaxPressure }=\text { "Okay" } \\
& \text { MinPressure }:=\text { if }\left[\left(\mathrm{P}_{\min } \geq 0\right) \cdot\left(\mathrm{P}_{\min }<\mathrm{q}_{s}\right) \text {, "Okay", "No Good" }\right] \\
& \mathrm{P}_{\text {max }}=3.2499 \mathrm{ksf} \\
& P_{\min }=-0.3059 \mathrm{ksf} \\
& \text { MinPressure }=\text { "No Good" }
\end{aligned}
$$

Job	176' Monopole - Vernon, CT
Description	Spread Footing w/ Pier Analysis

$\frac{\text { VZ1-199 }}{\text { JEK }}$ Page of Description Spread Footing w/ Pier Analysis Computed by Sheet 4 of 9
\qquad Checked by \qquad Date 07/27/06

CONCRETE BEARING CAPACITY

(ACl 10.17)

$$
\begin{array}{ll}
\phi_{\mathrm{c}}:=0.75 & (\mathrm{ACl} 9.3 .2 .2) \\
\mathrm{P}_{\mathrm{b}}:=\phi_{\mathrm{c}} \cdot 0.85 \cdot \mathrm{fc} \cdot \frac{\mathrm{~d}_{\mathrm{p}}^{2} \cdot \pi}{4} & \mathrm{P}_{\mathrm{b}}=10598.6341 \mathrm{kip} \\
\text { BearingCheck }:=\mathrm{if}\left(\mathrm{P}_{\mathrm{b}}>\text { LF.C } \mathrm{C}_{\mathrm{t}}, \text { "Okay" }, \text { "No Good" }\right) & \text { BearingCheck }=\text { "Okay" }
\end{array}
$$

SHEAR STRENGTH OF CONCRETE

Beam Shear: (Critical section located at a distance d from the face of Pier) (ACI 11.3.1.1)

$$
\phi_{\text {Nav }}:=.85 \quad(A C I 9.3 .2 .3)
$$

$$
\mathrm{d}:=\mathrm{T}_{\mathrm{f}}-\mathrm{Cvr}_{\mathrm{pad}}-\mathrm{d}_{\mathrm{bbot}}
$$

$$
\mathrm{d}_{1}:=\frac{\mathrm{W}_{\mathrm{f}}}{2}-\frac{\mathrm{d}_{\mathrm{p}}}{2}
$$

$$
\mathrm{d}=32 \text { in }
$$

$$
\mathrm{d}_{1}=6.5 \mathrm{ft}
$$

$$
\mathrm{d}_{2}:=\mathrm{d}_{1}-\mathrm{d}
$$

$$
\mathrm{d}_{2}=3.8333 \mathrm{ft}
$$

$$
\mathrm{L}:=\left(\frac{\mathrm{W}_{\mathrm{f}}}{2}-\mathrm{e}\right) \cdot 3
$$

$$
\mathrm{L}=17.922 \mathrm{ft}
$$

$$
\text { Slope }:=\operatorname{if}\left(L>W_{f}, \frac{P_{\max }-P_{\min }}{W_{f}}, \frac{q_{\text {adj }}}{L}\right)
$$

$$
\text { Slope }=0.1833 \mathrm{kcf}
$$

$$
\mathrm{V}_{\mathrm{req}}:=\mathrm{LF} \cdot\left[\left(\mathrm{q}_{\mathrm{adj}}-\text { Slope } \cdot \mathrm{d}_{1}\right)+\left(\frac{\text { Slope } \cdot \mathrm{d}_{1}}{2}\right)\right] \cdot \mathrm{W}_{\mathrm{f}} \mathrm{~d}_{\mathrm{l}} \quad \mathrm{~V}_{\mathrm{req}}=454.537 \mathrm{lkip}
$$

ACl 11.3.1.1

$$
\begin{aligned}
& \mathrm{V}_{\text {Avail }}:=\phi_{\mathrm{c}} \cdot 2 \cdot \sqrt{\mathrm{fc} \cdot \mathrm{psi} \cdot \mathrm{~W}_{\mathrm{f}} \mathrm{~d}} \\
& \text { BeamShearCheck }:=\operatorname{if}\left(\mathrm{V}_{\text {req }}<\mathrm{V}_{\text {Avail }}, \text { "Okay", "No Good" }\right)
\end{aligned}
$$

$\mathrm{V}_{\text {Avail }}=715.1066 \mathrm{kip}$
BeamShearCheck $=$ "Okay"

Punching Shear: (Critical Section Located at a distance of $\mathrm{d} / 2$ from the face of pier) (ACl 11.12.2.1)

$$
\mathbf{b}_{\mathbf{o}}:=\left(\mathrm{d}_{\mathrm{p}}+\mathrm{d}\right) \cdot \pi
$$

$\mathrm{b}_{\mathrm{o}}=30.3687 \mathrm{ft}$
Area included inside bo: $\quad A_{b o}:=\frac{\pi \cdot\left(d_{p}+d\right)^{2}}{4}$
$A_{b o}=73.3911 \mathrm{ft}^{2}$

Area outside of bo:

$$
A_{\text {out }}:=A_{\text {mat }}-A_{b o}
$$

$\mathrm{A}_{\text {out }}=326.6089 \mathrm{ft}^{2}$

URS

\qquad
Guess Value: $\quad v_{u}:=1 \mathrm{ksf} \quad \begin{gathered}\text { (From "Foundation Analysis and design", } \\ \text { By Joseph Bowles, Eq. 8-9) }\end{gathered}$
Given $\quad d^{2}+d_{p} \cdot d=\frac{W T_{\text {tot }}}{\pi \cdot v_{u}}$
$\underset{\text { man }}{v}:=\operatorname{Find}\left(\mathrm{v}_{\mathrm{u}}\right) \quad \mathrm{v}_{\mathrm{u}}=7.2707 \mathrm{ksf}$
$\mathrm{V}_{\mathrm{u}}:=\mathrm{v}_{\mathrm{u}} \cdot \mathrm{d} \cdot \mathrm{W}_{\mathrm{f}} \quad \mathrm{V}_{\mathrm{u}}=387.7682 \mathrm{kips}$
$\mathrm{V}_{\text {seequ }}:=\mathrm{LF} \cdot \mathrm{V}_{\mathrm{u}} \quad \quad \mathrm{V}_{\text {req }}=504.0986 \mathrm{kips}$
$Y_{\text {MAmaidh }}:=\phi_{C} \cdot 4 \cdot \sqrt{\mathrm{f}^{\mathrm{c}} \mathrm{c} \cdot \mathrm{psi}} \cdot \mathrm{b}_{0} \cdot \mathrm{~d}$
$\mathrm{V}_{\text {Avail }}=2171.6878 \mathrm{kips}$
PunchingShearCheck := if $\left(\mathrm{V}_{\text {req }}<\mathrm{V}_{\text {Avail }}\right.$, "Okay", "No Good" $) \quad$ PunchingShearCheck $=$ "Okay"

STEEL REINFORCEMENT IN THE PAD $\quad \phi_{\mathrm{m}}:=.90 \quad \mathrm{ACl} 9.3 .2 .2$
Take Maximum Bending at face of Pier:

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{b}}:=\mathrm{q}_{\mathrm{adj}}-\mathrm{d}_{1} \cdot \text { Slope } \quad \mathrm{q}_{\mathrm{b}}=2.0938 \mathrm{ksf} \\
& M_{n}:=\frac{L F}{\phi_{m}} \cdot\left[\left(q_{a d j}-q_{b}\right) \cdot \frac{d_{1}^{2}}{3}+q_{b} \cdot \frac{d_{1}^{2}}{2}\right] \cdot W_{f} \quad M_{n}=1762.5785 \mathrm{kip} \cdot \mathrm{ft} \\
& \left.\beta:=\text { if } f \mathrm{fc} \leq 4000 \cdot \mathrm{psi}, .85, \text { if }\left[\mathrm{fc} \geq 8000 \cdot \mathrm{psi}, .65, .85-\left(\frac{\frac{\mathrm{fc}}{\mathrm{psi}}-4000}{1000}\right) \cdot .05\right]\right] \beta=0.85 \\
& R_{u}:=\frac{M_{n}}{\phi_{m} \cdot W_{f} d^{2}} \\
& \rho:=\frac{0.85 \cdot \mathrm{f}^{\prime} \mathrm{c}}{\mathrm{fy}}\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}_{\mathrm{u}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}}}\right) \\
& \rho_{\text {min }}:=1.333 \cdot \rho \\
& R_{u}=13770.1 \mathrm{lbf} \\
& \rho=0.0016 \\
& \rho_{\text {min }}=0.00217
\end{aligned}
$$

ACl 10.2.7.3

URS

Job	176' Monopole - Vernon, CT			Sheet 6 of 9 Date 07/27/06	
Description	Spread Footing w/ Pier Analysis	Project No. Computed by			
			JEK		
		Checked by		Date	

Temperature and Shrinkage: $\rho_{\text {sh }}:=\operatorname{if}(f y \geq 60000 \cdot p s i, 0.0018,0.0020)$
$\rho_{\text {sh }}=0.0018$
(ACl 7.12 .2 .1 b)
FOR BOTTOM BARS:

$$
\begin{aligned}
& \text { As }:=\max \left(\rho, \rho_{\text {min }}, \rho_{s h}\right) \cdot W_{f} d \quad \text { As }=16.6341 \text { in }^{2} \\
& \mathrm{As}_{\text {prov }}:=\mathrm{A}_{\text {bot }} \cdot \mathrm{NB}_{\text {bot }} \\
& \text { PadReinforcement }:=\operatorname{if}\left(\text { As }_{\text {prov }}>\text { As, "Okay", "No Good" }\right) \quad \text { PadReinforcement }=\text { "Okay" } \\
& A s:=\rho_{s h} \cdot\left(W_{f} d\right) \\
& \text { Asprews }:=A_{\text {btop }} \cdot \mathrm{NB}_{\text {top }} \\
& \text { PadReinforcement }:=\text { if }\left(\mathrm{As}_{\text {prov }}>\text { As, "Okay" }, \text { "No Good" }\right) \quad \text { PadReinforcement }=\text { "Okay" }
\end{aligned}
$$

FOR TOP BARS:

TENSION (ACI 12.2.3) DEVELOPMENT LENGTH OF PAD REINFORCEMENT

Bar Spacing:
$\mathrm{B}_{\mathrm{sPad}}:=\frac{\mathrm{W}_{\mathrm{f}}-2 \cdot \mathrm{Cvr}_{\mathrm{pad}}-\mathrm{NB}_{\text {bot }} \cdot \mathrm{d}_{\text {bbot }}}{\mathrm{NB}_{\text {bot }}-1}$
$\mathrm{B}_{\mathrm{sPad}}=9.5909 \mathrm{in}$

Development Length Factors: Reinforcement Location Factor

Reinforcement Location Factor	$\alpha:=1.0$
Coating Factor	$\beta:=1.0$
Concrete strength Factor	$\lambda:=1.0$
Reinforcement Size Factor	$\gamma:=1.0$

Spacing or Cover Dimension: $\quad \underset{\mathrm{cm}}{ }:=\mathrm{if}\left(\mathrm{Cvr}_{\mathrm{pad}}<\frac{\mathrm{B}_{\mathrm{sPad}}}{2}, \mathrm{Cvr}_{\text {pad }}, \frac{\mathrm{B}_{\mathrm{sPad}}}{2}\right) \quad \mathrm{c}=3$ in
Transverse Reinforcement IndexAs allowed by ACI 12.2.4 $\quad k_{t r}:=0$

$$
\mathrm{L}_{\mathrm{dbt}}:=\frac{3}{40} \cdot \frac{\mathrm{fy}}{\sqrt{\mathrm{fc} \cdot \mathrm{psi}}} \cdot \frac{\alpha \cdot \beta \cdot \gamma \cdot \lambda}{\frac{{ }^{c}+\mathrm{k}_{\mathrm{tr}}}{{ }_{\mathrm{d}}^{\mathrm{bbot}}}} \quad \cdot \mathrm{~d}_{\mathrm{bbot}}
$$

$\mathrm{L}_{\mathrm{dbt}}=27.3861 \mathrm{in}$
$\mathrm{L}_{\mathrm{dbmin}}:=12 \cdot \mathrm{in}$
Minimum Development Length
(ACI 12.2.1)
$\mathrm{L}_{\mathrm{dbt} \text { Check }}:=\mathrm{if}\left(\mathrm{L}_{\mathrm{dbt}} \geq \mathrm{L}_{\mathrm{dbmin}}\right.$, "Use L.dbt", "Use L.dbmin" $)$
$\mathrm{L}_{\mathrm{dbtCheck}}=$ "Use L.dbt"
Available Length in Pad: $\quad \mathrm{L}_{\mathrm{Pad}}:=\frac{\mathrm{W}_{\mathrm{f}}}{2}-\frac{\mathrm{d}_{\mathrm{p}}}{2}-\mathrm{Cvr}_{\mathrm{pad}}$
$\mathrm{L}_{\mathrm{Pad}}=75$ in
LpadTension := if $\left(\mathrm{L}_{\mathrm{Pad}}>\mathrm{L}_{\mathrm{dbt}}\right.$, "Okay", "No Good" $)$
LpadTension = "Okay"

US8 - Pa					
Job	176' Monopole - Vernon, CT	Project No.	VZ1-199	Page	
Description	Spread Footing w/ Pier Analysis	Computed by	JEK	Date	07/27/06
		Checked by		Date	

REINFORCEMENT IN PIER

Pier Area:

$$
\begin{array}{cl}
\mathrm{A}_{\mathrm{psvi}}:=\frac{\pi \cdot \mathrm{d}_{\mathrm{p}}{ }^{2}}{4} & \mathrm{~A}_{\mathrm{p}}=5541.7694 \mathrm{in}^{2} \\
\mathrm{~A}_{\text {smin }}:=0.01 \cdot 0.05 \cdot \mathrm{~A}_{\mathrm{p}} & \mathrm{~A}_{\text {smin }}=2.7709 \mathrm{in}^{2} \\
\mathrm{~A}_{\text {sprov }}:=\mathrm{NBpier} \cdot \mathrm{~A}_{\mathrm{bpier}} & \mathrm{~A}_{\text {sprov }}=34 \mathrm{in}^{2} \\
\text { SteelAreaCheck }:=\mathrm{if}\left(\mathrm{~A}_{\text {sprov }}>\mathrm{A}_{\text {smin }}, \text { "Okay", "No Good" }\right) & \text { SteelAreaCheck }=\text { "Okay" } \\
\text { NOTE: Anchor Bolts are not accounted for in reinforcement calculation and will provide } \\
& \text { additional reinforcement to satisfy minimum requirement of steel. }
\end{array}
$$

(ACl 10.8 .4 and 10.9.1)

Bar Spacing In Pier:

$$
\mathrm{B}_{\mathrm{sPier}}:=\frac{\mathrm{d}_{\mathrm{p}} \cdot \pi}{\text { NBpier }}-\mathrm{d}_{\mathrm{bpier}}
$$

$$
\mathrm{B}_{\mathrm{sPier}}=6.6336 \mathrm{in}
$$

Diamter of Reinforcement Cage:

$$
\operatorname{Diam}_{\text {cage }}:=d_{p}-2 \cdot \mathrm{Cvr}_{\text {pier }}
$$

$$
\text { Diam }_{\text {cage }}=78 \mathrm{in}
$$

Maximum Moment in Pier:

$$
M_{p}:=\left[M_{t}+S_{t} \cdot\left(L_{p}+\frac{A_{B P}}{2}\right)\right] \cdot L F
$$

$$
M_{p}=36113.025 \text { in } \cdot \text { kips }
$$

Pier Check evaluated from outside program and results are listed below;
(defined variables)

$$
\left(f_{\mathrm{c}} f_{\mathrm{y}} \mathrm{cl} \text { Spiral }\right)=\left(\begin{array}{llll}
3 & 60 & 3 & 0
\end{array}\right)
$$

The required input is column diameter in inches, number of reinforcing bars, bar size number,

$$
\left(\begin{array}{l}
\mathrm{D} \underset{\sim M}{N} \mathrm{M}_{\mathrm{M}} \mathrm{P}_{\mathrm{u}} \mathrm{M}_{\mathrm{xu}}
\end{array}\right):=\left(\begin{array}{lllll}
84 & 34 & 9 & 50 & 36113
\end{array}\right)
$$ factored axial load in kips and moment in kip inches:

Clears any previous output:

$$
\left(\begin{array}{lll}
\phi \mathrm{P}_{\mathrm{n}}
\end{array} \phi \mathrm{M}_{\mathrm{xn}} \mathrm{f}_{\mathrm{sp}}, h_{n}\right):=\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\left(\phi P_{\text {wh }} \phi \mathrm{M}_{\text {xan }} \mathrm{f}_{\text {fopu }} R_{n}\right):=\phi \mathrm{P}_{\mathrm{n}}\left(\mathrm{D}, \mathrm{~N}, \mathrm{n}, \mathrm{P}_{\mathrm{u}}, \mathrm{M}_{\mathrm{xu}}\right)^{\mathrm{T}}
$$

The Output is given as useable axial load in kips, moment capacity in kip inches, splicing stress in ksi, and reinforcement ratio:

$$
\left(\phi P_{\mathrm{n}} \phi \mathrm{M}_{\mathrm{xn}} \quad \mathrm{f}_{\mathrm{sp}} \rho\right)=\left(\begin{array}{llll}
91.7895 & 66295.9015 & -60 & 0.0061
\end{array}\right)
$$

Column size and reinforcement may be changed to match capacity to the applied load.

$$
\begin{array}{ll}
\text { AxialLoadCheck }:=\mathrm{if}\left(\phi \mathrm{P}_{\mathrm{n}} \geq \mathrm{P}_{\mathrm{u}}, \text { "Okay", "No Good" }\right) & \text { AxialLoadCheck }=\text { "Okay" } \\
\text { BendingCheck }:=\mathrm{if}\left(\phi \mathrm{M}_{\mathrm{xn}} \geq \mathrm{M}_{\mathrm{xu}}, \text { "Okay", "No Good" }\right) & \text { BendingCheck }=\text { "Okay" }
\end{array}
$$

DEVELOPMENT LENGTH OF PIER REINFORCEMENT

TENSION (ACI 12.2.3)
Factors for development:

Reinforcement Location Factor	$\alpha=1.0$
Coating Factor	$\beta:=1.0$
Concrete strength Factor	$\lambda:=1.0$
Reinforcement Size Factor	$\gamma_{\text {mir }}:=1.0$
c: if $\left(\mathrm{CVr}_{\text {pier }}<\frac{\mathrm{B}_{\text {sPier }}}{2}, \mathrm{Cvr}_{\text {pier }}, \frac{\mathrm{B}_{\text {sPier }}}{2}\right)$	

$$
\mathrm{c}=3 \mathrm{in}
$$

Spacing or Cover Dimension: $\mathrm{c}:=\mathrm{if}\left(\mathrm{Cvr}_{\mathrm{pier}}<\frac{\mathrm{B}_{\text {sPier }}}{2}, \mathrm{Cvr}_{\mathrm{pier}}, \frac{\mathrm{B}_{\text {sPier }}}{2}\right) \quad \mathrm{c}=3$ in
Transverse Reinforcement: As allowed by $\mathrm{ACl} 12.2 .4 \quad \mathrm{k}_{\mathrm{k}}:=0$

$$
\mathrm{L}_{\mathrm{db} b \mathrm{w}}:=\frac{3}{40} \cdot \frac{\mathrm{fy}}{\sqrt{\mathrm{fc} \cdot \mathrm{psi}}} \cdot \frac{\alpha \cdot \beta \cdot \gamma \cdot \lambda}{\frac{\mathrm{c}+\mathrm{k}_{\mathrm{tr}}}{\mathrm{~d}_{\mathrm{bpier}}}} \cdot \mathrm{~d}_{\mathrm{bpier}}
$$

$$
\mathrm{L}_{\mathrm{dbt}}=34.8457 \mathrm{in}
$$

Minimum Development Length: (ACI 12.2.1)

$$
\frac{\mathrm{L}}{\mathrm{~d} b \text { mainh }}:=12 \cdot \mathrm{in}
$$

Pier reinforcement bars are standard 90 degree hooks and therefore developement in the pad is computed as follows:

$$
\mathrm{L}_{\mathrm{dh}}:=\frac{1200 \cdot \mathrm{~d}_{\text {bpier }}}{\sqrt{\frac{\mathrm{fc}}{\mathrm{psi}}}} \cdot 7
$$

$$
\mathrm{L}_{\mathrm{dh}}=17.2993 \mathrm{in}
$$

$$
\mathrm{L}_{\mathrm{db}}:=\max \left(\mathrm{L}_{\mathrm{dbt}}, \mathrm{~L}_{\mathrm{dbmin}}\right)
$$

COMPRESSION: (ACI 12.3.2)

$$
\mathrm{L}_{\mathrm{db}}=34.8457 \mathrm{in}
$$

$$
\mathrm{L}_{\mathrm{dbc} 1}:=\frac{.02 \cdot \mathrm{~d}_{\mathrm{bpier}} \cdot \mathrm{fy}}{\sqrt{\mathrm{fc} \cdot \mathrm{psi}}}
$$

$$
\mathrm{L}_{\mathrm{dbcl}}=24.7132 \mathrm{in}
$$

$$
L_{\text {wdbrainsi }}=0.0003 \cdot \frac{\mathrm{in}^{2}}{\mathrm{lb}} \cdot\left(\mathrm{~d}_{\text {bpier }} \cdot \mathrm{fy}\right)
$$

$$
\mathrm{L}_{\mathrm{dbmin}}=20.304 \mathrm{in}
$$

$$
\mathrm{L}_{\mathrm{dbc}}:=\mathrm{if}\left(\mathrm{~L}_{\mathrm{dbc} 1} \geq \mathrm{L}_{\mathrm{dbmin}}, \mathrm{~L}_{\mathrm{dbcl}}, \mathrm{~L}_{\mathrm{dbmin}}\right)
$$

$$
\mathrm{L}_{\mathrm{dbc}}=24.7132 \mathrm{in}
$$

Available Length in Pier:
$L_{\text {pier }}:=L_{p}-3 \cdot$ in
$L_{\text {pier }}=87 \mathrm{in}$
$L_{\text {piertension }}:=\operatorname{if}\left(L_{\text {pier }}>L_{\text {dbt }}\right.$, "Okay", "No Good" $)$
$\mathrm{L}_{\text {piertension }}=$ "Okay"
$\mathrm{L}_{\text {piercompression }}:=\operatorname{if}\left(\mathrm{L}_{\text {pier }}>\mathrm{L}_{\mathrm{dbc}}\right.$, "Okay", "No Good" $)$
NOTE: Anchor bolts and plate provided, OK
Available Length in Pad:

$$
\begin{aligned}
& \mathrm{L}_{\text {pad }}:=\mathrm{T}_{\mathrm{f}}-3 \cdot \mathrm{in} \\
& \mathrm{~L}_{\text {padtension }}:=\mathrm{if}\left(\mathrm{~L}_{\text {pad }}>\mathrm{L}_{\text {dh }}, \text { "Okay", "No Good" }\right) \\
& \mathrm{L}_{\text {padcompression }}:=\text { if }\left(\mathrm{L}_{\text {pad }}>\mathrm{L}_{\text {dbc }}, \text { "Okay", "No Good" }\right)
\end{aligned}
$$

$$
\mathrm{L}_{\text {pad }}=33 \mathrm{in}
$$

TIE					
Job Description	176' Monopole - Vernon, CT	Project No.	VZ1-199	Page \qquad of	
	Spread Footing w/ Pier Analysis		JEK	Date	07/27/06
		Checked by		Date	

TIE SIZE AND SPACING IN COLUMN

ALP-E 9011-Din

Features:

Small Size

Aesthetically Pleasing
Suitable For TDMA/CDMA
High Return Loss

1 Low Intermodulation
C High ETB
O Broadbanded
Side-lobe Suppression
0 Sturdy Design
Down-Tilt Brackets Incl.

The distance between the center of the bolts (on the back of the antenna) are shown in the drawing above

Bolt diameter is: 3/8-16
[comes with lock nut]

Frequency Range:	800-900 MHz
Impedance:	50 ohm
Connector Type:	7/16 Din
Return Loss:	20 dB
Polarization:	Vertical
Gain:	$>11 \mathrm{dBd}$
Front To Back Ratio:	$>30 \mathrm{~dB}$
Side-Lobe Suppression:	18 dB
Intermodulation ($2 \times 25 \mathrm{~W}$) :	$\mathrm{IM} 3>146 \mathrm{~dB}$
	[MS $>153 \mathrm{~dB}$
	[M7/9 $>163 \mathrm{~dB}$
Power Rating:	500 W
H-Plane (-3 dB point):	85-92 ${ }^{\circ}$
V-Plane (-3 dB point):	16.18 ${ }^{\circ}$
Lightaing Protection:	OC Grounded

The ALP-E 9011-Din is made itt U.S.A.

Meqhantcal specifications

Hountimg forwhtiling
Mountig tack

ELeqtichusperifications

 1010 orane

ॠy WEODNocom

, 19 SWh

We R Polarikation

Wive thdak
Wy Kulat

 Wbad deloti

CF Denotes a Center-Fed Connector.

806-960 MHz

WPA-80090/4CF

When ordering, replace "__ with connector type.

Featuring upper side lobe suppression.

Radiation patterns for all antennas are measured with the antenna mounted on a fiberglass pole.

Mounting on a metal pole will typically improve the Front-toBack Ratio.

Amphenol Antel's

 Exclusive 3T (True Transmission Line Technology)Antenna Design:

- Watercut brass feedline assembly for consistent performance.
- Unique feedline design eliminates the need for conventional solder joints in the signal path.
- A non-collinear system with access to every radiating element for broad bandwidth and superior performance
- Air as insulation for virtually no internal signal loss

Every Amphenol Antel antenna is under a five-year limited warranty for repair or replacement.

Antenna available with center-fed connector only.

Revision Date: 6/3/04

DETAILED STRUCTURAL ANALYSIS AND EVALUATION OF 147'-6" MONOPOLE FOR NEW ANTENNA ARRANGEMENT

Bright Meadow Boulevard
Enfield, Connecticut
prepared for

verf Onwireless

Verizon Wireless
99 East River Drive
East Hartford, Connecticut 06108

URS CORPORATION

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. INTRODUCTION
3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS
4. FINDINGS AND EVALUATION
5. CONCLUSIONS
6. DRAWINGS AND DATA

- RISA TOWER INPUT / OUTPUT SUMMARY
- RISA TOWER DETAILED OUTPUT
- ANCHOR bOLT AND base plate analysis
- FOUNDATION ANALYSIS

1. EXECUTIVE SUMMARY

This report summarizes the structural analysis of the $147^{\prime}-6^{\prime \prime}$ monopole located at Bridge Meadow Boulevard in Enfield, Connecticut. The analysis was conducted in accordance with the 2005 Connecticut State Building Code and the TIA/EIA-222-F standard for a wind velocity of 80 mph (fastest mile) and 69 mph (fastest mile) concurrent with $1 / 2^{\prime \prime}$ ice. The antenna loading considered in the analysis consists of all existing and proposed antennas, transmission lines, and ancillary items as outlined in the Introduction Section of this report. The proposed Verizon Wireless modification is as follows:

Proposed Antenna and Mount	Carrier	Antenna Center Elevation
Remove: (6) existing Swedcom ALP-E-9011 antennas Install: (6) Antel WPA-80090/4CF antennas on existing low profile platform with (6) existing 15/8" coax cables	Verizon (Proposed)	@ 137'

The results of the analysis indicate that the existing tower structure is in compliance with the proposed loading conditions. The tower and foundation are considered structurally adequate under the wind load specified above and the existing, and proposed antenna loadings.
This analysis is based on:

1) The tower structure's theoretical capacity not including any assessment of the condition of the tower.
2) Tower geometry, member sizes and foundation taken from Tower and Foundation reports prepared by Summit Manufacturing, Inc. (Summit Job \# 3960) signed and sealed September 18, 1998.
3) Antenna and mount configuration as specified on the following page of this report.

This report is only valid as per the assumptions and data utilized in this report for antenna inventory, mounts and associated cables. The user of this report shall field verify the assumption of the antenna and mount configuration as well as the physical condition of the tower. Notify the engineer in writing immediately if any of the information in this report is found to be other than specified.

If you should have any questions, please call.

Sincerely,

$$
c c: \quad D R, A A, I A, C F / B o o k-U R S
$$

2. INTRODUCTION

The subject tower is located at Bridge Meadow Boulevard in Enfield, Connecticut. The structure is a $147^{\prime}-6$ " monopole manufactured by Summit Manufacturing Incorporated.

The tower geometry and structure member sizes were taken from the original construction drawings (Summit Job \# 3960) prepared by Summit Manufacturing Inc., signed and sealed September 18, 1998.

The inventory is summarized in the table below:

Antenna Type	Cartier	Mount	Centerine Elevation	Cable
(6) Decibel DB980H90 antennas	Sprint (existing)	Low Profile Platform	147'	(6) $15 / 8^{\prime \prime}$ coax cables (within monopole)
(6) Antel WPA80090/4CF antennas	Verizon (proposed)	Low Profile Platform	137'	(6) $15 / 8^{\prime \prime}$ coax cables (within monopole)
$\begin{gathered} \text { (6) Decibel } \\ \text { DB948F85T2E-M } \\ \text { antennas } \end{gathered}$	Verizon (existing)	Low Profile Platform (listed above)	$137{ }^{\prime}$	(6) $15 / 8^{\prime \prime}$ coax cables (within monopole)
(12) Decibel DB844H90 antennas	Nextel (existing)	Low Profile Platform	127'	(12) $7 / 8^{\prime \prime}$ coax cables (within monopole)
(9) Allgon 7184.14 antennas	Cingular Blue (existing)	Low Profile Platform	117'	(9) $15 / 8^{\prime \prime}$ coax cables (within monopole)
(1) GPS antenna	(existing)	Sidearm	50'	(1) $1 / 2^{\prime \prime}$ coax cable (within monopole)

This structural analysis of the communications tower was performed by URS Corporation (URS) for Verizon Wireless. The purpose of this analysis was to investigate the structural integrity of the existing tower with its existing and proposed antenna loads. This analysis was conducted to evaluate stress on the tower and the effect of forces to the foundation of the tower resulting from existing and proposed antenna arrangements.

3. ANALYSIS METHODOLOGY AND LOADING CONDITIONS

The structural analysis was done in accordance with the 2005 Connecticut State Building Code, TIA/EIA-222-F-Structural Standard for Steel Antenna Towers and Antenna Supporting Structures, and the American Institute of Steel Construction (AISC) Manual of Steel Construction-Allowable Stress Design (ASD).

The analysis was conducted using RISA Tower 4.5. Two load conditions were evaluated as shown below which were compared to allowable stresses according to AISC and TIA/EIA.

Load Condition $1=80 \mathrm{mph}$ (fastest mile) Wind Load (without ice) + Tower Dead Load Load Condition $2=69 \mathrm{mph}$ (fastest mile Wind Load (with ice) + Ice Load + Tower Dead Load

Please note that wind pressure is a function of velocity squared. Under Load Condition 2, a 25 percent reduction in wind pressure is allowed by code to account for the unlikelihood of the full wind pressure and ice load occurring at the same time. The same results may be achieved by utilizing a lower wind pressure without taking the 25 percent reduction, as shown above.

The TIAIEIA standard permits a one-third increase in allowable stresses for towers and monopoles less than 700 feet tall. For the purposes of this analysis, in computing the load capacity the allowable stresses of the tower members were increased by one-third.

4. FINDINGS AND EVALUATION

Combined axial and bending stresses on the monopole structure were evaluated to compare with allowable stresses in accordance with AISC. The calculated stresses under the proposed loading were below the allowable stresses. Detailed analysis and calculations for the proposed load condition are provided in section 6 of this report. Additionally, the anchor bolts, base plate, and foundation were found to be structurally adequate.

5. CONCLUSIONS

The results of the analysis indicate that the tower structure is in compliance with the proposed loading conditions. The tower and its foundation are considered structurally adequate with the TIA/EIA-222-F wind load classification specified above and all the existing and proposed antenna loading.

Limitations/Assumptions:

This report is based on the following:

1. Tower inventory as listed in this report.
2. Tower is properly installed and maintained.
3. All members are as specified in the original design documents and are in good condition.
4. All required members are in place.
5. All bolts are in place and are properly tightened.
6. Tower is in plumb condition.
7. All member protective coatings are in good condition.
8. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
9. Foundations were properly constructed to support original design loads as specified in the original design documents.
10. All coaxial cable is installed within the monopole unless specified otherwise.

URS is not responsible for any modifications completed prior to or hereafter in which URS is not or was not directly involved. Modifications include but are not limited to:
A. Adding antennas
B. Removing/replacing antennas
C. Adding coaxial cables

URS hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact URS. URS disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Ongoing and Periodic Inspection and Maintenance:

After the Contractor has successfully completed the installation and the work has been accepted, the owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervais is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIAVEIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions
6. DRAWINGS AND DATA

RISA TOWER DETAILED OUTPUT

Job	147.5' Summit Monopole	Page
		1 of 19
Project	Bright Meadow Boulevard Enfield, CT	Date 11:44:56 08/01/06
Client	Verizon Wireless	Designed by Staff

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Basic wind speed of 80 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56 pcf .
A wind speed of 69 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Weld together tower sections have flange connections.
Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC
Specifications.
Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..
Welds are fabricated with ER-70S-6 electrodes..
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333.
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
\checkmark Use Code Stress Ratios
\checkmark Use Code Safety Factors - Guys Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing

Treat Feedline Bundles As Cylinder
Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feedline Torque
Include Angle Block Shear Check
M.

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation \qquad $f t$	Section Length fi	Splice Length fi	Number of Sides	Top Diameter in 2.0000	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
LI	147.50-108.50	39.00	3.75	18	22.0000	29.4100	0.2500	1.0000	A572-60
									(60 ksi)
L2	108.50-72.25	40.00	4.50	18	28.1975	35.7980	0.2500	1.0000	A572-65
L3	72.25-35.75	41.00	5.25	18	34.4429	42.2320	0.3125	1.2500	(65 ksi)
									A572-65
									(65 ksi)

RISATower URS Corporation 500 Enterpise Drive, Suite 3B Rocky Hill. CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	147.5' Summit Monopole			$\begin{array}{ll} \text { Page } & \\ & 2 \text { of } 19 \end{array}$
	Project	Bright Meadow Boulevard	Enfield, CT	$\begin{array}{\|l\|} \text { Date } \\ \text { 11:44:56 08/01/06 } \end{array}$
	Verizon Wireless			Designed by Staff

Section	Elevation \qquad	Section Length ft	Splice Length fi	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L4	35.75-0.00	41.00		18	40.6096	48.4000	0.3750	1.5000	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \\ & \hline \end{aligned}$

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	I $i n^{4}$	r in	C in	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w $i n$	
L1	22.3394	17.2586	1031.4832	7.7212	11.1760	92.2945	2064.3237	8.6310	3.4320	13.728
	29.8637	23.1385	2485.6899	10.3518	14.9403	166.3751	4974.6504	11.5714	4.7362	18.945
L2	29.3560	22.1763	2188.3323	9.9214	14.3243	152.7703	4379.5441	11.0903	4.5228	18.091
	36.3502	28.2073	4503.2898	12.6195	18.1854	247.6324	9012.5051	14.1063	5.8604	23.442
L3	35.8424	33.8531	4982.1891	12.1163	17.4970	284.7451	9970.9339	16.9298	5.5120	17.638
	42.8835	41.5789	9230.8709	14.8814	21.4539	430.2663	18473.8880	20.7934	6.8828	22.025
L4	42.2490	47.8893	9794.3447	14.2833	20.6297	474.7694	19601.5771	23.9492	6.4873	17.299
	49.1466	57.1618	16656.2703	17.0489	24.5872	677.4366	33334.4574	28.5863	7.8584	20.956

Tower Elevation \qquad $f t$	Gusset Area (per face) \qquad	Gusset Thickness in	$\begin{gathered} \text { Gusset Grade Adjust. Factor } \\ A_{f} \end{gathered}$	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
$\begin{gathered} \mathrm{L} 1147.50- \\ 108.50 \end{gathered}$			I	1	1		
$\begin{gathered} \text { L2 } 108.50- \\ 72.25 \end{gathered}$			1	1	1		
L3 72.25-35.75			1	1	1		
L4 35.75-0.00			1	1	1		

Feed Line/Linear Appurtenances - Entered As Area								
Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Allow Shield	Component Type	Placement fl	Total Number		$C_{A} A_{A}$ $f^{\prime} / f t$	Weight plf
$\begin{gathered} 15 / 8 \\ \text { (Sprint) } \end{gathered}$	C	No	Inside Pole	147.00-3.00	6	No Ice	0.00	1.04
$\begin{gathered} \text { (Sprint) } \\ 7 / 8 \end{gathered}$	C	No	Inside Pole		12	1/2" lce	0.00	1.04
(Nextel)			Inside Pole	127.00-10.00	12	No Ice 1/2" Ice	0.00 0.00	0.54 0.54
$15 / 8$	C	No	Inside Pole	137.00-10.00	12	No Ice	0.00	1.04
(Verizon)						1/2" Ice	0.00	1.04
I 5/8 (Cingular Blue)	C	No	Inside Pole	117.00-4.00	9	No Ice	0.00	1.04
(Cingular Blue)						1/2" Ice	0.00	1.04
1/2	C	No	Inside Pole	50.00-10.00	1	No Ice	0.00	0.25
(GPS)						1/2" Ice	0.00	0.25

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation
\(\qquad\) ft \& Face \& \begin{tabular}{l}
\(A_{R}\) \\
\(j t^{2}\)
\end{tabular} \& \(A_{F}\)

$f r$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Out Face |
| $f i$ | \& | Weight |
| :--- |
| $l b$ |

\hline
\end{tabular}

Tower Section $\overline{\mathrm{LI}}$	Tower Elevation fl $147.50-108.50$	Face	A_{R} $f t^{\prime}$ 0	A_{F} $f f_{\prime}^{\prime}$	$C_{A} A_{A}$ In Face $-f^{\prime}$	$C_{A} A_{A}$ Out Face $f t^{\prime}$	Weight lb
LI	147.50-108.50	A	0.000	0.000	0.000	0.000	0.00
L2	108.50-72.25	B	0.000 0.000	0.000	0.000	0.000	0.00
		A	0.000 0.000	0.000 0.000	0.000	0.000	795.36
		B	0.000	0.000 0.000	0.000	0.000	0.00
L3	72.25-35.75	C	0.000	0.000	0.000 0.000	0.000	0.00
		A	0.000	0.000	0.000 0.000	0.000 0.000	1252.80
		B	0.000	0.000	0.000	0.000	0.00
L4	35.75-0.00	C	0.000	0.000	0.000	0.000	0.00
		A	0.000	0.000	0.000	0.000	1265.00
		B	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	996.20

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ic	A_{R}				
$\frac{\text { Section }}{}$		$\begin{gathered} o r \\ \text { Leg } \\ \hline \mathrm{A} \end{gathered}$	$\begin{gathered} \text { Thick } \\ \begin{array}{c} \text { Thess } \\ \text { in } \end{array} \\ \hline 0500 \end{gathered}$	A_{R} f^{2} 0000	A_{F} $f t^{2}$	$\begin{gathered} C_{A} A_{A} \\ \text { In }{ }^{2} \text { ace } \\ {f t^{\prime}}^{2} \\ \hline \end{gathered}$		Weight lb
L1	147.50-108.50	A	0.500	0.000 0.000	0.000	0.000	0.000	0.00
L2	108.50-72.25	C	0.500	0.000 0.000	0.000	0.000	0.000	0.00
		A		0.000	0.000 0.000	0.000	0.000	795.36
		B		0.000	0.000	0.000 0.000	0.000	0.00
L3	72.25-35.75	C	0.500	0.000	0.000	0.000 0.000	0.000	0.00
		A		0.000	0.000	0.000	0.000	1252.80
L4	35.75-0.00	B		0.000	0.000	0.000	0.000	0.00 0.00
		C	0.500	0.000	0.000	0.000	0.000	1265.00
		A		0.000 0.000	0.000	0.000	0.000	0.00
		${ }_{\text {C }}$		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	996.20

Feed Line Center of Pressure

Section	Elevation $\frac{f t}{147.50-108.50}$	$C P_{X}$ in coon	$C P_{2}$ in	$\begin{gathered} C P_{X} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$	$C P_{z}$ Ice in
L2	$147.50-108.50$ $108.50-72.25$	0.0000	0.0000	0.0000	0.0000
L3	72.25-35.75	0.0000 0.0000	0.0000	0.0000	0.0000
L4	35.75-0.00	0.0000	0.0000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000

Tower Pressures - No Ice

$$
G_{H}=1.690
$$

Section Elevation \qquad ft	z	K_{z}	$q_{x}$$p s f$	A_{G}	F a c e	$\overline{A_{F}}$$f t^{2}$	$A_{R}$$f t^{\prime}$	$A_{i_{\mathrm{cq}}}$$f t^{2}$	$\begin{gathered} \text { Leg } \\ \% \end{gathered}$	$\begin{gathered} C_{A} A_{A} \\ \text { In } \\ \text { Face } \\ \text { ff }^{2} \\ \hline \end{gathered}$	$C_{A} A_{A}$ Out Face $f t^{2}$
L1 147.50-	127.27	1.471		$\frac{f t^{\prime}}{83.541}$							
108.50			24	83.541	A	0.000	83.541	$\frac{\pi}{83.541}$			
	89.99				B	0.000	83.541	83.541	100.00	0.000	0.000
L2 108.50-		1.332	22	97.736	C	0.000	83.541		100.00		
72.25					A	0.000	97.736		100.00		
L3 72.25-35.75	53.90				B	0.000	97.736	97.736	100.00	0.000	0.000
		1.15	19	117.910	C	0.000	97.736		100.00		
					A	0.000	117.910		100.00		
L4 35.75-0.00	17.43	1	16	134.073	B	0.000	117.910	117.910	100.00	0.000	0.000
					C	0.000	117.910		100.00		
					A	0.000	134.073		100.00		
					B	0.000	134.073	134.073	100.00	0.000	0.000
					C	0.000	134.073		100.00		0.000

Tower Pressure - With Ice

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& \(z\)
\(f l\)
127.27 \& \begin{tabular}{c}
\(K_{z}\) \\
\\
\hline 1.471
\end{tabular} \& \begin{tabular}{c}
\(q_{2}\) \\
\(p s f\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
\(t z\) \\
in \\
\hline 0.5000
\end{tabular} \& \begin{tabular}{l}
\(A_{G}\) \\
\\
\(f t^{\prime}\) \\
\hline 86.791
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
\(A_{F}\) \\
\\
\\
\(t^{2}\) \\
\hline
\end{tabular} \& \(A_{R}\)

$f t^{2}$ \& $A_{\text {leg }}$

$f t^{\prime}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\ln \\
\text { Face } \\
{f t^{2}}^{2}
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| $f r$ |

\hline $\begin{array}{r}\text { LI } 147.50- \\ 108.50 \\ \hline\end{array}$ \& \multirow[t]{2}{*}{127.27} \& \multirow[t]{2}{*}{1.471} \& - 18 \& 0.5000 \& 86.791 \& A \& - 0.000 \& 86.791 \& 86.791 \& 100.00 \& 0.000 \& 0.000

\hline \multirow{3}{*}{L2 108.50-72.25} \& \& \& \multirow{3}{*}{16} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{100.757} \& C \& 0.000 \& 86.791 \& \& 100.00 \& \multirow{3}{*}{0.000} \&

\hline \& \multirow[t]{2}{*}{89.99} \& \multirow[t]{2}{*}{1.332} \& \& \& \& A \& 0.000 \& 100.757 \& \multirow[t]{2}{*}{100.757} \& 100.00
100.00 \& \& \multirow[t]{2}{*}{0.000}

\hline \& \& \& \& \& \& B \& 0.000 \& 100.757 \& \& 100.00 \& \&

\hline L3 72.25-35.75 \& \multirow[t]{2}{*}{53.90} \& \multirow[t]{2}{*}{1.15} \& \multirow[t]{3}{*}{14} \& \multirow{3}{*}{0.5000} \& \multirow{3}{*}{120.952} \& C \& 0.000 \& 100.757 \& \multirow{3}{*}{120.952} \& 100.00 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline 23 72.25-35.75 \& \& \& \& \& \& A \& 0.000 \& 120.952 \& \& 100.00 \& \&

\hline \& \multirow{4}{*}{17.43} \& \& \& \& \& B \& 0.000 \& 120.952 \& \& 100.00 \& \&

\hline L4 35.75-0.00 \& \& \multirow[t]{4}{*}{1} \& \multirow[t]{4}{*}{12} \& \multirow[t]{4}{*}{0.5000} \& \multirow{4}{*}{137.052} \& C \& 0.000 \& 120.952 \& \multirow{4}{*}{137.052} \& 100.00 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline L4 35.75-0.00 \& \& \& \& \& \& A \& 0.000 \& 137.052 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& B \& 0.000 \& 137.052 \& \& 100.00 \& \&

\hline \& \& \& \& \& \& C \& 0.000 \& 137.052 \& \& 100.00 \& \&

\hline
\end{tabular}

Tower Pressure - Service

$$
G_{H}=1.690
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
$$
\frac{f t}{\mathrm{LI} 147.50-}
$$ \& $\frac{f t}{127.27}$ \& K_{Z}

1.471 \& \begin{tabular}{l}
q_{2}

$p s f$

\hline 9

 \&

A_{G}

$f l^{2}$

\hline 83.541
\end{tabular} \& F

a
c
e

e \& | A_{F} |
| :--- |
| $f l^{\prime}$ |
| 0.000 | \& A_{R}

$f t '_{\prime}$ \& $A_{\text {leg }}$

$f t^{?}$ \& Leg

$\%$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In } \\
\text { Face } \\
f r^{\prime} \\
\hline
\end{gathered}
$$

\] \& | $C_{A} A_{A}$ |
| :--- |
| Out |
| Face |
| f^{2} |

\hline $$
\begin{aligned}
\mathrm{LI} \\
147.50 \\
108.50
\end{aligned}
$$ \& \multirow[t]{2}{*}{127.27} \& \multirow[t]{2}{*}{1.471} \& 9 \& 83.541 \& A \& 0.000

0.000 \& 83.541 \& \multirow[t]{2}{*}{83.541} \& 100.00 \& \multirow[t]{2}{*}{0.000} \& \multirow[t]{2}{*}{0.000}

\hline \& \& \& \multirow{3}{*}{9} \& \multirow{3}{*}{97.736} \& C \& 0.000
0.000 \& 83.541 \& \& 100.00 \& \&

\hline L2 108.50- \& \multirow[t]{2}{*}{89.99} \& \multirow[t]{2}{*}{1.332} \& \& \& A \& 0.000 \& 97.736 \& \multirow[t]{2}{*}{97.736} \& 100.00 \& \multirow[b]{2}{*}{0.000} \& \multirow[b]{2}{*}{0.000}

\hline 72.25 \& \& \& \& \& B \& 0.000 \& 97.736 \& \& 100.00 \& \&

\hline \multirow[b]{2}{*}{L3 72.25-35.75} \& \multirow[b]{2}{*}{53.90} \& \multirow[b]{2}{*}{1.15} \& \multirow[b]{2}{*}{7} \& \multirow{3}{*}{117.910} \& C \& 0.000 \& 97.736 \& \multirow{3}{*}{117.910} \& 100.00 \& \multirow{3}{*}{0.000} \& \multirow{3}{*}{0.000}

\hline \& \& \& \& \& A \& 0.000 \& 117.910 \& \& 100.00 \& \&

\hline \multirow{5}{*}{L4 35.75-0.00} \& \& \& \multirow{5}{*}{6} \& \& B \& 0.000 \& 117.910 \& \& 100.00 \& \&

\hline \& \multirow[t]{4}{*}{17.43} \& \multirow[t]{4}{*}{1} \& \& \multirow{4}{*}{134.073} \& C \& 0.000 \& 117.910 \& \multirow{4}{*}{134.073} \& 100.00 \& \multirow{4}{*}{0.000} \& \multirow{4}{*}{0.000}

\hline \& \& \& \& \& A \& 0.000 \& 134.073 \& \& 100.00 \& \&

\hline \& \& \& \& \& B \& 0.000 \& 134.073 \& \& 100.00 \& \&

\hline \& \& \& \& \& C \& 0.000 \& 134.073 \& \& 100.00 \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\(\qquad\) \& Self Weight lb
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& Cr \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 147.50- \& \multirow[t]{2}{*}{795.36} \& 2680.51 \& \& \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& 2208.77 \& 56.64 \& \multirow[t]{2}{*}{C}

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { L2 } 108.50- \\
72.25
\end{array}
$$} \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \& \multirow[t]{2}{*}{1252.80} \& \multirow[t]{2}{*}{3428.89} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 2338.57 \& 64.51 \& C

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { L3 72.25- } \\
35.75
\end{array}
$$} \& \multirow{3}{*}{1265.00} \& \multirow{3}{*}{5261.91} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \multirow{3}{*}{2428.46} \& \multirow{3}{*}{66.53} \& \multirow{3}{*}{C}

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 7328.04 \& A \& 1 \& \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \& \& \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 2413.03 \& 67.50 \& C

\hline
\end{tabular}

RISATOwer	147.5' Summit Monopole			$\text { Page } 7 \text { of } 19$
URS Corporation 500 Enterprise Drive, Suite $3 B$	Project	Bright Meadow Boulevard	Enfield, CT	Date 11:44:56 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

Section Elevation \qquad	$\begin{gathered} \hline \text { Add } \\ \text { Weight } \\ l b \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Self } \\ \text { Weight } \\ l b \\ \hline \end{gathered}$	$\begin{aligned} & \hline F \\ & a \\ & c \\ & e \\ & \hline \end{aligned}$	${ }^{e}$	C_{F}	R_{R}	D_{F}	D_{R}	$\overrightarrow{A_{E}}$ f^{2}	F lb	${ }^{w}$ plf	$\begin{aligned} & \text { Ctrl. } \\ & \text { Face } \end{aligned}$
Sum Weight:	4309.36	18699.35	B	1	$\begin{aligned} & \hline 0.65 \\ & 0.65 \end{aligned}$	1	1	1 1 OTM	$\begin{array}{r} 134.073 \\ 134.073 \\ 664516.44 \\ \mathrm{lb}-\mathrm{f} \\ \hline \end{array}$	9388.82		

Tower Forces - No Ice - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\qquad
$$
1 b
$$ \& Self Weight
\qquad lb \& F
a
c
e \& e \& C_{F} \& R_{R} \& D_{F} \& D_{R} \& A_{E}

$f t^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 $147.50-1$ 108.50 \& 795.36 \& 2680.51 \& A \& \& 0.65 \& 1 \& 1 \& $!$ \& 83.541 \& 2208.77 \& $\frac{\text { plf }}{56.64}$ \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline L2 $108.50-1$ \& 1252.80 \& 3428.89 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 2338.57 \& 64.51 \& C

\hline 72.25 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline L3 72.25- \& 1265.00 \& 5261.91 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& 2428.46 \& 66.53 \& C

\hline 35.75 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \& c

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 7328.04 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 2413.03 \& 67.50 \& C

\hline \& \& \& B \& I \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 2413.03 \& 67.50 \& C

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline Sum Weight: \& 4309.36 \& 18699.35 \& \& \& \& \& \& OTM \& 664516.44 \& 9388.82 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\(\qquad\) lb \& Self Weight
\(\qquad\) lb \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f f^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 147.50- \& 795.36 \& 2680.51 \& A \& \& \& \& 1 \& 1 \& 83.541 \& 2208.77 \& 56.64 \& C

\hline \& \& \& ${ }^{\text {B }}$ \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline L2 $\begin{array}{r}\text { 108.50- } \\ 72.25\end{array}$ \& 1252.80 \& 3428.89 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 2338.57 \& 64.51 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline L3 $32.25-$ \& 1265.00 \& 5261.91 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& 2428.46 \& 66.53 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 7328.04 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 2413.03 \& 67.50 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline Sum Weight: \& 4309.36 \& 18699.35 \& \& \& \& \& \& OTM \& 664516.44 \& 9388.82 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-fl \& \& \&

\hline
\end{tabular}

Tower Forces - No Ice - Wind 90 To Face

URS Corporation
500 Enterprise Drive, Suite $3 B$
Rocky Hill, CT 06067
Phone: (850) 529-8882
FAX: (860) 529-3991

Job	147.5' Summit Monopole	Page 8 of 19
Project	Bright Meadow Boulevard	Enfield, CT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\qquad \& Self Weight
\qquad $l b$ \& F
a
c
e \& e \& C_{F} \& R_{R} \& D_{F} \& D_{R} \& A_{E}

$f t^{\prime}$ \& F
$l b$ \& w
plf \& Ctrl. Face

\hline L1 147.50- \& 795.36 \& 2680.51 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& 2208.77 \& 56.64 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline L2 108.50- \& 1252.80 \& 3428.89 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline 72.25 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 2338.57 \& 64.51 \& C

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline L3 72.25- \& 1265.00 \& 5261.91 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& 2428.46 \& 66.53 \& C

\hline 35.75 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \& C

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 7328.04 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 2413.03 \& 67.50 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& 67.50 \& c

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline Sum Weight: \& 4309.36 \& 18699.35 \& \& \& \& \& \& OTM \& 664516.44 \& 9388.82 \& \&

\hline \& \& \& \& \& \& \& \& \& 1b-ft \& 988.82 \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\(\qquad\)
\[
l b
\] \& Self Weight
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 147.50- \& 795.36 \& 3311.26 \& A \& \& 0.65 \& 1 \& 1 \& I \& 86.791 \& 1721.02 \& 44.13 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline L2 108.50- \& 125280 \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline 72.25 \& 1252.80 \& 4163.91 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& 1808.13 \& 49.88 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline L3 72.25- \& 1265.00 \& 6146.41 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& 1868.32 \& 51.19 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 8332.02 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& 1849.98 \& 51.75 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& 184.98 \& 51.75 \& C

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \& \&

\hline Sum Weight: \& 4309.36 \& 21953.59 \& \& \& \& \& \& OTM \& 514700.89 \& 7247.46 \& \&

\hline \& \& \& \& \& \& \& \& \& 1b-at \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Section \\
Elevation
\end{tabular} \& \begin{tabular}{l}
Add \\
Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\) \(l b\) \& F
\(a\)
\(c\)
\(e\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline \multirow[t]{2}{*}{L1 147.50-} \& \multirow[t]{3}{*}{795.36} \& \multirow[t]{2}{*}{3311.26} \& A \& 1 \& 0.65 \& I \& 1 \& 1 \& 86.791 \& \multirow[t]{2}{*}{1721.02} \& \multirow[t]{2}{*}{44.13} \& \multirow[t]{2}{*}{C}

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline \multirow[b]{3}{*}{$$
\begin{array}{r}
\text { L2 } 108.50- \\
72.25
\end{array}
$$} \& \& \multirow{3}{*}{4163.91} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \multirow[b]{3}{*}{1808.13} \& \multirow[b]{3}{*}{49.88} \& \multirow[b]{3}{*}{C}

\hline \& \multirow[t]{2}{*}{1252.80} \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline \& \multirow{3}{*}{1265.00} \& \multirow{3}{*}{6146.41} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \multirow[b]{3}{*}{1868.32} \& \multirow[b]{3}{*}{51.19} \& \multirow[b]{3}{*}{C}

\hline L3 72.25- \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline 35.75 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline
\end{tabular}

Job	147.5' Summit Monopole	Page
Project	Bright Meadow Boulevard \quad Enfield, CT	Date $11: 44: 56$ 08/01/06
Client	Verizon Wireless	Designed by Staff

Section Elevation $f t$	Add Weight lb	Self Weight $l b$	F a c e e	e	C_{F}	R_{R}	D_{F}	D_{R}	$\overline{A_{E}}$	F $l b$	${ }^{w}$	$\begin{aligned} & \hline \text { Ctrl. } \\ & \text { Face } \end{aligned}$
L4 35.75-0.00	996.20	8332.02	C	1	0.65	1	1	1	120.952	1849.98	51.75	C
			A	1	0.65	1	1	1	137.052			
			B	1	0.65	1	1	1	137.052			
			C	1	0.65	1	1	1	137.052			
Sum Weight:	4309.36	21953.59						OTM	514700.89	7247.46		
									lb-ft			

Tower Forces - With Ice - Wind 60 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& \begin{tabular}{l}
Self Weight \\
\(l b\)
\end{tabular} \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Ctrl. |
| :--- |
| Face |

\hline L1 147.50- \& \multirow[t]{3}{*}{795.36} \& \multirow[t]{3}{*}{3311.26} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \multirow[t]{3}{*}{1721.02} \& \multirow[t]{3}{*}{44.13} \& \multirow[t]{3}{*}{C}

\hline 108.50 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline L2 108.50- \& \multirow[t]{3}{*}{1252.80} \& \multirow[t]{3}{*}{4163.91} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \multirow[t]{3}{*}{1808.13} \& \multirow[t]{3}{*}{49.88} \& \multirow[t]{3}{*}{C}

\hline 72.25 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline L3 72.25- \& \multirow[t]{3}{*}{1265.00} \& \multirow[t]{3}{*}{6146.41} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \multirow[t]{3}{*}{1868.32} \& \multirow[t]{3}{*}{51.19} \& \multirow[t]{3}{*}{C}

\hline 35.75 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline L4 35.75-0.00 \& \multirow[t]{3}{*}{996.20} \& \multirow[t]{3}{*}{8332.02} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \multirow[t]{3}{*}{1849.98} \& \multirow[t]{5}{*}{51.75} \& \multirow[t]{5}{*}{C}

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \& \&

\hline Sum Weight: \& 4309.36 \& 21953.59 \& \& \& \& \& \& OTM \& 514700.89 \& \multirow[t]{2}{*}{7247.46} \& \&

\hline \& \& \& \& \& \& \& \& \& $\mathrm{lb}-\mathrm{fl}$ \& \& \&

\hline
\end{tabular}

Tower Forces - With Ice - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) \(f t\) \& Add Weight
\(\qquad\) lb \& Self Weight
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
F \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 147.50- \& \multirow[t]{3}{*}{795.36} \& \multirow[t]{3}{*}{3311.26} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \multirow[t]{3}{*}{1721.02} \& \multirow[t]{3}{*}{44.13} \& \multirow[t]{3}{*}{C}

\hline 108.50 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 86.791 \& \& \&

\hline L2 108.50- \& \multirow[t]{3}{*}{1252.80} \& \multirow[t]{3}{*}{4163.91} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \multirow[t]{3}{*}{1808.13} \& \multirow[t]{3}{*}{49.88} \& \multirow[t]{3}{*}{C}

\hline 72.25 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 100.757 \& \& \&

\hline L3 72.25- \& \multirow[t]{3}{*}{1265.00} \& \multirow[t]{3}{*}{6146.41} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \multirow[t]{3}{*}{1868.32} \& \multirow[t]{3}{*}{51.19} \& \multirow[t]{3}{*}{C}

\hline 35.75 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 120.952 \& \& \&

\hline \multirow[t]{3}{*}{L4 35.75-0.00} \& \multirow[t]{3}{*}{996.20} \& \multirow[t]{3}{*}{8332.02} \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \multirow[t]{3}{*}{1849.98} \& \multirow[t]{5}{*}{51.75} \& \multirow[t]{5}{*}{C}

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 137.052 \& \& \&

\hline Sum Weight: \& 4309.36 \& 21953.59 \& \& \& \& \& \& OTM \& 514700.89 \& \multirow[t]{2}{*}{7247.46} \& \&

\hline \& \& \& \& \& \& \& \& \& $\mathrm{lb}-\mathrm{ft}$ \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind Normal To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\) ft \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\[
\quad l b
\]
\(\qquad\) \& \begin{tabular}{l}
\(F\) \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{2}$ \& F
$l b$ \& w

$p l f$ \& | Cirl. |
| :--- |
| Face |

\hline L1 147.50- \& 795.36 \& 2680.51 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& 862.80 \& 22.12 \& C

\hline 108.50 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline L2 108.50- \& 1252.80 \& 3428.89 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 913.50 \& 25.20 \& C

\hline 72.25 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline L3 72.25- \& 1265.00 \& 5261.91 \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& 948.62 \& 25.99 \& C

\hline 35.75 \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 7328.04 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 942.59 \& 26.37 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline Sum Weight: \& 4309.36 \& 18699.35 \& \& \& \& \& \& OTM \& 259576.73 \& 3667.51 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 45 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation
\(\qquad\)
\[
f i
\] \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
\(l b\)
\end{tabular} \& Self Weight
\(\qquad\)
\[
l b
\] \& F
\(a\)
\(c\)
\(e\)
\(e\) \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f t^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline L1 $147.50-$

108.50 \& \multirow[t]{2}{*}{795.36} \& \multirow[t]{2}{*}{2680.51} \& \multirow[t]{2}{*}{A} \&	e	
A		\& 0.65 \& \& 1 \& 1 \& 83.541 \& 862.80 \& 22.12 \& \multirow[t]{2}{*}{C}

\hline \& \& \& \& 1 \& 0.65
0.65 \& 1 \& 1 \& 1 \& 83.541
83.541 \& \& \&

\hline L2 108.50- \& \multirow[t]{2}{*}{1252.80} \& \multirow[t]{2}{*}{3428.89} \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 913.50 \& 25.20 \& C

\hline 72.25 \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline \& \& \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline L3 72.25- \& 1265.00 \& 5261.91 \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& 948.62 \& 25.99 \& C

\hline 35.75 \& \& \& $$
\begin{aligned}
& \mathrm{A} \\
& \mathrm{~B}
\end{aligned}
$$ \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline L4 35.75-0.00 \& 996.20 \& 7328.04 \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& 942.59 \& 26.37 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline \& \& \& \multirow[t]{3}{*}{C} \& \multirow[t]{2}{*}{1} \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline Sum Weight: \& 4309.36 \& 18699.35 \& \& \& \& \& \& OTM \& 259576.73 \& 3667.51 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 60 To Face

Section Elevation \qquad ff	Add Weight \qquad $l b$	Self Weight $l b$ \qquad	F a c e	e	C_{F}	R_{R}	D_{F}	D_{R}	A_{E} $f t^{2}$	F 16	w plf	Ctrl. Face
L1 147.50-	795.36	2680.51	A	1	0.65	1	1	1	83.541	862.80	22.12	C
			B	1	0.65	1	1	1	83.541			
			C	1	0.65	1	1	1	83.541			
L2 108.50-	1252.80	3428.89	A	1	0.65	1	1	1	97.736	913.50	25.20	
72.25			B	1	0.65	1	1	1	97.736			
			C	1	0.65	1	1	1	97.736			

RISATower URS Corporation 500 Enterprise Drive. Suite $3 B$	147.5' Summit Monopole		$\begin{aligned} & \text { Page } \\ & \\ & 11 \text { of } 19 \end{aligned}$
	Project	Bright Meadow Boulevard Enfield, CT	Date 11:44:56 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless	Designed by Staff

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& \begin{tabular}{l}
Add Weight
\(\qquad\) \\
lb
\end{tabular} \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
F \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(C_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f{ }^{\prime}$ \& F
$l b$ \& w

p / f \& | Ctrl. |
| :--- |
| Face |

\hline L3 72.25-
35.75 \& 1265.00 \& 5261.91 \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& 948.62 \& 25.99 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \multirow[t]{4}{*}{L4 35.75-0.00} \& \multirow{4}{*}{996.20} \& \multirow{4}{*}{7328.04} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \& \& \& \multirow[t]{3}{*}{A} \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \multirow[t]{2}{*}{942.59} \& \multirow[t]{3}{*}{26.37} \& \multirow[t]{3}{*}{C}

\hline \& \& \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline \& \& \& \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline Sum Weight: \& 4309.36 \& 18699.35 \& \& \& \& \& \& OTM \& 259576.73 \& 3667.51 \& \&

\hline \& \& \& \& \& \& \& \& \& lb-ft \& \& \&

\hline
\end{tabular}

Tower Forces - Service - Wind 90 To Face

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section Elevation \& Add Weight
\(\qquad\) \& Self Weight
\(\qquad\) \(l b\) \& \begin{tabular}{l}
F \\
\(a\) \\
\(c\) \\
\(e\) \\
\hline
\end{tabular} \& \(e\) \& \(\bar{C}_{F}\) \& \(R_{R}\) \& \(D_{F}\) \& \(D_{R}\) \& \(A_{E}\)

$f r^{\prime}$ \& F
$l b$ \& w
$p l f$ \& Ctrl. Face

\hline \multirow[t]{3}{*}{L1 147.50-
108.50} \& \multirow[t]{2}{*}{795.36} \& \multirow[t]{2}{*}{2680.51} \& A \& - 1 \& 0.65 \& 1 \& 1 \& 1 \& - 83.541 \& \multirow[t]{2}{*}{862.80} \& \multirow[t]{2}{*}{22.12} \& \multirow[t]{2}{*}{C}

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \& \multirow[t]{3}{*}{1252.80} \& \multirow{3}{*}{3428.89} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 83.541 \& \& \&

\hline \multirow[t]{2}{*}{$$
\begin{array}{r}
\text { L2 } 108.50- \\
72.25
\end{array}
$$} \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& 913.50 \& 25.20 \& C

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \& \&

\hline \multirow[t]{2}{*}{L3 72.25-} \& \multirow{3}{*}{1265.00} \& \multirow{3}{*}{5261.91} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 97.736 \& \multirow{3}{*}{948.62} \& \multirow[b]{3}{*}{25.99} \& \multirow[b]{3}{*}{C}

\hline \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline 35.75 \& \& \& B \& I \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \& \&

\hline \multirow{3}{*}{L4 35.75-0.00} \& \multirow{3}{*}{996.20} \& \multirow{3}{*}{7328.04} \& C \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 117.910 \& \multirow[b]{3}{*}{942.59} \& \multirow[b]{3}{*}{26.37} \& \multirow[b]{3}{*}{C}

\hline \& \& \& A \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline \& \& \& B \& 1 \& 0.65 \& 1 \& 1 \& 1 \& 134.073 \& \& \&

\hline \multirow{3}{*}{Sum Weight:} \& \multirow{3}{*}{4309.36} \& \multirow{3}{*}{18699.35} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{0.65} \& \multirow[t]{3}{*}{1} \& \multirow[t]{3}{*}{1} \& 1 \& 134.073 \& \multirow{3}{*}{3667.51} \& \&

\hline \& \& \& \& \& \& \& \& OTM \& 259576.73 \& \& \&

\hline \& \& \& \& \& \& \& \& \& Ib-ft \& \& \&

\hline
\end{tabular}

Force Totals

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load Case \& Vertical Forces
\(\qquad\)
\[
l b
\] \& \begin{tabular}{l}
Sum of \\
Forces \\
X \\
lb
\end{tabular} \& Sum of Forces Z lb \& Sum of Overturning Moments. \(M_{x}\) \(l b-f t\) \& Sum of Overturning Moments, \(M_{=}\) \(l b-f t\) \& Sum of Torques

$l b-f t$

\hline | Leg Weight |
| :--- |
| Bracing Weight |
| Total Member Self-Weight |
| Total Weight |
| Wind 0 deg - No Ice | \& 18699.35

0.00
18699.35
28714.01 \& \& \& \& \&

\hline \& \& 0.00 \& -17668.66 \& -1747431.83 \& 231.01 \& -

\hline Wind 45 deg - No lce \& \& 8834.33 \& -15301.51 \& -1513302.49 \& -873551.59 \& -217.78

\hline Wind 60 deg - No Ice \& \& 12493.63 \& -12493.63 \& -1235581.83 \& -1235484.20 \& -112.73

\hline Wind 90 deg - No lce \& \& 5301.51 \& -8834.33 \& -873649.23 \& -1513204.85 \& 0.00

\hline Wind 120 deg - No Ice \& \& 17668.66 \& 0.00 \& 133.37 \& -1747334.20 \& 217.78

\hline Wind 135 deg - No lce \& 2t ${ }^{\text {a }}$ \& 12493.63 \& 8834.33 \& 873915.98 \& -1513204.85 \& 377.21

\hline Wind 150 deg - No lce \& 23* ${ }^{\text {ath }}$ \& \& 12493.63 \& 1235848.58 \& -1235484.20 \& 420.72

\hline Wind 180 deg - No lce \& , ${ }^{\text {a }}$ \& \& 17668.56 \& 1513569.24 \& -873551.59 \& 435.56

\hline Wind 210 deg - No Ice \& ta \& -8834.33 \& \& 1747698.58 \& 231.01 \& 377.21

\hline Wind 225 deg - No Ice \& \& -12493.63 \& 12493.63 \& 1513569.24
1235848.58 \& 874013.61 \& 217.78

\hline
\end{tabular}

URS Corporation
500 Enterprise Drive，Suite 3B
Rocky Hill，CT 06067
Phone：（850）529－8882
FAX：（860）529－3991

Job	147．5＇Summit Monopole	Page
Project	Bright Meadow Boulevard	Enfield，CT

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Load \\
Case
\end{tabular} \& \begin{tabular}{c}
Vertical \\
Forces \\
\(l b\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
Sum of \\
Forces \\
X \\
\(l b\)
\end{tabular} \& Sum of Forces Z lb \& Sum of Overturning Moments，\(M_{x}\) lb－ft \& Sum of Overturning Moments，\(M_{\text {：}}\) \(l b-f t\) \& Sum of Torques

$l b-f t$

\hline Wind 240 deg －No Ice \& \& －15301．51 \& 8834.33 \& 873915.98 \& 1513666.87 \& 0.00

\hline Wind 270 deg－No Ice \& \& －17668．66 \& 0.00 \& 133.37 \& 1747796.22 \& －217．78

\hline 300 deg －No Ice \& \& －15301．51 \& －8834．33 \& －873649．23 \& 1513666.87 \& －377．21

\hline Wind 315 deg －No Ice \& \& －12493．63 \& －12493．63 \& －1235581．83 \& 1235946.22 \& －420．72

\hline Wind 330 deg－No Ice \& \& －8834．33 \& －15301．51 \& －1513302．49 \& 874013.61 \& -420.72
-435.56

\hline Member Ice \& 3254.24 \& \& \& \& \& $$
-435.56
$$

\hline Total Weight Ice
Wind 0 deg－Ice \& 33606.42 \& 䜌䜌 \& ＊＊＊ \& 155.72 \& 269.72 \&

\hline ind 0 deg－lce \& ， \& 0.00 \& －14542．40 \& －1468634．47 \& 269.72 \& －346．64

\hline Wind 30 deg －Ice \& Whe ${ }^{\text {a }}$ \& 7271.20 \& －12594．08 \& －1271853．89 \& －734125．37 \& 200.13

\hline Wind 45 deg －Ice \& 3学 \& 10283.03 \& －10283．03 \& －1038435．78 \& \& －200．13

\hline Wind 60 deg －Ice \& 2id \& 12594.08 \& －7271．20 \& \& －1038321．78 \& －103．59

\hline Wind 90 deg －Ice \& \& 14542.40 \& － \& －734239．37 \& 271739．90 \& 0.00

\hline Wind 120 deg －Ice \& 䊼 \& 12594.08 \& \& 155.72 \& －1468520．47 \& 200.13

\hline Wind 135 deg －Ice \& ， 3 \& 10283. \& 10283 \& 734550.82 \& －1271739．90 \& 346.64

\hline Wind 150 deg －Ice \& 54 \& 7271.20 \& \& 1038747.23 \& －1038321．78 \& 386.62

\hline Wind 180 deg －Ice \& ，${ }^{4}$ 綧絲 \& 0.00 \& 12594.08 \& 272165.3 \& －734125．37 \& 400.26

\hline Wind 210 deg－Ice \& ， \& －7271．20 \& 14542.40 \& 1468945.92 \& 269.72 \& 346.64

\hline Wind 225 deg －Ice \& ＊ \& －1028 \& 12594.08 \& 1272165.34 \& 734664.82 \& 200.13

\hline Wind 240 deg －Ice \& \& －12594．08 \& 10283.03 \& 1038747.23 \& 1038861.23 \& 103.59

\hline Wind 270 deg－Ice \& \& －145 \& 7271.20 \& 734550.82 \& 1272279.34 \& 0.00

\hline Wind 300 deg －Ice \& \& －12594．08 \& 0.0 \& 155.72 \& 1469059.91 \& －200．13

\hline Wind 3I5 deg－Ice \& \& －10283．0 \& －7271．20 \& －734239．37 \& 1272279.34 \& －346．64

\hline Wind 330 deg －Ice \& \& －7271．20 \& -10283.03
-12594.08 \& －1038435．78 \& 1038861.23 \& －386．62

\hline Total Weight \& 28714.01 \& \& －12594．08 \& －1271853．89 \& 734664.82 \& －400．26

\hline Wind 0 deg－Service \& \& 0.00 \& \& 133.37 \& 231.01 \&

\hline Wind 30 deg －Service \& 綡變 \& 3450.91 \& －5977 \& －682509．29 \& 231.01 \& －147．35

\hline Wind 45 deg －Service \& \& 4880 \& －597．15 \& －591052．51 \& －341090．32 \& －85．07

\hline Wind 60 deg －Service \& \& 5977.15 \& 4880 \& －482567．88 \& －482470．24 \& －44．04

\hline Wind 90 deg －Service \& \& 6901 \& －3450．91 \& －341187．96 \& －590954．88 \& 0.00

\hline Wind 120 deg－Service \& \& \& 0.00 \& 133.37 \& －682411．65 \& 85.07

\hline Wind 135 deg －Service \& Whetutitutik \& 488032 \& 3450.91 \& 341454.70 \& －590954．88 \& 147.35

\hline Wind 150 deg－Service \& 3䜌納 \& 4880.3 \& 4880.32 \& 482834.63 \& －482470．24 \& 164.34

\hline Wind 180 deg －Service \& \& 3450.91 \& 5977.15 \& 591319.26 \& －341090．32 \& 170.14

\hline Wind 210 deg－Service \& \& ． 00 \& 6901.82 \& 682776.03 \& 231.01 \& 147.35

\hline Wind 225 deg －Service \& \& \& 5977.15 \& 591319.26 \& 341552.34 \& 85.07

\hline Wind 240 deg－Service \& ， \& \& 4880.32 \& 482834.63 \& 482932.26 \& 44.04

\hline Wind 270 deg －Service \& ，${ }^{\text {a }}$ 䜌 \& －597．1 \& 3450.91 \& 341454.70 \& 591416.89 \& 0.00

\hline Wind 300 deg －Service \& T \& \& 0.00 \& 133.37 \& 682873.67 \& －85．07

\hline Wind 315 deg －Service \& \& －5977．15 \& －3450．91 \& －341187．96 \& 591416.89 \& 147.35

\hline Wind 330 deg －Service \& \& －4880．32 \& －4880．32 \& －482567．88 \& 482932.26 \& －164．34

\hline Wh30deg－Service \& \& －3450．91 \& －5977．15 \& －591052．51 \& 341552.34 \& －170．14

\hline
\end{tabular}

Load Combinations

Comb． No．	
1	Dead Only
2	Dead＋Wind 0 deg－No Ice
3	Dead＋Wind 30 deg－No Ice
4	Dead＋Wind 45 deg－No Ice
5	Dead＋Wind 60 deg－No Ice
6	Dead＋Wind 90 deg－No Ice
7	Dead＋Wind 120 deg－No Ice
8	Dead＋Wind 135 deg－No Ice
9	Dead＋Wind I50 deg－No Ice
10	Dead＋Wind 180 deg－No Ice
11	Dead＋Wind 210 deg－No Ice

RISATOwer	147.5' Summit Monopole			$\begin{aligned} & \text { Page } 13 \text { of } 19 \end{aligned}$
URS Corporation 500 Enterprise Drive. Suite 3B	Project	Bright Meadow Boulevard	Enfield, CT	Date 11:44:56 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Verizon Wireless			Designed by Staff

Comb. No.		Description
12	Dead+Wind 225 deg - No Ice	
13	Dead+Wind 240 deg - No Ice	
14	Dead+Wind 270 deg - No Ice	
15	Dead+Wind 300 deg - No Ice	
16	Dead+Wind 315 deg - No Ice	
17	Dead+Wind 330 deg - No Ice	
18	Dead+Ice + Temp	
19	Dead+Wind 0 deg+Ice + Temp	
20	Dead+Wind 30 deg+Ice + Temp	
21	Dead+Wind 45 deg+lce+Temp	
22	Dead+Wind 60 deg+Ice + Temp	
23	Dead + Wind 90 deg + Ice + Temp	
24	Dead+Wind 120 deg+Ice+Temp	
25	Dead+Wind 135 deg+Ice+Temp	
26	Dead+Wind 150 deg + Ice + Temp	
27	Dead + Wind 180 deg + Ice + Temp	
28	Dead+Wind 210 deg+IcetTemp	
29	Dead+Wind 225 deg+Ice+Temp	
30	Dead + Wind 240 deg+Ice + Temp	
31	Dead+Wind 270 deg+Ice+Temp	
32	Dead+Wind 300 deg+Ice + Temp	
33	Dead + Wind $315 \mathrm{deg}+\mathrm{lce}+$ Temp	
34	Dead + Wind 330 deg+Ice + Temp	
35	Dead+Wind 0 deg - Service	
36	Dead+Wind 30 deg - Service	
37	Dead+Wind 45 deg - Service	
38	Dead+Wind 60 deg - Service	
39	Dead+Wind 90 deg - Service	
40	Dead+Wind 120 deg - Service	
41	Dead+Wind 135 deg - Service	
42	Dead+Wind 150 deg - Service	
43	Dead+Wind 180 deg - Service	
44	Dead+Wind 210 deg - Service	
45	Dead+Wind 225 deg - Service	
46	Dead+Wind 240 deg - Service	
47	Dead + Wind 270 deg - Service	
48	Dead+Wind 300 deg - Service	
49	Dead+Wind 315 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces							
Section No.	Elevation $f t$	Component Type	Condition	Gov. Load Comb.	Force lb	Major Axis Moment $l b-f t$	Minor Axis Moment $l b-f t$
LI	147.5-108.5	Pole	Max Tension	47	0.00	-0.00	0.00
			Max. Compression	18	-10901.55	0.00	0.00
			Max. Mx	14	-8035.86	207573.15	-1.61
			Max. My	10	-8035.89	2.79	-207572.83
			Max. Vy	14	-10651.18	207573.15	-1.61
			Max. Vx	10	10651.16	2.79	-207572.83
12			Max. Torque	9	,	2.7	0.01
L2	108.5-72.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-16072.92	0.00	0.00
			Max. Mx	14	-12626.69	626460.18	-4.94
			Max. My	10	-12626.71	8.56	-626459.10
			Max. Vy	14	-12936.22	626460.18	-4.94
			Max. Vx	10	12936.19	8.56	-626459.10
			Max. Torque	9			0.18

RISATower

URS Corporation
500 Enterprise Drive, Suite 3B
Rocky Hill, CT 06067
Phone: (850) 529-8882
FAX: (860) 529-3991

Job	147.5' Summit Monopole	Page
Project	Bright Meadow Boulevard	Enfield, CT

Section No.	Elevation $f t$	Component Type	Condition	Gov. Load Comb.	Force lb	Major Axis Moment \qquad	Minor Axis Moment $l b-f t$
L3	72.25-35.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-23225.46	269.72	-155.72
			Max. Mx	14	-19140.07	1131488.24	-136.17
			Max. My	10	-19140.09	235.85	,
		Pole					1131388.44
			Max. Vy	14	-15328.03	1131488.24	-136.17
			Max. Vx	10	15328.00	235.85	-
	35.75-0						1131388.44
L4			Max. Torque	17			435.74
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	18	-33606.42	269.72	-155.72
			Max. Mx	14	-28705.00	1808584.84	-136.97
			Max. My	10	-28705.00	237.24	-
							1808484.36
			Max. Vy	14	-17683.30	1808584.84	-136.97
			Max. Vx	10	17683.30	237.24	,
							1808484.36
			Max. Torque	17			435.46

Tower Mast Reaction Summary

Load Combination	Vertical	Shear $_{x}$ $l b$	Shear ${ }_{=}$ $l b$	Overturning Moment, M_{x} \qquad	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only Dead+Wind 0 deg - No Ice	28714.01	0.00	0.00	-133.37	231.01	0.00
Dead+Wind 0 deg - No lce Dead+Wind 30 deg - No Ice	28714.01	-0.00 883	-17668.67	-1808209.86	237.18	-376.95
Dead+Wind 30 deg - No Ice Dead+Wind 45 deg - No Ice	28714.01 28714.01	8834.33 12493.63	-15301.51	-1565941.12	-903938.42	-217.62
Dead+Wind 60 deg - No Ice	28714.01	12493.63	-12493.63 -8834	-1278560.41	-1278460.17	-112.65
Dead + Wind 90 deg - No Ice	28714.01	17668.67	-8834.33 0.00	-904038.62	-1565840.81	-0.01
Dead+Wind 120 deg - No Ice	28714.01	15301.51	8834.33	136.94 904312.65	-1808109.38	217.63
Dead+Wind 135 deg - No lce	28714.01	12493.63	12493.63	1278834.60	-1278460.48	376.96 420.43
Dead+Wind 150 deg - No Ice	28714.01	8834.33	15301.51	1566215.47	-903938.70	420.43 435.26
Dead+ Wind 180 deg - No Ice	28714.01	-0.00	17668.67	1808484.36	237.18	435.26 376.95
Dead + Wind 210 deg - No Ice	28714.01	-8834.33	15301.51	1566215.95	904413.33	217.64

RISATower URS Corporation 500 Enterprise Drive, Suite $3 B$	147.5' Summit Monopole			$\text { Page } \quad \text { 15 of } 19$
	Project	Bright Meadow Boulevard	Enfield, CT	Date 11:44:56 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) 529-3991	Client	Verizon Wireless		Designed by Staff

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear $_{\text {I }}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, $M_{\text {z }}$ lb-ft	Torque $l b-f t$
Dead+Wind 225 deg - No Ice	28714.01	-12493.63	12493.63	1278835.15	1278935.39	112.65
Dead+Wind 240 deg - No Ice	28714.01	-15301.51	8834.33	904313.13	1566316.26	-0.01
Dead+Wind 270 deg - No Ice	28714.01	-17668.67	0.00	136.94	1808584.84	-217.63
Dead+Wind 300 deg - No Ice	28714.01	-15301.51	-8834.33	-904039.10	1566315.99	-376.94
Dead+Wind 315 deg - No Ice	28714.01	-12493.63	-12493.63	-1278560.96	1278935.07	-420.43
Dead+Wind 330 deg - No Ice	28714.01	-8834.33	-15301.51	-1565941.60	904413.05	-435.27
Dead+Ice+Temp	33606.42	0.00	0.00	155.72	269.72	0.00
Dead+Wind $0 \mathrm{deg}+$ Ice + Temp	33606.42	-0.00	-14542.41	-1532659.90	278.94	-346.63
Dead+Wind 30 deg+Ice+Temp	33606.42	7271.20	-12594.09	-1327300.64	-766131.44	-200.12
Dead + Wind $45 \mathrm{deg}+$ Ice + Temp	33606.42	10283.03	-10283.03	-1083706.85	-1083588.95	-103.59
Dead+Wind $60 \mathrm{deg}+$ Ice + Temp	33606.42	12594.09	-7271.20	-766249.29	-1327182.67	-0.01
Dead+Wind 90 deg + Ice + Temp	33606.42	14542.41	0.00	161.05	-1532541.77	200.13
Dead+Wind $120 \mathrm{deg}+$ Ice + Temp	33606.42	12594.09	7271.20	766571.55	-1327182.95	346.64
Dead+Wind $135 \mathrm{deg}+$ Ice + Temp	33606.42	10283.03	10283.03	1084029.27	-1083589.28	386.62
Dead+Wind 150 deg+Ice + Temp	33606.42	7271.20	12594.09	1327623.22	-766131.72	400.25
Dead+Wind $180 \mathrm{deg}+$ Ice + Temp	33606.42	-0.00	14542.41	1532982.65	278.94	346.63
Dead+Wind 210 deg + Ice + Temp	33606.42	-7271.20	12594.09	1327623.71	766689.89	200.14
Dead+Wind $225 \mathrm{deg}+$ Ice + Temp	33606.42	-10283.03	10283.03	1084029.83	1084147.73	103.59
Dead+Wind 240 deg + Ice + Temp	33606.42	-12594.09	7271.20	766572.04	1327741.69	-0.01
Dead+Wind 270 deg + Ice + Temp	33606.42	-14542.41	0.00	161.05	1533100.78	-200.13
Dead+Wind $300 \mathrm{deg}+$ Ice + Temp	33606.42	-12594.09	-7271.20	-766249.78	1327741.40	-346.62
Dead + Wind 315 deg + Ice + Temp	33606.42	-10283.03	-10283.03	-1083707.41	1084147.40	-386.62
Dead+Wind 330 deg+Ice+Temp	33606.42	-7271.20	-12594.09	-1327301.13	766689.60	-400.27
Dead+Wind 0 deg - Service	28714.01	-0.00	-6901.82	-706747.77	237.96	-147.52
Dead+Wind 30 deg - Service	28714.01	3450.91	-5977.15	-612043.09	-353204.62	-85.16
Dead+Wind 45 deg - Service	28714.01	4880.32	-4880.32	-499707.35	-499606.78	-44.09
Dead+Wind 60 deg - Service	28714.01	5977.15	-3450.91	-353305.18	-611942.51	-0.00
Dead+Wind 90 deg - Service	28714.01	6901.82	0.00	137.39	-706647.16	85.17
Dead+Wind 120 deg - Service	28714.01	5977.15	3450.91	353579.98	-611942.55	147.52
Dead+Wind 135 deg - Service	28714.01	4880.32	4880.32	499982.17	-499606.83	164.53
Dead+Wind 150 deg - Service	28714.01	3450.91	5977.15	612317.94	-353204.66	170.33
Dead+Wind 180 deg - Service	28714.01	-0.00	6901.82	707022.63	237.96	147.52
Dead+Wind 210 deg - Service	28714.01	-3450.91	5977.15	612318.01	353680.62	85.17
Dead+Wind 225 deg - Service	28714.01	-4880.32	4880.32	499982.25	500082.83	44.09
Dead+Wind 240 deg - Service	28714.01	-5977.15	3450.91	353580.05	612418.59	-0.00
Dead+Wind 270 deg - Service	28714.01	-6901.82	0.00	137.39	707123.24	-85.17
Dead+Wind 300 deg - Service	28714.01	-5977.15	-3450.91	-353305.26	612418.55	-147.51
Dead+Wind 315 deg - Service	28714.01	-4880.32	-4880.32	-499707.43	500082.78	-164.53
Dead+Wind 330 deg - Service	28714.01	-3450.91	-5977.15	-612043.17	353680.57	-170.34

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	PX	PY	$P Z$	
Comb.	$l b$	$1 b$	$l b$	$l b$	$l b$	$l b$	
1	0.00	-28714.01	0.00	0.00	28714.01	0.00	0.000\%
2	0.00	-28714.01	-17668.66	0.00	28714.01	17668.67	0.000\%
3	8834.33	-28714.01	-15301.51	-8834.33	28714.01	15301.51	0.000\%
4	12493.63	-28714.01	-12493.63	-12493.63	28714.01	12493.63	0.000\%
5	15301.51	-28714.01	-8834.33	-15301.51	28714.01	8834.33	0.000\%
6	17668.66	-28714.01	0.00	-17668.67	28714.01	-0.00	0.000\%
7	15301.51	-28714.01	8834.33	-15301.51	28714.01	-8834.33	0.000\%
8	12493.63	-28714.01	12493.63	-12493.63	28714.01	-12493.63	0.000\%
9	8834.33	-28714.01	15301.51	-8834.33	28714.01	-15301.51	0.000\%
10	0.00	-28714.01	17668.66	0.00	28714.01	-17668.67	0.000\%
11	-8834.33	-28714.01	15301.51	8834.33	28714.01	-15301.51	0.000\%
12	-12493.63	-28714.01	12493.63	12493.63	28714.01	-12493.63	0.000\%
13	-15301.51	-28714.01	8834.33	15301.51	28714.01	-8834.33	0.000\%

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job			
	Project 147.5' Summit Monopole			$\text { Page } 16 \text { of } 19$
	Project	Bright Meadow Boulevard	Enfield, CT	Date
Phone: (850) 529-8882	Client			11:44:56 08/01/06
FAX: (860) 529.3991	Verizon Wireless			Designed by

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00020308
3	Yes	5	0.00000001	0.00045965
4	Yes	5	0.00000001	0.00052006
5	Yes	5	0.00000001	0.00046074
6	Yes	4	0.00000001	0.00018667
7	Yes	5	0.00000001	0.00046274
8	Yes	5	0.00000001	0.00052019
9	Yes	5	0.00000001	0.00045867
10	Yes	4	0.00000001	0.00020311
11	Yes	5	0.00000001	0.00046209
12	Yes	5	0.00000001	0.00052034
13	Yes	5	0.00000001	0.00046100
14		4	0.00000001	0.00018672

RISATower URS Corporation 500 Enterprise Drive, Suite 3B	Job 147.5' Summit Monopole		$\begin{aligned} & \text { Page } \\ & \\ & 18 \text { of } 19 \end{aligned}$
	Project	Bright Meadow Boulevard Enfield, CT	Date 11:44:56 08/01/06
Rocky Hill, CT 06067 Phone: (850) 529-8882 FAX: (860) $529-3991$	Client	Verizon Wireless	Designed by Staff

Elevation ft 5000	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
50.00	GPS	46	3.178	0.5691	0.0002	3710

Maximum Tower Defections-Design Wind					
Section No.	Elevation \qquad $f t$	Horz. Deflection in	Gov. Load Comb.	$\begin{gathered} \text { Tilt } \\ \circ \end{gathered}$	Twist
L1	147.5-108.5	72.903	14	4.1278	0.0007
L. 2	112.25-72.25	43.336	14	3.7313	0.0007
L3	76.75-35.75	19.727	14	2.4843	0.0007
L4	41-0	5.536	14	1.2327	0.0005

Critical Deflections and Radius of Curvature - Design Wind

Elevation fl 14700	Appurtenance	Gov. Load Comb.	Deflection in 72.467	Tilt	Twist	Radius of Curvature $f t$
147.00	(2) Decibel DB980H90	14	72.467	4.1253	0.0007	15786
137.00 127.00	DB948F85T2E-M	14	63.792	4.0681	0.0007	7516
117.00	(4) DB844H90	14	55.277	3.9801	0.0007	3848
50.00	(3) 7184.14 GPS	14	47.077 8.125	3.8315 1.4984	0.0007	2585
	GPS	14	8.125	1.4984	0.0005	1453

Compression Checks

Pole Design Data										
Section	Elevation	Size	L	L_{u}	Kl/r	F_{a}	A	Actual		
$\xrightarrow{\text { di }}$				$f t$			$i n^{3}$	$\begin{gathered} c u l \\ P \end{gathered}$	P_{a} $1 b$	$\begin{gathered} \text { Ratio } \\ P \end{gathered}$
			$f t$			$k s i$		$l b$		P_{a}
L2	108.5-72.25 (2)	TP35.798×28.1975 0.25	39.00	147.50	175.3	4.861	22.5731	-8035.82	109734.00	0.073
L3	72.25-35.75 (3)	TP $42.232 \times 34.4429 \times 0.3125$	40.00	147.50	143.7	7.230	27.5289	-12626.60	199036.00	0.063
L4	35.75-0(4)	TP48.4×40.6096x0.375	41.00	147.50	121.8 1038	10.060 13.855	40.5896	-19140.00	408313.00	0.047
			41.00	147.50	103.8	13.855	57.1618	-28705.00	791957.00	0.036

Pole Bending Design Data										
Section No.	Elevation fi	Size	$\begin{gathered} \hline \text { Actual } \\ M_{x} \\ l b-f t \\ \hline \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{b x} \\ k s i \end{gathered}$	Allow. $F_{b x}$ $k s i$	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \end{gathered}$	$\begin{gathered} \text { Actual } \\ M_{y} \\ l b-f t \end{gathered}$	$\begin{gathered} \text { Actual } \\ f_{b v} \\ k s i \end{gathered}$	Allow. F_{b} ksi	$\begin{aligned} & \text { Ratio } \\ & \frac{f_{b v}}{F_{b v}} \end{aligned}$
L1	$147.5-108.5$ (1)	TP29.41×22 $\times 0.25$	$\begin{gathered} 207575 . \\ 00 \end{gathered}$	-15.734	36.000	0.437	0.00	0.000	36.000	$\frac{\text { Pbv }}{0.000}$

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Actual } \\ M_{x} \\ l b-f t \\ \hline \end{gathered}$	Actual $f_{b x}$ ksi	Allow. $F_{b x}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	Actual M_{y} $l b-f t$	Actual $f_{b y}$ ksi	Allow. $F_{b y}$ ksi	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \end{gathered}$
L2	$108.5-72.25$ (2)	TP35.798×28.1975×0.25	$\begin{gathered} 626463 . \\ 33 \end{gathered}$	-31.878	39.000	0.817	0.00	0.000	39.000	${ }_{0} \mathrm{~F}_{\text {by }}$
L3	$\begin{gathered} 72.25-35.75 \\ \text { (3) } \end{gathered}$	TP42.232×34.4429×0.3125	$\begin{gathered} 1131525 \\ .00 \end{gathered}$	-33.121	39.000	0.849	0.00	0.000	39.000	0.000
L4	35.75-0 (4)	TP48.4×40.6096x0.375	$\begin{gathered} 1808625 \\ .00 \end{gathered}$	-32.038	39.000	0.821	0.00	0.000	39.000	0.000

Pole Interaction Design Data

Section No.	Elevation $f t$	Size	$\begin{gathered} \text { Ratio } \\ P \\ \hline P_{a} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b x} \\ \hline F_{b x} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ f_{b y} \\ \hline F_{b y} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	$147.5-108.5$ (1)	TP29.41 $\times 22 \times 0.25$	0.073	0.437	0.000	0.510	1.333	H1-3
L2	$108.5-72.25$ (2)	TP35.798×28.1975 $\times 0.25$	0.063	0.817	0.000	0.881	1.333	H1-3
L3	$72.25-35.75$ (3)	TP42.232×34.4429x0.3125	0.047	0.849	0.000	0.896	1.333	$\mathrm{H} 1-3$
L4	35.75-0 (4)	TP48.4×40.6096x0.375	0.036	0.821	0.000	0.858	1.333	H1-3

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevalion } \\ f t \\ \hline \end{gathered}$	$\begin{gathered} \text { Component } \\ \text { Type } \end{gathered}$	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {ollow }} \\ l b \end{gathered}$	$\%$ Capacity	Pass Fail
L1	147.5-108.5	Pole	TP29.41×22x0.25	1	-8035.82	146275.42		
L2	108.5-72.25	Pole	TP35.798×28.1975×0.25	2	-12626.60	265314.98	38.3 66.1	Pass
L3	72.25-35.75	Pole	TP42.232×34.4429×0.3125	3	-19140.00	544281.21	67.2	Pass
L4	35.75-0	Pole	TP48.4×40.6096x0.375	4	-28705.00	1055678.64	64.3	Pass
						Summary		
						Pole (L3)	67.2	Pass
						RATING $=$	67.2	Pass

[^1]
ANCHOR BOLT AND BASE PLATE ANALYSIS

 Job147.5' Monopole - Enfield, CT Project No. \qquad Page of
\qquad Computed by Sheet 1 of 6
Description Checked by \qquad Date \qquad

ANCHOR BOLT AND BASEPLATE ANALYSIS

Input Data

Tower Reactions:

Overturning Moment:	OM $:=1809 \cdot \mathrm{kips} \cdot \mathrm{ft}$	user input
Shear Force:	Shear $:=18 \cdot \mathrm{kips}$	user input
Axial Force:	Axial $:=34 \cdot \mathrm{kips}$	user input

Anchor Bolt Data:

Use ASTM 615 Grade 75		
Number of Anchor Bolts $=\mathrm{N}$	$\mathrm{N}:=12$	user input
Bolt Ultimate Strength:	$\mathrm{F}_{\mathrm{u}}:=100 \cdot \mathrm{ksi}$	user input
Bolt Allowable Strength:	$\mathrm{Fy}:=75 \cdot \mathrm{ksi}$	user input
Diameter Of Anchor Bolts	$\mathrm{D}:=2.25 \mathrm{in}$	user input
Threaded length per inch	$\mathrm{n}:=4.5$	user input
Bolt "Column" Distance:	$\mathrm{I}:=3 \mathrm{in}$	user input
Bolt Modulus:	$\mathrm{E}:=29000 \cdot \mathrm{ksi}$	user input

Base Plate Data:

Plate Yield Strength: $\quad \mathrm{Fy}_{\mathrm{bp}}:=50 \cdot \mathrm{ksi} \quad$ user input

Base Plate Thickness:
PlateThicknessProvide $:=3$-in user input

Job
147.5' Monopole - Enfield, CT

Project No.
 of Sheet 2 of 6
Description \qquad Computed by \qquad Date 08/01/06 Checked by \qquad Date \qquad

Geometric Layout Data:

Distance from the center of gravity of the group to bolt in question $=\mathrm{d}(\mathrm{i})$
Distances for loading condition (see detail):

$\mathrm{d}_{1}:=27.5001 \cdot$ in user input	MomentArm $:=3.3000 \cdot \mathrm{in}^{\text {user input }}$
$\mathrm{d}_{2}:=26.8455 \cdot$ in user input	MomentArm $:=2.6455 \cdot \mathrm{in}$ user input
$\mathrm{d}_{3}:=5.9642 \cdot \mathrm{in}$ user input	EffectiveWidth $:=17.2193 \cdot \mathrm{in}$ user input

DETAIL - ANCHOR BOLT AND PLATE

Job
147.5' Monopole - Enfield, CT

Description
Anchor Bolt and Base Plate Analysis Project No. \qquad
Page \qquad of
\qquad Computed by \qquad JEK Sheet 3 of 6 Checked by \qquad Date 08/01/06

Anchor Bolt Section Properties:

Polar Moment of inertia (J) divided by Area $(\mathrm{A})=\Sigma \mathrm{d}$

$$
\Sigma \mathrm{d}:=\left(\mathrm{d}_{1}\right)^{2} \cdot 2+\left(\mathrm{d}_{2}\right)^{2} \cdot 4+\left(\mathrm{d}_{3}\right)^{2} \cdot 4 \quad \Sigma \mathrm{~d}=4.54 \times 10^{3} \mathrm{in}^{2}
$$

Gross Area of Bolt:

$$
A_{g}:=\frac{\pi}{4} \cdot D^{2}
$$

$$
\mathrm{A}_{\mathrm{g}}=3.98 \mathrm{in}^{2}
$$

Net Area of Bolt:

$$
\mathrm{A}_{\text {net }}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2} \quad \mathrm{~A}_{\mathrm{net}}=3.25 \mathrm{in}^{2}
$$

Net Diameter:

$$
\mathrm{D}_{\mathrm{n}}:=\frac{2 \cdot \sqrt{\mathrm{~A}_{\text {net }}}}{\sqrt{\pi}} \quad \mathrm{D}_{\mathrm{n}}=2.03 \mathrm{in}
$$

Radius of Gyration of Bolt:

$$
r:=\frac{D_{n}}{4}
$$

$$
\mathrm{r}=0.51 \mathrm{in}
$$

Section Modulus of Bolt:

$$
\mathrm{S}_{\mathrm{x}}:=\frac{\pi \cdot \mathrm{D}_{\mathrm{n}}^{3}}{32} \quad \mathrm{~S}_{\mathrm{x}}=0.83 \mathrm{in}^{3}
$$

Anchor Bolt Bending Stress:

Maximum Applied Bending:

$$
\begin{array}{ll}
M_{x}:=\left(\frac{\text { Shear }}{N}\right) \cdot 1 & M_{x}=0.38 \mathrm{kips} \cdot \mathrm{ft} \\
\mathrm{f}_{\mathrm{bx}}:=\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{~S}_{\mathrm{x}}} & \mathrm{f}_{\mathrm{bx}}=5.45 \mathrm{ksi}
\end{array}
$$

Allowable Bending
$F_{b x}:=1.33 \cdot 0.60 \cdot \mathrm{Fy}$

$$
\mathrm{F}_{\mathrm{bx}}=59.85 \mathrm{ksi}
$$

Note: 1.33 increase allowed per TIA/EIA

URS

Anchor Bolt Tensile Stress Check:

Maximum Tensile Force (Gross Area):

$$
\text { AllowableTension }:=1.33 \cdot\left(0.33 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{~F}_{\mathrm{u}}\right) \quad \text { AllowableTension }=174.51 \mathrm{kips}
$$

Note: 1.33 increase allowed per TIA/EIA

Maximum Tensile Force (Net Area):

$$
\mathrm{F}_{\text {net.area }}:=1.33 \cdot\left(0.60 \cdot \mathrm{~A}_{\text {net }} \cdot \mathrm{Fy}\right) \quad \mathrm{F}_{\text {net.area }}=194.37 \mathrm{kips}
$$

Note: 1.33 increase allowed per TIA/EIA

Maximum Applied Tension:

$$
\text { MaxTension }:=\frac{\mathrm{OM} \cdot \mathrm{~d}_{1}}{\Sigma \mathrm{~d}}-\frac{\text { Axial }}{\mathrm{N}} \quad \text { MaxTension }=128.73 \mathrm{kips}
$$

Check Stresses:

Note: Bolts supplied are "upset bolts." Use net area for checking per AISC.
AnchorBoltStress $:=\operatorname{if}\left(F_{\text {net.area }}>\right.$ MaxTension, "Not Overstressed", "Overstressed" $)$
AnchorBoltStress $=$ "Not Overstressed"
PercentStressed $:=100 \cdot \frac{\text { MaxTension }}{F_{\text {net.area }}}$

PercentStressed $=66.23$

Note: Shear Stress is negligible

Job	147.5' Monopole - Enfield, CT
Description	Anchor Bolt and Base Plate Analysis

Description \qquad Computed by \qquad Date 08/01/06 Checked by \qquad Date \qquad

Check Compression \& Combined Stresses (if required):

Check to see if a complete combined stress analysis is required:
Per ASCE Manual 72: "If the clearance between the base plate and concrete does not exceed two times the bolt diameter a bending stress analysis of the bolts is NOT normally required."

Set the clear space between the plate and bolt to zero if a combined stress analysis is not required and set the bending stress to zero:

$$
\mathrm{L}:=\left|\begin{array}{l}
1 \text { if } \mathrm{I}>2 \cdot \mathrm{D}_{\mathrm{n}} \\
0.0 \text { in otherwise }
\end{array} \quad \mathrm{l}=0 \quad \quad \mathrm{f}_{\mathrm{hx}}:=\right| \begin{aligned}
& \mathrm{f}_{\mathrm{bx}} \text { if } \mathrm{l}>2 \cdot \mathrm{D}_{\mathrm{n}} \quad \mathrm{f}_{\mathrm{bx}}=0 \mathrm{ksi}, \\
& 0.0 \mathrm{ksi} \text { otherwise }
\end{aligned}
$$

Allowable Compressive Force:

$$
\mathrm{F}_{\mathrm{wh}}:=1.33 \cdot \mathrm{~F}_{\mathrm{a}} \quad \text { Note: } 1.33 \text { increase allowed per TIA/EIA } \quad \mathrm{F}_{\mathrm{a}}=59.85 \mathrm{ksi}
$$

Applied Compressive Force:

$$
\begin{array}{ll}
\text { MaxCompression }:=\frac{O M \cdot d_{1}}{\Sigma d}+\frac{\text { Axial }}{N} & \text { MaxCompression }=134.4 \mathrm{kips} \\
\mathrm{f}_{\mathrm{a}}:=\frac{\text { MaxCompression }}{\mathrm{A}_{\text {net }}} & \mathrm{f}_{\mathrm{a}}=41.38 \mathrm{ksi}
\end{array}
$$

Check Combined Stresses:
StressRatio $:=\frac{f_{a}}{F_{a}}+\frac{f_{b x}}{F_{b x}}$ StressRatio $=0.69$

Condition := if(StressRatio ≤ 1.0, "Not Overstressed", "Overstressed")
Condition $=$ "Not Overstressed"

$$
\begin{aligned}
& \text { K } \\
& C_{c}:=\sqrt{\frac{2 \cdot \pi^{2} \cdot E}{F y}} \\
& \mathrm{C}_{\mathrm{c}}=87.36
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{a}}=45 \mathrm{ksi}
\end{aligned}
$$

Job
147.5' Monopole - Enfield, CT

Anchor Bolt and Base Plate Analysis Project No.

Page of Sheet 6 of 6 Description
\qquad Computed by \qquad Date 08/01/06 Checked by \qquad Date \qquad

Base Plate Analysis:

Force From Bolt(s):

$$
\begin{array}{ll}
\mathrm{C}_{1}:=\frac{\mathrm{OM} \cdot \mathrm{~d}_{1}}{\Sigma \mathrm{~d}}+\frac{\text { Axial }}{\mathrm{N}} & \mathrm{C}_{1}=134.4 \mathrm{kips} \\
\mathrm{C}_{2}:=\frac{\mathrm{OM} \cdot \mathrm{~d}_{2}}{\sum \mathrm{~d}}+\frac{\text { Axial }}{\mathrm{N}} & \mathrm{C}_{2}=131.27 \mathrm{kips}
\end{array}
$$

Bending Stress in Plate:

$$
\mathrm{f}_{\mathrm{bp}}:=\frac{6 \cdot\left(1 \cdot \mathrm{C}_{1} \cdot \text { MomentArm }_{1}+2 \cdot \mathrm{C}_{2} \cdot \text { MomentArm }_{2}\right)}{\text { EffectiveWidth } \cdot \text { PlateThicknessProvide }^{2}} \quad \mathrm{f}_{\mathrm{bp}}=44.06 \mathrm{ksi}
$$

Check Stresses:

$$
\begin{aligned}
& \text { BasePlateRatio :=} \frac{f_{\mathrm{bp}}}{1.33 \cdot 0.75 \mathrm{Fy}_{\mathrm{bp}}} \quad \text { BasePlateRatio }=0.88 \\
& \text { BasePlateStress }:=\text { if(BasePlateRatio }<1 \text {, "Not Over Stress" , "Is Over Stress") } \\
& \text { BasePlateStress }=\text { "Not Over Stress" }
\end{aligned}
$$

FOUNDATION ANALYSIS

Job
Description

$\frac{147 \text { ' Monopole }- \text { Enfield, CT }}{\text { Spread Footing w/ Pier Analysis }}$	Project No.
Computed by ___	Checked by
MONOPOLE FOUNDATION ANALYSIS	

TOWER FORCES:
Moment Caused by Tower
Shear at Base of Tower

$$
S_{t}:=18 \mathrm{kip}
$$

Max Compressive Force

$$
\mathrm{C}_{\mathrm{t}}:=34 \cdot \mathrm{kip}
$$

Height of Tower

$$
H_{t}:=147.5 \cdot \mathrm{ft}
$$

Base Plate Bolt Circle

$$
\text { MP }:=4.58 \mathrm{ft}
$$

FOOTING DIMENSIONS:
Overall Depth of Footing
Length of Pier
Extension of Pier Above Grade
Diameter of Pier
Thickness of Footing
Width of Footing:
Length of Anchor Bolts:
Projection of anchor bolts above pier $A_{B P}:=12 \cdot$ in
Anchor bolts area
PIER REINFORCEMENT:
Bar Size \quad BSpier $:=11$

$$
\mathrm{A}_{\text {anchor }}:=3.97 \cdot \text { in }^{2}
$$

$\mathrm{D}_{\mathrm{f}}:=10 \mathrm{ft}$
$\mathrm{L}_{\mathrm{p}}:=7.5 \cdot \mathrm{ft}$
$\mathrm{L}_{\mathrm{pag}}:=.5 \cdot \mathrm{ft}$
$\mathrm{d}_{\mathrm{p}}:=7 \cdot \mathrm{ft}$
$T_{f}:=3 \cdot f t$
$W_{f}:=23.5 \mathrm{ft}$
$\mathrm{L}_{\mathrm{st}}:=96 \mathrm{in}$
ention

PROPERTIES:

$$
\mathrm{M}_{\mathrm{t}}:=1809 \cdot \mathrm{f} \cdot \mathrm{kips} \quad \text { Compressive Strength of Concrete } \quad \mathrm{fc}:=3000 \mathrm{psi}
$$

$$
\text { Bar Diameter } \quad d_{\text {bpier }}:=1.41 \cdot \mathrm{in}
$$

$$
\text { Bar Area } \quad \mathrm{A}_{\text {bpier }}:=1.56 \cdot \mathrm{in}^{2}
$$

PAD REINFORCEMENT:

	Bar Size	$\mathrm{BS}_{\mathrm{top}}:=9$	Bar Diameter	$\mathrm{d}_{\mathrm{btop}}:=1.128 \cdot \mathrm{in}$
TOP:	Number of Bars	$\mathrm{NB}_{\text {top }}:=25$	Bar Area	$\mathrm{A}_{\mathrm{btop}}:=1 \cdot \mathrm{in}^{2}$
BOTTOM:	Bar Size	$\mathrm{BS}_{\mathrm{bot}}:=9$	Bumber of Bars	$\mathrm{NB}_{\mathrm{bot}}:=25$

Coefficient of Lateral Soil Pressure: $\quad K_{p}:=\frac{1+\sin \left(\phi_{s}\right)}{1-\sin \left(\phi_{s}\right)} \quad K_{p}=3$
Load Factor (EIA 3.1.1): $\quad L F:=$ if $\left[H_{t} \leq 700 \cdot \mathrm{ft}, 1.3\right.$, if $\left[H_{t} \geq 1200,1.7,1.3+\left(\frac{H_{t}-700}{1200-700}\right) \cdot 0.4\right] \quad L F=1.3$

URS

Job	147^{\prime} Monopole - Enfield, CT
Description	

	Page VZ1-202 JEK Sheet $\frac{2}{0}$ of $\frac{9}{9}$ Date $\frac{08 / 01 / 06}{}$ Date

CHECK ANCHOR STEEL EMBEDMENT

Depth:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{ab}}:=\mathrm{L}_{\mathrm{st}}-\mathrm{A}_{\mathrm{BP}} \quad \mathrm{D}_{\mathrm{ab}}=7 \mathrm{ft} \quad \mathrm{~L}_{\text {anchor }}:=\frac{(0.11 \cdot \mathrm{fy}) \cdot \mathrm{in}}{\sqrt{\mathrm{f}^{\prime} \cdot \cdot \mathrm{psi}}} \quad \mathrm{~L}_{\text {anchor }}=10.0416 \mathrm{ft} \\
& \text { DepthCheck }:=\mathrm{if}\left(\mathrm{D}_{\mathrm{ab}} \geq \mathrm{L}_{\mathrm{anchor}}, \text { "Okay", "No Good" }\right) \\
& \text { DepthCheck }=\text { "No Good" Note: anchor plate is provided }
\end{aligned}
$$

STABILITY OF FOOTING

Passive Pressure: $\quad P_{p n}:=K_{p} \cdot \gamma_{s} \cdot n+c \cdot 2 \cdot \sqrt{K_{p}}$

$$
\begin{aligned}
& P_{p t}:=K_{p} \cdot \gamma_{s}\left(D_{f}-T_{f}\right)+c \cdot 2 \cdot \sqrt{K_{p}} \\
& P_{t o p}:=i f\left[n<\left(D_{f}-T_{f}\right), P_{p t}, P_{p n}\right]
\end{aligned}
$$

Ultimate Shear: $\quad S_{u}:=P_{\text {ave }} \cdot A_{p}$
$\mathrm{P}_{\mathrm{pn}}=0 \mathrm{ksf}$
$P_{p t}=2.415 \mathrm{ksf}$
$P_{\text {top }}=2.415 \mathrm{ksf}$

$$
P_{b o t}:=K_{\mathrm{p}} \cdot \gamma_{\mathrm{S}} \cdot \mathrm{D}_{\mathrm{f}}+\mathrm{c} \cdot 2 \cdot \sqrt{\mathrm{~K}_{\mathrm{p}}}
$$

$\mathrm{P}_{\text {bot }}=3.45 \mathrm{ksf}$

$$
P_{\mathrm{ave}}:=\frac{\mathrm{P}_{\text {top }}+\mathrm{P}_{\text {bot }}}{2}
$$

$\mathrm{P}_{\mathrm{ave}}=2.9325 \mathrm{ksf}$

$$
\mathrm{T}_{\mathrm{p}}:=\mathrm{if}\left[\mathrm{n}<\left(\mathrm{D}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}\right), \mathrm{T}_{\mathrm{f}},\left(\mathrm{D}_{\mathrm{f}}-\mathrm{n}\right)\right]
$$

$T_{p}=3 \mathrm{ft}$

$$
A_{\mathrm{p}}:=W_{\mathrm{f}} \mathrm{~T}_{\mathrm{p}}
$$

$\mathrm{A}_{\mathrm{p}}=70.5 \mathrm{ft}^{2}$
$\mathrm{S}_{\mathrm{u}}=206.7412 \mathrm{kip}$
Weight of
Concrete Pad:
$W T_{c}:=\left[\left(w_{f}^{2} \cdot T_{f}\right)+d_{p}^{2} L_{p}\right] \cdot \gamma_{c}$
$\mathrm{WT}_{\mathrm{c}}=303.6375 \mathrm{kip}$

Weight of Soil:
above Footing:
$W T_{s I}:=\left[W_{f}^{2} \cdot\left(\left|L_{p}-L_{p a g}\right|\right)-\frac{d_{p}{ }^{2} \cdot \pi}{4} \cdot\left(\left|L_{p}-L_{p a g}\right|\right)\right] \cdot \gamma_{s}$
$\mathrm{WT}_{\mathrm{s} 1}=413.5812 \mathrm{kip}$
Weight of Soil
$\mathrm{WT}_{\mathrm{s} 2}:=\left(\frac{\mathrm{D}_{\mathrm{f}}^{2} \cdot \tan \left(\phi_{\mathrm{s}}\right)}{2} \cdot \mathrm{~W}_{\mathrm{f}}\right) \cdot \gamma_{\mathrm{s}}$
$W T_{s 2}=78.0145 \mathrm{kip}$
Total Weight:

Resisting Moment:
$W T_{t o t}:=W T_{c}+W T_{s 1}+C_{t}$
$\mathrm{WT}_{\text {tot }}=751.2187 \mathrm{kip}$

Overturning Moment:
$M_{r}:=\left(W T_{\text {tot }}\right) \cdot \frac{W_{f}}{2}+S_{\mathbf{u}} \cdot \frac{T_{f}}{3}+W T_{s 2} \cdot\left(W_{f}+\frac{D_{f} \tan \left(\phi_{\mathrm{s}}\right)}{3}\right)$
$M_{o t}:=M_{t}+S_{t} \cdot\left(L_{p}+T_{f}\right)$
Factor of Safety:
$\mathrm{FS}:=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{ot}}} \quad \mathrm{FS}_{\text {req }}:=2$
SafetyCheck $:=\operatorname{if}\left(\mathrm{FS}>\mathrm{FS}_{\text {req }}\right.$, "Okay", "No Good" $)$
$\mathrm{FS}:=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{ot}}} \quad \mathrm{FS}_{\text {req }}:=2$
SafetyCheck $:=\operatorname{if}\left(\mathrm{FS}>\mathrm{FS}_{\text {req }}\right.$, "Okay", "No Good" $)$
$M_{r}=11017.0398 \mathrm{kip} \cdot \mathrm{ft}$
$\mathrm{M}_{\mathrm{ot}}=1998 \mathrm{kip} \cdot \mathrm{ft}$
$\mathrm{FS}:=5.5 \mathrm{I}$
SafetyCheck $=$ "Okay"

URS

Job	147' Monopole - Enfield CT			Page ___ of
Description		Project No. Computed by Checked by	VZ1-202	Sheet $\frac{3}{0}$ of $\frac{9}{9}$
	Spread Footing w/ Pier Analysis		JEK	
				Date
	SHEAR CAPACITY IN PIER	kS: $=2$		
	$\mathrm{P}_{\text {ave }} \mathrm{A}_{\mathrm{p}}+\mu \cdot \mathrm{WT}$ tot			
	FS			
			948 kips	
	ShearCheck := if ($\mathrm{S}_{\mathrm{p}}>\mathrm{S}_{\mathrm{t}}$, "Okay", "No Good")	Shear	= "Okay"	

BEARING PRESSURE CAUSED BY FOOTING

$$
\begin{array}{ll}
A_{\text {mat }}:=W_{f}^{2} & A_{\operatorname{mat}}=552.25 \mathrm{ft}^{2} \\
S_{M}:=\frac{W_{f}^{3}}{6} & \mathrm{~S}=2162.9792 \mathrm{ft}^{3} \\
\mathrm{P}_{\max }:=\frac{\mathrm{WT}_{\text {tot }}}{\mathrm{A}_{\text {mat }}}+\frac{\mathrm{M}_{\mathrm{ot}}}{\mathrm{~S}} & \mathrm{P}_{\max }=2.284 \mathrm{ksf} \\
\mathrm{P}_{\min }:=\frac{\mathrm{WT}_{\text {tot }}}{\mathrm{A}_{\text {mat }}}-\frac{\mathrm{M}_{\mathrm{ot}}}{\mathrm{~S}} & \mathrm{P}_{\min }=0.4366 \mathrm{ksf} \\
\text { MaxPressure }:=\mathrm{if}\left(\mathrm{P}_{\max }<\mathrm{q}_{\mathrm{S}}, \text { "Okay", "No Good" }\right) & \text { MaxPressure }=\text { "Okay" } \\
\text { MinPressure }:=\mathrm{if}\left[\left(\mathrm{P}_{\min } \geq 0\right) \cdot\left(\mathrm{P}_{\min }<\mathrm{q}_{\mathrm{S}}\right), \text { "Okay" , "No Good" }\right] & \text { MinPressure }=\text { "Okay" }
\end{array}
$$

Distance to Resultant of Pressure Distribution:

$$
\begin{array}{ll}
X_{\mathrm{p}}:=\frac{\mathrm{P}_{\max }}{\mathrm{P}_{\text {max }}-P_{\min }}-\frac{1}{3} & \mathrm{X}_{\mathrm{p}}=9.6844 \mathrm{ft} \\
\mathrm{~W}_{\mathrm{f}}:=\frac{\mathrm{W}_{\mathrm{f}}}{6} & X_{\mathrm{k}}=3.9167 \mathrm{ft}
\end{array}
$$

Distance to Kern: $\quad X_{k}:=\frac{W_{f}}{6}$
Since Resultant Force is Not in Kern, Area to which Pressure is Applied Must be Reduced.
Eccentricity:

$$
\mathrm{e}:=\frac{\mathrm{M}_{\mathrm{ot}}}{\mathrm{WT}_{\mathrm{tot}}}
$$

$$
e=2.6597
$$

Adjusted Soil Pressure: $\quad \mathrm{P}_{\mathrm{a}}:=\frac{2 \cdot \mathrm{WT}_{\text {tot }}}{3 \cdot \mathrm{~W}_{\mathrm{f}}\left(\frac{\mathrm{W}_{\mathrm{f}}}{2}-\mathrm{e}\right)}$

$$
P_{a}=2.3444 \mathrm{ksf}
$$

$$
\mathrm{q}_{\mathrm{adj}}:=\mathrm{if}\left(\mathrm{P}_{\min }<0, \mathrm{P}_{\mathrm{a}}, \frac{\mathrm{P}_{\max }}{\mathrm{ft}^{2}}\right)
$$

$$
\text { PressureCheck }:=\operatorname{if}\left(q_{a d j}<q_{s}, \text { "Okay", "No Good" }\right)
$$

PressureCheck = "Okay"

Job	147' Monopole - Enfield, CT
Description	Spread Footing w/ Pier Analysis

	PageVZ1-202 JEK
Sheet $\frac{4}{4}$ of $\frac{9}{9}$	
	Date$08 / 01 / 06$

CONCRETE BEARING CAPACITY

(ACI 10.17)

$$
\begin{array}{ll}
\phi_{\mathrm{c}}:=0.75 & (\mathrm{ACl} 9.3 .2 .2) \\
\mathrm{P}_{\mathrm{b}}:=\phi_{\mathrm{c}} \cdot 0.85 \cdot \mathrm{fc} \cdot \frac{\mathrm{~d}_{\mathrm{p}}{ }^{2} \cdot \pi}{4} & \mathrm{P}_{\mathrm{b}}=10598.6341 \mathrm{kip} \\
\text { BearingCheck }:=\mathrm{if}\left(\mathrm{P}_{\mathrm{b}}>\text { LF } \cdot C_{\mathrm{t}}, \text { "Okay" }, \text { "No Good" }\right) & \text { BearingCheck }=\text { "Okay" }
\end{array}
$$

SHEAR STRENGTH OF CONCRETE

Beam Shear: (Critical section located at a distance d from the face of Pier) (ACl 11.3.1.1)

ACI 11.3.1.1

Punching Shear: (Critical Section Located at a distance of $\mathrm{d} / 2$ from the face of pier) (ACl 11.12.2.1)

$$
b_{0}:=\left(d_{p}+d\right) \cdot \pi
$$

$\mathrm{b}_{\mathrm{o}}=30.3352 \mathrm{ft}$
Area included inside bo: $\quad A_{b o}:=\frac{\pi \cdot\left(d_{\mathrm{p}}+\mathrm{d}\right)^{2}}{4}$
$\mathrm{A}_{\mathrm{bo}}=73.2292 \mathrm{ft}^{2}$

Area outside of bo:

$$
\mathrm{A}_{\mathrm{out}}:=\mathrm{A}_{\mathrm{tnat}}-\mathrm{A}_{\mathrm{bo}}
$$

$$
A_{\text {out }}=479.0208 \mathrm{ft}^{2}
$$

$$
\begin{aligned}
& \text { \$o: }=.85 \text { (ACl 9.3.2.3) } \\
& \mathrm{d}:=\mathrm{T}_{\mathrm{f}}-\mathrm{Crr}_{\mathrm{pad}}-\mathrm{d}_{\text {bbot }} \\
& d_{1}:=\frac{W_{f}}{2}-\frac{d_{p}}{2} \quad \begin{array}{ll}
\mathrm{d}=31.872 \mathrm{in} \\
d_{1}=8.25 \mathrm{ft}
\end{array} \\
& \mathrm{~d}_{2}:=\mathrm{d}_{1}-\mathrm{d} \\
& \mathrm{~d}_{2}=5.594 \mathrm{ft} \\
& \mathrm{~L}_{M}:=\left(\frac{\mathrm{W}_{\mathrm{f}}}{2}-\mathrm{e}\right) \cdot 3 \\
& \text { Slope : }=\operatorname{if}\left(\mathrm{L}>\mathrm{W}_{\mathrm{f}}, \frac{\mathrm{P}_{\text {max }}-\mathrm{P}_{\text {min }}}{\mathrm{W}_{\mathrm{f}}}, \frac{\mathrm{q}_{\text {adj }}}{\mathrm{L}}\right) \\
& V_{\text {req }}:=\operatorname{LF} \cdot\left[\left(q_{\text {adj }}-\text { Slope } \cdot d_{1}\right)+\left(\frac{\text { Slope } \cdot d_{1}}{2}\right)\right] \cdot W_{f} d_{l} \quad V_{\text {req }}=493.9246 \mathrm{kip} \\
& V_{\text {Avail }}:=\phi_{c} \cdot 2 \cdot \sqrt{f \mathrm{c} \cdot \mathrm{psi}} \cdot \mathrm{~W}_{\mathrm{f}} \mathrm{~d} \\
& \text { BeamShearCheck :=if(} \left.\mathrm{V}_{\text {req }}<\mathrm{V}_{\text {Avail }} \text {, "Okay", "No Good" }\right) \\
& \mathrm{V}_{\text {Avail }}=836.8892 \mathrm{kip} \\
& \text { BeamShearCheck }=\text { "Okay" }
\end{aligned}
$$

Take Maximum Bending at face of Pier:

$$
\begin{aligned}
& q_{b}:=q_{a d j}-d_{1} \text { Slope } \\
& \mathrm{q}_{\mathrm{b}}=1.6354 \mathrm{ksf} \\
& M_{n}:=\frac{L F}{\phi_{m}} \cdot\left[\left(q_{a d j}-q_{b}\right) \cdot \frac{d_{1}{ }^{2}}{3}+q_{b} \cdot \frac{d_{1}{ }^{2}}{2}\right] \cdot W_{f} \\
& M_{n}=2388.69 \mathrm{kip} \cdot \mathrm{ft} \\
& \beta:=\operatorname{if}\left[\mathrm{f}^{\prime} \mathrm{c} \leq 4000 \cdot \mathrm{psi}, .85, \text { it }\left[\mathrm{fc} \geq 8000 \cdot \mathrm{psi}, .65, .85-\left(\frac{\frac{\mathrm{fc}}{\mathrm{psi}}-4000}{1000}\right) .05\right] \beta=0.85\right. \\
& R_{u}:=\frac{M_{n}}{\phi_{m}-W_{f} d^{2}} \\
& \rho:=\frac{0.85 \cdot \mathrm{f}^{\mathrm{c}}}{\mathrm{fy}}\left(1-\sqrt{1-\frac{2 \cdot \mathrm{R}_{\mathrm{u}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}}}\right) \\
& \rho_{\text {min }}:=1.333 \cdot \rho \\
& R_{u}=16010.1 \mathrm{lbf} \\
& \rho=0.0019 \\
& \rho_{\text {min }}=0.00253
\end{aligned}
$$

ACl 10.2.7.3

Column size and reinforcement may be changed to match capacity to the applied load.

$$
\begin{array}{ll}
\text { AxialLoadCheck }:=\text { if }\left(\phi P_{n} \geq P_{u}, " \text { Okay" , "No Good" }\right) & \text { AxialLoadCheck }=\text { "Okay" } \\
\text { BendingCheck }:=\operatorname{if}\left(\phi M_{x n} \geq M_{x u}, ~ " O k a y ", ~ " N o ~ G o o d " ~\right. & \text { BendingCheck }=\text { "Okay" }
\end{array}
$$

URS

$\begin{array}{ll}\text { Job } & \text { 147' Monopole - Enfield, CT } \\ \text { Description } & \text { Spread Footing w/ Pier Analysis } \\ & \end{array}$
\qquad Project No. \qquad Page of Computed by \qquad Sheet 8 of 9 Checked by \qquad Date 08/01/06

DEVELOPMENT LENGTH OF PIER REINFORCEMENT

TENSION (ACI 12.2.3)

Factors for development:

Reinforcement Location Factor	$\alpha:=1.0$
Coating Factor	$\beta:=1.0$
Concrete strength Factor	$\lambda:=1.0$
Reinforcement Size Factor	$y_{n}:=1.0$

Spacing or Cover Dimension: $\underset{m}{c}=$ if $\left(\mathrm{Cvr}_{\text {pier }}<\frac{\mathrm{B}_{\text {sPier }}}{2}, \mathrm{Crr}_{\text {pier }}, \frac{\mathrm{B}_{\text {sPier }}}{2}\right)$

$$
\mathrm{c}=3 \mathrm{in}
$$

Transverse Reinforcement: As allowed by ACI 12.2.4 $\quad k_{k \times m}:=0$

$$
\mathrm{L}_{\mathrm{dbah}}:=\frac{3}{40} \cdot \frac{\mathrm{fy}}{\sqrt{\mathrm{fc} \cdot \mathrm{psi}}} \cdot \frac{\alpha \cdot \beta \cdot \gamma \cdot \lambda}{\frac{\mathrm{c}+\mathrm{k}_{\mathrm{tr}}}{\mathrm{~d}_{\mathrm{bpier}}}} \cdot \mathrm{~d}_{\mathrm{bpier}}
$$

$$
\mathrm{L}_{\mathrm{dbt}}=54.4464 \mathrm{in}
$$

Minimum Development Length: (ACl 12.2.1)

$$
L_{\text {Ldbrais }}:=12 \cdot \mathrm{in}
$$

Pier reinforcement bars are standard 90 degree hooks and therefore developement in the pad is computed as follows:

$$
\mathrm{L}_{\mathrm{dh}}:=\frac{1200 \cdot \mathrm{~d}_{\text {bpier }}}{\sqrt{\frac{\mathrm{fc}}{\mathrm{psi}}}} \cdot 7
$$

$$
\mathrm{L}_{\mathrm{dh}}=21.6241 \mathrm{in}
$$

$$
\mathrm{L}_{\mathrm{db}}:=\max \left(\mathrm{L}_{\mathrm{dbt}}, \mathrm{~L}_{\mathrm{dbmin}}\right)
$$

$$
\mathrm{L}_{\mathrm{db}}=54.4464 \text { in }
$$

COMPRESSION: (ACI 12.3.2)
$\mathrm{L}_{\mathrm{dbc} 1}:=\frac{.02 \cdot \mathrm{~d}_{\text {bpier }} \cdot \mathrm{fy}}{\sqrt{\mathrm{fc} \cdot \mathrm{psi}}}$
$\mathrm{L}_{\mathrm{dbc} \mathrm{l}}=30.8916 \mathrm{in}$
$\mathrm{L}_{\text {Mdbaximi }}=0.0003 \cdot \frac{\mathrm{in}^{2}}{\mathrm{lb}} \cdot\left(\mathrm{d}_{\text {bpier }} \cdot \mathrm{fy}\right)$
$L_{\mathrm{dbmin}}=25.38 \mathrm{in}$
$\mathrm{L}_{\mathrm{dbc}}:=\mathrm{if}\left(\mathrm{L}_{\mathrm{dbc} 1} \geq \mathrm{L}_{\mathrm{dbmin}}, \mathrm{L}_{\mathrm{dbc},}, \mathrm{L}_{\mathrm{dbmin}}\right)$
$\mathrm{L}_{\mathrm{dbc}}=30.8916$ in
Available Length in Pier:
$L_{\text {pier }}:=L_{p}-3 \cdot$ in
$\mathrm{L}_{\text {pier }}=87 \mathrm{in}$
$L_{\text {piertension }}:=\operatorname{if}\left(L_{\text {pier }}>L_{d b t}\right.$, "Okay", "No Good" $) \quad L_{\text {piertension }}=$ "Okay"
$L_{\text {piercompression }}:=\operatorname{if}\left(L_{\text {pier }}>L_{d b c}\right.$, "Okay" , "No Good" $)$
NOTE: Anchor bolts and plate provided, OK
Available Length in Pad:

$$
\begin{aligned}
& \mathrm{L}_{\text {pad }}:=\mathrm{T}_{\mathrm{f}}-3 \cdot \text { in } \\
& \mathrm{L}_{\text {padtension }}:=\mathrm{if}\left(\mathrm{~L}_{\text {pad }}>\mathrm{L}_{\mathrm{dh}}, \text { "Okay", "No Good" }\right) \\
& \mathrm{L}_{\text {padcompression }}:=\operatorname{if}\left(\mathrm{L}_{\text {pad }}>\mathrm{L}_{\mathrm{dbc}}, \text { "Okay", "No Good" }\right)
\end{aligned}
$$

$$
L_{\text {pad }}=33 \mathrm{in}
$$

Job	147' Monopole - Enfield, CT	Project No.	VZ1-202	Sheet 9 of 9
Description	Spread Footing w/ Pier Analysis	Computed by	JEK	Date 08/01/06
		Checked by		Date

TIE SIZE AND SPACING IN COLUMN

Minimum Tie Size:	$\mathrm{Tie}_{\min }:=\mathrm{if}(\text { BSpier } \leq 10,3,4)$ Used \#5 Ties	$\begin{aligned} & \mathrm{Tie}_{\min }=4 \\ & \mathrm{~d}_{\mathrm{Tie}}:=5 \end{aligned}$
Seismic factor: (ACl 21.10 .5)	$z:=\mathrm{if}(\mathrm{Z} \leq 2,1,0.5)$	$\mathrm{z}=1$
	$\mathrm{s}_{\text {liml }}:=16 \cdot \mathrm{~d}_{\text {bpier }} \cdot \mathrm{z}$	$\mathrm{s}_{\operatorname{liml} 1}=22.56 \mathrm{in}$
	$\mathrm{s}_{\lim 2}:=\frac{48 \cdot \mathrm{~d}_{\mathrm{Tie}} \cdot \mathrm{in}}{8} \cdot \mathrm{z}$	$\mathrm{s}_{\lim 2}=30 \mathrm{in}$
	$\mathrm{s}_{\lim 3}:=\mathrm{D}_{\mathrm{f}} \mathrm{z}$	$\mathrm{s}_{\lim 3}=120$ in
	$\mathrm{s}_{\lim 4}:=18 \mathrm{in}$	$\mathrm{s}_{\text {lim4 }}=18$ in
Maximum Spacing:	$s_{\text {tie }}:=\min \left(\begin{array}{l}\left(\begin{array}{c}s_{\lim 1} \\ s^{\lim 2} \\ s_{\lim 3} \\ s_{\lim 4}\end{array}\right)\end{array}\right)$	$\mathrm{s}_{\text {tie }}=18 \mathrm{in}$
Number of Ties Required:	$n_{\text {tie }}:=\frac{L_{\text {pier }}-3 \cdot \mathrm{in}}{s_{\text {tie }}}+1$	$n_{\text {tie }}=5.6667$

September 1, 2006

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov www.ct.gov/csc

Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597
RE: EM-VER-003-048-146-049-060803 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify existing telecommunications facilities located at Janoski Road, Ashford; 101 Burbank Road, Ellington; 60 Industrial Park Road, Vernon; and Bright Meadow Road, Enfield, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on August 31, 2006, the Connecticut Siting Council (Council) acknowledged your notice to modify these existing telecommunications facilities, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated August 3, 2006, including the placement of all necessary equipment and shelters within the tower compounds. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to existing facility sites that would not increase tower heights, extend the boundaries of the tower sites, increase noise levels at the tower site boundaries by six decibels, and increase the total radio frequencies electromagnetic radiation power densities measured at the tower site boundaries to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. These facilities have also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on these towers.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to any of these facilities will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j73. Such notice shall include all relevant information regarding the proposed change with cumulative worstcase modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § $16-50 \mathrm{u}$ including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

CCT/laf

c: See Attached List.

Page 2

List Attachment.

c: The Honorable Ralph H. Fletcher, First Selectman, Town of Ashford Richard Dziadus, Zoning Enforcement Officer, Town of Ashford The Honorable Michael P. Stupinski, First Selectman, Town of Ellington Matthew Davis, Town Planner, Town of Ellington The Honorable Patrick L. Tallarita, Mayor, Town of Enfield Scott A. Shanley, Town Manager, Town of Enfield Jose Giner, Director of Planning and Community Development, Town of Enfield The Honorable Ellen L. Marmer, Mayor, Town of Vernon Gene F. Bolles, Zoning Enforcement Officer, Town of Vernon
Thomas J. Regan, Esq., Brown Rudnick Berlack Israels LLP
Christopher B. Fisher, Esq., Cuddy \& Feder LLP
Michele G. Briggs, New Cingular Wireless PCS, LLC
Christine Farrell, T-Mobile
Crossroads Site Management, LLC
Wayne Kemp, New England Site Management, LLP
Thomas F. Flynn III, Nextel Communications, Inc.

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

August 15, 2006
The Honorable Ralph H. Fletcher
First Selectman
Town of Ashford
Knowlton Memorial Town Hall
25 Pompey Hollow Road
P O Box 38
Ashford, CT 06278
RE: EM-VER-003-048-146-049-060803 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify existing telecommunications facilities located at Janoski Road, Ashford; 101 Burbank Road, Ellington; 60 Industrial Park Road, Vernon; and Bright Meadow Road, Enfield, Connecticut.

Dear Mr. Fletcher:
The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for August 31, 2006 at 1:30 p.m. in Hearing Room One, Ten Franklin Square, New Britain, Connecticut.

If you have any questions or comments regarding this proposal, please call me or inform the council by August 30, 2006.

Thank you for your cooperation and consideration.

Executive Director
SDP/ap
Enclosure: Notice of Intent
c: Richard Dziadus, Zoning Enforcement Officer, Town of Ashford

STATE OF CONNECTICUT
 CONNECTICUT SITING COUNCIL
 Ten Franklin Square, New Britain, CT 06051
 Phone: (860) 827-2935 Fax: (860) 827-2950
 E-Mail: siting.council@ct.gov
 www.ct.gov/csc

August 15, 2006
The Honorable Michael P. Stupinski
First Selectman
Town of Ellington
55 Main Street
P. O. Box 187

Ellington, CT 06029-0187
RE: EM-VER-003-048-146-049-060803 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify existing telecommunications facilities located at Janoski Road, Ashford; 101 Burbank Road, Ellington; 60 Industrial Park Road, Vernon; and Bright Meadow Road, Enfield, Connecticut.

Dear Mr. Stupinski:
The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for August 31, 2006 at 1:30 p.m. in Hearing Room One, Ten Franklin Square, New Britain, Connecticut.

If you have any questions or comments regarding this proposal, please call me or inform the council by August 30, 2006.

Thank you for your cooperation and consideration.

SDP/ap
Enclosure: Notice of Intent
c: Matthew Davis, Town Planner, Town of Ellington

STATE OF CONNECTICUT
 connecticut siting council
 Ten Franklin Square, New Britain, CT 06051
 Phone: (860) 827-2935 Fax: (860) 827-2950
 E-Mail: siting.council@ct.gov
 www.ct.gov/csc

August 15, 2006
The Honorable Ellen L. Marmer
Mayor
Town of Vernon
Municipal Building
14 Park Place
Vernon, CT 06066
RE: EM-VER-003-048-146-049-060803 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify existing telecommunications facilities located at Janoski Road, Ashford; 101 Burbank Road, Ellington; 60 Industrial Park Road, Vernon; and Bright Meadow Road, Enfield, Connecticut.

Dear Mayor Marmer:
The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for August 31, 2006 at 1:30 p.m. in Hearing Room One, Ten Franklin Square, New Britain, Connecticut.

If you have any questions or comments regarding this proposal, please call me or inform the council by August 30, 2006.

Thank you for your cooperation and consideration.

SDP/ap
Enclosure: Notice of Intent
c: Gene F. Bolles, Zoning Enforcement Officer, Town of Vernon

STATEOFCONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
www.ct.gov/csc

August 15, 2006
The Honorable Patrick L. Tallarita
Mayor
Town of Enfield
820 Enfield Street
Enfield, CT 06082

RE: EM-VER-003-048-146-049-060803 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify existing telecommunications facilities located at Janoski Road, Ashford; 101 Burbank Road, Ellington; 60 Industrial Park Road, Vernon; and Bright Meadow Road, Enfield, Connecticut.

Dear Mayor Tallarita:
The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for August 31, 2006 at 1:30 p.m. in Hearing Room One, Ten Franklin Square, New Britain, Connecticut.

If you have any questions or comments regarding this proposal, please call me or inform the council by August 30, 2006.

Thank you for your cooperation and consideration.

SDP/ap
Enclosure: Notice of Intent
c: Jose Giner, Director of Planning and Community Development, Town of Enfield Scott A. Shanley, Town Manager, Town of Enfield

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals
 Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 $\sqrt{ }$ Include Bolts In Member Capacity
 $\sqrt{ }$ Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC. 6D + W Combination

[^1]: Program Version 4.5.0.0-4/12/2006 File:P:/08/ERIFiles/147.5' Monopole.eri

