Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

June 24, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 37 Bacon Road, Enfield, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and related equipment on the ground, near the base of the tower. The tower was approved by the Town of Enfield in June of 2003. Cellco's shared use of the tower was approved by the Council in June of 2005. A copy of the Town approval and Cellco's approval are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by installing three (3) Samsung 64T64RMMU antennas; removing nine (9) existing remote radio heads ("RRHs") and installing six (6) new RRHs on its existing antenna platform. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRHs specifications are included in <u>Attachment 2</u>. Cellco refers to this facility as its Somers West facility.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Enfield's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. June 24, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas and RRHs will be installed on Cellco's existing antenna platform.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for the modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna platform can support Cellco's proposed modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. June 24, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig BMM-

Enclosures Copy to:

Ellen Zoppo-Sassu, Enfield Town Manager Ben Winter, Assistant Town Planner Shaker Pines Fire District #5 Aleksey Tyurin

ATTACHMENT 1

ZONING CERTIFICATE

- SPECIAL USE PERMIT -

Planning and Zoning File PH 2324

OWNERS OF RECORD (Grantors): Shaker Pines Fire Department

PREMISES: 37 Bacon Road, Map 94, Lot 62

More particularly described on a Site Plan entitled: *

"Metro Tower, Proposed Wireless Facility, Title Sheet, Shaker Pines Fire Department, Enfield, CT, 06082", Sheet T-1, Sheet No. 1 of 4, Scale: "As Noted" by Maguire Group, Inc., dated April 15, 2002.

"Metro Tower, Proposed Wireless Facility, Location Plan, Shaker Pines Fire Department, Enfield, CT, 06082", Sheet C-1, Sheet No. 2 of 4, Scale: 1"=40', by Maguire Group, Inc., dated April 15, 2002.

"Metro Tower, Proposed Wireless Facility, Site Plan, Shaker Pines Fire Department, Enfield, CT, 06082", Sheet C-2, Sheet No. 3 of 4, Scale: 1"=10' by Maguire Group, Inc., dated April 15, 2002.

"Metro Tower, Proposed Wireless Facility, Elevations, Shaker Pines Fire Department, Enfield, CT, 06082", Sheet C-3, Sheet No.4 of 4, Scale: "As Noted" by Maguire Group, Inc., dated April 15, 2002.

*Revision dates subject to change with final mylar approval.

I, Karen S. Krebs, Secretary, hereby certify that on July31, 2002, the Planning and Zoning Commission of the Town of Enfield did approve PH 2324 – Application for a Special permit to allow a Wireless Communication Facility, including a 180' high Telecommunication tower, on land located at 37 Bacon Road in an Industrial 1 District, Map 94, Lot 62. Shaker Pines Fire Department owner/applicant. This approval is subject to conformance with the referenced plans, as may be required to be modified by this motion, and the following conditions:

Conditions to be Met Prior to Signing of Mylars:

- 1. All plans submitted for signature shall require the seal and live signature of the appropriate professional(s) responsible for the preparation of the plans.
- 2. The conditions of this approval shall be binding on the applicant, land owners, and their successors and assigns. A copy of this approval motion shall be filed on the land records prior to the signing of the plans.
- 3. The Public Hearing file number "PH 2324" shall be displayed prominently on all final plan sheets either in the title block or in the area around it.
- 4. The Final Mylars shall include the items requested by the Assistant Town Engineer who shall review and approve the plans prior to signing.

Conditions to be met prior to the issuance of permits:

- 5. Two sets of final plans, with any required revisions incorporated on the sheets, shall be submitted for signature to the Commission.
- 6. This approval will become effective upon the filing of a Special Use Zoning Certificate signed by the Commission Secretary on the Land records by the owner of the property. Proof of such filing shall be in the file prior to the issuance of any permits.
- 7. An engineering bond for removal of the wireless telecommunications facility including the tower and base components in an amount to be determined by the Town Engineer shall be submitted to the Town. Any need to use the bond by the Town of Enfield shall be binding in the site regardless of the name of the bond obligee.
- 8. The applicant shall post a bond for any required Site improvements in an amount to be determined by the Town Engineer and with surety acceptable to the Town.

- 9. A Separate Erosion and Sediment Control passbook shall be submitted in an amount to be determined by the Town Engineer.
- 10. A landscaping bond, in an amount to be determined by the Planning Department shall be submitted to the Town.
- 11. A pre-construction meeting between the applicant, site contractors, project engineer and Town Staff shall be held.

Conditions which must be met prior to the Issuance of a Zoning Certificate of Compliance:

- 12. Complete as-built plans certified to Class A-2 accuracy shall be submitted prior to the issuance of any certificates of zoning compliance.
- 13. In accordance with Section 9.10.6 of the Regulations, the applicant shall also submit to the Planning Director final as built plans in a digital format prescribed by the Director.

General Conditions:

- 14. This approval is for the specific use and structures identified in the application. Any changes or additions to the site and the structures will require new approvals from the Enfield Planning and Zoning Commission in addition to any other required State approvals.
- 15. The wireless communication facility shall not interfere with existing or proposed public safety communications, commercial television and radio signals or other forms of communication transmissions. Any such interference shall void the approval of the facility.
- 16. The wireless communication facility shall comply with the standards promulgated by the federal communication commission (FCC).
- 17. All generators installed in conjunction with the wireless communications facility shall comply with all state and local noise regulations.
- 18. On or before August 31 every year, the applicant or Wireless Telecommunications Service Provider shall submit information to the Planning and Zoning Commission file for annual review in support of the following:
 - A. Maintenance of facilities A certified inspection report shall be filed to ensure the continuing structural integrity of the Tower and accessory structures. If the report recommends that repairs or maintenance are required, then a letter shall be submitted to the Town to verify that such repairs and/or maintenance have been completed. The Town of Enfield may require repair or removal of the Tower based on the inspection report. The Town shall have no responsibility regarding such repairs and/or maintenance. Existing non-conforming Towers shall be subject to current approval requirements if replacement is required.
 - B. Continued use An affidavit of continuing use of the Wireless Communication Facility to establish renewal and continuation of the Special Use Permit.
 - C. Propagation Plan A system wide plan showing a regional perspective of Wireless Communications Facilities, both existing and proposed accompanied by a narrative explanation of the service provider's strategic plan for the ensuing year.
 - D. Copies of all reports filed with the FCC or the Connecticut Siting Council on EMF emissions shall be filed with the Planning and Zoning Commission. Automatic revocation of any approval given under this Chapter shall result for any Wireless Communication Facility that reports EMF emissions exceeding FCC standards.

- 19. If the wireless communications facility is not in use for 12 consecutive months, it shall be removed within 90 days from the end of such 12 month period, including base components by the last service provider using the site or owner, whichever has a contractual obligation to perform the removal. The site shall be restored to an appearance that is compatible with the surrounding neighborhood and where appropriate, re-vegetated to blend with the surrounding area.
- 20. The special use permit for a commercial wireless telecommunication service shall be valid for a maximum period of 10 years (July 31, 2012) with a right of reapplication under regulations in effect at that time.
- 21. The applicant, and his successors and assigns shall maintain the antennae and related facilities in a manner to blend in with the tower so as to minimize any visual intrusion into the surrounding properties.
- 22. The approval of an application for special use permit shall be void and of no effect unless construction of the project commences within one year from the date of the approval granted by the commission, (July 31, 2002).
- 23. By acceptance of this permit and conditions, the applicant and owner acknowledge the right of Town staff to periodically enter upon the subject property for the purpose of determining compliance with the terms of this approval.

The reasons for approval of the use and the decision about the Site Plan, including any conditions relating to either, are part of the record of the July 31, 2002 Enfield Planning and Zoning Commission meeting

In accordance with Section 8-3c and Section 8-3d of Connecticut General Statues as amended, the effective date of this approval shall the date of recording of this Certificate on the land records of the Enfield Town Clerk.

Dated at Enfield, Connecticut this $\frac{19}{2}$ day of

Karen S. Krebs, Secretary

ENFIELD PLANNING AND ZONING COMMISSION

RECORDED IN ENFIELD LAND RECORDS

2003 JUL - 2 PH 3: 03

Diggs of Ollecturist

Page 3 of 3

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

June 9, 2005

Kenneth C. Baldwin Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: EM-VER-049-050505 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 37 Bacon Road, Enfield, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on June 8, 2005, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated May 5, 2005, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Pamela B. Katz, P.E.

Chairman PBK/jkl

c: The Honorable Patrick L. Tallarita, Mayor, Town of Enfield
Jose Giner, Director of Planning and Community Development, Town of Enfield
Scott A. Shanley, Town Manager, Town of Enfield
Christopher B. Fisher, Esq., Cuddy and Feder LLP
Christine Farrell, T-Mobile Inc.

G:\EM\BAM-VERIZON\ENFIELD\dc060805.DOC

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

May 5, 2005

The Honorable Patrick L. Tallarita Mayor Town of Enfield 820 Enfield Street Enfield, CT 06082

RE: **EM-VER-049-050505** – Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 37 Bacon Road, Enfield, Connecticut.

Dear Mayor Tallarita:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

The Council will consider this item at the next meeting scheduled for June 1, 2005 at 1:30 p.m. in Hearing Room Two, Ten Franklin Square, New Britain, Connecticut.

If you have any questions or comments regarding this proposal, please call me or inform the council by May 31, 2005.

Thank you for your cooperation and consideration.

-S. Derek Phelps
Executive Director

Very truly yours

SDP/cm

Enclosure: Notice of Intent

c: Jose Giner, Director of Planning and Community Development, Town of Enfield Scott A. Shanley, Town Manager, Town of Enfield

ROBINSON & COLE

EM-VER-049-050505

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

SITING COUNCIL

May 5, 2005

Via Hand Delivery

S. Derek Phelps
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification 37 Bacon Road Enfield, Connecticut

Dear Mr. Phelps:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") intends to install antennas on the existing 180-foot monopole tower owned by Shaker Pine Fire District at 37 Bacon Road in Enfield, Connecticut. Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Enfield Mayor, Patrick L. Tallarita.

The facility consists of a 180-foot self-supporting lattice tower capable of supporting multiple carriers within a fenced compound. The tower currently supports municipal antennas at the top of the tower; Cingular antennas at the 169-foot level; and T-Mobile antennas at the 157-foot level. Cellco proposes to install twelve (12) panel-type antennas at the 147-foot level on the tower and a 12' x 30' single-story equipment shelter near the base of the tower. (See <u>Tab 1- Project Plans</u>).

The planned modifications to the Enfield facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modification will not increase the overall height of the existing tower. Cellco's antennas will be mounted with their centerline at the 147-foot level on the 180-foot tower.
- 2. The proposed installation of a 12' x 30' equipment shelter will not require an extension of the fenced compound or lease area.

Law Offices

Boston

HARTFORD

NEW LONDON

STAMFORD

GREENWICH

WHITE PLAINS

NEW YORK CITY

SARASOTA

www.rc.com

HART1-1252858-1

ROBINSON & COLE LLP

S. Derek Phelps May 5, 2005 Page 2

- 3. The proposed antenna modification will not increase the noise levels at the facility by six decibels or more.
- 4. The operation of the antennas will not increase radio frequency (RF) power density levels at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. The worst-case RF power density calculations for the proposed Cellco antennas would be 6.70% of the FCC standard. A copy of the general power density calculations table is attached behind Tab 2.

Also attached, behind <u>Tab 3</u>, is a structural analysis confirming that the tower can support the existing and proposed antennas and associated equipment.

For the foregoing reasons, Cellco respectfully submits that the proposed antenna installation at the Enfield facility tower constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

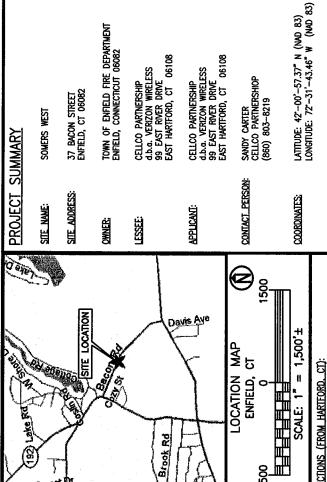
Attachments

cc:

Patrick L. Tallarita, Mayor

Sandy M. Carter

Cellco Partnership


d.b.a.**Verizon** wireless SOMERS WEST

37 BACON STREET ENFIELD, CONNECTICUT 06082

NOTE:
1. THIS DOCUMENT WAS DEVELOPED TO REFLECT A SPECIFIC SITE AND ITS SITE CONDITIONS AND IS NOT TO BE USED FOR ANOTHER SITE OR WHEN OTHER CONDITIONS PERTAIN RELISE OF THIS DOCUMENT IS AT THE SOLE RISK OF THE USER.

TRUCTURAL NOTE:

1. NEW CONSTRUCTION REPRESENTED ON THESE PLANS IS PROPOSED PREDICATED ON THE REQUIREMENT THAT A STRUCTURAL ANALYSIS BE PERFORMED BY A LICENSED CONNECTION PROFESSIONAL STRUCTURAL ENGINEER AND CERTIFICATION IS GIVEN BY THE ENGINEER THAT THE EXISTING TOWER AND ALL EXISTING AND PROPOSED ANTENINGS AND APPURTENANCES SUPPORTED BY THE TOWER AND ANY RECUMED IMPROVEMENTS AND RENYORCEMENTS HAVE SUFFICIENT STRUCTURAL CAPACITY AND COMPLY WITHOUT THE CONNECTICUT BUILDING CODE AND ALL APPLICABLE ENATIAL CRITICAL CONFERMATION OF THIS CERTIFICATION.

PARTIAL SITE PLAN	MONOPOLE ELEVATION	
S-1	S-2	

SHEET NO. DESCRIPTION

SHEET INDEX

TIME SHEET

Į

NOTE: DRAWINGS FOR STING COUNCIL ONLY. NOT TO BE USED FOR CONSTUCTION

DIRECTIONS (FROM HARTFORD, CT):
TAKE 1—91 N TO EXIT 48 TOWARD THOMSONVILLE ONTO
CT—220, TURN RIGHT ONTO CT—192. TURN RIGHT ONTO
BACON ROAD, SITE IS ON LEFT.

	d.b.a. V		PROJECT: 1997001240	LOCATION CODE: 119614
TITI F SHEFT		SITE NAME: COLVERS WEST	37 BACON STREET	ENFIELD, CT 06082
AS SHOWN	Engineers DESIGNED BY:	CKD	DATE:	02/25/05
Dewberry-Goodkind, Inc.	5.5		f. (203) 776-2288 DATE:	

02/25/05 JRF PRELIMINARY SITING COUNCIL

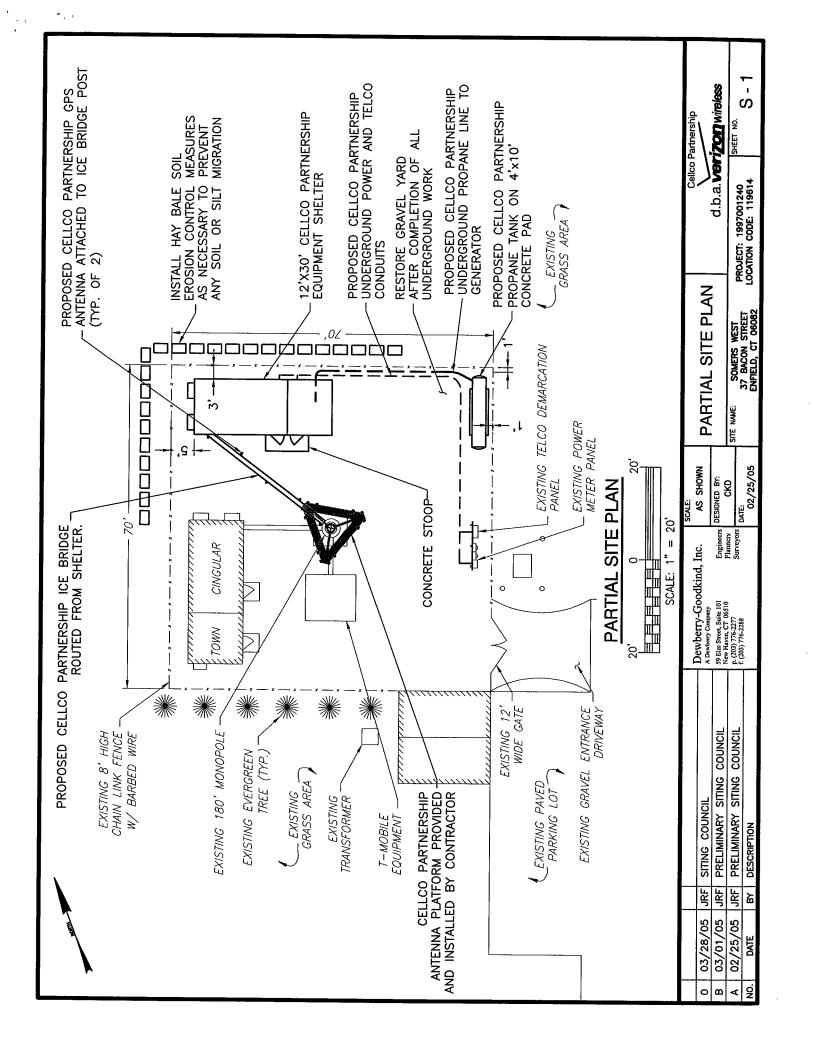
BY DESCRIPTION

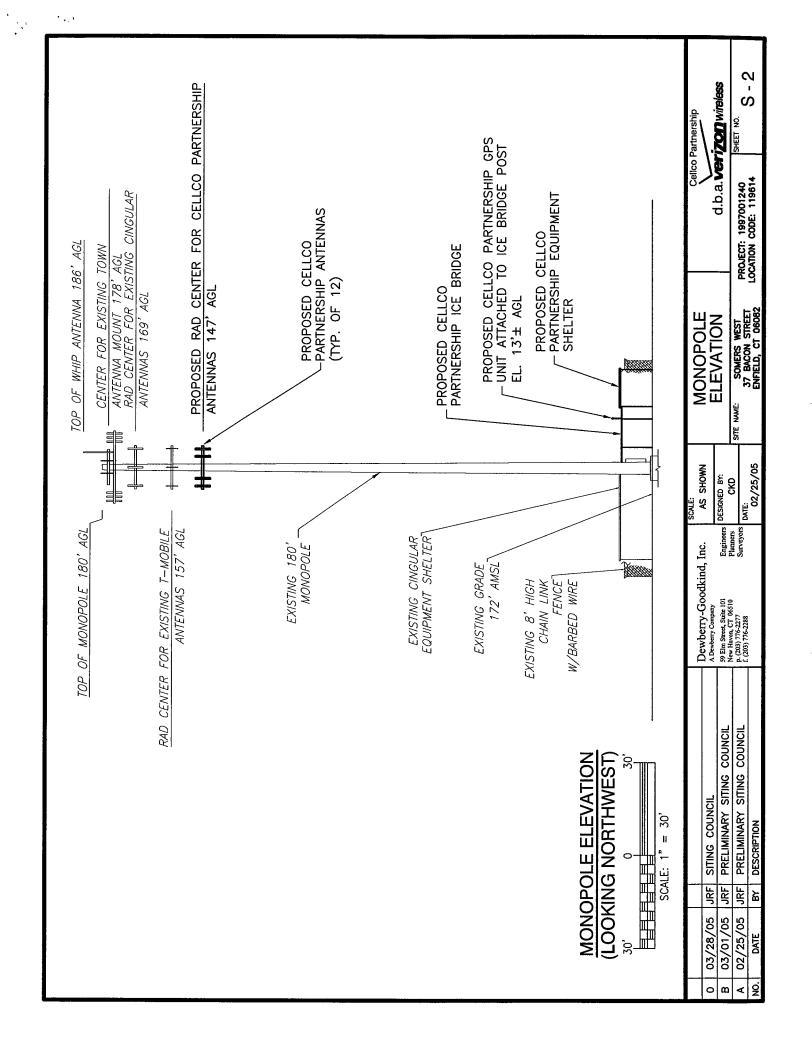
DATE

ġ

PRELIMINARY SITING COUNCIL

윢


SITING COUNCIL


03/28/05

d.b.a. verizon wireless

HEET NO

Cellco Partnership

Site Name: Somers West, CT Tower Height: 147 Ft. rad center

Ciono.	(0/)	7 200	1 179%	0/ 74-	%02.9
Meximum Permissijie Exposite	(mW/cm^2)	-	1		_
Catembred Power Densiw	(mW/cm^2) (mW/cm^2)	0.0300	0.0142	71. (2.2	
Distance, fo Targei,	(feet)	147	147		
Tomask	(watts)	1800	855		posure
ERRETER.	(watts)	200	285	,	nissible Ex
Numbero Frems		6	က	,	mum Permissible Exposure
vouembergi Supra-sede	(MHz)	880	1900	ļ	l Fercentage of Maxin
, constant of		Verizon	Verizon	Total Danie	rotal rercen

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case scenario, maximum values used.

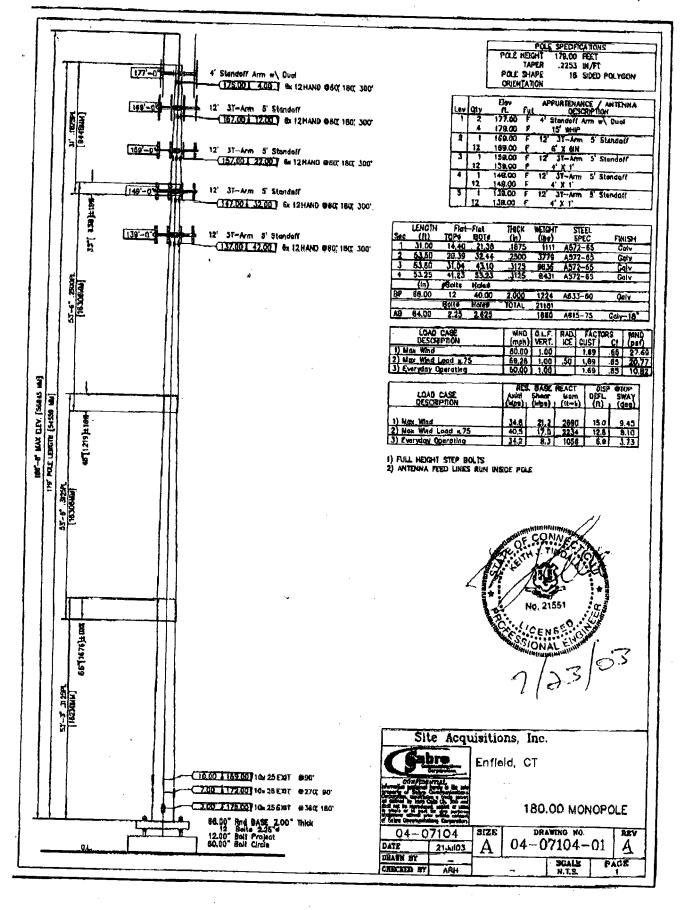
Structural Design Report

180' Monopole located at: Enfield, CT

prepared for: Site Acquisitions, Inc. by: Sabre Communications Corporation $^{\mathsf{TM}}$

Job Number: 04-07104 Revision A July 23, 2003

Monopole Profile	1
Foundation Design Summary (Option 1)	2
Foundation Design Summary (Option 2)	3
Pole Calculation	C1-C6
Foundation Calculations	


Prepared by Approved by

No. 21551

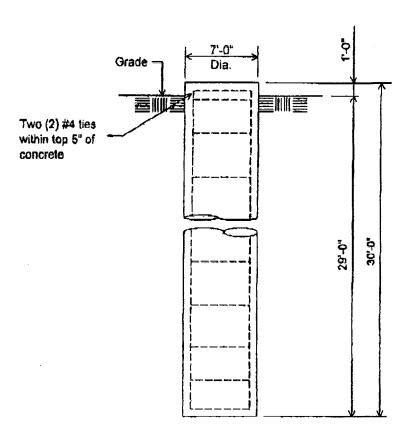
CENSE

SSIONALE

MARKEMENTURINE

2101 Murray Street Sioux City, IOWA 5			Acquisitions, Inc. Tel: 712.258.6690 Enfield, CT Fax: 712.258.8250
APPURTENANCES	TOP BOTTOM POLE BASE E -MODU	DIAMETER DIAMETER HEIGHT HEIGHT LUS	14.40 in. [14.62 in. Point -Point] 53.23 in. [54.05 in. Point -Point] 179.00 ft. 16 SIDED FLAT ORIENTAT ION 1.00 ft. ABOVE GROUND 29000 ksi [12000 ksi SHEAR MODULUS]
ATTACH POINTS:	1 1 2 1 3 1 4 1	X.ft Qty 77.00 2 69.00 1 59.00 1 49.00 1	Description 4' Standoff Arm w\ Dual Future Appur t 12' 3T-Arm 5' Standoff Future Appurt
POLE SECTIONS			12 SAME S SEARCH FRONTE

	Bottom	Thick	Connect	LAP	Taper	Length	Weight	Steel	Pole
No	X,ft.	in.	type	in.	in/ft	£t.	<u>lb=</u>	Spec	Finish
1	31.00	.18750	SLIP		.2253	31.00		A572-65	GALV
2	81.75	.25000	SLIP	48.	.2253	53.50	3779	A572-65	GALV
3	131.25	.31250	SLIP.	66.	.2253	53.50	6636	A572-65	GALV
4	179.00	.31250	C-Weld		.2253	53.25	8431	A572-65	GALV


SECTION	PROPERTIE	s						www. e		***************************************
X, 179 177 172 169	.00 14.40 .00 14.85 .00 15.98	T, in .1875 .1875 .1875	Area in 2 8.46 8.73 9.40	IZ 12.4 432 439 590 672 818	IXIY in 4 216 237 295 336	\$x\$y in 3 29.5 31.4 35.4	w/t 11.78 12.20 13.26 13.90	d/t 76.8 79.2 85.2 98.8	FY K81 65.00 65.00 65.00	TOP "P1 - P2
164 159 154 150 149 148 143	.00 17.78 .00 18.91 .00 20.03 .75 20.76 .00 20.78	1875 1875 1875 1875 1875 1875 2500 2500	10.47 11.14 11.81 12.25 16.29 16.47 17.37	986 1176 1310 1734	316 409 493 588 655 867 996 1051	39.7 45.3 51.4 52.1 82.2 84.0 93.5	14.96 16.08 17.76 12.90 13.05 13.85	94.8 100.8 106.8 110.7 83.1 84.0	65.00 65.00 65.00 65.00	-P3 Slip-B1 -P4 Slip-T2
139 124 129 124 119 114	.00 23.04 .00 24.16 .00 25.29 .00 26.43 .00 27.54	-2500 -2500 -2500 -2500 -2500 -2500 -2500	18.08 18.97 19.87 20.76 21.66 22.55	1792 2102 2372 2740 3146 3590 4074 4600	1186 1370 1573 1795 2037 2300	93.5 101.7 122.6 133.6 145.7 156.6	13.85 14.48 15.28 16.07 16.87 17.66 18.46 19.25	92.1 96.7 101.2 105.7	65.00 65.00 65.00 65.00 65.00	- 25
109 104 101 97 92 87 82	.00 29,80 .00 30.92 .25 31.54 .25 31.94 .25 33.07 .25 34.20		23.44 24.34 24.83 31.37 32.49 33.61 34.72	5168 5784 6142 7930 8806 9746	2584 2892 3071 3965 4403 4873 53 76	191.8 244.5 262.2 280.7	20.05 20.48 16.26 16.90	114.7 114.7 113.7 126.2 105.8 109.4	65.00 65.00 65.00 65.00 65.00 65.00	Slip-82 Slip-73
77 72 67 62 57 53	25 36.45 25 37.58 25 38.70 25 39.83	.2500 .25025 .3125 .3125 .3125 .3125 .3125 .3125 .3125 .3125 .3125	35.84 36.96 38.08 39.19 40.31 41.20	10752 1 1822 1 2964 1 4176 1 5460 1 6860 1 7964 1 8622	5911 6482 7088 7730 8410 8982 9311	319.4 339.8	18.80 19.44 20.07 20.71 21.35 21.85	284.062851959517395171483 0009371335593603711483 1111111111111111111111111111111111	65.00 65.00 65.00 65.00 65.00 65.00	Slip-B3
477 427 337 227 277	75 42.47 75 43.60	311225555555555555555555555555555555555	41.70 41.81 42.93 44.05 45.17 46.28 47.40	1 8772 2 0316 2 1946 2 3660 2 5458 2 7346 2 9326	9386 10159 10973 11830 12729 13673	435.0 4359.2 4833.7 566.5 586.6	22.14 22.84 23.47 24.174 25.06 26.65 27.92	135.9 135.5 143.7 150.3 153.9	65.00 65.00 65.00 65.00	Slip-T4
7.	75 49.23 75 50.36 75 51.48 75 52.61 00 53.23	.3125 .3125 .3125 .3125 .3125	49.52 49.64 50.75 51.87 52.48	2 9326 3 1400 3 3560 3 5834 3 7124	14663 15700 16784 17917 18562	586.6 614.1 642.1 670.8 686.8	26.01 26.65 27.29 27.92 28.27	157.5 161.1 164.7 168.3 170.3	65.00 65.00 65.00 65.00	BASE

No.: 04-07104 Page: 2 Date: 7/21/2003 By: ARH

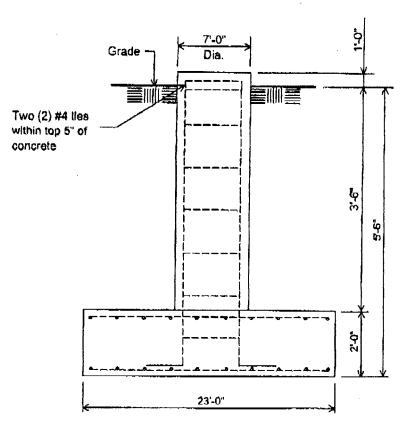
Customer: Site Acquisitions, Inc. Site: Enfield, CT

180' Monopole at 80 mph Wind + 0.5 in, ice per ANSi/TiA/EIA-222-F-1996. Antenna Loading per Page 1

Notes:

- 1). Concrete shall have a minimum 28-day compressive strength of 4000 PSI, in accordance with ACI 318-02.
- 2). Rebars to conform to ASTM specification A515 Grade 60.
- 3), All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical boring by Soil Exploration Corp., project no. 03-0649, dated July 1, 2003,
- 6). See the geotechnical report for drilled pier installation requirements, if specified.

ELEVATION VIEW (42.76 Cu. Yds. each) (1 REQUIRED)


	Rebar Schedule per Pier
Dies	(36) #8 vertical rebar w/#4 tles, two within top
Pler	5" of pler then 12" C/C

No.: 04-07104 Page: 3 Date: 7/23/03 By: ARH Revision A

<u>Customer: Site Acquisitions, Inc.</u> <u>Site: Enfield, CT</u>

180' Monopole at 80 mph Wind + 0.5 in. Ico per ANSI/TIA/EIA-222-F-1996. Antenna Loading per Page 1

Notes:

1). Concrete shall have a minimum 28-day compressive strength of 4000 PSI, in accordance with ACI 318-02

- 2). Rebar to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4",
- 5). The foundation design is based on the geotechnical boring by Soll Exploration Corp., project no. 03-0649, dated July 1, 2003.
- 6). See the geotechnical report for compaction requirements, if specified.

ELEVATION VIEW

(45.6 Cu. Yds. each) (1 REQUIRED)

	Rebar Schedule per Pad and Pler
	(36) #8 vertical rebar w/hooks at bottom
Pier	w/#4 ties, two within top 5" of top of pier then
	12" C/C
Pad	(36) #8 horizontal rebar evenly spaced each
rau	way top and bottom (144 Total)

Information contained herein is the sole property of Sabre Communications Corporation, constitutes a trade secret as defined by lows Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Communications

Corporation.

2101 M	urray	Street IOWA 5	NS CORP	Site			04-0710 ns, Inc. T		21-Jul-0 : 712.258 : 712.258	.6690
APPIJI	RTENA	NCES	Bottom Pole	DIAMETER DIAMETER HEIGHT HEIGHT 9	179. 1.	23 in.	14.62 in 54.05 in 18 SIDED ABOVE GRO 12000 ksi	FLAT FLAT UND	Point) Point) Orientat (MODULUS)	ON
		POINTS:	2 169		12	3 T-Arm 3 T-Arm 3T-Arm	rm w\ Dual 5' Standof 5' Standof 5' Standof 5' Standof	f Futu f Futu f Futu	us re Appur t re Appurt re Appurt re Appurt re Appurt	
	<u> </u>	Bottom	Thick	Connect	LAP	Taper	Length	Weight	Steel	Pole
	No.T	X,ft.	in.	type	in,	in/ft	£t.	lbs	Spec	Finis
		31.00	.10750	SLIP	33.	.2253	31.00	1111	A572-65	GALV
	2	81.75	.25000	SLIP	48.	.2253	53.50	3779	A572-65	GALV
		131.25	.31250	SLIP	66.	.2253	53.50	6636	A572-65	GAL
	3	179.00	.31250	C-Weld		.2253	53.25		A572~65	

<u>L</u>	4	179.00	.31250	C-V	veld	.2253	53.	25	8431	A572~6	5 GALV
CTION	PRO	PERTIES	; ———								
179 177 172 169 164 159	.00.	D, in 14.40 14.85 15.98 16.65 17.78 18.91 20.03 20.76 20.78	T,1n .1875 .1875 .1875 .1875 .1875 .1875 .1875 .1875	Arn 4630 8.473 9.440 10.11 11.85 11.85 16.43 10.11 11.85 11.	12 in 4 432 474 590 672 818 986 1176	1x1y in^4 216 237 295 316 409 493 588	SXSY 1D 3 29.5 31.4 36.4 35.3 57.8	W/L 11.78 12.20 13.26 13.90 14.96 16.02 17.08	d/t 76.8 79.2 85.2 84.8 106.8	KB1 65.00 65.00 65.00 65.00 65.00	TOP -P1 - P2 - F3
150 149 148 143 139 134 129 124	.00	22.14 23.04 24.16 25.29 26.42 27.54	.2500 .2500 .2500 .2500	8.97 19.87 20.76	1310 1734 1792 2102 2372 2740 3146 3590 4074	655 867 896 1051 1186 1370 1573	\$123544734812054758708 \$12316951722433112358 \$12335568890111234557	790558887766555888778900864255888878888888888888888888888888888888	940.8 940.8 1006.8 110.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	655,000 655,000 655,000 655,000 655,000 655,000	Slip-Bl -P4 Slip-T2 -P5
114 109 104 101 97 92 87 82 77	.00 .00 .25 .25	29.80 30.92 31.54 31.94	.2500 2 .2500 2 .2500 2 .3125 3	22.55 3.44 4.34 4.83 (1.37) (1.37 (1.37) (1.	4600 5168 5784 6142 7930 8806 9746 10752 1 1822	10304 2258 2269 2258 249 239 248 239 248 253 2648 253 2648 2548 2548 2548 2548 2548 2548 2548 25	184.2 191.8 244.5 262.2	18.46 19.25 20.05 20.48 16.90 17.53 18.17 18.44	1107 1142 1237 1262 1058 1094 1136	65.00 65.00 65.00	Slip-B2 Slip-T3
67 62 57 53 48 47 42 37	. 25 . 25 . 25	38.70 39.83 40.96 41.36 42.47 42.47 44.60 44.75 45.98	.3125 3 .3125 3 .3125 4	8.08 9.19 0.31 1.20 1.70 1.81 2.93 4.05 5.17	1 2964 41760 0 442 56854222 8 63460 8731460 8 63460 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7088 7730 8410 8982 9311 9386 10159 10973 11830 12729 13673	2199.4 3199.7 33602.3 404.5 4223.0 435.3 459.2 508.2	17.537 18.447 119.001.854 22112.247 2212.847 1.736 6.777 2212.847	1025 4 0 6285 1 9 5 9 5 1 7 3 9 7 3 9 7 3 1 7 3 9 7 3	65.000 655.000 655.000 655.000 655.000	slip-B3 Slip-T4
4 .	75 75 75 75	46.98 48.10 49.23 50.36 51.48 52.61 53.23	.3125 4 .3125 4 .3125 4 .3125 5 .3125 5	6.28 7.40 8.52 9.64 0.75 1.87 2.48	2 5458 2 7346 2 9326 3 1400 3 3568 3 5834 3 7124	16784	508.2 533.7 559.9 586.6 614.1 642.1 670.8 686.8	24.74 25.38 26.01 26.65 27.29 27.92 28.27	150.3 153.9 157.5 161.1 164.7 168.3 170.3	65.00 65.00 65.00 65.00 65.00	BASE

. 00

```
SABRE COMMUNICATIONS CORP
                                                                                     JOB: 04-07104 Mon 21-Jul-03 09:53
2101 Murray Street
                                                            Site Acquisitions, Inc.
                                                                                                                   Tel: 712.258.6690
Sioux City, IOWA 51101
                                                                        Enfield, CT
                                                                                                                   Fax: 712.258.8250
CASE - 2: Max Wind Load x.75
                                                                                                                           -- TIA/EIA-222F
                                                        1.00
.50 1 n.
.60
1.33
                          VERTICAL OLF
                                                                            WIND SPEED
GUST FACTOR
EXPOSURE COEFF.
Cf
                                                                                                             69.3 mph 111.5 k ph
                          ICE COVER
STRESS REDUCTION
STRESS AMPLIFY
BASE ABOVE GXd
                                                                                                               1.69
                                                                                                                .2857
                                                                                                            .650
33.0 ft
20.8 pef 994.Pa
                                                         1.0 ft
                                                                            REFERENCE HEIGHT
                                                                            PRESSURE GRef Ht
   APPURTENANCE LOADS -
                                                          Cante r WEIGHT AREA
                                                                                                   TX -CABLE
                                                                                                                                FORCES MOMENT
                                                        Line
Elev -ft
177.00
179.00
                                                                         each each
lbs ft^2
161 4.4
                                                                                                                     WIND Trany
                                                                                                                                         Ax-Z LongX
            Y DESCRIPTION
4' Standoff Arm w\ Dual
15' WHIP
 LEV QIY
                                                                                                             #/ft
                                                                                                                     psf
33.62
33.72
                                                                                                    Qty
                                                                                                                                 kips kips
          15' NHIP
1 12' 3T-Arm 5' Standoff
6' X 6IN
1 12' 3T-Arm 5' Standoff
4' X 1'
1 12' 3T-Arm 5' Standoff
4' X 1'
12' 3T-Arm 5' Standoff
                                                                                                                                 .30°
                                                                                    4.4
6.0 1 5/8" 4 1.040
                                                                                                                                           -.32
-1.09
                                                                            89
   2
                                                                                      33.17
9 1 5/8" 12 1.040 33.17
                                                                         930 62.5
                                                          169.00
                                                                                                                                  2.07
                                                                                                                                           -.93
-2,73
                                                                                                                                                        - . 5
                                                          169.00
159.00
                                                                        930°
52
        12
                                                                                 53.9
                                                                                                                      32.60
                                                                                                                                1.76
                                                                        52 .0 1 5/8" 12 1.040 32.60
930 53.9 32.01
                                                                        52 .0 1 5/8" 12 1.040 32.01
930 53.9
52 .0 1 5/8" 72 1.040 32.01
                                                          159.0 0
149.00
                                                                                                                                           -2.61
                                                                                                                                1.72
                                                                                                                                              . 93
                                                                                                                                                        -.1
                                                          149.0 0
                                                                                                                                           -2.49
                   3T-Arm 5' Standoff
                                                          139.00
        12
                                                          139.0 0
    RESULTS
                                            Shear Y AxiaZ BendX BendY TorqZ ksi ksi
                                  WIND
                     X,ft
179.00
177.00
                                                                                                                        ksi ksi CSI
.01 51.8 7 .000
.89 51.87 .017
3.17 51.87 .061
                                  psf
21.9
21.8
                                                                                                                                               CSR
                                                 .0
                                                                          . 0
                                                           1.5
                                                                                    .0
                                                                                                  . 0
                                                                                                                                              .000
                                                                       -1,4
                                                 ĬŎ
                                                                                                                 . 0
                                                           1.6
                                                                      -1.6
-5.1
-5.4
                                                                                   -5.0
                     172.00
                                  21.7
                                                 .0
                                                                                                   . 0
                                                                                                                  Ō
                     169.00
164.00
159.00
154.00
150.75
                                  21.6
21.4
21.2
21.0
20.9
                                                                                                                      4.91 51.87
10.05 51.87
14.59 51.87
20.19 51.87
                                                 .0
                                                                                  -14.4
-35.9
                                                                                                                                             .095
                                                           6.9
7.1
                                                                      -8.9
-9.2
                                                                                                                                            .281
.389
                                                 .0
                                                                                  -58.8
                                                                                                   .0
                                                                                 -93.4
-116.3
                                                                                                                      20.19 51.87
23.26 51.87
19.69 51.87
20.62 51.87
27.62 51.87
31.53 51.87
34.72 51.87
37.33 51.87
41.23 51.87
42.67 51.87
                                                           7.2
                                                                       -9.4
                                                                                                   . 0
                                                 . 0
                                                                     -12.7
-13.0
-13.4
                                                                                -129.3
-138.7
                                                           9.4
9.5
9.7
                                                                                                  .0
                     149.00
                                  20.8
                                                                                                                                            .380
                                                                                                                 Ò
                     143.00
                                  20.6
                                                 . 0
                                                                                -186.2
                                                                                                   . 0
                                                                                                                 ٠.
                                                                                                                                             . 476
                                                         11.9
12.1
12.2
                                                                     -16.9
-17.4
-17.9
                     139.00
                                  20.4
                                                 . Õ
                                                                                -225.3
-284.8
-345.1
                                                                                                   :0
                                                                                                                .0
                                                 . ŏ
                                                                                                                                             .608
                     129.00
                                  20.0
                                                 . 0
                                                                                                   . 0
                                  19.7
19.5
19.3
                                                                                -406.3
-468.3
                     124.00
                                                                     -18.4
-18.9
                                                 .0
                                                         12.4
                                                 , 0
                                                         12.6
12.8
                                                                                                                                             .761
                                                                                                   .0
                                                 . õ
                                                                     -19.5
                     114.00
                                                                                                                . ā
                                                                                -531.3
                                                                     -20.0
-20.5
-21.2
                     109.00
                                                 . 0
                                                          12,9
                                                                                -595.1
                                                                                                   ìŏ
                                                                                                                      43.83 51.87
44.40 51.87
37.46 51.87
38.04 51.87
38.52 51.87
                                                         13.1
                                                                                 -659.8
                     104.00
                                  18.8
                                                 . 0
                                                                                                   . 0
                                                                                                                                            . 845
                                                                                -695.8
-748.7
-815.8
                     101,25
                                                 .0
                                  18.6
                                                                                                                . 0
                                                                                                                                             . 856
                                  18.4
18.2
17.9
                                                                     -22.2
-23.0
                                                         13.4
13.6
                                                                                                  .0
                                                                                                                                             .722
                      92.25
87.25
                                                                     -23.8
                                                                                -B84.2
                                                 . 0
                                                         13.8
                                                                                                   . 0
                                 17.6.3
17.06.3
17.06.3
15.6
15.6
                                                                    -24.5 -953.3
-25.4 -1023.3
-26.2 -1095.0
-27.0 -1166.7
-27.9 -1240.0
                                                                                                                      38.88 51.87
                      82.25
                                                                                                   .0
                      77.255
627.25
627.25
487.75
447.75
                                                         14.3
                                                                                                                      39.16 51.87
39.39 51.87
39.53 51.87
39.64 51.87
                                                 .0
                                                                                                   . 0
                                                                                                                                             .755
                                                                                                  ,00
                                                                                                                                             .759
                                                 Ö
                                                                    -20.0 -1315.0
-29.9 -1375.0
                                                                                                                      39.74 51.87
39.77 51.87
40.97 51.87
                                                                                                                                            .766
                                                 . 0
                                                                                                  . 0
                                                         15.3
                                                 .0
                                                                                                  ٠.۵
                                                                                                                                             .767
                                 15.1
15.1
                                                                                                                                            .790
                                                                     -30.6 -1451.7
                                                 ٠0
                                                         15.4
                                                                                                  . 0
                                                 .0
                                                                    -31.3 -1459.2
-32.5 -1536.7
                                                                                                                      40.98 51.87
40.94 51.87
                                                                                                                                            .790
                                                         15.5
15.7
                                                                                                  ٠٥
                                                                                                                . 0
                                  14.6
                                                                                                                                             .789
                                                                                                   . 0
                                                                                                                      40.87
40.77
40.56
40.53
                                  14.1
13.6
                                                         15.8
                                                 . 0
                                                                    -33.4 -1515.0
                                                                                                                                51.87
                                                                                                   . 0
                                                         16.0
16.2
16.4
                                                                    ~34.4 -1694.2
-35.4 -1774.2
-36.4 -1855.0
                                                                                                   .ŏ
                                                                                                                                51.87
                                                                                                                                             .786
                      27.75
22.75
17.75
12.75
                                                                                                                                51.87
51.37
                                                                                                  ٠ā
                                  13.5
                                                                                                  Ō
                                  13.5
13.5
13.5
                                                 .0
                                                         16.5
                                                                     -37.5
                                                                              -1936.7
                                                                                                                                49.76
49.22
48.92
                                                                                                                      40.24
40.08
39.92
                                                                             -2019.2
-2102.5
-2187.5
                                                                                                  .0
                                                                    -38.5
                                                                                                                                             . 800
                                                                    -39.6
-40.5
                                                         16.9
                                                                                                                                            .805
                                  13.5
                                                         17.0
                                                                                                                                            .811
                         .00
                                  13.5
                                                 . 0
                                                         17.0
                                                                     -40.5
                                                                                2234.2
                                                                                                                       39.81
  DISPLACEMENTS
                                           ----DEFLECTION ft.
                                                                                       ---- ROTATION,
                                                                                                                         deg-
                                                                                                                                  ---- Microw
                                      X
                                                            2
                                                                         XY-Result
                                                                                                 X
                                                                                                              Y
                                                                                                                              XY -Res Allow
                                             12.47
11.34
                                                                     12.47< 7.04%
11.34< 6.71%
9.97< 6.27%
6.64< 5.80%
7.40< 5.32%
                    177.00
                                     .00
                                                            -.63
                                                                                               -8.10
                                                                                                             . 00
                                                                                                                       .00
                                                                                                                               8.10
8.04
                    169.00
159.00
149.00
                                     .00
                                                                                              -8.04
-7.79
-7.36
                                                            - . 55
                                                                                                            .00
                                                                                                                      .00
                                              9.97
8.64
                                                           -.45
-.36
-.28
                                                                                                            .00
                                                                                                                      .00
```

SABRE COMMUNICATIONS CORP		308.	04-07104	Mon 21-Jul-03 09	:53
2101 Murray Street	Site			Tel: 712.258.669	
Sioux City, IOWA 51101		Enfield, C	T	Fax: 712.258.825	0
CASE - 3: Everyday Operati			· · · · · · · · · · · · · · · · · · ·	TIA/EIA-2221	F
VERTICAL OLF ICE COVER STRESS REDUCTION STRESS AMPLIFY BASE ABOVE Grd	1.00 .00 i: N .60 1.33 1.0 ft	WIND SPEED GUST PACTO EXPOSURE C Cf REFERENCE PRESSURE ©	R 1. OEPF . HEIGHT 33.	0 mph 80.5 k ph 69 2857 650 0 ft 8 paf 518.Pa	
APPURTENANCE LOADS	Cente	r WEIGHT AREA	TY -CARLE	FORCES MOM	ENT
LEV QTY DESCRIPTION 1 2 4' Standoff Arm w\ Dual 4 15' WHIP 2 1 12' 3T-Arm 5' Standoff 12 6' X 6IN 3 1 12' 3T-Arm 5' Standoff 12 4' X 1' 4 1 12' 3T Arm 5' Standoff 12 4' X 1' 5 1 12' 3T-Arm 5' Standoff 12 4' X 1' RESULTS	Line Elev - F 177.0 179.0 169.00 169.0 159.00 149.00	8ach each 1bs ft ² 2 0 147 4.0 0 15 4.5 1 846 54.7 0 30 .0 1 846 50.3 0 28 .0 1 846 50.3	Qty #/f 5/8" 4 1.04 5/8" 12 1.04 5/8" 12 1.04 5/8" 12 1.04 5/8" 12 1.04	WIND TranY Ax-2 1 psf kips kips 17.51 .4429 17.28 .9485 17.28 -2.47 16.98 .85 -2.32 16.67 .8485 16.67 .8485 16.67 .82 -2.20 16.67 .82 -2.20 16.67 .82 -2.20 16.67 .82 -2.20	LongX ft-k .0 2
	06790123344555555666666666667777777777777777777	Axiaz		.00 51.87 .008 .42 51.87 .026 .42 51.87 .044 .51.87 .048 .051.87 .179 .00 .27 51.87 .179 .00 .9.27 51.87 .176 .9.27 .51.87 .184 .00 .9.13 51.87 .184 .00 .9.27 .51.87 .221 .12.88 .51.87 .284 .221 .12.89 .51.87 .244 .31.87 .326 .12.89 .51.87 .336 .313 .313 .14.72 .51.87 .372 .313 </td <td>)</td>)
X£t. X Y	EFLECTION 2	XY-Result	х ү	ON, deg Micro	W W
177.00 .00 5.8 169.00 .00 5.2 159.00 .00 4.6 149.00 .00 4.0 139.00 .00 3.4	912 510 408	5.81< 3.28%> 5.29< 3.13%> 4.65< 2.93%> 4.04< 2.71%> 3.46< 2.49%>	-3.73 .00 -3.70 .00 -3.60 .00 -3.41 .00 -3.19 .00	.00 3.73 .00 3.70 .00 3.60 .00 3.41 .00 3.19	

 SABRE COMMUNICATIONS CORP
 JOB: 04-07104
 Mon 21-Jul-03 09:53

 2101 Murray Street
 Site Acquisitions, Inc.
 Tel: 712.258.6690

 Sioux City, IOWA 51101
 Enfield, CT
 Fax: 712.258.8250

- LOAD CASE SUMMARIES

	TOND CARE DECERTORION	F	ORCES,	kips	MOMENTS,	ft-ki	ps
1	LOAD CASE DESCRIPTION Max Wind	. <u>X</u>	<u>Y</u> 21.20	$-3\frac{Z}{4}$. 84	<u>X</u> 2690.8	Y ₂	<u>Z</u>
2	Max Wind Load x.75	.00	17.03	-40.50	2234.2	.0	.0
13	Everyday Operating	.00	8.33	-34.15	1058.3	. 0	. 0

STRESS ENVELOPE

500 11				COM	BINED	•+	•				
BOT-UF	TOP			stress	stress	L OAD					
X,ft. 179.00	DOWN			kei	RATIO	CASE	Otv		APPURTENA	N CE	
177.00	2.00	TOP		.01	.000	1					
172.00	7.00	- T	- Þ:	, 99	.017	2	(2)	4'	Standoff	Arm	w\ Dual
169.00	10.00 -	2	-	3.23	. 062	1					
164.00	15.00	٠ 🎸	- P3		. 097	1	(1)	12!	3T -Arm	51	Standoff
159.00	20.00 ~	. 7		10.77	.208	1					
154.00	25.00	٠.5	-P3		.305	į	(1)	12'	MTA- TE	5,	Standoff
150,75	28.25	6110	- D1	22.29	. 430	1					
149.00		Slip	-D1	25.86	. 499	1 1					
	30.00 -		P4		. 423	1	(1)	12'	3T -Arm	5′	Standoff [
148.00 143.00	31.00	prib	-T2	23.02	. 444	1					
139.00	36.00	=		27.81	. 536	1					
134.00	40.00 - 45.00	. 5	~ P5		. 602		(1)	12'	3T -Axm	5'	Standoff
129.00	30.00			35.92	.692	1					
124.00	55.00			39.75 42.90	. 766	1					
119.00	60.00			45.51	.827	1					
114.00	65.00			47.66	.877 .919	1					
109.00	70.00			49.46	.953	•					
104.00	75.00			50.92	.982	1					
101.25	77.75	Slip	-B2	51.63	, 995	Ť					
97.25	81.75	Slip	-	43.64	.841	1 1 1 1					
92.25	96.75	UP	••	44.33	856	1					
87.25	91.75			45.00	. 966	†					
82.25	96.75			45.51	. 877	1					
77.25	101.75			45.94	. 866	i					
72.25	106.75			46.26	.892	i					
\$7.25	111.75			46.52	. 897	î					
62.25 57.25	116.75			46.71	.906	i					
57.25	121.75			46.88	. 904	ī					
53.25	125.75	Slip .	-B3	46,98	. 906	1					
48.25 47.75	130.75			48.47	. 934	1					
47.75	131.25	Slip .	-T4	48.48	. 935	1					
42.75	136.25			40.48	935	1					
37.75	141.25			48.46	. 934	1					
32.75	146.25		1,	48.42	.933	1					
27.75	151.25			48.35	. 932	1					
22.75 17.75	156.25			46.27	.940	1					
12.75	161.25 166.25			48.16	.947	111111111111111111111111111111111111111					
7.75	171.25			48.04	.955	1					
2.75	176.25			47.91	. 963	ļ					
1.00	179.00	BASE		47.77	. 971	1					
.00	A . 3 . UU	BAGA		47.69	.975	1					

SABRE COMMUNICATIONS CORP JOB: 04-07104 Mon 21-Jul-03 09:53 2101 Murray Street Site Acquisitions, Inc. Tel: 712.258.6690 Sioux City, IOWA 51101 Enfield, CT Fax: 712.258.8250 SHAPE: 18 SIDED PO LYGON with FLAT-FLAT ORIENTATION BOLTS E VENLY SPACED 15.53 in ON CENTER POLE DATA -DIAMETER = PLATE TAPER POLE FY -34.8 kips Vert
.0 kips Long
21.2 kips Tr an
1902.4 ft -kips Tran
1902.4 ft -kips Long
.0 ft -kips Vert 53.23 in. .3125 in. .2253 in/ft 65.00 ksi AXIAL FORCESHEAR X SHEAR Y X-AXIS MOM SY-AXIS MOM S BASE ACTIONS Z-Axis MOM -DESIGN CASE = 1 Max Wind -Design: ANY Orientati on Reactions at 45.00 deg to X -AXIS BOLT LOADS ---= 182.29 kips = 176.49 kips = 1.77 kips = 54.30 ksi = .58 ksi = 75.00 ksi = 59.85 ksi = 2.95 in^2 = 3.25 in^2 = 3.07 in^2 AXIAL - COMPRESSION AXIAL - TENSION SHEAR AXIAL SHEAR STRESS STRENGTH FY
STRENGTH FA [.60 x 1 ...
TENSION AREA REQUIRED
TENSION AREA PURNISHE D YIELD CSR .908 EIA -F ROOT AREA FURNISHE D 3.07 in^2 ANCHOR BOLT DESIGN USED 60.00 in. Bolt Circle 12 Bolts on a SHIP 2.250 in. Diameter 67.13 in. Embedded (lps) 84.00 in. Total Length 12.00 in. Exposed 1680 CONCRETE BOND - Fo= 4000 psi NU T: 373.46 kips ACTIN G: -415.15 psi ALLON: 303.26 psi FH REQ D: -91.89 in. 81 .51 kips 212.41 psi 303.26 psi 47.02 in. TENSION: COMPRESSION: ACTING: ALLOW: LENGTH REQ D: LENGTH REOD: BASE PLATE [Bend Modol: 1/4 Circ
YIELD STRENGTH = 60
BEND LINE WIDTH = 42
PLATE MOMENT = 1344
THICKNESS REOD = 2.
BENDING STRESS = 47
ALLOWABLE = 47
[Fy x 60 x 1.33] 1/4 Circ | 60.0 = 42.2 = 1344.9 BASE PLATE USED ks1 in. in-kips 2.00 in. THICK 66.00 in. ROUND SHIP 2.00 in ksi 40.00 in. CENTER HOLE (lbs) KBl 1224 .00 in.

-LOAD CASE SUMMARY

Г					:		ABolt	-Str	Plate-	-Str	ABolt-	Bond	
1		RCES-(X:	Lpa)	MOME	NTS-(£t	-k)	Actual	Allow	Actual	Allow	Actual	Allow	Design
LC	Axial	ShearX	ShearY	X-axis	Y-axia	TorQ	ksi	kai	ksi	ksi	psi	psi	Code
1	34.8	٥.	21.2	2690	0	.0	-56.1	59.9	47.8	47.9	212	303	EIA-F
2	40.5	.0	17.0	2234	0	.0	-46.9	59.9	39.3	47.9	149	303	EIA-F
3	34.2	.0	8.3	1058	0	.0	-22.6	59.9	18.2	47.9	-17	303	EIA-F

603 421 0471

0407104P. Tpo

Licensed to: Amy Nordstrom

LEN OB OD OTTBOR

Sabre

LATERALLY LOADED PILE ANALYSIS PROGRAM LPILE plus PC VERSION 3.0 (C) COPYRIGHT ENSOFT, INC. 1997 THE PROGRAM WAS COMPILED USING MICROSOFT FORTRAN COMPILER, (C) COPYRIGHT MICROSOFT CORPORATION

180' Monopole Site Acquisitions, Inc. Enfield, CT (04-07104) 7-21-03 ARH

DIAMETER ≈ 84.00 IN

CONCRETE COMPRESSIVE STRENGTH # 4.000000 KIP/IN**2

REBAR YIELD STRENGTH = 60.000000 KIP/IN**2

MODULUS OF ELASTICITY OF STEEL = 29000.000000 KIP/IN**2

NUMBER OF REINFORCING BARS = 36

AREA OF ONE REBAR = .790E+00 IN**2

NUMBER OF ROWS OF REINFORCING BARS = 19

COVER THICKNESS = 4.000 IN

SQUASH LOAD CAPACITY = 20451.72 KIP

ROW Number	AREA OF REINFORCEMENT IN**Z	DISTANCE TO CENTROIDAL AXIS IN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	.790000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000 1.580000	38.0000 37.4227 35.7084 32.9090 29.1097 24.4260 19.0000 12.9968 6.5986 -0000 -6.5986 -12.9968 -19.0000 -24.4260 -29.1097 -32.9090
	Page	1

	0407104P.lpo	
17	1.580000	-35.7084
18	1.580000	-37.4227
19	.790000	-38.0000

OUTPUT RE	SULTS FOR AN A	XIAL LOAD =	= 34 *******	.84 KIP
MOMENT	EI	PHI	MAX STR	N AXIS
IN-KIP	KIP-IN**2	1/IN	IN/IN	IN
.944E+04	.94377E+10	.000001	.00004	43.829
.944E+04	.18875E+10	.000005	.00010	19,278
.129E+05	.14337E+10	.000009	.00017	18.552
.182E+05	.14002E+10	.000013	.00024	18.309
. 235E+05	.13808E+10	.000017	.00031	18.208
. 287E+05	.13644E+10	.000021	.00038	18.200
.339E+05	.13546E+10	.000025	.00045	18.200
.390E+05	.13448E+10	.000029	.00053	18,200
443E+05	.13414E+10	.000033	.00060	18.205
.481E+05	.12989E+10	.000037	.00067	18.138
.505E+05	.12313E+10	.000041	.00073	17.853
.523E+05	.11621E+10	.000045	.00079	17.542
.537E+05 .549E+05	.10968E+10	.000049	-00084	17.238
	.10364E+10 .72098E+09	.000053	.00090	16.949
.598E+05	.72098E+09	.000083	.00127 .00159	15.315 14.079
.632E+05	.44164E+09	.000113	.00133	13.327
.637E+05	.36835E+09	.000173	.00220	12.702
.642E+05	.31627E+09	.000203	.00252	12.421
.643E+05	.27618E+09	.000233	.00280	12.001
.645E+05	.24518E+09	.000263	80500.	11.695
.646E+05	.22041E+09	.000293	.00336	11.483
.646E+05	.20007E+09	.000323	.00367	11.352
.646E+05	.18307E+09	.000353	.00396	11.228

THE ULTIMATE BENDING MOMENT AT A CONCRETE STRAIN OF 0.003 IS : .644E+05 IN-KIP

PROGRAM LPILE plus Version 3.0 (C) COPYRIGHT 1997 ENSOFT, INC. ALL RIGHTS RESERVED

180' Monopole Site Acquisitions, Inc. Enfield, CT (04-07104) 7-21-03 ARH

UNITS -- ENGLISH UNITS

INPUT INFORMATION

THE LOADING IS STATIC

PILE GEOMETRY AND PROPERTIES

Page 2

MODULUS OF ELASTICITY LBS/IN**2 .360E+07 .360E+07

0407104P. 1po

PILE LENGT	Н		360.00) IN
x		ER MOMENT	rta	AREA
IN	IN 84,000 84 ,000	INA	4	IN**2
.00 360.00	84.000	. 244E-	·07 .	554E+04
360.00	84.000	. 244E-	⊦ 07 .	554E+04
SOILS INFORMAT				
	ROUND SURFACE			O IN
SLOPE ANGLI	E AT THE GROU	IND SURFACE	=	.00 DEG.
5 LAYER(S)	OF SOIL			
LAYER 1			ALL BARAS	1074
X AT THE TO	S A SAND - P- OP OF THE LAY	ER P	BY REESE E	1 AL, 19/4 O IN
X AT THE BO	OP OF THE LAY OTTOM OF THE SUBGRADE REA	LAYER =	18.0	O IN
MODULUS OF	SUBGRADE REA	CTION •	.100E+0	1 LB5/IN**3
LAYER 2				
THE SOIL IS	A SAND - P-	Y CRITERIA	BY REESE E	T AL, 19/4
X AT THE BO	OP OF THE LAY	LAYER =	60.0	0 IN
MODULUS OF	SUBGRADE REA	CTION =	.900E+0	2 LBS/IN**3
LAYER 3				
THE SOIL IS	A SAND - P-	Y CRITERIA	BY REESE E	T AL, 1974
X AT THE TO	P OF THE LAY	ER □	60.0	O IN
MODULUS OF	OP OF THE LAY OTTOM OF THE SUBGRADE REA	LAYEK =	900640	U IN 2-185/YN##3
	TOPOIOTEC TEST	0 72010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L 2007 IN 9
LAYER 4 THE SOTE TS	A SAND - P-	Y CRITERIA	RV REESE E	ΥΔΙ. 1974
X AT THE TO	P OF THE LAY	ER =	72.0	O IN
X AT THE BO	OP OF THE LAY OTTOM OF THE SUBGRADE REA	LAYER =	492.0	O IN
MODULUS OF	SUBGRADE REA	CTION =	. 6005+0	2 FR2/1W3
LAYER 5				1074
THE SUIL IS	A SAND - P-	Y CRITERIA ED	BY REESE E) AL, 19/4 N Yai
X AT THE BO	TOM OF THE	LAYER =	516.0	O IN
MODULUS OF	OP OF THE LAY OTTOM OF THE SUBGRADE REA	CTION =	.125E+0	3 LBS/IN**3
DISTRIBUTIO	OF EFFECTI 10 PO		GHT WITH D	EPTH
	X,IN WE	IGHT, LBS/IN	**3	
	12.00	. \$8E-01		
	18.00 18.00	.58E-01 .58E-01		
	60.00	.58E-01		
	60.00	.58E-01		
	72.00 72.00	.58E-01 -22E-01		
	, 2.00	-775-01	3	

Page 3

492.00 492.00 516.00	.22E-01	. 1po		
DISTRIBUTION OF	STRENGTH PARAMETERS	WITH DEPTH		
X,IN 12.00 18.00 60.00 60.00 72.00 72.00 492.00 516.00	.000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00	PHI, DEGREES .100E+01 .100E+01 .300E+02 .300E+02 .300E+02 .300E+02 .300E+02 .300E+02 .360E+02	E50	
BOUNDARY AND LOADING	CONDITIONS			
LOADING NUMBER	1			
BOUNDARY-CONDITI LATERAL LOAD AT MOMENT AT THE PI AXIAL LOAD AT TH	THE PILE HEAD LE HEAD	= .212E+05 = .323E+08 = .348E+05	IN-LB5	
FINITE-DIFFERENCE PA NUMBER OF PILE I DEFLECTION TOLER MAXIMUM NUMBER O MAXIMUM ALLOWABL	NCREMENTS ANCE ON DETERMINATION F ITERATIONS ALLOWED	ON OF CLOSURE D FOR PILE ANALYS:	IS =	100)E-11 IN 100 5E+03 IN
OUTPUT CODES KOUTPT = 0 KPYOP = 1 INC = 1				
DEPTH DIAM IN IN	PHI GAMMA AVG LBS/IN**3	A B	P5T	PSD
66.74 84.00	30.0 .543E-01	2.34 1.72	.105E+04	,874E+04
	Y IN .000E+00 .117E+00 .233E+00 .350E+00 .467E+00 .583E+00 .700E+00 .817E+00 .933E+00 .105E+01 .117E+01 .128E+01 Page	P LBS/IN .000E+00 .406E+03 .812E+03 .121E+04 .132E+04 .141E+04 .155E+04 .161E+04 .167E+04 .172E+04		

P.F4

		0407104 .140E+01 .315E+01 .872E+02 .171E+03 .255E+03	P.lpo	.181E+04 .246E+04 .246E+04 .246E+04 .246E+04		
DEPTH IN	DIAM IN	PHI GAMMA AVG LBS/IN**3	A	В	PST	P5D
145.48	84.00	30.0 .367E-01	1.69	1.21	.243E+04	.129E+05
		Y IN .000E+00 .117E+00 .233E+00 .350E+00 .467E+00 .583E+00 .700E+00 .817E+00 .933E+00 .105E+01 .117E+01 .128E+01 .140E+01 .315E+01 .872E+02 .171E+03 .255E+03		P LBS/IN .000E+00 .957E+03 .169E+04 .210E+04 .225E+04 .238E+04 .250E+04 .270E+04 .279E+04 .296E+04 .411E+04 .411E+04		•
DEPTH IN	DIAM IN	PHI GAMMA AVG LBS/IN**3	A	В	PST	PSD
224.22	84.00	30.0 .315E-01	1.21	. 84	.431E+04	.170E+05
		Y IN .000E+00 .117E+00 .233E+00 .350E+00 .467E+00 .583E+00 .700E+00 .817E+00 .933E+00 .105E+01 .117E+01 .128E+01 .315E+01 .872E+02 .171E+03 .255E+03		P LBS/IN .000E+00 .151E+04 .194E+04 .247E+04 .247E+04 .267E+04 .300E+04 .314E+04 .328E+04 .328E+04 .351E+04 .521E+04 .521E+04		
DEPTH IN	DIAM In	DVA AMMAD IHQ E**NI\28J	A	В	PST	PSD
302.96	84.00	30.0 1.289E-01	- 98	. 62	.670E+04	,212E+05
		Y		P LBS/IN		
		Page	\$.	. 444/2/201		

0407104P.lpo	
.000E+00	.000E+00
.117E+00	.131E+04
.233E+00	. 180E+04
.350E+00	.218E+04
. 467E+00	. 249E+04
. 583E+00	.276E+04
. 700E +00	. 301E+04
.817E+00	.323E+04
. 933E+00	. 344E+04
.105E+01	.363E+04
.117E+01	.381E+04
,128E+01	.399E+04
,140E+01	.415E+04
.315E+01	.656E+04
.872E+02	. 656E+04
.1716+03	.656E+04
.255E+03	. 656 E+04

OUTPUT INFORMATION

LOADING NUMBER]

BOUNDARY CONDITION CODE = 1
LATERAL LOAD AT THE PILE HEAD = .212E+05 LBS
MOMENT AT THE PILE HEAD = .323E+08 IN-LBS
AXIAL LOAD AT THE PILE HEAD = .348E+05 LBS

OUTPUT VERIFICATION

THE MAXIMUM NOMENT IMBALANCE FOR ANY ELEMENT - ,103E-03 IN-LBS THE MAX, LATERAL FORCE IMBALANCE FOR ANY ELEMENT - ,196E-04 LBS

5 U M M A R Y T A B L E

BOUNDARY	BOUNDARY	AXIAL	PILE HEAD	MAX.	MAX.
CONDITION	CONDITION	LOAD	DEFLECTION	MOMENT	SHEAR
BC1	BC2	LBS	IN	IN-LBS	LBS
. 2120E+05	. 3229E+08	. 3484E+05	.9483E+00	.3327E+08	1881E+06

UBC 1806.8.2.1

$d = A/2^{*}(1+(1+(4.36^{*}h/A))^{0.5})$

Monopole

Moment (ft-k)	2690.8
Shear (k)	21.2
Caisson Diameter, b (ft)	7
Calsson Height Above Ground (ft)	1
Caisson Height Below Ground (ft)	23
S, (lateral soil pres.) lb/ff ³	300

Applied lateral force, P (lbs)	21200
Dist, from ground to application of P, h (ft)	127.93
$A = 2.34^{\circ}P/(61^{\circ}b)$	3.08
Min. Depth of Embedment Required, d (ft)	22.33

MAT FOUNDATION DESIGN BY SABRE COMMUNICATIONS CORP.

180' Manopole Site Acquisitions, Inc. Enfield, CT (04-07104) 7-23-03 ARH

		1	
Overall Loads:			
Moment (ft-kips)	2690.80	• •	
Axial (klps)	34.84		
Shear (kips)	21.2		Part of FA
Allowable Bearing Pressure (ksf)	2	Maximum Soil Bearing Pressure (ksf)	1.58
Water Table Below Grade (ft)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Width of Mat (ft)	23	•	
Thickness of Mat (ft)	2		
Depth to Bottom of Slab (ft)	5.5		
Quantity of Bars in Bolt Circle	12		
Bolt Circle Diameter (in)	60		
Top of Concrete to Top	- Total (00)		
of Bottom Threads (in)	60	Minimum Bior Diometer (ff)	6.50
Diameter of Pier (ft)	7 7	Minimum Pier Diameter (ft) Equivalent Square b (ft)	6.20
Ht, of Pier Above Ground (ft)	3.5	Editivateur adnate p (ir)	0.20
Ht. of Pier Below Ground (ft)			
Quantity of Bars in Mat	36		
Bar Diameter in Mat (In) Area of Bars In Met (In ²)	28.27		
Specing of Bars in Mat (In)	7.69	Recommended Spacing (in)	6 to 12
Quantity of Bars Pier	38	, ,	
Bar Diameter in Pier (in)	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
Tie Bar Diameter in Pier (in)	0.5		
Spacing of Ties (in)	12		
Area of Bars In Pier (in²)	28.27	Minimum Pler A, (in²)	27.71
Spacing of Bars in Pier (in)	8.63	Recommended Spacing (In)	6 to 12
fc (ksi)	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.1		
Unit Wt. of Concrete (kcf)	0.15		
Load Factor	1.3		
Volume of Concrete (yd3)	45.60		
Two-Way Shear Action:			
Average d (in)	20		
φV _c (kips)	1239.8	V _ν (kips)	50.1
$\phi V_c = \phi (2 + 4/\beta_o) f_o^{1/2} b_o d$	1859.8		
$\phi V_c = \phi(\alpha_e d/b_o + 2) \Gamma_c^{1/2} b_o d$	1378.9		
φV _ε = φ4Γ _c ^{1/2} b _a d	1239.6		
Shear perimeter, b _a (in)	326.73		
eta_c	1		
One-Way Shear:			
q _{uit} (ksf)	1.93		
φV _c (kips)	523.7	V _ν (kips)	298.8
Stability:		ייין ע	1107-1-1102
Allowable Resisting M (ft-k)	2872.6	Total Applied M (ft-k)	2828.6
- marriage , regioning in the try	COLUMN TO THE STATE OF	- many the una in the six	<u></u>

MAT FOUNDATION DESIGN BY SABRE COMMUNICATIONS CORP. (CONTINUED)

180' Monopole Site Acquisitions, Inc. Enfleid, CT (04-07104) 7-23-03 ARH

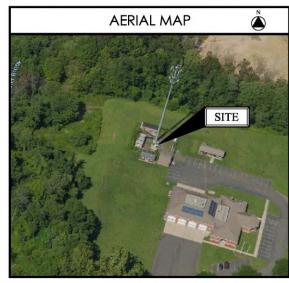
Pi er Design: φV _n (kips)	537.2	V _u (klps)	27,6
$\phi V_0 = \phi 2(1 + N_u/(2000A_g))P_c^{1/2}b_w d$	537.2		
V₃ (kips)	0.0	*** V_a max = 4 $f_c^{1/2}$ b _w d (kips)	1428.0
Maximum Spacing (in)	5.61 (On	ly if Shear Ties are Required)	

*** Ref. To Spacing Regulrements ACI 11.5.4.3

2429.7	M _u (fl-kips)	2392,3
1.81	•	
0.00512		
0.85		
0,0214		
0.0018 135 00	Required Development in Pad (in)	46.67
	2429.7 1.81 0.00512 0.85 0.0214 0.0018	2429.7 M _u (ff-kips) 1.81 0.00512 0.85 0.0214 0.0018

Condition	1 Is OK, 0 Falls
Maximum Soll Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Interaction Diagram Visual Check	1
Two-Way Shear Action	1
One-Way Shear Action	1
Slability (Safety Factor = 1.5)	1
Flexure	1
Steel Ratio	1
Length of Development in Pad	1

ATTACHMENT 2

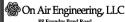

WIRELESS COMMUNICATIONS FACILITY

SITE NAME: SOMERS WEST CT

METRO TOWER # ENF-03 37 BACON RD. ENFIELD, CT 06082

ANTENNA MODIFICATION

PROJECT SUMMARY		
SITE NAME:	SOMERS WEST CT	
SITE ADDRESS:	37 BACON RD. ENFIELD, CT 06082	
PROPERTY OWNER:	SHAKER PINES FIRE DISTRICT #5 37 BACON RD. ENFIELD, CT 06082	
TOWER OWNER/MGMT:	METRO TOWER # ENF-03	
PARCEL ID:	094-0062	
COORDINATES:	42° 00' 57.3696" N 72° 31' 43.4604" W	
VERIZON CONSTRUCTION:	WALTER CHARCZYNSKI (860) 306-1806	
VERIZON REAL ESTATE:	ALEX TYURIN (860) 550-3195	



SHEET INDEX			
DE-1	TITLE SHEET		
DE-2	COMPOUND PLAN & ELEVATION		
DE-3	ANTENNA PLANS & ELEVATION		
DE-4	RF PLUMBING DIAGRAM & B.O.M.		
DE-5	DE-5 GENERAL CONSTRUCTION NOTES		

verizon /

WIRELESS COMMUNICATIONS FACILITY

20 ALEXANDER DRIVE WALLINGFORD, CT 06492

88 Foundry Pond Road Cold Spring, NY 10516 201-456-4624 onair@optonline.net

LICENSURE

DAVID WEINPAHL, P.E.

	_		OT MIC TOTALITY		
ı	SUBMITTALS				
ı	0	03.12.21	REVIEW		
ı	1	01.21.22	PERMITTING/CONSTRUCTION		
ı	2	06.03.22	REVISED PER ATTORNEY COMMENTS		
ı					
1	г				

IO DATE DESCRIPTION

DRAWN BY:	MF
CHECKED BY:	DW

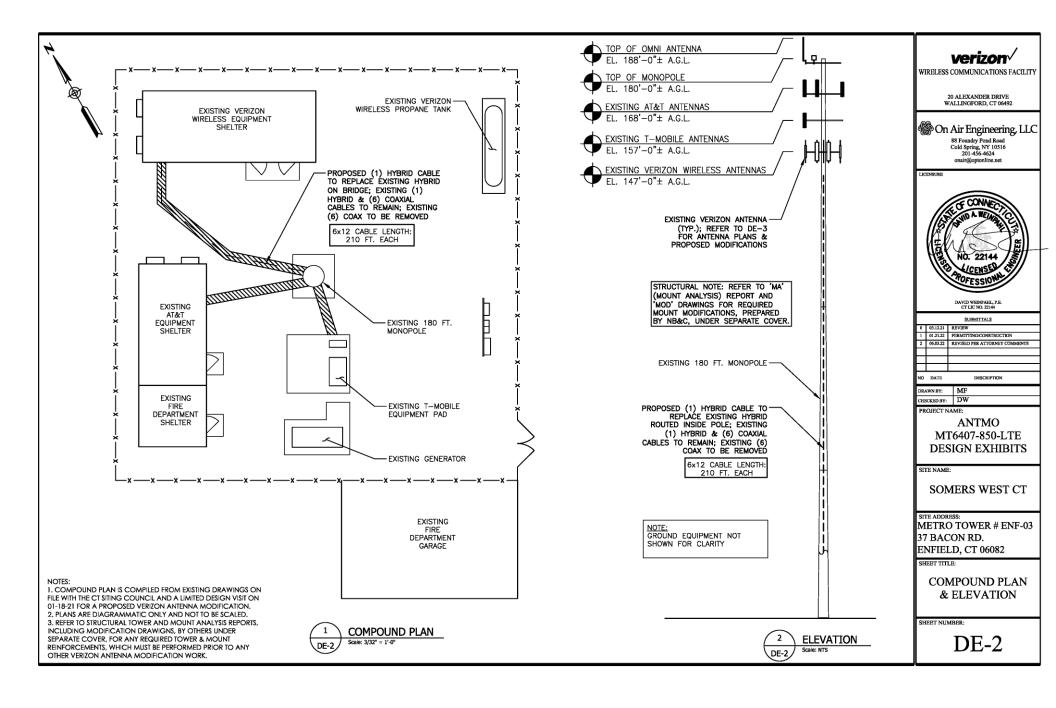
PROJECT NAME:

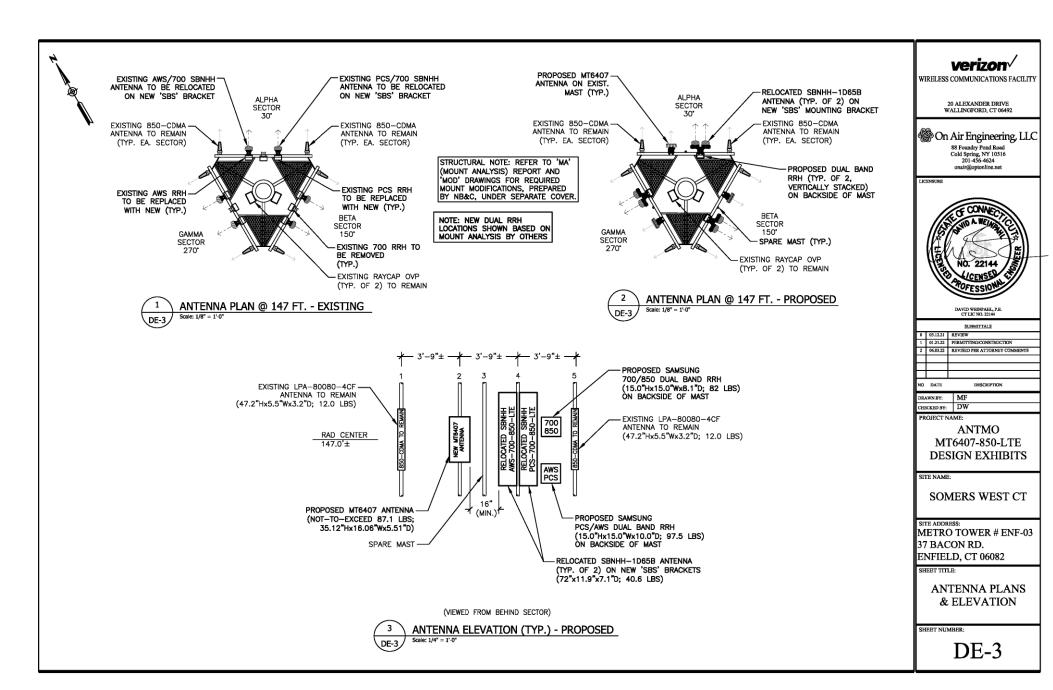
ANTMO MT6407-850-LTE DESIGN EXHIBITS

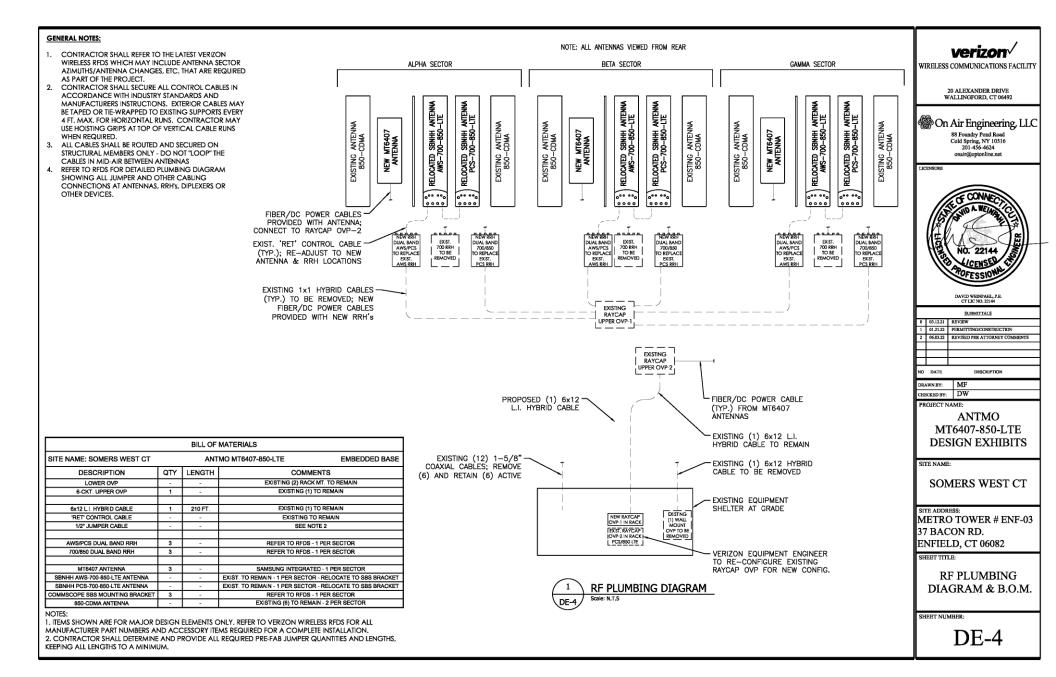
SITE NAME

SOMERS WEST CT

SITE ADDRESS:


METRO TOWER # ENF-03 37 BACON RD. ENFIELD, CT 06082

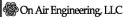

HEET TITLE:


TITLE SHEET

SHEET NUMBER:

DE-1

GENERAL CONSTRUCTION NOTES:


- 1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWN EXPENSE, ALL INSURANCE REQUIRED BY CELLCO PARTNERSHIP d/tb/a VERIZON, THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY,
- 2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE CODES AND REGULATIONS AND ALL LOCAL LAWS AND REGULATIONS, CURRENT EDITIONS.
- 3. CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILIARIZE HIMSELF WITH ALL CONDITIONS AFFECTING THE PROPOSED WORK AND MAKE PROVISIONS AS TO THE COST THEREOF. CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS AND CONFIRMING THAT THE WORK MAY BE ACCOMPLISHED AS SHOWN PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.
- 4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.
- 5. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
- 6. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.
- 7. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- 8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED FROM FEDERAL AND STATE GOVERNMENTS, COUNTIES, MUNICIPALITIES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE PROJECT.
- 10. DETAILS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.
- 11. ALL MATERIAL PROVIDED BY CELLCO PARTNERSHIP d/b/a VERIZON IS TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTOR PRIOR TO INSTALLATION. ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROUGHT TO THE CONSTRUCTION MANAGERS ATTENTION IMMEDIATELY.
- 12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.
- 13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION, FOR SEQUENCES AND PROCEDURES TO BE USED, AND TO ENSURE THE SAFETY OF THE EXISTING BUILDING AND ITS COMPONENT DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
- 14. CONTRACTOR SHALL COORDINATE ALL CIVIL, STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BUILT-IN WORK, ETC.
- 15. CONTRACTOR SHALL RECEIVE CLARIFICATION IN WRITING AND SHALL RECEIVE IN WRITING AUTHORIZATION TO PROCEED BEFORE STARTING WORK ON ANY ITEMS NOT CLEARLY DEFINED OR IDENTIFIED BY THE CONTRACT DOCUMENTS.
- 16. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD.

- 17. ERECTION SHALL BE DONE IN A WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST-ACCEPTED PRACTICE. ALL MEMBERS SHALL BE LAID PLUMB AND TRUE AS INDICATED ON THE DRAWINGS.
- 18. CONTRACTOR SHALL BE RESPONS BLE FOR THE SAFETY OF THE WORK AREA, ADJACENT AREAS, AND BUILDING OCCUPANTS THAT ARE LIKELY TO BE AFFECTED BY THE WORK UNDER THIS CONTRACT, WORK SHALL CONFORM TO ALL O.S. H.A. REGUIREMENTS.
- 19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.
- 20. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING HIS WORK WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT, ANTENNAS AND ANY OTHER PORTIONS OF THE WORK.
- 21. CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEDENCE.
- 22. CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING SURFACES, EQUIPMENT, IMPROVEMENTS, PIPING, ANTENNA AND ANTENNA CABLES AND REPAIR ANY DAMAGE THAT OCCURS DURING CONSTRUCTION.
- 23. CONTRACTOR SHALL REPAIR ALL EXISTING SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES
- 24. CONTRACTOR SHALL KEEP CONTRACT AREA CLEAN, HAZARD FREE AND DISPOSE OF ALL DEBRIS AND RUBBISH. EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY OF THE OWNER SHALL BE REMOVED. LEAVE PREMISES IN CLEAN CONDITIONS AND FREE FROM PAINT SPOTS, DUST, OR SMUDGES OF ANY NATURE. CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL ITEMS UNTIL COMPLETION OF CONSTRUCTION.
- 25. BEFORE FINAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE ALL EQUIPMENT, TEMPORARY WORKS, UNUSED AND USELESS MATERIALS, RUBBISH AND TEMPORARY STRUCTURES.

WIRELESS COMMUNICATIONS FACILITY

20 ALEXANDER DRIVE WALLINGFORD, CT 06492

88 Foundry Pond Road Cold Spring, NY 10516 201-456-4624 onair@ontonline net

LICENSURE

DAVID WEINPAHL, P.E. CT LIC NO. 22144

		SUBMITTALS
0	03.12.21	REVIEW
1	01.21.22	PERMITTING/CONSTRUCTION
2	06.03.22	REVISED PER ATTORNEY COMMENTS

1		
ı	DRAWN BY:	MF
ı	CHECKED BY:	DW

PROJECT NAME:

ANTMO MT6407-850-LTE DESIGN EXHIBITS

SITE NAME:

SOMERS WEST CT

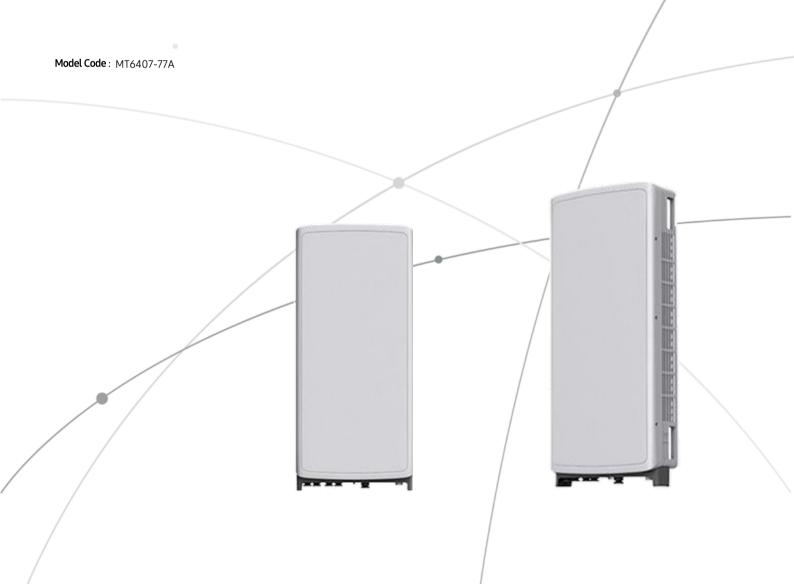
SITE ADDRESS:

METRO TOWER # ENF-03 37 BACON RD. ENFIELD, CT 06082

SHEET TITLE:

GENERAL CONSTRUCTION NOTES

SHEET NUMBER:

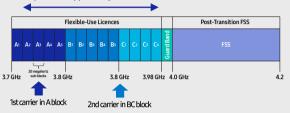

DE-5

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

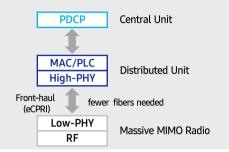
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

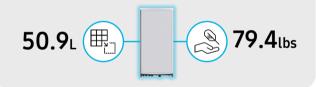
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2)

RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz)

Instantaneous Bandwidth:

70MHz(B66) + 60MHz(B2)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps)

Dimensions: 380 x 380 x 255mm (36.8L)

Weight: 38.3kg

Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5)

RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies:

B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5)

RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L)

Weight: 31.9kg Input Power: -48V DC

Operating Temp.: -40 - 55°(w/o solar load)

Cooling: Natural convection

ATTACHMENT 3

	General	Power	Density					
Site Name: Somers W (Enfield)								
Tower Height: Verizon @ 147ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*T-Mobile	2	2334	160	2100	0.0708	1	0.71%	. ota.
*T-Mobile	2	440	160	600	0.0133	0.4	0.33%	
*T-Mobile		1172	160	600	0.0178	0.4	0.44%	
T-Mobile	2	511	160	700	0.0155	0.4667	0.33%	
T-Mobile	4	960	160	1900	0.0582	1	0.58%	
*T-Mobile	2	1919	160	1900	0.0582	1	0.58%	
*T-Mobile	1	11045	160	2500	0.1675	1	1.67%	
*T-Mobile	1	1074	160	2500	0.0163	1	0.16%	
*T-Mobile	1	22089	160	2500	0.3349	1	3.35%	
T-Mobile	1	2148	160	2500	0.0326	1	0.33%	
AT&T	1	509	168	850	0.007	0.5667	0.12%	
*AT&T	4	3973	168	190	0.2178	0.2	10.89%	
*AT&T	4	2851	168	2300	0.1563	1	1.56%	
*AT&T	2	1157	168	700	0.0317	0.4667	0.68%	
*AT&T	1	865	168	850	0.0119	0.5667	0.21%	
AT&T	4	3973	168	1900	0.2178	1	2.18%	
*AT&T	4	3055	168	2300	0.1675	1	1.67%	
*AT&T	2	1298	168	700	0.0356	0.4667	0.76%	
*AT&T	1	906	168	850	0.0124	0.5667	0.22%	
*AT&T	4	3973	168	1900	0.2178	1	2.18%	
*AT&T	4	2786	168	2300	0.1527	1	1.53%	
VZW 700	4	689	147	751	0.0046	0.5007	0.92%	
VZW CDMA	2	361	147	878.49	0.0012	0.5857	0.20%	
VZW Cellular	4	816	147	874	0.0054	0.5827	0.93%	
VZW PCS	4	1574	147	1972.5	0.0105	1.0000	1.05%	
VZW AWS	4	1562	147	2120	0.0104	1.0000	1.04%	
VZW CBAND	2	13335	147	3730.08	0.0444	1.0000	4.44%	
			 	2.00.00	0.0117	110000	111170	39.069
* Source: Siting Council								33.30

ATTACHMENT 4

Report Date: March 22, 2022

Client: On Air Engineering, LLC

88 Foundry Pond Road Cold Spring, NY 10516 Attn: David Weinpahl, P.E.

(201) 456-4624

dweinpahl@onaireng.com

Structure: Existing 179-ft Monopole

Site Name: Somers West CT Site Address: 37 Bacon Street

City, County, State: Enfield, Hartford County, CT **Latitude, Longitude:** 42.015936, -72.528739

PJF Project: A42921-0011.001.7805

Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the tower stress level

Analysis Criteria:

This analysis utilizes an ultimate 3-second gust wind speed of 116 mph as required by the 2015 International Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the proposed loading configuration shown in Table 1 combined with the other considered equipment shown in Table 2 of this report.

Summary of Analysis Results:

Existing Structure: Pass - 95.8% Existing Foundation: Pass - 97.7%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and On Air Engineering, LLC. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by: Paul J. Ford and Company

nathan C. Mille

Nathan C. Miller, P.E.

Project Engineer nmiller@pauljford.com

No. 30301 CENSED 03/22/2022

www.PaulJFord.com

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Additional Calculations

1) INTRODUCTION

This tower is a 179 ft Monopole tower designed by Sabre in July of 2003.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 116 mph

Exposure Category:CTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)			Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)									
		4	antel	LPA-80080-4CF-EDIN-0 w/ Mount Pipe											
		2	antel	LPA-80080/4CF w/ Mount Pipe											
		3	commscope	BSAMNT-SBS-1-2											
	147.0	147.0	147.0	147.0	147.0	147.0	3	samsung telecommunications	B2/B66A RRH-BR049 (RFV01U-D1A)						
147.0							147.0	147.0	147.0	147.0	3	samsung telecommunications	B5/B13 RRH-BR04C (RFV01U- D2A)	6 2	1-5/8 Hybrid
							2	raycap	OVP-6						
					1	tower mounts	Andrew 12' Platform w/ modifications								
		6	andrew	SBNHH-1D65B w/ Mount Pipe											
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe											

Table 2 - Other Considered Equipment

Mounting Level (ft)	Flevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
178.0	183.0	1	generic	10 ft x 3" Omni		
	179.0	1	generic	12" x 12" x 6" Panel w/ Mount Pipe	2	1/2
	178.0	1	generic	12" x 8" x 3" Box	2	1-1/4
		1	microwave dishes	2 ft standard		
		1	tower mounts	Side Arm Mount		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)									
		2	cci antennas	TPA-65R-LCUUUU-H8 w/ Mount Pipe											
		3	ericsson	RRUS 32 B2											
		3	ericsson	RRUS-11	6	1-5/8									
168.0	168.0	3	ericsson	RRUS-32	4 2	Power Fiber Alarm									
		1	quintel technology	QS66512-2 w/ Mount Pipe	1										
		1	raycap	DC6-48-60-18-8C-EV	,										
		1	raycap	DC6-48-60-18-8F											
		1	tower mounts	T-Arm Mount											
		3 ericsson		AIR6449 B41 w/ Mount Pipe											
												3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	
		3	ericsson	RADIO 4424 B25_TMO											
158.0	160.0	3	ericsson	RADIO 4415 B66A	3	1-5/8									
156.0		3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	3	1 3/0									
		3	rfs celwave	APXVAALL18_43-U-NA20_TMO w/ Mount Pipe											
	158.0	1	tower mounts	er mounts T-Frame Mount											

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Pole and Foundation Drawings	Sabre, 07/23/2003	04-07104 Rev. A	
Geotechnical Report (Boring Log)	Soil Exploration Corp, 07/01/2003	03-0649	
Geotechnical Opinion Letter	Atlantic Consulting & Engineering, 01/20/2022	22.0120	On Air Engineering
Mount Analysis	NB+C, 08/13/2021	100820	Engineering
Mount Modification Drawings	NB+C, 08/13/2021	100819	
Previous Structural Analysis	Hudson Design Group, 06/07/2021	CT11533B Rev. 2	

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 3) At the time of analysis, the foundation documentation detailed (2) different types of foundations. It should be determined which of the foundation types was installed on site.
- 4) All coaxial cables are assumed to run internal to the monopole shaft.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	179 - 148	Pole	TP21.3x14.4x0.1875	1	-5.32	749.40	38.4	Pass
L2	148 - 97.25	Pole	TP32.44x20.3129x0.25	2	-14.84	1524.77	88.5	Pass
L3	97.25 - 47.75	Pole	TP43.1x31.0333x0.3125	3	-24.69	2531.29	83.6	Pass
L4	47.75 - 0	Pole	TP53.23x41.2345x0.3125	4	-38.67	3224.05	95.8	Pass
							Summary	
						Pole (L4)	95.8	Pass
						RATING =	95.8	Pass

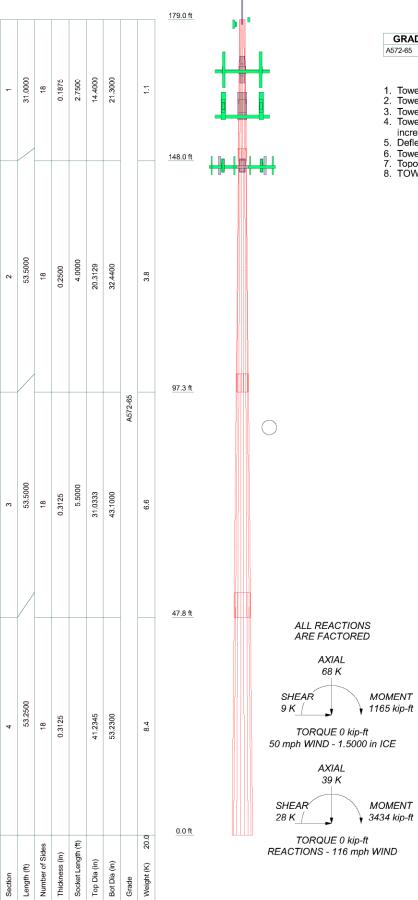
Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	88.1	Pass
1	Base Plate	0	67.5	Pass
1	Base Foundation (Structural)	0	81.6	Pass
1	Base Foundation (Soil)	0	97.7	Pass

Structure Rating (max from all components) =	97.7%
--	-------

Notes:

- 1) See additional documentation in "Appendix B Additional Calculations" for calculations supporting the % capacity
- 2) Foundation capacity determined by comparing analysis reactions to original design reactions.

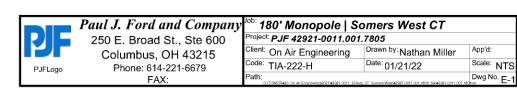

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- Paul J. Ford and Company has not made a field inspection to verify the monopole dimensions or the antenna/coax loading. If the existing conditions are not as represented on these sketches, we should be contacted immediately to reevaluate any conclusions stated in this report.
- 2) No allowance was made for any damaged, missing, or rusted material. The analysis of this monopole assumes that no physical deterioration has occurred in any of the structural components of the monopole and that all the structural members have the same load carrying capacity as the day the monopole was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural subcomponent of an existing monopole. The structural analysis provided by Paul J. Ford and Company verifies the adequacy of the main structural members of the monopole. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate, connection detail, etc.
- 4) The structural integrity of the existing tower foundation can only be verified if exact soil conditions are known. Paul J. Ford and Company will not accept any responsibility for the adequacy of the existing foundations unless a soils report is provided.

APPENDIX A TNXTOWER OUTPUT



MATERIAL STRENGTH

	GRADE	Fy	Fu	GRADE	Fy	Fu		
	A572-65	65 ksi	80 kgi					

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 116 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to
- increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.0000 ft
 TOWER RATING: 95.8%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 1) Tower is located in Hartford County, Connecticut.
- 2) Tower base elevation above sea level: 170.0000 ft.
- 3) Basic wind speed of 116 mph.
- 4) Risk Category II.
- 5) Exposure Category C.
- 6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 7) Topographic Category: 1.
- 8) Crest Height: 0.0000 ft.
- 9) Nominal ice thickness of 1.5000 in.
- 10) Ice thickness is considered to increase with height.
- 11) Ice density of 56.00 pcf.
- 12) A wind speed of 50 mph is used in combination with ice.
- 13) Temperature drop of 50 °F.
- 14) Deflections calculated using a wind speed of 60 mph.
- 15) A non-linear (P-delta) analysis was used.
- 16) Pressures are calculated at each section.
- 17) Stress ratio used in pole design is 1.05.
- 18) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

 ✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
		π	Ħ	Sides	in	in	in	in	
L1	179.0000-	31.0000	2.75	18	14.4000	21.3000	0.1875	0.7500	A572-65
	148.0000								(65 ksi)
L2	148.0000-	53.5000	4.00	18	20.3129	32.4400	0.2500	1.0000	A572-65
	97.2500								(65 ksi)
L3	97.2500-	53.5000	5.50	18	31.0333	43.1000	0.3125	1.2500	A572-65
	47.7500								(65 ksi)
L4	47.7500-	53.2500		18	41.2345	53.2300	0.3125	1.2500	À572-65
	0.0000								(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	14.5932	8.4582	215.8525	5.0454	7.3152	29.5074	431.9890	4.2299	2.2044	11.757
	21.5997	12.5646	707.5622	7.4949	10.8204	65.3915	1416.0555	6.2835	3.4188	18.234
L2	21.2207	15.9199	809.5911	7.1223	10.3190	78.4567	1620.2474	7.9615	3.1351	12.54
	32.9019	25.5428	3343.8540	11.4275	16.4795	202.9097	6692.1080	12.7738	5.2694	21.078
L3	32.3799	30.4712	3633.2225	10.9059	15.7649	230.4625	7271.2258	15.2385	4.9119	15.718
	43.7167	42.4399	9816.2392	15.1896	21.8948	448.3366	19645.394	21.2240	7.0356	22.514
							8			
L4	43.0805	40.5895	8587.4631	14.5273	20.9471	409.9590	17186.225	20.2986	6.7073	21.463
							8			
	54.0030	52.4875	18569.163	18.7857	27.0408	686.7081	37162.761	26.2488	8.8185	28.219
			9				6			

Tower Elevation ft	Gusset Area (per face) ft²	Gusset Thickness in	Gusset Grade Adjust. Factor Ar	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1 179.0000-			1	1	1			
148.0000								
L2 148.0000-			1	1	1			
97.2500								
L3 97.2500-			1	1	1			
47.7500								
L4 47.7500-			1	1	1			
0.0000								

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	_ t	ft	Number		ft²/ft	klf
	Leg		Torque Calculation	Type					
LDE4 50A /4/0"	С	No	No	Inside Pole	177.0000 -	2	No Ice	0.0000	0.00
LDF4-50A (1/2"	C	No	NO	inside Pole	0.0000 -	2	1/2" Ice	0.0000	0.00 0.00
foam)					0.0000		1" Ice	0.0000	0.00
							2" lce	0.0000	0.00
LDF6-50 (1 1/4"	С	No	No	Inside Pole	177.0000 -	2	No Ice	0.0000	0.00
foam)	C	NO	NO	Iliside Fole	0.0000 -	2	1/2" Ice	0.0000	0.00
ioaiii)					0.0000		1" Ice	0.0000	0.00
							2" Ice	0.0000	
***							2 ice	0.0000	0.00
LDF7-50A (1 5/8"	С	No	No	Inside Pole	168.0000 -	6	No Ice	0.0000	0.00
foam)					0.0000		1/2" Ice	0.0000	0.00
,							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
DC Power Cable	С	No	No	Inside Pole	168.0000 -	4	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
1" Fiber	С	No	No	Inside Pole	168.0000 -	2	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00
Alarm cable	С	No	No	Inside Pole	168.0000 -	1	No Ice	0.0000	0.00
					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
							2" Ice	0.0000	0.00

HCS 6X12	С	No	No	Inside Pole	160.0000 -	3	No Ice	0.0000	0.00
4AWG(1-5/8")					0.0000		1/2" Ice	0.0000	0.00
							1" Ice	0.0000	0.00
***							2" Ice	0.0000	0.00
LDF7-50A (1 5/8"	С	No	No	Inside Pole	150.0000 -	6	No Ice	0.0000	0.00
foam)	C	INO	140	iliside Pole	0.0000	0	1/2" Ice	0.0000	0.00
ioaiii)					0.0000		1/2 100	0.0000	0.00

Description	Face or	Allow Shield	Exclude From	Componen t	Placement ft	Total Number		C _A A _A ft²/ft	Weight klf
	Leg		Torque Calculation	Туре 1					
1.43" Hybrid Cable	С	No	No	Inside Pole	150.0000 - 0.0000	2	1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.0000 0.0000 0.0000 0.0000 0.0000	0.00 0.00 0.00 0.00 0.00 0.00

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A _R ft ²	A _F	C _A A _A In Face	C _A A _A Out Face	Weight K
n	ft			ft ²	ft ²	ft ²	
L1	179.0000-	Α	0.000	0.000	0.000	0.000	0.00
	148.0000	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.36
L2	148.0000-	Α	0.000	0.000	0.000	0.000	0.00
	97.2500	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	1.36
L3	97.2500-47.7500	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	1.32
L4	47.7500-0.0000	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	1.28

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A _R	A_F	C_AA_A	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness	ft²		In Face	Out Face	K
n	ft	Leg	in		ft ²	ft ²	ft ²	
L1	179.0000-	Α	1.759	0.000	0.000	0.000	0.000	0.00
	148.0000	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.36
L2	148.0000-	Α	1.708	0.000	0.000	0.000	0.000	0.00
	97.2500	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	1.36
L3	97.2500-47.7500	Α	1.621	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	1.32
L4	47.7500-0.0000	Α	1.453	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	1.28

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
	ft	in	in	Ice	Ice
				in	in
L1	179.0000- 148.0000	0.0000	0.0000	0.0000	0.0000
L2	148.0000-97.2500	0.0000	0.0000	0.0000	0.0000
L3	97.2500-47.7500	0.0000	0.0000	0.0000	0.0000
L4	47.7500-0.0000	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

— 1	_	
Discrete	Tower	I nade

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustmen t °	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
10 ft x 3" Omni	A	From Leg	1.0000 0.00 5.00	0.0000	178.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.0000 4.0333 5.0269 6.2574	3.0000 4.0333 5.0269 6.2574	0.05 0.07 0.10 0.18
12" x 12" x 6" Panel w/ Mount Pipe	В	From Leg	1.0000 0.00 1.00	0.0000	178.0000	No Ice 1/2" Ice 1" Ice	1.3720 1.5741 1.7882 2.2525	0.9440 1.1778 1.4282 1.9791	0.01 0.03 0.04 0.09
12" x 8" x 3" Box	С	From Leg	1.0000 0.00 0.00	0.0000	178.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.8000 0.9148 1.0370 1.3037	0.3167 0.4007 0.4918 0.6949	0.03 0.04 0.04 0.06
Side Arm Mount [SO 201- 3]	С	None		0.0000	178.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	5.2700 6.4700 7.7800 10.6600	5.2700 6.4700 7.7800 10.6600	0.29 0.35 0.43 0.66
*** QS66512-2_TIA w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice 2" Ice	8.3708 8.9314 9.4571 10.5310	8.4625 9.6573 10.5478 12.3523	0.14 0.21 0.30 0.49
TPA-65R-LCUUUU- H8_TIA w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice 2" Ice	13.5353 14.2380 14.9495 16.3081	10.9597 12.4861 14.0367 16.3910	0.11 0.22 0.33 0.59
TPA-65R-LCUUUU- H8_TIA w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice 2" Ice	13.5353 14.2380 14.9495 16.3081	10.9597 12.4861 14.0367 16.3910	0.11 0.22 0.33 0.59
RRUS-11	Α	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice	2.7908 2.9984 3.2134 3.6656	1.1923 1.3395 1.4957 1.8390	0.05 0.07 0.09 0.15
RRUS-11	В	From Leg	4.0000 0.00 0.00	0.0000	168.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	2.7908 2.9984 3.2134 3.6656	1.1923 1.3395 1.4957 1.8390	0.05 0.07 0.09 0.15
RRUS-11	С	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice 2" Ice	2.7908 2.9984 3.2134 3.6656	1.1923 1.3395 1.4957 1.8390	0.05 0.07 0.09 0.15
RRUS-32	Α	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice 2" Ice	2.7427 2.9647 3.1941 3.6753	1.6681 1.8552 2.0493 2.4585	0.03 0.05 0.08 0.13
RRUS-32	В	From Leg	4.0000 0.00 0.00	0.0000	168.0000	No Ice 1/2" Ice 1" Ice	2.7427 2.9647 3.1941 3.6753	1.6681 1.8552 2.0493 2.4585	0.03 0.05 0.08 0.13
RRUS-32	С	From Leg	4.0000	0.0000	168.0000	2" Ice No Ice	2.7427	1.6681	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustmen t °	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
			ft						
			0.00			1/2"	2.9647	1.8552	0.05
			0.00			Ice 1" Ice 2" Ice	3.1941 3.6753	2.0493 2.4585	0.08 0.13
RRUS 32 B2	Α	From Leg	4.0000	0.0000	168.0000	No Ice	2.7427	1.6681	0.05
			0.00 0.00			1/2" Ice	2.9647 3.1941	1.8552 2.0493	0.07 0.10
			0.00			1" Ice 2" Ice	3.6753	2.4585	0.16
RRUS 32 B2	В	From Leg	4.0000	0.0000	168.0000	No Ice	2.7427	1.6681	0.05
			0.00 0.00			1/2" Ice	2.9647 3.1941	1.8552 2.0493	0.07 0.10
			0.00			1" Ice	3.6753	2.4585	0.16
	_					2" Ice			
RRUS 32 B2	С	From Leg	4.0000 0.00	0.0000	168.0000	No Ice 1/2"	2.7427 2.9647	1.6681 1.8552	0.05 0.07
			0.00			Ice	3.1941	2.0493	0.10
						1" lce 2" lce	3.6753	2.4585	0.16
DC6-48-60-18-8F	Α	From Leg	4.0000	0.0000	168.0000	No Ice	1.2117	1.2117	0.03
			0.00 0.00			1/2" Ice	1.8924 2.1051	1.8924 2.1051	0.05 0.08
			0.00			1" Ice 2" Ice	2.5703	2.5703	0.14
DC6-48-60-18-8C-EV	С	From Leg	4.0000	0.0000	168.0000	No Ice	1.1445	1.1445	0.03
			0.00			1/2"	1.7918	1.7918	0.05
			0.00			Ice 1" Ice 2" Ice	2.0017 2.4505	2.0017 2.4505	0.07 0.13
T-Arm Mount [TA 602-3]	С	None		0.0000	168.0000	No Ice	13.4000	13.4000	0.77
						1/2"	16.4400	16.4400	1.00
						lce 1" lce	19.7000 25.8600	19.7000 25.8600	1.29 2.05
***						2" Ice	23.0000	23.8000	2.03
APX16DWV-16DWV-S-E-	Α	From Leg	4.0000	0.0000	158.0000	No Ice	6.8239	3.5164	0.06
A20_TIA w/ Mount Pipe			0.00			1/2"	7.2751	4.2860	0.11
			2.00			lce 1" lce	7.7192 8.6333	4.9830 6.4268	0.17 0.30
						2" Ice		0.4200	0.30
APX16DWV-16DWV-S-E-	В	From Leg	4.0000	0.0000	158.0000	No Ice	6.8239	3.5164	0.06
A20_TIA w/ Mount Pipe			0.00 2.00			1/2" Ice	7.2751 7.7192	4.2860 4.9830	0.11 0.17
			2.00			1" Ice 2" Ice	8.6333	6.4268	0.30
APX16DWV-16DWV-S-E-	С	From Leg	4.0000	0.0000	158.0000	No Ice	6.8239	3.5164	0.06
A20_TIA w/ Mount Pipe			0.00			1/2"	7.2751	4.2860	0.11
			2.00			Ice 1" Ice 2" Ice	7.7192 8.6333	4.9830 6.4268	0.17 0.30
APXVAALL18_43-U-	Α	From Leg	4.0000	0.0000	158.0000	No Ice	14.9042	7.8208	0.14
NA20_TMO_TIA w/ Mount			0.00			1/2"	15.5253	9.0097	0.25
Pipe			2.00			lce 1" lce	16.1114 17.3063	9.9124 11.7312	0.36 0.62
APXVAALL18 43-U-	В	From Leg	4.0000	0.0000	158.0000	2" Ice No Ice	14.9042	7.8208	0.14
NA20_TMO_TIA w/ Mount	_		0.00			1/2"	15.5253	9.0097	0.25
Pipe			2.00			lce	16.1114	9.9124	0.36
						1" Ice 2" Ice	17.3063	11.7312	0.62
APXVAALL18_43-U-	С	From Leg	4.0000	0.0000	158.0000	No Ice	14.9042	7.8208	0.14
NA20_TMO_TIA w/ Mount			0.00			1/2"	15.5253	9.0097	0.25
Pipe			2.00			lce 1" lce	16.1114 17.3063	9.9124 11.7312	0.36 0.62
						2" Ice			-

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
			ft ft ft						
AIR6449 B41_TIA w/	Α	From Leg	4.0000	0.0000	158.0000	No Ice	5.8932	3.2839	0.12
Mount Pipe			0.00			1/2"	6.2567	3.7423	0.17
			2.00			Ice 1" Ice 2" Ice	6.6301 7.4065	4.2169 5.2149	0.22 0.35
AIR6449 B41_TIA w/	В	From Leg	4.0000	0.0000	158.0000	No Ice	5.8932	3.2839	0.12
Mount Pipe			0.00			1/2"	6.2567	3.7423	0.17
			2.00			Ice 1" Ice 2" Ice	6.6301 7.4065	4.2169 5.2149	0.22 0.35
AIR6449 B41_TIA w/	С	From Leg	4.0000	0.0000	158.0000	No Ice	5.8932	3.2839	0.12
Mount Pipe		3	0.00			1/2"	6.2567	3.7423	0.17
			2.00			Ice	6.6301	4.2169	0.22
DADIO 4440 D74 D054 T		5 1	4 0000	0.0000	450,0000	1" Ice 2" Ice	7.4065	5.2149	0.35
RADIO 4449 B71 B85A_T- MOBILE	Α	From Leg	4.0000 0.00	0.0000	158.0000	No Ice 1/2"	1.9701 2.1466	1.5865 1.7488	0.07 0.09
WOBIEE			2.00			Ice	2.3306	1.9185	0.12
						1" Ice	2.7207	2.2800	0.17
						2" Ice			
RADIO 4449 B71 B85A_T-	В	From Leg	4.0000	0.0000	158.0000	No Ice	1.9701	1.5865	0.07
MOBILE			0.00 2.00			1/2" Ice	2.1466 2.3306	1.7488 1.9185	0.09 0.12
			2.00			1" Ice 2" Ice	2.7207	2.2800	0.12
RADIO 4449 B71 B85A_T-	С	From Leg	4.0000	0.0000	158.0000	No Ice	1.9701	1.5865	0.07
MOBILE			0.00			1/2"	2.1466	1.7488	0.09
			2.00			Ice 1" Ice 2" Ice	2.3306 2.7207	1.9185 2.2800	0.12 0.17
RADIO 4424 B25 TMO	Α	From Leg	4.0000	0.0000	158.0000	No Ice	2.0520	1.6103	0.09
			0.00			1/2"	2.2307	1.7717	0.11
			2.00			Ice	2.4168	1.9406	0.13
DADIO 4404 DOS TMO	_		4 0000	0.000	450,000	1" Ice 2" Ice	2.8113	2.3006	0.19
RADIO 4424 B25_TMO	В	From Leg	4.0000 0.00	0.0000	158.0000	No Ice 1/2"	2.0520 2.2307	1.6103 1.7717	0.09 0.11
			2.00			Ice	2.4168	1.9406	0.11
			2.00			1" Ice 2" Ice	2.8113	2.3006	0.19
RADIO 4424 B25_TMO	С	From Leg	4.0000	0.0000	158.0000	No Ice	2.0520	1.6103	0.09
			0.00			1/2"	2.2307	1.7717	0.11
			2.00			Ice 1" Ice 2" Ice	2.4168 2.8113	1.9406 2.3006	0.13 0.19
RADIO 4415 B66A	Α	From Leg	4.0000	0.0000	158.0000	No Ice	1.8563	0.8701	0.05
		J	0.00			1/2"	2.0266	0.9966	0.06
			2.00			Ice 1" Ice	2.2044 2.5822	1.1344 1.4322	0.08 0.12
RADIO 4415 B66A	В	From Leg	4.0000	0.0000	158.0000	2" Ice No Ice	1.8563	0.8701	0.05
RADIO 44 15 B00A	Ь	From Leg	0.00	0.0000	136.0000	1/2"	2.0266	0.9966	0.05
			2.00			lce	2.2044	1.1344	0.08
						1" Ice 2" Ice	2.5822	1.4322	0.12
RADIO 4415 B66A	С	From Leg	4.0000	0.0000	158.0000	No Ice	1.8563	0.8701	0.05
			0.00			1/2"	2.0266	0.9966	0.06
			2.00			lce	2.2044	1.1344	0.08
						1" Ice 2" Ice	2.5822	1.4322	0.12
T-Arm Mount [TA 701-3]	С	None		0.0000	158.0000	No Ice	23.9400	23.9400	1.09
,		-				1/2"	30.0400	30.0400	1.48
						Ice	36.1600	36.1600	1.95
						1" Ice	48.7200	48.7200	3.16
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
***			ft						
(2) LPA-80080-4CF-EDIN- 0 w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	2.8561 3.2195 3.5922 4.3374	6.5689 7.1948 7.8369 9.1700	0.03 0.08 0.13 0.25
(2) LPA-80080-4CF-EDIN- 0 w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	No Ice 1/2" Ice 1" Ice	2.8561 3.2195 3.5922 4.3374	6.5689 7.1948 7.8369 9.1700	0.03 0.08 0.13 0.25
(2) LPA-80080/4CF w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.8561 3.2195 3.5922 4.3374	6.5689 7.1948 7.8369 9.1700	0.03 0.08 0.13 0.25
(2) SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.0900 4.4900 4.8900 5.7200	3.3000 3.6800 4.0700 4.8700	0.07 0.13 0.20 0.39
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.0900 4.4900 4.8900 5.7200	3.3000 3.6800 4.0700 4.8700	0.07 0.13 0.20 0.39
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.0900 4.4900 4.8900 5.7200	3.3000 3.6800 4.0700 4.8700	0.07 0.13 0.20 0.39
MT6407-77A w/ Mount Pipe	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.9069 5.2559 5.6147 6.3615	2.6821 3.1450 3.6241 4.6310	0.10 0.14 0.18 0.29
MT6407-77A w/ Mount Pipe	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.9069 5.2559 5.6147 6.3615	2.6821 3.1450 3.6241 4.6310	0.10 0.14 0.18 0.29
MT6407-77A w/ Mount Pipe	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.9069 5.2559 5.6147 6.3615	2.6821 3.1450 3.6241 4.6310	0.10 0.14 0.18 0.29
BSAMNT-SBS-1-2 (Mount Bracket)	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.03 0.05 0.07 0.11
BSAMNT-SBS-1-2 (Mount Bracket)	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.03 0.05 0.07 0.11
BSAMNT-SBS-1-2 (Mount Bracket)	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.03 0.05 0.07 0.11
B2/B66A RRH-BR049	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement ft		C _A A _A Front ft ²	C _A A _A Side ft ²	Weight K
B2/B66A RRH-BR049	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
B2/B66A RRH-BR049	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
B5/B13 RRH-BR04C	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
B5/B13 RRH-BR04C	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
B5/B13 RRH-BR04C	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
DC6-48-60-18-8F	Α	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.2117 1.8924 2.1051 2.5703	1.2117 1.8924 2.1051 2.5703	0.03 0.05 0.08 0.14
DC6-48-60-18-8F	В	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.2117 1.8924 2.1051 2.5703	1.2117 1.8924 2.1051 2.5703	0.03 0.05 0.08 0.14
DC6-48-60-18-8F	С	From Leg	4.0000 0.00 0.00	0.0000	147.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.2117 1.8924 2.1051 2.5703	1.2117 1.8924 2.1051 2.5703	0.03 0.05 0.08 0.14
Platform Mount [LP 301- 1_KCKR]	С	None		0.0000	147.0000	No Ice 1/2" Ice 1" Ice 2" Ice	35.0300 44.4600 53.7200 72.2900	35.0300 44.4600 53.7200 72.2900	1.86 2.52 3.33 5.42

	Dishes										
Description	Face or Leg	Dísh Type	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustment °	3 dB Beam Width	Elevation ft	Outside Diameter ft		Aperture Area ft²	Weight K
2 ft standard	С	Paraboloid w/o Radome	From Leg	1.0000 0.00 0.00	0.0000		178.0000	2.0000	No Ice 1/2" Ice 1" Ice 2" Ice	3.1400 3.4100 3.6800 4.2100	0.01 0.06 0.10 0.19

Tower Pressures - No Ice

G_H = 1.100

Section	Z	Kz	q_z	Ag	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	ft		ksf	ft ²	а	ft ²	ft ²	ft ²	%	In	Out
ft					С					Face	Face
					е					ft ²	ft ²
L1 179.0000-	162.5762	1.402	0.046	46.749	Α	0.000	46.749	46.749	100.00	0.000	0.000
148.0000					В	0.000	46.749		100.00	0.000	0.000
					С	0.000	46.749		100.00	0.000	0.000
L2 148.0000-	121.0731	1.318	0.043	114.44	Α	0.000	114.447	114.447	100.00	0.000	0.000
97.2500				7	В	0.000	114.447		100.00	0.000	0.000
					С	0.000	114.447		100.00	0.000	0.000
L3 97.2500-	71.7188	1.18	0.038	156.94	Α	0.000	156.949	156.949	100.00	0.000	0.000
47.7500				9	В	0.000	156.949		100.00	0.000	0.000
					С	0.000	156.949		100.00	0.000	0.000
L4 47.7500-	24.0550	0.938	0.030	193.15	Α	0.000	193.156	193.156	100.00	0.000	0.000
0.0000				6	В	0.000	193.156		100.00	0.000	0.000
					O	0.000	193.156		100.00	0.000	0.000

Tower Pressure - With Ice

G_H = 1.100

Section	Z	Kz	q_z	t_Z	A_{G}	F	A_F	A_R	A _{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	ft		ksf	in	ft ²	а	ft ²	ft ²	ft ²	%	_In	Out
π						С					Face	Face
						е					ft ²	ft ²
L1 179.0000-	162.5762	1.402	0.008	1.7593	55.839	Α	0.000	55.839	55.839	100.00	0.000	0.000
148.0000						В	0.000	55.839		100.00	0.000	0.000
						С	0.000	55.839		100.00	0.000	0.000
L2 148.0000-	121.0731	1.318	0.008	1.7082	129.328	Α	0.000	129.328	129.328	100.00	0.000	0.000
97.2500						В	0.000	129.328		100.00	0.000	0.000
						С	0.000	129.328		100.00	0.000	0.000
L3 97.2500-	71.7188	1.18	0.007	1.6211	171.042	Α	0.000	171.042	171.042	100.00	0.000	0.000
47.7500						В	0.000	171.042		100.00	0.000	0.000
						С	0.000	171.042		100.00	0.000	0.000
L4 47.7500-	24.0550	0.938	0.006	1.4533	206.057	Α	0.000	206.057	206.057	100.00	0.000	0.000
0.0000						В	0.000	206.057		100.00	0.000	0.000
						С	0.000	206.057		100.00	0.000	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section	Z	Kz	q_z	A_G	F	A_F	A_R	A_{leg}	Leg	$C_A A_A$	$C_A A_A$
Elevation	ft	_	ksf	ft ²	а	ft ²	ft ²	ft ²	%	In	Out
ft					С					Face	Face
					е					ft²	ft ²
L1 179.0000-	162.5762	1.402	0.011	46.749	Α	0.000	46.749	46.749	100.00	0.000	0.000
148.0000					В	0.000	46.749		100.00	0.000	0.000
					С	0.000	46.749		100.00	0.000	0.000
L2 148.0000-	121.0731	1.318	0.010	114.44	Α	0.000	114.447	114.447	100.00	0.000	0.000
97.2500				7	В	0.000	114.447		100.00	0.000	0.000
					С	0.000	114.447		100.00	0.000	0.000
L3 97.2500-	71.7188	1.18	0.009	156.94	Α	0.000	156.949	156.949	100.00	0.000	0.000
47.7500				9	В	0.000	156.949		100.00	0.000	0.000
					С	0.000	156.949		100.00	0.000	0.000
L4 47.7500-	24.0550	0.938	0.007	193.15	Α	0.000	193.156	193.156	100.00	0.000	0.000
0.0000				6	В	0.000	193.156		100.00	0.000	0.000
					С	0.000	193.156		100.00	0.000	0.000

Load Combinations

Comb. Description
No.

Comb.	Description
No.	
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24 25	1.2 Dead+1.0 Wind 330 deg - No Ice
26 26	0.9 Dead+1.0 Wind 330 deg - No Ice 1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
	170 110	D 1	N T :		0.00		
L1	179 - 148	Pole	Max Tension	14	0.00	-0.00	0.00
			Max. Compression	26	-17.24	0.73	-0.02
			Max. Mx	8	-5.32	-143.91	4.04
			Max. My	2	-5.38	-5.84	140.50
			Max. Vy	8	10.67	-143.91	4.04
			Max. Vx	2	-10.48	-5.84	140.50
			Max. Torque	22			0.38
L2	148 - 97.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-37.31	0.74	-0.02
			Max. Mx	8	-14.85	-1004.20	11.37
			Max. My	2	-14.89	-17.66	991.09
			Max. Vý	8	19.69	-1004.20	11.37
			Max. Vx	2	-19.49	-17.66	991.09

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load	K	Moment	Moment
No.				Comb.		kip-ft	kip-ft
			Max. Torque	22			0.38
L3	97.25 - 47.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-50.28	0.68	-0.02
			Max. Mx	8	-24.69	-2049.19	18.30
			Max. My	2	-24.71	-28.85	2026.72
			Max. Vy	8	23.86	-2049.19	18.30
			Max. Vx	2	-23.67	-28.85	2026.72
			Max. Torque	22			0.37
L4	47.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-68.19	0.63	-0.02
			Max. Mx	8	-38.67	-3431.75	25.57
			Max. My	2	-38.67	-40.60	3399.37
			Max. Vy	8	27.81	-3431.75	25.57
			Max. Vx	2	-27.64	-40.60	3399.37
			Max. Torque	22			0.37

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	68.19	-0.00	0.00
	Max. H _x	20	38.71	27.69	-0.01
	Max. H _z	3	29.03	-0.21	27.59
	$Max. M_x$	2	3399.37	-0.21	27.59
	$Max. M_z$	8	3431.75	-27.77	0.13
	Max. Torsion	22	0.37	23.97	13.74
	Min. Vert	9	29.03	-27.77	0.13
	Min. H _x	8	38.71	-27.77	0.13
	Min. H _z	14	38.71	0.03	-27.53
	Min. M _x	14	-3386.13	0.03	-27.53
	Min. M _z	20	-3417.92	27.69	-0.01
	Min. Torsion	13	-0.32	-13.81	-23.80

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear _x K	Shear₂ K	Overturning Moment, M _x kip-ft	Overturning Moment, M₂ kip-ft	Torque kip-ft
Dead Only	32.26	0.00	0.00	-0.25	0.16	-0.00
1.2 Dead+1.0 Wind 0 deg -	38.71	0.21	-27.59	-3399.37	-40.60	-0.14
No Ice						
0.9 Dead+1.0 Wind 0 deg - No Ice	29.03	0.21	-27.59	-3336.68	-39.73	-0.15
1.2 Dead+1.0 Wind 30 deg - No Ice	38.71	14.00	-23.88	-2940.26	-1738.21	0.01
0.9 Dead+1.0 Wind 30 deg - No Ice	29.03	14.00	-23.88	-2885.74	-1705.91	0.00
1.2 Dead+1.0 Wind 60 deg - No Ice	38.71	24.09	-13.84	-1708.36	-2978.82	0.09
0.9 Dead+1.0 Wind 60 deg - No Ice	29.03	24.09	-13.84	-1676.60	-2923.59	0.08
1.2 Dead+1.0 Wind 90 deg - No Ice	38.71	27.77	-0.13	-25.57	-3431.75	0.14
0.9 Dead+1.0 Wind 90 deg - No Ice	29.03	27.77	-0.13	-24.89	-3368.14	0.14
1.2 Dead+1.0 Wind 120 deg - No Ice	38.71	24.12	13.62	1664.18	-2985.19	0.23
0.9 Dead+1.0 Wind 120 deg - No Ice	29.03	24.12	13.62	1633.62	-2929.79	0.23
1.2 Dead+1.0 Wind 150 deg - No Ice	38.71	13.81	23.80	2925.82	-1700.74	0.32
0.9 Dead+1.0 Wind 150 deg	29.03	13.81	23.80	2871.78	-1669.29	0.32

tnxTower Report - version 8.1.1.0

Load Combination	Vertical K	Shear _x K	Shear _z K	Overturning Moment, M _x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft
- No Ice 1.2 Dead+1.0 Wind 180 deg - No Ice	38.71	-0.03	27.53	3386.13	5.64	0.28
0.9 Dead+1.0 Wind 180 deg - No Ice	29.03	-0.03	27.53	3323.54	5.45	0.29
1.2 Dead+1.0 Wind 210 deg - No Ice	38.71	-13.86	23.87	2938.96	1711.17	0.15
0.9 Dead+1.0 Wind 210 deg - No Ice	29.03	-13.86	23.87	2884.64	1679.38	0.16
1.2 Dead+1.0 Wind 240 deg - No Ice	38.71	-24.02	13.80	1700.06	2966.10	-0.09
0.9 Dead+1.0 Wind 240 deg - No Ice	29.03	-24.02	13.80	1668.66	2911.03	-0.08
1.2 Dead+1.0 Wind 270 deg	38.71	-27.69	0.01	1.37	3417.92	-0.30
- No Ice 0.9 Dead+1.0 Wind 270 deg	29.03	-27.69	0.01	1.43	3354.50	-0.30
- No Ice 1.2 Dead+1.0 Wind 300 deg	38.71	-23.97	-13.74	-1689.27	2957.03	-0.37
- No Ice 0.9 Dead+1.0 Wind 300 deg	29.03	-23.97	-13.74	-1657.94	2902.17	-0.37
- No Ice 1.2 Dead+1.0 Wind 330 deg	38.71	-13.81	-23.80	-2926.14	1701.79	-0.32
- No Ice 0.9 Dead+1.0 Wind 330 deg	29.03	-13.81	-23.80	-2871.92	1670.21	-0.32
- No Ice 1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	68.19 68.19	0.00 0.05	-0.00 -8.65	0.02 -1158.69	0.63 -10.49	0.00 -0.04
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	68.19	4.37	-7.48	-1002.34	-587.71	-0.02
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	68.19	7.52	-4.34	-581.79	-1009.67	-0.00
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	68.19	8.68	-0.03	-7.16	-1163.98	0.01
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	68.19	7.53	4.28	569.43	-1011.18	0.04
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	68.19	4.32	7.47	998.30	-576.93	0.07
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	68.19	-0.01	8.63	1155.24	2.72	0.08
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210	68.19	-4.33	7.48	1002.19	582.11	0.05
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240	68.19	-7.51	4.33	579.72	1008.01	0.00
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270	68.19	-8.66	0.00	0.72	1162.01	-0.05
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	68.19	-7.49	-4.31	-576.09	1005.26	-0.07
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330	68.19	-4.32	-7.47	-998.14	579.13	-0.07
deg+1.0 Ice+1.0 Temp Dead+Wind 0 deg - Service	32.26	0.05	-6.61	-808.32	-9.50	-0.04
Dead+Wind 30 deg - Service	32.26	3.35	-5.72	-699.02	-412.96	-0.01
Dead+Wind 60 deg - Service	32.26	5.77	-3.32	-406.25	-707.87	0.02
Dead+Wind 90 deg - Service	32.26	6.65	-0.03	-6.27	-815.75	0.04
Dead+Wind 120 deg - Service	32.26	5.78	3.26	395.34	-709.33	0.06
Dead+Wind 150 deg - Service	32.26	3.31	5.70	695.10	-404.03	0.08
Dead+Wind 180 deg - Service	32.26	-0.01	6.59	804.72	1.47	0.08
Dead+Wind 210 deg - Service	32.26	-3.32	5.72	698.26	406.80	0.04
Dead+Wind 240 deg - Service	32.26	-5.75	3.31	403.85	705.08	-0.02
Dead+Wind 270 deg - Service	32.26	-6.64	0.00	0.12	812.70	-0.07
Dead+Wind 300 deg - Service	32.26	-5.74	-3.29	-401.68	702.89	-0.09
Dead+Wind 330 deg -	32.26	-3.31	-5.70	-695.59	404.55	-0.08

Load Combination	Vertical K	Shear _x K	Shear₂ K	Overturning Moment, M _x kip-ft	Overturning Moment, M _z kip-ft	Torque kip-ft
Service				· · · · · · · · · · · · · · · · · · ·		

Solution Summary

		ım of Applied Force			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-32.26	0.00	-0.00	32.26	-0.00	0.000%
2	0.21	-38.71	-27.60	-0.21	38.71	27.59	0.013%
3	0.21	-29.03	-27.60	-0.21	29.03	27.59	0.010%
4	14.00	-38.71	-23.88	-14.00	38.71	23.88	0.000%
5	14.00	-29.03	-23.88	-14.00	29.03	23.88	0.001%
6	24.09	-38.71	-13.84	-24.09	38.71	13.84	0.000%
7	24.09	-29.03	-13.84	-24.09	29.03	13.84	0.001%
8	27.78	-38.71	-0.13	-27.77	38.71	0.13	0.013%
9	27.78	-29.03	-0.13	-27.77	29.03	0.13	0.016%
10	24.12	-38.71	13.62	-24.12	38.71	-13.62	0.000%
11	24.12	-29.03	13.62	-24.12	29.03	-13.62	0.001%
12	13.81	-38.71	23.80	-13.81	38.71	-23.80	0.000%
13	13.81	-29.03	23.80	-13.81	29.03	-23.80	0.001%
14	-0.03	-38.71	27.53	0.03	38.71	-27.53	0.013%
15	-0.03	-29.03	27.53	0.03	29.03	-27.53	0.016%
16	-13.86	-38.71	23.87	13.86	38.71	-23.87	0.000%
17	-13.86	-29.03	23.87	13.86	29.03	-23.87	0.001%
18	-24.02	-38.71	13.80	24.02	38.71	-13.80	0.000%
19	-24.02	-29.03	13.80	24.02	29.03	-13.80	0.001%
20	-27.70	-38.71	0.01	27.69	38.71	-0.01	0.013%
21	-27.70	-29.03	0.01	27.69	29.03	-0.01	0.016%
22	-23.97	-38.71	-13.74	23.97	38.71	13.74	0.000%
23	-23.97	-29.03	-13.74	23.97	29.03	13.74	0.001%
24	-13.81	-38.71	-23.80	13.81	38.71	23.80	0.000%
25	-13.81	-29.03	-23.80	13.81	29.03	23.80	0.001%
26	0.00	-68.19	0.00	-0.00	68.19	0.00	0.002%
27	0.05	-68.19	-8.65	-0.05	68.19	8.65	0.003%
28	4.37	-68.19	-7.49	-4.37	68.19	7.48	0.003%
29	7.52	-68.19	-4.34	-7.52	68.19	4.34	0.003%
30	8.68	-68.19	-0.03	-8.68	68.19	0.03	0.003%
31	7.53	-68.19	4.28	-7.53	68.19	-4.28	0.003%
32	4.32	-68.19	7.47	-4.32	68.19	-7.47	0.003%
33	-0.01	-68.19	8.63	0.01	68.19	-8.63	0.003%
34	-4.33	-68.19	7.49	4.33	68.19	-7.48	0.003%
35	-7.51	-68.19	4.33	7.51	68.19	-4.33	0.003%
36	-8.66	-68.19	0.00	8.66	68.19	-0.00	0.003%
37	-7.50	-68.19	-4.31	7.49	68.19	4.31	0.003%
38	-4.32	-68.19	-7.47	4.32	68.19	7.47	0.003%
39	0.05	-32.26	-6.61	-0.05	32.26	6.61	0.004%
40	3.35	-32.26	-5.72	-3.35	32.26	5.72	0.004%
41	5.77	-32.26	-3.32	-5.77	32.26	3.32	0.004%
42	6.65	-32.26	-0.03	-6.65	32.26	0.03	0.004%
43	5.78	-32.26	3.26	-5.78	32.26	-3.26	0.004%
44	3.31	-32.26	5.70	-3.31	32.26	-5.70	0.004%
45	-0.01	-32.26	6.60	0.01	32.26	-6.59	0.004%
46	-3.32	-32.26	5.72	3.32	32.26	-5.72	0.004%
47	-5.75	-32.26	3.31	5.75	32.26	-3.31	0.004%
48	-6.64	-32.26	0.00	6.64	32.26	-0.00	0.004%
49	-5.74	-32.26	-3.29	5.74	32.26	3.29	0.004%
50	-3.31	-32.26	-5.70	3.31	32.26	5.70	0.004%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.0000001	0.0000001
2	Yes	21	0.00011940	0.00014330
3	Yes	21	0.00007616	0.00010529
4	Yes	28	0.0000001	0.00012550

5	Yes	27	0.0000001	0.00013007
6	Yes	28	0.0000001	0.00012551
7	Yes	27	0.00000001	0.00013004
8	Yes	21	0.00011893	0.00012292
9	Yes	20	0.00012056	0.00014358
10	Yes	28	0.00000001	0.00014000
11	Yes	27	0.0000001	0.00012243
12	Yes	28	0.0000001	0.00012700
13	Yes	27	0.0000001	0.00012034
14	Yes	21	0.00011967	0.00012466
15	Yes	20	0.00011907	0.00011338
16	Yes	28	0.00012131	0.00013445
17		26 27		
18	Yes Yes	27 28	0.00000001	0.00012777
		28 27	0.00000001	0.00012406
19	Yes		0.00000001	0.00012860
20	Yes	21	0.00011915	0.00011093
21	Yes	20	0.00012079	0.00013165
22	Yes	28	0.0000001	0.00012165
23	Yes	27	0.0000001	0.00012610
24	Yes	28	0.0000001	0.00012168
25	Yes	27	0.0000001	0.00012628
26	Yes	6	0.0000001	0.00000484
27	Yes	25	0.00014894	0.00001408
28	Yes	25	0.00014799	0.00009980
29	Yes	25	0.00014799	0.00009998
30	Yes	25	0.00014892	0.00001412
31	Yes	25	0.00014805	0.00009727
32	Yes	25	0.00014806	0.00009556
33	Yes	25	0.00014895	0.00001406
34	Yes	25	0.00014801	0.00009936
35	Yes	25	0.00014800	0.00009963
36	Yes	25	0.00014893	0.00001406
37	Yes	25	0.00014803	0.00009745
38	Yes	25	0.00014804	0.00009771
39	Yes	21	0.00010364	0.00003397
40	Yes	21	0.00010326	0.00004905
41	Yes	21	0.00010327	0.00004949
42	Yes	21	0.00010364	0.00003433
43	Yes	21	0.00010329	0.00004903
44	Yes	21	0.00010328	0.00004568
45	Yes	21	0.00010364	0.00004384
46	Yes	21	0.00010304	0.00003304
47	Yes	21	0.00010327	0.00004848
48	Yes	21	0.00010328	0.00004696
49	Yes	21	0.00010304	0.00003424
50	Yes	21	0.00010328	0.00004830

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection	Load	0	0
		in	Comb.		
L1	179 - 148	51.58	41	2.6383	0.0025
L2	150.75 - 97.25	36.24	41	2.4765	0.0014
L3	101.25 - 47.75	15.16	41	1.5005	0.0004
L4	53.25 - 0	4.02	41	0.7125	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load	in	۰	٥	Curvature
		Comb.				ft
178.0000	2 ft standard	41	51.02	2.6355	0.0025	21504
168.0000	QS66512-2_TIA w/ Mount Pipe	41	45.47	2.6025	0.0021	9774
158.0000	APX16DWV-16DWV-S-E-	41	40.04	2.5454	0.0017	5119
	A20_TIA w/ Mount Pipe					
147.0000	(2) LPA-80080-4CF-EDIN-0 w/	41	34.34	2.4289	0.0013	3708
	Mount Pipe					

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection	Load	0	٥
		in	Comb.		
L1	179 - 148	216.33	8	11.1072	0.0195
L2	150.75 - 97.25	152.19	8	10.4280	0.0103
L3	101.25 - 47.75	63.79	8	6.3224	0.0018
L4	53.25 - 0	16.92	6	3.0010	0.0005

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
178.0000	2 ft standard	8	214.00	11.0954	0.0191	5502
168.0000	QS66512-2_TIA w/ Mount Pipe	8	190.78	10.9573	0.0157	2498
158.0000	APX16DWV-16DWV-S-E- A20_TIA w/ Mount Pipe	8	168.07	10.7176	0.0124	1304
147.0000	(2) LPA-80080-4CF-EDIN-0 w/ Mount Pipe	8	144.23	10.2280	0.0093	938

Compression Checks

Pole Design Data

Section No.	Elevation ft	Síze	L ft	L _u ft	KI/r	A in²	P _u K	φ <i>P</i> _n <i>K</i>	Ratio P _u ϕP_n
L1	179 - 148 (1)	TP21.3x14.4x0.1875	31.000 0	0.0000	0.0	12.200 3	-5.32	713.72	0.007
L2	148 - 97.25 (2)	TP32.44x20.3129x0.25	53.500 0	0.0000	0.0	24.823 3	-14.84	1452.16	0.010
L3	97.25 - 47.75 (3)	TP43.1x31.0333x0.3125	53.500 0	0.0000	0.0	41.209 4	-24.69	2410.75	0.010
L4	47.75 - 0 (4)	TP53.23x41.2345x0.3125	53.250 0	0.0000	0.0	52.487 5	-38.67	3070.52	0.013

Pole Bending Design Data

Section No.	Elevation ft	Size	M _{ux} kip-ft	φM _{nx} kip-ft	Ratio M _{ux} ϕM_{nx}	M _{uy} kip-ft	фМ _{пу} kip-ft	Ratio M _{uy} ϕM_{ny}
L1	179 - 148 (1)	TP21.3x14.4x0.1875	144.52	367.96	0.393	0.00	367.96	0.000
L2	148 - 97.25 (2)	TP32.44x20.3129x0.25	1005.31	1096.78	0.917	0.00	1096.78	0.000
L3	97.25 - 47.75 (3)	TP43.1x31.0333x0.3125	2050.81	2367.98	0.866	0.00	2367.98	0.000
L4	47.75 - 0 (4)	TP53.23x41.2345x0.3125	3433.93	3459.72	0.993	0.00	3459.72	0.000

Pole Shear Design Data

Section No.	Elevation ft	Size	Actual V _u K	φV _n Κ	$Ratio$ V_u ϕV_n	Actual T _u kip-ft	φΤ _n kip-ft	Ratio $T_u \over \phi T_n$
L1	179 - 148 (1)	TP21.3x14.4x0.1875	10.69	214.12	0.050	0.09	384.41	0.000
L2	148 - 97.25 [°]	TP32.44x20.3129x0.25	19.70	435.65	0.045	0.09	1193.52	0.000
	(2)							

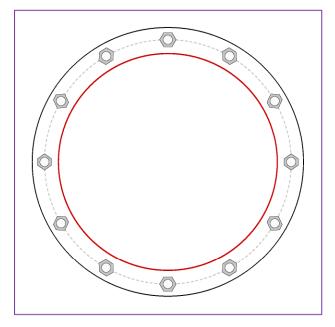
Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.	ft		V_u	K	V_u	T_u	kip-ft	T_u
			K		ϕV_n	kip-ft		ϕT_n
L3	97.25 - 47.75	TP43.1x31.0333x0.3125	23.87	723.23	0.033	0.09	2631.44	0.000
	(3)							
L4	47.75 - 0 (4)	TP53.23x41.2345x0.3125	27.82	921.16	0.030	0.09	4268.87	0.000

Pole Interaction Design Data

Section No.	Elevation ft	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
		$\overline{\qquad}$ ϕP_n	φ <i>M</i> _{nx}	ϕM_{ny}	ϕV_n	φ <i>T</i> _n	Ratio	Ratio	
L1	179 - 148 (1)	0.007	0.393	0.000	0.050	0.000	0.403	1.050	4.8.2
L2	148 - 97.25 (2)	0.010	0.917	0.000	0.045	0.000	0.929	1.050	4.8.2
L3	97.25 - 47.75 (3)	0.010	0.866	0.000	0.033	0.000	0.877	1.050	4.8.2
L4	47.75 - 0 (4)	0.013	0.993	0.000	0.030	0.000	1.006	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	179 - 148	Pole	TP21.3x14.4x0.1875	1	-5.32	749.40	38.4	Pass
L2	148 - 97.25	Pole	TP32.44x20.3129x0.25	2	-14.84	1524.77	88.5	Pass
L3	97.25 - 47.75	Pole	TP43.1x31.0333x0.3125	3	-24.69	2531.29	83.6	Pass
L4	47.75 - 0	Pole	TP53.23x41.2345x0.3125	4	-38.67	3224.05	95.8	Pass
						Summary		
						Pole (L4)	95.8	Pass
						RATING =	95.8	Pass


APPENDIX B ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Analysis Considerations			
TIA-222 Revision	Н		
Grout Considered:	No		
l _{ar} (in)	2.25		

Applied Loads		
Moment (kip-ft)	3433.93	
Axial Force (kips)	38.67	
Shear Force (kips)	27.82	

^{*}TIA-222-H Section 15.5 Applied

Connection Properties	А	nalysis Results	
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 60" BC	Pu_t = 225.57	φPn_t = 243.75	Stress Rating
	Vu = 2.32	φVn = 149.1	88.1%
Base Plate Data	Mu = n/a	$\phi Mn = n/a$	Pass
66" OD x 2" Plate (A633 Gr. E; Fy=60 ksi, Fu=70 ksi)			
	Base Plate Summary		
Stiffener Data	Max Stress (ksi):	38.27	(Flexural)
N/A	Allowable Stress (ksi):	54	
	Stress Rating:	67.5%	Pass
Pole Data			

53.23" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Version 4.1.0 Analysis Date: 1/21/2022

Pier and Pad Foundation

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions			
Compression, P _{comp} :	38.71	kips	
Base Shear, Vu_comp:	27.78	kips	
Moment, M _u :	3433.93	ft-kips	
Tower Height, H:	179	ft	
BP Dist. Above Fdn, bp _{dist} :	2.25	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier :	7	ft	
Ext. Above Grade, E :	1	ft	
Pier Rebar Size, Sc :	8		
Pier Rebar Quantity, mc :	36		
Pier Tie/Spiral Size, St :	4		
Pier Tie/Spiral Quantity, mt :	5		
Pier Reinforcement Type:	Tie		
Pier Clear Cover. cc	3	in	

Pad Properties		
Depth, D :	5.5	ft
Pad Width, W ₁:	23	ft
Pad Thickness, T :	2	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	36	
Pad Clear Cover, ccnad:	3	in

Material Properties			
Rebar Grade, Fy:	60	ksi	
Concrete Compressive Strength, F'c:	4	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties		
Total Soil Unit Weight, γ :	100	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	30	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ :		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	5	ft

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	137.59	27.78	19.2%	Pass
Bearing Pressure (ksf)	6.00	4.90	81.7%	Pass
Overturning (kip*ft)	3705.73	3619.71	97.7%	Pass
Pier Flexure (Comp.) (kip*ft)	4703.94	3558.94	72.1%	Pass
Pier Compression (kip)	24494.62	69.88	0.3%	Pass
Pad Flexure (kip*ft)	2379.25	2037.67	81.6%	Pass
Pad Shear - 1-way (kips)	510.58	275.25	51.3%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	2683.25	2135.36	75.8%	Pass

*Rating per TIA-222-H Section

Structural Rating*:	81.6%
Soil Rating*:	97.7%

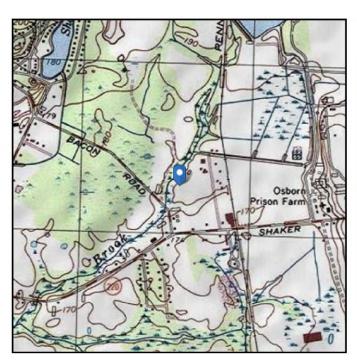
<--Toggle between Gross and Net

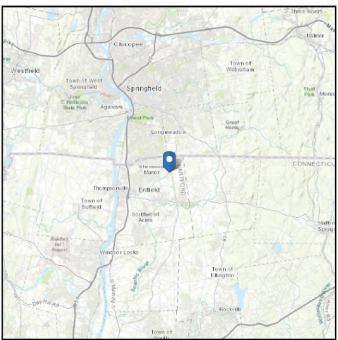
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16


Risk Category: II


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 170.07 ft (NAVD 88)

Latitude: 42.015936 **Longitude:** -72.528739

Wind

Results:

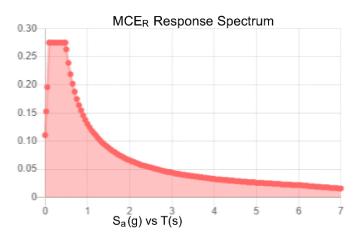
Wind Speed: 116 Vmph
10-year MRI 75 Vmph
25-year MRI 83 Vmph
50-year MRI 90 Vmph
100-year MRI 96 Vmph

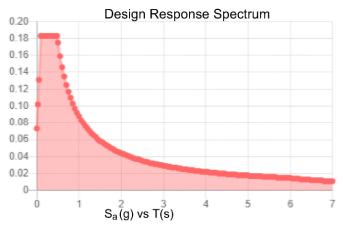
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

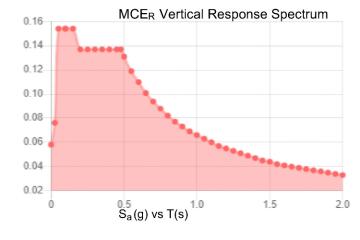
Date Accessed: Fri Nov 19 2021

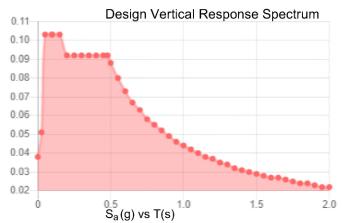
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


S _s :	0.172	S_{D1} :	0.088
S ₁ :	0.055	T _L :	6
F _a :	1.6	PGA:	0.09
F _v :	2.4	PGA _M :	0.144
S _{MS} :	0.275	F _{PGA} :	1.6
S _{M1} :	0.131	l _e :	1
S _{DS} :	0.183	C _v :	0.7

Seismic Design Category B

Data Accessed: Fri Nov 19 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16
Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Fri Nov 19 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Fri Nov 19 2021

Network Building + Consulting, LLC 1777 Sentry Parkway W, Veva 17, Suite 400 Blue Bell, PA 19422 (267) 460-0122 NBC_SmartTool@nbcllc.com

Post-Mod Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10092924 NB+C Project #: 100820 August 13, 2021

<u>Site Information</u> Site ID: 468121-VZW / Somers West

Site Name: Somers West Carrier Name: Verizon Wireless

Address: 37 Bacon Rd (188 Moody In Emis)

Enfield, Connecticut 6082, Hartford County

Latitude: 42.015936° Longitude: -72.528739°

<u>Structure Information</u>

Tower Type: 180-Ft Monopole

Mount Type: 13.50-Ft Platform

FUZE ID # 16232040

Analysis Results

Platform: 87.9% Pass

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

Contractor - Please Review Specific Site PMI Requirements Upon Award

Requirements also Noted on Mount Modification Drawings

Requirements may also be Noted on A & E drawings

Report Prepared By: Emily Adams, PE

B/13/2021

Docusigned by:

Lyundran Colandaivulu

8/13/2021

8/13/2021

August 13, 2021 Site ID: 468121-VZW / Somers West Page | 2

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet	Verizon RFDS Site ID: 675040, Dated September 8, 2020
Mount Mapping Report	Hudson Design Group, LLC, Site ID: 468121, dated July 15, 2021
Mount Analysis Report	NB+C, Project #: 100819, dated August 2, 2021
Mount Modification Drawings	NB+C, Project #: 100819, dated August 13, 2021

Analysis Criteria:

Codes and Standards: ANSI/TIA-222-H

Wind Parameters: Basic Wind Speed (Ultimate 3-sec. Gust), VULT: 116 mph

Ice Wind Speed (3-sec. Gust):50 mphDesign Ice Thickness:1.50 inRisk Category:IIExposure Category:CTopographic Category:1Topographic Feature Considered:N/A

 $\begin{array}{lll} \text{Topographic Feature Considered:} & \text{N/A} \\ \text{Topographic Method:} & \text{N/A} \\ \text{Ground Elevation Factor, K}_{\text{e}}\text{:} & 0.994 \\ \end{array}$

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mount:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status						
		3	Samsung	MT6407-77A							
		3	Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)	Added						
1440	147.0	4 /	Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)							
144.0			147.0	147.0	147.0	4	Amphenol Antel	LPA-80080-4CF-EDIN-5			
								2	Amphenol Antel	LPA-80080-4CF]
								6	Andrew	SBNHH-1D65B	Retained
		1	Raycap	RRFDC-3315-PF-48							
		1	Raycap	RHSDC-3315-PF-48]						

The recent mount mapping did not report existing OVP units. However, it is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
RHSDC-1064-PF-48	2	OVP-2
RC3DC-3315-PF-48	6	OVP-6
RC3DC-3300-PF-48	6	OVP-6
RC3DC-4750-PF-48	6	OVP-6
RHSDC-6627-PF-48	12	OVP-12
RHSDC-6600-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Network Building +
 Consulting and used in this analysis is current and correct. The existing equipment loading has been applied
 at locations determined from the supplied documentation and field observations. Any deviation from the
 loading locations specified in this report shall be communicated to Network Building + Consulting to verify
 deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped by Network Building + Consulting, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

DocuSign Envelope ID: 784D4652-E468-4EF0-A1AD-CF968D8D7062

Mount Post-Modification Analysis Report (1) 13.50-Ft Platform

August 13, 2021 Site ID: 468121-VZW / Somers West Page | 4

- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Network Building + Consulting is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM A53 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Network Building + Consulting.

August 13, 2021 Site ID: 468121-VZW / Somers West Page | 5

Analysis Results:

Component	Utilization %	Pass/Fail
Face Horizontal	38.6%	Pass
Mount Pipe	87.9%	Pass
Standoff	18.5%	Pass
Corner Plates	30.1%	Pass
Kicker	19.9%	Pass
Connection	28.8%	Pass

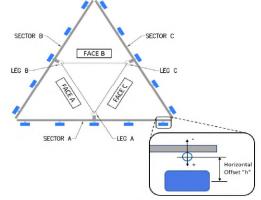
Recommendation:

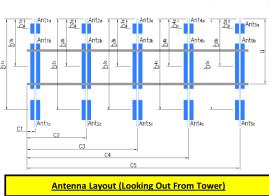
The existing mount will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagrams




Antenna Mount Mapping Form (PATENT PENDING)									
Antenna mount mapping rollin (r Arent religion)									
Tower Owner:	OTHER	Mapping Date:	7/15/2021						
Site Name:	SOMERS WEST CT	Tower Type:	Mono	pole					
Site Number or ID:	468121	Tower Height (Ft.):	18	30					
Mapping Contractor:	HUDSON DESIGN GROUP, LLC.	Mount Elevation (Ft.):	14:	2.9					
TEC and and a PATFAIT PENDING. The formation are included an ideation is a second and an ideation in the second and in t									

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please insert the sketches of the antenna mount from the "Sketches" tab with dimensions and members here.

Mount Pipe Configuration and Geometries [Unit = Inches]									
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."		
A1	2" STD. PIPE X 72" LONG	57.00	15.00	C1	2" STD. PIPE X 72" LONG	57.00	15.00		
A2	2" STD. PIPE X 96" LONG	70.00	64.00	C2	2" STD. PIPE X 96" LONG	70.00	64.00		
A3	2" STD. PIPE X 72" LONG	46.50	88.00	C3	2" STD. PIPE X 72" LONG	46.50	88.00		
A4	2" STD. PIPE X 96" LONG	70.00	109.00	C4	2" STD. PIPE X 96" LONG	70.00	109.00		
A5	2" STD. PIPE X 72" LONG	57.00	159.00	C5	2" STD. PIPE X 72" LONG	57.00	159.00		
A6				C6					
B1	2" STD. PIPE X 72" LONG	57.00	15.00	D1					
B2	2" STD. PIPE X 96" LONG	70.00	64.00	D2					
В3	2" STD. PIPE X 72" LONG	46.50	88.00	D3					
B4	2" STD. PIPE X 96" LONG	70.00	109.00	D4					
B5	2" STD. PIPE X 72" LONG	57.00	159.00	D5					
B6				D6					
	Distance between bottom rai	and moun	t CL elevati	on (dim d). Unit is inches. See 'Mount Elev Ref' tab f	or details. :			
	Distance from to	p of bottor	n support r	ail to low	est tip of ant./eqpt. of Carrier above. (N/A	if > 10 ft.):	9		
	Distance from to	p of botton	support ra	ail to high	est tip of ant./eqpt. of Carrier below. (N/A	if > 10 ft.):			
		Please ente	er additiona	al infomat	ion or comments below.				
Tower Fac	e Width at Mount Elev. (ft.):		Tower Leg S	Size or Pole	Shaft Diameter at Mount Elev. (in.):		23		
For T-Arms	s/Platforms on monopoles, report	the weld si	ze from the	main stand	off to the plate bolting into the collar mount.		0.63		

	Enter antenn	Mountin [Units are incl	Photos of antennas							
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty		Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
					Sector A					
Ant _{1a}										
Ant _{1b}	LPA-80080-4CF	6.00	13.00	47.50		145.567	25.00	14.00	45.00	45,57
Ant _{1c}										
Ant _{2a}	B66a RRH 4X45	12.00	7.00	25.50		145.733	36.00	-7.00		46,59
Ant _{2b}	SBNHH-1D65B	12.00	7.00	73.00		145.733	36.00	8.50	45.00	46,58
Ant _{2c}										
Ant _{3a}	B13 RRH 4X30	12.00	7.50	20.50		145.858	11.00	-7.00		46,60
Ant _{3b}										
Ant _{3c}										
Ant _{4a}	B25 RRH 4X30	12.00	7.50	20.50		145.733	36.00	-7.00		47,62
Ant _{4b}	SBNHH-1D65B	12.00	7.00	73.00		145.733	36.00	8.50	45.00	47,61
Ant _{4c}										
Ant _{5a}										
Ant _{5b}	LPA-80080-4CF	6.00	13.00	47.50		145.567	25.00	14.00	45.00	48,63
Ant _{5c}										
Ant on										
Standoff										
Ant on Standoff										
Ant on										
Tower										
Ant on										
Tower										

	ınt Azimuth		e)	_	muth (Degree)		I				Sector E					
	for Each Se	ctor		for Each	1 Sector	Ant _{1a}										
Sector A:	45.00	Deg	Leg A:		Deg	Ant _{1b}	LPA-80080-4CF	6.00	13.00	47.50		145.567	25.00	14.00	165.00	49,57
Sector B:	165.00	Deg	Leg B:		Deg	Ant _{1c}										
Sector C:	285.00	Deg	Leg C:		Deg	Ant _{2a}	B66a RRH 4X45	12.00	7.00	25.50		145.733	36.00	-7.00		50,59
Sector D:		Deg	Leg D:		Deg	Ant _{2b}	SBNHH-1D65B	12.00	7.00	73.00		145.733	36.00	8.50	165.00	50,58
		Clim	oing Fac	ility Information		Ant _{2c}										
Location:	22.00	Deg		N/A		Ant _{3a}	B13 RRH 4X30	12.00	7.50	20.50		145.858	11.00	-7.00		51,60
	Corros		e:	Good condition.		Ant _{3b}										
Climbing		cess:		Climbing path was u	nobstructed.	Ant _{3c}										
Facility		dition:		Good condition.	mobstracted.	Ant _{4a}	B25 RRH 4X30	12.00	7.50	20.50		145.733	36.00	-7.00		51,62
	Con	iuitioii.		Good collaition.			SBNHH-1D65B	12.00	7.00	73.00		145.733	36.00	8.50	165.00	51,62
						Ant _{4b}	2PINUU-TDQ2P	12.00	7.00	73.00		145.755	36.00	8.50	165.00	51,61
						Ant _{4c}										
						Ant _{5a}										
						Ant _{5b}	LPA-80080-4CF	6.00	13.00	47.50		145.567	25.00	14.00	165.00	52,63
						Ant _{5c}										
						Ant on Standoff										
						Ant on										
						Standoff										
						Ant on										
Plea	ise insert a p	hoto o	the mo	ount centerline measi	urement here.	Tower										
						Ant on										
						Tower					C1					
						A t		_		1	Sector C			1		
						Ant _{1a}		+								
						Ant _{1b}	LPA-80080-4CF	6.00	13.00	47.50		145.567	25.00	14.00	285.00	53,57
						Ant _{1c}										
						Ant _{2a}	B66a RRH 4X45	12.00	7.00	25.50		145.733	36.00	-7.00		54,59
						Ant _{2b}	SBNHH-1D65B	12.00	7.00	73.00		145.733	36.00	8.50	285.00	54,58
						Ant _{2c}										
			Π			Ant₃a	B13 RRH 4X30	12.00	7.50	20.50		145.858	11.00	-7.00		55,60
Г	4 4	1111	Шň	H		Ant _{3b}										
						Ant _{3c}										
			Щ			Ant _{4a}	B25 RRH 4X30	12.00	7.50	20.50		145.733	36.00	-7.00		55,61
1	T.	7	TH	THE OF EQUIPMENT	-	Ant _{4b}	SBNHH-1D65B	12.00	7.00	73.00		145.733	36.00	8.50	285.00	55,62
						Ant _{4c}										
Г			Шг	1 🗆	DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO LOWEST TIP OF ANT./EDPT. OF CARRIER ABOVE. (N/A IF > 10 FT.)	Ant _{5a}										
_			++++		(N/A IF > 10 FT.)	Ant _{5b}	LPA-80080-4CF	6.00	13.00	47.50		145.567	25.00	14.00	285.00	56,63
				L		Ant _{5c}		1								,
딕		TITI	7774	J	DISTANCE FROM TOP OF MAIN	Ant on										
EXISTING PLATFORM-					DISTANCE FROM TOP OF MAIN PLATFORM MEMBER TO HICHEST TIP OF ANT./EDIPT. OF GARRIER BELOW. (N/A IF > 10 FT.)	Standoff										
	д д	Ш	ــــــــــــــــــــــــــــــــــــــ	TIP OF EQUIPMENT		Ant on										
						Standoff										
						Ant on										
1				F P		Tower Ant on		1								
	7 4	Щ	111,0	J 4		Tower										
		FOR PLAT	FORMS					•		•	Sector D			•		
	7] _		,		Ant _{1a}										
ļ	-		₹ 1	1		Ant _{1b}										
						Ant _{1c}										
4	 _	;		1		Ant _{2a}										
u	T.		и	TIP OF EQUIPMENT	Ť	Ant _{2b}										
						Ant _{2c}										
Γ	7 [7		1 🗆	DISTANCE FROM TOP OF BOTTOM SUPPORT RAL TO LOWEST TIP OF ANT./EQPT. OF CARRIER ABOVE. (N/A IF > 10 FT.)	Ant _{3a}										
4			=	 -	(N/A IF > 10 FT.)											
					1	Ant _{3b}										
٩,	, 	J			NOTABLE EDIN TOO OF DOCUMENT	Ant _{3c}										
EXISTING SECTOR FIRM	AME—/				DISTANCE FROM TOP OF BOTTOM SUPPORT RAIL TO HIGHEST TIP OF ANTI/REIPT. OF CARRIER BELOW.	Ant _{4a}										
		K		TIP OF EQUIPMENT	(N/A IF > 10 FT.)	Ant _{4b}										
L	7 1	1	1	I STATE OF THE STA		Ant _{4c}										
			_	<u> </u>		Ant _{5a}										
						Ant _{5b}										
ď			/			Ant _{5c}										
-				1 -		Ant on										
For T &	/Dlatf		ade-	aged the!	a tha mait ! "	Standoff										
				cord the weld size from llar. See below for refe		Ant on Standoff										
//	. Lie plate bol			See selow for refer	//	Ant on										
//			_		_ //	Tower										
				·	~	Ant on										
77					//	Tower										

	Observed Safety and Structural Issues During the Mount Mapping									
Issue #	Description of Issue	Photo #								
1	TOWER INFO: MODEL/JOB: 04-10198, TOWER HEIGHT: 180 FT. MONO, LOCATION: ENFIELD, CT	16								
2										
3										
4										
5										
6										
7										
8										

Observed Obstructions to Tower Lighting System								
If the tower lighting system is being obst	If the tower lighting system is being obstructed by the carrier's equipment (for example: a light nested by the antennas), please provide photos and fill in the information below.							
Description of Obstruction:								
i i								
Type of Light:		Photo #		Additional Comments:				
Lighting Technology:		Photo #						
Elevation (AGL) at base of light (Ft.):		Photo #						
Is a service loop available?		Photo #						
Is beacon installed on an extension?		Photo #						

Mapping Notes

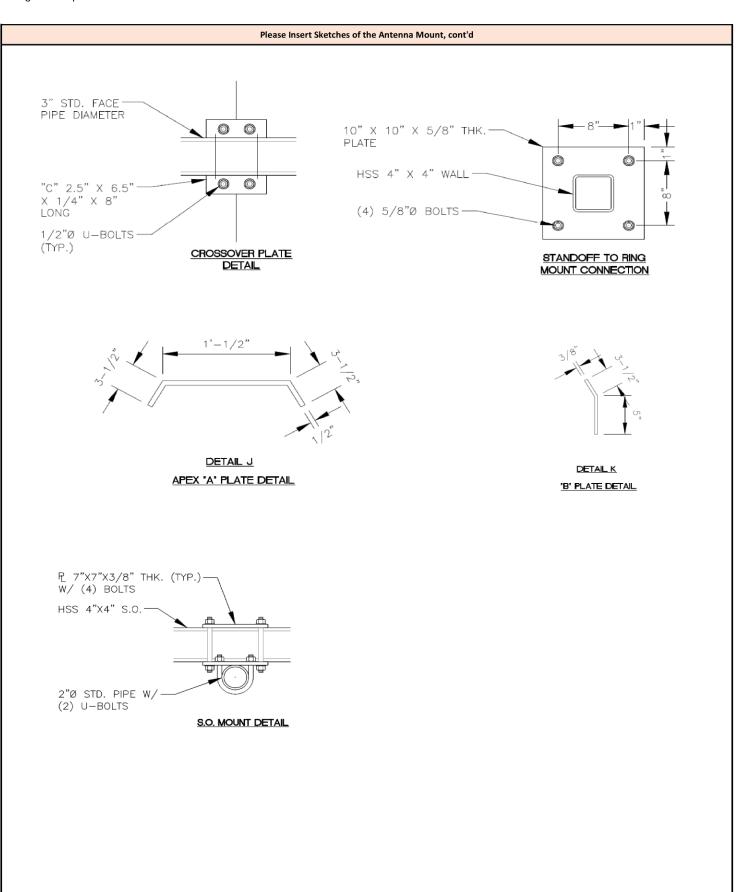
- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
- 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
- 6. Please measure and report the size and length of all existing antenna mounting pipes.
- 7. Please measure and report the antenna information for all sectors.
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

MASER

		V4.0	Updated on 3-31	-2021				
Antenna Mount Mapping Form (PATENT PENDING)								
Site Name:	SOMERS WEST CT	Tower Type:	Mono	pole				
Site Number or ID:	468121	Tower Height (Ft.):	18	30				
Mapping Contractor:	HUDSON DESIGN GROUP, LLC.	Mount Elevation (Ft.):	142	2.9				
				1 11				


This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

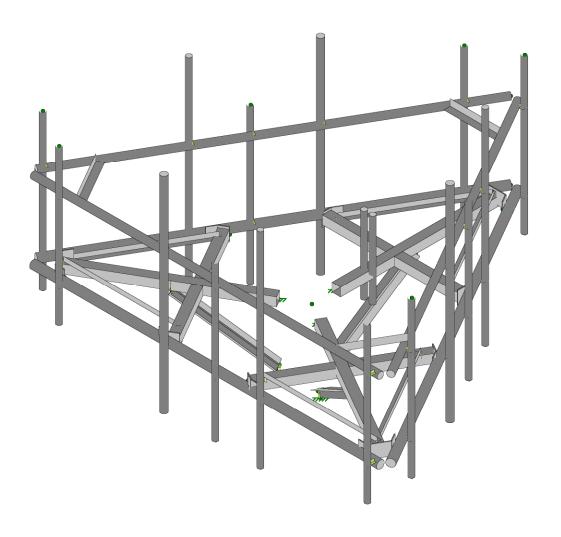
Please Insert Sketches of the Antenna Mount

7/21/2021

	IV	TOUNT	MAPPING	CHECK	LIST
CARRIER:	COLLIER	SITE #:		SITE NAME:	Somers West CT
DATE:	7/15/2021	MAPPED BY:	JC	SITE OWNER:	
DESC	RIPTION	STATUS	Value		Legend
A: <u>FACE PI</u> I	PE CONFIG.		ROUND MAST		
SIZE			3-1/2"		
LENGTH				**	\
B: <u>STAND</u>	OFF SIZE		4x4	7.	<u> </u>
C: <u>ANTENN</u>	IA PIPE MAST		1/8"		
DIA.			2-3/8"	- B	
LENGTH			6'-8'		
D: MONOF	POLE DIA.		23"		
E: <u>RINGM</u> C	DUNT		10"x 3/8"	8	1
F: <u>TOWER</u>	TO FACE		46"	70	
G: <u>TOWER</u>	TO APEX		85.5"		4-0
H: <u>HARDW</u>	'ARE		5/8"Ø		
: U-BOLTS	<u>S</u>		1/2"Ø		PLAN
J: <u>A PLATE</u>			6"x 3"x 12.5"x 1/2"		
K: B PLATE			6"x 5"x 3.5"x 3/8"	7	
L: ANGLE			2"X2"X3/16"	(->-)	Ĭ
M: MOUN	TING PLATE		10"x 10"x 5/8"		
N: ALPHA_I	POS 1		LPA-80080-4CF	1	
ALPHA <u>P</u>	OS 2		SBNHH-1D65B		C PRATIDOM CONTOLINE AZZI
ALPHA P	OS 3		B13 RRH 4x30	1	Ť
ALPHA <u>P</u>	OS 4		SBNHH-1D65B]	
ALPHA <u>P</u>	OS 5		LPA-80080-4CF		"a"
O: BETA P	OS 1		Same		
BETA <u>P</u>	<u>OS 2</u>				
BETA P	OS 3				ELEVATION
BETA P	OS 4				
BETA_P	OS 5				
P: GAMMA	N <u>POS 1</u>		Same		
GAMM	A <u>POS 2</u>				
GAMM/	A <u>POS 3</u>				
GAMM	A <u>POS 4</u>				
GAMM	A <u>POS 5</u>				
Q: <u>TMA</u>			0		
r: <u>radios</u>	i	2	9		
S: <u>SURGE</u>			2 OVPs		
T: <u>SECOND</u>	MOUNT		N/A		
COMMEN	ΓS:				FACE SKETCH

MASER

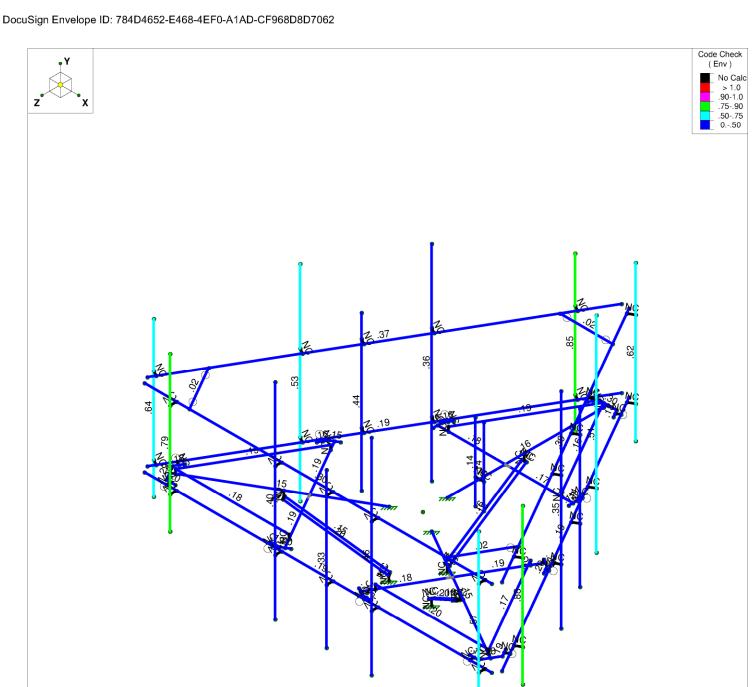
	Antenna Mount Mapping Form (PATENT PENDING)											
Tower Owner:	OTHER	Mapping Date:	7/15/	2021								
Site Name:	SOMERS WEST CT	Tower Type:	Mono	pole								
Site Number or ID:	468121	Tower Height (Ft.):	18	30								
Mapping Contractor:		Mount Elevation (Ft.):		2.9								


This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

			Pleas	e enter ii	nformation about transmission lines.									
Transmission Line Type (Pick from List)	Quantity	Diameter/Size (in.) Please add a description if using type "Other".	Located on Tower Face	Photo #	Additional Comments									
	All Sectors													
Coax	12	1-5/8"Ø	INSIDE	7-9,11										
Hybrid	2	1-1/4"Ø	INSIDE	7-9,11										

						mation about additional RF equipment.		
Equipment Type (Pick from List)	Quantity	Model Numbers if Known	Width (in.)	Depth (in.)	Height (in.)	Location	Photo #	Additional Comments
						Sector A		
RRU	1	B66a RRH 4X45	12.00	7.00	25.50	2" STD. PIPE X 96" LONG @ POS. 2	46,59	
RRU	1	B13 RRH 4X30	12.00	7.50	20.50	2" STD. PIPE X 72" LONG @ POS. 3	46,60	
RRU	1	B25 RRH 4X30	12.00	7.50	20.50	2" STD. PIPE X 96" LONG @ POS. 4	47,62	
OVP	1	RRFDC-3315-PF-48	15.00	10.00	28.00	MOUNTED TO STANDOFF	64,65	
						Sector B		
RRU	1	B66a RRH 4X45	12.00	7.00	25.50	2" STD. PIPE X 96" LONG @ POS. 2	50,59	
RRU	1	B13 RRH 4X30	12.00	7.50	20.50	2" STD. PIPE X 72" LONG @ POS. 3	51,60	
RRU	1	B25 RRH 4X30	12.00	7.50	20.50	2" STD. PIPE X 96" LONG @ POS. 4	51,62	
						Sector C		
RRU	1	B66a RRH 4X45	12.00	7.00	25.50	2" STD. PIPE X 96" LONG @ POS. 2	54,59	
RRU	1	B13 RRH 4X30	12.00	7.50	20.50	2" STD. PIPE X 72" LONG @ POS. 3	55,60	
RRU	1	B25 RRH 4X30	12.00	7.50	20.50	2" STD. PIPE X 96" LONG @ POS. 4	55,61	
OVP	1	RHSDC-3315-PF-48	15.00	10.00	28.00	MOUNTED TO STANDOFF	80,81	
341	<u> </u>		15.00	10.00	20.00	MOCKIES TO STANDOTT	55,61	

Equipment Type (Pick from List)	Quantity	Model Numbers if Known	Width (in.)	Depth (in.)	Height (in.)	Location	Photo #	Additional Comments
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(/	()	(/	Sector D		
						Ground Equipment		



Envelope Only Solution

Network Building + Consul
Project No. 10027976

SK	-	1	



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Network Building + Consul		SK - 2
	468121-VZW_MT_LO_H	Aug 11, 2021 at 3:50 PM
Project No. 10037876	Code Check	468121-VZW_MT_LO_H_mod.r3d

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Network Building	+ Consul
Project No. 10037	876

468121-VZW_MT_LO_H Shear Check SK - 3
Aug 11, 2021 at 3:50 PM
468121-VZW_MT_LO_H_mod.r3d

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Basic Load Cases

BLC Description Category X Gravity Y Gravity 2 Gravity Joint Point Distributed Area (Me Surface (P	<u> Bas</u>	ic Load Cases									
1 Antenna D None 1114		BLC Description	Category	X Gravity	Y Gravity	7 Gravity	Joint	Point	Distributed	Area(Me	Surface/P
2 Antenna Di None 114	1			/ Gravity	· Gravity		00		Diotributou	/ II GU(IVIGIII	Sanasa(i iii
3 Antenna Wo (00 Deg) None 1114											
4 Antenna Wo (30 Deg) None 114 1											
5											
6 Antenna Wo (120 Deg) None 114											
7 Antenna Wo (120 Deg)											
8 Antenna Wo (190 Deg) None 9 1114 114 114 114 114 114 114 114 114											
9 Antenna Wo (210 Deg) None 114		Antenna Wo (150 Deg)									
10 Antenna Wo (240 Deg) None 114		Antenna Wo (180 Deg)									
11 Antenna Wo (240 Deg) None	10	Antenna Wo (210 Deg)									
13 Antenna Wo (300 Deg)	11	Antenna Wo (240 Deg)	None					114			
14 Antenna Wo (330 Deg)	12	Antenna Wo (270 Deg)	None					114			
15 Antenna Wi (0 Deg) None None 114	13										
16	14		None								
17											
18 Antenna Wi (190 Deg) None 114											
19											
Antenna Wi (150 Deg)											
Antenna W (180 Deg)											
Antenna Wi (240 Deg)											
Antenna Wi (240 Deg)											
24 Antenna Wi (270 Deg) None 114 25 Antenna Wi (300 Deg) None 114 26 Antenna Wi (300 Deg) None 114 27 Antenna Wm (0 Deg) None 114 28 Antenna Wm (30 Deg) None 114 29 Antenna Wm (60 Deg) None 114 30 Antenna Wm (120 Deg) None 114 31 Antenna Wm (120 Deg) None 114 32 Antenna Wm (180 Deg) None 114 33 Antenna Wm (180 Deg) None 114 34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (270 Deg) None 114 36 Antenna Wm (270 Deg) None 114 37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (300 Deg) None 114 39 Structure Di None 114 30 Structure Di None 118 41<											
25 Antenna Wi (300 Deg) None 114 26 Antenna Wi (300 Deg) None 114 27 Antenna Wm (0 Deg) None 114 28 Antenna Wm (60 Deg) None 114 30 Antenna Wm (60 Deg) None 114 30 Antenna Wm (120 Deg) None 114 31 Antenna Wm (120 Deg) None 114 32 Antenna Wm (180 Deg) None 114 33 Antenna Wm (180 Deg) None 114 34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (300 Deg) None 114 37 Antenna Wm (330 Deg) None 114 38 Antenna Wm (330 Deg) None 114 39 Structure D None 118 41 Structure Wo (0 Deg) None 118 42 Structure Wo (0 Deg) None 118											
26 Antenna Wi (330 Deg) None 114 27 Antenna Wm (0 Deg) None 114 28 Antenna Wm (30 Deg) None 114 29 Antenna Wm (30 Deg) None 114 30 Antenna Wm (120 Deg) None 114 31 Antenna Wm (120 Deg) None 114 32 Antenna Wm (150 Deg) None 114 33 Antenna Wm (180 Deg) None 114 34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (240 Deg) None 114 37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (300 Deg) None 114 39 Structure D None 114 40 Structure Wo (0 Deg) None 118 41 Structure Wo (30 Deg) None 118 42 Structure Wo (60 Deg) None 118											
27 Antenna Wm (0 Deg) None 114 28 Antenna Wm (80 Deg) None 114 30 Antenna Wm (90 Deg) None 114 31 Antenna Wm (120 Deg) None 114 32 Antenna Wm (150 Deg) None 114 33 Antenna Wm (180 Deg) None 114 34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (270 Deg) None 114 37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (300 Deg) None 114 39 Structure D None 114 40 Structure Di None 59 3 41 Structure Wo (0 Deg) None 118 42 Structure Wo (60 Deg) None 118 43 Structure Wo (60 Deg) None 118 45 Structure Wo (60 Deg) None 118											
28 Antenna Wm (30 Deg) None 114 29 Antenna Wm (60 Deg) None 114 30 Antenna Wm (120 Deg) None 114 31 Antenna Wm (120 Deg) None 114 32 Antenna Wm (150 Deg) None 114 33 Antenna Wm (180 Deg) None 114 34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (270 Deg) None 114 37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (300 Deg) None 114 39 Structure D None 114 40 Structure D None 59 3 41 Structure Wo (0 Deg) None 118 42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 45 Structure Wo (150 D None 118											
29 Antenna Wm (60 Deg) None 114											
30 Antenna Wm (90 Deg) None 114											
31 Antenna Wm (120 Deg) None 114 32 Antenna Wm (150 Deg) None 114 33 Antenna Wm (210 Deg) None 114 34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (240 Deg) None 114 37 Antenna Wm (270 Deg) None 114 38 Antenna Wm (300 Deg) None 114 38 Antenna Wm (300 Deg) None 114 39 Structure D None 114 39 Structure D None 114 30 30 30 30 30 30 30 3											
32 Antenna Wm (150 Deg) None											
33 Antenna Wm (180 Deg) None											
34 Antenna Wm (210 Deg) None 114 35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (270 Deg) None 114 37 Antenna Wm (330 Deg) None 114 38 Antenna Wm (330 Deg) None 114 39 Structure D None 59 3 40 Structure Di None 118 4 41 Structure Wo (0 Deg) None 118 4 42 Structure Wo (60 Deg) None 118 4 43 Structure Wo (60 Deg) None 118 4 44 Structure Wo (60 Deg) None 118 4 45 Structure Wo (120 D None 118 4 45 Structure Wo (150 D None 118 4 47 Structure Wo (210 D None 118 4 49 Structure Wo (20 D None 118 4 50 Structure Wo (240 D											
35 Antenna Wm (240 Deg) None 114 36 Antenna Wm (270 Deg) None 114 37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (300 Deg) None 114 39 Structure D None -1 3 3 3 3 3 3 3 3 3											
36 Antenna Wm (270 Deg) None 114 37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (330 Deg) None 114 39 Structure D None 59 40 Structure Wo (0 Deg) None 118 41 Structure Wo (0 Deg) None 118 42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 44 Structure Wo (90 Deg) None 118 45 Structure Wo (120 D None 118 45 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (300 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (30 Deg) None 118 </td <td></td>											
37 Antenna Wm (300 Deg) None 114 38 Antenna Wm (330 Deg) None 114 39 Structure D None -1 40 Structure Wo (0 Deg) None 59 41 Structure Wo (0 Deg) None 118 42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 45 Structure Wo (90 Deg) None 118 45 Structure Wo (120 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (300 D None 118 53 Structure Wi (30 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
38 Antenna Wm (330 Deg) None 114 39 Structure D None -1 40 Structure Di None 59 41 Structure Wo (0 Deg) None 118 42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 44 Structure Wo (90 Deg) None 118 45 Structure Wo (120 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (30 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
Structure D											
40 Structure Di None 59 3 41 Structure Wo (0 Deg) None 118 42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 44 Structure Wo (120 D None 118 45 Structure Wo (120 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118					-1					3	
41 Structure Wo (0 Deg) None 118 42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 44 Structure Wo (120 D None 118 45 Structure Wo (150 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (210 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (300 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118									59	3	
42 Structure Wo (30 Deg) None 118 43 Structure Wo (60 Deg) None 118 44 Structure Wo (120 D None 118 45 Structure Wo (120 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (300 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
43 Structure Wo (60 Deg) None 118 44 Structure Wo (120 D None 118 45 Structure Wo (150 D None 118 46 Structure Wo (180 D None 118 47 Structure Wo (210 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
44 Structure Wo (90 Deg) None 118 45 Structure Wo (120 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
45 Structure Wo (120 D None 118 46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118		Structure Wo (90 Deg)									
46 Structure Wo (150 D None 118 47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
47 Structure Wo (180 D None 118 48 Structure Wo (210 D None 118 49 Structure Wo (240 D None 118 50 Structure Wo (300 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118	46	Structure Wo (150 D									
49 Structure Wo (240 D None 118 50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118	47	Structure Wo (180 D									
50 Structure Wo (270 D None 118 51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118	48	Structure Wo (210 D									
51 Structure Wo (300 D None 118 52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
52 Structure Wo (330 D None 118 53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
53 Structure Wi (0 Deg) None 118 54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
54 Structure Wi (30 Deg) None 118 55 Structure Wi (60 Deg) None 118											
55 Structure Wi (60 Deg) None 118											
56 Structure Wi (90 Deg) None 118											
	56	Structure Wi (90 Deg)	None						118		

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed A	Area(Me	Surface(P
57	Structure Wi (120 De	None	·	·	·			118	,	,
58	Structure Wi (150 De	None						118		
59	Structure Wi (180 De	None						118		
60	Structure Wi (210 De	None						118		
61	Structure Wi (240 De	None						118		
62	Structure Wi (270 De	None						118		
63	Structure Wi (300 De	None						118		
64	Structure Wi (330 De	None						118		
65	Structure Wm (0 Deg)	None						118		
66	Structure Wm (30 De	None						118		
67	Structure Wm (60 De	None						118		
68	Structure Wm (90 De	None						118		
69	Structure Wm (120 D	None						118		
70	Structure Wm (150 D	None						118		
71	Structure Wm (180 D	None						118		
72	Structure Wm (210 D	None						118		
73	Structure Wm (240 D	None						118		
74	Structure Wm (270 D	None						118		
75	Structure Wm (300 D	None						118		
76	Structure Wm (330 D	None						118		
77	Lm1	None					2			
78	Lm2	None					2			
79	Lv1	None					2			
80	Lv2	None					2			
81	BLC 39 Transient Are	None						15		
82	BLC 40 Transient Are	None						15		

Load Combinations

	Description	So	P	S	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLCF	-ac
1	1.2D+1.0Wo (0 Deg)	Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Υ		1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)	Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)	Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)	Yes	Υ		1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210 Deg)	Yes	Υ		1	1.2	39	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)	Yes	Υ		1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)				1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)	Yes	Υ		1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)	Yes	Υ		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0	Yes	Υ		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (3	Yes	Υ		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (6	Yes	Υ		1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (9	Yes	Υ		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (1	Yes	Υ		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (2	Yes	Υ		1	1.2	39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (2	Yes	Υ		1	1.2	39	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (2				1	1.2	39	1.2	2	1	40	1	24	1	62	1								
23	1.2D + 1.0Di + 1.0Wi (3	Yes	Υ		1	1.2	39	1.2	2	1	40	1	25	1	63	1								
24	1.2D + 1.0Di + 1.0Wi (3				1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1	1.2	39	1.2	77	1.5	27	1_	65	1_										
26	1.2D + 1.5Lm1 + 1.0W	Yes	Υ		1	1.2	39	1.2	77	1.5	28	1	66	1										

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Load Combinations (Continued)

	Description Sc	D S	DI C	Eac		Eac	DI C	Eac	DI C	E00	DI C	Eac	DI CEss	, DIC	Eag E	II C E	o D	I CE	oo Bi	.CFac
27	1.2D + 1.5Lm1 + 1.0W Ye		1				77			1	67		DLOI ac		1 ac	טבטו פ	د	LOI	acbl	.01 ac
28	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5		1	68									
29	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5	31	i	69									
30	1.2D + 1.5Lm1 + 1.0W Ye		_	1.2				1.5		1	70									
31	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5		i	71	i								
32	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5		1	72	<u>i</u>								
33	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5		1	73	1								
34	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2			77			1	74	1								
35	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5		1	75	1								
36	1.2D + 1.5Lm1 + 1.0W Ye		1	1.2				1.5		1	76	1								
37	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2				1.5	27	1	65	1								
38	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2				1.5		1	66	1								
39	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2				1.5		1	67	1								
40	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1				78			1	68	1								
41	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2			78			1	69									
42	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2			78			1	70	1								
43	1.2D + 1.5Lm2 + 1.0W Ye		1	1.2			78			1	71	1								
44	1.2D + 1.5Lm2 + 1.0W Ye		1	1.2	39	1.2	78	1.5	34	1	72	1								
45	1.2D + 1.5Lm2 + 1.0W Ye		1	1.2	39	1.2	78	1.5	35	1	73	1								
46	1.2D + 1.5Lm2 + 1.0W Ye		1	1.2	39	1.2	78	1.5	36	1	74	1								
47	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2	39	1.2	78	1.5	37	1	75	1								
48	1.2D + 1.5Lm2 + 1.0W Ye	s Y	1	1.2	39	1.2	78	1.5	38	1	76	1								
49	1.2D + 1.5Lv1 Ye	s Y	1	1.2	39	1.2	79	1.5												
50	1.2D + 1.5Lv2 Ye	s Y	1	1.2	39	1.2	80	1.5												
51		s Y	1	1.4		1.4														
52	Seismic Mass	Y	1	1	39	1														
53	1.2D + 1.0Ev + 1.0Eh (Υ	1_	1.2					SY	1	SZ									
54	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2					SY	1_		866								
55	1.2D + 1.0Ev + 1.0Eh (Υ	1_	1.2			SX			1		5								
56	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2					SY	1_	SZ									
57	1.2D + 1.0Ev + 1.0Eh (Υ	1				SX			_1_	SZ									
58	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2				.5		1_		.866								
59	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2					SY	1	SZ	_1_								
60	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2			SX			1		.866								
61	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2			SX			1_	SZ	.5								
62	1.2D + 1.0Ev + 1.0Eh (Y	1	1.2				-1		1_	SZ									
63	1.2D + 1.0Ev + 1.0Eh (Υ	1	1.2			SX			1	SZ									
64	1.2D + 1.0Ev + 1.0Eh (Y	1	1.2	39	1.2	SX	5	SY	1	SZ	866								

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N14	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N3	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N21	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N204A						
5	N205A						
6	N206A	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
7	N207A						
8	N208A						
9	N209						
10	N210						
11	N211						
12	N213						
13	N214						
14	N215	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Joint Boundary Conditions (Continued)

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
15	N216			-	•		
16	N217						
17	N218						
18	N219						
19	N220						
20	N222						
21	N223						
22	N224	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
23	N225						
24	N226						
25	N227						
26	N228						
27	N229						

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Ru	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Grating Suppo	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
2	T Support HSS	HSS4X4X4	Column	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8
3	Mount Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
4	Upper Horizon	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
5	Lower Horizont	PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
6	Monopole Sup	HSS4X4X4	Beam	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8
7	Lower Connec	PL3/8x6	Beam	RECT	A36 Gr.36	Typical	2.25	.026	6.75	.101
8	Upper Connec	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011
9	Upper Connec	PL3/8x6	Beam	RECT	A36 Gr.36	Typical	2.25	.026	6.75	.101
10	New MP	PIPE_2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
11	SupportrailPipe	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
12	SupportRailAn	L3X3X6	Beam	Single Angle	A36 Gr.36	Typical	2.11	1.75	1.75	.101
13	Kicker	L3X3X3	Beam	Single Angle	A36 Gr.36	Typical	1.09	.948	.948	.014

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M4	N3	N4		, ,,,	Monopole Support	Beam	Tube	A500 Gr.B.	
2	M5	N10	N9			Lower Connection	Beam	RECT	A36 Gr.36	Typical
3	M6	N10	N11			Lower Connection	Beam	RECT	A36 Gr.36	Typical
4	M7	N9	N13			Lower Connection	Beam	RECT	A36 Gr.36	Typical
5	M9	N17	N18			Lower Connection	Beam	RECT	A36 Gr.36	Typical
6	M10	N17	N16			Lower Connection	Beam	RECT	A36 Gr.36	Typical
7	M11	N14	N15			Monopole Support	Beam	Tube	A500 Gr.B.	- Typical
8	M13	N16	N19			Lower Connection	Beam	RECT	A36 Gr.36	
9	M20	N25	N26			Lower Connection	Beam	RECT	A36 Gr.36	Typical

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Primary Data (Continued)

	l abal		Lloint		Detete(dea)	Castian/Chana	T. 42.0	Decima List	Motorial	Decise Dules
10	Label M21	I Joint N25	J Joint N24	K Joint	Rotate(deg)	Section/Shape Lower Connection	Type Beam	Design List RECT	Material A36 Gr.36	Design Rules Typical
11	M22	N21	N23			Monopole Support		Tube	A500 Gr.B.	
12	M24	N24	N27			Lower Connection		RECT	A36 Gr.36	Typical
13	M34	N34	N33			T Support HSS			A500 Gr.B.	
14	M36	N37	N36			Lower Horizontal	Beam	Pipe	A53 Gr.B	Typical
15	M37	N38	N39			Lower Horizontal	Beam	Pipe	A53 Gr.B	
16	M38	N40	N41			Lower Horizontal	Beam	Pipe	A53 Gr.B	
17	M40	N50	N183			T Support HSS		Tube	A500 Gr.B.	
18	M41	N52	N185			T Support HSS			A500 Gr.B.	
19	MP4A	N60	N63			New MP	Column	Pipe	A53 Gr.B	Typical
20	M46	N61	N56			RIGID	None	None	RIGID	Typical
21	M48	N58	N66			RIGID	None	None	RIGID	Typical
22	MP3A	N67	N64				Column		A53 Gr.B	Typical
23	MP2A	N71	N70			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
24	M52	N69	N73			RIGID	None	None	RIGID	Typical
25	MP1A	N77	N76			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
26	M55	N75	N79			RIGID	None	None	RIGID	Typical
27	M95	N132	N133			RIGID	None	None	RIGID	Typical
28	M96	N134	N135			RIGID	None	None	RIGID	Typical
29	M97	N137	N138			RIGID	None	None	RIGID	Typical
30	M98	N139	N140			RIGID	None	None	RIGID	Typical
31	M99	N141	N142			RIGID	None	None	RIGID	Typical
32	M100	N143	N144			RIGID	None	None	RIGID	Typical
33	M103	N147	N145			Grating Support A	Beam	Single Angle		Typical
34	M104	N147	N146			RIGID	None	None	RIGID	Typical
35	M105	N145	N136			RIGID	None	None	RIGID	Typical
36	M106	N149	N148			RIGID	None	None	RIGID	Typical
37	M107	N145	N149			Grating Support A	Beam	Single Angle		Typical
38	M111	N154	N155			RIGID	None	None	RIGID	Typical
39	M116	N160	N161			RIGID	None	None	RIGID	Typical
40	M151	N196	N195			RIGID	None	None	RIGID	Typical
41	M152	N198	N197			RIGID	None	None	RIGID	Typical
42	M154	N154	N196			Grating Support A	Beam	Single Angle		Typical
43	M157	N198	N154			Grating Support A	Beam	Single Angle		Typical
44	M159	N200	N199			RIGID	None	None	RIGID	Typical
45	M160	N202	N201			RIGID	None	None	RIGID	Typical
46	M162	N160	N200			Grating Support A		Single Angle		Typical
47	M165	N202	N160			Grating Support A	Beam	Single Angle	A36 Gr.36	Typical
48	M175	N189	N184			Lower Connection		RECT	A36 Gr.36	Typical
49	M176	N204	N203			Lower Connection		RECT	A36 Gr.36	Typical
50	M177	N157	N158			Lower Connection	Beam	RECT	A36 Gr.36	Typical
51	M178	N159	N162			Lower Connection	Beam	RECT	A36 Gr.36	Typical
52	M179	N163	N164			Lower Connection	Beam	RECT	A36 Gr.36	Typical
53	M180	N165	N166			Lower Connection	Beam	RECT	A36 Gr.36	Typical
54	M183	N157	N168			Lower Connection	Beam	RECT	A36 Gr.36	Typical
55	M184	N165	N167			Lower Connection	Beam	RECT	A36 Gr.36	Typical
56	M185	N169	N170			RIGID	None	None	RIGID	Typical
57	M186	N171	N172			RIGID	None	None	RIGID	Typical
58	M187	N177	N178			RIGID	None	None	RIGID	Typical
59	M188	N163	N173			Lower Connection	Beam	RECT	A36 Gr.36	Typical
60	M189	N204	N174			Lower Connection	Beam	RECT	A36 Gr.36	Typical
61	M190	N175	N176			RIGID	None	None	RIGID	Typical
62	M191	N207	N208			RIGID	None	None	RIGID	Typical
63	M192	N189	N179			Lower Connection	Beam	RECT	A36 Gr.36	Typical
64	M193	N159	N194			Lower Connection	Beam	RECT	A36 Gr.36	Typical
65	M194	N205	N206			RIGID	None	None	RIGID	Typical
66	M108	N183	N51			T Support HSS	Column	Tube	A500 Gr.B.	Typical

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Primary Data (Continued)

	Label	l Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
67	M109	N185	N53		. 0/	T Support HSS			A500 Gr.B.	
68	M110	N33	N35			T Support HSS	Column	Tube	A500 Gr.B.	 Typical
69	MP5A	N112	N114			Mount Pipe	Column	Pipe	A53 Gr.B	
70	M70	N113	N111			RIGID	None	None	RIGID	Typical
71	MP4C	N116	N118			New MP	Column	Pipe	A53 Gr.B	Typical
72	M72	N117	N115			RIGID	None	None	RIGID	Typical
73	M73	N119	N121			RIGID	None	None	RIGID	Typical
74	MP3C	N122	N120				Column	Pipe	A53 Gr.B	Typical
75	MP2C	N125	N124			Mount Pipe	Column		A53 Gr.B	
76	M76	N123	N126			RIGID	None	None	RIGID	Typical
77	MP1C	N129	N128			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
78	M78	N127	N130			RIGID	None	None	RIGID	Typical
79	MP5C	N132A	N134A			Mount Pipe	Column		A53 Gr.B	
80	M80	N133A	N131			RIGID	None	None	RIGID	Typical
81	MP4B	N136A	N138A			New MP	Column		A53 Gr.B	
82	M82	N137A	N135A			RIGID	None	None	RIGID	Typical
83	M83	N139A	N141A			RIGID	None	None	RIGID	Typical
84	MP3B	N142A	N140A				Column	Pipe	A53 Gr.B	Typical
85	MP2B	N145A	N144A			Mount Pipe	Column		A53 Gr.B	
86	M86	N143A	N146A			RIGID	None	None	RIGID	Typical
87	MP1B	N149A	N148A			Mount Pipe	Column		A53 Gr.B	
88	M88	N147A	N150			RIGID	None	None	RIGID	Typical
89	MP5B	N152	N154A			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
90	M90	N153	N151			RIGID	None	None	RIGID	Typical
91	OVP2	N161A	N159A			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
92	OVP1	N160A	N158A				Column		A53 Gr.B	
93	M93	N157A	N155A			RIGID	None	None	RIGID	Typical
94	M94	N156	N155A				None	None	RIGID	Typical
95 96	M95A M96A	N163A N164A	N162A N165A			SupportrailPipe			A53 Gr.B A53 Gr.B	
97	M97A	N166A	N167A			SupportrailPipe SupportrailPipe		Pipe Pipe	A53 Gr.B	
98	M98A	N169A	N168A			RIGID	None	None	RIGID	Typical
99	M99A	N170A	N171A			RIGID	None	None	RIGID	Typical
100	M100A	N170A	N173A			RIGID	None	None	RIGID	Typical
101	M101	N174A	N175A			RIGID	None	None	RIGID	Typical
102	M102	N177A	N176A			RIGID	None	None	RIGID	Typical
103	M103A	N179A	N178A			RIGID	None	None	RIGID	Typical
104	M104A	N180	N181			RIGID	None	None	RIGID	Typical
105	M105A	N182	N183A			RIGID	None	None	RIGID	Typical
106	M106A	N184A	N185A			RIGID	None	None	RIGID	Typical
107	M107A	N187	N186			RIGID	None	None	RIGID	Typical
108	M108A	N189A	N188			RIGID	None	None	RIGID	Typical
109	M109A	N190	N191			RIGID	None	None	RIGID	Typical
110	M110A	N192	N193			RIGID	None	None	RIGID	Typical
111	M111A	N194A	N195A			RIGID	None	None	RIGID	Typical
112	M112	N197A	N196A			RIGID	None	None	RIGID	Typical
113	M113	N198A	N203A			SupportRailAngle	Beam	Single Angle		Typical
114	M114	N202A	N201A			SupportRailAngle	Beam	Single Angle		Typical
115	M115	N200A	N199A			SupportRailAngle	Beam	Single Angle		Typical
116	M116A	N207A	N206A			RIGID	None	None	RIGID	Typical
117	M117	N211	N207A			RIGID	None	None	RIGID	Typical
118	M118	N209	N207A			RIGID	None	None	RIGID	Typical
119	M119	N210	N205A			RIGID	None	None	RIGID	Typical
120	M120	N205A	N208A			RIGID	None	None	RIGID	Typical
121	M121	N205A	N204A			RIGID	None	None	RIGID	Typical
122	M122	N211	N210		180	Kicker	Beam	Single Angle	A36 Gr.36	Typical
123	M123	N209	N208A		90	Kicker	Beam	Single Angle	A36 Gr.36	Typical

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
124	M124	N216	N215			RIGID	None	None	RIGID	Typical
125	M125	N220	N216			RIGID	None	None	RIGID	Typical
126	M126	N218	N216			RIGID	None	None	RIGID	Typical
127	M127	N219	N214			RIGID	None	None	RIGID	Typical
128	M128	N214	N217			RIGID	None	None	RIGID	Typical
129	M129	N214	N213			RIGID	None	None	RIGID	Typical
130	M130	N220	N219		180	Kicker	Beam	Single Angle	A36 Gr.36	Typical
131	M131	N218	N217		90	Kicker	Beam	Single Angle	A36 Gr.36	Typical
132	M132	N225	N224			RIGID	None	None	RIGID	Typical
133	M133	N229	N225			RIGID	None	None	RIGID	Typical
134	M134	N227	N225			RIGID	None	None	RIGID	Typical
135	M135	N228	N223			RIGID	None	None	RIGID	Typical
136	M136	N223	N226			RIGID	None	None	RIGID	Typical
137	M137	N223	N222			RIGID	None	None	RIGID	Typical
138	M138	N229	N228		180	Kicker	Beam	Single Angle	A36 Gr.36	Typical
139	M139	N227	N226		90	Kicker	Beam	Single Angle	A36 Gr.36	

Member Advanced Data

	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M4					•	Yes	Default	•		None
2	M5						Yes	Default			None
3	M6						Yes	Default			None
4	M7						Yes	Default			None
5	M9						Yes	Default			None
6	M10						Yes	Default			None
7	M11						Yes	Default			None
8	M13						Yes	Default			None
9	M20						Yes	Default			None
10	M21						Yes	Default			None
11	M22						Yes	Default			None
12	M24						Yes	Default			None
13	M34				2		Yes	** NA **			None
14	M36						Yes	Default			None
15	M37						Yes	Default			None
16	M38						Yes	Default			None
17	M40				2		Yes	** NA **			None
18	M41				2		Yes	** NA **			None
19	MP4A						Yes	** NA **			None
20	M46						Yes	** NA **			None
21	M48						Yes	** NA **			None
22	MP3A						Yes	** NA **			None
23	MP2A						Yes	** NA **			None
24	M52						Yes	** NA **			None
25	MP1A						Yes	** NA **			None
26	M55						Yes	** NA **			None
27	M95	00000X					Yes	** NA **			None
28	M96	00000X					Yes	** NA **			None
29	M97	00000X					Yes	** NA **			None
30	M98	00000X					Yes	** NA **			None
31	M99	00000X					Yes	** NA **			None
32	M100	00000X					Yes	** NA **			None
33	M103						Yes	Default	+У		None
34	M104						Yes	** NA **			None
35	M105						Yes	** NA **			None
36	M106						Yes	** NA **			None

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Advanced Data (Continued)

mom	Label	l Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
37	M107	Thelease	o Helease	TOnsetini	o Onsetini	170 Offig	Yes	Default		mactive	None
38	M111						Yes	** NA **			None
39	M116						Yes	** NA **			None
40	M151						Yes	** NA **			None
41	M152						Yes	** NA **			None
42	M154						Yes	Default			None
43	M157						Yes	Default			None
44	M159						Yes	** NA **			None
45	M160						Yes	** NA **			None
46	M162						Yes	Default	+y		None
47	M165						Yes	Default			None
48	M175						Yes	Default			None
49	M176						Yes	Default			None
50	M177						Yes	Default			None
51	M178						Yes	Default			None
52	M179						Yes	Default			None
53	M180						Yes	Default			None
54	M183						Yes	Default			None
55	M184						Yes	Default			None
56	M185	00000X					Yes	** NA **			None
57	M186	00000X					Yes	** NA **			None
58	M187	00000X					Yes	** NA **			None
59	M188						Yes	Default			None
60	M189	00000					Yes	Default			None
61	M190	00000X					Yes	** NA **			None
62	M191	00000X					Yes	** NA **			None
63	M192						Yes	Default			None
64	M193	00000					Yes	Default			None
65	M194	00000X		0			Yes	** NA **			None
66	M108			2			Yes	** NA ** ** NA **			None
67 68	M109 M110			2			Yes Yes	** NA **			None
69	MP5A						Yes	** NA **			None None
70	M70						Yes	** NA **			None
71	MP4C						Yes	** NA **			None
72	M72						Yes	** NA **			None
73	M73						Yes	** NA **			None
74	MP3C						Yes	** NA **			None
75	MP2C						Yes	** NA **			None
76	M76						Yes	** NA **			None
77	MP1C						Yes	** NA **			None
78	M78						Yes	** NA **			None
79	MP5C						Yes	** NA **			None
80	M80						Yes	** NA **			None
81	MP4B						Yes	** NA **			None
82	M82						Yes	** NA **			None
83	M83						Yes	** NA **			None
84	MP3B						Yes	** NA **			None
85	MP2B						Yes	** NA **			None
86	M86						Yes	** NA **			None
87	MP1B						Yes	** NA **			None
88	M88						Yes	** NA **			None
89	MP5B						Yes	** NA **			None
90	M90						Yes	** NA **			None
91	OVP2						Yes	** NA **			None
92	OVP1						Yes	** NA **			None
93	M93						Yes	** NA **			None

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Advanced Data (Continued)

Label Jelease Jelease I Offset[in] J Offset[in] T/C Only Physical Delf RatAnalysis Inactive	Seismic
96 M96A 97 M97A 98 M98A 99 M99A 99 M99A 99 M99A 90 M100A 97 98 98 98 98 98 98 98	None
97 M97A 98 M98A 99 M99A 9 Yes "NA" 98 M98A 99 M99A 9 Yes "NA" 98 M91A 9 Yes "NA" 98 M99A 9 Yes "NA" 99 M109A 9 W109A 9	None
98 M98A 99 M99A 1	None
99 M99A	None
100 M100A	None
101 M101 M102 M102 M102 M103A M103A M103A M103A M104A M104A M104A M105A M105A M105A M105A M107A M1	None
102 M102	None
103 M103A	None
104 M104A	None
105 M105A	None
106 M106A	None
107 M107A	None
108 M108A	None
109 M109A	None
110	None
111 M111A Yes ** NA ** 112 M112 Yes ** NA ** 113 M113 BenPIN Yes 114 M114 BenPIN Yes 115 M115 BenPIN Yes 116 M116A Yes ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
112 M112 Yes ** NA ** 113 M113 BenPIN Yes ** NA ** 114 M114 BenPIN BenPIN Yes Default 115 M115 BenPIN Yes ** NA ** 116 M116A Yes ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes ** NA **	None
113 M113 BenPIN BenPIN Yes 114 M114 BenPIN BenPIN Yes 115 M115 BenPIN Yes Default 116 M116A Yes ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes ** NA **	None
113 M113 BenPIN BenPIN Yes 114 M114 BenPIN BenPIN Yes 115 M115 BenPIN Yes Default 116 M116A Yes ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes ** NA **	None
115 M115 BenPIN BenPIN Yes Default 116 M116A Yes ** NA ** ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes ** NA **	None
116 M116A Yes ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes ** NA **	None
116 M116A Yes ** NA ** 117 M117 Yes ** NA ** 118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes ** NA **	None
118 M118 Yes ** NA ** 119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
119 M119 Yes ** NA ** 120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
120 M120 Yes ** NA ** 121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
121 M121 Yes ** NA ** 122 M122 Yes ** NA ** 123 M123 Yes ** NA ** 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
122 M122 Yes 123 M123 Yes 124 M124 Yes 125 M125 Yes 126 M126 Yes 127 M127 Yes 128 M128 Yes 129 M129 Yes 130 M130 Yes	None
123 M123 Yes 124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
124 M124 Yes ** NA ** 125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
125 M125 Yes ** NA ** 126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
126 M126 Yes ** NA ** 127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
127 M127 Yes ** NA ** 128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
128 M128 Yes ** NA ** 129 M129 Yes ** NA ** 130 M130 Yes	None
129 M129 130 M130 Yes ** NA **	None
130 M130 Yes	None
130 M130 Yes	None
	None
131 M131 Yes Yes	None
132 M132 Yes ** NA **	None
133 M133 Yes ** NA **	None
134 M134 Yes ** NA **	None
135 M135 Yes ** NA **	None
136 M136 Yes ** NA **	None
137 M137 Yes ** NA **	None
138 M138 Yes	None
139 M139 Yes	None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	Υ	-84.4	60
2	MP4A	My	.042	60
3	MP4A	Mz	0	60
4	MP4B	Υ	-84.4	60
5	MP4B	My	021	60
6	MP4B	Mz	.037	60

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
7	MP4C	Υ	-84.4	60
8	MP4C	My	021	60
9	MP4C	Mz	037	60
10	MP1B	Υ	-6	12
11	MP1B	My	.002	12
12	MP1B	Mz	004	12
13	MP1B	Υ	-6	48
14	MP1B	My	.002	48
15	MP1B	Mz	004	48
16	MP1C	Υ	-6	12
17	MP1C	My	.002	12
18	MP1C	Mz	.004	12
19	MP1C	Υ	-6	48
20	MP1C	My	.002	48
21	MP1C	Mz	.004	48
22	MP5B	Υ	-6	12
23	MP5B	My	.002	12
24	MP5B	Mz	004	12
25	MP5B	Υ	-6	48
26	MP5B	My	.002	48
27	MP5B	Mz	004	48
28	MP5C	Υ	-6	12
29	MP5C	My	.002	12
30	MP5C	Mz	.004	12
31	MP5C	Υ	-6	48
32	MP5C	My	.002	48
33	MP5C	Mz	.004	48
34	MP1A	Υ	-6	12
35	MP1A	My	004	12
36	MP1A	Mz	0	12
37	MP1A	Υ	-6	48
38	MP1A	My	004	48
39	MP1A	Mz	0	48
40	MP5A	Υ	-6	12
41	MP5A	My	004	12
42	MP5A	Mz	0	12
43	MP5A	Υ	-6	48
44	MP5A	My	004	48
45	MP5A	Mz	0	48
46	MP4A	Υ	-20	12
47	MP4A	My	015	12
48	MP4A	Mz	013	12
49	MP4A	Υ	-20	66
50	MP4A	My	015	66
51	MP4A	Mz	013	66
52	MP4B	Υ	-20	12
53	MP4B	My	015	12
54	MP4B	Mz	013	12
55	MP4B	Y	-20	66
56	MP4B	My	015	66
57	MP4B	Mz	013	66
58	MP4C	Y	-20	12
59	MP4C	My	015	12
60	MP4C	Mz	013	12
61	MP4C	Υ	-20	66
62	MP4C	My	015	66
63	MP4C	Mz	013	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
64	MP4A	Υ	-20	12
65	MP4A	My	015	12
66	MP4A	Mz	.013	12
67	MP4A	Y	-20	66
68	MP4A	My	015	66
69	MP4A	Mz	.013	66
70	MP4B	Υ	-20	12
71	MP4B	My	015	12
72	MP4B	Mz	.013	12
73	MP4B	Υ	-20	66
74	MP4B	My	015	66
75	MP4B	Mz	.013	66
76	MP4C	Υ	-20	12
77	MP4C	My	015	12
78	MP4C	Mz	.013	12
79	MP4C	Y	-20	66
80	MP4C	My	015	66
81	MP4C	Mz	.013	66
82	OVP1	Υ	-32	6
83	OVP1	My	0	6
84	OVP1	Mz	0	6
85	OVP2	Y	-32	6
86	OVP2	My	0	6
87	OVP2	Mz	0	6
88	MP2A	Y	-43.55	36
89	MP2A	My	029	36
90	MP2A	Mz	0	36
91	MP2A	Y	-43.55	60
92	MP2A	My	029	60
93	MP2A	Mz	0	60
94	MP2B	Υ	-43.55	36
95	MP2B	My	.015	36
96	MP2B	Mz	025	36
97	MP2B	Y	-43.55	60
98	MP2B	My	.015	60
99	MP2B	Mz	025	60
100	MP2C	Y	-43.55	36
101	MP2C	My	.015	36
102	MP2C	Mz	.025	36
103	MP2C	Y	-43.55	60
104	MP2C	My	.015	60
105	MP2C	Mz	.025	60
106	MP4A	Y	-70.3	36
107	MP4A	My	.035	36
108	MP4A	Mz	0	36
109	MP4B	Y	-70.3	36
110	MP4B	My	018	36
111	MP4B	Mz	.03	36
112	MP4C	Y	-70.3	36
113	MP4C	My	018	36
114	MP4C	Mz	03	36

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	Υ	-72.337	60
2	MP4A	My	.036	60

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
3	MP4A	Mz	0	60
4	MP4B	Υ	-72.337	60
5	MP4B	My	018	60
6	MP4B	Mz	.031	60
7	MP4C	Υ	-72.337	60
8	MP4C	My	018	60
9	MP4C	Mz	031	60
10	MP1B	Υ	-64.452	12
11	MP1B	My	.024	12
12	MP1B	Mz	042	12
13	MP1B	Υ	-64.452	48
14	MP1B	My	.024	48
15	MP1B	Mz	042	48
16	MP1C	Υ	-64.452	12
17	MP1C	My	.024	12
18	MP1C	Mz	.042	12
19	MP1C	Υ	-64.452	48
20	MP1C	My	.024	48
21	MP1C	Mz	.042	48
22	MP5B	Υ	-64.452	12
23	MP5B	My	.024	12
24	MP5B	Mz	042	12
25	MP5B	Υ	-64.452	48
26	MP5B	My	.024	48
27	MP5B	Mz	042	48
28	MP5C	Υ	-64.452	12
29	MP5C	My	.024	12
30	MP5C	Mz	.042	12
31	MP5C	Υ	-64.452	48
32	MP5C	My	.024	48
33	MP5C	Mz	.042	48
34	MP1A	Υ	-64.452	12
35	MP1A	My	048	12
36	MP1A	Mz	0	12
37	MP1A	Y	-64.452	48
38	MP1A	My	048	48
39	MP1A	Mz	0	48
40	MP5A	Y	-64.452	12
41	MP5A	My	048	12
42	MP5A	Mz	0	12
43	MP5A	Y	-64.452	48
44	MP5A	My	048	48
45	MP5A	Mz	0	48
46	MP4A	Y	-97.131	12
47	MP4A	My	073	12
48	MP4A	Mz	065	12
49	MP4A	Y	-97.131	66
50	MP4A	My	073	66
51	MP4A	Mz	065	66
52	MP4B	Y	-97.131	12
53	MP4B	My	073	12
54	MP4B	Mz	065	12
55	MP4B	Y NA.	-97.131	66
56	MP4B	My	073	66
57	MP4B	Mz	065	66
58	MP4C	Y	-97.131	12
59	MP4C	My	073	12

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
60	MP4C	Mz	065	12
61	MP4C	Υ	-97.131	66
62	MP4C	My	073	66
63	MP4C	Mz	065	66
64	MP4A	Υ	-97.131	12
65	MP4A	My	073	12
66	MP4A	Mz	.065	12
67	MP4A	Υ	-97.131	66
68	MP4A	My	073	66
69	MP4A	Mz	.065	66
70	MP4B	Υ	-97.131	12
71	MP4B	My	073	12
72	MP4B	Mz	.065	12
73	MP4B	Υ	-97.131	66
74	MP4B	My	073	66
75	MP4B	Mz	.065	66
76	MP4C	Υ	-97.131	12
77	MP4C	My	073	12
78	MP4C	Mz	.065	12
79	MP4C	Υ	-97.131	66
80	MP4C	My	073	66
81	MP4C	Mz	.065	66
82	OVP1	Υ	-139.193	6
83	OVP1	My	0	6
84	OVP1	Mz	0	6
85	OVP2	Υ	-139.193	6
86	OVP2	My	0	6
87	OVP2	Mz	0	6
88	MP2A	Υ	-56.906	36
89	MP2A	My	038	36
90	MP2A	Mz	0	36
91	MP2A	Υ	-56.906	60
92	MP2A	My	038	60
93	MP2A	Mz	0	60
94	MP2B	Υ	-56.906	36
95	MP2B	My	.019	36
96	MP2B	Mz	033	36
97	MP2B	Y	-56.906	60
98	MP2B	My	.019	60
99	MP2B	Mz	033	60
100	MP2C	Y	-56.906	36
101	MP2C	My	.019	36
102	MP2C	Mz	.033	36
103	MP2C	Y	-56.906	60
104	MP2C	My	.019	60
105	MP2C	Mz	.033	60
106	MP4A	Y	-65.315	36
107	MP4A	My	.033	36
108	MP4A	Mz	0	36
109	MP4B	Y	-65.315	36
110	MP4B	My	016	36
111	MP4B	Mz	.028	36
112	MP4C	Y	-65.315	36
113	MP4C	My	016	36
114	MP4C	Mz	028	36

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

111011112	Der Politi Loads (BLC 3 :			
4	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	0	60
2	MP4A	Z	-75.131	60
3	MP4A	Mx	0	60
4	MP4B	X	0	60
5	MP4B	Z	-56.449	60
6	MP4B	Mx	024	60
7	MP4C	X	0	60
8	MP4C	Z	-56.449	60
9	MP4C	Mx	.024	60
10	MP1B	<u>X</u>	0	12
11	MP1B	Z	-94.449	12
12	MP1B	Mx	.061	12
13	MP1B	X	0	48
14	MP1B	Z	-94.449	48
15	MP1B	Mx	.061	48
16	MP1C	X	0	12
17	MP1C	Z	-94.449	12
18	MP1C	Mx	061	12
19	MP1C	X	0	48
20	MP1C	Z	-94.449	48
21	MP1C	Mx	061	48
22	MP5B	X	0	12
23	MP5B	Z	-94.449	12
24	MP5B	Mx	.061	12
25	MP5B	X	0	48
26	MP5B	Z	-94.449	48
27	MP5B	Mx	.061	48
28	MP5C	X	0	12
29	MP5C	Z	-94.449	12
30	MP5C	Mx	061	12
31	MP5C	X	0	48
32	MP5C	Z	-94.449	48
33	MP5C	Mx	061	48
34	MP1A	X	0	12
35	MP1A	Z	-52.431	12
36	MP1A	Mx	0	12
37	MP1A	Χ	0	48
38	MP1A	Z	-52.431	48
39	MP1A	Mx	0	48
40	MP5A	X	0	12
41	MP5A	Z	-52.431	12
42	MP5A	Mx	0	12
43	MP5A		0	48
44	MP5A	X	-52.431	48
45	MP5A	Mx	0	48
46	MP4A	X	0	12
47	MP4A	Ž	-163.922	12
48	MP4A	Mx	.109	12
49	MP4A	X	0	66
50	MP4A	Ž	-163.922	66
51	MP4A	Mx	.109	66
52	MP4B	X	0	12
53	MP4B	Z	-163.922	12
54	MP4B	Mx	.109	12
55	MP4B	X	0	66
56	MP4B	Z	-163.922	66
57	MP4B	Mx	.109	66
	1911 TD	14177		

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

wernb	<u>er Point Loads (BLC 3 : A</u>	<u> Antenna WO (U L</u>	<u>eg)) (Continuea)</u>	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	0	12
59	MP4C	Z	-163.922	12
60	MP4C	Mx	.109	12
61	MP4C	Χ	0	66
62	MP4C	Z	-163.922	66
63	MP4C	Mx	.109	66
64	MP4A	X	0	12
65	MP4A	Z	-163.922	12
66	MP4A	Mx	109	12
67	MP4A	X	0	66
68	MP4A	Z	-163.922	66
69	MP4A	Mx	109	66
70	MP4B	X	0	12
71	MP4B	Z	-163.922	12
72	MP4B	Mx	109	12
73	MP4B	X	0	66
74	MP4B	Z	-163.922	66
75	MP4B	Mx	109	66
76	MP4C	X	0	12
77	MP4C	Z	-163.922	12
78	MP4C	Mx	109	12
79	MP4C	X	0	66
80	MP4C	Z	-163.922	66
81	MP4C	Mx	109	66
82	OVP1	X	0	6
83	OVP1	Z	-153.451	6
84	OVP1	Mx	0	6
85	OVP2	X	0	6
86	OVP2	Z	-153.451	6
87	OVP2	Mx	0	6
88	MP2A	X	0	36
89	MP2A	Z	-94.416	36
90	MP2A	Mx	0	36
91	MP2A	X	0	60
92	MP2A	Z	-94.416	60
93	MP2A	Mx	0	60
94	MP2B	X	0	36
95	MP2B	Z	-51.327	36
96	MP2B	Mx	.03	36
97	MP2B	X	0	60
98	MP2B	Z	-51.327	60
99	MP2B	Mx	.03	60
100	MP2C	X	0	36
101	MP2C	Z	-51.327	36
102	MP2C	Mx	03	36
102	MP2C	X	03	60
103	MP2C	Z	-51.327	60
104	MP2C MP2C	Mx	03	60
106	MP4A	X	03	36
106	MP4A MP4A	Z	-75.131	36
107	MP4A MP4A	Mx	-75.131	36
	MP4B		0	
109		X Z		36
110	MP4B		-49.292	36
111	MP4B	Mx	021	36
112	MP4C	X Z	0	36
113	MP4C		-49.292	36
114	MP4C	Mx	.021	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	34.452	60
2	MP4A	Z	-59.672	60
3	MP4A	Mx	.017	60
4	MP4B	X	25.111	60
5	MP4B	Z	-43.493	60
6	MP4B	Mx	025	60
7	MP4C	X	34.452	60
8	MP4C	Z	-59.672	60
9	MP4C	Mx	.017	60
10	MP1B	X	54.227	12
11	MP1B	Z	-93.925	12
12	MP1B	Mx	.081	12
13	MP1B	X	54.227	48
14	MP1B	Z	-93.925	48
15	MP1B	Mx	.081	48
16	MP1C	X	33.218	12
17	MP1C	Z	-57.536	12
18	MP1C	Mx	025	12
19	MP1C	X	33.218	48
20	MP1C	Z	-57.536	48
21	MP1C	Mx	025	48
22	MP5B	X	54.227	12
23	MP5B	Z	-93.925	12
24	MP5B	Mx	.081	12
25	MP5B	X	54.227	48
26	MP5B	Z	-93.925	48
27	MP5B	Mx	.081	48
28	MP5C	X	33.218	12
29	MP5C	Z	-57.536	12
30	MP5C	Mx	025	12
31	MP5C MP5C	X Z	33.218	48
33	MP5C MP5C	Mx	-57.536 025	48
34	MP1A	X	33.218	12
35	MP1A	Z	-57.536	12
36	MP1A	Mx	025	12
37	MP1A	X	33.218	48
38	MP1A	Z	-57.536	48
39	MP1A	Mx	025	48
40	MP5A	X	33.218	12
41	MP5A	Z	-57.536	12
42	MP5A	Mx	025	12
43	MP5A	X	33.218	48
44	MP5A	Z	-57.536	48
45	MP5A	Mx	025	48
46	MP4A	X	75.021	12
47	MP4A	Z	-129.94	12
48	MP4A	Mx	.03	12
49	MP4A	X	75.021	66
50	MP4A	Z	-129.94	66
51	MP4A	Mx	.03	66
52	MP4B	X	75.021	12
53	MP4B	Z	-129.94	12
54	MP4B	Mx	.03	12
55	MP4B	X	75.021	66
56	MP4B	Z	-129.94	66
57	MP4B	Mx	.03	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Foint Loads (BLC 4 .			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	75.021	12
59	MP4C	Z	-129.94	12
60	MP4C	Mx	.03	12
61	MP4C	X	75.021	66
62	MP4C	Z	-129.94	66
63	MP4C	Mx	.03	66
64	MP4A	X	75.021	12
65	MP4A	Z	-129.94	12
66	MP4A	Mx	143	12
67	MP4A	X	75.021	66
68	MP4A	Z	-129.94	66
69	MP4A	Mx	143	66
70	MP4B	X	75.021	12
71	MP4B	Z	-129.94	12
72	MP4B	Mx	143	12
73	MP4B	X	75.021	66
74	MP4B	Z	-129.94	66
75	MP4B	Mx	143	66
76	MP4C	X	75.021	12
77	MP4C	Z	-129.94	12
78	MP4C	Mx	143	12
79	MP4C	X	75.021	66
80	MP4C	Z	-129.94	66
81	MP4C	Mx	143	66
82	OVP1	X	67.058	6
83	OVP1	Z	-116.148	6
84	OVP1	Mx	0	6
85	OVP2	X	67.058	6
86	OVP2	Z	-116.148	6
87	OVP2	Mx	0	6
88	MP2A	X	40.026	36
89	MP2A	Z	-69.328	36
90	MP2A	Mx	027	36
91	MP2A	X	40.026	60
92	MP2A	Z	-69.328	60
93	MP2A	Mx	027	60
94	MP2B	X	18.482	36
95	MP2B	Z	-32.011	36
96	MP2B	Mx	.025	36
97	MP2B	X	18.482	60
98	MP2B	Z	-32.011	60
99	MP2B	Mx	.025	60
100	MP2C	X	40.026	36
101	MP2C	Z	-69.328	36
102	MP2C	Mx	027	36
103	MP2C	X	40.026	60
104	MP2C	Z	-69.328	60
105	MP2C	Mx	027	60
106	MP4A	X	33.259	36
107	MP4A	Z	-57.606	36
	MP4A	Mx	.017	36
108				
109	MP4B	X	20.34	36
110	MP4B		-35.229	36
111	MP4B	Mx	02	36
112	MP4C	X	33.259	36
113	MP4C	Z	-57.606	36
114	MP4C	Mx	.017	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	48.886	60
2	MP4A	Z	-28.224	60
3	MP4A	Mx	.024	60
4	MP4B	X	48.886	60
5	MP4B	Z	-28.224	60
6	MP4B	Mx	024	60
7	MP4C	X	65.065	60
8	MP4C	Z	-37.565	60
9	MP4C	Mx	0	60
10	MP1B	X	81.795	12
11	MP1B	Z	-47.224	12
12	MP1B	Mx	.061	12
13	MP1B	X	81.795	48
14	MP1B	Z	-47.224	48
15	MP1B	Mx	.061	48
16	MP1C	X	45.407	12
17	MP1C	Z	-26.215	12
18	MP1C	Mx	0	12
19	MP1C	X	45.407	48
20	MP1C	Z	-26.215	48
21	MP1C	Mx	0	48
22	MP5B	X	81.795	12
23	MP5B	Z	-47.224	12
24	MP5B	Mx	.061	12
25	MP5B	X	81.795	48
26	MP5B	Z	-47.224	48
27	MP5B	Mx	.061	48
28	MP5C	X	45.407	12
29	MP5C	Z	-26.215	12
30	MP5C	Mx	0	12
31	MP5C	X	45.407	48
32	MP5C	Z	-26.215	48
33	MP5C	Mx	0	48
34	MP1A	X	81.795	12
35	MP1A	Z	-47.224	12
36	MP1A	Mx	061	12
37	MP1A	X	81.795	48
38	MP1A	Z	-47.224	48
39	MP1A	Mx	061	48
40	MP5A	X	81.795	12
41	MP5A	Z	-47.224	12
42	MP5A	Mx	061	12
43	MP5A	X	81.795	48
44	MP5A	Z	-47.224	48
45	MP5A	Mx	061	48
46	MP4A	X	105.9	12
47	MP4A	Z	-61.141	12
48	MP4A	Mx	039	12
49	MP4A	X	105.9	66
50	MP4A	Z	-61.141	66
51	MP4A	Mx	039	66
52	MP4B	X	105.9	12
53	MP4B	Z	-61.141	12
54	MP4B	Mx	039	12
55	MP4B	X	105.9	66
56	MP4B	Z	-61.141	66
57	MP4B	Mx	039	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	105.9	12
59	MP4C	Z	-61.141	12
60	MP4C	Mx	039	12
61	MP4C	X	105.9	66
62	MP4C	Z	-61.141	66
63	MP4C	Mx	039	66
64	MP4A	X	105.9	12
65	MP4A	Z	-61.141	12
66	MP4A	Mx	12	12
67	MP4A	X	105.9	66
68	MP4A	Z	-61.141	66
69	MP4A	Mx	12	66
70	MP4B	X	105.9	12
71	MP4B	Z	-61.141	12
72	MP4B	Mx	12	12
73	MP4B	X	105.9	66
74	MP4B	Z	-61.141	66
75	MP4B	Mx	12	66
76	MP4C	X	105.9	12
77	MP4C	Z	-61.141	12
78	MP4C	Mx	12	12
79	MP4C	X	105.9	66
80	MP4C	Z	-61.141	66
81	MP4C	Mx	12	66
82	OVP1	X	107.775	6
83	OVP1	Z	-62.224	6
84	OVP1	Mx	0	6
85	OVP2	X	107.775	6
86	OVP2	Z	-62.224	6
87	OVP2	Mx	0	6
88	MP2A	X	44.45	36
89	MP2A	Z	-25.663	36
90	MP2A	Mx	03	36
91	MP2A	X Z	44.45	60
92	MP2A		-25.663	60
93	MP2A	Mx	03	60
94	MP2B MP2B	X Z	44.45	36
95 96	MP2B	Mx	-25.663 .03	36 36
97			44.45	60
98	MP2B MP2B	X Z	-25.663	60
99	MP2B	Mx	.03	60
100	MP2C	X	81.767	36
101	MP2C	Z	-47.208	36
102	MP2C	Mx	0	36
103	MP2C	X	81.767	60
104	MP2C	Z	-47.208	60
105	MP2C	Mx	0	60
106	MP4A	X	42.688	36
107	MP4A	Z	-24.646	36
108	MP4A	Mx	.021	36
109	MP4B	X	42.688	36
110	MP4B	Z	-24.646	36
111	MP4B	Mx	021	36
112	MP4C	X	65.065	36
113	MP4C	Z	-37.565	36
114	MP4C	Mx	0	36
			<u> </u>	

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	50.221	60
2	MP4A	Z	0	60
3	MP4A	Mx	.025	60
4	MP4B	X	68.903	60
5	MP4B	Z	0	60
6	MP4B	Mx	017	60
7	MP4C	X	68.903	60
8	MP4C	Z	0	60
9	MP4C	Mx	017	60
10	MP1B	X	66.437	12
11	MP1B	Z	0	12
12	MP1B	Mx	.025	12
13	MP1B	X	66.437	48
14	MP1B	Z	0	48
15	MP1B	Mx	.025	48
16	MP1C	X	66.437	12
17	MP1C	Z	0	12
18	MP1C	Mx	.025	12
19	MP1C	X	66.437	48
20	MP1C	Z	0	48
21	MP1C	Mx	.025	48
22	MP5B	X	66.437	12
23	MP5B	Z	0	12
24	MP5B	Mx	.025	12
25	MP5B	X	66.437	48
26	MP5B	Z	0	48
27	MP5B	Mx	.025	48
28	MP5C	X	66.437	12
29	MP5C	Z	0	12
30	MP5C	Mx	.025	12
31	MP5C	X	66.437	48
32	MP5C	Z	0	48
33	MP5C	Mx	.025	48
34	MP1A	X	108.455	12
35	MP1A	Z	0	12
36	MP1A	Mx	081	12
37	MP1A	X	108.455	48
38	MP1A	Z	0	48
39	MP1A	Mx	081	48
40	MP5A	X	108.455	12
41	MP5A	Z	0	12
42	MP5A	Mx	081	12
43	MP5A	X	108.455	48
44	MP5A	Z	0	48
45	MP5A	Mx	081	48
46	MP4A	X	108.403	12
47	MP4A	Z	0	12
48	MP4A	Mx	081	12
49	MP4A	X	108.403	66
50	MP4A	Z	0	66
51	MP4A	Mx	081	66
52	MP4B	X	108.403	12
53	MP4B	Z	0	12
54	MP4B	Mx	081	12
55	MP4B	X	108.403	66
56	MP4B	Z	0	66
57	MP4B	Mx	081	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	108.403	12
59	MP4C	Z	0	12
60	MP4C	Mx	081	12
61	MP4C	Χ	108.403	66
62	MP4C	Z	0	66
63	MP4C	Mx	081	66
64	MP4A	X	108.403	12
65	MP4A	Z	0	12
66	MP4A	Mx	081	12
67	MP4A	X	108.403	66
68	MP4A	Z	0	66
69	MP4A	Mx	081	66
70	MP4B	X	108.403	12
71	MP4B	Z	0	12
72	MP4B	Mx	081	12
73	MP4B	X	108.403	66
74	MP4B	Z	0	66
75	MP4B	Mx	081	66
76	MP4C	X	108.403	12
77	MP4C	Z	0	12
78	MP4C	Mx	081	12
79	MP4C	X	108.403	66
80	MP4C	Z	0	66
81	MP4C	Mx	081	66
82	OVP1	X	134.116	6
83	OVP1	Z	0	6
84	OVP1	Mx	0	6
85	OVP2	X	134.116	6
86	OVP2	Z	0	6
87	OVP2	Mx	0	6
88	MP2A	X	36.964	36
89	MP2A	Z	0	36
90	MP2A	Mx	025	36
91	MP2A	X	36.964	60
92	MP2A		025	60
93	MP2A MP2B	Mx X	80.053	60 36
95	MP2B	Z	0	36
96	MP2B	Mx	.027	36
97	MP2B	X	80.053	60
98	MP2B	Z	0	60
99	MP2B	Mx	.027	60
100	MP2C	X	80.053	36
101	MP2C	Z	0	36
102	MP2C	Mx	.027	36
103	MP2C	X	80.053	60
104	MP2C	Z	0	60
105	MP2C	Mx	.027	60
106	MP4A	X	40.679	36
107	MP4A	Ž	0	36
108	MP4A	Mx	.02	36
109	MP4B	X	66.518	36
110	MP4B	Z	0	36
111	MP4B	Mx	017	36
112	MP4C	Χ	66.518	36
113	MP4C	Z	0	36
114	MP4C	Mx	017	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	48.886	60
2	MP4A	Z	28.224	60
3	MP4A	Mx	.024	60
4	MP4B	X	65.065	60
5	MP4B	Z	37.565	60
6	MP4B	Mx	0	60
7	MP4C	X	48.886	60
8	MP4C	Z	28.224	60
9	MP4C	Mx	024	60
10	MP1B	X	45.407	12
11	MP1B	Z	26.215	12
12	MP1B	Mx	0	12
13	MP1B	X	45.407	48
14	MP1B	Z	26.215	48
15	MP1B	Mx	0	48
16	MP1C	X	81.795	12
17	MP1C	Z	47.224	12
18	MP1C	Mx	.061	12
19	MP1C	X	81.795	48
20	MP1C	Z	47.224	48
21	MP1C	Mx	.061	48
22	MP5B	X	45.407	12
23	MP5B	Z	26.215	12
24	MP5B	Mx	0	12
25	MP5B	X	45.407	48
26	MP5B	Z	26.215	48
27	MP5B	Mx	0	48
28	MP5C	X	81.795	12
29	MP5C	Z	47.224	12
30	MP5C	Mx	.061	12
31	MP5C	X	81.795	48
32	MP5C	Z	47.224	48
33	MP5C	Mx	.061	48
34	MP1A	X	81.795	12
35	MP1A	Z	47.224	12
36	MP1A	Mx	061	12
37	MP1A	X	81.795	48
38	MP1A	Z	47.224	48
39	MP1A	Mx	061	48
40	MP5A	X	81.795	12
41	MP5A	Z	47.224	12
42	MP5A	Mx	061	12
43	MP5A	X	81.795	48
44	MP5A	Z	47.224	48
45	MP5A	Mx	061	48
46	MP4A	X	105.9	12
47	MP4A	Z	61.141	12
48	MP4A	Mx	12	12
49	MP4A	X	105.9	66
50	MP4A	Z	61.141	66
51	MP4A	Mx	12	66
52	MP4B	<u>X</u>	105.9	12
53	MP4B	Z	61.141	12
54	MP4B	Mx	12	12
55	MP4B	X	105.9	66
56	MP4B	Z	61.141	66
57	MP4B	Mx	12	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	105.9	12
59	MP4C	Z	61.141	12
60	MP4C	Mx	12	12
61	MP4C	X	105.9	66
62	MP4C	Z	61.141	66
63	MP4C	Mx	12	66
64	MP4A	X	105.9	12
65	MP4A	Z	61.141	12
66	MP4A	Mx	039	12
67	MP4A	X	105.9	66
68	MP4A	Z	61.141	66
69	MP4A	Mx	039	66
70	MP4B	X	105.9	12
71	MP4B	Z	61.141	12
72	MP4B	Mx	039	12
73	MP4B	X	105.9	66
74	MP4B	Z	61.141	66
75	MP4B	Mx	039	66
76	MP4C	X	105.9	12
77	MP4C	Z	61.141	12
78	MP4C	Mx	039	12
79	MP4C	X	105.9	66
80	MP4C	Z	61.141	66
81	MP4C	Mx	039	66
82	OVP1	X	132.892	6
83	OVP1	Z	76.725	6
84	OVP1	Mx	0	6
85	OVP2	X	132.892	6
86	OVP2	Z	76.725	6
87	OVP2	Mx	0	6
88	MP2A	X	44.45	36
89	MP2A	Z	25.663	36
90	MP2A	Mx	03	36
91	MP2A	X	44.45	60
92	MP2A	Z	25.663	60
93	MP2A	Mx	03	60
94	MP2B	X	81.767	36
95	MP2B	Z	47.208	36
96	MP2B	Mx	0	36
97	MP2B	X	81.767	60
98	MP2B MP2B	Z	47.208	60
99		Mx	0 44.45	60 36
100	MP2C MP2C	X Z		36
101	MP2C	Mx	25.663 .03	36
102	MP2C MP2C	X	44.45	60
103	MP2C MP2C	Z	25.663	60
104	MP2C	Mx	25.063	60
106	MP4A	X	42.688	36
107	MP4A	Z	24.646	36
108	MP4A	Mx	.021	36
109	MP4B	X	65.065	36
110	MP4B	Z	37.565	36
111	MP4B	Mx	0	36
112	MP4C	X	42.688	36
113	MP4C	Z	24.646	36
114	MP4C	Mx	021	36
114	IVII 40	IVIA	021	UU

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	34.452	60
2	MP4A	Z	59.672	60
3	MP4A	Mx	.017	60
4	MP4B	X	34.452	60
5	MP4B	Z	59.672	60
6	MP4B	Mx	.017	60
7	MP4C	X	25.111	60
8	MP4C	Z	43.493	60
9	MP4C	Mx	025	60
10	MP1B	X	33.218	12
11	MP1B	Z	57.536	12
12	MP1B	Mx	025	12
13	MP1B	X	33.218	48
14	MP1B	Z	57.536	48
15	MP1B	Mx	025	48
16	MP1C	X	54.227	12
17	MP1C	Z	93.925	12
18	MP1C	Mx	.081	12
19	MP1C	X	54.227	48
20	MP1C	Z	93.925	48
21	MP1C	Mx	.081	48
22	MP5B	X	33.218	12
23	MP5B	Z	57.536	12
24	MP5B	Mx	025	12
25	MP5B	X	33.218	48
26	MP5B	Z	57.536	48
27	MP5B	Mx	025	48
28	MP5C	X	54.227	12
29	MP5C	Z	93.925	12
30	MP5C	Mx	.081	12
31	MP5C	X	54.227	48
32	MP5C	Z	93.925	48
33	MP5C	Mx	.081	48
34	MP1A	X	33.218	12
35	MP1A	Z	57.536	12
36	MP1A	Mx	025	12
37	MP1A	X	33.218	48
38	MP1A	Z	57.536	48
39	MP1A	Mx	025	48
40	MP5A	X	33.218	12
41	MP5A	Z	57.536	12
42	MP5A	Mx	025	12
43	MP5A	X	33.218	48
44	MP5A	_	57.536	48
45	MP5A	Mx	025	48
46	MP4A	X	75.021	12
47	MP4A	Z	129.94	12
48	MP4A	Mx	143	12
49	MP4A	X	75.021	66
50	MP4A		129.94	66
51	MP4A	Mx	143	66
52	MP4B	X	75.021	12
53	MP4B		129.94	12 12
54	MP4B	Mx	143	
55	MP4B	X	75.021	66
56	MP4B		129.94	66
57	MP4B	Mx	143	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	75.021	12
59	MP4C	Z	129.94	12
60	MP4C	Mx	143	12
61	MP4C	X	75.021	66
62	MP4C	Z	129.94	66
63	MP4C	Mx	143	66
64	MP4A	X	75.021	12
65	MP4A	Z	129.94	12
66	MP4A	Mx	.03	12
67	MP4A	X	75.021	66
68	MP4A	Z	129.94	66
69	MP4A	Mx	.03	66
70	MP4B	X	75.021	12
71	MP4B	Z	129.94	12
72	MP4B	Mx	.03	12
73	MP4B	X	75.021	66
74	MP4B	Z	129.94	66
75	MP4B	Mx	.03	66
76	MP4C	X	75.021	12
77	MP4C	Z	129.94	12
78	MP4C	Mx	.03	12
79	MP4C	X	75.021	66
80	MP4C	Z	129.94	66
81	MP4C	Mx	.03	66
82	OVP1	X	81.559	6
83	OVP1	Z	141.265	6
84	OVP1	Mx	0	6
85	OVP2	X	81.559	6
86	OVP2	Ž	141.265	6
87	OVP2	Mx	0	6
88	MP2A	X	40.026	36
89	MP2A	Ž	69.328	36
90	MP2A	Mx	027	36
91	MP2A	X	40.026	60
92	MP2A	Z	69.328	60
93	MP2A	Mx	027	60
94	MP2B	X	40.026	36
95	MP2B	Z	69.328	36
96	MP2B	Mx	027	36
97	MP2B	X	40.026	60
98	MP2B	Ž	69.328	60
99	MP2B	Mx	027	60
100	MP2C	X	18.482	36
101	MP2C	Z	32.011	36
102	MP2C	Mx	.025	36
103	MP2C	X	18.482	60
104	MP2C	Ž	32.011	60
105	MP2C	Mx	.025	60
106	MP4A	X	33.259	36
107	MP4A	Z	57.606	36
108	MP4A	Mx	.017	36
109	MP4B	X	33.259	36
110	MP4B	Z	57.606	36
111	MP4B	Mx	.017	36
112	MP4C	X	20.34	36
113	MP4C	Z	35.229	36
114	MP4C	Mx	02	36
	IVII TO	IAIV	102	

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	0	60
2	MP4A	Z	75.131	60
3	MP4A	Mx	0	60
4	MP4B	X	0	60
5	MP4B	Z	56.449	60
6	MP4B	Mx	.024	60
7	MP4C	X	0	60
8	MP4C	Z	56.449	60
9	MP4C	Mx	024	60
10	MP1B	X	0	12
11	MP1B	Z	94.449	12
12	MP1B	Mx	061	12
13	MP1B	X	0	48
14	MP1B	Z	94.449	48
15	MP1B	Mx	061	48
16	MP1C	X	0	12
17	MP1C	Z	94.449	12
18	MP1C	Mx	.061	12
19	MP1C	X	0	48
20	MP1C	Z	94.449	48
21	MP1C	Mx	.061	48
22	MP5B	X	0	12
23	MP5B	Z	94.449	12
24	MP5B	Mx	061	12
25	MP5B	X	0	48
26	MP5B	Z	94.449	48
27	MP5B	Mx	061	48
28	MP5C	X	0	12
29	MP5C	Z	94.449	12
30	MP5C	Mx	.061	12
31	MP5C	X	0	48
32	MP5C	Z	94.449	48
33	MP5C	Mx	.061	48
34	MP1A	X	0	12
35	MP1A	Z	52.431	12
36	MP1A	Mx	0	12
37	MP1A	X	0	48
38	MP1A	Z	52.431	48
39	MP1A	Mx	0	48
40	MP5A	X	0	12
41	MP5A	Z	52.431	12
42	MP5A	Mx	0	12
43	MP5A	X	0	48
44	MP5A	Z	52.431	48
45	MP5A	Mx	0	48
46	MP4A	X	0	12
47	MP4A	Z	163.922	12
48	MP4A	Mx	109	12
49	MP4A	X	0	66
50	MP4A	Z	163.922	66
51	MP4A	Mx	109	66
52	MP4B	X	0	12
53	MP4B	Z	163.922	12
54	MP4B	Mx	109	12
55	MP4B	X	0	66
56	MP4B	Z	163.922	66
57	MP4B	Mx	109	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	0	12
59	MP4C	Z	163.922	12
60	MP4C	Mx	109	12
61	MP4C	X	0	66
62	MP4C	Z	163.922	66
63	MP4C	Mx	109	66
64	MP4A	X	0	12
65	MP4A	Z	163.922	12
66	MP4A	Mx	.109	12
67	MP4A	X	0	66
68	MP4A	Z	163.922	66
69	MP4A	Mx	.109	66
70	MP4B	X	0	12
71	MP4B	Z	163.922	12
72	MP4B	Mx	.109	12
73	MP4B	X	0	66
74	MP4B	Z	163.922	66
75	MP4B	Mx	.109	66
76	MP4C	X	0	12
77	MP4C	Z	163.922	12
78	MP4C	Mx	.109	12
79	MP4C	X	0	66
80	MP4C	Z	163.922	66
81	MP4C	Mx	.109	66
82	OVP1	X	0	6
83	OVP1	Z	153.451	6
84	OVP1	Mx	0	6
85	OVP2	X	0	6
86	OVP2	Z	153.451	6
87	OVP2	Mx	0	6
88	MP2A	X	0	36
89	MP2A	Z	94.416	36
90	MP2A	Mx	0	36
91	MP2A	X	0	60
92	MP2A		94.416	60
93	MP2A	Mx	0	60
94	MP2B	X Z	0	36
95 96	MP2B MP2B	Mx	51.327 03	36 36
97				60
98	MP2B MP2B	X Z	0 51.327	60
99	MP2B	Mx	03	60
100	MP2C	X	03	36
101	MP2C	Z	51.327	36
102	MP2C	Mx	.03	36
103	MP2C	X	0	60
104	MP2C	Z	51.327	60
105	MP2C	Mx	.03	60
106	MP4A	X	0	36
107	MP4A	Z	75.131	36
108	MP4A	Mx	0	36
109	MP4B	X	0	36
110	MP4B	Z	49.292	36
111	MP4B	Mx	.021	36
112	MP4C	X	0	36
113	MP4C	Z	49.292	36
114	MP4C	Mx	021	36
		.,,,,		

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-34.452	60
2	MP4A	Z	59.672	60
3	MP4A	Mx	017	60
4	MP4B	X	-25.111	60
5	MP4B	Z	43.493	60
6	MP4B	Mx	.025	60
7	MP4C	X	-34.452	60
8	MP4C	Z	59.672	60
9	MP4C	Mx	017	60
10	MP1B	X	-54.227	12
11	MP1B	Z	93.925	12
12	MP1B	Mx	081	12
13	MP1B	X	-54.227	48
14	MP1B	Z	93.925	48
15	MP1B	Mx	081	48
16	MP1C	X	-33.218	12
17	MP1C	Z	57.536	12
18	MP1C	Mx	.025	12
19	MP1C	X	-33.218	48
20	MP1C	Z	57.536	48
21	MP1C	Mx	.025	48
22	MP5B	X	-54.227	12
23	MP5B	Z	93.925	12
24	MP5B	Mx	081	12
25	MP5B	X	-54.227	48
26	MP5B	Z	93.925	48
27	MP5B	Mx	081	48
28	MP5C	X	-33.218	12
29	MP5C	Z	57.536	12
30	MP5C	Mx	.025	12
31	MP5C	X	-33.218	48
32	MP5C	Z	57.536	48
33	MP5C	Mx	.025	48
34	MP1A	X	-33.218	12
35	MP1A	Z	57.536	12
36	MP1A	Mx	.025	12
37	MP1A	X	-33.218	48
38	MP1A	Z	57.536	48
39	MP1A	Mx	.025	48
40	MP5A	X	-33.218	12
41	MP5A	Z	57.536	12
42	MP5A	Mx	.025	12
43	MP5A	X	-33.218	48
44	MP5A	Z	57.536	48
45	MP5A	Mx	.025	48
46	MP4A	X	-75.021	12
47	MP4A	Z	129.94	12
48	MP4A	Mx	03	12
49	MP4A	X	-75.021	66
50	MP4A	Z	129.94	66
51	MP4A	Mx	03	66
52	MP4B	X	-75.021	12
53	MP4B	Z	129.94	12
54	MP4B	Mx	03	12
55	MP4B	X	-75.021	66
56	MP4B	Z	129.94	66
57	MP4B	Mx	03	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-75.021	12
59	MP4C	Z	129.94	12
60	MP4C	Mx	03	12
61	MP4C	X	-75.021	66
62	MP4C	Z	129.94	66
63	MP4C	Mx	03	66
64	MP4A	X	-75.021	12
65	MP4A	Z	129.94	12
66	MP4A	Mx	.143	12
67	MP4A	Χ	-75.021	66
68	MP4A	Z	129.94	66
69	MP4A	Mx	.143	66
70	MP4B	X	-75.021	12
71	MP4B	Z	129.94	12
72	MP4B	Mx	.143	12
73	MP4B	X	-75.021	66
74	MP4B	Z	129.94	66
75	MP4B	Mx	.143	66
76	MP4C	X	-75.021	12
77	MP4C	Z	129.94	12
78	MP4C	Mx	.143	12
79	MP4C	X	-75.021	66
80	MP4C	Z	129.94	66
81	MP4C	Mx	.143	66
82	OVP1	X	-67.058	6
83	OVP1	Z	116.148	6
84	OVP1	Mx	0	6
85	OVP2	X	-67.058	6
86	OVP2	Z	116.148	6
87	OVP2	Mx	0	6
88	MP2A	X	-40.026	36
89	MP2A	Z	69.328	36
90	MP2A	Mx	.027	36
91	MP2A	X	-40.026	60
92	MP2A	Z	69.328	60
93	MP2A	Mx	.027	60
94	MP2B	X	-18.482	36
95	MP2B	Z	32.011	36
96 97	MP2B	Mx	025	36
98	MP2B MP2B	X Z	-18.482 32.011	60 60
99	MP2B	Mx	025	60
100	MP2C	X	-40.026	36
101	MP2C MP2C	Z	69.328	36
102	MP2C	Mx	.027	36
102	MP2C	X	-40.026	60
103	MP2C	Z	69.328	60
105	MP2C	Mx	.027	60
106	MP4A	X	-33.259	36
107	MP4A	Z	57.606	36
108	MP4A	Mx	017	36
109	MP4B	X	-20.34	36
110	MP4B	Z	35.229	36
111	MP4B	Mx	.02	36
112	MP4C	X	-33.259	36
113	MP4C	Ž	57.606	36
114	MP4C	Mx	017	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-48.886	60
2	MP4A	Z	28.224	60
3	MP4A	Mx	024	60
4	MP4B	X	-48.886	60
5	MP4B	Z	28.224	60
6	MP4B	Mx	.024	60
7	MP4C	X	-65.065	60
8	MP4C	Z	37.565	60
9	MP4C	Mx	0	60
10	MP1B	X	-81.795	12
11	MP1B	Z	47.224	12
12	MP1B	Mx	061	12
13	MP1B	X	-81.795	48
14	MP1B	Z	47.224	48
15	MP1B	Mx	061	48
16	MP1C	X	-45.407	12
17	MP1C	Z	26.215	12
18	MP1C	Mx	0	12
19	MP1C	X	-45.407	48
20	MP1C	Z	26.215	48
21	MP1C	Mx	0	48
22	MP5B	X	-81.795	12
23	MP5B	Z	47.224	12
24	MP5B	Mx	061	12
25	MP5B	X	-81.795	48
26	MP5B	Z	47.224	48
27	MP5B	Mx	061	48
28	MP5C	X	-45.407	12
29	MP5C	Z	26.215	12
30	MP5C	Mx	0	12
31	MP5C	X	-45.407	48
32	MP5C	Z	26.215	48
33	MP5C	Mx	0	48
34	MP1A	X	-81.795	12
35	MP1A	Z	47.224	12
36	MP1A	Mx	.061	12
37	MP1A	X	-81.795	48
38	MP1A	Z	47.224	48
39	MP1A	Mx	.061	48
40	MP5A	X	-81.795	12
41	MP5A	Z	47.224	12
42	MP5A	Mx	.061	12
43	MP5A	X	-81.795	48
44	MP5A	Z	47.224	48
45	MP5A	Mx	.061	48
46	MP4A	X	-105.9	12
47	MP4A	Z	61.141	12
48	MP4A	Mx	.039	12
49	MP4A	X	-105.9	66
50	MP4A	Z	61.141	66
51	MP4A	Mx	.039	66
52	MP4B	X	-105.9	12
53	MP4B	Z	61.141	12
54	MP4B	Mx	.039	12
55	MP4B	X	-105.9	66
56	MP4B	Z	61.141	66
57	MP4B	Mx	.039	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

Member Label Direction Magnitude(flb.k-fl] Location(in.%) 12 59 MP4C X -105.9 12 12 60 MP4C Mx .039 .12 61 MP4C X .105.9 .66 62 MP4C Z .61.141 .66 63 MP4C Mx .039 .66 64 MP4A X .105.9 .66 65 MP4A Z .61.141 .12 .66 MP4A X .105.9 .12 .12 .65 MP4A Z .61.141 .12 .12 .12 .66 MP4A X .105.9 .66 .66 .66 MP4A X .105.9 .66 .66 .66 MP4A X .105.9 .66 .66 .67 MP4A X .105.9 .66 .68 MP4A X .105.9 .66 .68 MP4A X .105.9 .66 .69 MP4A X .105.9 .66 .69 MP4A Mx .12 .12 .66 .69 MP4B X .105.9 .12 .71 MP4B X .105.9 .12 .71 MP4B X .105.9 .12 .73 MP4B Mx .12 .12 .73 MP4B X .105.9 .66 .66 .74 MP4B X .105.9 .66 .66 .75 MP4B X .105.9 .66 .66 .75 MP4B Mx .12 .12 .66 .75 MP4C X .105.9 .12 .77 MP4C Z .61.141 .12 .66 .77 MP4C Z .61.141 .12 .79 MP4C X .105.9 .66 .78 .	
59 MP4C Z 61.141 12 60 MP4C Mx .039 12 61 MP4C X .105.9 66 62 MP4C Z 61.141 66 63 MP4C Mx .039 66 64 MP4A X .105.9 12 65 MP4A Z 61.141 12 66 MP4A Mx .12 12 67 MP4A Mx .12 12 68 MP4A X -105.9 66 68 MP4A X -105.9 66 69 MP4A X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 12 72 MP4B X -105.9 66 74 MP4B X -105.9 66 75 MP4B X </td <td></td>	
60 MP4C Mx .039 12 61 MP4C X -105.9 66 62 MP4C Z 61.141 66 63 MP4C Mx .039 66 64 MP4A X -105.9 12 65 MP4A X -105.9 12 66 MP4A Mx .12 12 67 MP4A Mx .105.9 66 68 MP4A X -105.9 66 69 MP4A X -105.9 66 69 MP4A Mx .12 26 70 MP4B X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 66 74 MP4B X -105.9 66 74 MP4B X -105.9 12 77 MP4B Mx	
61 MP4C X -105.9 66 62 MP4C Z 61.141 66 63 MP4C Mx .039 66 64 MP4A X -105.9 12 65 MP4A Z 61.141 12 66 MP4A Mx .12 12 67 MP4A X -105.9 66 68 MP4A X -105.9 66 69 MP4A X -105.9 12 70 MP4B X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 12 73 MP4B X -105.9 66 74 MP4B X -105.9 66 75 MP4B X -105.9 66 75 MP4B Mx .12 66 75 MP4B Mx	
62 MP4C Z 61.141 66 63 MP4C Mx .039 66 64 MP4A X -105.9 12 65 MP4A Z 61.141 12 66 MP4A Mx .12 12 67 MP4A X -105.9 66 68 MP4A Z 61.141 66 69 MP4A Mx .12 66 70 MP4B X -105.9 12 71 MP4B Z 61.141 12 72 MP4B X -105.9 66 74 MP4B X -105.9 66 75 MP4B X -105.9 12 77 MP4C X -105.9 12 77 MP4C Z 61.141 12 79 MP4C X -105.9 66 80 MP4C X<	
63 MP4C Mx 039 66 64 MP4A X -105.9 12 65 MP4A Z 61.141 12 66 MP4A Mx .12 12 67 MP4A X -105.9 66 68 MP4A X -105.9 66 69 MP4A Mx .12 66 70 MP4B X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 66 74 MP4B X -105.9 66 74 MP4B X -105.9 66 76 MP4B Mx .12 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C X	
64 MP4A X -105.9 12 65 MP4A Z 61.141 12 66 MP4A Mx .12 12 67 MP4A X -105.9 66 68 MP4A Z 61.141 66 69 MP4B X -105.9 12 70 MP4B X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 12 72 MP4B Mx .12 12 73 MP4B X -105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X </td <td></td>	
66 MP4A Z 61.141 12 66 MP4A Mx .12 12 67 MP4A X -105.9 66 68 MP4A Z 61.141 66 69 MP4A Mx .12 66 70 MP4B X -105.9 12 71 MP4B X -105.9 12 71 MP4B X -105.9 12 72 MP4B Mx .12 12 73 MP4B X -105.9 66 74 MP4B X -105.9 66 74 MP4B Mx .12 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C X -105.9 66 80 MP4C X -105.9 66 80 MP4C X	
66 MP4A X -105.9 66 67 MP4A X -105.9 66 68 MP4A Z 61.141 66 69 MP4B X -105.9 12 70 MP4B X -105.9 12 71 MP4B X -105.9 12 72 MP4B Mx .12 12 72 MP4B X -105.9 66 74 MP4B X -105.9 66 74 MP4B X -105.9 66 75 MP4B Mx .12 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C X -105.9 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X </td <td></td>	
68 MP4A Z 61.141 66 69 MP4A Mx .12 66 70 MP4B X .105.9 12 71 MP4B X .105.9 12 72 MP4B Mx .12 12 73 MP4B X .105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C X -105.9 12 79 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 X	
69 MP4A Mx .12 66 70 MP4B X .105.9 12 71 MP4B Z 61.141 12 72 MP4B Mx .12 12 73 MP4B X -105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 76 MP4C X -105.9 12 77 MP4C Z 61.141 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X -105.9 66 81 MP4C X -105.9 66 81 MP4C X -107.775 6 82 OVP1 X -107.775 6 83 OVP1 X	
70 MP4B X -105.9 12 71 MP4B Z 61.141 12 72 MP4B Mx .12 12 73 MP4B X -105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C X -105.9 12 78 MP4C Mx .12 12 79 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 X	
71 MP4B Z 61.141 12 72 MP4B Mx .12 12 73 MP4B X -105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X -105.9 66 82 OVP1 X -107.775 6 83 OVP1 X -107.775 6 83 OVP1 X -107.775 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 X <td></td>	
72 MP4B Mx .12 12 73 MP4B X -105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X -105.9 66 82 OVP1 X -107.775 6 83 OVP1 X -107.775 6 84 OVP2 X	
73 MP4B X -105.9 66 74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C X -105.9 66 80 MP4C X -105.9 66 81 MP4C X -107.75 66 82 OVP1 X -107.775 6 83 OVP1 X -107.775 6 84 OVP2 X -107.775 6 86 OVP2 <	
74 MP4B Z 61.141 66 75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C X -105.9 12 80 MP4C X -105.9 12 80 MP4C X -105.9 66 81 MP4C X -105.9 66 81 MP4C X -105.9 66 81 MP4C X -107.9 66 82 OVP1 X -107.775 6 83 OVP1 X -107.775 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 X </td <td></td>	
75 MP4B Mx .12 66 76 MP4C X -105.9 12 77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C Z 61.141 66 81 MP4C Mx .12 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 X -107.775 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 X -107.775 6 86 OVP2 X -107.775 6 86 OVP2 X -107.775 6 88 MP2A X -44.45 36 89 MP2A X <td></td>	
76 MP4C X -105.9 12 77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C Z 61.141 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 X -107.775 6 86 OVP2 X -107.775 6 86 OVP2 X -107.775 6 88 MP2A X -44.45 36 89 MP2A X -44.45 36 89 MP2A X -44.45 60 92 MP2A X<	
77 MP4C Z 61.141 12 78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C Z 61.141 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 X -107.775 6 86 OVP2 X -107.775 6 86 OVP2 X 0 6 87 OVP2 X 0 6 88 MP2A X -44.45 36 89 MP2A X -44.45 36 90 MP2A X -44.45 60 92 MP2A X	
78 MP4C Mx .12 12 79 MP4C X -105.9 66 80 MP4C Z 61.141 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A X -44.45 36 89 MP2A X -44.45 60 91 MP2A X -44.45 60 92 MP2A X -25.663 60 93 MP2A Mx .03 60 94 MP2B X	
79 MP4C X -105.9 66 80 MP4C Z 61.141 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A X -44.45 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A X -44.45 60 92 MP2A X -44.45 36 94 MP2B X -44.45 36 95 MP2B X	
80 MP4C Z 61.141 66 81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A X -44.45 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A X -44.45 60 93 MP2A X -44.45 36 95 MP2B X -44.45 36 95 MP2B X -44.45 36 96 MP2B X	
81 MP4C Mx .12 66 82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B X -25.663 36 96 MP2B Mx 03 36	
82 OVP1 X -107.775 6 83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B X -25.663 36 96 MP2B Mx 03 36	
83 OVP1 Z 62.224 6 84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B X -44.45 36 96 MP2B Mx 03 36	
84 OVP1 Mx 0 6 85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B X -25.663 36 96 MP2B Mx 03 36	
85 OVP2 X -107.775 6 86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
86 OVP2 Z 62.224 6 87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
87 OVP2 Mx 0 6 88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
88 MP2A X -44.45 36 89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
89 MP2A Z 25.663 36 90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
90 MP2A Mx .03 36 91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
91 MP2A X -44.45 60 92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
92 MP2A Z 25.663 60 93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
93 MP2A Mx .03 60 94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
94 MP2B X -44.45 36 95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
95 MP2B Z 25.663 36 96 MP2B Mx 03 36	
96 MP2B Mx03 36	
97 MP2B X -44.45 60	
97 MP2B X -44.45 60 98 MP2B Z 25.663 60	
99 MP2B Mx03 60	
100 MP2C X -81.767 36	
100 MF2C X -81.767 36 101 MP2C Z 47.208 36	
102 MP2C Mx 0 36	
103 MP2C X -81.767 60	
104 MP2C Z 47.208 60	
105 MP2C Mx 0 60	
106 MP4A X -42.688 36	
107 MP4A Z 24.646 36	
108 MP4A Mx021 36	
109 MP4B X -42.688 36	
110 MP4B Z 24.646 36	
111 MP4B Mx .021 36	
112 MP4C X -65.065 36	
113 MP4C Z 37.565 36	
114 MP4C Mx 0 36	

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

mom	er Point Loads (BLC 12			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-50.221	60
2	MP4A	Z	0	60
3	MP4A	Mx	025	60
4	MP4B	X	-68.903	60
5	MP4B	Z	0	60
6	MP4B	Mx	.017	60
7	MP4C	X	-68.903	60
8	MP4C	Z	0	60
9	MP4C	Mx	.017	60
10	MP1B	X	-66.437	12
11	MP1B	Z	0	12
12	MP1B	Mx	025	12
13	MP1B	X	-66.437	48
14	MP1B	Z	0	48
15	MP1B	Mx	025	48
16	MP1C	X	-66.437	12
17	MP1C	Z	0	12
18	MP1C	Mx	025	12
19	MP1C	X	-66.437	48
20	MP1C	Z	0	48
21	MP1C	Mx	025	48
22	MP5B	X	-66.437	12
23	MP5B	Z	0	12
24	MP5B	Mx	025	12
25	MP5B	X	-66.437	48
26	MP5B	Z	0	48
27	MP5B	Mx	025	48
28	MP5C	X	-66.437	12
29	MP5C	Z	0	12
30	MP5C	Mx	025	12
31	MP5C	Χ	-66.437	48
32	MP5C	Z	0	48
33	MP5C	Mx	025	48
34	MP1A	X	-108.455	12
35	MP1A	Z	0	12
36	MP1A	Mx	.081	12
37	MP1A	X	-108.455	48
38	MP1A	Z	0	48
39	MP1A	Mx	.081	48
40	MP5A	X	-108.455	12
41	MP5A	Z	0	12
42	MP5A	Mx	.081	12
43	MP5A	X	-108.455	48
44	MP5A	Z	0	48
45	MP5A	Mx	.081	48
46	MP4A	X	-108.403	12
47	MP4A	Z	0	12
48	MP4A	Mx	.081	12
49	MP4A	X	-108.403	66
50	MP4A	Z	0	66
51	MP4A	Mx	.081	66
52	MP4B	X	-108.403	12
53	MP4B	Z	0	12
54	MP4B	Mx	.081	12
55	MP4B	X	-108.403	66
56	MP4B	Z	0	66
57	MP4B	Mx	.081	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

Member Label Direction Magnitude[lb,k-ft] 58 MP4C X -108.403	Location[in,%]
30 MP4C A -100.403	12
59 MP4C Z 0	12
60 MP4C Mx .081	12
61 MP4C X -108.403	66
62 MP4C Z 0	66
63 MP4C Mx .081	66
64 MP4A X -108.403	12
65 MP4A Z 0	12
66 MP4A Mx .081	12
67 MP4A X -108.403	66
68 MP4A Z 0	66
69 MP4A Mx .081	66
70 MP4B X -108.403	12
71 MP4B Z 0	12
72 MP4B Mx .081	12
73 MP4B X -108.403	66
74 MP4B Z 0	66
75 MP4B Mx .081	66
76 MP4C X -108.403	12
77 MP4C Z 0	12
78 MP4C Mx .081	12
79 MP4C X -108.403	66
80 MP4C Z 0	66
81 MP4C Mx .081	66
82 OVP1 X -134.116	6
83 OVP1 Z 0	6
84 OVP1 Mx 0	6
85 OVP2 X -134.116	6
86 OVP2 Z 0	6
87 OVP2 Mx 0	6
88 MP2A X -36.964	36
89 MP2A Z 0	36
90 MP2A Mx .025	36
91 MP2A X -36.964 92 MP2A Z 0	60
	60
93 MP2A Mx .025 94 MP2B X -80.053	60 36
95 MP2B Z 0	36
96 MP2B Mx027	36
97 MP2B X -80.053	60
98 MP2B Z 0	60
99 MP2B Mx027	60
100 MP2C X -80.053	36
101 MP2C Z 0	36
102 MP2C Mx027	36
103 MP2C X -80.053	60
104 MP2C Z 0	60
105 MP2C Mx027	60
106 MP4A X -40.679	36
107 MP4A Z 0	36
108 MP4A Mx02	36
109 MP4B X -66.518	36
110 MP4B Z 0	36
111 MP4B Mx .017	36
112 MP4C X -66.518	36
113 MP4C Z 0	36
114 MP4C Mx .017	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-48.886	60
2	MP4A	Z	-28.224	60
3	MP4A	Mx	024	60
4	MP4B	X	-65.065	60
5	MP4B	Z	-37.565	60
6	MP4B	Mx	0	60
7	MP4C	X	-48.886	60
8	MP4C	Z	-28.224	60
9	MP4C	Mx	.024	60
10	MP1B	X	-45.407	12
11	MP1B	Z	-26.215	12
12	MP1B	Mx	0	12
13	MP1B	X	-45.407	48
14	MP1B	Z	-26.215	48
15	MP1B	Mx	0	48
16	MP1C	X	-81.795	12
17	MP1C	Z	-47.224	12
18	MP1C	Mx	061	12
19	MP1C	X	-81.795	48
20	MP1C	Z	-47.224	48
21	MP1C	Mx	061	48
22	MP5B	X	-45.407	12
23	MP5B	Z	-26.215	12
24	MP5B	Mx	0	12
25	MP5B	X	-45.407	48
26	MP5B	Z	-26.215	48
27	MP5B	Mx	0	48
28	MP5C	X	-81.795	12
29	MP5C	Z	-47.224	12
30	MP5C	Mx	061	12
31	MP5C	X	-81.795	48
32	MP5C	Z	-47.224	48
33	MP5C	Mx	061	48
34	MP1A	X	-81.795	12
35	MP1A	Z	-47.224	12
36	MP1A	Mx	.061	12
37	MP1A	X	-81.795	48
38	MP1A	Z	-47.224	48
39	MP1A	Mx	.061	48
40	MP5A	X	-81.795	12
41	MP5A	Z	-47.224	12
42	MP5A	Mx	.061	12
43	MP5A	X	-81.795	48
44	MP5A		-47.224	48
45	MP5A	Mx	.061	48
46	MP4A	X	-105.9	12
47	MP4A	Z	-61.141	12
48	MP4A	Mx	.12	12
49	MP4A	X	-105.9	66
50	MP4A		-61.141	66
51	MP4A	Mx	.12 -105.9	66
52	MP4B	X Z		12
53	MP4B		-61.141	12 12
54	MP4B	Mx	.12	
55	MP4B	X Z	-105.9	66
56	MP4B		-61.141	66
57	MP4B	Mx	.12	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

Member Label Direction Magnitude[lb,k-ft] 58 MP4C X -105.9 59 MP4C Z -61.141	Location[in,%]
Ja IVIE4U	12
60 MP4C Mx .12	12
61 MP4C X -105.9	66
62 MP4C Z -61.141	66
63 MP4C Mx .12	66
64 MP4A X -105.9	12
65 MP4A Z -61.141	12
66 MP4A Mx .039	12
67 MP4A X -105.9	66
68 MP4A Z -61.141	66
69 MP4A Mx .039	66
70 MP4B X -105.9	12
71 MP4B Z -61.141	12
72 MP4B Mx .039	12
73 MP4B X -105.9	66
74 MP4B Z -61.141	66
75 MP4B Mx .039	66
76 MP4C X -105.9	12
77 MP4C Z -61.141	12
78 MP4C Mx .039	12
79 MP4C X -105.9	66
80 MP4C Z -61.141	66
81 MP4C Mx .039	66
82 OVP1 X -132.892	6
83 OVP1 Z -76.725	6
84 OVP1 Mx 0	6
85 OVP2 X -132.892	6
86 OVP2 Z -76.725	6
87 OVP2 Mx 0	6
88 MP2A X -44.45	36
89 MP2A Z -25.663	36
90 MP2A Mx .03	36
91 MP2A X -44.45 92 MP2A Z -25.663	60
	60
93 MP2A Mx .03 94 MP2B X -81.767	60 36
	36
95 MP2B Z -47.208 96 MP2B Mx 0	36
97 MP2B X -81.767	60
98 MP2B Z -47.208	60
99 MP2B Mx 0	60
100 MP2C X -44.45	36
101 MP2C Z -25.663	36
102 MP2C Mx03	36
103 MP2C X -44.45	60
104 MP2C Z -25.663	60
105 MP2C Mx03	60
106 MP4A X -42.688	36
107 MP4A Z -24.646	36
108 MP4A Mx021	36
109 MP4B X -65.065	36
110 MP4B Z -37.565	36
111 MP4B Mx 0	36
112 MP4C X -42.688	36
113 MP4C Z -24.646	36
114 MP4C Mx .021	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-34.452	60
2	MP4A	Z	-59.672	60
3	MP4A	Mx	017	60
4	MP4B	X	-34.452	60
5	MP4B	Z	-59.672	60
6	MP4B	Mx	017	60
7	MP4C	X	-25.111	60
8	MP4C	Z	-43.493	60
9	MP4C	Mx	.025	60
10	MP1B	X	-33.218	12
11	MP1B	Z	-57.536	12
12	MP1B	Mx	.025	12
13	MP1B	X	-33.218	48
14	MP1B	Z	-57.536	48
15	MP1B	Mx	.025	48
16	MP1C	X	-54.227	12
17	MP1C	Z	-93.925	12
18	MP1C	Mx	081	12
19	MP1C	X	-54.227	48
20	MP1C	Z	-93.925	48
21	MP1C	Mx	081	48
22	MP5B	X	-33.218	12
23	MP5B	Z	-57.536	12
24	MP5B	Mx	.025	12
25	MP5B	X	-33.218	48
26	MP5B	Z	-57.536	48
27	MP5B	Mx	.025	48
28	MP5C	X	-54.227	12
29	MP5C	Z	-93.925	12
30	MP5C	Mx	081	12
31	MP5C	X	-54.227	48
32	MP5C	Z	-93.925	48
33	MP5C	Mx	081	48
34	MP1A	X	-33.218	12
35	MP1A	Z	-57.536	12
36	MP1A	Mx	.025	12
37	MP1A	X	-33.218	48
38	MP1A	Z	-57.536	48
39	MP1A	Mx	.025	48
40	MP5A	X	-33.218	12
41	MP5A	Z	-57.536	12
42	MP5A	Mx	.025	12
43	MP5A	X	-33.218	48
44	MP5A	Z	-57.536	48
45	MP5A	Mx	.025	48
46	MP4A	X	-75.021	12
47	MP4A	Z	-129.94	12
48	MP4A	Mx	.143	12
49	MP4A	X	-75.021	66
50	MP4A	Z	-129.94	66
51	MP4A	Mx	.143	66
52	MP4B	X	-75.021	12
53	MP4B	Z	-129.94	12
54	MP4B	Mx	.143	12
55	MP4B	X	-75.021	66
56	MP4B	Z	-129.94	66
57	MP4B	Mx	.143	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

58 MP4C Z -129.94 12 60 MP4C Mx .143 12 61 MP4C X .75.021 66 62 MP4C Z -129.94 66 63 MP4C Mx .143 66 64 MP4A X -75.021 12 65 MP4A Z -129.94 12 66 MP4A X -75.021 12 67 MP4A X -75.021 66 68 MP4A X -75.021 66 69 MP4A X -75.021 66 69 MP4A Mx -03 66 70 MP4B X -75.021 12 72 MP4B X -75.021 12 72 MP4B X -75.021 66 74 MP4B X -75.021 66 75 MP4G		Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
59 MP4C Z -129.94 12 60 MP4C Mx 1433 12 61 MP4C X -75.021 66 62 MP4C Z -129.94 66 63 MP4C Mx .143 66 64 MP4A X -75.021 12 65 MP4A Z -129.94 12 66 MP4A Mx -03 12 67 MP4A Mx -03 12 67 MP4A Mx -03 66 68 MP4A X -75.021 66 69 MP4A Mx -03 66 70 MP4B X -75.021 12 71 MP4B X -75.021 12 72 MP4B Mx -03 12 73 MP4B X -75.021 12 74 MP4B	58				
60 MP4C Mx .143 12 61 MP4C X .75.021 66 62 MP4C Z .129.94 66 63 MP4C Mx .143 66 64 MP4A X .75.021 12 65 MP4A Z .129.94 12 66 MP4A Mx .03 12 67 MP4A X .75.021 66 68 MP4A X .75.021 66 69 MP4A X .75.021 66 69 MP4A X .75.021 12 70 MP4B X .75.021 12 71 MP4B X .75.021 12 72 MP4B X .75.021 66 74 MP4B X .75.021 66 75 MP4B Mx .03 66 76 MP4C					
61 MP4C X -75.021 66 62 MP4C Z -129.94 66 63 MP4C MX -143 66 64 MP4A X -75.021 12 66 MP4A Z -129.94 12 66 MP4A MX -03 12 66 MP4A MX -03 12 66 MP4A MX -03 66 68 MP4A X -75.021 66 68 MP4A X -75.021 66 68 MP4A X -75.021 66 69 MP4A MX -03 66 69 MP4A MX -03 66 70 MP4B X -75.021 12 71 MP4B Z -129.94 12 72 MP4B MX -03 12 73 MP4B X -75.021 66 74 MP4B Z -129.94 66 75 MP4B MX -03 12 75 MP4B X -75.021 66 76 MP4C X -75.021 66 77 MP4C X -75.021 66 78 MP4C MX -03 66 78 MP4C MX -03 66 79 MP4C MX -03 66 70 MP4C X -75.021 66 70 MP4C X -75.021 66 71 MP4B A X -75.021 66 72 MP4B MX -03 66 73 MP4B MX -03 66 74 MP4C X -75.021 66 75 MP4C X -75.021 66 76 MP4C MX -03 66 77 MP4C X -75.021 66 78 MP4C MX -03 66 79 MP4C MX -03 66 79 MP4C X -75.021 66 79 MP4C X -75.021 66 70 MP4C X -75.021 66 70 MP4C X -75.021 66 71 MX -03 66 72 MX -03 66 73 MP4C MX -03 66 74 MX -03 66 75 MP4C MX -03 66 76 MP4C X -75.021 66 77 MP4C X -75.021 66 78 MP4C MX -03 66 79 MP4C MX -03 66					
62 MP4C					
63 MP4C Mx 143 66 64 MP4A X -75.021 12 65 MP4A Z -129.94 12 66 MP4A Mx -03 12 67 MP4A X -75.021 66 68 MP4A X -129.94 66 69 MP4A Mx -03 66 70 MP4B X -75.021 12 71 MP4B X -75.021 12 71 MP4B X -75.021 12 72 MP4B X -75.021 66 74 MP4B X -75.021 66 75 MP4B X -75.021 66 75 MP4B X -75.021 66 75 MP4B Mx -03 66 75 MP4B Mx -03 12 77 MP4C			Z		66
64 MP4A X					
65 MP4A Z -129.94 12 66 MP4A Mx03 12 67 MP4A X75.021 66 68 MP4A Z -129.94 66 69 MP4A Mx03 66 69 MP4A Mx03 66 70 MP4B X -75.021 12 71 MP4B Z -129.94 12 72 MP4B Mx03 12 73 MP4B X -75.021 66 75 MP4B Mx03 12 76 MP4B X -75.021 66 77 MP4B X75.021 66 76 MP4B X03 66 77 MP4B X03 66 78 MP4B X03 66 79 MP4B Mx03 66 70 MP4B Mx03 66 71 MP4B Mx03 66 72 MP4B Mx03 66 73 MP4B Mx03 66 74 MP4B Mx03 66 75 MP4B Mx03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C Mx03 12 81 MP4C Mx03 66 82 OVP1 X -129.94 66 81 MP4C Mx03 66 82 OVP1 X -141.265 66 83 OVP1 Z -141.265 66 84 OVP2 Z -141.265 66 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 88 MP2A X -40.026 36 89 MP2A Z -69.328 36 90 MP2A X -40.026 36 90 MP2A Mx 007 36 91 MP2A X -40.026 36 92 MP2A Z -69.328 60 93 MP2A X -40.026 60 94 MP2B X -40.026 36 95 MP2B X -40.026 36 96 MP2B X -40.026 60 97 MP2B X -40.026 60 99 MP2B X -40.026 60 99 MP2B MX 007 36 90 MP2B X -40.026 60 99 MP2B MX 007 36 90 MP2B X -40.026 60 99 MP2B MX 007 36 90 MP2B X -40.026 60 99 MP2B MX 007 60 90 MP2C X 184888 36					
66 MP4A Mx03 12 67 MP4A X -75.021 66 68 MP4A Z -129.94 66 69 MP4A Mx03 66 67 MP4B X -75.021 12 70 MP4B X -75.021 12 71 MP4B Z -129.94 12 72 MP4B Mx03 12 73 MP4B X -75.021 66 74 MP4B X -75.021 66 75 MP4B X -75.021 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 66 76 MP4C X -75.021 12 78 MP4C X -75.021 12 79 MP4C X -75.021 12 79 MP4C X -75.021 66 81 MP4C X -03 66 81 MP4C X -75.021 66 81 MP4C X -75.021 66 81 MP4C X -75.021 66 82 OVP1 X -129.94 66 81 MP4C X -03 66 82 OVP1 X -129.94 66 83 OVP1 Z -141.265 6 84 OVP1 X -81.559 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 89 MP2A X -40.026 36 90 MP2A X -69.328 60 91 MP2A X -69.328 60 92 MP2A X -69.328 60 93 MP2A X -40.026 36 94 MP2B X -40.026 36 95 MP2B X -40.026 36 96 MP2B X -40.026 36 97 MP2B X -40.026 36 99 MP2B X -40.026 60					
68 MP4A Z -129.94 66 69 MP4A Mx03 66 70 MP4B X03 66 71 MP4B X -75.021 12 71 MP4B Z -129.94 12 72 MP4B Mx03 12 73 MP4B X -75.021 66 74 MP4B Z -129.94 66 75 MP4B Mx03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx03 66 78 MP4C X -75.021 12 79 MP4C X -75.021 12 79 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C X -75.021 66 82 OVP1 X -75.021 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 90 MP2A X -40.026 36 91 MP2A X -40.026 36 92 MP2A X -40.026 36 93 MP2A X -40.026 36 94 MP2B X -40.026 36 95 MP2B X -40.026 36 97 MP2B X -40.026 36 98 MP2A X -40.026 36 99 MP2B X -40.026 36		MP4A	Mx		
68 MP4A Z -129.94 66 69 MP4A Mx03 66 70 MP4B X03 66 71 MP4B X -75.021 12 71 MP4B Z -129.94 12 72 MP4B Mx03 12 73 MP4B X -75.021 66 74 MP4B Z -129.94 66 75 MP4B Mx03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx03 66 78 MP4C X -75.021 12 79 MP4C X -75.021 12 79 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C X -75.021 66 82 OVP1 X -75.021 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 90 MP2A X -40.026 36 91 MP2A X -40.026 36 92 MP2A X -40.026 36 93 MP2A X -40.026 36 94 MP2B X -40.026 36 95 MP2B X -40.026 36 97 MP2B X -40.026 36 98 MP2A X -40.026 36 99 MP2B X -40.026 36	67	MP4A	X	-75.021	66
70 MP4B X -75,021 12 71 MP4B Z -129,94 12 72 MP4B Mx 03 12 73 MP4B X -75,021 66 74 MP4B Z -129,94 66 75 MP4B Mx 03 66 76 MP4C X -75,021 12 77 MP4C X -75,021 12 78 MP4C Mx 03 12 79 MP4C X -75,021 66 80 MP4C X -75,021 66 81 MP4C Mx 03 66 81 MP4C Mx 03 66 82 OVP1 X -81,559 6 83 OVP1 X -81,559 6 84 OVP1 Mx 0 6 85 OVP2 <td< td=""><td>68</td><td></td><td>Z</td><td>-129.94</td><td></td></td<>	68		Z	-129.94	
71 MP4B Z -129.94 12 72 MP4B Mx 03 12 73 MP4B X -75.021 66 74 MP4B Z -129.94 66 75 MP4B Mx 03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx 03 12 79 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 X -81.559 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2	69	MP4A	Mx	03	66
72 MP4B Mx 03 12 73 MP4B X -75.021 66 74 MP4B Z -129.94 66 75 MP4B Mx 03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 81 MP4C Mx 03 66 84 OVP1 Mx 81.559 6 86 OVP2	70	MP4B	X	-75.021	12
73 MP4B X -75.021 66 74 MP4B Z -129.94 66 75 MP4B Mx -0.03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx -03 12 79 MP4C X -75.021 66 80 MP4C Z -129.94 66 81 MP4C Mx -03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 86 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 <td< td=""><td>71</td><td></td><td></td><td>-129.94</td><td>12</td></td<>	71			-129.94	12
74 MP4B Z -129.94 66 75 MP4B Mx 03 66 76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C Z -129.94 66 80 MP4C X -75.021 66 80 MP4C X -75.021 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 X -81.559 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 Mx 0 6 88 MP2A X </td <td>72</td> <td>MP4B</td> <td>Mx</td> <td>03</td> <td>12</td>	72	MP4B	Mx	03	12
75 MP4B Mx 03 66 76 MP4C X 75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C Z -129.94 66 81 MP4C Mx 03 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 X -81.559 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 Mx 0 6 87 OVP2 Mx 0 6 88 MP2A X	73		X	-75.021	
76 MP4C X -75.021 12 77 MP4C Z -129.94 12 78 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C Z -129.94 66 81 MP4C Mx 03 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 Mx 0 6 88 MP2A X <td></td> <td></td> <td></td> <td>-129.94</td> <td></td>				-129.94	
77 MP4C Z -129.94 12 78 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C Z -129.94 66 81 MP4C Mx 03 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 91 MP2A <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
78 MP4C Mx 03 12 79 MP4C X -75.021 66 80 MP4C Z -129.94 66 81 MP4C Mx 03 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 66 OVP2 X -81.559 6 6 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 87 OVP2 X -81.559 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 91 MP2A X			X		
79 MP4C X -75.021 66 80 MP4C Z -129.94 66 81 MP4C Mx -0.03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -81.559 6 86 OVP2 X -81.559 6 87 OVP2 X -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A X -49.328 36 91 MP2A X -40.026 60 92 MP2A X -40.026 36 93 MP2A <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
80 MP4C Z -129.94 66 81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 89 MP2A X -40.026 60 91 MP2A X -40.026 60 92 MP2A X -40.026 36 93 MP2A X -40.026 36 95 MP2B X -40.026 36 96 MP2B X </td <td></td> <td></td> <td></td> <td></td> <td></td>					
81 MP4C Mx 03 66 82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 90 MP2A X -40.026 60 91 MP2A X -40.026 60 92 MP2A X -40.026 60 93 MP2A X -40.026 36 95 MP2B X -40.026 36 95 MP2B X -40.026 60 98 MP2B X -40.026 60 98 MP2B <					
82 OVP1 X -81.559 6 83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 90 MP2A X -40.026 60 91 MP2A X -40.026 60 92 MP2A X -40.026 60 93 MP2A X -40.026 36 95 MP2B X -40.026 36 95 MP2B X -40.026 36 96 MP2B X -40.026 60 98 MP2B X -40.026 60 98 MP2B					
83 OVP1 Z -141.265 6 84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A X -40.026 36 90 MP2A X -40.026 60 91 MP2A X -40.026 60 92 MP2A X -40.026 60 93 MP2A X -40.026 36 94 MP2B X -40.026 36 95 MP2B X -40.026 60 97 MP2B X -40.026 60 98 MP2B X -40.026 60 99 MP2B X -40.026 60 99 MP2B					
84 OVP1 Mx 0 6 85 OVP2 X -81.559 6 86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A Z -69.328 36 90 MP2A X -40.026 60 91 MP2A X -40.026 60 92 MP2A X -40.026 60 93 MP2A X -69.328 60 93 MP2A X -40.026 36 95 MP2B X -69.328 36 96 MP2B X -69.328 36 97 MP2B X -40.026 60 98 MP2B X -69.328 60 99 MP2B X -69.328 60 99 MP2B			X		
85 OVP2 X -81.559 6 86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A Z -69.328 36 90 MP2A Mx .027 36 91 MP2A X -40.026 60 92 MP2A X -40.026 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B X -40.026 36 96 MP2B X -40.026 60 98 MP2B X -40.026 60 99 MP2B X -40.026 60 99 MP2B X -40.026 60 99 MP2B X -32.011 36 100 MP2C					6
86 OVP2 Z -141.265 6 87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A Z -69.328 36 90 MP2A Mx .027 36 91 MP2A X -40.026 60 92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B X -40.026 60 97 MP2B X -40.026 60 98 MP2B X -40.026 60 99 MP2B X -40.026 60 99 MP2B X -40.026 60 99 MP2B X -32.011 36 100 MP2C					
87 OVP2 Mx 0 6 88 MP2A X -40.026 36 89 MP2A Z -69.328 36 90 MP2A Mx .027 36 91 MP2A X -40.026 60 92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B X -40.026 60 97 MP2B X -40.026 60 98 MP2B X -40.026 60 99 MP2B X -40.026 60 100 MP2C X -18.482 36 101 MP2C X -18.482 36 103 MP2C X -18.482 60			X		
88 MP2A X -40.026 36 89 MP2A Z -69.328 36 90 MP2A Mx .027 36 91 MP2A X -40.026 60 92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B X -40.026 60 99 MP2B X -69.328 60 100 MP2C X -18.482 36 101 MP2C X -18.482 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
89 MP2A Z -69.328 36 90 MP2A Mx .027 36 91 MP2A X -40.026 60 92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B X -40.026 60 99 MP2B X -69.328 60 99 MP2B X -69.328 60 100 MP2C X -18.482 36 101 MP2C X -18.482 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
90 MP2A Mx .027 36 91 MP2A X -40.026 60 92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B X -40.026 60 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B X -18.482 36 100 MP2C X -18.482 36 101 MP2C X -32.011 36 102 MP2C MX 025 36 103 MP2C X -18.482 60					
91 MP2A X -40.026 60 92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
92 MP2A Z -69.328 60 93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
93 MP2A Mx .027 60 94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60			X		
94 MP2B X -40.026 36 95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
95 MP2B Z -69.328 36 96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
96 MP2B Mx .027 36 97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
97 MP2B X -40.026 60 98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
98 MP2B Z -69.328 60 99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
99 MP2B Mx .027 60 100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60			7		
100 MP2C X -18.482 36 101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
101 MP2C Z -32.011 36 102 MP2C Mx 025 36 103 MP2C X -18.482 60					
102 MP2C Mx 025 36 103 MP2C X -18.482 60					
103 MP2C X -18.482 60					
104 MP2C 7 -32 011 60	104	MP2C	Z	-32.011	60
105 MP2C Mx025 60					
106 MP4A X -33.259 36					
107 MP4A Z -57.606 36			Z		
108 MP4A Mx017 36					
109 MP4B X -33.259 36					
110 MP4B Z -57.606 36			Z		
111 MP4B Mx017 36					
112 MP4C X -20.34 36					
113 MP4C Z -35.229 36			Z		
114 MP4C Mx .02 36					

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	0	60
2	MP4A	Z	-18.228	60
3	MP4A	Mx	0	60
4	MP4B	X	0	60
5	MP4B	Z	-14.255	60
6	MP4B	Mx	006	60
7	MP4C	X	0	60
8	MP4C	Z	-14.255	60
9	MP4C	Mx	.006	60
10	MP1B	X	0	12
11	MP1B	Z	-21.132	12
12	MP1B	Mx	.014	12
13	MP1B	X	0	48
14	MP1B	Z	-21.132	48
15	MP1B	Mx	.014	48
16	MP1C	X	0	12
17	MP1C	Z	-21.132	12
18	MP1C	Mx	014	12
19	MP1C	X	0	48
20	MP1C	Z	-21.132	48
21	MP1C	Mx	014	48
22	MP5B	X	0	12
23	MP5B	Z	-21.132	12
24	MP5B	Mx	.014	12
25	MP5B	X	0	48
26	MP5B		-21.132	48
27	MP5B	Mx	.014	48
28	MP5C	X		12
29	MP5C	Z	-21.132	12 12
30	MP5C	Mx	014 0	48
31	MP5C MP5C	X	-21.132	48
33	MP5C	Mx	014	48
34	MP1A	X	014	12
35	MP1A	Z	-12.919	12
36	MP1A	Mx	0	12
37	MP1A	X	0	48
38	MP1A	Z	-12.919	48
39	MP1A	Mx	0	48
40	MP5A	X	0	12
41	MP5A	Z	-12.919	12
42	MP5A	Mx	0	12
43	MP5A	X	0	48
44	MP5A	Z	-12.919	48
45	MP5A	Mx	0	48
46	MP4A	X	0	12
47	MP4A	Z	-35.297	12
48	MP4A	Mx	.024	12
49	MP4A	X	0	66
50	MP4A	Z	-35.297	66
51	MP4A	Mx	.024	66
52	MP4B	X	0	12
53	MP4B	Z	-35.297	12
54	MP4B	Mx	.024	12
55	MP4B	X	0	66
56	MP4B	Z	-35.297	66
57	MP4B	Mx	.024	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	0	12
59	MP4C	Z	-35.297	12
60	MP4C	Mx	.024	12
61	MP4C	X	0	66
62	MP4C	Z	-35.297	66
63	MP4C	Mx	.024	66
64	MP4A	X	0	12
65	MP4A	Z	-35.297	12
66	MP4A	Mx	024	12
67	MP4A	X	0	66
68	MP4A	Z	-35.297	66
69	MP4A	Mx	024	66
70	MP4B	X	0	12
71	MP4B	Z	-35.297	12
72	MP4B	Mx	024	12
73	MP4B	X	0	66
74	MP4B	Z	-35.297	66
75	MP4B	Mx	024	66
76	MP4C	X	0	12
77	MP4C	Z	-35.297	12
78	MP4C	Mx	024	12
79	MP4C	X	0	66
80	MP4C	Z	-35.297	66
81	MP4C	Mx	024	66
82	OVP1	X	0	6
83	OVP1	Z	-34.62	6
84	OVP1	Mx	0	6
85	OVP2	X	0	6
86	OVP2	Z	-34.62	6
87	OVP2	Mx	0	6
88	MP2A	X	0	36
89	MP2A	Z	-21.032	36
90	MP2A	Mx	0	36
91	MP2A	X	0	60
92	MP2A		-21.032	60
93	MP2A	Mx	0	60
94	MP2B	X Z	10.000	36
95 96	MP2B MP2B	Mx	-12.269 .007	36 36
97		X		60
98	MP2B MP2B	Z	0 -12.269	60
99	MP2B	Mx	.007	60
100	MP2C	X	.007	36
101	MP2C	Z	-12.269	36
102	MP2C	Mx	007	36
103	MP2C	X	0	60
104	MP2C	Z	-12.269	60
105	MP2C	Mx	007	60
106	MP4A	X	0	36
107	MP4A	Z	-18.228	36
108	MP4A	Mx	0	36
109	MP4B	X	0	36
110	MP4B	Z	-12.745	36
111	MP4B	Mx	006	36
112	MP4C	X	0	36
113	MP4C	Z	-12.745	36
114	MP4C	Mx	.006	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	8.452	60
2	MP4A	Z	-14.639	60
3	MP4A	Mx	.004	60
4	MP4B	X	6.465	60
5	MP4B	Z	-11.198	60
6	MP4B	Mx	006	60
7	MP4C	X	8.452	60
8	MP4C	Z	-14.639	60
9	MP4C	Mx	.004	60
10	MP1B	X	11.935	12
11	MP1B	Z	-20.672	12
12	MP1B	Mx	.018	12
13	MP1B	X	11.935	48
14	MP1B	Z	-20.672	48
15	MP1B	Mx	.018	48
16	MP1C	X	7.828	12
17	MP1C	Z	-13.559	12
18	MP1C	Mx	006	12
19	MP1C	X	7.828	48
20	MP1C	Z	-13.559	48
21	MP1C	Mx	006	48
22	MP5B	X	11.935	12
23	MP5B	Z	-20.672	12
24	MP5B	Mx	.018	12
25	MP5B	X	11.935	48
26	MP5B	Z	-20.672	48
27	MP5B	Mx	.018	48
28	MP5C	X	7.828	12
29	MP5C	Z	-13.559	12
30	MP5C	Mx	006	12
31	MP5C	X	7.828	48
32	MP5C	Z	-13.559	48
33	MP5C	Mx	006	48
34	MP1A	X	7.828	12
35	MP1A	Z	-13.559	12
36	MP1A	Mx	006	12
37	MP1A	X	7.828	48
38	MP1A	Z	-13.559	48
39	MP1A	Mx	006	48
40	MP5A	X	7.828	12
41	MP5A	Z	-13.559	12 12
42	MP5A	Mx	006	
43	MP5A	X	7.828 -13.559	48
44 45	MP5A MP5A	Mx		48 48
45	MP4A	X	006 16.34	12
46	MP4A MP4A	Z	-28.301	12
48	MP4A MP4A	Mx	.007	12
48	MP4A MP4A		16.34	66
50	MP4A MP4A	X Z	-28.301	66
51	MP4A MP4A	Mx	.007	66
52	MP4B	X	16.34	12
53	MP4B	Z	-28.301	12
54	MP4B	Mx	.007	12
55	MP4B	X	16.34	66
56	MP4B	Z	-28.301	66
57	MP4B	Mx	.007	66
J/	IVIETU	IVIA	.007	00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	16.34	12
59	MP4C	Z	-28.301	12
60	MP4C	Mx	.007	12
61	MP4C	X	16.34	66
62	MP4C	Z	-28.301	66
63	MP4C	Mx	.007	66
64	MP4A	X	16.34	12
65	MP4A	Z	-28.301	12
66	MP4A	Mx	031	12
67	MP4A	X	16.34	66
68	MP4A	Z	-28.301	66
69	MP4A	Mx	031	66
70	MP4B	X	16.34	12
71	MP4B	Z	-28.301	12
72	MP4B	Mx	031	12
73	MP4B	X	16.34	66
74	MP4B	Z	-28.301	66
75	MP4B	Mx	031	66
76	MP4C	X	16.34	12
77	MP4C	Z	-28.301	12
78	MP4C	Mx	031	12
79	MP4C	X	16.34	66
80	MP4C	Z	-28.301	66
81	MP4C	Mx	031	66
82	OVP1	X	15.398	6
83	OVP1	Z	-26.67	6
84	OVP1	Mx	0	6
85	OVP2	X	15.398	6
86	OVP2	Z	-26.67	6
87	OVP2	Mx	0	6
88	MP2A	X	9.056	36
89	MP2A	Z	-15.685	36
90	MP2A	Mx	006	36
91	MP2A	X	9.056	60
92	MP2A	Z	-15.685	60
93	MP2A	Mx	006	60
94	MP2B	X	4.674	36
95	MP2B	Z	-8.096	36
96	MP2B	Mx	.006	36
97 98	MP2B MP2B	X Z	4.674 -8.096	60 60
99	MP2B	Mx	.006	60
100	MP2C	X	9.056	36
101	MP2C	Z	-15.685	36
102	MP2C	Mx	006	36
102	MP2C	X	9.056	60
104	MP2C	Z	-15.685	60
105	MP2C	Mx	006	60
106	MP4A	X	8.2	36
107	MP4A	Z	-14.203	36
108	MP4A	Mx	.004	36
109	MP4B	X	5.459	36
110	MP4B	Z	-9.455	36
111	MP4B	Mx	005	36
112	MP4C	X	8.2	36
113	MP4C	Z	-14.203	36
114	MP4C	Mx	.004	36
117	IVII -TO	1411/	.007	

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

IVICITI	per Point Loads (BLC 17)			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	12.345	60
2	MP4A	Z	-7.128	60
3	MP4A	Mx	.006	60
4	MP4B	X	12.345	60
5	MP4B	Z	-7.128	60
6	MP4B	Mx	006	60
7	MP4C	X	15.786	60
8	MP4C	Z	-9.114	60
9	MP4C	Mx	0	60
10	MP1B	X	18.301	12
11	MP1B	Z	-10.566	12
12	MP1B	Mx	.014	12
13	MP1B	X	18.301	48
14	MP1B	Z	-10.566	48
15	MP1B	Mx	.014	48
16	MP1C		11.188	12
		X Z		
17	MP1C		-6.459	12
18	MP1C	Mx	0	12
19	MP1C	X	11.188	48
20	MP1C	Z	-6.459	48
21	MP1C	Mx	0	48
22	MP5B	X	18.301	12
23	MP5B	Z	-10.566	12
24	MP5B	Mx	.014	12
25	MP5B	X	18.301	48
26	MP5B	Z	-10.566	48
27	MP5B	Mx	.014	48
28	MP5C	X	11.188	12
29	MP5C	Z	-6.459	12
30	MP5C	Mx	0	12
31	MP5C	Χ	11.188	48
32	MP5C	Z	-6.459	48
33	MP5C	Mx	0	48
34	MP1A	Χ	18.301	12
35	MP1A	Z	-10.566	12
36	MP1A	Mx	014	12
37	MP1A	X	18.301	48
38	MP1A	Z	-10.566	48
39	MP1A	Mx	014	48
40	MP5A	X	18.301	12
41	MP5A	Z	-10.566	12
42	MP5A	Mx	014	12
43	MP5A		18.301	48
44	MP5A	X	-10.566	48
45	MP5A	Mx	014	48
46	MP4A	X	23.768	12
	MP4A	Z	-13.722	
47				12 12
48	MP4A	Mx	009	
49	MP4A	X	23.768	66
50	MP4A	Z	-13.722	66
51	MP4A	Mx	009	66
52	MP4B	X	23.768	12
53	MP4B	Z	-13.722	12
54	MP4B	Mx	009	12
55	MP4B	X	23.768	66
56	MP4B	Z	-13.722	66
57	MP4B	Mx	009	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	23.768	12
59	MP4C	Z	-13.722	12
60	MP4C	Mx	009	12
61	MP4C	X	23.768	66
62	MP4C	Z	-13.722	66
63	MP4C	Mx	009	66
64	MP4A	X	23.768	12
65	MP4A	Z	-13.722	12
66	MP4A	Mx	027	12
67	MP4A	X	23.768	66
68	MP4A	Z	-13.722	66
69	MP4A	Mx	027	66
70	MP4B	X	23.768	12
71	MP4B	Z	-13.722	12
72	MP4B	Mx	027	12
73	MP4B	X	23.768	66
74	MP4B	Z	-13.722	66
75	MP4B	Mx	027	66
76	MP4C	X	23.768	12
77	MP4C	Z	-13.722	12
78	MP4C	Mx	027	12
79	MP4C	X	23.768	66
80	MP4C	Z	-13.722	66
81	MP4C	Mx	027	66
82	OVP1	X	25.013	6
83	OVP1	Z	-14.441	6
84	OVP1	Mx	0	6
85	OVP2	X	25.013	6
86	OVP2	Z	-14.441	6
87	OVP2	Mx	0	6
88	MP2A	X	10.625	36
89	MP2A	Z	-6.135	36
90	MP2A	Mx	007	36
91	MP2A	X	10.625	60
92	MP2A MP2A		-6.135	60
93	MP2B	Mx X	007 10.625	60 36
95	MP2B	Z		36
96	MP2B	Mx	-6.135 .007	36
97	MP2B	X	10.625	60
98	MP2B	Z	-6.135	60
99	MP2B	Mx	.007	60
100	MP2C	X	18.214	36
101	MP2C	Z	-10.516	36
102	MP2C	Mx	0	36
103	MP2C	X	18.214	60
104	MP2C	Z	-10.516	60
105	MP2C	Mx	0	60
106	MP4A	X	11.038	36
107	MP4A	Z	-6.373	36
108	MP4A	Mx	.006	36
109	MP4B	X	11.038	36
110	MP4B	Z	-6.373	36
111	MP4B	Mx	006	36
112	MP4C	Χ	15.786	36
113	MP4C	Z	-9.114	36
114	MP4C	Mx	0	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	12.931	60
2	MP4A	Z	0	60
3	MP4A	Mx	.006	60
4	MP4B	Χ	16.904	60
5	MP4B	Z	0	60
6	MP4B	Mx	004	60
7	MP4C	Χ	16.904	60
8	MP4C	Z	0	60
9	MP4C	Mx	004	60
10	MP1B	Χ	15.656	12
11	MP1B	Z	0	12
12	MP1B	Mx	.006	12
13	MP1B	Χ	15.656	48
14	MP1B	Z	0	48
15	MP1B	Mx	.006	48
16	MP1C	Χ	15.656	12
17	MP1C	Z	0	12
18	MP1C	Mx	.006	12
19	MP1C	X	15.656	48
20	MP1C	Z	0	48
21	MP1C	Mx	.006	48
22	MP5B	X	15.656	12
23	MP5B	Z	0	12
24	MP5B	Mx	.006	12
25	MP5B	X	15.656	48
26	MP5B	Z	0	48
27	MP5B	Mx	.006	48
28	MP5C	<u>X</u>	15.656	12
29	MP5C	Z	0	12
30	MP5C	Mx	.006	12
31	MP5C	X	15.656	48
32	MP5C	Z	0	48
33	MP5C	Mx	.006	48
34	MP1A	X	23.87	12
35	MP1A	Z	0	12
36	MP1A	Mx	018	12
37	MP1A	X	23.87	48
38	MP1A	Z	0	48
39	MP1A	Mx	018	48
40 41	MP5A MP5A	X Z	23.87	12 12
42	MP5A	Mx	018	12
43	MP5A	X	23.87	48
43	MP5A	Z	0	48
45	MP5A	Mx	018	48
46	MP4A	X	24.828	12
47	MP4A	Z	0	12
48	MP4A	Mx	019	12
49	MP4A	X	24.828	66
50	MP4A	Z	0	66
51	MP4A	Mx	019	66
52	MP4B	X	24.828	12
53	MP4B	Z	0	12
54	MP4B	Mx	019	12
55	MP4B	X	24.828	66
56	MP4B	Z	0	66
57	MP4B	Mx	019	66
JI	IVII TU	IVIA	013	- 00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

Member Label Direction Magnitude[lb,k-ft] 58 MP4C X 24.828	Location[in,%]
59 MP4C Z 0	12
60 MP4C Mx019	12
61 MP4C X 24.828	66
62 MP4C Z 0	66
63 MP4C Mx019	66
64 MP4A X 24.828	12
65 MP4A Z 0	12
66 MP4A Mx019	12
67 MP4A X 24.828	66
68 MP4A Z 0	66
69 MP4A Mx019	66
70 MP4B X 24.828	12
71 MP4B Z 0	12
72 MP4B Mx019	12
73 MP4B X 24.828	66
74 MP4B Z 0	66
75 MP4B Mx019	66
76 MP4C X 24.828	12
77 MP4C Z 0	12
78 MP4C Mx019	12
79 MP4C X 24.828	66
80 MP4C Z 0	66
81 MP4C Mx019	66
82 OVP1 X 30.795	6
83 OVP1 Z 0	6
84 OVP1 Mx 0	6
85 OVP2 X 30.795	6
86 OVP2 Z 0	6
87 OVP2 Mx 0	6
88 MP2A X 9.348	36
89 MP2A Z 0	36
90 MP2A Mx006	36
91 MP2A X 9.348 92 MP2A Z 0	60
	60
93 MP2A Mx006 94 MP2B X 18.111	60 36
95 MP2B Z 0	36
96 MP2B Mx .006	36
97 MP2B X 18.111	60
98 MP2B Z 0	60
99 MP2B Mx .006	60
100 MP2C X 18.111	36
101 MP2C Z 0	36
102 MP2C Mx .006	36
103 MP2C X 18.111	60
104 MP2C Z 0	60
105 MP2C Mx .006	60
106 MP4A X 10.918	36
107 MP4A Z 0	36
108 MP4A Mx .005	36
109 MP4B X 16.401	36
110 MP4B Z 0	36
111 MP4B Mx004	36
112 MP4C X 16.401	36
113 MP4C Z 0	36
114 MP4C Mx004	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	12.345	60
2	MP4A	Z	7.128	60
3	MP4A	Mx	.006	60
4	MP4B	X	15.786	60
5	MP4B	Z	9.114	60
6	MP4B	Mx	0	60
7	MP4C	X	12.345	60
8	MP4C	Z	7.128	60
9	MP4C	Mx	006	60
10	MP1B	X	11.188	12
11	MP1B	Z	6.459	12
12	MP1B	Mx	0	12
13	MP1B	X	11.188	48
14	MP1B	Z	6.459	48
15	MP1B	Mx	0	48
16	MP1C	X	18.301	12
17	MP1C	Z	10.566	12
18	MP1C	Mx	.014	12
19	MP1C	X	18.301	48
20	MP1C	Z	10.566	48
21	MP1C	Mx	.014	48
22	MP5B	X	11.188	12
23	MP5B	Z	6.459	12
24	MP5B	Mx	0	12
25	MP5B	X	11.188	48
26	MP5B	Z	6.459	48
27	MP5B	Mx	0	48
28	MP5C	X	18.301	12
29	MP5C	Z	10.566	12
30	MP5C	Mx	.014	12
31	MP5C	X	18.301	48
32	MP5C	Z	10.566	48
33	MP5C	Mx	.014	48
34	MP1A	X	18.301	12
35	MP1A	Z	10.566	12
36	MP1A	Mx	014	12
37	MP1A	X	18.301	48
38	MP1A	Z	10.566	48
39	MP1A	Mx	014	48
40	MP5A	X	18.301	12
41	MP5A	Z	10.566	12
42	MP5A	Mx	014	12
43	MP5A	X	18.301	48
44	MP5A	_	10.566	48
45	MP5A	Mx	014	48
46	MP4A	X	23.768	12
47	MP4A	Z	13.722	12
48	MP4A	Mx ~	027	12
49 50	MP4A MP4A	X	23.768	66 66
	MP4A MP4A	Mx	13.722	66
51 52	MP4B	X	027 23.768	12
53	MP4B MP4B	Z		12
54	MP4B MP4B	Mx	13.722 027	12
55	MP4B	X	23.768	66
56	MP4B	Z	13.722	66
57	MP4B	Mx	027	66
ا /د	IVIP4D	IVIX	U2/	00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	23.768	12
59	MP4C	Z	13.722	12
60	MP4C	Mx	027	12
61	MP4C	X	23.768	66
62	MP4C	Ž	13.722	66
63	MP4C	Mx	027	66
64	MP4A	X	23.768	12
65	MP4A	Z	13.722	12
66	MP4A	Mx	009	12
67	MP4A	X	23.768	66
68	MP4A	Z	13.722	66
69	MP4A	Mx	009	66
70	MP4B	X	23.768	12
71	MP4B	Z	13.722	12
72	MP4B	Mx	009	12
73	MP4B	X	23.768	66
74	MP4B	Z	13.722	66
75	MP4B	Mx	009	66
76	MP4C	X	23.768	12
77	MP4C	Z	13.722	12
78	MP4C	Mx	009	12
79	MP4C	X	23.768	66
80	MP4C	Z	13.722	66
81	MP4C	Mx	009	66
82	OVP1	X	29.982	6
83	OVP1	Z	17.31	6
84	OVP1	Mx	0	6
85	OVP2	X	29.982	6
86	OVP2	Z	17.31	6
87	OVP2	Mx	0	6
88	MP2A	X	10.625	36
89	MP2A	Z	6.135	36
90	MP2A	Mx	007	36
91	MP2A	X	10.625	60
92	MP2A	Z	6.135	60
93	MP2A	Mx	007	60
94	MP2B	X	18.214	36
95	MP2B	Z	10.516	36
96	MP2B	Mx	0	36
97	MP2B	X	18.214	60
98	MP2B	Z	10.516	60
99	MP2B MP2C	Mx	10.605	60
100		X Z	10.625	36
101	MP2C MP2C	Mx	6.135	36 36
102	MP2C MP2C	X	10.625	60
103	MP2C MP2C	Z	6.135	60
104	MP2C	Mx	.007	60
106	MP4A	X	11.038	36
107	MP4A	Z	6.373	36
107	MP4A	Mx	.006	36
109	MP4B	X	15.786	36
110	MP4B	Z	9.114	36
111	MP4B	Mx	0	36
112	MP4C	X	11.038	36
113	MP4C	Z	6.373	36
114	MP4C	Mx	006	36
114	IVIF 40	IVIA	000	30

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	8.452	60
2	MP4A	Z	14.639	60
3	MP4A	Mx	.004	60
4	MP4B	Χ	8.452	60
5	MP4B	Z	14.639	60
6	MP4B	Mx	.004	60
7	MP4C	Χ	6.465	60
8	MP4C	Z	11.198	60
9	MP4C	Mx	006	60
10	MP1B	Χ	7.828	12
11	MP1B	Z	13.559	12
12	MP1B	Mx	006	12
13	MP1B	Χ	7.828	48
14	MP1B	Z	13.559	48
15	MP1B	Mx	006	48
16	MP1C	Χ	11.935	12
17	MP1C	Z	20.672	12
18	MP1C	Mx	.018	12
19	MP1C	X	11.935	48
20	MP1C	Z	20.672	48
21	MP1C	Mx	.018	48
22	MP5B	X	7.828	12
23	MP5B	Z	13.559	12
24	MP5B	Mx	006	12
25	MP5B	X	7.828	48
26	MP5B	Z	13.559	48
27	MP5B	Mx	006	48
28	MP5C	X	11.935	12
29	MP5C	Z	20.672	12
30	MP5C	Mx	.018	12
31	MP5C	X Z	11.935	48
32 33	MP5C MP5C	Mx	20.672 .018	48 48
34	MP1A	X	7.828	12
35	MP1A	Z	13.559	12
36	MP1A	Mx	006	12
37	MP1A	X	7.828	48
38	MP1A	Z	13.559	48
39	MP1A	Mx	006	48
40	MP5A	X	7.828	12
41	MP5A	Z	13.559	12
42	MP5A	Mx	006	12
43	MP5A	X	7.828	48
44	MP5A	Z	13.559	48
45	MP5A	Mx	006	48
46	MP4A	X	16.34	12
47	MP4A	Z	28.301	12
48	MP4A	Mx	031	12
49	MP4A	Χ	16.34	66
50	MP4A	Z	28.301	66
51	MP4A	Mx	031	66
52	MP4B	Χ	16.34	12
53	MP4B	Z	28.301	12
54	MP4B	Mx	031	12
55	MP4B	Χ	16.34	66
56	MP4B	Z	28.301	66
57	MP4B	Mx	031	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

mombe	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	16.34	12
59	MP4C	Z	28.301	12
60	MP4C	Mx	031	12
61	MP4C	X	16.34	66
62	MP4C	Z	28.301	66
63	MP4C	Mx	031	66
64	MP4A	X	16.34	12
65	MP4A	Z	28.301	12
66	MP4A	Mx	.007	12
67	MP4A	X	16.34	66
68	MP4A	Z	28.301	66
69	MP4A	Mx	.007	66
70	MP4B	X	16.34	12
71	MP4B	Z	28.301	12
72	MP4B	Mx	.007	12
73	MP4B	X	16.34	66
74	MP4B	Z	28.301	66
75	MP4B	Mx	.007	66
76	MP4C	X	16.34	12
77	MP4C	Z	28.301	12
78	MP4C	Mx	.007	12
79	MP4C	X	16.34	66
80	MP4C	Z	28.301	66
81	MP4C	Mx	.007	66
82	OVP1	X	18.266	6
83	OVP1	Z	31.638	6
84	OVP1	Mx	0	6
85	OVP2	X	18.266	6
86	OVP2	Z	31.638	6
87	OVP2	Mx	0	6
88	MP2A	X	9.056	36
89	MP2A	Z	15.685	36
90	MP2A	Mx	006	36
91	MP2A	X	9.056	60
92	MP2A	Z	15.685	60
93	MP2A	Mx	006	60
94	MP2B	X	9.056	36
95	MP2B	Z	15.685	36
96 97	MP2B	Mx	006	36 60
98	MP2B MP2B	X Z	9.056 15.685	60
99	MP2B	Mx	006	60
100	MP2C	X	4.674	36
101	MP2C	Z	8.096	36
102	MP2C	Mx	.006	36
103	MP2C	X	4.674	60
104	MP2C	Z	8.096	60
105	MP2C	Mx	.006	60
106	MP4A	X	8.2	36
107	MP4A	Z	14.203	36
108	MP4A	Mx	.004	36
109	MP4B	X	8.2	36
110	MP4B	Z	14.203	36
111	MP4B	Mx	.004	36
112	MP4C	X	5.459	36
113	MP4C	Ž	9.455	36
114	MP4C	Mx	005	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	0	60
2	MP4A	Z	18.228	60
3	MP4A	Mx	0	60
4	MP4B	X	0	60
5	MP4B	Z	14.255	60
6	MP4B	Mx	.006	60
7	MP4C	X	0	60
8	MP4C	Z	14.255	60
9	MP4C	Mx	006	60
10	MP1B	X	0	12
11	MP1B	Z	21.132	12
12	MP1B	Mx	014	12
13	MP1B	X	0	48
14	MP1B	Z	21.132	48
15	MP1B	Mx	014	48
16	MP1C	X	0	12
17	MP1C	Z	21.132	12
18	MP1C	Mx	.014	12
19	MP1C	X	0	48
20	MP1C	Z	21.132	48
21	MP1C	Mx	.014	48
22	MP5B	X	0	12
23	MP5B	Z	21.132	12
24	MP5B	Mx	014	12
25	MP5B	X	0	48
26	MP5B		21.132	48
27	MP5B	Mx	014	48
28	MP5C	X	0	12
29	MP5C	Z	21.132	12
30	MP5C	Mx	.014	12 48
31 32	MP5C MP5C	X	21.132	48
33	MP5C MP5C	Mx	.014	48
34	MP1A	X	.014	12
35	MP1A	Z	12.919	12
36	MP1A	Mx	0	12
37	MP1A	X	0	48
38	MP1A	Z	12.919	48
39	MP1A	Mx	0	48
40	MP5A	X	0	12
41	MP5A	Z	12.919	12
42	MP5A	Mx	0	12
43	MP5A	X	0	48
44	MP5A	Z	12.919	48
45	MP5A	Mx	0	48
46	MP4A	X	0	12
47	MP4A	Z	35.297	12
48	MP4A	Mx	024	12
49	MP4A	X	0	66
50	MP4A	Z	35.297	66
51	MP4A	Mx	024	66
52	MP4B	X	0	12
53	MP4B	Z	35.297	12
54	MP4B	Mx	024	12
55	MP4B	X	0	66
56	MP4B	Z	35.297	66
57	MP4B	Mx	024	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	0	12
59	MP4C	Z	35.297	12
60	MP4C	Mx	024	12
61	MP4C	X	0	66
62	MP4C	Z	35.297	66
63	MP4C	Mx	024	66
64	MP4A	X	0	12
65	MP4A	Z	35.297	12
66	MP4A	Mx	.024	12
67	MP4A	X	0	66
68	MP4A	Z	35.297	66
69	MP4A	Mx	.024	66
70	MP4B	X	0	12
71	MP4B	Z	35.297	12
72	MP4B	Mx	.024	12
73	MP4B	X	0	66
74	MP4B	Z	35.297	66
75	MP4B	Mx	.024	66
76	MP4C	X	0	12
77	MP4C	Z	35.297	12
78	MP4C	Mx	.024	12
79	MP4C	X	0	66
80	MP4C	Z	35.297	66
81	MP4C	Mx	.024	66
82	OVP1	X	0	6
83	OVP1	Z	34.62	6
84	OVP1	Mx	0	6
85	OVP2	X	0	6
86	OVP2	Z	34.62	6
87	OVP2	Mx	0	6
88	MP2A	X Z	0	36
90	MP2A MP2A		21.032	36
91	MP2A	Mx X	0	36 60
92	MP2A	Z	21.032	60
93	MP2A	Mx	0	60
94	MP2B	X	0	36
95	MP2B	Z	12.269	36
96	MP2B	Mx	007	36
97	MP2B	X	0	60
98	MP2B	Z	12.269	60
99	MP2B	Mx	007	60
100	MP2C	X	0	36
101	MP2C	Z	12.269	36
102	MP2C	Mx	.007	36
103	MP2C	X	0	60
104	MP2C	Z	12.269	60
105	MP2C	Mx	.007	60
106	MP4A	X	0	36
107	MP4A	Z	18.228	36
108	MP4A	Mx	0	36
109	MP4B	X	0	36
110	MP4B	Z	12.745	36
111	MP4B	Mx	.006	36
112	MP4C	X	0	36
113	MP4C	Z	12.745	36
114	MP4C	Mx	006	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-8.452	60
2	MP4A	Z	14.639	60
3	MP4A	Mx	004	60
4	MP4B	X	-6.465	60
5	MP4B	Z	11.198	60
6	MP4B	Mx	.006	60
7	MP4C	X	-8.452	60
8	MP4C	Z	14.639	60
9	MP4C	Mx	004	60
10	MP1B	X	-11.935	12
11	MP1B	Z	20.672	12
12	MP1B	Mx	018	12
13	MP1B	X	-11.935	48
14	MP1B	Z	20.672	48
15	MP1B	Mx	018	48
16	MP1C	X	-7.828	12
17	MP1C	Z	13.559	12
18	MP1C	Mx	.006	12
19	MP1C	X	-7.828	48
20	MP1C	Z	13.559	48
21	MP1C	Mx	.006	48
22	MP5B	X	-11.935	12
23	MP5B	Z	20.672	12
24	MP5B	Mx	018	12
25	MP5B	X	-11.935	48
26	MP5B	Z	20.672	48
27	MP5B	Mx	018	48
28	MP5C	X	-7.828	12
29	MP5C	Z	13.559	12
30	MP5C	Mx	.006	12
31	MP5C	X	-7.828	48
32	MP5C	Z	13.559	48
33	MP5C	Mx	.006	48
34	MP1A	X	-7.828	12
35	MP1A	Z	13.559	12
36	MP1A	Mx	.006	12
37	MP1A	X	-7.828	48
38	MP1A	Z	13.559	48
39	MP1A	Mx	.006	48
40	MP5A	X	-7.828	12
41	MP5A	Z	13.559	12
42	MP5A	Mx	.006	12
43	MP5A	X	-7.828 12.550	48
44	MP5A		13.559	48
45	MP5A	Mx	.006	48 12
46	MP4A	X Z	-16.34	
47	MP4A		28.301	12 12
48	MP4A MP4A	Mx	007 -16.34	66
49 50	MP4A MP4A	X Z	28.301	66
51	MP4A MP4A	Mx	007	66
52	MP4A MP4B	X	007	12
53	MP4B	Z	28.301	12
54	MP4B	Mx	007	12
55	MP4B MP4B	X	-16.34	66
56	MP4B MP4B	Z	28.301	66
57	MP4B	Mx	007	66
<u>ان</u>	IVIT'4D	IVIX	007	UO

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-16.34	12
59	MP4C	Z	28.301	12
60	MP4C	Mx	007	12
61	MP4C	X	-16.34	66
62	MP4C	Z	28.301	66
63	MP4C	Mx	007	66
64	MP4A	X	-16.34	12
65	MP4A	Z	28.301	12
66	MP4A	Mx	.031	12
67	MP4A	X	-16.34	66
68	MP4A	Z	28.301	66
69	MP4A	Mx	.031	66
70	MP4B	X	-16.34	12
71	MP4B	Z	28.301	12
72	MP4B	Mx	.031	12
73	MP4B	X	-16.34	66
74	MP4B	Z	28.301	66
75	MP4B	Mx	.031	66
76	MP4C	X	-16.34	12
77	MP4C	Z	28.301	12
78	MP4C	Mx	.031	12
79	MP4C	X	-16.34	66
80	MP4C	Z	28.301	66
81	MP4C	Mx	.031	66
82	OVP1	X	-15.398	6
83	OVP1	Z	26.67	6
84	OVP1	Mx	0	6
85	OVP2	X	-15.398	6
86	OVP2	Z	26.67	6
87	OVP2	Mx	0	6
88	MP2A	X	-9.056	36
89	MP2A	Z	15.685	36
90	MP2A	Mx	.006	36
91	MP2A	X	-9.056	60
92	MP2A	Z	15.685	60
93	MP2A	Mx	.006	60
94	MP2B	X	-4.674	36
95	MP2B	Z	8.096	36
96	MP2B	Mx	006	36
97	MP2B	X	-4.674	60
98	MP2B	Z	8.096	60
99	MP2B MP2C	Mx	006	60 36
100		X Z	-9.056 15.695	
101	MP2C MP2C	Mx	15.685 .006	36 36
102	MP2C	X	-9.056	60
103	MP2C	Z	15.685	60
104	MP2C MP2C	Mx	.006	60
106	MP4A	X	-8.2	36
107	MP4A	Z	14.203	36
107	MP4A	Mx	004	36
109	MP4B	X	-5.459	36
110	MP4B	Z	9.455	36
111	MP4B	Mx	.005	36
112	MP4C	X	-8.2	36
113	MP4C	Z	14.203	36
114	MP4C	Mx	004	36
114	IVIE 40	IVIA	004	30

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

Member Label Direction Magnitude[lb,k	(-ft] Location[in,%]
1 MP4A X -12.345	60
2 MP4A Z 7.128	60
3 MP4A Mx006	60
4 MP4B X -12.345	60
5 MP4B Z 7.128	60
6 MP4B Mx .006	60
7 MP4C X -15.786	60
8 MP4C Z 9.114	60
9 MP4C Mx 0	60
10 MP1B X -18.301	12
11 MP1B Z 10.566	12
12 MP1B Mx014	12
13 MP1B X -18.301	48
14 MP1B Z 10.566	48
15 MP1B Mx014	48
16 MP1C X -11.188	12
17 MP1C Z 6.459	12
18 MP1C Mx 0	12
19 MP1C X -11.188	48
20 MP1C Z 6.459	48
21 MP1C Mx 0	48
22 MP5B X -18.301	12
23 MP5B Z 10.566	12
24 MP5B Mx014	12
25 MP5B X -18.301	48
26 MP5B Z 10.566	48
27 MP5B Mx014	48
28 MP5C X -11.188	12
29 MP5C Z 6.459	12
30 MP5C Mx 0	12
31 MP5C X -11.188	48
32 MP5C Z 6.459	48
33 MP5C Mx 0	48
34 MP1A X -18.301	12
35 MP1A Z 10.566	12 12
36 MP1A Mx .014	
37 MP1A X -18.301 38 MP1A Z 10.566	48
38 MP1A Z 10.566 39 MP1A Mx .014	48
40 MP5A X -18.301 41 MP5A Z 10.566	12 12
41 MF5A Z 10.566 42 MP5A Mx .014	12
43 MP5A X -18.301	48
44 MP5A Z 10.566	48
45 MP5A Mx .014	48
46 MP4A X -23.768	12
47 MP4A Z 13.722	12
48 MP4A Mx .009	12
49 MP4A X -23.768	66
50 MP4A Z 13.722	66
51 MP4A Mx .009	66
52 MP4B X -23.768	12
53 MP4B Z 13.722	12
54 MP4B Mx .009	12
55 MP4B X -23.768	66
56 MP4B Z 13.722	66
57 MP4B Mx .009	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-23.768	12
59	MP4C	Z	13.722	12
60	MP4C	Mx	.009	12
61	MP4C	X	-23.768	66
62	MP4C	Z	13.722	66
63	MP4C	Mx	.009	66
64	MP4A	X	-23.768	12
65	MP4A	Z	13.722	12
66	MP4A	Mx	.027	12
67	MP4A	X	-23.768	66
68	MP4A	Z	13.722	66
69	MP4A	Mx	.027	66
70	MP4B	X	-23.768	12
71	MP4B	Z	13.722	12
72	MP4B	Mx	.027	12
73	MP4B	X	-23.768	66
74	MP4B	Z	13.722	66
75	MP4B	Mx	.027	66
76	MP4C	X	-23.768	12
77	MP4C	Z	13.722	12
78	MP4C	Mx	.027	12
79	MP4C	X	-23.768	66
80	MP4C	Z	13.722	66
81	MP4C	Mx	.027	66
82	OVP1	X	-25.013	6
83	OVP1	Z	14.441	6
84	OVP1	Mx	0	6
85	OVP2	X	-25.013	6
86	OVP2	Z	14.441	6
87	OVP2	Mx	0	6
88	MP2A	X	-10.625	36
89	MP2A	Ž	6.135	36
90	MP2A	Mx	.007	36
91	MP2A	X	-10.625	60
92	MP2A	Z	6.135	60
93	MP2A	Mx	.007	60
94	MP2B	X	-10.625	36
95	MP2B	Z	6.135	36
96	MP2B	Mx	007	36
97	MP2B	X	-10.625	60
98	MP2B	Ž	6.135	60
99	MP2B	Mx	007	60
100	MP2C	X	-18.214	36
101	MP2C	Z	10.516	36
102	MP2C	Mx	0	36
103	MP2C	X	-18.214	60
104	MP2C	Z	10.516	60
105	MP2C	Mx	0	60
106	MP4A	X	-11.038	36
107	MP4A	Z	6.373	36
108	MP4A	Mx	006	36
109	MP4B	X	-11.038	36
110	MP4B	Z	6.373	36
111	MP4B	Mx	.006	36
112	MP4C	X	-15.786	36
113	MP4C	Z	9.114	36
114	MP4C	Mx	0	36
117	IVII TO	IVIA	U	00

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

Wichik	Der Politi Loads (BLC 24)			
	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-12.931	60
2	MP4A	Z	0	60
3	MP4A	Mx	006	60
4	MP4B	X	-16.904	60
5	MP4B	Z	0	60
6	MP4B	Mx	.004	60
7	MP4C	X	-16.904	60
8	MP4C	Z	0	60
9	MP4C	Mx	.004	60
10	MP1B	X	-15.656	12
11	MP1B	Z	0	12
12	MP1B	Mx	006	12
13	MP1B	X	-15.656	48
14	MP1B	Z	0	48
15	MP1B	Mx	006	48
	MP1C			12
16		X Z	-15.656	
17	MP1C		0	12
18	MP1C	Mx	006	12
19	MP1C	X	-15.656	48
20	MP1C	Z	0	48
21	MP1C	Mx	006	48
22	MP5B	X	-15.656	12
23	MP5B	Z	0	12
24	MP5B	Mx	006	12
25	MP5B	X	-15.656	48
26	MP5B	Z	0	48
27	MP5B	Mx	006	48
28	MP5C	X	-15.656	12
29	MP5C	Z	0	12
30	MP5C	Mx	006	12
31	MP5C	Χ	-15.656	48
32	MP5C	Z	0	48
33	MP5C	Mx	006	48
34	MP1A	Χ	-23.87	12
35	MP1A	Z	0	12
36	MP1A	Mx	.018	12
37	MP1A	X	-23.87	48
38	MP1A	Z	0	48
39	MP1A	Mx	.018	48
40	MP5A	X	-23.87	12
41	MP5A	Z	0	12
42	MP5A	Mx	.018	12
43	MP5A	X	-23.87	48
44	MP5A	Z	0	48
45	MP5A	Mx	.018	48
46	MP4A	X	-24.828	12
	MP4A	Z		
47			.019	12 12
48	MP4A	Mx		
49	MP4A	X	-24.828	66
50	MP4A		0	66
51	MP4A	Mx	.019	66
52	MP4B	X	-24.828	12
53	MP4B	Z	0	12
54	MP4B	Mx	.019	12
55	MP4B	X	-24.828	66
56	MP4B	Z	0	66
57	MP4B	Mx	.019	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-24.828	12
59	MP4C	Z	0	12
60	MP4C	Mx	.019	12
61	MP4C	X	-24.828	66
62	MP4C	Z	0	66
63	MP4C	Mx	.019	66
64	MP4A	X	-24.828	12
65	MP4A	Z	0	12
66	MP4A	Mx	.019	12
67	MP4A	X	-24.828	66
68	MP4A	Z	0	66
69	MP4A	Mx	.019	66
70	MP4B	X	-24.828	12
71	MP4B	Z	0	12
72	MP4B	Mx	.019	12
73	MP4B	X	-24.828	66
74	MP4B	Z	0	66
75	MP4B	Mx	.019	66
76	MP4C	X	-24.828	12
77	MP4C	Z	0	12
78	MP4C	Mx	.019	12
79	MP4C	X	-24.828	66
80	MP4C	Z	0	66
81	MP4C	Mx	.019	66
82	OVP1	X	-30.795	6
83	OVP1	Z	0	6
84	OVP1	Mx	0	6
85	OVP2	X	-30.795	6
86	OVP2	Z	0	6
87	OVP2	Mx	0	6
88	MP2A	X	-9.348	36
89	MP2A	Z	0	36
90	MP2A	Mx	.006	36
91	MP2A	X	-9.348	60
92	MP2A	Z	0	60
93	MP2A	Mx	.006	60
94	MP2B	X	-18.111	36
95	MP2B	Z	0	36
96	MP2B	Mx	006	36
97	MP2B	X	-18.111	60
98	MP2B	Z	0	60
99	MP2B	Mx	006	60
100	MP2C	X Z	-18.111	36
101	MP2C MP2C	Mx	006	36 36
103	MP2C MP2C	X	-18.111 0	60 60
105 106	MP2C MP4A	Mx X	006 -10.918	60 36
106	MP4A MP4A	Z	-10.918	36
107	MP4A MP4A	Mx	005	36
109	MP4B	X	-16.401	36
110	MP4B	Z	-16.401	36
111	MP4B	Mx	.004	36
112	MP4C	X	-16.401	36
113	MP4C	Z	0	36
114	MP4C	Mx	.004	36
114	IVIF 40	IVIA	.004	30

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-12.345	60
2	MP4A	Z	-7.128	60
3	MP4A	Mx	006	60
4	MP4B	X	-15.786	60
5	MP4B	Z	-9.114	60
6	MP4B	Mx	0	60
7	MP4C	X	-12.345	60
8	MP4C	Z	-7.128	60
9	MP4C	Mx	.006	60
10	MP1B	X	-11.188	12
11	MP1B	Z	-6.459	12
12	MP1B	Mx	0	12
13	MP1B	X	-11.188	48
14	MP1B	Z	-6.459	48
15	MP1B	Mx	0	48
16	MP1C	X	-18.301	12
17	MP1C	Z	-10.566	12
18	MP1C	Mx	014	12
19	MP1C	X	-18.301	48
20	MP1C	Z	-10.566	48
21	MP1C	Mx	014	48
22	MP5B	X	-11.188	12
23	MP5B	Z	-6.459	12
24	MP5B	Mx	0	12
25	MP5B	X	-11.188	48
26	MP5B	Z	-6.459	48
27	MP5B	Mx	0	48
28	MP5C	X	-18.301	12
29	MP5C	Z	-10.566	12
30	MP5C	Mx	014	12
31	MP5C	X	-18.301	48
32	MP5C	Z	-10.566	48
33	MP5C	Mx	014	48
34	MP1A	X	-18.301	12
35	MP1A	Z	-10.566	12
36	MP1A	Mx	.014	12
37	MP1A	X	-18.301	48
38	MP1A	Z	-10.566	48
39	MP1A	Mx	.014	48
40	MP5A	X	-18.301	12
41	MP5A	Z	-10.566	12
42	MP5A	Mx	.014	12
43	MP5A	X	-18.301	48
44	MP5A	Z	-10.566	48
45	MP5A	Mx	.014	48
46	MP4A	X	-23.768	12
47	MP4A	Z	-13.722	12
48	MP4A	Mx	.027	12
49	MP4A	X	-23.768	66
50	MP4A	Z	-13.722	66
51	MP4A	Mx	.027	66
52	MP4B	X	-23.768	12
53	MP4B	Z	-13.722	12
54	MP4B	Mx	.027	12
55	MP4B	X	-23.768	66
56	MP4B	Z	-13.722	66
57	MP4B	Mx	.027	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Foint Loads (DLC 23			
F0	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X Z	-23.768	12
59	MP4C		-13.722	12
60	MP4C	Mx	.027	12
61	MP4C	X	-23.768	66
62	MP4C	Z	-13.722	66
63	MP4C	Mx	.027	66
64	MP4A	X	-23.768	12
65	MP4A	Z	-13.722	12
66	MP4A	Mx	.009	12
67	MP4A	X	-23.768	66
68	MP4A	Z	-13.722	66
69	MP4A	Mx	.009	66
70	MP4B	X	-23.768	12
71	MP4B	Z	-13.722	12
72	MP4B	Mx	.009	12
73	MP4B	X	-23.768	66
74	MP4B	Z	-13.722	66
75	MP4B	Mx	.009	66
76	MP4C	X	-23.768	12
77	MP4C	Z	-13.722	12
78	MP4C	Mx	.009	12
79	MP4C	X	-23.768	66
80	MP4C	Z	-13.722	66
81	MP4C	Mx	.009	66
82	OVP1	X	-29.982	6
83	OVP1	Z	-17.31	6
84	OVP1	Mx	0	6
85	OVP2	X	-29.982	6
86	OVP2	Z	-17.31	6
87	OVP2	Mx	0	6
88	MP2A	X	-10.625	36
89	MP2A	Z	-6.135	36
90	MP2A	Mx	.007	36
91	MP2A	X	-10.625	60
92	MP2A	Z	-6.135	60
93	MP2A	Mx	.007	60
94	MP2B	X	-18.214	36
95	MP2B	Z	-10.516	36
96	MP2B	Mx	0	36
97	MP2B	X	-18.214	60
98	MP2B	Z	-10.516	60
99	MP2B	Mx	0	60
100	MP2C	X	-10.625	36
101	MP2C	Z	-6.135	36
102	MP2C	Mx	007	36
102	MP2C		-10.625	60
103	MP2C	X	-6.135	60
104	MP2C	Mx	-0.135	60
106	MP4A	X	-11.038	36
106	MP4A	Z	-6.373	36
	MP4A	Mx		36
108			006 15 796	
109	MP4B	X	-15.786	36
110	MP4B		-9.114	36
111	MP4B	Mx	0	36
112	MP4C	X	-11.038	36
113	MP4C	Z	-6.373	36
114	MP4C	Mx	.006	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-8.452	60
2	MP4A	Z	-14.639	60
3	MP4A	Mx	004	60
4	MP4B	X	-8.452	60
5	MP4B	Z	-14.639	60
6	MP4B	Mx	004	60
7	MP4C	X	-6.465	60
8	MP4C	Z	-11.198	60
9	MP4C	Mx	.006	60
10	MP1B	Χ	-7.828	12
11	MP1B	Z	-13.559	12
12	MP1B	Mx	.006	12
13	MP1B	Χ	-7.828	48
14	MP1B	Z	-13.559	48
15	MP1B	Mx	.006	48
16	MP1C	X	-11.935	12
17	MP1C	Z	-20.672	12
18	MP1C	Mx	018	12
19	MP1C	X	-11.935	48
20	MP1C	Z	-20.672	48
21	MP1C	Mx	018	48
22	MP5B	X	-7.828	12
23	MP5B	Z	-13.559	12
24	MP5B	Mx	.006	12
25	MP5B	X	-7.828	48
26	MP5B	Z	-13.559	48
27	MP5B	Mx	.006	48
28	MP5C	X	-11.935	12
29	MP5C	Z	-20.672	12
30	MP5C	Mx	018	12
31	MP5C	X	-11.935	48
32	MP5C	Z	-20.672	48
33	MP5C	Mx	018	48
34	MP1A	X	-7.828	12
35	MP1A	Z	-13.559	12
36	MP1A	Mx	.006	12
37	MP1A	X	-7.828	48
38	MP1A	Z	-13.559	48
39	MP1A	Mx	.006	48
40 41	MP5A MP5A	X Z	-7.828 -13.559	12 12
42	MP5A	Mx	.006	12
43	MP5A	X	-7.828	48
44	MP5A	Z	-13.559	48
45	MP5A	Mx	.006	48
46	MP4A	X	-16.34	12
47	MP4A	Z	-28.301	12
48	MP4A	Mx	.031	12
49	MP4A	X	-16.34	66
50	MP4A	Z	-28.301	66
51	MP4A	Mx	.031	66
52	MP4B	X	-16.34	12
53	MP4B	Z	-28.301	12
54	MP4B	Mx	.031	12
55	MP4B	X	-16.34	66
56	MP4B	Z	-28.301	66
57	MP4B	Mx	.031	66
<u> </u>	WI TO	1417		

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-16.34	12
59	MP4C	Z	-28.301	12
60	MP4C	Mx	.031	12
61	MP4C	X	-16.34	66
62	MP4C	Z	-28.301	66
63	MP4C	Mx	.031	66
64	MP4A	X	-16.34	12
65	MP4A	Z	-28.301	12
66	MP4A	Mx	007	12
67	MP4A	X	-16.34	66
68	MP4A	Z	-28.301	66
69	MP4A	Mx	007	66
70	MP4B	X	-16.34	12
71	MP4B	Z	-28.301	12
72	MP4B	Mx	007	12
73	MP4B	X	-16.34	66
74	MP4B	Z	-28.301	66
75	MP4B	Mx	007	66
76	MP4C	X	-16.34	12
77	MP4C	Z	-28.301	12
78	MP4C	Mx	007	12
79	MP4C	X	-16.34	66
80	MP4C	Z	-28.301	66
81	MP4C	Mx	007	66
82	OVP1	X	-18.266	6
83	OVP1	Z	-31.638	6
84	OVP1	Mx	0	6
85	OVP2	X	-18.266	6
86	OVP2	Z	-31.638	6
87	OVP2	Mx	0	6
88	MP2A	X	-9.056	36
89	MP2A	Z	-15.685	36
90	MP2A	Mx	.006	36
91	MP2A	X	-9.056	60
92	MP2A	Z	-15.685	60
93	MP2A	Mx	.006	60
94	MP2B	X	-9.056	36
95	MP2B	Z	-15.685	36
96	MP2B	Mx	.006	36
97	MP2B	X	-9.056	60
98	MP2B	Z	-15.685	60
99	MP2B	Mx	.006	60
100	MP2C	Χ	-4.674	36
101	MP2C	Z	-8.096	36
102	MP2C	Mx	006	36
103	MP2C	X	-4.674	60
104	MP2C	Z	-8.096	60
105	MP2C	Mx	006	60
106	MP4A	X	-8.2	36
107	MP4A	Z	-14.203	36
108	MP4A	Mx	004	36
109	MP4B	Χ	-8.2	36
110	MP4B	Z	-14.203	36
111	MP4B	Mx	004	36
112	MP4C	Χ	-5.459	36
113	MP4C	Z	-9.455	36
114	MP4C	Mx	.005	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	0	60
2	MP4A	Z	-5.025	60
3	MP4A	Mx	0	60
4	MP4B	X	0	60
5	MP4B	Z	-3.776	60
6	MP4B	Mx	002	60
7	MP4C	X	0	60
8	MP4C	Z	-3.776	60
9	MP4C	Mx	.002	60
10	MP1B	X	0	12
11	MP1B	Z	-6.317	12
12	MP1B	Mx	.004	12
13	MP1B	X	0	48
14	MP1B	Z	-6.317	48
15	MP1B	Mx	.004	48
16	MP1C	X	0	12
17	MP1C	Z	-6.317	12
18	MP1C	Mx	004	12
19	MP1C	X	0	48
20	MP1C	Z	-6.317	48
21	MP1C	Mx	004	48
22	MP5B	X	0	12
23	MP5B	Z	-6.317	12 12
24	MP5B	Mx	.004	
25	MP5B MP5B	X Z	-6.317	48 48
26 27	MP5B			48
28	MP5C	Mx X	.004	12
29	MP5C MP5C	Z	-6.317	12
30	MP5C MP5C	Mx	-0.317	12
31	MP5C	X	004	48
32	MP5C	Z	-6.317	48
33	MP5C	Mx	004	48
34	MP1A	X	0	12
35	MP1A	Z	-3.507	12
36	MP1A	Mx	0	12
37	MP1A	X	0	48
38	MP1A	Z	-3.507	48
39	MP1A	Mx	0	48
40	MP5A	X	0	12
41	MP5A	Ž	-3.507	12
42	MP5A	Mx	0	12
43	MP5A	Χ	0	48
44	MP5A	Z	-3.507	48
45	MP5A	Mx	0	48
46	MP4A	Χ	0	12
47	MP4A	Z	-10.964	12
48	MP4A	Mx	.007	12
49	MP4A	Χ	0	66
50	MP4A	Z	-10.964	66
51	MP4A	Mx	.007	66
52	MP4B	X	0	12
53	MP4B	Z	-10.964	12
54	MP4B	Mx	.007	12
55	MP4B	X	0	66
56	MP4B	Z	-10.964	66
57	MP4B	Mx	.007	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	0	12
59	MP4C	Z	-10.964	12
60	MP4C	Mx	.007	12
61	MP4C	X	0	66
62	MP4C	Z	-10.964	66
63	MP4C	Mx	.007	66
64	MP4A	X	0	12
65	MP4A	Z	-10.964	12
66	MP4A	Mx	007	12
67	MP4A	X	0	66
68	MP4A	Z	-10.964	66
69	MP4A	Mx	007	66
70	MP4B	X	0	12
71	MP4B	Z	-10.964	12
72	MP4B	Mx	007	12
73	MP4B	X	0	66
74	MP4B	Z	-10.964	66
75	MP4B	Mx	007	66
76	MP4C	X	0	12
77	MP4C	Z	-10.964	12
78	MP4C	Mx	007	12
79	MP4C	X	0	66
80	MP4C	Z	-10.964	66
81	MP4C	Mx	007	66
82	OVP1	X	0	6
83	OVP1	Z	-10.264	6
84	OVP1	Mx	0	6
85	OVP2	X	0	6
86	OVP2	Z	-10.264	6
87	OVP2	Mx	0	6
88	MP2A	X	0	36
89	MP2A	Z	-6.315	36
90	MP2A	Mx	0	36
91	MP2A	X	0	60
92	MP2A	Z	-6.315	60
93	MP2A	Mx	0	60
94	MP2B	X	0	36
95	MP2B	Z	-3.433	36
96	MP2B	Mx	.002	36
97	MP2B	X	0	60
98	MP2B	Z	-3.433	60
99	MP2B	Mx	.002	60
100	MP2C	X	0	36
101	MP2C	Z	-3.433	36
102	MP2C	Mx	002	36
103	MP2C	X	0	60
104	MP2C	Z	-3.433	60
105	MP2C	Mx	002	60
106	MP4A	X Z	0	36
107	MP4A		-5.025	36
108	MP4A	Mx	0	36
109	MP4B	X	0 -3.297	36
110	MP4B			36
111	MP4B	Mx	001	36
112	MP4C	X Z	0	36
113	MP4C		-3.297	36
114	MP4C	Mx	.001	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	2.304	60
2	MP4A	Z	-3.991	60
3	MP4A	Mx	.001	60
4	MP4B	X	1.68	60
5	MP4B	Z	-2.909	60
6	MP4B	Mx	002	60
7	MP4C	X	2.304	60
8	MP4C	Z	-3.991	60
9	MP4C	Mx	.001	60
10	MP1B	X	3.627	12
11	MP1B	Z	-6.282	12
12	MP1B	Mx	.005	12
13	MP1B	X	3.627	48
14	MP1B	Z	-6.282	48
15	MP1B	Mx	.005	48
16	MP1C	X	2.222	12
17	MP1C	Z	-3.848	12
18	MP1C	Mx	002	12
19	MP1C	X	2.222	48
20	MP1C	Z	-3.848	48
21	MP1C	Mx	002	48
22	MP5B	X	3.627	12
23	MP5B	Z	-6.282	12
24	MP5B	Mx	.005	12
25	MP5B	X	3.627	48
26	MP5B	Z	-6.282	48
27	MP5B	Mx	.005	48
28	MP5C	X	2.222	12
29	MP5C	Z	-3.848	12
30	MP5C	Mx	002	12
31	MP5C	X	2.222	48
32	MP5C	Z	-3.848	48
33	MP5C	Mx	002	48
34	MP1A	X	2.222	12
35	MP1A	Z	-3.848	12
36	MP1A	Mx	002	12
37	MP1A	X	2.222	48
38	MP1A	Z	-3.848	48
39	MP1A	Mx	002	48
40 41	MP5A MP5A	X Z	2.222 -3.848	12 12
42	MP5A	Mx	002	12
43	MP5A	X	2.222	48
44	MP5A	Z	-3.848	48
45	MP5A	Mx	002	48
46	MP4A	X	5.018	12
47	MP4A	Z	-8.691	12
48	MP4A	Mx	.002	12
49	MP4A	X	5.018	66
50	MP4A	Z	-8.691	66
51	MP4A	Mx	.002	66
52	MP4B	X	5.018	12
53	MP4B	Z	-8.691	12
54	MP4B	Mx	.002	12
55	MP4B	X	5.018	66
56	MP4B	Z	-8.691	66
57	MP4B	Mx	.002	66
<u> </u>	15			

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Mambar Labal	Direction	Magnitude[lb k ft]	Location Fig. 9/1
58	Member Label MP4C	Direction X	Magnitude[lb,k-ft] 5.018	Location[in,%]
59	MP4C	Z	-8.691	12
60	MP4C	Mx	.002	12
61	MP4C	X	5.018	66
62	MP4C	Z	-8.691	66
63	MP4C	Mx	.002	66
64	MP4A	X	5.018	12
65	MP4A	Z	-8.691	12
66	MP4A	Mx	01	12
67	MP4A	X	5.018	66
68	MP4A	Z	-8.691	66
69	MP4A	Mx	01	66
70	MP4B	X	5.018	12
71	MP4B	Z	-8.691	12
72	MP4B	Mx	-0.091	12
73	MP4B	X	5.018	66
74	MP4B	Z	-8.691	66
75	MP4B	Mx	-0.091	66
76	MP4C	X	5.018	12
		Z		
77 78	MP4C MP4C	Mx	-8.691 01	12 12
79	MP4C	X	5.018	66
80	MP4C	Z	-8.691	66
81	MP4C MP4C	Mx	-0.091	66
82	OVP1	X	4.485	6
83	OVP1	Z		
	OVP1		-7.768	6
84		Mx	0	6
85	OVP2	X	4.485	6
86	OVP2	Z	-7.768	6
87	OVP2	Mx	0	6
88	MP2A	X Z	2.677	36
89	MP2A		-4.637	36
90	MP2A	Mx	002	36
91	MP2A	X Z	2.677	60
92	MP2A		-4.637	60
93	MP2A	Mx	002	60
94	MP2B	X	1.236	36
95	MP2B	Z	-2.141	36
96	MP2B	Mx	.002	36
97	MP2B	X Z	1.236	60
98	MP2B		-2.141	60
99	MP2B MP2C	Mx	.002	60
100		X	2.677	36
101	MP2C	Z	-4.637	36
102	MP2C	Mx	002	36
103	MP2C	X	2.677	60
104	MP2C		-4.637	60
105	MP2C	Mx	002	60
106	MP4A	X Z	2.225	36
107	MP4A		-3.853	36
108	MP4A	Mx	.001	36
109	MP4B	X	1.36	36
110	MP4B	Z	-2.356	36
111	MP4B	Mx	001	36
112	MP4C	X	2.225	36
113	MP4C	Z	-3.853	36
114	MP4C	Mx	.001	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	3.27	60
2	MP4A	Z	-1.888	60
3	MP4A	Mx	.002	60
4	MP4B	X	3.27	60
5	MP4B	Z	-1.888	60
6	MP4B	Mx	002	60
7	MP4C	X	4.352	60
8	MP4C	Z	-2.513	60
9	MP4C	Mx	0	60
10	MP1B	X	5.471	12
11	MP1B	Z	-3.159	12
12	MP1B	Mx	.004	12
13	MP1B	X	5.471	48
14	MP1B	Z	-3.159	48
15	MP1B	Mx	.004	48
16	MP1C	X	3.037	12
17	MP1C	Z	-1.753	12
18	MP1C	Mx	0	12
19	MP1C	X	3.037	48
20	MP1C	Z	-1.753	48
21	MP1C	Mx	0	48
22	MP5B	X	5.471	12
23	MP5B	Z	-3.159	12
24	MP5B	Mx	.004	12
25	MP5B	X Z	5.471	48
26	MP5B		-3.159	48
27	MP5B	Mx	.004	48
28	MP5C	X Z	3.037	12
29	MP5C		-1.753	12 12
30	MP5C	Mx	3.037	48
31 32	MP5C MP5C	X	-1.753	48
33	MP5C	Mx	-1.733	48
34	MP1A	X	5.471	12
35	MP1A	Z	-3.159	12
36	MP1A	Mx	004	12
37	MP1A	X	5.471	48
38	MP1A	Z	-3.159	48
39	MP1A	Mx	004	48
40	MP5A	X	5.471	12
41	MP5A	Ž	-3.159	12
42	MP5A	Mx	004	12
43	MP5A	X	5.471	48
44	MP5A	Z	-3.159	48
45	MP5A	Mx	004	48
46	MP4A	X	7.083	12
47	MP4A	Z	-4.089	12
48	MP4A	Mx	003	12
49	MP4A	Χ	7.083	66
50	MP4A	Z	-4.089	66
51	MP4A	Mx	003	66
52	MP4B	X	7.083	12
53	MP4B	Z	-4.089	12
54	MP4B	Mx	003	12
55	MP4B	X	7.083	66
56	MP4B	Z	-4.089	66
57	MP4B	Mx	003	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	7.083	12
59	MP4C	Z	-4.089	12
60	MP4C	Mx	003	12
61	MP4C	X	7.083	66
62	MP4C	Z	-4.089	66
63	MP4C	Mx	003	66
64	MP4A	X	7.083	12
65	MP4A	Z	-4.089	12
66	MP4A	Mx	008	12
67	MP4A	X	7.083	66
68	MP4A	Z	-4.089	66
69	MP4A	Mx	008	66
70	MP4B	X	7.083	12
71	MP4B	Z	-4.089	12
72	MP4B	Mx	008	12
73	MP4B	X	7.083	66
74	MP4B	Z	-4.089	66
75	MP4B	Mx	008	66
76	MP4C	X	7.083	12
77	MP4C	Z	-4.089	12
78	MP4C	Mx	008	12
79	MP4C	X	7.083	66
80	MP4C	Z	-4.089	66
81	MP4C	Mx	008	66
82	OVP1	X	7.209	6
83	OVP1	Z	-4.162	6
84	OVP1	Mx	0	6
85	OVP2	X	7.209	6
86	OVP2	Z	-4.162	6
87	OVP2	Mx	0	6
88	MP2A	X	2.973	36
89	MP2A	Z	-1.716	36
90	MP2A	Mx	002	36
91	MP2A	X	2.973	60
92	MP2A	Z	-1.716	60
93	MP2A	Mx	002	60
94	MP2B	X	2.973	36
95	MP2B	Z	-1.716	36
96	MP2B	Mx	.002	36
97	MP2B	X	2.973	60
98	MP2B	Z	-1.716	60
99	MP2B	Mx	.002	60
100	MP2C	X	5.469	36
101	MP2C	Z	-3.157	36
102	MP2C	Mx	0	36
103	MP2C	X	5.469	60
104	MP2C	Z	-3.157	60
105	MP2C	Mx	0	60
106	MP4A	X	2.855	36
107	MP4A	Z	-1.648	36
108	MP4A	Mx	.001	36
109	MP4B	X	2.855	36
110	MP4B	Z	-1.648	36
111	MP4B	Mx	001	36
112	MP4C	X Z	4.352	36
113	MP4C		-2.513	36
114	MP4C	Mx	0	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	3.359	60
2	MP4A	Z	0	60
3	MP4A	Mx	.002	60
4	MP4B	Χ	4.609	60
5	MP4B	Z	0	60
6	MP4B	Mx	001	60
7	MP4C	Χ	4.609	60
8	MP4C	Z	0	60
9	MP4C	Mx	001	60
10	MP1B	Χ	4.444	12
11	MP1B	Z	0	12
12	MP1B	Mx	.002	12
13	MP1B	Χ	4.444	48
14	MP1B	Z	0	48
15	MP1B	Mx	.002	48
16	MP1C	Χ	4.444	12
17	MP1C	Z	0	12
18	MP1C	Mx	.002	12
19	MP1C	Χ	4.444	48
20	MP1C	Z	0	48
21	MP1C	Mx	.002	48
22	MP5B	Χ	4.444	12
23	MP5B	Z	0	12
24	MP5B	Mx	.002	12
25	MP5B	Χ	4.444	48
26	MP5B	Z	0	48
27	MP5B	Mx	.002	48
28	MP5C	Χ	4.444	12
29	MP5C	Z	0	12
30	MP5C	Mx	.002	12
31	MP5C	Χ	4.444	48
32	MP5C	Z	0	48
33	MP5C	Mx	.002	48
34	MP1A	Χ	7.254	12
35	MP1A	Z	0	12
36	MP1A	Mx	005	12
37	MP1A	Χ	7.254	48
38	MP1A	Z	0	48
39	MP1A	Mx	005	48
40	MP5A	X	7.254	12
41	MP5A	Z	0	12
42	MP5A	Mx	005	12
43	MP5A	X Z	7.254	48
44	MP5A		0	48
45	MP5A	Mx	005	48
46	MP4A	<u>X</u>	7.25	12
47	MP4A	Z	0	12
48	MP4A	Mx	005	12
49	MP4A	X	7.25	66
50	MP4A	Z	0	66
51	MP4A	Mx	005	66
52	MP4B	X	7.25	12
53	MP4B	Z	0	12
54	MP4B	Mx	005	12
55	MP4B	X	7.25	66
56	MP4B	Z	0	66
57	MP4B	Mx	005	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	7.25	12
59	MP4C	Z	0	12
60	MP4C	Mx	005	12
61	MP4C	X	7.25	66
62	MP4C	Z	0	66
63	MP4C	Mx	005	66
64	MP4A	X	7.25	12
65	MP4A	Z	0	12
66	MP4A	Mx	005	12
67	MP4A	X	7.25	66
68	MP4A	Z	0	66
69	MP4A	Mx	005	66
70	MP4B	X	7.25	12
71	MP4B	Z	0	12
72	MP4B	Mx	005	12
73	MP4B	X	7.25	66
74	MP4B	Z	0	66
75	MP4B	Mx	005	66
76	MP4C	X	7.25	12
77	MP4C	Z	0	12
78	MP4C	Mx	005	12
79	MP4C	X	7.25	66
80	MP4C	Z	0	66
81	MP4C	Mx	005	66
82	OVP1	X	8.97	6
83	OVP1	Z	0	6
84	OVP1	Mx	0	6
85	OVP2	X	8.97	6
86	OVP2	Z	0	6
87	OVP2	Mx	0	6
88	MP2A	X	2.472	36
89	MP2A	Z	0	36
90	MP2A	Mx	002	36
91	MP2A	X	2.472	60
92	MP2A		0	60
93	MP2A	Mx	002	60
94	MP2B	X Z	5.354	36
95 96	MP2B MP2B	Mx	.002	36 36
97			5.354	60
98	MP2B MP2B	X	0.354	60
99	MP2B	Mx	.002	60
100	MP2C	X	5.354	36
101	MP2C	Z	0	36
102	MP2C	Mx	.002	36
103	MP2C	X	5.354	60
104	MP2C	Z	0	60
105	MP2C	Mx	.002	60
106	MP4A	X	2.721	36
107	MP4A	Z	0	36
108	MP4A	Mx	.001	36
109	MP4B	X	4.449	36
110	MP4B	Z	0	36
111	MP4B	Mx	001	36
112	MP4C	X	4.449	36
113	MP4C	Z	0	36
114	MP4C	Mx	001	36
		.7174	.001	

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	3.27	60
2	MP4A	Z	1.888	60
3	MP4A	Mx	.002	60
4	MP4B	X	4.352	60
5	MP4B	Z	2.513	60
6	MP4B	Mx	0	60
7	MP4C	X	3.27	60
8	MP4C	Z	1.888	60
9	MP4C	Mx	002	60
10	MP1B	X	3.037	12
11	MP1B	Z	1.753	12
12	MP1B	Mx	0	12
13	MP1B	X	3.037	48
14	MP1B	Z	1.753	48
15	MP1B	Mx	0	48
16	MP1C	X	5.471	12
17	MP1C	Z	3.159	12
18	MP1C	Mx	.004	12
19	MP1C	X	5.471	48
20	MP1C	Z	3.159	48
21	MP1C	Mx	.004	48
22	MP5B	X	3.037	12
23	MP5B	Z	1.753	12
24	MP5B	Mx	0	12
25	MP5B	X	3.037	48
26	MP5B	Z	1.753	48
27	MP5B	Mx	0	48
28	MP5C	X	5.471	12
29	MP5C	Z	3.159	12
30	MP5C	Mx	.004	12
31	MP5C	X	5.471	48
32	MP5C	Z	3.159	48
33	MP5C	Mx	.004	48
34	MP1A	X	5.471	12
35	MP1A	Z	3.159	12 12
36	MP1A	Mx	004	
37	MP1A MP1A	X	5.471 3.159	48 48
38 39	MP1A	Mx	004	48
40		X	5.471	
41	MP5A MP5A	Z	3.159	12 12
42	MP5A	Mx	004	12
43	MP5A	X	5.471	48
44	MP5A	Z	3.159	48
45	MP5A	Mx	004	48
46	MP4A	X	7.083	12
47	MP4A	Z	4.089	12
48	MP4A	Mx	008	12
49	MP4A	X	7.083	66
50	MP4A	Z	4.089	66
51	MP4A	Mx	008	66
52	MP4B	X	7.083	12
53	MP4B	Z	4.089	12
54	MP4B	Mx	008	12
55	MP4B	X	7.083	66
56	MP4B	Ž	4.089	66
57	MP4B	Mx	008	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	7.083	12
59	MP4C	Z	4.089	12
60	MP4C	Mx	008	12
61	MP4C	X	7.083	66
62	MP4C	Z	4.089	66
63	MP4C	Mx	008	66
64	MP4A	X	7.083	12
65	MP4A	Z	4.089	12
66	MP4A	Mx	003	12
67	MP4A	X	7.083	66
68	MP4A	Z	4.089	66
69	MP4A	Mx	003	66
70	MP4B	X	7.083	12
71	MP4B	Z	4.089	12
72	MP4B	Mx	003	12
73	MP4B	X	7.083	66
74	MP4B	Z	4.089	66
75	MP4B	Mx	003	66
76	MP4C	X	7.083	12
77	MP4C	Z	4.089	12
78	MP4C	Mx	003	12
79	MP4C	X	7.083	66
80	MP4C	Z	4.089	66
81	MP4C	Mx	003	66
82	OVP1	X	8.888	6
83	OVP1	Z	5.132	6
84	OVP1	Mx	0	6
85	OVP2	X	8.888	6
86	OVP2	Ž	5.132	6
87	OVP2	Mx	0	6
88	MP2A	X	2.973	36
89	MP2A	Z	1.716	36
90	MP2A	Mx	002	36
91	MP2A	X	2.973	60
92	MP2A	Z	1.716	60
93	MP2A	Mx	002	60
94	MP2B	X	5.469	36
95	MP2B	Z	3.157	36
96	MP2B	Mx	0	36
97	MP2B	Χ	5.469	60
98	MP2B	Z	3.157	60
99	MP2B	Mx	0	60
100	MP2C	Χ	2.973	36
101	MP2C	Z	1.716	36
102	MP2C	Mx	.002	36
103	MP2C	Χ	2.973	60
104	MP2C	Z	1.716	60
105	MP2C	Mx	.002	60
106	MP4A	Χ	2.855	36
107	MP4A	Z	1.648	36
108	MP4A	Mx	.001	36
109	MP4B	X	4.352	36
110	MP4B	Z	2.513	36
111	MP4B	Mx	0	36
112	MP4C	Χ	2.855	36
113	MP4C	Z	1.648	36
114	MP4C	Mx	001	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

1 MP4A X 2.304 2 MP4A Z 3.991 3 MP4A Mx .001	tion[in,%] 60 60 60
2 MP4A Z 3.991 3 MP4A Mx .001	60
3 MP4A Mx .001	
	00
4 MP4B X 2.304	60
5 MP4B Z 3.991	60
6 MP4B Mx .001	60
7 MP4C X 1.68	60
8 MP4C Z 2.909	60
9 MP4C Mx002	60
10 MP1B X 2.222	12
11 MP1B Z 3.848	12
12 MP1B Mx002	12
13 MP1B X 2.222	48
14 MP1B Z 3.848	48
15 MP1B Mx002	48
16 MP1C X 3.627	12
17 MP1C Z 6.282	12
18 MP1C Mx .005	12
19 MP1C X 3.627	48
20 MP1C Z 6.282	48
21 MP1C Mx .005	48
22 MP5B X 2.222	12
23 MP5B Z 3.848	12
24 MP5B Mx002	12
25 MP5B X 2.222	48
26 MP5B Z 3.848	48
27 MP5B Mx002	48
28 MP5C X 3.627	12
29 MP5C Z 6.282	12
30 MP5C Mx .005	12
31 MP5C X 3.627	48
32 MP5C Z 6.282	48
33 MP5C Mx .005	48
34 MP1A X 2.222 35 MP1A Z 3.848	12
	12 12
36 MP1A Mx002 37 MP1A X 2.222	48
37 MPTA X 2.222 38 MP1A Z 3.848	48
38 MP1A Z 3.848 39 MP1A Mx002	48
40 MP5A X 2.222	12
40 MP5A X 2.222 41 MP5A Z 3.848	12
41 MF5A Z 3.848 42 MP5A Mx002	12
42 MP5A X 2.222	48
44 MP5A Z 3.848	48
45 MP5A Mx002	48
46 MP4A X 5.018	12
47 MP4A Z 8.691	12
48 MP4A Mx01	12
49 MP4A X 5.018	66
50 MP4A Z 8.691	66
51 MP4A Mx01	66
52 MP4B X 5.018	12
53 MP4B Z 8.691	12
54 MP4B Mx01	12
55 MP4B X 5.018	66
56 MP4B Z 8.691	66
57 MP4B Mx01	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	5.018	12
59	MP4C	Z	8.691	12
60	MP4C	Mx	01	12
61	MP4C	X	5.018	66
62	MP4C	Z	8.691	66
63	MP4C	Mx	01	66
64	MP4A	X	5.018	12
65	MP4A	Z	8.691	12
66	MP4A	Mx	.002	12
67	MP4A	X	5.018	66
68	MP4A	Z	8.691	66
69	MP4A	Mx	.002	66
70	MP4B	X	5.018	12
71	MP4B	Z	8.691	12
72	MP4B	Mx	.002	12
73	MP4B	X	5.018	66
74	MP4B	Z	8.691	66
75	MP4B	Mx	.002	66
76	MP4C	X	5.018	12
77	MP4C	Z	8.691	12
78	MP4C	Mx	.002	12
79	MP4C	X	5.018	66
80	MP4C	Z	8.691	66
81	MP4C	Mx	.002	66
82	OVP1	X	5.455	6
83	OVP1	Z	9.448	6
84	OVP1	Mx	0	6
85	OVP2	X	5.455	6
86	OVP2	Z	9.448	6
87	OVP2 OVP2	Mx	9.446	6
88	MP2A	X	2.677	36
89	MP2A MP2A	Z	4.637	36
90	MP2A	Mx	002	36
91	MP2A MP2A	X	2.677	60
92	MP2A MP2A	Z	4.637	60
	MP2A MP2A	Mx		60
93			002 2.677	
94	MP2B	X Z		36
95	MP2B		4.637	36
96	MP2B	Mx	002	36
97	MP2B	X Z	2.677	60
98	MP2B		4.637	60
99	MP2B	Mx	002	60
100	MP2C	X Z	1.236	36
101	MP2C		2.141	36
102	MP2C	Mx	.002	36
103	MP2C	X	1.236	60
104	MP2C	Z	2.141	60
105	MP2C	Mx	.002	60
106	MP4A	X	2.225	36
107	MP4A	Z	3.853	36
108	MP4A	Mx	.001	36
109	MP4B	X	2.225	36
110	MP4B	Z	3.853	36
111	MP4B	Mx	.001	36
112	MP4C	X	1.36	36
113	MP4C	Z	2.356	36
114	MP4C	Mx	001	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	0	60
2	MP4A	Z	5.025	60
3	MP4A	Mx	0	60
4	MP4B	X	0	60
5	MP4B	Z	3.776	60
6	MP4B	Mx	.002	60
7	MP4C	X	0	60
8	MP4C	Z	3.776	60
9	MP4C	Mx	002	60
10	MP1B	X	0	12
11	MP1B	Z	6.317	12
12	MP1B	Mx	004	12
13	MP1B	X	0	48
14	MP1B	Z	6.317	48
15	MP1B	Mx	004	48
16	MP1C	X	0	12
17	MP1C	Z	6.317	12
18	MP1C	Mx	.004	12
19	MP1C	X	0	48
20	MP1C	Z	6.317	48
21	MP1C	Mx	.004	48
22	MP5B	X	0	12
23	MP5B	Z	6.317	12
24	MP5B	Mx	004	12
25	MP5B	X	0	48
26	MP5B	Z	6.317	48
27	MP5B	Mx	004	48
28	MP5C	X	0	12
29	MP5C	Z	6.317	12
30	MP5C	Mx	.004	12
31	MP5C	X	0	48
32	MP5C	Z	6.317	48
33	MP5C	Mx	.004	48
34	MP1A	X	0	12
35	MP1A	Z	3.507	12
36	MP1A	Mx	0	12
37	MP1A	X	0	48
38	MP1A	Z	3.507	48
39	MP1A	Mx	0	48
40	MP5A	X	0	12
41	MP5A	Z	3.507	12
42	MP5A	Mx	0	12
43	MP5A	X	0	48
44	MP5A	Z	3.507	48
45	MP5A	Mx	0	48
46	MP4A	X	0	12
47	MP4A	Z	10.964	12
48	MP4A	Mx	007	12
49	MP4A	X	0	66
50	MP4A	Z	10.964	66
51	MP4A	Mx	007	66
52	MP4B	X	0	12
53	MP4B	Z	10.964	12
54	MP4B	Mx	007	12
55	MP4B	X	0	66
56	MP4B	Z	10.964	66
57	MP4B	Mx	007	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	0	12
59	MP4C	Z	10.964	12
60	MP4C	Mx	007	12
61	MP4C	X	0	66
62	MP4C	Z	10.964	66
63	MP4C	Mx	007	66
64	MP4A	X	0	12
65	MP4A	Z	10.964	12
66	MP4A	Mx	.007	12
67	MP4A	X	0	66
68	MP4A	Z	10.964	66
69	MP4A	Mx	.007	66
70	MP4B	X	0	12
71	MP4B	Z	10.964	12
72	MP4B	Mx	.007	12
73	MP4B	X	0	66
74	MP4B	Z	10.964	66
75	MP4B	Mx	.007	66
76	MP4C	X	0	12
77	MP4C	Z	10.964	12
78	MP4C	Mx	.007	12
79	MP4C	X	0	66
80	MP4C	Z	10.964	66
81	MP4C	Mx	.007	66
82	OVP1	X	0	6
83	OVP1	Z	10.264	6
84	OVP1	Mx	0	6
85	OVP2	X	0	6
86	OVP2	Z	10.264	6
87	OVP2	Mx	0	6
88	MP2A	X	0	36
89	MP2A	Ž	6.315	36
90	MP2A	Mx	0	36
91	MP2A	X	0	60
92	MP2A	Z	6.315	60
93	MP2A	Mx	0	60
94	MP2B	X	0	36
95	MP2B	Z	3.433	36
96	MP2B	Mx	002	36
97	MP2B	X	0	60
98	MP2B	Ž	3.433	60
99	MP2B	Mx	002	60
100	MP2C	X	0	36
101	MP2C	Z	3.433	36
102	MP2C	Mx	.002	36
103	MP2C	X	0	60
104	MP2C	Z	3.433	60
105	MP2C	Mx	.002	60
106	MP4A	X	0	36
107	MP4A	Z	5.025	36
108	MP4A	Mx	0	36
109	MP4B	X	0	36
110	MP4B	Z	3.297	36
111	MP4B	Mx	.001	36
112	MP4C	X	0	36
113	MP4C	Z	3.297	36
114	MP4C	Mx	001	36
114	IVII +O	IVIA	001	00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-2.304	60
2	MP4A	Z	3.991	60
3	MP4A	Mx	001	60
4	MP4B	X	-1.68	60
5	MP4B	Z	2.909	60
6	MP4B	Mx	.002	60
7	MP4C	X	-2.304	60
8	MP4C	Ž	3.991	60
9	MP4C	Mx	001	60
10	MP1B	X	-3.627	12
11	MP1B	Z	6.282	12
12	MP1B	Mx	005	12
13	MP1B	X	-3.627	48
14	MP1B	Z	6.282	48
15	MP1B	Mx	005	48
16	MP1C	X	-2.222	12
17	MP1C	Z	3.848	12
18	MP1C	Mx	.002	12
19	MP1C	X	-2.222	48
20	MP1C	Z	3.848	48
21	MP1C	Mx	.002	48
22	MP5B	X	-3.627	12
23	MP5B	Z	6.282	12
24	MP5B	Mx	005	12
25	MP5B	X	-3.627	48
26	MP5B	Z	6.282	48
27	MP5B	Mx	005	48
28	MP5C	X	-2.222	12
29	MP5C	Z	3.848	12
30	MP5C	Mx	.002	12
31	MP5C	X	-2.222	48
32	MP5C	Z	3.848	48
33	MP5C	Mx	.002	48
34	MP1A	X	-2.222	12
35	MP1A	Z	3.848	12
36	MP1A	Mx	.002	12
37	MP1A	X	-2.222	48
38	MP1A	Z	3.848	48
39	MP1A	Mx	.002	48
40	MP5A MP5A	X Z	-2.222	12
41	MP5A	Mx	3.848 .002	12 12
42	MP5A	X	-2.222	48
43	MP5A	Z	3.848	48
45	MP5A	Mx	.002	48
46	MP4A	X	-5.018	12
46	MP4A MP4A	Z	8.691	12
48	MP4A MP4A	Mx	002	12
49	MP4A	X	-5.018	66
50	MP4A	Z	8.691	66
51	MP4A	Mx	002	66
52	MP4B	X	-5.018	12
53	MP4B	Z	8.691	12
54	MP4B	Mx	002	12
55	MP4B	X	-5.018	66
56	MP4B	Z	8.691	66
57	MP4B	Mx	002	66
JI	IVII TU	IVIA	002	- 00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-5.018	12
59	MP4C	Z	8.691	12
60	MP4C	Mx	002	12
61	MP4C	X	-5.018	66
62	MP4C	Z	8.691	66
63	MP4C	Mx	002	66
64	MP4A	X	-5.018	12
65	MP4A	Z	8.691	12
66	MP4A	Mx	.01	12
67	MP4A	X	-5.018	66
68	MP4A	Z	8.691	66
69	MP4A	Mx	.01	66
70	MP4B	X	-5.018	12
71	MP4B	Z	8.691	12
72	MP4B	Mx	.01	12
73	MP4B	X	-5.018	66
74	MP4B	Z	8.691	66
75	MP4B	Mx	.01	66
76	MP4C	X	-5.018	12
77	MP4C	Z	8.691	12
78	MP4C	Mx	.01	12
79	MP4C	X	-5.018	66
80	MP4C	Z	8.691	66
81	MP4C	Mx	.01	66
82	OVP1	X	-4.485	6
83	OVP1	Z	7.768	6
84	OVP1	Mx	0	6
85	OVP2	X	-4.485	6
86	OVP2	Z	7.768	6
87	OVP2	Mx	0	6
88	MP2A	X Z	-2.677	36
90	MP2A MP2A	Mx	4.637	36 36
91	MP2A	X	-2.677	60
92	MP2A	Z	4.637	60
93	MP2A	Mx	.002	60
94	MP2B	X	-1.236	36
95	MP2B	Z	2.141	36
96	MP2B	Mx	002	36
97	MP2B	X	-1.236	60
98	MP2B	Z	2.141	60
99	MP2B	Mx	002	60
100	MP2C	X	-2.677	36
101	MP2C	Z	4.637	36
102	MP2C	Mx	.002	36
103	MP2C	X	-2.677	60
104	MP2C	Z	4.637	60
105	MP2C	Mx	.002	60
106	MP4A	X	-2.225	36
107	MP4A	Z	3.853	36
108	MP4A	Mx	001	36
109	MP4B	X	-1.36	36
110	MP4B	Z	2.356	36
111	MP4B	Mx	.001	36
112	MP4C	X	-2.225	36
113	MP4C	Z	3.853	36
114	MP4C	Mx	001	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-3.27	60
2	MP4A	Z	1.888	60
3	MP4A	Mx	002	60
4	MP4B	X	-3.27	60
5	MP4B	Z	1.888	60
6	MP4B	Mx	.002	60
7	MP4C	X	-4.352	60
8	MP4C	Z	2.513	60
9	MP4C	Mx	0	60
10	MP1B	X	-5.471	12
11	MP1B	Z	3.159	12
12	MP1B	Mx	004	12
13	MP1B	X	-5.471	48
14	MP1B	Z	3.159	48
15	MP1B	Mx	004	48
16	MP1C	X	-3.037	12
17	MP1C	Z	1.753	12
18	MP1C	Mx	0	12
19	MP1C	X	-3.037	48
20	MP1C	Z	1.753	48
21	MP1C	Mx	0	48
22	MP5B	X	-5.471	12
23	MP5B	Z	3.159	12
24	MP5B	Mx	004	12
25	MP5B	X	-5.471	48
26	MP5B	Z	3.159	48
27	MP5B	Mx	004	48
28	MP5C	X	-3.037	12
29	MP5C	Z	1.753	12
30	MP5C	Mx	0	12
31	MP5C	X	-3.037	48
32	MP5C	Z	1.753	48
33	MP5C	Mx	0	48
34	MP1A	X	-5.471	12
35	MP1A	Z	3.159	12
36	MP1A	Mx	.004	12
37	MP1A	X	-5.471	48
38	MP1A	Z	3.159	48
39	MP1A	Mx	.004	48
40	MP5A	X	-5.471	12
41	MP5A	Z	3.159	12
42	MP5A	Mx	.004	12
43	MP5A	X	-5.471	48
44	MP5A	_	3.159	48
45	MP5A	Mx	.004	48
46	MP4A	X	-7.083	12
47	MP4A	Z	4.089	12
48	MP4A	Mx	.003	12
49	MP4A	X	-7.083	66
50	MP4A		4.089	66
51	MP4A	Mx	.003	66
52	MP4B	X Z	-7.083	12
53	MP4B		4.089	12 12
54	MP4B	Mx	.003	
55	MP4B	X	-7.083	66
56	MP4B		4.089	66
57	MP4B	Mx	.003	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-7.083	12
59	MP4C	Z	4.089	12
60	MP4C	Mx	.003	12
61	MP4C	X	-7.083	66
62	MP4C	Z	4.089	66
63	MP4C	Mx	.003	66
64	MP4A	X	-7.083	12
65	MP4A	Z	4.089	12
66	MP4A	Mx	.008	12
67	MP4A	X	-7.083	66
68	MP4A	Z	4.089	66
69	MP4A	Mx	.008	66
70	MP4B	X	-7.083	12
71	MP4B	Ž	4.089	12
72	MP4B	Mx	.008	12
73	MP4B	X	-7.083	66
74	MP4B	Z	4.089	66
75	MP4B	Mx	.008	66
76	MP4C	Χ	-7.083	12
77	MP4C	Z	4.089	12
78	MP4C	Mx	.008	12
79	MP4C	Χ	-7.083	66
80	MP4C	Z	4.089	66
81	MP4C	Mx	.008	66
82	OVP1	Χ	-7.209	6
83	OVP1	Z	4.162	6
84	OVP1	Mx	0	6
85	OVP2	Χ	-7.209	6
86	OVP2	Z	4.162	6
87	OVP2	Mx	0	6
88	MP2A	Χ	-2.973	36
89	MP2A	Z	1.716	36
90	MP2A	Mx	.002	36
91	MP2A	Χ	-2.973	60
92	MP2A	Z	1.716	60
93	MP2A	Mx	.002	60
94	MP2B	Χ	-2.973	36
95	MP2B	Z	1.716	36
96	MP2B	Mx	002	36
97	MP2B	X	-2.973	60
98	MP2B	Z	1.716	60
99	MP2B	Mx	002	60
100	MP2C	<u>X</u>	-5.469	36
101	MP2C	Z	3.157	36
102	MP2C	Mx	0	36
103	MP2C	X	-5.469	60
104	MP2C	Z	3.157	60
105	MP2C	Mx	0	60
106	MP4A	X	-2.855	36
107	MP4A	Z	1.648	36
108	MP4A	Mx	001	36
109	MP4B	X	-2.855	36
110	MP4B	Z	1.648	36
111	MP4B	Mx	.001	36
112	MP4C	X	-4.352	36
113	MP4C	Z	2.513	36
114	MP4C	Mx	0	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-3.359	60
2	MP4A	Z	0	60
3	MP4A	Mx	002	60
4	MP4B	X	-4.609	60
5	MP4B	Z	0	60
6	MP4B	Mx	.001	60
7	MP4C	X	-4.609	60
8	MP4C	Z	0	60
9	MP4C	Mx	.001	60
10	MP1B	X	-4.444	12
11	MP1B	Z	0	12
12	MP1B	Mx	002	12
13	MP1B	X	-4.444	48
14	MP1B	Z	0	48
15	MP1B	Mx	002	48
16	MP1C	X	-4.444	12
17	MP1C	Z	0	12
18	MP1C	Mx	002	12
19	MP1C	X	-4.444	48
20	MP1C	Z	0	48
21	MP1C	Mx	002	48
22	MP5B	X	-4.444	12
23	MP5B	Z	0	12
24	MP5B	Mx	002	12
25	MP5B	X	-4.444	48
26	MP5B	Z	0	48
27	MP5B	Mx	002	48
28	MP5C	X	-4.444	12
29	MP5C	Z	0	12
30	MP5C	Mx	002	12
31	MP5C	Χ	-4.444	48
32	MP5C	Z	0	48
33	MP5C	Mx	002	48
34	MP1A	X	-7.254	12
35	MP1A	Z	0	12
36	MP1A	Mx	.005	12
37	MP1A	X	-7.254	48
38	MP1A	Z	0	48
39	MP1A	Mx	.005	48
40	MP5A	X	-7.254	12
41	MP5A	Z	0	12
42	MP5A	Mx	.005	12
43	MP5A	X	-7.254	48
44	MP5A	Z	0	48
45	MP5A	Mx	.005	48
46	MP4A	X	-7.25	12
47	MP4A	Z	0	12
48	MP4A	Mx	.005	12
49	MP4A	X	-7.25	66
50	MP4A	Z	0	66
51	MP4A	Mx	.005	66
52	MP4B	X	-7.25	12
53	MP4B	Z	0	12
54	MP4B	Mx	.005	12
55	MP4B	X	-7.25	66
56	MP4B	Z	0	66
57	MP4B	Mx	.005	66

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-7.25	12
59	MP4C	Z	0	12
60	MP4C	Mx	.005	12
61	MP4C	X	-7.25	66
62	MP4C	Z	0	66
63	MP4C	Mx	.005	66
64	MP4A	X	-7.25	12
65	MP4A	Z	0	12
66	MP4A	Mx	.005	12
67	MP4A	X	-7.25	66
68	MP4A	Z	0	66
69	MP4A	Mx	.005	66
70	MP4B	X	-7.25	12
71	MP4B	Z	0	12
72	MP4B	Mx	.005	12
73	MP4B	X	-7.25	66
74	MP4B	Z	0	66
75	MP4B	Mx	.005	66
76	MP4C	X	-7.25	12
77	MP4C	Z	0	12
78	MP4C	Mx	.005	12
79	MP4C	X	-7.25	66
80	MP4C	Z	0	66
81	MP4C	Mx	.005	66
82	OVP1	X	-8.97	6
83	OVP1	Z	0	6
84	OVP1	Mx	0	6
85	OVP2	X	-8.97	6
86	OVP2	Z	0	6
87	OVP2	Mx	0	6
88	MP2A	X	-2.472	36
89	MP2A	Z	0	36
90	MP2A	Mx	.002	36
91	MP2A	X	-2.472	60
92	MP2A	Z	0	60
93	MP2A	Mx	.002	60
94	MP2B	X	-5.354	36
95	MP2B	Z	0	36
96	MP2B	Mx	002	36
97	MP2B	X Z	-5.354	60
98	MP2B		002	60 60
99	MP2B MP2C	Mx X	-5.354	36
100		Z	-5.354	
101	MP2C MP2C	Mx	002	36 36
102	MP2C	X	-5.354	60
103	MP2C	Z	-5.354	60
104	MP2C	Mx	002	60
106	MP4A	X	-2.721	36
106	MP4A	Z	0	36
107	MP4A	Mx	001	36
109	MP4B	X	-4.449	36
110	MP4B	Z	0	36
111	MP4B	Mx	.001	36
112	MP4C	X	-4.449	36
113	MP4C	Z	0	36
114	MP4C	Mx	.001	36
114	IVIF 40	IVIA	.001	30

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	MP4A	X	-3.27	60
2	MP4A	Z	-1.888	60
3	MP4A	Mx	002	60
4	MP4B	X	-4.352	60
5	MP4B	Z	-2.513	60
6	MP4B	Mx	0	60
7	MP4C	X	-3.27	60
8	MP4C	Z	-1.888	60
9	MP4C	Mx	.002	60
10	MP1B	X	-3.037	12
11	MP1B	Z	-1.753	12
12	MP1B	Mx	0	12
13	MP1B	X	-3.037	48
14	MP1B	Z	-1.753	48
15	MP1B	Mx	0	48
16	MP1C	X	-5.471	12
17	MP1C	Z	-3.159	12
18	MP1C	Mx	004	12
19	MP1C	X	-5.471	48
20	MP1C	Z	-3.159	48
21	MP1C	Mx	004	48
22	MP5B	X	-3.037	12
23	MP5B	Z	-1.753	12
24	MP5B	Mx	0	12
25	MP5B	X	-3.037	48
26	MP5B	Z	-1.753	48
27	MP5B	Mx	0	48
28	MP5C	X	-5.471	12
29	MP5C	Z	-3.159	12
30	MP5C	Mx	004	12
31	MP5C	X	-5.471	48
32	MP5C	Z	-3.159	48
33	MP5C	Mx	004	48
34	MP1A	X	-5.471	12
35	MP1A	Z	-3.159	12
36	MP1A	Mx	.004	12
37	MP1A	X	-5.471	48
38	MP1A		-3.159	48
39	MP1A	Mx	.004	48
40	MP5A MP5A	X Z	-5.471 -3.159	12 12
41	MP5A	Mx	.004	12
43	MP5A	X	-5.471	48
43	MP5A	Z	-3.159	48
45	MP5A	Mx	.004	48
46	MP4A	X	-7.083	12
47	MP4A	Z	-4.089	12
48	MP4A	Mx	.008	12
49	MP4A	X	-7.083	66
50	MP4A	Z	-4.089	66
51	MP4A	Mx	.008	66
52	MP4B	X	-7.083	12
53	MP4B	Z	-4.089	12
54	MP4B	Mx	.008	12
55	MP4B	X	-7.083	66
56	MP4B	Z	-4.089	66
57	MP4B	Mx	.008	66
01	טד וועו	IVIA	.000	00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
58	MP4C	X	-7.083	12
59	MP4C	Z	-4.089	12
60	MP4C	Mx	.008	12
61	MP4C	X	-7.083	66
62	MP4C	Z	-4.089	66
63	MP4C	Mx	.008	66
64	MP4A	X	-7.083	12
65	MP4A	Z	-4.089	12
66	MP4A	Mx	.003	12
67	MP4A	X	-7.083	66
68	MP4A	Z	-4.089	66
69	MP4A	Mx	.003	66
70	MP4B	X	-7.083	12
71	MP4B	Z	-4.089	12
72	MP4B	Mx	.003	12
73	MP4B	X	-7.083	66
74	MP4B	Z	-4.089	66
75	MP4B	Mx	.003	66
76	MP4C	X	-7.083	12
77	MP4C	Z	-4.089	12
78	MP4C	Mx	.003	12
79	MP4C	X	-7.083	66
80	MP4C	Z	-4.089	66
81	MP4C	Mx	.003	66
82	OVP1	X	-8.888	6
83	OVP1	Z	-5.132	6
84	OVP1	Mx	0	6
85	OVP2	X	-8.888	6
86	OVP2	Z	-5.132	6
87	OVP2	Mx	0	6
88	MP2A	X	-2.973	36
89	MP2A	Ž	-1.716	36
90	MP2A	Mx	.002	36
91	MP2A	X	-2.973	60
92	MP2A	Z	-1.716	60
93	MP2A	Mx	.002	60
94	MP2B	X	-5.469	36
95	MP2B	Z	-3.157	36
96	MP2B	Mx	0	36
97	MP2B	X	-5.469	60
98	MP2B	Z	-3.157	60
99	MP2B	Mx	0	60
100	MP2C	X	-2.973	36
101	MP2C	Z	-1.716	36
102	MP2C	Mx	002	36
103	MP2C	X	-2.973	60
104	MP2C	Z	-1.716	60
105	MP2C	Mx	002	60
106	MP4A	X	-2.855	36
107	MP4A	Z	-1.648	36
108	MP4A	Mx	001	36
109	MP4B	X	-4.352	36
110	MP4B	Z	-2.513	36
111	MP4B	Mx	0	36
112	MP4C	X	-2.855	36
113	MP4C	Z	-1.648	36
114	MP4C	Mx	.001	36
117	IVII TO	IVIA	.001	00

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

Member Label Direction Magnitude[lb,k-ft] Location[in,%] 1 MP4A X -2.304 60 2 MP4A Z -3.991 60 3 MP4A Mx 001 60 4 MP4B X -2.304 60 5 MP4B X -2.3991 60 6 MP4B Mx 001 60 7 MP4C X -1.68 60 8 MP4C X -1.68 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B X -2.222 12 12 MP1B X -2.222 48 14 MP1B X -2.222 48 15 MP1B X -2.3848 48 15 MP1B X -3.627 12 17 MP1C	
2 MP4A Z -3.991 60 3 MP4A Mx 001 60 4 MP4B X -2.304 60 5 MP4B Z -3.991 60 6 MP4B Mx 001 60 7 MP4C X -1.68 60 8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B X -2.222 48 14 MP1B X -2.222 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 19 MP1C X -3.627 48	
3 MP4A Mx 001 60 4 MP4B X -2.304 60 5 MP4B Z -3.991 60 6 MP4B Mx 001 60 7 MP4C X -1.68 60 8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B X -2.222 48 14 MP1B X -2.3848 48 15 MP1B X -3.627 12 17 MP1C X -3.627 12 17 MP1C X -3.627 48 19 MP1C X	
4 MP4B X -2.304 60 5 MP4B Z -3.991 60 6 MP4B Mx 001 60 7 MP4C X -1.68 60 8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B X -2.222 48 14 MP1B X -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 19 MP1C X -3.627 48 20 MP1C X -3.627 48 21 MP1C X -3.627 48	
5 MP4B Z -3.991 60 6 MP4B Mx 001 60 7 MP4C X -1.68 60 8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B X -2.222 48 15 MP1B X -2.222 48 14 MP1B X -3.848 48 15 MP1B X -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 19 MP1C X -3.627 48 20 MP1C X -3.627 48	
6 MP4B Mx 001 60 7 MP4C X -1.68 60 8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx -3.627 48 21 MP1C Mx -3.05 48	
7 MP4C X -1.68 60 8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
8 MP4C Z -2.909 60 9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
9 MP4C Mx .002 60 10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
10 MP1B X -2.222 12 11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
11 MP1B Z -3.848 12 12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
12 MP1B Mx .002 12 13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
13 MP1B X -2.222 48 14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
14 MP1B Z -3.848 48 15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
15 MP1B Mx .002 48 16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
16 MP1C X -3.627 12 17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
17 MP1C Z -6.282 12 18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
18 MP1C Mx 005 12 19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
19 MP1C X -3.627 48 20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
20 MP1C Z -6.282 48 21 MP1C Mx 005 48	
21 MP1C Mx005 48	
22 MP5B X -2.222 12	
23 MP5B Z -3.848 12	
24 MP5B Mx .002 12	
25 MP5B X -2.222 48	
26 MP5B Z -3.848 48	
27 MP5B Mx .002 48	
28 MP5C X -3.627 12	
29 MP5C Z -6.282 12	
30 MP5C Mx005 12	
31 MP5C X -3.627 48	
32 MP5C Z -6.282 48	
33 MP5C Mx005 48	
34 MP1A X -2.222 12	
35 MP1A Z -3.848 12	
36 MP1A Mx .002 12	
37 MP1A X -2.222 48	
38 MP1A Z -3.848 48	
39 MP1A Mx .002 48	
40 MP5A X -2.222 12	
41 MP5A Z -3.848 12	
42 MP5A Mx .002 12	
43 MP5A X -2.222 48	
44 MP5A Z -3.848 48	
45 MP5A Mx .002 48	
46 MP4A X -5.018 12	
47 MP4A Z -8.691 12	
48 MP4A Mx .01 12	
49 MP4A X -5.018 66	
50 MP4A Z -8.691 66	
51 MP4A Mx .01 66	
52 MP4B X -5.018 12	
53 MP4B Z -8.691 12	
54 MP4B Mx .01 12	
55 MP4B X -5.018 66	
56 MP4B Z -8.691 66	
57 MP4B Mx .01 66	

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:____

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Mambar Labal	Direction	Magnitude [lb ft]	Leastien Fig. 9/1
58	Member Label MP4C	Direction X	Magnitude[lb,k-ft] -5.018	Location[in,%]
59	MP4C	Z	-8.691	12
60	MP4C	Mx	.01	12
61	MP4C	X	-5.018	66 66
62	MP4C		-8.691	
63	MP4C	Mx	.01	66
64	MP4A	X Z	-5.018	12
65	MP4A MP4A		-8.691	12
66		Mx	002	12
67	MP4A	X	-5.018	66
68	MP4A MP4A		-8.691	66
69		Mx	002	66
70	MP4B	X	-5.018	12
71	MP4B MP4B	Z	-8.691	12 12
72	MP4B	Mx	002	
73		X Z	-5.018	66
74	MP4B MP4B		-8.691	66
75 76		Mx	002	66
76	MP4C	X Z	-5.018	12
77 78	MP4C MP4C	Mx	-8.691 002	12 12
79	MP4C	X	-5.018	66
80	MP4C		-8.691	66
81	MP4C	Mx	002	66
82	OVP1	X Z	-5.455	6
83	OVP1		-9.448	6
84	OVP1	Mx	0	6
85	OVP2	X	-5.455	6
86	OVP2	Z	-9.448	6
87	OVP2	Mx	0	6
88	MP2A	X Z	-2.677	36
89	MP2A		-4.637	36
90	MP2A	Mx	.002	36
91	MP2A	X Z	-2.677	60
92	MP2A		-4.637	60
93	MP2A	Mx	.002	60
94	MP2B	X	-2.677	36
95	MP2B	Z	-4.637	36
96	MP2B	Mx	.002	36
97	MP2B	X Z	-2.677	60
98	MP2B		-4.637	60
100	MP2B MP2C	Mx	.002 -1.236	60 36
		X Z		
101	MP2C		-2.141	36 36
102	MP2C	Mx	002	
103	MP2C	X	-1.236	60
104	MP2C MP2C		-2.141	60
105		Mx	002	60
106	MP4A	X Z	-2.225	36
107	MP4A		-3.853	36
108	MP4A	Mx	001	36
109	MP4B	X	-2.225	36
110	MP4B	Z	-3.853	36
111	MP4B	Mx	001	36
112	MP4C	X	-1.36	36
113	MP4C	Z	-2.356	36
114	MP4C	Mx	.001	36

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M36	Υ	-500	%40
2	M95A	Υ	-500	%40

Member Point Loads (BLC 78 : Lm2)

Member Label		Direction Magnitude[lb,k-ft]		Location[in,%]	
1	M36	Υ	-500	%67	
2	M95A	Υ	-500	%67	

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[in,%]
1	M36	Υ	-250	0
2	M95A	Υ	-250	0

Member Point Loads (BLC 80 : Lv2)

Member Label		Direction	Magnitude[lb,k-ft]	Location[in,%]	
1	M36	Υ	-250	%50	
2	M95A	Υ	-250	%50	

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M4	Υ	-15.743	-15.743	0	%100
2	M5	Υ	-16.498	-16.498	0	%100
3	M6	Υ	-16.498	-16.498	0	%100
4	M7	Υ	-16.498	-16.498	0	%100
5	M9	Υ	-16.498	-16.498	0	%100
6	M10	Υ	-16.498	-16.498	0	%100
7	M11	Υ	-15.743	-15.743	0	%100
8	M13	Υ	-16.498	-16.498	0	%100
9	M20	Y	-16.498	-16.498	0	%100
10	M21	Υ	-16.498	-16.498	0	%100
11	M22	Υ	-15.743	-15.743	0	%100
12	M24	Υ	-16.498	-16.498	0	%100
13	M34	Υ	-15.743	-15.743	0	%100
14	M36	Υ	-11.154	-11.154	0	%100
15	M37	Y	-11.154	-11.154	0	%100
16	M38	Υ	-11.154	-11.154	0	%100
17	M40	Y	-15.743	-15.743	0	%100
18	M41	Ý	-15.743	-15.743	0	%100
19	MP4A	Y	-8.76	-8.76	0	%100
20	MP3A	Υ	-8.76	-8.76	0	%100
21	MP2A	Υ	-8.76	-8.76	0	%100
22	MP1A	Υ	-8.76	-8.76	0	%100
23	M103	Υ	-9.725	-9.725	0	%100
24	M107	Υ	-9.725	-9.725	0	%100
25	M154	Υ	-9.725	-9.725	0	%100
26	M157	Υ	-9.725	-9.725	0	%100
27	M162	Υ	-9.725	-9.725	0	%100
28	M165	Υ	-9.725	-9.725	0	%100
29	M175	Υ	-16.498	-16.498	0	%100
30	M176	Υ	-16.498	-16.498	0	%100
31	M177	Y	-16.498	-16.498	0	%100
32	M178	Y	-16.498	-16.498	0	%100
33	M179	Y	-16.498	-16.498	0	%100
34	M180	Υ	-16.498	-16.498	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
35	M183	Υ	-16.498	-16.498	0	%100
36	M184	Υ	-16.498	-16.498	0	%100
37	M188	Υ	-16.498	-16.498	0	%100
38	M189	Υ	-16.498	-16.498	0	%100
39	M192	Υ	-16.498	-16.498	0	%100
40	M193	Υ	-16.498	-16.498	0	%100
41	M108	Υ	-15.743	-15.743	0	%100
42	M109	Υ	-15.743	-15.743	0	%100
43	M110	Υ	-15.743	-15.743	0	%100
44	MP5A	Υ	-8.76	-8.76	0	%100
45	MP4C	Υ	-8.76	-8.76	0	%100
46	MP3C	Υ	-8.76	-8.76	0	%100
47	MP2C	Υ	-8.76	-8.76	0	%100
48	MP1C	Υ	-8.76	-8.76	0	%100
49	MP5C	Υ	-8.76	-8.76	0	%100
50	MP4B	Υ	-8.76	-8.76	0	%100
51	MP3B	Υ	-8.76	-8.76	0	%100
52	MP2B	Υ	-8.76	-8.76	0	%100
53	MP1B	Υ	-8.76	-8.76	0	%100
54	MP5B	Υ	-8.76	-8.76	0	%100
55	OVP2	Υ	-8.76	-8.76	0	%100
56	OVP1	Υ	-8.76	-8.76	0	%100
57	M95A	Υ	-11.154	-11.154	0	%100
58	M96A	Υ	-11.154	-11.154	0	%100
59	M97A	Υ	-11.154	-11.154	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	Χ	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	-24.106	-24.106	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	-6.027	-6.027	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	-6.027	-6.027	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	-6.027	-6.027	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	-6.027	-6.027	0	%100
13	M11	X	0	0	0	%100
14	M11	Z	-11.332	-11.332	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	-24.106	-24.106	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	-24.106	-24.106	0	%100
19	M21	X	0	0	0	%100
20	M21	Z	-6.027	-6.027	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	-11.332	-11.332	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	-6.027	-6.027	0	%100
25	M34	Χ	0	0	0	%100
26	M34	Z	-12.286	-12.286	0	%100
27	M36	X	0	0	0	%100
28	M36	Z	-13.878	-13.878	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
29	M37	X	0	0	0	%100
30	M37	Z	-3.468	-3.468	0	%100
31	M38	X	0	0	0	%100
32	M38	Z	-3.471	-3.471	0	%100
33	M40	X	0	0	0	%100
34	M40	Z	-3.072	-3.072	0	%100
35	M41	X	0	0	0	%100
36	M41	Z	-3.072	-3.072	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	-9.542	-9.542	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	-9.542	-9.542	0	%100
41	MP2A	Χ	0	0	0	%100
42	MP2A	Z	-9.542	-9.542	0	%100
43	MP1A	Χ	0	0	0	%100
44	MP1A	Z	-9.542	-9.542	0	%100
45	M103	X	0	0	0	%100
46	M103	Z	-3.352	-3.352	0	%100
47	M107	X	0	0	0	%100
48	M107	Ž	-3.351	-3.351	0	%100
49	M154	X	0	0	0	%100
50	M154	Z	-3.345	-3.345	0	%100
51	M157	X	0	0	0	%100
52	M157	Z	-13.392	-13.392	0	%100
53	M162	X	0	0	0	%100 %100
54	M162	Z	-13.392	-13.392	0	%100 %100
55	M165	X	0	0	0	%100 %100
56	M165	Z	-3.344	-3.344	0	%100 %100
57	M175	X	0	0	0	%100 %100
58	M175	Z	0	0	0	%100 %100
59	M176	X	0	0	0	%100 %100
60	M176	Z	0	0	0	%100 %100
61	M177	X	0	0	0	%100 %100
62	M177	Z	-18.08	-18.08	0	%100 %100
63	M178	X	-10.08	0	0	%100 %100
64		Z	-18.08		0	%100 %100
	M178			-18.08		%100 %100
65	M179	X Z	0	0	0	
66	M179		-18.08	-18.08	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	-18.08	-18.08	0	%100 %100
69	M183	X	0	0	0	%100 %100
70	M183	Z	-24.106	-24.106	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	-24.106	-24.106	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	-6.027	-6.027	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	-6.027	-6.027	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	-6.027	-6.027	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	-6.027	-6.027	0	%100
81	M108	X	0	0	0	%100
82	M108	Z	-3.072	-3.072	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	-3.072	-3.072	0	%100
85	M110	X	0	0	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
86	M110	Z	-12.287	-12.287	0	%100
87	MP5A	X	0	0	0	%100
88	MP5A	Z	-9.542	-9.542	0	%100
89	MP4C	X	0	0	0	%100
90	MP4C	Z	-9.542	-9.542	0	%100
91	MP3C	X	0	0	0	%100
92	MP3C	Z	-9.542	-9.542	0	%100
93	MP2C	X	0	0	0	%100
94	MP2C	Z	-9.542	-9.542	0	%100
95	MP1C	Χ	0	0	0	%100
96	MP1C	Z	-9.542	-9.542	0	%100
97	MP5C	Χ	0	0	0	%100
98	MP5C	Z	-9.542	-9.542	0	%100
99	MP4B	Χ	0	0	0	%100
100	MP4B	Z	-9.542	-9.542	0	%100
101	MP3B	Χ	0	0	0	%100
102	MP3B	Z	-9.542	-9.542	0	%100
103	MP2B	Χ	0	0	0	%100
104	MP2B	Z	-9.542	-9.542	0	%100
105	MP1B	Χ	0	0	0	%100
106	MP1B	Z	-9.542	-9.542	0	%100
107	MP5B	Χ	0	0	0	%100
108	MP5B	Z	-9.542	-9.542	0	%100
109	OVP2	X	0	0	0	%100
110	OVP2	Z	-7.803	-7.803	0	%100
111	OVP1	Χ	0	0	0	%100
112	OVP1	Z	-7.803	-7.803	0	%100
113	M95A	Χ	0	0	0	%100
114	M95A	Z	-13.878	-13.878	0	%100
115	M96A	Χ	0	0	0	%100
116	M96A	Z	-3.468	-3.468	0	%100
117	M97A	Χ	0	0	0	%100
118	M97A	Z	-3.471	-3.471	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	1.889	1.889	0	%100
2	M4	Z	-3.271	-3.271	0	%100
3	M5	X	9.04	9.04	0	%100
4	M5	Z	-15.657	-15.657	0	%100
5	M6	X	9.04	9.04	0	%100
6	M6	Z	-15.657	-15.657	0	%100
7	M7	Χ	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	Χ	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M10	Χ	9.04	9.04	0	%100
12	M10	Z	-15.657	-15.657	0	%100
13	M11	X	1.889	1.889	0	%100
14	M11	Z	-3.271	-3.271	0	%100
15	M13	X	9.04	9.04	0	%100
16	M13	Z	-15.657	-15.657	0	%100
17	M20	Χ	9.04	9.04	0	%100
18	M20	Z	-15.657	-15.657	0	%100
19	M21	X	0	0	0	%100
20	M21	Z	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude(lb/ft F		End Location[in,%]
21	M22	X	7.555	7.555	0	%100
22	M22	Z	-13.085	-13.085	0	%100
23	M24	X	9.04	9.04	0	%100
24	M24	Z	-15.657	-15.657	0	%100
25	M34	X	4.607	4.607	0	%100
26	M34	Z	-7.98	-7.98	0	%100
27	M36	X	5.205	5.205	0	%100
28	M36	Z	-9.016	-9.016	0	%100
29	M37	X	5.204	5.204	0	%100
30	M37	Z	-9.013	-9.013	0	%100
31	M38	X	0	0	0	%100
32	M38	Z	0	0	0	%100
33	M40	Χ	4.607	4.607	0	%100
34	M40	Z	-7.98	-7.98	0	%100
35	M41	Χ	0	0	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	4.771	4.771	0	%100
38	MP4A	Z	-8.264	-8.264	0	%100
39	MP3A	X	4.771	4.771	0	%100
40	MP3A	Z	-8.264	-8.264	0	%100
41	MP2A	Χ	4.771	4.771	0	%100
42	MP2A	Z	-8.264	-8.264	0	%100
43	MP1A	X	4.771	4.771	0	%100
44	MP1A	Z	-8.264	-8.264	0	%100
45	M103	Х	1e-6	1e-6	0	%100
46	M103	Z	-1e-6	-1e-6	0	%100
47	M107	Х	5.024	5.024	0	%100
48	M107	Z	-8.701	-8.701	0	%100
49	M154	Χ	0	0	0	%100
50	M154	Z	-1e-6	-1e-6	0	%100
51	M157	Χ	5.024	5.024	0	%100
52	M157	Z	-8.702	-8.702	0	%100
53	M162	X	5.021	5.021	0	%100
54	M162	Z	-8.696	-8.696	0	%100
55	M165	X	5.02	5.02	0	%100
56	M165	Z	-8.695	-8.695	0	%100
57	M175	X	3.013	3.013	0	%100
58	M175	Z	-5.219	-5.219	0	%100
59	M176	X	3.013	3.013	0	%100
60	M176	Z	-5.219	-5.219	0	%100
61	M177	X	3.013	3.013	0	%100
62	M177	Z	-5.219	-5.219	0	%100
63	M178	X	3.013	3.013	0	%100
64	M178	Z	-5.219	-5.219	0	%100
65	M179	X	12.053	12.053	0	%100
66	M179	Z	-20.877	-20.877	0	%100
67	M180	X	12.053	12.053	0	%100
68	M180	Z	-20.877	-20.877	0	%100
69	M183	X	9.04	9.04	0	%100
70	M183	Z	-15.657	-15.657	0	%100
71	M184	X	9.04	9.04	0	%100
72	M184	Z	-15.657	-15.657	0	%100
73	M188	X	9.04	9.04	0	%100
74	M188	Z	-15.657	-15.657	0	%100
75	M189	X	9.04	9.04	0	%100
76	M189	Z	-15.657	-15.657	0	%100
77	M192	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
78	M192	Z	0	0	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	0	0	0	%100
81	M108	Χ	4.608	4.608	0	%100
82	M108	Z	-7.98	-7.98	0	%100
83	M109	Χ	0	0	0	%100
84	M109	Z	0	0	0	%100
85	M110	Χ	4.608	4.608	0	%100
86	M110	Z	-7.98	-7.98	0	%100
87	MP5A	X	4.771	4.771	0	%100
88	MP5A	Z	-8.264	-8.264	0	%100
89	MP4C	Χ	4.771	4.771	0	%100
90	MP4C	Z	-8.264	-8.264	0	%100
91	MP3C	Χ	4.771	4.771	0	%100
92	MP3C	Z	-8.264	-8.264	0	%100
93	MP2C	Χ	4.771	4.771	0	%100
94	MP2C	Z	-8.264	-8.264	0	%100
95	MP1C	Χ	4.771	4.771	0	%100
96	MP1C	Z	-8.264	-8.264	0	%100
97	MP5C	Χ	4.771	4.771	0	%100
98	MP5C	Z	-8.264	-8.264	0	%100
99	MP4B	Χ	4.771	4.771	0	%100
100	MP4B	Z	-8.264	-8.264	0	%100
101	MP3B	X	4.771	4.771	0	%100
102	MP3B	Z	-8.264	-8.264	0	%100
103	MP2B	X	4.771	4.771	0	%100
104	MP2B	Z	-8.264	-8.264	0	%100
105	MP1B	X	4.771	4.771	0	%100
106	MP1B	Z	-8.264	-8.264	0	%100
107	MP5B	X	4.771	4.771	0	%100
108	MP5B	Z	-8.264	-8.264	0	%100
109	OVP2	Χ	3.901	3.901	0	%100
110	OVP2	Z	-6.757	-6.757	0	%100
111	OVP1	X	3.901	3.901	0	%100
112	OVP1	Z	-6.757	-6.757	0	%100
113	M95A	Χ	5.205	5.205	0	%100
114	M95A	Z	-9.016	-9.016	0	%100
115	M96A	Χ	5.204	5.204	0	%100
116	M96A	Z	-9.013	-9.013	0	%100
117	M97A	Χ	0	0	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	Χ	9.814	9.814	0	%100
2	M4	Z	-5.666	-5.666	0	%100
3	M5	X	5.219	5.219	0	%100
4	M5	Z	-3.013	-3.013	0	%100
5	M6	X	20.877	20.877	0	%100
6	M6	Z	-12.053	-12.053	0	%100
7	M7	X	5.219	5.219	0	%100
8	M7	Z	-3.013	-3.013	0	%100
9	M9	Χ	5.219	5.219	0	%100
10	M9	Z	-3.013	-3.013	0	%100
11	M10	X	20.877	20.877	0	%100
12	M10	Z	-12.053	-12.053	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
13	M11	X	0	0	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	5.219	5.219	0	%100
16	M13	Z	-3.013	-3.013	0	%100
17	M20	X	5.219	5.219	0	%100
18	M20	Z	-3.013	-3.013	0	%100
19	M21	X	5.219	5.219	0	%100
20	M21	Z	-3.013	-3.013	0	%100
21	M22	X	9.814	9.814	0	%100
22	M22	Z	-5.666	-5.666	0	%100
23	M24	X	20.877	20.877	0	%100
24	M24	Z	-12.053	-12.053	0	%100
25	M34	X	2.66	2.66	0	%100
26	M34	Z	-1.536	-1.536	0	%100
27	M36	X	3.006	3.006	0	%100
28	M36	Z	-1.736	-1.736	0	%100
29	M37	X	12.019	12.019	0	%100
30	M37	Z	-6.939	-6.939	0	%100
31	M38	X	3.003	3.003	0	%100
32	M38	Z	-1.734	-1.734	0	%100
33	M40	X	10.64	10.64	0	%100
34	M40	Z	-6.143	-6.143	0	%100
35	M41	X	2.66	2.66	0	%100
36	M41	Z	-1.536	-1.536	0	%100
37	MP4A	X	8.264	8.264	0	%100
38	MP4A	Z	-4.771	-4.771	0	%100
39	MP3A	X	8.264	8.264	0	%100
40	MP3A	Z	-4.771	-4.771	0	%100
41	MP2A	X	8.264	8.264	0	%100
42	MP2A	Ž	-4.771	-4.771	0	%100
43	MP1A	X	8.264	8.264	0	%100
44	MP1A	Ž	-4.771	-4.771	0	%100
45	M103	X	2.896	2.896	0	%100
46	M103	Z	-1.672	-1.672	0	%100
47	M107	X	11.598	11.598	0	%100
48	M107	Z	-6.696	-6.696	0	%100
49	M154	X	2.902	2.902	0	%100
50	M154	Z	-1.675	-1.675	0	%100
51	M157	X	2.903	2.903	0	%100
52	M157	Z	-1.676	-1.676	0	%100
53	M162	X	2.897	2.897	0	%100
54	M162	Z	-1.673	-1.673	0	%100
55	M165	X	11.598	11.598	0	%100
56	M165	Z	-6.696	-6.696	0	%100
57	M175	X	15.657	15.657	0	%100
58	M175	Z	-9.04	-9.04	0	%100
59	M176	X	15.657	15.657	0	%100
60	M176	Z	-9.04	-9.04	0	%100
61	M177	X	0	0	0	%100
62	M177	Z	0	0	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	0	0	0	%100
65	M179	X	15.657	15.657	0	%100
66	M179	Z	-9.04	-9.04	0	%100
67	M180	X	15.657	15.657	0	%100
68	M180	Ž	-9.04	-9.04	0	%100
69	M183	X	5.219	5.219	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Locationfin.%1	End Location[in,%]
70	M183	Z	-3.013	-3.013	0	%100
71	M184	X	5.219	5.219	0	%100
72	M184	Z	-3.013	-3.013	0	%100
73	M188	X	20.877	20.877	0	%100
74	M188	Z	-12.053	-12.053	0	%100
75	M189	X	20.877	20.877	0	%100
76	M189	Z	-12.053	-12.053	0	%100
77	M192	Χ	5.219	5.219	0	%100
78	M192	Z	-3.013	-3.013	0	%100
79	M193	Χ	5.219	5.219	0	%100
80	M193	Z	-3.013	-3.013	0	%100
81	M108	Χ	10.641	10.641	0	%100
82	M108	Z	-6.143	-6.143	0	%100
83	M109	Χ	2.66	2.66	0	%100
84	M109	Z	-1.536	-1.536	0	%100
85	M110	Χ	2.66	2.66	0	%100
86	M110	Z	-1.536	-1.536	0	%100
87	MP5A	X	8.264	8.264	0	%100
88	MP5A	Z	-4.771	-4.771	0	%100
89	MP4C	Χ	8.264	8.264	0	%100
90	MP4C	Z	-4.771	-4.771	0	%100
91	MP3C	X	8.264	8.264	0	%100
92	MP3C	Z	-4.771	-4.771	0	%100
93	MP2C	Χ	8.264	8.264	0	%100
94	MP2C	Z	-4.771	-4.771	0	%100
95	MP1C	Χ	8.264	8.264	0	%100
96	MP1C	Z	-4.771	-4.771	0	%100
97	MP5C	Χ	8.264	8.264	0	%100
98	MP5C	Z	-4.771	-4.771	0	%100
99	MP4B	X	8.264	8.264	0	%100
100	MP4B	Z	-4.771	-4.771	0	%100
101	MP3B	Χ	8.264	8.264	0	%100
102	MP3B	Z	-4.771	-4.771	0	%100
103	MP2B	X	8.264	8.264	0	%100
104	MP2B	Z	-4.771	-4.771	0	%100
105	MP1B	Χ	8.264	8.264	0	%100
106	MP1B	Z	-4.771	-4.771	0	%100
107	MP5B	X	8.264	8.264	0	%100
108	MP5B	Z	-4.771	-4.771	0	%100
109	OVP2	X	6.757	6.757	0	%100
110	OVP2	Z	-3.901	-3.901	0	%100
111	OVP1	X	6.757	6.757	0	%100
112	OVP1	Z	-3.901	-3.901	0	%100
113	M95A	X	3.006	3.006	0	%100
114	M95A	Z	-1.736	-1.736	0	%100
115	M96A	X	12.019	12.019	0	%100
116	M96A	Z	-6.939	-6.939	0	%100
117	M97A	X	3.003	3.003	0	%100
118	M97A	Z	-1.734	-1.734	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	15.11	15.11	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
5	M6	X	18.08	18.08	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	18.08	18.08	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	18.08	18.08	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	18.08	18.08	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	3.777	3.777	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	0	0	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	0	0	0	%100
19	M21	X	18.08	18.08	0	%100
20	M21	Z	0	0	0	%100
21	M22	X	3.777	3.777	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	18.08	18.08	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	0	0	0	%100
27	M36	X	0	0	0	%100
28	M36	Z	0	0	0	%100
29	M37	X	10.41	10.41	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	10.407	10.407	0	%100
32	M38	Z	0	0	0	%100
33	M40	X	9.215	9.215	0	%100
34	M40	Z	0	0	0	%100
35	M41	X	9.215	9.215	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	9.542	9.542	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	9.542	9.542	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	9.542	9.542	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	9.542	9.542	0	%100
44	MP1A	Z	0	0	0	%100
45	M103	X	10.04	10.04	0	%100
46	M103	Z	0	0	0	%100
47	M107	X	10.041	10.041	0	%100
48	M107	Z	0	0	0	%100
49	M154	X	10.047	10.047	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	1e-6	1e-6	0	%100
52	M157	Z	0	0	0	%100
53	M162	X	1e-6	1e-6	0	%100
54	M162	Z	0	0	0	%100
55	M165	X	10.048	10.048	0	%100
56	M165	Z	0	0	0	%100
57	M175	X	24.106	24.106	0	%100
58	M175	Z	0	0	0	%100
59	M176	X	24.106	24.106	0	%100
60	M176	Z	0	0	0	%100
61	M177	X	6.027	6.027	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
62	M177	Z	0	0	0	%100
63	M178	X	6.027	6.027	0	%100
64	M178	Z	0	0	0	%100
65	M179	X	6.027	6.027	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	6.027	6.027	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	0	0	0	%100
70	M183	Z	0	0	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	0	0	0	%100
73	M188	X	18.08	18.08	0	%100
74	M188	Z	0	0	0	%100
75	M189	<u>X</u>	18.08	18.08	0	%100
76	M189	Z	0	0	0	%100
77	M192	<u>X</u>	18.08	18.08	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	18.08	18.08	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	9.215	9.215	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	9.215	9.215	0	%100
84	M109	Z	0	0	0	%100
85	M110	X 	0	0	0	%100
86	M110		0 540	0 540	0	%100
87	MP5A	X 	9.542	9.542	0	%100
88	MP5A		0 540	0 540	0	%100
89	MP4C	X 7	9.542	9.542	0	%100
90	MP4C	Z	9.542	9.542	0	%100 %100
91 92	MP3C MP3C	X 	9.542	9.542	0	%100 %100
93	MP2C	X	9.542	9.542	0	%100 %100
94	MP2C	Ž	9.542	9.542	0	%100 %100
95	MP1C	X	9.542	9.542	0	%100 %100
96	MP1C	Ž	0	9.542	0	%100 %100
97	MP5C	X	9.542	9.542	0	%100 %100
98	MP5C	Z	0	0	0	%100 %100
99	MP4B	X	9.542	9.542	0	%100 %100
100	MP4B	Ž	0	0	0	%100
101	MP3B	X	9.542	9.542	0	%100 %100
102	MP3B	Ž	0	0	0	%100
103	MP2B	X	9.542	9.542	0	%100 %100
104	MP2B	Z	0	0	0	%100 %100
105	MP1B	X	9.542	9.542	0	%100
106	MP1B	Z	0	0	0	%100
107	MP5B	X	9.542	9.542	0	%100
108	MP5B	Z	0	0	0	%100
109	OVP2	X	7.803	7.803	0	%100
110	OVP2	Z	0	0	0	%100
111	OVP1	Х	7.803	7.803	0	%100
112	OVP1	Z	0	0	0	%100
113	M95A	Χ	0	0	0	%100
114	M95A	Z	0	0	0	%100
115	M96A	X	10.41	10.41	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	10.407	10.407	0	%100
118	M97A	Z	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	9.814	9.814	0	%100
2	M4	Z	5.666	5.666	0	%100
3	M5	X	5.219	5.219	0	%100
4	M5	Z	3.013	3.013	0	%100
5	M6	X	5.219	5.219	0	%100
6	M6	Z	3.013	3.013	0	%100
7	M7	X	20.877	20.877	0	%100
8	M7	Z	12.053	12.053	0	%100
9	M9	X	20.877	20.877	0	%100
10	M9	Z	12.053	12.053	0	%100
11	M10	X	5.219	5.219	0	%100
12	M10	Z	3.013	3.013	0	%100
13	M11	X	9.814	9.814	0	%100
14	M11	Z	5.666	5.666	0	%100
15	M13	X	5.219	5.219	0	%100
16	M13	Z	3.013	3.013	0	%100
17	M20	X	5.219	5.219	0	%100
18	M20	Z	3.013	3.013	0	%100
19	M21	X	20.877	20.877	0	%100
20	M21	Z	12.053	12.053	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	5.219	5.219	0	%100
24	M24	Z	3.013	3.013	0	%100
25	M34	X	2.66	2.66	0	%100
26	M34	Z	1.536	1.536	0	%100
27	M36	X	3.003	3.003	0	%100
28	M36	Z	1.734	1.734	0	%100
29	M37	X	3.006	3.006	0	%100
30	M37	Z	1.736	1.736	0	%100
31	M38	X	12.019	12.019	0	%100
32	M38	Z	6.939	6.939	0	%100
33	M40	X	2.66	2.66	0	%100
34	M40	Z	1.536	1.536	0	%100
35	M41	X	10.64	10.64	0	%100
36	M41	Z	6.143	6.143	0	%100
37	MP4A	X	8.264	8.264	0	%100
38	MP4A	Z	4.771	4.771	0	%100
39	MP3A	X	8.264	8.264	0	%100
40	MP3A	Z	4.771	4.771	0	%100
41	MP2A	X	8.264	8.264	0	%100
42	MP2A	Z	4.771	4.771	0	%100
43	MP1A	X	8.264	8.264	0	%100
44	MP1A	Z	4.771	4.771	0	%100
45	M103	X	11.598	11.598	0	%100
46	M103	Z	6.696	6.696	0	%100
47	M107	X	2.897	2.897	0	%100
48	M107	Z	1.673	1.673	0	%100
49	M154	X	11.598	11.598	0	%100
50	M154	Z	6.696	6.696	0	%100
51	M157	X	2.896	2.896	0	%100
52	M157	Z	1.672	1.672	0	%100
53	M162	X	2.902	2.902	0	%100
54	M162	Z	1.675	1.675	0	%100
55	M165	X	2.903	2.903	0	%100
<u>56</u>	M165	Z	1.676	1.676	0	%100
57	M175	X	15.657	15.657	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[in,%]
58	M175	Z	9.04	9.04	0	%100
59	M176	X	15.657	15.657	0	%100
60	M176	Z	9.04	9.04	0	%100
61	M177	X	15.657	15.657	0	%100
62	M177	Z	9.04	9.04	0	%100
63	M178	X	15.657	15.657	0	%100
64	M178	Z	9.04	9.04	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	5.219	5.219	0	%100
70	M183	Z	3.013	3.013	0	%100
71	M184	X	5.219	5.219	0	%100
72	M184	Z	3.013	3.013	0	%100
73	M188	X	5.219	5.219	0	%100
74	M188	Z	3.013	3.013	0	%100
75	M189	X	5.219	5.219	0	%100
76	M189	Z	3.013	3.013	0	%100
77	M192	X	20.877	20.877	0	%100
78	M192	Z	12.053	12.053	0	%100
79	M193	X	20.877	20.877	0	%100
80	M193	Z	12.053	12.053	0	%100
81	M108	X	2.66	2.66	0	%100
82	M108	Z	1.536	1.536	0	%100
83	M109	X	10.641	10.641	0	%100
84	M109	Z	6.143	6.143	0	%100
85	M110	X	2.66	2.66	0	%100
86	M110	Z	1.536	1.536	0	%100
87	MP5A	X	8.264	8.264	0	%100
88	MP5A	Z	4.771	4.771	0	%100
89	MP4C	X	8.264	8.264	0	%100
90	MP4C	Z	4.771	4.771	0	%100
91	MP3C	X	8.264	8.264	0	%100
92	MP3C	Z	4.771	4.771	0	%100
93	MP2C	X	8.264	8.264	0	%100
94	MP2C	Z	4.771	4.771	0	%100
95	MP1C	X	8.264	8.264	0	%100
96	MP1C	Z	4.771	4.771	0	%100
97	MP5C	X	8.264	8.264	0	%100
98	MP5C	Z	4.771	4.771	0	%100
99	MP4B	X	8.264	8.264	0	%100
100	MP4B	Z	4.771	4.771	0	%100
101	MP3B	X	8.264	8.264	0	%100
102	MP3B	Z	4.771	4.771	0	%100
103	MP2B	X Z	8.264	8.264	0	%100 %100
104	MP2B		4.771	4.771	0	%100 %100
105	MP1B MP1B	X Z	8.264 4.771	8.264 4.771	0	%100 %100
106 107	MP5B	X	8.264	8.264	0	%100 %100
107	MP5B	Z	4.771	4.771	0	%100 %100
108	OVP2	X	6.757	6.757	0	%100 %100
110	OVP2	Z	3.901	3.901	0	%100 %100
111	OVP2	X	6.757	6.757	0	%100 %100
112	OVP1	Ž	3.901	3.901	0	%100 %100
113	M95A	X	3.003	3.003	0	%100 %100
114	M95A	Z	1.734	1.734	0	%100 %100
117	IVIOUA	_	1.704	1.704	U	/6100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
115	M96A	X	3.006	3.006	0	%100
116	M96A	Z	1.736	1.736	0	%100
117	M97A	Χ	12.019	12.019	0	%100
118	M97A	Z	6.939	6.939	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	1.889	1.889	0	%100
2	M4	Z	3.271	3.271	0	%100
3	M5	X	9.04	9.04	0	%100
4	M5	Z	15.657	15.657	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	9.04	9.04	0	%100
8	M7	Z	15.657	15.657	0	%100
9	M9	X	9.04	9.04	0	%100
10	M9	Z	15.657	15.657	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	7.555	7.555	0	%100
14	M11	Z	13.085	13.085	0	%100
15	M13	X	9.04	9.04	0	%100
16	M13	Z	15.657	15.657	0	%100
17	M20	X	9.04	9.04	0	%100
18	M20	Z	15.657	15.657	0	%100
19	M21	X	9.04	9.04	0	%100
20	M21	Z	15.657	15.657	0	%100
21	M22	X	1.889	1.889	0	%100
22	M22	Z	3.271	3.271	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	4.607	4.607	0	%100
26	M34	Z	7.98	7.98	0	%100
27	M36	X	5.204	5.204	0	%100
28	M36	Z	9.013	9.013	0	%100
29	M37	X	0	0	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	5.205	5.205	0	%100
32	M38	Z	9.016	9.016	0	%100
33	M40	X	0	0	0	%100
34	M40	Z	0	0	0	%100
35	M41	X	4.607	4.607	0	%100
36	M41	Z	7.98	7.98	0	%100
37	MP4A	X	4.771	4.771	0	%100
38	MP4A	Z	8.264	8.264	0	%100
39	MP3A	X	4.771	4.771	0	%100
40	MP3A	Z	8.264	8.264	0	%100
41	MP2A	X	4.771	4.771	0	%100
42	MP2A	Z	8.264	8.264	0	%100
43	MP1A	X	4.771	4.771	0	%100
44	MP1A	Z	8.264	8.264	0	%100
45	M103	X	5.024	5.024	0	%100
46	M103	Z	8.702	8.702	0	%100
47	M107	X	0	0	0	%100
48	M107	Z	1e-6	1e-6	0	%100
49	M154	X	5.021	5.021	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[in,%]
50	M154	Z	8.696	8.696	0	%100
51	M157	X	5.02	5.02	0	%100 %100
52	M157	Z	8.695	8.695	0	%100 %100
53	M162	X	5.024	5.024	0	%100 %100
54	M162	Z	8.701	8.701	0	%100 %100
55	M165	X	1e-6	1e-6	0	%100 %100
56	M165	Z	1e-6	1e-6	0	%100 %100
57	M175	X	3.013	3.013	0	%100 %100
58	M175	Z	5.219	5.219	0	%100
59	M176	X	3.013	3.013	0	%100 %100
60	M176	Z	5.219	5.219	0	%100
61	M177	X	12.053	12.053	0	%100
62	M177	Z	20.877	20.877	0	%100
63	M178	X	12.053	12.053	0	%100
64	M178	Z	20.877	20.877	0	%100
65	M179	X	3.013	3.013	0	%100
66	M179	Z	5.219	5.219	0	%100
67	M180	X	3.013	3.013	0	%100
68	M180	Z	5.219	5.219	0	%100
69	M183	X	9.04	9.04	0	%100
70	M183	Ž	15.657	15.657	0	%100
71	M184	X	9.04	9.04	0	%100
72	M184	Z	15.657	15.657	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	0	0	0	%100
77	M192	X	9.04	9.04	0	%100
78	M192	Z	15.657	15.657	0	%100
79	M193	X	9.04	9.04	0	%100
80	M193	Z	15.657	15.657	0	%100
81	M108	X	0	0	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	4.608	4.608	0	%100
84	M109	Z	7.98	7.98	0	%100
85	M110	X	4.608	4.608	0	%100
86	M110	Z	7.98	7.98	0	%100
87	MP5A	X	4.771	4.771	0	%100
88	MP5A	Z	8.264	8.264	0	%100
89	MP4C	X	4.771	4.771	0	%100
90	MP4C	Z	8.264	8.264	0	%100
91	MP3C	X	4.771	4.771	0	%100
92	MP3C	Z	8.264	8.264	0	%100
93	MP2C	X	4.771	4.771	0	%100
94	MP2C	Z	8.264	8.264	0	%100
95	MP1C	X	4.771	4.771	0	%100
96	MP1C	Z	8.264	8.264	0	%100
97	MP5C	X	4.771	4.771	0	%100
98	MP5C	Z	8.264	8.264	0	%100
99	MP4B	X	4.771	4.771	0	%100
100	MP4B	Z	8.264	8.264	0	%100
101	MP3B	X	4.771	4.771	0	%100
102	MP3B	Z	8.264	8.264	0	%100
103	MP2B	X	4.771	4.771	0	%100
104	MP2B	Z	8.264	8.264	0	%100
105	MP1B	X	4.771	4.771	0	%100
106	MP1B	Z	8.264	8.264	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
107	MP5B	X	4.771	4.771	0	%100
108	MP5B	Z	8.264	8.264	0	%100
109	OVP2	X	3.901	3.901	0	%100
110	OVP2	Z	6.757	6.757	0	%100
111	OVP1	X	3.901	3.901	0	%100
112	OVP1	Z	6.757	6.757	0	%100
113	M95A	X	5.204	5.204	0	%100
114	M95A	Z	9.013	9.013	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	Χ	5.205	5.205	0	%100
118	M97A	Z	9.016	9.016	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	24.106	24.106	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	6.027	6.027	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	6.027	6.027	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	6.027	6.027	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	6.027	6.027	0	%100
13	M11	Х	0	0	0	%100
14	M11	Z	11.332	11.332	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	24.106	24.106	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	24.106	24.106	0	%100
19	M21	X	0	0	0	%100
20	M21	Z	6.027	6.027	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	11.332	11.332	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	6.027	6.027	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	12.286	12.286	0	%100
27	M36	Χ	0	0	0	%100
28	M36	Z	13.878	13.878	0	%100
29	M37	X	0	0	0	%100
30	M37	Z	3.468	3.468	0	%100
31	M38	X	0	0	0	%100
32	M38	Z	3.471	3.471	0	%100
33	M40	X	0	0	0	%100
34	M40	Z	3.072	3.072	0	%100
35	M41	X	0	0	0	%100
36	M41	Z	3.072	3.072	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	9.542	9.542	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	9.542	9.542	0	%100
41	MP2A	X	0	0	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

momo	or Biotinbatoa Eot	AGO (DEO TI	. Structure wo	7 1700 Deg// 100	minaca,	
	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
42	MP2A	Z	9.542	9.542	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	9.542	9.542	0	%100
45	M103	X	0	0	0	%100
46	M103	Z	3.352	3.352	0	%100 %100
47	M107	X	0		0	%100 %100
48	M107	Z	3.351	0 3.351	0	%100 %100
49	M154	X	0	0	0	%100
50	M154	Z	3.345	3.345	0	%100
51	M157	X	0	0	0	%100
52	M157	Z	13.392	13.392	0	%100
53	M162	X	0	0	0	%100
54	M162	Z	13.392	13.392	0	%100
55	M165	X	0	0	0	%100
56	M165	Z	3.344	3.344	0	%100
57	M175	X	0	0	0	%100
58	M175	Z	0	0	0	%100
59	M176	X	0	0	0	%100
60	M176	Z	0	0	0	%100
61	M177	Χ	0	0	0	%100
62	M177	Z	18.08	18.08	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	18.08	18.08	0	%100
65	M179	Χ	0	0	0	%100
66	M179	Z	18.08	18.08	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	18.08	18.08	0	%100
69	M183	X	0	0	0	%100
70	M183	Ž	24.106	24.106	0	%100 %100
71	M184	X	0	0	0	%100
72	M184	Ž	24.106	24.106	0	%100 %100
73	M188	X	0	0	0	%100
74	M188	Z	6.027	6.027	0	%100 %100
75	M189	X	0.027	0.027	0	%100 %100
76	M189	Z	6.027	6.027	0	%100 %100
77	M192	X	0.027	0.027	0	%100 %100
78	M192	Z	6.027	6.027	0	%100 %100
79	M193	X				%100 %100
		Z	0 6.027	0 6.027	0	
80	M193			_		%100
81	M108	X	0	0	0	%100
82	M108	Z	3.072	3.072	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	3.072	3.072	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	12.287	12.287	0	%100
87	MP5A	X	0	0	0	%100
88	MP5A	Z	9.542	9.542	0	%100
89	MP4C	X	0	0	0	%100
90	MP4C	Z	9.542	9.542	0	%100
91	MP3C	X	0	0	0	%100
92	MP3C	Z	9.542	9.542	0	%100
93	MP2C	X	0	0	0	%100
94	MP2C	Z	9.542	9.542	0	%100
95	MP1C	X	0	0	0	%100
96	MP1C	Z	9.542	9.542	0	%100
97	MP5C	Χ	0	0	0	%100
98	MP5C	Z	9.542	9.542	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
99	MP4B	X	0	0	0	%100
100	MP4B	Z	9.542	9.542	0	%100
101	MP3B	X	0	0	0	%100
102	MP3B	Z	9.542	9.542	0	%100
103	MP2B	X	0	0	0	%100
104	MP2B	Z	9.542	9.542	0	%100
105	MP1B	Χ	0	0	0	%100
106	MP1B	Z	9.542	9.542	0	%100
107	MP5B	Χ	0	0	0	%100
108	MP5B	Z	9.542	9.542	0	%100
109	OVP2	Χ	0	0	0	%100
110	OVP2	Z	7.803	7.803	0	%100
111	OVP1	Χ	0	0	0	%100
112	OVP1	Z	7.803	7.803	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	13.878	13.878	0	%100
115	M96A	Χ	0	0	0	%100
116	M96A	Z	3.468	3.468	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	3.471	3.471	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	Χ	-1.889	-1.889	0	%100
2	M4	Z	3.271	3.271	0	%100
3	M5	Χ	-9.04	-9.04	0	%100
4	M5	Z	15.657	15.657	0	%100
5	M6	Х	-9.04	-9.04	0	%100
6	M6	Z	15.657	15.657	0	%100
7	M7	Х	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	Χ	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M10	Χ	-9.04	-9.04	0	%100
12	M10	Z	15.657	15.657	0	%100
13	M11	Χ	-1.889	-1.889	0	%100
14	M11	Z	3.271	3.271	0	%100
15	M13	Χ	-9.04	-9.04	0	%100
16	M13	Z	15.657	15.657	0	%100
17	M20	X	-9.04	-9.04	0	%100
18	M20	Z	15.657	15.657	0	%100
19	M21	X	0	0	0	%100
20	M21	Z	0	0	0	%100
21	M22	X	-7.555	-7.555	0	%100
22	M22	Z	13.085	13.085	0	%100
23	M24	X	-9.04	-9.04	0	%100
24	M24	Z	15.657	15.657	0	%100
25	M34	X	-4.607	-4.607	0	%100
26	M34	Z	7.98	7.98	0	%100
27	M36	X	-5.205	-5.205	0	%100
28	M36	Z	9.016	9.016	0	%100
29	M37	Χ	-5.204	-5.204	0	%100
30	M37	Z	9.013	9.013	0	%100
31	M38	Χ	0	0	0	%100
32	M38	Z	0	0	0	%100
33	M40	X	-4.607	-4.607	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location(in %)	End Location[in,%]
34	M40	Z	7.98	7.98	0	%100
35	M41	X	0	0	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	-4.771	-4.771	0	%100
38	MP4A	Z	8.264	8.264	0	%100
39	MP3A	X	-4.771	-4.771	0	%100
40	MP3A	Z	8.264	8.264	0	%100
41	MP2A	X	-4.771	-4.771	0	%100
42	MP2A	Z	8.264	8.264	0	%100
43	MP1A	X	-4.771	-4.771	0	%100
44	MP1A	Z	8.264	8.264	0	%100
45	M103	X	-1e-6	-1e-6	0	%100
46	M103	Z	1e-6	1e-6	0	%100
47	M107	X	-5.024	-5.024	0	%100
48	M107	Z	8.701	8.701	0	%100
49	M154	X	0	0	0	%100
50	M154	Z	1e-6	1e-6	0	%100
51	M157	X	-5.024	-5.024	0	%100
52	M157	Z	8.702	8.702	0	%100
53	M162	X	-5.021	-5.021	0	%100
54	M162	Z	8.696	8.696	0	%100
55	M165	X	-5.02	-5.02	0	%100
56	M165	Z	8.695	8.695	0	%100
57	M175	X	-3.013	-3.013	0	%100
58	M175	Z	5.219	5.219	0	%100
59	M176	X	-3.013	-3.013	0	%100
60	M176	Z	5.219	5.219	0	%100
61	M177	X	-3.013	-3.013	0	%100
62	M177	Z	5.219	5.219	0	%100
63	M178	X	-3.013	-3.013	0	%100
64	M178	Z	5.219	5.219	0	%100
65	M179	X	-12.053	-12.053	0	%100
66	M179	Z	20.877	20.877	0	%100
67	M180	X	-12.053	-12.053	0	%100
68	M180	Z	20.877	20.877	0	%100
69	M183	X	-9.04	-9.04	0	%100
70	M183	Z	15.657	15.657	0	%100
71	M184	X	-9.04	-9.04	0	%100
72	M184	Z	15.657	15.657	0	%100
73	M188	X	-9.04	-9.04	0	%100
74	M188	Z	15.657	15.657	0	%100
75	M189	X	-9.04	-9.04	0	%100
76	M189	Z	15.657	15.657	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	-4.608	-4.608	0	%100 %100
82	M108	Z	7.98	7.98	0	%100 %100
83	M109	X Z	0	0	0	%100 %100
84 85	M109		-4.608	-4.608		%100 %100
	M110	X Z			0	%100 %100
86	M110		7.98 -4.771	7.98 -4.771	0	%100 %100
87 88	MP5A MP5A	X Z			0	%100 %100
89	MP4C	X	8.264 -4.771	8.264 -4.771		%100 %100
90	MP4C MP4C	Z	8.264	8.264	0	%100 %100
30	IVIF40		0.204	0.204	U	76100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
91	MP3C	X	-4.771	-4.771	0	%100
92	MP3C	Z	8.264	8.264	0	%100
93	MP2C	X	-4.771	-4.771	0	%100
94	MP2C	Z	8.264	8.264	0	%100
95	MP1C	X	-4.771	-4.771	0	%100
96	MP1C	Z	8.264	8.264	0	%100
97	MP5C	X	-4.771	-4.771	0	%100
98	MP5C	Z	8.264	8.264	0	%100
99	MP4B	X	-4.771	-4.771	0	%100
100	MP4B	Z	8.264	8.264	0	%100
101	MP3B	X	-4.771	-4.771	0	%100
102	MP3B	Z	8.264	8.264	0	%100
103	MP2B	Χ	-4.771	-4.771	0	%100
104	MP2B	Z	8.264	8.264	0	%100
105	MP1B	X	-4.771	-4.771	0	%100
106	MP1B	Z	8.264	8.264	0	%100
107	MP5B	X	-4.771	-4.771	0	%100
108	MP5B	Z	8.264	8.264	0	%100
109	OVP2	X	-3.901	-3.901	0	%100
110	OVP2	Z	6.757	6.757	0	%100
111	OVP1	Χ	-3.901	-3.901	0	%100
112	OVP1	Z	6.757	6.757	0	%100
113	M95A	X	-5.205	-5.205	0	%100
114	M95A	Z	9.016	9.016	0	%100
115	M96A	Χ	-5.204	-5.204	0	%100
116	M96A	Z	9.013	9.013	0	%100
117	M97A	Χ	0	0	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	Χ	-9.814	-9.814	0	%100
2	M4	Z	5.666	5.666	0	%100
3	M5	X	-5.219	-5.219	0	%100
4	M5	Z	3.013	3.013	0	%100
5	M6	Χ	-20.877	-20.877	0	%100
6	M6	Z	12.053	12.053	0	%100
7	M7	Χ	-5.219	-5.219	0	%100
8	M7	Z	3.013	3.013	0	%100
9	M9	Χ	-5.219	-5.219	0	%100
10	M9	Z	3.013	3.013	0	%100
11	M10	Χ	-20.877	-20.877	0	%100
12	M10	Z	12.053	12.053	0	%100
13	M11	Χ	0	0	0	%100
14	M11	Z	0	0	0	%100
15	M13	Χ	-5.219	-5.219	0	%100
16	M13	Z	3.013	3.013	0	%100
17	M20	Χ	-5.219	-5.219	0	%100
18	M20	Z	3.013	3.013	0	%100
19	M21	X	-5.219	-5.219	0	%100
20	M21	Z	3.013	3.013	0	%100
21	M22	Χ	-9.814	-9.814	0	%100
22	M22	Z	5.666	5.666	0	%100
23	M24	Χ	-20.877	-20.877	0	%100
24	M24	Z	12.053	12.053	0	%100
25	M34	Χ	-2.66	-2.66	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lh/ft	End Magnitude[lb/ft,F		End Location[in,%]
26	M34	Z	1.536	1.536	0	%100
27	M36	X	-3.006	-3.006	0	%100
28	M36	Z	1.736	1.736	0	%100
29	M37	X	-12.019	-12.019	0	%100
30	M37	Z	6.939	6.939	0	%100
31	M38	X	-3.003	-3.003	0	%100
32	M38	Z	1.734	1.734	0	%100
33	M40	X	-10.64	-10.64	0	%100
34	M40	Z	6.143	6.143	0	%100
35	M41	Χ	-2.66	-2.66	0	%100
36	M41	Z	1.536	1.536	0	%100
37	MP4A	Χ	-8.264	-8.264	0	%100
38	MP4A	Z	4.771	4.771	0	%100
39	MP3A	Χ	-8.264	-8.264	0	%100
40	MP3A	Z	4.771	4.771	0	%100
41	MP2A	X	-8.264	-8.264	0	%100
42	MP2A	Z	4.771	4.771	0	%100
43	MP1A	X	-8.264	-8.264	0	%100
44	MP1A	Z	4.771	4.771	0	%100
45	M103	X	-2.896	-2.896	0	%100
46	M103	Z	1.672	1.672	0	%100
47	M107	X	-11.598	-11.598	0	%100
48	M107	Z	6.696	6.696	0	%100
49	M154	X	-2.902	-2.902	0	%100
50	M154	Z	1.675	1.675	0	%100
51	M157	X	-2.903	-2.903	0	%100
52	M157	Z	1.676	1.676	0	%100
53	M162	X	-2.897	-2.897	0	%100
54	M162	Z	1.673	1.673	0	%100
55	M165	X	-11.598	-11.598	0	%100
56	M165	Z	6.696	6.696	0	%100
57	M175	X Z	-15.657	-15.657	0	%100
58	M175		9.04	9.04	0	%100 %100
59 60	M176 M176	X Z	-15.657 9.04	-15.657 9.04	0	%100 %100
61	M177	X				%100 %100
62	M177	Z	0	0	0	%100 %100
63	M178	X	0	0	0	%100 %100
64	M178	Z	0	0	0	%100 %100
65	M179	X	-15.657	-15.657	0	%100 %100
66	M179	Z	9.04	9.04	0	%100 %100
67	M180	X	-15.657	-15.657	0	%100 %100
68	M180	Z	9.04	9.04	0	%100 %100
69	M183	X	-5.219	-5.219	0	%100 %100
70	M183	Z	3.013	3.013	0	%100 %100
71	M184	X	-5.219	-5.219	0	%100 %100
72	M184	Z	3.013	3.013	0	%100
73	M188	X	-20.877	-20.877	0	%100
74	M188	Ž	12.053	12.053	0	%100
75	M189	Χ	-20.877	-20.877	0	%100
76	M189	Z	12.053	12.053	0	%100
77	M192	X	-5.219	-5.219	0	%100
78	M192	Z	3.013	3.013	0	%100
79	M193	X	-5.219	-5.219	0	%100
80	M193	Z	3.013	3.013	0	%100
81	M108	X	-10.641	-10.641	0	%100
82	M108	Z	6.143	6.143	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
83	M109	X	-2.66	-2.66	0	%100
84	M109	Z	1.536	1.536	0	%100
85	M110	X	-2.66	-2.66	0	%100
86	M110	Z	1.536	1.536	0	%100
87	MP5A	X	-8.264	-8.264	0	%100
88	MP5A	Z	4.771	4.771	0	%100
89	MP4C	X	-8.264	-8.264	0	%100
90	MP4C	Z	4.771	4.771	0	%100
91	MP3C	X	-8.264	-8.264	0	%100
92	MP3C	Z	4.771	4.771	0	%100
93	MP2C	X	-8.264	-8.264	0	%100
94	MP2C	Z	4.771	4.771	0	%100
95	MP1C	X	-8.264	-8.264	0	%100
96	MP1C	Z	4.771	4.771	0	%100
97	MP5C	X	-8.264	-8.264	0	%100
98	MP5C	Z	4.771	4.771	0	%100
99	MP4B	X	-8.264	-8.264	0	%100
100	MP4B	Z	4.771	4.771	0	%100
101	MP3B	X	-8.264	-8.264	0	%100
102	MP3B	Z	4.771	4.771	0	%100
103	MP2B	X	-8.264	-8.264	0	%100
104	MP2B	Z	4.771	4.771	0	%100
105	MP1B	X	-8.264	-8.264	0	%100
106	MP1B	Z	4.771	4.771	0	%100
107	MP5B	X	-8.264	-8.264	0	%100
108	MP5B	Z	4.771	4.771	0	%100
109	OVP2	X	-6.757	-6.757	0	%100
110	OVP2	Z	3.901	3.901	0	%100
111	OVP1	X	-6.757	-6.757	0	%100
112	OVP1	Z	3.901	3.901	0	%100
113	M95A	X	-3.006	-3.006	0	%100
114	M95A	Z	1.736	1.736	0	%100
115	M96A	X	-12.019	-12.019	0	%100
116	M96A	Z	6.939	6.939	0	%100
117	M97A	X	-3.003	-3.003	0	%100
118	M97A	Z	1.734	1.734	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	Χ	-15.11	-15.11	0	%100
2	M4	Z	0	0	0	%100
3	M5	Χ	0	0	0	%100
4	M5	Z	0	0	0	%100
5	M6	Χ	-18.08	-18.08	0	%100
6	M6	Z	0	0	0	%100
7	M7	Χ	-18.08	-18.08	0	%100
8	M7	Z	0	0	0	%100
9	M9	Χ	-18.08	-18.08	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	-18.08	-18.08	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	-3.777	-3.777	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	0	0	0	%100
17	M20	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[in,%]
18	M20	Z	0	0	0	%100
19	M21	X	-18.08	-18.08	0	%100
20	M21	Z	0	0	0	%100
21	M22	X	-3.777	-3.777	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	-18.08	-18.08	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	0	0	0	%100
27	M36	X	0	0	0	%100
28	M36	Z	0	0	0	%100
29	M37	X	-10.41	-10.41	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	-10.407	-10.407	0	%100
32	M38	Z	0	0	0	%100
33	M40	X	-9.215	-9.215	0	%100
34	M40	Z	0	0	0	%100
35	M41	X	-9.215	-9.215	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	-9.542	-9.542	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	-9.542	-9.542	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	-9.542	-9.542	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	-9.542	-9.542	0	%100
44	MP1A	Z	0	0	0	%100
45	M103	X	-10.04	-10.04	0	%100
46	M103	Z	0	0	0	%100
47	M107	X	-10.041	-10.041	0	%100
48	M107	Z	0	0	0	%100
49	M154	X	-10.047	-10.047	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	-1e-6	-1e-6	0	%100
52	M157	Z	0	0	0	%100
53	M162	X	-1e-6	-1e-6	0	%100
54	M162	Z	0	0	0	%100
55	M165	X	-10.048	-10.048	0	%100
56	M165	Z	0	0	0	%100
57	M175	X	-24.106	-24.106	0	%100
58	M175	Z	0	0	0	%100
59	M176	X	-24.106	-24.106	0	%100
60	M176	Z	6.007	6.007	0	%100 %100
61	M177	X Z	-6.027	-6.027	0	%100 %100
62	M177		6.027	6.007	0	%100 %100
63	M178	X Z	-6.027	-6.027	0	%100 %100
64	M178		6.027	6.027	0	%100 %100
65	M179 M179	X Z	-6.027	-6.027	0	%100 %100
66 67	M180	X	-6.027	-6.027	0	%100 %100
68	M180	Z	-6.027	-6.027	0	%100 %100
69	M183	X	0	0	0	%100 %100
70	M183	Z	0	0	0	%100 %100
71	M184	X	0	0	0	%100 %100
72	M184	Ž	0	0	0	%100 %100
73	M188	X	-18.08	-18.08	0	%100 %100
74	M188	Z	0	0	0	%100 %100
74	IVITOO	_	U	U	U	/6100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
75	M189	Χ	-18.08	-18.08	0	%100
76	M189	Z	0	0	0	%100
77	M192	Χ	-18.08	-18.08	0	%100
78	M192	Z	0	0	0	%100
79	M193	Х	-18.08	-18.08	0	%100
80	M193	Z	0	0	0	%100
81	M108	Χ	-9.215	-9.215	0	%100
82	M108	Z	0	0	0	%100
83	M109	Χ	-9.215	-9.215	0	%100
84	M109	Z	0	0	0	%100
85	M110	Χ	0	0	0	%100
86	M110	Z	0	0	0	%100
87	MP5A	Χ	-9.542	-9.542	0	%100
88	MP5A	Z	0	0	0	%100
89	MP4C	Χ	-9.542	-9.542	0	%100
90	MP4C	Z	0	0	0	%100
91	MP3C	Χ	-9.542	-9.542	0	%100
92	MP3C	Z	0	0	0	%100
93	MP2C	Χ	-9.542	-9.542	0	%100
94	MP2C	Z	0	0	0	%100
95	MP1C	X	-9.542	-9.542	0	%100
96	MP1C	Z	0	0	0	%100
97	MP5C	X	-9.542	-9.542	0	%100
98	MP5C	Z	0	0	0	%100
99	MP4B	X	-9.542	-9.542	0	%100
100	MP4B	Z	0	0	0	%100
101	MP3B	X	-9.542	-9.542	0	%100
102	MP3B	Z	0	0	0	%100
103	MP2B	Χ	-9.542	-9.542	0	%100
104	MP2B	Z	0	0	0	%100
105	MP1B	Χ	-9.542	-9.542	0	%100
106	MP1B	Z	0	0	0	%100
107	MP5B	Χ	-9.542	-9.542	0	%100
108	MP5B	Z	0	0	0	%100
109	OVP2	X	-7.803	-7.803	0	%100
110	OVP2	Z	0	0	0	%100
111	OVP1	X	-7.803	-7.803	0	%100
112	OVP1	Z	0	0	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	0	0	0	%100
115	M96A	X	-10.41	-10.41	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	-10.407	-10.407	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	-9.814	-9.814	0	%100
2	M4	Z	-5.666	-5.666	0	%100
3	M5	X	-5.219	-5.219	0	%100
4	M5	Z	-3.013	-3.013	0	%100
5	M6	X	-5.219	-5.219	0	%100
6	M6	Z	-3.013	-3.013	0	%100
7	M7	X	-20.877	-20.877	0	%100
8	M7	Z	-12.053	-12.053	0	%100
9	M9	X	-20.877	-20.877	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[in,%]
10	M9	Z	-12.053	-12.053	0	%100
11	M10	X	-5.219	-5.219	0	%100
12	M10	Z	-3.013	-3.013	0	%100
13	M11	X	-9.814	-9.814	0	%100
14	M11	Z	-5.666	-5.666	0	%100
15	M13	X	-5.219	-5.219	0	%100
16	M13	Z	-3.013	-3.013	0	%100
17	M20	X	-5.219	-5.219	0	%100
18	M20	Z	-3.013	-3.013	0	%100
19	M21	X	-20.877	-20.877	0	%100
20	M21	Z	-12.053	-12.053	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	-5.219	-5.219	0	%100
24	M24	Z	-3.013	-3.013	0	%100
25	M34	X	-2.66	-2.66	0	%100
26	M34	Z	-1.536	-1.536	0	%100
27	M36	X	-3.003	-3.003	0	%100
28	M36	Z	-1.734	-1.734	0	%100
29	M37	X	-3.006	-3.006	0	%100
30	M37	Z	-1.736	-1.736	0	%100
31	M38	X	-12.019	-12.019	0	%100
32	M38	Z	-6.939	-6.939	0	%100
33	M40	X	-2.66	-2.66	0	%100
34	M40	Z	-1.536	-1.536	0	%100
35	M41	X	-10.64	-10.64	0	%100
36	M41	Z	-6.143	-6.143	0	%100
37	MP4A	X	-8.264	-8.264	0	%100
38	MP4A	Z	-4.771	-4.771	0	%100
39	MP3A	X	-8.264	-8.264	0	%100
40	MP3A	Z	-4.771	-4.771	0	%100
41	MP2A	X	-8.264	-8.264	0	%100
42	MP2A	Z	-4.771	-4.771	0	%100
43	MP1A	X	-8.264	-8.264	0	%100
44	MP1A	Z	-4.771	-4.771	0	%100
45	M103	X	-11.598	-11.598	0	%100
46	M103	Z	-6.696	-6.696	0	%100
47	M107	X	-2.897	-2.897	0	%100
48	M107	Z	-1.673	-1.673	0	%100
49	M154	X	-11.598	-11.598	0	%100
50	M154	Z	-6.696	-6.696	0	%100 %100
51	M157	X	-2.896	-2.896	0	%100
52	M157	Z	-1.672	-1.672	0	%100 %100
53	M162	X	-2.902	-2.902	0	%100
54	M162	Z	-1.675	-1.675	0	%100 %100
55	M165	X	-2.903	-2.903	0	%100 %100
56	M165	Z	-1.676	-1.676	0	%100 %100
57	M175	X	-15.657	-15.657	0	%100 %100
58	M175	Z	-9.04 15.657	-9.04 15.657	0	%100 %100
59 60	M176 M176	X Z	-15.657	-15.657 -9.04	0	%100 %100
61	M176 M177	X	-9.04 -15.657	-9.04 -15.657		%100 %100
62	M177	Z	-15.657	-15.657 -9.04	0	%100 %100
63						%100 %100
64	M178 M178	X Z	-15.657 -9.04	-15.657 -9.04	0	%100 %100
65	M179	X				%100 %100
66	M179	Z	0	0	0	%100 %100
00	IVI 1 / 9		U	U	U	76100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	er Bietribatea Eet	ado (DEO O	. Structure We	1000 Deg// 100	minaca,	
	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
67	M180	X	0	0	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	-5.219	-5.219	0	%100
70	M183	Z	-3.013	-3.013	0	%100
71	M184	X	-5.219	-5.219	0	%100
72	M184	Z	-3.013	-3.013	0	%100
73	M188	X	-5.219	-5.219	0	%100
74	M188	Z	-3.013	-3.013	0	%100
75	M189	X	-5.219	-5.219	0	%100
76	M189	Z	-3.013	-3.013	0	%100
77	M192	X	-20.877	-20.877	0	%100
78	M192	Z	-12.053	-12.053	0	%100
79	M193	X	-20.877	-20.877	0	%100
80	M193	Z	-12.053	-12.053	0	%100
81	M108	X	-2.66	-2.66	0	%100
82	M108	Z	-1.536	-1.536	0	%100
83	M109	X	-10.641	-10.641	0	%100
84	M109	Z	-6.143	-6.143	0	%100
85	M110	X	-2.66	-2.66	0	%100
86	M110	Z	-1.536	-1.536	0	%100
87	MP5A	X	-8.264	-8.264	0	%100
88	MP5A	Z	-4.771	-4.771	0	%100
89	MP4C	X	-8.264	-8.264	0	%100
90	MP4C	Z	-4.771	-4.771	0	%100
91	MP3C	X	-8.264	-8.264	0	%100
92	MP3C	Z	-4.771	-4.771	0	%100
93	MP2C	X	-8.264	-8.264	0	%100
94	MP2C	Z	-4.771	-4.771	0	%100
95	MP1C	X	-8.264	-8.264	0	%100
96	MP1C	Z	-4.771	-4.771	0	%100
97 98	MP5C MP5C	Z	-8.264	-8.264	0	%100
99	MP4B	X	-4.771 -8.264	-4.771 -8.264	0	%100 %100
100	MP4B	Z	-4.771	-4.771	0	%100 %100
101	MP3B	X	-8.264	-8.264	0	%100 %100
102	MP3B	Z	-4.771	-4.771	0	%100 %100
102	MP2B	X	-8.264	-8.264	0	%100 %100
103	MP2B	Z	-4.771	-4.771	0	%100 %100
105	MP1B	X	-8.264	-8.264	0	%100 %100
106	MP1B	Z	-4.771	-4.771	0	%100 %100
107	MP5B	X	-8.264	-8.264	0	%100 %100
107	MP5B	Z	-4.771	-4.771	0	%100 %100
109	OVP2	X	-6.757	-6.757	0	%100 %100
110	OVP2	Z	-3.901	-3.901	0	%100 %100
111	OVP1	X	-6.757	-6.757	0	%100
112	OVP1	Z	-3.901	-3.901	0	%100
113	M95A	X	-3.003	-3.003	0	%100
114	M95A	Ž	-1.734	-1.734	0	%100
115	M96A	X	-3.006	-3.006	0	%100
116	M96A	Z	-1.736	-1.736	0	%100
117	M97A	Х	-12.019	-12.019	0	%100
118	M97A	Z	-6.939	-6.939	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

IVIE	mber Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	-1.889	-1.889	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
2	M4	Z	-3.271	-3.271	0	%100
3	M5	X	-9.04	-9.04	0	%100
4	M5	Z	-15.657	-15.657	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	-9.04	-9.04	0	%100
8	M7	Z	-15.657	-15.657	0	%100
9	M9	X	-9.04	-9.04	0	%100
10	M9	Z	-15.657	-15.657	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	-7.555	-7.555	0	%100
14	M11	Z	-13.085	-13.085	0	%100
15	M13	X	-9.04	-9.04	0	%100
16	M13	Z	-15.657	-15.657	0	%100
17	M20	X	-9.04	-9.04	0	%100
18	M20	Z	-15.657	-15.657	0	%100
19	M21	X	-9.04	-9.04	0	%100
20	M21	Z	-15.657	-15.657	0	%100
21	M22	Х	-1.889	-1.889	0	%100
22	M22	Z	-3.271	-3.271	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	-4.607	-4.607	0	%100
26	M34	Z	-7.98	-7.98	0	%100
27	M36	X	-5.204	-5.204	0	%100
28	M36	Z	-9.013	-9.013	0	%100
29	M37	X	0	0	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	-5.205	-5.205	0	%100
32	M38	Z	-9.016	-9.016	0	%100
33	M40	Χ	0	0	0	%100
34	M40	Z	0	0	0	%100
35	M41	X	-4.607	-4.607	0	%100
36	M41	Z	-7.98	-7.98	0	%100
37	MP4A	X	-4.771	-4.771	0	%100
38	MP4A	Z	-8.264	-8.264	0	%100
39	MP3A	X	-4.771	-4.771	0	%100
40	MP3A	Z	-8.264	-8.264	0	%100
41	MP2A	Χ	-4.771	-4.771	0	%100
42	MP2A	Z	-8.264	-8.264	0	%100
43	MP1A	X	-4.771	-4.771	0	%100
44	MP1A	Z	-8.264	-8.264	0	%100
45	M103	X	-5.024	-5.024	0	%100
46	M103	Z	-8.702	-8.702	0	%100
47	M107	X	0	0	0	%100
48	M107	Z	-1e-6	-1e-6	0	%100
49	M154	X	-5.021	-5.021	0	%100
50	M154	Z	-8.696	-8.696	0	%100
51	M157	X	-5.02	-5.02	0	%100
52	M157	Z	-8.695	-8.695	0	%100
53	M162	X	-5.024	-5.024	0	%100
54	M162	Z	-8.701	-8.701	0	%100
55	M165	X	-1e-6	-1e-6	0	%100
56	M165	Z	-1e-6	-1e-6	0	%100
57	M175	Χ	-3.013	-3.013	0	%100
58	M175	Z	-5.219	-5.219	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
59	M176	X	-3.013	-3.013	0	%100
60	M176	Z	-5.219	-5.219	0	%100
61	M177	X	-12.053	-12.053	0	%100
62	M177	Z	-20.877	-20.877	0	%100
63	M178	X	-12.053	-12.053	0	%100
64	M178	Z	-20.877	-20.877	0	%100
65	M179	X	-3.013	-3.013	0	%100
66	M179	Z	-5.219	-5.219	0	%100
67	M180	X	-3.013	-3.013	0	%100
68	M180	Z	-5.219	-5.219	0	%100
69	M183	X	-9.04	-9.04	0	%100
70	M183	Z	-15.657	-15.657	0	%100
71	M184	Χ	-9.04	-9.04	0	%100
72	M184	Z	-15.657	-15.657	0	%100
73	M188	Χ	0	0	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	0	0	0	%100
77	M192	X	-9.04	-9.04	0	%100
78	M192	Ž	-15.657	-15.657	0	%100
79	M193	X	-9.04	-9.04	0	%100
80	M193	Z	-15.657	-15.657	0	%100
81	M108	X	0	0	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	-4.608	-4.608	0	%100 %100
84	M109	Z	-7.98	-7.98	0	%100 %100
85	M110	X	-4.608	-4.608	0	%100 %100
86	M110	Z	-7.98	-7.98	0	%100 %100
87	MP5A	X	-4.771	-4.771	0	%100 %100
88	MP5A	Z	-8.264	-8.264	0	%100 %100
89	MP4C	X	-4.771	-4.771	0	%100 %100
90	MP4C	Z	-8.264	-8.264	0	%100 %100
91	MP3C	X	-4.771	-4.771	0	%100 %100
92	MP3C	Z	-8.264	-8.264	0	%100 %100
93	MP2C	X	-4.771	-4.771	0	%100 %100
94	MP2C	Z	-8.264	-8.264	0	%100 %100
95	MP1C	X	-4.771	-4.771	0	%100 %100
96	MP1C	Z	-8.264	-8.264	0	%100 %100
97	MP5C	X	-4.771	-4.771		%100 %100
98	MP5C	Z	-4.771	-4.771 -8.264	0	%100 %100
99	MP4B	+	-8.264 -4.771	-8.264 -4.771		%100 %100
100	MP4B	Z	-4.771	-4.771	0	%100 %100
	MP3B		-8.264 -4.771	-8.264 -4.771		%100 %100
101	MP3B	X Z		-4.771 -8.264	0	
		X	-8.264 -4.771			%100 %100
103	MP2B	Z		-4.771	0	%100 %100
104	MP2B		-8.264	-8.264	0	%100
105	MP1B	X	-4.771	-4.771	0	%100
106	MP1B	Z	-8.264	-8.264	0	%100
107	MP5B	X	-4.771	-4.771	0	%100
108	MP5B	Z	-8.264	-8.264	0	%100
109	OVP2	X	-3.901	-3.901	0	%100
110	OVP2	Z	-6.757	-6.757	0	%100
111	OVP1	X	-3.901	-3.901	0	%100
112	OVP1	Z	-6.757	-6.757	0	%100
113	M95A	X	-5.204	-5.204	0	%100
114	M95A	Z	-9.013	-9.013	0	%100
115	M96A	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
116	M96A	Z	0	0	0	%100
117	M97A	X	-5.205	-5.205	0	%100
118	M97A	Z	-9.016	-9.016	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

1 M4 X 0 0 0 %100 3 M5 X 0 0 0 %100 4 M5 X 0 0 0 %100 5 M6 X 0 0 0 %100 6 M6 X 0 0 0 %100 7 M7 X 0 0 0 %100 8 M7 Z 1.499 1.499 0 %100 9 M9 X 0 0 0 %100 10 M9 Z -1.499 -1.499 0 %100 11 M10 Z -1.499 -1.499 0 %100 11 M10 Z -1.499 -1.499 0 %100 12 M10 Z -1.499 -1.499 0 %100 13 M11 X 0 0 <t< th=""><th></th><th>Member Label</th><th>Direction</th><th>Start Magnitude[lb/ft,</th><th>End Magnitude[lb/ft,F</th><th>. Start Location[in,%]</th><th>End Location[in,%]</th></t<>		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
3	1	M4		0	0	0	%100
4 MS Z -5.995 0 %100 6 M6 X 0 0 0 %100 7 M7 X 0 0 0 %100 7 M7 X 0 0 0 %100 9 M9 X 0 0 0 0 %100 10 M9 X 0 0 0 0 %100 11 M10 X 0 0 0 0 %100 11 M10 X 0 0 0 0 %100 12 M10 X 0 0 0 0 %100 13 M11 X 0 0 0 %100 1 14 M11 X 0 0 0 %100 1 15 M13 X 0 0 0 %100 1 1	2			0	0	0	%100
5 M6 X 0 0 %100 7 M7 X 0 0 %100 7 M7 X 0 0 0 %100 8 M7 Z -1.499 -1.499 0 %100 9 M9 X 0 0 0 %100 10 M9 Z -1.499 -1.499 0 %100 11 M10 X 0 0 0 %100 12 M10 Z -1.499 -1.499 0 %100 13 M11 X 0 0 0 %100 14 M11 Z -3.93 -3.93 0 %100 15 M13 X 0 0 0 %100 16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100	3					0	%100
6 M6 Z -1.499 -1.499 0 %100 8 M7 Z -1.499 -1.499 0 %100 9 M9 X 0 0 0 %100 10 M9 Z -1.499 -1.499 0 %100 11 M10 X 0 0 0 0 %100 12 M10 Z -1.499 -1.499 0 %100 13 M11 X 0 0 0 0 %100 13 M11 X 0 0 0 0 %100 14 M13 X 0 0 0 %100 15 15 M13 X 0 0 0 0 %100 15 M13 X 0 0 0 %100 16 17 M20 X 0 0 0 %100 <	4			-5.995	-5.995	0	%100
T	5	M6	X	0	0	0	%100
8 M7 Z -1.499 -1.499 0 %100 10 M9 X 0 0 0 %100 11 M10 X -1.499 -1.499 0 %100 12 M10 Z -1.499 0 %100 13 M11 X 0 0 0 %100 14 M11 Z -3.93 -3.93 0 %100 15 M13 X 0 0 0 %100 15 M13 X 0 0 0 %100 16 M13 X 0 0 0 %100 17 M20 X -5.995 -5.995 0 %100 18 M20 X -5.995 -5.995 0 %100 20 M21 X 0 0 0 %100 21 M22 X 0 0 <t< td=""><td>6</td><td>M6</td><td>Z</td><td>-1.499</td><td>-1.499</td><td>0</td><td>%100</td></t<>	6	M6	Z	-1.499	-1.499	0	%100
9 M9 X 0 0 0 %100 10 M9 Z -1,499 -1,499 0 %100 11 M10 X 0 0 0 %100 12 M10 Z -1,499 -1,499 0 %100 13 M11 X 0 0 0 %100 14 M11 Z -3,93 -3,93 0 %100 15 M13 X 0 0 0 -5,910 -6,100 16 M13 Z -5,995 -5,995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5,995 -5,995 0 %100 19 M21 X 0 0 0 %100 21 M22 X 0 0 0 %100 21 M24 X	7			0	0	0	%100
10	8		Z	-1.499	-1.499	0	%100
11 M10 X 0 0 %100 12 M10 Z -1.499 -1.499 0 %6100 13 M11 X 0 0 0 %6100 14 M11 Z -3.93 -3.93 0 %6100 15 M13 X 0 0 0 %6100 16 M13 Z -5.995 -5.995 0 %6100 17 M20 X 0 0 0 %6100 18 M20 Z -5.995 -5.995 0 %6100 19 M21 X 0 0 0 %6100 20 M21 Z -1.499 -1.499 0 %6100 21 M22 X 0 0 0 %6100 21 M22 X 0 0 0 %6100 22 M23 -3.93 3.93 0	9	M9	X	0	0	0	%100
12 M10 Z -1.499 -1.499 0 %100 13 M11 X 0 0 0 %100 14 M11 Z -3.93 -3.93 0 %100 15 M13 X 0 0 0 %100 16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5.995 -5.995 0 %100 19 M21 X 0 0 0 %100 20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 25 M34 X 0	10	M9	Z	-1.499	-1.499	0	%100
13 M11 X 0 0 0 %100 14 M11 Z -3.93 -3.93 0 %100 15 M13 X 0 0 0 %100 16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5.995 -5.995 0 %100 19 M21 X 0 0 0 %100 20 M21 Z -1.499 -1.499 0 %1100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 22 M22 Z -3.93 -3.93 0 %100 24 M24 X 0 0 0 %100 25 M34 X 0	11	M10	Χ	0	0	0	%100
14 M11 Z -3.93 -3.93 0 %100 15 M13 X 0 0 0 %100 16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5.995 -5.995 0 %1100 19 M21 X 0 0 0 %1100 20 M21 Z -1.499 -1.499 0 %1100 21 M22 X 0 0 0 %1100 22 M22 Z -3.93 -3.93 0 %1100 24 M24 X 0 0 0 %1100 25 M34 X 0 0 0 %1100 26 M34 Z -4.116 -4.116 0 %1100 27 M36 X 0 </td <td>12</td> <td>M10</td> <td>Z</td> <td>-1.499</td> <td>-1.499</td> <td>0</td> <td>%100</td>	12	M10	Z	-1.499	-1.499	0	%100
14 M11 Z -3.93 -3.93 0 %100 15 M13 X 0 0 0 %100 16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5.995 -5.995 0 %1100 19 M21 X 0 0 0 %1100 20 M21 Z -1.499 -1.499 0 %1100 21 M22 X 0 0 0 %1100 22 M22 Z -3.93 -3.93 0 %1100 23 M24 X 0 0 0 %1100 24 M24 X 0 0 0 %1100 25 M34 X 0 0 0 %1100 27 M36 X 0	13	M11	Х	0	0	0	
15 M13 X 0 0 0 %100 16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5.995 -5.995 0 %100 19 M21 X 0 0 0 %100 20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 21 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 X 0 0 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 28 M36 Z -5.213	14	M11	Z	-3.93	-3.93		
16 M13 Z -5.995 -5.995 0 %100 17 M20 X 0 0 0 %100 18 M20 Z -5.995 -5.995 0 %100 19 M21 X 0 0 0 %100 20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 25 M34 X 0 0 0 %100 27 M36 X 0 0 0 %100 28 M37 X 0	15	M13	Χ	0		0	
17 M20 X 0 0 %100 18 M20 Z -5.995 -5.995 0 %100 20 M21 X 0 0 0 %100 20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 25 M34 X 0 0 0 %100 27 M36 X 0 0 0 %100 28 M37 X 0 0 0		M13	Z	-5.995	-5.995	0	%100
19 M21 X 0 0 %100 20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 28 M36 X 0 0 0 %100 28 M36 X 0 0 0 %100 29 M37 X 0 0 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304	17	M20	Χ	0	0	0	%100
20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X <td< td=""><td>18</td><td>M20</td><td>Z</td><td>-5.995</td><td>-5.995</td><td>0</td><td>%100</td></td<>	18	M20	Z	-5.995	-5.995	0	%100
20 M21 Z -1.499 -1.499 0 %100 21 M22 X 0 0 0 %100 22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X <td< td=""><td>19</td><td>M21</td><td>Χ</td><td>0</td><td>0</td><td>0</td><td>%100</td></td<>	19	M21	Χ	0	0	0	%100
22 M22 Z -3.93 -3.93 0 %100 23 M24 X 0 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 <td>20</td> <td>M21</td> <td>Z</td> <td>-1.499</td> <td>-1.499</td> <td>0</td> <td>%100</td>	20	M21	Z	-1.499	-1.499	0	%100
23 M24 X 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 0 %100 27 M36 X 0 0 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0	21	M22	Χ	0	0	0	%100
23 M24 X 0 0 %100 24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 28 M36 Z -5.213 -5.213 0 %100 30 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 34 M40 X 0 0 0 %100 35 M41 X 0 0	22	M22		-3.93	-3.93	0	
24 M24 Z -1.499 -1.499 0 %100 25 M34 X 0 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029<	23	M24	Х	0	0	0	
25 M34 X 0 0 %100 26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 31 M38 Z -1.304 -1.304 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 37 MP4A X 0 0			Z	-1.499	-1.499		
26 M34 Z -4.116 -4.116 0 %100 27 M36 X 0 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 X 0 0 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 36 M41 Z -1.029<			X				
27 M36 X 0 0 %100 28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 32 M38 Z -1.304 -1.304 0 %100 34 M40 X 0 0 0 %100 34 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0	26	M34		-4.116	-4.116	0	
28 M36 Z -5.213 -5.213 0 %100 29 M37 X 0 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 X 0 0 0 %100 35 M41 X 0 0 0 %100 36 M41 X 0 0 0 %100 37 MP4A X 0 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A Z -4.164 -4.164 <td< td=""><td></td><td>M36</td><td>Х</td><td>0</td><td>0</td><td>0</td><td>%100</td></td<>		M36	Х	0	0	0	%100
29 M37 X 0 0 %100 30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0<	28	M36	Z	-5.213	-5.213	0	
30 M37 Z -1.303 -1.303 0 %100 31 M38 X 0 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 X 0 0 0 %100 35 M41 X 0 0 0 %100 36 M41 X 0 0 0 %100 37 MP4A X 0 0 0 %100 38 MP4A X 0 0 0 %100 39 MP3A X 0 0 0 %100 40 MP3A X 0 0 0 %100 41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373	29	M37	Χ	0	0	0	%100
31 M38 X 0 0 %100 32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0 0 %100 38 MP4A X 0 0 %100 39 MP3A X 0 0 %100 40 MP3A X 0 0 %100 40 MP3A Z -4.164 0 %100 42 MP2A X 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A				-1.303	-1.303		
32 M38 Z -1.304 -1.304 0 %100 33 M40 X 0 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A X 0 0 %100 41 MP2A X 0 0 %100 41 MP2A X 0 0 %100 43 MP1A X 0 0 %100 44 MP1A X 0 0 %100 45	31	M38	Χ	0	0	0	%100
33 M40 X 0 0 %100 34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A X 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A X -4.373 -4.373 0 %100 43 MP1A X 0 0 %100 45 M103 X 0 0 %100 <tr< td=""><td></td><td></td><td></td><td>-1.304</td><td>-1.304</td><td>0</td><td></td></tr<>				-1.304	-1.304	0	
34 M40 Z -1.029 -1.029 0 %100 35 M41 X 0 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A X 0 0 %100 40 MP3A X 0 0 %100 41 MP2A X 0 0 %100 41 MP2A X 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 <t< td=""><td></td><td></td><td>X</td><td>0</td><td></td><td>0</td><td></td></t<>			X	0		0	
35 M41 X 0 0 %100 36 M41 Z -1.029 -1.029 0 %100 37 MP4A X 0 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A X 0 0 0 %100 43 MP1A X 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 %100 46 M103 Z -1.155 -1.155 0		M40		-1.029	-1.029		
37 MP4A X 0 0 %100 38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0	35	M41	Χ	0	0	0	
38 MP4A Z -4.373 -4.373 0 %100 39 MP3A X 0 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100	36	M41	Z	-1.029	-1.029	0	%100
39 MP3A X 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100	37	MP4A	Χ	0	0	0	%100
39 MP3A X 0 0 %100 40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100		MP4A		-4.373	-4.373	0	
40 MP3A Z -4.164 -4.164 0 %100 41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100		MP3A	Χ			0	
41 MP2A X 0 0 0 %100 42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 %100				-4.164	-4.164	0	
42 MP2A Z -4.373 -4.373 0 %100 43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 %100	41		Х	0	0	0	
43 MP1A X 0 0 0 %100 44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 %100			Z		-4.373		
44 MP1A Z -4.164 -4.164 0 %100 45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 %100							
45 M103 X 0 0 0 %100 46 M103 Z -1.155 -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100				-4.164	-4.164		
46 M103 Z -1.155 0 %100 47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100							
47 M107 X 0 0 0 %100 48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 0 %100					-1.155		
48 M107 Z -1.155 -1.155 0 %100 49 M154 X 0 0 %100							
49 M154 X 0 0 0 %100			Z				

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

memb	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
51	M157	X	0	0	0	%100
52	M157	Z	-4.617	-4.617	0	%100
53	M162	X	0	0	0	%100
54	M162	Z	-4.616	-4.616	0	%100
55	M165	X	0	0	0	%100
56	M165	Z	-1.153	-1.153	0	%100
57	M175	X	0	0	0	%100
58	M175	Z	0	0	0	%100
59	M176	X	0	0	0	%100
60	M176	Z	0	0	0	%100
61	M177	X	0	0	0	%100
62	M177	Z	-4.497	-4.497	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	-4.497	-4.497	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	-4.497	-4.497	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	-4.497	-4.497	0	%100
69	M183	X	0	0	0	%100
70	M183	Z	-5.995	-5.995	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	-5.995	-5.995	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	-1.499	-1.499	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	-1.499	-1.499	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	-1.499	-1.499	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	-1.499	-1.499	0	%100
81	M108	X	0	0	0	%100
82	M108	Z	-1.029	-1.029	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	-1.029	-1.029	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	-4.116	-4.116	0	%100
87	MP5A	X	0	0	0	%100
88	MP5A	Z	-4.164	-4.164	0	%100
89	MP4C	X	0	0	0	%100
90	MP4C	Z	-4.373	-4.373	0	%100
91	MP3C	X	0	0	0	%100
92	MP3C	Z	-4.164	-4.164	0	%100
93	MP2C	X	0	0	0	%100
94	MP2C	Z	-4.373	-4.373	0	%100
95	MP1C	X	0	0	0	%100
96	MP1C	Z	-4.164	-4.164	0	%100
97	MP5C	X	0	0	0	%100
98	MP5C	Z	-4.164	-4.164	0	%100
99	MP4B	X	0	0	0	%100
100	MP4B	Z	-4.373	-4.373	0	%100
101	MP3B	X	0	0	0	%100
102	MP3B	Z	-4.164	-4.164	0	%100
103	MP2B	X	0	0	0	%100
104	MP2B	Z	-4.373	-4.373	0	%100
105	MP1B	X	0	0	0	%100
106	MP1B	Z	-4.164	-4.164	0	%100
107	MP5B	X	0	0	0	%100
	32					, , , , , , ,

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
108	MP5B	Z	-4.164	-4.164	0	%100
109	OVP2	X	0	0	0	%100
110	OVP2	Z	-3.344	-3.344	0	%100
111	OVP1	X	0	0	0	%100
112	OVP1	Z	-3.344	-3.344	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	-5.213	-5.213	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	-1.303	-1.303	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	-1.304	-1.304	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

1 M4 X .655 0 %10 2 M4 Z -1.134 -1.134 0 %10 3 M5 X 2.248 2.248 0 %10 4 M5 Z -3.894 -3.894 0 %10 5 M6 X 2.248 2.248 0 %10 6 M6 Z -3.894 -3.894 0 %10 7 M7 X 0 0 0 %10 8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 12 M11 X .655 .655 0		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
3 M5 X 2.248 2.248 0 %10 4 M5 Z -3.894 -3.894 0 %10 5 M6 X 2.248 0 %10 6 M6 Z -3.894 -3.894 0 %10 7 M7 X 0 0 0 %10 8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0	_	M4	X		.655	0	%100
4 M5 Z -3.894 -3.894 0 %10 5 M6 X 2.248 2.248 0 %10 6 M6 Z -3.894 -3.894 0 %10 7 M7 X 0 0 0 %10 8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 <t< td=""><td>2</td><td>M4</td><td>Z</td><td>-1.134</td><td>-1.134</td><td>0</td><td>%100</td></t<>	2	M4	Z	-1.134	-1.134	0	%100
5 M6 X 2.248 2.248 0 %10 6 M6 Z -3.894 -3.894 0 %10 7 M7 X 0 0 0 %10 8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 <	3	M5	Χ	2.248	2.248	0	%100
6 M6 Z -3.894 -3.894 0 %10 7 M7 X 0 0 0 %10 8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248	4	M5	Z	-3.894	-3.894	0	%100
7 M7 X 0 0 %10 8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 20 M21 X 0 0 <	5			2.248	2.248	0	%100
8 M7 Z 0 0 0 %10 9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 16 M13 Z -3.894 -3.894 0 %10 18 M20 X 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 20 M21 X 0 0	6	M6	Z	-3.894	-3.894	0	%100
9 M9 X 0 0 0 %10 10 M9 Z 0 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 X 0 0 0 %10 21 M22 X 2.62	7	M7		0	0	0	%100
10 M9 Z 0 0 %10 11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 20 M21 X 0 0 0 %10 20 M21 X 0 0 0 %10 21 M22 X 2.62 <td< td=""><td>8</td><td>M7</td><td></td><td>0</td><td>0</td><td>0</td><td>%100</td></td<>	8	M7		0	0	0	%100
11 M10 X 2.248 2.248 0 %10 12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 X 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 X				0	0	0	%100
12 M10 Z -3.894 -3.894 0 %10 13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 X 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 X 2.248 2.248 0 %10 23 M24 X <	10					0	%100
13 M11 X .655 .655 0 %10 14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 Z 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z	11	M10		2.248	2.248	0	%100
14 M11 Z -1.134 -1.134 0 %10 15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 X 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 X 2.62 2.62 0 %10 23 M24 X 2.248 2.248 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543	12	M10	Z	-3.894	-3.894	0	%100
15 M13 X 2.248 2.248 0 %10 16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 Z 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z	13	M11	X	.655	.655	0	%100
16 M13 Z -3.894 -3.894 0 %10 17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 Z 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 X 2.248 2.248 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 X 1.954 1.955 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>%100</td>						0	%100
17 M20 X 2.248 2.248 0 %10 18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 Z 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 29 M37 X 1.954<	15	M13		2.248	2.248	0	%100
18 M20 Z -3.894 -3.894 0 %10 19 M21 X 0 0 0 %10 20 M21 Z 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z	16	M13	Z	-3.894	-3.894	0	%100
19 M21 X 0 0 0 %10 20 M21 Z 0 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10		M20	Χ	2.248	2.248	0	%100
20 M21 Z 0 0 %10 21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	18	M20	Z	-3.894	-3.894	0	%100
21 M22 X 2.62 2.62 0 %10 22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	19	M21	Χ	0	0	0	%100
22 M22 Z -4.538 -4.538 0 %10 23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	20	M21	Z	0	0	0	%100
23 M24 X 2.248 2.248 0 %10 24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	21	M22	Χ	2.62	2.62	0	%100
24 M24 Z -3.894 -3.894 0 %10 25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	22	M22	Z	-4.538	-4.538	0	%100
25 M34 X 1.543 1.543 0 %10 26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	23	M24	Χ	2.248	2.248	0	%100
26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	24	M24	Z	-3.894	-3.894	0	%100
26 M34 Z -2.673 -2.673 0 %10 27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	25	M34	Χ	1.543	1.543	0	%100
27 M36 X 1.955 1.955 0 %10 28 M36 Z -3.386 -3.386 0 %10 29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	26	M34					%100
29 M37 X 1.954 1.954 0 %10 30 M37 Z -3.385 -3.385 0 %10	27	M36	Χ	1.955	1.955	0	%100
30 M37 Z -3.385 -3.385 0 %10	28	M36	Z	-3.386	-3.386	0	%100
	29	M37	Χ	1.954	1.954	0	%100
	30	M37	Z	-3.385	-3.385	0	%100
31 M38 X 0 0 0 %10	31	M38	Χ	0	0	0	%100
32 M38 Z 0 0 0 %10	32	M38	Z	0	0	0	%100
	33		Χ	1.543	1.543	0	%100
		M40	Z	-2.673	-2.673	0	%100
		M41	Χ	0	0	0	%100
		M41					%100
		MP4A	X	2.186	2.186	0	%100
						0	%100
							%100
							%100
						-	%100
							%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
43	MP1A	X	2.082	2.082	0	%100
44	MP1A	Z	-3.607	-3.607	0	%100
45	M103	X	0	0	0	%100
46	M103	Z	0	0	0	%100
47	M107	Χ	1.732	1.732	0	%100
48	M107	Z	-2.999	-2.999	0	%100
49	M154	X	0	0	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	1.732	1.732	0	%100
52	M157	Z	-3	-3	0	%100
53	M162	X	1.731	1.731	0	%100
54	M162	Z	-2.998	-2.998	0	%100
55	M165	X	1.731	1.731	0	%100
56	M165	Ž	-2.997	-2.997	0	%100
57	M175	X	.749	.749	0	%100
58	M175	Ž	-1.298	-1.298	0	%100
59	M176	X	.749	.749	0	%100
60	M176	Z	-1.298	-1.298	0	%100 %100
61	M177	X	.749	.749	0	%100
62	M177	Z	-1.298	-1.298	0	%100 %100
63	M178	X	.749	.749	0	%100 %100
64	M178	Z	-1.298	-1,298	0	%100 %100
65	M179	X	2.998	2.998	0	%100 %100
66	M179	Ž	-5.192	-5.192	0	%100 %100
67	M180	X	2.998	2.998	0	%100 %100
68		Z			0	
	M180		-5.192	-5.192		%100
69	M183	X	2.248	2.248	0	%100
70	M183	Z	-3.894	-3.894	0	%100
71	M184	X	2.248	2.248	0	%100
72	M184	Z	-3.894	-3.894	0	%100
73	M188	X	2.248	2.248	0	%100
74	M188	Z	-3.894	-3.894	0	%100
75	M189	X	2.248	2.248	0	%100
76	M189	Z	-3.894	-3.894	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	1.543	1.543	0	%100
82	M108	Z	-2.673	-2.673	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	1.543	1.543	0	%100
86	M110	Z	-2.673	-2.673	0	%100
87	MP5A	X	2.082	2.082	0	%100
88	MP5A	Z	-3.607	-3.607	0	%100
89	MP4C	X	2.186	2.186	0	%100
90	MP4C	Z	-3.787	-3.787	0	%100
91	MP3C	X	2.082	2.082	0	%100
92	MP3C	Z	-3.607	-3.607	0	%100
93	MP2C	X	2.186	2.186	0	%100
94	MP2C	Z	-3.787	-3.787	0	%100
95	MP1C	X	2.082	2.082	0	%100
96	MP1C	Z	-3.607	-3.607	0	%100
97	MP5C	X	2.082	2.082	0	%100
98	MP5C	Z	-3.607	-3.607	0	%100
99	MP4B	X	2.186	2.186	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
100	MP4B	Z	-3.787	-3.787	0	%100
101	MP3B	X	2.082	2.082	0	%100
102	MP3B	Z	-3.607	-3.607	0	%100
103	MP2B	Χ	2.186	2.186	0	%100
104	MP2B	Z	-3.787	-3.787	0	%100
105	MP1B	Χ	2.082	2.082	0	%100
106	MP1B	Z	-3.607	-3.607	0	%100
107	MP5B	X	2.082	2.082	0	%100
108	MP5B	Z	-3.607	-3.607	0	%100
109	OVP2	Χ	1.672	1.672	0	%100
110	OVP2	Z	-2.896	-2.896	0	%100
111	OVP1	Χ	1.672	1.672	0	%100
112	OVP1	Z	-2.896	-2.896	0	%100
113	M95A	Χ	1.955	1.955	0	%100
114	M95A	Z	-3.386	-3.386	0	%100
115	M96A	X	1.954	1.954	0	%100
116	M96A	Z	-3.385	-3.385	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	3.403	3.403	0	%100
2	M4	Z	-1.965	-1.965	0	%100
3	M5	Χ	1.298	1.298	0	%100
4	M5	Z	749	749	0	%100
5	M6	X	5.192	5.192	0	%100
6	M6	Z	-2.998	-2.998	0	%100
7	M7	X	1.298	1.298	0	%100
8	M7	Z	749	749	0	%100
9	M9	Χ	1.298	1.298	0	%100
10	M9	Z	749	749	0	%100
11	M10	Χ	5.192	5.192	0	%100
12	M10	Z	-2.998	-2.998	0	%100
13	M11	Χ	0	0	0	%100
14	M11	Z	0	0	0	%100
15	M13	Χ	1.298	1.298	0	%100
16	M13	Z	749	749	0	%100
17	M20	Χ	1.298	1.298	0	%100
18	M20	Z	749	749	0	%100
19	M21	Χ	1.298	1.298	0	%100
20	M21	Z	749	749	0	%100
21	M22	Χ	3.403	3.403	0	%100
22	M22	Z	-1.965	-1.965	0	%100
23	M24	Χ	5.192	5.192	0	%100
24	M24	Z	-2.998	-2.998	0	%100
25	M34	Χ	.891	.891	0	%100
26	M34	Z	514	514	0	%100
27	M36	Χ	1.129	1.129	0	%100
28	M36	Z	652	652	0	%100
29	M37	Χ	4.514	4.514	0	%100
30	M37	Z	-2.606	-2.606	0	%100
31	M38	Χ	1.128	1.128	0	%100
32	M38	Z	651	651	0	%100
33	M40	X	3.564	3.564	0	%100
34	M40	Z	-2.058	-2.058	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft.F		End Location[in,%]
35	M41	X	.891	.891	0	%100
36	M41	Z	514	514	0	%100
37	MP4A	X	3.787	3.787	0	%100
38	MP4A	Z	-2.186	-2.186	0	%100
39	MP3A	X	3.607	3.607	0	%100
40	MP3A	Z	-2.082	-2.082	0	%100
41	MP2A	X	3.787	3.787	0	%100
42	MP2A	Z	-2.186	-2.186	0	%100
43	MP1A	X	3.607	3.607	0	%100
44	MP1A	Z	-2.082	-2.082	0	%100
45	M103	X	.998	.998	0	%100
46	M103	Ž	576	576	0	%100
47	M107	X	3.998	3.998	0	%100
48	M107	Ž	-2.308	-2.308	0	%100
49	M154	X	1	1	0	%100
50	M154	Z	578	578	0	%100
51	M157	X	1.001	1.001	0	%100
52	M157	Z	578	578	0	%100
53	M162	X	.999	.999	0	%100
54	M162	Ž	577	577	0	%100
55	M165	X	3.998	3.998	0	%100
56	M165	Z	-2.308	-2.308	0	%100
57	M175	X	3.894	3.894	0	%100
58	M175	Z	-2.248	-2.248	0	%100
59	M176	X	3.894	3.894	0	%100
60	M176	Z	-2.248	-2.248	0	%100
61	M177	X	0	0	0	%100
62	M177	Z	0	0	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	0	0	0	%100
65	M179	X	3.894	3.894	0	%100
66	M179	Z	-2.248	-2.248	0	%100
67	M180	X	3.894	3.894	0	%100
68	M180	Z	-2.248	-2.248	0	%100
69	M183	X	1.298	1.298	0	%100
70	M183	Z	749	749	0	%100
71	M184	X	1.298	1.298	0	%100
72	M184	Z	749	749	0	%100
73	M188	X	5.192	5.192	0	%100
74	M188	Z	-2.998	-2.998	0	%100 %100
75	M189	X	5.192	5.192	0	%100
76	M189	Z	-2.998	-2.998	0	%100
77	M192	X	1.298	1.298	0	%100
78	M192	Z	749	749	0	%100
79	M193	X	1.298	1.298	0	%100 %100
80	M193	Z	749	749	0	%100 %100
81	M108	X	3.564	3.564	0	%100
82	M108	Ž	-2.058	-2.058	0	%100 %100
83	M109	X	.891	.891	0	%100
84	M109	Ž	514	514	0	%100 %100
85	M110	X	.891	.891	0	%100
86	M110	Z	514	514	0	%100 %100
87	MP5A	X	3.607	3.607	0	%100 %100
88	MP5A	Z	-2.082	-2.082	0	%100 %100
89	MP4C	X	3.787	3.787	0	%100 %100
90	MP4C	Ž	-2.186	-2.186	0	%100 %100
91	MP3C	X	3.607	3.607	0	%100 %100
_ J I	1411 00		3.007	5.007	<u> </u>	70100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:_

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
92	MP3C	Z	-2.082	-2.082	0	%100
93	MP2C	X	3.787	3.787	0	%100
94	MP2C	Z	-2.186	-2.186	0	%100
95	MP1C	Х	3.607	3.607	0	%100
96	MP1C	Z	-2.082	-2.082	0	%100
97	MP5C	X	3.607	3.607	0	%100
98	MP5C	Z	-2.082	-2.082	0	%100
99	MP4B	Χ	3.787	3.787	0	%100
100	MP4B	Z	-2.186	-2.186	0	%100
101	MP3B	X	3.607	3.607	0	%100
102	MP3B	Z	-2.082	-2.082	0	%100
103	MP2B	Χ	3.787	3.787	0	%100
104	MP2B	Z	-2.186	-2.186	0	%100
105	MP1B	Χ	3.607	3.607	0	%100
106	MP1B	Z	-2.082	-2.082	0	%100
107	MP5B	Х	3.607	3.607	0	%100
108	MP5B	Z	-2.082	-2.082	0	%100
109	OVP2	Х	2.896	2.896	0	%100
110	OVP2	Z	-1.672	-1.672	0	%100
111	OVP1	Χ	2.896	2.896	0	%100
112	OVP1	Z	-1.672	-1.672	0	%100
113	M95A	Х	1.129	1.129	0	%100
114	M95A	Z	652	652	0	%100
115	M96A	X	4.514	4.514	0	%100
116	M96A	Z	-2.606	-2.606	0	%100
117	M97A	X	1.128	1.128	0	%100
118	M97A	Z	651	651	0	%100

Member Distributed Loads (BLC 56: Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	5.24	5.24	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	0	0	0	%100
5	M6	X	4.497	4.497	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	4.497	4.497	0	%100
8	M7	Z	0	0	0	%100
9	M9	Χ	4.497	4.497	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	4.497	4.497	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	1.31	1.31	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	0	0	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	0	0	0	%100
19	M21	X	4.497	4.497	0	%100
20	M21	Z	0	0	0	%100
21	M22	X	1.31	1.31	0	%100
22	M22	Z	0	0	0	%100
23	M24	Χ	4.497	4.497	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
27	M36	X	0	0	0	%100
28	M36	Z	0	0	0	%100
29	M37	X	3.91	3.91	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	3.909	3.909	0	%100
32	M38	Z	0	0	0	%100
33	M40	X	3.087	3.087	0	%100
34	M40	Z	0	0	0	%100
35	M41	X	3.087	3.087	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	4.373	4.373	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	4.164	4.164	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	4.373	4.373	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	4.164	4.164	0	%100
44	MP1A	Z	0	0	0	%100
45	M103	X	3.461	3.461	0	%100
46	M103	Z	0	0	0	%100
47	M107	X	3.461	3.461	0	%100
48	M107	Z	0	0.401	0	%100 %100
49	M154	X	3.463	3.463	0	%100 %100
50	M154	Z	0	0	0	%100 %100
51	M157	X	0	0	0	%100 %100
52	M157	Z	0	0	0	%100 %100
53	M162	X	0	0	0	%100 %100
54	M162	Z	0	0	0	%100 %100
55	M165	X	3.464	3.464	0	%100 %100
56	M165	Z	0	0	0	%100 %100
57	M175	X	5.995	5.995	0	%100 %100
58	M175	Z	0	0.995	0	%100 %100
59	M176	X	5.995	5.995	0	%100 %100
60	M176	Z	0	0.995	0	%100 %100
61	M177	X	1.499	1.499	0	
62	M177	Z	0	1.499	0	%100 %100
			-			
63	M178	Z	1.499	1.499	0	%100
64	M178		0	0	0	%100
65	M179	X	1.499	1.499	0	%100
66	M179	Z	1 400	1 400	0	%100 %100
67	M180	X	1.499	1.499	0	%100 %100
68	M180	Z	0	0	0	%100
69	M183	X	0	0	0	%100
70	M183	Z	0	0	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	0	0	0	%100
73	M188	X	4.497	4.497	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	4.497	4.497	0	%100
76	M189	Z	0	0	0	%100
77	M192	X	4.497	4.497	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	4.497	4.497	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	3.087	3.087	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	3.087	3.087	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
84	M109	Z	0	0	0	%100
85	M110	Χ	0	0	0	%100
86	M110	Z	0	0	0	%100
87	MP5A	Х	4.164	4.164	0	%100
88	MP5A	Z	0	0	0	%100
89	MP4C	Х	4.373	4.373	0	%100
90	MP4C	Z	0	0	0	%100
91	MP3C	Χ	4.164	4.164	0	%100
92	MP3C	Z	0	0	0	%100
93	MP2C	Χ	4.373	4.373	0	%100
94	MP2C	Z	0	0	0	%100
95	MP1C	X	4.164	4.164	0	%100
96	MP1C	Z	0	0	0	%100
97	MP5C	Χ	4.164	4.164	0	%100
98	MP5C	Z	0	0	0	%100
99	MP4B	Χ	4.373	4.373	0	%100
100	MP4B	Z	0	0	0	%100
101	MP3B	Χ	4.164	4.164	0	%100
102	MP3B	Z	0	0	0	%100
103	MP2B	Χ	4.373	4.373	0	%100
104	MP2B	Z	0	0	0	%100
105	MP1B	Χ	4.164	4.164	0	%100
106	MP1B	Z	0	0	0	%100
107	MP5B	Χ	4.164	4.164	0	%100
108	MP5B	Z	0	0	0	%100
109	OVP2	Χ	3.344	3.344	0	%100
110	OVP2	Z	0	0	0	%100
111	OVP1	Χ	3.344	3.344	0	%100
112	OVP1	Z	0	0	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	0	0	0	%100
115	M96A	X	3.91	3.91	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	3.909	3.909	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	3.403	3.403	0	%100
2	M4	Z	1.965	1.965	0	%100
3	M5	X	1.298	1.298	0	%100
4	M5	Z	.749	.749	0	%100
5	M6	Χ	1.298	1.298	0	%100
6	M6	Z	.749	.749	0	%100
7	M7	X	5.192	5.192	0	%100
8	M7	Z	2.998	2.998	0	%100
9	M9	Χ	5.192	5.192	0	%100
10	M9	Z	2.998	2.998	0	%100
11	M10	X	1.298	1.298	0	%100
12	M10	Z	.749	.749	0	%100
13	M11	X	3.403	3.403	0	%100
14	M11	Z	1.965	1.965	0	%100
15	M13	Χ	1.298	1.298	0	%100
16	M13	Z	.749	.749	0	%100
17	M20	X	1.298	1.298	0	%100
18	M20	Z	.749	.749	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
19	M21	X	5.192	5.192	0	%100
20	M21	Z	2.998	2.998	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	1.298	1.298	0	%100
24	M24	Z	.749	.749	0	%100
25	M34	X	.891	.891	0	%100
26	M34	Z	.514	.514	0	%100
27	M36	X	1.128	1.128	0	%100
28	M36	Z	.651	.651	0	%100
29	M37	X	1.129	1.129	0	%100
30	M37	Z	.652	.652	0	%100
31	M38	X	4.514	4.514	0	%100
32	M38	Z	2.606	2.606	0	%100
33	M40	X	.891	.891	0	%100
34	M40	Z	.514	.514	0	%100
35	M41	X	3.564	3.564	0	%100
36	M41	Z	2.058	2.058	0	%100
37	MP4A	X	3.787	3.787	0	%100
38	MP4A	Ž	2.186	2.186	0	%100
39	MP3A	X	3.607	3.607	0	%100
40	MP3A	Z	2.082	2.082	0	%100
41	MP2A	X	3.787	3.787	0	%100
42	MP2A	Z	2.186	2.186	0	%100
43	MP1A	X	3.607	3.607	0	%100 %100
44	MP1A	Z	2.082	2.082	0	%100 %100
45	M103	X	3.998	3.998	0	%100 %100
46	M103	Z	2.308	2.308	0	%100 %100
47	M107	X	.999	.999	0	%100 %100
48	M107	Z	.577	.577	0	%100 %100
49	M154	X	3.998	3.998	0	%100 %100
50	M154	Z	2.308	2.308	0	%100 %100
51	M157	X	.998	.998	0	%100 %100
52	M157	Z	.576	.576	0	%100 %100
53	M162	X	.576	.576	0	%100 %100
54	M162	Z	.578	.578	0	%100 %100
	M165	X	1.001	1.001		%100 %100
55		Z	.578		0	
56 57	M165 M175	X		.578	0	%100 %100
58		Z	3.894	3.894	0	%100
59	M175 M176	 	2.248 3.894	2.248 3.894	0	%100 %100
60	M176	Z	2.248	2.248	0	%100 %100
61 62	M177 M177	Z	3.894 2.248	3.894 2.248	0	%100 %100
		X				
63	M178	Z	3.894	3.894	0	%100 %100
64	M178		2.248	2.248	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	1.298	1.298	0	%100
70	M183	Z	.749	.749	0	%100
71	M184	X	1.298	1.298	0	%100
72	M184	Z	.749	.749	0	%100
73	M188	X	1.298	1.298	0	%100
74	M188	Z	.749	.749	0	%100
75	M189	X	1.298	1.298	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
76	M189	Z	.749	.749	0	%100
77	M192	Χ	5.192	5.192	0	%100
78	M192	Z	2.998	2.998	0	%100
79	M193	X	5.192	5.192	0	%100
80	M193	Z	2.998	2.998	0	%100
81	M108	X	.891	.891	0	%100
82	M108	Z	.514	.514	0	%100
83	M109	Χ	3.564	3.564	0	%100
84	M109	Z	2.058	2.058	0	%100
85	M110	X	.891	.891	0	%100
86	M110	Z	.514	.514	0	%100
87	MP5A	X	3.607	3.607	0	%100
88	MP5A	Z	2.082	2.082	0	%100
89	MP4C	X	3.787	3.787	0	%100
90	MP4C	Z	2.186	2.186	0	%100
91	MP3C	X	3.607	3.607	0	%100
92	MP3C	Z	2.082	2.082	0	%100
93	MP2C	X	3.787	3.787	0	%100
94	MP2C	Z	2.186	2.186	0	%100
95	MP1C	X	3.607	3.607	0	%100
96	MP1C	Z	2.082	2.082	0	%100
97	MP5C	X	3.607	3.607	0	%100
98	MP5C	Z	2.082	2.082	0	%100
99	MP4B	Χ	3.787	3.787	0	%100
100	MP4B	Z	2.186	2.186	0	%100
101	MP3B	Χ	3.607	3.607	0	%100
102	MP3B	Z	2.082	2.082	0	%100
103	MP2B	Χ	3.787	3.787	0	%100
104	MP2B	Z	2.186	2.186	0	%100
105	MP1B	Χ	3.607	3.607	0	%100
106	MP1B	Z	2.082	2.082	0	%100
107	MP5B	Χ	3.607	3.607	0	%100
108	MP5B	Z	2.082	2.082	0	%100
109	OVP2	Χ	2.896	2.896	0	%100
110	OVP2	Z	1.672	1.672	0	%100
111	OVP1	Χ	2.896	2.896	0	%100
112	OVP1	Z	1.672	1.672	0	%100
113	M95A	X	1.128	1.128	0	%100
114	M95A	Z	.651	.651	0	%100
115	M96A	X	1.129	1.129	0	%100
116	M96A	Z	.652	.652	0	%100
117	M97A	X	4.514	4.514	0	%100
118	M97A	Z	2.606	2.606	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	.655	.655	0	%100
2	M4	Z	1.134	1.134	0	%100
3	M5	X	2.248	2.248	0	%100
4	M5	Z	3.894	3.894	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	0	0	0	%100
7	M7	Χ	2.248	2.248	0	%100
8	M7	Z	3.894	3.894	0	%100
9	M9	X	2.248	2.248	0	%100
10	M9	Z	3.894	3.894	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
11	M10	X	0	0	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	2.62	2.62	0	%100
14	M11	Z	4.538	4.538	0	%100
15	M13	X	2.248	2.248	0	%100
16	M13	Z	3.894	3.894	0	%100
17	M20	X	2.248	2.248	0	%100
18	M20	Z	3.894	3.894	0	%100
19	M21	X	2.248	2.248	0	%100
20	M21	Z	3.894	3.894	0	%100
21	M22	X	.655	.655	0	%100
22	M22	Z	1.134	1.134	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	0	0	0	%100 %100
25	M34	X	1.543	1.543	0	%100 %100
26	M34	Z	2.673	2.673	0	%100 %100
27	M36	X	1.954	1.954	0	%100 %100
28	M36	Z	3.385	3.385	0	%100 %100
29	M37	X	0	0	0	%100 %100
30	M37	Z	0	0	0	%100 %100
31	M38	X	1.955	1.955	0	%100 %100
32	M38	Z	3.386	3.386	0	%100 %100
33	M40	X			0	%100 %100
34	M40	Z	0	0	0	%100 %100
35	M41	X	1.543	1.543	0	%100 %100
36	N41	Z	2.673	2.673	0	%100
37	MP4A	X	2.186	2.186	0	%100
38	MP4A	Z	3.787	3.787	0	%100
39	MP3A	X	2.082	2.082	0	%100
40	MP3A	Z	3.607	3.607	0	%100
41	MP2A	X	2.186	2.186	0	%100
42	MP2A	Z	3.787	3.787	0	%100
43	MP1A	X	2.082	2.082	0	%100
44	MP1A	Z	3.607	3.607	0	%100
45	M103	X	1.732	1.732	0	%100
46	M103	Z	3	3	0	%100
47	M107	X	0	0	0	%100
48	M107	Z	0	0	0	%100
49	M154	X	1.731	1.731	0	%100
50	M154	Z	2.998	2.998	0	%100
51	M157	X	1.731	1.731	0	%100
52	M157	Z	2.997	2.997	0	%100
53	M162	X	1.732	1.732	0	%100
54	M162	Z	2.999	2.999	0	%100
55	M165	X	0	0	0	%100
56	M165	Z	0	0	0	%100
57	M175	X	.749	.749	0	%100
58	M175	Z	1.298	1.298	0	%100
59	M176	X	.749	.749	0	%100
60	M176	Z	1.298	1.298	0	%100
61	M177	X	2.998	2.998	0	%100
62	M177	Z	5.192	5.192	0	%100
63	M178	X	2.998	2.998	0	%100
64	M178	Z	5.192	5.192	0	%100
65	M179	X	.749	.749	0	%100
66	M179	Z	1.298	1.298	0	%100
67	M180	X	.749	.749	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitudellh/ft	.End Magnitude[lb/ft,F	Start Location(in 9/1	End Location[in,%]
68	M180	Z	1.298	1.298	O	%100
69	M183	X	2.248	2.248	0	%100 %100
70	M183	Z	3.894	3.894	0	%100
71	M184	X	2.248	2.248	0	%100
72	M184	Z	3.894	3.894	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	0	0	0	%100
75	M189	Χ	0	0	0	%100
76	M189	Z	0	0	0	%100
77	M192	Χ	2.248	2.248	0	%100
78	M192	Z	3.894	3.894	0	%100
79	M193	Χ	2.248	2.248	0	%100
80	M193	Z	3.894	3.894	0	%100
81	M108	Χ	0	0	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	1.543	1.543	0	%100
84	M109	Z	2.673	2.673	0	%100
85	M110	X	1.543	1.543	0	%100
86	M110	Z	2.673	2.673	0	%100
87	MP5A	X	2.082	2.082	0	%100
88	MP5A	Z	3.607	3.607	0	%100
89	MP4C	X	2.186	2.186	0	%100
90	MP4C	Z	3.787	3.787	0	%100
91	MP3C	X	2.082	2.082	0	%100
92	MP3C	Z	3.607	3.607	0	%100
93	MP2C	X	2.186	2.186	0	%100
94	MP2C	Z	3.787	3.787	0	%100
95	MP1C	X	2.082	2.082	0	%100
96	MP1C	Z	3.607	3.607	0	%100
97	MP5C	X Z	2.082	2.082	0	%100
98	MP5C		3.607	3.607		%100 %100
100	MP4B MP4B	X Z	2.186 3.787	2.186 3.787	0	%100 %100
101	MP3B	X	2.082	2.082	0	%100 %100
102	MP3B	Ž	3.607	3.607	0	%100 %100
103	MP2B	X	2.186	2.186	0	%100 %100
104	MP2B	Z	3.787	3.787	0	%100 %100
105	MP1B	X	2.082	2.082	0	%100
106	MP1B	Z	3.607	3.607	0	%100 %100
107	MP5B	X	2.082	2.082	0	%100
108	MP5B	Ž	3.607	3.607	0	%100
109	OVP2	X	1.672	1.672	0	%100
110	OVP2	Z	2.896	2.896	0	%100
111	OVP1	X	1.672	1.672	0	%100
112	OVP1	Z	2.896	2.896	0	%100
113	M95A	X	1.954	1.954	0	%100
114	M95A	Z	3.385	3.385	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	Χ	1.955	1.955	0	%100
118	M97A	Z	3.386	3.386	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
3	M5	X	0	0	0	%100
4	M5	Z	5.995	5.995	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	1.499	1.499	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	1.499	1.499	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	1.499	1.499	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	1.499	1.499	0	%100
13	M11	Χ	0	0	0	%100
14	M11	Z	3.93	3.93	0	%100
15	M13	Χ	0	0	0	%100
16	M13	Z	5.995	5.995	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	5.995	5.995	0	%100
19	M21	X	0	0	0	%100
20	M21	Z	1.499	1.499	0	%100
21	M22	X	0	0	0	%100
22	M22	Ž	3.93	3.93	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	1.499	1.499	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	4.116	4.116	0	%100
27	M36	X	0	0	0	%100 %100
28	M36	Z	5.213	5.213	0	%100 %100
29	M37	X	0	0	0	%100 %100
30	M37	Z	1.303	1.303	0	%100 %100
31	M38	X	0	0	0	%100 %100
32	M38	Z	1.304	1.304	0	%100 %100
33	M40	X	0	0	0	%100 %100
34	M40	Z	1.029	1.029	0	%100 %100
35	M41	X	0	0	0	%100 %100
36	M41	Z	1.029	1.029	0	%100 %100
37	MP4A	X	0	0	0	%100 %100
	MP4A	Z	-	4.373	0	%100
38			4.373			
39	MP3A	Z	0	0	0	%100
40	MP3A		4.164	4.164	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	4.373	4.373	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	4.164	4.164	0	%100
45	M103	X	0	0	0	%100
46	M103	Z	1.155	1.155	0	%100
47	M107	X	0	0	0	%100
48	M107	Z	1.155	1.155	0	%100
49	M154	X	0	0	0	%100
50	M154	Z	1.153	1.153	0	%100
51	M157	X	0	0	0	%100
52	M157	Z	4.617	4.617	0	%100
53	M162	X	0	0	0	%100
54	M162	Z	4.616	4.616	0	%100
55	M165	X	0	0	0	%100
56	M165	Z	1.153	1.153	0	%100
57	M175	X	0	0	0	%100
58	M175	Z	0	0	0	%100
59	M176	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
60	M176	Z	0	0	0	%100
61	M177	X	0	0	0	%100
62	M177	Z	4.497	4.497	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	4.497	4.497	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	4.497	4.497	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	4.497	4.497	0	%100
69	M183	X	0	0	0	%100
70	M183	Ž	5.995	5.995	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	5.995	5.995	0	%100
73	M188	X	0	0	0	%100 %100
74	M188	Z	1.499	1.499	0	%100 %100
75	M189	X	0	0	0	%100
76	M189	Z	1.499	1.499	0	%100 %100
77	M192	X	0	0	0	%100 %100
78	M192	Z	1.499	1.499	0	%100 %100
79	M193	X	0	0	0	%100 %100
80	M193	Z	1.499	1.499	0	%100 %100
81	M108	X	0	0		%100 %100
82	M108	Z	1.029	1.029	0	%100 %100
83	M109	X	0	0	0	%100 %100
84	M109	Z	1.029	1.029	0	%100 %100
		X	0		0	
85	M110	Z	<u> </u>	0		%100
86	M110		4.116	4.116	0	%100
87	MP5A	X Z	0	0	0	%100
88	MP5A		4.164	4.164	0	%100
89	MP4C	X	0	0	0	%100
90	MP4C	Z	4.373	4.373	0	%100
91	MP3C	Z	0	0	0	%100
92	MP3C		4.164	4.164	0	%100
93	MP2C	X	0	0	0	%100
94	MP2C	Z	4.373	4.373	0	%100
95	MP1C	X	0	0	0	%100
96	MP1C	Z	4.164	4.164	0	%100
97	MP5C	X	0	0	0	%100
98	MP5C	Z	4.164	4.164	0	%100
99	MP4B	X	0	0	0	%100
100	MP4B	Z	4.373	4.373	0	%100
101	MP3B	X	0	0	0	%100
102	MP3B	Z	4.164	4.164	0	%100
103	MP2B	X	0	0	0	%100
104	MP2B	Z	4.373	4.373	0	%100
105	MP1B	X	0	0	0	%100
106	MP1B	Z	4.164	4.164	0	%100
107	MP5B	X	0	0	0	%100
108	MP5B	Z	4.164	4.164	0	%100
109	OVP2	X	0	0	0	%100
110	OVP2	Z	3.344	3.344	0	%100
111	OVP1	X	0	0	0	%100
112	OVP1	Z	3.344	3.344	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	5.213	5.213	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	1.303	1.303	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 59: Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
117	M97A	X	0	0	0	%100
118	M97A	Z	1.304	1.304	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	655	655	0	%100
2	M4	Z	1.134	1.134	0	%100
3	M5	X	-2.248	-2.248	0	%100
4	M5	Z	3.894	3.894	0	%100
5	M6	X	-2.248	-2.248	0	%100
6	M6	Z	3.894	3.894	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	-2.248	-2.248	0	%100
12	M10	Z	3.894	3.894	0	%100
13	M11	X	655	655	0	%100
14	M11	Z	1.134	1.134	0	%100
15	M13	X	-2.248	-2.248	0	%100
16	M13	Z	3.894	3.894	0	%100
17	M20	X	-2.248	-2.248	0	%100
18	M20	Z	3.894	3.894	0	%100
19	M21	X	0	0	0	%100
20	M21	Z	0	0	0	%100
21	M22	X	-2.62	-2.62	0	%100
22	M22	Z	4.538	4.538	0	%100
23	M24	X	-2.248	-2.248	0	%100
24	M24	Z	3.894	3.894	0	%100
25	M34	X	-1.543	-1.543	0	%100
26	M34	Z	2.673	2.673	0	%100
27	M36	X	-1.955	-1.955	0	%100
28	M36	Z	3.386	3.386	0	%100
29	M37	X	-1.954	-1.954	0	%100
30	M37	Z	3.385	3.385	0	%100
31	M38	X	0	0	0	%100
32	M38	Z	0	0	0	%100
33	M40	X	-1.543	-1.543	0	%100
34	M40	Z	2.673	2.673	0	%100
35	M41	X	0	0	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	-2.186	-2.186	0	%100
38	MP4A	Z	3.787	3.787	0	%100
39	MP3A	X	-2.082	-2.082	0	%100
40	MP3A	Z	3.607	3.607	0	%100
41	MP2A	X	-2.186	-2.186	0	%100
42	MP2A	Z	3.787	3.787	0	%100
43	MP1A	X	-2.082	-2.082	0	%100
44	MP1A	Z	3.607	3.607	0	%100
45	M103	X	0	0	0	%100
46	M103	Z	0	0	0	%100
47	M107	X	-1.732	-1.732	0	%100
48	M107	Z	2.999	2.999	0	%100
49	M154	X	0	0	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	-1.732	-1.732	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
52	M157	Z	3	3	0	%100
53	M162	X	-1.731	-1.731	0	%100
54	M162	Z	2.998	2.998	0	%100
55	M165	X	-1.731	-1.731	0	%100
56	M165	Z	2.997	2.997	0	%100
57	M175	X	749	749	0	%100
58	M175	Z	1.298	1.298	0	%100
59	M176	X	749	749	0	%100
60	M176	Ž	1.298	1.298	0	%100
61	M177	X	749	749	0	%100
62	M177	Z	1.298	1.298	0	%100 %100
63	M178	X	749	749	0	%100 %100
64	M178	Z	1.298	1.298	0	%100 %100
65	M179	X	-2.998	-2.998	0	%100 %100
66	M179	Z	5.192	5.192	0	%100 %100
67	M180	X	-2.998	-2.998	0	%100 %100
		Z				
68	M180		5.192	5.192	0	%100
69	M183	X	-2.248	-2.248	0	%100
70	M183	Z	3.894	3.894	0	%100
71	M184	X	-2.248	-2.248	0	%100
72	M184	Z	3.894	3.894	0	%100
73	M188	X	-2.248	-2.248	0	%100
74	M188	Z	3.894	3.894	0	%100
75	M189	X	-2.248	-2.248	0	%100
76	M189	Z	3.894	3.894	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	-1.543	-1.543	0	%100
82	M108	Z	2.673	2.673	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	-1.543	-1.543	0	%100
86	M110	Z	2.673	2.673	0	%100
87	MP5A	X	-2.082	-2.082	0	%100
88	MP5A	Z	3.607	3.607	0	%100
89	MP4C	X	-2.186	-2.186	0	%100
90	MP4C	Z	3.787	3.787	0	%100 %100
91	MP3C	X	-2.082	-2.082	0	%100 %100
92	MP3C	Z	3.607	3.607	0	%100 %100
93	MP2C	X	-2.186	-2.186	0	%100 %100
94	MP2C	Z	3.787	3.787	0	%100 %100
95	MP1C	X	-2.082	-2.082	0	%100 %100
96	MP1C	Z	3.607	3.607	0	%100 %100
97	MP5C	X	-2.082	-2.082		%100 %100
					0	
98	MP5C	Z	3.607	3.607	0	%100 %100
99	MP4B	X	-2.186	-2.186	0	%100
100	MP4B	Z	3.787	3.787	0	%100
101	MP3B	X	-2.082	-2.082	0	%100
102	MP3B	Z	3.607	3.607	0	%100
103	MP2B	X	-2.186	-2.186	0	%100
104	MP2B	Z	3.787	3.787	0	%100
105	MP1B	X	-2.082	-2.082	0	%100
106	MP1B	Z	3.607	3.607	0	%100
107	MP5B	X	-2.082	-2.082	0	%100
108	MP5B	Z	3.607	3.607	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
109	OVP2	X	-1.672	-1.672	0	%100
110	OVP2	Z	2.896	2.896	0	%100
111	OVP1	X	-1.672	-1.672	0	%100
112	OVP1	Z	2.896	2.896	0	%100
113	M95A	X	-1.955	-1.955	0	%100
114	M95A	Z	3.386	3.386	0	%100
115	M96A	X	-1.954	-1.954	0	%100
116	M96A	Z	3.385	3.385	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	-3.403	-3.403	0	%100
2	M4	Z	1.965	1.965	0	%100
3	M5	Χ	-1.298	-1.298	0	%100
4	M5	Z	.749	.749	0	%100
5	M6	Χ	-5.192	-5.192	0	%100
6	M6	Z	2.998	2.998	0	%100
7	M7	X	-1.298	-1.298	0	%100
8	M7	Z	.749	.749	0	%100
9	M9	Χ	-1.298	-1.298	0	%100
10	M9	Z	.749	.749	0	%100
11	M10	Χ	-5.192	-5.192	0	%100
12	M10	Z	2.998	2.998	0	%100
13	M11	Χ	0	0	0	%100
14	M11	Z	0	0	0	%100
15	M13	Х	-1.298	-1.298	0	%100
16	M13	Z	.749	.749	0	%100
17	M20	Χ	-1.298	-1.298	0	%100
18	M20	Z	.749	.749	0	%100
19	M21	Χ	-1.298	-1.298	0	%100
20	M21	Z	.749	.749	0	%100
21	M22	Χ	-3.403	-3.403	0	%100
22	M22	Z	1.965	1.965	0	%100
23	M24	X	-5.192	-5.192	0	%100
24	M24	Z	2.998	2.998	0	%100
25	M34	Χ	891	891	0	%100
26	M34	Z	.514	.514	0	%100
27	M36	X	-1.129	-1.129	0	%100
28	M36	Z	.652	.652	0	%100
29	M37	Χ	-4.514	-4.514	0	%100
30	M37	Z	2.606	2.606	0	%100
31	M38	Χ	-1.128	-1.128	0	%100
32	M38	Z	.651	.651	0	%100
33	M40	Χ	-3.564	-3.564	0	%100
34	M40	Z	2.058	2.058	0	%100
35	M41	Χ	891	891	0	%100
36	M41	Z	.514	.514	0	%100
37	MP4A	Χ	-3.787	-3.787	0	%100
38	MP4A	Z	2.186	2.186	0	%100
39	MP3A	Χ	-3.607	-3.607	0	%100
40	MP3A	Z	2.082	2.082	0	%100
41	MP2A	Χ	-3.787	-3.787	0	%100
42	MP2A	Z	2.186	2.186	0	%100
43	MP1A	Χ	-3.607	-3.607	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
44	MP1A	Z	2.082	2.082	0	%100
45	M103	X	998	998	0	%100
46	M103	Z	.576	.576	0	%100
47	M107	X	-3.998	-3.998	0	%100
48	M107	Z	2.308	2.308	0	%100
49	M154	Х	-1	-1	0	%100
50	M154	Z	.578	.578	0	%100
51	M157	X	-1.001	-1.001	0	%100
52	M157	Ž	.578	.578	0	%100
53	M162	X	999	999	0	%100
54	M162	Z	.577	.577	0	%100 %100
55	M165	X	-3.998	-3.998	0	%100 %100
56	M165	Z	2.308	2.308	0	%100 %100
57	M175	X	-3.894	-3.894	0	%100 %100
58	M175	Z	2.248	2.248	0	%100 %100
59	M176	X	-3.894	-3.894	0	%100
60	M176	Z	2.248	2.248	0	%100
61	M177	X	0	0	0	%100
62	M177	Z	0	0	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	0	0	0	%100
65	M179	X	-3.894	-3.894	0	%100
66	M179	Z	2.248	2.248	0	%100
67	M180	X	-3.894	-3.894	0	%100
68	M180	Z	2.248	2.248	0	%100
69	M183	X	-1.298	-1.298	0	%100
70	M183	Z	.749	.749	0	%100
71	M184	X	-1.298	-1.298	0	%100
72	M184	Z	.749	.749	0	%100
73	M188	X	-5.192	-5.192	0	%100
74	M188	Z	2.998	2.998	0	%100
75	M189	Х	-5.192	-5.192	0	%100
76	M189	Z	2.998	2.998	0	%100
77	M192	X	-1.298	-1.298	0	%100
78	M192	Z	.749	.749	0	%100
79	M193	X	-1.298	-1.298	0	%100
80	M193	Z	.749	.749	0	%100
81	M108	X	-3.564	-3.564	0	%100
82	M108	Z	2.058	2.058	0	%100
83	M109	X	891	891	0	%100 %100
84	M109	Z	.514	.514	0	%100 %100
85	M110	X	891	891	0	%100 %100
86	M110	Z	.514	.514	0	%100 %100
87	MP5A	X	-3.607	-3.607	0	%100 %100
88	MP5A	Z	2.082	2.082	0	%100 %100
89	MP4C	X	-3.787	-3.787		%100 %100
					0	
90	MP4C	Z	2.186	2.186	0	%100 %100
91	MP3C	X	-3.607	-3.607	0	%100
92	MP3C	Z	2.082	2.082	0	%100
93	MP2C	X	-3.787	-3.787	0	%100
94	MP2C	Z	2.186	2.186	0	%100
95	MP1C	X	-3.607	-3.607	0	%100
96	MP1C	Z	2.082	2.082	0	%100
97	MP5C	X	-3.607	-3.607	0	%100
98	MP5C	Z	2.082	2.082	0	%100
99	MP4B	X	-3.787	-3.787	0	%100
100	MP4B	Z	2.186	2.186	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
101	MP3B	X	-3.607	-3.607	0	%100
102	MP3B	Z	2.082	2.082	0	%100
103	MP2B	X	-3.787	-3.787	0	%100
104	MP2B	Z	2.186	2.186	0	%100
105	MP1B	X	-3.607	-3.607	0	%100
106	MP1B	Z	2.082	2.082	0	%100
107	MP5B	X	-3.607	-3.607	0	%100
108	MP5B	Z	2.082	2.082	0	%100
109	OVP2	X	-2.896	-2.896	0	%100
110	OVP2	Z	1.672	1.672	0	%100
111	OVP1	Χ	-2.896	-2.896	0	%100
112	OVP1	Z	1.672	1.672	0	%100
113	M95A	X	-1.129	-1.129	0	%100
114	M95A	Z	.652	.652	0	%100
115	M96A	Χ	-4.514	-4.514	0	%100
116	M96A	Z	2.606	2.606	0	%100
117	M97A	Χ	-1.128	-1.128	0	%100
118	M97A	Z	.651	.651	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,		. Start Location[in,%]	End Location[in,%]
1	M4	X	-5.24	-5.24	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	0	0	0	%100
5	M6	X	-4.497	-4.497	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	-4.497	-4.497	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	-4.497	-4.497	0	%100
10	M9	Z	0	0	0	%100
11	M10	Χ	-4.497	-4.497	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	-1.31	-1.31	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	0	0	0	%100
17	M20	Χ	0	0	0	%100
18	M20	Z	0	0	0	%100
19	M21	X	-4.497	-4.497	0	%100
20	M21	Z	0	0	0	%100
21	M22	Χ	-1.31	-1.31	0	%100
22	M22	Z	0	0	0	%100
23	M24	Χ	-4.497	-4.497	0	%100
24	M24	Z	0	0	0	%100
25	M34	Χ	0	0	0	%100
26	M34	Z	0	0	0	%100
27	M36	Χ	0	0	0	%100
28	M36	Z	0	0	0	%100
29	M37	X	-3.91	-3.91	0	%100
30	M37	Z	0	0	0	%100
31	M38	Χ	-3.909	-3.909	0	%100
32	M38	Z	0	0	0	%100
33	M40	Χ	-3.087	-3.087	0	%100
34	M40	Z	0	0	0	%100
35	M41	X	-3.087	-3.087	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
36	M41	Z	0	0	0	%100
37	MP4A	X	-4.373	-4.373	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	-4.164	-4.164	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	-4.373	-4.373	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	-4.164	-4.164	0	%100
44	MP1A	Z	0	0	0	%100
45	M103	X	-3.461	-3.461	0	%100
46	M103	Ž	0	0	0	%100
47	M107	X	-3.461	-3.461	0	%100
48	M107	Z	0	0.401	0	%100
49	M154	X	-3.463	-3.463	0	%100
50	M154	Z	0	0	0	%100 %100
51	M157	X	0	0	0	%100
52	M157	Z	0	0	0	%100 %100
53	M162	X	0	0	0	%100 %100
54	M162	Z	0	0	0	%100 %100
55	M165	X	-3.464	-3.464	0	%100 %100
56	M165	Z	-3.404	-3.404	0	%100 %100
57	M175	X	-5.995	-5.995	0	%100 %100
58	M175	Z	-5.995	-5.995	0	%100 %100
59	M176	X	-5.995	-5.995	0	%100 %100
60	M176	Z	-5.995	-5.995	0	%100 %100
61	M177	X	-1.499	-1.499		%100 %100
62	M177	Z			0	
			1 400	0	0	%100
63	M178	X Z	-1.499	-1.499	0	%100
64	M178		0	0	0	%100
65	M179	X	-1.499	-1.499	0	%100
66	M179	Z	1.400	0	0	%100
67	M180	X	-1.499	-1.499	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	0	0	0	%100
70	M183	Z	0	0	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	0	0	0	%100
73	M188	X	-4.497	-4.497	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	-4.497	-4.497	0	%100
76	M189	Z	0	0	0	%100
77	M192	X	-4.497	-4.497	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	-4.497	-4.497	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	-3.087	-3.087	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	-3.087	-3.087	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	0	0	0	%100
87	MP5A	X	-4.164	-4.164	0	%100
88	MP5A	Z	0	0	0	%100
89	MP4C	X	-4.373	-4.373	0	%100
90	MP4C	Z	0	0	0	%100
91	MP3C	X	-4.164	-4.164	0	%100
92	MP3C	Z	0	0	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
93	MP2C	X	-4.373	-4.373	0	%100
94	MP2C	Z	0	0	0	%100
95	MP1C	Χ	-4.164	-4.164	0	%100
96	MP1C	Z	0	0	0	%100
97	MP5C	X	-4.164	-4.164	0	%100
98	MP5C	Z	0	0	0	%100
99	MP4B	X	-4.373	-4.373	0	%100
100	MP4B	Z	0	0	0	%100
101	MP3B	X	-4.164	-4.164	0	%100
102	MP3B	Z	0	0	0	%100
103	MP2B	Χ	-4.373	-4.373	0	%100
104	MP2B	Z	0	0	0	%100
105	MP1B	Χ	-4.164	-4.164	0	%100
106	MP1B	Z	0	0	0	%100
107	MP5B	X	-4.164	-4.164	0	%100
108	MP5B	Z	0	0	0	%100
109	OVP2	X	-3.344	-3.344	0	%100
110	OVP2	Z	0	0	0	%100
111	OVP1	X	-3.344	-3.344	0	%100
112	OVP1	Z	0	0	0	%100
113	M95A	Χ	0	0	0	%100
114	M95A	Z	0	0	0	%100
115	M96A	X	-3.91	-3.91	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	Χ	-3.909	-3.909	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	-3.403	-3.403	0	%100
2	M4	Z	-1.965	-1.965	0	%100
3	M5	Χ	-1.298	-1.298	0	%100
4	M5	Z	749	749	0	%100
5	M6	Χ	-1.298	-1.298	0	%100
6	M6	Z	749	749	0	%100
7	M7	Χ	-5.192	-5.192	0	%100
8	M7	Z	-2.998	-2.998	0	%100
9	M9	X	-5.192	-5.192	0	%100
10	M9	Z	-2.998	-2.998	0	%100
11	M10	Χ	-1.298	-1.298	0	%100
12	M10	Z	749	749	0	%100
13	M11	Χ	-3.403	-3.403	0	%100
14	M11	Z	-1.965	-1.965	0	%100
15	M13	Χ	-1.298	-1.298	0	%100
16	M13	Z	749	749	0	%100
17	M20	Χ	-1.298	-1.298	0	%100
18	M20	Z	749	749	0	%100
19	M21	X	-5.192	-5.192	0	%100
20	M21	Z	-2.998	-2.998	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	0	0	0	%100
23	M24	Χ	-1.298	-1.298	0	%100
24	M24	Z	749	749	0	%100
25	M34	Χ	891	891	0	%100
26	M34	Z	514	514	0	%100
27	M36	X	-1.128	-1.128	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
28	M36	Z	651	651	0	%100
29	M37	X	-1.129	-1.129	0	%100
30	M37	Z	652	652	0	%100
31	M38	X	-4.514	-4.514	0	%100
32	M38	Z	-2.606	-2.606	0	%100
33	M40	X	891	891	0	%100
34	M40	Z	514	514	0	%100
35	M41	X	-3.564	-3.564	0	%100
36	M41	Ž	-2.058	-2.058	0	%100
37	MP4A	X	-3.787	-3.787	0	%100
38	MP4A	Z	-2.186	-2.186	0	%100
39	MP3A	X	-3.607	-3.607	0	%100 %100
40	MP3A	Z	-2.082	-2.082	0	%100 %100
41	MP2A	X	-3.787	-3.787	0	%100 %100
42	MP2A	Z	-2.186	-2.186	0	%100 %100
43	MP1A	X	-3.607	-3.607	0	%100
44	MP1A	Z	-2.082	-2.082	0	%100
45	M103	X	-3.998	-3.998	0	%100
46	M103	Z	-2.308	-2.308	0	%100
47	M107	X	999	999	0	%100
48	M107	Z	577	577	0	%100
49	M154	X	-3.998	-3.998	0	%100
50	M154	Z	-2.308	-2.308	0	%100
51	M157	X	998	998	0	%100
52	M157	Z	576	576	0	%100
53	M162	X	-1	-1	0	%100
54	M162	Z	578	578	0	%100
55	M165	X	-1.001	-1.001	0	%100
56	M165	Z	578	578	0	%100
57	M175	X	-3.894	-3.894	0	%100
58	M175	Z	-2.248	-2.248	0	%100
59	M176	Х	-3.894	-3.894	0	%100
60	M176	Z	-2.248	-2.248	0	%100
61	M177	X	-3.894	-3.894	0	%100
62	M177	Z	-2.248	-2.248	0	%100
63	M178	X	-3.894	-3.894	0	%100
64	M178	Ž	-2.248	-2.248	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	0	0	0	%100 %100
68	M180	Z	0	0	0	%100 %100
69	M183	X	-1.298	-1.298	0	%100 %100
70	M183	Z	749	749	0	%100 %100
71	M184	X	-1.298	-1.298	0	%100 %100
72	M184	Z	749	749	0	%100 %100
73	M188	X	-1.298	-1.298		%100 %100
					0	
74	M188	Z	749	749	0	%100 %100
75	M189	X	-1.298	-1.298	0	%100
76	M189	Z	749	749	0	%100
77	M192	X	-5.192	-5.192	0	%100
78	M192	Z	-2.998	-2.998	0	%100
79	M193	X	-5.192	-5.192	0	%100
80	M193	Z	-2.998	-2.998	0	%100
81	M108	X	891	891	0	%100
82	M108	Z	514	514	0	%100
83	M109	X	-3.564	-3.564	0	%100
84	M109	Z	-2.058	-2.058	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
85	M110	X	891	891	0	%100
86	M110	Z	514	514	0	%100
87	MP5A	X	-3.607	-3.607	0	%100
88	MP5A	Z	-2.082	-2.082	0	%100
89	MP4C	X	-3.787	-3.787	0	%100
90	MP4C	Z	-2.186	-2.186	0	%100
91	MP3C	X	-3.607	-3.607	0	%100
92	MP3C	Z	-2.082	-2.082	0	%100
93	MP2C	X	-3.787	-3.787	0	%100
94	MP2C	Z	-2.186	-2.186	0	%100
95	MP1C	X	-3.607	-3.607	0	%100
96	MP1C	Z	-2.082	-2.082	0	%100
97	MP5C	X	-3.607	-3.607	0	%100
98	MP5C	Z	-2.082	-2.082	0	%100
99	MP4B	X	-3.787	-3.787	0	%100
100	MP4B	Z	-2.186	-2.186	0	%100
101	MP3B	X	-3.607	-3.607	0	%100
102	MP3B	Z	-2.082	-2.082	0	%100
103	MP2B	X	-3.787	-3.787	0	%100
104	MP2B	Z	-2.186	-2.186	0	%100
105	MP1B	X	-3.607	-3.607	0	%100
106	MP1B	Z	-2.082	-2.082	0	%100
107	MP5B	X	-3.607	-3.607	0	%100
108	MP5B	Z	-2.082	-2.082	0	%100
109	OVP2	X	-2.896	-2.896	0	%100
110	OVP2	Z	-1.672	-1.672	0	%100
111	OVP1	X	-2.896	-2.896	0	%100
112	OVP1	Z	-1.672	-1.672	0	%100
113	M95A	X	-1.128	-1.128	0	%100
114	M95A	Z	651	651	0	%100
115	M96A	Χ	-1.129	-1.129	0	%100
116	M96A	Z	652	652	0	%100
117	M97A	Χ	-4.514	-4.514	0	%100
118	M97A	Z	-2.606	-2.606	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude(lb/ft E	Start Location(in %1	End Location[in,%]
1	M4	X	655	655	O Clart Location[iii, 78]	%100
2	M4	Ž	-1.134	-1.134	0	%100 %100
3	M5	X	-2.248	-2.248	0	%100 %100
4	M5	Ž	-3.894	-3.894	0	%100 %100
5	M6	X	0.004	0.004	0	%100
6	M6	7	0	0	0	%100 %100
7	M7	X	-2.248	-2.248	0	%100
8	M7	Z	-3.894	-3.894	0	%100
9	M9	X	-2.248	-2.248	0	%100
10	M9	Z	-3.894	-3.894	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	-2.62	-2.62	0	%100
14	M11	Z	-4.538	-4.538	0	%100
15	M13	Χ	-2.248	-2.248	0	%100
16	M13	Z	-3.894	-3.894	0	%100
17	M20	Х	-2.248	-2.248	0	%100
18	M20	Z	-3.894	-3.894	0	%100
19	M21	Χ	-2.248	-2.248	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
20	M21	Z	-3.894	-3.894	0	%100
21	M22	X	655	655	0	%100
22	M22	Z	-1.134	-1.134	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	-1.543	-1.543	0	%100
26	M34	Z	-2.673	-2.673	0	%100
27	M36	X	-1.954	-1.954	0	%100
28	M36	Ž	-3.385	-3.385	0	%100
29	M37	X	0	0	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	-1.955	-1.955	0	%100 %100
32	M38	Z	-3.386	-3.386	0	%100 %100
33	M40	X	0	0	0	%100 %100
34	M40	Z	0	0	0	%100 %100
	M41		<u> </u>	•		
35		X	-1.543	-1.543	0	%100
36	M41	Z	-2.673	-2.673	0	%100
37	MP4A	X	-2.186	-2.186	0	%100
38	MP4A	Z	-3.787	-3.787	0	%100
39	MP3A	X	-2.082	-2.082	0	%100
40	MP3A	Z	-3.607	-3.607	0	%100
41	MP2A	X	-2.186	-2.186	0	%100
42	MP2A	Z	-3.787	-3.787	0	%100
43	MP1A	X	-2.082	-2.082	0	%100
44	MP1A	Z	-3.607	-3.607	0	%100
45	M103	X	-1.732	-1.732	0	%100
46	M103	Z	-3	-3	0	%100
47	M107	X	0	0	0	%100
48	M107	Z	0	0	0	%100
49	M154	X	-1.731	-1.731	0	%100
50	M154	Z	-2.998	-2.998	0	%100
51	M157	Х	-1.731	-1.731	0	%100
52	M157	Z	-2.997	-2.997	0	%100
53	M162	X	-1.732	-1.732	0	%100
54	M162	Z	-2.999	-2.999	0	%100
55	M165	X	0	0	0	%100
56	M165	Z	0	0	0	%100
57	M175	X	749	749	0	%100
58	M175	Z	-1.298	-1.298	0	%100 %100
59	M176	X	749	749	0	%100 %100
60	M176	Z	-1.298	-1.298	0	%100
61	M177	X	-2.998	-2.998	0	%100 %100
62	M177	Z	-5.192	-5.192	0	%100 %100
63	M178	X				%100 %100
64	M178	Z	-2.998	-2.998	0	
			-5.192	-5.192		%100 %100
65	M179	X	749	749	0	%100
66	M179	Z	-1.298	-1.298	0	%100
67	M180	X	749	749	0	%100
68	M180	Z	-1.298	-1.298	0	%100
69	M183	X	-2.248	-2.248	0	%100
70	M183	Z	-3.894	-3.894	0	%100
71	M184	X	-2.248	-2.248	0	%100
72	M184	Z	-3.894	-3.894	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	0	0	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 64: Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
77	M192	X	-2.248	-2.248	0	%100
78	M192	Z	-3.894	-3.894	0	%100
79	M193	X	-2.248	-2.248	0	%100
80	M193	Z	-3.894	-3.894	0	%100
81	M108	X	0	0	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	-1.543	-1.543	0	%100
84	M109	Z	-2.673	-2.673	0	%100
85	M110	X	-1.543	-1.543	0	%100
86	M110	Z	-2.673	-2.673	0	%100
87	MP5A	X	-2.082	-2.082	0	%100
88	MP5A	Z	-3.607	-3.607	0	%100
89	MP4C	X	-2.186	-2.186	0	%100
90	MP4C	Z	-3.787	-3.787	0	%100
91	MP3C	X	-2.082	-2.082	0	%100
92	MP3C	Z	-3.607	-3.607	0	%100
93	MP2C	X	-2.186	-2.186	0	%100
94	MP2C	Z	-3.787	-3.787	0	%100
95	MP1C	X	-2.082	-2.082	0	%100
96	MP1C	Z	-3.607	-3.607	0	%100
97	MP5C	X	-2.082	-2.082	0	%100
98	MP5C	Z	-3.607	-3.607	0	%100
99	MP4B	X	-2.186	-2.186	0	%100
100	MP4B	Z	-3.787	-3.787	0	%100
101	MP3B	X	-2.082	-2.082	0	%100
102	MP3B	Z	-3.607	-3.607	0	%100
103	MP2B	X	-2.186	-2.186	0	%100
104	MP2B	Z	-3.787	-3.787	0	%100
105	MP1B	X	-2.082	-2.082	0	%100
106	MP1B	Z	-3.607	-3.607	0	%100
107	MP5B	X	-2.082	-2.082	0	%100
108	MP5B	Z	-3.607	-3.607	0	%100
109	OVP2	Χ	-1.672	-1.672	0	%100
110	OVP2	Z	-2.896	-2.896	0	%100
111	OVP1	Χ	-1.672	-1.672	0	%100
112	OVP1	Z	-2.896	-2.896	0	%100
113	M95A	X	-1.954	-1.954	0	%100
114	M95A	Z	-3.385	-3.385	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	-1.955	-1.955	0	%100
118	M97A	Z	-3.386	-3.386	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M5	Χ	0	0	0	%100
4	M5	Z	-1.612	-1.612	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	403	403	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	403	403	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	403	403	0	%100
11	M10	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,			End Location[in,%]
12	M10	Z	403	403	0	%100
13	M11	Χ	0	0	0	%100
14	M11	Z	758	758	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	-1.612	-1.612	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	-1.612	-1.612	0	%100
19	M21	Χ	0	0	0	%100
20	M21	Z	403	403	0	%100
21	M22	Χ	0	0	0	%100
22	M22	Z	758	758	0	%100
23	M24	Χ	0	0	0	%100
24	M24	Z	403	403	0	%100
25	M34	Χ	0	0	0	%100
26	M34	Z	822	822	0	%100
27	M36	Χ	0	0	0	%100
28	M36	Z	928	928	0	%100
29	M37	Χ	0	0	0	%100
30	M37	Z	232	232	0	%100
31	M38	Χ	0	0	0	%100
32	M38	Z	232	232	0	%100
33	M40	Х	0	0	0	%100
34	M40	Z	205	205	0	%100
35	M41	Χ	0	0	0	%100
36	M41	Z	205	205	0	%100
37	MP4A	Χ	0	0	0	%100
38	MP4A	Z	638	638	0	%100
39	MP3A	Х	0	0	0	%100
40	MP3A	Z	638	638	0	%100
41	MP2A	Χ	0	0	0	%100
42	MP2A	Z	638	638	0	%100
43	MP1A	Χ	0	0	0	%100
44	MP1A	Z	638	638	0	%100
45	M103	Χ	0	0	0	%100
46	M103	Z	224	224	0	%100
47	M107	Χ	0	0	0	%100
48	M107	Z	224	224	0	%100
49	M154	Χ	0	0	0	%100
50	M154	Z	224	224	0	%100
51	M157	X	0	0	0	%100
52	M157	Z	896	896	0	%100
53	M162	Χ	0	0	0	%100
54	M162	Z	896	896	0	%100
55	M165	Χ	0	0	0	%100
56	M165	Z	224	224	0	%100
57	M175	Χ	0	0	0	%100
58	M175	Z	0	0	0	%100
59	M176	Χ	0	0	0	%100
60	M176	Z	0	0	0	%100
61	M177	Χ	0	0	0	%100
62	M177	Z	-1.209	-1.209	0	%100
63	M178	Χ	0	0	0	%100
64	M178	Z	-1.209	-1.209	0	%100
65	M179	Χ	0	0	0	%100
66	M179	Z	-1.209	-1.209	0	%100
67	M180	Χ	0	0	0	%100
68	M180	Z	-1.209	-1.209	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
69	M183	Χ	0	0	0	%100
70	M183	Z	-1.612	-1.612	0	%100
71	M184	Χ	0	0	0	%100
72	M184	Z	-1.612	-1.612	0	%100
73	M188	Χ	0	0	0	%100
74	M188	Z	403	403	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	403	403	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	403	403	0	%100
79	M193	Χ	0	0	0	%100
80	M193	Z	403	403	0	%100
81	M108	Χ	0	0	0	%100
82	M108	Z	205	205	0	%100
83	M109	Χ	0	0	0	%100
84	M109	Z	205	205	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	822	822	0	%100
87	MP5A	X	0	0	0	%100
88	MP5A	Z	638	638	0	%100
89	MP4C	X	0	0	0	%100
90	MP4C	Z	638	638	0	%100
91	MP3C	X	0	0	0	%100
92	MP3C	Z	638	638	0	%100
93	MP2C	X	0	0	0	%100
94	MP2C	Z	638	638	0	%100
95	MP1C	X	0	0	0	%100
96	MP1C	Z	638	638	0	%100
97	MP5C	Χ	0	0	0	%100
98	MP5C	Z	638	638	0	%100
99	MP4B	Χ	0	0	0	%100
100	MP4B	Z	638	638	0	%100
101	MP3B	Χ	0	0	0	%100
102	MP3B	Z	638	638	0	%100
103	MP2B	Χ	0	0	0	%100
104	MP2B	Z	638	638	0	%100
105	MP1B	Χ	0	0	0	%100
106	MP1B	Z	638	638	0	%100
107	MP5B	Χ	0	0	0	%100
108	MP5B	Z	638	638	0	%100
109	OVP2	X	0	0	0	%100
110	OVP2	Z	522	522	0	%100
111	OVP1	X	0	0	0	%100
112	OVP1	Z	522	522	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	928	928	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	232	232	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	232	232	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	126	.126	0	%100
2	M4	Z	219	219	0	%100
3	M5	X	.605	.605	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
4	M5	Z	-1.047	-1.047	0	%100
5	M6	X	.605	.605	0	%100
6	M6	Z	-1.047	-1.047	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	.605	.605	0	%100
12	M10	Ž	-1.047	-1.047	0	%100
13	M11	X	.126	.126	0	%100
14	M11	Ž	219	219	0	%100 %100
15	M13	X	.605	.605	0	%100 %100
16	M13	Z	-1.047	-1.047	0	%100 %100
17	M20	X	.605	.605	0	%100 %100
18	M20	Z	-1.047	-1.047	0	%100 %100
19	M21	X	0	0	0	%100
20	M21	Z	0	0	0	%100
21	M22	X	.505	.505	0	%100
22	M22	Z	875	875	0	%100
23	M24	X	.605	.605	0	%100
24	M24	Z	-1.047	-1.047	0	%100
25	<u>M34</u>	X	.308	.308	0	%100
26	M34	Z	534	534	0	%100
27	M36	X	.348	.348	0	%100
28	M36	Z	603	603	0	%100
29	M37	X	.348	.348	0	%100
30	M37	Z	603	603	0	%100
31	M38	X	0	0	0	%100
32	M38	Z	0	0	0	%100
33	M40	X	.308	.308	0	%100
34	M40	Z	534	534	0	%100
35	M41	X	0	0	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	X	.319	.319	0	%100
38	MP4A	Z	553	553	0	%100
39	MP3A	X	.319	.319	0	%100
40	MP3A	Z	553	553	0	%100
41	MP2A	X	.319	.319	0	%100 %100
42	MP2A	Z	553	553	0	%100 %100
43	MP1A	X	.319	.319	0	%100 %100
44	MP1A	Z	553	553	0	%100
45	M103	X	555	0	0	%100 %100
46	M103	Z	0	0	0	%100 %100
47	M107	X	.336	.336		
48		Z			0	%100 %100
	M107		582	582		%100 %100
49	M154	X	0	0	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	.336	.336	0	%100
52	M157	Z	582	582	0	%100
53	M162	X	.336	.336	0	%100
54	M162	Z	582	582	0	%100
55	M165	X	.336	.336	0	%100
56	M165	Z	582	582	0	%100
57	M175	X	.202	.202	0	%100
58	M175	Z	349	349	0	%100
59	M176	X	.202	.202	0	%100
60	M176	Z	349	349	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
61	M177	X	.202	.202	0	%100
62	M177	Z	349	349	0	%100
63	M178	X	.202	.202	0	%100
64	M178	Z	349	349	0	%100
65	M179	X	.806	.806	0	%100
66	M179	Z	-1.396	-1.396	0	%100
67	M180	X	.806	.806	0	%100
68	M180	Z	-1.396	-1.396	0	%100
69	M183	X	.605	.605	0	%100
70	M183	Z	-1.047	-1.047	0	%100
71	M184	X	.605	.605	0	%100
72	M184	Z	-1.047	-1.047	0	%100
73	M188	X	.605	.605	0	%100
74	M188	Z	-1.047	-1.047	0	%100
75	M189	X	.605	.605	0	%100
76	M189	Z	-1.047	-1.047	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	.308	.308	0	%100
82	M108	Z	534	534	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	.308	.308	0	%100
86	M110	Z	534	534	0	%100
87	MP5A	X	.319	.319	0	%100
88	MP5A	Z	553	553	0	%100 %100
89	MP4C	X	.319	.319	0	%100 %100
90	MP4C	Z	553	553	0	%100 %100
91	MP3C	X	.319	.319	0	%100 %100
92	MP3C	Z	553	553	0	%100 %100
93	MP2C	X	.319	.319	0	%100 %100
94	MP2C	Z	553	553	0	%100 %100
95	MP1C	X	.319	.319	0	%100 %100
96	MP1C	Z	553	553	0	%100 %100
97	MP5C	X	.319	.319	0	%100 %100
98	MP5C	Z	553	553	0	%100 %100
99	MP4B	X	.319	.319	0	%100 %100
100	MP4B	Z	553	553	0	%100 %100
101	MP3B	X	.319	.319		%100 %100
101	MP3B	Z	553	553	0	%100 %100
103	MP2B	X	.319	.319	0	%100 %100
103	MP2B	Z	553	553	0	%100 %100
104	MP1B	X			0	%100 %100
106	MP1B	Z	.319 553	.319 553	0	%100 %100
107	MP5B	Z	.319	.319	0	%100
108	MP5B		553	553	0	%100 %100
109	OVP2	X Z	.261	.261	0	%100 %100
110	OVP2		452	452	0	%100
111	OVP1	X	.261	.261	0	%100
112	OVP1	Z	452	452	0	%100
113	M95A	X	.348	.348	0	%100
114	M95A	Z	603	603	0	%100
115	M96A	X	.348	.348	0	%100
116	M96A	Z	603	603	0	%100
117	M97A	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:_

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M4	X	.656	.656	0	%100
2	M4	Z	379	379	0	%100
3	M5	X	.349	.349	0	%100
4	M5	Z	202	202	0	%100
5	M6	X	1.396	1.396	0	%100
6	M6	Z	806	806	0	%100
7	M7	X	.349	.349	0	%100
8	M7	Z	202	202	0	%100
9	M9	X	.349	.349	0	%100
10	M9	Z	202	202	0	%100
11	M10	X	1.396	1.396	0	%100
12	M10	Z	806	806	0	%100
13	M11	X	0	0	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	.349	.349	0	%100
16	M13	Z	202	202	0	%100
17	M20	Χ	.349	.349	0	%100
18	M20	Z	202	202	0	%100
19	M21	X	.349	.349	0	%100
20	M21	Z	202	202	0	%100
21	M22	Χ	.656	.656	0	%100
22	M22	Z	379	379	0	%100
23	M24	X	1.396	1.396	0	%100
24	M24	Z	806	806	0	%100
25	M34	X	.178	.178	0	%100
26	M34	Z	103	103	0	%100
27	M36	X	.201	.201	0	%100
28	M36	Z	116	116	0	%100
29	M37	X	.804	.804	0	%100
30	M37	Z	464	464	0	%100
31	M38	X	.201	.201	0	%100
32	M38	Ž	116	116	0	%100
33	M40	X	.712	.712	0	%100 %100
34	M40	Z	411	411	0	%100 %100
35	M41	X	.178	.178	0	%100 %100
36	M41	Z	103	103	0	%100 %100
37	MP4A	X	.553	.553	0	%100 %100
38	MP4A	Z	319	319	0	%100 %100
39	MP3A	X	.553	.553	0	%100 %100
40	MP3A	Ž	319	319	0	%100 %100
41	MP2A	X	.553	.553		%100 %100
42	MP2A	Ž	319	319	0	%100 %100
					_	
43	MP1A	X Z	.553 319	.553	0	%100 %100
	MP1A			319		
45	M103	X Z	.194	.194	0	%100
46	M103		112	112 776		%100
47	M107	X	.776	.776	0	%100
48	M107	Z	448	448	0	%100
49	M154	X	.194	.194	0	%100
50	M154	Z	112	112	0	%100
51	M157	X	.194	.194	0	%100
52	M157	Z	112	112	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
53	M162	X	.194	.194	0	%100
54	M162	Z	112	112	0	%100
55	M165	X	.776	.776	0	%100
56	M165	Z	448	448	0	%100
57	M175	X	1.047	1.047	0	%100
58	M175	Z	605	605	0	%100
59	M176	X	1.047	1.047	0	%100
60	M176	Z	605	605	0	%100
61	M177	X	0	0	0	%100
62	M177	Z	0	0	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	0	0	0	%100
65	M179	Χ	1.047	1.047	0	%100
66	M179	Z	605	605	0	%100
67	M180	X	1.047	1.047	0	%100
68	M180	Z	605	605	0	%100
69	M183	X	.349	.349	0	%100
70	M183	Z	202	202	0	%100
71	M184	Х	.349	.349	0	%100
72	M184	Z	202	202	0	%100
73	M188	Х	1.396	1.396	0	%100
74	M188	Z	806	806	0	%100
75	M189	X	1.396	1.396	0	%100
76	M189	Z	806	806	0	%100
77	M192	Х	.349	.349	0	%100
78	M192	Z	202	202	0	%100
79	M193	X	.349	.349	0	%100
80	M193	Z	202	202	0	%100
81	M108	X	.712	.712	0	%100
82	M108	Z	411	411	0	%100
83	M109	X	.178	.178	0	%100
84	M109	Z	103	103	0	%100
85	M110	X	.178	.178	0	%100
86	M110	Z	103	103	0	%100
87	MP5A	X	.553	.553	0	%100
88	MP5A	Z	319	319	0	%100
89	MP4C	X	.553	.553	0	%100
90	MP4C	Z	319	319	0	%100
91	MP3C	X	.553	.553	0	%100
92	MP3C	Z	319	319	0	%100
93	MP2C	X	.553	.553	0	%100
94	MP2C	Z	319	319	0	%100
95	MP1C	X	.553	.553	0	%100
96	MP1C	Z	319	319	0	%100
97	MP5C	X	.553	.553	0	%100 %100
98	MP5C	Z	319	319	0	%100 %100
99	MP4B	X	.553	.553	0	%100
100	MP4B	Z	319	319	0	%100 %100
101	MP3B	X	.553	.553	0	%100
102	MP3B	Z	319	319	0	%100 %100
103	MP2B	X	.553	.553	0	%100
104	MP2B	Z	319	319	0	%100 %100
105	MP1B	X	.553	.553	0	%100 %100
106	MP1B	Z	319	319	0	%100 %100
107	MP5B	X	.553	.553	0	%100 %100
108	MP5B	Ž	319	319	0	%100 %100
109	OVP2	X	.452	.452	0	%100 %100
100	UVIL				U	/0100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
110	OVP2	Z	261	261	0	%100
111	OVP1	X	.452	.452	0	%100
112	OVP1	Z	261	261	0	%100
113	M95A	X	.201	.201	0	%100
114	M95A	Z	116	116	0	%100
115	M96A	X	.804	.804	0	%100
116	M96A	Z	464	464	0	%100
117	M97A	X	.201	.201	0	%100
118	M97A	Z	116	116	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	1.011	1.011	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	0	0	0	%100
5	M6	Χ	1.209	1.209	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	1.209	1.209	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	1.209	1.209	0	%100
10	M9	Z	0	0	0	%100
11	M10	Χ	1.209	1.209	0	%100
12	M10	Z	0	0	0	%100
13	M11	Χ	.253	.253	0	%100
14	M11	Z	0	0	0	%100
15	M13	Χ	0	0	0	%100
16	M13	Z	0	0	0	%100
17	M20	Χ	0	0	0	%100
18	M20	Z	0	0	0	%100
19	M21	X	1.209	1.209	0	%100
20	M21	Z	0	0	0	%100
21	M22	Χ	.253	.253	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	1.209	1.209	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	0	0	0	%100
27	M36	Χ	0	0	0	%100
28	M36	Z	0	0	0	%100
29	M37	Χ	.696	.696	0	%100
30	M37	Z	0	0	0	%100
31	M38	Χ	.696	.696	0	%100
32	M38	Z	0	0	0	%100
33	M40	Χ	.616	.616	0	%100
34	M40	Z	0	0	0	%100
35	M41	Χ	.616	.616	0	%100
36	M41	Z	0	0	0	%100
37	MP4A	Χ	.638	.638	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	Χ	.638	.638	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	Χ	.638	.638	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	Χ	.638	.638	0	%100
44	MP1A	Z	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
45	M103	X	.672	.672	0	%100
46	M103	Z	0	0	0	%100
47	M107	X	.672	.672	0	%100
48	M107	Z	0	0	0	%100
49	M154	X	.672	.672	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	0	0	0	%100
52	M157	Z	0	0	0	%100
53	M162	X	0	0	0	%100
54	M162	Z	0	0	0	%100
55	M165	X	.672	.672	0	%100
56	M165	Z	0	0	0	%100
57	M175	X	1.612	1.612	0	%100
58	M175	Ž	0	0	0	%100
59	M176	X	1.612	1.612	0	%100
60	M176	Z	0	0	0	%100
61	M177	X	.403	.403	0	%100
62	M177	Z	0	0	0	%100 %100
63	M178	X	.403	.403	0	%100 %100
64	M178	Z	0	0	0	%100 %100
65	M179	X	.403	.403	0	%100 %100
66	M179	Z	.403	0	0	%100 %100
67	M180	X	.403	.403	0	%100 %100
68	M180	Ž	0	0	0	%100 %100
69	M183	X	0	0	0	%100 %100
70	M183	Z	0	0	0	%100 %100
71	M184	X	0	0	0	%100 %100
72		Ž	0	0	0	
	M184					%100
73	M188	X Z	1.209	1.209	0	%100
74	M188		1,000	0	0	%100
75	M189	X	1.209	1.209	0	%100
76	M189	Z	1,000	1 200	0	%100 %100
77	M192	X Z	1.209	1.209	0	%100
78	M192		0	0	0	%100
79	M193	X	1.209	1.209	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	.616	.616	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	.616	.616	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	0	0	0	%100
87	MP5A	X	.638	.638	0	%100
88	MP5A	Z	0	0	0	%100
89	MP4C	X	.638	.638	0	%100
90	MP4C	Z	0	0	0	%100
91	MP3C	X	.638	.638	0	%100
92	MP3C	Z	0	0	0	%100
93	MP2C	X	.638	.638	0	%100
94	MP2C	Z	0	0	0	%100
95	MP1C	X	.638	.638	0	%100
96	MP1C	Z	0	0	0	%100
97	MP5C	X	.638	.638	0	%100
98	MP5C	Z	0	0	0	%100
99	MP4B	X	.638	.638	0	%100
100	MP4B	Z	0	0	0	%100
101	MP3B	X	.638	.638	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
102	MP3B	Z	0	0	0	%100
103	MP2B	X	.638	.638	0	%100
104	MP2B	Z	0	0	0	%100
105	MP1B	X	.638	.638	0	%100
106	MP1B	Z	0	0	0	%100
107	MP5B	X	.638	.638	0	%100
108	MP5B	Z	0	0	0	%100
109	OVP2	X	.522	.522	0	%100
110	OVP2	Z	0	0	0	%100
111	OVP1	X	.522	.522	0	%100
112	OVP1	Z	0	0	0	%100
113	M95A	Χ	0	0	0	%100
114	M95A	Z	0	0	0	%100
115	M96A	X	.696	.696	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	.696	.696	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	.656	.656	0	%100
2	M4	Z	.379	.379	0	%100
3	M5	X	.349	.349	0	%100
4	M5	Z	.202	.202	0	%100
5	M6	X	.349	.349	0	%100
6	M6	Z	.202	.202	0	%100
7	M7	X	1.396	1.396	0	%100
8	M7	Z	.806	.806	0	%100
9	M9	X	1.396	1.396	0	%100
10	M9	Z	.806	.806	0	%100
11	M10	X	.349	.349	0	%100
12	M10	Z	.202	.202	0	%100
13	M11	X	.656	.656	0	%100
14	M11	Z	.379	.379	0	%100
15	M13	X	.349	.349	0	%100
16	M13	Z	.202	.202	0	%100
17	M20	X	.349	.349	0	%100
18	M20	Z	.202	.202	0	%100
19	M21	X	1.396	1.396	0	%100
20	M21	Z	.806	.806	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	.349	.349	0	%100
24	M24	Z	.202	.202	0	%100
25	M34	X	.178	.178	0	%100
26	M34	Z	.103	.103	0	%100
27	M36	X	.201	.201	0	%100
28	M36	Z	.116	.116	0	%100
29	M37	X	.201	.201	0	%100
30	M37	Z	.116	.116	0	%100
31	M38	X	.804	.804	0	%100
32	M38	Z	.464	.464	0	%100
33	M40	X	.178	.178	0	%100
34	M40	Z	.103	.103	0	%100
35	M41	X	.712	.712	0	%100
36	M41	Z	.411	.411	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
37	MP4A	X	.553	.553	0	%100
38	MP4A	Z	.319	.319	0	%100
39	MP3A	X	.553	.553	0	%100
40	MP3A	Z	.319	.319	0	%100
41	MP2A	X	.553	.553	0	%100
42	MP2A	Z	.319	.319	0	%100
43	MP1A	X	.553	.553	0	%100
44	MP1A	Z	.319	.319	0	%100
45	M103	X	.776	.776	0	%100
46	M103	Z	.448	.448	0	%100
47	M107	X	.194	.194	0	%100
48	M107	Z	.112	.112	0	%100
49	M154	X	.776	.776	0	%100
50	M154	Z	.448	.448	0	%100
51	M157	X	.194	.194	0	%100 %100
52	M157	Z	.112	.112	0	%100 %100
53	M162	X	.194	.194	0	%100 %100
54	M162	Z	.112	.112	0	%100 %100
55	M165	X	.194	.194	0	%100 %100
56	M165	Z	.112	.112	0	%100 %100
57	M175	X	1.047	1.047	0	%100 %100
58	M175	Z	.605	.605	0	%100 %100
59	M176	X	1.047	1.047	0	%100 %100
60	M176	Ž	.605	.605	0	%100 %100
61	M177	X	1.047	1.047	0	%100 %100
62	M177	Z	.605	.605	0	%100
63	M178	X	1.047	1.047	0	%100
64	M178	Z	.605	.605	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	.349	.349	0	%100
70	M183	Z	.202	.202	0	%100
71	M184	X	.349	.349	0	%100
72	M184	Z	.202	.202	0	%100
73	M188	X	.349	.349	0	%100
74	M188	Z	.202	.202	0	%100
75	M189	X	.349	.349	0	%100
76	M189	Z	.202	.202	0	%100
77	M192	X	1.396	1.396	0	%100
78	M192	Z	.806	.806	0	%100
79	M193	X	1.396	1.396	0	%100
80	M193	Z	.806	.806	0	%100
81	M108	X	.178	.178	0	%100
82	M108	Z	.103	.103	0	%100
83	M109	X	.712	.712	0	%100
84	M109	Z	.411	.411	0	%100
85	M110	X	.178	.178	0	%100
86	M110	Z	.103	.103	0	%100
87	MP5A	X	.553	.553	0	%100
88	MP5A	Z	.319	.319	0	%100
89	MP4C	X	.553	.553	0	%100
90	MP4C	Z	.319	.319	0	%100
91	MP3C	X	.553	.553	0	%100
92	MP3C	Z	.319	.319	0	%100
93	MP2C	X	.553	.553	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
94	MP2C	Z	.319	.319	0	%100
95	MP1C	X	.553	.553	0	%100
96	MP1C	Z	.319	.319	0	%100
97	MP5C	X	.553	.553	0	%100
98	MP5C	Z	.319	.319	0	%100
99	MP4B	X	.553	.553	0	%100
100	MP4B	Z	.319	.319	0	%100
101	MP3B	X	.553	.553	0	%100
102	MP3B	Z	.319	.319	0	%100
103	MP2B	Χ	.553	.553	0	%100
104	MP2B	Z	.319	.319	0	%100
105	MP1B	Χ	.553	.553	0	%100
106	MP1B	Z	.319	.319	0	%100
107	MP5B	Χ	.553	.553	0	%100
108	MP5B	Z	.319	.319	0	%100
109	OVP2	X	.452	.452	0	%100
110	OVP2	Z	.261	.261	0	%100
111	OVP1	X	.452	.452	0	%100
112	OVP1	Z	.261	.261	0	%100
113	M95A	X	.201	.201	0	%100
114	M95A	Z	.116	.116	0	%100
115	M96A	Х	.201	.201	0	%100
116	M96A	Z	.116	.116	0	%100
117	M97A	X	.804	.804	0	%100
118	M97A	Z	.464	.464	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	Χ	.126	.126	0	%100
2	M4	Z	.219	.219	0	%100
3	M5	X	.605	.605	0	%100
4	M5	Z	1.047	1.047	0	%100
5	M6	X	0	0	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	.605	.605	0	%100
8	M7	Z	1.047	1.047	0	%100
9	M9	X	.605	.605	0	%100
10	M9	Z	1.047	1.047	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	0	0	0	%100
13	M11	Χ	.505	.505	0	%100
14	M11	Z	.875	.875	0	%100
15	M13	X	.605	.605	0	%100
16	M13	Z	1.047	1.047	0	%100
17	M20	X	.605	.605	0	%100
18	M20	Z	1.047	1.047	0	%100
19	M21	X	.605	.605	0	%100
20	M21	Z	1.047	1.047	0	%100
21	M22	X	.126	.126	0	%100
22	M22	Z	.219	.219	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	0	0	0	%100
25	M34	Χ	.308	.308	0	%100
26	M34	Z	.534	.534	0	%100
27	M36	Χ	.348	.348	0	%100
28	M36	Z	.603	.603	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
29	M37	X	0	0	0	%100
30	M37	Z	0	0	0	%100
31	M38	X	.348	.348	0	%100
32	M38	Z	.603	.603	0	%100
33	M40	Х	0	0	0	%100
34	M40	Z	0	0	0	%100
35	M41	Χ	.308	.308	0	%100
36	M41	Z	.534	.534	0	%100
37	MP4A	Χ	.319	.319	0	%100
38	MP4A	Z	.553	.553	0	%100
39	MP3A	X	.319	.319	0	%100
40	MP3A	Z	.553	.553	0	%100
41	MP2A	Χ	.319	.319	0	%100
42	MP2A	Z	.553	.553	0	%100
43	MP1A	X	.319	.319	0	%100
44	MP1A	Z	.553	.553	0	%100
45	M103	X	.336	.336	0	%100
46	M103	Z	.582	.582	0	%100
47	M107	X	0	0	0	%100
48	M107	Ž	0	0	0	%100
49	M154	X	.336	.336	0	%100
50	M154	Z	.582	.582	0	%100
51	M157	X	.336	.336	0	%100
52	M157	Z	.582	.582	0	%100
53	M162	X	.336	.336	0	%100
54	M162	Z	.582	.582	0	%100
55	M165	X	0	0	0	%100
56	M165	Ž	0	0	0	%100 %100
57	M175	X	.202	.202	0	%100 %100
58	M175	Ž	.349	.349	0	%100 %100
59	M176	X	.202	.202	0	%100 %100
60	M176	Z	.349	.349	0	%100 %100
61	M177	X	.806	.806	0	%100 %100
62	M177	Ž	1.396	1.396	0	%100 %100
63	M178	X	.806	.806	0	%100 %100
64	M178	Z	1.396	1.396	0	%100 %100
65	M179	X	.202	.202	0	%100 %100
66	M179	Z	.349	.349	0	%100 %100
67	M180	X	.202	.202	0	%100 %100
68	M180	Z	.349	.349	0	%100
69	M183	X	.605	.605	0	%100 %100
70	M183	Z	1.047	1.047	0	%100 %100
71	M184	X	.605	.605	0	%100 %100
72	M184	Z	1.047	1.047	0	%100 %100
73	M188	X	0	0	0	%100 %100
74	M188	Ž	0	0	0	%100 %100
75	M189	X	0	0	0	%100 %100
76	M189	Ž	0	0	0	%100 %100
77	M192	X	.605	.605	0	%100 %100
78	M192	Z	1.047	1.047	0	%100 %100
79	M193	X	.605	.605	0	%100 %100
80	M193	Z	1.047	1.047	0	%100 %100
	M108	X			0	%100 %100
81 82	M108	Z	0	0	0	%100 %100
83	M109	X Z	.308	.308	0	%100 %100
84	M109		.534	.534	0	%100 %100
85	M110	X	.308	.308	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
86	M110	Z	.534	.534	0	%100
87	MP5A	X	.319	.319	0	%100
88	MP5A	Z	.553	.553	0	%100
89	MP4C	X	.319	.319	0	%100
90	MP4C	Z	.553	.553	0	%100
91	MP3C	X	.319	.319	0	%100
92	MP3C	Z	.553	.553	0	%100
93	MP2C	X	.319	.319	0	%100
94	MP2C	Z	.553	.553	0	%100
95	MP1C	X	.319	.319	0	%100
96	MP1C	Z	.553	.553	0	%100
97	MP5C	X	.319	.319	0	%100
98	MP5C	Z	.553	.553	0	%100
99	MP4B	X	.319	.319	0	%100
100	MP4B	Z	.553	.553	0	%100
101	MP3B	X	.319	.319	0	%100
102	MP3B	Z	.553	.553	0	%100
103	MP2B	X	.319	.319	0	%100
104	MP2B	Z	.553	.553	0	%100
105	MP1B	X	.319	.319	0	%100
106	MP1B	Z	.553	.553	0	%100
107	MP5B	X	.319	.319	0	%100
108	MP5B	Z	.553	.553	0	%100
109	OVP2	X	.261	.261	0	%100
110	OVP2	Z	.452	.452	0	%100
111	OVP1	X	.261	.261	0	%100
112	OVP1	Z	.452	.452	0	%100
113	M95A	X	.348	.348	0	%100
114	M95A	Z	.603	.603	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	.348	.348	0	%100
118	M97A	Z	.603	.603	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	1.612	1.612	0	%100
5	M6	Χ	0	0	0	%100
6	M6	Z	.403	.403	0	%100
7	M7	Χ	0	0	0	%100
8	M7	Z	.403	.403	0	%100
9	M9	Χ	0	0	0	%100
10	M9	Z	.403	.403	0	%100
11	M10	Χ	0	0	0	%100
12	M10	Z	.403	.403	0	%100
13	M11	Χ	0	0	0	%100
14	M11	Z	.758	.758	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	1.612	1.612	0	%100
17	M20	Χ	0	0	0	%100
18	M20	Z	1.612	1.612	0	%100
19	M21	Χ	0	0	0	%100
20	M21	Z	.403	.403	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
21	M22	X	0	0	0	%100
22	M22	Z	.758	.758	0	%100
23	M24	X	0	0	0	%100
24	M24	Z	.403	.403	0	%100
25	M34	X	0	0	0	%100
26	M34	Z	.822	.822	0	%100
27	M36	X	0	0	0	%100
28	M36	Z	.928	.928	0	%100
29	M37	X	0	0	0	%100
30	M37	Z	.232	.232	0	%100
31	M38	X	0	0	0	%100
32	M38	Z	.232	.232	0	%100
33	M40	X	0	0	0	%100
34	M40	Z	.205	.205	0	%100
35	M41	X	0	0	0	%100
36	M41	Z	.205	.205	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	.638	.638	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Ž	.638	.638	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	.638	.638	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	.638	.638	0	%100
45	M103	X	0	0	0	%100 %100
46	M103	Z	.224	.224	0	%100 %100
47	M107	X	0	0	0	%100 %100
48	M107	Z	.224	.224	0	%100 %100
49	M154	X	0	0	0	%100 %100
50	M154	Z	.224	.224	0	%100 %100
51	M157	X	0	0	0	%100 %100
52	M157	Z	.896	.896	0	%100 %100
53	M162	X	0	0	0	%100 %100
54	M162	Z	.896	.896	0	%100 %100
55	M165	X	0	0	0	%100 %100
56	M165	Z	.224	.224	0	%100 %100
57	M175	X			0	%100 %100
58		Z	0	0	0	
	M175	X	0			%100 %100
59 60	M176	Z	0	0	0	%100
	M176 M177		0	0	0	%100 %100
61 62	M177	Z	1.209	1.209	0	%100 %100
63						
	M178 M178	Z	1.209	1.209	0	%100 %100
64						
65	M179	Z	1 200	1 200	0	%100 %100
66	M179		1.209	1.209		%100
67	M180	X	1 200	1 200	0	%100
68	M180	Z	1.209	1.209	0	%100
69	M183	X	0	0	0	%100
70	M183	Z	1.612	1.612	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	1.612	1.612	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	.403	.403	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	.403	.403	0	%100
77	M192	X	0	0	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
78	M192	Z	.403	.403	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	.403	.403	0	%100
81	M108	Х	0	0	0	%100
82	M108	Z	.205	.205	0	%100
83	M109	Х	0	0	0	%100
84	M109	Z	.205	.205	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	.822	.822	0	%100
87	MP5A	Χ	0	0	0	%100
88	MP5A	Z	.638	.638	0	%100
89	MP4C	Χ	0	0	0	%100
90	MP4C	Z	.638	.638	0	%100
91	MP3C	Χ	0	0	0	%100
92	MP3C	Z	.638	.638	0	%100
93	MP2C	Χ	0	0	0	%100
94	MP2C	Z	.638	.638	0	%100
95	MP1C	X	0	0	0	%100
96	MP1C	Z	.638	.638	0	%100
97	MP5C	X	0	0	0	%100
98	MP5C	Z	.638	.638	0	%100
99	MP4B	Χ	0	0	0	%100
100	MP4B	Z	.638	.638	0	%100
101	MP3B	X	0	0	0	%100
102	MP3B	Z	.638	.638	0	%100
103	MP2B	X	0	0	0	%100
104	MP2B	Z	.638	.638	0	%100
105	MP1B	X	0	0	0	%100
106	MP1B	Z	.638	.638	0	%100
107	MP5B	Χ	0	0	0	%100
108	MP5B	Z	.638	.638	0	%100
109	OVP2	Χ	0	0	0	%100
110	OVP2	Z	.522	.522	0	%100
111	OVP1	Χ	0	0	0	%100
112	OVP1	Z	.522	.522	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	.928	.928	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	.232	.232	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	.232	.232	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	126	126	0	%100
2	M4	Z	.219	.219	0	%100
3	M5	X	605	605	0	%100
4	M5	Z	1.047	1.047	0	%100
5	M6	X	605	605	0	%100
6	M6	Z	1.047	1.047	0	%100
7	M7	X	0	0	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	0	0	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	605	605	0	%100
12	M10	Z	1.047	1.047	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
13	M11	X	126	126	0	%100
14	M11	Z	.219	.219	0	%100
15	M13	X	605	605	0	%100
16	M13	Z	1.047	1.047	0	%100
17	M20	X	605	605	0	%100
18	M20	Z	1.047	1.047	0	%100
19	M21	Χ	0	0	0	%100
20	M21	Z	0	0	0	%100
21	M22	Χ	505	505	0	%100
22	M22	Z	.875	.875	0	%100
23	M24	X	605	605	0	%100
24	M24	Z	1.047	1.047	0	%100
25	M34	X	308	308	0	%100
26	M34	Ž	.534	.534	0	%100
27	M36	X	348	348	0	%100
28	M36	Ž	.603	.603	0	%100
29	M37	X	348	348	0	%100
30	M37	Z	.603	.603	0	%100 %100
31	M38	X	0	0	0	%100
32	M38	Z	0	0	0	%100 %100
33	M40	X	308	308	0	%100 %100
34	M40	Z	.534	.534	0	%100 %100
35	M41	X	0	0	0	%100 %100
36	M41	Ž	0	0	0	%100 %100
37	MP4A	X	319	319	0	%100 %100
38	MP4A	Ž	.553	.553	0	%100 %100
	MP3A	X	319			
39 40	MP3A	Z	.553	319	0	%100
				.553		%100
41	MP2A	X Z	319	319	0	%100
42	MP2A		.553	.553	0	%100
43	MP1A	X	319	319	0	%100
44	MP1A	Z	.553	.553	0	%100 %100
45	M103	X Z	0	0	0	%100
46	M103		0		0	%100
47	M107	X	336	336	0	%100
48	M107	Z	.582	.582	0	%100
49	M154	X	0	0	0	%100
50	M154	Z	0	0	0	%100
51	M157	X	336	336	0	%100
52	M157	Z	.582	.582	0	%100
53	M162	X	336	336	0	%100
54	M162	Z	.582	.582	0	%100
55	M165	X Z	336	336	0	%100
56	M165		.582	.582	0	%100
57	M175	X	202	202	0	%100
58	M175	Z	.349	.349	0	%100
59	M176	X	202	202	0	%100
60	M176	Z	.349	.349	0	%100
61	M177	X	202	202	0	%100
62	M177	Z	.349	.349	0	%100
63	M178	X	202	202	0	%100
64	M178	Z	.349	.349	0	%100
65	M179	X	806	806	0	%100
66	M179	Z	1.396	1.396	0	%100
67	M180	X	806	806	0	%100
68	M180	Z	1.396	1.396	0	%100
69	M183	X	605	605	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Locationfin.%1	End Location[in,%]
70	M183	Z	1.047	1.047	0	%100
71	M184	X	605	605	0	%100
72	M184	Z	1.047	1.047	0	%100
73	M188	X	605	605	0	%100
74	M188	Z	1.047	1.047	0	%100
75	M189	X	605	605	0	%100
76	M189	Z	1.047	1.047	0	%100
77	M192	X	0	0	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	0	0	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	308	308	0	%100
82	M108	Z	.534	.534	0	%100
83	M109	X	0	0	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	308	308	0	%100
86	M110	Z	.534	.534	0	%100
87	MP5A	X	319	319	0	%100
88	MP5A	Z	.553	.553	0	%100
89	MP4C	X	319	319	0	%100
90	MP4C	Z	.553	.553	0	%100
91	MP3C	X	319	319	0	%100
92	MP3C	Z	.553	.553	0	%100
93	MP2C	X	319	319	0	%100
94	MP2C	Z	.553	.553	0	%100
95	MP1C	X	319	319	0	%100
96	MP1C	Z	.553	.553	0	%100
97	MP5C	X	319	319	0	%100
98	MP5C	Z	.553	.553	0	%100
99	MP4B	X	319	319	0	%100
100	MP4B	Z	.553	.553	0	%100
101	MP3B	X	319	319	0	%100
102	MP3B	Z	.553	.553	0	%100
103	MP2B	X	319	319	0	%100
104	MP2B	Z	.553	.553	0	%100
105	MP1B	X	319	319	0	%100
106	MP1B	Z	.553	.553	0	%100
107	MP5B	X	319	319	0	%100
108	MP5B	Z	.553	.553	0	%100
109	OVP2	X	261	261	0	%100
110	OVP2	Z	.452	.452	0	%100
111	OVP1	X	261	261	0	%100
112	OVP1	Z	.452	.452	0	%100
113	M95A	X	348	348	0	%100
114	M95A	Z	.603	.603	0	%100
115	M96A	X	348	348	0	%100
116	M96A	Z	.603	.603	0	%100
117	M97A	X	0	0	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M4	X	656	656	0	%100
2	M4	Z	.379	.379	0	%100
3	M5	X	349	349	0	%100
4	M5	Z	.202	.202	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
5	M6	X	-1.396	-1.396	0	%100
6	M6	Z	.806	.806	0	%100
7	M7	X	349	349	0	%100
8	M7	Z	.202	.202	0	%100
9	M9	X	349	349	0	%100
10	M9	Z	.202	.202	0	%100
11	M10	X	-1.396	-1.396	0	%100
12	M10	Z	.806	.806	0	%100
13	M11	X	0	0	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	349	349	0	%100
16	M13	Z	.202	.202	0	%100
17	M20	X	349	349	0	%100
18	M20	Z	.202	.202	0	%100
19	M21	X	349	349	0	%100
20	M21	Z	.202	.202	0	%100
21	M22	X	656	656	0	%100
22	M22	Z	.379	.379	0	%100
23	M24	X	-1.396	-1.396	0	%100
24	M24	Ž	.806	.806	0	%100
25	M34	X	178	178	0	%100
26	M34	Z	.103	.103	0	%100
27	M36	X	201	201	0	%100
28	M36	Z	.116	.116	0	%100
29	M37	X	804	804	0	%100 %100
30	M37	Z	.464	.464	0	%100 %100
31	M38	X	201	201	0	%100 %100
32	M38	Z	.116	.116	0	%100 %100
33	M40	X	712	712	0	%100 %100
34	M40	Z	.411	.411	0	%100 %100
35	M41	X	178	178	0	%100 %100
36	M41	Z	.103	.103	0	%100 %100
37	MP4A	X	553	553	0	%100 %100
38	MP4A	Z	.319	.319	0	%100 %100
39	MP3A	X	553	553	0	%100 %100
40	MP3A	Z			0	%100
			.319	.319		
41	MP2A	X	553	553	0	%100
42	MP2A	Z	.319	.319	0	%100 %100
43	MP1A	X	553	553	0	%100
44	MP1A	Z	.319	.319	0	%100
45	M103	X	194	194	0	%100
46	M103	Z	.112	.112	0	%100
47	M107	X	776	776	0	%100
48	M107	Z	.448	.448	0	%100
49	M154	X	194	194	0	%100
50	M154	Z	.112	.112	0	%100
51	M157	X	194	194	0	%100
52	M157	Z	.112	.112	0	%100
53	M162	X	194	194	0	%100
54	M162	Z	.112	.112	0	%100
55	M165	X	776	776	0	%100
56	M165	Z	.448	.448	0	%100
57	M175	X	-1.047	-1.047	0	%100
58	M175	Z	.605	.605	0	%100
59	M176	X	-1.047	-1.047	0	%100
60	M176	Z	.605	.605	0	%100
61	M177	X	0	0	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,		. Start Location[in,%]	End Location[in,%]
62	M177	Z	0	0	0	%100
63	M178	X	0	0	0	%100
64	M178	Z	0	0	0	%100
65	M179	X	-1.047	-1.047	0	%100
66	M179	Z	.605	.605	0	%100
67	M180	X	-1.047	-1.047	0	%100
68	M180	Z	.605	.605	0	%100
69	M183	X	349	349	0	%100
70	M183	Z	.202	.202	0	%100
71	M184	X	349	349	0	%100
72	M184	Z	.202	.202	0	%100
73	M188	X	-1.396	-1.396	0	%100
74	M188	Z	.806	.806	0	%100
75	M189	X	-1.396	-1.396	0	%100
76	M189	Z	.806	.806	0	%100
77	M192	Х	349	349	0	%100
78	M192	Z	.202	.202	0	%100
79	M193	X	349	349	0	%100
80	M193	Z	.202	.202	0	%100
81	M108	X	712	712	0	%100
82	M108	Z	.411	.411	0	%100
83	M109	Х	178	178	0	%100
84	M109	Z	.103	.103	0	%100
85	M110	X	178	178	0	%100
86	M110	Z	.103	.103	0	%100
87	MP5A	X	553	553	0	%100
88	MP5A	Z	.319	.319	0	%100
89	MP4C	X	553	553	0	%100
90	MP4C	Z	.319	.319	0	%100
91	MP3C	X	553	553	0	%100
92	MP3C	Z	.319	.319	0	%100
93	MP2C	Χ	553	553	0	%100
94	MP2C	Z	.319	.319	0	%100
95	MP1C	X	553	553	0	%100
96	MP1C	Z	.319	.319	0	%100
97	MP5C	X	553	553	0	%100
98	MP5C	Z	.319	.319	0	%100
99	MP4B	X	553	553	0	%100
100	MP4B	Z	.319	.319	0	%100
101	MP3B	X	553	553	0	%100
102	MP3B	Z	.319	.319	0	%100
103	MP2B	X	553	553	0	%100
104	MP2B	Z	.319	.319	0	%100
105	MP1B	X	553	553	0	%100
106	MP1B	Z	.319	.319	0	%100
107	MP5B	X	553	553	0	%100
108	MP5B	Z	.319	.319	0	%100
109	OVP2	X	452	452	0	%100
110	OVP2	Z	.261	.261	0	%100
111	OVP1	X	452	452	0	%100
112	OVP1	Z	.261	.261	0	%100
113	M95A	X	201	201	0	%100
114	M95A	Z	.116	.116	0	%100
115	M96A	X	804	804	0	%100
116	M96A	Z	.464	.464	0	%100
117	M97A	X	201	201	0	%100
118	M97A	Z	.116	.116	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

mom	Member Label	Direction	Start Magnitude[lb/ft,		Start Location[in %]	End Location[in,%]
1	M4	X	-1.011	-1.011	0	%100
2	M4	Z	0	0	0	%100
3	M5	X	0	0	0	%100
4	M5	Z	0	0	0	%100
5	M6	X	-1.209	-1.209	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	-1.209	-1.209	0	%100
8	M7	Z	0	0	0	%100
9	M9	X	-1.209	-1.209	0	%100
10	M9	Z	0	0	0	%100
11	M10	X	-1.209	-1.209	0	%100
12	M10	Ž	0	0	0	%100
13	M11	X	253	253	0	%100
14	M11	Z	0	0	0	%100
15	M13	X	0	0	0	%100
16	M13	Z	0	0	0	%100
17	M20	X	0	0	0	%100
18	M20	Z	0	0	0	%100
19	M21	X	-1.209	-1.209	0	%100
20	M21	Ž	0	0	0	%100
21	M22	X	253	253	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	-1.209	-1.209	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	0	0	0	%100
26	M34	Ž	0	0	0	%100
27	M36	X	0	0	0	%100
28	M36	Ž	0	0	0	%100
29	M37	X	696	696	0	%100 %100
30	M37	Ž	0	0	0	%100 %100
31	M38	X	696	696	0	%100 %100
32	M38	Ž	0	0	0	%100 %100
33	M40	X	616	616	0	%100 %100
34	M40	Ž	0	0	0	%100
35	M41	X	616	616	0	%100 %100
36	M41	Ž	0	0	0	%100
37	MP4A	X	638	638	0	%100 %100
38	MP4A	Z	0	0	0	%100
39	MP3A	X	638	638	0	%100 %100
40	MP3A	Z	0	0	0	%100 %100
41	MP2A	X	638	638	0	%100 %100
42	MP2A	Z	0	0	0	%100 %100
43	MP1A	X	638	638	0	%100 %100
44	MP1A	Z	0	0	0	%100 %100
45	M103	X	672	672	0	%100 %100
46	M103	Z	0	0	0	%100 %100
47	M107	X	672	672	0	%100 %100
48	M107	Ž	0	072	0	%100 %100
49	M154	X	672	672	0	%100 %100
50	M154	Ž	0	0	0	%100 %100
51	M157	X	0	0	0	%100 %100
52	M157	Z	0	0	0	%100 %100
53	M162	X	0	0	0	%100 %100
54	M162	Z	0	0	0	%100 %100
55	M165	X	672	672	0	%100 %100
56	M165	Ž	0	672	0	%100 %100
57	M175	X	-1.612	-1.612	0	%100 %100
5/	IVI 1 7 O		-1.012	-1.012	<u></u>	% I UU

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[in,%]
58	M175	Z	0	0	0	%100
59	M176	X	-1.612	-1.612	0	%100
60	M176	Z	0	0	0	%100
61	M177	X	403	403	0	%100
62	M177	Z	0	0	0	%100
63	M178	X	403	403	0	%100
64	M178	Z	0	0	0	%100
65	M179	X	403	403	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	403	403	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	0	0	0	%100
70	M183	Z	0	0	0	%100
71	M184	X	0	0	0	%100
72	M184	Z	0	0	0	%100
73	M188	X	-1.209	-1.209	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	-1.209	-1.209	0	%100
76	M189	Z	0	0	0	%100
77	M192	X	-1.209	-1.209	0	%100
78	M192	Z	0	0	0	%100
79	M193	X	-1.209	-1.209	0	%100
80	M193	Z	0	0	0	%100
81	M108	X	616	616	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	616	616	0	%100
84	M109	Z	0	0	0	%100
85	M110	X	0	0	0	%100
86	M110	Z	0	0	0	%100
87	MP5A	X	638	638	0	%100
88	MP5A	Z	0	0	0	%100
89	MP4C	X	638	638	0	%100
90	MP4C	Z	0	0	0	%100
91	MP3C	X	638	638	0	%100
92	MP3C	Z	0	0	0	%100
93	MP2C	X	638	638	0	%100
94	MP2C	Z	0	0	0	%100
95	MP1C	X	638	638	0	%100
96	MP1C	Z	0	0	0	%100
97	MP5C	X	638	638	0	%100
98	MP5C	Z	0	0	0	%100
99	MP4B	X	638	638	0	%100
100	MP4B	Z	0	0	0	%100
101	MP3B	X	638	638	0	%100
102	MP3B	Z	0	0	0	%100
103	MP2B	X	638	638	0	%100
104	MP2B	Z	0	0	0	%100
105	MP1B	X	638	638	0	%100
106	MP1B	Z	0	0	0	%100
107	MP5B	X	638	638	0	%100
108	MP5B	Z	0	0	0	%100
109	OVP2	X	522	522	0	%100
110	OVP2	Z	0	0	0	%100
111	OVP1	X	522	522	0	%100
112	OVP1	Ž	0	0	0	%100
113	M95A	X	0	0	0	%100
114	M95A	Z	0	0	0	%100
				-		,,,,,

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
115	M96A	X	696	696	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	696	696	0	%100
118	M97A	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction		.End Magnitude[lb/ft,F	Start Location[in,%]	End Location[in,%]
1	M4	X	656	656	0	%100
2	M4	Z	379	379	0	%100
3	M5	X	349	349	0	%100
4	M5	Z	202	202	0	%100
5	M6	X	349	349	0	%100
6	M6	Z	202	202	0	%100
7	M7	X	-1.396	-1.396	0	%100
8	M7	Z	806	806	0	%100
9	M9	X	-1.396	-1.396	0	%100
10	M9	Z	806	806	0	%100
11	M10	X	349	349	0	%100
12	M10	Z	202	202	0	%100
13	M11	X	656	656	0	%100
14	M11	Z	379	379	0	%100
15	M13	X	349	349	0	%100
16	M13	Ž	202	202	0	%100
17	M20	X	349	349	0	%100
18	M20	Z	202	202	0	%100
19	M21	X	-1.396	-1.396	0	%100
20	M21	Z	806	806	0	%100
21	M22	X	0	0	0	%100
22	M22	Z	0	0	0	%100
23	M24	X	349	349	0	%100 %100
24	M24	Z	202	202	0	%100
25	M34	X	178	178	0	%100 %100
26	M34	Z	103	103	0	%100 %100
27	M36	X	201	201	0	%100
28	M36	Z	116	116	0	%100
29	M37	X	201	201	0	%100
30	M37	Z	116	116	0	%100
31	M38	X	804	804	0	%100
32	M38	Z	464	464	0	%100 %100
33	M40	X	178	178	0	%100
34	M40	Z	103	103	0	%100
35	M41	X	712	712	0	%100
36	M41	Z	411	411	0	%100
37	MP4A	X	553	553	0	%100
38	MP4A	Z	319	319	0	%100
39	MP3A	X	553	553	0	%100 %100
40	MP3A	Z	319	319	0	%100
41	MP2A	X	553	553	0	%100
42	MP2A	Z	319	319	0	%100 %100
43	MP1A	X	553	553	0	%100
44	MP1A	Z	319	319	0	%100
45	M103	X	776	776	0	%100 %100
46	M103	Z	448	448	0	%100
47	M107	X	194	194	0	%100
48	M107	Z	112	112	0	%100 %100
49	M154	X	776	776	0	%100 %100
+3	IVITOT		//0	110	<u> </u>	/0100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[in,%]
50	M154	Z	448	448	0	%100
51	M157	X	194	194	0	%100
52	M157	Z	112	112	0	%100
53	M162	X	194	194	0	%100
54	M162	Z	112	112	0	%100
55	M165	X	194	194	0	%100
56	M165	Z	112	112	0	%100
57	M175	X	-1.047	-1.047	0	%100
58	M175	Z	605	605	0	%100
59	M176	X	-1.047	-1.047	0	%100
60	M176	Z	605	605	0	%100
61	M177	X	-1.047	-1.047	0	%100
62	M177	Z	605	605	0	%100
63	M178	X	-1.047	-1.047	0	%100
64	M178	Z	605	605	0	%100
65	M179	X	0	0	0	%100
66	M179	Z	0	0	0	%100
67	M180	X	0	0	0	%100
68	M180	Z	0	0	0	%100
69	M183	X	349	349	0	%100
70	M183	Z	202	202	0	%100
71	M184	X	349	349	0	%100
72	M184	Z	202	202	0	%100
73	M188	X	349	349	0	%100
74	M188	Z	202	202	0	%100
75	M189	X	349	349	0	%100
76	M189	Z	202	202	0	%100
77	M192	X	-1.396	-1.396	0	%100
78	M192	Z	806	806	0	%100
79	M193	X	-1.396	-1.396	0	%100
80	M193	Z	806	806	0	%100
81	M108	X	178	178	0	%100
82	M108	Z	103	103	0	%100
83	M109	X	712	712	0	%100
84	M109	Z	411	411	0	%100
85	M110	X Z	178	178	0	%100
86	M110		103	103	0	%100
87 88	MP5A MP5A	X Z	553	553	0	%100
89	MP4C	X	319	319	0	%100 %100
90	MP4C MP4C	Z	553 319	553 319	0	%100 %100
91	MP3C	X	553	553	0	%100 %100
92	MP3C	Z	319	319	0	%100 %100
93	MP2C	X	553	553	0	%100 %100
94	MP2C	Z	319	319	0	%100 %100
95	MP1C	X	553	553	0	%100 %100
96	MP1C	Z	319	319	0	%100 %100
97	MP5C	X	553	553	0	%100 %100
98	MP5C	Z	319	319	0	%100
99	MP4B	X	553	553	0	%100
100	MP4B	Z	319	319	0	%100
101	MP3B	X	553	553	0	%100
102	MP3B	Z	319	319	0	%100
103	MP2B	X	553	553	0	%100
104	MP2B	Ž	319	319	0	%100
105	MP1B	X	553	553	0	%100
106	MP1B	Z	319	319	0	%100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
107	MP5B	X	553	553	0	%100
108	MP5B	Z	319	319	0	%100
109	OVP2	X	452	452	0	%100
110	OVP2	Z	261	261	0	%100
111	OVP1	X	452	452	0	%100
112	OVP1	Z	261	261	0	%100
113	M95A	X	201	201	0	%100
114	M95A	Z	116	116	0	%100
115	M96A	Χ	201	201	0	%100
116	M96A	Z	116	116	0	%100
117	M97A	Χ	804	804	0	%100
118	M97A	Z	464	464	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[in,%]
1	M4	X	126	126	0	%100
2	M4	Z	219	219	0	%100
3	M5	Χ	605	605	0	%100
4	M5	Z	-1.047			%100
_ 5	M6	X	0	0	0	%100
6	M6	Z	0	0	0	%100
7	M7	X	605	605	0	%100
8	M7	Z	-1.047	-1.047	0	%100
9	M9	Χ	605	605	0	%100
10	M9	Z	-1.047	-1.047	0	%100
11	M10	X	0	0	0	%100
12	M10	Z	0	0	0	%100
13	M11	X	505	505	0	%100
14	M11	Z	875	875	0	%100
15	M13	X	605	605	0	%100
16	M13	Z	-1.047	-1.047	0	%100
17	M20	Χ	605	605	0	%100
18	M20	Z	-1.047	-1.047	0	%100
19	M21	Χ	605	605	0	%100
20	M21	Z	-1.047	-1.047	0	%100
21	M22	Χ	126	126	0	%100
22	M22	Z	219	219	0	%100
23	M24	Χ	0	0	0	%100
24	M24	Z	0	0	0	%100
25	M34	X	308	308	0	%100
26	M34	Z	534	534	0	%100
27	M36	Χ	348	348	0	%100
28	M36	Z	603	603	0	%100
29	M37	Χ	0	0	0	%100
30	M37	Z	0	0	0	%100
31	M38	Χ	348	348	0	%100
32	M38	Z	603	603	0	%100
33	M40	Χ	0	0	0	%100
34	M40	Z	0	0	0	%100
35	M41	Χ	308	308	0	%100
36	M41	Z	534	534	0	%100
37	MP4A	X	319	319	0	%100
38	MP4A	Z	553	553	0	%100
39	MP3A	X	319	319	0	%100
40	MP3A	Z	553	553	0	%100
41	MP2A	X	319	319	0	%100

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F		End Location[in,%]
42	MP2A	Z	553	553	0	%100
43	MP1A	X	319	319	0	%100
44	MP1A	Z	553	553	0	%100
45	M103	X	336	336	0	%100
46	M103	Z	582	582	0	%100
47	M107	Х	0	0	0	%100
48	M107	Z	0	0	0	%100
49	M154	X	336	336	0	%100
50	M154	Z	582	582	0	%100
51	M157	X	336	336	0	%100
52	M157	Z	582	582	0	%100
53	M162	X	336	336	0	%100
54	M162	Z	582	582	0	%100
55	M165	X	0	0	0	%100
56	M165	Z	0	0	0	%100
57	M175	X	202	202	0	%100
58	M175	Z	349	349	0	%100
59	M176	X	202	202	0	%100
60	M176	Z	349	349	0	%100
61	M177	X	806	806	0	%100
62	M177	Z	-1.396	-1.396	0	%100
63	M178	X	806	806	0	%100
64	M178	Z	-1.396	-1.396	0	%100
65	M179	X	202	202	0	%100
66	M179	Z	349	349	0	%100
67	M180	X	202	202	0	%100
68	M180	Z	349	349	0	%100
69	M183	X	605	605	0	%100
70	M183	Z	-1.047	-1.047	0	%100
71	M184	X	605	605	0	%100
72	M184	Z	-1.047	-1.047	0	%100
73	M188	X	0	0	0	%100
74	M188	Z	0	0	0	%100
75	M189	X	0	0	0	%100
76	M189	Z	0	0	0	%100
77	M192	X	605	605	0	%100
78	M192	Z	-1.047	-1.047	0	%100
79	M193	X	605	605	0	%100
80	M193	Z	-1.047	-1.047	0	%100
81	M108	X	0	0	0	%100
82	M108	Z	0	0	0	%100
83	M109	X	308	308	0	%100 %100
84	M109	Z	534	534	0	%100 %100
85	M110	Z	308	308	0	%100 %100
86	M110		534	534	0	%100 %100
87	MP5A	X Z	319	319	0	%100 %100
88	MP5A MP4C		553	553	0	%100 %100
89 90	MP4C MP4C	X Z	319 553	319	0	%100 %100
90	MP3C	X		553	0	%100 %100
92	MP3C	Z	319 553	319 553	0	%100 %100
93	MP2C	X	319	319	0	%100 %100
94	MP2C MP2C	Z	553	553	0	%100 %100
95	MP1C	X	319	319	0	%100 %100
96	MP1C	Z	553	553	0	%100
97	MP5C	X	319	319	0	%100 %100
98	MP5C	Z	553	553	0	%100
30	IVII-30		555	000	U	/6100

Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
99	MP4B	X	319	319	0	%100
100	MP4B	Z	553	553	0	%100
101	MP3B	X	319	319	0	%100
102	MP3B	Z	553	553	0	%100
103	MP2B	X	319	319	0	%100
104	MP2B	Z	553	553	0	%100
105	MP1B	X	319	319	0	%100
106	MP1B	Z	553	553	0	%100
107	MP5B	X	319	319	0	%100
108	MP5B	Z	553	553	0	%100
109	OVP2	X	261	261	0	%100
110	OVP2	Z	452	452	0	%100
111	OVP1	X	261	261	0	%100
112	OVP1	Z	452	452	0	%100
113	M95A	X	348	348	0	%100
114	M95A	Z	603	603	0	%100
115	M96A	X	0	0	0	%100
116	M96A	Z	0	0	0	%100
117	M97A	X	348	348	0	%100
118	M97A	Z	603	603	0	%100

Member Distributed Loads (BLC 81 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M103	Υ	-5.137	-7.697	0	17.651
2	M103	Υ	-7.697	-6.378	17.651	35.301
3	M103	Υ	-6.378	-1.179	35.301	52.952
4	M107	Υ	-1.703	-5.243	10.59	31.77
5	M107	Υ	-5.243	-8.783	31.77	52.949
6	M162	Υ	-1.179	-6.378	0	17.65
7	M162	Υ	-6.378	-7.697	17.65	35.3
8	M162	Υ	-7.697	-5.137	35.3	52.949
9	M165	Υ	-8.783	-5.243	0	21.181
10	M165	Υ	-5.243	-1.703	21.181	42.362
11	M154	Υ	-1.179	-6.378	0	17.65
12	M154	Υ	-6.378	-7.697	17.65	35.3
13	M154	Υ	-7.697	-5.137	35.3	52.949
14	M157	Υ	-8.783	-5.243	0	21.181
15	M157	Υ	-5.243	-1.703	21.181	42.362

Member Distributed Loads (BLC 82 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[in,%]	End Location[in,%]
1	M103	Υ	-9.76	-14.624	0	17.651
2	M103	Υ	-14.624	-12.118	17.651	35.301
3	M103	Υ	-12.118	-2.241	35.301	52.952
4	M107	Υ	-3.236	-9.962	10.59	31.77
5	M107	Υ	-9.962	-16.688	31.77	52.949
6	M162	Υ	-2.241	-12.119	0	17.65
7	M162	Υ	-12.119	-14.625	17.65	35.3
8	M162	Υ	-14.625	-9.761	35.3	52.949
9	M165	Υ	-16.687	-9.961	0	21.181
10	M165	Υ	-9.961	-3.236	21.181	42.362
11	M154	Υ	-2.241	-12.119	0	17.65
12	M154	Υ	-12.119	-14.625	17.65	35.3
13	M154	Υ	-14.625	-9.761	35.3	52.949
14	M157	Υ	-16.687	-9.961	0	21.181
15	M157	Υ	-9.961	-3.236	21.181	42.362

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:___

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N14	max	5148.951	9	384.643	27	2124.27	2	.045	7	1.793	12	.142	49
2		min	-3357.943	3	-296.028	49	-3156.386	8	942	25	-1.798	6	329	17
3	N3	max	1303.77	10	647.348	19	6901.839	1	.669	20	1.639	4	.11	4
4		min	-1276.826	4	-226.372	1	-4944.044	7	.068	26	-1.656	10	17	10
5	N21	max	3384.601	11	384.202	36	2037.46	12	.074	8	1.795	8	.392	23
6		min	-5205.222	5	-133.683	6	-3053.799	6	815	38	-1.802	2	008	41
7	N206A	max	109.963	10	3247.436	13	1649.907	7	.484	7	.223	4	.171	4
8		min	-120.582	4	-1007.1	7	-4857.776	13	-1.178	13	213	10	162	10
9	N215	max	936.766	3	3356.674	21	2534.58	21	.632	21	.272	12	1.08	21
10		min	-4374.77	21	-627.627	3	-534.1	3	177	3	266	6	296	3
11	N224	max	4402.544	17	3366.255	17	2522.192	17	.62	17	.275	8	.282	11
12		min	-914.779	11	-623.121	11	-554.814	11	194	11	265	2	-1.095	17
13	Totals:	max	5380.204	10	9385.756	23	6085.636	1						
14		min	-5380.203	4	3394.294	5	-6085.634	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Locfinl	LC	Shear C.	Loc	Dir	Lphi*Pn	phi*Pnt [lb]	phi*Mn	.phi*Mn z-z [k-	-ft1 Ean
1	M4	HSS4X4X4	.159	36.695	1	.062	35	٧	24 11850	139518	16.181	16.181	1H1-1b
2	M5	PL3/8x6	.301	4.181	7	.115	4.181	V	13 53698	72900	.57	9.113	1H1-1b
3	M6	PL3/8x6	.177	0	1	.021	0	ż	6 67566	72900	.57	9.113	2H1-1b
4	M7	PL3/8x6	.212	0	1	.020	2.042	Z	1 67566	72900	.57	9.113	2H1-1b
5	M9	PL3/8x6	.178	2.042	1	.021	0	У	7 67566	72900	.57	9.113	1H1-1b
6	M10	PL3/8x6	.290	4.181	8	.120	4.181	У	21 53698	72900	.57	9.113	1H1-1b
7	M11	HSS4X4X4	.149	36.695	21	.067	0	У	25 11850	139518	16.181	16.181	1H1-1b
8	M13	PL3/8x6	.200	0	9	.026	0	У	49 67566	72900	.57	9.113	2H1-1b
9	M20	PL3/8x6	.168	2.042	3	.019	0	Z	4 67566	72900	.57	9.113	1H1-1b
10	M21	PL3/8x6	.275	4.181	5	.129	4.181	У	18 53698	72900	.57	9.113	1H1-1b
11	M22	HSS4X4X4	.150	36.695	17	.064	35	У	18 11850	139518	16.181	16.181	1H1-1b
12	M24	PL3/8x6	.190	0	5	.022	0	У	7 67566	72900	.57	9.113	2H1-1b
13	M34	HSS4X4X4	.171	29.581	13	.058	29	У	13 13601	139518	16.181	16.181	1H1-1b
14	M36	PIPE_3.0	.188	64.133	5	.252	87		4 24526		5.749	5.749	3H3-6
15	M37	PIPE 3.0	.191	97.888	<u>1</u>	.278	72		6 24526		5.749	5.749	3H3-6
16	M38	PIPE_3.0	.185	97.888	8	.274	60		8 24526	00=00	5.749	5.749	3H3-6
17	M40	HSS4X4X4	.185	29.581	21	.063	29	У	20 13601	139518	16.181	16.181	1H1-1b
18	M41	HSS4X4X4	.185	29.581	18	.067	29	У	41 13601	139518	16.181	16.181	1H1-1b
19	MP4A	PIPE 2.5	.403	70	10	.327	70		10 30038	50715	3.596	3.596	3H3-6
20	MP3A	PIPE_2.0	.330	46.5	4	.242	46.5		5 20866		1.872	1.872	2H1-1b
21	MP2A	PIPE 2.0	.462	70	4	.284	70		5 14916	0=.00	1.872	1.872	3H3-6
22	MP1A	PIPE_2.0	.568	57	4	.170	57		4 20866	32130	1.872	1.872	2H1-1b
23	M103	L2x2x3	.186	52.952	24	.012	52	У	22 8802.6		.558	1.239	2H2-1
24	M107	L2x2x3	.162	0	14	.011	52	У	18 8803.4		.558	1.227	2H2-1
25	M154	L2x2x3	.192	0	23	.012	0	У	24 8803.4	23392.8	.558	1.239	2H2-1
26	M157	L2x2x3	.175	52.952	19	.012	0	У	16 8802.6		.558	1.224	2H2-1
27	M162	L2x2x3	.197	0	19	.013	0	У	20 8803.4		.558	1.239	2H2-1
28	M165	L2x2x3	.169	52.952	15	.011	0	У	24 8802.6		.558	1.225	2H2-1
29	M175	PL3/8x6	.156	2.038	<u>10</u>	.254	2.038		1 67585	. =000	.57	9.113	1H1-1b
30	M176	PL3/8x6	.120	2.038	7	.215	2.038	У	1 67585		.57	9.113	1H1-1b
31	M177	PL3/8x6	.199	2.038	6	.230	2.038	У	9 67585	72900	.57	9.113	1H1-1b
32	M178	PL3/8x6	.154	2.038	12	.199	2.038	У	9 67585		.57	9.113	1H1-1b
33	M179	PL3/8x6	.203	2.038	2	.238	2.038	У	5 67585	72900	.57	9.113	1H1-1b
34	M180	PL3/8x6	.154	2.038	8	.330	2.038	У	42 67585	72900	.57	9.113	1H1-1b
35	M183	PL3/8x6	.195	2.038	6	.037	0	У	33 67585	72900	.57	9.113	1H1-1b
36	M184	PL3/8x6	.160	2.038	2	.037	0	У	41 67585	72900	.57	9.113	1H1-1b
37	M188	PL3/8x6	.200	2.038	2	.036	0	У	17 67585	72900	.57	9.113	1H1-1b

: Network Building + Consulting

Project No. 10037876 468121-VZW_MT_LO_H Aug 11, 2021 3:51 PM Checked By:__

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[in]	LC	Shear C.	Loc	Dir	Lph	ni*Pnı	ohi*Pnt [lb]	phi*Mn	.phi*Mn z-z [k-	ft] Egn
38	M189	PL3/8x6	.109	2.038	4	.032	0	У	13 67	7585	72900	.57	9.113	2H1-1b
39	M192	PL3/8x6	.161	2.038	10	.034	0	У	13 67	7585	72900	.57	9.113	1H1-1b
40	M193	PL3/8x6	.163	2.038	6	.035	0	У	21 67	7585	72900	.57	9.113	1H1-1b
41	M108	HSS4X4X4	.191	0	20	.067	0	y	22 13	3601	139518	16.181	16.181	1H1-1b
42	M109	HSS4X4X4	.190	0	16	.068	0	У	18 13	3601	139518	16.181	16.181	1H1-1b
43	M110	HSS4X4X4	.178	0	13	.062	0	У	14 13	3601	139518	16.181	16.181	1H1-1b
44	MP5A	PIPE_2.0	.792	57	10	.301	57		10 20	0866	32130	1.872	1.872	2H3-6
45	MP4C	PIPE 2.5	.349	70	7	.295	35		6 30	0038	50715	3.596	3.596	2H1-1b
46	MP3C	PIPE 2.0	.415	46.5	6	.272	46.5		6 20	0866	32130	1.872	1.872	2H3-6
47	MP2C	PIPE 2.0	.511	70	12	.311	70		1 14	1916	32130	1.872	1.872	4H3-6
48	MP1C	PIPE 2.0	.616	57	12	.185	57		6 20	0866	32130	1.872	1.872	2H1-1b
49	MP5C	PIPE 2.0	.879	57	6	.325	57		6 20	0866	32130	1.872	1.872	2H3-6
50	MP4B	PIPE 2.5	.356	70	1	.288	70		1 30	0038	50715	3.596	3.596	4H3-6
51	MP3B	PIPE 2.0	.445	46.5	8	.266	46.5		8 20	0866	32130	1.872	1.872	2H3-6
52	MP2B	PIPE 2.0	.532	70	8	.302	70		8 14	1916	32130	1.872	1.872	2H3-6
53	MP1B	PIPE 2.0	.637	57	8	.185	57		8 20	0866	32130	1.872	1.872	2H1-1b
54	MP5B	PIPE 2.0	.848	57	2	.317	48.75		1 20	0866	32130	1.872	1.872	2H3-6
55	OVP2	PIPE 2.0	.140	24	12	.019	24		12 28	3843	32130	1.872	1.872	2H1-1b
56	OVP1	PIPE 2.0	.140	24	12	.019	24		12 28	3843	32130	1.872	1.872	2H1-1b
57	M95A	PIPE 2.5	.295	62.446	8	.307	20		9 12	2478	50715	3.596	3.596	3H3-6
58	M96A	PIPE 2.5	.386	21.94	7	.340	97		6 12	2478	50715	3.596	3.596	3H3-6
59	M97A	PIPE 2.5	.373	99.576	7	.332	146		1 12	2478	50715	3.596	3.596	3H3-6
60	M113	L3X3X6	.021	12.277	9	.331	0	У	6 62	2228	68364	2.307	5.322	1H2-1
61	M114	L3X3X6	.024	12.533	7	.287	24	У	4 62	2228	68364	2.307	5.322	1H2-1
62	M115	L3X3X6	.021	12.277	5	.335	0	У	8 62	2228	68364	2.307	5.322	1H2-1
63	M122	L3X3X3	.157	43.267	1	.007	0	Z	4 24	1778	35316	1.32	2.833	1H2-1
64	M123	L3X3X3	.155	43.267	1	.007	0	У	4 24	4778	35316	1.32	2.824	1H2-1
65	M130	L3X3X3	.199	43.267	35	.011	0	z	36 24	4778	35316	1.32	2.833	2H2-1
66	M131	L3X3X3	.154	43.267	21	.009	0	У	36 24	1778	35316	1.32	2.827	1H2-1
67	M138	L3X3X3	.160	43.267	39	.009	0	z	38 24	1778	35316	1.32	2.833	2H2-1
68	M139	L3X3X3	.197	43.267	39	.010	.451	У	38 24	4778	35316	1.32	2.833	2H2-1

Connection Check Su	ummary
Site Name	SOMERS WEST CT
Site ID	675040
NB+C Project No.	100820

Connec	tion Prope	rties		Member End Reactions					
Plat	e Properties	S			F _Y	5205	lbs		
Thickness	t	0.625	in	Shear	F _X	647	lbs		
Plate length	L	10	in	Tension	F _z	6901	lbs		
Plate Grade	F _y	36	ksi	D 11	M _Y	1.802	k-ft		
	Width	4	in	Bending	M _X	0.942	k-ft		
Connected Part Dimensions	Height	4	in	Torsion	M _z	0.392	k-ft		
Horizontal Bolt Separation	d _x	8	Connectio	n Capacities	s (% Usage)				
Vertical Bolt Separation	d _y	8	in	Connection Capacities (% Usage)					
Bolt	t Properties			Plate Capacity Shear 7.9%					
Bolt Grade		A325		Plate Capacity	Bending	28.8%	Pass		
Bolt Diameter	d_{b}	0.625	in	Polt Canacity	Shear	12.2%	Pass		
Number of Bolts	N _b	4	Bolts	Bolt Capacity	Tension	18.3%	Pass		
Wel	d Properties	s		Weld Capacity	% Usage	22.9%	Pass		
Weld Shape		Square		Weld Capacity	/₀ Usage	22.5/0	Pass		
Standoff Arm Height	d	4	in		·	·			
Standoff Arm Width	b	4	in						
Fillet Weld Size	а	1/4	in						

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

<u>Purpose</u> – to provide Network Building + Consulting the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

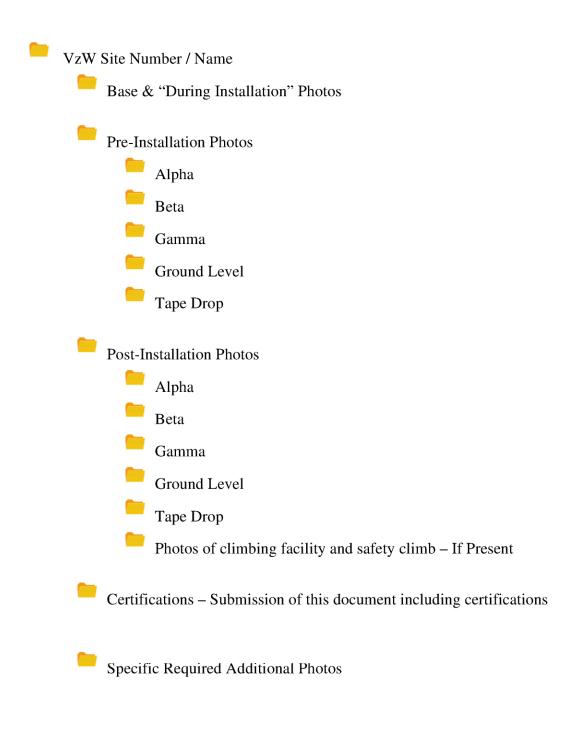
- Any special photos outside of the standard requirements will be indicated on the drawings
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any deviations from the drawings (proposed modification) must be shown.
- Notation that all hardware was properly installed, and the existing hardware was inspected for any issues.
- Verification that loading is as communicated in the modification drawings. NOTE If loading is different than what is conveyed in the modification drawing contact Network Building + Consulting immediately.
- Each photo should be time and date stamped
- Photos should be high resolution and submitted in a Zip File and should be organized in the file structure as depicted in Schedule A attached.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope.
- The photos in the file structure should be uploaded to https://pmi.vzwsmart.com as depicted on the drawings

Photo Requirements:

- Base and "During Installation Photos"
 - Base pictures include
 - Photo of Gate Signs showing the tower owner, site name, and number
 - Photo of carrier shelter showing the carrier site name and number if available
 - Photos of the galvanizing compound and/or paint used (if applicable), clearly showing the label and name
 - "During Installation Photos if provided must be placed only in this folder
- Photos taken at ground level
 - Overall tower structure before and after installation of the modifications
 - Photos of the appropriate mount before and after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed

Photos taken at Mount Elevation

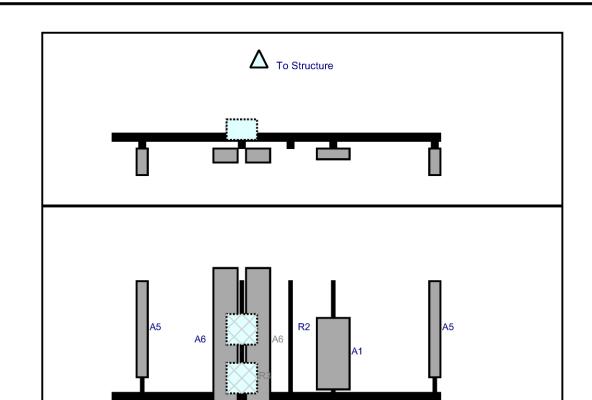
- Photos showing each individual sector before and also after installation of modifications. Each entire sector must be in one photo to show in the inter-connection of members.
 - These photos should also certify that the placement and geometry of the equipment on the mount is as depicted on the sketch and table in the mount analysis
- Close-up photos of each installed modification per the modification drawings; pictures should also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the measurements of the installed modification member sizes (i.e. lengths, widths, depths, diameters, thicknesses)
- Photos showing the elevation or distances of the installed modifications from the appropriate reference locations shown in the modification drawings
- Photos showing the installed modifications onto the tower with tape drop measurements (if applicable) (i.e. ring/collar mounts, tie-backs, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, a tape drop measurement shall be provided before the elevation change
- Photos showing the safety climb wire rope above and below the mount prior to modification.
- Photos showing the climbing facility and safety climb if present.


Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by Network Building + Consulting.
 - If the drawings are as specified on the drawings
 - The contractor should provide the packing list or the materials utilized to perform the mount modification
 - If an equivalent is utilized
 - It is required that the Network Building + Consulting certification of such is included in the contractor submission package. There may be an additional charge for this certification if the equivalent submission doesn't meet specifications as prescribed in the drawings.
- The contractor must certify that the materials meet these specifications by one of these methods.

	s as specified on the Network Building + Consulting Mount ed in the Material certification folder is a packing list or invoice for
	s an "equivalent" and included as part of the contractor submission is nsulting certification, invoices, or specifications validating accepted
Certifying Individual: Com	pany
Nam	ne

Signature									
ipment placement and Geometry Confirmation:									
tractor must certify that the antenna & equipment placement and geometry is in nee with the antenna placement diagrams as included in this mount analysis.									
tractor certifies that the photos support and the equipment on the mount is as depicted on an placement diagrams as included in this mount analysis.									
tractor notes that the equipment on the mount is not in accordance with the antenna nt diagrams and has accordingly marked up the diagrams or provided a diagram g the differences.									
dual: Company									
Name									
Signature									
tions / Validation as required from the MA or Mod Drawings:									


Schedule A - Photo & Document File Structure

8/2/2021

Structure Type: Monopole 10037876

Mount Elev: 144.00 Page: 1

3

2

Plan View

Sector:

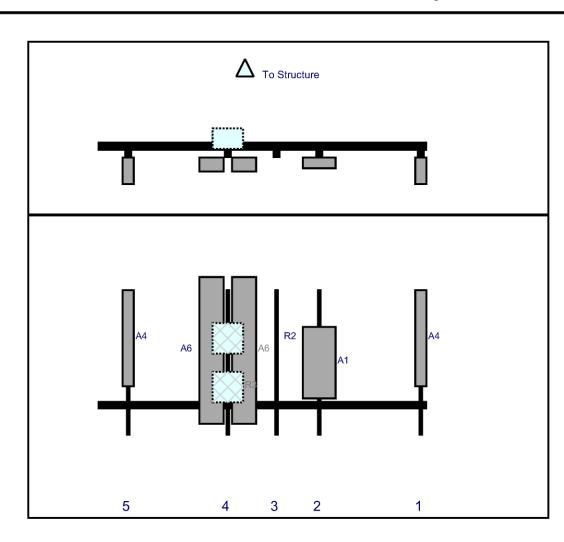
Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A5	LPA-80080-4CF	47.2	5.5	159	1	а	Front	24	0	Retained	07/15/2021
A1	MT6407-77A	35.1	16.1	109	2	а	Front	36	0	Added	
A6	SBNHH-1D65B	72.6	11.9	64	4	а	Front	30	-8	Retained	07/15/2021
A6	SBNHH-1D65B	72.6	11.9	64	4	b	Front	30	8	Retained	07/15/2021
R2	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	64	4	С	Behind	24	0	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	64	4	С	Behind	48	0	Added	
A5	LPA-80080-4CF	47.2	5.5	15	5	а	Front	24	0	Retained	07/15/2021

5

8/2/2021

Structure Type: Monopole 10037876


В

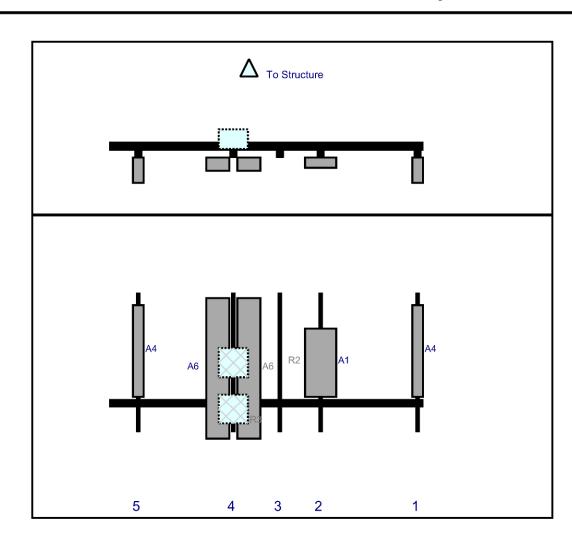
Mount Elev: 144.00 Page: 2

Plan View

Sector:

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A4	LPA-80080-4CF-EDIN-5	47.2	5.5	159	1	а	Front	24	0	Retained	07/15/2021
A1	MT6407-77A	35.1	16.1	109	2	а	Front	36	0	Added	
A6	SBNHH-1D65B	72.6	11.9	64	4	а	Front	30	-8	Retained	07/15/2021
A6	SBNHH-1D65B	72.6	11.9	64	4	b	Front	30	8	Retained	07/15/2021
R2	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	64	4	С	Behind	24	0	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	64	4	С	Behind	48	0	Added	
A4	LPA-80080-4CF-EDIN-5	47.2	5.5	15	5	а	Front	24	0	Retained	07/15/2021


Sector: **C** 8/2/2021

Structure Type: Monopole 10037876

Mount Elev: 144.00 Page: 3

Plan View

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A4	LPA-80080-4CF-EDIN-5	47.2	5.5	159	1	а	Front	30	0	Retained	07/15/2021
A1	MT6407-77A	35.1	16.1	109	2	а	Front	36	0	Added	
A6	SBNHH-1D65B	72.6	11.9	64	4	а	Front	39	-8	Retained	07/15/2021
A6	SBNHH-1D65B	72.6	11.9	64	4	b	Front	39	8	Retained	07/15/2021
R2	B5/B13 RRH-BR04C (RFV01U-D2A)	15	15	64	4	С	Behind	36	0	Added	
R3	B2/B66A RRH-BR049 (RFV01U-D1A)	15	15	64	4	С	Behind	60	0	Added	
A4	LPA-80080-4CF-EDIN-5	47.2	5.5	15	5	а	Front	30	0	Retained	07/15/2021

PSLC: 468121 NB+C JOB NO: 100819 SITE ADDRESS: 37 BACON RD ENFIELD, CT 06082

HARTFORD COUNTY

REVISIONS

REV DATE

DESCRIPTION

Erupataran Edandaintlu

8/13/202

KRUPAKARAN KOLANDAIVELU, F STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN 0028897

TITLE SHEET

ST-1

MOUNT MODIFICATION DRAWINGS

PROPOSED CARRIER: VERIZON

TOWER OWNER: METRO TOWER

TOWER OWNER SITE #: ENF-03

CARRIER SITE NAME: SOMERS WEST

CARRIER SITE #: 468121

COORDINATES (LATITUDE: 42.015936°, LONGITUDE: -72.528739°)

FUZE ID #: 16232040

DRAWING INDEX	пте внеет	BILL OF MATERIALS	GENERAL NOTES	CLIMBING FACILITY DETAILS	ANTENNA MOUNT MODIFICATION DETAILS	ANTENNA MOUNT PHOTOS	SPECIFICATION SHEETS		
1	ST-1	SBOM BILI	SGN-1 GEN	SCF-1 CUI	SS-1 ANI	SS-2 ANT	- SPE		

CONTRACTOR PMI REQUIREMENTS

POST MOD ANALYSIS REPORT PROJECT NUMBER: VZW LOCATION CODE (PSLC):

*** PMI AND REQUIREMENTS EMBEDDED IN MOUNT ANALYSIS REPORT

VZW APPROVED SMART KIT VENDORS

REFER TO BILL OF MATERIALS PAGE FOR VZW SMART KIT APPROVED VENDORS

			VZW MOUNT	MODIFICAT	VZW MOUNT MODIFICATION KITS - APPROVED VENDORS	ED VENDOR	S		
4	PerfectVision		SitePro1	Metrosite	Metrosite Fabricators, LLC	°C)	CommScope	Sabre	Sabre Industries Inc
CONTACT:	Wireless Sales wirelesssales@perfect-vision.com	CONTACT:	Paula Boswell paula boswell@valmont.com	CONTACT:	Kent Ramey kent@metrositellc.com	CONTACT:	Salvador Anguiano Salvador Anguiano@commscope.com	CONTACT:	Angie Welch akwelch@sabreindustries.com
PHONE NUMBER:	844,887,6723	PHONE NUMBER:	972.236.9643	PHONE NUMBER:	(O) 706.335.7045 (M) 706.982.9788	PHONE NUMBER:	817.304.7492	PHONE NUMBER:	866.428.6937
WEBSITE	www.perfect-vision.com	WEBSITE:	www.sitepro1.com	WEBSITE:	metrositefabricalors.com	WEBSITE:	www.commscope.com	WEBSITE:	www.sabresitesolutions.com

THE MANUFACTURERS LISTED ARE THE ONLY APPROVED VENDORS FOR THE VZM MOUNT KITS. EACH MANUFACTURER WILL BE ANVARE DEWN THIS VENDOR IT WILL BE REQUIRED THROUGH THE VZM APPROVAL PROCESS AND THEY ARE IN TURN APPROVED TO SELL PLEASE NOTE THAT THE MATERIAL UTILIZED IN THE MODIFICATION WILL BE REVIEWED AS PART OF THE DESKTOP PAIL COMPLETED BY THE SMART TOOL VENDOR IT WILL BE REQUIRED THAT THE VZM KITS SPECIFIED ARE UTILIZED IN THE MODIFICATION

SBOM

SHEET NUMBER

BILL OF MATERIALS

SHEET TITLE

GENERAL NOTES

- ALI WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE FEDERAL, STATE, MAN DOCAL DOCARRACTORS
 RESPONSELLITY TO GOSTAM ALL PERMISS NECESSARY TO COMPLETE THE PROJECT AND ABIDE BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMISS.
- THE CONTRACTOR SHALL BE RESPONSBILE FOR VERFIFCATION OF ALL DIMERSIONS ELEVATIONS AND ESSYSTEMS COORDINANS AT THE SITE BEFORE OWNERINGS ON DOING ANY WORK. NO EYTER CHARGE ON COMERINGS AND SHALL BE SHALLOWED TOO INFERENCE BETWEEN ACTUAL BIDDINGS AND SHALL BE SHALLOWED TOO INFERENCE BETWEEN ACTUAL BIDDINGS AND DIMERSIONS AND INBERSIONS AND INMERSIONS AND INMERSIONS AND THE SHALLOWED THE SHALLOWED TOO SHALL BE SHALLOWED TO SHALLOWED SHALLOWED AND SHALL BE SHALLOWED TO SHALLOWED SHALLO
- INCORRECTLY FABRICATED, DAMAGED, OTHERWISE MISHTTING, OR MON-CONFORMING SHALL BE REFERRED TO MON-CONFORMING SHALL BE REFERRED TO ME OF BROAD HEAD AND ALL ACTIONS SHALL REQUIRE NE/C ENGINEENING SERVICES, I.C. APPROVAL.
- IT IS THE COMPROPORT SOLE RESPONSELLY TO DEFLEMBLE ERECTOR PROCEDURE AND SCULBERGE TO THE SHET OF THE STUDING AND ITS COMPONENT PRISE DURING ERECTION AND/OF FILED MODELS/TONES THE INCLUDES BUT IS NOT LIMITED TO THE ADDITION OF TRADPANEW BRANKE, GUINE SHET DOWNS THAT MANY BE RECESSAMY SHOTH MANITHAN, SHALL BE REMANDED AFTER THE COMPLETION OF THE PROJECT.
 - CONTRACTOR SHALL PROMPTLY REMOVE ANY & ALL DEBRIS FROM SITE AND RESTORE AS BEST AS POSSIBLE TO PRECONSTRUCTION CONDITION.
- ALL COSTRUCTOR MARKS NAMEWICENS FOR CURNED IN OUT LIMITED TO CREETLY OF PASS IN PROBINE FAMIS CARRON ELANGE MORTERS CHE GAMES SHALL ELE RESPONSEME TO THE DECEMENT CONTINUED HERRIN AMEN SHALL MEET ASSEA AND 68 ALTERSTED HOUGHOUGH THE WORK CONTAINED HERRIN AMEN SHALL MORTERS AND MASSIMFAS STANDARDS. THE RECOURS TO ASSEA AND 68 AND NASSIMFAS STANDARDS. THE RECOURSE DIVIDENCE TO ASSEA AND 68 AND NASSIMFAS TO ASSEMBLY ASSET AND 68 AND NASSIMFAS TO ASSEMBLY ASSET AND 68 AND NASSIMFAS TO ASSEMBLY AND MASSIMFAS TO ASSEMBLY A
- THE USE OF GAS TORCH OR WELDER ARE NOT ALLOWED ON ANY TOWER STRUCTURE WITHOUT THE CONSENT OF THE TOWER OWNER.

CONTRACTOR QUALIFICATION NOTES.

- ALL REPARS SHALL BE PERFORMED BY A TOWER CONTRACTOR WITH A MINIMAM STABLE DEFERENCE IN OWNER BEECTION AND BETREAT HAD WITH WORKING MANOR FERO FIRE THE ARBITHA, 2221 H; STRICTURAL STANDARD FOR AN INDEA SUPPORTING STRUCTURES AND ANTENNAS AND SMALL WIND THOUSING SUPPORT STRUCTURES.
- CONTRACTOR IS RESPONSIBLE FOR ALL CONSTRUCTION MEANS AND METHODS. SHOULD THE CONTRACTOR RECEINE DIRECT CONSULTATION METHODS. PERGINEE DIRECT CONSULTATION. METHODS TO SERVICES ILC. IS WILLING TO OFFER SERVICES BASED UPON AN AGREED FEE FOR THE WORK REQUIRED.
- ALL SUBMITIAL INFORMATION MUST BE SEN TO PAIN INSPICTIOR. ANY
 VARIATION OF HERSE PERCHACHIONS OF ROAMMONS WITHOUT CONSISTENT
 FROM HIGH CHIGHERING SERVICES, LLC WILL VOID ANY RESPONSEELITY OR
 LINGLITY FOR DAMMER OF AMERICAL OR PHYSICAL) TOWNSIOS INSPIC
- ALL CONSTRUCTION TO BE IN ACCORDANCE WITH THE ASSP A 10.48 AND ANSIGNA-322 STANDARDS.

JOB SITE SAFETY & NOTES

COLD GALVANIZATION/SURFACE PREPARATION NOTES:

- CONTRACTOR TO USE ZINGA COLD GALVANIZATION COMPOUNDS.
- PREPARE RUSTED/CORRODED SURFACE FOR TREATMENT ACCORDING TO MANUFACTURERS RECOMMENDATIONS.
- CONTRACTOR TO APPLY (2) COATS OF COLD SALVANIZATION COMPOUND PER MANUFACTURERS RECOMMENDATION DRYING AND CURING TIMES MUST BE UTILIZED PER MANUFACTURERS RECOMMENDATION.
- APPLY ALL COATINGS BY BRUSH IN CALM WIND CONDITIONS. THE USE OF AEROSOL IS NOT PERMITTED.
- IF THE TOWER IS PAINTED, BRUSH PAINT ALL TREATED AREAS TO MATCH TOWER AFTER COLD GALVANIZATION COMPOUND IS ALLOWED TO CURE.

ALL PROPOSED MEMBERS TO USE THE PREFERRED MATERIAL SPECIFICATION AS DEFINED BY THE AISC CODE AND ASTM SPECIFICATIONS.

TOTALLY COMMITTED.

ENGNEER

(WIDTH)

BOLT HOLE DIMENSIONS

OVERSIZED HOLE DIAMETER

STANDARD HOLE DIAMETER

BOLT DIAMETER

NB+C ENGINEERING SERVICES, LLC. 1777/LIDENY NAMEN WEST FEBRE NO. 1842 1873-99-842 1873-99-842

0

0 0

15/16"

SNUG-TIGHT CONDITION^{a,b}

NUT ROTATION FROM

- ALL CONNECTIONS OF STRUCTURAL STEEL MEMBERS SHALL BE MADE USING SPECIFIED
 WELDS WITH HELLING LECTROODES TOWAK ON SPECIFIED THAT STREAM THAT STORE
 SET MA ADSAULT HEALD INCLUED WITH STEAK RAAME (INKESS OF HERWISE NOTED)
- AL I BOUTED OWNERCIONS OF DE MY ALLED TO SARUE, THERENDE COMMITON IN ACCORDANCE WITH AGE: E PART 162. "SPECIFICATION FOR SHUCTURAL, JOHNS USING HIGH STREAMES PRECIDED WIELNY "TYPE BOLTS MARE USED, CONTINGTOOR MAY BE RESORDED FOR ALCA ADDITIONAL WASHERS TO GOTAN PROPERED TO SHACK ADDITIONAL WASHERS OF DIFFAMENE WORTH THE MATERIAL THON ALL NITS SHALL BE HEAVY HEX UNLESS OFHERWISE WOUTED.
- ALL STEEL, ATTER FABRICATION, SHALL BE HOT DIPPED GALVANIZED FER ASTM A-123. ALL DIAMAGED SUBFACCE, WILE DED RACES AND ALTHORIZED NO KACALVANIZED BEBEERS OR PARTS (EXIST DECISIOS NEW SEAL SUBJECT OF THE PARTS (EXIST DECISIOS OF 200. DOLLAR SEALVANIZED SUBJECT OF CALL SEALVANIZED SUBJECT OF CALL SEALVANIZED SUBJECT OF SUBJECT OF
- ALL SHOP AND FIELD WELDING SHALL BE DONE BY WELDERS OLALIFIED AS DESCRBED IN THE WIRELDKEW WELD WES OCCIETYS STAMMORD OLAL HEAVING MOREOLINE TO PREFORM THE TYPE OF WORK REQUIRED. CONTRACTOR IS REQUIRED TO PROVIDE WELCEWINE ERWIS SERVICES TO CONTRACTOR IS REQUIRED TO PROVIDE WELCEWINE ERWIS SERVICES, LLC. WITH A PASSING CERTHED WELDING INSPECTION FOR ALL WELDS.
 - STRUCTURAL STEEL MAY NOT BE TORCH CUT FOR FABRICATION, ALL STEEL FABRICATION MUST FOLLOW AISC STANDARDS.
- ALL STEEL SHALL MEET OR EXCEED THE MINIMUM STRENGTH AS SPECIFIED IN THE DRAWINGS. FY THE USE STEEM WAS NOT NOTED IN THE DRAWINGS, CONTRACTORS SHALL COMFACT HIS CPR DIRECTION.

PSLC: 468121 NB+C JOB NO: 100819 SITE ADDRESS: 37 BACON RD ENFIELD, CT 06082

NOTAMPORIN STIR

2/3 TURN 5/6 TURN

1/2 TURN 1/3 TURN

2/3 TURN

E THAN BG, BUT MORE THAN 12G

1-1/2" [d] 1-3/4" [6]

7/8"

2/3 TURN 5/6 TURN 1 TURN

1/2 TURN

NOT MORE THAN

1-1/8" 1-1/4"

1/8

1/2 5/8" 3/4"

ONE FACE
NORMAL TO BOLT S
AXIS, OTHER
SLOPED NOT
MORE THAN 1:20

BOTH FACES NORMAL TO BOLT AXIS

LENGTH

BOLT

MINIMUM EDGE DISTANCE

BOLT DIAMETER

MINIMUM EDGE DISTANCES

HARTFORD COUNTY

REVISIONS

NUT ROTATION IS RELATIVE TO BOLT REGARDLESS OF THE ELEMENT MUT OF A TOWN TO THE OFFICE OF THE OFFICE OF THE OFFICE APPLICABLE ONLY TO JOINTS IN WHICH ALL MATERIAL WITHIN THE GRIP IS STEEL WHEN THE BOLT LENGTH EXCEEDS 12D₂, THE REQUIRED NUT ROTATION ASHALL BE DETERMINED BY ACTUAL TESTING IN A SUITABLE FINSION SHELEM SHOWN THE SMULLATE THE CONDITIONS OF SOLIDLY FITTING STEEL

SITE NAME: SOMERS WES

MISC.NOTES:

- 1. ALL MODIFICATIONS ARE ASSUMED TO BE MADE ON AN EMPTY TOWER. CONTRACTOR IS RESPONSELE TO DAMAE PROVISIONS TO SUPPORT OR WORK AROUND EXSTING ANTENINA AND TRANSMISSION LINES. MODIFICATIONS MUST BE CONTINUOUS THROUGH ALL AREAS SHOWN.
- CONTRACTOR TO FIELD VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION

FABRICATION NOTES:

- ALL DIMENSIONS ARE PRELIMINARY UNTLEFIELD VERPIED BY CONTRACTOR, ARY CHANGES MUST BE APPROVED BY ENGINEER OF RECORD IN WRITING PRIOR TO FABRICATION AND INSTALLARION.
- NEW STEEL MEMBERS MUST HAVE SINGLE DRILLED HOLES. SLOTTED AND DOUBLE DRILLED HOLES ARE NOT ACCEPTABLE MEANS OF FABRICATION UNLESS OTHERWISE NOTED.

SUBSTITUTES AND/OR EQUALS:

I F CONTROTORNESS TO TERRIBHO ATES AS RESTRUETED FIRE OF METERNO OF GEOMETRY OF CONTROL TO THE CHARGE ATES AS RESTRUETED. THE OFFICE STREET OF THE REPORTS DESIGNATION OF THE REPORTS D

FIELD HOT WORK PLAN NOTES:

- AL CONTRACTORS RESPONSBLITY TO COMPLETE A HOT WORK PLAN IF AWARDED PER CUSTOMER SPECIFICATIONS GUIDELINES FOR WELDING, CUTTING & SPARK PRODUCING WORK.
- HAVE A FIRE PLAN APPROVED BY THE CUSTOMER AND THEIR SAFETY MANAGEMENT DEPARTMENT.
- CONTRACTOR MUST OBTAIN THE CONTACTINFO OF THE LOCAL FIRE DEPARTMENT AND 1911 ADDRESS OF THE TOWER SITE BEFORE CONSTRUCTION.
- CONTRACTOR SHALL MAKE SURE THAT CELL PHONE COVERAGE IS AMALABLE IN THE TOWER SITE IF CELL COYSTAGE IS NOT AMALABLE, AN IMMEDIATE AMALABLE MEANS OF DRECT COMMUNICATION WITH THE FIRE DEPARTMENT SHALL BE DETERMINED PRIOR TO CONSTRUCTION START.
 - ALL CONSTRUCTION SHALL BE FERCHORMED UNITER WIND SPIEDLESS THAM 10 MPH ON THE GROUND LEYEL IF WIND SPIED INCREASES, CONTRACTOR MUST DETERMINE IF CONSTRUCTION SHALL BE DISCOMMULED.
- FIRE SUPPRESSION EQUIPMENT MUST BE MADE AVAILABLE ON SITE AND READY TO USE
- ALL WELDERS SHALL BE AWS OR STATE CERTIFIED. THEY MUST ALSO BE EXPERIENCED IN WELDING ON GALVANIZED MATERIALS. CONTRACTOR SHALL ASSIGN A FIRE WATCHER TO PERFORM FIRE-FIGHTING DUTIES.
- IF IT IS POSSIBLE, ALL EXISTING COAX NEAR WELDING AREA SHALL BE TEMPORARILY MOVED AWAY FROM THE WELDING AREA BEFORE WELDING.
- PLEASE REPORT ANY FIELD ISSUE TO NB+C @ 267-460-012/

SHEETTTLE

SGN-1

SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS.

MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCE ARE COMPROMISED ALL DIMENSIONS REPRESENTED IN THIS SHEET ARE AISC MINIMUM REQUIREMENTS. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED. THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS OF PROPOSES MEMBERS WITH THESE DRAWINGS MAY VARY FROM AISC MIN REQUIREMENTS.

1 3/4" 1 1/8" 1 3/8 2 1/2" 2" Ф **WORKABLE COPING** LIMIT OF ALLOWABLE COPED PORTION OF ANGLE WITHOUT ENGINEER'S PRIOR WRITTEN APPROVAL 3 1/2" 1 3/4" 2 1/2' ķη - LOCK WASHER FLAT WASHER Þ

trupataran tolandainelu

KRUPAKARAN KOLANDAIVELU, P.E. STATE OF CONNECTICUT PROFESSIONAL ENGINEER LICENSE #PEN 0026597

8/13/2021

DESCRIPTION

08/13/21 REV DATE ٥

WORKABLE GAGES

BEVELED WASHER NOT USED.

TYPICAL BOLT ASSEMBLY

-3/4" x d

OVER 1-1/4"

2-1/4"

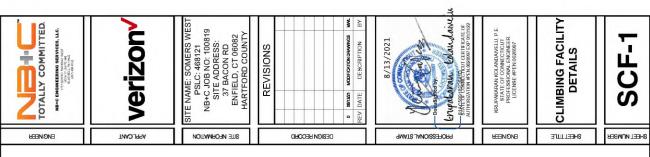
. Z

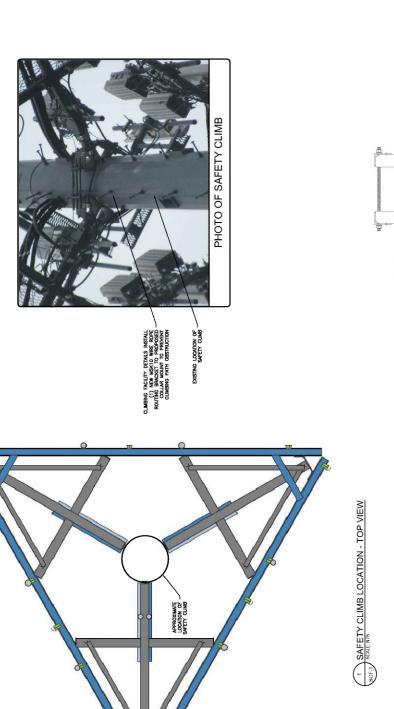
1-1/8" 1-1/4"

<u>.</u>

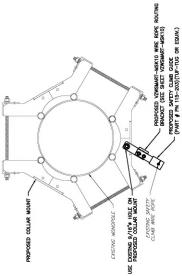
GAGE

SIZE

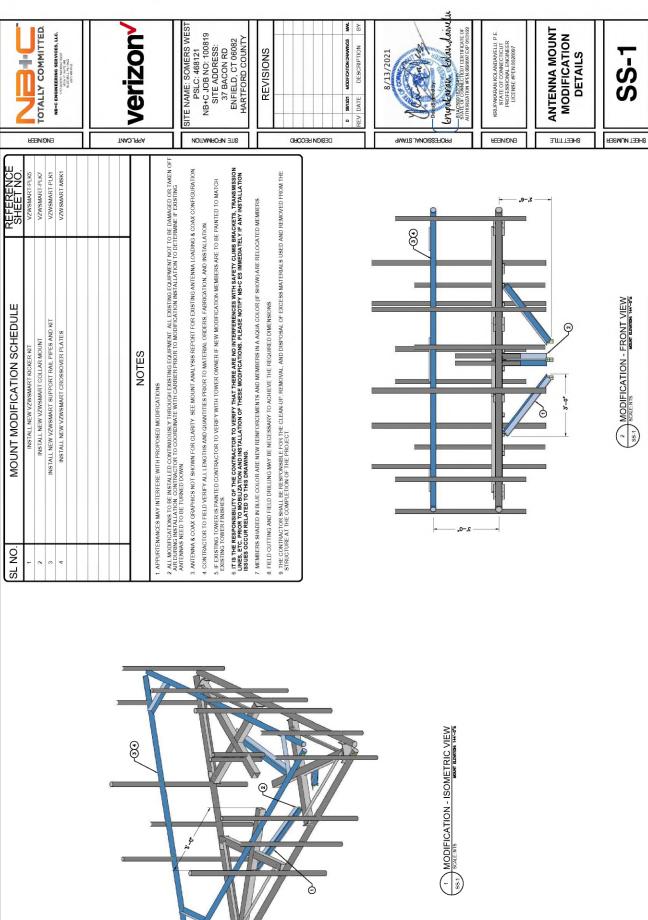

ANGLE

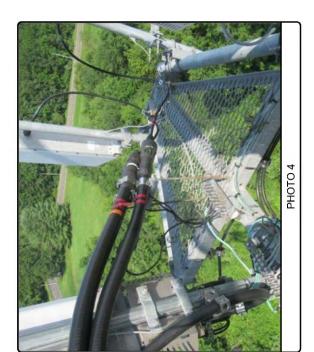

BOLT

DESIGN HECOHD


1.5 X L (MAX)

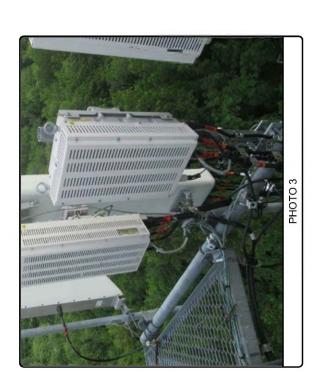
GENERAL NOTES

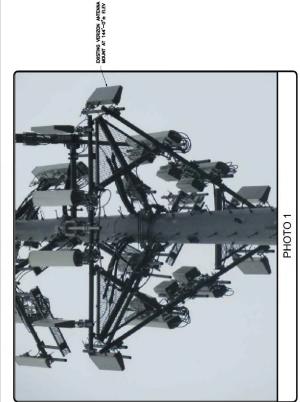


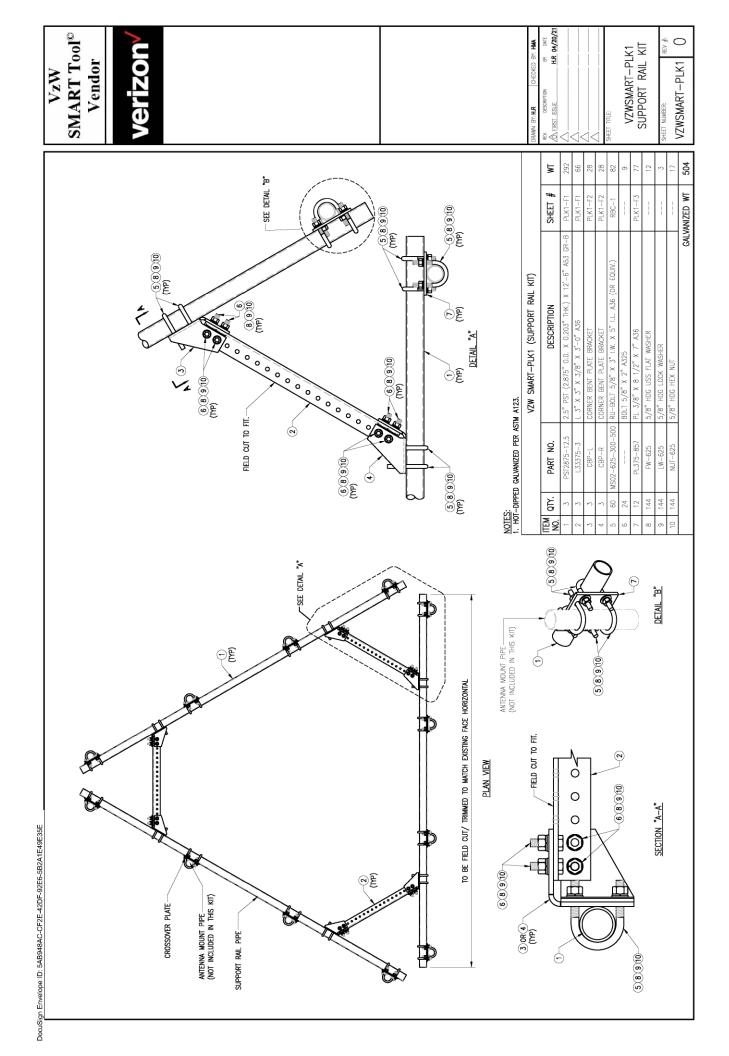

DocuSign Envelope ID: 5AB948AC-CF2E-42DF-92E6-5B2A1E49E35E

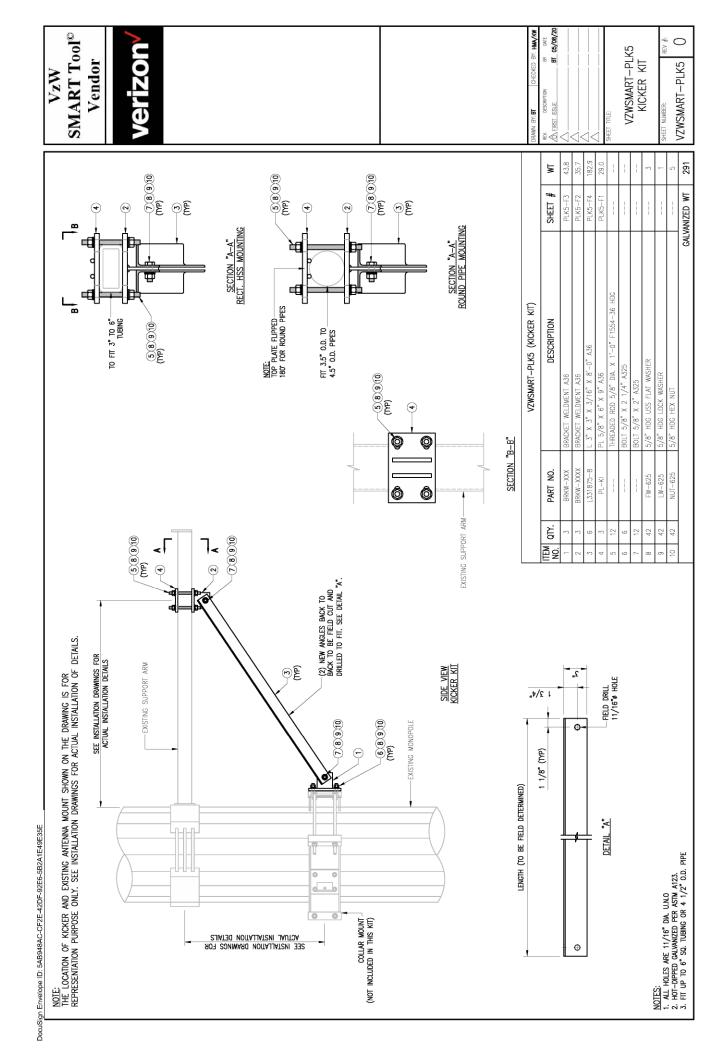
SCE-1 SCALENTS

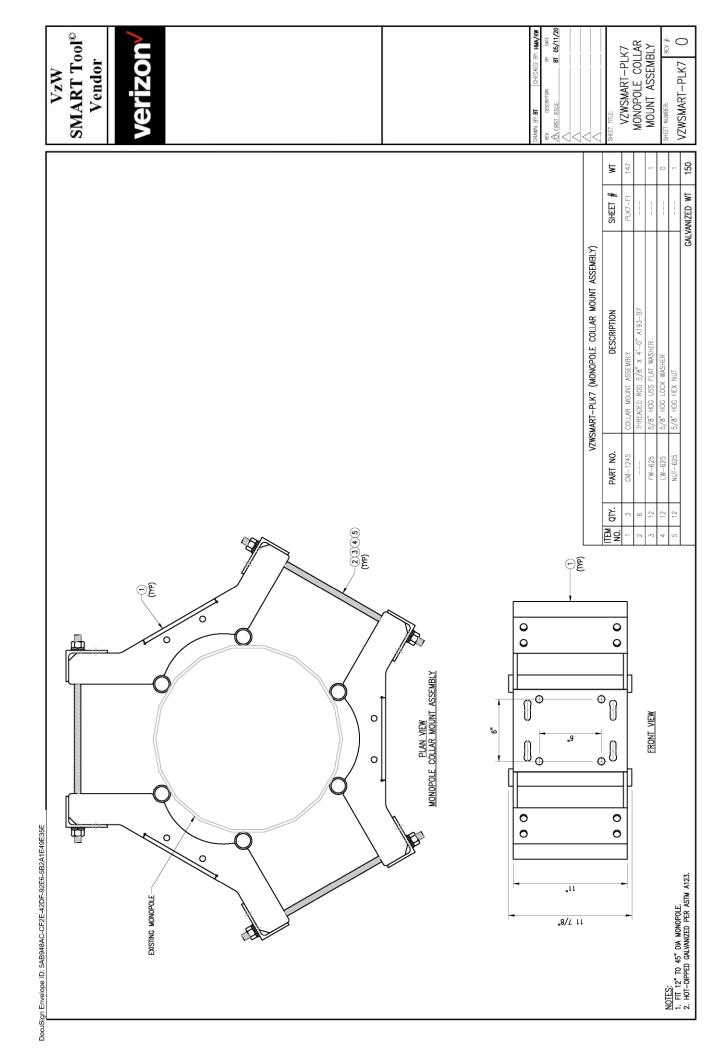
VOTE:
NSTALL SHALL NOT CAUSE HARM TO THE
NSTALL SHALL NOT CAUSE HARM TO THE
NSTACTURE, CLIMBING FACILITY, SAFETY CLIMB OR
NAY SYSTEM INSTALLED DIN THE STRUCTURE

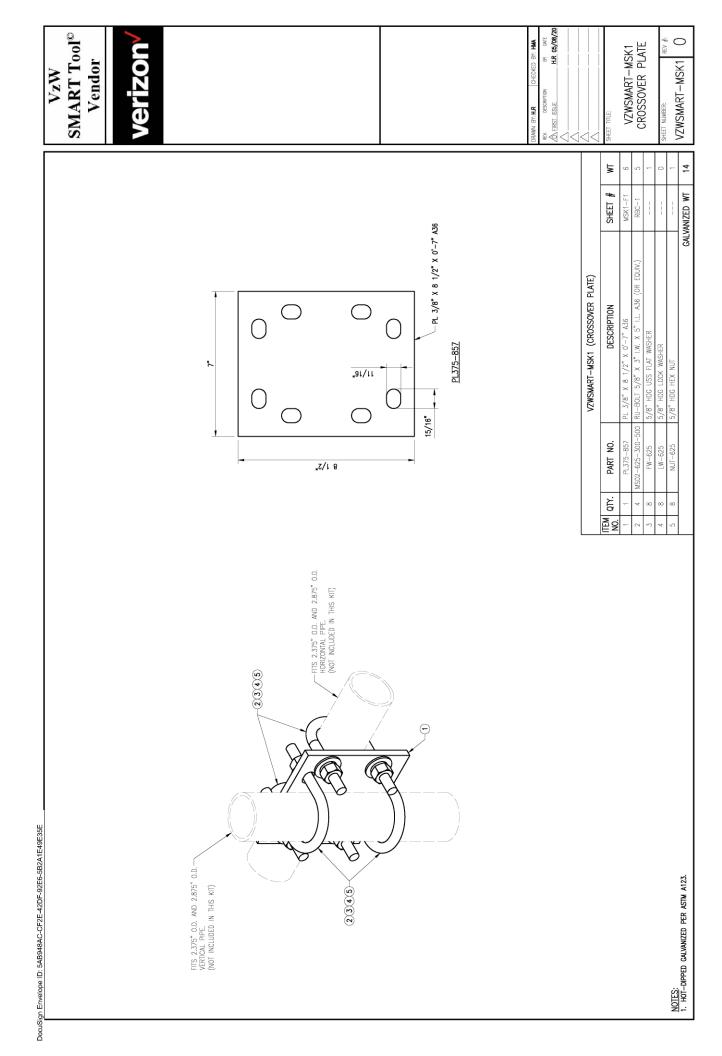

SS-2

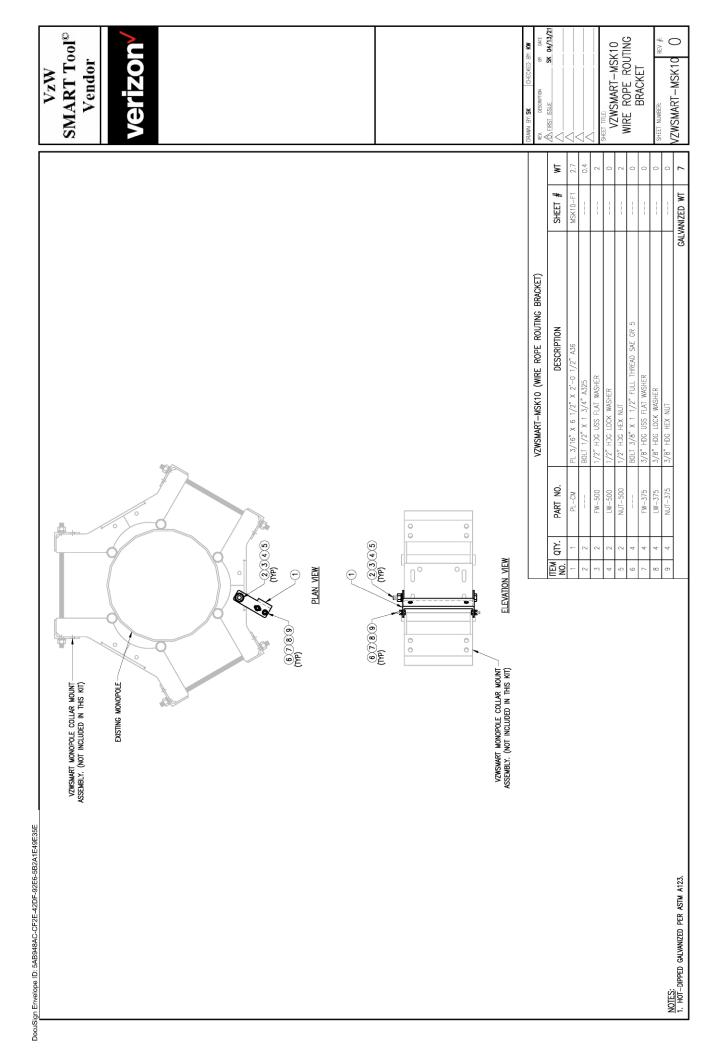

SHEET NUMBER

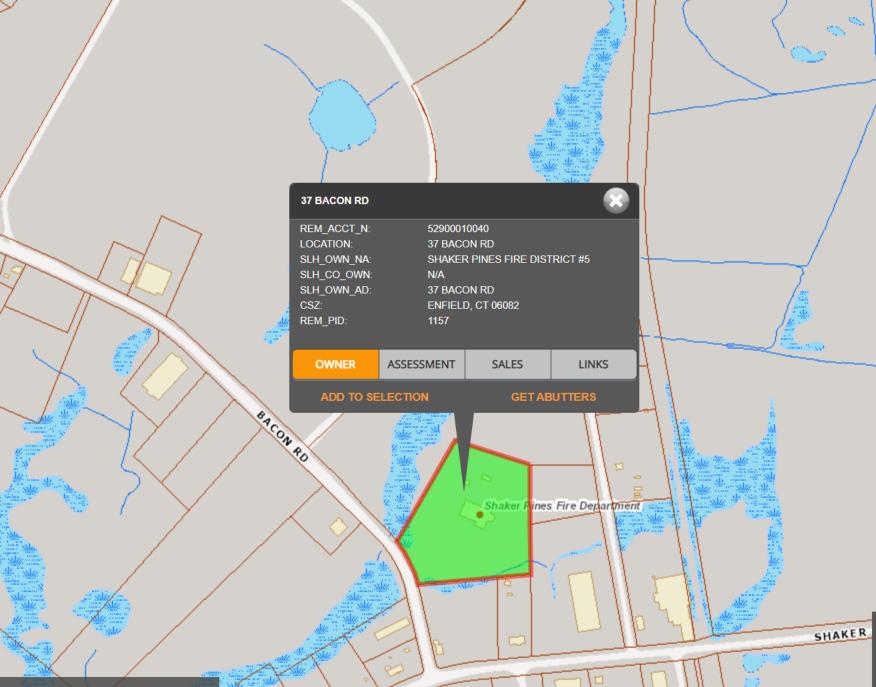

ANTENNA MOUNT PHOTOS


SHEETTINE









ATTACHMENT 5

37 BACON RD

Q Sales A Print

Location 37 BACON RD **Mblu** 094//0062//

Acct# 052900010040 Owner SHAKER PINES FIRE DISTRICT

#5

Assessment \$420,300 Appraisal \$600,400

> **PID** 1157 **Building Count** 1

Fire District 5

Current Value

	Appraisal									
Valuation Year	Improvements	Land	Total							
2021	\$384,400	\$216,000	\$600,400							
	Assessment									
Valuation Year	Improvements	Land	Total							
2021	\$269,100	\$151,200	\$420,300							

Owner of Record

Owner SHAKER PINES FIRE DISTRICT #5 Sale Price \$0 1 Co-Owner

Certificate

37 BACON RD Book & Page 0617/0455 Address

> ENFIELD, CT 06082 Sale Date Instrument

ATTACHMENT 6

ame and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date of Receipt.				
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	3	Postmaster, per (name of receiving employee)		neopost 06/24/2022 US POSTAGE \$002.990 ZIP 06103 041L12203937			
USPS® Tracking Number Firm-specific Identifier	(Name, Street, Cit	ddress y, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift	
	Ellen Zoppo-Sassu, T Town of Enfield 820 Enfield Street Enfield, CT 06082 Ben Winter, Assistan	Town Manager					
	Town of Enfield 820 Enfield Street Enfield, CT 06082		HO.	SE STA		*	
,	Shaker Pines Fire Dis 37 Bacon Street Enfield, CT 06082	strict #5	3 JUN	2/4 2022			
				SPS			
			9/				
). 							