Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

March 25, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 206 Everett Road, Easton, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Town of Easton ("Town") in September of 1999 for Nextel Communications. Cellco's shared use of the tower was approved by the Siting Council ("Council") in December of 2006 (EM-VER-046-090417). A copy of the Town's tower approval and the Council's EM-VER-046-090417 approval are included in Attachment 1.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing three (3) new Samsung MT6407-77A antennas and six (6) new MX06FRO660-03 antennas on its existing antenna platform. Cellco also intends to remove three (3) remote radio heads ("RRHs") and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antennas and RRHs are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Easton's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. March 25, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas will be installed on its existing antenna platform.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna platform, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. March 25, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

David Bindleglass, Easton First Selectman Mark DeLieto, Zoning Enforcement Officer Joan and David Barney, Property Owners Alex Tyurin, Verizon Wireless

ATTACHMENT 1

EASTON PLANNING & ZONING COMMISSION

225 CENTER ROAD

EASTON, CT., 06612

CERTIFIED MAIL RECEIPT #Z1996862361

September 29, 1999

NEXTEL COMMUNICATIONS OF THE MID-ATLANTIC d/b/a NEXTEL COMMUNICATIONS 100 Corporate Place Rocky Hill, Connecticut 06067

Attention: Susan Bellion

RE: SP-99-05, NEXTEL CUMMUNICATIONS OF THE MID-ATLANTIC, INC. d/b/a NEXTEL COMMUNICATIONS, Location: 206 Everett Road,

Map 9601, Block 1, District B

Dear Ms. Bellion:

Please be advised that the Easton Planning & Zoning Commission, at its regular meeting of September 27, 1999 voted to APPROVE your application for Special Permit for Wireless Telecommunication Tower at the above site with the stipulations and modifications set forth in EXHIBIT A, attached hereto and part of this letter.

Upon receipt of this letter, this original copy and all attached exhibits must be filed in the Easton land records at the applicant's expense. The effective date of this decision is October 15, 1999.

Yours truly,

EASTON PLANNING & ZONING COMMISSION

Robert Maguat Acting Chairman

RM:ma

cc: Attorney Daniel Leary, Cuddy & Feder & Worby

EXHIBIT A

RE: SP-99-05, Special Permit for Wireless Telecommunication Tower by Nextel Communications of the Mid-Atlantic Inc. d/b/a Nextel Communications, Location: 206 Everett Road 9/27/99

The stipulations and modifications set forth below are an integral part of the approval of the subject-named Special Permit application for construction of a Tower for mounting of Telecommunication Antenna(e). Special Permit plans and design information shall be revised to meet the following:

the Tower be constructed as to permit the installation of antenna(e) that may be required by up to and
including three additional Providers as defined in Section 7.10.2 of the Easton Zoning Regulations, with the
construction to accommodate such additional Provider(s) to be completed either

(a) in the initial Tower construction, or

- (b) by means of structural addition or other modification to the initial Tower construction in a timely manner when any such additional Provider(s) request(s) installation of their antenna(e) on the Tower; and.
- 2. In the event that Nextel constructs the Tower initially to permit subsequent addition of modification pursuant to 1(b) above, then Nextel shall furnish a bond to this Commission in the amount of \$25000 to assure timely completion of any such addition or modification, such bond to be released by the Town on either a) completion of any such additions or modifications to accommodate three Providers in addition to Nextel, or b) the expiration of five years following the effective date of this approval, whichever shall first occur; and,
- 3. Within ten days following receipt of a request from any other Provider to install their antenna(e) on the Tower, Nextel shall notify this Commission of such request and in the event of denial of any such request, Nextel shall submit a written report to this Commission in a timely manner specifying in detail the reason(s) for such denial.

EASTON PLANNING & ZONING COMMISSION

Robert Magical
Robert Maquat
Acting Chairman

AT 9:519.M. ATTEST LIST WILL FOR AN EASTON TOWN CLERK

ZONING PERMIT

ERMIT EASTON, CONN.

PERMIT NO. Z-99-1704 DATE April 26, 2000

GRANTED TO The Barney Family Trust, Alfred Barney, Dorothy Barney

206 Everett Road

7'2" x 11'2" unmenned prefabricated equipment

shelt NOTICE monopole (capable of supporting four carriers).

BEFORE CONSTRUCTION OF BUILDING
ON FOUNDATION.

Z.E.O. FOR PLANNING AND ZONING COMMISSION
Phillip Doremus

5.1.00 Regula Partes

2.294

This permit is based on information submitted with your application. If any changes or alterations are to be made which are not covered in the initial application, then a ART. IX PAR. 8.2.4 new and additional permit should be obtained.

This Notice should be posted in a conspicuous place where it is readily visible to the enforcement authority during the entire time required to complete the work.

7/8

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Internet: ct.gov/csc

May 1, 2009

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **EM-VER-046-090417** - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at Everett Road, Easton, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- The applicant shall take steps to ensure that the foundation does not exceed 100 percent of its post-construction structural rating; and
- A signed letter from a Professional Engineer duly licensed in the State of Connecticut shall be submitted to the Council to certify that the foundation does not exceed 100 percent of its postconstruction structural rating.

The proposed modifications are to be implemented as specified here and in your notice dated April 17, 2009, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

Very truly/yours

Derek Phelps

Executive Director

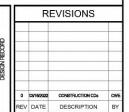
SDP/MP/laf

c: The Honorable Thomas A. Herrmann, First Selectman, Town of Easton Philip Doremus, Planning & Zoning Official, Town of Easton Thomas J. Regan, Esq., Brown Rudnick LLP

ATTACHMENT 2

SITE NAME: EASTON NORTH 2 CT

206 EVERETT ROAD EASTON, CT 06612 TOWN OF EASTON **FAIRFIELD COUNTY**



TOTALLY COMMITTED

118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

EASTON NORTH 2 CT

206 EVERETT ROAD EASTON, CT 06612 TOWN OF EASTON FAIRFIELD COUNTY

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC, #34055

TITLE SHEET

SITE INFORMATION

SITE ADDRESS:

206 EVERETT ROAD

LATITUDE (NAD 83): LONGITUDE (NAD 83): 41°-17'-25.2384"N (41.290344°) 73°-16'-57.6084"W (-73.282669°)

JURISDICTION:

PARCEL NUMBER: PROPERTY OWNER:

JOAN INT BARNEY/DAVID BARNEY 108 HIRAM HILL ROAD

TOWER OWNER SBA COMMUNICATIONS CORPORATION

BOCA RATON, FL 33487-1307

VZW SITE ID: STRUCTURE TYPE: MONOPOLE

CONSTRUCTION TYPE

USE GROUP

VICINITY MAP

SCOPE OF WORK

PROJECT CONSISTS OF INSTALLING: (3) PROPOSED DUAL ANTENNA MOUNTING BRACKETS, (9) PROPOSED ANTENNAS, (9) PROPOSED RRUS, (1) PROPOSED 12X24 (1.976"Ø) HYBRID CABLE, (1) PROPOSED OVPS, AND (3) PROPOSED COMBINERS TO AN EXISTING WIRELESS TELECOMMUNICATIONS FACILITY

PROJECT CONSISTS OF REMOVING: (9) EXISTING ANTENNAS, (3) EXISTING RRUS, (1) EXISTING OVP, AND (6) EXISTING DIPLEXERS FROM AN EXISTING WIRELESS TELECOMMUNICATIONS FACILITY.

CONTRACTOR PMI REQUIREMENTS

PMI ACCESSED AT:

HTTPS://PMI.VZWSMART.COM

SMART TOOL VENDOR PROJECT PROJECT NUMBER: VERIZON LOCATION CODE (PSLC):

100765

*** PMI AND REQUIREMENTS ALSO EMBEDDED IN MOUNT ANALYSIS REPORT

MOUNT MODIFICATION REQUIRED

YES

VERIZON APPROVED VENDORS

* REFER TO MOUNT MODIFICATION DRAWINGS.

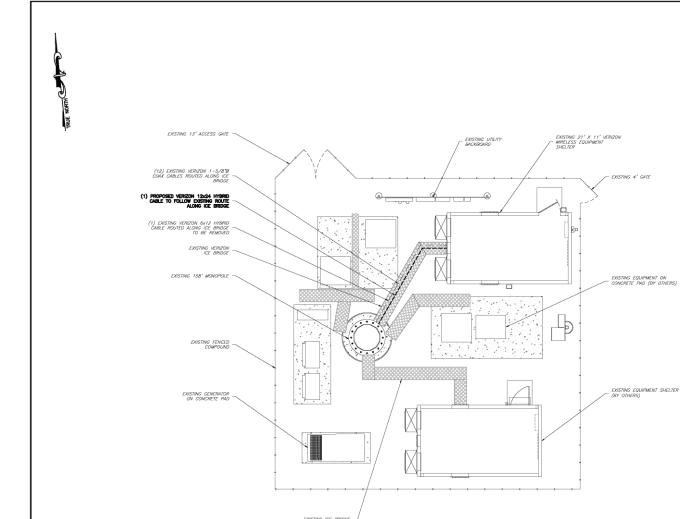
CODE COMPLIANCE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THE LATEST EDITIONS OF THE FOLLOWING CODES

- 2018 CT STATE BUILDING CODE / (2015 IBC W/ CT AMENDMENTS)
- 2018 CT STATE BUILDING CODE / (2015 IMC W/ CT AMENDMENTS)
- 2018 CT STATE BUILDING CODE
- NFPA 1-2015 EDITION
- AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE OF STEEL CONSTRUCTION
- MANUAL OF STEEL CONSTRUCTION 13TH EDITION
- ANSI/TIA-222-G
- TIA 607
- . INSTITUTE FOR ELECTRICAL & ELECTRONICS ENGINEER 81
- . IEEE C2 NATIONAL ELECTRIC SAFETY CODE LATEST EDITION
- TELECORDIA GR-1275
- ANSI/T 311

TITLE SHEET

DRAWING INDEX


COMPOUND PLAN ELEVATION EXISTING ANTENNA PLAN & SCHEDULE PROPOSED ANTENNA PLAN & SCHEDULE ANTENNA DETAILS & PLUMBING DIAGRAM EQUIPMENT SPECIFICATIONS & DETAILS SCOPE OF WORK G-1 GROUNDING DETAILS & NOTES GN-1 PMI REQUIREMENTS MODIFICATION DRAWINGS ATTACHED

DO NOT SCALE DRAWINGS

THESE DRAWINGS ARE FORMATTED TO BE FULL-SIZE AT 22"X34" CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE DESIGNER / ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR MATERIAL ORDERS OR BE RESPONSIBLE FOR THE SAME, CONTRACTOR SHALL USE BEST MANAGEMENT PRACTICE TO PREVENT STORM WATER POLLUTION DURING

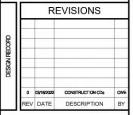
APPROVAL BLOCK

		APPROVED	APPROVED AS NOTED	DISAPPROVE REVISE
CONSTRUCTION MANAGER	DATE			
SITE ACQUISITION	DATE			
RF ENGINEER	DATE			
LESSOR/LESSOR REP	DATE			

GENERAL NOTES

- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITIES COMPANY OR OTHER PUBLIC AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION WANGER, IN WITHOU OF COPELIOR. BRONDS OR BUSINESS FOR TO THE SUBMISSION F BOX OR POPERDAMENE OF MISSIONS FOR ERRORS IN THE BID DOCUMENTS SHALL NOT RELEVE THE CONTRACTOR FROM RESPONSIBILITY FOR THE OVERALL INTENT OF THESE DRAWNINGS.
- 4. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED AS A RESULT OF CONSTRUCTION OF THIS FACILITY.
- 5. THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT, ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING
 A BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN
 ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 7. ALL STRUCTURAL ELEMENTS SHALL BE HOT DIPPED GALVANIZED STEEL.
- CONTRACTOR SHALL MAKE A UTILITY "ONE CALL" TO LOCATE ALL UTILITIES PRIOR TO EXCAVATING.
- IF ANY UNDERGROUND UTILITIES OR STRUCTURES EXIST BENEATH THE PROJECT AREA, CONTRACTOR MUST LOCATE IT AND CONTACT THE APPLICANT & THE OWNER'S REPRESENTATIVE.
- OCCUPANCY IS LIMITED TO PERIODIC MAINTENANCE AND INSPECTION BY TECHNICIANS APPROXIMATELY 2 TIMES PER MONTH.
- THIS PLAN IS SUBJECT TO ALL EASEMENTS AND RESTRICTIONS OF RECORD.
- NO SIGNIFICANT NOISE, SMOKE, DUST, OR ODOR WILL RESULT FROM THIS FACILITY.
- THE FACILITY IS UNMANNED AND NOT INTENDED FOR HUMAN HABITATION (NO HANDICAP ACCESS REQUIRED).
- 14. THE FACILITY IS UNMANNED AND DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE.

TOTALLY COMMITTED.

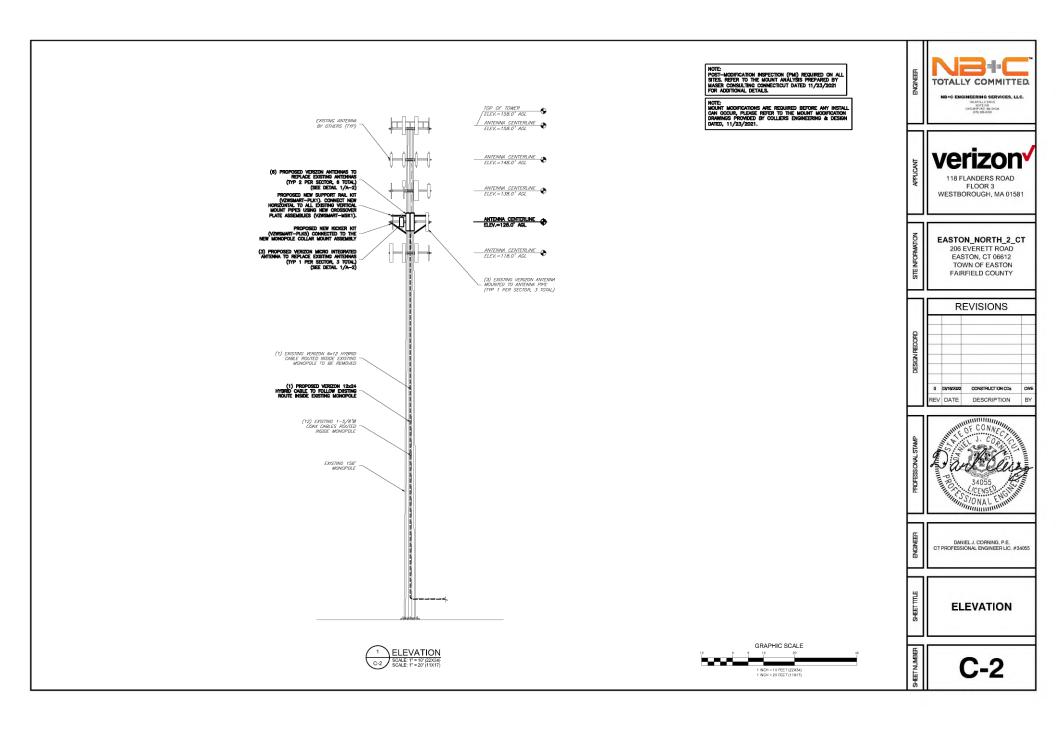

NB+C ENGINEERING SERVICES, LLC. 100 APOLL O DAIVE BUTE BIS

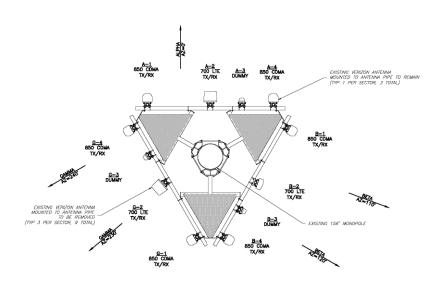
118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

EASTON_NORTH_2_CT 206 EVERETT ROAD EASTON, CT 06612

EASTON, CT 06612 TOWN OF EASTON FAIRFIELD COUNTY

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC, #34055


COMPOUND PLAN


C-1

1 COMPOUND PLAN SCALE: 1" = 5'(22X34) SCALE: 1" = 10'(11X17) GRAPHIC SCALE

0 2.8 0 10 20

1 NO1 = 6 FEET (22/349

	EXISTING ANTENNA & RRH SCHEDULE										
ANTENNA	ANTENNA	ANTENNA	RAD	A 711 AL LTL	DOW	N TILT	RRH QUANTITY	TECHNOLOGY	CABLE SIZE, LENGTH		
POSITION	MANUFACTURER	MODEL	CENTER	AZIMUTH	месн	ELEC	& MODEL	TECHNOLOGY	& QUANTITY		
A-1	ANDREW	DB846F65ZAKY	128.00'	0-	2.	0.	-	-			
A-2	SWEDCOM	SLCP 2X6014	128.00"	0*	3'	0*	(1) UHBA B13 RRH 4x30	700 LTE	(4) 1-5/8" Ø COAX CABLES		
A-3	AMPHENOL.	BXA-171063-128F	128.00"	0*	-	1	-	-	(180'±)		
A-4	ANDREW	DB846F65ZAXY	128.00'	0"	2"	O*	1	-			
B-1	ANDREW	DB846F65ZAXY	128.00'	110*	2'	0*	-	-			
B-2	AMPHENOL	BXA-70063-6BF- EDIN-0	128.00"	110	0*	0*	(1) UHBA B13 RRH 4×30	700 LTE	(4) 1-5/8" Ø COAX CABLES		
B-3	AMPHENOL	BXA-171063-12BF	128.00"	120*	-	-	-	-	(180°±)		
B-4	ANDREW	DB846F65ZAXY	128.00'	120*	2'	0*	-	-			
G-1	ANDREW	DB846F65ZAXY	128.00*	240°	2'	0*	-	-			
G-2	SWEDCOM	SLCP 2X6014	128.00*	230*	2"	0*	(1) UHBA B13 RRH 4x30	700 LTE	(4) 1-5/8" Ø COAX CABLES		
G-3	<i>AMFHENOL</i>	BXA-171063-12BF	128.00*	240*	-	-	-	-	(180'±)		
G-4	ANDREW	DB846F65ZAXY	128.00*	240*	2.	0.	-	-			

NOTES:

1. PLANS PREPARED PER RF SHEET DATED 09/28/2021. CONTRACTOR TO VERIFY PROPOSED ANTENNA INFORMATION IS THE MOST CURRENT DATA AT TIME OF CONSTRUCTION.

2. CONTRACTOR TO CONFIRM CABLE LENGTHS PRIOR TO CONSTRUCTION.

TOTALLY COMMITTED

verizon

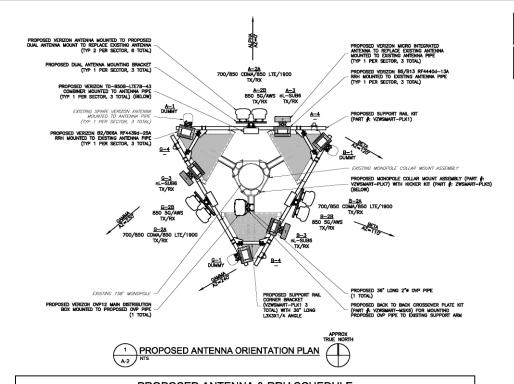
118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

100 AFOLL O DRIVE BUITE SIE CHELMSFORD, MA 01624 (\$73) 859 6308

EASTON_NORTH_2_CT
206 EVERETT ROAD
EASTON, CT 06612
TOWN OF EASTON
FAIRFIELD COUNTY

REVISIONS

0 00160000 CONSTRUCTION COMREV DATE DESCRIPTION BY


DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC, #34055

EXISTING
ANTENNA PLAN
SCHEDULE

A-1

GENERAL ANTENNA NOTES

- ALL ANTENNAS TO BE FURNISHED WITH DOWNTILT BRACKETS. CONTRACTOR TO COORDINATE REQUIRED MECHANICAL DOWNTILT FOR EACH ANTENNA WITH RF ENGINEER.
- 3. CHECK WITH RF ENGINEER FOR LATEST ANTENNA TYPE & AZIMUTH.
- CONTRACTOR SHALL VERIFY ANTENNA TYPE AND AZIMUTH WITH CONSTRUCTION MANAGER PRIOR TO CONSTRUCTION.
- 5. ALL CABLE LENGTHS ARE ESTIMATED AND SHALL BE FIELD VERIFIED BY THE CONTRACTOR.
- COLOR TAPE MARKINGS MUST BE 3/4" WIDE AND UV RESISTANT, SUCH AS SCOTCH 35 VINYL ELECTRICAL COLOR CODING TAPE.
- CONTRACTOR SHALL COORDINATE COLOR CODINGS IN THE FIELD WITH VERIZON REPRESENTATIVE.
- A STRUCTURAL ANALYSIS REPORT HAS BEEN ISSUED BY TOWER ENGINEERING SOLUTIONS, DATED 03/07/2022 TO CERTIFY THAT THE EXISTING/PROPOSED COMMUNICATION STRUCTURE AND COMPONENTS ARE STRUCTURALLY ADEQUATE TO SUPPORT ALL EXISTING AND PROPOSED AMERINAS, COMMU, CAUSES AND OTHER PREVIETE/ANGES.

		PROF	POSED	ANTE	NA & I	RRH SC	HEDULE		
ANTENNA	ANTENNA	ANTENNA	RAD	AZIMUTH	DOW	N TILT	RRH QUANTITY	TECHNOLOGY	CABLE SIZE,
POSITION	MANUFACTURER	MODEL	CENTER	AZIMOTTI	MECH ELEC		& MODEL	LCINOLOGI	& LENGTH
A-1	ANDREW	DB846F65ZAXY	128.00"	0*	-	ı	1	-	(4) 1-5/8°ø
A-2a	JMA WIRELESS	MX06FR0660-3	128.00*	σ	0/2/0/0	2/2/2/2	(1) RF4440D-13A	700/850	COAX (180'±)
A-2b	JMA WIRELESS	MX06FR0660-3	128.00*	O.	σ/σ	2/2	(1) RF4439D-25A	1900/AWS	
A-3	SAMSUNG	MT6407-77A	128.00*	ď	σ	6	INTEGRATED IN ANTENNA	nL-Sub6	SHARED THROUGH HYBRID CABLE
A-4	EMPTY	ı	-	-	-	ı	ı	-	THE GREET
	11/00/2011	0004050574444		1001	1				
B-1	ANDREW	DB846F65ZAXY	128.00"	120'	_	-		_	(4) 1-5/8°¢
B-2a	JMA WIRELESS	MX06FR0660-3	128.00*	110*	0/2/0/0	Z/Z/Z/Z	(1) RF4440D-13A	700/850	COAX (180'±)
B-2b	JMA WIRELESS	MX08FR0680-3	128.00*	110*	07/07	2/2	(1) RF4439D-25A	1900/AWS	
B-3	SAMSUNG	MT6407-77A	128.00'	110*	σ	e	INTEGRATED IN ANTENNA	nL-Sub6	SHARED THROUGH HYBRID CABLE
B-4	EMPTY	-	-	-	-	-	-	-	mana Gene
G-1	ANDREW	DB846F65ZAXY	128.00*	240*	-	-	-	-	
G-2a	JMA WIRELESS	MX06FR0660-3	128.00*	230*	0/2/0/0	2/2/2/2	(1) RF4440D-13A	700/850	(4) 1-5/8°¢ COAX
G-2b	JMA WIRELESS	MX06FR0660-3	128.00*	230*	0/0	2/2	(1) RF4439D-25A	1900/AWS	(180°±)
G-3	SAMSUNG	MT6407-77A	128.00*	230*	σ	6"	INTEGRATED IN ANTENNA	nL-Sub6	(1) 12x24 HYBRID CABLE (180'±)
G-4	EMPTY	-	-	-	-	-	_	-	(130 ±)

NOTES:

NOTES:

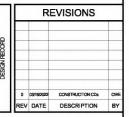
ONNICATION TO VERIFY PROPOSED ANTENNA INFORMATION IS THE MOST CURRENT DATA AT TIME OF CONSTRUCTION.

CONTRACTOR TO CONFIRM CABLE LEMENTS PRIOR TO CONSTRUCTION.

CONTRACTOR IS RESPONSIBLE TO BUILD FROM THE LATEST RESPECT.

POST-MODIFICATION INSPECTION (PMI) REQUIRED ON ALL SITES. REFER TO THE MOUNT ANALYSIS PREPARED BY MASER CONSULTING CONNECTICUT DATED 11/23/2021 FOR ADDITIONAL DETAILS.

NOTE:
MOUNT MODIFICATIONS ARE REQUIRED BEFORE ANY INSTALL
CAM OCCUR, PLEASE REFER TO THE MOUNT MODIFICATION
DRAWINGS PROVIDED BY COLLIERS ENGINEERING & DESIGN DATED, 11/23/2021.

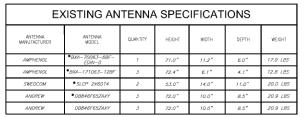

TOTALLY COMMITTED.

100 APOLLO DRIVE BUTE 800 CHELMBFORD, MA 01504 8750 MA 8366

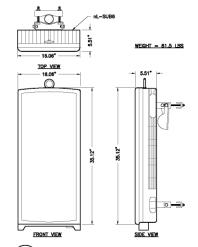
verizor

118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

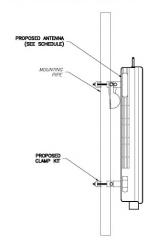
EASTON NORTH 2 CT 206 EVERETT ROAD EASTON, CT 06612 TOWN OF EASTON FAIRFIELD COUNTY

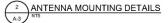


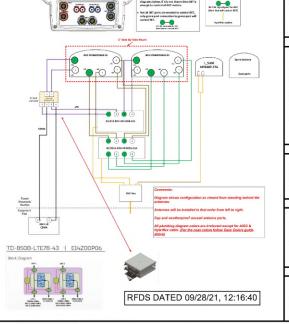
DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC: #34055

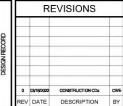

PROPOSED ANTENNA PLAN & SCHEDULE

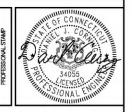
A-2




* TO BE REMOVED

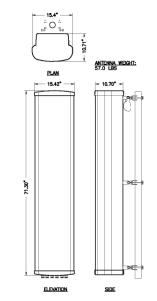

	PROPOSED ANTENNA SPECIFICATIONS								
	ANTENNA ANTENNA QUANTITY HEIGHT WIDTH DEPTH WEIGHT								
Γ	JMA WIRELESS	MX06FR0660-03	6	71.30"	15.42"	10.70"	57.0 LBS		
	SAMSUNG MT8407-77A 3 35.12" 16.06" 5.51" 61.5 LBS								


Port 3,4,5, & 6 are for high band (1695-2360 MHz).



118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

EASTON_NORTH_2_CT
206 EVERETT ROAD
EASTON, CT 06612
TOWN OF EASTON
FAIRFIELD COUNTY



DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #34065

ANTENNA DETAILS & PLUMBING DIAGRAM

A-3

JMA WIRELESS DUAL-MOUNT ANTENNA BRACKET DETAIL

MX06FRO660-03 ANTENNA DETAILS

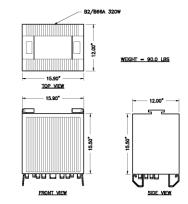
EXISTING RRH EQUIPMENT SPECIFICATIONS								
MANUFACTURER	MODEL #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT	
NOKIA	◆ UHBA B13 RRH 4x30	SHELTER	3	21.60"	12"	9.0"	56.7 LBS	

* TO BE REMOVED

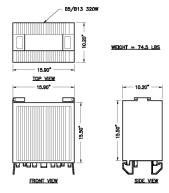
PRO	PROPOSED RRH EQUIPMENT SPECIFICATIONS								
MANUFACTURE	R MODEL. #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT		
SAMSUNG	RF4440d-13A	TOWER	3	15.50°	15.90"	10.20*	74.5 LBS		
SAMSUNG	RF4439d-25A	TOWER	3	15.50°	15.90"	12.00*	90.0 LBS		

	EXISTING DISTRIBUTION EQUIPMENT SPECIFICATIONS								
MANUFRACUTRER	MODEL #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT		
RFS	●08-B1-6C-12AB-0Z (OVP6)	SHELTER	1	28.93"	15.73"	10.3"	32.0 LBS		

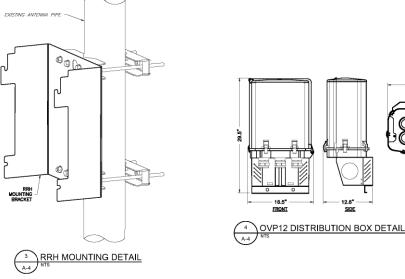
* TO BE REMOVED


PROPOSED DISTRIBUTION EQUIPMENT SPECIFICATIONS							
MANUFACTURER	MODEL #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT
RFS	DB-C1-12C-24AB-0Z (OVP12)	TOWER	1	29.49"	16.54"	12.56*	32.0 LBS

EXISTING DIPLEXER EQUIPMENT SPECIFICATIONS							
MANUFRACUTRER	MODEL #	LOCATION	QUANTITY	HEIGHT	WIDTH	DEPTH	WEIGHT
RFS	* FD9R6004/2C-3L	TOWER	6	5.8"	6.5"	1.5*	3.1 LBS

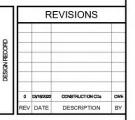

^{*} TO BE REMOVED

	PROPOSED COMBINER EQUIPMENT SPECIFICATIONS							
MANUFRACUTRER MODEL # LOCATION QUANTITY HEIGHT WIDTH DEPTH WEIGHT						WEIGHT		
COMMSCOPE	COMMSCOPE TD-850B-LTE78-43 TOWER 3 15.4" 15.2" 6.7" 52.9 LBS							



1 B2/B66A RF4439D-25A (REMOTE RADIO HEAD)

B5/B13 RF4440D-13A (REMOTE RADIO HEAD)



118 FLANDERS ROAD FLOOR 3 WESTBOROUGH, MA 01581

EASTON_NORTH_2_CT 206 EVERETT ROAD EASTON, CT 06612 TOWN OF EASTON FAIRFIELD COUNTY

DANIEL J, CORNING, P.E. CT PROFESSIONAL ENGINEER LIC, #34055

EQUIPMENT SPECIFICATIONS & DETAILS

A-4

VERIZON WIRELESS CONTRACTOR SCOPE OF WORK

MOP FOR RET INSTALLS

- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL THE PROPOSED CABLE JUMPER (WITH LC TO LC CONNECTORS) FROM THE PROPOSED FIBER TRAYS TO THE PROPOSED MAIN DISTRIBUTION BOX (BÓTTOM).
- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL ALL MOUNTING HARDWARE AND 1/2" ANTENNA JUMPER CABLES AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED MAIN DISTRIBUTION BOXES (BOTTOM) INSIDE OF THE EXISTING EQUIPMENT SHELTER. THE CONTRACTOR IS TO VERIFY THE LOCATION IN THE EQUIPMENT SHELTER PRIOR TO CONSTRUCTION.
- · VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED MAIN DISTRIBUTION BOXES (TOP) IN THE ALPHA SECTOR MOUNTED ON THE PLATFORM ARM.
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL (1) RUN OF 12/24 HYBRID CABLE FROM THE PROPOSED MAIN DISTRIBUTION BOX (BOTTOM) TO THE MAIN DISTRIBUTION BOX (TOP) FOLLOWING THE PATH OF THE EXISTING CABLES.
- · VERIZON WIRELESS CONTRACTOR IS TO MAKE ALL ALARM CONNECTIONS TO THE DISTRIBUTION BOXES AND LEAVE A 40' COIL FOR OTHERS TO PUNCH INTO ALARM BLOCK.
- VERIZON WIRELESS CONTRACTOR IS TO SEAL ALL DISTRIBUTION BOXES AS REQUIRED DURING CONSTRUCTION.
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL (9) RUNS OF HELIAX 1/1 HYBRID CABLE FROM THE PROPOSED MAIN DISTRIBUTION BOXES TO THE REMOTE RADIO HEAD UNITS.
- VERIZON WIRELESS CONTRACTOR IS TO SUPPLY AND INSTALL 1/2" ANTENNA JUMPERS FROM EACH PROPOSED REMOTE RADIO HEAD UNIT (RRH) TO THE PROPOSED ANTENNAS IN ALL SECTORS (36 TOTAL 1/2" ANTENNA JUMPERS).
- VERIZON WIRELESS CONTRACTOR IS TO INSTALL THE PROPOSED REMOTE RADIO HEAD UNITS IN ALL SECTORS ON THE ANTENNA PIPE.
- · VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL REMOTE RADIO HEAD UNITS (RRH) AND DISTRIBUTION BOXES TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION.
- · VERIZON WIRELESS CONTRACTOR IS TO GROUND ALL PROPOSED ANTENNAS TO THE EXISTING GROUND BARS AS REQUIRED DURING CONSTRUCTION.
- · VERIZON WIRELESS CONTRACTOR IS TO COMPLETE THE INSTALLATION OF THE PROPOSED ANTENNAS AND HYBRIFLEX CABLE SYSTEM.
- VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING OPTICAL SWEEP TESTS; OTDR AND OPTICAL LOSS. RECOMMENDED UNITS - ANRITSU MT9090, JDSU, EXFO FTB-1/FTB-720 OTDR.
- VERIZON WIRELESS CONTRACTOR IS TO PERFORM THE FOLLOWING ANTENNA SYSTEM SWEEP TESTS: SYSTEM VZWR / dB RL.
- VERIZON WIRELESS CONTRACTOR IS TO PROVIDE ALL CLOSE OUT DOCUMENTS AS REQUIRED BY VERIZON WIRELESS.

SAMSUNG RRH

- DUAL RRH B2/B66A RF4439D-25A HELIAX 1/1 HYBRID CABLE CABLE MUST BE CONNECTED TO THE LO PRIMARY PORT AND (1) EXTRA PAIR OF FIBER CONNECTED TO L1 SECONDARY PORT.
- DUAL RRH B5/B13 RF4440D-13A HELIAX 1/1 HYBRID CABLE MUST BE CONNECTED TO THE LO PRIMÁRY PORT.

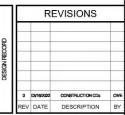
INTEGRATED ANTENNA

• MT6407-77A 1/1 HYBRID CABLE MUST BE CONNECTED TO OPT1 PORT AND (3) EXTRA FIBER CABLE TO THE SECONDARY OPT2 PORT.

- ANTENNA CREW
- REVIEW ANTENNA SCHEDULE WITH CELL TECH
- FOR EACH SECTOR, LAY ANTENNAS OUT ON THE GROUND AS THEY WILL BE INSTALLED ACCORDING TO THE ANTENNA SCHEDULE
- LABELED EACH ANTENNA WITH FACE AND POSITION WITH A SHARPIE (EX:"ALPHA-4")
- LABEL ALL MOTORS WITH SHARPIE WITH BAND AND TECHNOLOGY (EX: "700LTE", "AWSLTE", "PCSLTE", "850VOICE",
- CONNECT ALL AISG CABLES (INCLUDING JUMPERS THAT WILL BE USED IN FINAL ASSEMBLY) PER THE ANTENNA SCHEDULE
 - A. WHEN DAISY CHAINING IS INEVITABLE, AS A GENERAL RULE...
 - I. KEEP LOW AND HIGH BANDS ON SEPARATE AISG CHAINS AS MUCH AS POSSIBLE
 - II. MINIMIZE AMOUNT OF MOTORS PER CHAIN AS MUCH AS POSSIBLE (MAX IS 6)
 - B. WHEN COMPLETED ALL RET MOTOR PORTS NEED TO BE CONNECTED, INCLUDING THE MOTORS NOT BEING USED YET. THE ONLY UNUSED PORT WILL BE THE LAST IN THE DAISY CHAIN, WHICH NEEDS TO BE CAPPED AND WEATHERPROOFED.
- 6. ON LAPTOP, FILL OUT THE SOFTCOPY OF THE RET DEPLOYMENT FORM AND SAVE IT, REPLACING THE "######" WITH THE 6-DIGIT ENB NUMBER IN THE FILENAME (EX: RET DEPLOYMENT FORM_0981234.XLSX")
- GIVE A SOFTCOPY OF THE RET DEPLOYMENT FORM TO VZW CELL TECH AND GC/CONSULTANT (EITHER BY EMAIL OR USB STICK)
- USING THE SAME LAPTOP WHICH HAS THE RET DEPLOYMENT FORM OPENED, CONNECT THE CONTROL MODULE AND PROVISION EACH MOTOR RESPECTIVELY
- NOTE: CREWS MUST USE SOFTWARE THAT IS SPECIFIC TO THE MOTOR TYPE BEING PROVISIONED (IE- JMA SOFTWARE SHOULD ONLY BE SUED FOR JMA MOTORS)
- A. COPY AND PASTE "RET FRIENDLY NAME" FROM SPREADSHEET (COLUMN A) TO THE "SECTOR ID" FIELD OF FACH MOTOR
- B. POPULATE "SET RET TILT"
- C. POPULATE "MECHANICAL TILT"
- CALIBRATE ALL MOTORS
- 10. DISCONNECT NECESSARY AISG JUMPERS TO TRANSPORT ANTENNAS SAFELY TO ASSEMBLY
- 11. INSTALL ANTENNAS ACCORDING TO THE ANTENNA SCHEDULE, USING THE SHARPIE LABELS AS REFERENCE
- 12. RECONNECT ALL AISG JUMPERS
- BEFORE PLUGGING INTO EACH RRH, CONNECT MAIN AISG CABLE INTO CONTROLLER TO ENSURE ALL MOTORS ARE DAISY CHAIN STILL SEEN IN THE
- 14. PLUG AISG INTO RRH AND NOTIFY VZW TECH OF COMPLETION

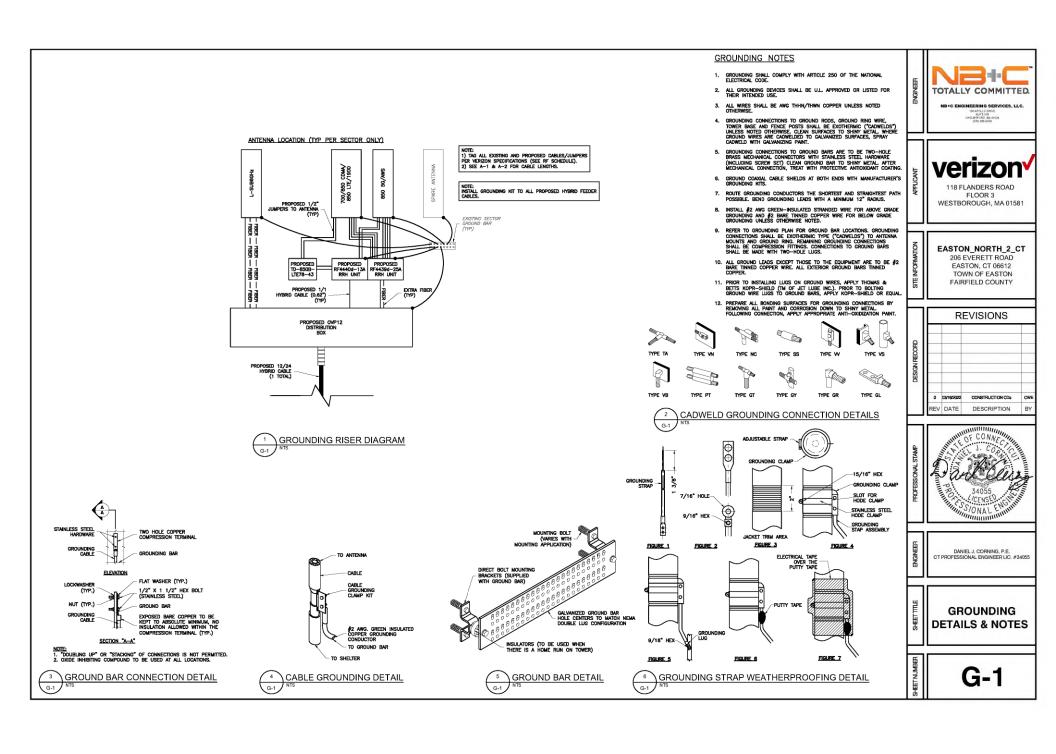
VZW TECH (USER HELP GUIDE: \\WIN-VZWNET\NORTHEAST\PAPM_IMPLEMENTATION\SYSTEM PERFORMANCE\USERS\MOSERGA\RET\)

- 15. POWER ON RADIO EQUIPMENT AND RUN ANY NECESSARY WOS
- 16. "DISCOVER" THE RETS
 - A. LOG INTO SAM
 - I. VERIFY RET LICENSE ALLOCATION IN SAM
 - ENBEQUIPMENT>ENB>ACTIVATIONSERVICE>ISAISGALLOWED=CHECKED
 - B. LOG INTO NEM LOCAL
 - I. GO TO TREE VIEW AND HIGHLIGHT RET SUBUNIT
 - II. ENABLE BUS SCAN
 - · CONFIGURATION> ENABLE AISG BUS SCAN
 - III. ALLOCATE CONFIG RIGHTS
 - CONFIGURATION>ALLOCATION CONFIGURATION RIGHTS
 - IV. VERIFY CORRECT NUMBER OF RETS ARE DISCOVERED
- 17. "COMMISSION" THE RETS
 - A. LOG INTO NEM LOCAL
 - I. STILL IN TREE VIEW, RIGHT CLICK ON "HW MODULES"
 - II. SELECT "CREATE RET MO"
 - II. RELEASE CONFIG RIGHTS
 - CONFIGURATION>RELEASE CONFIGURATION RIGHTS
 - IV. VERIFY RETSUBUNIT:SECTORNAME, ELECTRICAL TILT, AND MECHANICAL TILT ARE POPULATED
- 18. "PROVISION" THE RETS
 - A. LOG INTO SAM
 - I. OPEN UP THE ENB PROPERTIES AND COMPLETE A FULL RESYNC
 - II. IN THE SEARCH TEXTBOX, SEARCH FOR "RETSUBUNIT"
 - III. VERIFY ALL RETS ARE ACCOUNTED FOR AND "RETSUBUNIT:SECTORNAME", "ANTENNAELECTICALTILT", AND "RETSUBUNIT:MECHANICALTILT" ARE ACCURATE



BUITE DIN CHELMSFORD, WA 01824

WESTBOROUGH, MA 01581


EASTON NORTH 2 CT 206 EVERETT ROAD EASTON CT 06612 TOWN OF EASTON FAIRFIELD COUNTY

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC, #34055

SCOPE OF WORK

POST-MODIFICATION INSPECTION (PMI) REQUIREMENT

- PMI REQUIRED FOR ALL SITES, REFER TO VERIZON NSTD-446 SECTIONS 1.5 AND 2.3 FOR MORE INFORMATION.
- 2. REFER TO THE MOUNT ANALYSIS BY XXX DATED XXX FOR ADDITIONAL DETAILS.
- GENERAL CONTRACTOR SHALL PROVIDE THE BELOW DOCUMENTATION TO THE ENGINEER OF RECORD VIA EMAIL TO <u>VZWMOUNTS@NBCLLC.COM</u>, DROPBOX, OR OTHER FILESHARE METHOD. PROVIDE HIGH RESOLUTION PHOTOS (DO NOT COMPRESS).
- 4. ENGINEER OF RECORD WILL CONDUCT A REVIEW OF THE PROVIDED DOCUMENTS TO PREPARE A PMI REPORT. ENGINEER OF RECORD WILL NOTIFY GENERAL CONTRACTOR IF ANY ADDITIONAL DOCUMENTATION IS REQUIRED TO COMPLETE THE PMI.
- PMI DOCUMENTATION SHALL BE SUFFICIENT TO CONFIRM THE UPGRADE WAS BUILT AS DESIGNED, INCLUDING EQUIPMENT CHANGES AND STRUCTURAL MODIFICATIONS, AND IS IN ADDITION TO ANY OTHER REQUIRED CLOSEOUT PACKAGE DOCUMENTATION.
- REQUIRED DOCUMENTATION FOR PMI INCLUDES THE FOLLOWING AT A MINIMUM. REFER TO THE MOUNT ANALYSIS FOR POSSIBLE ADDITIONAL INFORMATION. IF STRUCTURAL MODIFICATIONS ARE REQUIRED, REFER TO THE MODIFICATION DRAWINGS FOR POSSIBLE ADDITIONAL REQUIREMENTS.

6A. PROVIDE PRE-AND-POST CONSTRUCTION PHOTOS OF EACH SECTOR FROM THE MOUNT ELEVATION AND THE GROUND. CONTRACTOR IS RESPONSIBLE FOR ENSURING THE PHOTOS PROWIDED PROVIDE POSITIVE CONFIRMATION THAT THE MODIFICATION/UPGRADE WAS COMPLETED IN ACCORDANCE WITH THESE CONSTRUCTION DRAWINGS AND ANY STRUCTURAL/MOUNT MODIFICATION DRAWINGS. CONTRACTOR SHALL RELAY ANY DATA THAT CAN IMPACT THE PERFORMANCE OF THE MOUNT OR MOUNT MODIFICATION, INCLUDING SAFETY ISSUES. PHOTOS SHALL HAVE A DATE/TIME STAMP IN THE PHOTO. REFER TO THE MOUNT ANALYSIS FOR FILE STRUCTURE SCHEDULE OF PHOTOS. PROVIDE PHOTOS OF THE GATE SIGNS AND CARRIER SHELTER TO IDENTIFY THE TOWER OWNER, SITE NAME, SITE NUMBER, ETC.

6B. VERIFICATION OF THE MEMBER CONNECTIONS. BRACING. AND RELEVANT DIMENSIONS.

6C. VERIFICATION OF THE ANTENNA AND OTHER EQUIPMENT CONFIGURATION (PHOTOS OF MODEL NUMBERS/TAGS FOR ALL EQUIPMENT, AS WELL AS THE FEEDLINE CONFIGURATION). TAKE PHOTOS OF THE BACK SIDE OF EACH SECTOR AS WELL AS CLOSE—UPS OF ALL EQUIPMENT. PHOTOS SHOULD CONFIRM THE HORIZONTAL AND VERTICAL POSITIONING OF THE ANTENNAS AND EQUIPMENT AND SHALL HAVE TAPE MEASURES IN THE PHOTOS TO CONFIRM.

6D. FOR TIE—BACKS, STRUTS, MOUNT PIPES, PHOTOS TO CONFIRM THE ANGLES AND LOCATION OF ATTACHMENT POINT AT BOTH ENDS OF MEMBER, AS WELL AS DIMENSIONS, THICKNESS, AND LENGTHS OF THE MEMBERS. REFER TO THE CHECKLIST IN THE MOUNT ANALYSIS FOR ADDITIONAL INFORMATION.

6E. MOUNT ATTACHMENT TO THE SUPPORTING STRUCTURE, INCLUDING ANY KICKERS OR SUPPORTS. OR TIEBACKS.

6F. MATERIALS USED (TYPE, STRENGTH, DIMENSIONS, ETC). PROVIDE BILL OF MATERIALS AND MATERIAL SPEC TO CONFIRM MATERIAL GRADES AND SIZES. PROVIDE DOCUMENTATION FOR GALVANIZATION OF MEMBERS WHETHER HOT-DIPPED OR COLD-GALVANIZED. IF MATERIALS DIFFER FROM THOSE SPECIFIED ON THESE DRAWINGS, PROVIDE DOCUMENTATION THAT THE "EQUIVALENT" MATERIAL HAS THE SAME SPECIFICATIONS.

6G. MOUNT ORIENTATION/AZIMUTH AND ELEVATION. PROVIDE TAPE DROP PHOTOS OF ANTENNA CENTERLINE(S) AND MOUNT ATTACHMENT POINTS TO THE SUPPORTING STRUCTURE. IF THERE ARE MULTIPLE RAD CENTERS, PROVIDE PHOTOS OF ALL ELEVATIONS.

POST-MODIFICATION INSPECTION (PMI) REQUIREMENT CONT.

6H. VERIFICATION THAT THE INSTALL HAS NOT CAUSED DAMAGE TO OR UNPLANNED OBSTRUCTION OF THE FOLLOWING:

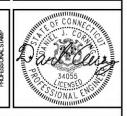
- --- CLIMBING FACILITIES
- --- SAFETY CLIMB IF PRESENT, INCLUDING PHOTOS ABOVE AND BELOW THE MOUNT.
- --- LIGHTING SYSTEM
- --- OTHER INSTALLED SYSTEMS ON THE STRUCTURE.

--- CONTRACTOR SHALL ENSURE THE SAFETY CLIMB IS SUPPORTED AND NOT ADVERSELY AFFECTED BY THE INSTALLATION OF NEW COMPONENTS. THIS MAY INVOLVE THE INSTALLATION OF WIRE ROPE GUIDES OR OTHER ITEMS TO PROTECT THE WIRE ROPE.

61. OTHER ITEMS DETERMINED BY THE STRUCTURAL ENGINEER TO ENSURE THE MOUNT WILL PERFORM AS DESIGNED. PHOTOS OF RELEVANT MEASUREMENTS, WITH SUFFICIENT DETAILS TO CONFIRM CONNECTION DETAILS, PLACEMENT OF EQUIPMENT, WALL ANCHOR DETAILS, BALLAST QUANTITIES, STRUCTURAL MODIFICATIONS ETC. DIAMETERS AND THICKNESSES OF BOLTS/THREADED RODS/ANGLES/TUBES ETC SHALL HAVE PHOTOS CONFIRMING CALIPER MEASUREMENTS.

--- Confirmation that all hardware was properly installed, and existing hardware was inspected for any issues.

- --- FOR BALLAST SLEDS, DOCUMENTATION OF THE WEIGHT OF BALLAST IN EACH SECTOR.
- --- FOR WALL ANCHORS, PHOTOS AND MEASUREMENTS OF OUTSIDE AND INSIDE OF CONNECTIONS. DOCUMENTATION OF ADHESIVE USED, SIZE AND LENGTH OF ANCHORS, EFFECTIVE EMBEDMENT DEPTH OF THE ANCHORS, GROUTING OF HOLLOW WALLS, SPACING AND EDGE DISTANCE MEASUREMENTS, AND ANY THROUGH—BOLTS OR BACKING PLATES.
- --- FOR STUD WELD CONNECTIONS, DOCUMENTATION TO CONFIRM SURFACE PREPARATION, STUD WELD SIZE, GRADE, LENGTH, AND SPACING.
- --- FOR FABRICATED PARTS, SHOP DRAWINGS TO BE APPROVED BY THE ENGINEER OF RECORD PRIOR TO CONSTRUCTION.
- --- FOR WELDED PARTS, CERTIFIED WELD INSPECTION.
- —— FOR BOLTED PARTS, BOLT INSTALLATION AND TORQUE.
- CONTRACTOR SHALL PROVIDE, IN ADDITION TO THE ABOVE, AS-BUILT CDS WITH REDLINES IDENTIFYING ANY CHANGES. THE AS-BUILTS SHALL THE CONTRACTOR'S NAME, PREPARER'S SIGNATURE, AND DATE.
- IF THE MODIFICATION INSTALLATION WOULD FAIL THE PMI ("FAILED PMI"), THE CONTRACTOR SHALL
 WORK WITH THE ENGINEER OF RECORD TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:
- 8A. CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENTAL PMI.
- 8B. OR, WITH THE EOR'S APPROVAL, THE GC MAY WORK WITH THE EOR TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT/UPGRADE USING THE AS-BUILT CONDITION.
- NOTE: IF LOADING IS DIFFERENT THAN THAT SHOWN IN THESE CONSTRUCTION DRAWINGS OR STRUCTURAL/MOUNT MODIFICATION DRAWINGS, CONTRACTOR SHALL NOTIFY THE ENGINEER OF RECORD IMMEDIATELY FOR RESOLUTION.
- 10. THE ENGINEERING FIRM PERFORMING AN ANALYSIS SHALL PROVIDE A CONTRACTOR'S PHOTO LOG AND CHECKLIST TO BE COMPLETED BY THE INSTALLING CONTRACTOR. THE CONTRACTOR SHALL THEN PROVIDE POST—INSTALLATION INFORMATION TO THE STRUCTURAL ENGINEER. THE STRUCTURAL ENGINEER SHALL REVIEW THE DOCUMENTS FOR ANY DEFICIENCIES THAT CAN BE DETERMINED FROM THE DESKTOP REVIEW OF THE DATA. THE ENGINEERING FIRM SHALL THEN PROVIDE DOCUMENTATION TO VZW THAT THE SITE IS COMPLETED, AND THE PMI REPORT IS APPROVED.



WESTBOROUGH, MA 01581

BUITE DIE CHELMSFORD, WA 01824

EASTON_NORTH_2_CT 206 EVERETT ROAD EASTON, CT 06612 TOWN OF EASTON FAIRFIELD COUNTY

DANIEL J. CORNING, P.E. CT PROFESSIONAL ENGINEER LIC. #34055

PMI REQUIREMENTS

GN-1

MOUNT MODIFICATION DRAWINGS EXISTING 12.50' PLATFORM

TOWER OWNER: SBA
TOWER OWNER SITE NUMBER: CT46131

CARRIER SITE NAME: EASTON NORTH 2 CT CARRIER SITE NUMBER: 468248 FUZE ID: 2567027

> 206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

LATITUDE: 41.290344° N LONGITUDE: 73.282669° W

DESIGN CRITERIA

WIND LOADS

BASIC WIND SPEED (3 SECOND GUST), V = 117 MPH

EXPOSURE CATEGORY C TOPOGRAPHIC CATEGORY I

MEAN BASE ELEVATION (AMSL) = 428.45°

ICE LOADS

ICE WIND SPEED (3 SECOND GUST), V = 50 MPH

ICE THICKNESS = 1.00 IN

SEISMIC LOADS

SEISMIC DESIGN CATEGORY B

SHORT TERM MCER GROUND MOTION, $S_S = .216$ LONG TERM MCER GROUND MOTION, $S_I = .055$

COMPANY: VERIZON WIRELESS CLIENT REPRESENTATIVE COMPANY: VERIZON WIRELESS PROJECT MANAGER COMPANY: COLLIERS ENGINEERING & DESIGN CONTACT: PETER ALBANO PHONE: 856-797-0412 PETER ALBANO@COLLIERSENGINEERING COM

PROJECT INFORMATION

CONTRAC	TOR PMI REQUIREMENTS	
PMI LOCATION: SMART TOOL PROJECT #:	HTTPS://PMI.VZWSMART.COM	

ENGINEERING.CON	11	
IREMENTS		
WSMART.COM		
IT MODIFICATION REPORT		

SHEET DESCRIPTION

ST-I TITLE SHEET

SBOM-I BILL OF MATERIALS

SGN-I GENERAL NOTES

SS-2 MOUNT PHOTOS

SCF-I CLIMBING FACILITY DETAIL

SPECIFICATION SHEETS

SS-I MODIFICATION DETAILS

SHEET INDEX

AS SHOWN		JCE HANNE	2177710	6A	
1	11/23/21	HISUED FOR CONSTRUC		SEA	PMA
0	10/13/21	CONSTRUC		SEA	FMA
REV	DATE	DESCRIPT	ION	DRAWN	CHECKED

IT IS A VIOLATION OF LAW FOR ANY PERSON, LESS THEY ARE ACTING UNDER THE DIRECTION IF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

EASTON NORTH 2 CT 468248

206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

STAMFORD

1055 Washington Boulevard

Ramford, CT 08901
Phone: 203-324-0800
collegistrawelinko scesiok CT P

TITLE SHEET

ST-I

COPYRIGHT ©2021 COLLIERS ENGINEERING & DESIGN ALL RIGHTS RESERVED

THIS DRAWING AND ALL THE INFORMATION CONTAINED HERBINGS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REJESS, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF COLLIEST ENGINEERING & DESIGN.

| MART TOOL PROJECT #: 10117165 | VZW LOCATION CODE (PSLC): 468248 | ANALYSIS DATE: 11/23/2021

APPLICANT/LESSEE

PMI REQUIREMENTS EMBEDDED WITHIN MOUNT MODIFICATION REPORT

BILL OF MATERIALS SECTION I - VZWSMART KITS OUANTITY UNIT WEIGHT (LBS.) WEIGHT (LBS.) MANUFACTURER PART NUMBER DESCRIPTION NOTES VZWSMART-PLK I SUPPORT RAIL KIT CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE "STRUCTURAL STEEL" VZWSMART-PLK5 1 KICKER KIT 291 291 NOTES ON SHEET SGN-I. VZWSMART-PLK7 MONOPOLE COLLAR MOUNT ASSEMBLY 150 150 BACK TO BACK CROSSOVER PLATE -1 VZWSMART-MSK6 34 VZWSMART SECTION 2 - OTHER REQUIRED PARTS QUANTITY UNIT WEIGHT (LBS.) WEIGHT (LBS.) MANUFACTURER PART NUMBER DESCRIPTION NOTES 36" LONG, P2 STD GALVANIZED TOTAL: 990

NO	T	ES:	

- I. THE MANUFACTURERS LISTED ARE THE APPROVED VENDORS FOR THE VZW MOUNT KITS. EACH MANUFACTURER WILL BE AWARE OF WHICH KITS HAVE BEEN THROUGH THE VZW APPROVAL PROCESS AND THEY ARE IN TURN APPROVED TO SELL. PLEASE NOTE THAT THE MATERIAL UTILIZED ON THE MOUNT MODIFICATIONS WILL BE REVIEWED AS A PART OF THE DESKTOP PMI COMPLETED BY THE SMART TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.
- ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR.

	COMMSCOPE
CONTACT	SALVADOR ANGUIANO
PHONE	(817) 304-7492
EMAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM
WEBSITE	WWW.COMMSCOPE.COM
Ν	IETROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)
EMAIL	KENT@METROSITELLC.COM
WEBSITE	METROSITEFABRICATORS.COM
	PERFECTVISION
CONTACT	WIRELESS SALES
PHONE	(844) 887-6723
EMAIL	WWW.PERFECT-VISION.COM
WEBSITE	WIRELESSSALES@PERFECT-VISION.COM
	SABRE INDUSTRIES, INC.
CONTACT	ANGIE WELCH
PHONE	(866) 428-6937
EMAIL	AKWELCH@SABREINDUSTRIES.COM
WEBSITE	www.sabresitesolutions.com
	SITE PRO 1
CONTACT	PAULA BOSWELL
PHONE	(972) 236-9843
EMAIL	PAULA.BOSWELL@VALMONT.COM
WEBSITE	WWW.SITEPROI.COM

UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SITE NAME:

EASTON NORTH 2 CT 468248

206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

STAMFORD

1055 Washington Boulevard

Ramford, CT 08901
Phone: 203,324,0800
colless translating scenarics

BILL OF MATERIALS

SBOM-1

PROJECT NOTES

- I. SEE MODIFICATION NOTES
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER FUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS PACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING
 THE BID TO VERIPY THAT THE PROJECT CAN BE CONSTRUCTED IN
 ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION
 DRAWINGS.
- 8. THE CONTRACTOR SHALL YERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE YERIFED THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION NAMAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 2. SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING ABOUND HIGH LEVELS OF BLESTEDMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD BYPOSE THE WORKERS TO DANGER. PESSONAL RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- 10. NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO
- THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).

GENERAL NOTES

- THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE TELECOMMUNICATIONS INDUSTRY STANDARD TIA-222-H. MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES
- CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT DAMAGE TO DISTRING STRUCTURES. ANY DAMAGE TO EXISTRING STRUCTURES AS A RESULT OF THE CONTRACTORS WORK OR FROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPAIRED AT THE CONTRACTORS EXPENSE TO THE SATISFACTION OF THE OWNER.
- CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND EXISTING CONDITIONS BEFORE BEGINNING WORK, ORDERING MATERIAL AND PREPARING OF SHOP DRAWINGS, ANY DISCREPANCISS BETWEEN FIELD CONDITIONS AND THE CONTRACT DOCUMENTS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMMEDIATE.
- IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THISE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES.
- ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGIDING PLANS, CLIMING PLANS, ALD ROBECUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HERRIS AND SHALL MEET ANSITIA-322 (LATEST EDITION), CSHA, AND GENERAL INDUSTRY STANDARDS. ALL RIGIDING PLANS SHALL ADHERE TO ANSITHA-322 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONTRUCTION.
- THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM THE

- CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY OF THE STRENGTH AND STABILITY OF THE STRENGTHEED CHIEF RECTION CONTRACTOR SHALL REVOLDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL SYSTEMS A REQUIRED TO RESET ALL FORCES THAT MAY OCCUR DUBING HANDLING AND ERECTION UNTIL THE STRUCTURE IS RULLY COMPLETED. TEMPORARY SUPPORTS, REACHING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S PROPERTY ARTET THEIR LIST.
- ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE STANDARD FOR INSTALLATION, ALTERATION AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, ANSWITA-322.
- 10. CONTRACTOR SHALL SECURE SITE BACK TO EXISTING CONDITION UNDER SUPERVISION OF OWNER. ALL FENCE, STONE, GEOPABRIC, GROUNDING, AND SURROUNDING GRADE SHALL BE REPLACED AND REPAIRED AS REQUIRED TO ACHIEVE OWNER APPROVAL, POSITIVE DRAINAGE AWAY FROM TOWER SITE SHALL BE MAINTAINED.
- 11. CONNECTIONS BETWEEN ITEMS SUPPORTED BY THE STRUCTURE AND THE STRUCTURE OF SPECIFICALLY DETAILED IN THE CONTRACT DOCUMENTS ARE THE RESPONSIBILITY OF THE CONTRACTOR SUCH CONNECTIONS SHALL BE DESIGNED, CORDINATED AND INSPECTED BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN THE STATE OF THE PROJECT SUBMIT SIGNED AND SEALED CALCULATIONS DURING SHOP DRAWNOR REVIEW.
- DO NOT SCALE DRAWINGS.
- 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.
- 14. ALL MATERIAL UTILIZED FOR THIS PROJECT MUST BE NEW AND FREE OF ANY DEFECTS. ANY MATERIAL SUBSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTERED SIZE AND/OR STRENGTHS, MUST BE APPROVED BY THE OWNER AND ENGINEER IN WRITING.
- 15. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF

STRUCTURAL STEEL

- DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.
 - AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION (15TH EDITION)
 - b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
- c. AISC CODE OF STANDARD PRACTICE
- 2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS

 CHANNELS, ANGLES, PLATES, ETC.
 ASTM A36 (GR 36)

 STEEL PIPE
 ASTM A35 (GR 35)

 BOLTS
 ASTM A325

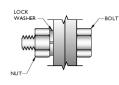
 NUTS
 ASTM A563

LOCK WASHERS LOCKING STRUCTURAL GRADE

- 3. ALL SUBSTITUTIONS PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRITING BY THE ENGINERE CONTRACTOR SHALL PROVIDE DOCUMENTATION TO ENGINERE FOR VERIFINING THE SUBSTITUTE IS SUITABLE FOR USE AND NEETS ORIGINAL DESIGN CRITERIA. DEFREENCES FROM THE ORIGINAL DESIGN, INCLUDING MAINTENANCE, REPAIR AND BEPLACEMENT, SHALL BE NOTED. ESTIMATE OF COSTS CARDITS ASSOCIATED WITH THE SUBSTITUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE PROVIDED TO THE ENGINERE CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE ENGINEER AS REQUESTED.
- PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
- a. SUBMIT SHOP DRAWINGS TO

PETER.ALBANO@COLLIERSENGINEERING.COM

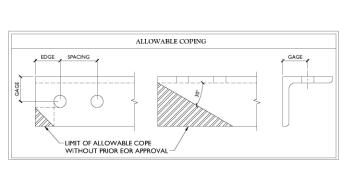
- PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL
- DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH EXISTING STEEL CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEAN.
- CONTRACTOR SHALL PROTECT CUT ENDS OF ALL FIELD-CUT STEEL WITH TWO (2) COATS OF COLD GALVANIZATION (ZINGA OR ZINC COTE).
- ALL BOLT ASSEMBLIES FOR STRUCTURAL MEMBERS REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TIA-222-H SCOTOM 4-9.2 REQUIREMENTS.
- 10. WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS.
- FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GRADE MAINTAIN AISC REQUIREMENTS FOR MINIMUM BOLT DISTANCE AND SPACING.


- 12. ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT IS AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTENING IS COMPLETED.
- 13. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- ALL EXISTING PAINTEDIGALVANIZED SURFACES DAMAGED DURING REHAB INCLUDING AREAS UNDER STIFFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING (ZINGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE).
- 15. ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE.

WELDING NOTES

- ALL WELDING SHALL BE DONE IN ACCORDANCE WITH AWS DI.0 (LATEST EDITION), THIS SHALL INCLUDE A CERTIFIED WELD INSPECTION (CWI) FOR ACCEPTANCE OR REJECTION OF ALL WELDING OPERATIONS, PRE, DURING, AND POST INSTALLATION, USING THE ACCEPTANCE CRITERIA OF AWS DI.I.
- CONTRACTOR IS RESPONSIBLE FOR COMMISSIONING A THIRD PARTY CERTIFIED WELD INSPECTOR (CWI) THROUGHOUT THE ENTIRETY OF THE PROJECT. A PASSING CWI REPORT SHALL BE PROVIDED TO THE ENGINEER UPON COMPLETION OF THE PROJECT.
- 3. THE CERTIFED WELD INSPECTOR SHALL INDICATE, IN A WRITTEN CWI REPORT, THAT ALL WELDING OPERATIONS PEE, DURING, AND POST INSTALLATION WERE CONDUCTED IN ACCORDANCE WITH AWS DIJ. WITH PHOTOGRAPH AND DOCUMENTATION SUPPORTING THE ACCEPTANCE OR REJECTION OF ALL WELDING, ALL CWI WELD INSPECTION DOCUMENTATION AND PHOTOS SHALL BE SUBMITTED DURING THE PMI.
- 4. IN CASES WHERE A WELD IS SPECIFIED BETWEEN TWO MEMBERS IN WHICH THERE IS A GAP IN BETWEEN, THE WELD IS TO BE BUILT-UP SUCH THAT THE SIZE OF WELD ON THE MEMBER IS EQUAL TO THAT SHOWN IN THE
- OXY FUEL GAS WELDING OR BRAZING IS STRICTLY PROHIBITED.
 SPECIFICALLY, NO TORCH CUTTING IS PERMITTED ON SITE. ALL HOLES SHALL BE CUT WITH A GRINDER.
- CONTRACTOR SHALL EXERCISE CAUTION WHEN WELDING A GALVANIZED SURFACE.
- CONTRACTOR SHALL HAVE A FIRE PROTECTION PLAN IN PLACE THAT CONFORMS WITH ALL OSHA, ANSIVASSP A 10.48, ANSI Z49.1, AND LOCAL JURISDICTIONAL REQUIREMENTS.

BOLT SCHEDULE (IN.)				
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT	MIN. EDGE DISTANCE	SPACING
1/2	9/16	9/16 x 11/16	7/8	1 1/2
5/8	11/16	11/16 x 7/8	1 1/8	1 7/8
3/4	13/16	13/16 x 1	1 1/4	2 1/4
7/8	15/16	15/16 x 1 1/8	1 1/2	2 5/8
- 1	1 1/16	6 x 5 / 6	1 3/4	3


WORKABLE GAGES (IN.)		
LEG	GAGE	
4	2 1/2	
3 1/2	2	
3	1 3/4	
2 1/2	I 3/8	
2	1 1/8	

TYP. BOLT ASSEMBLY

NOTES:

- I. ALL DIMENSIONS REPRESENTED IN THE ABOVE TABLES ARE ASC MINIMUM REQUIREMENTS. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED.
- THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS OF PROPSED MEMBERS WITHIN THESE DRAWINGS MAY VARY FROM THE AISC MINIMUM REQUIREMENTS.
- SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS
- MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED.

Colliers Engineering

AS SHOWN 21777106A

11/2071 31/40 FOR 11/2071 31

IS A VIOLATION OF LAW FOR ANY PERSON, ESS THEY ARE ACTING UNDER THE DIRECTION THE RESPONSIBLE LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

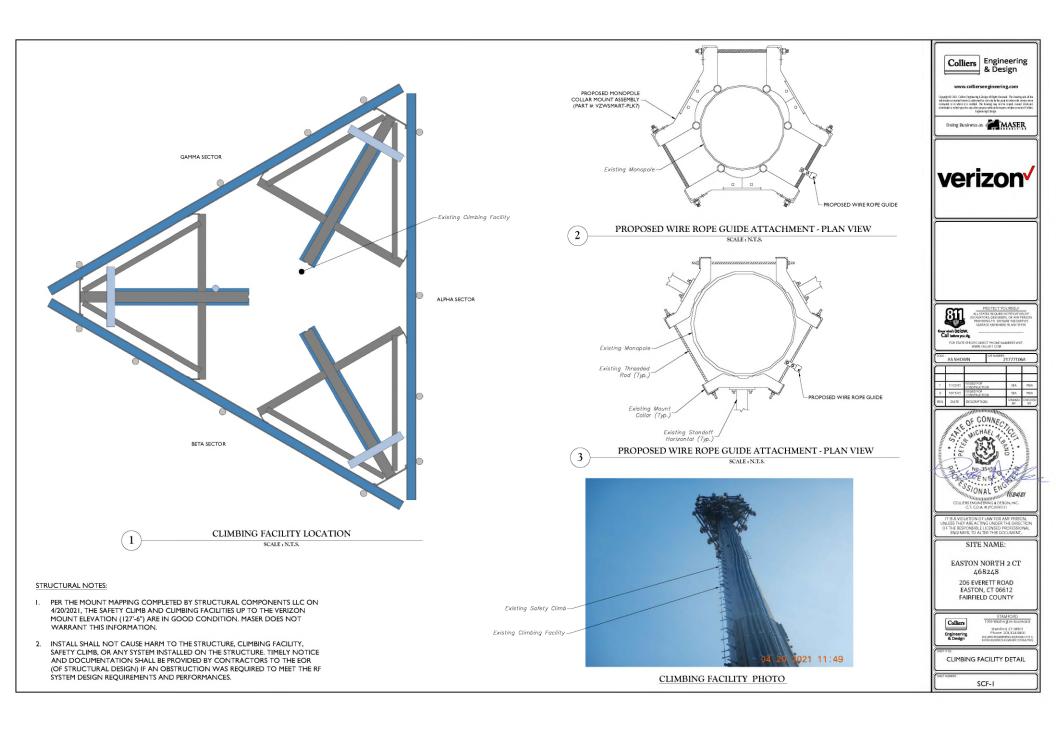
SITE NAME:

EASTON NORTH 2 CT 468248

206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

STAMFORD

1055 Washington Bouleval

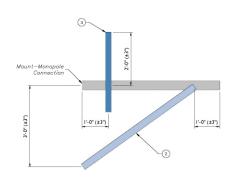

Stamford, CT 08901
Phone 201324-0800

COLLEGE PARTITION CT COLLEGE PARTITION CT

MODIFICATION NOTES

SGN-I

NOTE DO NOT SCALE DRAWINGS FOR CONSTRUCT



	MOUNT MODIFICATION SCHEDULE				
NO.	ELEVATION	QUANTITY	DESCRIPTION	NOTES	
1		ı	PROPOSED SUPPORT RAIL KIT (PART #: VZ:WSMART-PLK1)	RADIO AND/OR TME POSITIONS SHALL BE ADJUSTED VERTICALLY AS NEEDED IN ORDER TO ACHIEVE INSTALLATION OF HORIZONTAL AS SHOWN, EOR SHALL BE NOTIFIED IF EQUIPMENT NEEDS TO BE RELOCATED TO ANOTHER MOUNT PIPE. CONNECT NEW HORIZONTAL TO ALL EXISTING VERTICAL MOUNT PIPES WITH CROSSOVER PLATES (PART #, VZWSMART-MSKI).	
2		1	PROPOSED KICKER KIT (PART # VZWSMART-PLKS)	CONTRACTOR TO VERIFY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL NOTES ON SHEET SGN-I. CONNECT OTHER END OF KICKER KIT TO MONOPOLE COLLAR MOUNT ASSEMBLY (PART #: VZWSMART-P.K.Y.).	
3	127"-6"	1	36" LONG, P2 STD OVP PIPE	GALVANIZED. CONNECT NEW OVP PIPE TO EXISTING STANDOFF HORIZONTAL WITH CROSSOVER PLATES (PART # VZWSMART-MSK6), CONNECT TO EXISTING HORIZONTAL STANDOFF LOCATED BETWEEN THE BETAGMMA SECTORS.	
	125-0				
NOTES					

Doing Business as MASER

Colliers Engineering & Design

PROPOSED SIDE ELEVATION VIEW (SIM. ALL SECTORS)

SCALE: N.T.S.

2

PROPOSED ISOMETRIC VIEW

SCALE 1 N.T.S.

PROTECT YOURSELF
ALISTATE ROUSE ROTECT/HOURSELF
EXCHANGE DESIGNER, OF ANY PRECEDENCY
SURFACE ANYWERE IN MY STATE

All before you dg.

FOR STATE SPECIFIC DIRECT PHONE NUMBERS WSIT:

SCALE :	AS SHO		2177710	άA
П	-			
1	11/23/21	HISUED FOR CONSTRUCTION	SEA	PAIA
0	10/13/21	CONSTRUCTION	SEA	PMA
REV	DATE	DESCRIPTION	DRAWN	CHECKE

IT IS A VIOLATION OF LAW FOR ANY FERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFESSIONAL

SITE NAME:

EASTON NORTH 2 CT 468248

206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

Colliers 1085 V
Engineering Photogram
& Design COLLEGE
DOWNSON

MODIFICATION DETAILS

SS-I

MOUNT MEMBERS NOT SHOWN FOR CLARITY U.N.O.

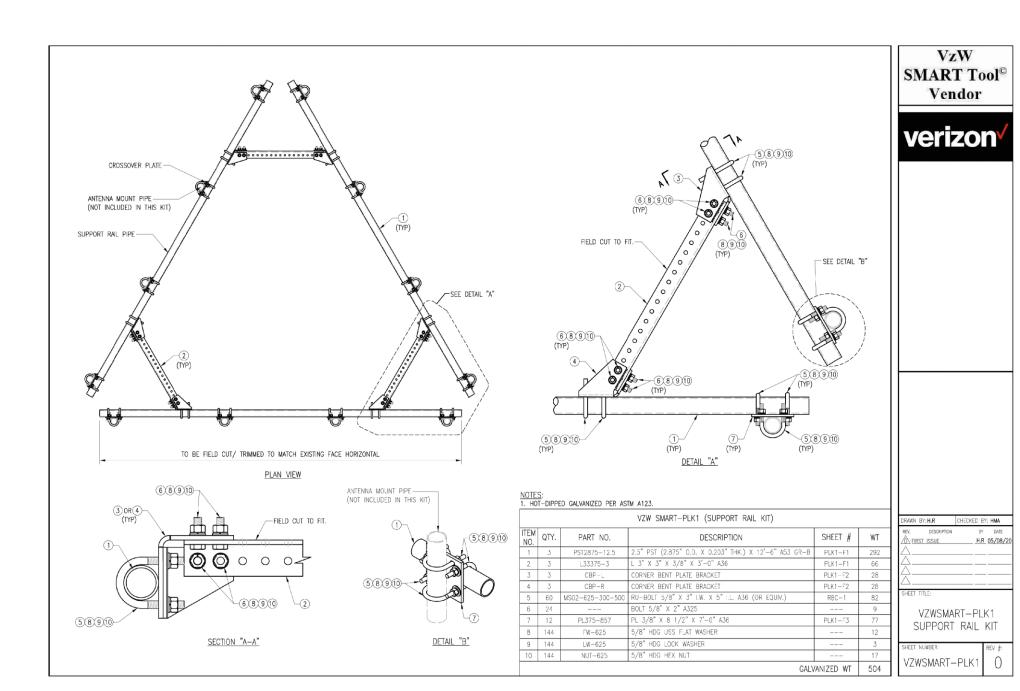
MOUNT PHOTO 1

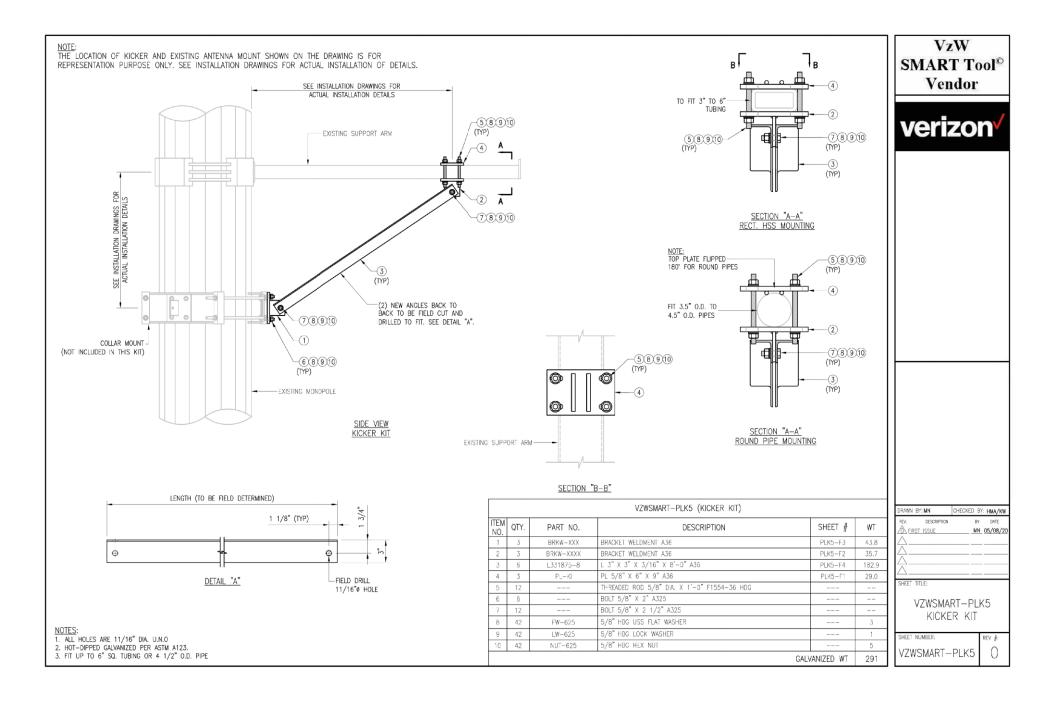
MOUNT PHOTO 3

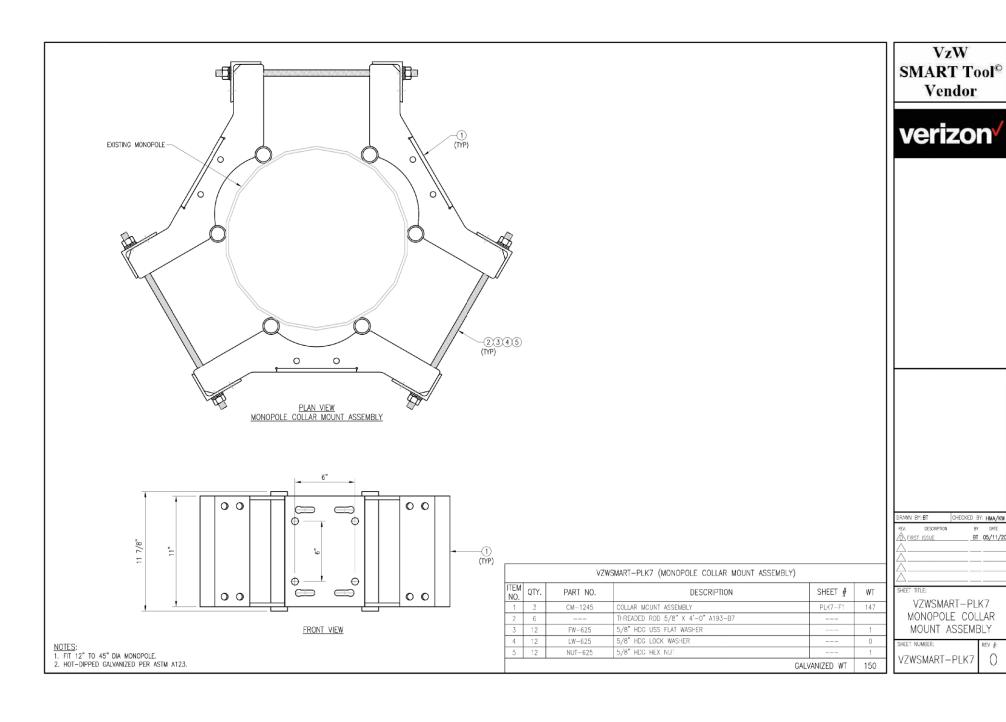
MOUNT PHOTO 2

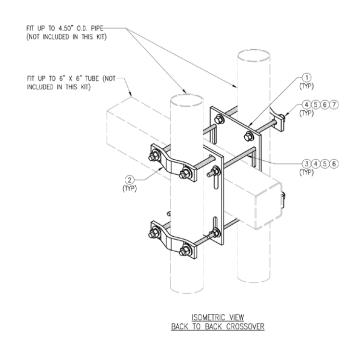
MOUNT PHOTO 4

Doing Business as MASER


SITE NAME:


EASTON NORTH 2 CT 468248

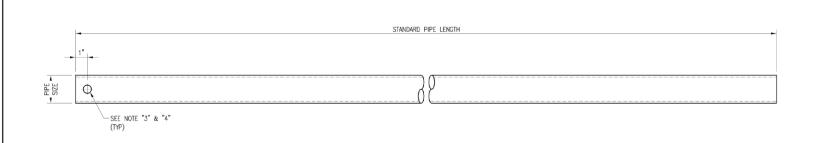

206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY


MOUNT PHOTOS

SS-2

VZWSMART-MSK6 (VZWSMART-MSK6 - BACK TO BACK CROSSOVER)					
ITEM NO.	QTY.	PART NO.	DESCRIPTION	SHEET #	WT
1	2	PL375-8512	PL 3/8" X 8 1/2" X 1'-0" A36	MSK6-F2	20.7
2	4	VCP	PL 1/2" X 2" X 8 5/8" A36 BENT PLATE	MSK6-F1	9.6
3	4		THREADED ROD 5/8" DIA. X 10" F1554-36 HDG		
4	16	NUT-625	5/8" HDG HEX NUT		2
5	16	FW-625	5/8" HDG USS FLAT WASHER		1
6	16	LW-625	5/8" HDG LOCK WASHER		0
7	8		BOLT 5/8" X 6" SAE GRADE 5 ALL THREAD		1
CALVANIZED WT					34

VzW SMART Tool[©] Vendor


verizon v

DRAWN BY: SK	CHECKED B.	: BT/KW
REY. DESCRIPTION FIRST ISSUE	BY SK	05/08/2
SHEET TITLE:		

VZWSMART-MSK6 BACK TO BACK CROSSOVER

SHEET NUMBER:	REV #:
VZWSMART-MSK6	0

NOTES: 1. HOT-DIPPED GALVANIZED PER ASTM A123.

VZWSMART Standard Pipe			
VZWSMART Number	Size	Length	
P40-238X048	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	48"	
P40-238X072	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	72"	
P40-238X096	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	96"	
P40-238X120	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	120"	
P40-238X126	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	126"	
P40-238X150	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	150"	
P40-238X174	PIPE 2 SCH40 (2.375" OD x 0.154" THK)	174"	
P40-278X048	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	48"	
P40-278X072	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	72"	
P40-278X096	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	96"	
P40-278X120	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	120"	
P40-278X126	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	126"	
P40-278X150	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	150"	
P40-278X174	PIPE 2.5 SCH40 (2.875" OD x 0.203" THK)	174"	
P40-312X048	PIPE 3 SCH40 (3.5" OD x 0.216" THK)	48"	
P40-312X072	PIPE 3 SCH40 (3.5" OD x 0.216" THK)	72"	
P40-312X126	PIPE 3 SCH40 (3.5" OD x 0.216" THK)	126"	
P40-312X150	PIPE 3 SCH40 (3.5" OD x 0.216" THK)	150"	
P40-312X174	PIPE 3 SCH40 (3.5" OD x 0.216" THK)	174"	

NOTE: APPROVED SMART KIT VENDORS ARE ALLOWED TO SUBSTITUTE AT THEIR DISCRETION PIPES LISTED ON THIS PAGE FOR CUSTOM LENGTH COMPONENTS OF MATCHING SIZE. SUBSTITUTIONS SHALL MEET THE ORIGINAL STRUCTURAL INTENT.

- NOTES:

 1. ALL PIPE GRADE A53-B OR BETTER.
 2. HOT-DIPPED GALVANIZED FER ASTM A123.
 3. ALL HOLES ARE 11/16" DIA. U.N.O.
 4. HOLES MAY OR MAY NOT BE PRESENT, DEPEND UPON MANUFACTURE DISCRETION.
 5. ALL FIELD CUT AND DRILLED SURFACES SHALL BE REPAIRED WITH A MINIMUM OF TWO COATS OF ZINGA OR ZING COTE PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.

VzW SMART Tool® Vendor

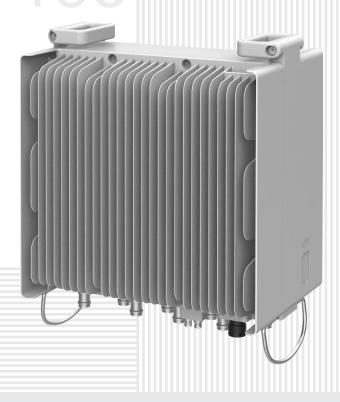
verizon

DRAWN BY: BT	CHECKED BY	: HMA/K
REV. DESCRIPTION FIRST ISSUE	BY BT	08/04/3

VZWSMART STANDARD PIPE

SHEET NUMBER:	REV	#:
VZWSMART-PIPE	()

SAMSUNG

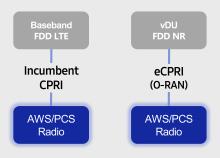

AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A



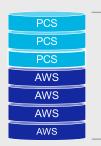
Points of Differentiation

Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Compliant Baseband

ecosystem.


O-RAN eCPRI **)**-RAN

Samsung Dual-band Radio

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

O-RAN Compliant

A standardized O-RAN radio can help in implementing cost-

effective networks, which are capable of sending more data

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN

without compromising additional investments.

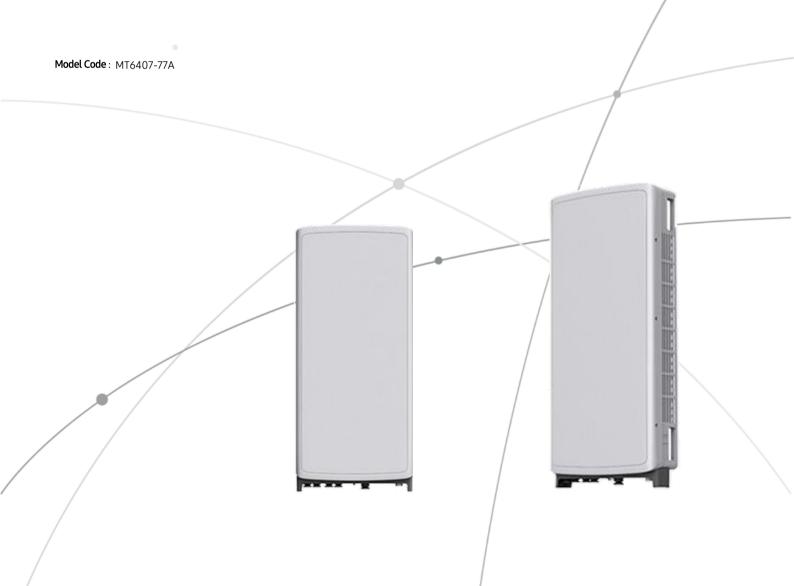
Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

2 FH connectivity O-RAN capability

> More carriers and spectrum

Same as an incumbent radio volume

Technical Specifications


Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

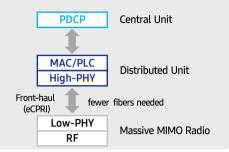
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

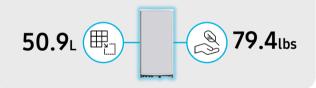
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

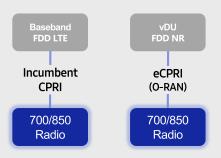
700/850MHZ MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A



Points of Differentiation

Continuous Migration

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

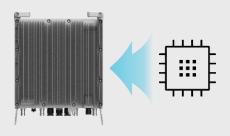
O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.


The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

Secured Integrity

Access to sensitive data is allowed only to authorized

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

MX06FRO660-03

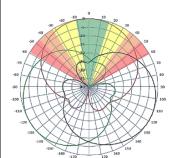
NWAV™ X-Pol Hex-Port Antenna

X-Pol Hex-Port 6 ft 60° Fast Roll Off antenna with independent tilt on 700 & 850 MHz:

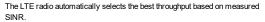
2 ports 698-798, 824-894 MHz and 4 ports 1695-2180 MHz

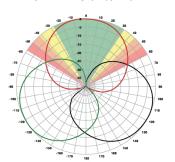
- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Compatible with dual band 700/850 MHz radios with independent low band EDT without external diplexers
- Fully integrated (iRETs) with independent RET control for low and high bands for ease of network optimization
- SON-Ready array spacing supports beamforming capabilities
- Suitable for LTE/CDMA/PCS/UMTS/GSM air interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage


The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors .

JMA's FRO antenna pattern minimizes overlap, thereby minimizing interference.

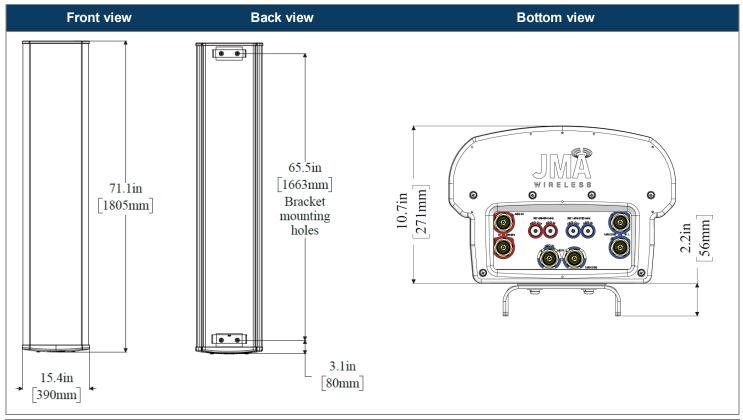

Non-FRO antenna


ntenna Large traditional antenna pattern overlap creates harmful interference.

JMA FRO antenna

LTE throughput	SINR	Speed (bps/Hz)	Speed increase	CQI
Excellent	>18	>4.5	333+%	8-10
Good	15-18	3.3-4.5	277%	6-7
Fair	10-15	2-3.3	160%	4-6
Poor	<10	<2	0%	1-3

Electrical specification (minimum/maximum)	Ports 1, 2		Ports 3, 4, 5, 6			
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180	
Polarization	± 4	15°		± 45°		
Average gain over all tilts, dBi	14.4	14.0	17.6	18.0	18.2	
Horizontal beamwidth (HBW), degrees	60.5	53.0	55.0	55.0	55.5	
Front-to-back ratio, co-polar power @180°± 30°, dB	>24	>24.0	>25.0	>25.0	>25.0	
X-Pol discrimination (CPR) at boresight, dB	>15.0	>14.2	>18	>18	>15	
Sector power ratio, percent	<3.5	<3.0	<3.7	<3.8	<3.6	
Vertical beamwidth (VBW), degrees ¹	13.1	11.8	6.0	5.5	5.5	
Electrical downtilt (EDT) range, degrees	2-14	2-14		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-16.5	≤-16.0	≤-16.0	≤-16.0	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25	
Max VSWR / return loss, dB	1.5:1 / -14.0 1.5:1 / -14.0					
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153			
Max input power per any port, watts	300 250					
Total composite power all ports, watts	1500					

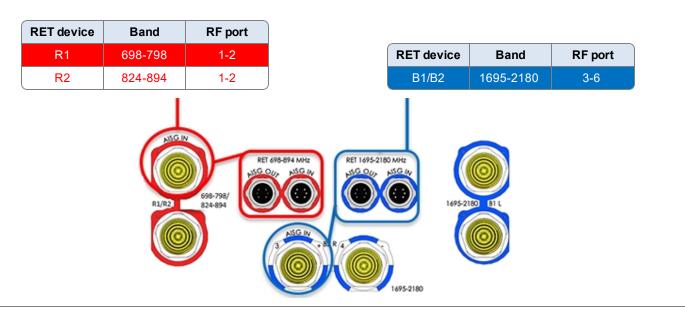

¹ Typical value over frequency and tilt

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	71.3/ 15.4/ 10.7 (1811/ 392/ 273)
Shipping dimensions length/width/height, inches (mm)	82/ 20/ 15 (2083/ 508/ 381)
No. of RF input ports, connector type, and location	6 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	60 (27.0)
Shipping weight, lb (kg)	90 (41.0)
Antenna mounting and downtilt kit included with antenna	91900318
Net weight of the mounting and downtilt kit, lb (kg)	18 (8.18)
Range of mechanical up/down tilt	-2° to 14°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	154 (685), 73 (325), 158 (703)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.6

Ordering information						
Antenna model	Description					
MX06FRO660-03	6F X-Pol HEX FRO 60° independent tilt 700/850 RET, 4.3-10 & SBT					
Optional accessories						
AISG cables	M/F cables for AISG connections					
PCU-1000 RET controller Stand-alone controller for RET control and configurations						

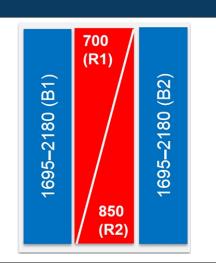

MX06FRO660-03

NWAV™ X-Pol Hex-Port Antenna

Remote electrical tilt (RET 1000) information					
RET location	Integrated into antenna				
RET interface connector type	8-pin AISG connector per IEC 60130-9				
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)				
RET interface connector quantity	2 pairs of AISG male/female connectors				
RET interface connector location	Bottom of the antenna				
Total no. of internal RETs (low bands)	2				
Total no. of internal RETs (high bands)	1				
RET input operating voltage, vdc	10-30				
RET max power consumption, idle state, W	≤ 2.0				
RET max power consumption, normal operating conditions, W	≤ 13.0				
RET communication protocol	AISG 2.0 / 3GPP				

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF port as shown below:



Array topology

3 sets of radiating arrays

R1/R2: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz

Band	RF port
1695-2180	3-4
698-894	1-2
1695-2180	5-6

ATTACHMENT 3

	General	Power	Density					
Site Name: Easton N 2								
Tower Height: Verizon @ 128ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*DISH	1	2110	108	600	0.072933346	0.4	0.018233336	
*DISH	1	7396	108	2000	0.255646931	1	0.025564693	
DISH	1	7396	108	2100	0.255646931	1	0.025564693	
T-Mobile	2	2334	138	2100	0.096344518	1	0.009634452	
*T-Mobile	2	592	138	600	0.024436999	0.4	0.00610925	
T-Mobile	1	1578	138	600	0.032568905	0.4	0.008142226	
*T-Mobile	2	695	138	700	0.028688706	0.466666667	0.00614758	
*T-Mobile	4	1052	138	1900	0.086850414	1	0.008685041	
*T-Mobile	2	2105	138	1900	0.086891693	1	0.008689169	
*T-Mobile	1	6444	138	2500	0.133000016	1	0.013300002	
T-Mobile	1	6444	138	2500	0.133000016	1	0.013300002	
*Sprint	1	438	158	850	0.006817591	0.566666667	0.001203104	
*Sprint	2	438	158	850	0.013635182	0.566666667	0.002406209	
*Sprint	5	623	158	1900	0.048485837	1	0.004848584	
*Sprint	2	1556	158	1900	0.048439141	1	0.004843914	
*Sprint	8	640	158	2500	0.079694217	1	0.007969422	
*AT&T	6	296	118	880	0.050915609	0.586666667	0.008678797	
AT&T	3	427	118	1900	0.036724603	1	0.37%	
*AT&T	1	500	118	880	0.014334349	0.586666667	0.24%	
*AT&T	1	500	118	1900	0.014334349	1	0.14%	
*AT&T	1	500	118	740	0.014334349	0.493333333	0.29%	
*Nextel	9	100	148	851	0.016051286	0.567333333	0.28%	
VZW 700	4	391	128	751	0.0034	0.5007	0.69%	
VZW CDMA	2	499	128	876.03	0.0022	0.5840	0.38%	
VZW Cellular	4	591	128	874	0.0052	0.5827	0.89%	
VZW PCS	4	895	128	1980	0.0079	1.0000	0.79%	
VZW AWS	4	959	128	2120	0.0084	1.0000	0.84%	
VZW CBRS	4	0	128	3625	0.0000	1.0000	0.00%	
VZW CBAND	2	21627	128	3730.08	0.0949	1.0000	9.49%	
								31.74
* Source: Siting Council					†			

ATTACHMENT 4

Tower Engineering Solutions

Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 158 ft PennSummit Monopole

Customer Name: SBA Communications Corp

Customer Site Number: CT46131-A

Customer Site Name: Easton-Everetts Rd

Carrier Name: Verizon (App#: 188277-1)

Carrier Site ID / Name: 468248 / EASTON_NORTH_2_CT

Site Location: 206 Everett Road

Easton, Connecticut

Fairfield County

Latitude: 41.290333

Longitude: -73.282666

Analysis Result:

Max Structural Usage: 94.6% [Pass]

Max Foundation Usage: 85.0% [Pass]

Additional Usage Caused by Mount Modification: +2.7%

Report Prepared By: Bishal Pandit

Tower Engineering Solutions

Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 158 ft PennSummit Monopole

Customer Name: SBA Communications Corp

Customer Site Number: CT46131-A

Customer Site Name: Easton-Everetts Rd

Carrier Name: Verizon (App#: 188277-1)

Carrier Site ID / Name: 468248 / EASTON_NORTH_2_CT

Site Location: 206 Everett Road

Easton, Connecticut

Fairfield County

Latitude: 41.290333

Longitude: -73.282666

Analysis Result:

Max Structural Usage: 94.6% [Pass]

Max Foundation Usage: 85.0% [Pass]

Additional Usage Caused by Mount Modification: +2.7%

Report Prepared By: Bishal Pandit

Introduction

The purpose of this report is to summarize the analysis results on the 158 ft PennSummit Monopole to support the proposed antennas and transmission lines in addition to those currently installed. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

Sources of Information

Tower Drawings	Paul J. Ford Job # 29202-0378 (For PennSummit Tubular Design # 5951), dated 12/19/2002
Foundation Drawing	Paul J. Ford Job # 29202-0378 (For PennSummit Tubular Design # 5951), dated
	12/19/2002
Geotechnical Report	Tectonic Engineering Consultants W.O. # 1170.C912, dated 03/30/2000
Modification Drawings	Vertical Solutions Project # 131141.01 As-Builts, Dated 11/06/2013
Mount Analysis	Maser Consulting Post-Mod MA, Project# 10117165, Dated: 11/24/2021
Mount Mod Drawing	Colliers Engineering, Project# 21777106A, Dated: 11/24/2021

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the TIA-222-G-2. In accordance with this standard, the structure was analyzed using **TESPoles**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis: Ultimate Design Wind Speed Vult = 120 mph (3-Sec. Gust)/

Nominal Design Wind Speed $V_{asd} = 93.0 \text{ mph}$ (3-Sec. Gust)

Wind Speed with Ice: 50 mph (3-Sec. Gust) with 3/4" radial ice concurrent

Operational Wind Speed: 60 mph + 0" Radial ice

Standard/Codes: TIA-222-G-2 / 2015 IBC / 2018 Connecticut State Building

Code

Exposure Category: C
Structure Class: II
Topographic Category: 1
Crest Height: 0 ft

Seismic Parameters: $S_S = 0.215, S_1 = 0.066$

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
1		3	RFS - APXVSPP18-C-A20 - Panel			
2		3	Commscope - DT465B-2XR - Panel	Low Profile Platform w/		
3		3	RFS - ACU-A20-N - RET	Collar Mount, Handrail Kit	(4) 4 4 (41)	
4	158.5	3	ALU - 1900 MHz - RRU	(SitePro HRK14-U) and	(4) 1 1/4" Fiber	Sprint
5		6	ALU - 800 MHz - RRU	Platform Reinforcement	ribei	Nextel
6		3	ALU - TD-RRH8x20-25 - RRU	Kit (SitePro PRK-1245L)		
7		3	Alu - 800 Filters			
8	149.0*	12*	Decibel - DB844H90E-XY - Panel*	Low Profile Platform*	(12) 1 1/4"*	
9		3	Ericsson - AIR6449 B41 - Panel			
10		3	RFS - APXVAALL24-43-U-NA20 - Panel			
11		6	RFS - APX16DWV-16DWVS-E-A20 - Panel	Low Profile Platform w/	(9) 1 1/4"	
12	138.0	3	Ericsson - KRY 112 144/1 - TMAs	Handrail and V-Brace tie-	(3) 1-1/4"	T-Mobile
13		3	Ericsson - 4449 B71 + B85 - RRU	back	Fiber	
14			Ericsson - 4424 B25 - RRU			
15			Ericsson - 4415 B66A - RRU			
16		3	Kathrein - 782 11056 - Bias T			
-		6	Andrew - DB846F65ZAXY – Panel			
-		2	Swedcom SLCP 2x6014 - Panel		(12) 1 5 (0)	
-	128.0 1		Antel BXA-70063/6BF - Panel	Low Profile Platform	(12) 1 5/8" Coax	Verizon
-		3	Antel BXA-171063/12BF - Panel		Coax	
-		6	RFS FD9R6004/1C-3L - Diplexer			
23		3	Powerwave - P65-16-XLH-RR – Panel		(12) 1 1/4"	
24		6	Powerwave - 7770 - Panel		(1) 3/8" RET	
25	118.0	6	Powerwave - LGP21401 - TMA	Low Profile Platform	(2) 5/8" DC	AT&T
26	118.0	3	Powerwave - TT19-08BP111-001 - TMA	Low Profile Platform	inside	AIQI
27		6	Ericsson - RRUS-11 - RRU		(1) 3"	
28		1	Raycap - DC6-48-60-18 - SP		Innerduct	
29		3	Commscope FFVV-65B-R2 - Panel	Platform w/HKR	(4) 4 6"	
30	100.0	3	Fujitsu TA08025-B605	Commscope	(1) 1.6"	Dish
31	108.0	3	Fujitsu TA08025-B604	MC-PK8-DSH Hybrid	пуын	Wireless
32		1	Raycap RDIDC-9181-PF-48			
33	75.0	1	GPS	Pipe Mount	(1) 1/2"	Sprint Nextel

^{*}Equipment has been decommissioned but remains installed.

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
17		3	Andrew - DB846F65ZAXY - Panel	Low Profile Platform		
18		3	Samsung MT6407-77A - Panel	Modified w/ Handrail Kit	(12) 1 5 (0) 6	
19		6	JMA Wireless MX06FRO660-03 - Panel	(VZWSMART-PLK1) +	(12) 1 5/8" Coax (1) 1 5/8"	
20	128.0	3	Samsung RF4440d-13A - RRU	Kicker Kit (VZWSMART-	(1) 13/6 Hybrid	Verizon
21		3	Samsung RF4439d-25A - RRU	PLK5) & Collar Mount	Пурпи	
22		1	Commscope FE-16148-OVP-B12 - Junction Box	(VZWSMART-PLK7)		

See the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate
Max. Usage:	94.6%	76.2%	69.8%
Pass/Fail	Pass	Pass	Pass

Foundations

	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)
Analysis Reactions	4835.7	40.4	63.3

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Operational Condition (Rigidity):

Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 1.5955 degrees under the operational wind speed as specified in the Analysis Criteria.

Conclusions

Based on the analysis results, the existing structure and its foundation were found to be **adequate** to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222 Standard under the design basic wind speed as specified in the Analysis Criteria.

Standard Conditions

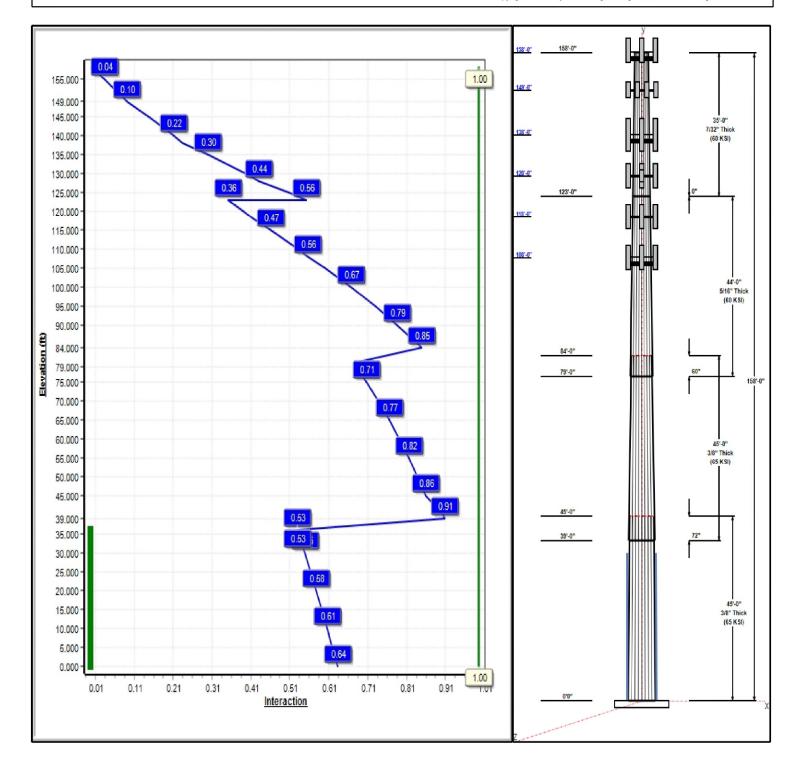
- 1. This analysis was performed based on the information supplied to (TES) Tower Engineering Solutions, LLC. Verification of the information provided was not included in the Scope of Work for TES. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of TES. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, TES should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. TES has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, TES should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

Usage Diagram - Max Ratio 91.22% at 39.0ft

Structure: CT46131-A-SBA Code: EIA/TIA-222-G

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Gh:1.1

Base Elev: 0.000 (ft)


3/7/2022

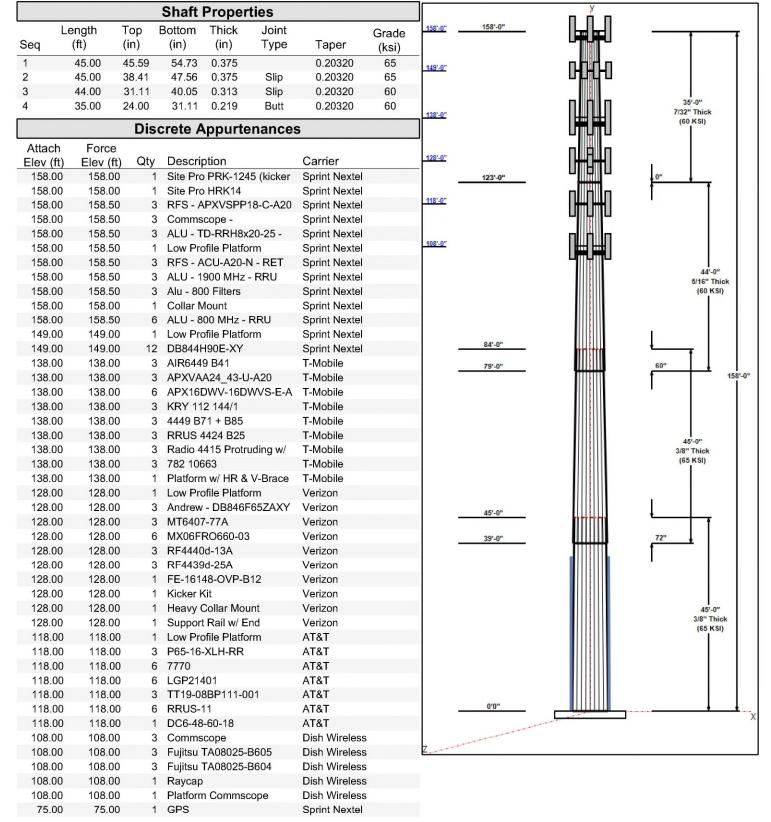
Page: 1

TES
Tower Engineering Solutions

Dead Load Factor: 1.20
Wind Load Factor: 1.60
Load Case: 1.2D + 1.6W 93 mph Wind

Copyright © 2022 by Tower Engineering Solutions, LLC. All rights reserved.

Structure: CT46131-A-SBA


Type: Tapered Base Shape: 3/7/2022 18 Sided

Site Name: Easton-Everetts Rd Taper:

Height: 158.00 (ft) Base Elev:

0.20320

Page: 2 0.00(ft)

Structure: CT46131-A-SBA

Type: Tapered **Base Shape:** 18 Sided 3/7/2022

Site Name: Easton-Everetts Rd Taper: 0.20320

Height: 158.00 (ft) **Base Elev:** 0.00 (ft)

Taper. 0.20320

<u>IES</u>

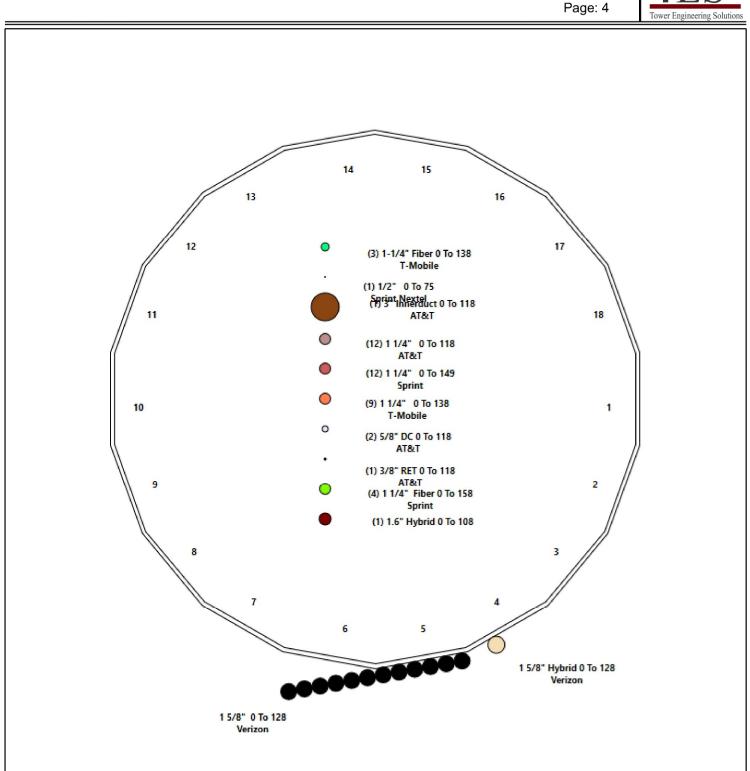
Page: 3

		Linear	Appurtenances	
Elev	Elev			
From (ft)	To (ft)	Placement	Description	Carrier
0.00	158.00	Inside	1 1/4" Fiber	Sprint
0.00	149.00	Inside	1 1/4" Coax	Sprint
0.00	138.00	Inside	1 1/4" Coax	T-Mobile
0.00	138.00	Inside	1-1/4" Fiber	T-Mobile
0.00	128.00	Outside	1 5/8" Coax	Verizon
0.00	128.00	Outside	1 5/8" Hybrid	Verizon
0.00	118.00	Inside	1 1/4" Coax	AT&T
0.00	118.00	Inside	3" Innerduct	AT&T
0.00	118.00	Inside	3/8" RET	AT&T
0.00	118.00	Inside	5/8" DC	AT&T
0.00	108.00	Inside	1.6" Hybrid	Dish Wireless
0.00	75.00	Inside	1/2" Coax	Sprint Nextel
0.00	39.00	Outside	1.25" Reinforcing plate	
		Α	nchor Bolts	

		Anc	hor Bolts	
		Grade		
Qty	Specifications	(ksi)	Arrangement	
16	2.25" 18J	75.0	Cluster	
		P.	oo Dioto	

		Base Pla	te	
Thickness (in)	Specifications (in)	Grade (ksi)	Geometry	
3.2500	60.0	50.0	Clipped	

Re	actions			
	Moment	Shear	Axial	
Load Case	(FT-Kips)	(Kips)	(Kips)	
1.2D + 1.6W 93 mph Wind	4835.7	40.4	63.3	
0.9D + 1.6W 93 mph Wind	4776.9	40.4	47.5	
1.2D + 1.0Di + 1.0Wi 50 mph Wind	1499.6	12.4	99.9	
1.2D + 1.0E	324.2	2.5	63.4	
0.9D + 1.0E	319.8	2.5	47.5	
1.0D + 1.0W 60 mph Wind	1250.0	10.5	52.8	


Structure: CT46131-A-SBA - Coax Line Placement

Type: Monopole 3/7/2022

Site Name: Easton-Everetts Rd

Height: 158.00 (ft)

TES
Tower Engineering Solutions

Shaft Properties

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 5

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (lb)
1	18	45.000	0.3750	65		0.00	9,073
2	18	45.000	0.3750	65	Slip	72.00	7,765
3	18	44.000	0.3125	60	Slip	60.00	5,238
4	18	35.000	0.2188	60	Flange	0.00	2,261
					Total Sha	ft Weight:	24,337

			Вс	ottom						ор				
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper	
1	54.73	0.00	64.69	24148.72	24.32	145.95	45.59	45.00	53.81	13896.7	20.02	121.5	0.203196	
2	47.56	39.00	56.15	15792.80	20.95	126.81	38.41	84.00	45.27	8275.19	16.65	102.4	0.203196	
3	40.05	79.00	39.42	7864.62	21.19	128.17	31.11	123.00	30.55	3661.17	16.14	99.56	0.203196	
4	31.11	123.0	21.45	2586.87	23.66	142.19	24.00	158.00	16.51	1180.03	17.93	109.6	0.203196	

Additional Steel

Elev	Elev						Intermediate	e Connectors —	Termina	tion Conne	ctors -	
From	To			Fy	Fu	Offset		Spacing		Spacing	Lower	Upper
(ft)	(ft)	Qty	Description	(ksi)	(ksi)	(in)	Description	(in)	Description	(in)	Qty	Qty
0.00	36.00	4	PLT 7.625x1.5(31mm Hole	50	65	0.00	AJM20&sleeve	15.00	AJM20&sleeve	3.00	15	12

Load Summary

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 6

Discrete Appurtenances

					No Ice		1	lce			Vert
No.	Elev (ft)	Description	Qty	Weight (lb)	CaAa (sf)	CaAa Factor	Weight (lb)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
1	158.00	Site Pro PRK-1245 (kicker kit)	1	464.91	9.50	1.00	791.15	19.500	1.00	0.00	0.00
2	158.00	Site Pro HRK14	1	302.36	8.13	1.00	663.05	16.117	1.00	0.00	0.00
3	158.00	RFS - APXVSPP18-C-A20	3	57.00	8.02	0.83	230.75	10.828	0.85	0.00	0.50
4	158.00	Commscope - DT465B-2XR	3	58.00	9.10	0.83	286.69	10.447	0.85	0.00	0.50
5	158.00	ALU - TD-RRH8x20-25 - RRU	3	70.00	4.05	0.67	168.24	5.471	0.67	0.00	0.50
6	158.00	Low Profile Platform	1	1200.00	25.00	1.00	2252.58	46.052	1.00	0.00	0.50
7	158.00	RFS - ACU-A20-N - RET	3	1.00	0.14	0.67	5.32	0.438	0.67	0.00	0.50
8	158.00	ALU - 1900 MHz - RRU	3	44.00	3.80	0.67	153.73	5.197	0.67	0.00	0.50
9	158.00	Alu - 800 Filters	3	8.80	0.78	0.50	26.54	1.430	0.50	0.00	0.50
10	158.00	Collar Mount	1	350.00	5.00	1.00	644.72	8.509	1.00	0.00	0.00
11	158.00	ALU - 800 MHz - RRU	6	53.00	2.49	0.67	127.35	3.640	0.67	0.00	0.50
12	149.00	Low Profile Platform	1	1200.00	25.00	1.00	2246.43	45.929	1.00	0.00	0.00
13	149.00	DB844H90E-XY	12	14.00	3.05	1.10	116.72	3.908	1.08	0.00	0.00
14	138.00	AIR6449 B41	3	103.00	5.65	0.71	238.98	6.593	0.73	0.00	0.00
15	138.00	APXVAA24_43-U-A20	3	99.00	20.24	0.73	236.07	23.042	0.75	0.00	0.00
16	138.00	APX16DWV-16DWVS-E-A20	6	40.70	6.61	0.62	156.79	8.770	0.64	0.00	0.00
17	138.00	KRY 112 144/1	3	11.00	0.41	0.50	21.69	0.881	0.50	0.00	0.00
18	138.00	4449 B71 + B85	3	73.20	1.97	0.67	130.46	2.535	0.67	0.00	0.00
19	138.00	RRUS 4424 B25	3	46.00	1.64	0.67	86.76	2.151	0.67	0.00	0.00
20	138.00	Radio 4415 Protruding w/ Fan	3	49.60	1.86	0.67	101.11	2.504	0.67	0.00	0.00
21		782 10663	3	5.30	0.28	0.50	14.67	0.678	0.50	0.00	0.00
22	138.00	Platform w/ HR & V-Brace	1	2246.00	51.70	1.00	5355.76	89.639	1.00	0.00	0.00
23	128.00	Low Profile Platform	1	1500.00	22.00	1.00	2788.32	39.384	1.00	0.00	0.00
24	128.00	Andrew - DB846F65ZAXY	3	21.00	7.05	0.93	207.89	8.280	0.93	0.00	0.00
25	128.00	MT6407-77A	3	87.10	4.69	0.70	204.37	5.622	0.70	0.00	0.00
26	128.00	MX06FRO660-03	6	60.00	9.87	0.87	324.10	11.223	0.87	0.00	0.00
27	128.00	RF4440d-13A	3	70.33	1.87	0.67	141.86	2.433	0.67	0.00	0.00
28	128.00	RF4439d-25A	3	74.70	1.87	0.67	149.91	2.433	0.67	0.00	0.00
29	128.00	FE-16148-OVP-B12	1	15.21	2.10	1.00	71.09	3.136	1.00	0.00	0.00
30	128.00	Kicker Kit	1	146.00	5.33	1.00	346.63	10.823	1.00	0.00	0.00
31	128.00	Heavy Collar Mount	1	150.60	2.50	1.00	357.56	5.077	1.00	0.00	0.00
32		Support Rail w/ End Connection	1	514.00	12.25	1.00	1114.39	24.034	1.00	0.00	0.00
33	118.00	Low Profile Platform	1	1500.00	22.00	1.00	2777.88	39.243	1.00	0.00	0.00
34	118.00	P65-16-XLH-RR	3	53.00	8.16	0.79	214.14	10.896	0.81	0.00	0.00
35	118.00	7770	6	35.00	5.50	0.77	166.67	6.527	0.80	0.00	0.00
36		LGP21401	6	14.10	1.29	0.67	38.51	2.106	0.67	0.00	0.00
37	118.00	TT19-08BP111-001	3	16.00	0.64	0.67	35.76	1.219	0.67	0.00	0.00
38		RRUS-11	6	51.00	2.52	0.50	121.56	3.138	0.50	0.00	0.00
39		DC6-48-60-18	1	31.80	0.92	1.00	92.16	1.348	1.00	0.00	0.00
40		Commscope FFVV-65B-R2	3	70.80	12.27	0.74	346.76	13.679	0.74	0.00	0.00
41		Fujitsu TA08025-B605	3	75.00	1.96	0.67	125.61	2.503	0.67	0.00	0.00
42		Fujitsu TA08025-B604	3	63.90	1.96	0.67	112.89	2.503	0.67	0.00	0.00
43		Raycap RDIDC-9181-PF-48	1	21.90	2.01	0.79	73.43	2.560	0.79	0.00	0.00
44		Platform Commscope MC-PK8-DSH	1	1727.00	37.59	1.00	3360.29	83.297	1.00	0.00	0.00
45	75.00	•	1	3.70	0.01	1.00	3.70	0.010	1.00	0.00	0.00

Totals: 130 16,537.47 39,670.22

Discrete Appurtenances

					No Ice			Ice				
	Elev			Weight	CaAa	CaAa	Weight	CaAa	CaAa	Hor. Ecc.	Vert Ecc	
No.	(ft)	Description	Qty	(lb)	(sf)	Factor	(lb)	(sf)	Factor	(ft)	(ft)	

Linear Appurtenances

Bottom Elev. (ft)	Top Elev. (ft)	Description	Exposed Width	Exposed
		· · · · · · · · · · · · · · · · · · ·		
0.00		(4) 1 1/4" Fiber	0.00	Inside
0.00	149.00	(12) 1 1/4" Coax	0.00	Inside
0.00	138.00	(9) 1 1/4" Coax	0.00	Inside
0.00	138.00	(3) 1-1/4" Fiber	0.00	Inside
0.00	128.00	(12) 1 5/8" Coax	1.98	Outside
0.00	128.00	(1) 1 5/8" Hybrid	0.00	Outside
0.00	118.00	(12) 1 1/4" Coax	0.00	Inside
0.00	118.00	(1) 3" Innerduct	0.00	Inside
0.00	118.00	(1) 3/8" RET	0.00	Inside
0.00	118.00	(2) 5/8" DC	0.00	Inside
0.00	108.00	(1) 1.6" Hybrid	0.00	Inside
0.00	75.00	(1) 1/2" Coax	0.00	Inside
0.00	39.00	(4) 1.25" Reinforcing plate	3.00	Outside

Shaft Section Properties

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

158.00

0.2188

24.000

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 8

5604.5

	ent Length: 5	(ft)	F1 4								Ac	lditional	Reinforci	ng
Elev (ft)	Description	Thick (in)	Flat Dia (in)	Area (in^2)	lx (in^4)	W/t Ratio	D/t Ratio	Fy (ksi)	Fb (ksi)	Weight (lb)	Area (in^2)	lxp (in^4)	lyp (in^4)	Weight
0.00	RB1	0.3750	54.730	64.694	24148.7	24.32	145.95	65	73	0.0	45.75	21320.2	15073.2	
5.00		0.3750	53.714	63.484	22819.7	23.85	143.24	65	73	1090.4	45.75	20560.3	14538.2	778.4
10.00		0.3750	52.698	62.275	21540.4	23.37	140.53	65	74	1069.8	45.75	19814.2	14012.8	778.4
15.00		0.3750	51.682	61.066	20309.9	22.89	137.82	65	74	1049.3	45.75	19082.0	13497.3	778.4
20.00		0.3750	50.666	59.857	19127.1	22.41	135.11	65	75	1028.7	45.75	18363.6	12991.5	778.4
25.00		0.3750	49.650	58.648	17991.1	21.94	132.40	65	76	1008.1	45.75	17659.1	12495.4	778.4
30.00		0.3750	48.634	57.438	16901.0	21.46	129.69	65	76	987.5	45.75	16968.4	12009.2	778.4
35.00		0.3750	47.618	56.229	15855.9	20.98	126.98	65	77	967.0	45.75	16291.6	11532.6	778.4
36.00	RT1	0.3750	47.415	55.987	15652.2	20.88	126.44	65	77	190.9	45.75	16157.9	11438.5	155.7
39.00	Bot - Section 2	0.3750	46.805	55.262	15051.6	20.60	124.81	65	77	567.8				
40.00		0.3750	46.602	55.020	14854.8	20.50	124.27	65	77	378.3				
45.00	Top - Section 1	0.3750	46.336	54.703	14599.9	20.38	123.56	65	77	1866.8				
50.00		0.3750	45.320	53.494	13652.9	19.90	120.85	65	78	920.4				
55.00		0.3750	44.304	52.285	12747.8	19.42	118.14	65	79	899.9				
60.00		0.3750	43.288	51.076	11883.6	18.94	115.44	65	79	879.3				
65.00		0.3750	42.272	49.866	11059.4	18.47	112.73	65	80	858.7				
70.00		0.3750	41.256	48.657	10274.2	17.99	110.02	65	80	838.1				
75.00		0.3750	40.240	47.448	9527.1	17.51	107.31	65	81	817.6				
79.00	Bot - Section 3	0.3750	39.428	46.481	8956.2	17.13	105.14	65	81	639.2				
80.00		0.3750	39.224	46.239	8817.1	17.03	104.60	65	81	291.5				
84.00	Top - Section 2	0.3125	39.037	38.408	7276.7	20.62	124.92	60	72	1151.0				
85.00		0.3125	38.833	38.206	7162.8	20.50	124.27	60	72	130.4				
90.00		0.3125	37.817	37.199	6610.8	19.93	121.02	60	73	641.5				
95.00		0.3125	36.801	36.191	6088.0	19.35	117.76	60	73	624.3				
100.00		0.3125	35.785	35.183	5593.5	18.78	114.51	60	74	607.2				
105.00		0.3125	34.769	34.176	5126.5	18.21	111.26	60	75	590.0				
108.00		0.3125	34.160	33.571	4859.2	17.86	109.31	60	75	345.8				
110.00		0.3125	33.753	33.168	4686.3	17.63	108.01	60	75	227.1				
115.00		0.3125	32.737	32.160	4272.0	17.06	104.76	60	76	555.7				
118.00		0.3125	32.128	31.556	4035.6	16.72	102.81	60	76	325.2				
120.00		0.3125	31.721	31.153	3882.9	16.49	101.51	60	76	213.4				
123.00	Top - Section 3	0.3125	31.112	30.548	3661.2	16.14	99.56	60	76	314.9				
123.00	Bot - Section 4	0.2188	31.112	21.454	2586.9	23.06	142.19	60	69					
125.00		0.2188	30.705	21.171	2486.1	23.33	140.34	60	69	145.0				
128.00		0.2188	30.096	20.748	2339.9	22.84	137.55	60	70	214.0				
130.00		0.2188	29.689	20.466	2245.8	22.52	135.69	60	70	140.2				
135.00		0.2188	28.674	19.760	2021.4	21.70	131.05	60	71	342.2				
138.00		0.2188	28.064	19.337	1894.3	21.21	128.26	60	71	199.6				
140.00		0.2188	27.658	19.055	1812.5	20.88	126.41	60	72	130.6				
145.00		0.2188	26.642	18.349	1618.5	20.06	121.76	60	73	318.2				
149.00		0.2188	25.829	17.785	1473.7	19.40	118.05	60	73	245.9				
150.00		0.2188	25.626	17.644	1438.9	19.24	117.12	60	74	60.3				
155.00		0.2188	24.610	16.938	1273.1	18.42	112.48	60	74	294.2				

16.515 1180.0 17.93 109.69

60

Total Weight

170.7

24336.9

Wind Loading - Shaft

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

24

Page: 9

Iterations

Load Case: 1.2D + 1.6W 93 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.60

Elev			qz	qzGh	С		lce Thick	Tributary	Aa	CfAa	Wind Force X	Dead Load Ice	Tot Dead Load
(ft) Description	Kzt	Kz	(psf)	(psf)	(mph-ft)	Cf	(in)	(ft)	(sf)	(sf)	(lb)	(lb)	(lb)
0.00 RB1	1.00	0.85	17.879	19.67	397.09	0.650	0.000	0.00	0.000	0.00	0.0		0.0
5.00	1.00		17.879	19.67	389.72		0.000		22.941	14.91	469.2	0.0	1308.5
10.00	1.00		17.879	19.67	382.34	0.650	0.000		22.511	14.63	460.4	0.0	1283.8
15.00	1.00		17.879	19.67	374.97	0.650	0.000		22.081	14.35	451.6		1259.1
20.00	1.00		18.971	20.87	378.65		0.000		21.651	14.07	469.9		1234.4
25.00	1.00		19.883	21.87	379.88		0.000		21.222	13.79	482.7		1209.7
30.00	1.00		20.661	22.73	379.32		0.000		20.792	13.51	491.4	0.0	1185.0
35.00	1.00		21.343	23.48		0.654 *	0.000		20.362	13.31	500.0		1160.4
36.00 RT1	1.00		21.470	23.62		0.656 *	0.000	1.00	4.021	2.64	99.7	0.0	229.1
39.00 Bot - Section 2	1.00		21.834	24.02		0.658 *	0.000		11.959	7.87	302.4		681.4
40.00	1.00		21.951	24.15	374.64	0.650	0.000	1.00	4.015	2.61	100.8		454.0
45.00 Top - Section 1	1.00		22.502	24.75	371.05	0.650	0.000		19.820	12.88	510.2		2240.2
50.00	1.00		23.007	25.31	373.00	0.650	0.000		19.390	12.60	510.3		1104.5
55.00	1.00		23.473	25.82	368.31	0.650	0.000		18.960	12.32	509.1	0.0	1079.8
60.00	1.00		23.907	26.30	363.18	0.650	0.000		18.530	12.04	506.8		1055.1
65.00	1.00		24.313	26.74	357.65		0.000		18.100	11.77	503.4		1030.4
70.00	1.00		24.696	27.17	351.79	0.650	0.000		17.670	11.49	499.2		1005.8
75.00 Appurtenance(s)	1.00		25.057	27.56	345.63	0.650	0.000		17.240	11.21	494.2		981.1
79.00 Bot - Section 3	1.00		25.333	27.87	340.51	0.650	0.000		13.483	8.76	390.7		767.1
80.00	1.00		25.400	27.94	339.20		0.000	1.00	3.381	2.20	98.2		349.8
84.00 Top - Section 2	1.00		25.662	28.23	333.88	0.650	0.000		13.350	8.68	391.9		1381.2
85.00	1.00		25.726	28.30	337.97		0.000	1.00	3.295	2.14	97.0		156.4
90.00	1.00		26.037	28.64	331.11	0.650	0.000		16.215	10.54	483.0		769.8
95.00	1.00		26.336	28.97	324.06	0.650	0.000		15.785	10.26	475.6		749.2
100.00	1.00		26.621	29.28	316.82		0.000		15.356	9.98	467.7		728.6
105.00	1.00		26.896	29.59	309.41	0.650	0.000		14.926	9.70	459.3		708.0
108.00 Appurtenance(s)	1.00		27.056	29.76	304.88	0.650	0.000	3.00	8.749	5.69	270.8		414.9
110.00	1.00		27.161	29.88	301.84	0.650	0.000	2.00	5.747	3.74	178.6		272.5
115.00	1.00		27.416	30.16	294.13	0.650	0.000		14.066	9.14	441.2		666.9
118.00 Appurtenance(s)	1.00		27.565	30.32	289.43		0.000	3.00	8.233	5.35	259.6		390.3
120.00	1.00		27.663	30.43	286.28	0.650	0.000	2.00	5.403	3.51	171.0		256.1
123.00 Top - Section 3	1.00		27.807	30.59	281.51	0.650	0.000	3.00	7.975	5.18	253.7		377.9
125.00	1.00		27.902	30.69	278.30	0.650	0.000	2.00	5.231	3.40	167.0		174.1
128.00 Appurtenance(s)	1.00		28.042	30.85	273.46	0.650	0.000	3.00	7.717	5.02	247.6		256.8
130.00	1.00		28.133	30.95	270.21	0.650	0.000	2.00	5.059	3.29	162.8		168.3
135.00	1.00		28.358	31.19	262.00	0.650	0.000		12.347	8.03	400.5		410.6
138.00 Appurtenance(s)	1.00		28.489	31.34	257.02	0.650	0.000	3.00	7.202	4.68	234.7		239.5
140.00	1.00		28.576	31.43	253.69		0.000	2.00		3.06	154.1	0.0	156.8
145.00	1.00		28.788	31.67	245.27		0.000		11.487	7.47	378.3		381.8
149.00 Appurtenance(s)	1.00		28.953	31.85	238.47		0.000	4.00		5.77	294.1		295.1
150.00	1.00		28.994	31.89	236.76		0.000	1.00		1.42	72.2		72.3
155.00	1.00		29.195	32.11	228.16		0.000		10.627	6.91	354.9		353.0
158.00 Appurtenance(s)	1.00	1.39	29.313	32.24	222.96	0.650	0.000	3.00	6.170	4.01	206.9	0.0	204.9
* Cf Adjusted by Linear Load	i Ra Effect						Totals:	158.00			14,473.0)	29,204.3

Discrete Appurtenance Forces

CT46131-A-SBA Code: TIA-222-G 3/7/2022 Structure:

Site Name: Easton-Everetts Rd Exposure: С Height: 158.00 (ft) Crest Height: 0.00

1.60

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: || Page: 10

Iterations

24

Load Case: 1.2D + 1.6W 93 mph Wind **Dead Load Factor** 1.20 **Wind Load Factor**

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (lb-ft)
1	158.00	Collar Mount	1	29.313	32.244	1.00	1.00	5.00	420.00	0.000	0.000	257.95	0.00	0.00
2	158.00	Low Profile Platform	1	29.332	32.265	1.00	1.00	25.00	1440.00	0.000	0.500	1290.61	0.00	645.31
3	158.00	RFS - ACU-A20-N - RET	3	29.332	32.265	0.50	0.75	0.21	3.60	0.000	0.500	10.90	0.00	5.45
4	158.00	ALU - 1900 MHz - RRU	3	29.332	32.265	0.50	0.75	5.73	158.40	0.000	0.500	295.73	0.00	147.87
5	158.00	Alu - 800 Filters	3	29.332	32.265	0.38	0.75	0.88	31.68	0.000	0.500	45.30	0.00	22.65
6	158.00	ALU - TD-RRH8x20-25 -	3	29.332	32.265	0.50	0.75	6.11	252.00	0.000	0.500	315.19	0.00	157.59
7	158.00	Site Pro PRK-1245 (kicker	1	29.313	32.244	1.00	1.00	9.50	557.89	0.000	0.000	490.11	0.00	0.00
8	158.00	Site Pro HRK14	1	29.313	32.244	1.00	1.00	8.13	362.83	0.000	0.000	419.43	0.00	0.00
9	158.00	RFS - APXVSPP18-C-A20	3	29.332	32.265	0.62	0.75	14.96	205.20	0.000	0.500	772.27	0.00	386.13
10	158.00	Commscope -	3	29.332	32.265	0.62	0.75	16.95	208.80	0.000	0.500	875.21	0.00	437.60
11	158.00	ALU - 800 MHz - RRU	6	29.332	32.265	0.50	0.75	7.51	381.60	0.000	0.500	387.56	0.00	193.78
12	149.00	DB844H90E-XY	12	28.953	31.848	0.88	0.80	32.21	201.60	0.000	0.000	1641.23	0.00	0.00
13	149.00	Low Profile Platform	1	28.953	31.848	1.00	1.00	25.00	1440.00	0.000	0.000	1273.93	0.00	0.00
14		AIR6449 B41	3	28.489	31.338	0.53	0.75	9.03	370.80	0.000	0.000	452.57	0.00	0.00
15	138.00	APXVAA24_43-U-A20	3	28.489	31.338	0.55	0.75	33.24	356.40	0.000	0.000	1666.90	0.00	0.00
16	138.00	APX16DWV-16DWVS-E-A	6	28.489	31.338	0.46	0.75	18.44	293.04	0.000	0.000	924.70	0.00	0.00
17	138.00	Platform w/ HR & V-Brace	1	28.489	31.338	1.00	1.00	51.70	2695.20	0.000	0.000	2592.29	0.00	0.00
18	138.00	782 10663	3	28.489	31.338	0.38	0.75	0.32	19.08	0.000	0.000	15.79	0.00	0.00
19	138.00	KRY 112 144/1	3	28.489	31.338	0.38	0.75	0.46	39.60	0.000	0.000	23.13	0.00	0.00
20	138.00	4449 B71 + B85	3	28.489	31.338	0.50	0.75	2.97	263.52	0.000	0.000	148.91	0.00	0.00
21	138.00	RRUS 4424 B25	3	28.489	31.338	0.50	0.75	2.47	165.60	0.000	0.000	123.96	0.00	0.00
22	138.00	Radio 4415 Protruding w/	3	28.489	31.338	0.50	0.75	2.80	178.56	0.000	0.000	140.59	0.00	0.00
23	128.00	Support Rail w/ End	1	28.042	30.846	1.00	1.00	12.25	616.80	0.000	0.000	604.58	0.00	0.00
24	128.00	Heavy Collar Mount	1	28.042	30.846	1.00	1.00	2.50	180.72	0.000	0.000	123.38	0.00	0.00
25	128.00	Kicker Kit	1	28.042	30.846	1.00	1.00	5.33	175.20	0.000	0.000	263.05	0.00	0.00
26	128.00	FE-16148-OVP-B12	1	28.042	30.846	0.75	0.75	1.58	18.25	0.000	0.000	77.73	0.00	0.00
27	128.00	RF4439d-25A	3	28.042	30.846	0.50	0.75	2.82	268.92	0.000	0.000	139.13	0.00	0.00
28	128.00	RF4440d-13A	3	28.042	30.846	0.50	0.75	2.82	253.19	0.000	0.000	139.13	0.00	0.00
29	128.00	MX06FRO660-03	6	28.042	30.846	0.65	0.75	38.64	432.00	0.000	0.000	1907.06	0.00	0.00
30	128.00	MT6407-77A	3	28.042	30.846	0.52	0.75	7.39	313.56	0.000	0.000	364.56	0.00	0.00
31	128.00	Andrew - DB846F65ZAXY	3	28.042	30.846	0.70	0.75	14.75	75.60	0.000	0.000	728.06	0.00	0.00
32	128.00	Low Profile Platform	1	28.042	30.846	1.00	1.00	22.00	1800.00	0.000	0.000	1085.77	0.00	0.00
33	118.00	P65-16-XLH-RR	3	27.565	30.322	0.63	0.80	15.47	190.80	0.000	0.000	750.60	0.00	0.00
34	118.00	7770	6	27.565	30.322	0.62	0.80	20.33	252.00	0.000	0.000	986.22	0.00	0.00
35	118.00	Low Profile Platform	1	27.565	30.322	0.80	0.80	17.60	1800.00	0.000	0.000	853.87	0.00	0.00
36	118.00	RRUS-11	6	27.565	30.322	0.40	0.80	6.05	367.20	0.000	0.000	293.42	0.00	0.00
37	118.00	LGP21401	6	27.565	30.322	0.54	0.80	4.15	101.52	0.000	0.000	201.27	0.00	0.00
38	118.00	TT19-08BP111-001	3	27.565	30.322	0.54	0.80	1.03	57.60	0.000	0.000	49.93	0.00	0.00
39	118.00	DC6-48-60-18	1	27.565	30.322	0.80	0.80	0.74	38.16	0.000	0.000	35.71	0.00	0.00
40	108.00	Platform Commscope	1		29.762	1.00	1.00	37.59	2072.40	0.000	0.000	1790.00	0.00	0.00
41	108.00	Raycap	1	27.056	29.762	0.59	0.75	1.19	26.28	0.000	0.000	56.71	0.00	0.00
42	108.00	Fujitsu TA08025-B604	3	27.056	29.762	0.50	0.75	2.95	230.04	0.000	0.000	140.70	0.00	0.00
43	108.00	Fujitsu TA08025-B605	3	27.056	29.762	0.50	0.75	2.95	270.00	0.000	0.000	140.70	0.00	0.00
44	108.00	Commscope	3	27.056	29.762	0.55	0.75	20.43	254.88	0.000	0.000	972.84	0.00	0.00
45	75.00	GPS	1	25.057	27.563	1.00	1.00	0.01	4.44	0.000	0.000	0.44	0.00	0.00

19,844.96 25,869.11 Totals:

Total Applied Force Summary

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 11

24

Load Case: 1.2D + 1.6W 93 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.60

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		469.23	2508.32	0.00	0.00
10.00		460.44	2483.63	0.00	0.00
15.00		451.65	2458.94	0.00	0.00
20.00		469.89	2434.25	0.00	0.00
25.00		482.71	2409.56	0.00	0.00
30.00		491.44	2384.88	0.00	0.00
35.00		500.00	2360.19	0.00	0.00
36.00		99.71	469.07	0.00	0.00
39.00		302.40	1401.30	0.00	0.00
40.00		100.84	507.11	0.00	0.00
45.00		510.20	2505.93	0.00	0.00
50.00		510.33	1370.27	0.00	0.00
55.00		509.13	1345.58	0.00	0.00
60.00		506.79	1320.89	0.00	0.00
65.00		503.45	1296.20	0.00	0.00
70.00		499.22	1271.51	0.00	0.00
75.00	(1) attachments	494.64	1251.27	0.00	0.00
79.00	, ,	390.74	978.92	0.00	0.00
80.00		98.23	402.80	0.00	0.00
84.00		391.93	1593.08	0.00	0.00
85.00		96.96	209.38	0.00	0.00
90.00		483.00	1034.55	0.00	0.00
95.00		475.58	1013.98	0.00	0.00
100.00		467.65	993.41	0.00	0.00
105.00		459.25	972.83	0.00	0.00
108.00	(11) attachments	3371.76	3427.42	0.00	0.00
110.00	, ,	178.56	374.07	0.00	0.00
115.00		441.17	920.77	0.00	0.00
118.00	(26) attachments	3430.64	3349.86	0.00	0.00
120.00	• •	170.98	335.12	0.00	0.00
123.00		253.71	496.51	0.00	0.00
125.00		166.97	253.11	0.00	0.00
128.00	(23) attachments	5680.03	4509.59	0.00	0.00
130.00		162.82	214.76	0.00	0.00
135.00		400.54	526.81	0.00	0.00
138.00	(28) attachments	6323.55	4690.97	0.00	0.00
140.00		154.14	182.11	0.00	0.00
145.00		378.29	445.19	0.00	0.00
149.00	(13) attachments	3209.28	1987.38	0.00	0.00
150.00		72.21	75.50	0.00	0.00
155.00		354.93	368.86	0.00	0.00
158.00	(28) attachments	5367.15	4236.41	0.00	1996.38
	Totals:	40,342.16	63,372.30	0.00	1,996.38

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.2D + 1.6W 93 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.60

Page: 12

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
5.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.090	0.000	17.879	0.00	74.88
5.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.090	0.000	17.879	0.00	6.60
5.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.090	0.000	17.879	0.00	934.08
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.092	0.000	17.879	0.00	74.88
10.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.092	0.000	17.879	0.00	6.60
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.092	0.000	17.879	0.00	934.08
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.094	0.000	17.879	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.094	0.000	17.879	0.00	6.60
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.094	0.000	17.879	0.00	934.08
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.096	0.000	18.971	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.096	0.000	18.971	0.00	6.60
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.096	0.000	18.971	0.00	934.08
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.098	0.000	19.883	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.098	0.000	19.883	0.00	6.60
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.098	0.000	19.883	0.00	934.08
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.100	0.000	20.661	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	20.661	0.00	6.60
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.100	0.000	20.661	0.00	934.08
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.102	1.006	21.343	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.102	1.006	21.343	0.00	6.60
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.102	1.006	21.343	0.00	934.08
	1.23 Remoreing	Yes	1.00	0.000	1.98	0.17	0.00	0.102	1.010	21.470	0.00	14.98
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.103	1.010	21.470	0.00	1.32
	1.25" Reinforcing	Yes	1.00	0.000	3.00	0.00	0.00	0.103	1.010	21.470	0.00	186.82
	1.5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.103	1.010	21.834	0.00	44.93
	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.49	0.00	0.104	1.012	21.834	0.00	3.96
	1.25" Reinforcing	Yes	3.00	0.000	3.00	0.75	0.00	0.104	1.012	21.834	0.00	560.45
	1.5/8" Coax		1.00	0.000	1.98	0.73	0.00	0.104	0.000	21.854	0.00	14.98
	1 5/8" Hybrid	Yes Yes	1.00	0.000	0.00	0.00	0.00	0.042	0.000	21.951	0.00	1.32
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.00	0.00	0.042	0.000	21.951	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.02	0.00	0.042	0.000	22.502	0.00	6.60
	1 5/8" Coax		5.00							23.007		
		Yes		0.000	1.98 0.00	0.82	0.00	0.043	0.000		0.00	74.88 6.60
	1 5/8" Hybrid 1 5/8" Coax	Yes	5.00 5.00	0.000	1.98	0.00 0.82	0.00	0.043 0.044	0.000	23.007 23.473	0.00	
		Yes										74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.044	0.000	23.473	0.00	6.60
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.045	0.000	23.907	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.045	0.000	23.907	0.00	6.60
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.046	0.000	24.313	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.046	0.000	24.313	0.00	6.60
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.047	0.000	24.696	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.047	0.000	24.696	0.00	6.60
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.048	0.000	25.057	0.00	74.88
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.048	0.000	25.057	0.00	6.60
	1 5/8" Coax	Yes	4.00	0.000	1.98	0.66	0.00	0.049	0.000	25.333	0.00	59.90
	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.049	0.000	25.333	0.00	5.28
	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.050	0.000	25.400	0.00	14.98
80.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	25.400	0.00	1.32

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.2D + 1.6W 93 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.60

Page: 13

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
84.00	1 5/8" Coax	Yes	4.00	0.000	1.98	0.66	0.00	0.050	0.000	25.662	0.00	59.90
84.00	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.050	0.000	25.662	0.00	5.28
85.00	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.050	0.000	25.726	0.00	14.98
85.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	25.726	0.00	1.32
90.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.051	0.000	26.037	0.00	74.88
90.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.051	0.000	26.037	0.00	6.60
95.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.052	0.000	26.336	0.00	74.88
95.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.052	0.000	26.336	0.00	6.60
100.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.054	0.000	26.621	0.00	74.88
100.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.054	0.000	26.621	0.00	6.60
105.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.055	0.000	26.896	0.00	74.88
105.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.055	0.000	26.896	0.00	6.60
108.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.057	0.000	27.056	0.00	44.93
108.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.057	0.000	27.056	0.00	3.96
110.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.057	0.000	27.161	0.00	29.95
110.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.057	0.000	27.161	0.00	2.64
115.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.059	0.000	27.416	0.00	74.88
115.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.059	0.000	27.416	0.00	6.60
118.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.060	0.000	27.565	0.00	44.93
118.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.060	0.000	27.565	0.00	3.96
120.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.061	0.000	27.663	0.00	29.95
120.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.061	0.000	27.663	0.00	2.64
123.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.062	0.000	27.807	0.00	44.93
123.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.062	0.000	27.807	0.00	3.96
125.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.063	0.000	27.902	0.00	29.95
125.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.063	0.000	27.902	0.00	2.64
	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.064	0.000	28.042	0.00	44.93
128.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.064	0.000	28.042	0.00	3.96
									To	tals:	0.0	9,371.7

Calculated Forces

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

24

Iterations

Load Case: 1.2D + 1.6W 93 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.60

Page: 14

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-63.31	-40.44	0.00	-4835.7	0.00	4835.70	4238.25	2119.12	9474.98	4744.53	0.00	0.000	0.000	0.637
5.00	-60.68	-40.15	0.00	-4633.5	0.00	4633.51	4191.13	2095.57	9193.31	4603.49	0.09	-0.172	0.000	0.624
10.00	-58.08	-39.85	0.00	-4432.7	0.00	4432.78	4142.79	2071.40	8912.98	4463.11	0.36	-0.344	0.000	0.610
15.00	-55.51	-39.55	0.00	-4233.5	0.00	4233.52	4093.23	2046.62	8634.14	4323.49	0.82	-0.518	0.000	0.596
20.00	-52.96	-39.22	0.00	-4035.7	0.00	4035.77	4042.45	2021.22	8356.93	4184.68	1.45	-0.692	0.000	0.582
25.00	-50.44	-38.85	0.00	-3839.7	0.00	3839.70	3990.44	1995.22	8081.53	4046.77	2.27	-0.866	0.000	0.567
30.00	-47.94	-38.47	0.00	-3645.4	0.00	3645.43	3937.21	1968.60	7808.07	3909.84	3.27	-1.041	0.000	0.552
35.00	-45.52	-38.01	0.00	-3453.0	0.00	3453.09	3882.75	1941.38	7536.73	3773.96	4.46	-1.215	0.000	0.537
36.00	-45.01	-37.95	0.00	-3415.0	0.00	3415.08	3871.71	1935.86	7482.72	3746.92	4.71	-1.251	0.000	0.533
36.00	-45.01	-37.95	0.00	-3415.0	0.00	3415.08	3871.71	1935.86	7482.72	3746.92	4.71	-1.251	0.000	0.533
39.00	-43.56	-37.68	0.00	-3301.2	0.00	3301.23	3838.31	1919.15	7321.27	3666.08	5.53	-1.357	0.000	0.912
40.00	-42.93	-37.71	0.00	-3263.5	0.00	3263.55	3827.07	1913.54	7267.64	3639.22	5.83	-1.419	0.000	0.908
45.00	-40.25	-37.34	0.00	-3075.0	0.00	3075.02	3812.30	1906.15	7197.58	3604.14	7.47	-1.722	0.000	0.864
50.00	-38.70	-36.99	0.00	-2888.3	0.00	2888.31	3755.07	1877.54	6931.57	3470.94	9.44	-2.028	0.000	0.843
55.00	-37.19	-36.62	0.00	-2703.3	0.00	2703.37	3696.63	1848.32	6668.16	3339.04	11.72	-2.319	0.000	0.820
60.00	-35.71	-36.24	0.00	-2520.2	0.00	2520.27	3636.96	1818.48	6407.52	3208.52	14.31	-2.610	0.000	0.796
65.00	-34.26	-35.85	0.00	-2339.0	0.00	2339.09	3576.08	1788.04	6149.79	3079.47	17.20	-2.901	0.000	0.770
70.00	-32.84	-35.45	0.00	-2159.8	0.00	2159.85	3513.96	1756.98	5895.14	2951.95	20.39	-3.191	0.000	0.741
75.00	-31.46	-35.02	0.00	-1982.6	0.00	1982.63	3450.63	1725.31	5643.71	2826.05	23.88	-3.477	0.000	0.711
79.00	-30.42	-34.65	0.00	-1842.5	0.00	1842.54	3399.08	1699.54	5445.00	2726.55	26.89	-3.706	0.000	0.685
80.00	-29.94	-34.60	0.00	-1807.9	0.00	1807.90	3386.07	1693.03	5395.67	2701.84	27.68	-3.764	0.000	0.678
84.00	-28.29	-34.17	0.00	-1669.5	0.00	1669.52	2492.17	1246.08	3964.65	1985.27	30.92	-3.988	0.000	0.853
85.00	-27.98	-34.15	0.00	-1635.3	0.00	1635.35	2483.20	1241.60	3929.49	1967.67	31.77	-4.045	0.000	0.843
90.00	-26.81	-33.73	0.00	-1464.6	0.00	1464.63	2437.73	1218.86	3754.97	1880.28	36.17	-4.353	0.000	0.791
95.00	-25.66	-33.31	0.00	-1295.9	0.00	1295.99	2391.17	1195.58	3582.65	1793.99	40.88	-4.650	0.000	0.734
100.00	-24.56	-32.88	0.00	-1129.4	0.00	1129.46	2343.52	1171.76	3412.67	1708.87	45.90	-4.933	0.000	0.672
105.00	-23.51	-32.42	0.00	-965.08	0.00	965.08	2294.79	1147.40	3245.17	1624.99	51.21	-5.199	0.000	0.605
108.00	-20.35	-28.79	0.00	-867.83	0.00	867.83	2265.03	1132.52	3145.91	1575.29	54.52	-5.352	0.000	0.561
110.00	-19.91	-28.63	0.00	-810.26	0.00	810.26	2244.98	1122.49	3080.27	1542.43	56.78	-5.450	0.000	0.535
115.00	-18.95	-28.16	0.00	-667.09	0.00	667.09	2194.08	1097.04	2918.13	1461.23	62.60	-5.675	0.000	0.466
118.00	-15.92	-24.44	0.00	-582.61	0.00	582.61	2163.02	1081.51	2822.22	1413.21	66.20	-5.799	0.000	0.420
120.00	-15.56	-24.26	0.00	-533.73	0.00	533.73	2136.45	1068.22	2751.59	1377.84	68.65	-5.878	0.000	0.395
123.00	-15.06	-23.98	0.00	-460.94	0.00	460.94	2094.98	1047.49	2645.31	1324.62	72.37	-5.987	0.000	0.356
123.00	-15.06	-23.98	0.00	-460.94	0.00	460.94	1330.70	665.35	1690.49	846.50	72.37	-5.987	0.000	0.557
125.00	-14.78	-23.82	0.00	-412.98	0.00	412.98	1319.70	659.85	1654.32	828.39	74.89	-6.055	0.000	0.511
128.00	-10.87	-17.71	0.00	-341.53	0.00	341.53	1302.88	651.44	1600.34	801.36	78.73	-6.185	0.000	0.435
130.00	-10.64	-17.54	0.00	-306.12	0.00	306.12	1291.45	645.73	1564.57	783.45	81.34	-6.264	0.000	0.400
135.00	-10.12	-17.11	0.00	-218.40	0.00	218.40	1262.12	631.06	1475.93	739.06	87.98	-6.430	0.000	0.304
138.00	-6.16	-10.30	0.00	-167.07	0.00	167.07	1244.00	622.00	1423.34	712.73	92.04	-6.511	0.000	0.240
140.00	-5.99	-10.14	0.00	-146.46	0.00	146.46	1231.70	615.85	1388.54	695.30	94.77	-6.558	0.000	0.216
145.00	-5.57	-9.72	0.00	-95.77	0.00	95.77	1200.20	600.10	1302.53	652.23	101.68	-6.653	0.000	0.152
149.00	-3.97	-6.30	0.00	-56.90	0.00	56.90	1174.22		1234.81	618.32	107.26	-6.707	0.000	0.096
150.00	-3.90	-6.22	0.00	-50.60	0.00	50.60	1167.61	583.81	1218.04	609.93	108.67	-6.717	0.000	0.086
155.00	-3.58	-5.83	0.00	-19.48	0.00	19.48	1133.94	566.97	1135.21	568.45	115.71	-6.752	0.000	0.038
158.00	0.00	-5.37	0.00	-2.00	0.00	2.00	1113.22	556.61	1086.36	543.99	119.94	-6.759	0.000	0.004

Wind Loading - Shaft

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 0.9D + 1.6W 93 mph Wind

Dead Load Factor 0.90 Wind Load Factor 1.60

Page: 15

Elev (ft) D	escription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (lb)
0.00 RB1		1.00	0.85	17.879	19.67	397.09	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	17.879	19.67	389.72	0.650	0.000	5.00	22.941	14.91	469.2	0.0	981.4
10.00		1.00	0.85	17.879	19.67	382.34	0.650	0.000	5.00	22.511	14.63	460.4	0.0	962.8
15.00		1.00	0.85	17.879	19.67	374.97	0.650	0.000	5.00	22.081	14.35	451.6	0.0	944.3
20.00		1.00	0.90	18.971	20.87	378.65	0.650	0.000	5.00	21.651	14.07	469.9	0.0	925.8
25.00		1.00	0.95	19.883	21.87	379.88	0.650	0.000	5.00	21.222	13.79	482.7	0.0	907.3
30.00		1.00	0.98	20.661	22.73	379.32	0.650	0.000	5.00	20.792	13.51	491.4	0.0	888.8
35.00		1.00	1.01	21.343	23.48	377.47		0.000	5.00	20.362	13.31	500.0	0.0	870.3
36.00 RT1		1.00	1.02	21.470	23.62	376.97	0.656 *	0.000	1.00	4.021	2.64	99.7	0.0	171.8
39.00 Bot - Se	ection 2	1.00	1.04	21.834	24.02	375.28	0.658 *	0.000	3.00	11.959	7.87	302.4	0.0	511.1
40.00		1.00	1.04	21.951	24.15	374.64	0.650	0.000	1.00	4.015	2.61	100.8	0.0	340.5
45.00 Top - S	ection 1	1.00	1.07	22.502	24.75	371.05	0.650	0.000	5.00	19.820	12.88	510.2	0.0	1680.1
50.00		1.00	1.09	23.007	25.31	373.00	0.650	0.000	5.00	19.390	12.60	510.3	0.0	828.4
55.00		1.00	1.12	23.473	25.82	368.31	0.650	0.000	5.00	18.960	12.32	509.1	0.0	809.9
60.00		1.00	1.14	23.907	26.30	363.18	0.650	0.000	5.00	18.530	12.04	506.8	0.0	791.4
65.00		1.00	1.16	24.313	26.74	357.65	0.650	0.000	5.00	18.100	11.77	503.4	0.0	772.8
70.00		1.00	1.17	24.696	27.17	351.79	0.650	0.000	5.00	17.670	11.49	499.2	0.0	754.3
75.00 Appurte	enance(s)	1.00	1.19	25.057	27.56	345.63	0.650	0.000	5.00	17.240	11.21	494.2	0.0	735.8
79.00 Bot - Se	ection 3	1.00	1.20	25.333	27.87	340.51	0.650	0.000	4.00	13.483	8.76	390.7	0.0	575.3
80.00		1.00	1.21	25.400	27.94	339.20	0.650	0.000	1.00	3.381	2.20	98.2	0.0	262.4
84.00 Top - S	ection 2	1.00	1.22	25.662	28.23	333.88	0.650	0.000	4.00	13.350	8.68	391.9	0.0	1035.9
85.00		1.00	1.22	25.726	28.30	337.97	0.650	0.000	1.00	3.295	2.14	97.0	0.0	117.3
90.00		1.00	1.24	26.037	28.64	331.11	0.650	0.000	5.00	16.215	10.54	483.0	0.0	577.3
95.00		1.00	1.25	26.336	28.97	324.06	0.650	0.000	5.00	15.785	10.26	475.6	0.0	561.9
00.00		1.00	1.27	26.621	29.28	316.82	0.650	0.000	5.00	15.356	9.98	467.7	0.0	546.5
05.00		1.00	1.28	26.896	29.59	309.41	0.650	0.000	5.00	14.926	9.70	459.3	0.0	531.0
08.00 Appurte	enance(s)	1.00	1.29	27.056	29.76	304.88	0.650	0.000	3.00	8.749	5.69	270.8	0.0	311.2
10.00		1.00	1.29	27.161	29.88	301.84	0.650	0.000	2.00	5.747	3.74	178.6	0.0	204.4
15.00		1.00	1.30	27.416	30.16	294.13	0.650	0.000	5.00	14.066	9.14	441.2	0.0	500.2
18.00 Appurte	enance(s)	1.00	1.31	27.565	30.32	289.43	0.650	0.000	3.00	8.233	5.35	259.6	0.0	292.7
20.00		1.00	1.32	27.663	30.43	286.28	0.650	0.000	2.00	5.403	3.51	171.0	0.0	192.0
23.00 Top - S	ection 3	1.00	1.32	27.807	30.59	281.51	0.650	0.000	3.00	7.975	5.18	253.7	0.0	283.4
25.00		1.00	1.33	27.902	30.69	278.30	0.650	0.000	2.00	5.231	3.40	167.0	0.0	130.5
28.00 Appurte	enance(s)	1.00	1.33	28.042	30.85	273.46	0.650	0.000	3.00	7.717	5.02	247.6	0.0	192.6
30.00		1.00	1.34	28.133	30.95	270.21	0.650	0.000	2.00	5.059	3.29	162.8	0.0	126.2
35.00		1.00	1.35	28.358	31.19	262.00		0.000	5.00	12.347	8.03	400.5	0.0	308.0
38.00 Appurte	enance(s)	1.00	1.35	28.489	31.34	257.02	0.650	0.000	3.00	7.202	4.68	234.7	0.0	179.6
40.00		1.00	1.36	28.576	31.43	253.69	0.650	0.000	2.00	4.715	3.06	154.1	0.0	117.6
45.00		1.00	1.37	28.788	31.67	245.27	0.650	0.000	5.00	11.487	7.47	378.3	0.0	286.4
49.00 Appurte	enance(s)	1.00	1.38	28.953	31.85	238.47	0.650	0.000	4.00	8.880	5.77	294.1	0.0	221.3
50.00		1.00	1.38	28.994	31.89	236.76	0.650	0.000	1.00	2.177	1.42	72.2	0.0	54.2
55.00		1.00		29.195	32.11	228.16	0.650	0.000	5.00	10.627	6.91	354.9	0.0	264.8
58.00 Appurte	enance(s)	1.00	1.39	29.313	32.24	222.96	0.650	0.000	3.00		4.01	206.9	0.0	153.7
	oy Linear Load									_				

Discrete Appurtenance Forces

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 0.9D + 1.6W 93 mph Wind

Dead Load Factor 0.90 Wind Load Factor 1.60

Page: 16

Iterations 24

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (lb-ft)
1	158.00	Collar Mount	1	29.313		1.00	1.00	5.00	315.00	0.000	0.000	257.95	0.00	0.00
2	158.00	Low Profile Platform	1		32.265	1.00	1.00	25.00	1080.00	0.000	0.500	1290.61	0.00	645.31
3	158.00	RFS - ACU-A20-N - RET	3	29.332	32.265	0.50	0.75	0.21	2.70	0.000	0.500	10.90	0.00	5.45
4	158.00	ALU - 1900 MHz - RRU	3	29.332	32.265	0.50	0.75	5.73	118.80	0.000	0.500	295.73	0.00	147.87
5	158.00	Alu - 800 Filters	3	29.332	32.265	0.38	0.75	0.88	23.76	0.000	0.500	45.30	0.00	22.65
6	158.00	ALU - TD-RRH8x20-25 -	3	29.332	32.265	0.50	0.75	6.11	189.00	0.000	0.500	315.19	0.00	157.59
7	158.00	Site Pro PRK-1245 (kicker	1	29.313	32.244	1.00	1.00	9.50	418.42	0.000	0.000	490.11	0.00	0.00
8	158.00	Site Pro HRK14	1	29.313	32.244	1.00	1.00	8.13	272.12	0.000	0.000	419.43	0.00	0.00
9	158.00	RFS - APXVSPP18-C-A20	3	29.332	32.265	0.62	0.75	14.96	153.90	0.000	0.500	772.27	0.00	386.13
10	158.00	Commscope -	3	29.332	32.265	0.62	0.75	16.95	156.60	0.000	0.500	875.21	0.00	437.60
11	158.00	ALU - 800 MHz - RRU	6	29.332	32.265	0.50	0.75	7.51	286.20	0.000	0.500	387.56	0.00	193.78
12	149.00	DB844H90E-XY	12	28.953	31.848	0.88	0.80	32.21	151.20	0.000	0.000	1641.23	0.00	0.00
13	149.00	Low Profile Platform	1	28.953	31.848	1.00	1.00	25.00	1080.00	0.000	0.000	1273.93	0.00	0.00
14	138.00	AIR6449 B41	3	28.489	31.338	0.53	0.75	9.03	278.10	0.000	0.000	452.57	0.00	0.00
15	138.00	APXVAA24_43-U-A20	3	28.489	31.338	0.55	0.75	33.24	267.30	0.000	0.000	1666.90	0.00	0.00
16	138.00	APX16DWV-16DWVS-E-A	6	28.489	31.338	0.46	0.75	18.44	219.78	0.000	0.000	924.70	0.00	0.00
17	138.00	Platform w/ HR & V-Brace	1	28.489	31.338	1.00	1.00	51.70	2021.40	0.000	0.000	2592.29	0.00	0.00
18	138.00	782 10663	3	28.489	31.338	0.38	0.75	0.32	14.31	0.000	0.000	15.79	0.00	0.00
19	138.00	KRY 112 144/1	3	28.489	31.338	0.38	0.75	0.46	29.70	0.000	0.000	23.13	0.00	0.00
20	138.00	4449 B71 + B85	3	28.489	31.338	0.50	0.75	2.97	197.64	0.000	0.000	148.91	0.00	0.00
21	138.00	RRUS 4424 B25	3	28.489	31.338	0.50	0.75	2.47	124.20	0.000	0.000	123.96	0.00	0.00
22	138.00	Radio 4415 Protruding w/	3	28.489	31.338	0.50	0.75	2.80	133.92	0.000	0.000	140.59	0.00	0.00
23	128.00	Support Rail w/ End	1	28.042	30.846	1.00	1.00	12.25	462.60	0.000	0.000	604.58	0.00	0.00
24		Heavy Collar Mount	1	28.042	30.846	1.00	1.00	2.50	135.54	0.000	0.000	123.38	0.00	0.00
25	128.00	Kicker Kit	1	28.042	30.846	1.00	1.00	5.33	131.40	0.000	0.000	263.05	0.00	0.00
26	128.00	FE-16148-OVP-B12	1	28.042	30.846	0.75	0.75	1.58	13.69	0.000	0.000	77.73	0.00	0.00
27	128.00	RF4439d-25A	3	28.042	30.846	0.50	0.75	2.82	201.69	0.000	0.000	139.13	0.00	0.00
28	128.00	RF4440d-13A	3	28.042	30.846	0.50	0.75	2.82	189.89	0.000	0.000	139.13	0.00	0.00
29	128.00	MX06FRO660-03	6	28.042	30.846	0.65	0.75	38.64	324.00	0.000	0.000	1907.06	0.00	0.00
30	128.00	MT6407-77A	3	28.042	30.846	0.52	0.75	7.39	235.17	0.000	0.000	364.56	0.00	0.00
31	128.00	Andrew - DB846F65ZAXY	3	28.042	30.846	0.70	0.75	14.75	56.70	0.000	0.000	728.06	0.00	0.00
32	128.00	Low Profile Platform	1	28.042	30.846	1.00	1.00	22.00	1350.00	0.000	0.000	1085.77	0.00	0.00
33	118.00	P65-16-XLH-RR	3	27.565	30.322	0.63	0.80	15.47	143.10	0.000	0.000	750.60	0.00	0.00
34	118.00	7770	6	27.565	30.322	0.62	0.80	20.33	189.00	0.000	0.000	986.22	0.00	0.00
35	118.00	Low Profile Platform	1	27.565	30.322	0.80	0.80	17.60	1350.00	0.000	0.000	853.87	0.00	0.00
36	118.00	RRUS-11	6	27.565	30.322	0.40	0.80	6.05	275.40	0.000	0.000	293.42	0.00	0.00
37	118.00	LGP21401	6	27.565	30.322	0.54	0.80	4.15	76.14	0.000	0.000	201.27	0.00	0.00
38	118.00	TT19-08BP111-001	3	27.565	30.322	0.54	0.80	1.03	43.20	0.000	0.000	49.93	0.00	0.00
39		DC6-48-60-18	1		30.322	0.80	0.80	0.74	28.62	0.000	0.000	35.71	0.00	0.00
40		Platform Commscope	1		29.762	1.00	1.00	37.59	1554.30	0.000	0.000	1790.00	0.00	0.00
41		Raycap	1		29.762	0.59	0.75	1.19	19.71	0.000	0.000	56.71	0.00	0.00
42		Fujitsu TA08025-B604	3		29.762	0.50	0.75	2.95	172.53	0.000	0.000	140.70	0.00	0.00
43		Fujitsu TA08025-B605	3		29.762	0.50	0.75	2.95	202.50	0.000	0.000	140.70	0.00	0.00
44		Commscope	3		29.762	0.55	0.75	20.43	191.16	0.000	0.000	972.84	0.00	0.00
45	75.00	•	1		27.563	1.00	1.00	0.01	3.33	0.000	0.000	0.44	0.00	0.00
			-				Totale		14 883 72			25 860 11		

Totals: 14,883.72 25,869.11

Total Applied Force Summary

Structure: CT46131-A-SBA Code: TIA-222-G 3/7/2022

Site Name: Easton-Everetts Rd Exposure: С Height: 158.00 (ft) Crest Height: 0.00

D - Stiff Soil **Base Elev:** 0.000 (ft) Site Class:

Gh: 1.1 Topography: 1 Struct Class: ||

Page: 17

Iterations 24

Load Case: 0.9D + 1.6W 93 mph Wind **Dead Load Factor** 0.90

Wind Load Factor 1.60

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (lb-ft)	
0.00		0.00	0.00	0.00	0.00	
5.00		469.23	1881.24	0.00	0.00	
10.00		460.44	1862.72	0.00	0.00	
15.00		451.65	1844.21	0.00	0.00	
20.00		469.89	1825.69	0.00	0.00	
25.00		482.71	1807.17	0.00	0.00	
30.00		491.44	1788.66	0.00	0.00	
35.00		500.00	1770.14	0.00	0.00	
36.00		99.71	351.81	0.00	0.00	
39.00		302.40	1050.97	0.00	0.00	
40.00		100.84	380.33	0.00	0.00	
45.00		510.20	1879.45	0.00	0.00	
50.00		510.33	1027.70	0.00	0.00	
55.00		509.13	1009.18	0.00	0.00	
60.00		506.79	990.67	0.00	0.00	
65.00		503.45	972.15	0.00	0.00	
70.00		499.22	953.64	0.00	0.00	
75.00	(1) attachments	494.64	938.45	0.00	0.00	
79.00		390.74	734.19	0.00	0.00	
80.00		98.23	302.10	0.00	0.00	
84.00		391.93	1194.81	0.00	0.00	
85.00		96.96	157.03	0.00	0.00	
90.00		483.00	775.92	0.00	0.00	
95.00		475.58	760.49	0.00	0.00	
100.00		467.65	745.05	0.00	0.00	
105.00		459.25	729.62	0.00	0.00	
108.00	(11) attachments	3371.76	2570.57	0.00	0.00	
110.00		178.56	280.55	0.00	0.00	
115.00		441.17	690.57	0.00	0.00	
118.00	(26) attachments	3430.64	2512.40	0.00	0.00	
120.00		170.98	251.34	0.00	0.00	
123.00		253.71	372.38	0.00	0.00	
125.00		166.97	189.83	0.00	0.00	
128.00	(23) attachments	5680.03	3382.19	0.00	0.00	
130.00		162.82	161.07	0.00	0.00	
135.00		400.54	395.11	0.00	0.00	
138.00	(28) attachments	6323.55	3518.23	0.00	0.00	
140.00		154.14	136.58	0.00	0.00	
145.00		378.29	333.89	0.00	0.00	
149.00	(13) attachments	3209.28	1490.54	0.00	0.00	
150.00		72.21	56.63	0.00	0.00	
155.00		354.93	276.65	0.00	0.00	
158.00	(28) attachments	5367.15	3177.31	0.00	1996.38	
	Totals:	40,342.16	47,529.22	0.00	1,996.38	

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 18

Load Case: 0.9D + 1.6W 93 mph Wind

Dead Load Factor 0.90 Wind Load Factor 1.60

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
5.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.090	0.000	17.879	0.00	56.16
5.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.090	0.000	17.879	0.00	4.95
5.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.090	0.000	17.879	0.00	700.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.092	0.000	17.879	0.00	56.16
10.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.092	0.000	17.879	0.00	4.95
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.092	0.000	17.879	0.00	700.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.094	0.000	17.879	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.094	0.000	17.879	0.00	4.95
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.094	0.000	17.879	0.00	700.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.096	0.000	18.971	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.096	0.000	18.971	0.00	4.95
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.096	0.000	18.971	0.00	700.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.098	0.000	19.883	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.098	0.000	19.883	0.00	4.95
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.098	0.000	19.883	0.00	700.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.100	0.000	20.661	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	20.661	0.00	4.95
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.100	0.000	20.661	0.00	700.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.102	1.006	21.343	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.102	1.006	21.343	0.00	4.95
	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.102	1.006	21.343	0.00	700.56
	1.23 Remoreing	Yes	1.00	0.000	1.98	0.17	0.00	0.102	1.010	21.470	0.00	11.23
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.103	1.010	21.470	0.00	0.99
	1.25" Reinforcing	Yes	1.00	0.000	3.00	0.25	0.00	0.103	1.010	21.470	0.00	140.11
	1.23 Reinforcing	Yes	3.00	0.000	1.98	0.49	0.00	0.103	1.012	21.834	0.00	33.70
	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.104	1.012	21.834	0.00	2.97
	1.25" Reinforcing	Yes	3.00	0.000	3.00	0.75	0.00	0.104	1.012	21.834	0.00	420.34
	1.23 Reinforcing	Yes	1.00	0.000	1.98	0.73	0.00	0.104	0.000	21.951	0.00	11.23
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.042	0.000	21.951	0.00	0.99
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.042	0.000	22.502	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.042	0.000	22.502	0.00	4.95
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.042	0.000	23.007	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.043	0.000	23.007	0.00	4.95
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.043	0.000	23.473	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.044	0.000	23.473	0.00	4.95
	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.044	0.000	23.473	0.00	56.16
			5.00		0.00	0.02	0.00		0.000	23.907	0.00	
	1 5/8" Hybrid	Yes	5.00	0.000	1.98	0.82	0.00	0.045 0.046	0.000		0.00	4.95
	1 5/8" Coax 1 5/8" Hybrid	Yes Yes	5.00	0.000	0.00	0.00	0.00	0.046	0.000	24.313 24.313	0.00	56.16 4.95
	1 5/8" Coax											
		Yes	5.00	0.000	1.98	0.82	0.00	0.047	0.000	24.696	0.00	56.16
	1 5/8" Hybrid	Yes	5.00 5.00	0.000	0.00	0.00	0.00	0.047	0.000	24.696	0.00	4.95
	1 5/8" Coax	Yes		0.000	1.98	0.82	0.00	0.048	0.000	25.057	0.00	56.16
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.048	0.000	25.057	0.00	4.95
	1 5/8" Coax	Yes	4.00	0.000	1.98	0.66	0.00	0.049	0.000	25.333	0.00	44.93
	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.049	0.000	25.333	0.00	3.96
	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.050	0.000	25.400	0.00	11.23
80.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	25.400	0.00	0.99

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA Code: TIA-222-G 3/7/2022

Site Name: Easton-Everetts Rd Exposure: С Height: 158.00 (ft) Crest Height: 0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: || Page: 19

Load Case: 0.9D + 1.6W 93 mph Wind

0.90 **Dead Load Factor** Wind Load Factor 1.60

Iterations 24

Top Elev		Wind	Length		Exposed Width	Area	CaAa		Cf Adjust	qz	FΧ	Dead Load
(ft)	Description	Exposed	(ft)	Ca	(in)	(sqft)	(sqft)	Ra	Factor	(psf)	(lb)	(lb)
84.00	1 5/8" Coax	Yes	4.00	0.000	1.98	0.66	0.00	0.050	0.000	25.662	0.00	44.93
84.00	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.050	0.000	25.662	0.00	3.96
85.00	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.050	0.000	25.726	0.00	11.23
85.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	25.726	0.00	0.99
90.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.051	0.000	26.037	0.00	56.16
90.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.051	0.000	26.037	0.00	4.95
95.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.052	0.000	26.336	0.00	56.16
95.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.052	0.000	26.336	0.00	4.95
100.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.054	0.000	26.621	0.00	56.16
100.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.054	0.000	26.621	0.00	4.95
105.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.055	0.000	26.896	0.00	56.16
105.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.055	0.000	26.896	0.00	4.95
108.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.057	0.000	27.056	0.00	33.70
108.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.057	0.000	27.056	0.00	2.97
110.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.057	0.000	27.161	0.00	22.46
110.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.057	0.000	27.161	0.00	1.98
115.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.059	0.000	27.416	0.00	56.16
115.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.059	0.000	27.416	0.00	4.95
118.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.060	0.000	27.565	0.00	33.70
118.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.060	0.000	27.565	0.00	2.97
120.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.061	0.000	27.663	0.00	22.46
120.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.061	0.000	27.663	0.00	1.98
123.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.062	0.000	27.807	0.00	33.70
123.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.062	0.000	27.807	0.00	2.97
125.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.063	0.000	27.902	0.00	22.46
125.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.063	0.000	27.902	0.00	1.98
128.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.064	0.000	28.042	0.00	33.70
128.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.064	0.000	28.042	0.00	2.97
									To	tals:	0.0	7.028.8

Totals: 0.0 7,028.8

Calculated Forces

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 20

Load Case: 0.9D + 1.6W 93 mph Wind

Dead Load Factor 0.90 Wind Load Factor 1.60

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-47.47	-40.41	0.00	-4776.9	0.00	4776.91	4238.25	2119.12	9474.98	4744.53	0.00	0.000	0.000	0.627
5.00	-45.47	-40.08	0.00	-4574.8	0.00	4574.84	4191.13	2095.57	9193.31	4603.49	0.09	-0.170	0.000	0.614
10.00	-43.49	-39.74	0.00	-4374.4	0.00	4374.46	4142.79	2071.40	8912.98	4463.11	0.36	-0.340	0.000	0.600
15.00	-41.53	-39.40	0.00	-4175.7	0.00	4175.78	4093.23	2046.62	8634.14	4323.49	0.81	-0.511	0.000	0.586
20.00	-39.59	-39.03	0.00	-3978.8	0.00	3978.80	4042.45	2021.22	8356.93	4184.68	1.43	-0.683	0.000	0.572
25.00	-37.68	-38.63	0.00	-3783.6	0.00	3783.67	3990.44	1995.22	8081.53	4046.77	2.24	-0.854	0.000	0.557
30.00	-35.78	-38.22	0.00	-3590.5	0.00	3590.51	3937.21	1968.60	7808.07	3909.84	3.23	-1.027	0.000	0.542
35.00	-33.95	-37.75	0.00	-3399.4	0.00	3399.41	3882.75	1941.38	7536.73	3773.96	4.40	-1.198	0.000	0.527
36.00	-33.56	-37.68	0.00	-3361.6	0.00	3361.67	3871.71	1935.86	7482.72	3746.92	4.65	-1.234	0.000	0.524
36.00	-33.56	-37.68	0.00	-3361.6	0.00	3361.67	3871.71	1935.86	7482.72	3746.92	4.65	-1.234	0.000	0.524
39.00	-32.46	-37.40	0.00	-3248.6	0.00	3248.63	3838.31	1919.15	7321.27	3666.08	5.46	-1.338	0.000	0.895
40.00	-31.97	-37.39	0.00	-3211.2	0.00	3211.23	3827.07	1913.54	7267.64	3639.22	5.75	-1.399	0.000	0.891
45.00	-29.91	-36.99	0.00	-3024.2	0.00	3024.27	3812.30	1906.15	7197.58	3604.14	7.37	-1.697	0.000	0.847
50.00	-28.71	-36.59	0.00	-2839.3	0.00	2839.33	3755.07	1877.54	6931.57	3470.94	9.31	-1.997	0.000	0.826
55.00	-27.54	-36.18	0.00	-2656.3	0.00	2656.37	3696.63	1848.32	6668.16	3339.04	11.56	-2.284	0.000	0.803
60.00	-26.39	-35.77	0.00	-2475.4	0.00	2475.45	3636.96	1818.48	6407.52	3208.52	14.10	-2.570	0.000	0.779
65.00	-25.27	-35.35	0.00	-2296.6	0.00	2296.61	3576.08	1788.04	6149.79	3079.47	16.95	-2.856	0.000	0.753
70.00	-24.17	-34.92	0.00	-2119.8	0.00	2119.89	3513.96	1756.98	5895.14	2951.95	20.09	-3.140	0.000	0.725
75.00	-23.11	-34.47	0.00	-1945.3	0.00	1945.31	3450.63	1725.31	5643.71	2826.05	23.53	-3.421	0.000	0.695
79.00	-22.32	-34.09	0.00	-1807.4	0.00	1807.43	3399.08	1699.54	5445.00	2726.55	26.49	-3.645	0.000	0.670
80.00	-21.94	-34.03	0.00	-1773.3	0.00	1773.34	3386.07	1693.03	5395.67	2701.84	27.26	-3.702	0.000	0.663
84.00	-20.70	-33.61	0.00	-1637.2	0.00	1637.23	2492.17	1246.08	3964.65	1985.27	30.45	-3.922	0.000	0.834
85.00	-20.44	-33.56	0.00	-1603.6	0.00	1603.63	2483.20	1241.60	3929.49	1967.67	31.28	-3.978	0.000	0.824
90.00	-19.53	-33.13	0.00	-1435.8	0.00	1435.82	2437.73	1218.86	3754.97	1880.28	35.61	-4.280	0.000	0.772
95.00	-18.65	-32.69	0.00	-1270.1	0.00	1270.19	2391.17	1195.58	3582.65	1793.99	40.24	-4.571	0.000	0.717
100.00	-17.79	-32.24	0.00	-1106.7	0.00	1106.75	2343.52	1171.76	3412.67	1708.87	45.18	-4.849	0.000	0.656
105.00	-16.99	-31.78	0.00	-945.54	0.00	945.54	2294.79	1147.40	3245.17	1624.99	50.39	-5.110	0.000	0.590
108.00	-14.68	-28.22	0.00	-850.19	0.00	850.19	2265.03	1132.52	3145.91	1575.29	53.65	-5.259	0.000	0.547
110.00	-14.33	-28.06	0.00	-793.74	0.00	793.74	2244.98	1122.49	3080.27	1542.43	55.87	-5.355	0.000	0.522
115.00	-13.61	-27.60	0.00	-653.44	0.00	653.44	2194.08	1097.04	2918.13	1461.23	61.59	-5.575	0.000	0.454
118.00	-11.40	-23.95	0.00	-570.66	0.00	570.66	2163.02	1081.51	2822.22	1413.21	65.13	-5.697	0.000	0.410
120.00	-11.13	-23.78	0.00	-522.75	0.00	522.75	2136.45	1068.22	2751.59	1377.84	67.53	-5.774	0.000	0.385
123.00	-10.75	-23.50	0.00	-451.42	0.00	451.42	2094.98	1047.49	2645.31	1324.62	71.19	-5.881	0.000	0.346
123.00	-10.75	-23.50	0.00	-451.42	0.00	451.42	1330.70	665.35	1690.49	846.50	71.19	-5.881	0.000	0.543
125.00	-10.54	-23.34	0.00	-404.41	0.00	404.41	1319.70	659.85	1654.32	828.39	73.66	-5.948	0.000	0.497
128.00	-7.74	-17.35	0.00	-334.40	0.00	334.40	1302.88	651.44	1600.34	801.36	77.44	-6.075	0.000	0.424
130.00	-7.56	-17.18	0.00	-299.71	0.00	299.71	1291.45	645.73	1564.57	783.45	79.99	-6.152	0.000	0.389
135.00	-7.18	-16.76	0.00	-213.79	0.00	213.79	1262.12	631.06	1475.93	739.06	86.52	-6.314	0.000	0.296
138.00	-4.37	-10.09	0.00	-163.52	0.00	163.52	1244.00	622.00	1423.34	712.73	90.50	-6.394	0.000	0.233
140.00	-4.24	-9.92	0.00	-143.35	0.00	143.35	1231.70	615.85	1388.54	695.30	93.19	-6.440	0.000	0.210
145.00	-3.94	-9.52	0.00	-93.72	0.00	93.72	1200.20	600.10	1302.53	652.23	99.97	-6.533	0.000	0.147
149.00	-2.82	-6.16	0.00	-55.66	0.00	55.66	1174.22	587.11	1234.81	618.32	105.46	-6.586	0.000	0.093
150.00	-2.77	-6.08	0.00	-49.50	0.00	49.50	1167.61	583.81	1218.04	609.93	106.84	-6.596	0.000	0.084
155.00	-2.54	-5.70	0.00	-19.09	0.00	19.09	1133.94	566.97	1135.21	568.45	113.75	-6.630	0.000	0.036
158.00	0.00	-5.37	0.00	-2.00	0.00	2.00	1113.22	556.61	1086.36	543.99	117.91	-6.637	0.000	0.004

Wind Loading - Shaft

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 21

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Elev (ft) Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (lb)	Tot Dead Load (lb)
0.00 RB1	1.00	0.85	5.168	5.68	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00	1.00	0.85	5.168	5.68	0.00	1.200	1.242	5.00	23.976	28.77	163.6	427.6	1736.1
10.00	1.00	0.85	5.168	5.68	0.00	1.200	1.331	5.00	23.620	28.34	161.1	450.5	1734.3
15.00	1.00	0.85	5.168	5.68	0.00	1.200	1.386	5.00	23.237	27.88	158.5	460.8	1719.9
20.00	1.00	0.90	5.483	6.03	0.00	1.200	1.427	5.00	22.840	27.41	165.3	465.6	1700.0
25.00	1.00	0.95	5.747	6.32	0.00	1.200	1.459	5.00	22.437	26.92	170.2	467.1	1676.8
30.00	1.00	0.98	5.972	6.57	0.00	1.200	1.486	5.00	22.030	26.44	173.7	466.4	1651.5
35.00	1.00	1.01	6.169	6.79	0.00	1.207 *	1.509	5.00	21.619	26.09	177.1	464.3	1624.7
36.00 RT1	1.00	1.02	6.206	6.83	0.00	1.212 *	1.513	1.00	4.273	5.18	35.3	92.7	321.9
39.00 Bot - Section 2	1.00	1.04	6.311	6.94	0.00	1.215 *	1.525	3.00	12.722	15.45	107.3	277.0	958.4
40.00	1.00	1.04	6.345	6.98	0.00	1.200	1.529	1.00	4.270	5.12	35.8		547.6
45.00 Top - Section 1	1.00	1.07	6.504	7.15	0.00	1.200	1.547		21.109	25.33	181.2		2704.2
50.00	1.00	1.09	6.650	7.32	0.00	1.200	1.564		20.693	24.83	181.6		1563.7
55.00	1.00	1.12	6.785	7.46	0.00	1.200	1.579	5.00	20.275	24.33	181.6	453.7	1533.5
60.00	1.00	1.14	6.910	7.60	0.00	1.200	1.592		19.857	23.83	181.1	447.6	1502.8
65.00	1.00	1.16	7.028	7.73	0.00	1.200	1.605		19.438	23.33	180.3		1471.6
70.00	1.00	1.17	7.138	7.85	0.00	1.200	1.617	5.00	19.018	22.82	179.2	434.2	1440.0
75.00 Appurtenance(s)	1.00	1.19	7.243	7.97	0.00	1.200	1.628		18.597	22.32	177.8		1408.1
79.00 Bot - Section 3	1.00	1.20	7.322	8.05	0.00	1.200	1.637	4.00	14.574	17.49	140.9		1103.8
80.00	1.00	1.21	7.342	8.08	0.00	1.200	1.639	1.00	3.654	4.38	35.4		435.0
84.00 Top - Section 2	1.00	1.22	7.418	8.16	0.00	1.200	1.647		14.448	17.34	141.5		1716.9
85.00	1.00	1.22	7.436	8.18	0.00	1.200	1.649	1.00	3.569	4.28	35.0		240.0
90.00	1.00	1.24	7.526	8.28	0.00	1.200	1.658		17.597	21.12	174.8		1179.7
95.00	1.00	1.25	7.612	8.37	0.00	1.200	1.667		17.175	20.61	172.6		1150.9
00.00	1.00	1.27	7.695	8.46	0.00	1.200	1.676		16.752	20.10	170.2		1121.8
05.00	1.00	1.28	7.774	8.55	0.00	1.200	1.684		16.329	19.59	167.6		1092.5
08.00 Appurtenance(s)	1.00	1.29	7.821	8.60	0.00	1.200	1.689	3.00	9.593	11.51	99.0		642.4
10.00	1.00	1.29	7.851	8.64	0.00	1.200	1.692	2.00	6.311	7.57	65.4		422.7
15.00	1.00	1.30	7.925	8.72	0.00	1.200	1.699		15.482	18.58	162.0		1033.4
18.00 Appurtenance(s)	1.00	1.31	7.968	8.76	0.00	1.200	1.704	3.00	9.085	10.90	95.6		606.8
20.00	1.00	1.32	7.996	8.80	0.00	1.200	1.707	2.00	5.972	7.17	63.0		399.0
23.00 Top - Section 3	1.00	1.32	8.038	8.84	0.00	1.200	1.711	3.00	8.831	10.60	93.7		588.9
25.00	1.00	1.33	8.065	8.87	0.00	1.200	1.714	2.00	5.802	6.96	61.8		313.2
28.00 Appurtenance(s)	1.00	1.33	8.105	8.92	0.00	1.200	1.718	3.00	8.576	10.29	91.8		462.1
30.00	1.00	1.34	8.132	8.95	0.00	1.200	1.720	2.00	5.632	6.76	60.5		303.6
35.00	1.00	1.35	8.197	9.02	0.00	1.200	1.727		13.786	16.54	149.2		739.4
38.00 Appurtenance(s)	1.00	1.35	8.235	9.06	0.00	1.200	1.731	3.00	8.067	9.68	87.7	193.7	433.2
40.00	1.00	1.36	8.260	9.09	0.00	1.200	1.733	2.00		6.35			284.3
45.00	1.00	1.37	8.321	9.15		1.200	1.739		12.936	15.52		309.1	690.9
49.00 Appurtenance(s)	1.00	1.38	8.369	9.21		1.200	1.744		10.043	12.05			535.9
50.00	1.00	1.38	8.381	9.22		1.200	1.745	1.00		2.96			132.1
55.00	1.00	1.39	8.439	9.28		1.200	1.751		12.086	14.50			642.0
58.00 Appurtenance(s)	1.00	1.39	8.473	9.32	0.00	1.200	1.754	3.00	7.047	8.46	78.8	169.7	374.6
* Cf Adjusted by Linear Load	Ra Effect						Totals:	158.00			5,229.7	7	41,940.2

Discrete Appurtenance Forces

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Page: 22

Iterations 24

No.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (lb-ft)
1	158.00	Collar Mount	1	8.473	9.320	1.00	1.00	8.51	614.72	0.000	0.000	79.30	0.00	0.00
2	158.00	Low Profile Platform	1	8.478	9.326	1.00	1.00	46.05	2192.58	0.000	0.500	429.49	0.00	214.75
3	158.00	RFS - ACU-A20-N - RET	3	8.478	9.326	0.50	0.75	0.66	12.66	0.000	0.500	6.16	0.00	3.08
4	158.00	ALU - 1900 MHz - RRU	3	8.478	9.326	0.50	0.75	7.83	394.00	0.000	0.500	73.07	0.00	36.54
5	158.00	Alu - 800 Filters	3	8.478	9.326	0.38	0.75	1.61	69.89	0.000	0.500	15.01	0.00	7.50
6	158.00	ALU - TD-RRH8x20-25 -	3	8.478	9.326	0.50	0.75	8.25	480.72	0.000	0.500	76.92	0.00	38.46
7	158.00	Site Pro PRK-1245 (kicker	1	8.473	9.320	1.00	1.00	19.50	789.04	0.000	0.000	181.74	0.00	0.00
8	158.00	Site Pro HRK14	1	8.473	9.320	1.00	1.00	16.12	1025.89	0.000	0.000	150.21	0.00	0.00
9	158.00	RFS - APXVSPP18-C-A20	3	8.478	9.326	0.64	0.75	20.73	577.96	0.000	0.500	193.37	0.00	96.68
10	158.00	Commscope -	3	8.478	9.326	0.63	0.75	19.89	735.88	0.000	0.500	185.47	0.00	92.73
11	158.00	ALU - 800 MHz - RRU	6	8.478	9.326	0.50	0.75	10.97	701.07	0.000	0.500	102.34	0.00	51.17
12	149.00	DB844H90E-XY	12	8.369	9.206	0.86	0.80	40.51	201.60	0.000	0.000	372.95	0.00	0.00
13	149.00	Low Profile Platform	1	8.369	9.206	1.00	1.00	45.93	2186.43	0.000	0.000	422.81	0.00	0.00
14	138.00	AIR6449 B41	3	8.235	9.058	0.55	0.75	10.83	683.64	0.000	0.000	98.09	0.00	0.00
15	138.00	APXVAA24_43-U-A20	3	8.235	9.058	0.56	0.75	38.88	457.12	0.000	0.000	352.22	0.00	0.00
16	138.00	APX16DWV-16DWVS-E-A	6	8.235	9.058	0.48	0.75	25.26	788.56	0.000	0.000	228.79	0.00	0.00
17	138.00	Platform w/ HR & V-Brace	1	8.235	9.058	1.00	1.00	89.64	4800.96	0.000	0.000	811.98	0.00	0.00
18	138.00	782 10663	3	8.235	9.058	0.38	0.75	0.76	39.08	0.000	0.000	6.91	0.00	0.00
19	138.00	KRY 112 144/1	3	8.235	9.058	0.38	0.75	0.99	62.38	0.000	0.000	8.98	0.00	0.00
20	138.00	4449 B71 + B85	3	8.235	9.058	0.50	0.75	3.82	260.11	0.000	0.000	34.61	0.00	0.00
21	138.00	RRUS 4424 B25	3	8.235	9.058	0.50	0.75	3.24	259.69	0.000	0.000	29.37	0.00	0.00
22	138.00	Radio 4415 Protruding w/	3	8.235	9.058	0.50	0.75	3.77	300.08	0.000	0.000	34.19	0.00	0.00
23	128.00	Support Rail w/ End	1	8.105	8.916	1.00	1.00	24.03	1731.19	0.000	0.000	214.29	0.00	0.00
24	128.00	Heavy Collar Mount	1	8.105	8.916	1.00	1.00	5.08	321.37	0.000	0.000	45.26	0.00	0.00
25	128.00	Kicker Kit	1	8.105	8.916	1.00	1.00	10.82	311.83	0.000	0.000	96.50	0.00	0.00
26	128.00	FE-16148-OVP-B12	1	8.105	8.916	0.75	0.75	2.35	58.34	0.000	0.000	20.97	0.00	0.00
27	128.00	RF4439d-25A	3	8.105	8.916	0.50	0.75	3.67	494.56	0.000	0.000	32.71	0.00	0.00
28	128.00	RF4440d-13A	3	8.105	8.916	0.50	0.75	3.67	467.77	0.000	0.000	32.71	0.00	0.00
29	128.00	MX06FRO660-03	6	8.105	8.916	0.65	0.75	43.94	2016.62	0.000	0.000	391.75	0.00	0.00
30	128.00	MT6407-77A	3	8.105	8.916	0.52	0.75	8.85	665.37	0.000	0.000	78.94	0.00	0.00
31	128.00	Andrew - DB846F65ZAXY	3	8.105	8.916	0.70	0.75	17.33	699.26	0.000	0.000	154.48	0.00	0.00
32	128.00	Low Profile Platform	1	8.105	8.916	1.00	1.00	39.38	2788.32	0.000	0.000	351.14	0.00	0.00
33	118.00	P65-16-XLH-RR	3	7.968	8.765	0.65	0.80	21.18	532.61	0.000	0.000	185.65	0.00	0.00
34	118.00	7770	6	7.968	8.765	0.64	0.80	25.06	1252.04	0.000	0.000	219.68	0.00	0.00
35	118.00	Low Profile Platform	1	7.968	8.765	0.80	0.80	31.39	2777.88	0.000	0.000	275.16	0.00	0.00
36	118.00	RRUS-11	6	7.968	8.765	0.40	0.80	7.53	694.56	0.000	0.000	66.01	0.00	0.00
37	118.00	LGP21401	6	7.968	8.765	0.54	0.80	6.77	205.37	0.000	0.000	59.36	0.00	0.00
38	118.00	TT19-08BP111-001	3	7.968	8.765	0.54	0.80	1.96	99.48	0.000	0.000	17.18	0.00	0.00
39	118.00	DC6-48-60-18	1	7.968	8.765	0.80	0.80	1.08	80.82	0.000	0.000	9.45	0.00	0.00
40	108.00	Platform Commscope	1	7.821	8.603	1.00	1.00	83.30	3332.69	0.000	0.000	716.58	0.00	0.00
41	108.00	Raycap	1	7.821	8.603	0.59	0.75	1.52	65.11	0.000	0.000	13.05	0.00	0.00
42	108.00	Fujitsu TA08025-B604	3	7.821	8.603	0.50	0.75	3.77	340.72	0.000	0.000	32.46	0.00	0.00
43		Fujitsu TA08025-B605	3	7.821	8.603	0.50	0.75	3.77	384.04	0.000	0.000	32.46	0.00	0.00
44	108.00	Commscope	3	7.821	8.603	0.55	0.75	22.78	885.37	0.000	0.000	195.93	0.00	0.00
45	75.00	GPS	1	7.243	7.967	1.00	1.00	0.01	8.14	0.000	0.000	0.08	0.00	0.00

Totals: 37,847.50 7,135.79

Total Applied Force Summary

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 23

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (lb-ft)	
0.00	• 0.0000000	0.00	0.00	0.00	0.00	
5.00		163.56	3142.65	0.00	0.00	
10.00		161.13	3156.12	0.00	0.00	
15.00		158.51	3151.27	0.00	0.00	
20.00		165.32	3138.39	0.00	0.00	
25.00		170.22	3120.89	0.00	0.00	
30.00		173.67	3100.34	0.00	0.00	
35.00		177.06	3077.63	0.00	0.00	
36.00		35.34	612.60	0.00	0.00	
39.00		107.29	1831.99	0.00	0.00	
40.00		35.77	641.36	0.00	0.00	
45.00		181.23	3175.54	0.00	0.00	
50.00		181.64	2037.25	0.00	0.00	
55.00		181.59	2009.13	0.00	0.00	
60.00		181.13	1980.32	0.00	0.00	
65.00		180.32	1950.92	0.00	0.00	
70.00		179.20	1921.00	0.00	0.00	
75.00	(1) attachments	177.88	1898.77	0.00	0.00	
79.00		140.87	1490.09	0.00	0.00	
80.00		35.41	531.62	0.00	0.00	
84.00		141.47	2104.31	0.00	0.00	
85.00		35.04	336.93	0.00	0.00	
90.00		174.82	1665.55	0.00	0.00	
95.00		172.58	1637.94	0.00	0.00	
100.00		170.16	1610.06	0.00	0.00	
105.00		167.57	1581.93	0.00	0.00	
108.00	(11) attachments	1089.52	5944.42	0.00	0.00	
110.00		65.40	614.59	0.00	0.00	
115.00		161.95	1514.07	0.00	0.00	
118.00	(26) attachments	928.04	6538.38	0.00	0.00	
120.00		63.03	569.16	0.00	0.00	
123.00		93.69	844.57	0.00	0.00	
125.00		61.77	483.80	0.00	0.00	
128.00	(23) attachments	1510.52	10272.96	0.00	0.00	
130.00		60.46	350.10	0.00	0.00	
135.00		149.16	855.52	0.00	0.00	
138.00	(28) attachments	1692.83	8154.50	0.00	0.00	
140.00		57.71	309.69	0.00	0.00	
145.00	(14)	142.09	754.24	0.00	0.00	
149.00	(13) attachments	906.70	2974.66	0.00	0.00	
150.00		27.30	135.31	0.00	0.00	
155.00	(00) !! !	134.63	657.81	0.00	0.00	
158.00	(28) attachments	1571.90	7978.51	0.00	540.92	
	Totals:	12,365.45	99,856.88	0.00	540.92	

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Page: 24

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
5.00	1 5/8" Coax	Yes	5.00	0.000	1.98	1.86	0.00	0.090	0.000	5.168	0.00	218.70
5.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.090	0.000	5.168	0.00	27.35
5.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.29	0.00	0.090	0.000	5.168	0.00	976.24
10.00	1 5/8" Coax	Yes	5.00	0.000	1.98	1.93	0.00	0.092	0.000	5.168	0.00	228.34
10.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.092	0.000	5.168	0.00	29.45
10.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.36	0.00	0.092	0.000	5.168	0.00	979.72
15.00	1 5/8" Coax	Yes	5.00	0.000	1.98	1.98	0.00	0.094	0.000	5.168	0.00	234.34
15.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.094	0.000	5.168	0.00	30.79
15.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.41	0.00	0.094	0.000	5.168	0.00	981.92
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.01	0.00	0.096	0.000	5.483	0.00	238.78
20.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.096	0.000	5.483	0.00	31.80
	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.44	0.00	0.096	0.000	5.483	0.00	983.56
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.04	0.00	0.098	0.000	5.747	0.00	242.32
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.098	0.000	5.747	0.00	32.62
	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.47	0.00	0.098	0.000	5.747	0.00	984.88
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.06	0.00	0.100	0.000	5.972	0.00	245.28
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	5.972	0.00	33.31
	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.49	0.00	0.100	0.000	5.972	0.00	985.99
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.08	0.00	0.102	1.006	6.169	0.00	247.84
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.102	1.006	6.169	0.00	33.91
	1.25" Reinforcing	Yes	5.00	0.000	3.00	2.51	0.00	0.102	1.006	6.169	0.00	986.95
	1 5/8" Coax	Yes	1.00	0.000	1.98	0.42	0.00	0.103	1.010	6.206	0.00	49.66
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.103	1.010	6.206	0.00	6.80
	1.25" Reinforcing	Yes	1.00	0.000	3.00	0.50	0.00	0.103	1.010	6.206	0.00	197.43
	1 5/8" Coax	Yes	3.00	0.000	1.98	1.26	0.00	0.104	1.012	6.311	0.00	149.79
	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.104	1.012	6.311	0.00	20.61
	1.25" Reinforcing	Yes	3.00	0.000	3.00	1.51	0.00	0.104	1.012	6.311	0.00	592.58
	1 5/8" Coax	Yes	1.00	0.000	1.98	0.42	0.00	0.042	0.000	6.345	0.00	50.02
	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.042	0.000	6.345	0.00	6.89
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.11	0.00	0.042	0.000	6.504	0.00	252.10
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.042	0.000	6.504	0.00	34.93
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.13	0.00	0.043	0.000	6.650	0.00	253.93
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.043	0.000	6.650	0.00	35.37
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.14	0.00	0.044	0.000	6.785	0.00	255.60
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.044	0.000	6.785	0.00	35.77
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.15	0.00	0.045	0.000	6.910	0.00	257.14
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.045	0.000	6.910	0.00	36.14
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.16	0.00	0.046	0.000	7.028	0.00	258.57
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.046	0.000	7.028	0.00	36.49
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.17	0.00	0.047	0.000	7.138	0.00	259.91
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.047	0.000	7.138	0.00	36.82
	1 5/8" Coax	Yes	5.00	0.000	1.98	2.18	0.00	0.048	0.000	7.243	0.00	261.17
	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.048	0.000	7.243	0.00	37.13
	1 5/8" Coax	Yes	4.00	0.000	1.98	1.75	0.00	0.049	0.000	7.322	0.00	209.70
	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.049	0.000	7.322	0.00	29.89
	1 5/8" Coax	Yes	1.00	0.000	1.98	0.44	0.00	0.050	0.000	7.342	0.00	52.47
	. 5/5 GGGA	. 03	1.00	0.000	1.00	J.77	0.00	0.000	0.000	1.042	5.00	J 1

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 25

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Iterations 24

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
84.00	1 5/8" Coax	Yes	4.00	0.000	1.98	1.76	0.00	0.050	0.000	7.418	0.00	210.60
84.00	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.050	0.000	7.418	0.00	30.12
85.00	1 5/8" Coax	Yes	1.00	0.000	1.98	0.44	0.00	0.050	0.000	7.436	0.00	52.69
85.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	7.436	0.00	7.54
90.00	1 5/8" Coax	Yes	5.00	0.000	1.98	2.21	0.00	0.051	0.000	7.526	0.00	264.54
90.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.051	0.000	7.526	0.00	37.97
95.00	1 5/8" Coax	Yes	5.00	0.000	1.98	2.21	0.00	0.052	0.000	7.612	0.00	265.55
95.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.052	0.000	7.612	0.00	38.22
100.00	1 5/8" Coax	Yes	5.00	0.000	1.98	2.22	0.00	0.054	0.000	7.695	0.00	266.52
100.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.054	0.000	7.695	0.00	38.46
105.00	1 5/8" Coax	Yes	5.00	0.000	1.98	2.23	0.00	0.055	0.000	7.774	0.00	267.44
105.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.055	0.000	7.774	0.00	38.69
108.00	1 5/8" Coax	Yes	3.00	0.000	1.98	1.34	0.00	0.057	0.000	7.821	0.00	160.79
108.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.057	0.000	7.821	0.00	23.30
110.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.89	0.00	0.057	0.000	7.851	0.00	107.33
110.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.057	0.000	7.851	0.00	15.57
115.00	1 5/8" Coax	Yes	5.00	0.000	1.98	2.24	0.00	0.059	0.000	7.925	0.00	269.18
115.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.059	0.000	7.925	0.00	39.13
118.00	1 5/8" Coax	Yes	3.00	0.000	1.98	1.35	0.00	0.060	0.000	7.968	0.00	161.81
118.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.060	0.000	7.968	0.00	23.55
120.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.90	0.00	0.061	0.000	7.996	0.00	108.00
120.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.061	0.000	7.996	0.00	15.73
123.00	1 5/8" Coax	Yes	3.00	0.000	1.98	1.35	0.00	0.062	0.000	8.038	0.00	162.29
123.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.062	0.000	8.038	0.00	23.67
125.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.90	0.00	0.063	0.000	8.065	0.00	108.32
125.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.063	0.000	8.065	0.00	15.81
128.00	1 5/8" Coax	Yes	3.00	0.000	1.98	1.35	0.00	0.064	0.000	8.105	0.00	162.75
128.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.064	0.000	8.105	0.00	23.79
	•								To	tale:	0.0	15 117 9

Totals: 0.0 15,117.9

Calculated Forces

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 26

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor 1.20 Wind Load Factor 1.00

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-99.85	-12.41	0.00	-1499.5	0.00	1499.59	4238.25	2119.12	9474.98	4744.53	0.00	0.000	0.000	0.208
5.00	-96.70	-12.34	0.00	-1437.5	0.00	1437.53	4191.13	2095.57	9193.31	4603.49	0.03	-0.053	0.000	0.204
10.00	-93.53	-12.26	0.00	-1375.8	0.00	1375.84	4142.79	2071.40	8912.98	4463.11	0.11	-0.107	0.000	0.200
15.00	-90.37	-12.18	0.00	-1314.5	0.00	1314.54	4093.23	2046.62	8634.14	4323.49	0.25	-0.161	0.000	0.195
20.00	-87.22	-12.09	0.00	-1253.6	0.00	1253.65	4042.45	2021.22	8356.93	4184.68	0.45	-0.215	0.000	0.191
25.00	-84.09	-11.98	0.00	-1193.2	0.00	1193.22	3990.44	1995.22	8081.53	4046.77	0.70	-0.269	0.000	0.186
30.00	-80.98	-11.87	0.00	-1133.3	0.00	1133.31	3937.21	1968.60	7808.07	3909.84	1.02	-0.323	0.000	0.181
35.00	-77.89	-11.72	0.00	-1073.9	0.00	1073.97	3882.75	1941.38	7536.73	3773.96	1.38	-0.377	0.000	0.176
36.00	-77.28	-11.71	0.00	-1062.2	0.00	1062.25	3871.71	1935.86	7482.72	3746.92	1.46	-0.389	0.000	0.175
36.00	-77.28	-11.71	0.00	-1062.2	0.00	1062.25	3871.71	1935.86	7482.72	3746.92	1.46	-0.389	0.000	0.175
39.00	-75.44	-11.62	0.00	-1027.1	0.00	1027.13	3838.31	1919.15	7321.27	3666.08	1.72	-0.421	0.000	0.300
40.00	-74.79	-11.66	0.00	-1015.5	0.00	1015.51	3827.07	1913.54	7267.64	3639.22	1.81	-0.441	0.000	0.299
45.00	-71.59	-11.57	0.00	-957.23	0.00	957.23	3812.30	1906.15	7197.58	3604.14	2.32	-0.535	0.000	0.284
50.00	-69.54	-11.48	0.00	-899.40	0.00	899.40	3755.07	1877.54	6931.57	3470.94	2.93	-0.630	0.000	0.278
55.00	-67.52	-11.38	0.00	-842.02	0.00	842.02	3696.63	1848.32	6668.16	3339.04	3.64	-0.721	0.000	0.270
60.00	-65.52	-11.27	0.00	-785.13	0.00	785.13	3636.96	1818.48	6407.52	3208.52	4.45	-0.812	0.000	0.263
65.00	-63.55	-11.17	0.00	-728.76	0.00	728.76	3576.08	1788.04	6149.79	3079.47	5.34	-0.902	0.000	0.254
70.00	-61.62	-11.05	0.00	-672.93	0.00	672.93	3513.96	1756.98	5895.14	2951.95	6.34	-0.993	0.000	0.246
75.00	-59.71	-10.92	0.00	-617.68	0.00	617.68	3450.63	1725.31	5643.71	2826.05	7.43	-1.082	0.000	0.236
79.00	-58.21	-10.80	0.00	-573.99	0.00	573.99	3399.08	1699.54	5445.00	2726.55	8.36	-1.153	0.000	0.228
80.00	-57.67	-10.80	0.00	-563.19	0.00	563.19	3386.07	1693.03	5395.67	2701.84	8.61	-1.171	0.000	0.226
84.00	-55.57	-10.65	0.00	-520.01	0.00	520.01	2492.17	1246.08	3964.65	1985.27	9.62	-1.241	0.000	0.284
85.00	-55.22	-10.67	0.00	-509.36	0.00	509.36	2483.20	1241.60	3929.49	1967.67	9.88	-1.259	0.000	0.281
90.00	-53.54	-10.54	0.00	-456.04	0.00	456.04	2437.73	1218.86	3754.97	1880.28	11.25	-1.355	0.000	0.265
95.00	-51.89	-10.41	0.00	-403.34	0.00	403.34	2391.17	1195.58	3582.65	1793.99	12.72	-1.447	0.000	0.247
100.00	-50.27	-10.27	0.00	-351.29	0.00	351.29	2343.52	1171.76	3412.67	1708.87	14.28	-1.535	0.000	0.227
105.00	-48.68	-10.12	0.00	-299.93	0.00	299.93	2294.79	1147.40	3245.17	1624.99	15.94	-1.618	0.000	0.206
108.00	-42.77	-8.89	0.00	-269.58	0.00	269.58	2265.03	1132.52	3145.91	1575.29	16.97	-1.665	0.000	0.190
110.00	-42.15	-8.84	0.00	-251.81	0.00	251.81	2244.98	1122.49	3080.27	1542.43	17.67	-1.696	0.000	0.182
115.00	-40.63	-8.67	0.00	-207.61	0.00	207.61	2194.08	1097.04	2918.13	1461.23	19.49	-1.766	0.000	0.161
118.00	-34.12	-7.56	0.00	-181.60	0.00	181.60	2163.02	1081.51	2822.22	1413.21	20.61	-1.805	0.000	0.144
120.00	-33.55	-7.49	0.00	-166.48	0.00	166.48	2136.45	1068.22	2751.59	1377.84	21.37	-1.829	0.000	0.137
123.00	-32.70	-7.39	0.00	-144.00	0.00	144.00	2094.98	1047.49	2645.31	1324.62	22.53	-1.863	0.000	0.124
123.00	-32.70	-7.39	0.00	-144.00	0.00	144.00	1330.70	665.35	1690.49	846.50	22.53	-1.863	0.000	0.195
125.00	-32.22	-7.33	0.00	-129.23	0.00	129.23	1319.70	659.85	1654.32	828.39	23.32	-1.884	0.000	0.181
128.00	-22.00	-5.49	0.00	-107.24	0.00	107.24	1302.88	651.44	1600.34	801.36	24.51	-1.925	0.000	0.151
130.00	-21.65	-5.43	0.00	-96.26	0.00	96.26	1291.45	645.73	1564.57	783.45	25.33	-1.950	0.000	0.140
135.00	-20.79	-5.27	0.00	-69.10	0.00	69.10	1262.12	631.06	1475.93	739.06	27.40	-2.002	0.000	0.110
138.00	-12.70	-3.29	0.00	-53.29	0.00	53.29	1244.00	622.00	1423.34	712.73	28.66	-2.028	0.000	0.085
140.00	-12.39	-3.23	0.00	-46.71	0.00	46.71	1231.70	615.85	1388.54	695.30	29.52	-2.043	0.000	0.077
145.00	-11.64	-3.07	0.00	-30.56	0.00	30.56	1200.20	600.10	1302.53	652.23	31.67	-2.073	0.000	0.057
149.00	-8.70	-2.05	0.00	-18.30	0.00	18.30	1174.22	587.11	1234.81	618.32	33.42	-2.090	0.000	0.037
150.00	-8.57	-2.02	0.00	-16.24	0.00	16.24	1167.61	583.81	1218.04	609.93	33.86	-2.094	0.000	0.034
155.00	-7.92	-1.86	0.00	-6.13	0.00	6.13	1133.94	566.97	1135.21	568.45	36.05	-2.105	0.000	0.018
158.00	0.00	-1.57	0.00	-0.54	0.00	0.54	1113.22	556.61	1086.36	543.99	37.38	-2.107	0.000	0.001

Seismic Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Page: 27

Load Case: 1.2D + 1.0E					Y	Iterations	22
Gust Response Factor	1.10		Sds	0.23		× Ss	0.21
Dead Load Factor	1.20 Seismic Load Factor	1.00	Sd1	0.11	Z	S1	0.07
Wind Load Factor	0.00 Structure Frequency (f1)	0.27	SA	0.03	Seismic Ir	nportance Factor	1.00

Top Elev	Deparintion		Wz		b		Lateral Fs ((b)		D: 150
(ft)	Description		(lb)	а	b	С	(lb)		R: 1.50
0.00	RB1		0.00	0.00	0.00	0.00	0.00		
5.00			1090.4	0.00	0.03	0.02	29.08		
10.00			1069.8	0.01	0.05	0.03	39.65		
15.00			1049.2	0.02	0.06	0.04	44.09		
20.00			1028.6	0.03	0.07	0.04	45.82		
25.00			1008.1	0.05	0.07	0.04	46.36		
30.00			987.54	0.07	0.07	0.04	46.50		
35.00			966.96	0.09	0.07	0.04	46.61		
36.00	RT1		190.92	0.10	0.07	0.04	9.25		
39.00	Bot - Section 2		567.83	0.12	0.07	0.04	27.92		
40.00			378.30	0.12	0.07	0.03	18.70		
45.00	Top - Section 1		1866.8	0.15	0.07	0.03	94.48		
50.00			920.43	0.19	0.06	0.02	47.32		
55.00			899.86	0.23	0.06	0.02	46.05		
60.00			879.28	0.27	0.05	0.01	43.02		
65.00			858.71	0.32	0.04	0.01	37.24		
70.00			838.13	0.37	0.03	0.01	27.67		
75.00	Appurtenance(s)		821.26	0.43	0.01	0.01	13.98		
79.00	Bot - Section 3		639.24	0.47	-0.01	0.01	0.55		
80.00			291.53	0.48	-0.01	0.01	-1.00		
84.00	Top - Section 2		1151.0	0.53	-0.03	0.01	-23.64		
85.00			130.35	0.55	-0.03	0.01	-3.21		
90.00			641.47	0.61	-0.06	0.02	-27.02		
95.00			624.32	0.68	-0.08	0.03	-33.40		
100.00			607.18	0.76	-0.10	0.04	-35.40		
105.00			590.03	0.83	-0.12	0.06	-33.60		
108.00	Appurtenance(s)		2723.7	0.88	-0.12	0.08	-145.50		
110.00			227.10	0.92	-0.12	0.09	-11.35		
115.00			555.74	1.00	-0.11	0.13	-20.97		
118.00	Appurtenance(s)		2664.6	1.05	-0.09	0.16	-74.41		
120.00			213.38	1.09	-0.08	0.18	-4.35		
123.00	Top - Section 3		314.93	1.15	-0.04	0.22	-2.36		
125.00	·		145.04	1.18	-0.01	0.24	0.30		
128.00	Appurtenance(s)		3659.1	1.24	0.05	0.29	66.05		
130.00			140.24	1.28	0.09	0.32	4.17		
135.00			342.20	1.38	0.25	0.41	21.43		
138.00	Appurtenance(s)		3851.0	1.44	0.37	0.48	327.06		
140.00			130.64	1.48	0.46	0.52	13.18		
145.00			318.19	1.59	0.75	0.66	46.05		
149.00	Appurtenance(s)		1613.9	1.68	1.05	0.79	296.77		
150.00	1 1		60.28	1.70	1.14	0.82	11.71		
155.00			294.18	1.82	1.63	1.01	73.43		
158.00	Appurtenance(s)		3522.4	1.89	1.98	1.14	1006.37		
. 55.55		Totals:	40,874.4		,,,,,		2,114.6	Total Wind:	40,342.2

Calculated Forces

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II

Page: 28

Load Case: 1.2D + 1.0E **Iterations** 22 **Gust Response Factor** 1.10 Sds 0.23 Ss 0.21 **Dead Load Factor** 0.11 **S1** 1.20 Seismic Load Factor 1.00 Sd1 0.07 Wind Load Factor 0.00 Structure Frequency (f1) 0.27 SA 0.03 Seismic Importance Factor 1.00

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-63.37	-2.54	0.00	-324.15	0.00	324.15	4238.25	2119.12	9474.98	4744.53	()	0.00	0.00	0.051
5.00	-60.86	-2.52	0.00	-311.47	0.00	311.47	4191.13	2095.57	9193.31	4603.49		0.01	-0.01	0.050
10.00	-58.38	-2.49	0.00	-298.87	0.00	298.87	4142.79	2071.40	8912.98	4463.11		0.02	-0.02	0.049
15.00	-55.92	-2.46	0.00	-286.42	0.00	286.42	4093.23	2046.62	8634.14	4323.49		0.05	-0.03	0.048
20.00	-53.48	-2.42	0.00	-274.13	0.00	274.13	4042.45	2021.22	8356.93	4184.68		0.10	-0.05	0.047
25.00	-51.07	-2.38	0.00	-262.03	0.00	262.03	3990.44	1995.22	8081.53	4046.77		0.15	-0.06	0.045
30.00	-48.69	-2.34	0.00	-250.11	0.00	250.11	3937.21	1968.60	7808.07	3909.84		0.22	-0.07	0.044
35.00	-46.33	-2.30	0.00	-238.40	0.00	238.40	3882.75	1941.38	7536.73	3773.96		0.30	-0.08	0.043
36.00	-45.86	-2.29	0.00	-236.10	0.00	236.10	3871.71	1935.86	7482.72	3746.92		0.32	-0.08	0.043
36.00	-45.86	-2.29	0.00	-236.10	0.00	236.10	3871.71	1935.86	7482.72	3746.92		0.32	-0.08	0.043
39.00	-44.46	-2.27	0.00	-229.21	0.00	229.21	3838.31	1919.15	7321.27	3666.08		0.37	-0.09	0.074
40.00	-43.95	-2.26	0.00	-226.95	0.00	226.95	3827.07	1913.54	7267.64	3639.22		0.39	-0.10	0.074
45.00	-41.44	-2.17	0.00	-215.65	0.00	215.65	3812.30	1906.15	7197.58	3604.14		0.51	-0.12	0.071
50.00	-40.07	-2.14	0.00	-204.78	0.00	204.78	3755.07	1877.54	6931.57	3470.94		0.64	-0.14	0.070
55.00	-38.73	-2.10	0.00	-194.08	0.00	194.08	3696.63	1848.32	6668.16	3339.04		0.80	-0.16	0.069
60.00	-37.41	-2.07	0.00	-183.57	0.00	183.57	3636.96	1818.48	6407.52	3208.52		0.98	-0.18	0.067
65.00	-36.11	-2.04	0.00	-173.21	0.00	173.21	3576.08	1788.04	6149.79	3079.47		1.18	-0.20	0.066
70.00	-34.84	-2.02	0.00	-163.00	0.00	163.00	3513.96	1756.98	5895.14	2951.95		1.40	-0.22	0.065
75.00	-33.58	-2.02	0.00	-152.88	0.00	152.88	3450.63	1725.31	5643.71	2826.05		1.65	-0.25	0.064
79.00	-32.61	-2.02	0.00	-144.82	0.00	144.82	3399.08	1699.54	5445.00	2726.55		1.86	-0.26	0.063
80.00	-32.20	-2.02	0.00	-142.80	0.00	142.80	3386.07	1693.03	5395.67	2701.84		1.92	-0.27	0.062
84.00	-30.61	-2.02	0.00	-134.71	0.00	134.71	2492.17	1246.08	3964.65	1985.27		2.15	-0.29	0.080
85.00	-30.40	-2.03	0.00	-132.69	0.00	132.69	2483.20	1241.60	3929.49	1967.67		2.21	-0.29	0.080
90.00	-29.36	-2.03	0.00	-122.56	0.00	122.56	2437.73	1218.86	3754.97	1880.28		2.53	-0.32	0.077
95.00	-28.35	-2.04	0.00	-112.38	0.00	112.38	2391.17	1195.58	3582.65	1793.99		2.87	-0.34	0.075
100.00	-27.35	-2.05	0.00	-102.18	0.00	102.18	2343.52	1171.76	3412.67	1708.87		3.25	-0.37	0.071
105.00	-26.38	-2.05	0.00	-91.94	0.00	91.94	2294.79	1147.40	3245.17	1624.99		3.64	-0.39	0.068
108.00	-22.95	-2.03	0.00	-85.79	0.00	85.79	2265.03	1132.52	3145.91	1575.29		3.89	-0.41	0.065
110.00	-22.58	-2.03	0.00	-81.73	0.00	81.73	2244.98	1122.49	3080.27	1542.43		4.07	-0.42	0.063
115.00	-21.66	-2.03	0.00	-71.56	0.00	71.56	2194.08	1097.04	2918.13	1461.23		4.51	-0.44	0.059
118.00	-18.31	-2.01	0.00	-65.45	0.00	65.45	2163.02	1081.51	2822.22	1413.21		4.79	-0.45	0.055
120.00	-17.97	-2.01	0.00	-61.43	0.00	61.43	2136.45	1068.22	2751.59	1377.84		4.99	-0.46	0.053
123.00	-17.47	-2.01	0.00	-55.39	0.00	55.39	2094.98	1047.49	2645.31	1324.62		5.28	-0.47	0.050
123.00	-17.47	-2.01	0.00	-55.39	0.00	55.39	1330.70	665.35	1690.49	846.50		5.28	-0.47	0.079
125.00	-17.22	-2.01	0.00	-51.37	0.00	51.37	1319.70	659.85	1654.32	828.39		5.48	-0.48	0.075
128.00	-12.71	-1.91	0.00	-45.33	0.00	45.33	1302.88	651.44	1600.34	801.36		5.79	-0.50	0.066
130.00	-12.50	-1.91	0.00	-41.50	0.00	41.50	1291.45	645.73	1564.57	783.45		6.00	-0.51	0.063
135.00	-11.97	-1.89	0.00	-31.95	0.00	31.95	1262.12	631.06	1475.93	739.06		6.55	-0.53	0.053
138.00	-7.28	-1.52	0.00	-26.29	0.00	26.29	1244.00		1423.34	712.73		6.89	-0.55	0.043
140.00	-7.10	-1.50	0.00	-23.26	0.00	23.26	1231.70	615.85	1388.54	695.30		7.12	-0.55	0.039
145.00	-6.65	-1.45	0.00	-15.74	0.00	15.74	1200.20	600.10	1302.53	652.23		7.71	-0.57	0.030
149.00	-4.67	-1.14	0.00	-9.92	0.00	9.92	1174.22	587.11	1234.81	618.32		8.19	-0.58	0.020
150.00	-4.59	-1.13	0.00	-8.78	0.00	8.78	1167.61	583.81	1218.04	609.93		8.31	-0.58	0.018
	1.00	7.10												
155.00	-4.23	-1.05	0.00	-3.15	0.00	3.15	1133.94	566.97	1135.21	568.45		8.92	-0.59	0.009

Seismic Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Page: 29

Load Case: 0.9D + 1.0E					Y	Iterations	22
Gust Response Factor	1.10		Sds	0.23	X	Ss	0.21
Dead Load Factor	0.90 Seismic Load Factor	1.00	Sd1	0.11	Z	S1	0.07
Wind Load Factor	0.00 Structure Frequency (f1)	0.27	SA	0.03	Seismic Importa	nce Factor	1.00

Top Elev			Wz				Lateral Fs		
(ft)	Description		(lb)	а	b	С	(lb)		R: 1.50
0.00	RB1		0.00	0.00	0.00	0.00	0.00		
5.00			1090.4	0.00	0.03	0.02	29.08		
10.00			1069.8	0.01	0.05	0.03	39.65		
15.00			1049.2	0.02	0.06	0.04	44.09		
20.00			1028.6	0.03	0.07	0.04	45.82		
25.00			1008.1	0.05	0.07	0.04	46.36		
30.00			987.54	0.07	0.07	0.04	46.50		
35.00			966.96	0.09	0.07	0.04	46.61		
36.00	RT1		190.92	0.10	0.07	0.04	9.25		
39.00	Bot - Section 2		567.83	0.12	0.07	0.04	27.92		
40.00	Ton Continued		378.30	0.12	0.07	0.03	18.70		
45.00 50.00	Top - Section 1		1866.8 920.43	0.15	0.07	0.03	94.48		
55.00			899.86	0.19	0.06	0.02	47.32 46.05		
60.00			879.28	0.23	0.05	0.02	43.02		
65.00			858.71	0.32	0.03	0.01	37.24		
70.00			838.13	0.37	0.03	0.01	27.67		
75.00	Appurtenance(s)		821.26	0.43	0.01	0.01	13.98		
79.00	Bot - Section 3		639.24	0.47	-0.01	0.01	0.55		
80.00	Dot Coolidit o		291.53	0.48	-0.01	0.01	-1.00		
84.00	Top - Section 2		1151.0	0.53	-0.03	0.01	-23.64		
85.00			130.35	0.55	-0.03	0.01	-3.21		
90.00			641.47	0.61	-0.06	0.02	-27.02		
95.00			624.32	0.68	-0.08	0.03	-33.40		
100.00			607.18	0.76	-0.10	0.04	-35.40		
105.00			590.03	0.83	-0.12	0.06	-33.60		
108.00	Appurtenance(s)		2723.7	0.88	-0.12	0.08	-145.50		
110.00			227.10	0.92	-0.12	0.09	-11.35		
115.00			555.74	1.00	-0.11	0.13	-20.97		
118.00	Appurtenance(s)		2664.6	1.05	-0.09	0.16	-74.41		
120.00			213.38	1.09	-0.08	0.18	-4.35		
123.00	Top - Section 3		314.93	1.15	-0.04	0.22	-2.36		
125.00			145.04	1.18	-0.01	0.24	0.30		
128.00	Appurtenance(s)		3659.1	1.24	0.05	0.29	66.05		
130.00			140.24	1.28	0.09	0.32	4.17		
135.00			342.20	1.38	0.25	0.41	21.43		
138.00	Appurtenance(s)		3851.0	1.44	0.37	0.48	327.06		
140.00			130.64	1.48	0.46	0.52	13.18		
145.00	A = = = = = = = (=)		318.19	1.59	0.75	0.66	46.05		
149.00	Appurtenance(s)		1613.9	1.68	1.05	0.79	296.77		
150.00			60.28	1.70	1.14	0.82	11.71		
155.00 158.00	Appurtenance(s)		294.18 3522.4	1.82 1.89	1.63 1.98	1.01 1.14	73.43 1006.37		
130.00	Appurteriance(s)	Totals:	40,874.4	1.09	1.90	1.14	2,114.6	Total Wind:	40,342.2

Calculated Forces

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 30

Load Case: 0.9D + 1.0E					Y	Iterations	22
Gust Response Factor	1.10		Sds	0.23	<u> </u>	Ss Ss	0.21
Dead Load Factor	0.90 Seismic Load Factor	1.00	Sd1	0.11	Z	S1	0.07
Wind Load Factor	0.00 Structure Frequency (f1)	0.27	SA	0.03	Seismic Impo	ortance Factor	1.00

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-47.53	-2.53	0.00	-319.79	0.00	319.79	4238.25	2119.12	9474.98	4744.53	` '	0.00	0.00	0.048
5.00	-45.65	-2.51	0.00	-307.11	0.00	307.11	4191.13	2095.57	9193.31	4603.49		0.01	-0.01	0.047
10.00	-43.78	-2.48	0.00	-294.54	0.00	294.54	4142.79	2071.40	8912.98	4463.11		0.02	-0.02	0.046
15.00	-41.94	-2.45	0.00	-282.12	0.00	282.12	4093.23	2046.62	8634.14	4323.49		0.05	-0.03	0.045
20.00	-40.11	-2.41	0.00	-269.89	0.00	269.89	4042.45	2021.22	8356.93	4184.68		0.10	-0.05	0.044
25.00	-38.31	-2.37	0.00	-257.85	0.00	257.85	3990.44	1995.22	8081.53	4046.77		0.15	-0.06	0.043
30.00	-36.52	-2.33	0.00	-246.01	0.00	246.01	3937.21	1968.60	7808.07	3909.84		0.22	-0.07	0.042
35.00	-34.75	-2.28	0.00	-234.38	0.00	234.38	3882.75	1941.38	7536.73	3773.96		0.30	-0.08	0.041
36.00	-34.39	-2.28	0.00	-232.10	0.00	232.10	3871.71	1935.86	7482.72	3746.92		0.31	-0.08	0.041
36.00	-34.39	-2.28	0.00	-232.10	0.00	232.10	3871.71	1935.86	7482.72	3746.92		0.31	-0.08	0.041
39.00	-33.34	-2.25	0.00	-225.27	0.00	225.27	3838.31	1919.15	7321.27	3666.08		0.37	-0.09	0.070
40.00	-32.96	-2.24	0.00	-223.02	0.00	223.02	3827.07	1913.54	7267.64	3639.22		0.39	-0.10	0.070
45.00	-31.08	-2.15	0.00	-211.84	0.00	211.84	3812.30	1906.15	7197.58	3604.14		0.50	-0.12	0.067
50.00	-30.05	-2.11	0.00	-201.08	0.00	201.08	3755.07	1877.54	6931.57	3470.94		0.63	-0.14	0.066
55.00 60.00	-29.04 -28.05	-2.07 -2.04	0.00	-190.53 -180.16	0.00	190.53 180.16	3696.63 3636.96	1848.32 1818.48	6668.16 6407.52	3339.04 3208.52		0.79 0.96	-0.16 -0.18	0.065 0.064
65.00	-27.08	-2.04	0.00	-169.97	0.00	169.97	3576.08	1788.04	6149.79	3079.47		1.16	-0.18	0.063
70.00	-26.13	-1.99	0.00	-159.93	0.00	159.93	3513.96	1756.98	5895.14	2951.95		1.38	-0.20	0.062
75.00	-25.19	-1.98	0.00	-150.00	0.00	150.00	3450.63	1725.31	5643.71	2826.05		1.62	-0.24	0.062
79.00	-24.45	-1.98	0.00	-142.10	0.00	142.10	3399.08	1699.54	5445.00	2726.55		1.83	-0.24	0.059
80.00	-24.15	-1.98	0.00	-140.12	0.00	140.12	3386.07	1693.03	5395.67	2701.84		1.89	-0.26	0.059
84.00	-22.95	-1.98	0.00	-132.19	0.00	132.19	2492.17	1246.08	3964.65	1985.27		2.12	-0.28	0.076
85.00	-22.80	-1.98	0.00	-130.22	0.00	130.22	2483.20	1241.60	3929.49	1967.67		2.17	-0.29	0.075
90.00	-22.02	-1.99	0.00	-120.29	0.00	120.29	2437.73	1218.86	3754.97	1880.28		2.49	-0.31	0.073
95.00	-21.26	-2.00	0.00	-110.34	0.00	110.34	2391.17	1195.58	3582.65	1793.99		2.83	-0.34	0.070
100.00	-20.51	-2.00	0.00	-100.36	0.00	100.36	2343.52	1171.76	3412.67	1708.87		3.19	-0.36	0.067
105.00	-19.78	-2.00	0.00	-90.37	0.00	90.37	2294.79	1147.40	3245.17	1624.99		3.58	-0.38	0.064
108.00	-17.21	-1.99	0.00	-84.36	0.00	84.36	2265.03	1132.52	3145.91	1575.29		3.83	-0.40	0.061
110.00	-16.93	-1.99	0.00	-80.39	0.00	80.39	2244.98	1122.49	3080.27	1542.43		4.00	-0.41	0.060
115.00	-16.24	-1.99	0.00	-70.44	0.00	70.44	2194.08	1097.04	2918.13	1461.23		4.44	-0.43	0.056
118.00	-13.73	-1.97	0.00	-64.47	0.00	64.47	2163.02	1081.51	2822.22	1413.21		4.71	-0.44	0.052
120.00	-13.47	-1.97	0.00	-60.52	0.00	60.52	2136.45	1068.22	2751.59	1377.84		4.90	-0.45	0.050
123.00	-13.10	-1.97	0.00	-54.59	0.00	54.59	2094.98	1047.49	2645.31	1324.62		5.19	-0.47	0.047
123.00	-13.10	-1.97	0.00	-54.59	0.00	54.59	1330.70	665.35	1690.49	846.50		5.19	-0.47	0.074
125.00	-12.91	-1.97	0.00	-50.65	0.00	50.65	1319.70	659.85	1654.32	828.39		5.39	-0.47	0.071
128.00	-9.53	-1.88	0.00	-44.72	0.00	44.72	1302.88	651.44	1600.34	801.36		5.69	-0.49	0.063
130.00	-9.37	-1.88	0.00	-40.96	0.00	40.96	1291.45	645.73	1564.57	783.45		5.90	-0.50	0.060
135.00	-8.97	-1.86	0.00	-31.56	0.00	31.56	1262.12	631.06	1475.93	739.06		6.44	-0.52	0.050
138.00	-5.46	-1.50	0.00	-25.99	0.00	25.99	1244.00	622.00	1423.34	712.73		6.77	-0.54	0.041
140.00	-5.32	-1.49	0.00	-22.99	0.00	22.99	1231.70	615.85	1388.54	695.30		7.00	-0.54	0.037
145.00	-4.99 3.50	-1.44	0.00	-15.56	0.00	15.56	1200.20	600.10	1302.53	652.23		7.57	-0.56	0.028
149.00	-3.50	-1.13 -1.11	0.00	-9.81 -8.69	0.00	9.81	1174.22	587.11	1234.81 1218.04	618.32		8.05	-0.57 -0.57	0.019 0.017
150.00 155.00	-3.44 -3.17	-1.11	0.00		0.00	8.69	1167.61 1133.94	583.81 566.97	1218.04	609.93 568.45		8.17 8.77	-0.57 -0.58	0.017
155.00	0.00	-1.04	0.00	-3.11 0.00	0.00	3.11 0.00	1113.94	556.61	1086.36	543.99		9.13	-0.58	0.008
156.00	0.00	-1.01	0.00	0.00	0.00	0.00	1113.22	0.00.0	1000.30	545.99		9.13	-0.56	0.000

Wind Loading - Shaft

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 31

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (lb)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00 RB1		1.00	0.85	7.442	8.19	256.18	0.650	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	7.442	8.19	251.43	0.650	0.000	5.00	22.941	14.91	122.1	0.0	1090.4
10.00		1.00	0.85	7.442	8.19	246.67	0.650	0.000	5.00	22.511	14.63	119.8	0.0	1069.8
15.00		1.00	0.85	7.442	8.19	241.92	0.650	0.000	5.00	22.081	14.35	117.5	0.0	1049.3
20.00		1.00	0.90	7.896	8.69	244.29	0.650	0.000		21.651	14.07	122.2	0.0	1028.7
25.00		1.00	0.95	8.276	9.10	245.08	0.650	0.000	5.00	21.222	13.79	125.6	0.0	1008.1
30.00		1.00	0.98	8.600	9.46	244.72		0.000	5.00	20.792	13.51	127.8	0.0	987.5
35.00		1.00	1.01	8.883	9.77		0.654 *	0.000	5.00	20.362	13.31	130.1	0.0	967.0
36.00 RT1		1.00	1.02	8.936	9.83	243.21	0.656 *	0.000	1.00	4.021	2.64	25.9	0.0	190.9
39.00 Bot -	Section 2	1.00	1.04	9.088	10.00	242.11	0.658 *	0.000	3.00	11.959	7.87	78.7	0.0	567.8
40.00		1.00	1.04		10.05	241.71	0.650	0.000	1.00	4.015	2.61	26.2	0.0	378.3
45.00 Top -	Section 1	1.00	1.07		10.30	239.39	0.650	0.000		19.820	12.88	132.7	0.0	1866.8
50.00		1.00	1.09		10.53	240.64	0.650	0.000		19.390	12.60	132.8	0.0	920.4
55.00		1.00	1.12		10.75	237.62	0.650	0.000		18.960	12.32	132.4	0.0	899.9
60.00		1.00	1.14		10.95	234.31	0.650	0.000		18.530	12.04	131.8	0.0	879.3
65.00		1.00		10.120	11.13	230.74		0.000		18.100	11.77	131.0	0.0	858.7
70.00		1.00		10.279	11.31	226.96	0.650	0.000		17.670	11.49	129.9	0.0	838.1
75.00 Appu	. ,	1.00	1.19	10.430	11.47	222.99	0.650	0.000		17.240	11.21	128.6	0.0	817.6
79.00 Bot -	Section 3	1.00	1.20		11.60	219.68	0.650	0.000	4.00	13.483	8.76	101.6	0.0	639.2
80.00		1.00	1.21	10.572	11.63	218.84	0.650	0.000	1.00	3.381	2.20	25.6	0.0	291.5
84.00 Top -	Section 2	1.00		10.681	11.75	215.41	0.650	0.000		13.350	8.68	102.0	0.0	1151.0
85.00		1.00		10.708	11.78	218.04	0.650	0.000	1.00	3.295	2.14	25.2	0.0	130.4
90.00		1.00		10.838	11.92	213.62		0.000		16.215	10.54	125.7	0.0	641.5
95.00		1.00		10.962	12.06	209.07	0.650	0.000		15.785	10.26	123.7	0.0	624.3
100.00		1.00		11.081	12.19	204.40		0.000		15.356	9.98	121.7	0.0	607.2
05.00		1.00		11.195	12.31	199.62		0.000		14.926	9.70	119.5		590.0
08.00 Appu	rtenance(s)	1.00		11.262	12.39	196.70	0.650	0.000	3.00	8.749	5.69	70.4	0.0	345.8
10.00		1.00		11.305	12.44	194.74	0.650	0.000	2.00	5.747	3.74	46.5	0.0	227.1
15.00		1.00	1.30		12.55	189.76	0.650	0.000	5.00	14.066	9.14	114.8	0.0	555.7
18.00 Appu	rtenance(s)	1.00		11.474	12.62	186.73	0.650	0.000	3.00	8.233	5.35	67.5	0.0	325.2
20.00		1.00		11.514	12.67	184.70	0.650	0.000	2.00	5.403	3.51	44.5	0.0	213.4
23.00 Top -	Section 3	1.00		11.574	12.73	181.62	0.650	0.000	3.00	7.975	5.18	66.0	0.0	314.9
25.00		1.00		11.614	12.78	179.55	0.650	0.000	2.00	5.231	3.40	43.4	0.0	145.0
28.00 Appu	rtenance(s)	1.00		11.672	12.84	176.43	0.650	0.000	3.00	7.717	5.02	64.4	0.0	214.0
30.00		1.00		11.710	12.88	174.33	0.650	0.000	2.00	5.059	3.29	42.4	0.0	140.2
35.00		1.00		11.803	12.98	169.03	0.650	0.000		12.347	8.03	104.2	0.0	342.2
38.00 Appu	rtenance(s)	1.00		11.858	13.04	165.82		0.000	3.00		4.68	61.1	0.0	199.6
40.00		1.00		11.894		163.67		0.000	2.00		3.06	40.1	0.0	130.6
45.00		1.00		11.982	13.18	158.24		0.000		11.487	7.47	98.4	0.0	318.2
49.00 Appu	rtenance(s)	1.00		12.051	13.26	153.85		0.000		8.880	5.77	76.5		245.9
50.00		1.00		12.068	13.27	152.75		0.000	1.00		1.42	18.8	0.0	60.3
55.00		1.00		12.152	13.37	147.20		0.000		10.627	6.91	92.3	0.0	294.2
58.00 Appu	rtenance(s)	1.00	1.39	12.201	13.42	143.84	0.650	0.000	3.00	6.170	4.01	53.8	0.0	170.7

Discrete Appurtenance Forces

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Page: 32

Iterations

23

158.00 Low Profile Platform	lo.	Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (lb-ft)
158.00 RFS - ACL-A2C-N - RET 3 12.209 13.430 0.50 0.75 0.21 3.00 0.000 0.500 76.93 0.5 158.00 Alu - 1900 MHz - RRU 3 12.209 13.430 0.50 0.75 0.75 0.78 312.00 0.000 0.500 11.78 0.5 158.00 Alu - 800 Filters 3 12.209 13.430 0.50 0.75 0.88 26.40 0.000 0.500 11.78 0.5 158.00 Alu - 800 Filters 3 12.209 13.430 0.50 0.75 0.81 210.00 0.000 0.500 11.78 0.5 0.5 158.00 Alu - 10 The RHS/20-25 - 3 12.209 13.430 0.50 0.75 0.11 210.00 0.000 0.000 127.50 0.8 158.00 Site Pro PKK14 1 12.201 13.421 1.00 1.00 8.13 302.36 0.000 0.000 109.11 0.9 158.00 0.000 0.000 0.000 13.430 0.62 0.75 14.96 171.00 0.000 0.500 227.68 0.5	1 1	158.00	Collar Mount	1	12.201	13.421	1.00	1.00	5.00	350.00	0.000	0.000	67.10	0.00	0.00
4 158 00 ALU - 1900 MHz - RRU 3 12 209 13 430 0.50 0.75 5.73 132 00 0.000 0.500 76.93 0.5 155.00 ALU - TD-RRH6x20-25 - 3 12 209 13 430 0.50 0.75 6.61 21 0.00 0.000 0.500 11.78 0.5 158.00 ALU - TD-RRH6x20-25 - 3 12 209 13 430 0.50 0.75 6.61 21 0.00 0.000 0.500 31.99 0.7 158.00 Site Pro PRK-1245 (kicker 1 12 201 13 421 1.00 1.00 9.50 464.91 0.000 0.000 127.50 0.7 158.00 Site Pro PRK-1245 (kicker 1 12 201 13 421 1.00 1.00 9.50 464.91 0.000 0.000 127.50 0.0 19.9 158.00 RFS - APXVSPP18-C-A20 3 12 209 13 430 0.62 0.75 16.95 174.00 0.000 0.500 200.90 0.1 158.00 Commscope - 3 12 209 13 430 0.62 0.75 16.95 174.00 0.000 0.500 200.90 0.1 158.00 Commscope - 3 12 209 13 430 0.62 0.75 16.95 174.00 0.000 0.500 0.500 127.68 0.1 158.00 0.000 0.000 ALU - 800 MHz - RRU 6 12 209 13 430 0.62 0.75 16.95 174.00 0.000 0.500 0.500 120.00 121 149.00 DB844H90E-XY 12 12.051 13 256 0.88 0.80 32 21 168.00 0.000 0.000 426.96 0.1 149.00 Low Profile Platform 1 12.051 13 256 0.88 0.80 32 21 168.00 0.000 0.000 0.000 426.96 0.1 149.00 Low Profile Platform 1 12.051 13 256 1.00 1.00 1.00 1.00 1.00 0.000 0.000 0.000 177.73 0.1 138.00 APX46DW-16DW-5E-A 6 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 177.73 0.1 138.00 APX16DW-16DW-15DW-5E - 6 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0.1 138.00 APX16DW-16DW-15DW-5E - 6 11.858 13.044 0.55 0.75 30.24 297.00 0.000 0.000 433.64 0.1 138.00 APX16DW-16DW-15DW-5E - 6 11.858 13.044 0.55 0.75 0.32 15.90 0.000 0.000 0.000 674.37 0.1 138.00 RMS 141 141 141 141 141 141 141 141 141 14	2 1	158.00	Low Profile Platform	1	12.209	13.430	1.00	1.00	25.00	1200.00	0.000	0.500	335.75	0.00	167.87
5 158.00 Alu - 800 Filters 3 12.209 13.430 0.38 0.75 0.88 26.40 0.000 0.500 11.78 0.6 158.00 Alu - TD-RRH8x20-25 3 12.209 13.430 0.50 0.75 6.11 210.00 0.000 0.500 81.99 0.75 158.00 Site Pro PRK-1245 (kicker 1 12.201 13.421 1.00 1.00 9.50 464.91 0.000 0.000 10.911 0.0 0.500 13.930 0.000 0.000 10.911 0.0 0.500 158.00 Site Pro HRK:14 1 12.201 13.421 1.00 1.00 8.13 302.36 0.000 0.000 10.911 0.0 158.00 RFS - APXVSPP18-CA20 3 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 200.90 0.000 158.00 Commiscope - 3 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 227.68 0.000 0.000 0.000 0.500 227.68 0.000 0.000 0.000 0.500 227.68 0.000 0.000 0.000 0.500 227.68 0.000 0.000 0.000 0.500 200.90 0.000 0.000 0.500 227.68 0.000 0.000 0.000 0.500 200.90 0.000 0.000 0.500 200.90 0.000 0.000 0.500 200.90 0.000 0.	3 1	158.00	RFS - ACU-A20-N - RET	3	12.209	13.430	0.50	0.75	0.21	3.00	0.000	0.500	2.83	0.00	1.42
6 158.00 ALU - TD-RRH8x20-25 - 3 12.209 13.430 0.50 0.75 6.11 210.00 0.000 0.500 81.99 0.7 158.00 Site Pro PRK-1245 (kicker 1 12.201 13.421 1.00 1.00 9.50 464.91 0.000 0.000 127.50 0.8 158.00 Site Pro PRK14 1 12.201 13.421 1.00 1.00 8.13 302.36 0.000 0.000 127.50 0.9 158.00 RFS - APXVSPP18-C-A20 3 12.209 13.430 0.62 0.75 14.96 171.00 0.000 0.500 200.90 0.10 158.00 Commscope - 3 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 200.90 0.11 158.00 ALU - 800 MHz - RRU 6 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 0.500 200.90 0.11 158.00 ALU - 800 MHz - RRU 6 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 0.500 200.90 0.12 149.00 DB844H90E-XY 12 12.051 13.256 0.88 0.80 32.21 168.00 0.000 0.000 426.96 0.13 149.00 Low Profile Platform 1 12.051 13.256 1.00 1.00 25.00 1200.00 0.000 0.000 0.000 426.96 0.13 149.00 Low Profile Platform 1 12.051 13.256 1.00 1.00 25.00 1200.00 0.000 0.000 0.000 131.41 0.15 138.00 APX16DWV-16DWVS-E-A 6 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 117.73 0.15 138.00 APX16DWV-16DWVS-E-A 6 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0.17 138.00 Platform wHR & V-Brace 1 11.858 13.044 0.56 0.75 32.24 297.00 0.000 0.000 433.64 0.17 138.00 Platform wHR & V-Brace 1 11.858 13.044 0.36 0.75 0.32 15.90 0.000 0.000 240.56 0.18 138.00 RVI 112 144/1 3 11.858 13.044 0.36 0.75 0.32 15.90 0.000 0.000 4.11 0.0 1.00 138.00 KRY 112 144/1 3 11.858 13.044 0.50 0.75 0.32 15.90 0.000 0.000 38.74 0.20 138.00 RRU 142 144/1 3 11.858 13.044 0.50 0.75 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84424 B25 3 11.858 13.044 0.50 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84424 B25 3 11.858 13.044 0.50 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84424 B25 3 11.858 13.044 0.50 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84424 B25 3 11.858 13.044 0.50 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84424 B25 3 11.858 13.044 0.50 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84424 B25 3 11.858 13.044 0.50 0.75 2.97 21960 0.000 0.000 38.74 0.21 138.00 RGU 84440 13A 11.672 12.	4 1	158.00	ALU - 1900 MHz - RRU	3	12.209	13.430	0.50	0.75	5.73	132.00	0.000	0.500	76.93	0.00	38.47
7 158.00 Site Pro PRK-1245 (kicker 1 12.201 13.421 1.00 1.00 9.50 464.91 0.000 0.000 127.50 0.8 158.00 Site Pro HRK14 1 12.201 13.421 1.00 1.00 8.13 302.36 0.000 0.000 199.11 0.9 158.00 Site Pro HRK14 1 12.201 13.421 1.00 1.00 8.13 302.36 0.000 0.000 159.11 0.9 158.00 Site Pro HRK14 1 12.201 13.421 1.00 0.62 0.75 14.96 171.00 0.000 0.500 227.68 0.01 158.00 Commscope 3 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 227.68 0.11 158.00 ALU -800 MHz - RRU 6 12.209 13.430 0.50 0.75 7.51 318.00 0.000 0.500 0.500 100.82 0.11 158.00 ALU -800 MHz - RRU 6 12.209 13.430 0.50 0.75 7.51 318.00 0.000 0.500 0.500 100.82 0.11 149.00 DB844H905-XY 12 12.051 13.256 1.00 1.00 1.00 25.00 1200.00 0.000 0.000 465.96 0.13 149.00 Low Profile Platform 1 12.051 13.256 1.00 1.00 1.00 25.00 1200.00 0.000 0.000 331.41 0.14 138.00 ARX40A24_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 117.73 0.15 138.00 APXVAA24_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 143.64 0.16 138.00 APX16DWV-16DWVS-E-A 6 11.858 13.044 0.46 0.75 18.44 244.20 0.000 0.000 240.56 0.17 138.00 Platform wil HR & V-Brace 1 11.858 13.044 0.38 0.75 0.32 11.50 0.000 0.000 674.37 0.18 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.32 11.50 0.000 0.000 674.37 0.19 138.00 KRY 112 144/1 3 11.858 13.044 0.30 0.75 0.32 11.50 0.000 0.000 6.02 0.20 138.00 4449 B71 + B85 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 36.74 0.22 11 138.00 Radio 4415 Protruding will 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 36.57 0.22 138.00 Radio 4415 Protruding will 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 36.57 0.22 138.00 Radio 4415 Protruding will 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 36.57 0.22 128.00 Kicker Kit 1 11.672 12.839 0.50 0.75 2.80 148.80 0.000 0.000 36.59 0.22 128.00 Kicker Kit 1 11.672 12.839 0.50 0.75 2.80 22.24 10 0.000 0.000 36.19 0.00 22.25 0.22 128.00 Kicker Kit 1 11.672 12.839 0.50 0.75 2.82 22.410 0.000 0.000 36.19 0.00 36.19 0.00 0.000 36.19 0.00 0.000 0.000 36.19 0.00 0.000 36.19 0.00 0.000 36.19 0.00 0.000 36.19 0	5 1	158.00	Alu - 800 Filters	3	12.209	13.430	0.38	0.75	0.88	26.40	0.000	0.500	11.78	0.00	5.89
8 158.00 Site Pro HRK14	6 1	158.00	ALU - TD-RRH8x20-25 -	3	12.209	13.430	0.50	0.75	6.11	210.00	0.000	0.500	81.99	0.00	41.00
9 158.00 RFS - APXVSPP18-C-A20 3 12.209 13.430 0.62 0.75 14.96 171.00 0.000 0.500 200.90 0. 10 158.00 Commscope	7 1	158.00	Site Pro PRK-1245 (kicker	1	12.201	13.421	1.00	1.00	9.50	464.91	0.000	0.000	127.50	0.00	0.00
158.00 Commscope 3 12.209 13.430 0.62 0.75 16.95 174.00 0.000 0.500 227.68 0.	8 1	158.00	Site Pro HRK14	1	12.201	13.421	1.00	1.00	8.13	302.36	0.000	0.000	109.11	0.00	0.00
11 158.00 ALU - 800 MHz - RRU 6 12.209 13.430 0.50 0.75 7.51 318.00 0.000 0.500 100.82 0. 12 149.00 DB844H90E-XY 12 12.051 13.256 0.88 0.80 32.21 168.00 0.000 0.000 426.96 0. 13 149.00 Low Profile Platform 1 12.051 13.256 1.00 1.00 25.00 1200.00 0.000 0.000 331.41 0. 14 138.00 AlR6449 B41 3 11.858 13.044 0.53 0.75 9.03 309.00 0.000 0.000 331.41 0. 15 138.00 APXIA024_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0. 16 138.00 APXIADDWN-E-A 6 11.858 13.044 0.46 0.75 18.44 244.20 0.000 0.000 433.64 0. 17 138.00 Platform w/ HR & V-Brace 1 11.858 13.044 1.00 1.00 51.70 2246.00 0.000 0.000 674.37 0. 18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 674.37 0. 19 138.00 KRY 112 144/1 3 11.858 13.044 0.50 0.75 2.80 18.80 0.000 0.000 0.000 4.11 0. 20 138.00 4449 B71 + B85 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 38.74 0. 21 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 38.74 0. 22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 38.74 0. 23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.55 14.00 0.000 0.000 38.74 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 1.00 5.33 146.00 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 27 128.00 Kr64496-13A 3 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 28 128.00 KG6FR0660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 29 128.00 MX06FR0660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 30 128.00 MT0407-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 36.19 0. 31 128.00 Addrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 36.19 0. 32 128.00 WR06FR0660-03 6 11.474 12.621 0.62 0.80 0.80 17.6 150.00 0.000 0.000 222.13 0. 31 118.00 P66-16-XLH-RR 3 11.474 12.621 0.62 0.80 0.80 17.6 150.00 0.000 0.000 222.13 0. 31 118.00 DP64-68-60-18 1 11.474 12.621 0.60 0.80 0.80 17.6	9 1	158.00	RFS - APXVSPP18-C-A20	3	12.209	13.430	0.62	0.75	14.96	171.00	0.000	0.500	200.90	0.00	100.45
12 149.00 DB844H90E-XY 12 12.051 13.256 0.88 0.80 32.21 168.00 0.000 0.000 426.96 0. 13 149.00 Low Profile Platform 1 12.051 13.256 1.00 1.00 25.00 1200.00 0.000 0.000 331.41 0. 14 138.00 AlR6449 B41 3 11.858 13.044 0.53 0.75 9.03 309.00 0.000 0.000 1177.73 0. 15 138.00 APXVAA24_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0. 16 138.00 APXVAA24_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0. 17 138.00 Platform w/ HR & V-Brace 1 11.858 13.044 0.65 0.75 18.44 244.20 0.000 0.000 240.56 0. 17 138.00 Platform w/ HR & V-Brace 1 11.858 13.044 0.36 0.75 0.32 15.90 0.000 0.000 674.37 0. 18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 674.37 0. 19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 6.02 0. 20 138.00 4449 B71 + B85 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 38.74 0. 21 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 32.25 0. 22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 32.25 0. 23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 36.57 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 2.50 150.60 0.000 0.000 36.19 0. 26 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 27 128.00 RF444013A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 28 128.00 MX06FR0660-03 6 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 29 128.00 MX06FR0660-03 6 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 31 128.00 Low Profile Platform 1 11.672 12.839 0.50 0.75 3.84 360.00 0.000 0.000 36.19 0. 32 128.00 Low Profile Platform 1 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 36.19 0. 33 118.00 PG5-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 252.6 0. 34 118.00 T770 6 11.474 12.621 0.60 0.80 0.50 3.60 0.000 0.000 0.000 222.13 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.60 0.80 0.50 3.00	10 1	158.00	Commscope -	3	12.209	13.430	0.62	0.75	16.95	174.00	0.000	0.500	227.68	0.00	113.84
13	11 1	158.00	ALU - 800 MHz - RRU	6	12.209	13.430	0.50	0.75	7.51	318.00	0.000	0.500	100.82	0.00	50.41
14 138.00 AIR6449 B41 3 11.858 13.044 0.53 0.75 9.03 309.00 0.000 0.000 117.73 0.15 138.00 APXVAA24_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0.16 138.00 APX16DWV-16DWV-S-E-A 6 11.858 13.044 0.66 0.75 18.44 244.20 0.000 0.000 240.56 0.17 138.00 Platform w/ HR & V-Brace 1 11.858 13.044 1.00 1.00 1.00 1.00 1.00 0.000 0.000 0.000 674.37 0.18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 0.000 674.37 0.19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 0.000 6.02 0.19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.46 33.00 0.000 0.000 0.000 6.02 0.18 138.00 APX1649 B71 + B85 3 11.858 13.044 0.50 0.75 0.75 0.46 33.00 0.000 0.000 38.74 0.19 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 0.75 0.29 138.00 0.000 0.000 38.74 0.19 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 0.75 0.247 138.00 0.000 0.000 38.74 0.19 138.00 RAUS 4424 B25 3 11.858 13.044 0.50 0.75 0.75 0.247 138.00 0.000 0.000 32.25 0.19 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 0.280 148.80 0.000 0.000 32.25 0.19 128.00 B40 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 12.25 150.60 0.000 0.000 32.10 0.10 12.25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	12 1	149.00	DB844H90E-XY	12	12.051	13.256	0.88	0.80	32.21	168.00	0.000	0.000	426.96	0.00	0.00
15 138.00 APXVAA24_43-U-A20 3 11.858 13.044 0.55 0.75 33.24 297.00 0.000 0.000 433.64 0.16 138.00 APX16DWV-16DWV5-E-A 6 11.858 13.044 0.46 0.75 18.44 244.20 0.000 0.000 240.56 0.17 138.00 Platform w/HR & V-Brace 1 11.858 13.044 1.00 1.00 51.70 2246.00 0.000 0.000 240.56 0.18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 4.11 0.19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 6.02 0.20 138.00 KRY 112 144/1 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 38.74 0.21 138.00 RAUS 442 B25 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 38.74 0.21 138.00 RAUS 442 B25 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 38.75 0.22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 36.57 0.23 128.00 Support Rail w/End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.25 0.24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.10 0.25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 6.43 0.22 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.28 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 36.19 0.31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 7.39 261.30 0.000 0.000 189.40 0.31 118.00 P65-16-XLH-RR 3 11.474 12.621 0.62 0.80 0.80 15.47 159.00 0.000 0.000 252.36 0.33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.62 0.80 0.80 15.47 159.00 0.000 0.000 252.36 0.33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.62 0.80 0.80 15.47 159.00 0.000 0.000 252.36 0.33 118.00 CoP7file Platform 1 11.474 12.621 0.60 0.80 0.80 15.47 159.00 0.000 0.000 252.36 0.33 118.00 CoP7file Platform 1 11.474 12.621 0.60 0.80 0.80 0.74 31.80 0.000 0.	13 1	149.00	Low Profile Platform	1	12.051	13.256	1.00	1.00	25.00	1200.00	0.000	0.000	331.41	0.00	0.00
16 138.00 APX16DWV-16DWVS-E-A 6 11.858 13.044 0.46 0.75 18.44 244.20 0.000 0.000 240.56 0. 17 138.00 Platform w/ HR & V-Brace 1 11.858 13.044 1.00 1.00 51.70 2246.00 0.000 0.000 674.37 0. 18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.46 33.00 0.000 0.000 4.11 0. 19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.46 33.00 0.000 0.000 0.000 4.11 0. 138.00 KRY 112 144/1 3 11.858 13.044 0.50 0.75 0.46 33.00 0.000 0.000 0.000 38.74 0. 138.00 KRUS 4424 B25 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 32.25 0. 12 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 0.000 32.25 0. 12 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 36.57 0. 12 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0. 12 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.10 0. 12 12 12.800 KF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF6660-03 6 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF6667AA 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF6665ZAXY 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF6667AA 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF647-77A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 12 12.800 KF647-77A 3 11.672 12.839 0.50 0.75 2.82 20.09 0.000 0.000 36.19 0. 12 12.800 KF647-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 36.19 0. 12 12.800 KF647-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 36.19 0. 12 12.800 KF647-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 36.19 0. 12 12.800 KF647-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 0.000 36.19 0. 12.800 0.000 0.	14 1	138.00	AIR6449 B41	3	11.858	13.044	0.53	0.75	9.03	309.00	0.000	0.000	117.73	0.00	0.00
17 138.00 Platform w/ HR & V-Brace 1 11.858 13.044 1.00 1.00 51.70 2246.00 0.000 0.000 674.37 0. 18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 4.11 0. 19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.46 33.00 0.000 0.000 6.02 0. 20 138.00 4449 B71 + B85 3 11.858 13.044 0.50 0.75 0.75 0.46 33.00 0.000 0.000 32.25 0. 21 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 32.25 0. 22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 32.25 0. 23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 32.10 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.75 0.75 1.58 15.21 0.000 0.000 0.000 36.19 0. 27 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 28 128.00 KG660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0. 29 128.00 MT6407-77A 3 11.672 12.839 0.50 0.75 3.864 360.00 0.000 0.000 36.19 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 7.39 261.30 0.000 0.000 94.84 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 94.84 0. 31 128.00 RF61e-NLH-RR 3 11.474 12.621 0.62 0.80 0.80 15.47 159.00 0.000 0.000 195.26 0. 35 118.00 Low Profile Platform 1 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 195.26 0. 36 118.00 Low Profile Platform 1 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 76.33 0. 37 118.00 Low Profile Platform 1 11.474 12.621 0.60 0.80 17.60 1500.00 0.000 0.000 76.33 0. 38 118.00 RRUS-11 6 11.474 12.621 0.60 0.80 0.80 17.60 1500.00 0.000 0.000 922.13 0. 39 118.00 Low Profile Platform 1 11.474 12.621 0.60 0.80 0.80 17.60 1500.00 0.000 0.000 76.33 0. 31 118.00 Low Profile Platform 1 11.474 12.621 0.60 0.80 0.80 17.60 1500.00 0.000 0.000 76.33 0. 39 118.00 DG8-48-60-18 1 11.474 12.621 0.80 0.80 0.80 0.74 31.80 0.000 0.000 9.000 9.22 0.	15 1	138.00	APXVAA24_43-U-A20	3	11.858	13.044	0.55	0.75	33.24	297.00	0.000	0.000	433.64	0.00	0.00
18 138.00 782 10663 3 11.858 13.044 0.38 0.75 0.32 15.90 0.000 0.000 4.11 0.19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.46 33.00 0.000 0.000 6.02 0.20 138.00 4449 B71 + B85 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 38.74 0.21 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 32.25 0.22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 32.25 0.23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0.24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.10 0.25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 32.10 0.25 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.75 0.75 1.58 15.21 0.000 0.000 0.000 36.19 0.27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0.28 128.00 KF440d-13A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0.29 128.00 MX06FR0660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.29 128.00 MX06FR0660-03 6 11.672 12.839 0.50 0.75 2.82 24.10 0.000 0.000 36.19 0.29 128.00 MT6407-77A 3 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 94.84 0.31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 94.84 0.31 128.00 Mr6407-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 189.40 0.32 128.00 Low Profile Platform 1 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0.33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 256.56 0.34 118.00 T770 6 11.474 12.621 0.62 0.80 20.33 21.00 0.000 0.000 256.56 0.35 118.00 Low Profile Platform 1 11.474 12.621 0.60 0.80 0.80 17.60 1500.00 0.000 0.000 252.36 0.35 118.00 DC6-48-60-18 1 11.474 12.621 0.54 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0.39 118.00 DC6-48-60-18 1 11.474 12.621 0.54 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0.39 118.00 DC6-48-60-18 1 11.474 12.621 0.50 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0.39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 0.000 465.66 0.	16 1	138.00	APX16DWV-16DWVS-E-A	6	11.858	13.044	0.46	0.75	18.44	244.20	0.000	0.000	240.56	0.00	0.00
19 138.00 KRY 112 144/1 3 11.858 13.044 0.38 0.75 0.46 33.00 0.000 0.000 6.02 0. 20 138.00 4449 B71 + B85 3 11.858 13.044 0.50 0.75 2.97 219.60 0.000 0.000 38.74 0. 21 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 2.47 138.00 0.000 0.000 32.25 0. 22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 36.57 0. 23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 32.10 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.75 0.75 1.58 15.21 0.000 0.000 0.000 36.19 0. 27 128.00 RF44304-13A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 2.82 2210.99 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 496.11 0. 30 128.00 MT6407-77A 3 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 496.11 0. 30 128.00 MT6407-77A 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 189.40 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.50 0.75 14.75 63.00 0.000 0.000 189.40 0. 31 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 189.40 0. 31 18.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 17.60 1500.00 0.000 0.000 256.56 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.63 0.80 17.60 1500.00 0.000 0.000 256.56 0. 35 118.00 TT19-08BP111-001 3 11.474 12.621 0.64 0.80 0.80 17.60 1500.00 0.000 0.000 122.31 0. 36 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 0.80 0.74 31.80 0.000 0.000 0.000 9.29 0. 465.66 0.	17 1	138.00	Platform w/ HR & V-Brace	1	11.858	13.044	1.00	1.00	51.70	2246.00	0.000	0.000	674.37	0.00	0.00
20 138.00 4449 B71 + B85	18 1	138.00	782 10663	3	11.858	13.044	0.38	0.75	0.32	15.90	0.000	0.000	4.11	0.00	0.00
21 138.00 RRUS 4424 B25 3 11.858 13.044 0.50 0.75 0.75 0.75 0.75 0.000 0.000 0.000 0.000 32.25 0. 22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 0.000 36.57 0. 23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 2.50 150.60 0.000 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 0.000 68.43 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.50 0.75 0.75 1.58 15.21 0.000 0.000 0.000 36.19 0. 27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 496.11 0. 30 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.52 0.75 7.39 261.30 0.000 0.000 94.84 0. 31 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 94.84 0. 33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 17.47 159.00 0.000 0.000 0.000 922.13 0. 34 118.00 Low Profile Platform 1 11.474 12.621 0.63 0.80 17.47 159.00 0.000 0.000 0.000 256.56 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.63 0.80 17.60 1500.00 0.000 0.000 0.000 222.13 0. 36 <t< td=""><td>19 1</td><td>138.00</td><td>KRY 112 144/1</td><td>3</td><td>11.858</td><td>13.044</td><td>0.38</td><td>0.75</td><td>0.46</td><td>33.00</td><td>0.000</td><td>0.000</td><td>6.02</td><td>0.00</td><td>0.00</td></t<>	19 1	138.00	KRY 112 144/1	3	11.858	13.044	0.38	0.75	0.46	33.00	0.000	0.000	6.02	0.00	0.00
22 138.00 Radio 4415 Protruding w/ 3 11.858 13.044 0.50 0.75 2.80 148.80 0.000 0.000 36.57 0. 23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 157.28 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 2.50 150.60 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 68.43 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.50 0.75 1.58 15.21 0.000 0.000 20.22 0. 27 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839	20 1	138.00	4449 B71 + B85	3	11.858	13.044	0.50	0.75	2.97	219.60	0.000	0.000	38.74	0.00	0.00
23 128.00 Support Rail w/ End 1 11.672 12.839 1.00 1.00 12.25 514.00 0.000 0.000 32.10 0. 24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 2.50 150.60 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 68.43 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.50 0.75 1.58 15.21 0.000 0.000 20.22 0. 27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.11 0. <td>21 1</td> <td>138.00</td> <td>RRUS 4424 B25</td> <td>3</td> <td>11.858</td> <td>13.044</td> <td>0.50</td> <td>0.75</td> <td>2.47</td> <td>138.00</td> <td>0.000</td> <td>0.000</td> <td>32.25</td> <td>0.00</td> <td>0.00</td>	21 1	138.00	RRUS 4424 B25	3	11.858	13.044	0.50	0.75	2.47	138.00	0.000	0.000	32.25	0.00	0.00
24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 2.50 150.60 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 68.43 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.75 0.75 1.58 15.21 0.000 0.000 20.22 0. 27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 496.11 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000	22 1	138.00	Radio 4415 Protruding w/	3	11.858	13.044	0.50	0.75	2.80	148.80	0.000	0.000	36.57	0.00	0.00
24 128.00 Heavy Collar Mount 1 11.672 12.839 1.00 1.00 2.50 150.60 0.000 0.000 32.10 0. 25 128.00 Kicker Kit 1 11.672 12.839 1.00 1.00 5.33 146.00 0.000 0.000 68.43 0. 26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.75 0.75 1.58 15.21 0.000 0.000 20.22 0. 27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.50 0.75 38.64 360.00 0.000 0.000 496.11 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000	23 1	128.00	Support Rail w/ End	1	11.672	12.839	1.00	1.00	12.25	514.00	0.000	0.000	157.28	0.00	0.00
26 128.00 FE-16148-OVP-B12 1 11.672 12.839 0.75 0.75 1.58 15.21 0.000 0.000 20.22 0. 27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.65 0.75 38.64 360.00 0.000 0.000 496.11 0. 30 128.00 MT6407-77A 3 11.672 12.839 0.52 0.75 7.39 261.30 0.000 0.000 94.84 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0. 32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 195.26 0. 34 118.00				1	11.672	12.839	1.00	1.00	2.50	150.60	0.000	0.000	32.10	0.00	0.00
27 128.00 RF4439d-25A 3 11.672 12.839 0.50 0.75 2.82 224.10 0.000 0.000 36.19 0. 0.000 36.19 0. 28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.19 0. 0.000 36.19 0. 29 128.00 MX06FR0660-03 6 11.672 12.839 0.65 0.75 38.64 360.00 0.000 0.000 496.11 0. 0.000 496.11 0. 30 128.00 MT6407-77A 3 11.672 12.839 0.52 0.75 7.39 261.30 0.000 0.000 94.84 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0. 32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 282.46 0. 33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 195.26 0. 34 118.00 7770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 222.13 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0. 36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 0.000 76.33 0. 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 0.80 0.74 31.80 0.000 0.000 0.000 9.29 0. 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.80 0.74 31.80 0.000 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 0.000 0.000 0.000 0	25 1	128.00	Kicker Kit	1	11.672	12.839	1.00	1.00	5.33	146.00	0.000	0.000	68.43	0.00	0.00
28 128.00 RF4440d-13A 3 11.672 12.839 0.50 0.75 2.82 210.99 0.000 0.000 36.19 0. 29 128.00 MX06FRO660-03 6 11.672 12.839 0.65 0.75 38.64 360.00 0.000 0.000 496.11 0. 30 128.00 MT6407-77A 3 11.672 12.839 0.52 0.75 7.39 261.30 0.000 0.000 94.84 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0. 32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 282.46 0. 33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 195.26 0. 34 118.00 T770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000	26 1	128.00	FE-16148-OVP-B12	1	11.672	12.839	0.75	0.75	1.58	15.21	0.000	0.000	20.22	0.00	0.00
29 128.00 MX06FRO660-03 6 11.672 12.839 0.65 0.75 38.64 360.00 0.000 0.000 496.11 0.30 30 128.00 MT6407-77A 3 11.672 12.839 0.52 0.75 7.39 261.30 0.000 0.000 94.84 0.31 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0.32 32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 282.46 0.33 11800.00 0.000 0.000 0.000 282.46 0.33 118.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 195.26 0.33 118.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <td< td=""><td>27 1</td><td>128.00</td><td>RF4439d-25A</td><td>3</td><td>11.672</td><td>12.839</td><td>0.50</td><td>0.75</td><td>2.82</td><td>224.10</td><td>0.000</td><td>0.000</td><td>36.19</td><td>0.00</td><td>0.00</td></td<>	27 1	128.00	RF4439d-25A	3	11.672	12.839	0.50	0.75	2.82	224.10	0.000	0.000	36.19	0.00	0.00
30 128.00 MT6407-77A 3 11.672 12.839 0.52 0.75 7.39 261.30 0.000 0.000 94.84 0. 31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0. 32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 282.46 0. 33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 195.26 0. 34 118.00 T770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 256.56 0. 35 118.00 RRUS-11 6 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000	28 1	128.00	RF4440d-13A	3	11.672	12.839	0.50	0.75	2.82	210.99	0.000	0.000	36.19	0.00	0.00
31 128.00 Andrew - DB846F65ZAXY 3 11.672 12.839 0.70 0.75 14.75 63.00 0.000 0.000 189.40 0. 32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 282.46 0. 33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 195.26 0. 34 118.00 7770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 256.56 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0. 36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.0	29 1	128.00	MX06FRO660-03	6	11.672	12.839	0.65	0.75	38.64	360.00	0.000	0.000	496.11	0.00	0.00
32 128.00 Low Profile Platform 1 11.672 12.839 1.00 1.00 22.00 1500.00 0.000 0.000 282.46 0. 33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 195.26 0. 34 118.00 7770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 256.56 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0. 36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 52.36 0. 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000	30 1	128.00	MT6407-77A	3	11.672	12.839	0.52	0.75	7.39	261.30	0.000	0.000	94.84	0.00	0.00
33 118.00 P65-16-XLH-RR 3 11.474 12.621 0.63 0.80 15.47 159.00 0.000 0.000 195.26 0.34 34 118.00 7770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 256.56 0.35 35 118.00 Low Profile Platform 1 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0.36 36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0.37 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 52.36 0.38 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000 12.99 0.39 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000	31 1	128.00	Andrew - DB846F65ZAXY	3	11.672	12.839	0.70	0.75	14.75	63.00	0.000	0.000	189.40	0.00	0.00
34 118.00 7770 6 11.474 12.621 0.62 0.80 20.33 210.00 0.000 0.000 256.56 0. 35 118.00 Low Profile Platform 1 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0. 36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 52.36 0. 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000 12.99 0. 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 <	32 1	128.00	Low Profile Platform	1	11.672	12.839	1.00	1.00	22.00	1500.00	0.000	0.000	282.46	0.00	0.00
35 118.00 Low Profile Platform 1 11.474 12.621 0.80 0.80 17.60 1500.00 0.000 0.000 222.13 0. 36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 52.36 0. 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000 12.99 0. 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 465.66 0.	33 1	118.00	P65-16-XLH-RR	3	11.474	12.621	0.63	0.80	15.47	159.00	0.000	0.000	195.26	0.00	0.00
36 118.00 RRUS-11 6 11.474 12.621 0.40 0.80 6.05 306.00 0.000 0.000 76.33 0. 37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 52.36 0. 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000 12.99 0. 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 465.66 0.	34 1	118.00	7770	6	11.474	12.621	0.62	0.80	20.33	210.00	0.000	0.000	256.56	0.00	0.00
37 118.00 LGP21401 6 11.474 12.621 0.54 0.80 4.15 84.60 0.000 0.000 52.36 0. 38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000 12.99 0. 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 465.66 0.	35 1	118.00	Low Profile Platform	1	11.474	12.621	0.80	0.80	17.60	1500.00	0.000	0.000	222.13	0.00	0.00
38 118.00 TT19-08BP111-001 3 11.474 12.621 0.54 0.80 1.03 48.00 0.000 0.000 12.99 0. 39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 465.66 0.	36 1	118.00	RRUS-11	6	11.474	12.621	0.40	0.80	6.05	306.00	0.000	0.000	76.33	0.00	0.00
39 118.00 DC6-48-60-18 1 11.474 12.621 0.80 0.80 0.74 31.80 0.000 0.000 9.29 0. 40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 465.66 0.	37 1	118.00	LGP21401	6	11.474	12.621	0.54	0.80	4.15	84.60	0.000	0.000	52.36	0.00	0.00
40 108.00 Platform Commscope 1 11.262 12.388 1.00 1.00 37.59 1727.00 0.000 0.000 465.66 0.	38 1	118.00	TT19-08BP111-001	3	11.474	12.621	0.54	0.80	1.03	48.00	0.000	0.000	12.99	0.00	0.00
·	39 1	118.00	DC6-48-60-18	1	11.474	12.621	0.80	0.80	0.74	31.80	0.000	0.000	9.29	0.00	0.00
				1										0.00	0.00
41 108.00 Raycap 1 11.262 12.388 0.59 0.75 1.19 21.90 0.000 0.000 14.75 0.	41 1	108.00	Raycap	1			0.59	0.75	1.19	21.90	0.000	0.000	14.75	0.00	0.00
	12 1	108.00	Fujitsu TA08025-B604	3			0.50		2.95	191.70	0.000		36.60	0.00	0.00
			•	3			0.50			225.00	0.000	0.000		0.00	0.00
·			•	3										0.00	0.00
·				1										0.00	0.00

Totals: 16,537.47 6,729.74

Total Applied Force Summary

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 33

23

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Elev (ft)	Description	Lateral FX (-) (lb)	Axial FY (-) (lb)	Torsion MY (lb-ft)	Moment MZ (lb-ft)
0.00	Scoonption	0.00	0.00	0.00	0.00
5.00		122.07	2090.26	0.00	0.00
10.00		119.78	2069.69	0.00	0.00
15.00		117.49	2049.12	0.00	0.00
20.00		122.24	2028.54	0.00	0.00
25.00		125.58	2007.97	0.00	0.00
30.00		127.85	1987.40	0.00	0.00
35.00		130.07	1966.82	0.00	0.00
36.00		25.94	390.90	0.00	0.00
39.00		78.67	1167.75	0.00	0.00
40.00		26.23	422.59	0.00	0.00
45.00		132.73	2088.28	0.00	0.00
50.00		132.76	1141.89	0.00	0.00
55.00		132.45	1121.32	0.00	0.00
60.00		131.84	1100.74	0.00	0.00
65.00		130.97	1080.17	0.00	0.00
70.00		129.87	1059.59	0.00	0.00
75.00	(1) attachments	128.68	1042.72	0.00	0.00
79.00		101.65	815.76	0.00	0.00
80.00		25.55	335.66	0.00	0.00
84.00		101.96	1327.57	0.00	0.00
85.00		25.22	174.48	0.00	0.00
90.00		125.65	862.13	0.00	0.00
95.00		123.72	844.98	0.00	0.00
100.00		121.66	827.84	0.00	0.00
105.00		119.47	810.69	0.00	0.00
108.00	(11) attachments	877.15	2856.19	0.00	0.00
110.00		46.45	311.72	0.00	0.00
115.00		114.77	767.30	0.00	0.00
118.00	(26) attachments	892.47	2791.55	0.00	0.00
120.00		44.48	279.27	0.00	0.00
123.00		66.00	413.76	0.00	0.00
125.00		43.44	210.93	0.00	0.00
128.00	(23) attachments	1477.63	3757.99	0.00	0.00
130.00		42.36	178.97	0.00	0.00
135.00		104.20	439.01	0.00	0.00
138.00	(28) attachments	1645.04	3909.14	0.00	0.00
140.00		40.10	151.76	0.00	0.00
145.00		98.41	370.99	0.00	0.00
149.00	(13) attachments	834.88	1656.15	0.00	0.00
150.00		18.78	62.92	0.00	0.00
155.00		92.33	307.38	0.00	0.00
158.00	(28) attachments	1396.24	3530.34	0.00	519.35
	Totals:	10,494.84	52,810.25	0.00	519.35

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Page: 34

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
5.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.090	0.000	7.442	0.00	62.40
5.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.090	0.000	7.442	0.00	5.50
5.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.090	0.000	7.442	0.00	778.40
10.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.092	0.000	7.442	0.00	62.40
10.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.092	0.000	7.442	0.00	5.50
10.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.092	0.000	7.442	0.00	778.40
15.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.094	0.000	7.442	0.00	62.40
15.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.094	0.000	7.442	0.00	5.50
15.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.094	0.000	7.442	0.00	778.40
20.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.096	0.000	7.896	0.00	62.40
20.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.096	0.000	7.896	0.00	5.50
20.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.096	0.000	7.896	0.00	778.40
25.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.098	0.000	8.276	0.00	62.40
25.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.098	0.000	8.276	0.00	5.50
25.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.098	0.000	8.276	0.00	778.40
30.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.100	0.000	8.600	0.00	62.40
30.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.100	0.000	8.600	0.00	5.50
30.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.100	0.000	8.600	0.00	778.40
35.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.102	1.006	8.883	0.00	62.40
35.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.102	1.006	8.883	0.00	5.50
35.00	1.25" Reinforcing	Yes	5.00	0.000	3.00	1.25	0.00	0.102	1.006	8.883	0.00	778.40
36.00	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.103	1.010	8.936	0.00	12.48
36.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.103	1.010	8.936	0.00	1.10
36.00	1.25" Reinforcing	Yes	1.00	0.000	3.00	0.25	0.00	0.103	1.010	8.936	0.00	155.68
39.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.104	1.012	9.088	0.00	37.44
39.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.104	1.012	9.088	0.00	3.30
39.00	1.25" Reinforcing	Yes	3.00	0.000	3.00	0.75	0.00	0.104	1.012	9.088	0.00	467.04
40.00	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.042	0.000	9.137	0.00	12.48
40.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.042	0.000	9.137	0.00	1.10
45.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.042	0.000	9.366	0.00	62.40
45.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.042	0.000	9.366	0.00	5.50
50.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.043	0.000	9.576	0.00	62.40
50.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.043	0.000	9.576	0.00	5.50
55.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.044	0.000	9.770	0.00	62.40
55.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.044	0.000	9.770	0.00	5.50
60.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.045	0.000	9.951	0.00	62.40
60.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.045	0.000	9.951	0.00	5.50
65.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.046	0.000	10.120	0.00	62.40
65.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.046	0.000	10.120	0.00	5.50
70.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.047	0.000	10.279	0.00	62.40
70.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.047	0.000	10.279	0.00	5.50
75.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.048	0.000	10.430	0.00	62.40
75.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.048	0.000	10.430	0.00	5.50
79.00	1 5/8" Coax	Yes	4.00	0.000	1.98	0.66	0.00	0.049	0.000	10.544	0.00	49.92
	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.049	0.000	10.544	0.00	4.40
	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.050	0.000	10.572	0.00	12.48
80.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	10.572	0.00	1.10

Linear Appurtenance Segment Forces (Factored)

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: ||

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Page: 35

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (lb)
84.00	1 5/8" Coax	Yes	4.00	0.000	1.98	0.66	0.00	0.050	0.000	10.681	0.00	49.92
84.00	1 5/8" Hybrid	Yes	4.00	0.000	0.00	0.00	0.00	0.050	0.000	10.681	0.00	4.40
85.00	1 5/8" Coax	Yes	1.00	0.000	1.98	0.17	0.00	0.050	0.000	10.708	0.00	12.48
85.00	1 5/8" Hybrid	Yes	1.00	0.000	0.00	0.00	0.00	0.050	0.000	10.708	0.00	1.10
90.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.051	0.000	10.838	0.00	62.40
90.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.051	0.000	10.838	0.00	5.50
95.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.052	0.000	10.962	0.00	62.40
95.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.052	0.000	10.962	0.00	5.50
100.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.054	0.000	11.081	0.00	62.40
100.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.054	0.000	11.081	0.00	5.50
105.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.055	0.000	11.195	0.00	62.40
105.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.055	0.000	11.195	0.00	5.50
108.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.057	0.000	11.262	0.00	37.44
108.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.057	0.000	11.262	0.00	3.30
110.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.057	0.000	11.305	0.00	24.96
110.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.057	0.000	11.305	0.00	2.20
115.00	1 5/8" Coax	Yes	5.00	0.000	1.98	0.82	0.00	0.059	0.000	11.412	0.00	62.40
115.00	1 5/8" Hybrid	Yes	5.00	0.000	0.00	0.00	0.00	0.059	0.000	11.412	0.00	5.50
118.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.060	0.000	11.474	0.00	37.44
118.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.060	0.000	11.474	0.00	3.30
120.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.061	0.000	11.514	0.00	24.96
120.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.061	0.000	11.514	0.00	2.20
123.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.062	0.000	11.574	0.00	37.44
123.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.062	0.000	11.574	0.00	3.30
125.00	1 5/8" Coax	Yes	2.00	0.000	1.98	0.33	0.00	0.063	0.000	11.614	0.00	24.96
125.00	1 5/8" Hybrid	Yes	2.00	0.000	0.00	0.00	0.00	0.063	0.000	11.614	0.00	2.20
128.00	1 5/8" Coax	Yes	3.00	0.000	1.98	0.49	0.00	0.064	0.000	11.672	0.00	37.44
128.00	1 5/8" Hybrid	Yes	3.00	0.000	0.00	0.00	0.00	0.064	0.000	11.672	0.00	3.30
									To	tals:	0.0	7,809.8

Calculated Forces

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 36

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor 1.00 Wind Load Factor 1.00

Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn	Total Deflect	Rotation Sway	Rotation Twist	Stress
(ft)	(kips)			(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	(deg)	Ratio
0.00	-52.81	-10.52	0.00	-1249.9	0.00	1249.99	4238.25	2119.12	9474.98	4744.53	0.00	0.000	0.000	0.170
5.00	-50.71	-10.43	0.00	-1197.4	0.00	1197.42	4191.13	2095.57	9193.31	4603.49	0.02	-0.044	0.000	0.166
10.00	-48.63	-10.35	0.00	-1145.2	0.00	1145.26	4142.79	2071.40	8912.98	4463.11	0.09	-0.089	0.000	0.162
15.00	-46.57	-10.26	0.00	-1093.5	0.00	1093.52	4093.23	2046.62	8634.14	4323.49	0.21	-0.134	0.000	0.158
20.00	-44.54	-10.17	0.00	-1042.2	0.00	1042.21	4042.45	2021.22	8356.93	4184.68	0.38	-0.179	0.000	0.155
25.00	-42.52	-10.07	0.00	-991.37	0.00	991.37	3990.44	1995.22	8081.53	4046.77	0.59	-0.224	0.000	0.151
30.00	-40.53	-9.97	0.00	-941.01	0.00	941.01	3937.21	1968.60	7808.07	3909.84	0.85	-0.269	0.000	0.146
35.00	-38.56	-9.84	0.00	-891.19	0.00	891.19	3882.75	1941.38	7536.73	3773.96	1.15	-0.314	0.000	0.142
36.00	-38.16	-9.83	0.00	-881.34	0.00	881.34	3871.71	1935.86	7482.72	3746.92	1.22	-0.323	0.000	0.141
36.00	-38.16	-9.83	0.00	-881.34	0.00	881.34	3871.71	1935.86	7482.72	3746.92	1.22	-0.323	0.000	0.141
39.00	-36.99	-9.76	0.00	-851.86	0.00	851.86	3838.31	1919.15	7321.27	3666.08	1.43	-0.350	0.000	0.242
40.00	-36.56	-9.76	0.00	-842.10	0.00	842.10	3827.07	1913.54	7267.64	3639.22	1.51	-0.366	0.000	0.241
45.00	-34.46	-9.66	0.00	-793.31	0.00	793.31	3812.30	1906.15	7197.58	3604.14	1.93	-0.445	0.000	0.229
50.00	-33.31	-9.56	0.00	-745.03	0.00	745.03	3755.07	1877.54	6931.57	3470.94	2.44	-0.523	0.000	0.224
55.00	-32.17	-9.46	0.00	-697.23	0.00	697.23	3696.63	1848.32	6668.16	3339.04	3.03	-0.599	0.000	0.218
60.00	-31.06	-9.36	0.00	-649.93	0.00	649.93	3636.96	1818.48	6407.52	3208.52	3.69	-0.674	0.000	0.211
65.00	-29.97	-9.25	0.00	-603.16	0.00	603.16	3576.08	1788.04	6149.79	3079.47	4.44	-0.749	0.000	0.204
70.00	-28.90	-9.14	0.00	-556.91	0.00	556.91	3513.96	1756.98	5895.14	2951.95	5.27	-0.823	0.000	0.197
75.00	-27.85	-9.03	0.00	-511.19	0.00	511.19	3450.63	1725.31	5643.71	2826.05	6.17	-0.897	0.000	0.189
79.00	-27.03	-8.93	0.00	-475.07	0.00	475.07	3399.08	1699.54	5445.00	2726.55	6.94	-0.956	0.000	0.182
80.00	-26.69	-8.92	0.00	-466.13	0.00	466.13	3386.07	1693.03	5395.67	2701.84	7.15	-0.971	0.000	0.180
84.00	-25.36	-8.81	0.00	-430.46	0.00	430.46	2492.17	1246.08	3964.65	1985.27	7.99	-1.029	0.000	0.227
85.00	-25.18	-8.80	0.00	-421.65	0.00	421.65	2483.20	1241.60	3929.49	1967.67	8.20	-1.044	0.000	0.224
90.00	-24.31	-8.69	0.00	-377.63	0.00	377.63	2437.73	1218.86	3754.97	1880.28	9.34	-1.123	0.000	0.211
95.00	-23.45	-8.58	0.00	-334.16	0.00	334.16	2391.17	1195.58	3582.65	1793.99	10.56	-1.200	0.000	0.196
100.00	-22.62	-8.47	0.00	-291.24	0.00	291.24	2343.52	1171.76	3412.67	1708.87	11.85	-1.273	0.000	0.180
105.00	-21.80	-8.35	0.00	-248.88	0.00	248.88	2294.79	1147.40	3245.17	1624.99	13.22	-1.341	0.000	0.163
108.00	-18.96	-7.42	0.00	-223.82	0.00	223.82	2265.03	1132.52	3145.91	1575.29	14.08	-1.381	0.000	0.150
110.00	-18.65	-7.38	0.00	-208.98	0.00	208.98	2244.98	1122.49	3080.27	1542.43	14.66	-1.406	0.000	0.144
115.00	-17.88	-7.26	0.00	-172.07	0.00	172.07	2194.08	1097.04	2918.13	1461.23	16.17	-1.464	0.000	0.126
118.00	-15.11	-6.30	0.00	-150.29	0.00	150.29	2163.02	1081.51	2822.22	1413.21	17.10	-1.496	0.000	0.113
120.00	-14.83	-6.26	0.00	-137.69	0.00	137.69	2136.45	1068.22	2751.59	1377.84	17.73	-1.516	0.000	0.107
123.00	-14.41	-6.19	0.00	-118.92	0.00	118.92	2094.98	1047.49	2645.31	1324.62	18.69	-1.545	0.000	0.097
123.00	-14.41	-6.19	0.00	-118.92	0.00	118.92	1330.70	665.35	1690.49	846.50	18.69	-1.545	0.000	0.151
125.00	-14.20	-6.14	0.00	-106.54	0.00	106.54	1319.70	659.85	1654.32	828.39	19.34	-1.562	0.000	0.139
128.00	-10.48	-4.57	0.00	-88.11	0.00	88.11	1302.88	651.44	1600.34	801.36	20.34	-1.596	0.000	0.118
130.00	-10.30	-4.53	0.00	-78.98	0.00	78.98	1291.45	645.73	1564.57	783.45	21.01	-1.616	0.000	0.109
135.00	-9.86	-4.41	0.00	-56.35	0.00	56.35	1262.12	631.06	1475.93	739.06	22.73	-1.659	0.000	0.084
138.00	-6.00	-2.66	0.00	-43.10	0.00	43.10	1244.00	622.00	1423.34	712.73	23.77	-1.680	0.000	0.065
140.00	-5.85	-2.62	0.00	-37.79	0.00	37.79	1231.70	615.85	1388.54	695.30	24.48	-1.692	0.000	0.059
145.00	-5.48	-2.51	0.00	-24.71	0.00	24.71	1200.20	600.10	1302.53	652.23	26.27	-1.716	0.000	0.042
149.00	-3.85	-1.62	0.00	-14.67	0.00	14.67	1174.22	587.11	1234.81	618.32	27.71	-1.730	0.000	0.042
150.00	-3.79	-1.60	0.00	-13.05	0.00	13.05	1167.61	583.81	1218.04	609.93	28.07	-1.733	0.000	0.027
155.00	-3.49	-1.50	0.00	-5.03	0.00	5.03	1133.94	566.97	1135.21	568.45	29.89	-1.742	0.000	0.023
158.00	0.00	-1.40	0.00	-0.52	0.00	0.52	1113.22	556.61	1086.36	543.99	30.99	-1.744	0.000	0.012
100.00	0.00	-1.40	0.00	-0.52	0.00	0.02	1110.22	330.01	1000.00	UTU.33	55.55	-1.744	0.000	0.001

Final Analysis Summary

Structure: CT46131-A-SBA **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 37

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)
1 2D + 1 6W 02	` . ,			· · ·	<u> </u>	
1.2D + 1.6W 93 mph Wind	40.4	0.00	63.31	0.00	0.00	4835.70
0.9D + 1.6W 93 mph Wind	40.4	0.00	47.47	0.00	0.00	4776.91
1.2D + 1.0Di + 1.0Wi 50 mph Wind	12.4	0.00	99.85	0.00	0.00	1499.59
1.2D + 1.0E	2.5	0.00	63.37	0.00	0.00	324.15
0.9D + 1.0E	2.5	0.00	47.53	0.00	0.00	319.79
1.0D + 1.0W 60 mph Wind	10.5	0.00	52.81	0.00	0.00	1249.99

Max Stresses

	Pu FY (-)	Vu FX (-)	Tu MY (-)	Mu MZ	Mu MX	Resultant Moment	•	phi Vn	phi Tn	phi Mn	Elev	Stress
Load Case	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft)	Ratio
1.2D + 1.6W 93 mph Wind	-43.56	-37.68	0.00	-3301.2	0.00	-3301.2	3838.31	1919.1	7321.27	3666.08	39.00	0.912
0.9D + 1.6W 93 mph Wind	-32.46	-37.40	0.00	-3248.6	0.00	-3248.6	3838.31	1919.1	7321.27	3666.08	39.00	0.895
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-75.44	-11.62	0.00	-1027.1	0.00	-1027.1	3838.31	1919.1	7321.27	3666.08	39.00	0.300
1.2D + 1.0E	-30.61	-2.02	0.00	-134.71	0.00	-134.71	2492.17	1246.0	3964.65	1985.27	84.00	0.080
0.9D + 1.0E	-22.95	-1.98	0.00	-132.19	0.00	-132.19	2492.17	1246.0	3964.65	1985.27	84.00	0.076
1.0D + 1.0W 60 mph Wind	-36.99	-9.76	0.00	-851.86	0.00	-851.86	3838.31	1919.1	7321.27	3666.08	39.00	0.242

Additional Steel Summary

		<u> </u>		ermedi onnecto		Lov	ver Te	rminat	ion	Up	per Te	rminat	ion	N	Мах Ме	ember	
Elev	Elev				phi		phi				phi				phi	phi	
From	То		VQ/I	Vu	Vn	MQ/I	Vn	Num	Num	MQ/I	Vn	Num	Num	Pu	Pn	Tn	
(ft)	(ft)	Member	(lb/in)	(kips)	(kips)	(kips)	(kips)	Reqd	Actual	(kips)	(kips)	Reqd	Actual	(kips)	(kips)	(kips)	Ratio
0.0	36.0	(4) PLT-7.625x1.5(31mm Hole	359.0	5.38	37.1	438.6	37.1	12	15	387.6	37.1	11	12	438.64	503.5	163.76	0.946

Base Plate Summary

Structure: CT46131-A-SB **Code:** TIA-222-G 3/7/2022

Site Name:Easton-Everetts RdExposure:CHeight:158.00 (ft)Crest Height:0.00

Base Elev: 0.000 (ft) Site Class: D - Stiff Soil

Gh: 1.1 Topography: 1 Struct Class: II Page: 38

Reactions	S	Base Pla	ate	Anchor Bolts				
Original Des	ign	Yield (ksi):	50.00	Bolt Circle:	62.00			
Moment (kip-ft):	2888.00	Width (in):	60.00	Number Bolts:	16.00			
Axial (kip):	26.60	Style:	Clipped	Bolt Type:	2.25" 18J			
Shear (kip):	30.40	Polygon Sides:	4.00	Bolt Diameter (in):	2.25			
Analysis (1.2D +	- 1 6\\/\)	Clip Length (in):	10.00	Yield (ksi):	75.00			
Moment (kip-ft):	4835.70	Effective Len (in):	8.42	Ultimate (ksi):	100.00			
Axial (kip):	63.31	Moment (kip-in):	698.58	Arrangement:	Clustered			
Shear (kip):	40.44	Allow Stress (ksi):	67.50	Cluster Dist (in):	6.00			
Official (KIP).	40.44	Applied Stress (ksi):	47.25	Start Angle (deg):	45.00			
		Stress Ratio:	0.70	Compres	sion			
				Force (kip):	193.06			
				Allowable (kip):	260.00			

Tension

Force (kip): 180.58

Allowable (kip): 260.00

Ratio: 0.71

0.76

Ratio:

Dior E	oundation Design For	Pier Foundation Design For Monopole											
Fiel Fi	bundation Design For	Monopole	3/7/2022										
Customer Name:	Verizon	EIA/TIA Standard:	TIA-222-G										
Site Name:		Structure Height (Ft.):	158										
Site Number:	CT46131-A-SBA	Engineer Name:	J. Tibbetts										
Engr. Number:	125561	Engineer Login ID:											

Foundation Info Obtained from:	Dra	wings/Calculations		Acceptable overstress (5.0%
Structure Type:		Monopole		7 ft.
Analysis or Design?		Analysis		0.50 ft.
Base Reactions (Factored):				* /// \
Axial Load (Kips):	63.3	Shear Force (Kips):	40.4	
Uplift Force (Kips):	0.0	Moment (Kips-ft):	4835.7	99.0 ft. (24) #11 rebar
Foundation Geometries:				(22) #5 ties
Diameter of Pier (ft.):	7.0	Depth of Base B. G. S. :	22.0	ft. 22.0 ft.
Pier Height A. G. (ft.):	0.50			
Material Properties and Reabr Info:				7.0 ft.
Concrete Strength (psi):	3000	Steel Elastic Modulus:	29000	ksi
Vertical bar yield (ksi)	60	Tie steel yield strength:	40	ksi (24) #11 rebar 7 ft. ф Pier
Vertical Rebar Size #:	11	Tie / Stirrup Size #:	5	(22) #5 ties
Qty. of Vertical Rebars:	24	Tie Spacing:	18.0	in.
Concrete Cover (in.):	3	Concrete unit weight:	150.0	pcf
Soil Design Parameters:				Monopole Pier Foundation
Water Table B.G.S. (ft):	99.0	Unit weight of water:	62.4	psf
Ratio of Uplift/Axial Skin Friction:	1.0	Pullout failure Angle:	30	(°) Sand
Skin Frictions are to be obtained from	n:	Soil Report		

Depth of L	ayers (ft)	γ_{soil}	ф	Cohesion	Ultimate Skin	Ultimate	Soil			
Тор	Bottom	(pcf)	(°)	(psf)	Friction (psf)	Bearing (psf)	Types			
0.0	4.0	115	0				Sand			
4.0	20.0	125	38				Sand			
20.0	25.0	125	38				Sand			
25.0	30.0									

Soil weight Increase Factor for bouyant soils (1.0 to 1.15): 1.1

Foundation Analysis and Design:

Uplift Strength Reduction Factor:	0.75	Soil Bearing Strength Reduction Factor:	0.75	
Total Dry Soil Volume from Conical Failure (cu. Ft.):	6770	Dry Soil Weight from Conical Failure:	696	Kips
Total Buoyant Soil Volume from Conical Failure (cu. Ft.):	0	Buoyant Soil Weight from Conical Failure (Ki	0	Kips
Total Dry Concrete Volume (cu. Ft.):	866	Total Dry Concrete Weight:	129.9	Kips
Total Buoyant Concrete Volume (cu. Ft.):	0.0	Total Buoyant Concrete Weight:	0.00	Kips
Total Effective Concrete Weight (Kips):	129.9	Total Effective Soil Weight:	696.2	Kips
Total Effective Vertical Load on Base (Kips):	106.1			

	S Engr. Number:	125561		Page 2/2	Date:	3/7/2022		
Check Soil Capacities:								
							Usage	
Allowable Foundation Overturning Resistance (kips-	ft.):	6412.9	>	Design Factored Mo	ment (kips-ft):	5463	0.85	OK!
Factor of Safety of Passive Soil Resistance against M	oment:	1.17	OK!					
Check the capacities of Reinforceing Concrete:								
Strength reduction factor (Flexure and axial tension):	0.90	Stren	gth reduction factor (Shear):	0.75		
Strength reduction factor (Axial compresion):		0.65	Wind	Load Factor on Conc	rete Design:	1.00		
Reinforcing Concrete Pier:							Usage	
Vertical Steel Rebar Area (sq. in./each):	1.56		Tie / Stirrup Area (so	լ. in./each)։	0.31		
Calculated Moment Capacity (Mn,Kips	s-Ft):	6045.7	>	Design Factored Mo	ment (Mu, K-Ft):	5043.3	0.83	OK!
Calculated Shear Capacity (Kips):		970.0	>	Design Factored She	ar (Kips):	540.9	0.56	OK!
Calculated Tension Capacity (Tn, Kips)	:	2021.8	>	Design Factored Ten	sion (Tu Kips):	0.0	0.00	OK!
Calculated Compression Capacity (Pn,	Kips):	7299	>	Design Factored Axia	al Load (Pu Kips):	63.3	0.01	OK!
Moment & Axial Strength Combination:		0.83	OK!	Max. Allowable Tie/S	Stirrup Spacing:	5.90	in.	
Pier Reinforcement Ratio:		0.007	Re	inforcement Ratio is s	atisfied per ACI			

Maser Consulting Connecticut
1055 Washington Boulevard
Stamford, CT 06901
203.324.0800
peter.albano@colliersengineering.com

Post-Modification Antenna Mount Analysis Report and PMI Requirements

Mount Fix

SMART Tool Project #: 10117165

Maser Consulting Connecticut Project #: 21777106A (REV 1)

November 23, 2021

Site Information Site ID: 468248-VZW / EASTON NORTH 2 CT

Site Name: EASTON NORTH 2 CT

Carrier Name: Verizon Wireless Address: 206 Everett RD

Easton, Connecticut 06612

Fairfield County

Latitude: 41.290344° Longitude: -73.282669°

<u>Structure Information</u>

Tower Type: 150-Ft Monopole

Mount Type: 12.50-Ft Platform

FUZE ID # 2567027

Analysis Results

Platform: 47.9% Pass

***Contractor PMI Requirements:

Included at the end of this MA report

Available & Submitted via portal at https://pmi.vzwsmart.com

Contractor - Please Review Specific Site PMI Requirements Upon Award

Requirements also Noted on Mount Modification Drawings

Requirements may also be Noted on A & E drawings

For additional questions and support, please reach out to:

pmisupport@colliersengineering.com

Report Prepared By: Sarah Ali

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 605237, dated November 9, 2021
Mount Mapping Report	Structural Components LLC, Site ID: 2567027, dated April 20, 2021
Previous Mount Analysis	Maser Consulting Connecticut, Project #: 21777106A, dated November 15, 2021
Mount Modification Drawings	Maser Consulting Connecticut, Project #: 21777106A, dated November 23, 2021

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H
CUUCS AND SIANDAIDS.	

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Vult:	11/ mph
	Ice Wind Speed (3-sec. Gust):	50 mph

Ice Wind Speed (3-sec. Gust):50 mphDesign Ice Thickness:1.00 inRisk Category:IIExposure Category:CTopographic Category:1Topographic Feature Considered:N/ATopographic Method:N/AGround Elevation Factor, Ke:0.985

Seismic Parameters: S_S: 0.216 g

 S_1 : 0.055 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Live Load, Lv: 250 lbs. Maintenance Live Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mount:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status			
		6	JMA Wireless	MX06FRO660-03				
	128.50	.27.50 128.50			3	Samsung	MT6407-77A	
							1	Raycap
127.50			3	Samsung	RF4439d-25A	Added		
			3	Samsung	RF4440d-13A			
		3	Commscope	TD-850B-LTE78-43				
		3	Andrew	DB846F65ZAXY	Retained			

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

BASELINE mount weight per SBA agreement: 918.33 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: 990.00 lbs

The weights listed above include 3 sectors.

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation and field observations. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

8. Any mount modifications listed under Sources of Information are assumed to have been installed per the design specifications.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

Component	Utilization %	Pass/Fail
Standoff Horizontal	17.1 %	Pass
Platform Crossmember	47.9 %	Pass
Mount Pipe	47.3 %	Pass
Grating Support	35.9 %	Pass
Face Horizontal	13.6 %	Pass
Cross Arm Plate	29.9 %	Pass
Corner Plate	30.2 %	Pass
Mod Support Rail Brace	14.9 %	Pass
Mod Support Rail	13.0 %	Pass
Mod Kicker Kit	8.0 %	Pass
Connection Check	23.3 %	Pass

Structure R	ating – (Controlling Utilization of all Components)	47.9%
	5 ()	

Recommendation:

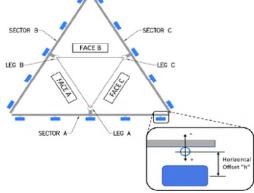
The existing mount will be **SUFFICIENT** for the final loading after the proposed modifications are successfully completed.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:

- 1. Mount Photos
- 2. Mount Mapping Report (for reference only)
- 3. Analysis Calculations
- 4. Contractor Required PMI Report Deliverables
- 5. Antenna Placement Diagram
- 6. TIA Adoption and Wind Speed Usage Letter

V4.0 Updated on 3-31-2021



Antenna Mount Mapping Form (PATENT PENDING)					
Tower Owner:	SBA	Mapping Date:	4/20/2021		
Site Name:	Easton North 2 CT	Tower Type:	Mond	opole	
Site Number or ID:	2567027	Tower Height (Ft.):	150		
Mapping Contractor:	Structural Components	Mount Elevation (Ft.):	12	20	

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantlying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please insert the sketches of the antenna mount from the "Sketches" tab with dimensions and members here.

	Mount Pipe Configuration and Geometries [Unit = Inches]								
Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."	Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."		
A1	2-3/8x .15x 72	40.25	14.25	C1	2-3/8x .15x 72	41.00	14.50		
A2	2-3/8x .15x 72	40.25	74.50	C2	2-3/8x .15x 72	42.25	88.75		
A3	2-3/8x .15x 72	40.25	111.75	C3	2-3/8x .15x 72	40.50	126.25		
A4	2-3/8x .15x 72	40.25	135.75	C4	2-3/8x .15x 72	40.50	158.25		
A5				C5					
A6				C6					
B1	2-3/8x .15x 72	40.00	14.00	D1					
B2	2-3/8x .15x 72	40.00	74.00	D2					
В3	2-3/8x .15x 72	40.00	111.00	D3					
B4	2-3/8x .15x 72	40.00	136.00	D4					
B5				D5					
B6				D6					
	Distance between bottom ra	ail and mou	int CL eleva	tion (dim o	d). Unit is inches. See 'Mount Elev Ref' tab	for details. :			
	Distance from	top of botte	om support	rail to low	est tip of ant./eqpt. of Carrier above. (N/A	if > 10 ft.):	76		
	Distance from t	op of botto	m support i	rail to high	est tip of ant./eqpt. of Carrier below. (N/A	if > 10 ft.):	73		
	Please enter additional infomation or comments below.								
3/8" weld	3/8" weld on main standoff								
	Width at Mount Elev. (ft.):	5.125	0		Shaft Diameter at Mount Elev. (in.):		29.38		
For T-Arms	or T-Arms/Platforms on monopoles, report the weld size from the main standoff to the plate bolting into the collar mount.								

å	Antie	8	Antza 1	실	Anta _o	1 3	Ant4a	1 8	Antsa 1
	Antıs 🚊		Antz _b	\$	Antas	949	Aritas	80	Antse
	ä		á		2		45		1 3
	-				Î				
-	+	-							11
CI	Antic		Antze		Ants:		Ant4c		Antsa
-	C2	C3	-						
			С	4	-1				

		Enter antenn	a model.	If not label	ed, enter "	'Unknown"		Mountir [Units are inc	Photos of antennas		
	Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (Ft.)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant. is behind)	Antenna Azimuth (Degrees)	Photo Numbers
Ī						Sector A					
Γ	Ant _{1a}										
Г	Ant _{1b}	unknown	9.50	8.00	72.00	jumpers	120.354	36.00	10.50	30.00	118,120
ı	Ant _{1c}										
Ī	Ant _{2a}	bxa-70063-6bf-edin	11.00	5.00	72.00	5/8" TX, ju	120.604	33.00	9.00	30.00	131
ı	Ant _{2b}	rfsm08121160	6.25	0.75	5.00	1) 1-5/8" 7	121.729	19.50	-3.00	30.00	140,190
ı	Ant₂c										
ı	Ant _{3a}							4			
ď	Ant _{3b}	bxa-171063-12bf-edir	6.00	4.00	72.00	5/8" TX, ju	120.438	35.00	9.50	30.00	149, 150
ı	Ant _{3c}										
ı	Ant _{4a}										
ı	Ant _{4b}	unknown	9.50	8.00	72.00	jumpers	120.479	34.50	8.25	30.00	158
ı	Ant _{4c}	rfsm08121160	6.25	0.75	5.00	1) 1-5/8" 7	121.542	21.75	-2.75	30.00	161,191
I	Ant _{5a}							1			
Ī	Ant _{5b}										
Ī	Ant _{5c}										
Ī	Ant on										
ŀ	Standoff	10									
ı	Ant on Standoff										
ŀ	Ant on										
	Tower										
Ī	Ant on										
	Tower										

Mou		imuth (Degree	e)	Tower Leg Azimuth (Degr	ee)	Ant					Sector E	3				
Sector A:	_	ach Sector	Leg A:	for Each Sector	Deg	Ant _{1a} Ant _{1b}	unknown	9.50	8.00	72.00	jumpers	120.375	35.50	8.00	150.00	175
Sector A:	_	10	Leg B:		Deg	Ant _{1c}	UNIK IOWII	3.30	0.00	72.00	Jumpers	120.575	33.30	0.00	130.00	1/3
Sector C:	_	10	Leg C:		Deg	Ant _{2a}										
Sector D:			Leg D:		Deg	Ant _{2b}	slcp 2x6014	14.00	11.00	53.00	5/8" TX, ju	121.833	18.00	12.50	150.00	181,182
			oing Fac	ility Information		Ant _{2c}	rfsm08121160	6.25	0.75	5.00	1) 1-5/8"	121.75	19.00	-3.00	150.00	189,191
Location:	_	45.00 Deg		N/A		Ant _{3a}										
Climbing		Corrosion Typ	e:	Good condition.		Ant _{3b}	bxa-171063-12bf-edir	6.00	4.00	72.00	5/8" TX, ju	120.417	35.00	11.75	150.00	196
Facility		Access: Condition:		Climbing path was unobstructed Good condition.	1.	Ant _{3c}										
		condition.		dood condition.		Ant _{4a} Ant _{4b}	unknown	9.50	8.00	72.00	jumpers	120.438	34.75	18.50	150.00	202
						Ant _{4c}	rfsm08121160	6.25	0.75	5.00	1) 1-5/8"	121.542	21.50	-2.75	150.00	205,191
						Ant _{5a}										
						Ant _{5b}										
						Ant _{5c}										
						Ant on Standoff										
						Ant on										
						Standoff Ant on										
Ple	ase ins	sert a photo o	f the mo	ount centerline measurement he	re.	Tower										
						Ant on										
						Tower					Sector C	<u> </u>				
						Ant _{1a}										
						Ant _{1b}	unknown	9.50	8.00	72.00	jumpers	120.458	35.50	9.50	270.00	217
						Ant _{1c}										
						Ant _{2a}	slcp 2x6014	14.00	11.00	E2.00	E/0" TV 1	121.875	19.75	13.00	270.00	220,227
						Ant _{2b} Ant _{2c}	rfsm08121160	6.25	0.75	53.00	5/8" TX, ju L) 1-5/8" 1	121.875	20.00	-2.75	270.00	230,227
		FIFT.	TD			Ant _{3a}	1131108121100	0.23	0.73	3.00	1, 1-3/8	121.654	20.00	-2.73	270.00	230,231
	1	႕비	ll) å	<u>F</u>		Ant _{3b}	bxa-171063-12bf-edir	6.00	4.00	72.00	5/8" TX, ju	120.5	34.50	9.75	270.00	240
			Ш			Ant _{3c}										
d	-		##			Ant _{4a}										
ı	T.	A.11	111.2	THE OF COLUMN ANT		Ant _{4b}	unknown	9.50	8.00	72.00	jumpers		34.00	10.25	270.00	248
r	_		Ш_	DISTANCE FROM TO	OF MAN	Ant _{4c} Ant _{5a}	rfsm08121160	6.25	0.75	5.00	1) 1-5/8"	121.625	21.00	-3.00	270.00	251
c			111.	OSTANCE PROM TO PLATISM MEMBER OF ANT,/EDPT. OF (N/A IF > 10 PT.)	OF MAIN TO LOWEST TEP CARRIER ABOVE.	Ant _{5b}										
٦						Ant _{Sc}										
EXETING PLATFORM—	σ/	4	Шъ	DESTANCE FROM TO: FILATION MEMBER OF ANTI-PEOPLE OF (MA IF > 10 77.)	TO HIGHEST TO CARREST BELOW.	Ant on										
	л		111	TIP OF EQUIPMENT		Standoff Ant on										
						Standoff										
			Ш			Ant on Tower										
[111			Ant on										
	,	. 6	Ш.			Tower					Castant					
Г	٦	FOR PLAT	FORMS	ñ		Ant _{1a}					Sector D	, 				
ļ			#	1		Ant _{1b}										
]			Ant _{1c}										
٢.		4	7	The of Equipment		Ant₂a										
						Ant _{2b}										
Γ		ПК		DETANCE FROM T SUPPORT RAIL TO ANT_VEOFT. OF C UN/A IF > 10 FT.	DP OF BOTTOM LOWEST TIP OF	Ant _{2c}										
4	-		# F	(N/A #" > 10 FT)	Ant _{3a} Ant _{3b}										
	1					Ant _{3c}										
EXISTING SECTOR FIRE	- /	\ A	بالمر	DISTANCE FROM T SUPPORT FAIL TO ANT, FOOT, OF C (N/A F'> 10 PT.	OP OF BOTTOM HIGHEST TIP OF	Ant _{4a}										
MOI	UNT	K			WHOSE SELOW.	Ant _{4b}										
لم	4	m	7	TP OF EQUIPMONT		Ant _{4c}										
4	-	-	= }	-		Ant _{5a}										
			<u> </u>	<u>L</u>		Ant _{5b} Ant _{5c}										
Ļ	_		/ LJ	l h		Ant on										
F T *	/DI-+f		-l	and the sould size force the section		Standoff										
				ord the weld size from the main sta ar. See below for reference.	maott	Ant on Standoff										
11	F.75	>				Ant on										
						Tower Ant on										
1						Tower										
"	THE STATE OF THE S	(T		PEPORT WELD SIZE FRE STANDOFF TO PLATE BI INTO COLLAR MOUNT,	DM DLTING											

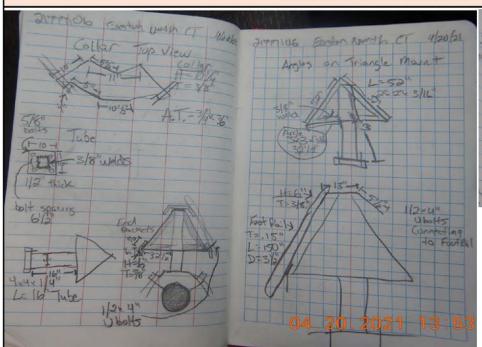
	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Description of Issue	Photo #
1		
2		
3		
4		
5		
6		
7		
8		

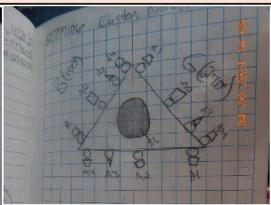
		Ol	served Obstructions to Tower Lighting System	
If the tower lighting system is being obst	ructed by the carrier's equipment (for ex	ample: a ligh	nested by the antennas), please provide photos and fill in the information below.	Photo #
Description of Obstruction:				
Type of Light:	Pho	oto#	Additional Comments:	
Lighting Technology:	Pho	to#		
Elevation (AGL) at base of light (Ft.):	Pho	to#		
Is a service loop available?	Pho	to#		
Is beacon installed on an extension?	Pho	to#		

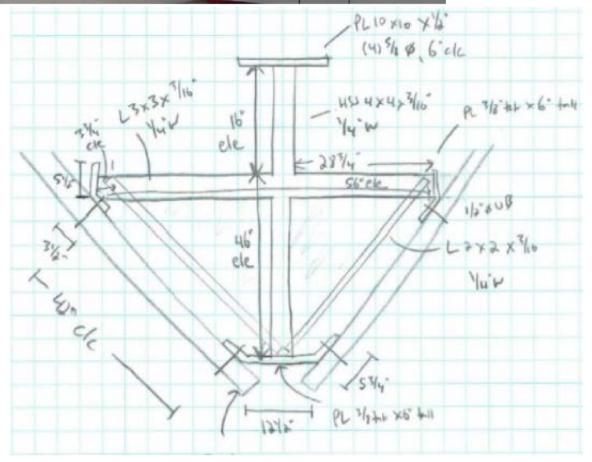
Mapping Notes

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.
 Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
- 6. Please measure and report the size and length of all existing antenna mounting pipes.
- 7. Please measure and report the antenna information for all sectors.
- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

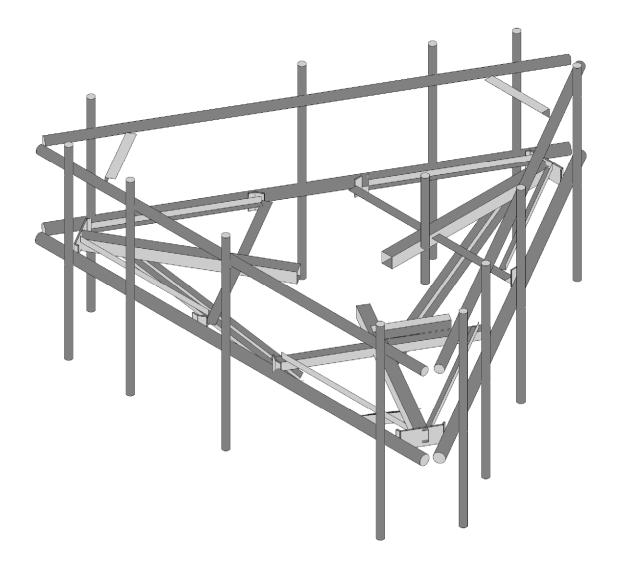
Standard Conditions

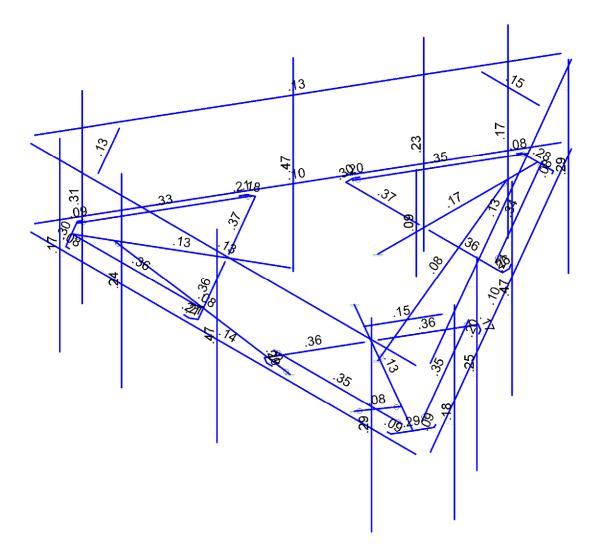

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.




Antenna Mount Mapping Form (PATENT PENDING) 1270233 Tower Owner: 4/20/202 Mapping Date Easton North 2 CT Site Name: Monopole Tower Type: Site Number or ID: 2567027 Tower Height (Ft.): 150 Mapping Contractor: Structural Components Mount Elevation (Ft.): 120

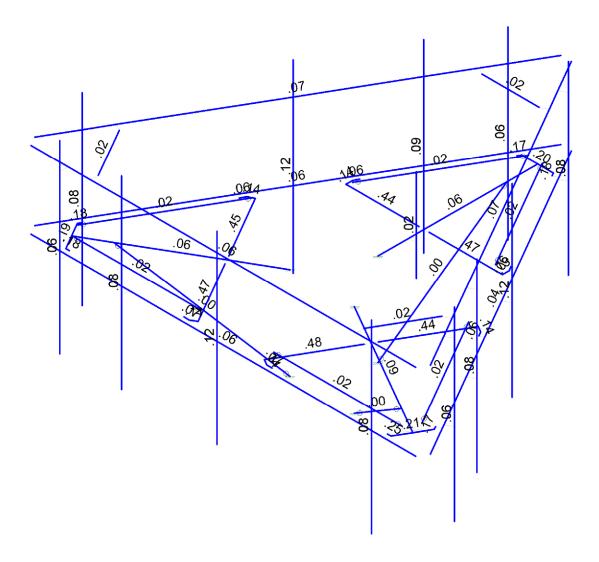
This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply. TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.


Please Insert Sketches of the Antenna Mount



Envelope Only Solution

Maser Consulting		SK - 1
SEA	Mount Modification Analysis (REV 1)	Nov 23, 2021 at 9:08 PM
		MOD_468248-VZW_MT_LO_H.r3d



Member Code Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 2
SEA	Mount Modification Analysis (REV 1)	Nov 23, 2021 at 9:09 PM
		MOD_468248-VZW_MT_LO_H.r3d

Member Shear Checks Displayed (Enveloped) Envelope Only Solution

Maser Consulting		SK - 3
SEA	Mount Modification Analysis (REV 1)	Nov 23, 2021 at 9:09 PM
		MOD_468248-VZW_MT_LO_H.r3d

Company Designer Job Number Model Name : Maser Consulting : SEA

: SE

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Basic Load Cases

	BLC Description	Category	X GraviY GraviZ Gravity	Joint Point	Distrib	Area(M	.Surfac
1	Antenna D	None		102			
2	Antenna Di	None		102			
3	Antenna Wo (0 Deg)	None		102			
4	Antenna Wo (30 Deg)	None		102			
5	Antenna Wo (60 Deg)	None		102			
6	Antenna Wo (90 Deg)	None		102			
7	Antenna Wo (120 Deg)	None		102			
8	Antenna Wo (150 Deg)	None		102			
9	Antenna Wo (180 Deg)	None		102			
10	Antenna Wo (210 Deg)	None		102			
11	Antenna Wo (240 Deg)	None		102			
12	Antenna Wo (270 Deg)	None		102			
13	Antenna Wo (300 Deg)	None		102			
14	Antenna Wo (330 Deg)	None		102			
15	Antenna Wi (0 Deg)	None		102			
16	Antenna Wi (30 Deg)	None		102			
17	Antenna Wi (60 Deg)	None		102			
18	Antenna Wi (90 Deg)	None		102			
19	Antenna Wi (120 Deg)	None		102			
20	Antenna Wi (150 Deg)	None		102			
21	Antenna Wi (180 Deg)	None		102			
22	Antenna Wi (210 Deg)	None		102			
23	Antenna Wi (240 Deg)	None		102			
24	Antenna Wi (270 Deg)	None		102			
25	Antenna Wi (300 Deg)	None		102			
26	Antenna Wi (330 Deg)	None		102			
27	Antenna Wm (0 Deg)	None		102			
28	Antenna Wm (30 Deg)	None		102			
29	Antenna Wm (60 Deg)	None		102			
30	Antenna Wm (90 Deg)	None		102			
31	Antenna Wm (120 Deg)	None		102			
32	Antenna Wm (150 Deg)	None		102			
33	Antenna Wm (180 Deg)	None		102			
34	Antenna Wm (210 Deg)	None		102			
35	Antenna Wm (240 Deg)	None		102			
36	Antenna Wm (270 Deg)	None		102			
37	Antenna Wm (300 Deg)	None		102			
38	Antenna Wm (330 Deg)	None		102			
39	Structure D	None	-1			3	
40	Structure Di	None			61	3	
41	Structure Wo (0 Deg)	None			122		
42	Structure Wo (30 Deg)	None			122		
43	Structure Wo (60 Deg)	None			122		
44	Structure Wo (90 Deg)	None			122		
45	Structure Wo (120 Deg)	None			122		
46	Structure Wo (150 Deg)	None			122		
47	Structure Wo (180 Deg)	None			122		
48	Structure Wo (210 Deg)	None			122		

Company Designer Job Number

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravi	Y Gravi	Z Gravity	Joint	Point	Distrib	Area(M	.Surfac
49	Structure Wo (240 Deg)	None				00		122		
50	Structure Wo (270 Deg)	None						122		
51	Structure Wo (300 Deg)	None						122		
52	Structure Wo (330 Deg)	None						122		
53	Structure Wi (0 Deg)	None						122		
54	Structure Wi (30 Deg)	None						122		
55	Structure Wi (60 Deg)	None						122		
56	Structure Wi (90 Deg)	None						122		
57	Structure Wi (120 Deg)	None						122		
58	Structure Wi (150 Deg)	None						122		
59	Structure Wi (180 Deg)	None						122		
60	Structure Wi (210 Deg)	None						122		
61	Structure Wi (240 Deg)	None						122		
62	Structure Wi (270 Deg)	None						122		
63	Structure Wi (300 Deg)	None						122		
64	Structure Wi (330 Deg)	None						122		
65	Structure Wm (0 Deg)	None						122		
66	Structure Wm (30 Deg)	None						122		
67	Structure Wm (60 Deg)	None						122		
68	Structure Wm (90 Deg)	None						122		
69	Structure Wm (120 Deg)	None						122		
70	Structure Wm (150 Deg)	None						122		
71	Structure Wm (180 Deg)	None						122		
72	Structure Wm (210 Deg)	None						122		
73	Structure Wm (240 Deg)	None						122		
74	Structure Wm (270 Deg)	None						122		
75	Structure Wm (300 Deg)	None						122		
76	Structure Wm (330 Deg)	None						122		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					102			
82	Antenna Eh (0 Deg)	None					68			
83	Antenna Eh (90 Deg)	None					68			
84	Structure Ev	ELY		046						
85	Structure Eh (0 Deg)	ELZ	115							
86	Structure Eh (90 Deg)	ELX			.115					
87	BLC 39 Transient Area Loads	None						30		
88	BLC 40 Transient Area Loads	None						30		

Load Combinations

		Des cription	So	.P	S	BLC	Fac	.BLC	Fac	.BLC	Fac.	.BLC	Fac												
1	1	1.2D+1.0Wo (0 Deg)	Yes	Υ		1	1.2	39	1.2	3	1	41	1												
2	2	1.2D+1.0Wo (30 Deg)	Yes	Υ		1	1.2	39	1.2	4	1	42	1												
3	3	1.2D+1.0Wo (60 Deg)	Yes	Υ		1	1.2	39	1.2	5	1	43	1												
4	1	1.2D+1.0Wo (90 Deg)	Yes	Υ		1	1.2	39	1.2	6	1	44	1												
5	5	1.2D+1.0Wo (120 D	.Yes	Υ		1	1.2	39	1.2	7	1	45	1												
6	3	1.2D+1.0Wo (150 D	.Yes	Υ		1	1.2	39	1.2	8	1	46	1												
7	7	1.2D+1.0Wo (180 D	.Yes	Υ		1	1.2	39	1.2	9	1	47	1												

Company Designer Job Number

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Load Combinations (Continued)

	Des cription	So	.P	S	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	.BLC	Fac								
8	1.2D+1.0Wo (210 E				1			1.2		1	48	1												
9	1.2D+1.0Wo (240 E)Yes	Υ		1	1.2		1.2		1	49	1												
10	1.2D+1.0Wo (270 D)Yes	Υ		1		39	1.2		1	50	1												
11	1.2D+1.0Wo (300 E				1		39	1.2		1	51	1												
12	1.2D+1.0Wo (330 E)Yes			1		39	1.2		1	52	1												
13	1.2D + 1.0Di + 1.0	. Yes	_		1	1.2		1.2		1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0	. Yes	_		1		39	1.2		1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0				1	1.2		1.2		1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0				1	1.2		1.2		1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0				1	1.2		1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0		_		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0		_		1	1.2		1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0		_		1		39	1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0		•		1	1.2		1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0		_		1	1.2	39	1.2	2	1	40	1	24	1	62	1								
23	1.2D + 1.0Di + 1.0		_		1	1.2		1.2		1	40	1	25	1	63	1								
24	1.2D + 1.0Di + 1.0		_		1	1.2	39	1.2	2	1	40	1	26	1	64	1								
25	1.2D + 1.5Lm1 + 1.				1	1.2	39	1.2		1.5		1	65	1	04									
26	1.2D + 1.5Lm1 + 1.		<u> </u>		1	1.2	39	1.2		1.5		1	66	1										
27	1.2D + 1.5Lm1 + 1.		-		1		39	1.2		1.5		1	67	1										
28	1.2D + 1.5Lm1 + 1.				1		39	1.2		1.5		1	68	1										
29	1.2D + 1.5Lm1 + 1.				-					1.5		1		- 1										
30	1.2D + 1.5Lm1 + 1.				1	1.2		1.2					69	1										
	1.2D + 1.5Lm1 + 1.		•			1.2	39	1.2		1.5		1_	70	1_1										
31	1.2D + 1.5Lm1 + 1.		_		1	1.2		1.2		1.5		1_	71	1										
32					1	1.2	39	1.2		1.5		1	72	1_										
33	1.2D + 1.5Lm1 + 1. 1.2D + 1.5Lm1 + 1.		_		1	1.2		1.2		1.5		1	73	1										
34			_		1	1.2	39	1.2		1.5		1_	74	1_										
35	1.2D + 1.5Lm1 + 1. 1.2D + 1.5Lm1 + 1.		_		1	1.2		1.2		1.5		1_	75	1										
36	1.2D + 1.5Lm2 + 1.				1		39	1.2		1.5	38	1_	76	1										
37	1.2D + 1.5Lm2 + 1.		<u> </u>		1		39	1.2		1.5		1	65	1										
38	1.2D + 1.5Lm2 + 1.				1	1.2	39	1.2		1.5	28	1_	66	1_										
39	1.2D + 1.5Lm2 + 1.		_		1	1.2	39	1.2		1.5	29	1_	67	1										
40	1.2D + 1.5Lm2 + 1.				1	1.2	_	1.2				1_	68	1_										
41			-		1	1.2	39	1.2		1.5		1	69	1										
42	1.2D + 1.5Lm2 + 1. 1.2D + 1.5Lm2 + 1.				1	1.2	39	1.2		1.5		1_	70	1_										
43	1.2D + 1.5Lm2 + 1. 1.2D + 1.5Lm2 + 1.				1	1.2	39	1.2		1.5	33	1	71	1										
					1		39			1.5		1_1	72	1										
	1.2D + 1.5Lm2 + 1.	_	_		1					1.5		1	73	1										
	1.2D + 1.5Lm2 + 1.				1					1.5			74											
	1.2D + 1.5Lm2 + 1.				1		_			1.5		1	75	1										
	1.2D + 1.5Lm2 + 1.		_		1					1.5	38	1_	76	1										
49	1.2D + 1.5Lv1		_		1					1.5														
50	1.2D + 1.5Lv2				1			1.2		1.5														
51	1.4D	Yes			1			1.4		_	ELV	_	0.0		0.0		_, _		ELY					
	1.2D + 1.0Ev + 1.0E				1			1.2			ELY	1_	82		83			1						
	1.2D + 1.0Ev + 1.0E		_		1			1.2			ELY	1				.5								
-	1.2D + 1.0Ev + 1.0E	_			1			1.2			ELY			.5						.866				
	1.2D + 1.0Ev + 1.0E				1			1.2			ELY	1_	82			1			ELX					
	1.2D + 1.0Ev + 1.0E				1			1.2			ELY									.866				
	1.2D + 1.0Ev + 1.0E				1		_	1.2			ELY	1_				.5								
	1.2D + 1.0Ev + 1.0E				1			1.2			ELY			-1				-1						
59	1.2D + 1.0Ev + 1.0E	Yes	ΙΥ		1	1.2	39	1.2	81	1	ELY	1	82	866	83	5	ΕLZ	866	ELX	5				

Company Designer Job Number

: Maser Consulting

SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Load Combinations (Continued)

	Des cription	So	P	S	BLC	Fac	BLC	Fac	.BLC	Fac	.BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	.BLC	Fac	BLC	Fac	.BLC	Fac
60	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	5	83	866	ELZ	5	ELX	866				
61	1.2D + 1.0Ev + 1.0E	.Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82		83	-1	ELZ		ELX	-1				
62	1.2D + 1.0Ev + 1.0E	Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	.5	83	866	ELZ	.5	ELX	866				
63	1.2D + 1.0Ev + 1.0E	Yes	Υ		1	1.2	39	1.2	81	1	ELY	1	82	.866	83	5	ELZ	.866	ELX	5				
64	0.9D - 1.0Ev + 1.0E	.Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	1	83		ELZ	1	ELX					
65	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	.5	ELZ	.866	ELX	.5				
66	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	.866	ELZ	.5	ELX	.866				
67	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82		83	1	ELZ		ELX	1				
68	0.9D - 1.0Ev + 1.0E	.Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	5	83	.866	ELZ	5	ELX	.866				
69	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	866	83	.5	ELZ	866	ELX	.5				
70	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	-1	83		ELZ	-1	ELX					
71	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	866	83	5	ELZ	866	ELX	5				
72	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	5	83	866	ELZ	5	ELX	866				
73	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82		83	-1	ELZ		ELX	-1				
74	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.5	83	866	ELZ	.5	ELX	866				
75	0.9D - 1.0Ev + 1.0E	Yes	Υ		1	.9	39	.9	81	-1	ELY	-1	82	.866	83	5	ELZ	.866	ELX	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp[F]	Detach From Diap
1	N1	6.25	0	3.810523	0	
2	N2	-6.25	0	3.810523	0	
3	N3	0	0	-1.208333	0	
4	N5	-2.541667	0	-2.708333	0	
5	N6	2.315104	0.166667	-2.708333	0	
6	N7	-2.315104	0.166667	-2.708333	0	
7	N8	5.0625	0	3.810523	0	
8	N9	5.0625	0	4.060523	0	
9	N10	-5.0625	0	3.810523	0	
10	N11	-5.0625	0	4.060523	0	
11	N12	0.041667	0	3.810523	0	
12	N13	0.041667	0	4.060523	0	
13	N14	-3.0625	0	3.810523	0	
14	N15	-3.0625	0	4.060523	0	
15	N16	-3.0625	-2.645833	4.060523	0	
16	N17	-3.0625	3.354167	4.060523	0	
17	N18	-5.0625	-2.645833	4.060523	0	
18	N19	-5.0625	3.354167	4.060523	0	
19	N20	0.041667	-2.645833	4.060523	0	
20	N21	0.041667	3.354167	4.060523	0	
21	N22	5.0625	-2.645833	4.060523	0	
22	N23	5.0625	3.354167	4.060523	0	
23	N24	0	0	-2.708333	0	
24	N27	0	0	-6.395833	0	
25	CP	0	0	0	0	
26	N29	2.315104	0	-2.708333	0	
27	N30	-2.315104	0	-2.708333	0	
28	N101	2.541667	0	-2.708333	0	
29	N102	-0.166667	0	-2.708333	0	
30	N103A	0.166667	0	-2.708333	0	
31	N104A	-2.541667	0	-2.927083	0	

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
32	N105	2.541667	0	-2.927083	0	
33	N131	2.458333	0	-3.071421	0	
34	N135	0.571615	0	-6.298857	0	
35	N144	-2.458333	0	-3.071421	0	
36	N148	-0.571615	0	-6.298857	0	
37	N86A	2.584629	0	-3.144338	0	
38	N86B	-2.584629	0	-3.144338	0	
39	N86C	-0.515625	0	-6.395833	0	
40	N87A	0.515625	0	-6.395833	0	
41	N86D	0.715429	0	-6.381888	0	
42	N86E	-0.715429	0	-6.381888	0	
43	N88A	0	0	-6.3125	0	
44	N87C	0.234238	0.166667	-6.3125	0	
45	N86G	0.234238	0	-6.3125	0	
46	N87B	-0.234238	0.166667	-6.3125	0	
47	N88C	-0.234238	0	-6.3125	0	
48	N87D	-1.046447	0	0.604167	0	
49	N88B	-1.074652	0	3.555315	0	
50	N89	-3.503038	0.166667	-0.650772	0	
51	N90	-1.187933	0.166667	3.359106	0	
52	N91	-2.345485	0	1.354167	0	
53	N92	-5.538954	0	3.197917	0	
54	N93	-3.503038	0	-0.650772	0	
55	N94	-1.187933	0	3.359106	0	
56	N95	-3.616319	0	-0.846981	0	
57	N96	-2.262152	0	1.498504	0	
58	N97	-2.428819	0	1.209829	0	
59	N98	-1.264095	0	3.66469	0	
60	N99	-3.805762	0	-0.737606	0	
61	N100	-3.889095	0	-0.593269	0	
62	N101A	-5.740777	0	2.654396	0	
63	N102A	-1.430762	0	3.66469	0	
64	N103	-5.169162	0	3.644461	0	
65	N104	-4.015391	0	-0.666185	0	
66	N105A	-1.430762	0	3.810523	0	
67	N106	-5.281142	0	3.644461	0	
68	N107	-5.796767	0	2.751372	0	
69	N108	-5.884591	0	2.571364	0	
70	N109	-5.169162	0	3.810523	0	
71	N110	-5.466785	0	3.15625	0	
72	N111	-5.583904	0.166667	2.953394	0	
73	N112	-5.583904	0	2.953394	0	
74	N113	-5.349667	0.166667	3.359106	0	
75	N114	-5.349667	0	3.359106	0	
76	N115	1.046447	0	0.604167	0	
77	N116	3.616319	0	-0.846981	0	
78	N117	1.187933	0.166667	3.359106	0	
79	N118	3.503038	0.166667	-0.650772	0	
80	N119	2.345485	0	1.354167	0	
81	N120	5.538954	0	3.197917	0	
82	N121	1.187933	0	3.359106	0	
83	N122	3.503038	0	-0.650772	0	
						1

: Maser Consulting

SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Joint Coordinates and Temperatures (Continued)

	Ooordinates and Tem					
	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
84	N123	1.074652	0	3.555315	0	
85	N124	2.428819	0	1.209829	0	
86	N125	2.262152	0	1.498504	0	
87	N126	3.805762	0	-0.737606	0	
88	N127	1.264095	0	3.66469	0	
89	N128	1.430762	0	3.66469	0	
90	N129	5.169162	0	3.644461	0	
91	N130	3.889095	0	-0.593269	0	
92	N131A	5.740777	0	2.654396	0	
93	N132	1.430762	0	3.810523	0	
94	N133	4.015391	0	-0.666186	0	
95	N134	5.796767	0	2.751372	0	
96	N135A	5.281142	0	3.644461	0	
97	N136	5.169162	0	3.810523	0	
98	N137	5.884591	0	2.571364	0	
99	N138	5.466785	0	3.15625	0	
100	N139	5.349667	0.166667	3.359106	0	
101	N140	5.349667	0	3.359106	0	
102	N141	5.583904	0.166667	2.953394	0	
103	N142	5.583904	0	2.953394	0	
104	N104B	0.17501	0	-7.31792	0	
105	N105B	6.42501	0	3.507397	0	
106	N124A	-6.42501	0	3.507397	0	
107	N125A	-0.17501	0	-7.31792	0	
108	N109A	0.76876	0	-6.289515	0	
109	N110A	0.985266	0	-6.414515	0	
110	N111A	5.83126	0	2.478992	0	
	N112A					
111 112	N113A N113A	6.047766	0	2.353992	0	
		3.279177		-1.941346		
113	N114A	3.495683	0	-2.066346	0	
114	N115A	4.83126	0	0.746941	0	
115	N116A	5.047766	0	0.621941	0	
116	N117A	5.047766	-2.645833	0.621941	0	
117	N118A	5.047766	3.354167	0.621941	0	
118	N119A	6.047766	-2.645833	2.353992	0	
119	N120A	6.047766	3.354167	2.353992	0	
120	N121A	3.495683	-2.645833	-2.066346	0	
121	N122A	3.495683	3.354167	-2.066346	0	
122	N123A	0.985266	-2.645833	-6.414515	0	
123	N124B	0.985266	3.354167	-6.414515	0	
124	N126A	-5.83126	0	2.478992	0	
125	N127A	-6.047766	0	2.353992	0	
126	N128A	-0.76876	0	-6.289515	0	
127	N129A	-0.985266	0	-6.414515	0	
128	N130A	-3.320843	0	-1.869177	0	
129	N131B	-3.53735	0	-1.994177	0	
130	N132A	-1.76876	0	-4.557464	0	
131	N133A	-1.985266	0	-4.682464	0	
132	N134A	-1.985266	-2.645833	-4.682464	0	
133	N135B	-1.985266	3.354167	-4.682464	0	
134	N136A	-0.985266	-2.645833	-6.414515	0	
135	N137A	-0.985266	3.354167	-6.414515	0	

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
136	N138A	-3.53735	-2.645833	-1.994177	0	
137	N139A	-3.53735	3.354167	-1.994177	0	
138	N140A	-6.047766	-2.645833	2.353992	0	
139	N141A	-6.047766	3.354167	2.353992	0	
140	N141B	0	0	-2.208333	0	
141	N142A	.25	0	-2.208333	0	
142	N143	.25	2	-2.208333	0	
143	N144A	.25	-1	-2.208333	0	
144	N144B	6.25	2.5	3.810523	0	
145	N145	-6.25	2.5	3.810523	0	
146	N146	5.0625	2.5	3.810523	0	
147	N147	5.0625	2.5	4.060523	0	
148	N148A	-5.0625	2.5	3.810523	0	
149	N149	-5.0625	2.5	4.060523	0	
150	N150	0.041667	2.5	3.810523	0	
151	N151	0.041667	2.5	4.060523	0	
152	N152	-3.0625	2.5	3.810523	0	
153	N153	-3.0625	2.5	4.060523	0	
154	N154	0.17501	2.5	-7.31792	0	
155	N155	6.42501	2.5	3.507397	0	
156	N156	-6.42501	2.5	3.507397	0	
157	N157	-0.17501	2.5	-7.31792	0	
158	N158	0.76876	2.5	-6.289515	0	
159	N159	0.985266	2.5	-6.414515	0	
160	N160	5.83126	2.5	2.478992	0	
161	N161	6.047766	2.5	2.353992	0	
162	N162	3.279177	2.5	-1.941346	0	
163	N163	3.495683	2.5	-2.066346	0	
164	N164	4.83126	2.5	0.746941	0	
165	N165	5.047766	2.5	0.621941	0	
166	N166	-5.83126	2.5	2.478992	0	
167	N167	-6.047766	2.5	2.353992	0	
168	N168	-0.76876	2.5	-6.289515	0	
169	N169	-0.985266	2.5	-6.414515	0	
170	N170	-3.320843	2.5	-1.869177	0	
171	N171	-3.53735	2.5	-1.994177	0	
172	N172	-1.76876	2.5	-4.557464	0	
173	N173	-1.985266	2.5	-4.682464	0	
174	N174	-4.3125	2.5	3.810523	0	
175	N175	4.3125	2.5	3.810523	0	
176	N176	-4.3125	2.5	3.560523	0	
177	N177	4.3125	2.5	3.560523	0	
178	N178	5.45626	2.5	1.829473	0	
179	N179	1.14376	2.5	-5.639996	0	
180	N180	5.239754	2.5	1.954473	0	
181	N181	0.927254	2.5	-5.514996	0	
182	N182	-1.14376	2.5	-5.639996	0	
183	N183	-5.45626	2.5	1.829473	0	
184	N184	-0.927254	2.5	-5.514996	0	
185	N185	-5.239754	2.5	1.954473	0	
186	N186	0	0	-5.395833	0	
187	N187	0	-3	-1.208333	0	
,		· •		30000		

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp[F]	Detach From Diap
188	N188	-4.672929	0	2.697917	0	
189	N189	-1.046447	-3	0.604167	0	
190	N190	4.672929	0	2.697917	0	
191	N191	1.046447	-3	0.604167	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	Iyy [in4]	Izz [in4]	J [in4]_
1	Face Horizontal	PIPE_3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
2	Standoff Horizontal	HSS4X4X3	Beam	SquareTube	A500 Gr.B Re.	Typical	2.58	6.21	6.21	10
3	Corner Plate	PL1/2x6	Beam	BAR	A36 Gr.36	Typical	3	.063	9	.237
4	Platform Crossmember	L3X3X3	Beam	Single Angle	A36 Gr.36	Typical	1.09	.948	.948	.014
5	Grating Support	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
6	Mount Pipe	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
7	Cross Arm Plate	PL3/8x6	Column	RECT	A36 Gr.36	Typical	2.25	.026	6.75	.101
8	OVP Pipe	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
9	MOD SUPPORT RAIL	PIPE_2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
10	MOD SUPPORT RAIL	L3X3X4	Beam	Single Angle	A36 Gr.36	Typical	1.44	1.23	1.23	.031
11	MOD KICKER KIT	LL3x3x3x3	Beam	Double Angle (3/8	A36 Gr.36	Typical	2.18	4.09	1.9	.027

Hot Rolled Steel Design Parameters

	Label	Shape	Length[ft]	Lbyy[ff]	Lbzz[ft]	Lcomp top[ft] Lcomp bot	[ft] L-torqu	. Kyy	Kzz	Cb	Function
1	M4	Standoff Ho	5.188			Lbyy					Lateral
2	M52A	Standoff Ho	5.188			Lbyy					Lateral
3	M76A	Standoff Ho	5.188			Lbyy					Lateral
4	M10	Platform Cr	2.375			Lbyy					Lateral
5	M43	Platform Cr	2.375			Lbyy					Lateral
6	M53	Platform Cr	2.375			Lbyy					Lateral
7	M54	Platform Cr	2.375			Lbyy					Lateral
8	M77A	Platform Cr	2.375			Lbyy					Lateral
9	M78	Platform Cr	2.375			Lbyy					Lateral
10	M100	OVP Pipe	3								Lateral
11	MP3A	Mount Pipe	6			Lbyy					Lateral
12	MP4A	Mount Pipe	6			Lbyy					Lateral
13	MP2A	Mount Pipe	6			Lbyy					Lateral
14	MP1A	Mount Pipe	6			Lbyy					Lateral
15	MP3B	Mount Pipe	6			Lbyy					Lateral
16	MP4B	Mount Pipe	6			Lbyy					Lateral
17	MP2B	Mount Pipe	6			Lbyy					Lateral
18	MP1B	Mount Pipe	6			Lbyy					Lateral
19	MP3C	Mount Pipe	6			Lbyy					Lateral
20	MP4C	Mount Pipe	6			Lbyy					Lateral
21	MP2C	Mount Pipe	6			Lbyy					Lateral
22	MP1C	Mount Pipe	6			Lbyy					Lateral
23	M123	MOD SUPP	1.855			Lbyy					Lateral
24	M124	MOD SUPP				Lbyy					Lateral
25	M125	MOD SUPP				Lbyy					Lateral
26	M102	MOD SUPP	12.5			Lbyy					Lateral
27	M107	MOD SUPP	12.5			Lbyy					Lateral
28	M108	MOD SUPP	12.5			Lbyy					Lateral

: Maser Consulting

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[ft]	Lbyy[ft]	Lbzz[ft]	Lcomp top[ft] Lcomp bot[ft] L-torqu	Куу	Kzz	Cb	Function
29	M126	MOD KICK	5.151	77.		Lbyy				Lateral
30	M127	MOD KICK	5.151			Lbyy				Lateral
31	M128	MOD KICK	5.151			Lbyy				Lateral
32	M51B	Grating Sup	4.162			Lbyy				Lateral
33	M52B	Grating Sup	4.162			Lbyy				Lateral
34	M58A	Grating Sup	4.162			Lbyy				Lateral
35	M59A	Grating Sup	4.162			Lbyy				Lateral
36	M82	Grating Sup	4.162			Lbyy				Lateral
37	M83A	Grating Sup	4.162			Lbyy				Lateral
38	M1	Face Horizo	12.5			Lbyy				Lateral
39	M82A	Face Horizo	12.5			Lbyy				Lateral
40	M91B	Face Horizo	12.5			Lbyy				Lateral
41	M76	Cross Arm	.219							Lateral
42	M77	Cross Arm	.167							Lateral
43	M84	Cross Arm	.219							Lateral
44	M85	Cross Arm	.167							Lateral
45	M63	Cross Arm	.219							Lateral
46	M64	Cross Arm	.167							Lateral
47	M68	Cross Arm	.219							Lateral
48	M69	Cross Arm	.167							Lateral
49	M87	Cross Arm	.219							Lateral
50	M88A	Cross Arm	.167							Lateral
51	M92A	Cross Arm	.219							Lateral
52	M93	Cross Arm	.167							Lateral
53	M46	Corner Plate	1.031			Lbyy				Lateral
54	M80	Corner Plate	.112			Lbyy				Lateral
55	M91	Corner Plate	.112			Lbyy				Lateral
56	M55	Corner Plate	1.031			Lbyy				Lateral
57	M66	Corner Plate	.112			Lbyy				Lateral
58	M71	Corner Plate	.112			Lbyy				Lateral
59	M79A	Corner Plate	1.031			Lbyy				Lateral
60	M90	Corner Plate	.112			Lbyy				Lateral
61	M95	Corner Plate	.112			Lbyy				Lateral

Member Primary Data

	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
1	M4	N3	N27		,	Standoff Horizontal	Beam	SquareTube	A500 Gr	Typical
2	M52A	N87D	N92			Standoff Horizontal		SquareTube		
3	M76A	N115	N120			Standoff Horizontal	Beam	SquareTube	A500 Gr	· Typical
4	M19	N8	N9			RIGID	None	None	RIGID	Typical
5	M20	N10	N11			RIGID	None	None	RIGID	Typical
6	M21	N12	N13			RIGID	None	None	RIGID	Typical
7	M22	N14	N15			RIGID	None	None	RIGID	Typical
8	M35A	N7	N30			RIGID	None	None	RIGID	Typical
9	M36A	N6	N29			RIGID	None	None	RIGID	Typical
10	M52	N87B	N88C			RIGID	None	None	RIGID	Typical
11	M58	N102	N24			RIGID	None	None	RIGID	Typical
12	M59	N24	N103A			RIGID	None	None	RIGID	Typical
13	M79	N131	N86A			RIGID	None	None	RIGID	Typical
14	M83	N135	N86D			RIGID	None	None	RIGID	Typical

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Туре	Design List	Material	Design R
15	M88	N144	N86B			RIGID	None	None	RIGID	Typical
16	M92	N148	N86E			RIGID	None	None	RIGID	Typical
17	M50	N88C	N88A			RIGID	None	None	RIGID	Typical
18	M51	N88A	N86G			RIGID	None	None	RIGID	Typical
19	M51A	N87C	N86G			RIGID	None	None	RIGID	Typical
20	M56	N90	N94			RIGID	None	None	RIGID	Typical
21	M57	N89	N93			RIGID	None	None	RIGID	Typical
22	M60	N113	N114			RIGID	None	None	RIGID	Typical
23	M61	N96	N91			RIGID	None	None	RIGID	Typical
24	M62	N91	N97			RIGID	None	None	RIGID	Typical
25	M65	N100	N104			RIGID	None	None	RIGID	Typical
26	M67	N101A	N108			RIGID	None	None	RIGID	Typical
27	M70	N102A				RIGID	None	None	RIGID	Typical
28	M72	N103	N109			RIGID	None	None	RIGID	Typical
29	M73	N114	N110			RIGID	None	None	RIGID	Typical
30	M74	N110	N112			RIGID	None	None	RIGID	Typical
31	M75	N111	N112			RIGID	None	None	RIGID	Typical
32	M80A	N118	N122			RIGID	None	None	RIGID	Typical
33	M81	N117	N121			RIGID	None	None	RIGID	Typical
34	M84A	N141	N142			RIGID	None	None	RIGID	Typical
35	M85A	N124	N119			RIGID	None	None	RIGID	Typical
36	M86	N119	N125			RIGID	None	None	RIGID	Typical
37	M89	N128	N132			RIGID	None	None	RIGID	Typical
38	M91A	N129	N136			RIGID	None	None	RIGID	Typical
39	M94	N130	N133			RIGID	None	None	RIGID	Typical
40	M96	N131A	N137			RIGID	None	None	RIGID	Typical
41	M97	N142	N138			RIGID	None	None	RIGID	Typical
42	M98	N138	N140			RIGID	None	None	RIGID	Typical
43	M99	N139	N140			RIGID	None	None	RIGID	Typical
44	M84B	N109A				RIGID	None	None	RIGID	Typical
45	M85B		N112A			RIGID	None	None	RIGID	Typical
46	M86A	N113A				RIGID	None	None	RIGID	Typical
47	M87A	N115A				RIGID	None	None	RIGID	Typical
48	M92B	N126A				RIGID	None	None	RIGID	Typical
49	M93A	N128A				RIGID	None	None	RIGID	Typical
50	M94A	N130A	N131B			RIGID	None	None	RIGID	Typical
51	M95A	N132A				RIGID	None	None	RIGID	Typical
52	M101	N141B				RIGID	None	None	RIGID	Typical
53	M103	N146	N147			RIGID	None	None	RIGID	Typical
54	M104	N148A	N149			RIGID	None	None	RIGID	Typical
55	M105	N150	N151			RIGID	None	None	RIGID	Typical
56	M106	N152	N153			RIGID	None	None	RIGID	Typical
57	M109	N158	N159			RIGID	None	None	RIGID	Typical
58	M110	N160	N161			RIGID	None	None	RIGID	Typical
59	M111	N162	N163			RIGID	None	None	RIGID	Typical
60	M112	N164	N165			RIGID	None	None	RIGID	Typical
61	M113	N166	N167			RIGID	None	None	RIGID	Typical
62	M114	N168	N169			RIGID	None	None	RIGID	Typical
63	M115	N170	N171			RIGID	None	None	RIGID	Typical
64	M116	N172	N173			RIGID	None	None	RIGID	Typical
65	M10	N101	N103A		180	Platform Crossmember		Single Angle		- Typical
66	M43	N102	N5		180	Platform Crossmember		Single Angle		· Typical
										. , , , , , , , , , , , , , , , , , , ,

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
67	M53	N95	N97		180	Platform Crossmember	Beam	Single Angle		Typical
68	M54	N96	N88B		180	Platform Crossmember	Beam	Single Angle		Typical
69	M77A	N123	N125		180	Platform Crossmember	Beam	Single Angle	A36 Gr	Typical
70	M78	N124	N116		180	Platform Crossmember	Beam	Single Angle		Typical
71	M100	N143	N144A		,	OVP Pipe	Column		A53 Gr.B	Typical
72	MP3A	N17	N16			Mount Pipe	Column		A53 Gr.B	Typical
73	MP4A	N19	N18			Mount Pipe	Column	200	A53 Gr.B	Typical
74	MP2A	N21	N20			Mount Pipe	Column		A53 Gr.B	Typical
75	MP1A	N23	N22			Mount Pipe	Column		A53 Gr.B	Typical
76	MP3B	N118A				Mount Pipe	Column		A53 Gr.B	Typical
77	MP4B	N120A				Mount Pipe	Column		A53 Gr.B	Typical
78	MP2B	N122A				Mount Pipe	Column		A53 Gr.B	Typical
79	MP1B	N124B				Mount Pipe	Column		A53 Gr.B	Typical
80	MP3C	N135B				Mount Pipe	Column	Pipe	A53 Gr.B	
81	MP4C	N137A				Mount Pipe	Column		A53 Gr.B	Typical
82	MP2C	N139A				Mount Pipe	Column		A53 Gr.B	Typical
83	MP1C	N141A				Mount Pipe	Column		A53 Gr.B	Typical
84	M123	N176	N185		90	MOD SUPPORT RAIL BRACE		Single Angle		Typical
85	M124	N184	N181		90	MOD SUPPORT RAIL BRACE	Beam	Single Angle		Typical
86	M125	N180	N177		90	MOD SUPPORT RAIL BRACE	Beam	Single Angle		Typical
87	M102	N144B	N145			MOD SUPPORT RAIL	Column		A53 Gr.B	Typical
88	M107	N154	N155			MOD SUPPORT RAIL	Column	Pipe	A53 Gr.B	Typical
89	M108	N156	N157			MOD SUPPORT RAIL	Column		A53 Gr.B	Typical
90	M117	N174	N176			RIGID	None	None	RIGID	Typical
91	M118	N175	N177			RIGID	None	None	RIGID	Typical
92	M119	N178	N180			RIGID	None	None	RIGID	Typical
93	M120	N179	N181			RIGID	None	None	RIGID	Typical
94	M121	N182	N184			RIGID	None	None	RIGID	Typical
95	M122	N183	N185			RIGID	None	None	RIGID	Typical
96	M126	N186	N187			MOD KICKER KIT		Double Ang		Typical
97	M127	N188	N189			MOD KICKER KIT		Double Ang		Typical
98	M128	N190	N191			MOD KICKER KIT		Double Ang		
99	M51B	N87C	N6			Grating Support		Single Angle		Typical
100	M52B	N7	N87B			Grating Support		Single Angle		Typical
101	M58A	N111	N89			Grating Support	Beam	Single Angle		Typical
102	M59A	N90	N113			Grating Support	Beam	Single Angle		
103	M82	N139	N117			Grating Support		Single Angle		
104	M83A	N118	N141			Grating Support		Single Angle		
105	M1	N1	N2			Face Horizontal	Beam		A53 Gr.B	
106	M82A	N104B				Face Horizontal	Beam			Typical
107	M91B	N124A				Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
108	M76	N101	N105			Cross Arm Plate	Column	RECT	A36 Gr	Typical
109	M77	N105	N131			Cross Arm Plate	Column		A36 Gr	
110	M84	N5	N104A			Cross Arm Plate	Column			Typical
111	M85	N104A	N144			Cross Arm Plate	Column		A36 Gr	
112	M63	N95	N99			Cross Arm Plate	Column			Typical
113	M64	N99	N100			Cross Arm Plate	Column		A36 Gr	
114	M68	N88B	N98			Cross Arm Plate	Column			Typical
115	M69	N98	N102A			Cross Arm Plate	Column		A36 Gr	Typical
116	M87	N123	N127			Cross Arm Plate	Column		A36 Gr	
117	M88A	N127	N128			Cross Arm Plate	Column		A36 Gr	Typical
118	M92A	N116	N126			Cross Arm Plate	Column		A36 Gr	Typical
. 10	THO Z	1110	11120			O100071/1111 Idio		1,101		1 y prour

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(Section/Shape	Type	Design List	Material	Design R
119	M93	N126	N130			Cross Arm Plate	Column	RECT	A36 Gr	Typical
120	M46	N86C	N87A			Corner Plate	Beam	BAR	A36 Gr	Typical
121	M80	N87A	N135			Corner Plate	Beam	BAR	A36 Gr	Typical
122	M91	N86C	N148			Corner Plate	Beam	BAR	A36 Gr	Typical
123	M55	N106	N107			Corner Plate	Beam	BAR	A36 Gr	Typical
124	M66	N107	N101A			Corner Plate	Beam	BAR	A36 Gr	Typical
125	M71	N106	N103			Corner Plate	Beam	BAR	A36 Gr	Typical
126	M79A	N134	N135A			Corner Plate	Beam	BAR	A36 Gr	Typical
127	M90	N135A	N129			Corner Plate	Beam	BAR	A36 Gr	Typical
128	M95	N134	N131A			Corner Plate	Beam	BAR	A36 Gr	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis .	Inactive	Seismic
1	M4					•	Yes			None
2	M52A						Yes			None
3	M76A						Yes			None
4	M19						Yes	** NA **		None
5	M20						Yes	** NA **		None
6	M21						Yes	** NA **		None
7	M22						Yes	** NA **		None
8	M35A						Yes	** NA **		None
9	M36A						Yes	** NA **		None
10	M52						Yes	** NA **		None
11	M58						Yes	** NA **		None
12	M59						Yes	** NA **		None
13	M79		BenPIN				Yes	** NA **		None
14	M83		BenPIN				Yes	** NA **		None
15	M88		BenPIN				Yes	** NA **		None
16	M92		BenPIN				Yes	** NA **		None
17	M50						Yes	** NA **		None
18	M51						Yes	** NA **		None
19	M51A						Yes	** NA **		None
20	M56						Yes	** NA **		None
21	M57						Yes	** NA **		None
22	M60						Yes	** NA **		None
23	M61						Yes	** NA **		None
24	M62						Yes	** NA **		None
25	M65		BenPIN				Yes	** NA **		None
26	M67		BenPIN				Yes	** NA **		None
27	M70		BenPIN				Yes	** NA **		None
28	M72		BenPIN				Yes	** NA **		None
29	M73						Yes	** NA **		None
30	M74						Yes	** NA **		None
31	M75						Yes	** NA **		None
32	M80A						Yes	** NA **		None
33	M81						Yes	** NA **		None
34	M84A						Yes	** NA **		None
35	M85A						Yes	** NA **		None
36	M86						Yes	** NA **		None
37	M89		BenPIN				Yes	** NA **		None

Model Name

oany : Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physica	I Defl RatAnalysis	Inactive	Seismic
38	M91A		BenPIN				Yes	** NA **		None
39	M94		BenPIN				Yes	** NA **		None
40	M96		BenPIN				Yes	** NA **		None
41	M97						Yes	** NA **		None
42	M98						Yes	** NA **		None
43	M99						Yes	** NA **		None
44	M84B						Yes	** NA **		None
45	M85B						Yes	** NA **		None
46	M86A						Yes	** NA **		None
47	M87A						Yes	** NA **		None
48	M92B						Yes	** NA **		None
49	M93A						Yes	** NA **		None
50	M94A						Yes	** NA **		None
51	M95A						Yes	** NA **		None
52	M101						Yes	** NA **		None
53	M103						Yes	** NA **		None
54	M104						Yes	** NA **		None
55	M105						Yes	** NA **		None
56	M106						Yes	** NA **		None
57	M109						Yes	** NA **		None
58	M110						Yes	** NA **		None
59	M111						Yes	** NA **		None
60	M112						Yes	** NA **		None
61	M113						Yes	** NA **		None
62	M114						Yes	** NA **		None
63	M115						Yes	** NA **		None
64	M116						Yes	** NA **		None
65	M10						Yes	Default		None
66	M43						Yes	Default		None
67	M53						Yes	Default		None
68	M54						Yes	Default		None
69	M77A						Yes	Default		None
70	M78						Yes	Default		None
71	M100						Yes	** NA **		None
72	MP3A						Yes	** NA **		None
73	MP4A						Yes	** NA **		None
74	MP2A						Yes	** NA **		None
75	MP1A						Yes	** NA **		None
76	MP3B						Yes	** NA **		None
77	MP4B						Yes	** NA **		None
78	MP2B						Yes	** NA **		None
79	MP1B						Yes	** NA **		None
80	MP3C						Yes	** NA **		None
81	MP4C						Yes	** NA ** ** NA **		None
82 83	MP2C MP1C						Yes Yes	** NA **		None None
84	M123						Yes	INA		None
85	M124						Yes			None
86	M125						Yes			None
87	M102						Yes	** NA **		None
88	M107						Yes	** NA **		None
89	M108						Yes	** NA **		None
00	191 1 00						100	1 W X		110110

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
90	M117	00000X					Yes	** NA **		None
91	M118	00000X					Yes	** NA **		None
92	M119	00000X					Yes	** NA **		None
93	M120	00000X					Yes	** NA **		None
94	M121	00000X					Yes	** NA **		None
95	M122	00000X					Yes	** NA **		None
96	M126	BenPIN	BenPIN				Yes			None
97	M127	BenPIN	BenPIN				Yes			None
98	M128	BenPIN	BenPIN				Yes			None
99	M51B	00000X	00000X				Yes	Default		None
100	M52B	00000X	00000X				Yes	Default		None
101	M58A	00000X	00000X				Yes	Default		None
102	M59A	00000X	00000X				Yes	Default		None
103	M82	00000X	00000X				Yes	Default		None
104	M83A	00000X	00000X				Yes	Default		None
105	M1						Yes	Default		None
106	M82A						Yes	Default		None
107	M91B						Yes	Default		None
108	M76						Yes	** NA **		None
109	M77						Yes	** NA **		None
110	M84						Yes	** NA **		None
111	M85						Yes	** NA **		None
112	M63						Yes	** NA **		None
113	M64						Yes	** NA **		None
114	M68						Yes	** NA **		None
115	M69						Yes	** NA **		None
116	M87						Yes	** NA **		None
117	M88A						Yes	** NA **		None
118	M92A						Yes	** NA **		None
119	M93						Yes	** NA **		None
120	M46						Yes	Default		None
121	M80						Yes			None
122	M91						Yes			None
123	M55						Yes	Default		None
124	M66						Yes			None
125	M71						Yes			None
126	M79A						Yes	Default		None
127	M90						Yes			None
128	M95						Yes			None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Υ	-52.9	2.25
2	MP2A	My	.022	2.25
3	MP2A	Mz	0	2.25
4	MP2B	Υ	-52.9	2.25
5	MP2B	My	008	2.25
6	MP2B	Mz	.021	2.25
7	MP2C	Υ	-52.9	2.25
8	MP2C	My	014	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2C	Mz	017	2.25
10	MP1A	Υ	-10.5	.5
11	MP1A	My	005	.5
12	MP1A	Mz	0	.5
13	MP1A	Υ	-10.5	5.5
14	MP1A	My	005	5.5
15	MP1A	Mz	0	5.5
16	MP1B	Υ	-10.5	.5
17	MP1B	My	.002	.5
18	MP1B	Mz	005	.5
19	MP1B	Υ	-10.5	5.5
20	MP1B	My	.002	5.5
21	MP1B	Mz	005	5.5
22	MP1C	Υ	-10.5	.5
23	MP1C	My	.003	.5
24	MP1C	Mz	.004	.5
25	MP1C	Υ	-10.5	5.5
26	MP1C	My	.003	5.5
27	MP1C	Mz	.004	5.5
28	MP2A	Υ	-23	.5
29	MP2A	My	011	.5
30	MP2A	Mz	016	.5
31	MP2A	Υ	-23	5.5
32	MP2A	My	011	5.5
33	MP2A	Mz	016	5.5
34	MP2B	Y	-23	.5
35	MP2B	My	.019	.5
36	MP2B	Mz	005	.5
37	MP2B	Y	-23	5.5
38	MP2B	My	.019	5.5
39	MP2B	Mz	005	5.5
40	MP2C	Y	-23	.5
41	MP2C	My	005	.5
42	MP2C	Mz	.019	.5
43	MP2C	Y	-23	5.5
44	MP2C	My	005	5.5
45	MP2C	Mz	.019	5.5
46	MP2A	Y	-23	.5
47	MP2A	My	011	.5
48	MP2A	Mz	.016	.5
49	MP2A	Y	-23	5.5
50	MP2A	My	011	5.5
51	MP2A	Mz	.016	5.5
52	MP2B	Y	-23	.5
53	MP2B	My	011	.5
54	MP2B	Mz	016	.5
55	MP2B	Y	-23	5.5
56	MP2B	My	011	5.5
57	MP2B	Mz	016	5.5
58	MP2C	Y	-23	.5
59	MP2C	My	.02	.5
60	MP2C	Mz	002	.5
00	WII ZU	11/2	.002	.0

: Maser Consulting

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
61	MP2C	Υ	-23	5.5
62	MP2C	My	.02	5.5
63	MP2C	Mz	002	5.5
64	MP3A	Υ	-43.55	2
65	MP3A	My	022	2
66	MP3A	Mz	0	2
67	MP3A	Υ	-43.55	4
68	MP3A	My	022	4
69	MP3A	Mz	0	4
70	MP3B	Υ	-43.55	2
71	MP3B	My	.007	2
72	MP3B	Mz	02	2
73	MP3B	Υ	-43.55	4
74	MP3B	My	.007	4
75	MP3B	Mz	02	4
76	MP3C	Υ	-43.55	2
77	MP3C	My	019	2
78	MP3C	Mz	.011	2
79	MP3C	Υ	-43.55	4
80	MP3C	My	019	4
81	MP3C	Mz	.011	4
82	M100	Υ	-32	1
83	M100	My	0	1
84	M100	Mz	0	1
85	MP1A	Υ	-74.7	2.25
86	MP1A	My	.037	2.25
87	MP1A	Mz	0	2.25
88	MP1B	Υ	-74.7	2.25
89	MP1B	My	013	2.25
90	MP1B	Mz	.035	2.25
91	MP1C	Υ	-74.7	2.25
92	MP1C	My	024	2.25
93	MP1C	Mz	029	2.25
94	MP3A	Υ	-70.3	2.25
95	MP3A	My	.035	2.25
96	MP3A	Mz	0	2.25
97	MP3B	Υ	-70.3	2.25
98	MP3B	My	012	2.25
99	MP3B	Mz	.033	2.25
100	MP3C	Υ	-70.3	2.25
101	MP3C	My	023	2.25
102	MP3C	Mz	027	2.25

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Υ	-37.038	2.25
2	MP2A	My	.015	2.25
3	MP2A	Mz	0	2.25
4	MP2B	Υ	-37.038	2.25
5	MP2B	My	005	2.25
6	MP2B	Mz	.015	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
7	MP2C	Υ	-37.038	2.25
8	MP2C	My	01	2.25
9	MP2C	Mz	012	2.25
10	MP1A	Υ	-58.706	.5
11	MP1A	My	029	.5
12	MP1A	Mz	0	.5
13	MP1A	Υ	-58.706	5.5
14	MP1A	My	029	5.5
15	MP1A	Mz	0	5.5
16	MP1B	Υ	-58.706	.5
17	MP1B	My	.01	.5
18	MP1B	Mz	028	.5
19	MP1B	Y	-58.706	5.5
20	MP1B	My	.01	5.5
21	MP1B	Mz	028	5.5
22	MP1C	Y	-58.706	.5
23	MP1C	My	.019	.5
24	MP1C	Mz	.022	.5
25	MP1C	Y	-58.706	5.5
26	MP1C	My	.019	5.5
27	MP1C	Mz	.022	5.5
28	MP2A	Y	-81.748	.5
29	MP2A		041	.5
30	MP2A	My	058	.5
		Mz Y		5.5
31	MP2A		-81.748	
32	MP2A	My	041	5.5
33	MP2A	Mz	058	5.5
34	MP2B	Y	-81.748	.5
35	MP2B	My	.068	.5
36	MP2B	Mz	019	.5
37	MP2B	Y	-81.748	5.5
38	MP2B	My	.068	5.5
39	MP2B	Mz	019	5.5
40	MP2C	Y	-81.748	.5
41	MP2C	My	018	.5
42	MP2C	Mz	.069	.5
43	MP2C	Y	-81.748	5.5
44	MP2C	My	018	5.5
45	MP2C	Mz	.069	5.5
46	MP2A	Y	-81.748	.5
47	MP2A	My	041	.5
48	MP2A	Mz	.058	.5
49	MP2A	Y	-81.748	5.5
50	MP2A	My	041	5.5
51	MP2A	Mz	.058	5.5
52	MP2B	Y	-81.748	.5
53	MP2B	My	04	.5
54	MP2B	Mz	058	.5
55	MP2B	Υ	-81.748	5.5
56	MP2B	My	04	5.5
57	MP2B	Mz	058	5.5
58	MP2C	Υ	-81.748	.5

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 2: Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
59	MP2C	My	.071	.5
60	MP2C	Mz	006	.5
61	MP2C	Υ	-81.748	5.5
62	MP2C	My	.071	5.5
63	MP2C	Mz	006	5.5
64	MP3A	Υ	-35.295	2
65	MP3A	My	018	2
66	MP3A	Mz	0	2
67	MP3A	Υ	-35.295	4
68	MP3A	My	018	4
69	MP3A	Mz	0	4
70	MP3B	Υ	-35.295	2
71	MP3B	My	.006	2
72	MP3B	Mz	017	2
73	MP3B	Υ	-35.295	4
74	MP3B	My	.006	4
75	MP3B	Mz	017	4
76	MP3C	Υ	-35.295	2
77	MP3C	My	015	2
78	MP3C	Mz	.009	2
79	MP3C	Υ	-35.295	4
80	MP3C	My	015	4
81	MP3C	Mz	.009	4
82	M100	Υ	-87.139	1
83	M100	My	0	1
84	M100	Mz	0	1
85	MP1A	Υ	-44.492	2.25
86	MP1A	My	.022	2.25
87	MP1A	Mz	0	2.25
88	MP1B	Υ	-44.492	2.25
89	MP1B	My	008	2.25
90	MP1B	Mz	.021	2.25
91	MP1C	Υ	-44.492	2.25
92	MP1C	My	014	2.25
93	MP1C	Mz	017	2.25
94	MP3A	Υ	-42.369	2.25
95	MP3A	My	.021	2.25
96	MP3A	Mz	0	2.25
97	MP3B	Υ	-42.369	2.25
98	MP3B	My	007	2.25
99	MP3B	Mz	.02	2.25
100	MP3C	Υ	-42.369	2.25
101	MP3C	My	014	2.25
102	MP3C	Mz	016	2.25

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	-77.022	2.25
3	MP2A	Mx	0	2.25
4	MP2B	X	0	2.25

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP2B	Z	-37.51	2.25
6	MP2B	Mx	015	2.25
7	MP2C	X	0	2.25
8	MP2C	Z	-50.764	2.25
9	MP2C	Mx	.016	2.25
10	MP1A	X	0	.5
11	MP1A	Z	-138.521	.5
12	MP1A	Mx	0	.5
13	MP1A	X	0	5.5
14	MP1A	Z	-138.521	5.5
15	MP1A	Mx	0	5.5
16	MP1B	X	0	.5
17	MP1B	Z	-123.051	.5
18	MP1B	Mx	.058	.5
19	MP1B	X	0	5.5
20	MP1B	Z	-123.051	5.5
21	MP1B	Mx	.058	5.5
22	MP1C	X	0	.5
23	MP1C	Z	-128.24	.5
24	MP1C	Mx	049	.5
25	MP1C	X	0	5.5
26	MP1C	Z	-128.24	5.5
27	MP1C	Mx	049	5.5
28	MP2A	X	0	.5
	MP2A	Z		.5
29			-193.93	
30	MP2A	Mx	.137	.5
31	MP2A	X Z	0	5.5
32	MP2A		-193.93	5.5
33	MP2A	Mx	.137	5.5
34	MP2B	X	0	.5
35	MP2B	Z	-149.999	.5
36	MP2B	Mx	.034	.5
37	MP2B	X	0	5.5
38	MP2B	Z	-149.999	5.5
39	MP2B	Mx	.034	5.5
40	MP2C	X	0	.5
41	MP2C	Z	-164.735	.5
42	MP2C	Mx	138	.5
43	MP2C	X	0	5.5
44	MP2C	Z	-164.735	5.5
45	MP2C	Mx	138	5.5
46	MP2A	X	0	.5
47	MP2A	Z	-193.93	.5
48	MP2A	Mx	137	.5
49	MP2A	X	0	5.5
50	MP2A	Z	-193.93	5.5
51	MP2A	Mx	137	5.5
52	MP2B	X	0	.5
53	MP2B	Z	-149.999	.5
54	MP2B	Mx	.107	.5
55	MP2B	X	0	5.5
56	MP2B	Z	-149.999	5.5

Company Designer Job Number Model Name : Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
57	MP2B	Mx	.107	5.5
58	MP2C	X	0	.5
59	MP2C	Z	-164.735	.5
60	MP2C	Mx	.012	.5
61	MP2C	X	0	5.5
62	MP2C	Z	-164.735	5.5
63	MP2C	Mx	.012	5.5
64	MP3A	X	0	2
65	MP3A	Z	-92.348	2
66	MP3A	Mx	0	2
67	MP3A	X	0	4
68	MP3A	Z	-92.348	4
69	MP3A	Mx	0	4
70	MP3B	X	0	2
71	MP3B	Z	-42.727	2
72	MP3B	Mx	.02	2
73	MP3B	X	0	4
74	MP3B	Z	-42.727	4
75	MP3B	Mx	.02	4
76	MP3C	X	0	2
77	MP3C	Z	-78.299	2
78	MP3C	Mx	02	2
79	MP3C	X	0	4
80	MP3C	Z	-78.299	4
81	MP3C	Mx	02	4
82	M100	X	0	1
83	M100	Z	-159.545	1
84	M100	Mx	0	1
85	MP1A	X	0	2.25
86	MP1A	Z	-73.485	2.25
87	MP1A	Mx	0	2.25
88	MP1B	X	0	2.25
89	MP1B	Z	-51.971	2.25
90	MP1B	Mx	024	2.25
91	MP1C	X	0	2.25
92	MP1C	Z	-59.188	2.25
93	MP1C	Mx	.023	2.25
94	MP3A	X	0	2.25
95	MP3A	Z	-73.485	2.25
96	MP3A	Mx	0	2.25
97	MP3B	X	0	2.25
98	MP3B	Z	-48.067	2.25
99	MP3B	Mx	023	2.25
100	MP3C	X	0	2.25
101	MP3C	Z	-56.593	2.25
102	MP3C	Mx	.022	2.25

Member Point Loads (BLC 4: Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	32.918	2.25
2	MP2A	Z	-57.015	2.25

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	MP2A	Mx	.014	2.25
4	MP2B	X	16.813	2.25
5	MP2B	Z	-29.12	2.25
6	MP2B	Mx	014	2.25
7	MP2C	X	35.894	2.25
8	MP2C	Z	-62.17	2.25
9	MP2C	Mx	.01	2.25
10	MP1A	X	67.071	.5
11	MP1A	Z	-116.17	.5
12	MP1A	Mx	034	.5
13	MP1A	X	67.071	5.5
14	MP1A	Z	-116.17	5.5
15	MP1A	Mx	034	5.5
16	MP1B	X	60.765	.5
17	MP1B	Z	-105.248	.5
18	MP1B	Mx	.06	.5
19	MP1B	X	60.765	5.5
20	MP1B	Z	-105.248	5.5
21	MP1B	Mx	.06	5.5
22	MP1C	X	68.236	.5
23	MP1C	Z	-118.188	.5
24	MP1C	Mx	023	.5
				5.5
25	MP1C	X Z	68.236	5.5
26	MP1C		-118.188	
27	MP1C	Mx	023	5.5
28	MP2A	X	90.746	.5
29	MP2A	Z	-157.177	.5 .5
30	MP2A	Mx	.066	
31	MP2A	X	90.746	5.5
32	MP2A	Z	-157.177	5.5
33	MP2A	Mx	.066	5.5
34	MP2B	X	72.84	.5
35	MP2B	Z	-126.162	.5
36	MP2B	Mx	.09	.5
37	MP2B	X	72.84	5.5
38	MP2B	Z	-126.162	5.5
39	MP2B	Mx	.09	5.5
40	MP2C	X	94.055	.5
41	MP2C	Z	-162.908	.5
42	MP2C	Mx	157	.5
43	MP2C	X	94.055	5.5
44	MP2C	Z	-162.908	5.5
45	MP2C	Mx	157	5.5
46	MP2A	X	90.746	.5
47	MP2A	Z	-157.177	.5
48	MP2A	Mx	157	.5
49	MP2A	X	90.746	5.5
50	MP2A	Z	-157.177	5.5
51	MP2A	Mx	157	5.5
52	MP2B	X	72.84	.5
53	MP2B	Z	-126.162	.5
54	MP2B	Mx	.054	.5

: Maser Consulting

SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
55	MP2B	X	72.84	5.5
56	MP2B	Z	-126.162	5.5
57	MP2B	Mx	.054	5.5
58	MP2C	X	94.055	.5
59	MP2C	Z	-162.908	.5
60	MP2C	Mx	.093	.5
61	MP2C	X	94.055	5.5
62	MP2C	Z	-162.908	5.5
63	MP2C	Mx	.093	5.5
64	MP3A	X	39.15	2
65	MP3A	Z	-67.809	2
66	MP3A	Mx	02	2
67	MP3A	X	39.15	4
68	MP3A	Z	-67.809	4
69	MP3A	Mx	02	4
70	MP3B	X	18.924	2
71	MP3B	Z	-32.778	2
72	MP3B	Mx	.019	2
73	MP3B	X	18.924	4
74	MP3B	Z	-32.778	4
75	MP3B	Mx	.019	4
76	MP3C	X	25.101	2
77	MP3C	Z	-43.476	2
78	MP3C	Mx	022	2
79	MP3C	X	25.101	4
80	MP3C	Z	-43.476	4
81	MP3C	Mx	022	4
82	M100	X	75.045	1
83	M100	Z	-129.981	1
84	M100	Mx	0	1
85	MP1A	X	33.697	2.25
86	MP1A	Z	-58.365	2.25
87	MP1A	Mx	.017	2.25
88	MP1B	X	24.928	2.25
89	MP1B	Z	-43.176	2.25
90	MP1B	Mx	025	2.25
91	MP1C	X	35.318	2.25
92	MP1C	Z	-61.172	2.25
93	MP1C	Mx	.012	2.25
94	MP3A	X	33.144	2.25
95	MP3A	Z	-57.408	2.25
96	MP3A	Mx	.017	2.25
97	MP3B	X	22.784	2.25
98	MP3B	Z	-39.463	2.25
99	MP3B	Mx	022	2.25
100	MP3C	X	35.059	2.25
101	MP3C	Z	-60.724	2.25
102	MP3C	Mx	.012	2.25

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
--	--------------	-----------	--------------------	----------------

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	37.639	2.25
2	MP2A	Z	-21.731	2.25
3	MP2A	Mx	.016	2.25
4	MP2B	X	43.963	2.25
5	MP2B	Z	-25.382	2.25
6	MP2B	Mx	016	2.25
7	MP2C	X	65.534	2.25
8	MP2C	Z	-37.836	2.25
9	MP2C	Mx	005	2.25
10	MP1A	X	108.584	.5
11	MP1A	Z	-62.691	.5
12	MP1A	Mx	054	.5
13	MP1A	X	108.584	5.5
14	MP1A	Z	-62.691	5.5
15	MP1A	Mx	054	5.5
16	MP1B	X	111.059	.5
17	MP1B	Z	-64.12	.5
18	MP1B	Mx	.049	.5
19	MP1B	X	111.059	5.5
20	MP1B	Z	-64.12	5.5
21	MP1B	Mx	.049	5.5
22	MP1C	X	119.505	.5
23	MP1C	Z	-68.997	.5
24	MP1C	Mx	.012	.5
25	MP1C	X	119.505	5.5
26	MP1C	Z	-68.997	5.5
27	MP1C	Mx	.012	5.5
28	MP2A	X	135.634	.5
29	MP2A	Z	-78.308	.5
30	MP2A	Mx	012	.5
31	MP2A	X	135.634	5.5
32	MP2A	Z	-78.308	5.5
33	MP2A	Mx	012	5.5
34	MP2B	X	142.665	.5
35	MP2B	Z	-82.368	.5
36	MP2B	Mx	.138	.5
37	MP2B	X	142.665	5.5
38	MP2B	Z	-82.368	5.5
39	MP2B	Mx	.138	5.5
40	MP2C	X	166.649	.5
41	MP2C	Z	-96.215	.5
42	MP2C	Mx	118	.5
43	MP2C	X	166.649	5.5
44	MP2C	Z	-96.215	5.5
45	MP2C	Mx	-90.215	5.5
46	MP2A	X	135.634	.5
47	MP2A	Z	-78.308	.5
48	MP2A	Mx	123	.5
49	MP2A		135.634	5.5
50	MP2A	X Z	-78.308	5.5
51	MP2A	Mx	123	5.5
52	MP2B	X	142.665	.5
52	IVIFZD	^	142.000	.0

: Maser Consulting

SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-82.368	.5
54	MP2B	Mx	012	.5
55	MP2B	X	142.665	5.5
56	MP2B	Z	-82.368	5.5
57	MP2B	Mx	012	5.5
58	MP2C	X	166.649	.5
59	MP2C	Z	-96.215	.5
60	MP2C	Mx	.151	.5
61	MP2C	X	166.649	5.5
62	MP2C	Z	-96.215	5.5
63	MP2C	Mx	.151	5.5
64	MP3A	X	43.476	2
65	MP3A	Z	-25.101	2
66	MP3A	Mx	022	2
67	MP3A	X	43.476	4
68	MP3A	Z	-25.101	4
69	MP3A	Mx	022	4
70	MP3B	X	51.417	2
71	MP3B	Z	-29.686	2
72	MP3B	Mx	.023	2
73	MP3B	X	51.417	4
74	MP3B	Z	-29.686	4
75	MP3B	Mx	.023	4
76	MP3C	X	31.31	2
77	MP3C	Z	-18.077	2
78	MP3C	Mx	018	2
79	MP3C	X	31.31	4
80	MP3C	Z	-18.077	4
81	MP3C	Mx	018	4
82	M100	X	113.603	1
83	M100	Z	-65.589	1
84	M100	Mx	0	1
85	MP1A	X	47.815	2.25
86	MP1A	Z	-27.606	2.25
87	MP1A	Mx	.024	2.25
88	MP1B	X	51.258	2.25
89	MP1B	Z	-29.594	2.25
90	MP1B	Mx	023	2.25
91	MP1C	X	63.004	2.25
92	MP1C	Z	-36.375	2.25
93	MP1C	Mx	006	2.25
94	MP3A	X	44.944	2.25
95	MP3A	Z	-25.948	2.25
96	MP3A	Mx	.022	2.25
97	MP3B	X	49.011	2.25
98	MP3B	Z	-28.297	2.25
99	MP3B	Mx	022	2.25
100	MP3C	X	62.888	2.25
101	MP3C	Z	-36.309	2.25
102	MP3C	Mx	006	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	32.276	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	.013	2.25
4	MP2B	X	71.787	2.25
5	MP2B	Z	0	2.25
6	MP2B	Mx	01	2.25
7	MP2C	X	58.534	2.25
8	MP2C	Z	0	2.25
9	MP2C	Mx	016	2.25
10	MP1A	X	121.001	.5
11	MP1A	Z	0	.5
12	MP1A	Mx	061	.5
13	MP1A	X	121.001	5.5
14	MP1A	Z	0	5.5
15	MP1A	Mx	061	5.5
16	MP1B	X	136.472	.5
17	MP1B	Z	0	.5
18	MP1B	Mx	.023	.5
19	MP1B	X	136.472	5.5
20	MP1B	Z	0	5.5
21	MP1B	Mx	.023	5.5
22	MP1C	X	131.283	.5
23	MP1C	Z	0	.5
	MP1C		.042	.5
24		Mx		
25	MP1C	X	131.283	5.5
26	MP1C	Z	0	5.5
27	MP1C	Mx	.042	5.5
28	MP2A	X Z	144.179	.5
29	MP2A		0	.5 .5
30	MP2A	Mx	072	
31	MP2A	X Z	144.179	5.5
32	MP2A		0	5.5
33	MP2A	Mx	072	5.5
34	MP2B	X	188.11	.5
35	MP2B	Z	0	.5
36	MP2B	Mx	.157	.5
37	MP2B	X	188.11	5.5
38	MP2B	Z	0	5.5
39	MP2B	Mx	.157	5.5
40	MP2C	X	173.374	.5
41	MP2C	Z	0	.5
42	MP2C	Mx	038	.5
43	MP2C	X	173.374	5.5
44	MP2C	Z	0	5.5
45	MP2C	Mx	038	5.5
46	MP2A	X	144.179	.5
47	MP2A	Z	0	.5
48	MP2A	Mx	072	.5
49	MP2A	X Z	144.179	5.5
50	MP2A		0	5.5
51	MP2A	Mx	072	5.5
52	MP2B	X	188.11	.5

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	0	.5
54	MP2B	Mx	093	.5
55	MP2B	X	188.11	5.5
56	MP2B	Z	0	5.5
57	MP2B	Mx	093	5.5
58	MP2C	X	173.374	.5
59	MP2C	Z	0	.5
60	MP2C	Mx	.15	.5
61	MP2C	X	173.374	5.5
62	MP2C	Z	0	5.5
63	MP2C	Mx	.15	5.5
64	MP3A	X	36.154	2
65	MP3A	Z	0	2
66	MP3A	Mx	018	2
67	MP3A	X	36.154	4
68	MP3A	Z	0	4
69	MP3A	Mx	018	4
70	MP3B	X	85.774	2
71	MP3B	Z	0	2
72	MP3B	Mx	.015	2
73	MP3B	X	85.774	4
74	MP3B	Z	0	4
75	MP3B	Mx	.015	4
76	MP3C	X	50.202	2
77	MP3C	Z	0	2
78	MP3C	Mx	022	2
79	MP3C	X	50.202	4
80	MP3C	Z	0	4
81	MP3C	Mx	022	4
82	M100	X	121.722	1
83	M100	Z	0	1
84	M100	Mx	0	1
85	MP1A	X	49.121	2.25
86	MP1A	Z	0	2.25
87	MP1A	Mx	.025	2.25
88	MP1B	X	70.635	2.25
89	MP1B	Z	0	2.25
90	MP1B	Mx	012	2.25
91	MP1C	X	63.418	2.25
92	MP1C	Z	0	2.25
93	MP1C	Mx	02	2.25
94	MP3A	X	44.7	2.25
95	MP3A	Z	0	2.25
96	MP3A	Mx	.022	2.25
97	MP3B	X	70.118	2.25
98	MP3B	Z	0	2.25
99	MP3B	Mx	012	2.25
100	MP3C	X	61.592	2.25
101	MP3C	Z	0	2.25
102	MP3C	Mx	02	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
1	MP2A	X	37.639	2.25
2	MP2A	Z	21.731	2.25
3	MP2A	Mx	.016	2.25
4	MP2B	X	65.534	2.25
5	MP2B	Z	37.836	2.25
6	MP2B	Mx	.005	2.25
7	MP2C	X	32.485	2.25
8	MP2C	Z	18.755	2.25
9	MP2C	Mx	015	2.25
10	MP1A	X	108.584	.5
11	MP1A	Z	62.691	.5
12	MP1A	Mx	054	.5
13	MP1A	X	108.584	5.5
14	MP1A	Z	62.691	5.5
15	MP1A	Mx	054	5.5
16	MP1B	X	119.505	.5
17	MP1B	Z	68.997	.5
18	MP1B	Mx	012	.5
19	MP1B	X	119.505	5.5
20	MP1B	Z	68.997	5.5
21	MP1B	Mx	012	5.5
22	MP1C	X	106.565	.5
23	MP1C	Z	61.525	.5
24	MP1C	Mx	.058	.5
25	MP1C	X	106.565	5.5
26	MP1C	Z	61.525	5.5
27	MP1C	Mx	.058	5.5
28	MP2A	X	135.634	.5
29	MP2A	Z	78.308	.5
30	MP2A	Mx	123	.5
31	MP2A	X	135.634	5.5
32	MP2A	Z	78.308	5.5
33	MP2A	Mx	123	5.5
34	MP2B	X	166.649	.5
35	MP2B	Z	96.215	.5
36	MP2B	Mx	.118	.5
37	MP2B	Χ	166.649	5.5
38	MP2B	Z	96.215	5.5
39	MP2B	Mx	.118	5.5
40	MP2C	X	129.903	.5
41	MP2C	Z	74.999	.5
42	MP2C	Mx	.034	.5
43	MP2C	X	129.903	5.5
44	MP2C	Z	74.999	5.5
45	MP2C	Mx	.034	5.5
46	MP2A	X	135.634	.5
47	MP2A	Z	78.308	.5
48	MP2A	Mx	012	.5
49	MP2A	X	135.634	5.5
50	MP2A	Z	78.308	5.5
51	MP2A	Mx	012	5.5
52	MP2B	X	166.649	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	96.215	.5
54	MP2B	Mx	151	.5
55	MP2B	X	166.649	5.5
56	MP2B	Z	96.215	5.5
57	MP2B	Mx	151	5.5
58	MP2C	X	129.903	.5
59	MP2C	Z	74.999	.5
60	MP2C	Mx	.107	.5
61	MP2C	X	129.903	5.5
62	MP2C	Z	74.999	5.5
63	MP2C	Mx	.107	5.5
64	MP3A	X	43.476	2
65	MP3A	Z	25.101	2
66	MP3A	Mx	022	2
67	MP3A	X	43.476	4
68	MP3A	Z	25.101	4
69	MP3A	Mx	022	4
70	MP3B	X	78.508	2
71	MP3B	Z	45.327	2
72	MP3B	Mx	008	2
73	MP3B	X	78.508	4
74	MP3B	Z	45.327	4
75	MP3B	Mx	008	4
76	MP3C	X	67.809	2
77	MP3C	Z	39.15	2
78	MP3C	Mx	02	2
79	MP3C	X	67.809	4
80	MP3C	Z	39.15	4
81	MP3C	Mx	02	4
82	M100	X	113.603	1
83	M100	Z	65.589	1
84	M100	Mx	0	1
85	MP1A	X	47.815	2.25
86	MP1A	Z	27.606	2.25
87	MP1A	Mx	.024	2.25
88	MP1B	X	63.004	2.25
89	MP1B	Z	36.375	2.25
90	MP1B	Mx	.006	2.25
91	MP1C	X	45.008	2.25
92	MP1C	Z	25.986	2.25
93	MP1C	Mx	024	2.25
94	MP3A	X	44.944	2.25
95	MP3A	Z	25.948	2.25
96	MP3A	Mx	.022	2.25
97	MP3B	X	62.888	2.25
98	MP3B	Z	36.309	2.25
99	MP3B	Mx	.006	2.25
100	MP3C	X	41.628	2.25
101	MP3C	Z	24.034	2.25
102	MP3C	Mx	023	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	32.918	2.25
2	MP2A	Z	57.015	2.25
3	MP2A	Mx	.014	2.25
4	MP2B	X	29.267	2.25
5	MP2B	Z	50.692	2.25
6	MP2B	Mx	.016	2.25
7	MP2C	X	16.813	2.25
8	MP2C	Z	29.12	2.25
9	MP2C	Mx	014	2.25
10	MP1A	X	67.071	.5
11	MP1A	Z	116.17	.5
12	MP1A	Mx	034	.5
13	MP1A	X	67.071	5.5
14	MP1A	Z	116.17	5.5
15	MP1A	Mx	034	5.5
16	MP1B	X	65.641	.5
17	MP1B	Z	113.694	.5
18	MP1B	Mx	042	.5
19	MP1B	X	65.641	5.5
20	MP1B	Z	113.694	5.5
21	MP1B	Mx	042	5.5
22	MP1C	X	60.765	.5
23	MP1C	Z	105.248	.5
24	MP1C	Mx	.06	.5
25	MP1C	X	60.765	5.5
26	MP1C	Z	105.248	5.5
27	MP1C	Mx	.06	5.5
28	MP2A	X	90.746	.5
29	MP2A	Z	157.177	.5
30	MP2A	Mx	157	.5
31	MP2A	X	90.746	5.5
32	MP2A	Z	157.177	5.5
33	MP2A	Mx	157	5.5
34	MP2B	X	86.687	.5
35	MP2B	Z	150.146	.5
36	MP2B	Mx	.038	.5
37	MP2B	X	86.687	5.5
38	MP2B	Z	150.146	5.5
39	MP2B	Mx	.038	5.5
40	MP2C	X	72.84	.5
41	MP2C	Z	126.162	.5
42	MP2C	Mx	.09	.5
43	MP2C	X	72.84	5.5
44	MP2C	Z	126.162	5.5
45	MP2C	Mx	.09	5.5
46	MP2A	X	90.746	.5
47	MP2A	Z	157.177	.5
48	MP2A	Mx	.066	.5
49	MP2A	X	90.746	5.5
50	MP2A	Z	157.177	5.5
51	MP2A	Mx	.066	5.5
52	MP2B	X	86.687	.5
	25		00.007	.,

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	150.146	.5
54	MP2B	Mx	15	.5
55	MP2B	X	86.687	5.5
56	MP2B	Z	150.146	5.5
57	MP2B	Mx	15	5.5
58	MP2C	X	72.84	.5
59	MP2C	Z	126.162	.5
60	MP2C	Mx	.054	.5
61	MP2C	X	72.84	5.5
62	MP2C	Z	126.162	5.5
63	MP2C	Mx	.054	5.5
64	MP3A	X	39.15	2
65	MP3A	Z	67.809	2
66	MP3A	Mx	02	2
67	MP3A	X	39.15	4
68	MP3A	Z	67.809	4
69	MP3A	Mx	02	4
70	MP3B	X	34.565	2
71	MP3B	Z	59.868	2
72	MP3B	Mx	022	2
73	MP3B	X	34.565	4
74	MP3B	Z	59.868	4
75	MP3B	Mx	022	4
76	MP3C	X	46.174	2
77	MP3C	Z	79.975	2
78	MP3C	Mx	0	2
79	MP3C	X	46.174	4
80	MP3C	Z	79.975	4
81	MP3C	Mx	0	4
82	M100	X	75.045	1
83	M100	Z	129.981	1
84	M100	Mx	0	1
85	MP1A	X	33.697	2.25
86	MP1A	Z	58.365	2.25
87	MP1A	Mx	.017	2.25
88	MP1B	X	31.709	2.25
89	MP1B	Z	54.922	2.25
90	MP1B	Mx	.02	2.25
91	MP1C	X	24.928	2.25
92	MP1C	Z	43.176	2.25
93	MP1C	Mx	025	2.25
94	MP3A	X	33.144	2.25
95	MP3A	Z	57.408	2.25
96	MP3A	Mx	.017	2.25
97	MP3B	X	30.796	2.25
98	MP3B	Z	53.34	2.25
99	MP3B	Mx	.02	2.25
100	MP3C	X	22.784	2.25
101	MP3C	Z	39.463	2.25
102	MP3C	Mx	022	2.25
102	IVII OO	IVIX	.022	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	77.022	2.25
3	MP2A	Mx	0	2.25
4	MP2B	X	0	2.25
5	MP2B	Z	37.51	2.25
6	MP2B	Mx	.015	2.25
7	MP2C	X	0	2.25
8	MP2C	Z	50.764	2.25
9	MP2C	Mx	016	2.25
10	MP1A	X	0	.5
11	MP1A	Z	138.521	.5
12	MP1A	Mx	0	.5
13	MP1A	X	0	5.5
14	MP1A	Z	138.521	5.5
15	MP1A	Mx	0	5.5
16	MP1B	X	0	.5
17	MP1B	Z	123.051	.5
18	MP1B	Mx	058	.5
19	MP1B	X	0	5.5
20	MP1B	Z	123.051	5.5
21	MP1B	Mx	058	5.5
22	MP1C	X	0	.5
23	MP1C	Z	128.24	.5
24	MP1C	Mx	.049	.5
25	MP1C	X	0	5.5
26	MP1C	Z	128.24	5.5
27	MP1C	Mx	.049	5.5
28	MP2A	X	0	.5
29	MP2A	Z	193.93	.5
30	MP2A	Mx	137	.5
31	MP2A	X	0	5.5
32	MP2A	Z	193.93	5.5
33	MP2A	Mx	137	5.5
34	MP2B	X	0	.5
35	MP2B	Z	149.999	.5
36	MP2B	Mx	034	.5
37	MP2B	X	0	5.5
38	MP2B	Z	149.999	5.5
39	MP2B	Mx	034	5.5
40	MP2C	X	0	.5
41	MP2C	Z	164.735	.5
42	MP2C	Mx	.138	.5
43	MP2C	X	0	5.5
44	MP2C	Z	164.735	5.5
45	MP2C	Mx	.138	5.5
46	MP2A	X	0	.5
47	MP2A	Z	193.93	.5
48	MP2A	Mx	.137	.5
49	MP2A	X	0	5.5
50	MP2A	Z	193.93	5.5
51	MP2A	Mx	.137	5.5
52	MP2B	X	0	.5
UZ	IVII ZU	X	U	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	149.999	.5
54	MP2B	Mx	107	.5
55	MP2B	X	0	5.5
56	MP2B	Z	149.999	5.5
57	MP2B	Mx	107	5.5
58	MP2C	X	0	.5
59	MP2C	Z	164.735	.5
60	MP2C	Mx	012	.5
61	MP2C	X	0	5.5
62	MP2C	Z	164.735	5.5
63	MP2C	Mx	012	5.5
64	MP3A	X	0	2
65	MP3A	Z	92.348	2
66	MP3A	Mx	0	2
67	MP3A	X	0	4
68	MP3A	Z	92.348	4
69	MP3A	Mx	0	4
70	MP3B	X	0	2
71	MP3B	Z	42.727	2
72	MP3B	Mx	02	2
73	MP3B	X	0	4
74	MP3B	Z	42.727	4
75	MP3B	Mx	02	4
76	MP3C	X	0	2
77	MP3C	Z	78.299	2
78	MP3C	Mx	.02	2
79	MP3C	X	0	4
80	MP3C	Z	78.299	4
81	MP3C	Mx	.02	4
82	M100	X	0	1
83	M100	Z	159.545	1
84	M100	Mx	0	1
85	MP1A	X	0	2.25
86	MP1A	Z	73.485	2.25
87	MP1A	Mx	0	2.25
88	MP1B	X	0	2.25
89	MP1B	Z	51.971	2.25
90	MP1B	Mx	.024	2.25
91	MP1C	X	0	2.25
92	MP1C	Z	59.188	2.25
93	MP1C	Mx	023	2.25
94	MP3A	X	0	2.25
95	MP3A	Z	73.485	2.25
96	MP3A	Mx	0	2.25
97	MP3B	X	0	2.25
98	MP3B	Z	48.067	2.25
99	MP3B	Mx	.023	2.25
100	MP3C	X	0	2.25
101	MP3C	Z	56.593	2.25
102	MP3C	Mx	022	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-32.918	2.25
2	MP2A	Z	57.015	2.25
3	MP2A	Mx	014	2.25
4	MP2B	X	-16.813	2.25
5	MP2B	Z	29.12	2.25
6	MP2B	Mx	.014	2.25
7	MP2C	X	-35.894	2.25
8	MP2C	Z	62.17	2.25
9	MP2C	Mx	01	2.25
10	MP1A	X	-67.071	.5
11	MP1A	Z	116.17	.5
12	MP1A	Mx	.034	.5
13	MP1A	X	-67.071	5.5
14	MP1A	Z	116.17	5.5
15	MP1A	Mx	.034	5.5
16	MP1B	X	-60.765	.5
17	MP1B	Z	105.248	.5
18	MP1B	Mx	06	.5
19	MP1B	X	-60.765	5.5
20	MP1B	Z	105.248	5.5
21	MP1B	Mx	06	5.5
22	MP1C	X	-68.236	.5
23	MP1C	Z	118.188	.5
24	MP1C	Mx	.023	.5
25	MP1C	X	-68.236	5.5
26	MP1C	Z	118.188	5.5
27	MP1C	Mx	.023	5.5
28	MP2A	X	-90.746	.5
29	MP2A	Z	157.177	.5
30	MP2A	Mx	066	.5
31	MP2A	X	-90.746	5.5
32	MP2A	Z	157.177	5.5
33	MP2A	Mx	066	5.5
34	MP2B	X	-72.84	.5
35	MP2B	Z	126.162	.5
36	MP2B	Mx	09	.5
37	MP2B	X	-72.84	5.5
38	MP2B	Z	126.162	5.5
39	MP2B	Mx	09	5.5
40	MP2C	X	-94.055	.5
41	MP2C	Z	162.908	.5
42	MP2C	Mx	.157	.5
43	MP2C	X	-94.055	5.5
44	MP2C	Z	162.908	5.5
45	MP2C	Mx	.157	5.5
46	MP2A	X	-90.746	.5
47	MP2A	Z	157.177	.5
48	MP2A	Mx	.157	.5
49	MP2A		-90.746	5.5
50	MP2A	X Z	157.177	5.5
51	MP2A	Mx	.157	5.5
52	MP2B	X	-72.84	.5
UZ	IVII ZD		-12.04	.U

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	126.162	.5
54	MP2B	Mx	054	.5
55	MP2B	X	-72.84	5.5
56	MP2B	Z	126.162	5.5
57	MP2B	Mx	054	5.5
58	MP2C	X	-94.055	.5
59	MP2C	Z	162.908	.5
60	MP2C	Mx	093	.5
61	MP2C	X	-94.055	5.5
62	MP2C	Z	162.908	5.5
63	MP2C	Mx	093	5.5
64	MP3A	X	-39.15	2
65	MP3A	Z	67.809	2
66	MP3A	Mx	.02	2
67	MP3A	X	-39.15	4
68	MP3A	Z	67.809	4
69	MP3A	Mx	.02	4
70	MP3B	X	-18.924	2
71	MP3B	Z	32.778	2
72	MP3B	Mx	019	2
73	MP3B	X	-18.924	4
74	MP3B	Z	32.778	4
75	MP3B	Mx	019	4
76	MP3C	X	-25.101	2
77	MP3C	Z	43.476	2
78	MP3C	Mx	.022	2
79	MP3C	X	-25.101	4
80	MP3C	Z	43.476	4
81	MP3C	Mx	.022	4
82	M100	X	-75.045	1
83	M100	Z	129.981	1
84	M100	Mx	0	1
85	MP1A	X	-33.697	2.25
86	MP1A	Z	58.365	2.25
87	MP1A	Mx	017	2.25
88	MP1B	X	-24.928	2.25
89	MP1B	Z	43.176	2.25
90	MP1B	Mx	.025	2.25
91	MP1C	X	-35.318	2.25
92	MP1C	Z	61.172	2.25
93	MP1C	Mx	012	2.25
94	MP3A	X	-33.144	2.25
95	MP3A	Z	57.408	2.25
96	MP3A	Mx	017	2.25
97	MP3B	X	-22.784	2.25
98	MP3B	Z	39.463	2.25
99	MP3B	Mx	.022	2.25
100	MP3C	X	-35.059	2.25
101	MP3C	Z	60.724	2.25
102	MP3C	Mx	012	2.25
. •	• •			

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-37.639	2.25
2	MP2A	Z	21.731	2.25
3	MP2A	Mx	016	2.25
4	MP2B	X	-43.963	2.25
5	MP2B	Z	25.382	2.25
6	MP2B	Mx	.016	2.25
7	MP2C	X	-65.534	2.25
8	MP2C	Z	37.836	2.25
9	MP2C	Mx	.005	2.25
10	MP1A	X	-108.584	.5
11	MP1A	Z	62.691	.5
12	MP1A	Mx	.054	.5
13	MP1A	X	-108.584	5.5
14	MP1A	Z	62.691	5.5
15	MP1A	Mx	.054	5.5
16	MP1B	X	-111.059	.5
17	MP1B	Z	64.12	.5
18	MP1B	Mx	049	.5
19	MP1B	X	-111.059	5.5
20	MP1B	Z	64.12	5.5
21	MP1B	Mx	049	5.5
22	MP1C	X	-119.505	.5
23	MP1C	Z	68.997	.5
24	MP1C	Mx	012	.5
				5.5
25	MP1C	X Z	-119.505	
26	MP1C		68.997	5.5
27	MP1C	Mx	012	5.5
28	MP2A	X Z	-135.634	.5
29	MP2A		78.308	.5
30	MP2A	Mx	.012	.5
31	MP2A	X Z	-135.634	5.5
32	MP2A		78.308	5.5
33	MP2A	Mx	.012	5.5
34	MP2B	X	-142.665	.5
35	MP2B	Z	82.368	.5
36	MP2B	Mx	138	.5
37	MP2B	X	-142.665	5.5
38	MP2B	Z	82.368	5.5
39	MP2B	Mx	138	5.5
40	MP2C	X	-166.649	.5
41	MP2C	Z	96.215	.5
42	MP2C	Mx	.118	.5
43	MP2C	X	-166.649	5.5
44	MP2C	Z	96.215	5.5
45	MP2C	Mx	.118	5.5
46	MP2A	X	-135.634	.5
47	MP2A	Z	78.308	.5
48	MP2A	Mx	.123	.5
49	MP2A	X	-135.634	5.5
50	MP2A	Z	78.308	5.5
51	MP2A	Mx	.123	5.5
52	MP2B	X	-142.665	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 11: Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	82.368	.5
54	MP2B	Mx	.012	.5
55	MP2B	X	-142.665	5.5
56	MP2B	Z	82.368	5.5
57	MP2B	Mx	.012	5.5
58	MP2C	X	-166.649	.5
59	MP2C	Z	96.215	.5
60	MP2C	Mx	151	.5
61	MP2C	X	-166.649	5.5
62	MP2C	Z	96.215	5.5
63	MP2C	Mx	151	5.5
64	MP3A	X	-43.476	2
65	MP3A	Z	25.101	2
66	MP3A	Mx	.022	2
67	MP3A	X	-43.476	4
68	MP3A	Z	25.101	4
69	MP3A	Mx	.022	4
70	MP3B	X	-51.417	2
71	MP3B	Z	29.686	2
72	MP3B	Mx	023	2
73	MP3B	X	-51.417	4
74	MP3B	Z	29.686	4
75	MP3B	Mx	023	4
76	MP3C	X	-31.31	2
77	MP3C	Z	18.077	2
78	MP3C	Mx	.018	2
79	MP3C	X	-31.31	4
80	MP3C	Z	18.077	4
81	MP3C	Mx	.018	4
82	M100	X	-113.603	1
83	M100	Z	65.589	1
84	M100	Mx	0	1
85	MP1A	X	-47.815	2.25
86	MP1A	Z	27.606	2.25
87	MP1A	Mx	024	2.25
88	MP1B	X	-51.258	2.25
89	MP1B	Z	29.594	2.25
90	MP1B	Mx	.023	2.25
91	MP1C	X	-63.004	2.25
92	MP1C	Z	36.375	2.25
93	MP1C	Mx	.006	2.25
94	MP3A	X	-44.944	2.25
95	MP3A	Z	25.948	2.25
96	MP3A	Mx	022	2.25
97	MP3B	X	-49.011	2.25
98	MP3B	Z	28.297	2.25
99	MP3B	Mx	.022	2.25
100	MP3C	X	-62.888	2.25
101	MP3C	Z	36.309	2.25
102	MP3C	Mx	.006	2.25
102	IVIF3U	IVIX	.000	2.20

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-32.276	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	013	2.25
4	MP2B	X	-71.787	2.25
5	MP2B	Z	0	2.25
6	MP2B	Mx	.01	2.25
7	MP2C	X	-58.534	2.25
8	MP2C	Z	0	2.25
9	MP2C	Mx	.016	2.25
10	MP1A	X	-121.001	.5
11	MP1A	Z	0	.5
12	MP1A	Mx	.061	.5
13	MP1A	X	-121.001	5.5
14	MP1A	Z	0	5.5
15	MP1A	Mx	.061	5.5
16	MP1B	X	-136.472	.5
17	MP1B	Z	0	.5
18	MP1B	Mx	023	.5
19	MP1B	X	-136.472	5.5
20	MP1B	Z	0	5.5
21	MP1B	Mx	023	5.5
22	MP1C	X	-131.283	.5
23	MP1C	Z	0	.5
24	MP1C	Mx	042	.5
25	MP1C	X	-131.283	5.5
26	MP1C	Z	0	5.5
27	MP1C	Mx	042	5.5
28	MP2A	X	-144.179	.5
29	MP2A	Z	0	.5
30	MP2A	Mx	.072	.5
31	MP2A	X	-144.179	5.5
32	MP2A	Z	0	5.5
33	MP2A	Mx	.072	5.5
34	MP2B	X	-188.11	.5
35	MP2B	Z	0	.5
36	MP2B	Mx	157	.5
37	MP2B	X	-188.11	5.5
38	MP2B	Z	0	5.5
39	MP2B	Mx	157	5.5
40	MP2C	X	-173.374	.5
41	MP2C	Z	0	.5
42	MP2C	Mx	.038	.5
43	MP2C	X	-173.374	5.5
44	MP2C	Z	0	5.5
45	MP2C	Mx	.038	5.5
46	MP2A	X	-144.179	.5
47	MP2A	^	0	.5
48	MP2A	Mx	.072	.5 .5
49	MP2A MP2A	X	-144.179	5.5
50	MP2A MP2A	^ 	-144.179	5.5
51	MP2A MP2A	Mx	.072	5.5
			-188.11	5.5 .5
52	MP2B	X	-100.11	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 12: Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	0	.5
54	MP2B	Mx	.093	.5
55	MP2B	X	-188.11	5.5
56	MP2B	Z	0	5.5
57	MP2B	Mx	.093	5.5
58	MP2C	X	-173.374	.5
59	MP2C	Z	0	.5
60	MP2C	Mx	15	.5
61	MP2C	X	-173.374	5.5
62	MP2C	Z	0	5.5
63	MP2C	Mx	15	5.5
64	MP3A	X	-36.154	2
65	MP3A	Z	0	2
66	MP3A	Mx	.018	2
67	MP3A	X	-36.154	4
68	MP3A	Z	0	4
69	MP3A	Mx	.018	4
70	MP3B	X	-85.774	2
71	MP3B	Z	0	2
72	MP3B	Mx	015	2
73	MP3B	X	-85.774	4
74	MP3B	Z	0	4
75	MP3B	Mx	015	4
76	MP3C	X	-50.202	2
77	MP3C	Z	0	2
78	MP3C	Mx	.022	2
79	MP3C	X	-50.202	4
80	MP3C	Z	0	4
81	MP3C	Mx	.022	4
82	M100	X	-121.722	1
83	M100	Z	0	1
84	M100	Mx	0	1
85	MP1A	X	-49.121	2.25
86	MP1A	Z	0	2.25
87	MP1A	Mx	025	2.25
88	MP1B	X	-70.635	2.25
89	MP1B	Z	0	2.25
90	MP1B	Mx	.012	2.25
91	MP1C	X	-63.418	2.25
92	MP1C	Z	0	2.25
93	MP1C	Mx	.02	2.25
94	MP3A	X	-44.7	2.25
95	MP3A	Z	0	2.25
96	MP3A	Mx	022	2.25
97	MP3B	X	-70.118	2.25
98	MP3B	Z	0	2.25
99	MP3B	Mx	.012	2.25
100	MP3C	X	-61.592	2.25
101	MP3C	Z	0	2.25
102	MP3C	Mx	.02	2.25
102	IVII JO	IVIA	.02	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-37.639	2.25
2	MP2A	Z	-21.731	2.25
3	MP2A	Mx	016	2.25
4	MP2B	X	-65.534	2.25
5	MP2B	Z	-37.836	2.25
6	MP2B	Mx	005	2.25
7	MP2C	X	-32.485	2.25
8	MP2C	Z	-18.755	2.25
9	MP2C	Mx	.015	2.25
10	MP1A	X	-108.584	.5
11	MP1A	Z	-62.691	.5
12	MP1A	Mx	.054	.5
13	MP1A	X	-108.584	5.5
14	MP1A	Z	-62.691	5.5
15	MP1A	Mx	.054	5.5
16	MP1B	X	-119.505	.5
17	MP1B	Z	-68.997	.5
18	MP1B	Mx	.012	.5
19	MP1B	X	-119.505	5.5
20	MP1B	Z	-68.997	5.5
21	MP1B	Mx	.012	5.5
22	MP1C	X	-106.565	.5
23	MP1C	Z	-61.525	.5
24	MP1C	Mx	058	.5
25	MP1C	X	-106.565	5.5
26	MP1C	Z	-61.525	5.5
27	MP1C	Mx	058	5.5
28	MP2A	X	-135.634	.5
29	MP2A	Z	-78.308	.5
30	MP2A	Mx	.123	.5
31	MP2A	X	-135.634	5.5
32	MP2A	Z	-78.308	5.5
33	MP2A	Mx	.123	5.5
34	MP2B	X	-166.649	.5
35	MP2B	Z	-96.215	.5
36	MP2B	Mx	118	.5
37	MP2B	X	-166.649	5.5
38	MP2B	Z	-96.215	5.5
39	MP2B	Mx	118	5.5
40	MP2C	X	-129.903	.5
41	MP2C	Z	-74.999	.5
42	MP2C	Mx	034	.5
43	MP2C	X	-129.903	5.5
44	MP2C	Z	-74.999	5.5
45	MP2C	Mx	034	5.5
46	MP2A	X	-135.634	.5
47	MP2A	Z	-78.308	.5
48	MP2A	Mx	.012	.5
49	MP2A	X	-135.634	5.5
50	MP2A	^ Z	-78.308	5.5
51	MP2A	Mx	.012	5.5
52	MP2B	X	-166.649	.5
52	IVIFZD	^	-100.049	.U

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 13: Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-96.215	.5
54	MP2B	Mx	.151	.5
55	MP2B	X	-166.649	5.5
56	MP2B	Z	-96.215	5.5
57	MP2B	Mx	.151	5.5
58	MP2C	X	-129.903	.5
59	MP2C	Z	-74.999	.5
60	MP2C	Mx	107	.5
61	MP2C	X	-129.903	5.5
62	MP2C	Z	-74.999	5.5
63	MP2C	Mx	107	5.5
64	MP3A	X	-43.476	2
65	MP3A	Z	-25.101	2
66	MP3A	Mx	.022	2
67	MP3A	X	-43.476	4
68	MP3A	Z	-25.101	4
69	MP3A	Mx	.022	4
70	MP3B	X	-78.508	2
71	MP3B	Z	-45.327	2
72	MP3B	Mx	.008	2
73	MP3B	X	-78.508	4
74	MP3B	Z	-45.327	4
75	MP3B	Mx	.008	4
76	MP3C	X	-67.809	2
77	MP3C	Z	-39.15	2
78	MP3C	Mx	.02	2
79	MP3C	X	-67.809	4
80	MP3C	Z	-39.15	4
81	MP3C	Mx	.02	4
82	M100	X	-113.603	1
83	M100	Z	-65.589	1
84	M100	Mx	0	1
85	MP1A	X	-47.815	2.25
86	MP1A	Z	-27.606	2.25
87	MP1A	Mx	024	2.25
88	MP1B	X	-63.004	2.25
89	MP1B	Z	-36.375	2.25
90	MP1B	Mx	006	2.25
91	MP1C	X	-45.008	2.25
92	MP1C	Z	-25.986	2.25
93	MP1C	Mx	.024	2.25
94	MP3A	X	-44.944	2.25
95	MP3A	Z	-25.948	2.25
96	MP3A	Mx	022	2.25
97	MP3B	X	-62.888	2.25
98	MP3B	Z	-36.309	2.25
99	MP3B	Mx	006	2.25
100	MP3C	X	-41.628	2.25
101	MP3C	Z	-24.034	2.25
102	MP3C	Mx	.023	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 14: Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-32.918	2.25
2	MP2A	Z	-57.015	2.25
3	MP2A	Mx	014	2.25
4	MP2B	X	-29.267	2.25
5	MP2B	Z	-50.692	2.25
6	MP2B	Mx	016	2.25
7	MP2C	X	-16.813	2.25
8	MP2C	Z	-29.12	2.25
9	MP2C	Mx	.014	2.25
10	MP1A	X	-67.071	.5
11	MP1A	Z	-116.17	.5
12	MP1A	Mx	.034	.5
13	MP1A	X	-67.071	5.5
14	MP1A	Z	-116.17	5.5
15	MP1A	Mx	.034	5.5
16	MP1B	X	-65.641	.5
17	MP1B	Z	-113.694	.5
18	MP1B	Mx	.042	.5
19	MP1B	X	-65.641	5.5
20	MP1B	Z	-113.694	5.5
21	MP1B	Mx	.042	5.5
22	MP1C	X	-60.765	.5
23	MP1C	Z	-105.248	.5
24	MP1C	Mx	06	.5
25	MP1C	X	-60.765	5.5
26	MP1C	Z	-105.248	5.5
27	MP1C	Mx	06	5.5
28	MP2A	X	-90.746	.5
29	MP2A	Z	-157.177	.5
30	MP2A	Mx	.157	.5
31	MP2A	X	-90.746	5.5
32	MP2A	Z	-157.177	5.5
33	MP2A	Mx	.157	5.5
34	MP2B	X	-86.687	.5
35	MP2B	Z	-150.146	.5
36	MP2B	Mx	038	.5
37	MP2B	X	-86.687	5.5
38	MP2B	Z	-150.146	5.5
39	MP2B	Mx	038	5.5
40	MP2C	X	-72.84	.5
41	MP2C	Z	-126.162	.5
42	MP2C	Mx	09	.5
43	MP2C	X	-72.84	5.5
44	MP2C	Z	-126.162	5.5
45	MP2C	Mx	09	5.5
46	MP2A	X	-90.746	.5
47	MP2A	Z	-157.177	.5
48	MP2A	Mx	066	.5
49	MP2A	X	-90.746	5.5
50	MP2A	Z	-157.177	5.5
51	MP2A	Mx	066	5.5
52	MP2B	X	-86.687	.5
\ <u></u>	IIII ZU		00.007	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-150.146	.5
54	MP2B	Mx	.15	.5
55	MP2B	X	-86.687	5.5
56	MP2B	Z	-150.146	5.5
57	MP2B	Mx	.15	5.5
58	MP2C	X	-72.84	.5
59	MP2C	Z	-126.162	.5
60	MP2C	Mx	054	.5
61	MP2C	X	-72.84	5.5
62	MP2C	Z	-126.162	5.5
63	MP2C	Mx	054	5.5
64	MP3A	X	-39.15	2
65	MP3A	Z	-67.809	2
66	MP3A	Mx	.02	2
67	MP3A	X	-39.15	4
68	MP3A	Z	-67.809	4
69	MP3A	Mx	.02	4
70	MP3B	X	-34.565	2
71	MP3B	Z	-59.868	2
72	MP3B	Mx	.022	2
73	MP3B	X	-34.565	4
74	MP3B	Z	-59.868	4
75	MP3B	Mx	.022	4
76	MP3C	X	-46.174	2
77	MP3C	Z	-79.975	2
78	MP3C	Mx	0	2
79	MP3C	X	-46.174	4
80	MP3C	Z	-79.975	4
81	MP3C	Mx	0	4
82	M100	X	-75.045	1
83	M100	Z	-129.981	1
84	M100	Mx	0	1
85	MP1A	X	-33.697	2.25
86	MP1A	Z	-58.365	2.25
87	MP1A	Mx	017	2.25
88	MP1B	X	-31.709	2.25
89	MP1B	Z	-54.922	2.25
90	MP1B	Mx	02	2.25
91	MP1C	X	-24.928	2.25
92	MP1C	Z	-43.176	2.25
93	MP1C	Mx	.025	2.25
94	MP3A	X	-33.144	2.25
95	MP3A	Z	-57.408	2.25
96	MP3A	Mx	017	2.25
97	MP3B	X	-30.796	2.25
98	MP3B	Z	-53.34	2.25
99	MP3B	Mx	02	2.25
100	MP3C	X	-22.784	2.25
101	MP3C	Z	-39.463	2.25
102	MP3C	Mx	.022	2.25

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 15: Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	-16.626	2.25
3	MP2A	Mx	0	2.25
4	MP2B	X	0	2.25
5	MP2B	Z	-8.849	2.25
6	MP2B	Mx	003	2.25
7	MP2C	X	0	2.25
8	MP2C	Z	-11.458	2.25
9	MP2C	Mx	.004	2.25
10	MP1A	X	0	.5
11	MP1A	Z	-28.102	.5
12	MP1A	Mx	0	.5
13	MP1A	X	0	5.5
14	MP1A	Z	-28.102	5.5
15	MP1A	Mx	0	5.5
16	MP1B	X	0	.5
17	MP1B	Z	-25.398	.5
18	MP1B	Mx	.012	.5
19	MP1B	X	0	5.5
20	MP1B	Z	-25.398	5.5
21	MP1B	Mx	.012	5.5
22	MP1C	X	0	.5
23	MP1C	Z	-26.305	.5
24	MP1C	Mx	01	.5
25	MP1C	X	0	5.5
26	MP1C	Z	-26.305	5.5
27	MP1C	Mx	01	5.5
28	MP2A	X	0	.5
29	MP2A	Z	-38.594	.5
30	MP2A	Mx	.027	.5
31	MP2A	X	0	5.5
32	MP2A	Z	-38.594	5.5
33	MP2A	Mx	.027	5.5
34	MP2B	X	0	.5
35	MP2B	Z	-30.292	.5
36	MP2B	Mx	.007	.5
37	MP2B	X	0	5.5
38	MP2B	^ 	-30.292	5.5
39 40	MP2B MP2C	Mx Y	.007	5.5
	MP2C MP2C	X Z		.5
41			-33.077	.5 .5
42	MP2C	Mx	028	
43	MP2C	X	0	5.5
44 45	MP2C	Z	-33.077	5.5
45	MP2C	Mx	028	5.5 .5
46	MP2A	X Z	0	
	MP2A		-38.594	.5 .5
48	MP2A	Mx	027	
49	MP2A	X Z	0	5.5
50	MP2A		-38.594	5.5
51	MP2A	Mx	027	5.5
52	MP2B	X	0	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-30.292	.5
54	MP2B	Mx	.022	.5
55	MP2B	X	0	5.5
56	MP2B	Z	-30.292	5.5
57	MP2B	Mx	.022	5.5
58	MP2C	X	0	.5
59	MP2C	Z	-33.077	.5
60	MP2C	Mx	.002	.5
61	MP2C	X	0	5.5
62	MP2C	Z	-33.077	5.5
63	MP2C	Mx	.002	5.5
64	MP3A	X	0	2
65	MP3A	Z	-19.035	2
66	MP3A	Mx	0	2
67	MP3A	X	0	4
68	MP3A	Z	-19.035	4
69	MP3A	Mx	0	4
70	MP3B	X	0	2
71	MP3B	Z	-9.381	2
72	MP3B	Mx	.004	2
73	MP3B	X	0	4
74	MP3B	Z	-9.381	4
75	MP3B	Mx	.004	4
76	MP3C	X	0	2
77	MP3C	Z	-16.302	2
78	MP3C	Mx	004	2
79	MP3C	X	0	4
80	MP3C	Z	-16.302	4
81	MP3C	Mx	004	4
82	M100	X	0	1
83	M100	Z	-32.967	1
84	M100	Mx	0	1
85	MP1A	X	0	2.25
86	MP1A	Z	-16.035	2.25
87	MP1A	Mx	0	2.25
88	MP1B	X	0	2.25
89	MP1B	Z	-11.722	2.25
90	MP1B	Mx	006	2.25
91	MP1C	X	0	2.25
92	MP1C	Z	-13.169	2.25
93	MP1C	Mx	.005	2.25
94	MP3A	X	0	2.25
95	MP3A	Z	-16.035	2.25
96	MP3A	Mx	0	2.25
97	MP3B	X	0	2.25
98	MP3B	Z	-10.946	2.25
99	MP3B	Mx	005	2.25
100	MP3C	X	0	2.25
101	MP3C	Z	-12.653	2.25
102	MP3C	Mx	.005	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.212	2.25
2	MP2A	Z	-12.492	2.25
3	MP2A	Mx	.003	2.25
4	MP2B	X	4.042	2.25
5	MP2B	Z	-7.001	2.25
6	MP2B	Mx	003	2.25
7	MP2C	X	7.798	2.25
8	MP2C	Z	-13.507	2.25
9	MP2C	Mx	.002	2.25
10	MP1A	X	13.668	.5
11	MP1A	Z	-23.674	.5
12	MP1A	Mx	007	.5
13	MP1A	X	13.668	5.5
14	MP1A	Z	-23.674	5.5
15	MP1A	Mx	007	5.5
16	MP1B	X	12.566	.5
17	MP1B	Z	-21.765	.5
18	MP1B	Mx	.012	.5
19	MP1B	X	12.566	5.5
20	MP1B	Z	-21.765	5.5
21	MP1B	Mx	.012	5.5
22	MP1C	X	13.872	.5
23	MP1C	Z	-24.027	.5
24	MP1C	Mx	005	.5
25	MP1C	X	13.872	5.5
26	MP1C	Z	-24.027	5.5
27	MP1C	Mx	005	5.5
28	MP2A	X	18.122	.5
29	MP2A	Z	-31.388	.5
30	MP2A	Mx	.013	.5
31	MP2A	X	18.122	5.5
32	MP2A	Z	-31.388	5.5
33	MP2A	Mx	.013	5.5
34	MP2B	X	14.738	.5
35	MP2B	Z	-25.527	.5
36	MP2B	Mx	.018	.5
37	MP2B	X	14.738	5.5
38	MP2B	Z	-25.527	5.5
39	MP2B	Mx	.018	5.5
40	MP2C	X	18.747	.5
41	MP2C	Z	-32.471	.5
42	MP2C	Mx	031	.5
43	MP2C		18.747	5.5
43	MP2C MP2C	X Z	-32.471	5.5
45	MP2C MP2C	Mx	-32.471	5.5
46	MP2C MP2A	X	18.122	.5
46	MP2A MP2A	Z		.5
48	MP2A MP2A	Mx	-31.388	.5 .5
			031	5.5
49 50	MP2A	X Z	18.122	5.5
	MP2A		-31.388	
51	MP2A	Mx	031	5.5
52	MP2B	X	14.738	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-25.527	.5
54	MP2B	Mx	.011	.5
55	MP2B	X	14.738	5.5
56	MP2B	Z	-25.527	5.5
57	MP2B	Mx	.011	5.5
58	MP2C	X	18.747	.5
59	MP2C	Z	-32.471	.5
60	MP2C	Mx	.019	.5
61	MP2C	X	18.747	5.5
62	MP2C	Z	-32.471	5.5
63	MP2C	Mx	.019	5.5
64	MP3A	X	8.151	2
65	MP3A	Z	-14.118	2
66	MP3A	Mx	004	2
67	MP3A	X	8.151	4
68	MP3A	Z	-14.118	4
69	MP3A	Mx	004	4
70	MP3B	X	4.216	2
71	MP3B	Z	-7.302	2
72	MP3B	Mx	.004	2
73	MP3B	X	4.216	4
74	MP3B	Z	-7.302	4
75	MP3B	Mx	.004	4
76	MP3C	X	5.418	2
77	MP3C	Z	-9.384	2
78	MP3C	Mx	005	2
79	MP3C	X	5.418	4
80	MP3C	Z	-9.384	4
81	MP3C	Mx	005	4
82	M100	X	15.585	1
83	M100	Z	-26.994	1
84	M100	Mx	0	1
85	MP1A	X	7.407	2.25
86	MP1A	Z	-12.829	2.25
87	MP1A	Mx	.004	2.25
88	MP1B	X	5.649	2.25
89	MP1B	Z	-9.784	2.25
90	MP1B	Mx	006	2.25
91	MP1C	X	7.732	2.25
92	MP1C	Z	-13.392	2.25
93	MP1C	Mx	.003	2.25
94	MP3A	X	7.297	2.25
95	MP3A	Z	-12.639	2.25
96	MP3A	Mx	.004	2.25
97	MP3B	X	5.223	2.25
98	MP3B	Z	-9.046	2.25
99	MP3B	Mx	005	2.25
100	MP3C	X	7.681	2.25
101	MP3C	Z	-13.303	2.25
102	MP3C	Mx	.003	2.25
102	IVII JO	IVIA	.000	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	8.678	2.25
2	MP2A	Z	-5.01	2.25
3	MP2A	Mx	.004	2.25
4	MP2B	X	9.923	2.25
5	MP2B	Z	-5.729	2.25
6	MP2B	Mx	004	2.25
7	MP2C	X	14.169	2.25
8	MP2C	Z	-8.18	2.25
9	MP2C	Mx	001	2.25
10	MP1A	X	22.348	.5
11	MP1A	Z	-12.903	.5
12	MP1A	Mx	011	.5
13	MP1A	X	22.348	5.5
14	MP1A	Z	-12.903	5.5
15	MP1A	Mx	011	5.5
16	MP1B	X	22.781	.5
17	MP1B	Z	-13.152	.5
18	MP1B	Mx	.01	.5
19	MP1B	X	22.781	5.5
20	MP1B	Z	-13.152	5.5
21	MP1B	Mx	.01	5.5
22	MP1C	X	24.257	.5
23	MP1C	Z	-14.005	.5
24	MP1C	Mx	.002	.5
25	MP1C	X	24.257	5.5
26	MP1C	Z	-14.005	5.5
27	MP1C	Mx	.002	5.5
28	MP2A	X	27.317	.5
29	MP2A	Z	-15.771	.5
30	MP2A	Mx	002	.5
31	MP2A	X		5.5
32	MP2A	^ 	27.317 -15.771	5.5
33		Mx	002	5.5
34	MP2A MP2B	X	28.645	.5
		Z		.5
35	MP2B		-16.538	.5
36 37	MP2B MP2B	Mx X	.028 28.645	5.5
38	MP2B	^ 	-16.538	5.5
39 40	MP2B MP2C	Mx X	.028 33.178	5.5 .5
41	MP2C	Z	-19.155	.5 .5
42	MP2C	Mx	023	
43	MP2C	X	33.178	5.5
44 45	MP2C	Z	-19.155	5.5 5.5
45	MP2C	Mx	023	.5
46	MP2A	X Z	27.317	.5
	MP2A		-15.771	.5 .5
48	MP2A	Mx	025	
49	MP2A	X Z	27.317	5.5
50	MP2A		-15.771	5.5
51	MP2A	Mx	025	5.5
52	MP2B	X	28.645	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
53	MP2B	Z	-16.538	.5
54	MP2B	Mx	002	.5
55	MP2B	X	28.645	5.5
56	MP2B	Z	-16.538	5.5
57	MP2B	Mx	002	5.5
58	MP2C	X	33.178	.5
59	MP2C	Z	-19.155	.5
60	MP2C	Mx	.03	.5
61	MP2C	X	33.178	5.5
62	MP2C	Z	-19.155	5.5
63	MP2C	Mx	.03	5.5
64	MP3A	X	9.384	2
65	MP3A	Z	-5.418	2
66	MP3A	Mx	005	2
67	MP3A	X	9.384	4
68	MP3A	Z	-5.418	4
69	MP3A	Mx	005	4
70	MP3B	X	10.929	2
71	MP3B	Z	-6.31	2
72	MP3B	Mx	.005	2
73	MP3B	X	10.929	4
74	MP3B	Z	-6.31	4
75	MP3B	Mx	.005	4
76	MP3C	X	7.017	2
77	MP3C	Z	-4.051	2
78	MP3C	Mx	004	2
79	MP3C	X	7.017	4
80	MP3C	Z	-4.051	4
81	MP3C	Mx	004	4
82	M100	X	23.879	1
83	M100	Z	-13.787	1
84	M100	Mx	0	1
85	MP1A	X	10.714	2.25
86	MP1A	Z	-6.186	2.25
87	MP1A	Mx	.005	2.25
88	MP1B	X	11.405	2.25
89	MP1B	Z	-6.584	2.25
90	MP1B	Mx	005	2.25
91	MP1C	X	13.759	2.25
92	MP1C	Z	-7.944	2.25
93	MP1C	Mx	001	2.25
94	MP3A	X	10.143	2.25
95	MP3A	Z	-5.856	2.25
96	MP3A	Mx	.005	2.25
97	MP3B	X	10.958	2.25
98	MP3B	Z	-6.326	2.25
99	MP3B	Mx	005	2.25
100	MP3C	X	13.736	2.25
101	MP3C	Z	-7.931	2.25
102	MP3C	Mx	001	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 18: Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.819	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	.003	2.25
4	MP2B	X	15.596	2.25
5	MP2B	Z	0	2.25
6	MP2B	Mx	002	2.25
7	MP2C	X	12.987	2.25
8	MP2C	Z	0	2.25
9	MP2C	Mx	003	2.25
10	MP1A	X	25.04	.5
11	MP1A	Z	0	.5
12	MP1A	Mx	013	.5
13	MP1A	X	25.04	5.5
14	MP1A	Z	0	5.5
15	MP1A	Mx	013	5.5
16	MP1B	X	27.744	.5
17	MP1B	Z	0	.5
18	MP1B	Mx	.005	.5
19	MP1B	X	27.744	5.5
20	MP1B	Z	0	5.5
21	MP1B	Mx	.005	5.5
22	MP1C	X	26.837	.5
23	MP1C	Z	0	.5
24	MP1C	Mx	.009	.5
25	MP1C	X	26.837	5.5
26	MP1C	Z	0	5.5
27	MP1C	Mx	.009	5.5
28	MP2A	X	29.192	.5
29	MP2A	Z	0	.5
30	MP2A	Mx	015	.5
31	MP2A	X	29.192	5.5
32	MP2A	Z	0	5.5
33	MP2A	Mx	015	5.5
34	MP2B	X	37.494	.5
35	MP2B	Z	0	.5
36	MP2B	Mx	.031	.5
37	MP2B	X	37.494	5.5
38	MP2B	Z	0	5.5
39	MP2B	Mx	.031	5.5
40	MP2C	X	34.709	.5
41	MP2C	Z	0	.5
42	MP2C	Mx	008	.5
43	MP2C	X	34.709	5.5
44	MP2C	Z	0	5.5
45	MP2C	Mx	008	5.5
46	MP2A	X	29.192	.5
47	MP2A	Z	0	.5
48	MP2A	Mx	015	.5
49	MP2A	X	29.192	5.5
50	MP2A	Z	0	5.5
51	MP2A	Mx	015	5.5
52	MP2B	X	37.494	.5
02	IVII ZU	A	01.404	١٥

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	0	.5
54	MP2B	Mx	019	.5
55	MP2B	X	37.494	5.5
56	MP2B	Z	0	5.5
57	MP2B	Mx	019	5.5
58	MP2C	X	34.709	.5
59	MP2C	Z	0	.5
60	MP2C	Mx	.03	.5
61	MP2C	X	34.709	5.5
62	MP2C	Z	0	5.5
63	MP2C	Mx	.03	5.5
64	MP3A	X	8.102	2
65	MP3A	Z	0	2
66	MP3A	Mx	004	2
67	MP3A	X	8.102	4
68	MP3A	Z	0	4
69	MP3A	Mx	004	4
70	MP3B	X	17.756	2
71	MP3B	Z	0	2
72	MP3B	Mx	.003	2
73	MP3B	X	17.756	4
74	MP3B	Z	0	4
75	MP3B	Mx	.003	4
76	MP3C	X	10.835	2
77	MP3C	Z	0	2
78	MP3C	Mx	005	2
79	MP3C	X	10.835	4
80	MP3C	Z	0	4
81	MP3C	Mx	005	4
82	M100	X	25.775	1
83	M100	Z	0	1
84	M100	Mx	0	1
85	MP1A	X	11.151	2.25
86	MP1A	Z	0	2.25
87	MP1A	Mx	.006	2.25
88	MP1B	X	15.464	2.25
89	MP1B	Z	0	2.25
90	MP1B	Mx	003	2.25
91	MP1C	X	14.017	2.25
92	MP1C	Z	0	2.25
93	MP1C	Mx	005	2.25
94	MP3A	X	10.271	2.25
95	MP3A	Z	0	2.25
96	MP3A	Mx	.005	2.25
97	MP3B	X	15.361	2.25
98	MP3B	Z	0	2.25
99	MP3B	Mx	003	2.25
100	MP3C	X	13.654	2.25
101	MP3C	Z	0	2.25
102	MP3C	Mx	004	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	8.678	2.25
2	MP2A	Z	5.01	2.25
3	MP2A	Mx	.004	2.25
4	MP2B	X	14.169	2.25
5	MP2B	Z	8.18	2.25
6	MP2B	Mx	.001	2.25
7	MP2C	X	7.663	2.25
8	MP2C	Z	4.424	2.25
9	MP2C	Mx	003	2.25
10	MP1A	X	22.348	.5
11	MP1A	Z	12.903	.5
12	MP1A	Mx	011	.5
13	MP1A	X	22.348	5.5
14	MP1A	Z	12.903	5.5
15	MP1A	Mx	011	5.5
16	MP1B	X	24.257	.5
17	MP1B	Z	14.005	.5
18	MP1B	Mx	002	.5
19	MP1B	X	24.257	5.5
20	MP1B	Z	14.005	5.5
21	MP1B	Mx	002	5.5
22	MP1C	X	21.995	.5
23	MP1C	Z	12.699	.5
24	MP1C	Mx	.012	.5
25	MP1C	X	21.995	5.5
26	MP1C	Z	12.699	5.5
27	MP1C	Mx	.012	5.5
28	MP2A	X	27.317	.5
29	MP2A	Z	15.771	.5
30	MP2A	Mx	025	.5
31	MP2A	X	27.317	5.5
32	MP2A	Z	15.771	5.5
33	MP2A	Mx	025	5.5
34	MP2B	X	33.178	.5
35	MP2B	Z	19.155	.5
36	MP2B	Mx	.023	.5
37	MP2B	X	33.178	5.5
38	MP2B	Z	19.155	5.5
39	MP2B	Mx	.023	5.5
40	MP2C	X	26.234	.5
41	MP2C	Z	15.146	.5
42	MP2C	Mx	.007	.5
43	MP2C	X	26.234	5.5
44	MP2C	Z	15.146	5.5
45	MP2C	Mx	.007	5.5
46	MP2A	X	27.317	.5
47	MP2A	^	15.771	.5
48	MP2A	Mx	002	.5 .5
49	MP2A	X	27.317	5.5
50	MP2A	Z	15.771	5.5
51	MP2A	Mx	002	5.5
52	MP2B	X	33.178	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 19: Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation [ft, %]
53	MP2B	Z	19.155	.5
54	MP2B	Mx	03	.5
55	MP2B	X	33.178	5.5
56	MP2B	Z	19.155	5.5
57	MP2B	Mx	03	5.5
58	MP2C	X	26.234	.5
59	MP2C	Z	15.146	.5
60	MP2C	Mx	.022	.5
61	MP2C	X	26.234	5.5
62	MP2C	Z	15.146	5.5
63	MP2C	Mx	.022	5.5
64	MP3A	X	9.384	2
65	MP3A	Z	5.418	2
66	MP3A	Mx	005	2
67	MP3A	X	9.384	4
68	MP3A	Z	5.418	4
69	MP3A	Mx	005	4
70	MP3B	X	16.199	2
71	MP3B	Z	9.352	2
72	MP3B	Mx	002	2
73	MP3B	X	16.199	4
74	MP3B	Z	9.352	4
75	MP3B	Mx	002	4
76	MP3C	X	14.118	2
77	MP3C	Z	8.151	2
78	MP3C	Mx	004	2
79	MP3C	X	14.118	4
80	MP3C	Z	8.151	4
81	MP3C	Mx	004	4
82	M100	X	23.879	1
83	M100	Z	13.787	1
84	M100	Mx	0	1
85	MP1A	X	10.714	2.25
86	MP1A	Z	6.186	2.25
87	MP1A	Mx	.005	2.25
88	MP1B	X	13.759	2.25
89	MP1B	Z	7.944	2.25
90	MP1B	Mx	.001	2.25
91	MP1C	X	10.152	2.25
92	MP1C	Z	5.861	2.25
93	MP1C	Mx	006	2.25
94	MP3A	X	10.143	2.25
95	MP3A	Z	5.856	2.25
96	MP3A	Mx	.005	2.25
97	MP3B	X	13.736	2.25
98	MP3B	Z	7.931	2.25
99	MP3B	Mx	.001	2.25
100	MP3C	X	9.479	2.25
101	MP3C	Z	5.473	2.25
102	MP3C	Mx	005	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	7.212	2.25
2	MP2A	Z	12.492	2.25
3	MP2A	Mx	.003	2.25
4	MP2B	X	6.494	2.25
5	MP2B	Z	11.247	2.25
6	MP2B	Mx	.003	2.25
7	MP2C	X	4.042	2.25
8	MP2C	Z	7.001	2.25
9	MP2C	Mx	003	2.25
10	MP1A	X	13.668	.5
11	MP1A	Z	23.674	.5
12	MP1A	Mx	007	.5
13	MP1A	X	13.668	5.5
14	MP1A	Z	23.674	5.5
15	MP1A	Mx	007	5.5
16	MP1B	X	13.418	.5
17	MP1B	Z	23.241	.5
18	MP1B	Mx	009	.5
19	MP1B	X	13.418	5.5
20	MP1B	Z	23.241	5.5
21	MP1B	Mx	009	5.5
22	MP1C	X	12.566	.5
23	MP1C	Z	21.765	.5
24	MP1C	Mx	.012	.5
25	MP1C	X	12.566	5.5
26	MP1C	Z	21.765	5.5
27	MP1C	Mx	.012	5.5
28	MP2A	X	18.122	.5
29	MP2A	Z	31.388	.5
30	MP2A	Mx	031	.5
31	MP2A	X	18.122	5.5
32	MP2A	Z	31.388	5.5
33	MP2A	Mx	031	5.5
34	MP2B	X	17.355	.5
35	MP2B	Z	30.059	.5
36	MP2B	Mx	.008	.5
37	MP2B	X	17.355	5.5
38	MP2B	Z	30.059	5.5
39	MP2B	Mx	.008	5.5
40	MP2C	X	14.738	.5
41	MP2C	Z	25.527	.5
42	MP2C	Mx	.018	.5
43	MP2C	X	14.738	5.5
44	MP2C	Z	25.527	5.5
45	MP2C	Mx	.018	5.5
46	MP2A	X	18.122	.5
47	MP2A	Z	31.388	.5
48	MP2A	Mx	.013	.5
49	MP2A		18.122	5.5
50	MP2A	X Z	31.388	5.5
51	MP2A	Mx	.013	5.5
52	MP2B	X	17.355	.5
JZ	IVIFZD	^	17.000	.J

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	30.059	.5
54	MP2B	Mx	03	.5
55	MP2B	X	17.355	5.5
56	MP2B	Z	30.059	5.5
57	MP2B	Mx	03	5.5
58	MP2C	X	14.738	.5
59	MP2C	Z	25.527	.5
60	MP2C	Mx	.011	.5
61	MP2C	X	14.738	5.5
62	MP2C	Z	25.527	5.5
63	MP2C	Mx	.011	5.5
64	MP3A	X	8.151	2
65	MP3A	Z	14.118	2
66	MP3A	Mx	004	2
67	MP3A	X	8.151	4
68	MP3A	Z	14.118	4
69	MP3A	Mx	004	4
70	MP3B	X	7.259	2
71	MP3B	Z	12.573	2
72	MP3B	Mx	005	2
73	MP3B	X	7.259	4
74	MP3B	Z	12.573	4
75	MP3B	Mx	005	4
76	MP3C	X	9.517	2
77	MP3C	Z	16.484	2
78	MP3C	Mx	0	2
79	MP3C	X	9.517	4
80	MP3C	Z	16.484	4
81	MP3C	Mx	0	4
82	M100	X	15.585	1
83	M100	Z	26.994	1
84	M100	Mx	0	1
85	MP1A	X	7.407	2.25
86	MP1A	Z	12.829	2.25
87	MP1A	Mx	.004	2.25
88	MP1B	X	7.009	2.25
89	MP1B	Z	12.139	2.25
90	MP1B	Mx	.005	2.25
91	MP1C	X	5.649	2.25
92	MP1C	Z	9.784	2.25
93	MP1C	Mx	006	2.25
94	MP3A	X	7.297	2.25
95	MP3A	Z	12.639	2.25
96	MP3A	Mx	.004	2.25
97	MP3B	X	6.827	2.25
98	MP3B	Z	11.825	2.25
99	MP3B	Mx	.004	2.25
100	MP3C	X	5.223	2.25
101	MP3C	Z	9.046	2.25
102	MP3C	Mx	005	2.25
102	IVII 30	IVIX	003	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	16.626	2.25
3	MP2A	Mx	0	2.25
4	MP2B	X	0	2.25
5	MP2B	Z	8.849	2.25
6	MP2B	Mx	.003	2.25
7	MP2C	X	0	2.25
8	MP2C	Z	11.458	2.25
9	MP2C	Mx	004	2.25
10	MP1A	X	0	.5
11	MP1A	Z	28.102	.5
12	MP1A	Mx	0	.5
13	MP1A	X	0	5.5
14	MP1A	Z	28.102	5.5
15	MP1A	Mx	0	5.5
16	MP1B	X	0	.5
17	MP1B	Z	25.398	.5
18	MP1B	Mx	012	.5
19	MP1B	X	0	5.5
20	MP1B	Z	25.398	5.5
21	MP1B	Mx	012	5.5
22	MP1C	X	0	.5
23	MP1C	Z	26.305	.5
24	MP1C	Mx	.01	.5
25	MP1C	X	0	5.5
26	MP1C	Z	26.305	5.5
27	MP1C	Mx	.01	5.5
28	MP2A	X	0	.5
29	MP2A	Z	38.594	.5
30	MP2A	Mx	027	.5
31	MP2A	X	0	5.5
32	MP2A	Z	38.594	5.5
33	MP2A	Mx	027	5.5
34	MP2B	X	0	.5
35	MP2B	Z	30.292	.5
36	MP2B	Mx	007	.5
37	MP2B	X	0	5.5
38	MP2B	Z	30.292	5.5
39	MP2B	Mx	007	5.5
40	MP2C	X	0	.5
41	MP2C	Z	33.077	.5
42	MP2C	Mx	.028	.5
43	MP2C	X	0	5.5
44	MP2C	Z	33.077	5.5
45	MP2C	Mx	.028	5.5
46	MP2A	X	0	.5
47	MP2A	Z	38.594	.5
48	MP2A	Mx	.027	.5
49	MP2A		0	5.5
50	MP2A	X Z	38.594	5.5
51	MP2A	Mx	.027	5.5
52	MP2B	X	0	.5
	25			.,

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 21: Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	30.292	.5
54	MP2B	Mx	022	.5
55	MP2B	X	0	5.5
56	MP2B	Z	30.292	5.5
57	MP2B	Mx	022	5.5
58	MP2C	X	0	.5
59	MP2C	Z	33.077	.5
60	MP2C	Mx	002	.5
61	MP2C	X	0	5.5
62	MP2C	Z	33.077	5.5
63	MP2C	Mx	002	5.5
64	MP3A	X	0	2
65	MP3A	Z	19.035	2
66	MP3A	Mx	0	2
67	MP3A	X	0	4
68	MP3A	Z	19.035	4
69	MP3A	Mx	0	4
70	MP3B	X	0	2
71	MP3B	Z	9.381	2
72	MP3B	Mx	004	2
73	MP3B	X	0	4
74	MP3B	Z	9.381	4
75	MP3B	Mx	004	4
76	MP3C	X	0	2
77	MP3C	Z	16.302	2
78	MP3C	Mx	.004	2
79	MP3C	X	0	4
80	MP3C	Z	16.302	4
81	MP3C	Mx	.004	4
82	M100	X	0	1
83	M100	Z	32.967	1
84	M100	Mx	0	1
85	MP1A	X	0	2.25
86	MP1A	Z	16.035	2.25
87	MP1A	Mx	0	2.25
88	MP1B	X	0	2.25
89	MP1B	Z	11.722	2.25
90	MP1B	Mx	.006	2.25
91	MP1C	X	0	2.25
92	MP1C	Z	13.169	2.25
93	MP1C	Mx	005	2.25
94	MP3A	X	0	2.25
95	MP3A	Z	16.035	2.25
96	MP3A	Mx	0	2.25
97	MP3B	X	0	2.25
98	MP3B	Z	10.946	2.25
99	MP3B	Mx	.005	2.25
100	MP3C	X	0	2.25
101	MP3C	Z	12.653	2.25
102	MP3C	Mx	005	2.25

Model Name

oany : Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-7.212	2.25
2	MP2A	Z	12.492	2.25
3	MP2A	Mx	003	2.25
4	MP2B	X	-4.042	2.25
5	MP2B	Z	7.001	2.25
6	MP2B	Mx	.003	2.25
7	MP2C	X	-7.798	2.25
8	MP2C	Z	13.507	2.25
9	MP2C	Mx	002	2.25
10	MP1A	X	-13.668	.5
11	MP1A	Z	23.674	.5
12	MP1A	Mx	.007	.5
13	MP1A	X	-13.668	5.5
14	MP1A	Z	23.674	5.5
15	MP1A	Mx	.007	5.5
16	MP1B	X	-12.566	.5
17	MP1B	Z	21.765	.5
18	MP1B	Mx	012	.5
19	MP1B	X	-12.566	5.5
20	MP1B	Z	21.765	5.5
21	MP1B	Mx	012	5.5
22	MP1C	X	-13.872	.5
23	MP1C	Z	24.027	.5
24	MP1C	Mx	.005	.5
25	MP1C	X	-13.872	5.5
26	MP1C	Z	24.027	5.5
27	MP1C	Mx	.005	5.5
28	MP2A	X	-18.122	.5
29	MP2A	Z	31.388	.5
30	MP2A	Mx	013	.5
31	MP2A	X	-18.122	5.5
32	MP2A	Z	31.388	5.5
33	MP2A	Mx	013	5.5
34	MP2B	X	-14.738	.5
35	MP2B	Z	25.527	.5
36	MP2B	Mx	018	.5
37	MP2B	X	-14.738	5.5
38	MP2B	Z	25.527	5.5
39	MP2B	Mx	018	5.5
40	MP2C	X	-18.747	.5
41	MP2C	Z	32.471	.5
42	MP2C	Mx	.031	.5
43	MP2C	X	-18.747	5.5
44	MP2C	Z	32.471	5.5
45	MP2C	Mx	.031	5.5
46	MP2A	X	-18.122	.5
47	MP2A	Z	31.388	.5
48	MP2A	Mx	.031	.5
49	MP2A	X	-18.122	5.5
50	MP2A	Z	31.388	5.5
51	MP2A	Mx	.031	5.5
52	MP2B	X	-14.738	.5
02	IVII ZU	A	-14.700	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 22: Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	25.527	.5
54	MP2B	Mx	011	.5
55	MP2B	X	-14.738	5.5
56	MP2B	Z	25.527	5.5
57	MP2B	Mx	011	5.5
58	MP2C	X	-18.747	.5
59	MP2C	Z	32.471	.5
60	MP2C	Mx	019	.5
61	MP2C	X	-18.747	5.5
62	MP2C	Z	32.471	5.5
63	MP2C	Mx	019	5.5
64	MP3A	X	-8.151	2
65	MP3A	Z	14.118	2
66	MP3A	Mx	.004	2
67	MP3A	X	-8.151	4
68	MP3A	Z	14.118	4
69	MP3A	Mx	.004	4
70	MP3B	X	-4.216	2
71	MP3B	Z	7.302	2
72	MP3B	Mx	004	2
73	MP3B	X	-4.216	4
74	MP3B	Z	7.302	4
75	MP3B	Mx	004	4
76	MP3C	X	-5.418	2
77	MP3C	Z	9.384	2
78	MP3C	Mx	.005	2
79	MP3C	X	-5.418	4
80	MP3C	Z	9.384	4
81	MP3C	Mx	.005	4
82	M100	X	-15.585	1
83	M100	Z	26.994	1
84	M100	Mx	0	1
85	MP1A	X	-7.407	2.25
86	MP1A	Z	12.829	2.25
87	MP1A	Mx	004	2.25
88	MP1B	X	-5.649	2.25
89	MP1B	Z	9.784	2.25
90	MP1B	Mx	.006	2.25
91	MP1C	X	-7.732	2.25
92	MP1C	Z	13.392	2.25
93	MP1C	Mx	003	2.25
94	MP3A	X	-7.297	2.25
95	MP3A	Z	12.639	2.25
96	MP3A	Mx	004	2.25
97	MP3B	X	-5.223	2.25
98	MP3B	Z	9.046	2.25
99	MP3B	Mx	.005	2.25
100	MP3C	X	-7.681	2.25
101	MP3C	Z	13.303	2.25
102	MP3C	Mx	003	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-8.678	2.25
2	MP2A	Z	5.01	2.25
3	MP2A	Mx	004	2.25
4	MP2B	X	-9.923	2.25
5	MP2B	Z	5.729	2.25
6	MP2B	Mx	.004	2.25
7	MP2C	X	-14.169	2.25
8	MP2C	Z	8.18	2.25
9	MP2C	Mx	.001	2.25
10	MP1A	X	-22.348	.5
11	MP1A	Z	12.903	.5
12	MP1A	Mx	.011	.5
13	MP1A	X	-22.348	5.5
14	MP1A	Z	12.903	5.5
15	MP1A	Mx	.011	5.5
16	MP1B	X	-22.781	.5
17	MP1B	Z	13.152	.5
18	MP1B	Mx	01	.5
19	MP1B	X	-22.781	5.5
20	MP1B	Z	13.152	5.5
21	MP1B	Mx	01	5.5
22	MP1C	X	-24.257	.5
23	MP1C	Z	14.005	.5
24	MP1C	Mx	002	.5
25	MP1C	X	-24.257	5.5
26	MP1C	Z	14.005	5.5
27	MP1C	Mx	002	5.5
28	MP2A	X	-27.317	.5
29	MP2A	Z	15.771	.5
30	MP2A	Mx	.002	.5
31	MP2A	X	-27.317	5.5
32	MP2A	Z	15.771	5.5
33	MP2A	Mx	.002	5.5
34	MP2B	X	-28.645	.5
35	MP2B	Z	16.538	.5
36	MP2B	Mx	028	.5
37	MP2B	X	-28.645	5.5
38	MP2B	Z	16.538	5.5
39	MP2B	Mx	028	5.5
40	MP2C	X	-33.178	.5
41	MP2C	Z	19.155	.5
42	MP2C	Mx	.023	.5
43	MP2C	X	-33.178	5.5
44	MP2C	Z	19.155	5.5
45	MP2C	Mx	.023	5.5
46	MP2A	X	-27.317	.5
47	MP2A	Z	15.771	.5
48	MP2A	Mx	.025	.5
49	MP2A	X	-27.317	5.5
50	MP2A	Z	15.771	5.5
51	MP2A	Mx	.025	5.5
52	MP2B	X	-28.645	.5
UZ	IVII ZU	^	-20.040	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 23: Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	16.538	.5
54	MP2B	Mx	.002	.5
55	MP2B	X	-28.645	5.5
56	MP2B	Z	16.538	5.5
57	MP2B	Mx	.002	5.5
58	MP2C	X	-33.178	.5
59	MP2C	Z	19.155	.5
60	MP2C	Mx	03	.5
61	MP2C	X	-33.178	5.5
62	MP2C	Z	19.155	5.5
63	MP2C	Mx	03	5.5
64	MP3A	X	-9.384	2
65	MP3A	Z	5.418	2
66	MP3A	Mx	.005	2
67	MP3A	X	-9.384	4
68	MP3A	Z	5.418	4
69	MP3A	Mx	.005	4
70	MP3B	X	-10.929	2
71	MP3B	Z	6.31	2
72	MP3B	Mx	005	2
73	MP3B	X	-10.929	4
74	MP3B	Z	6.31	4
75	MP3B	Mx	005	4
76	MP3C	X	-7.017	2
77	MP3C	Z	4.051	2
78	MP3C	Mx	.004	2
79	MP3C	X	-7.017	4
80	MP3C	Z	4.051	4
81	MP3C	Mx	.004	4
82	M100	X	-23.879	1
83	M100	Z	13.787	1
84	M100	Mx	0	1
85	MP1A	X	-10.714	2.25
86	MP1A	Z	6.186	2.25
87	MP1A	Mx	005	2.25
88	MP1B	X	-11.405	2.25
89	MP1B	Z	6.584	2.25
90	MP1B	Mx	.005	2.25
91	MP1C	X	-13.759	2.25
92	MP1C	Z	7.944	2.25
93	MP1C	Mx	.001	2.25
94	MP3A	X	-10.143	2.25
95	MP3A	Z	5.856	2.25
96	MP3A	Mx	005	2.25
97	MP3B	X	-10.958	2.25
98	MP3B	Z	6.326	2.25
99	MP3B	Mx	.005	2.25
100	MP3C	X	-13.736	2.25
101	MP3C	Z	7.931	2.25
102	MP3C	Mx	.001	2.25

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-7.819	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	003	2.25
4	MP2B	X	-15.596	2.25
5	MP2B	Z	0	2.25
6	MP2B	Mx	.002	2.25
7	MP2C	X	-12.987	2.25
8	MP2C	Z	0	2.25
9	MP2C	Mx	.003	2.25
10	MP1A	X	-25.04	.5
11	MP1A	Z	0	.5
12	MP1A	Mx	.013	.5
13	MP1A	X	-25.04	5.5
14	MP1A	Z	0	5.5
15	MP1A	Mx	.013	5.5
16	MP1B	X	-27.744	.5
17	MP1B	Z	0	.5
18	MP1B	Mx	005	.5
19	MP1B	X	-27.744	5.5
20	MP1B	Z	0	5.5
21	MP1B	Mx	005	5.5
22	MP1C	X	-26.837	.5
23	MP1C	Z	0	.5
24	MP1C	Mx	009	.5
25	MP1C	X	-26.837	5.5
26	MP1C	Z	0	5.5
27	MP1C	Mx	009	5.5
28	MP2A	X	-29.192	.5
29	MP2A	Z	0	.5
30	MP2A	Mx	.015	.5
31	MP2A	X	-29.192	5.5
32	MP2A	Z	0	5.5
33	MP2A	Mx	.015	5.5
34	MP2B	X	-37.494	.5
35	MP2B	Z	0	.5
36	MP2B	Mx	031	.5
37	MP2B	X	-37.494	5.5
38	MP2B	Z	0	5.5
39	MP2B	Mx	031	5.5
40	MP2C	X	-34.709	.5
41	MP2C	Z	0	.5
42	MP2C	Mx	.008	.5
43	MP2C	X	-34.709	5.5
44	MP2C	Z	0	5.5
45	MP2C	Mx	.008	5.5
46	MP2A	X	-29.192	.5
47	MP2A	Z	0	.5
48	MP2A	Mx	.015	.5
49	MP2A	X	-29.192	5.5
50	MP2A	Z	0	5.5
51	MP2A	Mx	.015	5.5
52	MP2B	X	-37.494	.5
UZ	IVII ZD		-07.404	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 24: Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	0	.5
54	MP2B	Mx	.019	.5
55	MP2B	X	-37.494	5.5
56	MP2B	Z	0	5.5
57	MP2B	Mx	.019	5.5
58	MP2C	X	-34.709	.5
59	MP2C	Z	0	.5
60	MP2C	Mx	03	.5
61	MP2C	X	-34.709	5.5
62	MP2C	Z	0	5.5
63	MP2C	Mx	03	5.5
64	MP3A	X	-8.102	2
65	MP3A	Z	0	2
66	MP3A	Mx	.004	2
67	MP3A	X	-8.102	4
68	MP3A	Z	0	4
69	MP3A	Mx	.004	4
70	MP3B	X	-17.756	2
71	MP3B	Z	0	2
72	MP3B	Mx	003	2
73	MP3B	X	-17.756	4
74	MP3B	Z	0	4
75	MP3B	Mx	003	4
76	MP3C	X	-10.835	2
77	MP3C	Z	0	2
78	MP3C	Mx	.005	2
79	MP3C	X	-10.835	4
80	MP3C	Z	0	4
81	MP3C	Mx	.005	4
82	M100	X	-25.775	1
83	M100	Z	0	1
84	M100	Mx	0	1
85	MP1A	X	-11.151	2.25
86	MP1A	Z	0	2.25
87	MP1A	Mx	006	2.25
88	MP1B	X	-15.464	2.25
89	MP1B	Z	0	2.25
90	MP1B	Mx	.003	2.25
91	MP1C	X	-14.017	2.25
92	MP1C	Z	0	2.25
93	MP1C	Mx	.005	2.25
94	MP3A	X	-10.271	2.25
95	MP3A	Z	0	2.25
96	MP3A	Mx	005	2.25
97	MP3B	X	-15.361	2.25
98	MP3B	Z	0	2.25
99	MP3B	Mx	.003	2.25
100	MP3C	X	-13.654	2.25
101	MP3C	Z	0	2.25
102	MP3C	Mx	.004	2.25
102	1711 00	IVIA	1007	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-8.678	2.25
2	MP2A	Z	-5.01	2.25
3	MP2A	Mx	004	2.25
4	MP2B	X	-14.169	2.25
5	MP2B	Z	-8.18	2.25
6	MP2B	Mx	001	2.25
7	MP2C	X	-7.663	2.25
8	MP2C	Z	-4.424	2.25
9	MP2C	Mx	.003	2.25
10	MP1A	X	-22.348	.5
11	MP1A	Z	-12.903	.5
12	MP1A	Mx	.011	.5
13	MP1A	X	-22.348	5.5
14	MP1A	Z	-12.903	5.5
15	MP1A	Mx	.011	5.5
16	MP1B	X	-24.257	.5
17	MP1B	Z	-14.005	.5
18	MP1B	Mx	.002	.5
19	MP1B	X	-24.257	5.5
20	MP1B	Z	-14.005	5.5
21	MP1B	Mx	.002	5.5
22	MP1C	X	-21.995	.5
23	MP1C	Z	-12.699	.5
24	MP1C	Mx	012	.5
25	MP1C	X	-21.995	5.5
26	MP1C	Z	-12.699	5.5
27	MP1C	Mx	012	5.5
28	MP2A	X	-27.317	.5
29	MP2A	Z	-15.771	.5
30	MP2A	Mx	.025	.5
31	MP2A	X	-27.317	5.5
32	MP2A	Z	-15.771	5.5
33	MP2A	Mx	.025	5.5
34	MP2B	X	-33.178	.5
35	MP2B	Z	-19.155	.5
36	MP2B	Mx	023	.5
37	MP2B	X	-33.178	5.5
38	MP2B	Z	-19.155	5.5
39	MP2B	Mx	023	5.5
40	MP2C	X	-26.234	.5
41	MP2C	Z	-15.146	.5
42	MP2C	Mx	007	.5
43	MP2C	X	-26.234	5.5
44	MP2C	Z	-15.146	5.5
45	MP2C	Mx	007	5.5
46	MP2A	X	-27.317	.5
47	MP2A	Z	-15.771	.5
48	MP2A	Mx	.002	.5
49	MP2A		-27.317	5.5
50	MP2A	X Z	-15.771	5.5
51	MP2A	Mx	.002	5.5
52	MP2B	X	-33.178	.5
UZ	IVII ZU	X	-55.176	.0

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 25: Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-19.155	.5
54	MP2B	Mx	.03	.5
55	MP2B	X	-33.178	5.5
56	MP2B	Z	-19.155	5.5
57	MP2B	Mx	.03	5.5
58	MP2C	X	-26.234	.5
59	MP2C	Z	-15.146	.5
60	MP2C	Mx	022	.5
61	MP2C	X	-26.234	5.5
62	MP2C	Z	-15.146	5.5
63	MP2C	Mx	022	5.5
64	MP3A	X	-9.384	2
65	MP3A	Z	-5.418	2
66	MP3A	Mx	.005	2
67	MP3A	X	-9.384	4
68	MP3A	Z	-5.418	4
69	MP3A	Mx	.005	4
70	MP3B	X	-16.199	2
71	MP3B	Z	-9.352	2
72	MP3B	Mx	.002	2
73	MP3B	X	-16.199	4
74	MP3B	Z	-9.352	4
75	MP3B	Mx	.002	4
76	MP3C	X	-14.118	2
77	MP3C	Z	-8.151	2
78	MP3C	Mx	.004	2
79	MP3C	X	-14.118	4
80	MP3C	Z	-8.151	4
81	MP3C	Mx	.004	4
82	M100	X	-23.879	1
83	M100	Z	-13.787	1
84	M100	Mx	0	1
85	MP1A	X	-10.714	2.25
86	MP1A	Z	-6.186	2.25
87	MP1A	Mx	005	2.25
88	MP1B	X	-13.759	2.25
89	MP1B	Z	-7.944	2.25
90	MP1B	Mx	001	2.25
91	MP1C	X	-10.152	2.25
92	MP1C MP1C	Z	-10.132 -5.861	2.25
93	MP1C	Mx	.006	2.25
94	MP3A	X	-10.143	2.25
95	MP3A	Z		2.25
96	MP3A	Mx	-5.856 005	2.25
96	MP3B	X	-13.736	2.25
98	MP3B	Z	-13.736 -7.931	2.25
99		Mx		2.25
	MP3B		001	2.25
100	MP3C	X	-9.479 5.473	
101	MP3C	Z	-5.473	2.25
102	MP3C	Mx	.005	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-7.212	2.25
2	MP2A	Z	-12.492	2.25
3	MP2A	Mx	003	2.25
4	MP2B	X	-6.494	2.25
5	MP2B	Z	-11.247	2.25
6	MP2B	Mx	003	2.25
7	MP2C	X	-4.042	2.25
8	MP2C	Z	-7.001	2.25
9	MP2C	Mx	.003	2.25
10	MP1A	X	-13.668	.5
11	MP1A	Z	-23.674	.5
12	MP1A	Mx	.007	.5
13	MP1A	X	-13.668	5.5
14	MP1A	Z	-23.674	5.5
15	MP1A	Mx	.007	5.5
16	MP1B	X	-13.418	.5
17	MP1B	Z	-23.241	.5
18	MP1B	Mx	.009	.5
19	MP1B	X	-13.418	5.5
20	MP1B	Z	-23.241	5.5
21	MP1B	Mx	.009	5.5
22	MP1C	X	-12.566	.5
23	MP1C	Z	-21.765	.5
24	MP1C	Mx	012	.5
25	MP1C	X	-12.566	5.5
26	MP1C	Z	-21.765	5.5
27	MP1C	Mx	012	5.5
28	MP2A	X	-18.122	.5
29	MP2A	Z	-31.388	.5
30	MP2A	Mx	.031	.5
31	MP2A	X	-18.122	5.5
32	MP2A	Z	-31.388	5.5
33	MP2A	Mx	.031	5.5
34	MP2B	X	-17.355	.5
35	MP2B	Z	-30.059	.5
36	MP2B	Mx	008	.5
37	MP2B	Χ	-17.355	5.5
38	MP2B	Z	-30.059	5.5
39	MP2B	Mx	008	5.5
40	MP2C	X	-14.738	.5
41	MP2C	Z	-25.527	.5
42	MP2C	Mx	018	.5
43	MP2C	X	-14.738	5.5
44	MP2C	Z	-25.527	5.5
45	MP2C	Mx	018	5.5
46	MP2A	X	-18.122	.5
47	MP2A	Z	-31.388	.5
48	MP2A	Mx	013	.5
49	MP2A	X Z	-18.122	5.5
50	MP2A		-31.388	5.5
51	MP2A	Mx	013	5.5
52	MP2B	X	-17.355	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 26: Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-30.059	.5
54	MP2B	Mx	.03	.5
55	MP2B	X	-17.355	5.5
56	MP2B	Z	-30.059	5.5
57	MP2B	Mx	.03	5.5
58	MP2C	X	-14.738	.5
59	MP2C	Z	-25.527	.5
60	MP2C	Mx	011	.5
61	MP2C	X	-14.738	5.5
62	MP2C	Z	-25.527	5.5
63	MP2C	Mx	011	5.5
64	MP3A	X	-8.151	2
65	MP3A	Z	-14.118	2
66	MP3A	Mx	.004	2
67	MP3A	X	-8.151	4
68	MP3A	Z	-14.118	4
69	MP3A	Mx	.004	4
70	MP3B	X	-7.259	2
71	MP3B	Z	-12.573	2
72	MP3B	Mx	.005	2
73	MP3B	X	-7.259	4
74	MP3B	Z	-12.573	4
75	MP3B	Mx	.005	4
76	MP3C	X	-9.517	2
77	MP3C	Z	-16.484	2
78	MP3C	Mx	0	2
79	MP3C	X	-9.517	4
80	MP3C	Z	-16.484	4
81	MP3C	Mx	0	4
82	M100	X	-15.585	1
83	M100	Z	-26.994	1
84	M100	Mx	0	1
85	MP1A	X	-7.407	2.25
86	MP1A	Z	-12.829	2.25
87	MP1A	Mx	004	2.25
88	MP1B	X	-7.009	2.25
89	MP1B	Z	-12.139	2.25
90	MP1B	Mx	005	2.25
91	MP1C	X	-5.649	2.25
92	MP1C	Z	-9.784	2.25
93	MP1C	Mx	.006	2.25
94	MP3A	X	-7.297	2.25
95	MP3A	Z	-12.639	2.25
96	MP3A	Mx	004	2.25
97	MP3B	X	-6.827	2.25
98	MP3B	Z	-11.825	2.25
99	MP3B	Mx	004	2.25
100	MP3C	X	-5.223	2.25
101	MP3C		-9.046	2.25
102	MP3C	Mx	.005	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	-5.064	2.25
3	MP2A	Mx	0	2.25
4	MP2B	X	0	2.25
5	MP2B	Z	-2.466	2.25
6	MP2B	Mx	000966	2.25
7	MP2C	X	0	2.25
8	MP2C	Z	-3.338	2.25
9	MP2C	Mx	.001	2.25
10	MP1A	X	0	.5
11	MP1A	Z	-9.107	.5
12	MP1A	Mx	0	.5
13	MP1A	X	0	5.5
14	MP1A	Z	-9.107	5.5
15	MP1A	Mx	0	5.5
16	MP1B	X	0	.5
17	MP1B	Z	-8.09	.5
18	MP1B	Mx	.004	.5
19	MP1B	X	0	5.5
20	MP1B	Z	-8.09	5.5
21	MP1B	Mx	.004	5.5
22	MP1C	X	0	.5
23	MP1C	Z	-8.431	.5
24	MP1C	Mx	003	.5
25	MP1C	X	0	5.5
26	MP1C	Z	-8.431	5.5
27	MP1C	Mx	003	5.5
28	MP2A	X	0	.5
29	MP2A	Z	-12.75	.5
30	MP2A	Mx	.009	.5
31	MP2A	X	0	5.5
32	MP2A	Z	-12.75	5.5
33	MP2A	Mx	.009	5.5
34	MP2B	X	0	.5
35	MP2B	Z	-9.862	.5
36	MP2B	Mx	.002	.5
37	MP2B	X	0	5.5
38	MP2B	Z	-9.862	5.5
39	MP2B	Mx	.002	5.5
40	MP2C	X	0	.5
41	MP2C	Z	-10.831	.5
42	MP2C	Mx	009	.5
43	MP2C	X	0	5.5
44	MP2C	Z	-10.831	5.5
45	MP2C	Mx	009	5.5
46	MP2A	X	0	.5
47	MP2A	Z	-12.75	.5
48	MP2A	Mx	009	.5
49	MP2A	X	0	5.5
50	MP2A	Z	-12.75	5.5
51	MP2A	Mx	009	5.5
52	MP2B	X	0	.5
UZ	IVII ZU		.	٠٠

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-9.862	.5
54	MP2B	Mx	.007	.5
55	MP2B	X	0	5.5
56	MP2B	Z	-9.862	5.5
57	MP2B	Mx	.007	5.5
58	MP2C	X	0	.5
59	MP2C	Z	-10.831	.5
60	MP2C	Mx	.000783	.5
61	MP2C	X	0	5.5
62	MP2C	Z	-10.831	5.5
63	MP2C	Mx	.000783	5.5
64	MP3A	X	0	2
65	MP3A	Z	-6.072	2
66	MP3A	Mx	0	2
67	MP3A	X	0	4
68	MP3A	Z	-6.072	4
69	MP3A	Mx	0	4
70	MP3B	X	0	2
71	MP3B	Z	-2.809	2
72	MP3B	Mx	.001	2
73	MP3B	X	0	4
74	MP3B	Z	-2.809	4
75	MP3B	Mx	.001	4
76	MP3C	X	0	2
77	MP3C	Z	-5.148	2
78	MP3C	Mx	001	2
79	MP3C	X	0	4
80	MP3C	Z	-5.148	4
81	MP3C	Mx	001	4
82	M100	X	0	1
83	M100	Z	-10.489	1
84	M100	Mx	0	1
85	MP1A	X	0	2.25
86	MP1A	Z	-4.831	2.25
87	MP1A	Mx	0	2.25
88	MP1B	X	0	2.25
89	MP1B	Z	-3.417	2.25
90	MP1B	Mx	002	2.25
91	MP1C	X	0	2.25
92	MP1C	Z	-3.891	2.25
93	MP1C	Mx	.001	2.25
94	MP3A	X	0	2.25
95	MP3A	Z	-4.831	2.25
96	MP3A	Mx	0	2.25
97	MP3B	X	0	2.25
98	MP3B	Z	-3.16	2.25
99	MP3B	Mx	001	2.25
100	MP3C	X	0	2.25
101	MP3C	Z	-3.721	2.25
102	MP3C	Mx	.001	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.164	2.25
2	MP2A	Z	-3.749	2.25
3	MP2A	Mx	.000902	2.25
4	MP2B	X	1.105	2.25
5	MP2B	Z	-1.915	2.25
6	MP2B	Mx	000907	2.25
7	MP2C	X	2.36	2.25
8	MP2C	Z	-4.087	2.25
9	MP2C	Mx	.000672	2.25
10	MP1A	X	4.41	.5
11	MP1A	Z	-7.638	.5
12	MP1A	Mx	002	.5
13	MP1A	X	4.41	5.5
14	MP1A	Z	-7.638	5.5
15	MP1A	Mx	002	5.5
16	MP1B	X	3.995	.5
17	MP1B	Z	-6.92	.5
18	MP1B	Mx	.004	.5
19	MP1B	X	3.995	5.5
20	MP1B	Z	-6.92	5.5
21	MP1B	Mx	.004	5.5
22	MP1C	X	4.486	.5
23	MP1C	Z	-7.77	.5
24	MP1C	Mx	002	.5
25	MP1C	X	4.486	5.5
26	MP1C	Z	-7.77	5.5
27	MP1C	Mx	002	5.5
28	MP2A	X	5.966	.5
29	MP2A	Z	-10.334	.5
30	MP2A	Mx	.004	.5
31	MP2A	X	5.966	5.5
32	MP2A	Z	-10.334	5.5
33	MP2A	Mx	.004	5.5
34	MP2B	X	4.789	.5
35	MP2B	Z	-8.295	.5
36	MP2B	Mx	.006	.5
37	MP2B	X	4.789	5.5
38	MP2B	Z	-8.295	5.5
39	MP2B	Mx	.006	5.5
40	MP2C	X	6.184	.5
41	MP2C	Z	-10.711	.5
42	MP2C	Mx	01	.5
43	MP2C	X	6.184	5.5
44	MP2C	Z	-10.711	5.5
45	MP2C	Mx	01	5.5
46	MP2A	X	5.966	.5
47	MP2A	Z	-10.334	.5
48	MP2A	Mx	01	.5
49	MP2A	X	5.966	5.5
50	MP2A	Z	-10.334	5.5
51	MP2A	Mx	01	5.5
52	MP2B	X	4.789	.5
UZ.	WII ZD	, , , , , , , , , , , , , , , , , , ,	1.700	

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 28: Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-8.295	.5
54	MP2B	Mx	.004	.5
55	MP2B	X	4.789	5.5
56	MP2B	Z	-8.295	5.5
57	MP2B	Mx	.004	5.5
58	MP2C	X	6.184	.5
59	MP2C	Z	-10.711	.5
60	MP2C	Mx	.006	.5
61	MP2C	X	6.184	5.5
62	MP2C	Z	-10.711	5.5
63	MP2C	Mx	.006	5.5
64	MP3A	X	2.574	2
65	MP3A	Z	-4.458	2
66	MP3A	Mx	001	2
67	MP3A	X	2.574	4
68	MP3A	Z	-4.458	4
69	MP3A	Mx	001	4
70	MP3B	X	1.244	2
71	MP3B	Z	-2.155	2
72	MP3B	Mx	.001	2
73	MP3B	X	1.244	4
74	MP3B	Z	-2.155	4
75	MP3B	Mx	.001	4
76	MP3C	X	1.65	2
77	MP3C	Z	-2.858	2
78	MP3C	Mx	001	2
79	MP3C	X	1.65	4
80	MP3C	Z	-2.858	4
81	MP3C	Mx	001	4
82	M100	X	4.934	1
83	M100	Z	-8.546	1
84	M100	Mx	0	1
85	MP1A	X	2.215	2.25
86	MP1A	Z	-3.837	2.25
87	MP1A	Mx	.001	2.25
88	MP1B	X	1.639	2.25
89	MP1B	Z	-2.839	2.25
90	MP1B	Mx	002	2.25
91	MP1C	X	2.322	2.25
92	MP1C	Z	-4.022	2.25
93	MP1C	Mx	.000794	2.25
94	MP3A	X	2.179	2.25
95	MP3A	Z	-3.774	2.25
96	MP3A	Mx	.001	2.25
97	MP3B	X	1.498	2.25
98	MP3B	Z	-2.595	2.25
99	MP3B	Mx	001	2.25
100	MP3C	X	2.305	2.25
101	MP3C	Z	-3.992	2.25
102	MP3C	Mx	.000788	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.475	2.25
2	MP2A	Z	-1.429	2.25
3	MP2A	Mx	.001	2.25
4	MP2B	X	2.89	2.25
5	MP2B	Z	-1.669	2.25
6	MP2B	Mx	001	2.25
7	MP2C	X	4.309	2.25
8	MP2C	Z	-2.488	2.25
9	MP2C	Mx	00036	2.25
10	MP1A	X	7.139	.5
11	MP1A	Z	-4.122	.5
12	MP1A	Mx	004	.5
13	MP1A	X	7.139	5.5
14	MP1A	Z	-4.122	5.5
15	MP1A	Mx	004	5.5
16	MP1B	X	7.302	.5
17	MP1B	Z	-4.216	.5
18	MP1B	Mx	.003	.5
19	MP1B	X	7.302	5.5
20	MP1B	Z	-4.216	5.5
21	MP1B	Mx	.003	5.5
22	MP1C	X	7.857	.5
23	MP1C	Z	-4.536	.5
24	MP1C	Mx	.000788	.5
25	MP1C	X	7.857	5.5
26	MP1C	Z	-4.536	5.5
27	MP1C	Mx	.000788	5.5
28	MP2A	X	8.917	.5
29	MP2A	Z	-5.148	.5
30	MP2A	Mx	000812	.5
31	MP2A	X	8.917	5.5
32	MP2A	Z	-5.148	5.5
33	MP2A	Mx	000812	5.5
34	MP2B	X	9.38	.5
35	MP2B	Z	-5.415	.5
36	MP2B	Mx	.009	.5
37	MP2B	X	9.38	5.5
38	MP2B	Z	-5.415	5.5
39	MP2B	Mx	.009	5.5
40	MP2C	X	10.957	.5
41	MP2C	Z	-6.326	.5
42	MP2C	Mx	008	.5
43	MP2C	X	10.957	5.5
44	MP2C	Z	-6.326	5.5
45	MP2C	Mx	008	5.5
46	MP2A	X	8.917	.5
47	MP2A	Z	-5.148	.5
48	MP2A	Mx	008	.5
49	MP2A	X	8.917	5.5
50	MP2A	Z	-5.148	5.5
51	MP2A	Mx	008	5.5
52	MP2B	X	9.38	.5
72	WII ZD		0.00	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-5.415	.5
54	MP2B	Mx	000783	.5
55	MP2B	X	9.38	5.5
56	MP2B	Z	-5.415	5.5
57	MP2B	Mx	000783	5.5
58	MP2C	X	10.957	.5
59	MP2C	Z	-6.326	.5
60	MP2C	Mx	.01	.5
61	MP2C	X	10.957	5.5
62	MP2C	Z	-6.326	5.5
63	MP2C	Mx	.01	5.5
64	MP3A	X	2.858	2
65	MP3A	Z	-1.65	2
66	MP3A	Mx	001	2
67	MP3A	X	2.858	4
68	MP3A	Z	-1.65	4
69	MP3A	Mx	001	4
70	MP3B	X	3.381	2
71	MP3B	Z	-1.952	2
72	MP3B	Mx	.001	2
73	MP3B	X	3.381	4
74	MP3B	Z	-1.952	4
75	MP3B	Mx	.001	4
76	MP3C	X	2.059	2
77	MP3C	Z	-1.188	2
78	MP3C	Mx	001	2
79	MP3C	X	2.059	4
80	MP3C	Z	-1.188	4
81	MP3C	Mx	001	4
82	M100	X	7.469	1
83	M100	Z	-4.312	1
84	M100	Mx	0	1
85	MP1A	X	3.144	2.25
86	MP1A	Z	-1.815	2.25
87	MP1A	Mx	.002	2.25
88	MP1B	X	3.37	2.25
89	MP1B	Z	-1.946	2.25
90	MP1B	Mx	001	2.25
91	MP1C	X	4.142	2.25
92	MP1C	Z	-2.392	2.25
93	MP1C	Mx	000415	2.25
94	MP3A	X	2.955	2.25
95	MP3A	Z	-1.706	2.25
96	MP3A	Mx	.001	2.25
97	MP3B	X	3.222	2.25
98	MP3B	Z	-1.86	2.25
99	MP3B	Mx	001	2.25
100	MP3C	X	4.135	2.25
101	MP3C	Z	-2.387	2.25
102	MP3C	Mx	000415	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.122	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	.000884	2.25
4	MP2B	X	4.72	2.25
5	MP2B	Z	0	2.25
6	MP2B	Mx	000673	2.25
7	MP2C	X	3.848	2.25
8	MP2C	Z	0	2.25
9	MP2C	Mx	001	2.25
10	MP1A	X	7.955	.5
11	MP1A	Z	0	.5
12	MP1A	Mx	004	.5
13	MP1A	X	7.955	5.5
14	MP1A	Z	0	5.5
15	MP1A	Mx	004	5.5
16	MP1B	X	8.973	.5
17	MP1B	Z	0	.5
18	MP1B	Mx	.002	.5
19	MP1B	X	8.973	5.5
20	MP1B	Z	0	5.5
21	MP1B	Mx	.002	5.5
22	MP1C	X	8.631	.5
23	MP1C	Z	0	.5
24	MP1C	Mx	.003	.5
25	MP1C	X	8.631	5.5
26	MP1C	Z	0	5.5
27	MP1C	Mx	.003	5.5
28	MP2A	X	9.479	.5
29	MP2A	Z	0	.5
30	MP2A	Mx	005	.5
31	MP2A	X	9.479	5.5
32	MP2A	Z	0	5.5
33	MP2A	Mx	005	5.5
34	MP2B	X	12.368	.5
35	MP2B	Z	0	.5
36	MP2B	Mx	.01	.5
37	MP2B	X	12.368	5.5
38	MP2B	Z	0	5.5
39	MP2B	Mx	.01	5.5
40	MP2C	X	11.399	.5
41	MP2C	Z	0	.5
42	MP2C	Mx	003	.5
43	MP2C	X	11.399	5.5
44	MP2C	Z	0	5.5
45	MP2C	Mx	003	5.5
46	MP2A	X	9.479	.5
47	MP2A	Z	0	.5
48	MP2A	Mx	005	.5
49	MP2A	X	9.479	5.5
50	MP2A	Z	0	5.5
51	MP2A	Mx	005	5.5
52	MP2B	X	12.368	.5
UZ	IVII ZU		12.000	.0

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	0	.5
54	MP2B	Mx	006	.5
55	MP2B	X	12.368	5.5
56	MP2B	Z	0	5.5
57	MP2B	Mx	006	5.5
58	MP2C	X	11.399	.5
59	MP2C	Z	0	.5
60	MP2C	Mx	.01	.5
61	MP2C	X	11.399	5.5
62	MP2C	Z	0	5.5
63	MP2C	Mx	.01	5.5
64	MP3A	X	2.377	2
65	MP3A	Z	0	2
66	MP3A	Mx	001	2
67	MP3A	X	2.377	4
68	MP3A	Z	0	4
69	MP3A	Mx	001	4
70	MP3B	X	5.639	2
71	MP3B	Z	0	2
72	MP3B	Mx	.000964	2
73	MP3B	X	5.639	4
74	MP3B	Z	0	4
75	MP3B	Mx	.000964	4
76	MP3C	X	3.301	2
77	MP3C	Z	0	2
78	MP3C	Mx	001	2
79	MP3C	X	3.301	4
80	MP3C	Z	0	4
81	MP3C	Mx	001	4
82	M100	X	8.003	1
83	M100	Z	0	1
84	M100	Mx	0	1
85	MP1A	X	3.23	2.25
86	MP1A	Z	0	2.25
87	MP1A	Mx	.002	2.25
88	MP1B	X	4.644	2.25
89	MP1B	Z	0	2.25
90	MP1B	Mx	000794	2.25
91	MP1C	X	4.17	2.25
92	MP1C	Z	0	2.25
93	MP1C	Mx	001	2.25
94	MP3A	X	2.939	2.25
95	MP3A	Z	0	2.25
96	MP3A	Mx	.001	2.25
97	MP3B	X	4.61	2.25
98	MP3B	Z	0	2.25
99	MP3B	Mx	000788	2.25
100	MP3C	X	4.049	2.25
101	MP3C	Z	0	2.25
102	MP3C	Mx	001	2.25
102	MESC	IVIA	001	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

1 MP2A Z 1.429 2.25 2 MP2A Z 1.429 2.25 3 MP2A Mx .001 2.25 4 MP2B X 4.309 2.25 5 MP2B Z 2.488 2.25 6 MP2B Mx .00036 2.25 7 MP2C X 2.136 2.25 8 MP2C Z 1.233 2.25 9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A X 7.139 .5 12 MP1A MX 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.857 5.5 16 MP1A	
3 MP2A Mx .001 2.25 4 MP2B X 4.309 2.25 5 MP2B Z 2.488 2.25 6 MP2B Mx .00036 2.25 7 MP2C X 2.136 2.25 8 MP2C Z 1.233 2.25 9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A Z 4.122 .5 12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.139 5.5 14 MP1A X 7.857 5.5 15 MP1A Mx 004 5.5 17 MP1B X 7.857 5.5 17 MP1B	
4 MP2B X 4.309 2.25 5 MP2B Z 2.488 2.25 6 MP2B Mx .00036 2.25 7 MP2C X 2.136 2.25 8 MP2C Z 1.233 2.25 9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A X 7.139 .5 11 MP1A X 7.139 .5 12 MP1A MX 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.139 5.5 15 MP1A X 7.857 5.5 15 MP1B	
5 MP2B Z 2.488 2.25 6 MP2B Mx .00036 2.25 7 MP2C X 2.136 2.25 8 MP2C Z 1.233 2.25 9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A X 7.139 .5 12 MP1A MX 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.857 5.5 16 MP1B X 7.857 .5 17 MP1B X 7.857 .5 17 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B	
6 MP2B Mx .00036 2.25 7 MP2C X 2.136 2.25 8 MP2C Z 1.233 2.25 9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A Z 4.122 .5 12 MP1A MX 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.857 5.5 15 MP1B X 7.856 .5 16 MP1B	
7 MP2C X 2.136 2.25 8 MP2C Z 1.233 2.25 9 MP2C Mx 00466 2.25 10 MP1A X 7.139 .5 11 MP1A Z 4.122 .5 12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.139 5.5 16 MP1A X 7.139 5.5 15 MP1A X 7.857 5.5 16 MP1B X 7.857 .5 17 MP1B X 7.857 .5 18 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B <t< td=""><td></td></t<>	
8 MP2C Z 1.233 2.25 9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A Z 4.122 .5 12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A Z 4.122 5.5 15 MP1A X 7.857 .5 16 MP1B X 7.857 .5 17 MP1B X 7.857 .5 18 MP1B X 7.857 5.5 19 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B X 7.857 5.5 21 MP1B X 7.556 5.5 21 MP1B <t< td=""><td></td></t<>	
9 MP2C Mx 000966 2.25 10 MP1A X 7.139 .5 11 MP1A Z 4.122 .5 12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A Z 4.122 5.5 15 MP1A Mx 004 5.5 16 MP1B X 7.857 .5 17 MP1B X 7.857 .5 18 MP1B X 7.857 5.5 19 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B X 7.857 5.5 21 MP1B X 7.00788 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 5.5 23 MP1C	
10 MP1A X 7.139 .5 11 MP1A Z 4.122 .5 12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A X 7.139 5.5 15 MP1A X 7.139 5.5 16 MP1A X 7.139 5.5 15 MP1B X 7.857 5.5 16 MP1B X 7.857 5.5 17 MP1B X 7.857 5.5 20 MP1B X 7.200788 5.5 21 MP1B X 7.000788 5.5 22 MP1C	
11 MP1A Z 4.122 .5 12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A Z 4.122 5.5 15 MP1A Mx 004 5.5 16 MP1B X 7.857 .5 17 MP1B Z 4.536 .5 18 MP1B X 7.857 5.5 19 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B X 7.857 5.5 21 MP1B X 7.857 5.5 21 MP1B X 7.00788 5.5 22 MP1B X 7.006 .5 23 MP1C X 7.006 .5 24 MP1C X 7.006 5.5 25 MP1C <td< td=""><td></td></td<>	
12 MP1A Mx 004 .5 13 MP1A X 7.139 5.5 14 MP1A Z 4.122 5.5 15 MP1A Mx 004 5.5 16 MP1B X 7.857 .5 17 MP1B Z 4.536 .5 18 MP1B X 7.857 5.5 19 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B X 7.857 5.5 21 MP1B X 7.00788 5.5 22 MP1C X 7.006 .5 23 MP1C X 7.006 .5 24 MP1C X 7.006 5.5 25 MP1C X 7.006 5.5 26 MP1C X 7.006 5.5 27 MP1C Mx 8.917 .	
13 MP1A X 7.139 5.5 14 MP1A Z 4.122 5.5 15 MP1A Mx 004 5.5 16 MP1B X 7.857 .5 17 MP1B X 7.857 .5 18 MP1B MX 000788 .5 19 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B X 7.857 5.5 22 MP1B X 7.006 5.5 23 MP1C X 7.006 .5 24 MP1C X 7.006 5.5 25 MP1C	
14 MP1A Z 4.122 5.5 15 MP1A Mx 004 5.5 16 MP1B X 7.857 .5 17 MP1B Z 4.536 .5 18 MP1B MX 000788 .5 19 MP1B X 7.857 5.5 20 MP1B Z 4.536 5.5 20 MP1B X 7.00788 5.5 21 MP1B Mx 000788 5.5 21 MP1B Mx 000788 5.5 21 MP1B Mx 000788 5.5 22 MP1B X 7.006 5.5 23 MP1C X 7.006 5.5 24 MP1C X 7.006 5.5 25 MP1C X 7.006 5.5 26 MP1C X 7.006 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917<	
15 MP1A Mx 004 5.5 16 MP1B X 7.857 .5 17 MP1B Z 4.536 .5 18 MP1B MX 000788 .5 19 MP1B X 7.857 5.5 20 MP1B Z 4.536 5.5 21 MP1B Mx 000788 5.5 21 MP1B Mx 000788 5.5 22 MP1B Mx 000788 5.5 22 MP1B Mx 000788 5.5 23 MP1C X 7.006 .5 23 MP1C X 7.006 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C X 7.006 5.5 27 MP1C Mx .004 5.5 28 MP2A	
16 MP1B X 7.857 .5 17 MP1B Z 4.536 .5 18 MP1B Mx 000788 .5 19 MP1B X 7.857 5.5 20 MP1B X 7.857 5.5 21 MP1B Mx 000788 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C X 7.006 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A X 8.917 .5 30 MP2A X 8.917 5.5 31 MP2A X 8.917 5.5 32 MP2A X 8.917 5.5 33 MP2A X 8.917 5.5 33 MP2A X 8.917 5.5 33 MP2A	
17 MP1B Z 4.536 .5 18 MP1B Mx 000788 .5 19 MP1B X 7.857 5.5 20 MP1B Z 4.536 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C X 7.006 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A X 8.917 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A X 8.917 5.5 33 MP2A Mx 008 5.5	
18 MP1B Mx 000788 .5 19 MP1B X 7.857 5.5 20 MP1B Z 4.536 5.5 21 MP1B Mx 000788 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C X 7.006 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A X 8.917 .5 30 MP2A X 8.917 5.5 31 MP2A X 8.917 5.5 32 MP2A X 8.917 5.5 33 MP2A	
19 MP1B X 7.857 5.5 20 MP1B Z 4.536 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
19 MP1B X 7.857 5.5 20 MP1B Z 4.536 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
20 MP1B Z 4.536 5.5 21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
21 MP1B Mx 000788 5.5 22 MP1C X 7.006 .5 23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
23 MP1C Z 4.045 .5 24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
24 MP1C Mx .004 .5 25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
25 MP1C X 7.006 5.5 26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
26 MP1C Z 4.045 5.5 27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
27 MP1C Mx .004 5.5 28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
28 MP2A X 8.917 .5 29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
29 MP2A Z 5.148 .5 30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
30 MP2A Mx 008 .5 31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
31 MP2A X 8.917 5.5 32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
32 MP2A Z 5.148 5.5 33 MP2A Mx 008 5.5	
33 MP2A Mx008 5.5	
34 MP2B X 10.957 .5	
35 MP2B Z 6.326 .5	
36 MP2B Mx .008 .5	
37 MP2B X 10.957 5.5	
38 MP2B Z 6.326 5.5	
39 MP2B Mx .008 5.5	
40 MP2C X 8.541 .5	
41 MP2C Z 4.931 .5	
42 MP2C Mx .002 .5	
43 MP2C X 8.541 5.5	
44 MP2C Z 4.931 5.5	
45 MP2C Mx .002 5.5	
46 MP2A X 8.917 .5	
47 MP2A Z 5.148 .5	
48 MP2A Mx000812 .5	
49 MP2A X 8.917 5.5	
50 MP2A Z 5.148 5.5	
51 MP2A Mx000812 5.5	
52 MP2B X 10.957 .5	

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	6.326	.5
54	MP2B	Mx	01	.5
55	MP2B	X	10.957	5.5
56	MP2B	Z	6.326	5.5
57	MP2B	Mx	01	5.5
58	MP2C	X	8.541	.5
59	MP2C	Z	4.931	.5
60	MP2C	Mx	.007	.5
61	MP2C	X	8.541	5.5
62	MP2C	Z	4.931	5.5
63	MP2C	Mx	.007	5.5
64	MP3A	X	2.858	2
65	MP3A	Z	1.65	2
66	MP3A	Mx	001	2
67	MP3A	X	2.858	4
68	MP3A	Z	1.65	4
69	MP3A	Mx	001	4
70	MP3B	X	5.162	2
71	MP3B	Z	2.98	2
72	MP3B	Mx	000517	2
73	MP3B	X	5.162	4
74	MP3B	Z	2.98	4
75	MP3B	Mx	000517	4
76	MP3C	X	4.458	2
77	MP3C	Z	2.574	2
78	MP3C	Mx	001	2
79	MP3C	X	4.458	4
80	MP3C	Z	2.574	4
81	MP3C	Mx	001	4
82	M100	X	7.469	1
83	M100	Z	4.312	1
84	M100	Mx	0	1
85	MP1A	X	3.144	2.25
86	MP1A	Z	1.815	2.25
87	MP1A	Mx	.002	2.25
88	MP1B	X	4.142	2.25
89	MP1B	Z	2.392	2.25
90	MP1B	Mx	.000416	2.25
91	MP1C	X	2.959	2.25
92	MP1C	Z	1.708	2.25
93	MP1C	Mx	002	2.25
94	MP3A	X	2.955	2.25
95	MP3A	Z	1.706	2.25
96	MP3A	Mx	.001	2.25
97	MP3B	X	4.135	2.25
98	MP3B	Z	2.387	2.25
99	MP3B	Mx	.000414	2.25
100	MP3C	X	2.737	2.25
101	MP3C	Z	1.58	2.25
102	MP3C	Mx	001	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	2.164	2.25
2	MP2A	Z	3.749	2.25
3	MP2A	Mx	.000902	2.25
4	MP2B	X	1.924	2.25
5	MP2B	Z	3.333	2.25
6	MP2B	Mx	.001	2.25
7	MP2C	X	1.105	2.25
8	MP2C	Z	1.915	2.25
9	MP2C	Mx	000907	2.25
10	MP1A	X	4.41	.5
11	MP1A	Z	7.638	.5
12	MP1A	Mx	002	.5
13	MP1A	X	4.41	5.5
14	MP1A	Z	7.638	5.5
15	MP1A	Mx	002	5.5
16	MP1B	X	4.316	.5
17	MP1B	Z	7.475	.5
18	MP1B	Mx	003	.5
19	MP1B	X	4.316	5.5
20	MP1B	Z	7.475	5.5
21	MP1B	Mx	003	5.5
22	MP1C	X	3.995	.5
23	MP1C	Z	6.92	.5
24	MP1C	Mx	.004	.5
25	MP1C	X	3.995	5.5
26	MP1C	Z	6.92	5.5
27	MP1C	Mx	.004	5.5
28	MP2A	X	5.966	.5
29	MP2A	Z	10.334	.5
30	MP2A	Mx	01	.5
31	MP2A	X	5.966	5.5
32	MP2A	Z	10.334	5.5
33	MP2A	Mx	01	5.5
34	MP2B	X	5.699	.5
35	MP2B	Z	9.872	.5
36	MP2B	Mx	.003	.5
37	MP2B	X	5.699	5.5
38	MP2B	Z	9.872	5.5
39	MP2B	Mx	.003	5.5
40	MP2C	X	4.789	.5
41	MP2C	Z	8.295	.5
42	MP2C	Mx	.006	.5
43	MP2C	X	4.789	5.5
44	MP2C	Z	8.295	5.5
45	MP2C	Mx	.006	5.5
46	MP2A	X	5.966	.5
47	MP2A	Z	10.334	.5
48	MP2A	Mx	.004	.5
49	MP2A		5.966	5.5
50	MP2A	X Z	10.334	5.5
51	MP2A	Mx	.004	5.5
52	MP2B	X	5.699	.5
72	20		0.000	

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	9.872	.5
54	MP2B	Mx	01	.5
55	MP2B	X	5.699	5.5
56	MP2B	Z	9.872	5.5
57	MP2B	Mx	01	5.5
58	MP2C	X	4.789	.5
59	MP2C	Z	8.295	.5
60	MP2C	Mx	.004	.5
61	MP2C	X	4.789	5.5
62	MP2C	Z	8.295	5.5
63	MP2C	Mx	.004	5.5
64	MP3A	X	2.574	2
65	MP3A	Z	4.458	2
66	MP3A	Mx	001	2
67	MP3A	X	2.574	4
68	MP3A	Z	4.458	4
69	MP3A	Mx	001	4
70	MP3B	X	2.273	2
71	MP3B	Z	3.936	2
72	MP3B	Mx	001	2
73	MP3B	X	2.273	4
74	MP3B	Z	3.936	4
75	MP3B	Mx	001	4
76	MP3C	X	3.036	2
77	MP3C	Z	5.258	2
78	MP3C	Mx	0	2
79	MP3C	X	3.036	4
80	MP3C	Z	5.258	4
81	MP3C	Mx	0	4
82	M100	X	4.934	1
83	M100	Z	8.546	1
84	M100	Mx	0	1
85	MP1A	X	2.215	2.25
86	MP1A	Z	3.837	2.25
87	MP1A	Mx	.001	2.25
88	MP1B	X	2.085	2.25
89	MP1B	Z	3.611	2.25
90	MP1B	Mx	.001	2.25
91	MP1C	X	1.639	2.25
92	MP1C	Z	2.839	2.25
93	MP1C	Mx	002	2.25
94	MP3A	X	2.179	2.25
95	MP3A	Z	3.774	2.25
96	MP3A	Mx	.001	2.25
97	MP3B	X	2.025	2.25
98	MP3B	Z	3.507	2.25
99	MP3B	Mx	.001	2.25
100	MP3C	X	1.498	2.25
101	MP3C	Z	2.595	2.25
102	MP3C	Mx	001	2.25

Company Designer Job Number Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	0	2.25
2	MP2A	Z	5.064	2.25
3	MP2A	Mx	0	2.25
4	MP2B	X	0	2.25
5	MP2B	Z	2.466	2.25
6	MP2B	Mx	.000966	2.25
7	MP2C	X	0	2.25
8	MP2C	Z	3.338	2.25
9	MP2C	Mx	001	2.25
10	MP1A	X	0	.5
11	MP1A	Z	9.107	.5
12	MP1A	Mx	0	.5
13	MP1A	X	0	5.5
14	MP1A	Z	9.107	5.5
15	MP1A	Mx	0	5.5
16	MP1B	X	0	.5
17	MP1B	Z	8.09	.5
18	MP1B	Mx	004	.5
19	MP1B	X	0	5.5
20	MP1B	Z	8.09	5.5
21	MP1B	Mx	004	5.5
22	MP1C	X	0	.5
23	MP1C	Z	8.431	.5
24	MP1C	Mx	.003	.5
25	MP1C	X	0	5.5
26	MP1C	Z	8.431	5.5
27	MP1C	Mx	.003	5.5
28	MP2A	X	0	.5
29	MP2A	Z	12.75	.5
30	MP2A	Mx	009	.5
31	MP2A	X	0	5.5
32	MP2A	Z	12.75	5.5
33	MP2A	Mx	009	5.5
34	MP2B	X	0	.5
35	MP2B	Z	9.862	.5
36	MP2B	Mx	002	.5
37	MP2B	X	0	5.5
38	MP2B	Z	9.862	5.5
39	MP2B	Mx	002	5.5
40	MP2C	X	0	.5
41	MP2C	Z	10.831	.5
42	MP2C	Mx	.009	.5
43	MP2C	X	0	5.5
44	MP2C	Z	10.831	5.5
45	MP2C	Mx	.009	5.5
46	MP2A	X	0	.5
47	MP2A	Z	12.75	.5
48	MP2A	Mx	.009	.5
49	MP2A	X	0	5.5
50	MP2A	^ Z	12.75	5.5
51	MP2A	Mx	.009	5.5
52	MP2B	X	.009	.5
52	IVIFZD	^	U	.U

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	9.862	.5
54	MP2B	Mx	007	.5
55	MP2B	X	0	5.5
56	MP2B	Z	9.862	5.5
57	MP2B	Mx	007	5.5
58	MP2C	X	0	.5
59	MP2C	Z	10.831	.5
60	MP2C	Mx	000783	.5
61	MP2C	X	0	5.5
62	MP2C	Z	10.831	5.5
63	MP2C	Mx	000783	5.5
64	MP3A	X	0	2
65	MP3A	Z	6.072	2
66	MP3A	Mx	0	2
67	MP3A	X	0	4
68	MP3A	Z	6.072	4
69	MP3A	Mx	0	4
70	MP3B	X	0	2
71	MP3B	Z	2.809	2
72	MP3B	Mx	001	2
73	MP3B	X	0	4
74	MP3B	Z	2.809	4
75	MP3B	Mx	001	4
76	MP3C	X	0	2
77	MP3C	Z	5.148	2
78	MP3C	Mx	.001	2
79	MP3C	X	0	4
80	MP3C	Z	5.148	4
81	MP3C	Mx	.001	4
82	M100	X	0	1
83	M100	Z	10.489	1
84	M100	Mx	0	1
85	MP1A	X	0	2.25
86	MP1A	Z	4.831	2.25
87	MP1A	Mx	0	2.25
88	MP1B	X	0	2.25
89	MP1B	Z	3.417	2.25
90	MP1B	Mx	.002	2.25
91	MP1C	Χ	0	2.25
92	MP1C	Z	3.891	2.25
93	MP1C	Mx	001	2.25
94	MP3A	X	0	2.25
95	MP3A	Z	4.831	2.25
96	MP3A	Mx	0	2.25
97	MP3B	X	0	2.25
98	MP3B	Z	3.16	2.25
99	MP3B	Mx	.001	2.25
100	MP3C	X	0	2.25
101	MP3C	Z	3.721	2.25
102	MP3C	Mx	001	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-2.164	2.25
2	MP2A	Z	3.749	2.25
3	MP2A	Mx	000902	2.25
4	MP2B	X	-1.105	2.25
5	MP2B	Z	1.915	2.25
6	MP2B	Mx	.000907	2.25
7	MP2C	X	-2.36	2.25
8	MP2C	Z	4.087	2.25
9	MP2C	Mx	000672	2.25
10	MP1A	X	-4.41	.5
11	MP1A	Z	7.638	.5
12	MP1A	Mx	.002	.5
13	MP1A	X	-4.41	5.5
14	MP1A	Z	7.638	5.5
15	MP1A	Mx	.002	5.5
16	MP1B	X	-3.995	.5
17	MP1B	Z	6.92	.5
18	MP1B	Mx	004	.5
19	MP1B	X	-3.995	5.5
20	MP1B	Z	6.92	5.5
21	MP1B	Mx	004	5.5
22	MP1C	X	-4.486	.5
23	MP1C	Z	7.77	.5
24	MP1C	Mx	.002	.5
25	MP1C	X	-4.486	5.5
26	MP1C	Z	7.77	5.5
27	MP1C	Mx	.002	5.5
28	MP2A	X	-5.966	.5
29	MP2A	Z	10.334	.5
30	MP2A	Mx	004	.5
31	MP2A	X	-5.966	5.5
32	MP2A	Z	10.334	5.5
33	MP2A	Mx	004	5.5
34	MP2B	X	-4.789	.5
35	MP2B	Z	8.295	.5
36	MP2B	Mx	006	.5
37	MP2B	X	-4.789	5.5
38	MP2B	Z	8.295	5.5
39	MP2B	Mx	006	5.5
40	MP2C	X	-6.184	.5
41	MP2C	Z	10.711	.5
42	MP2C	Mx	.01	.5
43	MP2C	X	-6.184	5.5
44	MP2C	Z	10.711	5.5
45	MP2C	Mx	.01	5.5
46	MP2A	X	-5.966	.5
47	MP2A	Z	10.334	.5
48	MP2A	Mx	.01	.5
49	MP2A	X	-5.966	5.5
50	MP2A	Z	10.334	5.5
51	MP2A	Mx	.01	5.5
52	MP2B	X	-4.789	.5
UZ	IVII ZU		7.700	.0

: Maser Consulting

SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

WICHID	er i Offic Loads (D	LO 34 : Amerina V	viii (210 Deg)) (Continued)	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	8.295	.5
54	MP2B	Mx	004	.5
55	MP2B	X	-4.789	5.5
56	MP2B	Z	8.295	5.5
57	MP2B	Mx	004	5.5
58	MP2C	X	-6.184	.5
59	MP2C	Z	10.711	.5
60	MP2C	Mx	006	.5
61	MP2C	X	-6.184	5.5
62	MP2C	Z	10.711	5.5
63	MP2C	Mx	006	5.5
64	MP3A	X	-2.574	2
65	MP3A	Z	4.458	2
66	MP3A	Mx	.001	2
67	MP3A	X	-2.574	4
68	MP3A	Z	4.458	4
69	MP3A	Mx	.001	4
70	MP3B	X	-1.244	2
71	MP3B	Z	2.155	2
72	MP3B	Mx	001	2
73	MP3B	X	-1.244	4
74	MP3B	Z	2.155	4
75	MP3B	Mx	001	4
76	MP3C	X	-1.65	2
77	MP3C	Z	2.858	2
78	MP3C	Mx	.001	2
79	MP3C	X	-1.65	4
80	MP3C	Z	2.858	4
81	MP3C	Mx	.001	4
82	M100	X	-4.934	1
83	M100	Z	8.546	1
84	M100	Mx	0	1
85	MP1A	X	-2.215	2.25
86	MP1A	Z	3.837	2.25
87	MP1A	Mx	001	2.25
88	MP1B	X	-1.639	2.25
89	MP1B	Z	2.839	2.25
90	MP1B	Mx	.002	2.25
91	MP1C	X	-2.322	2.25
92	MP1C	Z	4.022	2.25
93	MP1C	Mx	000794	2.25
94	MP3A	X	-2.179	2.25
95	MP3A	Z	3.774	2.25
96	MP3A	Mx	001	2.25
97	MP3B	X	-1.498	2.25
98	MP3B	Z	2.595	2.25
99	MP3B	Mx	.001	2.25
100	MP3C	X	-2.305	2.25
101	MP3C	Z	3.992	2.25
102	MP3C	Mx	000788	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

1 MP2A X -2.475 2.25 2 MP2A Z 1.429 2.25 3 MP2A Mx 001 2.25 4 MP2B X -2.89 2.25 5 MP2B Z 1.669 2.25 6 MP2B Mx .001 2.25 7 MP2C X -4.309 2.25 8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
3 MP2A Mx 001 2.25 4 MP2B X -2.89 2.25 5 MP2B Z 1.669 2.25 6 MP2B Mx .001 2.25 7 MP2C X -4.309 2.25 8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
4 MP2B X -2.89 2.25 5 MP2B Z 1.669 2.25 6 MP2B Mx .001 2.25 7 MP2C X -4.309 2.25 8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
5 MP2B Z 1.669 2.25 6 MP2B Mx .001 2.25 7 MP2C X -4.309 2.25 8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
6 MP2B Mx .001 2.25 7 MP2C X -4.309 2.25 8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
7 MP2C X -4.309 2.25 8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
8 MP2C Z 2.488 2.25 9 MP2C Mx .00036 2.25	
9 MP2C Mx .00036 2.25	
40 MD44	
10 MP1A X -7.139 .5	
11 MP1A Z 4.122 .5	
12 MP1A Mx .004 .5	
13 MP1A X -7.139 5.5	
14 MP1A Z 4.122 5.5	
15 MP1A Mx .004 5.5	
16 MP1B X -7.302 .5	
17 MP1B Z 4.216 .5	
18 MP1B Mx003 .5	
19 MP1B X -7.302 5.5	
20 MP1B Z 4.216 5.5	
21 MP1B Mx003 5.5	
22 MP1C X -7.857 .5	
23 MP1C Z 4.536 .5	
24 MP1C Mx000788 .5	
25 MP1C X -7.857 5.5	
26 MP1C Z 4.536 5.5	
27 MP1C Mx000788 5.5	
28 MP2A X -8.917 .5	
29 MP2A Z 5.148 .5	
30 MP2A Mx .000812 .5	
31 MP2A X -8.917 5.5	
32 MP2A Z 5.148 5.5	
33 MP2A Mx .000812 5.5	
34 MP2B X -9.38 .5	
35 MP2B Z 5.415 .5	
36 MP2B Mx009 .5	
37 MP2B X -9.38 5.5	
38 MP2B Z 5.415 5.5	
39 MP2B Mx009 5.5	
40 MP2C X -10.957 .5	
41 MP2C Z 6.326 .5	
42 MP2C Mx .008 .5	
43 MP2C X -10.957 5.5	
44 MP2C Z 6.326 5.5	
45 MP2C Mx .008 5.5	
46 MP2A X -8.917 .5	
47 MP2A Z 5.148 .5	
48 MP2A Mx .008 .5	
49 MP2A X -8.917 5.5	
50 MP2A Z 5.148 5.5	
51 MP2A Mx .008 5.5	
52 MP2B X -9.38 .5	

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	5.415	.5
54	MP2B	Mx	.000783	.5
55	MP2B	X	-9.38	5.5
56	MP2B	Z	5.415	5.5
57	MP2B	Mx	.000783	5.5
58	MP2C	X	-10.957	.5
59	MP2C	Z	6.326	.5
60	MP2C	Mx	01	.5
61	MP2C	X	-10.957	5.5
62	MP2C	Z	6.326	5.5
63	MP2C	Mx	01	5.5
64	MP3A	X	-2.858	2
65	MP3A	Z	1.65	2
66	MP3A	Mx	.001	2
67	MP3A	X	-2.858	4
68	MP3A	Z	1.65	4
69	MP3A	Mx	.001	4
70	MP3B	X	-3.381	2
71	MP3B	Z	1.952	2
72	MP3B	Mx	001	2
73	MP3B	X	-3.381	4
74	MP3B	Z	1.952	4
75	MP3B	Mx	001	4
76	MP3C	X	-2.059	2
77	MP3C	Z	1.188	2
78	MP3C	Mx	.001	2
79	MP3C	X	-2.059	4
80	MP3C	Z	1.188	4
81	MP3C	Mx	.001	4
82	M100	X	-7.469	1
83	M100	Z	4.312	1
84	M100	Mx	0	1
85	MP1A	X	-3.144	2.25
86	MP1A	Z	1.815	2.25
87	MP1A	Mx	002	2.25
88	MP1B	X	-3.37	2.25
89	MP1B	Z	1.946	2.25
90	MP1B	Mx	.001	2.25
91	MP1C	X	-4.142	2.25
92	MP1C	Z	2.392	2.25
93	MP1C	Mx	.000415	2.25
94	MP3A	X	-2.955	2.25
95	MP3A	Z	1.706	2.25
96	MP3A	Mx	001	2.25
97	MP3B	X	-3.222	2.25
98	MP3B	Z	1.86	2.25
99	MP3B	Mx	.001	2.25
100	MP3C	X	-4.135	2.25
101	MP3C	Z	2.387	2.25
102	MP3C	Mx	.000415	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-2.122	2.25
2	MP2A	Z	0	2.25
3	MP2A	Mx	000884	2.25
4	MP2B	X	-4.72	2.25
5	MP2B	Z	0	2.25
6	MP2B	Mx	.000673	2.25
7	MP2C	X	-3.848	2.25
8	MP2C	Z	0	2.25
9	MP2C	Mx	.001	2.25
10	MP1A	X	-7.955	.5
11	MP1A	Z	0	.5
12	MP1A	Mx	.004	.5
13	MP1A	X	-7.955	5.5
14	MP1A	Z	0	5.5
15	MP1A	Mx	.004	5.5
16	MP1B	X	-8.973	.5
17	MP1B	Z	0	.5
18	MP1B	Mx	002	.5
19	MP1B	X	-8.973	5.5
20	MP1B	Z	0	5.5
21	MP1B	Mx	002	5.5
22	MP1C	X	-8.631	.5
23	MP1C	Z	0	.5
24	MP1C	Mx	003	.5
25	MP1C	X	-8.631	5.5
26	MP1C	Z	0	5.5
27	MP1C	Mx	003	5.5
28	MP2A	X	-9.479	.5
29	MP2A	Z	0	.5
30	MP2A	Mx	.005	.5
31	MP2A	X	-9.479	5.5
32	MP2A	Z	0	5.5
33	MP2A	Mx	.005	5.5
34	MP2B	X	-12.368	.5
35	MP2B	Z	0	.5
36	MP2B	Mx	01	.5
37	MP2B	X	-12.368	5.5
38	MP2B	Z	0	5.5
39	MP2B	Mx	01	5.5
40	MP2C	X	-11.399	.5
41	MP2C	Z	0	.5
42	MP2C	Mx	.003	.5
43	MP2C	X	-11.399	5.5
44	MP2C	Z	0	5.5
45	MP2C	Mx	.003	5.5
46	MP2A	X	-9.479	.5
47	MP2A	Z	0	.5
48	MP2A	Mx	.005	.5
49	MP2A		-9.479	5.5
50	MP2A	X Z	0	5.5
51	MP2A	Mx	.005	5.5
52	MP2B	X	-12.368	.5
	25			.,

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation[ft,%]
53	MP2B	Z	0	.5
54	MP2B	Mx	.006	.5
55	MP2B	X	-12.368	5.5
56	MP2B	Z	0	5.5
57	MP2B	Mx	.006	5.5
58	MP2C	X	-11.399	.5
59	MP2C	Z	0	.5
60	MP2C	Mx	01	.5
61	MP2C	X	-11.399	5.5
62	MP2C	Z	0	5.5
63	MP2C	Mx	01	5.5
64	MP3A	X	-2.377	2
65	MP3A	Z	0	2
66	MP3A	Mx	.001	2
67	MP3A	X	-2.377	4
68	MP3A	Z	0	4
69	MP3A	Mx	.001	4
70	MP3B	X	-5.639	2
71	MP3B	Z	0	2
72	MP3B	Mx	000964	2
73	MP3B	X	-5.639	4
74	MP3B	Z	0	4
75	MP3B	Mx	000964	4
76	MP3C	X	-3.301	2
77	MP3C	Z	0	2
78	MP3C	Mx	.001	2
79	MP3C	X	-3.301	4
80	MP3C	Z	0	4
81	MP3C	Mx	.001	4
82	M100	X	-8.003	1
83	M100	Z	0	1
84	M100	Mx	0	1
85	MP1A	X	-3.23	2.25
86	MP1A	Z	0	2.25
87	MP1A	Mx	002	2.25
88	MP1B	X	-4.644	2.25
89	MP1B	Z	0	2.25
90	MP1B	Mx	.000794	2.25
91	MP1C	X	-4.17	2.25
92	MP1C	Z	0	2.25
93	MP1C	Mx	.001	2.25
94	MP3A	X	-2.939	2.25
95	MP3A	Z	0	2.25
96	MP3A	Mx	001	2.25
97	MP3B	X	-4.61	2.25
98	MP3B	Z	0	2.25
99	MP3B	Mx	.000788	2.25
100	MP3C	X	-4.049	2.25
101	MP3C	Z	0	2.25
102	MP3C	Mx	.001	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-2.475	2.25
2	MP2A	Z	-1.429	2.25
3	MP2A	Mx	001	2.25
4	MP2B	X	-4.309	2.25
5	MP2B	Z	-2.488	2.25
6	MP2B	Mx	00036	2.25
7	MP2C	X	-2.136	2.25
8	MP2C	Z	-1.233	2.25
9	MP2C	Mx	.000966	2.25
10	MP1A	X	-7.139	.5
11	MP1A	Z	-4.122	.5
12	MP1A	Mx	.004	.5
13	MP1A	X	-7.139	5.5
14	MP1A	Z	-4.122	5.5
15	MP1A	Mx	.004	5.5
16	MP1B	X	-7.857	.5
17	MP1B	Z	-4.536	.5
18	MP1B	Mx	.000788	.5
19	MP1B	X	-7.857	5.5
20	MP1B	Z	-4.536	5.5
21	MP1B	Mx	.000788	5.5
22	MP1C	X	-7.006	.5
23	MP1C	Z	-4.045	.5
24	MP1C	Mx	004	.5
25	MP1C	X	-7.006	5.5
26	MP1C	Z	-4.045	5.5
27	MP1C	Mx	004	5.5
28	MP2A	X	-8.917	.5
29	MP2A	Z	-5.148	.5
30	MP2A	Mx	.008	.5
31	MP2A	X	-8.917	5.5
32	MP2A	Z	-5.148	5.5
33	MP2A	Mx	.008	5.5
34	MP2B	X	-10.957	.5
35	MP2B	Z	-6.326	.5
36	MP2B	Mx	008	.5
37	MP2B	Χ	-10.957	5.5
38	MP2B	Z	-6.326	5.5
39	MP2B	Mx	008	5.5
40	MP2C	X	-8.541	.5
41	MP2C	Z	-4.931	.5
42	MP2C	Mx	002	.5
43	MP2C	X	-8.541	5.5
44	MP2C	Z	-4.931	5.5
45	MP2C	Mx	002	5.5
46	MP2A	X	-8.917	.5
47	MP2A	Z	-5.148	.5
48	MP2A	Mx	.000812	.5
49	MP2A	X	-8.917	5.5
50	MP2A	Z	-5.148	5.5
51	MP2A	Mx	.000812	5.5
52	MP2B	X	-10.957	.5

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-6.326	.5
54	MP2B	Mx	.01	.5
55	MP2B	X	-10.957	5.5
56	MP2B	Z	-6.326	5.5
57	MP2B	Mx	.01	5.5
58	MP2C	X	-8.541	.5
59	MP2C	Z	-4.931	.5
60	MP2C	Mx	007	.5
61	MP2C	X	-8.541	5.5
62	MP2C	Z	-4.931	5.5
63	MP2C	Mx	007	5.5
64	MP3A	X	-2.858	2
65	MP3A	Z	-1.65	2
66	MP3A	Mx	.001	2
67	MP3A	X	-2.858	4
68	MP3A	Z	-1.65	4
69	MP3A	Mx	.001	4
70	MP3B	X	-5.162	2
71	MP3B	Z	-2.98	2
72	MP3B	Mx	.000517	2
73	MP3B	X	-5.162	4
74	MP3B	Z	-2.98	4
75	MP3B	Mx	.000517	4
76	MP3C	X	-4.458	2
77	MP3C	Z	-2.574	2
78	MP3C	Mx	.001	2
79	MP3C	X	-4.458	4
80	MP3C	Z	-2.574	4
81	MP3C	Mx	.001	4
82	M100	X	-7.469	1
83	M100	Z	-4.312	1
84	M100	Mx	0	1
85	MP1A	X	-3.144	2.25
86	MP1A	Z	-1.815	2.25
87	MP1A	Mx	002	2.25
88	MP1B	X	-4.142	2.25
89	MP1B	Z	-2.392	2.25
90	MP1B	Mx	000416	2.25
91	MP1C	X	-2.959	2.25
92	MP1C	Z	-1.708	2.25
93	MP1C	Mx	.002	2.25
94	MP3A	X	-2.955	2.25
95	MP3A	Z	-1.706	2.25
96	MP3A	Mx	001	2.25
97	MP3B	X	-4.135	2.25
98	MP3B	Z	-2.387	2.25
99	MP3B	Mx	000414	2.25
100	MP3C	X	-2.737	2.25
101	MP3C	Z	-1.58	2.25
102	MP3C	Mx	.001	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	-2.164	2.25
2	MP2A	Z	-3.749	2.25
3	MP2A	Mx	000902	2.25
4	MP2B	X	-1.924	2.25
5	MP2B	Z	-3.333	2.25
6	MP2B	Mx	001	2.25
7	MP2C	X	-1.105	2.25
8	MP2C	Z	-1.915	2.25
9	MP2C	Mx	.000907	2.25
10	MP1A	X	-4.41	.5
11	MP1A	Z	-7.638	.5
12	MP1A	Mx	.002	.5
13	MP1A	X	-4.41	5.5
14	MP1A	Z	-7.638	5.5
15	MP1A	Mx	.002	5.5
16	MP1B	X	-4.316	.5
17	MP1B	Z	-7.475	.5
18	MP1B	Mx	.003	.5
19	MP1B	X	-4.316	5.5
20	MP1B	Z	-7.475	5.5
21	MP1B	Mx	.003	5.5
22	MP1C	X	-3.995	.5
23	MP1C	Z	-6.92	.5
24	MP1C	Mx	004	.5
25	MP1C	X	-3.995	5.5
26	MP1C	Z	-6.92	5.5
27	MP1C	Mx	004	5.5
28	MP2A	X	-5.966	.5
29	MP2A	Z	-10.334	.5
30	MP2A	Mx	.01	.5
31	MP2A	X	-5.966	5.5
32	MP2A	Z	-10.334	5.5
33	MP2A	Mx	.01	5.5
34	MP2B	X	-5.699	.5
35	MP2B	Z	-9.872	.5
36	MP2B	Mx	003	.5
37	MP2B	X	-5.699	5.5
38	MP2B	Z	-9.872	5.5
39	MP2B	Mx	003	5.5
40	MP2C	X	-4.789	.5
41	MP2C	Z	-8.295	.5
42	MP2C	Mx	006	.5
43	MP2C	X	-4.789	5.5
44	MP2C	Z	-8.295	5.5
45	MP2C	Mx	006	5.5
46	MP2A	X	-5.966	.5
47	MP2A	Z	-10.334	.5
48	MP2A	Mx	004	.5
49	MP2A		-5.966	5.5
50	MP2A	X Z	-10.334	5.5
51	MP2A	Mx	004	5.5
52	MP2B	X	-5.699	.5
02	1111 20		0.000	.>

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2B	Z	-9.872	.5
54	MP2B	Mx	.01	.5
55	MP2B	X	-5.699	5.5
56	MP2B	Z	-9.872	5.5
57	MP2B	Mx	.01	5.5
58	MP2C	X	-4.789	.5
59	MP2C	Z	-8.295	.5
60	MP2C	Mx	004	.5
61	MP2C	X	-4.789	5.5
62	MP2C	Z	-8.295	5.5
63	MP2C	Mx	004	5.5
64	MP3A	X	-2.574	2
65	MP3A	Z	-4.458	2
66	MP3A	Mx	.001	2
67	MP3A	X	-2.574	4
68	MP3A	Z	-4.458	4
69	MP3A	Mx	.001	4
70	MP3B	X	-2.273	2
71	MP3B	Z	-3.936	2
72	MP3B	Mx	.001	2
73	MP3B	X	-2.273	4
74	MP3B	Z	-3.936	4
75	MP3B	Mx	.001	4
76	MP3C	X	-3.036	2
77	MP3C	Z	-5.258	2
78	MP3C	Mx	0	2
79	MP3C	X	-3.036	4
80	MP3C	Z	-5.258	4
81	MP3C	Mx	0	4
82	M100	X	-4.934	1
83	M100	Z	-8.546	1
84	M100	Mx	0	1
85	MP1A	X	-2.215	2.25
86	MP1A	Z	-3.837	2.25
87	MP1A	Mx	001	2.25
88	MP1B	X	-2.085	2.25
89	MP1B	Z	-3.611	2.25
90	MP1B	Mx	001	2.25
91	MP1C	X	-1.639	2.25
92	MP1C	Z	-2.839	2.25
93	MP1C	Mx	.002	2.25
94	MP3A	X	-2.179	2.25
95	MP3A	Z	-3.774	2.25
96	MP3A	Mx	001	2.25
97	MP3B	X	-2.025	2.25
98	MP3B	Z	-3.507	2.25
99	MP3B	Mx	001	2.25
100	MP3C	X Z	-1.498	2.25
101	MP3C		-2.595	2.25
102	MP3C	Mx	.001	2.25

: Maser Consulting

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Υ	-500	%10

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Υ	-500	%50

Member Point Loads (BLC 79 : Lv1)

		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
ĺ	1	M1	Υ	-250	%50

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Υ	-250	%100

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Υ	-2.438	2.25
2	MP2A	My	.001	2.25
3	MP2A	Mz	0	2.25
4	MP2B	Υ	-2.438	2.25
5	MP2B	My	000347	2.25
6	MP2B	Mz	.000954	2.25
7	MP2C	Υ	-2.438	2.25
8	MP2C	My	000653	2.25
9	MP2C	Mz	000778	2.25
10	MP1A	Υ	484	.5
11	MP1A	My	000242	.5
12	MP1A	Mz	0	.5
13	MP1A	Υ	484	5.5
14	MP1A	My	000242	5.5
15	MP1A	Mz	0	5.5
16	MP1B	Υ	484	.5
17	MP1B	My	8.3e-5	.5
18	MP1B	Mz	000227	.5
19	MP1B	Υ	484	5.5
20	MP1B	My	8.3e-5	5.5
21	MP1B	Mz	000227	5.5
22	MP1C	Υ	484	.5
23	MP1C	My	.000156	.5
24	MP1C	Mz	.000185	.5
25	MP1C	Υ	484	5.5
26	MP1C	My	.000156	5.5
27	MP1C	Mz	.000185	5.5
28	MP2A	Υ	-1.06	.5
29	MP2A	My	00053	.5
30	MP2A	Mz	000751	.5
31	MP2A	Υ	-1.06	5.5
32	MP2A	My	00053	5.5
33	MP2A	Mz	000751	5.5
34	MP2B	Υ	-1.06	.5

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
35	MP2B	My	.000887	.5
36	MP2B	Mz	000241	.5
37	MP2B	Υ	-1.06	5.5
38	MP2B	My	.000887	5.5
39	MP2B	Mz	000241	5.5
40	MP2C	Υ	-1.06	.5
41	MP2C	My	000234	.5
42	MP2C	Mz	.000888	.5
43	MP2C	Υ	-1.06	5.5
44	MP2C	My	000234	5.5
45	MP2C	Mz	.000888	5.5
46	MP2A	Y	-1.06	.5
47	MP2A	My	00053	.5
48	MP2A	Mz	.000751	.5
49	MP2A	Y	-1.06	5.5
50	MP2A	My	00053	5.5
51	MP2A	Mz	.000751	5.5
52	MP2B	Y	-1.06	.5
53	MP2B	My	000524	.5
54	MP2B	Mz	000755	.5
55	MP2B	Y	-1.06	5.5
56	MP2B	My	000524	5.5
57	MP2B	Mz	000755	5.5
58	MP2C	Y	-1.06	.5
59	MP2C	My	.000916	.5
60	MP2C	Mz	-7.7e-5	.5
61	MP2C	Y	-1.06	5.5
62	MP2C	My	.000916	5.5
63	MP2C	Mz	-7.7e-5	5.5
64	MP3A	Y	-2.007	2
65	MP3A	My	001	2
66	MP3A	Mz	0	2
67	MP3A	Y	-2.007	4
68	MP3A	My	001	4
69	MP3A	Mz	0	4
70	MP3B	Y	-2.007	2
71	MP3B	My	.000343	2
72	MP3B	Mz	000943	2
73	MP3B	Y	-2.007	4
74	MP3B	My	.000343	4
75	MP3B	Mz	000943	4
76	MP3C	Y	-2.007	2
77	MP3C	My	000869	2
78	MP3C	Mz	.000502	2
79	MP3C	Y	-2.007	4
80	MP3C	My	000869	4
81	MP3C	Mz	.000502	4
82	M100	Y	-1.475	1
83	M100	My	0	1
84	M100	Mz	0	1
85	MP1A	Y	-3.442	2.25
86	MP1A	My	.002	2.25
00	IVIFTA	iviy	.002	2.20

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
87	MP1A	Mz	0	2.25
88	MP1B	Υ	-3.442	2.25
89	MP1B	My	000589	2.25
90	MP1B	Mz	.002	2.25
91	MP1C	Υ	-3.442	2.25
92	MP1C	My	001	2.25
93	MP1C	Mz	001	2.25
94	MP3A	Υ	-3.239	2.25
95	MP3A	My	.002	2.25
96	MP3A	Mz	0	2.25
97	MP3B	Υ	-3.239	2.25
98	MP3B	My	000554	2.25
99	MP3B	Mz	.002	2.25
100	MP3C	Υ	-3.239	2.25
101	MP3C	My	001	2.25
102	MP3C	Mz	001	2.25

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	Z	-6.094	2.25
2	MP2A	Mx	0	2.25
3	MP2B	Z	-6.094	2.25
4	MP2B	Mx	002	2.25
5	MP2C	Z	-6.094	2.25
6	MP2C	Mx	.002	2.25
7	MP1A	Z	-1.21	.5
8	MP1A	Mx	0	.5
9	MP1A	Z	-1.21	5.5
10	MP1A	Mx	0	5.5
11	MP1B	Z	-1.21	.5
12	MP1B	Mx	.000568	.5
13	MP1B	Z	-1.21	5.5
14	MP1B	Mx	.000568	5.5
15	MP1C	Z	-1.21	.5
16	MP1C	Mx	000463	.5
17	MP1C	Z	-1.21	5.5
18	MP1C	Mx	000463	5.5
19	MP2A	Z	-2.65	.5
20	MP2A	Mx	.002	.5
21	MP2A	Z	-2.65	5.5
22	MP2A	Mx	.002	5.5
23	MP2B	Z	-2.65	.5
24	MP2B	Mx	.000603	.5
25	MP2B	Z	-2.65	5.5
26	MP2B	Mx	.000603	5.5
27	MP2C	Z	-2.65	.5
28	MP2C	Mx	002	.5
29	MP2C	Z	-2.65	5.5
30	MP2C	Mx	002	5.5
31	MP2A	Z	-2.65	.5
32	MP2A	Mx	002	.5

Model Name

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 82: Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2A	Z	-2.65	5.5
34	MP2A	Mx	002	5.5
35	MP2B	Z	-2.65	.5
36	MP2B	Mx	.002	.5
37	MP2B	Z	-2.65	5.5
38	MP2B	Mx	.002	5.5
39	MP2C	Z	-2.65	.5
40	MP2C	Mx	.000192	.5
41	MP2C	Z	-2.65	5.5
42	MP2C	Mx	.000192	5.5
43	MP3A	Z	-5.017	2
44	MP3A	Mx	0	2
45	MP3A	Z	-5.017	4
46	MP3A	Mx	0	4
47	MP3B	Z	-5.017	2
48	MP3B	Mx	.002	2
49	MP3B	Z	-5.017	4
50	MP3B	Mx	.002	4
51	MP3C	Z	-5.017	2
52	MP3C	Mx	001	2
53	MP3C	Z	-5.017	4
54	MP3C	Mx	001	4
55	M100	Z	-3.686	1
56	M100	Mx	0	1
57	MP1A	Z	-8.605	2.25
58	MP1A	Mx	0	2.25
59	MP1B	Z	-8.605	2.25
60	MP1B	Mx	004	2.25
61	MP1C	Z	-8.605	2.25
62	MP1C	Mx	.003	2.25
63	MP3A	Z	-8.099	2.25
64	MP3A	Mx	0	2.25
65	MP3B	Z	-8.099	2.25
66	MP3B	Mx	004	2.25
67	MP3C	Z	-8.099	2.25
68	MP3C	Mx	.003	2.25

Member Point Loads (BLC 83: Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP2A	X	6.094	2.25
2	MP2A	Mx	.003	2.25
3	MP2B	X	6.094	2.25
4	MP2B	Mx	000868	2.25
5	MP2C	X	6.094	2.25
6	MP2C	Mx	002	2.25
7	MP1A	X	1.21	.5
8	MP1A	Mx	000605	.5
9	MP1A	X	1.21	5.5
10	MP1A	Mx	000605	5.5
11	MP1B	X	1.21	.5
12	MP1B	Mx	.000207	.5

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Lo cation [ft, %]
13	MP1B	X	1.21	5.5
14	MP1B	Mx	.000207	5.5
15	MP1C	X	1.21	.5
16	MP1C	Mx	.000389	.5
17	MP1C	X	1.21	5.5
18	MP1C	Mx	.000389	5.5
19	MP2A	X	2.65	.5
20	MP2A	Mx	001	.5
21	MP2A	X	2.65	5.5
22	MP2A	Mx	001	5.5
23	MP2B	X	2.65	.5
24	MP2B	Mx	.002	.5
25	MP2B	X	2.65	5.5
26	MP2B	Mx	.002	5.5
27	MP2C	X	2.65	.5
28	MP2C	Mx	000586	.5
29	MP2C	X	2.65	5.5
30	MP2C	Mx	000586	5.5
31	MP2A	X	2.65	.5
32	MP2A	Mx	001	.5
33	MP2A	X	2.65	5.5
34	MP2A	Mx	001	5.5
35	MP2B	Χ	2.65	.5
36	MP2B	Mx	001	.5
37	MP2B	X	2.65	5.5
38	MP2B	Mx	001	5.5
39	MP2C	X	2.65	.5
40	MP2C	Mx	.002	.5
41	MP2C	X	2.65	5.5
42	MP2C	Mx	.002	5.5
43	MP3A	X	5.017	2
44	MP3A	Mx	003	2
45	MP3A	X	5.017	4
46	MP3A	Mx	003	4
47	MP3B	X	5.017	2
48	MP3B	Mx	.000858	2
49	MP3B	X	5.017	4
50	MP3B	Mx	.000858	4
51	MP3C	X	5.017	2
52	MP3C	Mx	002	2
53	MP3C	X	5.017	4
54	MP3C	Mx	002	4
55	M100	X	3.686	1
56	M100	Mx	0	1
57	MP1A	X	8.605	2.25
58	MP1A	Mx	.004	2.25
59	MP1B	X	8.605	2.25
60	MP1B	Mx	001	2.25
61	MP1C	X	8.605	2.25
62	MP1C	Mx	003	2.25
63	MP3A	X	8.099	2.25
64	MP3A	Mx	.004	2.25

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
65	MP3B	X	8.099	2.25
66	MP3B	Mx	001	2.25
67	MP3C	X	8.099	2.25
68	MP3C	Mx	003	2.25

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	Υ	-9.512	-9.512	0	%100
2	M52A	Υ	-9.512	-9.512	0	%100
3	M76A	Υ	-9.512	-9.512	0	%100
4	M10	Υ	-7.534	-7.534	0	%100
5	M43	Υ	-7.534	-7.534	0	%100
6	M53	Υ	-7.534	-7.534	0	%100
7	M54	Y	-7.534	-7.534	0	%100
8	M77A	Υ	-7.534	-7.534	0	%100
9	M78	Υ	-7.534	-7.534	0	%100
10	M100	Υ	-4.922	-4.922	0	%100
11	MP3A	Υ	-4.922	-4.922	0	%100
12	MP4A	Υ	-4.922	-4.922	0	%100
13	MP2A	Υ	-4.922	-4.922	0	%100
14	MP1A	Υ	-4.922	-4.922	0	%100
15	MP3B	Y	-4.922	-4.922	0	%100
16	MP4B	Υ	-4.922	-4.922	0	%100
17	MP2B	Υ	-4.922	-4.922	0	%100
18	MP1B	Υ	-4.922	-4.922	0	%100
19	MP3C	Υ	-4.922	-4.922	0	%100
20	MP4C	Υ	-4.922	-4.922	0	%100
21	MP2C	Υ	-4.922	-4.922	0	%100
22	MP1C	Υ	-4.922	-4.922	0	%100
23	M123	Υ	-7.534	-7.534	0	%100
24	M124	Υ	-7.534	-7.534	0	%100
25	M125	Υ	-7.534	-7.534	0	%100
26	M102	Υ	-5.622	-5.622	0	%100
27	M107	Υ	-5.622	-5.622	0	%100
28	M108	Υ	-5.622	-5.622	0	%100
29	M126	Υ	-10.517	-10.517	0	%100
30	M127	Υ	-10.517	-10.517	0	%100
31	M128	Υ	-10.517	-10.517	0	%100
32	M51B	Υ	-5.557	-5.557	0	%100
33	M52B	Υ	-5.557	-5.557	0	%100
34	M58A	Υ	-5.557	-5.557	0	%100
35	M59A	Υ	-5.557	-5.557	0	%100
36	M82	Υ	-5.557	-5.557	0	%100
37	M83A	Υ	-5.557	-5.557	0	%100
38	M1	Υ	-6.496	-6.496	0	%100
39	M82A	Υ	-6.496	-6.496	0	%100
40	M91B	Υ	-6.496	-6.496	0	%100
41	M76	Υ	-10.009	-10.009	0	%100
42	M77	Υ	-10.009	-10.009	0	%100
43	M84	Υ	-10.009	-10.009	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
44	M85	Υ	-10.009	-10.009	0	%100
45	M63	Υ	-10.009	-10.009	0	%100
46	M64	Υ	-10.009	-10.009	0	%100
47	M68	Υ	-10.009	-10.009	0	%100
48	M69	Υ	-10.009	-10.009	0	%100
49	M87	Υ	-10.009	-10.009	0	%100
50	M88A	Υ	-10.009	-10.009	0	%100
51	M92A	Υ	-10.009	-10.009	0	%100
52	M93	Υ	-10.009	-10.009	0	%100
53	M46	Υ	-10.021	-10.021	0	%100
54	M80	Υ	-10.021	-10.021	0	%100
55	M91	Υ	-10.021	-10.021	0	%100
56	M55	Υ	-10.021	-10.021	0	%100
57	M66	Υ	-10.021	-10.021	0	%100
58	M71	Υ	-10.021	-10.021	0	%100
59	M79A	Υ	-10.021	-10.021	0	%100
60	M90	Υ	-10.021	-10.021	0	%100
61	M95	Υ	-10.021	-10.021	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	-11.428	-11.428	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	-11.428	-11.428	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	-14.573	-14.573	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	-14.573	-14.573	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	-3.643	-3.643	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	-3.643	-3.643	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	-3.643	-3.643	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	-3.643	-3.643	0	%100
19	M100	X	0	0	0	%100
20	M100	Z	-7.632	-7.632	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	-9.333	-9.333	0	%100
23	MP4A	X	0	0	0	%100
24	MP4A	Z	-9.333	-9.333	0	%100
25	MP2A	X	0	0	0	%100
26	MP2A	Z	-9.333	-9.333	0	%100
27	MP1A	X	0	0	0	%100
28	MP1A	Z	-9.333	-9.333	0	%100
29	MP3B	X	0	0	0	%100
30	MP3B	Z	-9.333	-9.333	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

32		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
33	31	MP4B		0	0	0	%100
34 MP2B Z -9.333 -9.333 0 %100 36 MP1B X 0 0 0 %100 37 MP3C X 0 0 0 0 %100 38 MP3C X 0 0 0 %100 %100 39 MP4C X 0 0 0 %100 %100 40 MP4C Z -9.333 -9.333 0 %100 41 MP2C Z -9.333 -9.333 0 %100 42 MP2C Z -9.333 -9.333 0 %100 43 MP1C X 0 0 0 %100 44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 %100 45 M123 X 0 0 0 %100 46	32	MP4B	Z	-9.333	-9.333	0	%100
34 MP2B Z -9.333 -9.333 0 %100 36 MP1B X 0 0 0 %100 37 MP3C X 0 0 0 0 %100 38 MP3C X 0 0 0 %100 %100 39 MP4C X 0 0 0 %100 %100 40 MP4C Z -9.333 -9.333 0 %100 41 MP2C Z -9.333 -9.333 0 %100 42 MP2C Z -9.333 -9.333 0 %100 43 MP1C X 0 0 0 %100 44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 %100 45 M123 X 0 0 0 %100 46	33	MP2B	X	0	0	0	%100
35	34	MP2B	Z	-9.333	-9.333	0	%100
36						0	
37			Z	-9.333			
38 MP3C Z -9.333 -9.333 0 % 100 39 MP4C X 0 0 0 % 100 40 MP4C Z -9.333 -9.333 0 % 100 41 MP2C X 0 0 0 0 % 100 42 MP2C Z -9.333 -9.333 0 % 100 43 MP1C X 0 0 0 % 100 44 MP1C Z -9.333 -9.333 0 % 100 45 M123 X 0 0 0 % 100 46 M123 X 0 0 0 % 100 47 M124 X 0 0 0 % 100 48 M124 Z -13.891 -13.891 0 % 100 50 M125 X 0 0 0 % 100 51 M102							
39			Z				
40 MP4C Z -9.333 -9.333 0 %100 41 MP2C X 0 0 0 %100 42 MP2C Z -9.333 -9.333 0 %100 43 MP1C X 0 0 0 %100 44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 %100 46 M123 Z -3.473 -3.473 0 %100 47 M124 X 0 0 0 %100 49 M125 X 0 0 0 %100 50 M126 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X							
41 MP2C X 0 0 %100 42 MP2C Z -9.333 -9.333 0 %100 43 MP1C X 0 0 0 %100 44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 %100 46 M123 X 0 0 0 %100 47 M124 X 0 0 0 %100 47 M124 X 0 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 X 0 0			7				
42 MP2C Z -9.333 -9.333 0 %100 43 MP1C X 0 0 0 %100 44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 %100 46 M123 Z -3.473 -3.473 0 %100 47 M124 X 0 0 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 X 0 0 0 %100 53 M107 X 0 0 0 %100 54 M107 Z<							
43 MP1C X 0 0 %100 44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 0 %100 46 M123 Z -3.473 -3.473 0 %100 47 M124 X 0 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X			7				
44 MP1C Z -9.333 -9.333 0 %100 45 M123 X 0 0 0 %100 46 M123 Z -3.473 3.473 0 %100 47 M124 X 0 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 X 0 0 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 X 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
45 M123 X 0 0 0 %100 46 M123 Z -3.473 -3.473 0 %100 47 M124 X 0 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 55 M108 X 0 0 0 %100 56 M108 Z			7				
46 M123 Z -3.473 -3.473 0 %100 47 M124 X 0 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 <trr> 59 M127 X</trr>							
47 M124 X 0 0 %100 48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 58 M126 X 0 0 0 %100 59 M127 X 0							
48 M124 Z -13.891 -13.891 0 %100 49 M125 X 0 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 61 M128 X							
49 M125 X 0 0 %100 50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X							
50 M125 Z -3.473 -3.473 0 %100 51 M102 X 0 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 <							
51 M102 X 0 0 %100 52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 X 0 0 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 X 0			^				
52 M102 Z -11.298 -11.298 0 %100 53 M107 X 0 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 X 0 0 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 X 0 0 0 %100 63 M518							
53 M107 X 0 0 %100 54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0			7				
54 M107 Z -2.824 -2.824 0 %100 55 M108 X 0 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 67 M58A X							
55 M108 X 0 0 %100 56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 68 M58A X 0			X				
56 M108 Z -2.824 -2.824 0 %100 57 M126 X 0 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B X 0 0 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
57 M126 X 0 0 %100 58 M126 Z -10.549 -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 70 M59A X 0			X				
58 M126 Z -10.549 0 %100 59 M127 X 0 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B X 0 0 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 70 M59A X 0 0 0 %100 71 M82 X 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
59 M127 X 0 0 %100 60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 72 M82 Z -13.092<			X				
60 M127 Z -16.294 -16.294 0 %100 61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 72 M82 Z -13.092 -13.092 0 %100 74 M83A							
61 M128 X 0 0 0 %100 62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 74 M83A X 0 0 0 %100 75 M1 X 0					-		
62 M128 Z -16.294 -16.294 0 %100 63 M51B X 0 0 0 %100 64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
63 M51B X 0 0 %100 64 M51B Z -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100							
64 M51B Z -3.273 -3.273 0 %100 65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100							
65 M52B X 0 0 0 %100 66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100							
66 M52B Z -3.273 -3.273 0 %100 67 M58A X 0 0 0 %100 68 M58A Z -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100							
67 M58A X 0 0 0 %100 68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100		M52B	X				
68 M58A Z -3.273 -3.273 0 %100 69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100		M52B		-3.273	-3.273	0	%100
69 M59A X 0 0 0 %100 70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100			X			0	%100
70 M59A Z -13.092 -13.092 0 %100 71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100				-3.273	-3.273		
71 M82 X 0 0 0 %100 72 M82 Z -13.092 -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100			X				%100
72 M82 Z -13.092 0 %100 73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100		M59A		-13.092	-13.092	0	%100
73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100	71	M82	X	0	0	0	%100
73 M83A X 0 0 0 %100 74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100	72	M82	Z	-13.092	-13.092	0	%100
74 M83A Z -3.273 -3.273 0 %100 75 M1 X 0 0 0 %100	73	M83A	X	0	0	0	%100
75 M1 X 0 0 0 %100	74	M83A	Z	-3.273	-3.273	0	%100
							%100
10 IVII	76	M1	Z	-13.725	-13.725	0	%100
							%100
			Z	-			%100
							%100
				_			%100
							%100
							%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
83	M77	X	0	0	0	%100
84	M77	Z	-6.004	-6.004	0	%100
85	M84	X	0	0	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	-6.004	-6.004	0	%100
89	M63	Х	0	0	0	%100
90	M63	Z	-17.684	-17.684	0	%100
91	M64	Х	0	0	0	%100
92	M64	Z	-6.004	-6.004	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	-17.684	-17.684	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	-24.015	-24.015	0	%100
97	M87	Х	0	0	0	%100
98	M87	Z	-17.684	-17.684	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	-24.015	-24.015	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	-17.684	-17.684	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	-6.004	-6.004	0	%100
105	M46	Х	0	0	0	%100
106	M46	Z	-23.578	-23.578	0	%100
107	M80	Х	0	0	0	%100
108	M80	Z	-6.324	-6.324	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	-6.324	-6.324	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	-5.895	-5.895	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	-6.324	-6.324	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	-25.294	-25.294	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	-5.895	-5.895	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	-25.294	-25.294	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	-6.324	-6.324	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	1.905	1.905	0	%100
2	M4	Z	-3.299	-3.299	0	%100
3	M52A	X	1.905	1.905	0	%100
4	M52A	Z	-3.299	-3.299	0	%100
5	M76A	X	7.618	7.618	0	%100
6	M76A	Z	-13.195	-13.195	0	%100
7	M10	X	5.465	5.465	0	%100
8	M10	Z	-9.465	-9.465	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M43	X	5.465	5.465	0	%100
10	M43	Z	-9.465	-9.465	0	%100
11	M53	X	5.465	5.465	0	%100
12	M53	Z	-9.465	-9.465	0	%100
13	M54	X	5.465	5.465	0	%100
14	M54	Z	-9.465	-9.465	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	3.816	3.816	0	%100
20	M100	Z	-6.609	-6.609	0	%100
21	MP3A	×	4.666	4.666	0	%100
22	MP3A	Z	-8.083	-8.083	0	%100
23	MP4A	X	4.666	4.666	0	%100
24	MP4A	Z	-8.083	-8.083	0	%100
25	MP2A	X	4.666	4.666	0	%100
26	MP2A	Z	-8.083	-8.083	0	%100
27	MP1A	X	4.666	4.666	0	%100 %100
28	MP1A	Z	-8.083	-8.083	0	%100
29	MP3B	X	4.666	4.666	0	%100 %100
30	MP3B	Z	-8.083	-8.083	0	%100 %100
31	MP4B	X	4.666	4.666	0	%100 %100
32	MP4B	Z	-8.083	-8.083	0	%100 %100
33	MP2B	X	4.666	4.666	0	%100 %100
		Z	-8.083		0	%100 %100
34	MP2B			-8.083	0	
35 36	MP1B	X Z	4.666	4.666	0	%100 %100
37	MP1B	X	-8.083	-8.083	0	%100 %100
38	MP3C	Z	4.666	4.666	0	%100 %100
	MP3C		-8.083	-8.083		%100
39	MP4C	X Z	4.666	4.666	0	%100
40	MP4C		-8.083	-8.083	0	%100
41	MP2C	X	4.666	4.666	0	%100
42	MP2C	Z	-8.083	-8.083	0	%100
43	MP1C	X	4.666	4.666	0	%100
44	MP1C	Z	-8.083	-8.083	0	%100
45	M123	X	5.209	5.209	0	%100
46	M123	Z	-9.022	-9.022	0	%100
47	M124	X	5.209	5.209	0	%100
48	M124	Z	-9.022	-9.022	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	4.237	4.237	0	%100
52	M102	Z	-7.338	-7.338	0	%100
53	M107	X	4.237	4.237	0	%100
54	M107	Z	-7.338	-7.338	0	%100
55	M108	X	0	0	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	6.232	6.232	0	%100
58	M126	Z	-10.794	-10.794	0	%100
59	M127	X	6.232	6.232	0	%100
60	M127	Z	-10.794	-10.794	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
61	M128	X	9.105	9.105	0	%100
62	M128	Z	-15.77	-15.77	0	%100
63	M51B	X	4.91	4.91	0	%100
64	M51B	Z	-8.504	-8.504	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	4.91	4.91	0	%100
70	M59A	Z	-8.504	-8.504	0	%100
71	M82	X	4.91	4.91	0	%100
72	M82	Z	-8.504	-8.504	0	%100
73	M83A	X	4.91	4.91	0	%100
74	M83A	Z	-8.504	-8.504	0	%100
75	M1	X	5.147	5.147	0	%100
76	M1	Z	-8.915	-8.915	0	%100
77	M82A	X	5.147	5.147	0	%100
78	M82A	Z	-8.915	-8.915	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	2.947	2.947	0	%100
82	M76	Z	-5.105	-5.105	0	%100
83	M77	X	9.006	9.006	0	%100
84	M77	Z	-15.598	-15.598	0	%100
85	M84	X	2.947	2.947	0	%100
86	M84	Z	-5.105	-5.105	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	2.947	2.947	0	%100
90	M63	Z	-5.105	-5.105	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	0	0	0	%100
93	M68	X	2.947	2.947	0	%100
94	M68	Z	-5.105	-5.105	0	%100
95	M69	X	9.006	9.006	0	%100
96	M69	Z	-15.598	-15.598	0	%100
97	M87	X	11.789	11.789	0	%100
98	M87	Z	-20.419	-20.419	0	%100
99	M88A	X	9.006	9.006	0	%100
100	M88A	Z	-15.598	-15.598	0	%100
101	M92A	X	11.789	11.789	0	%100
102	M92A	Z	-20.419	-20.419	0	%100
103	M93	X	9.006	9.006	0	%100
104	M93	Z	-15.598	-15.598	0	%100
105	M46	X	8.842	8.842	0	%100
106	M46	Z	-15.314	-15.314	0	%100
107	M80	X	9.485	9.485	0	%100
107	M80	Z	-16.429	-16.429	0	%100
109	M91	X	-10.429	0	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	8.842	8.842	0	%100
112	M55	Z	-15.314	-15.314	0	%100 %100
112	IVIOO	_	-10.014	-10.014	0	70 100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 42: Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
113	M66	X	0	0	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	9.485	9.485	0	%100
116	M71	Z	-16.429	-16.429	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	0	0	0	%100
119	M90	Χ	9.485	9.485	0	%100
120	M90	Z	-16.429	-16.429	0	%100
121	M95	X	9.485	9.485	0	%100
122	M95	Z	-16.429	-16.429	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

2 M4 Z -5.714 -5.714 0 %100 3 M52A X 0 0 0 %100 4 M52A Z 0 0 0 %100 5 M76A X 9.897 9.897 0 %100 6 M76A Z -5.714 -5.714 0 %100 7 M10 X 3.155 3.155 0 %100 8 M10 Z -1.822 0 %100 9 M43 X 3.155 3.155 0 %100 10 M43 X 3.155 3.155 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 </th <th></th> <th>Member Label</th> <th>Direction</th> <th>Start Magnitude[lb</th> <th>End Magnitude[lb/ft,F,ksf]</th> <th>Start Location[ft,%]</th> <th>End Location[ft,%]</th>		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3 M52A X 0 0 0 %100 4 M52A Z 0 0 0 %100 5 M76A X 9.897 9.897 0 %100 6 M76A Z -5.714 -5.714 0 %100 7 M10 X 3.155 3.155 0 %100 8 M10 Z -1.822 -1.822 0 %100 9 M43 X 3.155 0 %100 10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 14 M54 X 12.62 12.62 0 %100 14 M54 X 12.62 12.62 0 %100 15 M77A X 3.15				9.897	9.897	0	%100
4 M52A Z 0 0 %100 5 M76A X 9.897 9.897 0 %100 6 M76A Z -5.714 -5.714 0 %100 7 M10 X 3.155 3.155 0 %100 8 M10 Z -1.822 -1.822 0 %100 9 M43 X 3.155 3.155 0 %100 10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 12 M53 Z -7.286 -7.286 0 %100 14 M54 X 12.62 12.62 0 %100 14 M54 X 12.62 12.62 0 %100 15 M77A X	2	M4		-5.714	-5.714	0	%100
5 M76A X 9.897 9.897 0 %100 6 M76A Z -5.714 -5.714 0 %100 7 M10 X 3.155 3.155 0 %100 8 M10 Z -1.822 -1.822 0 %100 9 M43 X 3.155 3.155 0 %100 10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77	3	M52A		0	0	0	%100
6 M76A Z -5.714 -5.714 0 %100 7 M10 X 3.155 3.155 0 %100 8 M10 Z -1.822 -1.822 0 %100 9 M43 X 3.155 0 %100 10 M43 Z -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 15 M77A X 3.155 3.155 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 <td>4</td> <td>M52A</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	4	M52A		0	0	0	%100
7 M10 X 3.155 3.155 0 %100 8 M10 Z -1.822 -1.822 0 %100 9 M43 X 3.155 3.155 0 %100 10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77A X 3.155 3.155 0 %100 17 M78 X 3.155 3.155 0 %100 19 M100 X 6.609 6.609 0 %100 20 M10	5	M76A	X	9.897	9.897	0	%100
8 M10 Z -1.822 -1.822 0 %100 9 M43 X 3.155 3.155 0 %100 10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 15 M77A X 3.155 3.155 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 18 M78 Z -1.822 -1.822 0 %100 20 <td< td=""><td>6</td><td>M76A</td><td>Z</td><td>-5.714</td><td>-5.714</td><td>0</td><td>%100</td></td<>	6	M76A	Z	-5.714	-5.714	0	%100
9 M43 X 3.155 0 %100 10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 0 %100 20 M100 X 6.6	7	M10	X	3.155	3.155	0	%100
10 M43 Z -1.822 -1.822 0 %100 11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77A Z -1.822 -1.822 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 -3.816 0 %100 21	8	M10	Z	-1.822	-1.822	0	%100
11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 15 M77A Z -1.822 -1.822 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 22	9	M43		3.155	3.155	0	%100
11 M53 X 12.62 12.62 0 %100 12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 15 M77A Z -1.822 -1.822 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 22	10	M43	Z	-1.822	-1.822	0	%100
12 M53 Z -7.286 -7.286 0 %100 13 M54 X 12.62 12.62 0 %100 14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 X 6.609 6.609 0 %100 21 MP3A X 8.083 8.083 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 24	11	M53	X	12.62	12.62	0	%100
14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 21 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26	12	M53	Z	-7.286	-7.286	0	%100
14 M54 Z -7.286 -7.286 0 %100 15 M77A X 3.155 3.155 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25	13	M54	X	12.62	12.62	0	%100
15 M77A X 3.155 3.155 0 %100 16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 21 MP3A Z -4.666 -4.666 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26	14	M54	Z	-7.286	-7.286	0	%100
16 M77A Z -1.822 -1.822 0 %100 17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 28 MP1A	15					0	%100
17 M78 X 3.155 3.155 0 %100 18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 0 %100 20 M100 Z -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP4B X 8.08	16	M77A	Z	-1.822	-1.822	0	%100
18 M78 Z -1.822 -1.822 0 %100 19 M100 X 6.609 6.609 0 %100 20 M100 Z -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP4B						0	%100
19 M100 X 6.609 0 %100 20 M100 Z -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4			Z				%100
20 M100 Z -3.816 -3.816 0 %100 21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100						0	%100
21 MP3A X 8.083 8.083 0 %100 22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100			Z				%100
22 MP3A Z -4.666 -4.666 0 %100 23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100			Х			0	%100
23 MP4A X 8.083 8.083 0 %100 24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100			Z				%100
24 MP4A Z -4.666 -4.666 0 %100 25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100							%100
25 MP2A X 8.083 8.083 0 %100 26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100		MP4A			-4.666	0	%100
26 MP2A Z -4.666 -4.666 0 %100 27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100		MP2A	X		8.083	0	%100
27 MP1A X 8.083 8.083 0 %100 28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100			Z			0	%100
28 MP1A Z -4.666 -4.666 0 %100 29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100						0	%100
29 MP3B X 8.083 8.083 0 %100 30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100	28		Z			0	%100
30 MP3B Z -4.666 -4.666 0 %100 31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100			X			0	%100
31 MP4B X 8.083 8.083 0 %100 32 MP4B Z -4.666 -4.666 0 %100	30		Z	-4.666			%100
32 MP4B Z -4.666 -4.666 0 %100							%100
							%100
33 MP2B X 8.083 8.083 0 %100	33	MP2B	X	8.083	8.083	0	%100
							%100
							%100
			Z				%100
37 MP3C X 8.083 8.083 0 %100			X				%100
			Z				%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 43: Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39	MP4C	X	8.083	8.083	0	%100
40	MP4C	Z	-4.666	-4.666	0	%100
41	MP2C	X	8.083	8.083	0	%100
42	MP2C	Z	-4.666	-4.666	0	%100
43	MP1C	X	8.083	8.083	0	%100
44	MP1C	Z	-4.666	-4.666	0	%100
45	M123	X	12.03	12.03	0	%100
46	M123	Z	-6.945	-6.945	0	%100
47	M124	X	3.007	3.007	0	%100
48	M124	Z	-1.736	-1.736	0	%100
49	M125	X	3.007	3.007	0	%100
50	M125	Z	-1.736	-1.736	0	%100
51	M102	X	2.446	2.446	0	%100
52	M102	Z	-1.412	-1.412	0	%100
53	M107	X	9.784	9.784	0	%100
54	M107	Z	-5.649	-5.649	0	%100
55	M108	X	2.446	2.446	0	%100
56	M108	Z	-1.412	-1.412	0	%100
57	M126	X	14.111	14.111	0	%100
58	M126	Z	-8.147	-8.147	0	%100
59	M127			9.136	0	
60	M127	X Z	9.136 -5.275	-5.275	0	%100 %100
		X				
61 62	M128	Z	14.111	14.111	0	%100
	M128		-8.147	-8.147	0	%100
63	M51B	X	11.338	11.338	0	%100
64	M51B	Z	-6.546	-6.546	0	%100
65	M52B	X	2.835	2.835	0	%100
66	M52B	Z	-1.637	-1.637	0	%100
67	M58A	X	2.835	2.835	0	%100
68	M58A	Z	-1.637	-1.637	0	%100
69	M59A	X	2.835	2.835	0	%100
70	M59A	Z	-1.637	-1.637	0	%100
71	M82	X	2.835	2.835	0	%100
72	M82	Z	-1.637	-1.637	0	%100
73	M83A	X	11.338	11.338	0	%100
74	M83A	Z	-6.546	-6.546	0	%100
75	M1	X	2.972	2.972	0	%100
76	M1	Z	-1.716	-1.716	0	%100
77	M82A	X	11.887	11.887	0	%100
78	M82A	Z	-6.863	-6.863	0	%100
79	M91B	X	2.972	2.972	0	%100
80	M91B	Z	-1.716	-1.716	0	%100
81	M76	X	15.314	15.314	0	%100
82	M76	Z	-8.842	-8.842	0	%100
83	M77	X	20.797	20.797	0	%100
84	M77	Z	-12.007	-12.007	0	%100
85	M84	X	15.314	15.314	0	%100
86	M84	Z	-8.842	-8.842	0	%100
87	M85	X	5.199	5.199	0	%100
88	M85	Z	-3.002	-3.002	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	0	0	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
91	M64	X	5.199	5.199	0	%100
92	M64	Z	-3.002	-3.002	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	5.199	5.199	0	%100
96	M69	Z	-3.002	-3.002	0	%100
97	M87	X	15.314	15.314	0	%100
98	M87	Z	-8.842	-8.842	0	%100
99	M88A	X	5.199	5.199	0	%100
100	M88A	Z	-3.002	-3.002	0	%100
101	M92A	X	15.314	15.314	0	%100
102	M92A	Z	-8.842	-8.842	0	%100
103	M93	X	20.797	20.797	0	%100
104	M93	Z	-12.007	-12.007	0	%100
105	M46	X	5.105	5.105	0	%100
106	M46	Z	-2.947	-2.947	0	%100
107	M80	X	21.905	21.905	0	%100
108	M80	Z	-12.647	-12.647	0	%100
109	M91	X	5.476	5.476	0	%100
110	M91	Z	-3.162	-3.162	0	%100
111	M55	X	20.419	20.419	0	%100
112	M55	Z	-11.789	-11.789	0	%100
113	M66	X	5.476	5.476	0	%100
114	M66	Z	-3.162	-3.162	0	%100
115	M71	X	5.476	5.476	0	%100
116	M71	Z	-3.162	-3.162	0	%100
117	M79A	X	5.105	5.105	0	%100
118	M79A	Z	-2.947	-2.947	0	%100
119	M90	X	5.476	5.476	0	%100
120	M90	Z	-3.162	-3.162	0	%100
121	M95	X	21.905	21.905	0	%100
122	M95	Z	-12.647	-12.647	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	15.237	15.237	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	3.809	3.809	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	3.809	3.809	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	0	0	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	0	0	0	%100
11	M53	X	10.929	10.929	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	10.929	10.929	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	10.929	10.929	0	%100
16	M77A	Z	0	0	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb		Start Location[ft,%]	
17	M78	X	10.929	10.929	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	7.632	7.632	0	%100
20	M100	Z	0	0	0	%100
21	MP3A	X	9.333	9.333	0	%100
22	MP3A	Z	0	0	0	%100
23	MP4A	X	9.333	9.333	0	%100
24	MP4A	Z	0	0	0	%100
25	MP2A	X	9.333	9.333	0	%100
26	MP2A	Z	0	0	0	%100
27	MP1A	X	9.333	9.333	0	%100
28	MP1A	Z	0	0	0	%100
29	MP3B	X	9.333	9.333	0	%100
30	MP3B	Z	0	0	0	%100
31	MP4B	X	9.333	9.333	0	%100
32	MP4B	Z	0	0	0	%100
33	MP2B	X	9.333	9.333	0	%100
34	MP2B	Z	0	0	0	%100
35	MP1B	X	9.333	9.333	0	%100
36	MP1B	Z	0	0	0	%100
37	MP3C	X	9.333	9.333	0	%100
38	MP3C	Z	0	0	0	%100
39	MP4C	Χ	9.333	9.333	0	%100
40	MP4C	Z	0	0	0	%100
41	MP2C	X	9.333	9.333	0	%100
42	MP2C	Z	0	0	0	%100
43	MP1C	X	9.333	9.333	0	%100
44	MP1C	Z	0	0	0	%100
45	M123	X	10.418	10.418	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	0	0	0	%100
49	M125	X	10.418	10.418	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	0	0	0	%100
53	M107	X	8.473	8.473	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	8.473	8.473	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	18.209	18.209	0	%100
58	M126	Z	0	0	0	%100
59	M127	X	12.464	12.464	0	%100
60	M127	Z	0	0	0	%100
61	M128	X	12.464	12.464	0	%100
62	M128	Z	0	0	0	%100
63	M51B	X	9.819	9.819	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	9.819	9.819	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	9.819	9.819	0	%100
68	M58A	Z	0	0	0	%100
						,,,,,,,

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	M59A	X	0	0	0	%100
70	M59A	Z	0	0	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	0	0	0	%100
73	M83A	X	9.819	9.819	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	0	0	0	%100
77	M82A	X	10.294	10.294	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	10.294	10.294	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	23.578	23.578	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	18.011	18.011	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	23.578	23.578	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	18.011	18.011	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	5.895	5.895	0	
90	M63	Z	0	0	0	%100 %100
91	M64	X Z	18.011	18.011	0	%100
92	M64		0	0	0	%100
93	M68	X	5.895	5.895	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	0	0	0	%100
97	M87	X	5.895	5.895	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	0	0	0	%100
101	M92A	X	5.895	5.895	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	18.011	18.011	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	0	0	0	%100
107	M80	Χ	18.971	18.971	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	18.971	18.971	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	17.684	17.684	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	18.971	18.971	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	0	0	0	%100
117	M79A	X	17.684	17.684	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 44: Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
121	M95	X	18.971	18.971	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	9.897	9.897	0	%100
2	M4	Z	5.714	5.714	0	%100
3	M52A	X	9.897	9.897	0	%100
4	M52A	Z	5.714	5.714	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	3.155	3.155	0	%100
8	M10	Z	1.822	1.822	0	%100
9	M43	X	3.155	3.155	0	%100
10	M43	Z	1.822	1.822	0	%100
11	M53	X	3.155	3.155	0	%100
12	M53	Z	1.822	1.822	0	%100
13	M54	X	3.155	3.155	0	%100
14	M54	Z	1.822	1.822	0	%100
15	M77A	X	12.62	12.62	0	%100
16	M77A	Z	7.286	7.286	0	%100
17	M78	X	12.62	12.62	0	%100
18	M78	Z	7.286	7.286	0	%100
19	M100	X	6.609	6.609	0	%100
20	M100	Z	3.816	3.816	0	%100
21	MP3A	X	8.083	8.083	0	%100
22	MP3A	Z	4.666	4.666	0	%100
23	MP4A	X	8.083	8.083	0	%100
24	MP4A	Z	4.666	4.666	0	%100
25	MP2A	X	8.083	8.083	0	%100
26	MP2A	Z	4.666	4.666	0	%100
27	MP1A	X	8.083	8.083	0	%100
28	MP1A	Z	4.666	4.666	0	%100
29	MP3B	X	8.083	8.083	0	%100
30	MP3B	Z	4.666	4.666	0	%100
31	MP4B	X	8.083	8.083	0	%100
32	MP4B	Z	4.666	4.666	0	%100
33	MP2B	X	8.083	8.083	0	%100
34	MP2B	Z	4.666	4.666	0	%100
35	MP1B	X	8.083	8.083	0	%100
36	MP1B	Z	4.666	4.666	0	%100
37	MP3C	X	8.083	8.083	0	%100
38	MP3C				_	%100
39	MP4C	X	4.666 8.083	4.666 8.083	0	%100
40	MP4C	Z	4.666	4.666	0	%100 %100
41	MP2C	X	8.083	8.083	0	%100 %100
42	MP2C	Z	4.666	4.666	0	%100 %100
43	MP1C	X	8.083	8.083	0	%100 %100
43	MP1C	Z	4.666	4.666	0	%100 %100
						%100 %100
45 46	M123	X Z	3.007	3.007	0	%100 %100
40	M123		1.736	1.736	U	% IUU

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
47	M124	X	3.007	3.007	0	%100
48	M124	Z	1.736	1.736	0	%100
49	M125	X	12.03	12.03	0	%100
50	M125	Z	6.945	6.945	0	%100
51	M102	X	2.446	2.446	0	%100
52	M102	Z	1.412	1.412	0	%100
53	M107	X	2.446	2.446	0	%100
54	M107	Z	1.412	1.412	0	%100
55	M108	X	9.784	9.784	0	%100
56	M108	Z	5.649	5.649	0	%100
57	M126	X	14.111	14.111	0	%100
58	M126	Z	8.147	8.147	0	%100
59	M127	X	14.111	14.111	0	%100
60	M127	Z	8.147	8.147	0	%100
61	M128	Х	9.136	9.136	0	%100
62	M128	Z	5.275	5.275	0	%100
63	M51B	X	2.835	2.835	0	%100
64	M51B	Z	1.637	1.637	0	%100
65	M52B	X	11.338	11.338	0	%100
66	M52B	Z	6.546	6.546	0	%100
67	M58A	X	11.338	11.338	0	%100
68	M58A	Z	6.546	6.546	0	%100
69	M59A	Х	2.835	2.835	0	%100
70	M59A	Z	1.637	1.637	0	%100
71	M82	X	2.835	2.835	0	%100
72	M82	Z	1.637	1.637	0	%100
73	M83A	X	2.835	2.835	0	%100
74	M83A	Z	1.637	1.637	0	%100
75	M1	X	2.972	2.972	0	%100
76	M1	Z	1.716	1.716	0	%100
77	M82A	X	2.972	2.972	0	%100
78	M82A	Z	1.716	1.716	0	%100
79	M91B	X	11.887	11.887	0	%100
80	M91B	Z	6.863	6.863	0	%100
81	M76	X	15.314	15.314	0	%100
82	M76	Z	8.842	8.842	0	%100
83	M77	X	5.199	5.199	0	%100
84	M77	Z	3.002	3.002	0	%100
85	M84	X	15.314	15.314	0	%100
86	M84	Z	8.842	8.842	0	%100
87	M85	X	20.797	20.797	0	%100
88	M85	Z	12.007	12.007	0	%100
89	M63	X	15.314	15.314	0	%100
90	M63	Z	8.842	8.842	0	%100
91	M64	X	20.797	20.797	0	%100
92	M64	Z	12.007	12.007	0	%100
93	M68	X	15.314	15.314	0	%100
94	M68	Z	8.842	8.842	0	%100
95	M69	X	5.199	5.199	0	%100
96	M69	Z	3.002	3.002	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	0	0	0	%100

: Maser Consulting

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
99	M88A	X	5.199	5.199	0	%100
100	M88A	Z	3.002	3.002	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	5.199	5.199	0	%100
104	M93	Z	3.002	3.002	0	%100
105	M46	X	5.105	5.105	0	%100
106	M46	Z	2.947	2.947	0	%100
107	M80	X	5.476	5.476	0	%100
108	M80	Z	3.162	3.162	0	%100
109	M91	X	21.905	21.905	0	%100
110	M91	Z	12.647	12.647	0	%100
111	M55	X	5.105	5.105	0	%100
112	M55	Z	2.947	2.947	0	%100
113	M66	X	21.905	21.905	0	%100
114	M66	Z	12.647	12.647	0	%100
115	M71	X	5.476	5.476	0	%100
116	M71	Z	3.162	3.162	0	%100
117	M79A	X	20.419	20.419	0	%100
118	M79A	Z	11.789	11.789	0	%100
119	M90	X	5.476	5.476	0	%100
120	M90	Z	3.162	3.162	0	%100
121	M95	X	5.476	5.476	0	%100
122	M95	Z	3.162	3.162	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

				3 110 (100 B cg//		
	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	1.905	1.905	0	%100
2	M4	Z	3.299	3.299	0	%100
3	M52A	X	7.618	7.618	0	%100
4	M52A	Z	13.195	13.195	0	%100
5	M76A	X	1.905	1.905	0	%100
6	M76A	Z	3.299	3.299	0	%100
7	M10	X	5.465	5.465	0	%100
8	M10	Z	9.465	9.465	0	%100
9	M43	X	5.465	5.465	0	%100
10	M43	Z	9.465	9.465	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	5.465	5.465	0	%100
16	M77A	Z	9.465	9.465	0	%100
17	M78	X	5.465	5.465	0	%100
18	M78	Z	9.465	9.465	0	%100
19	M100	X	3.816	3.816	0	%100
20	M100	Z	6.609	6.609	0	%100
21	MP3A	X	4.666	4.666	0	%100
22	MP3A	Z	8.083	8.083	0	%100
23	MP4A	X	4.666	4.666	0	%100
24	MP4A	Z	8.083	8.083	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
25	MP2A	X	4.666	4.666	0	%100
26	MP2A	Z	8.083	8.083	0	%100
27	MP1A	X	4.666	4.666	0	%100
28	MP1A	Z	8.083	8.083	0	%100
29	MP3B	X	4.666	4.666	0	%100
30	MP3B	Z	8.083	8.083	0	%100
31	MP4B	X	4.666	4.666	0	%100
32	MP4B	Z	8.083	8.083	0	%100
33	MP2B	X	4.666	4.666	0	%100
34	MP2B	Z	8.083	8.083	0	%100
35	MP1B	X	4.666	4.666	0	%100
36	MP1B	Z	8.083	8.083	0	%100
37	MP3C	×	4.666	4.666	0	%100
38	MP3C	Z	8.083	8.083	0	%100
39	MP4C	X	4.666	4.666	0	%100
40	MP4C	Z	8.083	8.083	0	%100
41	MP2C	X	4.666	4.666	0	%100
42	MP2C	Z	8.083	8.083	0	%100
43	MP1C	X	4.666	4.666	0	%100 %100
44	MP1C	Z	8.083	8.083	0	%100
45	M123	X	0.005	0	0	%100
46	M123	Z	0	0	0	%100 %100
47	M124	X	5.209	5.209	0	%100 %100
48	M124	Z	9.022	9.022	0	%100
49	M125	X	5.209	5.209	0	%100 %100
50	M125	Z	9.022	9.022	0	%100 %100
51	M102	X	4.237	4.237	0	%100 %100
52	M102	Z	7.338	7.338	0	%100
53	M107	X	0	0	0	%100 %100
54	M107	Z	0	0	0	%100 %100
55	M108	X	4.237	4.237	0	%100 %100
56	M108	Z	7.338	7.338	0	%100 %100
57	M126	X	6.232	6.232	0	%100 %100
58	M126	Z	10.794	10.794	0	
					0	%100 %100
59 60	M127	X Z	9.105	9.105		%100 %100
61	M127	X	15.77	15.77	0	
62	M128 M128	Z	6.232 10.794	6.232 10.794	0	%100 %100
63	M51B	X	0	0	0	%100 %100
64	M51B	Z	0	0	0	%100 %100
65			4.91	4.91	0	
66	M52B M52B	X Z	8.504	8.504	0	%100 %100
67	M58A		4.91	4.91	0	
		X Z	8.504			%100 %100
68	M58A			8.504	0	%100 %100
69	M59A	X Z	4.91	4.91	0	%100 %100
70	M59A		8.504 4.91	8.504 4.91		%100 %100
71	M82	X Z			0	%100 %100
72	M82		8.504	8.504		%100 %100
73	M83A	X Z	0	0	0	%100 %100
74	M83A		0	<u> </u>	0	%100
75	M1	X	5.147	5.147	0	%100
76	M1	Z	8.915	8.915	0	%100

Model Name

oany : Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 46: Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
77	M82A	X	0	0	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	5.147	5.147	0	%100
80	M91B	Z	8.915	8.915	0	%100
81	M76	X	2.947	2.947	0	%100
82	M76	Z	5.105	5.105	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	2.947	2.947	0	%100
86	M84	Z	5.105	5.105	0	%100
87	M85	X	9.006	9.006	0	%100
88	M85	Z	15.598	15.598	0	%100
89	M63	X	11.789	11.789	0	%100
90	M63	Z	20.419	20.419	0	%100
91	M64	X	9.006	9.006	0	%100
92	M64	Z	15.598	15.598	0	%100
93	M68	X	11.789	11.789	0	%100
94	M68	Z	20.419	20.419	0	%100
95	M69	X	9.006	9.006	0	%100
96	M69	Z	15.598	15.598	0	%100
97	M87	X	2.947	2.947	0	%100
98	M87	Z	5.105	5.105	0	%100
99	M88A	X	9.006	9.006	0	%100
100	M88A	Z	15.598	15.598	0	%100
101	M92A	X	2.947	2.947	0	%100
102	M92A	Z	5.105	5.105	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	8.842	8.842	0	%100
106	M46	Z	15.314	15.314	0	%100
107	M80	Х	0	0	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	9.485	9.485	0	%100
110	M91	Z	16.429	16.429	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	9.485	9.485	0	%100
114	M66	Z	16.429	16.429	0	%100
115	M71	X	9.485	9.485	0	%100
116	M71	Z	16.429	16.429	0	%100
117	M79A	X	8.842	8.842	0	%100
118	M79A	Z	15.314	15.314	0	%100
119	M90	X	9.485	9.485	0	%100
120	M90	Z	16.429	16.429	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M52A	X	0	0	0	%100
4	M52A	Z	11.428	11.428	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	11.428	11.428	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	14.573	14.573	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	14.573	14.573	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	3.643	3.643	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	3.643	3.643	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	3.643	3.643	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	3.643	3.643	0	%100
19	M100	X	0	0	0	%100
20	M100	Z	7.632	7.632	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	9.333	9.333	0	%100
23	MP4A	X	0	0	0	%100
24	MP4A	Z	9.333	9.333	0	%100
25	MP2A	X	0	0	0	%100
26	MP2A	Z	9.333	9.333	0	%100
27	MP1A	X	0	0	0	%100
28	MP1A	Z	9.333	9.333	0	%100
29	MP3B	X	0	0	0	%100
30	MP3B	Z	9.333	9.333	0	%100
31	MP4B	X	0	0	0	%100
32	MP4B	Z	9.333	9.333	0	%100
33	MP2B	X	0	0	0	%100
34	MP2B	Z	9.333	9.333	0	%100
35	MP1B	X	0	0	0	%100
36	MP1B	Z	9.333	9.333	0	%100
37	MP3C	X	0	0	0	%100
38	MP3C	Z	9.333	9.333	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	9.333	9.333	0	%100
41	MP2C	X	0	0	0	%100
42	MP2C	Z	9.333	9.333	0	%100
43	MP1C	X	0	0	0	%100
44	MP1C	Z	9.333	9.333	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	3.473	3.473	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	13.891	13.891	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	3.473	3.473	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	11.298	11.298	0	%100
53	M107	X	0	0	0	%100
54	M107	Z	2.824	2.824	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
55	M108	X	0	0	0	%100
56	M108	Z	2.824	2.824	0	%100
57	M126	X	0	0	0	%100
58	M126	Z	10.549	10.549	0	%100
59	M127	X	0	0	0	%100
60	M127	Z	16.294	16.294	0	%100
61	M128	X	0	0	0	%100
62	M128	Z	16.294	16.294	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	3.273	3.273	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	3.273	3.273	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	3.273	3.273	0	%100
69	M59A	X	0	0	0	%100
70	M59A	Z	13.092	13.092	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	13.092	13.092	0	%100
	M83A					
73		X Z	0	0	0	%100
74	M83A		3.273	3.273	0	%100
75 70	M1	X Z	0	0	0	%100
76	M1		13.725	13.725	0	%100
77	M82A	X	0	0	0	%100
78	M82A	Z	3.431	3.431	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	3.431	3.431	0	%100
81	M76	X	0	0	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	6.004	6.004	0	%100
85	M84	X	0	0	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	6.004	6.004	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	17.684	17.684	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	6.004	6.004	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	17.684	17.684	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	24.015	24.015	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	17.684	17.684	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	24.015	24.015	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	17.684	17.684	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	6.004	6.004	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	23.578	23.578	0	%100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
107	M80	X	0	0	0	%100
108	M80	Z	6.324	6.324	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	6.324	6.324	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	5.895	5.895	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	6.324	6.324	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	25.294	25.294	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	5.895	5.895	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	25.294	25.294	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	6.324	6.324	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

1 M4 X -1.905 -1.905 0 %100 2 M4 Z 3.299 3.299 0 %100 3 M52A X -1.905 -1.905 0 %100 4 M52A Z 3.299 3.299 0 %100 5 M76A X -7.618 -7.618 0 %100 5 M76A Z 13.195 0 %100 7 M10 X -5.465 -5.465 0 %100 8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 12 M53 Z 9.465		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3 M52A X -1.905 -1.905 0 %100 4 M52A Z 3.299 3.299 0 %100 5 M76A X -7.618 -7.618 0 %100 6 M76A X -7.618 -7.618 0 %100 6 M76A X -7.648 -7.618 0 %100 7 M10 X -5.465 -5.465 0 %100 8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 14 M54 X -5.465 -5.465 0 %100 15 <t< td=""><td>1</td><td>M4</td><td>X</td><td>-1.905</td><td>-1.905</td><td>0</td><td>%100</td></t<>	1	M4	X	-1.905	-1.905	0	%100
4 M52A Z 3.299 3.299 0 %100 5 M76A X -7.618 -7.618 0 %100 6 M76A Z 13.195 13.195 0 %100 7 M10 X -5.465 -5.465 0 %100 8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A	2	M4	Z	3.299	3.299	0	%100
5 M76A X -7.618 -7.618 0 %100 6 M76A Z 13.195 13.195 0 %100 7 M10 X -5.465 -5.465 0 %100 8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A	3	M52A	X	-1.905	-1.905	0	%100
6 M76A Z 13.195 13.195 0 %100 7 M10 X -5.465 -5.465 0 %100 8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 12 M53 Z 9.465 9.465 0 %100 14 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0<	4	M52A	Z	3.299	3.299	0	%100
7 M10 X -5.465 -5.465 0 %100 8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A X 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0	5	M76A		-7.618	-7.618	0	%100
8 M10 Z 9.465 9.465 0 %100 9 M43 X -5.465 -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 15 M77A X 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 -3.816 0 %100 20 M100 X -3.816	6	M76A	Z	13.195	13.195	0	%100
9 M43 X -5.465 -5.465 0 %100 10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3	7	M10	X	-5.465	-5.465	0	%100
10 M43 Z 9.465 9.465 0 %100 11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 18 M78 Z 0 0 %100 20 M100 X -3.816 -3.816 0 %100 21 MP3A X -4.666 -4.	8	M10	Z	9.465	9.465	0	%100
11 M53 X -5.465 -5.465 0 %100 12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 15 M77A Z 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 -3.816 0 %100 20 M100 Z 6.609 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 23 MP4A X	9	M43	X	-5.465	-5.465	0	%100
12 M53 Z 9.465 9.465 0 %100 13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 0 %100 20 M100 X -3.816 0 %100 20 M100 X -3.816 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A X -4.666 -4.666 0 <td< td=""><td>10</td><td>M43</td><td>Z</td><td>9.465</td><td>9.465</td><td>0</td><td>%100</td></td<>	10	M43	Z	9.465	9.465	0	%100
13 M54 X -5.465 -5.465 0 %100 14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 -3.816 0 %100 20 M100 X -3.816 -3.816 0 %100 21 MP3A X -4.666 -4.666 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A X -4.666 -4.666 0 %100 24 MP4A X	11	M53	X	-5.465	-5.465	0	%100
14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 -3.816 0 %100 20 M100 Z 6.609 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z <td>12</td> <td>M53</td> <td>Z</td> <td>9.465</td> <td>9.465</td> <td>0</td> <td>%100</td>	12	M53	Z	9.465	9.465	0	%100
14 M54 Z 9.465 9.465 0 %100 15 M77A X 0 0 0 %100 16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 -3.816 0 %100 20 M100 Z 6.609 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z <td>13</td> <td>M54</td> <td>X</td> <td>-5.465</td> <td>-5.465</td> <td>0</td> <td>%100</td>	13	M54	X	-5.465	-5.465	0	%100
16 M77A Z 0 0 0 %100 17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 0 %100 20 M100 Z 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 28 MP1A X -4.666 -4.666 0 %100 29 MP3B X -4.666 <	14	M54		9.465	9.465	0	%100
17 M78 X 0 0 0 %100 18 M78 Z 0 0 0 %100 19 M100 X -3.816 -3.816 0 %100 20 M100 Z 6.609 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B <td>15</td> <td>M77A</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	15	M77A	Х	0	0	0	%100
18 M78 Z 0 0 %100 19 M100 X -3.816 0 %100 20 M100 Z 6.609 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP4B X <t< td=""><td>16</td><td>M77A</td><td>Z</td><td>0</td><td>0</td><td>0</td><td>%100</td></t<>	16	M77A	Z	0	0	0	%100
19 M100 X -3.816 -3.816 0 %100 20 M100 Z 6.609 0 %100 21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	17	M78	X	0	0	0	%100
20 M100 Z 6.609 0 %100 21 MP3A X -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	18	M78	Z	0	0	0	%100
21 MP3A X -4.666 -4.666 0 %100 22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	19	M100	X	-3.816	-3.816	0	%100
22 MP3A Z 8.083 8.083 0 %100 23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	20	M100	Z	6.609	6.609	0	%100
23 MP4A X -4.666 -4.666 0 %100 24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	21	MP3A	X	-4.666	-4.666	0	%100
24 MP4A Z 8.083 8.083 0 %100 25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	22	MP3A	Z	8.083	8.083	0	%100
25 MP2A X -4.666 -4.666 0 %100 26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	23	MP4A	X	-4.666	-4.666	0	%100
26 MP2A Z 8.083 8.083 0 %100 27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	24	MP4A	Z	8.083	8.083	0	%100
27 MP1A X -4.666 -4.666 0 %100 28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	25	MP2A		-4.666	-4.666	0	%100
28 MP1A Z 8.083 8.083 0 %100 29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	26	MP2A	Z	8.083	8.083	0	%100
29 MP3B X -4.666 -4.666 0 %100 30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	27	MP1A	X	-4.666	-4.666	0	%100
30 MP3B Z 8.083 8.083 0 %100 31 MP4B X -4.666 -4.666 0 %100	28	MP1A	Z	8.083	8.083	0	%100
31 MP4B X -4.666 -4.666 0 %100	29	MP3B		-4.666	-4.666	0	%100
	30	MP3B	Z	8.083	8.083	0	%100
32 MP4B Z 8.083 8.083 0 %100	31	MP4B		-4.666	-4.666	0	%100
	32	MP4B	Z	8.083	8.083	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
33	MP2B	X	-4.666	-4.666	0	%100
34	MP2B	Z	8.083	8.083	0	%100
35	MP1B	X	-4.666	-4.666	0	%100
36	MP1B	Z	8.083	8.083	0	%100
37	MP3C	X	-4.666	-4.666	0	%100
38	MP3C	Z	8.083	8.083	0	%100
39	MP4C	X	-4.666	-4.666	0	%100
40	MP4C	Z	8.083	8.083	0	%100
41	MP2C	X	-4.666	-4.666	0	%100
42	MP2C	Z	8.083	8.083	0	%100
43	MP1C	X	-4.666	-4.666	0	%100
44	MP1C	Z	8.083	8.083	0	%100
45	M123	X	-5.209	-5.209	0	%100
46	M123	Z	9.022	9.022	0	%100
47	M124	X	-5.209	-5.209	0	%100
48	M124	Z	9.022	9.022	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	-4.237	-4.237	0	%100
52	M102	Z	7.338	7.338	0	%100
53	M107	X	-4.237	-4.237	0	%100
54	M107	Z	7.338	7.338	0	%100
55	M108	X	0	0	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	-6.232	-6.232	0	%100
58	M126	Z	10.794	10.794	0	%100
59	M127	X	-6.232	-6.232	0	%100
60	M127	Z	10.794	10.794	0	%100
61	M128	X	-9.105	-9.105	0	%100
62	M128	Z	15.77	15.77	0	%100
63	M51B	X	-4.91	-4.91	0	%100
64	M51B	Z	8.504	8.504	0	%100
65	M52B	Χ	0	0	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	-4.91	-4.91	0	%100
70	M59A	Z	8.504	8.504	0	%100
71	M82	X	-4.91	-4.91	0	%100
72	M82	Z	8.504	8.504	0	%100
73	M83A	X	-4.91	-4.91	0	%100
74	M83A	Z	8.504	8.504	0	%100
75	M1	X	-5.147	-5.147	0	%100
76	M1	Z	8.915	8.915	0	%100
77	M82A	X	-5.147	-5.147	0	%100
78	M82A	Z	8.915	8.915	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	-2.947	-2.947	0	%100
82	M76	Z	5.105	5.105	0	%100
83	M77	X	-9.006	-9.006	0	%100
84	M77	Z	15.598	15.598	0	%100
υT	17177	_	10.000	10.000		70100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 48: Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
85	M84	X	-2.947	-2.947	0	%100
86	M84	Z	5.105	5.105	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	-2.947	-2.947	0	%100
90	M63	Z	5.105	5.105	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	0	0	0	%100
93	M68	Х	-2.947	-2.947	0	%100
94	M68	Z	5.105	5.105	0	%100
95	M69	Х	-9.006	-9.006	0	%100
96	M69	Z	15.598	15.598	0	%100
97	M87	X	-11.789	-11.789	0	%100
98	M87	Z	20.419	20.419	0	%100
99	M88A	Х	-9.006	-9.006	0	%100
100	M88A	Z	15.598	15.598	0	%100
101	M92A	X	-11.789	-11.789	0	%100
102	M92A	Z	20.419	20.419	0	%100
103	M93	Х	-9.006	-9.006	0	%100
104	M93	Z	15.598	15.598	0	%100
105	M46	X	-8.842	-8.842	0	%100
106	M46	Z	15.314	15.314	0	%100
107	M80	X	-9.485	-9.485	0	%100
108	M80	Z	16.429	16.429	0	%100
109	M91	Х	0	0	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	-8.842	-8.842	0	%100
112	M55	Z	15.314	15.314	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	-9.485	-9.485	0	%100
116	M71	Z	16.429	16.429	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	-9.485	-9.485	0	%100
120	M90	Z	16.429	16.429	0	%100
121	M95	X	-9.485	-9.485	0	%100
122	M95	Z	16.429	16.429	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-9.897	-9.897	0	%100
2	M4	Z	5.714	5.714	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	-9.897	-9.897	0	%100
6	M76A	Z	5.714	5.714	0	%100
7	M10	X	-3.155	-3.155	0	%100
8	M10	Z	1.822	1.822	0	%100
9	M43	X	-3.155	-3.155	0	%100
10	M43	Z	1.822	1.822	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
11	M53	X	-12.62	-12.62	0	%100
12	M53	Z	7.286	7.286	0	%100
13	M54	X	-12.62	-12.62	0	%100
14	M54	Z	7.286	7.286	0	%100
15	M77A	X	-3.155	-3.155	0	%100
16	M77A	Z	1.822	1.822	0	%100
17	M78	X	-3.155	-3.155	0	%100
18	M78	Z	1.822	1.822	0	%100
19	M100	X	-6.609	-6.609	0	%100
20	M100	Z	3.816	3.816	0	%100
21	MP3A	X	-8.083	-8.083	0	%100
22	MP3A	Z	4.666	4.666	0	%100
23	MP4A	×	-8.083	-8.083	0	%100
24	MP4A	Z	4.666	4.666	0	%100
25	MP2A	X	-8.083	-8.083	0	%100
26	MP2A	Z	4.666	4.666	0	%100
27	MP1A	X	-8.083	-8.083	0	%100
28	MP1A	Z	4.666	4.666	0	%100
29	MP3B	X	-8.083	-8.083	0	%100
30	MP3B	Z	4.666	4.666	0	%100 %100
31	MP4B	X	-8.083	-8.083	0	%100
32	MP4B	Z	4.666	4.666	0	%100 %100
33	MP2B	X	-8.083	-8.083	0	%100 %100
34	MP2B	Z	4.666	4.666	0	%100
35	MP1B	X	-8.083	-8.083	0	%100
36	MP1B	Z	4.666	4.666	0	%100 %100
37	MP3C	X	-8.083	-8.083	0	%100 %100
38	MP3C	Z	4.666	4.666	0	%100 %100
39	MP4C	X	-8.083	-8.083	0	%100 %100
40	MP4C	Z	4.666	4.666	0	%100 %100
41	MP2C	X	-8.083	-8.083	0	%100
42	MP2C	Z	4.666	4.666	0	%100
43	MP1C	X	-8.083	-8.083	0	%100 %100
44	MP1C	Z	4.666	4.666	0	%100
45	M123	X	-12.03	-12.03	0	%100 %100
46	M123	Z	6.945	6.945	0	%100 %100
47	M124	X	-3.007	-3.007	0	%100 %100
48	M124	Z	1.736	1.736	0	%100 %100
49	M125	X	-3.007	-3.007	0	%100 %100
50	M125	Z	1.736	1.736	0	%100 %100
51	M102	X	-2.446	-2.446	0	%100 %100
52	M102	Z	1.412	1.412	0	%100 %100
53	M107	X	-9.784	-9.784	0	%100 %100
54	M107	Z	5.649	5.649	0	%100
55	M108	X	-2.446	-2.446	0	%100 %100
56	M108	Z	1.412	1.412	0	%100
57	M126	X	-14.111	-14.111	0	%100 %100
58	M126	Z	8.147	8.147	0	%100 %100
59	M127	X	-9.136	-9.136	0	%100 %100
60	M127	Z	5.275	5.275	0	%100 %100
61	M128	X	-14.111	-14.111	0	%100 %100
62	M128	Z	8.147	8.147	0	%100 %100
02	IVI 1 ZO		0.147	0.147	U	/0 100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
63	M51B	X	-11.338	-11.338	0	%100
64	M51B	Z	6.546	6.546	0	%100
65	M52B	X	-2.835	-2.835	0	%100
66	M52B	Z	1.637	1.637	0	%100
67	M58A	X	-2.835	-2.835	0	%100
68	M58A	Z	1.637	1.637	0	%100
69	M59A	X	-2.835	-2.835	0	%100
70	M59A	Z	1.637	1.637	0	%100
71	M82	X	-2.835	-2.835	0	%100
72	M82	Z	1.637	1.637	0	%100
73	M83A	X	-11.338	-11.338	0	%100
74	M83A	Z	6.546	6.546	0	%100
75	M1	X	-2.972	-2.972	0	%100
76	M1	Z	1.716	1.716	0	%100
77	M82A	X	-11.887	-11.887	0	%100
78	M82A	Z	6.863	6.863	0	%100
79	M91B	X	-2.972	-2.972	0	%100
80	M91B	Z	1.716	1.716	0	%100
81	M76	X	-15.314	-15.314	0	%100
82	M76	Z	8.842	8.842	0	%100
83	M77	X	-20.797	-20.797	0	%100
84	M77	Z	12.007	12.007	0	%100
85	M84	X	-15.314	-15.314	0	%100
86	M84	Z	8.842	8.842	0	%100
87	M85	X	-5.199	-5.199	0	%100
88	M85	Z	3.002	3.002	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	-5.199	-5.199	0	%100
92	M64	Z	3.002	3.002	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	-5.199	-5.199	0	%100
96	M69	Z	3.002	3.002	0	%100
97	M87	X	-15.314	-15.314	0	%100
98	M87	Z	8.842	8.842	0	%100
99	M88A	X	-5.199	-5.199	0	%100
100	M88A	Z	3.002	3.002	0	%100
101	M92A	X	-15.314	-15.314	0	%100
102	M92A	Z	8.842	8.842	0	%100
103	M93	X	-20.797	-20.797	0	%100
104	M93	Z	12.007	12.007	0	%100
105	M46	X	-5.105	-5.105	0	%100
106	M46	Z	2.947	2.947	0	%100
107	M80	X	-21.905	-21.905	0	%100
108	M80	Z	12.647	12.647	0	%100
109	M91	X	-5.476	-5.476	0	%100
110	M91	Z	3.162	3.162	0	%100
111	M55	X	-20.419	-20.419	0	%100
112	M55	Z	11.789	11.789	0	%100
113	M66	X	-5.476	-5.476	0	%100
114	M66	Z	3.162	3.162	0	%100
1 17	11100	_	3.102	0.102		,0100

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 49: Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
115	M71	X	-5.476	-5.476	0	%100
116	M71	Z	3.162	3.162	0	%100
117	M79A	X	-5.105	-5.105	0	%100
118	M79A	Z	2.947	2.947	0	%100
119	M90	X	-5.476	-5.476	0	%100
120	M90	Z	3.162	3.162	0	%100
121	M95	X	-21.905	-21.905	0	%100
122	M95	Z	12.647	12.647	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-15.237	-15.237	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	-3.809	-3.809	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	-3.809	-3.809	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	0	0	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	0	0	0	%100
11	M53	X	-10.929	-10.929	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	-10.929	-10.929	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	-10.929	-10.929	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	-10.929	-10.929	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	-7.632	-7.632	0	%100
20	M100	Z	0	0	0	%100
21	MP3A	X	-9.333	-9.333	0	%100
22	MP3A	Z	0	0	0	%100
23	MP4A	X	-9.333	-9.333	0	%100
24	MP4A	Z	0	0	0	%100
25	MP2A	X	-9.333	-9.333	0	%100
26	MP2A	Z	0	0	0	%100
27	MP1A	X	-9.333	-9.333	0	%100
28	MP1A	Z	0	0	0	%100
29	MP3B	X	-9.333	-9.333	0	%100
30	MP3B	Z	0	0	0	%100
31	MP4B	X	-9.333	-9.333	0	%100
32	MP4B	Z	0	0	0	%100
33	MP2B	X	-9.333	-9.333	0	%100
34	MP2B	Z	0	0	0	%100
35	MP1B	X	-9.333	-9.333	0	%100
36	MP1B	Z	0	0	0	%100
37	MP3C	X	-9.333	-9.333	0	%100
38	MP3C	Z	0	0	0	%100
39	MP4C	X	-9.333	-9.333	0	%100
40	MP4C	Z	0	0	0	%100

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
41	MP2C	X	-9.333	-9.333	0	%100
42	MP2C	Z	0	0	0	%100
43	MP1C	X	-9.333	-9.333	0	%100
44	MP1C	Z	0	0	0	%100
45	M123	X	-10.418	-10.418	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	0	0	0	%100
49	M125	X	-10.418	-10.418	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	0	0	0	%100
53	M107	X	-8.473	-8.473	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	-8.473	-8.473	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	-18.209	-18.209	0	%100
58	M126	Z	0	0	0	%100
59	M127	X	-12.464	-12.464	0	%100
60	M127	Z	0	0	0	%100
61	M128	X	-12.464	-12.464	0	%100
62	M128	Z	0	0	0	%100
63	M51B	X	-9.819	-9.819	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	-9.819	-9.819	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	-9.819	-9.819	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	0	0	0	%100
70	M59A	Z	0	0	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	0	0	0	%100
73	M83A	X	-9.819	-9.819	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	0	0	0	%100
77	M82A	X	-10.294	-10.294	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	-10.294	-10.294	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	-23.578	-23.578	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	-18.011	-18.011	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	-23.578	-23.578	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	-18.011	-18.011	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	-5.895	-5.895	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	-18.011	-18.011	0	%100
92	M64	Z	0	0	0	%100
				<u> </u>		,,,,,

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
93	M68	X	-5.895	-5.895	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	0	0	0	%100
97	M87	X	-5.895	-5.895	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	0	0	0	%100
101	M92A	X	-5.895	-5.895	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	-18.011	-18.011	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	0	0	0	%100
107	M80	X	-18.971	-18.971	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	-18.971	-18.971	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	-17.684	-17.684	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	-18.971	-18.971	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	0	0	0	%100
117	M79A	X	-17.684	-17.684	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	0	0	0	%100
121	M95	X	-18.971	-18.971	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 51: Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-9.897	-9.897	0	%100
2	M4	Z	-5.714	-5.714	0	%100
3	M52A	X	-9.897	-9.897	0	%100
4	M52A	Z	-5.714	-5.714	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	-3.155	-3.155	0	%100
8	M10	Z	-1.822	-1.822	0	%100
9	M43	X	-3.155	-3.155	0	%100
10	M43	Z	-1.822	-1.822	0	%100
11	M53	X	-3.155	-3.155	0	%100
12	M53	Z	-1.822	-1.822	0	%100
13	M54	X	-3.155	-3.155	0	%100
14	M54	Z	-1.822	-1.822	0	%100
15	M77A	X	-12.62	-12.62	0	%100
16	M77A	Z	-7.286	-7.286	0	%100
17	M78	X	-12.62	-12.62	0	%100
18	M78	Z	-7.286	-7.286	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
19	M100	X	-6.609	-6.609	0	%100
20	M100	Z	-3.816	-3.816	0	%100
21	MP3A	X	-8.083	-8.083	0	%100
22	MP3A	Z	-4.666	-4.666	0	%100
23	MP4A	X	-8.083	-8.083	0	%100
24	MP4A	Z	-4.666	-4.666	0	%100
25	MP2A	X	-8.083	-8.083	0	%100
26	MP2A	Z	-4.666	-4.666	0	%100
27	MP1A	X	-8.083	-8.083	0	%100
28	MP1A	Z	-4.666	-4.666	0	%100
29	MP3B	X	-8.083	-8.083	0	%100
30	MP3B	Z	-4.666	-4.666	0	%100
31	MP4B	×	-8.083	-8.083	0	%100
32	MP4B	Z	-4.666	-4.666	0	%100
33	MP2B	X	-8.083	-8.083	0	%100
34	MP2B	Z	-4.666	-4.666	0	%100
35	MP1B	X	-8.083	-8.083	0	%100
36	MP1B	Z	-4.666	-4.666	0	%100
37	MP3C	X	-8.083	-8.083	0	%100 %100
38	MP3C	Z	-4.666	-4.666	0	%100 %100
39	MP4C	X	-8.083	-8.083	0	%100
40	MP4C	Z	-4.666	-4.666	0	%100 %100
41	MP2C	X	-8.083	-8.083	0	%100 %100
42	MP2C	Z	-4.666	-4.666	0	%100
43	MP1C	X	-8.083	-8.083	0	%100
44	MP1C	Z	-4.666	-4.666	0	%100 %100
45	M123	X	-3.007	-3.007	0	%100 %100
46	M123	Z	-1.736	-1.736	0	%100
47	M124	X	-3.007	-3.007	0	%100 %100
48	M124	Z	-1.736	-1.736	0	%100 %100
49	M125	X	-12.03	-12.03	0	%100 %100
50	M125	Z	-6.945	-6.945	0	%100
51	M102	X	-2.446	-2.446	0	%100
52	M102	Z	-1.412	-1.412	0	%100
53	M107	X	-2.446	-2.446	0	%100 %100
54	M107	Z	-1.412	-1.412	0	%100 %100
55	M108	X	-9.784	-9.784	0	%100 %100
56	M108	Z	-5.649	-5.649	0	%100
57	M126	X	-14.111	-14.111	0	%100 %100
58	M126	Z	-8.147	-8.147	0	%100
59	M127	X	-14.111	-14.111	0	%100 %100
60	M127	Z	-8.147	-8.147	0	%100 %100
61	M128	X	-9.136	-9.136	0	%100 %100
62	M128	Z	-5.275	-5.275	0	%100
63	M51B		-2.835	-2.835	0	%100 %100
64	M51B M51B	X Z	-1.637	-1.637	0	%100
65	M52B	X	-11.338	-11.338	0	%100 %100
66	M52B	Z	-6.546	-6.546	0	%100 %100
67	M58A	X	-11.338	-11.338	0	%100 %100
68	M58A	Z	-6.546	-6.546	0	%100 %100
69	M59A	X	-2.835	-2.835	0	%100 %100
70	M59A	Z	-1.637	-1.637	0	%100 %100
70	IVIOSA		-1.03/	-1.03/	U	70 100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
71	M82	X	-2.835	-2.835	0	%100
72	M82	Z	-1.637	-1.637	0	%100
73	M83A	X	-2.835	-2.835	0	%100
74	M83A	Z	-1.637	-1.637	0	%100
75	M1	X	-2.972	-2.972	0	%100
76	M1	Z	-1.716	-1.716	0	%100
77	M82A	X	-2.972	-2.972	0	%100
78	M82A	Z	-1.716	-1.716	0	%100
79	M91B	X	-11.887	-11.887	0	%100
80	M91B	Z	-6.863	-6.863	0	%100
81	M76	X	-15.314	-15.314	0	%100
82	M76	Z	-8.842	-8.842	0	%100
83	M77	X	-5.199	-5.199	0	%100
84	M77	Z	-3.002	-3.002	0	%100
85	M84	X	-15.314	-15.314	0	%100
86	M84	Z	-8.842	-8.842	0	%100
87	M85	X	-20.797	-20.797	0	%100
88	M85	Z	-12.007	-12.007	0	%100
89	M63	X	-15.314	-15.314	0	%100
90	M63	Z	-8.842	-8.842	0	%100
91	M64	X	-20.797	-20.797	0	%100
92	M64	Z	-12.007	-12.007	0	%100
93	M68	X	-15.314	-15.314	0	%100
94	M68	Z	-8.842	-8.842	0	%100
95	M69	X	-5.199	-5.199	0	%100
96	M69	Z	-3.002	-3.002	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	-5.199	-5.199	0	%100
100	M88A	Z	-3.002	-3.002	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	-5.199	-5.199	0	%100
104	M93	Z	-3.002	-3.002	0	%100
105	M46	X	-5.105	-5.105	0	%100
106	M46	Z	-2.947	-2.947	0	%100
107	M80	X	-5.476	-5.476	0	%100
108	M80	Z	-3.162	-3.162	0	%100
109	M91	X	-21.905	-21.905	0	%100
110	M91	Z	-12.647	-12.647	0	%100
111	M55	X	-5.105	-5.105	0	%100
112	M55	Z	-2.947	-2.947	0	%100
113	M66	X	-21.905	-21.905	0	%100
114	M66	Z	-12.647	-12.647	0	%100
115	M71	X	-5.476	-5.476	0	%100
116	M71	Z	-3.162	-3.162	0	%100
117	M79A	X	-20.419	-20.419	0	%100
118	M79A	Z	-11.789	-11.789	0	%100
119	M90	X	-5.476	-5.476	0	%100
120	M90	Z	-3.162	-3.162	0	%100
121	M95	X	-5.476	-5.476	0	%100
122	M95	Z	-3.162	-3.162	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-1.905	-1.905	0	%100
2	M4	Z	-3.299	-3.299	0	%100
3	M52A	X	-7.618	-7.618	0	%100
4	M52A	Z	-13.195	-13.195	0	%100
5	M76A	X	-1.905	-1.905	0	%100
6	M76A	Z	-3.299	-3.299	0	%100
7	M10	X	-5.465	-5.465	0	%100
8	M10	Z	-9.465	-9.465	0	%100
9	M43	X	-5.465	-5.465	0	%100
10	M43	Z	-9.465	-9.465	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	-5.465	-5.465	0	%100
16	M77A	Z	-9.465	-9.465	0	%100
17	M78	X	-5.465	-5.465	0	%100
18	M78	Z	-9.465	-9.465	0	%100
19	M100	X	-3.816	-3.816	0	%100
20	M100	Z	-6.609	-6.609	0	%100
21	MP3A		-4.666	-4.666	0	%100
22	MP3A	X Z		-8.083	0	%100
			-8.083			
23	MP4A	X Z	-4.666	-4.666	0	%100
24	MP4A		-8.083	-8.083	0	%100
25	MP2A	X	-4.666	-4.666	0	%100
26	MP2A	Z	-8.083	-8.083	0	%100
27	MP1A	X	-4.666	-4.666	0	%100
28	MP1A	Z	-8.083	-8.083	0	%100
29	MP3B	X	-4.666	-4.666	0	%100
30	MP3B	Z	-8.083	-8.083	0	%100
31	MP4B	X	-4.666	-4.666	0	%100
32	MP4B	Z	-8.083	-8.083	0	%100
33	MP2B	X	-4.666	-4.666	0	%100
34	MP2B	Z	-8.083	-8.083	0	%100
35	MP1B	X	-4.666	-4.666	0	%100
36	MP1B	Z	-8.083	-8.083	0	%100
37	MP3C	X	-4.666	-4.666	0	%100
38	MP3C	Z	-8.083	-8.083	0	%100
39	MP4C	X	-4.666	-4.666	0	%100
40	MP4C	Z	-8.083	-8.083	0	%100
41	MP2C	X	-4.666	-4.666	0	%100
42	MP2C	Z	-8.083	-8.083	0	%100
43	MP1C	X	-4.666	-4.666	0	%100
44	MP1C	Z	-8.083	-8.083	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	-5.209	-5.209	0	%100
48	M124	Z	-9.022	-9.022	0	%100
49	M125	X	-5.209	-5.209	0	%100
50	M125	Z	-9.022	-9.022	0	%100
51	M102	X	-4.237	-4.237	0	%100
52	M102	Z	-7.338	-7.338	0	%100

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
53	M107	X	0	0	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	-4.237	-4.237	0	%100
56	M108	Z	-7.338	-7.338	0	%100
57	M126	X	-6.232	-6.232	0	%100
58	M126	Z	-10.794	-10.794	0	%100
59	M127	X	-9.105	-9.105	0	%100
60	M127	Z	-15.77	-15.77	0	%100
61	M128	X	-6.232	-6.232	0	%100
62	M128	Z	-10.794	-10.794	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	-4.91	-4.91	0	%100
66	M52B	Z	-8.504	-8.504	0	%100
67	M58A	X	-4.91	-4.91	0	%100
68	M58A	Z	-8.504	-8.504	0	%100
69	M59A	X	-4.91	-4.91	0	%100
70	M59A	Z	-8.504	-8.504	0	%100
71	M82	X	-4.91	-4.91	0	%100
72	M82	Z	-8.504	-8.504	0	%100
73	M83A	X	0	0	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	-5.147	-5.147	0	%100
76	M1	Z	-8.915	-8.915	0	%100
77	M82A	X	0	0	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	-5.147	-5.147	0	%100
80	M91B	Z	-8.915	-8.915	0	%100
81	M76	X	-2.947	-2.947	0	%100
82	M76	Z	-5.105	-5.105	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	-2.947	-2.947	0	%100
86	M84	Z	-5.105	-5.105	0	%100
87	M85	X	-9.006	-9.006	0	%100
88	M85	Z	-15.598	-15.598	0	%100
89	M63	X	-11.789	-11.789	0	%100
90	M63	Z	-20.419	-20.419	0	%100
91	M64	X	-9.006	-9.006	0	%100
92	M64	Z	-15.598	-15.598	0	%100
93	M68	X	-11.789	-11.789	0	%100
94	M68	Z	-20.419	-20.419	0	%100
95	M69	X	-9.006	-9.006	0	%100
96	M69	Z	-15.598	-15.598	0	%100
97	M87	X	-2.947	-2.947	0	%100
98	M87	Z	-5.105	-5.105	0	%100
99	M88A	X	-9.006	-9.006	0	%100
100	M88A	Z	-15.598	-15.598	0	%100 %100
101	M92A	X	-2.947	-2.947	0	%100 %100
102	M92A	Z	-5.105	-5.105	0	%100
103	M93	X	0	0	0	%100 %100
104	M93	Z	0	0	0	%100 %100
10-1	11100		,		•	70100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 52: Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
105	M46	X	-8.842	-8.842	0	%100
106	M46	Z	-15.314	-15.314	0	%100
107	M80	X	0	0	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	-9.485	-9.485	0	%100
110	M91	Z	-16.429	-16.429	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	-9.485	-9.485	0	%100
114	M66	Z	-16.429	-16.429	0	%100
115	M71	X	-9.485	-9.485	0	%100
116	M71	Z	-16.429	-16.429	0	%100
117	M79A	X	-8.842	-8.842	0	%100
118	M79A	Z	-15.314	-15.314	0	%100
119	M90	Χ	-9.485	-9.485	0	%100
120	M90	Z	-16.429	-16.429	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	-3.319	-3.319	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	-3.319	-3.319	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	-3.923	-3.923	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	-3.923	-3.923	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	981	981	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	981	981	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	981	981	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	981	981	0	%100
19	M100	X	0	0	0	%100
20	M100	Z	-2.755	-2.755	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	-3.348	-3.348	0	%100
23	MP4A	X	0	0	0	%100
24	MP4A	Z	-3.348	-3.348	0	%100
25	MP2A	X	0	0	0	%100
26	MP2A	Z	-3.348	-3.348	0	%100
27	MP1A	X	0	0	0	%100
28	MP1A	Z	-3.348	-3.348	0	%100
29	MP3B	X	0	0	0	%100
30	MP3B	Z	-3.348	-3.348	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
31	MP4B	X	0	0	0	%100
32	MP4B	Z	-3.348	-3.348	0	%100
33	MP2B	X	0	0	0	%100
34	MP2B	Z	-3.348	-3.348	0	%100
35	MP1B	X	0	0	0	%100
36	MP1B	Z	-3.348	-3.348	0	%100
37	MP3C	X	0	0	0	%100
38	MP3C	Z	-3.348	-3.348	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	-3.348	-3.348	0	%100
41	MP2C	X	0	0	0	%100
42	MP2C	Z	-3.348	-3.348	0	%100
43	MP1C	X	0	0	0	%100
44	MP1C	Z	-3.348	-3.348	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	929	929	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	-3.715	-3.715	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	929	929	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	-3.706	-3.706	0	%100
53	M107	X	0	0	0	%100
54	M107	Z	927	927	0	%100
55	M108	X	0	0	0	%100
56	M108	Z	927	927	0	%100 %100
57	M126	X	0	0	0	%100
58	M126	Z	-2.484	-2.484	0	%100
59	M127	X	0	0	0	%100
60	M127	Z	-4.347	-4.347	0	%100
61	M128	X	0	0	0	%100
62	M128	Z	-4.347	-4.347	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	984	984	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	984	984	0	%100 %100
67	M58A	X	0	0	0	%100
68	M58A	Z	984	984	0	%100
69	M59A	X	0	904 0	0	%100
70	M59A	Z	-3.937	-3.937	0	%100
71	M82	X	0	-3.937 0	0	%100
72	M82	Z	-3.937	-3.937	0	%100 %100
73	M83A	X	-3.937	-3.937 0	0	%100
74	M83A	Z	984	984	0	%100 %100
75	N03A	X	984	904 0	0	%100 %100
76	M1	Z	-4.155	-4.155	0	%100
77	M82A	X	-4.155	-4.155 0	0	%100
78	M82A	Z	-1.039	-1.039	0	%100 %100
79	M91B	X	-1.039	-1.039 0	0	%100 %100
80	M91B	Z	-1.039	-1.039	0	%100 %100
81	M76	X	-1.039	-1.039 0	0	%100 %100
82		Z	0	0	0	%100 %100
02	M76		U	U	U	70 100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
83	M77	X	0	0	0	%100
84	M77	Z	-1.336	-1.336	0	%100
85	M84	X	0	0	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	-1.336	-1.336	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	-3.948	-3.948	0	%100
91	M64	Х	0	0	0	%100
92	M64	Z	-1.336	-1.336	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	-3.948	-3.948	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	-5.344	-5.344	0	%100
97	M87	Х	0	0	0	%100
98	M87	Z	-3.948	-3.948	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	-5.344	-5.344	0	%100
101	M92A	Х	0	0	0	%100
102	M92A	Z	-3.948	-3.948	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	-1.336	-1.336	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	-5.353	-5.353	0	%100
107	M80	Х	0	0	0	%100
108	M80	Z	-1.394	-1.394	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	-1.394	-1.394	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	-1.338	-1.338	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	-1.394	-1.394	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	-5.578	-5.578	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	-1.338	-1.338	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	-5.578	-5.578	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	-1.394	-1.394	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	.553	.553	0	%100
2	M4	Z	958	958	0	%100
3	M52A	X	.553	.553	0	%100
4	M52A	Z	958	958	0	%100
5	M76A	X	2.213	2.213	0	%100
6	M76A	Z	-3.833	-3.833	0	%100
7	M10	X	1.471	1.471	0	%100
8	M10	Z	-2.548	-2.548	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M43	X	1.471	1.471	0	%100
10	M43	Z	-2.548	-2.548	0	%100
11	M53	X	1.471	1.471	0	%100
12	M53	Z	-2.548	-2.548	0	%100
13	M54	X	1.471	1.471	0	%100
14	M54	Z	-2.548	-2.548	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	1.377	1.377	0	%100
20	M100	Z	-2.386	-2.386	0	%100
21	MP3A	X	1.674	1.674	0	%100
22	MP3A	Z	-2.899	-2.899	0	%100
23	MP4A	X	1.674	1.674	0	%100
24	MP4A	Z	-2.899	-2.899	0	%100
25	MP2A	X	1.674	1.674	0	%100
26	MP2A	Z	-2.899	-2.899	0	%100
27	MP1A	X	1.674	1.674	0	%100 %100
28	MP1A	Z	-2.899	-2.899	0	%100
29	MP3B	X	1.674	1.674	0	%100 %100
30	MP3B	Z	-2.899	-2.899	0	%100 %100
31	MP4B	X	1.674	1.674	0	%100 %100
32	MP4B	Z	-2.899	-2.899	0	%100 %100
33	MP2B	X	1.674	1.674	0	%100 %100
34	MP2B	Z	-2.899	-2.899	0	%100 %100
35	MP1B	X	1.674	1.674	0	%100 %100
36	MP1B	Z	-2.899	-2.899	0	%100 %100
37	MP3C	X	1.674		0	%100 %100
38	MP3C	Z	-2.899		0	%100
39	MP4C	X	1.674	-2.899 1.674	0	%100 %100
40	MP4C MP4C	Z	-2.899	-2.899	0	%100 %100
41	MP2C	X	1.674		0	%100 %100
42	MP2C MP2C	Z	-2.899	1.674 -2.899	0	%100 %100
43	MP1C	X	1.674		0	%100 %100
44		Z		1.674	0	%100 %100
45	MP1C	X	-2.899	-2.899 1.303		
46	M123 M123	Z	1.393 -2.413	1.393 -2.413	0	%100 %100
47	M124		1.393	1.393	0	%100 %100
48	M124	X Z	-2.413	-2.413	0	%100 %100
49	M125	X			0	%100 %100
50	M125	Z	0	0	0	%100 %100
	M102				0	
51		X	1.39	1.39		%100 %100
52	M102	Z	-2.407	<u>-2.407</u>	0	%100 %100
53 54	M107 M107	X Z	1.39	1.39	0	%100 %100
			-2.407	-2.407		%100 %100
55 56	M108	X Z	0	0	0	%100 %100
56	M108		-			%100 %100
57	M126	X Z	1.553	1.553	0	%100 %100
58	M126		-2.689	-2.689	0	%100
59	M127	X	1.553	1.553	0	%100
60	M127	Z	-2.689	-2.689	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
61	M128	X	2.484	2.484	0	%100
62	M128	Z	-4.303	-4.303	0	%100
63	M51B	X	1.476	1.476	0	%100
64	M51B	Z	-2.557	-2.557	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	1.476	1.476	0	%100
70	M59A	Z	-2.557	-2.557	0	%100
71	M82	X	1.476	1.476	0	%100
72	M82	Z	-2.557	-2.557	0	%100
73	M83A	X	1.476	1.476	0	%100
74	M83A	Z	-2.557	-2.557	0	%100
75	M1	Х	1.558	1.558	0	%100
76	M1	Z	-2.699	-2.699	0	%100
77	M82A	X	1.558	1.558	0	%100
78	M82A	Z	-2.699	-2.699	0	%100
79	M91B	Х	0	0	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	.658	.658	0	%100
82	M76	Z	-1.14	-1.14	0	%100
83	M77	X	2.004	2.004	0	%100
84	M77	Z	-3.471	-3.471	0	%100
85	M84	X	.658	.658	0	%100
86	M84	Z	-1.14	-1.14	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	.658	.658	0	%100
90	M63	Z	-1.14	-1.14	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	0	0	0	%100
93	M68	X	.658	.658	0	%100
94	M68	Z	-1.14	-1.14	0	%100
95	M69	X	2.004	2.004	0	%100
96	M69	Z	-3.471	-3.471	0	%100
97	M87	X	2.632	2.632	0	%100
98	M87	Z	-4.559	-4.559	0	%100
99	M88A	X	2.004	2.004	0	%100
100	M88A	Z	-3.471	-3.471	0	%100
101	M92A	X	2.632	2.632	0	%100
102	M92A	Z	-4.559	-4.559	0	%100
103	M93	X	2.004	2.004	0	%100
104	M93	Z	-3.471	-3.471	0	%100
105	M46	X	2.007	2.007	0	%100
106	M46	Z	-3.477	-3.477	0	%100
107	M80	X	2.092	2.092	0	%100
108	M80	Z	-3.623	-3.623	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	2.007	2.007	0	%100
112	M55	Z	-3.477	-3.477	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
113	M66	X	0	0	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	2.092	2.092	0	%100
116	M71	Z	-3.623	-3.623	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	2.092	2.092	0	%100
120	M90	Z	-3.623	-3.623	0	%100
121	M95	X	2.092	2.092	0	%100
122	M95	Z	-3.623	-3.623	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	2.875	2.875	0	%100
2	M4	Z	-1.66	-1.66	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	2.875	2.875	0	%100
6	M76A	Z	-1.66	-1.66	0	%100
7	M10	X	.849	.849	0	%100
8	M10	Z	49	49	0	%100
9	M43	X	.849	.849	0	%100
10	M43	Z	49	49	0	%100
11	M53	X	3.397	3.397	0	%100
12	M53	Z	-1.961	-1.961	0	%100
13	M54	X	3.397	3.397	0	%100
14	M54	Z	-1.961	-1.961	0	%100
15	M77A	X	.849	.849	0	%100
16	M77A	Z	49	49	0	%100
17	M78	X	.849	.849	0	%100
18	M78	Z	49	49	0	%100
19	M100	X	2.386	2.386	0	%100
20	M100	Z	-1.377	-1.377	0	%100
21	MP3A	X	2.899	2.899	0	%100
22	MP3A	Z	-1.674	-1.674	0	%100
23	MP4A	X	2.899	2.899	0	%100
24	MP4A	Z	-1.674	-1.674	0	%100
25	MP2A	X	2.899	2.899	0	%100
26	MP2A	Z	-1.674	-1.674	0	%100
27	MP1A	X	2.899	2.899	0	%100
28	MP1A	Z	-1.674	-1.674	0	%100
29	MP3B	X	2.899	2.899	0	%100
30	MP3B	Z	-1.674	-1.674	0	%100
31	MP4B	X	2.899	2.899	0	%100
32	MP4B	Z	-1.674	-1.674	0	%100
33	MP2B	X	2.899	2.899	0	%100
34	MP2B	Z	-1.674	-1.674	0	%100
35	MP1B	X	2.899	2.899	0	%100
36	MP1B	Z	-1.674	-1.674	0	%100
37	MP3C	X	2.899	2.899	0	%100
38	MP3C	Z	-1.674	-1.674	0	%100
	00	-			•	,0.00

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
39	MP4C	X	2.899	2.899	0	%100
40	MP4C	Z	-1.674	-1.674	0	%100
41	MP2C	X	2.899	2.899	0	%100
42	MP2C	Z	-1.674	-1.674	0	%100
43	MP1C	X	2.899	2.899	0	%100
44	MP1C	Z	-1.674	-1.674	0	%100
45	M123	X	3.217	3.217	0	%100
46	M123	Z	-1.858	-1.858	0	%100
47	M124	X	.804	.804	0	%100
48	M124	Z	464	464	0	%100
49	M125	X	.804	.804	0	%100
50	M125	Z	464	464	0	%100
51	M102	X	.802	.802	0	%100
52	M102	Z	463	463	0	%100
53	M107	X	3.21	3.21	0	%100
54	M107	Z	-1.853	-1.853	0	%100
55	M108	X	.802	.802	0	%100
56	M108	Z	463	463	0	%100
57	M126	X	3.765	3.765	0	%100
58	M126	Z	-2.174	-2.174	0	%100
59	M127	X	2.151	2.151	0	%100
60	M127	Z	-1.242	-1.242	0	%100 %100
61	M128	X	3.765	3.765	0	%100
62	M128	Z	-2.174	-2.174	0	%100
63	M51B	X	3.41	3.41	0	%100 %100
64	M51B	Z	-1.969	-1.969	0	%100 %100
65	M52B	X	.852	.852	0	%100 %100
66	M52B	Z	492	492	0	%100
67	M58A	X	.852	.852	0	%100 %100
68	M58A	Z	492	492	0	%100 %100
69	M59A	X	.852	.852	0	%100
70	M59A	Z	492	492	0	%100
71	M82	X	.852	.852	0	%100 %100
72	M82	Z	492	492	0	%100
73	M83A	X	3.41	3.41	0	%100 %100
74	M83A	Z	-1.969	-1.969	0	%100 %100
75	M1	X	.9	.9	0	%100 %100
76	M1	Z	519	519	0	%100
77	M82A	X	3.598	3.598	0	%100 %100
78	M82A	Z	-2.077	-2.077	0	%100
79	M91B	X	.9	.9	0	%100 %100
80	M91B	Z	519	. 519	0	%100 %100
81	M76	X	3.419	3.419	0	%100 %100
82	M76	Z	-1.974	-1.974	0	%100
83	M77	X	4.628	4.628	0	%100 %100
84	M77	Z	-2.672	-2.672	0	%100
85	M84	X	3.419	3.419	0	%100 %100
86	M84	Z	-1.974	-1.974	0	%100 %100
87	M85	X	1.157	1.157	0	%100 %100
88	M85	Z	668	668	0	%100
89	M63	X	000	0	0	%100 %100
90	M63	Z	0	0	0	%100 %100
90	IVIOS		U	U	U	76 100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
91	M64	X	1.157	1.157	0	%100
92	M64	Z	668	668	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	1.157	1.157	0	%100
96	M69	Z	668	668	0	%100
97	M87	X	3.419	3.419	0	%100
98	M87	Z	-1.974	-1.974	0	%100
99	M88A	X	1.157	1.157	0	%100
100	M88A	Z	668	668	0	%100
101	M92A	X	3.419	3.419	0	%100
102	M92A	Z	-1.974	-1.974	0	%100
103	M93	X	4.628	4.628	0	%100
104	M93	Z	-2.672	-2.672	0	%100
105	M46	X	1.159	1.159	0	%100
106	M46	Z	669	669	0	%100
107	M80	X	4.831	4.831	0	%100
108	M80	Z	-2.789	-2.789	0	%100
109	M91	X	1.208	1.208	0	%100
110	M91	Z	697	697	0	%100
111	M55	X	4.636	4.636	0	%100
112	M55	Z	-2.676	-2.676	0	%100
113	M66	X	1.208	1.208	0	%100
114	M66	Z	697	697	0	%100
115	M71	X	1.208	1.208	0	%100
116	M71	Z	697	697	0	%100
117	M79A	X	1.159	1.159	0	%100
118	M79A	Z	669	669	0	%100
119	M90	X	1.208	1.208	0	%100
120	M90	Z	697	697	0	%100
121	M95	X	4.831	4.831	0	%100
122	M95	Z	-2.789	-2.789	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	4.426	4.426	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	1.106	1.106	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	1.106	1.106	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	0	0	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	0	0	0	%100
11	M53	X	2.942	2.942	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	2.942	2.942	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	2.942	2.942	0	%100
16	M77A	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
17	M78	X	2.942	2.942	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	2.755	2.755	0	%100
20	M100	Z	0	0	0	%100
21	MP3A	X	3.348	3.348	0	%100
22	MP3A	Z	0	0	0	%100
23	MP4A	X	3.348	3.348	0	%100
24	MP4A	Z	0	0	0	%100
25	MP2A	X	3.348	3.348	0	%100
26	MP2A	Z	0	0	0	%100
27	MP1A	X	3.348	3.348	0	%100
28	MP1A	Z	0	0	0	%100
29	MP3B	X	3.348	3.348	0	%100
30	MP3B	Z	0	0	0	%100
31	MP4B	X	3.348	3.348	0	%100
32	MP4B	Z	0	0	0	%100
33	MP2B	X	3.348	3.348	0	%100
34	MP2B	Z	0		0	%100 %100
35	MP1B	X		2 240	0	%100 %100
		Z	3.348	3.348	0	
36	MP1B		0	0		%100
37	MP3C	X	3.348	3.348	0	%100
38	MP3C	Z	0	0	0	%100
39	MP4C	X	3.348	3.348	0	%100
40	MP4C	Z	0	0	0	%100
41	MP2C	X	3.348	3.348	0	%100
42	MP2C	Z	0	0	0	%100
43	MP1C	X	3.348	3.348	0	%100
44	MP1C	Z	0	0	0	%100
45	M123	X	2.786	2.786	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	0	0	0	%100
49	M125	X	2.786	2.786	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	0	0	0	%100
53	M107	X	2.78	2.78	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	2.78	2.78	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	4.969	4.969	0	%100
58	M126	Z	0	0	0	%100
59	M127	X	3.105	3.105	0	%100
60	M127	Z	0	0	0	%100
61	M128	X	3.105	3.105	0	%100
62	M128	Z	0	0	0	%100
63	M51B	X	2.953	2.953	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	2.953	2.953	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	2.953	2.953	0	%100
68	M58A	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	M59A	X	0	0	0	%100
70	M59A	Z	0	0	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	0	0	0	%100
73	M83A	X	2.953	2.953	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	0	0	0	%100
77	M82A	X	3.116	3.116	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	3.116	3.116	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	5.264	5.264	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	4.008	4.008	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	5.264	5.264	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	4.008	4.008	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	1.316	1.316	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	4.008	4.008	0	%100
92	M64	Z	0	0	0	%100
93	M68	X	1.316	1.316	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	0	0	0	%100
97	M87	X	1.316	1.316	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	0	0	0	%100
101	M92A	X	1.316	1.316	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	4.008	4.008	0	%100
103	M93	Z	0	0	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	0	0	0	%100
107	M80	X	4.183	4.183	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	4.183	4.183	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	4.015	4.015	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	4.183	4.183	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	0	0	0	%100
117	M79A	X	4.015	4.015	0	%100
118	M79A	Z	0	4.015	0	%100 %100
119	M90	X	0	0	0	%100 %100
120	M90	Z	0	0	0	%100 %100
120	MAC		U	U	U	70 100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
121	M95	X	4.183	4.183	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	2.875	2.875	0	%100
2	M4	Z	1.66	1.66	0	%100
3	M52A	X	2.875	2.875	0	%100
4	M52A	Z	1.66	1.66	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	.849	.849	0	%100
8	M10	Z	.49	.49	0	%100
9	M43	X	.849	.849	0	%100
10	M43	Z	.49	.49	0	%100
11	M53	X	.849	.849	0	%100
12	M53	Z	.49	.49	0	%100
13	M54	X	.849	.849	0	%100
14	M54	Z	.49	.49	0	%100
15	M77A	X	3.397	3.397	0	%100
16	M77A	Z	1.961	1.961	0	%100
17	M78	X	3.397	3.397	0	%100
18	M78	Z	1.961	1.961	0	%100
19	M100	X	2.386	2.386	0	%100
20	M100	Z	1.377	1.377	0	%100
21	MP3A	X	2.899	2.899	0	%100
22	MP3A	Z	1.674	1.674	0	%100
23	MP4A	X	2.899	2.899	0	%100
24	MP4A	Z	1.674	1.674	0	%100
25	MP2A	X	2.899	2.899	0	%100
26	MP2A	Z	1.674	1.674	0	%100
27	MP1A	X	2.899	2.899	0	%100
28	MP1A	Z	1.674	1.674	0	%100
29	MP3B	X	2.899	2.899	0	%100
30	MP3B	Z	1.674	1.674	0	%100
31	MP4B	X	2.899	2.899	0	%100
32	MP4B	Z	1.674	1.674	0	%100
33	MP2B	X	2.899	2.899	0	%100
34	MP2B	Z	1.674	1.674	0	%100
35	MP1B	X	2.899	2.899	0	%100
36	MP1B	Z	1.674	1.674	0	%100
37	MP3C	X	2.899	2.899	0	%100
38	MP3C	Z	1.674	1.674	0	%100
39	MP4C	X	2.899	2.899	0	%100
40	MP4C	Z	1.674	1.674	0	%100
41	MP2C	X	2.899	2.899	0	%100
42	MP2C	Z	1.674	1.674	0	%100
43	MP1C	X	2.899	2.899	0	%100
44	MP1C	Z	1.674	1.674	0	%100
45	M123	X	.804	.804	0	%100
46	M123	Z	.464	.464	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
47	M124	X	.804	.804	0	%100
48	M124	Z	.464	.464	0	%100
49	M125	X	3.217	3.217	0	%100
50	M125	Z	1.858	1.858	0	%100
51	M102	X	.802	.802	0	%100
52	M102	Z	.463	.463	0	%100
53	M107	X	.802	.802	0	%100
54	M107	Z	.463	.463	0	%100
55	M108	X	3.21	3.21	0	%100
56	M108	Z	1.853	1.853	0	%100
57	M126	X	3.765	3.765	0	%100
58	M126	Z	2.174	2.174	0	%100
59	M127	X	3.765	3.765	0	%100
60	M127	Z	2.174	2.174	0	%100
61	M128	X	2.151	2.151	0	%100
62	M128	Z	1.242	1.242	0	%100
63	M51B	X	.852	.852	0	%100
64	M51B	Z	.492	.492	0	%100
65	M52B	X	3.41	3.41	0	%100
66	M52B	Z	1.969	1.969	0	%100
67	M58A	X	3.41	3.41	0	%100
68	M58A	Z	1.969	1.969	0	%100
69	M59A	X	.852	.852	0	%100
70		Z	.492	.492	0	%100
	M59A					
71	M82	X Z	.852	.852	0	%100
72	M82		.492	.492	0	%100
73	M83A	X Z	.852	.852	0	%100
74	M83A		.492	.492	0	%100
75 76	M1	X	.9	.9	0	%100
76	M1	Z	.519	.519	0	%100
77	M82A	X	.9	.9	0	%100
78	M82A	Z	.519	.519	0	%100
79	M91B	X	3.598	3.598	0	%100
80	M91B	Z	2.077	2.077	0	%100
81	M76	X	3.419	3.419	0	%100
82	M76	Z	1.974	1.974	0	%100
83	M77	X	1.157	1.157	0	%100 %100
84	M77	Z	.668	.668	0	%100
85	M84	X	3.419	3.419	0	%100
86	M84	Z	1.974	1.974	0	%100
87	M85	X Z	4.628	4.628	0	%100
88	M85		2.672	2.672	0	%100
89	M63	X	3.419	3.419	0	%100
90	M63	Z	1.974	1.974	0	%100
91	M64	X	4.628	4.628	0	%100
92	M64	Z	2.672	2.672	0	%100
93	M68	X	3.419	3.419	0	%100
94	M68	Z	1.974	1.974	0	%100
95	M69	X	1.157	1.157	0	%100
96	M69	Z	.668	.668	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	0	0	0	%100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
99	M88A	X	1.157	1.157	0	%100
100	M88A	Z	.668	.668	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	1.157	1.157	0	%100
104	M93	Z	.668	.668	0	%100
105	M46	X	1.159	1.159	0	%100
106	M46	Z	.669	.669	0	%100
107	M80	X	1.208	1.208	0	%100
108	M80	Z	.697	.697	0	%100
109	M91	X	4.831	4.831	0	%100
110	M91	Z	2.789	2.789	0	%100
111	M55	X	1.159	1.159	0	%100
112	M55	Z	.669	.669	0	%100
113	M66	X	4.831	4.831	0	%100
114	M66	Z	2.789	2.789	0	%100
115	M71	X	1.208	1.208	0	%100
116	M71	Z	.697	.697	0	%100
117	M79A	X	4.636	4.636	0	%100
118	M79A	Z	2.676	2.676	0	%100
119	M90	X	1.208	1.208	0	%100
120	M90	Z	.697	.697	0	%100
121	M95	X	1.208	1.208	0	%100
122	M95	Z	.697	.697	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	.553	.553	0	%100
2	M4	Z	.958	.958	0	%100
3	M52A	X	2.213	2.213	0	%100
4	M52A	Z	3.833	3.833	0	%100
5	M76A	X	.553	.553	0	%100
6	M76A	Z	.958	.958	0	%100
7	M10	X	1.471	1.471	0	%100
8	M10	Z	2.548	2.548	0	%100
9	M43	X	1.471	1.471	0	%100
10	M43	Z	2.548	2.548	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	1.471	1.471	0	%100
16	M77A	Z	2.548	2.548	0	%100
17	M78	X	1.471	1.471	0	%100
18	M78	Z	2.548	2.548	0	%100
19	M100	X	1.377	1.377	0	%100
20	M100	Z	2.386	2.386	0	%100
21	MP3A	X	1.674	1.674	0	%100
22	MP3A	Z	2.899	2.899	0	%100
23	MP4A	X	1.674	1.674	0	%100
24	MP4A	Z	2.899	2.899	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
25	MP2A	X	1.674	1.674	0	%100
26	MP2A	Z	2.899	2.899	0	%100
27	MP1A	X	1.674	1.674	0	%100
28	MP1A	Z	2.899	2.899	0	%100
29	MP3B	X	1.674	1.674	0	%100
30	MP3B	Z	2.899	2.899	0	%100
31	MP4B	X	1.674	1.674	0	%100
32	MP4B	Z	2.899	2.899	0	%100
33	MP2B	X	1.674	1.674	0	%100
34	MP2B	Z	2.899	2.899	0	%100
35	MP1B	X	1.674	1.674	0	%100
36	MP1B	Z	2.899	2.899	0	%100
37	MP3C	X	1.674	1.674	0	%100
38	MP3C	Z	2.899	2.899	0	%100
39	MP4C	X	1.674	1.674	0	%100
40	MP4C	Z	2.899	2.899	0	%100
41	MP2C	X	1.674	1.674	0	%100
42	MP2C	Z	2.899	2.899	0	%100
43	MP1C	X	1.674	1.674	0	%100
44	MP1C	Z	2.899	2.899	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	1.393	1.393	0	%100
48	M124	Z	2.413	2.413	0	%100
49	M125	X	1.393	1.393	0	%100
50	M125	Z	2.413	2.413	0	%100
51	M102	X	1.39	1.39	0	%100
52	M102	Z	2.407	2.407	0	%100
53	M107	X	0	0	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	1.39	1.39	0	%100
56	M108	Z	2.407	2.407	0	%100
57	M126	X	1.553	1.553	0	%100
58	M126	Z	2.689	2.689	0	%100
59	M127	X	2.484	2.484	0	%100
60	M127	Z	4.303	4.303	0	%100
61	M128	X	1.553	1.553	0	%100
62	M128	Z	2.689	2.689	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	1.476	1.476	0	%100
66	M52B	Z	2.557	2.557	0	%100
67	M58A	X	1.476	1.476	0	%100
68	M58A	Z	2.557	2.557	0	%100
69	M59A	X	1.476	1.476	0	%100
70	M59A	Z	2.557	2.557	0	%100
71	M82	X	1.476	1.476	0	%100
72	M82	Z	2.557	2.557	0	%100
73	M83A	X	0	0	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	1.558	1.558	0	%100
76	M1	Z	2.699	2.699	0	%100

Model Name

pany : Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
77	M82A	X	0	0	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	1.558	1.558	0	%100
80	M91B	Z	2.699	2.699	0	%100
81	M76	X	.658	.658	0	%100
82	M76	Z	1.14	1.14	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	.658	.658	0	%100
86	M84	Z	1.14	1.14	0	%100
87	M85	X	2.004	2.004	0	%100
88	M85	Z	3.471	3.471	0	%100
89	M63	X	2.632	2.632	0	%100
90	M63	Z	4.559	4.559	0	%100
91	M64	Х	2.004	2.004	0	%100
92	M64	Z	3.471	3.471	0	%100
93	M68	X	2.632	2.632	0	%100
94	M68	Z	4.559	4.559	0	%100
95	M69	X	2.004	2.004	0	%100
96	M69	Z	3.471	3.471	0	%100
97	M87	X	.658	.658	0	%100
98	M87	Z	1.14	1.14	0	%100
99	M88A	X	2.004	2.004	0	%100
100	M88A	Z	3.471	3.471	0	%100
101	M92A	X	.658	.658	0	%100
102	M92A	Z	1.14	1.14	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	2.007	2.007	0	%100
106	M46	Z	3.477	3.477	0	%100
107	M80	X	0	0	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	2.092	2.092	0	%100
110	M91	Z	3.623	3.623	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	2.092	2.092	0	%100
114	M66	Z	3.623	3.623	0	%100
115	M71	X	2.092	2.092	0	%100
116	M71	Z	3.623	3.623	0	%100
117	M79A	X	2.007	2.007	0	%100
118	M79A	Z	3.477	3.477	0	%100
119	M90	X	2.092	2.092	0	%100
120	M90	Z	3.623	3.623	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M52A	X	0	0	0	%100
4	M52A	Z	3.319	3.319	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	3.319	3.319	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	3.923	3.923	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	3.923	3.923	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	.981	.981	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	.981	.981	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	.981	.981	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	.981	.981	0	%100
19	M100	X	0	0	0	%100
20	M100	Z	2.755	2.755	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	3.348	3.348	0	%100
23	MP4A	X	0		0	
24	MP4A	Z	3.348	3.348	0	%100 %100
25	MP2A	X Z	0	0	0	%100
26	MP2A		3.348	3.348	0	%100
27	MP1A	X	0	0	0	%100
28	MP1A	Z	3.348	3.348	0	%100
29	MP3B	X	0	0	0	%100
30	MP3B	Z	3.348	3.348	0	%100
31	MP4B	X	0	0	0	%100
32	MP4B	Z	3.348	3.348	0	%100
33	MP2B	X	0	0	0	%100
34	MP2B	Z	3.348	3.348	0	%100
35	MP1B	X	0	0	0	%100
36	MP1B	Z	3.348	3.348	0	%100
37	MP3C	X	0	0	0	%100
38	MP3C	Z	3.348	3.348	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	3.348	3.348	0	%100
41	MP2C	X	0	0	0	%100
42	MP2C	Z	3.348	3.348	0	%100
43	MP1C	X	0	0	0	%100
44	MP1C	Z	3.348	3.348	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	.929	.929	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	3.715	3.715	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	.929	.929	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	3.706	3.706	0	%100
53	M107	X	0	0	0	%100
54	M107	Z	.927	.927	0	%100

: Maser Consulting

: SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
55	M108	X	0	0	0	%100
56	M108	Z	.927	.927	0	%100
57	M126	X	0	0	0	%100
58	M126	Z	2.484	2.484	0	%100
59	M127	X	0	0	0	%100
60	M127	Z	4.347	4.347	0	%100
61	M128	X	0	0	0	%100
62	M128	Z	4.347	4.347	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	.984	.984	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	.984	.984	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	.984	.984	0	%100
69	M59A	X	0	0	0	%100
70	M59A	Z	3.937	3.937	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	3.937	3.937	0	%100
73	M83A	X	0	0	0	%100
74	M83A	Z	.984	.984	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	4.155	4.155	0	%100
77	M82A	X	0	0	0	%100
78	M82A	Z	1.039	1.039	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	1.039	1.039	0	%100
81	M76	X	0	0	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	1.336	1.336	0	%100
85	M84	X	0	0	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	1.336	1.336	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	3.948	3.948	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	1.336	1.336	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	3.948	3.948	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	5.344	5.344	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	3.948	3.948	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	5.344	5.344	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	3.948	3.948	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	1.336	1.336	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	5.353	5.353	0	%100
. 50		_	3.003	0.000		,0,00

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
107	M80	X	0	0	0	%100
108	M80	Z	1.394	1.394	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	1.394	1.394	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	1.338	1.338	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	1.394	1.394	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	5.578	5.578	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	1.338	1.338	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	5.578	5.578	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	1.394	1.394	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	553	553	0	%100
2	M4	Z	.958	.958	0	%100
3	M52A	X	553	553	0	%100
4	M52A	Z	.958	.958	0	%100
5	M76A	X	-2.213	-2.213	0	%100
6	M76A	Z	3.833	3.833	0	%100
7	M10	X	-1.471	-1.471	0	%100
8	M10	Z	2.548	2.548	0	%100
9	M43	X	-1.471	-1.471	0	%100
10	M43	Z	2.548	2.548	0	%100
11	M53	X	-1.471	-1.471	0	%100
12	M53	Z	2.548	2.548	0	%100
13	M54	X	-1.471	-1.471	0	%100
14	M54	Z	2.548	2.548	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	-1.377	-1.377	0	%100
20	M100	Z	2.386	2.386	0	%100
21	MP3A	X	-1.674	-1.674	0	%100
22	MP3A	Z	2.899	2.899	0	%100
23	MP4A	X	-1.674	-1.674	0	%100
24	MP4A	Z	2.899	2.899	0	%100
25	MP2A	X	-1.674	-1.674	0	%100
26	MP2A	Z	2.899	2.899	0	%100
27	MP1A	X	-1.674	-1.674	0	%100
28	MP1A	Z	2.899	2.899	0	%100
29	MP3B	X	-1.674	-1.674	0	%100
30	MP3B	Z	2.899	2.899	0	%100
31	MP4B	X	-1.674	-1.674	0	%100
32	MP4B	Z	2.899	2.899	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	MP2B	X	-1.674	-1.674	0	%100
34	MP2B	Z	2.899	2.899	0	%100
35	MP1B	X	-1.674	-1.674	0	%100
36	MP1B	Z	2.899	2.899	0	%100
37	MP3C	X	-1.674	-1.674	0	%100
38	MP3C	Z	2.899	2.899	0	%100
39	MP4C	X	-1.674	-1.674	0	%100
40	MP4C	Z	2.899	2.899	0	%100
41	MP2C	X	-1.674	-1.674	0	%100
42	MP2C	Z	2.899	2.899	0	%100
43	MP1C	X	-1.674	-1.674	0	%100
44	MP1C	Z	2.899	2.899	0	%100
45	M123	X	-1.393	-1.393	0	%100
46	M123	Z	2.413	2.413	0	%100
47	M124	X	-1.393	-1.393	0	%100
48	M124	Z	2.413	2.413	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	-1.39	-1.39	0	%100
52	M102	Z	2.407	2.407	0	%100
53	M107	X	-1.39	-1.39	0	%100
54	M107	Z	2.407	2.407	0	%100
55	M108	X	0	0	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	-1.553	-1.553	0	%100
58	M126	Z	2.689	2.689	0	%100
59	M127	X	-1.553	-1.553	0	%100
60	M127	Z	2.689	2.689	0	%100
61	M128	X	-2.484	-2.484	0	%100
62	M128	Z	4.303	4.303	0	%100
63	M51B	X	-1.476	-1.476	0	%100
64	M51B	Z	2.557	2.557	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	-1.476	-1.476	0	%100
70	M59A	Z	2.557	2.557	0	%100
71	M82	X	-1.476	-1.476	0	%100
72	M82	Z	2.557	2.557	0	%100
73	M83A	X	-1.476	-1.476	0	%100
74	M83A	Z	2.557	2.557	0	%100
75	M1	X	-1.558	-1.558	0	%100
76	M1	Z	2.699	2.699	0	%100
77	M82A	Χ	-1.558	-1.558	0	%100
78	M82A	Z	2.699	2.699	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	658	658	0	%100
82	M76	Z	1.14	1.14	0	%100
83	M77	X	-2.004	-2.004	0	%100
84	M77	Z	3.471	3.471	0	%100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
85	M84	X	658	658	0	%100
86	M84	Z	1.14	1.14	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	658	658	0	%100
90	M63	Z	1.14	1.14	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	0	0	0	%100
93	M68	Х	658	658	0	%100
94	M68	Z	1.14	1.14	0	%100
95	M69	X	-2.004	-2.004	0	%100
96	M69	Z	3.471	3.471	0	%100
97	M87	X	-2.632	-2.632	0	%100
98	M87	Z	4.559	4.559	0	%100
99	M88A	Х	-2.004	-2.004	0	%100
100	M88A	Z	3.471	3.471	0	%100
101	M92A	X	-2.632	-2.632	0	%100
102	M92A	Z	4.559	4.559	0	%100
103	M93	Х	-2.004	-2.004	0	%100
104	M93	Z	3.471	3.471	0	%100
105	M46	X	-2.007	-2.007	0	%100
106	M46	Z	3.477	3.477	0	%100
107	M80	X	-2.092	-2.092	0	%100
108	M80	Z	3.623	3.623	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	-2.007	-2.007	0	%100
112	M55	Z	3.477	3.477	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	-2.092	-2.092	0	%100
116	M71	Z	3.623	3.623	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	-2.092	-2.092	0	%100
120	M90	Z	3.623	3.623	0	%100
121	M95	X	-2.092	-2.092	0	%100
122	M95	Z	3.623	3.623	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-2.875	-2.875	0	%100
2	M4	Z	1.66	1.66	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	-2.875	-2.875	0	%100
6	M76A	Z	1.66	1.66	0	%100
7	M10	X	849	849	0	%100
8	M10	Z	.49	.49	0	%100
9	M43	X	849	849	0	%100
10	M43	Z	.49	.49	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
11	M53	X	-3.397	-3.397	0	%100
12	M53	Z	1.961	1.961	0	%100
13	M54	X	-3.397	-3.397	0	%100
14	M54	Z	1.961	1.961	0	%100
15	M77A	X	849	849	0	%100
16	M77A	Z	.49	.49	0	%100
17	M78	X	849	849	0	%100
18	M78	Z	.49	.49	0	%100
19	M100	X	-2.386	-2.386	0	%100
20	M100	Z	1.377	1.377	0	%100
21	MP3A	X	-2.899	-2.899	0	%100
22	MP3A	Z	1.674	1.674	0	%100
23	MP4A	X	-2.899	-2.899	0	%100
24	MP4A	Z	1.674	1.674	0	%100
25	MP2A	X	-2.899	-2.899	0	%100
26	MP2A	Z	1.674	1.674	0	%100
27	MP1A	X	-2.899	-2.899	0	%100
28	MP1A	Z	1.674	1.674	0	%100
29	MP3B	X Z	-2.899	-2.899	0	%100
30	MP3B		1.674	1.674	0	%100
31	MP4B	X	-2.899	-2.899	0	%100
32	MP4B	Z	1.674	1.674	0	%100
33	MP2B	X	-2.899	-2.899	0	%100
34	MP2B	Z	1.674	1.674	0	%100
35	MP1B	X	-2.899	-2.899	0	%100
36	MP1B	Z	1.674	1.674	0	%100
37	MP3C	X	-2.899	-2.899	0	%100
38	MP3C	Z	1.674	1.674	0	%100
39	MP4C	X	-2.899	-2.899	0	%100
40	MP4C	Z	1.674	1.674	0	%100
41	MP2C	X	-2.899	-2.899	0	%100
42	MP2C	Z	1.674	1.674	0	%100
43	MP1C	X	-2.899	-2.899	0	%100
44	MP1C	Z	1.674	1.674	0	%100
45	M123	X	-3.217	-3.217	0	%100
46	M123	Z	1.858	1.858	0	%100
47	M124	X	804	804	0	%100
48	M124	Z	.464	.464	0	%100
49	M125	X	804	804	0	%100
50	M125	Z	.464	.464	0	%100
51	M102	X	802	802	0	%100
52	M102	Z	.463	.463	0	%100
53	M107	X	-3.21	-3.21	0	%100
54	M107	Z	1.853	1.853	0	%100
55	M108	X	802	802	0	%100
56	M108	Z	.463	.463	0	%100
57	M126	X	-3.765	-3.765	0	%100
58	M126	Z	2.174	2.174	0	%100
59	M127	X	-2.151	-2.151	0	%100
60	M127	Z	1.242	1.242	0	%100
61	M128	X	-3.765	-3.765	0	%100
62	M128	Z	2.174	2.174	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
63	M51B	X	-3.41	-3.41	0	%100
64	M51B	Z	1.969	1.969	0	%100
65	M52B	X	852	852	0	%100
66	M52B	Z	.492	.492	0	%100
67	M58A	X	852	852	0	%100
68	M58A	Z	.492	.492	0	%100
69	M59A	X	852	852	0	%100
70	M59A	Z	.492	.492	0	%100
71	M82	X	852	852	0	%100
72	M82	Z	.492	.492	0	%100
73	M83A	X	-3.41	-3.41	0	%100
74	M83A	Z	1.969	1.969	0	%100
75	M1	X	9	9	0	%100
76	M1	Z	.519	.519	0	%100
77	M82A	X	-3.598	-3.598	0	%100
78	M82A	Z	2.077	2.077	0	%100
79	M91B	X	9	9	0	%100
80	M91B	Z	.519	.519	0	%100
81	M76	X	-3.419	-3.419	0	%100
82	M76	Z	1.974	1.974	0	%100
83	M77	X	-4.628	-4.628	0	%100
84	M77	Z	2.672	2.672	0	%100
85	M84	X	-3.419	-3.419	0	%100
86		Z	1.974	1.974	0	%100
	M84					
87	M85	X Z	-1.157	-1.157	0	%100
88	M85		.668	.668	0	%100
89	M63	X Z	0	0	0	%100
90	M63		0	0	0	%100
91	M64	X	-1.157	-1.157	0	%100
92	M64	Z	.668	.668	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	-1.157	-1.157	0	%100
96	M69	Z	.668	.668	0	%100
97	M87	X	-3.419	-3.419	0	%100
98	M87	Z	1.974	1.974	0	%100
99	M88A	X	-1.157	-1.157	0	%100
100	M88A	Z	.668	.668	0	%100
101	M92A	X	-3.419	-3.419	0	%100
102	M92A	Z	1.974	1.974	0	%100
103	M93	X Z	-4.628	-4.628	0	%100
104	M93		2.672	2.672	0	%100
105	M46	X	-1.159	-1.159	0	%100
106	M46	Z	.669	.669	0	%100
107	M80	X	-4.831	-4.831	0	%100
108	M80	Z	2.789	2.789	0	%100
109	M91	X	-1.208	-1.208	0	%100
110	M91	Z	.697	.697	0	%100
111	M55	X	-4.636	-4.636	0	%100
112	M55	Z	2.676	2.676	0	%100
113	M66	X	-1.208	-1.208	0	%100
114	M66	Z	.697	.697	0	%100

: Maser Consulting

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
115	M71	X	-1.208	-1.208	0	%100
116	M71	Z	.697	.697	0	%100
117	M79A	X	-1.159	-1.159	0	%100
118	M79A	Z	.669	.669	0	%100
119	M90	X	-1.208	-1.208	0	%100
120	M90	Z	.697	.697	0	%100
121	M95	X	-4.831	-4.831	0	%100
122	M95	Z	2.789	2.789	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-4.426	-4.426	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	-1.106	-1.106	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	-1.106	-1.106	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	0	0	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	0	0	0	%100
11	M53	X	-2.942	-2.942	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	-2.942	-2.942	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	-2.942	-2.942	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	-2.942	-2.942	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	-2.755	-2.755	0	%100
20	M100	Z	0	0	0	%100
21	MP3A	X	-3.348	-3.348	0	%100
22	MP3A	Z	0	0	0	%100
23	MP4A	Х	-3.348	-3.348	0	%100
24	MP4A	Z	0	0	0	%100
25	MP2A	X	-3.348	-3.348	0	%100
26	MP2A	Z	0	0	0	%100
27	MP1A	X	-3.348	-3.348	0	%100
28	MP1A	Z	0	0	0	%100
29	MP3B	X	-3.348	-3.348	0	%100
30	MP3B	Z	0	0	0	%100
31	MP4B	X	-3.348	-3.348	0	%100
32	MP4B	Z	0	0	0	%100
33	MP2B	X	-3.348	-3.348	0	%100
34	MP2B	Z	0	0	0	%100
35	MP1B	X	-3.348	-3.348	0	%100
36	MP1B	Z	0	0	0	%100
37	MP3C	X	-3.348	-3.348	0	%100
38	MP3C	Z	0	0	0	%100
39	MP4C	X	-3.348	-3.348	0	%100
40	MP4C	Z	0	0	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
41	MP2C	X	-3.348	-3.348	0	%100
42	MP2C	Z	0	0	0	%100
43	MP1C	X	-3.348	-3.348	0	%100
44	MP1C	Z	0	0	0	%100
45	M123	X	-2.786	-2.786	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	0	0	0	%100
49	M125	X	-2.786	-2.786	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	0	0	0	%100
53	M107	X	-2.78	-2.78	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	-2.78	-2.78	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	-4.969	-4.969	0	%100
58	M126	Z	0	0	0	%100
59	M127	X	-3.105	-3.105	0	%100
60	M127	Z	0	0	0	%100
61	M128	X	-3.105	-3.105	0	%100
62	M128	Z	0	0	0	%100
63	M51B	X	-2.953	-2.953	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	-2.953	-2.953	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	-2.953	-2.953	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	0	0	0	%100
70	M59A	Z	0	0	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	0	0	0	%100
73	M83A	X	-2.953	-2.953	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	0	0	0	%100
77	M82A	X	-3.116	-3.116	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	-3.116	-3.116	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	-5.264	-5.264	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	-4.008	-4.008	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	-5.264	-5.264	0	%100
86	M84	Z	0	0	0	%100
87	M85		-4.008	-4.008	0	%100
88	M85	X Z	0	0	0	%100
89	M63	X	-1.316	-1.316	0	%100
90	M63	Z	0	0	0	%100
91	M64	X	-4.008	-4.008	0	%100
92	M64	Z	0	0	0	%100
02	1110-1	_				70100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
93	M68	X	-1.316	-1.316	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	0	0	0	%100
97	M87	X	-1.316	-1.316	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	0	0	0	%100
101	M92A	X	-1.316	-1.316	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	-4.008	-4.008	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	0	0	0	%100
107	M80	X	-4.183	-4.183	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	-4.183	-4.183	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	-4.015	-4.015	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	-4.183	-4.183	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	0	0	0	%100
117	M79A	X	-4.015	-4.015	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	0	0	0	%100
121	M95	X	-4.183	-4.183	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-2.875	-2.875	0	%100
2	M4	Z	-1.66	-1.66	0	%100
3	M52A	X	-2.875	-2.875	0	%100
4	M52A	Z	-1.66	-1.66	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	849	849	0	%100
8	M10	Z	49	49	0	%100
9	M43	X	849	849	0	%100
10	M43	Z	49	49	0	%100
11	M53	X	849	849	0	%100
12	M53	Z	49	49	0	%100
13	M54	X	849	849	0	%100
14	M54	Z	49	49	0	%100
15	M77A	X	-3.397	-3.397	0	%100
16	M77A	Z	-1.961	-1.961	0	%100
17	M78	X	-3.397	-3.397	0	%100
18	M78	Z	-1.961	-1.961	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

19 M100 X -2.366 -2.366 0 %100 20 M100 Z -1.377 -1.377 0 %100 21 MP3A X -2.899 -2.899 0 %100 22 MP3A Z -1.674 -1.674 0 %100 23 MP4A Z -1.674 -1.674 0 %100 24 MP4A Z -1.674 -1.674 0 %100 25 MP2A X -2.899 -2.899 0 %100 26 MP2A Z -1.674 -1.674 0 %100 27 MP1A X 2.899 -2.899 0 %100 28 MP1A Z -1.674 -1.674 0 %100 28 MP1A Z -1.674 -1.674 0 %100 29 MP3B X -2.899 -2.899 0 %100 30 MP3B Z -1.674 -1.674 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B Z -1.674 -1.674 0 %100 33 MP2B X -2.899 -2.899 0 %100 33 MP2B X -2.899 -2.899 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B X -2.899 -2.899 0 %100 37 MP3B Z -1.674 -1.674 0 %100 38 MP2B X -2.899 -2.899 0 %100 39 MP4B X -2.899 -2.899 0 %100 30 MP3B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B X -2.899 -2.899 0 %100 33 MP2B X -2.899 -2.899 0 %100 34 MP2B X -2.899 -2.899 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B X -2.899 -2.899 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C X -2.899 -2.899 0 %100 39 MP4C X -2.899 -2.899 0 %100 39 MP4C X -2.899 -2.899 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C X -2.899 -2.899 0 %100 43 MP4C X -2.899 -2.899 0 %100 44 MP2C X -2.899 -2.899 0 %100 45 MP4C X -2.899 -2.899 0 %100 46 M123 Z -4.644 -1.674 0 %100 47 MP4C X -2.899 -2.899 0 %100 48 M124 X -804 -804 -804 0 %100 49 M125 X -3.816 -4.634 0 %100 55 M108 X -3.217 -3.217 0 %100 56 M108 X -3.217 -3.217 0 %100 57 M126 X -3.217 -3.217 0 %100 58 M128 X -3.217 -3.217 0 %100 59 M127 X -3.655 -3.765 0 %100 59 M127 X -3.655 -3.765 0 %100 50 M127 X -3.652 -3.765 0 %100 56 M128 X -3.41 -3.41 0 %100 66 M52B X -1.999 -1.999 0 %100 67 M56A X -899		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
21 MP3A X -2.899 -2.899 0 %100 22 MP3A Z -1.674 -1.674 0 %100 23 MP4A X -2.899 -2.899 0 %100 24 MP4A Z -1.674 -1.674 0 %100 25 MP2A X -2.899 -2.899 0 %100 26 MP2A Z -1.674 -1.674 0 %100 27 MP1A X 2.899 -2.899 0 %100 28 MP1A Z -1.674 -1.674 0 %100 29 MP3B X -2.899 -2.899 0 %100 30 MP3B Z -1.674 -1.674 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B X -2.899 -2.899 0 %100 33 MP2B X -2.899 -2.899 0 %100 33 MP2B X -2.899 -2.899 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B X -2.899 -2.899 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C Z -1.674 -1.674 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 MP2C Z -1.674 -1.674 0 %100 46 M123 Z -4.664 -4.664 0 %100 47 M124 X -2.899 -2.899 0 %100 48 M125 X -3.217 -3.217 0 %100 56 M108 X -3.217 -3.217 0 %100 57 M108 X -3.217 -3.217 0 %100 58 M108 X -3.217 -3.217 0 %100 59 M125 Z -1.858 -1.858 0 %100 56 M108 X -3.217 -3.217 0 %100 57 M126 X -3.865 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.663 -4.633 0 %100 50 M127 Z -4.663 -4.644 0 %100 50 M127 Z -4.664 -4.664 0 %100 50 M127 Z -4.663 -4.663 0 %100 50 M127 Z -4.663 -4.663 0 %100 50 M127 Z -4.663 -4.663 0 %100 50 M127 Z -4.664 -4.664 0 %100 50 M127 Z -4.663 -4.663 0 %100 50 M127 Z -4.663 -4.664 0 %100 50 M127 Z -4.663 -4.664 0 %100 50 M128 Z -4.864 -4.664 0 %100 50 M127 Z -4.663 -4.663 0 %100 50 M125 Z -4.663 -4.664 0 %100 50 M125 Z -4.664 -4.664 0 %100 50 M126 Z -4.664 -4.664 0 %100 50 M127 Z -4.663 -4.663 0 %100 50 M126 Z -4.1674 0 %100 50 M127 Z -4.663 -4.664 0 %100 50 M127 Z -4.663 -4.664 0 %100 50 M128 Z -4.962 0 %100 60 M127 Z -4.663 -4.664 0 %100 60 M127 Z -4.6	19	M100	X	-2.386	-2.386	0	%100
22 MP3A Z -1.674 -1.674 0 %100 24 MP4A X -2.899 -2.899 0 %100 25 MP2A X -2.899 -2.899 0 %100 26 MP2A X -2.899 -2.899 0 %100 27 MP1A X -2.899 -2.899 0 %100 28 MP1A Z -1.674 -1.674 0 %100 29 MP3B X -2.899 -2.899 0 %100 30 MP3B Z -1.674 -1.674 0 %100 31 MP4B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B Z -1.674 -1.674 0 %100 33 MP2B X -2.899 -2.899 0 %100 34 MP2B Z -1.674 -1.674 0 %100 35 MP4B Z -1.674 -1.674 0 %100 36 MP1B Z -1.674 -1.674 0 %100 37 MP3B X -2.899 -2.899 0 %100 38 MP3B Z -1.674 -1.674 0 %100 39 MP3B X -2.899 -2.899 0 %100 30 MP3B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B Z -1.674 -1.674 0 %100 33 MP2B Z -1.674 -1.674 0 %100 34 MP2B Z -1.674 -1.674 0 %100 36 MP1B X -2.899 -2.899 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C X -2.899 -2.899 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C X -2.899 -2.899 0 %100 45 MP2C X -2.899 -2.899 0 %100 46 MP2C X -2.899 -2.899 0 %100 47 MP2C X -2.899 -2.899 0 %100 48 MP2C X -2.899 -2.899 0 %100 49 MP4C X -2.899 -2.899 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C X -2.899 -2.899 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C X -2.899 -2.899 0 %100 50 M126 Z -1.674 -1.674 0 %100 51 M102 X -804 -804 0 %100 52 M102 Z -4.644 -864 0 %100 53 M107 X -802 -802 0 %100 54 M108 X -3.21 -3.21 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M128 Z -1.853 -1.858 0 %100 57 M128 X -3.765 -3.765 0 %100 58 M126 Z -1.863 -1.863 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 60 M128 X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100	20	M100	Z	-1.377	-1.377	0	%100
22 MP3A Z -1.674 -1.674 0 %100 24 MP4A X -2.899 -2.899 0 %100 25 MP2A X -2.899 -2.899 0 %100 26 MP2A X -2.899 -2.899 0 %100 27 MP1A X -2.899 -2.899 0 %100 28 MP1A Z -1.674 -1.674 0 %100 29 MP3B X -2.899 -2.899 0 %100 29 MP3B X -2.899 -2.899 0 %100 30 MP3B Z -1.674 -1.674 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B Z -1.674 -1.674 0 %100 33 MP2B X -2.899 -2.899 0 %100 34 MP2B Z -1.674 -1.674 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B Z -1.674 -1.674 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP3B X -2.899 -2.899 0 %100 36 MP1B Z -1.674 -1.674 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 39 MP4C X -2.899 -2.899 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C X -2.899 -2.899 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C X -2.899 -2.899 0 %100 45 MP1C X -2.899 -2.899 0 %100 46 MP2C X -2.899 -2.899 0 %100 47 MP3C X -2.899 -2.899 0 %100 48 MP1C X -2.899 -2.899 0 %100 49 MP4C X -2.899 -2.899 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C X -2.899 -2.899 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C X -2.899 -2.899 0 %100 45 M102 X -2.899 -2.899 0 %100 46 M123 Z -4.644 -4.644 0 %100 51 M102 X -8.024 -8.044 0 %100 52 M102 X -8.034 -8.044 0 %100 53 M107 X -8.002 -8.002 0 %100 54 M102 X -8.034 -8.044 0 %100 55 M108 X -3.217 -3.217 0 %100 56 M108 X -3.21 -3.217 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 60 M127 Z -2.174 -2.174 0 %100 60 M52B Z -1.969 -1.969 0 %100	21	MP3A	X	-2.899	-2.899	0	%100
24 MPAA Z -1.674 -1.674 0 % 100 26 MP2A Z -1.674 -1.674 0 % 100 26 MP2A Z -1.674 -1.674 0 % 100 27 MP1A X -2.899 -2.899 0 % 100 28 MP1A Z -1.674 -1.674 0 % 100 29 MP3B X -2.899 -2.899 0 % 100 30 MP3B X -2.899 -2.899 0 % 100 31 MP4B X -2.899 -2.899 0 % 100 31 MP4B X -2.899 -2.899 0 % 100 34 MP2B Z -1.674 -1.674 0 % 100 34 MP2B Z -1.674 -1.674 0 % 100 35 MP1B X -2.899 -2.899 0 % 100	22	MP3A	Z	-1.674	-1.674	0	%100
24 MPAA Z -1.674 -1.674 0 % 100 26 MP2A Z -1.674 -1.674 0 % 100 26 MP2A Z -1.674 -1.674 0 % 100 27 MP1A X -2.899 -2.899 0 % 100 28 MP1A Z -1.674 -1.674 0 % 100 29 MP3B X -2.899 -2.899 0 % 100 30 MP3B X -2.899 -2.899 0 % 100 31 MP4B X -2.899 -2.899 0 % 100 31 MP4B X -2.899 -2.899 0 % 100 34 MP2B Z -1.674 -1.674 0 % 100 34 MP2B Z -1.674 -1.674 0 % 100 35 MP1B X -2.899 -2.899 0 % 100			X			0	
25 MP2A X -2.899 -2.899 0 %100 26 MP2A Z -1.674 -1.674 0 %100 27 MP1A X -2.899 -2.899 0 %100 28 MP1A Z -1.674 -1.674 0 %100 30 MP3B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B X -2.899 -2.899 0 %100 33 MP2B X -2.899 -2.899 0 %100 34 MP2B X -2.899 -2.899 0 %100 35 MP1B X -2.899 -2.899 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C X -2.899 -2.899 0 %100			Z				
26 MP2A Z -1.674 -1.674 0 %100 28 MP1A X -2.899 -2.899 0 %100 29 MP3B X -2.899 -2.899 0 %100 30 MP3B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B Z -1.674 -1.674 0 %100 34 MP2B Z -1.674 -1.674 0 %100 34 MP2B Z -1.674 -1.674 0 %100 36 MP1B X -2.899 -2.899 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100							
27 MP1A X 22.899 -2.899 0 % 100 28 MP1A Z -1.674 -1.674 0 % 100 29 MP3B X -2.899 -2.899 0 % 100 30 MP3B Z -1.674 -1.674 0 % 100 31 MP4B X -2.899 -2.899 0 % 100 32 MP4B Z -1.674 -1.674 0 % 100 34 MP2B X -2.899 -2.899 0 % 100 34 MP2B Z -1.674 -1.674 0 % 100 35 MP1B X -2.899 -2.899 0 % 100 36 MP1B X -2.899 -2.899 0 % 100 37 MP3C X -2.899 -2.899 0 % 100 38 MP3C X -2.899 -2.899 0 % 100			Z				
28 MP1A Z -1.674 -1.674 0 %100 29 MP3B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 31 MP4B X -2.899 -2.899 0 %100 33 MP2B X -2.899 -2.899 0 %100 34 MP2B Z -1.674 -1.674 0 %100 34 MP2B Z -1.674 -1.674 0 %100 36 MP1B X -2.899 -2.899 0 %100 36 MP1B Z -1.674 -1.674 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100							
29 MP3B X -2.899 -2.899 0 %100 30 MP3B Z -1.674 -1.674 0 %100 31 MP4B X -2.899 -2.899 0 %100 32 MP4B Z -1.674 -1.674 0 %100 33 MP2B X -2.899 -2.899 0 %100 34 MP2B Z -1.674 -1.674 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B X -2.899 -2.899 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 40 MP4C Z -1.674 -1.674 0 %100 41 MP2C Z -1.674 -1.674 0 %100			7				
30							
MP4B			7				
32							
33 MP2B X -2.899 -2.899 0 %100 34 MP2B Z -1.674 -1.674 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B Z -1.674 -1.674 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C X -2.899 -2.899 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X -8.04 -8.04 0 %100 <							
34 MP2B Z -1.674 -1.674 0 %100 35 MP1B X -2.899 -2.899 0 %100 36 MP1B Z -1.674 -1.674 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C X -2.899 -2.899 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C X -2.899 -2.899 0 %100 45 M123 X 804 804 0 %100 <							
35							
36 MP1B Z -1.674 -1.674 0 %100 37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C Z -1.674 -1.674 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X -804 -804 0 %100 47 M124 X -804 -804 0 %100 47 M124 X -804 864 0 %100 48 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
37 MP3C X -2.899 -2.899 0 %100 38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C Z -1.674 -1.674 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 4							
38 MP3C Z -1.674 -1.674 0 %100 39 MP4C X -2.899 -2.899 0 %100 40 MP4C Z -1.674 -1.674 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 X 804 804 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 50<							
39 MP4C X -2.899 -2.899 0 %100 40 MP4C Z -1.674 -1.674 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51<			7				
40 MP4C Z -1.674 -1.674 0 %100 41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 45 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
41 MP2C X -2.899 -2.899 0 %100 42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53							
42 MP2C Z -1.674 -1.674 0 %100 43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 X 802 802 0 %100 53 M107 X 802 802 0 %100 54							
43 MP1C X -2.899 -2.899 0 %100 44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 Z 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 X 802 802 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108			X				
44 MP1C Z -1.674 -1.674 0 %100 45 M123 X 804 804 0 %100 46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X -3.02 802 0 %100 51 M102 X 802 802 0 %100 52 M102 X 802 802 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55							
45 M123 X 804 804 0 %100 46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 804 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 54 M107 Z 463 463 0 %100 55			X				
46 M123 Z 464 464 0 %100 47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X 3217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 X -3.765 -3.765 0 %100 57 M126							
47 M124 X 804 804 0 %100 48 M124 Z 464 464 0 %100 49 M125 X 3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 55 M108 X -3.21 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127			X				
48 M124 Z 464 464 0 %100 49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 X -3.765 -3.765 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59							
49 M125 X -3.217 -3.217 0 %100 50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 X -3.765 -3.765 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60							
50 M125 Z -1.858 -1.858 0 %100 51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 0 %100 55 M108 X -3.21 0 %100 56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X							
51 M102 X 802 802 0 %100 52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B							
52 M102 Z 463 463 0 %100 53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 X -3.765 -3.765 0 %100 61 M128 X -2.174 -2.174 0 %100 62 M128 X -2.151 0 %100 63 M51B X 852 852 0 %100 64 M51B							
53 M107 X 802 802 0 %100 54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
54 M107 Z 463 463 0 %100 55 M108 X -3.21 -3.21 0 %100 56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
55 M108 X -3.21 -3.21 0 %100 56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 X -3.765 -3.765 0 %100 61 M128 X -2.174 -2.174 0 %100 62 M128 X -2.151 -2.151 0 %100 63 M51B X 852 852 0 %100 64 M51B X 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 67 M58A X -3.41 -3.41 0 %100 68 <td></td> <td>M107</td> <td></td> <td>802</td> <td>802</td> <td></td> <td></td>		M107		802	802		
56 M108 Z -1.853 -1.853 0 %100 57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100		M107		463	463		
57 M126 X -3.765 -3.765 0 %100 58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100		M108				0	
58 M126 Z -2.174 -2.174 0 %100 59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100							
59 M127 X -3.765 -3.765 0 %100 60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100			X				
60 M127 Z -2.174 -2.174 0 %100 61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100	58	M126		-2.174	-2.174	0	%100
61 M128 X -2.151 -2.151 0 %100 62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100	59	M127	X	-3.765	-3.765	0	%100
62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100	60	M127	Z	-2.174	-2.174	0	%100
62 M128 Z -1.242 -1.242 0 %100 63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100	61	M128	X	-2.151	-2.151	0	%100
63 M51B X 852 852 0 %100 64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100	62	M128	Z	-1.242	-1.242	0	%100
64 M51B Z 492 492 0 %100 65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100							
65 M52B X -3.41 -3.41 0 %100 66 M52B Z -1.969 -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 0 %100							
66 M52B Z -1.969 0 %100 67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 0 %100							
67 M58A X -3.41 -3.41 0 %100 68 M58A Z -1.969 -1.969 0 %100			Z				
68 M58A Z -1.969 -1.969 0 %100							
	69	M59A	X	852	852	0	%100
70 M59A Z492492 0 %100							

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
71	M82	X	852	852	0	%100
72	M82	Z	492	492	0	%100
73	M83A	X	852	852	0	%100
74	M83A	Z	492	492	0	%100
75	M1	X	9	9	0	%100
76	M1	Z	519	519	0	%100
77	M82A	X	9	9	0	%100
78	M82A	Z	519	519	0	%100
79	M91B	X	-3.598	-3.598	0	%100
80	M91B	Z	-2.077	-2.077	0	%100
81	M76	X	-3.419	-3.419	0	%100
82	M76	Z	-1.974	-1.974	0	%100
83	M77	X	-1.157	-1.157	0	%100
84	M77	Z	668	668	0	%100
85	M84	X	-3.419	-3.419	0	%100
86	M84	Z	-1.974	-1.974	0	%100
87	M85	X	-4.628	-4.628	0	%100
88	M85	Z	-2.672	-2.672	0	%100
89	M63	X	-3.419	-3.419	0	%100
90	M63	Z	-1.974	-1.974	0	%100
91	M64	X	-4.628	-4.628	0	%100
92	M64	Z	-2.672	-2.672	0	%100
93	M68	X	-3.419	-3.419	0	%100
94	M68	Z	-1.974	-1.974	0	%100
95	M69	X	-1.157	-1.157	0	%100
96	M69	Z	668	668	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	-1.157	-1.157	0	%100
100	M88A	Z	668	668	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	-1.157	-1.157	0	%100
104	M93	Z	668	668	0	%100
105	M46	X	-1.159	-1.159	0	%100
106	M46	Z	669	669 1.309	0	%100
107 108	M80 M80	X Z	-1.208 697	-1.208	0	%100 %100
				697		%100 %100
109	M91 M91	X Z	-4.831 -2.789	-4.831 -2.789	0	%100 %100
111	M55	X	-2.789	-2.769 -1.159	0	%100 %100
112	M55	Z	669	669	0	%100 %100
113	M66	X	-4.831	-4.831	0	%100 %100
114	M66	Z	-2.789	-2.789	0	%100 %100
115	M71	X	-1.208	-2.769 -1.208	0	%100 %100
116	M71	Z	697	697	0	%100 %100
117	M79A	X	-4.636	-4.636	0	%100 %100
118	M79A	Z	-2.676	-2.676	0	%100 %100
119	M90	X	-1.208	-1.208	0	%100 %100
120	M90	Z	697	697	0	%100 %100
121	M95	X	-1.208	-1.208	0	%100
122	M95	Z	697	697	0	%100 %100
122	IVIJU		031	037	U	/0 100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	553	553	0	%100
2	M4	Z	958	958	0	%100
3	M52A	X	-2.213	-2.213	0	%100
4	M52A	Z	-3.833	-3.833	0	%100
5	M76A	X	553	553	0	%100
6	M76A	Z	958	958	0	%100
7	M10	X	-1.471	-1.471	0	%100
8	M10	Z	-2.548	-2.548	0	%100
9	M43	X	-1.471	-1.471	0	%100
10	M43	Z	-2.548	-2.548	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	0	0	0	%100
13	M54	×	0	0	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	-1.471	-1.471	0	%100
16	M77A	Z	-2.548	-2.548	0	%100
17	M78	X	-1.471	-1.471	0	%100
18	M78	Z	-2.548	-2.548	0	%100 %100
19	M100	X	-1.377	-1.377	0	%100 %100
20	M100	Z	-2.386	-2.386	0	%100 %100
21	MP3A	X	-1.674	-1.674	0	%100 %100
22	MP3A	Z	-2.899	-2.899	0	%100 %100
23	MP4A	X	-1.674	-1.674	0	%100 %100
24	MP4A	Z	-2.899	-2.899	0	%100 %100
25	MP2A	X	-1.674	-1.674	0	%100 %100
26	MP2A	Z			0	%100 %100
			-2.899	-2.899 -1.674	0	
27	MP1A	X Z	-1.674		0	%100 %100
28	MP1A	X	-2.899	-2.899 1.674	0	%100 %100
29 30	MP3B	Z	-1.674	-1.674	0	%100
	MP3B		-2.899	-2.899		%100
31 32	MP4B	X Z	-1.674	-1.674	0	%100
	MP4B		-2.899	-2.899	0	%100
33	MP2B	X	-1.674	-1.674	0	%100
34	MP2B	Z	-2.899	-2.899	0	%100
35	MP1B	X	-1.674	-1.674	0	%100
36	MP1B	Z	-2.899	-2.899	0	%100
37	MP3C	X	-1.674	-1.674	0	%100 %400
38	MP3C	Z	-2.899	-2.899	0	%100
39	MP4C	X	-1.674	-1.674	0	%100
40	MP4C	Z	-2.899	-2.899	0	%100
41	MP2C	X	-1.674	-1.674	0	%100
42	MP2C	Z	-2.899	-2.899	0	%100
43	MP1C	X	-1.674	-1.674	0	%100
44	MP1C	Z	-2.899	-2.899	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	-1.393	-1.393	0	%100
48	M124	Z	-2.413	-2.413	0	%100
49	M125	X	-1.393	-1.393	0	%100
50	M125	Z	-2.413	-2.413	0	%100
51	M102	X	-1.39	-1.39	0	%100
52	M102	Z	-2.407	-2.407	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
53	M107	X	0	0	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	-1.39	-1.39	0	%100
56	M108	Z	-2.407	-2.407	0	%100
57	M126	X	-1.553	-1.553	0	%100
58	M126	Z	-2.689	-2.689	0	%100
59	M127	X	-2.484	-2.484	0	%100
60	M127	Z	-4.303	-4.303	0	%100
61	M128	X	-1.553	-1.553	0	%100
62	M128	Z	-2.689	-2.689	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	-1.476	-1.476	0	%100
66	M52B	Z	-2.557	-2.557	0	%100
67	M58A	X	-1.476	-1.476	0	%100
68	M58A	Z	-2.557	-2.557	0	%100
69	M59A	X	-1.476	-1.476	0	%100
70	M59A	Z	-2.557	-2.557	0	%100
71	M82	X	-1.476	-1.476	0	%100
72	M82	Z	-2.557	-2.557	0	%100
73	M83A	X	0	0	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	-1.558	-1.558	0	%100
76	M1	Z	-2.699	-2.699	0	%100
77	M82A	X	0	0	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	-1.558	-1.558	0	%100
80	M91B	Z	-2.699	-2.699	0	%100
81	M76	X	658	658	0	%100
82	M76	Z	-1.14	-1.14	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	658	658	0	%100
86	M84	Z	-1.14	-1.14	0	%100
87	M85	X	-2.004	-2.004	0	%100
88	M85	Z	-3.471	-3.471	0	%100
89	M63	X	-2.632	-2.632	0	%100
90	M63	Z	-4.559	-4.559	0	%100
91	M64	X	-2.004	-2.004	0	%100
92	M64	Z	-3.471	-3.471	0	%100
93	M68	X	-2.632	-2.632	0	%100
94	M68	Z	-4.559	-4.559	0	%100
95	M69	X	-2.004	-2.004	0	%100
96	M69	Z	-3.471	-3.471	0	%100
97	M87	X	658	658	0	%100
98	M87	Z	-1.14	-1.14	0	%100
99	M88A	X	-2.004	-2.004	0	%100
100	M88A	Z	-3.471	-3.471	0	%100
101	M92A	X	658	658	0	%100
102	M92A	Z	-1.14	-1.14	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	0	0	0	%100 %100
104	IVIOU	_	U	<u> </u>	0	70 100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
105	M46	X	-2.007	-2.007	0	%100
106	M46	Z	-3.477	-3.477	0	%100
107	M80	X	0	0	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	-2.092	-2.092	0	%100
110	M91	Z	-3.623	-3.623	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	-2.092	-2.092	0	%100
114	M66	Z	-3.623	-3.623	0	%100
115	M71	X	-2.092	-2.092	0	%100
116	M71	Z	-3.623	-3.623	0	%100
117	M79A	X	-2.007	-2.007	0	%100
118	M79A	Z	-3.477	-3.477	0	%100
119	M90	X	-2.092	-2.092	0	%100
120	M90	Z	-3.623	-3.623	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	751	751	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	751	751	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	958	958	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	958	958	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	24	24	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	24	24	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	24	24	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	24	24	0	%100
19	M100	X	0	0	0	%100
20	M100	Z	502	502	0	%100
21	MP3A	X	0	0	0	%100
22	MP3A	Z	614	614	0	%100
23	MP4A	X	0	0	0	%100
24	MP4A	Z	614	614	0	%100
25	MP2A	X	0	0	0	%100
26	MP2A	Z	614	614	0	%100
27	MP1A	X	0	0	0	%100
28	MP1A	Z	614	614	0	%100
29	MP3B	X	0	0	0	%100
30	MP3B	Z	614	614	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
31	MP4B	X	0	0	0	%100
32	MP4B	Z	614	614	0	%100
33	MP2B	X	0	0	0	%100
34	MP2B	Z	614	614	0	%100
35	MP1B	X	0	0	0	%100
36	MP1B	Z	614	614	0	%100
37	MP3C	X	0	0	0	%100
38	MP3C	Z	614	614	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	614	614	0	%100
41	MP2C	X	0	0	0	%100
42	MP2C	Z	614	614	0	%100
43	MP1C	×	0	0	0	%100
44	MP1C	Z	614	614	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	228	228	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	913	913	0	%100
49	M125	X	0	0	0	%100 %100
50	M125	Z	228	228	0	%100 %100
51	M102	X	0	0	0	%100
52	M102	Z	743	743	0	%100 %100
53	M107	X	0	0	0	%100 %100
54	M107	Z	186	186	0	%100
55	M108	X	0	0	0	%100 %100
56	M108	Z	186	186	0	%100 %100
57	M126	X	180	180 0	0	%100 %100
58	M126	Z	694	694	0	%100
59	M127	X	094	094 0	0	%100 %100
60	M127	Z	-1.071	-1.071	0	%100
61	M128	X	0	0	0	%100 %100
62	M128	Z	-1.071	-1.071	0	%100 %100
63	M51B	X	0	0	0	%100 %100
64	M51B	Z	215	215	0	%100
		X	215	215 0	0	%100 %100
65 66	M52B	Z	-		0	
67	M52B	X	215 0	215 0	0	%100 %100
68	M58A M58A	Z	215	215	0	%100 %100
69	M59A	X	215	215 0	0	%100 %100
70	M59A	Z	861	0 861	0	%100 %100
71		X		001 0	0	
71	M82 M82	Z	861	0 861	0	%100 %100
	M83A				0	
73		X	0	0		%100 %100
74	M83A	Z X	215	215	0	%100 %100
75 76	M1	Z	0	0	0	%100 %100
76	M1		902	902		%100 %100
77	M82A	X Z	0	0	0	%100 %100
78	M82A		226	226	0	%100
79	M91B	X	0	0	0	%100 %100
80	M91B	Z	226	226	0	%100 %100
81	M76	X	0	0	0	%100
82	M76	Z	0	0	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
83	M77	X	0	0	0	%100
84	M77	Z	395	395	0	%100
85	M84	X	0	0	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	395	395	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	-1.163	-1.163	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	395	395	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	-1.163	-1.163	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	-1.579	-1.579	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	-1.163	-1.163	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	-1.579	-1.579	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	-1.163	-1.163	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	395	395	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	-1.55	-1.55	0	%100
107	M80	X	0	0	0	%100
108	M80	Z	416	416	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	416	416	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	388	388	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	416	416	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	-1.663	-1.663	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	388	388	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	-1.663	-1.663	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	416	416	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	.125	.125	0	%100
2	M4	Z	217	217	0	%100
3	M52A	X	.125	.125	0	%100
4	M52A	Z	217	217	0	%100
5	M76A	X	.501	.501	0	%100
6	M76A	Z	868	868	0	%100
7	M10	X	.359	.359	0	%100
8	M10	Z	622	622	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
9	M43	X	.359	.359	0	%100
10	M43	Z	622	622	0	%100
11	M53	X	.359	.359	0	%100
12	M53	Z	622	622	0	%100
13	M54	X	.359	.359	0	%100
14	M54	Z	622	622	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	.251	.251	0	%100
20	M100	Z	435	435	0	%100
21	MP3A	X	.307	.307	0	%100
22	MP3A	Z	531	531	0	%100
23	MP4A	X	.307	.307	0	%100
24	MP4A	Z	531	531	0	%100
25	MP2A	X	.307	.307	0	%100
26	MP2A	Z	531	531	0	%100
27	MP1A	X	.307	.307	0	%100 %100
28	MP1A	Z	531	531	0	%100 %100
		X	.307		0	
29	MP3B	Z		.307	0	%100
30	MP3B		531	531		%100 %100
31	MP4B	X Z	.307	.307	0	%100
32	MP4B		531	531	0	%100
33	MP2B	X	.307	.307	0	%100
34	MP2B	Z	531	531	0	%100
35	MP1B	X	.307	.307	0	%100
36	MP1B	Z	531	531	0	%100
37	MP3C	X	.307	.307	0	%100
38	MP3C	Z	531	531	0	%100
39	MP4C	X	.307	.307	0	%100
40	MP4C	Z	531	531	0	%100
41	MP2C	X	.307	.307	0	%100
42	MP2C	Z	531	531	0	%100
43	MP1C	X	.307	.307	0	%100
44	MP1C	Z	531	531	0	%100
45	M123	X	.342	.342	0	%100
46	M123	Z	593	593	0	%100
47	M124	X	.342	.342	0	%100
48	M124	Z	593	593	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	.279	.279	0	%100
52	M102	Z	482	482	0	%100
53	M107	X	.279	.279	0	%100
54	M107	Z	482	482	0	%100
55	M108	X	0	0	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	.41	.41	0	%100
58	M126	Z	71	71	0	%100
59	M127	X	.41	.41	0	%100
60	M127	Z	71	71	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
61	M128	X	.599	.599	0	%100
62	M128	Z	-1.037	-1.037	0	%100
63	M51B	X	.323	.323	0	%100
64	M51B	Z	559	559	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	.323	.323	0	%100
70	M59A	Z	559	559	0	%100
71	M82	X	.323	.323	0	%100
72	M82	Z	559	559	0	%100
73	M83A	X	.323	.323	0	%100
74	M83A	Z	559	559	0	%100
75	M1	X	.338	.338	0	%100
76	M1	Z	586	586	0	%100
77	M82A	X	.338	.338	0	%100
78	M82A	Z	586	586	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	.194	.194	0	%100
82	M76	Z	336	336	0	%100
83	M77	X	.592	.592	0	%100
84	M77	Z	-1.026	-1.026	0	%100
85	M84	X Z	.194	.194	0	%100
86	M84		336	336	0	%100
87	M85	X Z	0	0	0	%100
88	M85		-		0	%100
89	M63	X	.194	.194	0	%100
90	M63	Z	336	336	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	-	0	0	%100
93	M68	X	.194	.194	0	%100
94	M68	Z	336	336	0	%100
95	M69	X	.592	.592	0	%100
96	M69	Z	-1.026	-1.026	0	%100
97	M87	X	.775	.775	0	%100
98	M87	Z	-1.342	-1.342	0	%100
99	M88A	X	.592	.592	0	%100
100	M88A	Z	-1.026	-1.026	0	%100
101	M92A	X Z	.775	.775	0	%100
102	M92A		-1.342	-1.342	0	%100
103	M93	X	.592	.592	0	%100
104	M93	Z	-1.026	-1.026	0	%100
105	M46	X	.581	.581	0	%100
106	M46	Z	-1.007	-1.007	0	%100
107	M80	X	.624	.624	0	%100
108	M80	Z	-1.08	-1.08	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	.581	.581	0	%100
112	M55	Z	-1.007	-1.007	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
113	M66	X	0	0	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	.624	.624	0	%100
116	M71	Z	-1.08	-1.08	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	.624	.624	0	%100
120	M90	Z	-1.08	-1.08	0	%100
121	M95	X	.624	.624	0	%100
122	M95	Z	-1.08	-1.08	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

1 M4 X 651 651 0 %100 2 M4 Z -376 -376 0 %100 3 M52A X 0 0 0 %100 4 M52A Z 0 0 0 %100 5 M76A X .651 .651 0 %100 6 M76A Z 376 376 0 %100 7 M10 X .207 .207 0 %100 8 M10 Z 12 12 0 %100 9 M43 X .207 .207 0 %100 10 M43 Z 12 12 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83		Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3 M52A X 0 0 0 %100 5 M76A X .651 .651 0 %100 6 M76A Z .376 .376 0 %100 7 M10 X .207 .207 0 %100 8 M10 Z .12 .12 0 %100 9 M43 X .207 .207 0 %100 10 M43 Z .12 .12 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z .479 .479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z .479 .479 0 %100 15 M77A X .207 .207 0 %100 16 M77A X .207							
4 M52A Z 0 0 %100 5 M76A X .651 .651 0 %100 6 M76A Z 376 376 0 %100 7 M10 X .207 .207 0 %100 8 M10 Z 12 12 0 %100 10 M43 X .207 .207 0 %100 10 M43 Z 12 12 0 %100 11 M53 X .83 .83 .0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A X .207	2	M4	Z	376	376	0	%100
5 M76A X .651 0 %100 6 M76A Z 376 376 0 %100 7 M10 X 207 207 0 %100 8 M10 Z 12 12 0 %100 9 M43 X .207 .207 0 %100 10 M43 Z 12 12 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 15 M77A X .207 .207 0 %100 15 M77A X .207 .207 0 %100 18 M78 X .207 .207 0 %100 19 M100 X .435 <	3	M52A		0		0	%100
6 M76A Z 376 376 0 %100 7 M10 X .207 .207 0 %100 8 M10 Z 12 12 0 %100 9 M43 X .207 .207 0 %100 10 M43 Z 12 12 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A X .207 .207 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z	4	M52A	Z	0	0	0	%100
7 M10 X 207 .207 0 %100 8 M10 Z 12 12 0 %100 9 M43 X 207 .207 0 %100 10 M43 Z 12 12 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 X .83 .83 0 %100 15 M77A X .207 .207 0 %100 15 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 17 M78 X .207 .207 0 %100 19 M100 X .	5	M76A	X	.651	.651	0	%100
8 M10 Z 12 12 0 %100 9 M43 X .207 .207 0 %100 10 M43 Z 12 12 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 19 M100 X .435 .435 0 %100 20 M100 X	6	M76A	Z	376	376	0	%100
9 M43 X .207 .207 0 %100 10 M43 Z1212 0 %100 11 M53 X .83 .83 0 %100 12 M53 Z .479479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z .479479 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z .12 .12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z .1212 0 %100 19 M100 X .435 .435 0 %100 20 M100 Z .251 .251 0 %100 21 MP3A X .531 .531 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z .307 -307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z .307 -307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z .307 -307 0 %100 29 M93B X .531 .531 0 %100 30 MP3B Z .307 -307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z .307 -307 0 %100 33 MP4B Z .307 -307 0 %100 34 MP2B X .531 .531 0 %100 35 MP1B Z .307 .307 0 %100 36 MP1B Z .307 .307 0 %100 37 MP3C X .531 .531 0 %100 37 MP3C X .531 .531 0 %100	7	M10	X	.207	.207	0	%100
10	8	M10	Z	12	12	0	%100
11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 X .435 .435 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A X	9	M43		.207	.207	0	%100
11 M53 X .83 .83 0 %100 12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 X .435 .435 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A X	10	M43	Z	12	12	0	%100
12 M53 Z 479 479 0 %100 13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 18 M78 Z 12 12 0 %100 20 M100 X .435 .435 0 %100 20 M100 X .435 .435 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A X .531 .531 0 %100 24 MP4A X <td>11</td> <td>M53</td> <td>X</td> <td>.83</td> <td>.83</td> <td>0</td> <td>%100</td>	11	M53	X	.83	.83	0	%100
13 M54 X .83 .83 0 %100 14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 .531 0 %100 24 <td< td=""><td>12</td><td>M53</td><td>Z</td><td>479</td><td>479</td><td>0</td><td>%100</td></td<>	12	M53	Z	479	479	0	%100
14 M54 Z 479 479 0 %100 15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 21 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A	13	M54	X		.83	0	
15 M77A X .207 .207 0 %100 16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A X .531 .531 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A <td< td=""><td>14</td><td>M54</td><td>Z</td><td>479</td><td>479</td><td>0</td><td></td></td<>	14	M54	Z	479	479	0	
16 M77A Z 12 12 0 %100 17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27			X		.207	0	
17 M78 X .207 .207 0 %100 18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 21 MP3A Z 307 307 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28	16	M77A	Z	12	12	0	%100
18 M78 Z 12 12 0 %100 19 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 .531 0 %100 31	17	M78	X	.207	.207	0	%100
19 M100 X .435 .435 0 %100 20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A X .531 .531 0 %100 26 MP2A X .531 .531 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 .531 0 %100 30	18					0	
20 M100 Z 251 251 0 %100 21 MP3A X .531 .531 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 .531 0 %100 30 MP3B X .531 .531 .0 %100 31 MP4B X .531 .531 0 %100 32	19		X			0	
21 MP3A X .531 .531 0 %100 22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 34 MP2B Z<			Z				
22 MP3A Z 307 307 0 %100 23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B			X		.531	0	
23 MP4A X .531 .531 0 %100 24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B	22						
24 MP4A Z 307 307 0 %100 25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C			X			0	
25 MP2A X .531 .531 0 %100 26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 .531 0 %100		MP4A				0	
26 MP2A Z 307 307 0 %100 27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 .531 0 %100	25	MP2A	X	.531	.531	0	%100
27 MP1A X .531 .531 0 %100 28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100	26	MP2A		307	307	0	%100
28 MP1A Z 307 307 0 %100 29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100						0	
29 MP3B X .531 .531 0 %100 30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100						0	
30 MP3B Z 307 307 0 %100 31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100			X			0	
31 MP4B X .531 .531 0 %100 32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100							
32 MP4B Z 307 307 0 %100 33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100		MP4B	X			0	
33 MP2B X .531 .531 0 %100 34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100	32	MP4B	Z			0	
34 MP2B Z 307 307 0 %100 35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100							
35 MP1B X .531 .531 0 %100 36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100							
36 MP1B Z 307 307 0 %100 37 MP3C X .531 .531 0 %100							
37 MP3C X .531 .531 0 %100							
38 MP3C Z 307 307 0 %100	38	MP3C	Z	307	307	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
39	MP4C	X	.531	.531	0	%100
40	MP4C	Z	307	307	0	%100
41	MP2C	X	.531	.531	0	%100
42	MP2C	Z	307	307	0	%100
43	MP1C	X	.531	.531	0	%100
44	MP1C	Z	307	307	0	%100
45	M123	X	.791	.791	0	%100
46	M123	Z	457	457	0	%100
47	M124	X	.198	.198	0	%100
48	M124	Z	114	114	0	%100
49	M125	X	.198	.198	0	%100
50	M125	Z	114	114	0	%100
51	M102	X	.161	.161	0	%100
52	M102	Z	093	093	0	%100
53	M107	X	.643	.643	0	%100
54	M107	Z	371	371	0	%100
55	M108	X	.161	.161	0	%100
56	M108	Z	093	093	0	%100
57	M126	X	.928	.928	0	%100
58	M126	Z	536	536	0	%100
59	M127	X	.601	.601	0	%100
60	M127	Z	347	347	0	%100
61	M128	X	.928	.928	0	%100
62	M128	Z	536	536	0	%100
63	M51B	X	.745	.745	0	%100
64	M51B	Z	43	43	0	%100
65	M52B	X	.186	.186	0	%100
66	M52B	Z	108	108	0	%100
67	M58A	X	.186	.186	0	%100
68	M58A	Z	108	108	0	%100
69	M59A	X	.186	.186	0	%100
70	M59A	Z	108	108	0	%100
71	M82	X	.186	.186	0	%100
72	M82	Z	108	108	0	%100
73	M83A	X	.745	.745	0	%100
74	M83A	Z	43	43	0	%100
75	M1	X	.195	.195	0	%100
76	M1	Z	113	113 113	0	%100
77	M82A	X	.781	.781	0	%100
78	M82A	Z	451	451	0	%100
79	M91B	X	.195	.195	0	%100
80	M91B	Z	113	113	0	%100
81	M76	X	1.007	1.007	0	%100
82	M76	Z	581	581	0	%100
83	M77	X	1.367	1.367	0	%100 %100
84	M77	Z	789	789 1.007	0	%100 %100
85	M84	X	1.007	1.007	0	%100 %100
86	M84	Z	581	581	0	%100 %100
87	M85	X	.342	.342	0	%100
88	M85	Z	197	197	0	%100 %100
89	M63	X Z	0	0	0	%100 %100
90	M63	Z	0	0	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
91	M64	X	.342	.342	0	%100
92	M64	Z	197	197	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	.342	.342	0	%100
96	M69	Z	197	197	0	%100
97	M87	X	1.007	1.007	0	%100
98	M87	Z	581	581	0	%100
99	M88A	Х	.342	.342	0	%100
100	M88A	Z	197	197	0	%100
101	M92A	X	1.007	1.007	0	%100
102	M92A	Z	581	581	0	%100
103	M93	X	1.367	1.367	0	%100
104	M93	Z	789	789	0	%100
105	M46	X	.336	.336	0	%100
106	M46	Z	194	194	0	%100
107	M80	X	1.44	1.44	0	%100
108	M80	Z	831	831	0	%100
109	M91	X	.36	.36	0	%100
110	M91	Z	208	208	0	%100
111	M55	X	1.342	1.342	0	%100
112	M55	Z	775	775	0	%100
113	M66	X	.36	.36	0	%100
114	M66	Z	208	208	0	%100
115	M71	X	.36	.36	0	%100
116	M71	Z	208	208	0	%100
117	M79A	X	.336	.336	0	%100
118	M79A	Z	194	194	0	%100
119	M90	X	.36	.36	0	%100
120	M90	Z	208	208	0	%100
121	M95	X	1.44	1.44	0	%100
122	M95	Z	831	831	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	1.002	1.002	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	.25	.25	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	.25	.25	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	0	0	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	0	0	0	%100
11	M53	X	.719	.719	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	.719	.719	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	.719	.719	0	%100
16	M77A	Z	0	0	0	%100

Company : Maser Consulting
Designer : SEA
Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]		End Location[ft,%]
17	M78	X	.719	.719	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	.502	.502	0	%100 %100
20	M100	Z	.502		0	%100 %100
		X	.614	0 .614		
21 22	MP3A	Z	.014	.014	0	%100 %100
	MP3A					%100
23	MP4A	X Z	.614	.614	0	%100
24	MP4A		0	0	0	%100
25	MP2A	X	.614	.614	0	%100
26	MP2A	Z	0	0	0	%100
27	MP1A	X	.614	.614	0	%100
28	MP1A	Z	0	0	0	%100
29	MP3B	X	.614	.614	0	%100
30	MP3B	Z	0	0	0	%100
31	MP4B	X	.614	.614	0	%100
32	MP4B	Z	0	0	0	%100
33	MP2B	X	.614	.614	0	%100
34	MP2B	Z	0	0	0	%100
35	MP1B	X	.614	.614	0	%100
36	MP1B	Z	0	0	0	%100
37	MP3C	X	.614	.614	0	%100
38	MP3C	Z	0	0	0	%100
39	MP4C	X	.614	.614	0	%100
40	MP4C	Z	0	0	0	%100
41	MP2C	X	.614	.614	0	%100
42	MP2C	Z	0	0	0	%100
43	MP1C	X	.614	.614	0	%100
44	MP1C	Z	0	0	0	%100
45	M123	X	.685	.685	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	0	0	0	%100
49	M125	X	.685	.685	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	0	0	0	%100
53	M107	X	.557	.557	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	.557	.557	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	1.197	1.197	0	%100
58	M126	Z	0	0	0	%100
59	M127	X	.819	.819	0	%100
60	M127	Z	0	0	0	%100
61	M128	X	.819	.819	0	%100
62	M128	Z	0	0	0	%100
63	M51B	X	.646	.646	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	.646	.646	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	.646	.646	0	%100
68	M58A	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
69	M59A	X	0	0	0	%100
70	M59A	Z	0	0	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	0	0	0	%100
73	M83A	X	.646	.646	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	0	0	0	%100
77	M82A	X	.677	.677	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	.677	.677	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	1.55	1.55	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	1.184	1.184	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	1.55	1.55	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	1.184	1.184	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	.388	.388	0	%100
90	M63	Z	.388	386	0	%100 %100
91		X	1.184	1.184	0	
92	M64	Z	0	0	0	%100
	M64					%100
93	M68	X	.388	.388	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	0	0	0	%100
97	M87	X	.388	.388	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	0	0	0	%100
101	M92A	X	.388	.388	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	1.184	1.184	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	0	0	0	%100
107	M80	X	1.247	1.247	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	1.247	1.247	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	1.163	1.163	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	1.247	1.247	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	0	0	0	%100
117	M79A	X	1.163	1.163	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	0	0	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
121	M95	X	1.247	1.247	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	.651	.651	0	%100
2	M4	Z	.376	.376	0	%100
3	M52A	X	.651	.651	0	%100
4	M52A	Z	.376	.376	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	.207	.207	0	%100
8	M10	Z	.12	.12	0	%100
9	M43	X	.207	.207	0	%100
10	M43	Z	.12	.12	0	%100
11	M53	X	.207	.207	0	%100
12	M53	Z	.12	.12	0	%100
13	M54	X	.207	.207	0	%100
14	M54	Z	.12	.12	0	%100
15	M77A	X	.83	.83	0	%100
16	M77A	Z	.479	.479	0	%100
17	M78	X	.83	.83	0	%100
18	M78	Z	.479	.479	0	%100
19	M100	X	.435	.435	0	%100
20	M100	Z	.251	.251	0	%100
21	MP3A	X	.531	.531	0	%100
22	MP3A	Z	.307	.307	0	%100
23	MP4A	X	.531	.531	0	%100
24	MP4A	Z	.307	.307	0	%100
25	MP2A	X	.531	.531	0	%100
26	MP2A	Z	.307	.307	0	%100
27	MP1A	X	.531	.531	0	%100
28	MP1A	Z	.307	.307	0	%100
29	MP3B	X	.531	.531	0	%100
30	MP3B	Z	.307	.307	0	%100
31	MP4B	X	.531	.531	0	%100
32	MP4B	Z	.307	.307	0	%100
33	MP2B	X	.531	.531	0	%100
34	MP2B	Z	.307	.307	0	%100
35	MP1B	X	.531	.531	0	%100
36	MP1B	Z	.307	.307	0	%100
37	MP3C	X	.531	.531	0	%100
38	MP3C	Z	.307	.307	0	%100
39	MP4C	X	.531	.531	0	%100
40	MP4C	Z	.307	.307	0	%100
41	MP2C	X	.531	.531	0	%100
42	MP2C	Z	.307	.307	0	%100
43	MP1C	X	.531	.531	0	%100
44	MP1C	Z	.307	.307	0	%100
45	M123	X	.198	.198	0	%100
46	M123	Z	.114	.114	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb		Start Location[ft,%]	End Location[ft,%]
47	M124	X	.198	.198	0	%100
48	M124	Z	.114	.114	0	%100
49	M125	X	.791	.791	0	%100
50	M125	Z	.457	.457	0	%100
51	M102	X	.161	.161	0	%100
52	M102	Z	.093	.093	0	%100
53	M107	X	.161	.161	0	%100
54	M107	Z	.093	.093	0	%100
55	M108	X	.643	.643	0	%100
56	M108	Z	.371	.371	0	%100
57	M126	X	.928	.928	0	%100
58	M126	Z	.536	.536	0	%100
59	M127	X	.928	.928	0	%100
60	M127	Z	.536	.536	0	%100
61	M128	X	.601	.601	0	%100
62	M128	Z	.347	.347	0	%100
63	M51B	X	.186	.186	0	%100
64	M51B	Z	.108	.108	0	%100
65	M52B	X	.745	.745	0	%100
66	M52B	Z	.43	.43	0	%100
67	M58A	X	.745	.745	0	%100
68	M58A	Z	.43	.43	0	%100
69	M59A	X	.186	.186	0	%100
70	M59A	Z	.108	.108	0	%100
71	M82	X	.186	.186	0	%100
72	M82	Z	.108	.108	0	%100
73	M83A	X	.186	.186	0	%100
74	M83A	Z	.108	.108	0	%100
75	M1	X	.195	.195	0	%100
76	M1	Z	.113	.113	0	%100
77	M82A	X	.195	.195	0	%100
78	M82A	Z	.113	.113	0	%100
79	M91B	X	.781	.781	0	%100
80	M91B	Z	.451	.451	0	%100
81	M76	X	1.007	1.007	0	%100
82	M76	Z	.581	.581	0	%100
83	M77	X	.342	.342	0	%100
84	M77	Z	.197	.197	0	%100
85	M84	X	1.007	1.007	0	%100 %100
86	M84	Z	.581	.581	0	%100 %100
87	M85	X	1.367	1.367	0	%100 %100
88	M85	Z	.789	.789	0	%100 %100
89	M63	X	1.007	1.007	0	%100
90	M63	Z	.581	.581	0	%100
91	M64	X	1.367	1.367	0	%100 %100
92	M64	Z	.789	.789	0	%100
93	M68	X	1.007	1.007	0	%100
94	M68	Z	.581	.581	0	%100 %100
95	M69	X	.342	.342	0	%100 %100
96	M69	Z	.197	.197	0	%100 %100
97	M87	X	0	0	0	%100 %100
98	M87	Z	0	0	0	%100 %100
30	IVIO /		U	U	U	/0 100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
99	M88A	X	.342	.342	0	%100
100	M88A	Z	.197	.197	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	.342	.342	0	%100
104	M93	Z	.197	.197	0	%100
105	M46	X	.336	.336	0	%100
106	M46	Z	.194	.194	0	%100
107	M80	X	.36	.36	0	%100
108	M80	Z	.208	.208	0	%100
109	M91	X	1.44	1.44	0	%100
110	M91	Z	.831	.831	0	%100
111	M55	X	.336	.336	0	%100
112	M55	Z	.194	.194	0	%100
113	M66	X	1.44	1.44	0	%100
114	M66	Z	.831	.831	0	%100
115	M71	X	.36	.36	0	%100
116	M71	Z	.208	.208	0	%100
117	M79A	X	1.342	1.342	0	%100
118	M79A	Z	.775	.775	0	%100
119	M90	X	.36	.36	0	%100
120	M90	Z	.208	.208	0	%100
121	M95	X	.36	.36	0	%100
122	M95	Z	.208	.208	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	.125	.125	0	%100
2	M4	Z	.217	.217	0	%100
3	M52A	X	.501	.501	0	%100
4	M52A	Z	.868	.868	0	%100
5	M76A	X	.125	.125	0	%100
6	M76A	Z	.217	.217	0	%100
7	M10	X	.359	.359	0	%100
8	M10	Z	.622	.622	0	%100
9	M43	X	.359	.359	0	%100
10	M43	Z	.622	.622	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	.359	.359	0	%100
16	M77A	Z	.622	.622	0	%100
17	M78	X	.359	.359	0	%100
18	M78	Z	.622	.622	0	%100
19	M100	X	.251	.251	0	%100
20	M100	Z	.435	.435	0	%100
21	MP3A	X	.307	.307	0	%100
22	MP3A	Z	.531	.531	0	%100
23	MP4A	X	.307	.307	0	%100
24	MP4A	Z	.531	.531	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

0.5	Member Label	Direction	Start Magnitude[lb			
25	MP2A	X	.307	.307	0	%100
26	MP2A	Z	.531	.531	0	%100
27	MP1A	X	.307	.307	0	%100
28	MP1A	Z	.531	.531	0	%100
29	MP3B	X	.307	.307	0	%100
30	MP3B	Z	.531	.531	0	%100
31	MP4B	X	.307	.307	0	%100
32	MP4B	Z	.531	.531	0	%100
33	MP2B	X	.307	.307	0	%100
34	MP2B	Z	.531	.531	0	%100
35	MP1B	X	.307	.307	0	%100
36	MP1B	Z	.531	.531	0	%100
37	MP3C	X	.307	.307	0	%100
38	MP3C	Z	.531	.531	0	%100
39	MP4C	X	.307	.307	0	%100
40	MP4C	Z	.531	.531	0	%100
41	MP2C	X	.307	.307	0	%100
42	MP2C	Z	.531	.531	0	%100
43	MP1C	X	.307	.307	0	%100
44	MP1C	Z	.531	.531	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	.342	.342	0	%100
48	M124	Z	.593	.593	0	%100
49	M125	X	.342	.342	0	%100
50	M125	Z	.593	.593	0	%100
51	M102	X	.279	.279	0	%100
52	M102	Z	.482	.482	0	%100
53	M107	X	0	0	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	.279	.279	0	%100
56	M108	Z	.482	.482	0	%100
57	M126	X	.41	.41	0	%100
58	M126	Z	.71	.71	0	%100
59	M127	X	.599	.599	0	%100
60	M127	Z	1.037	1.037	0	%100
61	M128	X	.41	.41	0	%100
62	M128	Z	.71	.71	0	%100
63	M51B	X	0	0	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	.323	.323	0	%100
66	M52B	Z	.559	.559	0	%100
67	M58A	X	.323	.323	0	%100
68	M58A	Z	.559	.559	0	%100
69	M59A	X	.323	.323	0	%100
70	M59A	Z	.559	.559	0	%100
71	M82	X	.323	.323	0	%100
72	M82	Z	.559	.559	0	%100
73	M83A	X	0	0	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	.338	.338	0	%100
76	M1	Z	.586	.586	0	%100
	1011	_	1000	1000		,0100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
77	M82A	X	0	0	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	.338	.338	0	%100
80	M91B	Z	.586	.586	0	%100
81	M76	X	.194	.194	0	%100
82	M76	Z	.336	.336	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	.194	.194	0	%100
86	M84	Z	.336	.336	0	%100
87	M85	X	.592	.592	0	%100
88	M85	Z	1.026	1.026	0	%100
89	M63	X	.775	.775	0	%100
90	M63	Z	1.342	1.342	0	%100
91	M64	X	.592	.592	0	%100
92	M64	Z	1.026	1.026	0	%100
93	M68	X	.775	.775	0	%100
94	M68	Z	1.342	1.342	0	%100 %100
95	M69	X	.592	.592	0	%100 %100
96	M69	Z	1.026	1.026	0	%100 %100
97	M87	X	.194	.194	0	%100 %100
98	M87	Z	.336	.336	0	%100 %100
99	M88A	X	.592	.592	0	%100 %100
100	M88A	Z	1.026	1.026	0	%100
101	M92A	X	.194	.194	0	%100
102	M92A	Z	.336	.336	0	%100 %100
102	M93	X	0	0	0	%100 %100
103	M93	Z	0	0	0	%100
104	M46	X	.581	.581	0	%100 %100
106	M46	Z	1.007	1.007	0	%100 %100
107	M80	X	0		0	%100 %100
107		Z	0	0	0	%100 %100
109	M80 M91	X	.624	.624	0	%100 %100
	M91	Z			0	
110			1.08	1.08		%100 %100
111	M55	X	0	0	0	%100 %100
112	M55	Z	0		0	%100 %100
113	M66	X 7	.624	.624	0	%100 %100
114	M66	Z	1.08	1.08	0	%100 %100
115	M71	X	.624	.624	0	%100
116	M71	Z	1.08	1.08	0	%100
117	M79A	X	.581	.581	0	%100
118	M79A	Z	1.007	1.007	0	%100
119	M90	X	.624	.624	0	%100
120	M90	Z	1.08	1.08	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	0	0	0	%100
2	M4	Z	0	0	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
3	M52A	X	0	0	0	%100
4	M52A	Z	.751	.751	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	.751	.751	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	.958	.958	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	.958	.958	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	.24	.24	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	.24	.24	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	.24	.24	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	.24	.24	0	%100
19	M100	X	0	0	0	%100
20	M100	Z	.502	.502	0	%100
21	MP3A	X	.502	0	0	%100
22	MP3A	Z	.614	.614	0	%100
23	MP4A	X	0	0	0	%100 %100
24	MP4A	Z	.614	.614	0	%100 %100
25	MP2A	X Z	0	0	0	%100
26	MP2A		.614	.614	0	%100
27	MP1A	X	0	0	0	%100
28	MP1A	Z	.614	.614	0	%100
29	MP3B	X	0	0	0	%100
30	MP3B	Z	.614	.614	0	%100
31	MP4B	X	0	0	0	%100
32	MP4B	Z	.614	.614	0	%100
33	MP2B	X	0	0	0	%100
34	MP2B	Z	.614	.614	0	%100
35	MP1B	X	0	0	0	%100
36	MP1B	Z	.614	.614	0	%100
37	MP3C	X	0	0	0	%100
38	MP3C	Z	.614	.614	0	%100
39	MP4C	X	0	0	0	%100
40	MP4C	Z	.614	.614	0	%100
41	MP2C	Χ	0	0	0	%100
42	MP2C	Z	.614	.614	0	%100
43	MP1C	X	0	0	0	%100
44	MP1C	Z	.614	.614	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	.228	.228	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	.913	.913	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	.228	.228	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	.743	.743	0	%100
53	M107	X	0	0	0	%100
54	M107	Z	.186	.186	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
55	M108	X	0	0	0	%100
56	M108	Z	.186	.186	0	%100
57	M126	X	0	0	0	%100
58	M126	Z	.694	.694	0	%100
59	M127	X	0	0	0	%100
60	M127	Z	1.071	1.071	0	%100
61	M128	X	0	0	0	%100
62	M128	Z	1.071	1.071	0	%100
63	M51B	Х	0	0	0	%100
64	M51B	Z	.215	.215	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	.215	.215	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	.215	.215	0	%100
69	M59A	X	0	0	0	%100
70	M59A	Z	.861	.861	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	.861	.861	0	%100
73	M83A	X	0	0	0	%100
74	M83A	Z	.215	.215	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	.902	.902	0	%100
77	M82A	X	0	0	0	%100
78	M82A	Z	.226	.226	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	.226	.226	0	%100
81	M76	X	0	0	0	%100
82	M76	Z	0	0	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	.395	.395	0	%100
85	M84	X	0	0	0	%100
86	M84	Z	0	0	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	.395	.395	0	%100
89	M63	X	0	0	0	%100
90	M63	Z	1.163	1.163	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	.395	.395	0	%100
93	M68	X	0	0	0	%100
94	M68	Z	1.163	1.163	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	1.579	1.579	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	1.163	1.163	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	1.579	1.579	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	1.163	1.163	0	%100
103	M93	X	0	0	0	%100
104	M93	Z	.395	.395	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	1.55	1.55	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 71: Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
107	M80	X	0	0	0	%100
108	M80	Z	.416	.416	0	%100
109	M91	X	0	0	0	%100
110	M91	Z	.416	.416	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	.388	.388	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	.416	.416	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	1.663	1.663	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	.388	.388	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	1.663	1.663	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	.416	.416	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	125	125	0	%100
2	M4	Z	.217	.217	0	%100
3	M52A	X	125	125	0	%100
4	M52A	Z	.217	.217	0	%100
5	M76A	X	501	501	0	%100
6	M76A	Z	.868	.868	0	%100
7	M10	X	359	359	0	%100
8	M10	Z	.622	.622	0	%100
9	M43	X	359	359	0	%100
10	M43	Z	.622	.622	0	%100
11	M53	X	359	359	0	%100
12	M53	Z	.622	.622	0	%100
13	M54	X	359	359	0	%100
14	M54	Z	.622	.622	0	%100
15	M77A	X	0	0	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	0	0	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	251	251	0	%100
20	M100	Z	.435	.435	0	%100
21	MP3A	X	307	307	0	%100
22	MP3A	Z	.531	.531	0	%100
23	MP4A	X	307	307	0	%100
24	MP4A	Z	.531	.531	0	%100
25	MP2A	X	307	307	0	%100
26	MP2A	Z	.531	.531	0	%100
27	MP1A	X	307	307	0	%100
28	MP1A	Z	.531	.531	0	%100
29	MP3B	X	307	307	0	%100
30	MP3B	Z	.531	.531	0	%100
31	MP4B	X	307	307	0	%100
32	MP4B	Z	.531	.531	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
33	MP2B	X	307	307	0	%100
34	MP2B	Z	.531	.531	0	%100
35	MP1B	X	307	307	0	%100
36	MP1B	Z	.531	.531	0	%100
37	MP3C	X	307	307	0	%100
38	MP3C	Z	.531	.531	0	%100
39	MP4C	X	307	307	0	%100
40	MP4C	Z	.531	.531	0	%100
41	MP2C	X	307	307	0	%100
42	MP2C	Z	.531	.531	0	%100
43	MP1C	X	307	307	0	%100
44	MP1C	Z	.531	.531	0	%100
45	M123	X	342	342	0	%100
46	M123	Z	.593	.593	0	%100
47	M124	X	342	342	0	%100
48	M124	Z	.593	.593	0	%100
49	M125	X	0	0	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	279	279	0	%100
52	M102	Z	.482	.482	0	%100
53	M107	X	279	279	0	%100
54	M107	Z	.482	.482	0	%100
55	M108	X	0		0	%100
56	M108	Z	0	0	0	%100
57	M126	X Z	41 .71	41 .71	0	%100
58	M126				0	%100
59	M127	X Z	41 .71	41 .71	0	%100
60	M127				0	%100
61	M128	X	599	599	0	%100
62	M128	Z	1.037	1.037	0	%100
63	M51B	X	323	323	0	%100
64	M51B	Z	.559	.559	0	%100
65	M52B	X	0	0	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	0	0	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	323	323	0	%100
70	M59A	Z	.559	.559	0	%100
71	M82	X	323	323	0	%100
72	M82	Z	.559	.559	0	%100
73	M83A	X Z	323	323	0	%100
74	M83A		.559	.559	0	%100
75	M1	X	338	338	0	%100
76	M1	Z	.586	.586	0	%100
77	M82A	X	338	338	0	%100
78	M82A	Z	.586	.586	0	%100
79	M91B	X	0	0	0	%100
80	M91B	Z	0	0	0	%100
81	M76	X	194	194	0	%100
82	M76	Z	.336	.336	0	%100
83	M77	X	592	592	0	%100
84	M77	Z	1.026	1.026	0	%100

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 72: Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
85	M84	X	194	194	0	%100
86	M84	Z	.336	.336	0	%100
87	M85	X	0	0	0	%100
88	M85	Z	0	0	0	%100
89	M63	X	194	194	0	%100
90	M63	Z	.336	.336	0	%100
91	M64	X	0	0	0	%100
92	M64	Z	0	0	0	%100
93	M68	Х	194	194	0	%100
94	M68	Z	.336	.336	0	%100
95	M69	X	592	592	0	%100
96	M69	Z	1.026	1.026	0	%100
97	M87	X	775	775	0	%100
98	M87	Z	1.342	1.342	0	%100
99	M88A	X	592	592	0	%100
100	M88A	Z	1.026	1.026	0	%100
101	M92A	X	775	775	0	%100
102	M92A	Z	1.342	1.342	0	%100
103	M93	X	592	592	0	%100
104	M93	Z	1.026	1.026	0	%100
105	M46	X	581	581	0	%100
106	M46	Z	1.007	1.007	0	%100
107	M80	X	624	624	0	%100
108	M80	Z	1.08	1.08	0	%100
109	M91	Х	0	0	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	581	581	0	%100
112	M55	Z	1.007	1.007	0	%100
113	M66	X	0	0	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	624	624	0	%100
116	M71	Z	1.08	1.08	0	%100
117	M79A	X	0	0	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	624	624	0	%100
120	M90	Z	1.08	1.08	0	%100
121	M95	X	624	624	0	%100
122	M95	Z	1.08	1.08	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	651	651	0	%100
2	M4	Z	.376	.376	0	%100
3	M52A	X	0	0	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	651	651	0	%100
6	M76A	Z	.376	.376	0	%100
7	M10	X	207	207	0	%100
8	M10	Z	.12	.12	0	%100
9	M43	X	207	207	0	%100
10	M43	Z	.12	.12	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

				Ford Managhard Elle #5 F last		F 1 1 # Fft 0/1
4.4	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	
11	M53	X	83	83	0	%100
12	M53	Z	.479	.479	0	%100
13	M54	X	83	83	0	%100
14	M54	Z	.479	.479	0	%100
15	M77A	X	207	207	0	%100
16	M77A	Z	.12	.12	0	%100
17	M78	X	207	207	0	%100
18	M78	Z	.12	.12	0	%100
19	M100	X	435	435	0	%100
20	M100	Z	.251	.251	0	%100
21	MP3A	X	531	531	0	%100
22	MP3A	Z	.307	.307	0	%100
23	MP4A	X	531	531	0	%100
24	MP4A	Z	.307	.307	0	%100
25	MP2A	X	531	531	0	%100
26	MP2A	Z	.307	.307	0	%100
27	MP1A	X	531	531	0	%100
28	MP1A	Z	.307	.307	0	%100
29	MP3B	X	531	531	0	%100
30	MP3B	Z	.307	.307	0	%100
31	MP4B	X	531	531	0	%100
32	MP4B	Z	.307	.307	0	%100
33	MP2B	X	531	531	0	%100
34	MP2B	Z	.307	.307	0	%100
35	MP1B	X	531	531	0	%100
36	MP1B	Z	.307	.307	0	%100
37	MP3C	X	531	531	0	%100
38	MP3C	Z	.307	.307	0	%100
39	MP4C	X	531	531	0	%100
40	MP4C	Z	.307	.307	0	%100
41	MP2C	X	531	531	0	%100
42	MP2C	Z	.307	.307	0	%100
43	MP1C	X	531	531	0	%100
44	MP1C	Z	.307	.307	0	%100
45	M123	X	791	791	0	%100
46	M123	Z	.457	.457	0	%100
47	M124	X	198	198	0	%100
48	M124	Z	.114	.114	0	%100
49	M125	X	198	198	0	%100
50	M125	Z	.114	.114	0	%100
51	M102	X	161	161	0	%100
52	M102	Z	.093	.093	0	%100
53	M107	X	643	643	0	%100
54	M107	Z	.371	.371	0	%100
55	M108	X	161	161	0	%100
56	M108	Z	.093	.093	0	%100
57	M126	X	928	928	0	%100
58	M126	Z	.536	.536	0	%100
59	M127	X	601	601	0	%100
60	M127	Z	.347	.347	0	%100
61	M128	X	928	928	0	%100
62	M128	Z	.536	.536	0	%100
UZ	WITZU		.000	.000	0	70 100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 73: Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
63	M51B	X	745	745	0	%100
64	M51B	Z	.43	.43	0	%100
65	M52B	X	186	186	0	%100
66	M52B	Z	.108	.108	0	%100
67	M58A	X	186	186	0	%100
68	M58A	Z	.108	.108	0	%100
69	M59A	X	186	186	0	%100
70	M59A	Z	.108	.108	0	%100
71	M82	X	186	186	0	%100
72	M82	Z	.108	.108	0	%100
73	M83A	X	745	745	0	%100
74	M83A	Z	.43	.43	0	%100
75	M1	X	195	195	0	%100
76	M1	Z	.113	.113	0	%100
77	M82A	X	781	781	0	%100
78	M82A	Z	.451	.451	0	%100
79	M91B	X	195	195	0	%100
80	M91B	Z	.113	.113	0	%100
81	M76	X	-1.007	-1.007	0	%100
82	M76	Z	.581	.581	0	%100
83	M77	X	-1.367	-1.367	0	%100
84	M77	Z	.789	.789	0	%100
85	M84	X	-1.007	-1.007	0	%100
86		Z	.581	.581	0	%100
	M84					
87	M85	X Z	342	342	0	%100
88	M85		.197	.197	0	%100
89	M63	X Z	0	0	0	%100
90	M63		-		0	%100
91	M64	X	342	342	0	%100
92	M64	Z	.197	.197	0	%100
93	M68	X	0	0	0	%100
94	M68	Z		0	0	%100
95	M69	X	342	342	0	%100
96	M69	Z	.197	.197	0	%100
97	M87	X	-1.007	-1.007	0	%100
98	M87	Z	.581	.581	0	%100
99	M88A	X	342	342	0	%100
100	M88A	Z	.197	.197	0	%100
101	M92A	X	-1.007	-1.007	0	%100
102	M92A	Z	.581	.581	0	%100
103	M93	X	-1.367	-1.367	0	%100
104	M93	Z	.789	.789	0	%100
105	M46	X	336	336	0	%100
106	M46	Z	.194	.194	0	%100
107	M80	X	-1.44	-1.44	0	%100
108	M80	Z	.831	.831	0	%100
109	M91	X	36	36	0	%100
110	M91	Z	.208	.208	0	%100
111	M55	X	-1.342	-1.342	0	%100
112	M55	Z	.775	.775	0	%100
113	M66	X	36	36	0	%100
114	M66	Z	.208	.208	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 73: Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
115	M71	X	36	36	0	%100
116	M71	Z	.208	.208	0	%100
117	M79A	X	336	336	0	%100
118	M79A	Z	.194	.194	0	%100
119	M90	X	36	36	0	%100
120	M90	Z	.208	.208	0	%100
121	M95	X	-1.44	-1.44	0	%100
122	M95	Z	.831	.831	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	-1.002	-1.002	0	%100
2	M4	Z	0	0	0	%100
3	M52A	X	25	25	0	%100
4	M52A	Z	0	0	0	%100
5	M76A	X	25	25	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	0	0	0	%100
8	M10	Z	0	0	0	%100
9	M43	X	0	0	0	%100
10	M43	Z	0	0	0	%100
11	M53	X	719	719	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	719	719	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	719	719	0	%100
16	M77A	Z	0	0	0	%100
17	M78	X	719	719	0	%100
18	M78	Z	0	0	0	%100
19	M100	X	502	502	0	%100
20	M100	Z	0	0	0	%100
21	MP3A	X	614	614	0	%100
22	MP3A	Z	0	0	0	%100
23	MP4A	X	614	614	0	%100
24	MP4A	Z	0	0	0	%100
25	MP2A	X	614	614	0	%100
26	MP2A	Z	0	0	0	%100
27	MP1A	X	614	614	0	%100
28	MP1A	Z	0	0	0	%100
29	MP3B	X	614	614	0	%100
30	MP3B	Z	0	0	0	%100
31	MP4B	X	614	614	0	%100
32	MP4B	Z	0	0	0	%100
33	MP2B	X	614	614	0	%100
34	MP2B	Z	0	0	0	%100
35	MP1B	X	614	614	0	%100
36	MP1B	Z	0	0	0	%100
37	MP3C	X	614	614	0	%100
38	MP3C	Z	0	0	0	%100
39	MP4C	X	614	614	0	%100
40	MP4C	Z	0	0	0	%100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

				z Will (270 Deg)) (Oom		
4.4	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]		End Location[ft,%]
41	MP2C	X	614	614	0	%100
42	MP2C	Z	0	0	0	%100
43	MP1C	X	614	614	0	%100
44	MP1C	Z	0	0	0	%100
45	M123	X	685	685	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	0	0	0	%100
48	M124	Z	0	0	0	%100
49	M125	X	685	685	0	%100
50	M125	Z	0	0	0	%100
51	M102	X	0	0	0	%100
52	M102	Z	0	0	0	%100
53	M107	X	557	557	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	557	557	0	%100
56	M108	Z	0	0	0	%100
57	M126	X	-1.197	-1.197	0	%100
58	M126	Z	0	0	0	%100
59	M127	X	819	819	0	%100
60	M127	Z	0	0	0	%100
61	M128	X	819	819	0	%100
62	M128	Z	0	0	0	%100
63	M51B	X	646	646	0	%100
64	M51B	Z	0	0	0	%100
65	M52B	X	646	646	0	%100
66	M52B	Z	0	0	0	%100
67	M58A	X	646	646	0	%100
68	M58A	Z	0	0	0	%100
69	M59A	X	0	0	0	%100
70	M59A	Z	0	0	0	%100
71	M82	X	0	0	0	%100
72	M82	Z	0	0	0	%100
73	M83A	X	646	646	0	%100
74	M83A	Z	0	0	0	%100
75	M1	X	0	0	0	%100
76	M1	Z	0	0	0	%100
77	M82A	X	677	677	0	%100 %100
78	M82A	Z	0	0	0	%100
79	M91B	X	677	677	0	%100
80	M91B	Z	0	0	0	%100 %100
81	M76	X	-1.55	-1.55	0	%100
82	M76	Z	0	0	0	%100 %100
83	M77	X	-1.184	-1.184	0	%100
84	M77	Z	-1.104	0	0	%100
85	M84	X	-1.55	-1.55	0	%100
86	M84	Z	-1.55	-1.55	0	%100
87	M85	X	-1.184		0	%100
88	M85	Z	-1.164	-1.18 4 0	0	%100 %100
			-			
89	M63	X Z	388 0	388 0	0	%100 %100
90	M63		-	<u> </u>	0	%100 %100
91	M64	X	-1.184	-1.184	0	%100 %100
92	M64	Z	0	0	0	%100

: Maser Consulting

SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 74: Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
93	M68	X	388	388	0	%100
94	M68	Z	0	0	0	%100
95	M69	X	0	0	0	%100
96	M69	Z	0	0	0	%100
97	M87	X	388	388	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	0	0	0	%100
100	M88A	Z	0	0	0	%100
101	M92A	X	388	388	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	-1.184	-1.184	0	%100
104	M93	Z	0	0	0	%100
105	M46	X	0	0	0	%100
106	M46	Z	0	0	0	%100
107	M80	X	-1.247	-1.247	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	-1.247	-1.247	0	%100
110	M91	Z	0	0	0	%100
111	M55	X	-1.163	-1.163	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	-1.247	-1.247	0	%100
114	M66	Z	0	0	0	%100
115	M71	X	0	0	0	%100
116	M71	Z	0	0	0	%100
117	M79A	X	-1.163	-1.163	0	%100
118	M79A	Z	0	0	0	%100
119	M90	X	0	0	0	%100
120	M90	Z	0	0	0	%100
121	M95	X	-1.247	-1.247	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	651	651	0	%100
2	M4	Z	376	376	0	%100
3	M52A	X	651	651	0	%100
4	M52A	Z	376	376	0	%100
5	M76A	X	0	0	0	%100
6	M76A	Z	0	0	0	%100
7	M10	X	207	207	0	%100
8	M10	Z	12	12	0	%100
9	M43	X	207	207	0	%100
10	M43	Z	12	12	0	%100
11	M53	X	207	207	0	%100
12	M53	Z	12	12	0	%100
13	M54	X	207	207	0	%100
14	M54	Z	12	12	0	%100
15	M77A	X	83	83	0	%100
16	M77A	Z	479	479	0	%100
17	M78	X	83	83	0	%100
18	M78	Z	479	479	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
19	M100	X	435	435	0	%100
20	M100	Z	251	251	0	%100
21	MP3A	X	531	531	0	%100
22	MP3A	Z	307	307	0	%100
23	MP4A	X	531	531	0	%100
24	MP4A	Z	307	307	0	%100
25	MP2A	X	531	531	0	%100
26	MP2A	Z	307	307	0	%100
27	MP1A	X	531	531	0	%100
28	MP1A	Z	307	307	0	%100
29	MP3B	X	531	531	0	%100
30	MP3B	Z	307	307	0	%100
31	MP4B	X	531	531	0	%100
32	MP4B	Z	307	307	0	%100
33	MP2B	X	531	531	0	%100
34	MP2B	Z	307	307	0	%100
35	MP1B	X	531	531	0	%100
	MP1B	Z	307			
36				307	0	%100
37	MP3C	X	531	531	0	%100
38	MP3C	Z	307	307	0	%100
39	MP4C	X	531	531	0	%100
40	MP4C	Z	307	307	0	%100
41	MP2C	X	531	531	0	%100
42	MP2C	Z	307	307	0	%100
43	MP1C	X	531	531	0	%100
44	MP1C	Z	307	307	0	%100
45	M123	X	198	198	0	%100
46	M123	Z	114	114	0	%100
47	M124	X	198	198	0	%100
48	M124	Z	114	114	0	%100
49	M125	X	791	791	0	%100
50	M125	Z	457	457	0	%100
51	M102	X	161	161	0	%100
52	M102	Z	093	093	0	%100
53	M107	X	161	161	0	%100
54	M107	Z	093	093	0	%100
55	M108	X	643	643	0	%100
56	M108	Z	371	371	0	%100
57	M126	X	928	928	0	%100
58	M126	Z	536	536	0	%100
59	M127	X	928	928	0	%100
60	M127	Z	536	536	0	%100
61	M128	X	601	601	0	%100
62	M128	Z	347	347	0	%100
63	M51B	X	186	186	0	%100
64	M51B	Z	108	108	0	%100
65	M52B	X	745	745	0	%100
66	M52B	Z	43	43	0	%100
67	M58A	X	745	745	0	%100
68	M58A	Z	43	43	0	%100
69	M59A	X	186	186	0	%100
70	M59A M59A	Z	108	108	0	%100 %100
70	IVIJBA		100	-, 100	U	70 100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
71	M82	X	186	186	0	%100
72	M82	Z	108	108	0	%100
73	M83A	X	186	186	0	%100
74	M83A	Z	108	108	0	%100
75	M1	X	195	195	0	%100
76	M1	Z	113	113	0	%100
77	M82A	X	195	195	0	%100
78	M82A	Z	113	113	0	%100
79	M91B	X	781	781	0	%100
80	M91B	Z	451	451	0	%100
81	M76	X	-1.007	-1.007	0	%100
82	M76	Z	581	581	0	%100
83	M77	X	342	342	0	%100
84	M77	Z	197	197	0	%100
85	M84	X	-1.007	-1.007	0	%100
86	M84	Z	581	581	0	%100
87	M85	X	-1.367	-1.367	0	%100
88	M85	Z	789	789	0	%100
89	M63	X	-1.007	-1.007	0	%100
90	M63	Z	581	581	0	%100
91	M64	X	-1.367	-1.367	0	%100
92	M64	Z	789	789	0	%100
93	M68	X	-1.007	-1.007	0	%100
94	M68	Z	581	581	0	%100
95	M69	X	342	342	0	%100
96	M69	Z	197	197	0	%100
97	M87	X	0	0	0	%100
98	M87	Z	0	0	0	%100
99	M88A	X	342	342	0	%100
100	M88A	Z	197	197	0	%100
101	M92A	X	0	0	0	%100
102	M92A	Z	0	0	0	%100
103	M93	X	342	342	0	%100
104	M93	Z	197	197	0	%100
105	M46	X	336	336	0	%100
106	M46	Z	194	194	0	%100
107	M80	X	36	36	0	%100
108	M80	Z	208	208	0	%100
109	M91	X	-1.44	-1.44	0	%100
110	M91	Z	831	831	0	%100
111	M55	X	336	336	0	%100
112	M55	Z	194	194	0	%100
113	M66	X	-1.44	-1.44	0	%100
114	M66	Z	831	831	0	%100
115	M71	X	36	36	0	%100
116	M71	Z	208	208	0	%100
117	M79A	X	-1.342	-1.342	0	%100
118	M79A	Z	775	775	0	%100
119	M90	X	36	36	0	%100
120	M90	Z	208	208	0	%100
121	M95	X	36	36	0	%100
122	M95	Z	208	208	0	%100

Model Name

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M4	X	125	125	0	%100
2	M4	Z	217	217	0	%100
3	M52A	X	501	501	0	%100
4	M52A	Z	868	868	0	%100
5	M76A	X	125	125	0	%100
6	M76A	Z	217	217	0	%100
7	M10	X	359	359	0	%100
8	M10	Z	622	622	0	%100
9	M43	X	359	359	0	%100
10	M43	Z	622	622	0	%100
11	M53	X	0	0	0	%100
12	M53	Z	0	0	0	%100
13	M54	X	0	0	0	%100
14	M54	Z	0	0	0	%100
15	M77A	X	359	359	0	%100
16	M77A	Z	622	622	0	%100
17	M78	X	359	359	0	%100
18	M78	Z	622	622	0	%100
19	M100	X	251	251	0	%100
20	M100	Z	435	435	0	%100
21	MP3A	X	307	307	0	%100
22	MP3A	Z	531	531	0	%100
23	MP4A	X	307	307	0	%100
24	MP4A	Z	531	531	0	%100
25	MP2A	X	307	307	0	%100
26	MP2A	Z	531	531	0	%100
27	MP1A	X	307	307	0	%100
28	MP1A	Z	531	531	0	%100
29	MP3B	X	307	307	0	%100
30	MP3B	Z	531	531	0	%100
31	MP4B	X	307	307	0	%100
32	MP4B	Z	531	531	0	%100
33	MP2B	X	307	307	0	%100
34	MP2B	Z	531	531	0	%100
35	MP1B	X	307	307	0	%100
36	MP1B	Z	531	531	0	%100
37	MP3C	X	307	307	0	%100
38	MP3C	Z	531	531	0	%100
39	MP4C	X	307	307	0	%100
40	MP4C	Z	531	531	0	%100
41	MP2C	X	307	307	0	%100
42	MP2C	Z	531	531	0	%100
43	MP1C	X	307	307	0	%100
44	MP1C	Z	531	531	0	%100
45	M123	X	0	0	0	%100
46	M123	Z	0	0	0	%100
47	M124	X	342	342	0	%100
48	M124	Z	593	593	0	%100
49	M125	X	342	342	0	%100 %100
50	M125	Z	593	593	0	%100
51	M102	X	279	279	0	%100
52	M102	Z	482	482	0	%100 %100
UZ	IVITUZ	_	-, -102	-,702	U	70 100

Company : Maser Consulting Designer : SEA Job Number :

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb			End Location[ft,%]
53	M107	X	0	0	0	%100
54	M107	Z	0	0	0	%100
55	M108	X	279	279	0	%100 %100
56	M108	Z	482	482	0	%100
57	M126	X	41	402 41	0	%100
58	M126	Z	71	71	0	%100
59	M127	X	599	599	0	%100 %100
60		Z		-1.037	0	%100 %100
	M127	X	-1.037			
61 62	M128	Z	41 71	41 71	0	%100
	M128	X				%100 %100
63 64	M51B M51B	Z	0	0	0	%100 %100
			323	323	0	%100 %100
65 66	M52B	X Z	559		0	%100 %100
67	M52B			559		
	M58A	X 	323	323	0	%100 %100
68	M58A		559	559	0	%100 %100
69	M59A	X 	323	323	0	%100 %100
70	M59A	X	559	559	0	%100 %100
71	M82		323	323	0	%100
72	M82	Z	559	559	0	%100
73	M83A	X 	0	0	0	%100 %100
74	M83A		-	0	0	%100
75	M1	X Z	338	338	0	%100
76	M1		586	586	0	%100
77	M82A	X	0	0	0	%100
78	M82A	Z	0	0	0	%100
79	M91B	X	338	338	0	%100
80	M91B	Z	586	586	0	%100
81	M76	X	194	194	0	%100
82	M76	Z	336	336	0	%100
83	M77	X	0	0	0	%100
84	M77	Z	0	0	0	%100
85	M84	X	194	194	0	%100
86	M84	Z	336	336	0	%100
87	M85	X	592	592	0	%100
88	M85	Z	-1.026	-1.026	0	%100
89	M63	X 7	775	775 1 242	0	%100 %100
90	M63	Z	-1.342	-1.342	0	%100 %100
91 92	M64	X 	592	592 1.026	0	%100 %100
92	M64 M68		-1.026	-1.026 775		
93	M68	X 	775 -1.342	775 -1.342	0	%100 %100
95	M69	X 	592	592	0	%100
96 97	M69		-1.026	-1.026	0	%100 %100
	M87	X Z	194	194	0	%100 %100
98	M87		336	336	0	%100 %100
99	M88A	X 	592	592 1.026	0	%100 %100
100	M88A		-1.026	-1.026	0	%100 %100
101	M92A	X	194	194	0	%100
102	M92A	Z	336	336	0	%100 %100
103	M93	X	0	0	0	%100
104	M93	Z	0	0	0	%100

: Maser Consulting

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
105	M46	X	581	581	0	%100
106	M46	Z	-1.007	-1.007	0	%100
107	M80	X	0	0	0	%100
108	M80	Z	0	0	0	%100
109	M91	X	624	624	0	%100
110	M91	Z	-1.08	-1.08	0	%100
111	M55	X	0	0	0	%100
112	M55	Z	0	0	0	%100
113	M66	X	624	624	0	%100
114	M66	Z	-1.08	-1.08	0	%100
115	M71	X	624	624	0	%100
116	M71	Z	-1.08	-1.08	0	%100
117	M79A	X	581	581	0	%100
118	M79A	Z	-1.007	-1.007	0	%100
119	M90	X	624	624	0	%100
120	M90	Z	-1.08	-1.08	0	%100
121	M95	X	0	0	0	%100
122	M95	Z	0	0	0	%100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M58A	Υ	-1.597	-4.066	0	.832
2	M58A	Υ	-4.066	-6.636	.832	1.665
3	M58A	Υ	-6.636	-7.874	1.665	2.497
4	M58A	Υ	-7.874	-6.293	2.497	3.329
5	M58A	Υ	-6.293	-3.33	3.329	4.162
6	M59A	Υ	-3.329	-6.32	0	.832
7	M59A	Υ	-6.32	-7.943	.832	1.665
8	M59A	Υ	-7.943	-6.773	1.665	2.497
9	M59A	Υ	-6.773	-4.256	2.497	3.329
10	M59A	Υ	-4.256	-1.812	3.329	4.162
11	M51B	Υ	-1.807	-4.258	0	.832
12	M51B	Υ	-4.258	-6.771	.832	1.665
13	M51B	Υ	-6.771	-7.939	1.665	2.497
14	M51B	Υ	-7.939	-6.325	2.497	3.329
15	M51B	Υ	-6.325	-3.336	3.329	4.162
16	M52B	Υ	-3.33	-6.293	0	.832
17	M52B	Υ	-6.293	-7.874	.832	1.665
18	M52B	Υ	-7.874	-6.634	1.665	2.497
19	M52B	Υ	-6.634	-4.064	2.497	3.329
20	M52B	Υ	-4.064	-1.601	3.329	4.162
21	M82	Υ	-1.807	-4.258	0	.832
22	M82	Υ	-4.258	-6.771	.832	1.665
23	M82	Υ	-6.771	-7.939	1.665	2.497
24	M82	Υ	-7.939	-6.325	2.497	3.329
25	M82	Υ	-6.325	-3.336	3.329	4.162
26	M83A	Υ	-3.33	-6.293	0	.832
27	M83A	Υ	-6.293	-7.874	.832	1.665
28	M83A	Υ	-7.874	-6.634	1.665	2.497
29	M83A	Υ	-6.634	-4.064	2.497	3.329
30	M83A	Υ	-4.064	-1.601	3.329	4.162

Company Designer Job Number : Maser Consulting

SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb	End Magnitude[lb/ft,F,ksf]	Start Location[ft,%]	End Location[ft,%]
1	M58A	Υ	-3.419	-8.701	0	.832
2	M58A	Υ	-8.701	-14.202	.832	1.665
3	M58A	Υ	-14.202	-16.85	1.665	2.497
4	M58A	Υ	-16.85	-13.467	2.497	3.329
5	M58A	Υ	-13.467	-7.126	3.329	4.162
6	M59A	Υ	-7.123	-13.526	0	.832
7	M59A	Υ	-13.526	-16.997	.832	1.665
8	M59A	Υ	-16.997	-14.495	1.665	2.497
9	M59A	Υ	-14.495	-9.108	2.497	3.329
10	M59A	Υ	-9.108	-3.878	3.329	4.162
11	M51B	Υ	-3.867	-9.112	0	.832
12	M51B	Υ	-9.112	-14.49	.832	1.665
13	M51B	Υ	-14.49	-16.989	1.665	2.497
14	M51B	Υ	-16.989	-13.535	2.497	3.329
15	M51B	Υ	-13.535	-7.14	3.329	4.162
16	M52B	Υ	-7.125	-13.467	0	.832
17	M52B	Υ	-13.467	-16.85	.832	1.665
18	M52B	Υ	-16.85	-14.198	1.665	2.497
19	M52B	Υ	-14.198	-8.698	2.497	3.329
20	M52B	Υ	-8.698	-3.427	3.329	4.162
21	M82	Υ	-3.867	-9.112	0	.832
22	M82	Υ	-9.112	-14.49	.832	1.665
23	M82	Υ	-14.49	-16.989	1.665	2.497
24	M82	Υ	-16.989	-13.535	2.497	3.329
25	M82	Υ	-13.535	-7.14	3.329	4.162
26	M83A	Υ	-7.125	-13.467	0	.832
27	M83A	Υ	-13.467	-16.85	.832	1.665
28	M83A	Υ	-16.85	-14.198	1.665	2.497
29	M83A	Υ	-14.198	-8.698	2.497	3.329
30	M83A	Υ	-8.698	-3.427	3.329	4.162

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N113	N111	N89	N90	Υ	Two Way	005
2	N7	N87B	N87C	N6	Υ	Two Way	005
3	N117	N118	N141	N139	Υ	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N113	N111	N89	N90	Υ	Two Way	011
2	N7	N87B	N87C	N6	Υ	Two Way	011
3	N117	N118	N141	N139	Υ	Two Way	011

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	1511.861	10	245.29	20	4493.746	1	.129	21	2.005	4	.12	2
2		min	-1490.916	4	-46.644	2	-1945.213	7	04	3	-2.016	10	149	8
3	N87D	max	3741.995	9	109.773	4	1163.66	2	.141	9	1.547	12	.225	50

Company Designer Job Number

: Maser Consulting

: SEA

: Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Envelope Joint Reactions (Continued)

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
4		min	-1507.078	3	-107.545	50	-2451.131	8	39	39	-1.526	6	055	6
5	N115	max	1540.796	11	108.707	12	1101.292	12	.102	8	1.443	8	.131	12
6		min	-3795.982	5	-163.112	30	-2397.022	6	356	38	-1.424	2	372	30
7	N187	max	45.238	10	2250.044	13	-801.401	7	0	75	0	4	0	10
8		min	-45.091	4	577.619	7	-3065.654	13	0	1	0	10	0	4
9	N189	max	-749.017	3	2264.93	21	1543.17	21	0	6	0	48	0	48
10		min	-2672.981	21	623.037	3	432.267	3	0	48	0	6	0	6
11	N191	max	2670.108	17	2262.669	17	1541.836	17	0	8	0	8	0	8
12		min	746.863	11	621.22	11	430.923	11	0	26	0	26	0	26
13	Totals:	max	5671.556	10	6845.223	23	5811.924	1						
14		min	-5671.559	4	2186.302	69	-5811.927	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member Shape	Code Check	Loc[ft]	LC	SheLo	LC	phi* phi* phi* phi* Eqn_
1	MP2A PIPE	.473	3.375	1	.119 3	10	208632130 1.872 1.872H1
2	MP2C PIPE	.469	3.375	9	.119 3	12	208632130 1.872 1.872H1
3	MP2B PIPE	.469	3.375	5	.119 3	2	208632130 1.872 1.872H1
4	M53 L3X3X3	.373	2.375	20	.450 .223 _Z	3	269735316 1.32 2.833H2-1
5	M43 L3X3X3	.368	0	23	.444 2 z	6	269735316 1.32 2.833H2-1
6	M77A L3X3X3	.361	2.375	17	.479 .223 _Z	12	269735316 1.32 2.833H2-1
7	M54 L3X3X3	.360	0	19	.469 2 z	2	269735316 1.32 2.833H2-1
8	M59A L2x2x3	.359	0	8	.024 4 y	2	98232339558 1.092H2-1
9	M10 L3X3X3	.358	2.375	23	.466 .223 _Z	8	269735316 1.32 2.833H2-1
10	M78 L3X3X3	.357	0	15	.442 2 z	10	269735316 1.32 2.833H2-1
11	M82 L2x2x3	.353	4.162	6	.023 0 y	12	98232339558 1.092H2-1
12	M52B L2x2x3	.350	0	12	.023 4 y	7	98232339558 1.094H2-1
13	M83A L2x2x3	.347	0	4	.024 4 y	11	98232339 <u>.</u> 558 1.094H2-1
14	M51B L2x2x3	.335	4.162	2	.022 0 y	8	98232339558 1.092H2-1
15	M58A L2x2x3	.326	4.162	10	.022 0 y	3	98232339558 1.094H2-1
16	MP1C PIPE	.305	3.313	8	.079 2	6	208632130 1.872 1.872H1
17	M55 PL1/2x6	.302	.516	9	.195 .516y	18	660097200 1.012 12.15H1
18	M84 PL3/8x6	.299	0	4	.144 0 y	19	706772900 .57 9.113H1
19	MP1A PIPE	.293	3.313	3	.079 3	2	208632130 1.872 1.872H1
20	MP1B PIPE	.293	3.313	11	.084 3	10	208632130 1.872 1.872H1
21	M79A PL1/2x6	.290	.516	5	.207 .516y	26	660097200 1.012 12.15H1
22	M46 PL1/2x6	.281	.516	7	.203 .516y	22	660097200 1.012 12.15H1
23	M68 PL3/8x6	.268	0	12	.141 0 y	15	706772900 .57 9.113H1
24	M76 PL3/8x6	.256	0	4	.135 0 y	21	706772900 .57 9.113H1
25	MP3B PIPE	.248	3.313	6	.078 2	4	208632130 1.872 1.872H1
26	MP3A PIPE	.236	3.313	11	.076 3	1	208632130 1.872 1.872H1
27	MP3C PIPE	.235	3.313	3	.086 3	4	208632130 1.872 1.872H1
28	M88A PL3/8x6	.216	.167	12	.070 O y	41	716072900 .57 9.113H1
29	M64 PL3/8x6	.213	.167	3	.064 0 y	21	716072900 .57 9.113H1
30	M77 PL3/8x6	.211	.167	8	.060 O y	24	716072900 .57 9.113H1
31	M69 PL3/8x6	.206	.167	2	.068 0 y	41	716072900 .57 9.113H1
32	M93 PL3/8x6	.205	.167	11	.061 0 y	13	716072900 .57 9.113H1
33	M87 PL3/8x6	.199	0	8	.142 0 y	37	706772900 .57 9.113H1
34	M85 PL3/8x6	.197	.167	6	.064 0 y	21	716072900 .57 9.113H1
35	MP4B PIPE	.180	3.313	6	.059 3	8	208632130 1.872 1.872H1
36	M63 PL3/8x6	.179	0	1	.136 0 y	17	706772900 .57 9.113 H1

Company Designer Job Number

: Maser Consulting

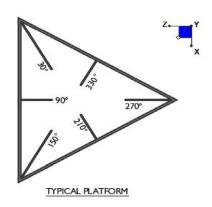
SEA

Model Name : Mount Modification Analysis (REV 1)

Nov 23, 2021 9:10 PM Checked By: PA

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[ft]	LC	SheLo	LC	phi* phi* phi* phi* Eqn
37	M92A	PL3/8x6	.175	0	2	.136 O y	23	706772900 .57 9.113H1
38	MP4A	PIPE	.171	3.313	10	.058 3	12	208632130 1.872 1.872H1
39	M4	HSS4	.171	0	10	.057 4 y	22	9584106812.6 12.6H1
40	MP4C	PIPE	.169	3.313	2	.063 3	4	208632130 1.872 1.872H1
41	M125	L3X3X4	.149	0	7	.021 0 y	7	432346656 1.688 3.756H2-1
42	M124	L3X3X4	.147	1.855	4	.022 0 y	3	432346656 1.688 3.756H2-1
43	M1	PIPE	.136	6.12	48	.062 7	7	282565205 5.749 5.749H1
44	M52A	HSS4	.133	0	12	.060 4 y	50	9584106812.6 12.6H1
45	M108	PIPE	.130	1.302	8	.066 1	10	145550715 3.596 3.596H1
46	M123	L3X3X4	.129	1.855	12	.021 0 y	5	432346656 1.688 3.756H2-1
47		PIPE	.127	1.302	12	.072 9	10	145550715 3.596 3.596H1
48	M102	PIPE	.126	6.12	40	.062 1	6	145550715 3.596 3.596H1
49	M76A	HSS4	.125	0	8	.088 4 y	27	9584106812.6 12.6H1
50		PIPE	.099	6.12	18	.059 7	10	282565205 5.749 5.749H1
51	M82A	PIPE	.099	6.12	22	.043 7	3	282565205 5.749 5.749H1
52	M100	PIPE	.094	2	7	.018 2	7	288432130 1.872 1.872 1 H1
53	M66	PL1/2x6	.088	.112	9	.180 O y	20	967597200 1.012 12.15H1
54	M95	PL1/2x6	.087	.112	11	.175 0 y	18	967597200 1.012 12.15H1
55	M90	PL1/2x6	.086	.112	5	.250 0 y	28	967597200 1.012 12.15H1
56	M71	PL1/2x6	.083	.112	3	.179 0 y	50	967597200 1.012 12.15H1
57	M91	PL1/2x6	.081	.112	7	.169 0 y	14	967597200 1.012 12.15H1
58	M127	LL3x3x.	.080	5.151	21	.004 0 z	12	476170632 5.543 3.751 1 H1
59	M128	LL3x3x	.080	5.151	17	.004 0 z	8	476170632 5.543 3.751 1 H1
60		PL1/2x6	.080	.112	1	.179 O y	24	967597200 1.012 12.15H1
61	M126	LL3x3x	.080	5.151	13	.004 5 z	4	4761 <mark>70632</mark> 5.543 3.751 1 H1


Client:	Verizon Wireless	Date:	11/22/2021
Site Name:	EASTON NORTH 2 CT		
Project No.	21777106A		
Title:	Mount Modification Analysis (REV 1)	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Orientation (per graphic of typical platform)
30
150
270

Tower Connection Bolt Checks

Any moment resistance?:

Bolt Quantity per Reaction:

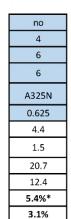
 d_x (in) (Delta X of typ. bolt config. sketch):

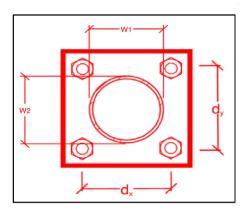
 $d_v(in)$ (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):


Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

*Note: Tension reduction not required if tension or shear capacity < 30%

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape:

Plate Width (in):

Plate Height (in):

W1 (in):

W2 (in):

Fy (ksi, plate):

t_{Plate} (in):

Weld Size (1/16 in):

Phi*Rn (kip/in):

Required Weld Strength (kip/in):

Plate Bending Capacity:

Weld Capacity:

Rect
10
10
4
4
36
0.5
4
5.57
1.19
23.3%
21.5%

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Mount Modification

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com
For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>Purpose</u> – to upload the proper documentation to the SMART Tool in order to allow the SMART Tool engineering vendor to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the modification was completed in accordance with the modification drawings.
- Contractor shall relay any data that can impact the performance of the mount or the mount modification, this includes safety issues.

Base Requirements:

- If installation of the modification will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built drawings" showing contractor's name, preparer's signature, and date. Any
 deviations from the drawings (proposed modification) shall be shown. NOTE: If loading is
 different than what is conveyed in the post-modification passing mount analysis (MA) contact
 the SMART Tool vendor immediately.
- Each photo shall be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is not adversely impacted by the install
 of the modification components. This may involve the install of wire rope guides, or other items
 to protect the wire rope. If there is conflict, contact the SMART Tool engineer for
 recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation of the modifications.
 - Photos of the mount after installation of the modifications; if the mounts are at different rad elevations, pictures must be provided for all elevations that the modifications were installed

Photos taken at Mount Elevation

- Photos showing the safety climb wire rope above and below the mount prior to modification.
- Photos showing the climbing facility and safety climb if present.
- Photos showing each individual sector after installation of modifications. Each entire sector must be in one photo to show the interconnection of members.

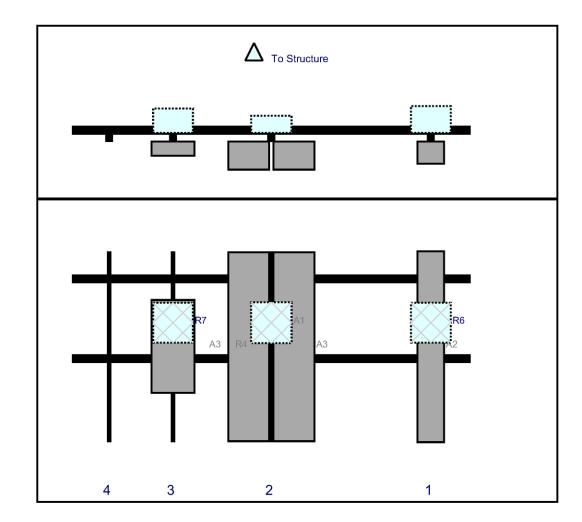
- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed modification per the modification drawings; pictures shall also include connection hardware (U-bolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the distances (relative distance between collars) of the installed modifications from the appropriate reference locations shown in the modification drawings.
- Photos showing the installed modifications onto the tower (i.e. ring/collar mounts, tie-backs, V-bracing kits, etc.); if the existing mount elevation needs to be changed according to the modification drawings, an elevation measurement shall be provided before the elevation change.

Material Certification:

- Materials utilized must be as per specification on the drawings or the equivalent as validated by the SMART Tool vendor.
 - If the materials are as specified on the drawings
 - The contractor shall provide the packing list, or the materials certifications for the materials utilized to perform the mount modification
 - Commscope, Metrosite, Perfect Vision, Sabre, and Site Pro have all agreed to support Verizon vendors with the necessary material certifications
 - If seeking permission to use an equivalent
 - It is required that the SMART Tool engineering vendor approval of such is included in the contractor submission package. There may be an additional charge for approval if the equivalent submission doesn't meet specifications as prescribed in the drawings.

	notes that the equipment on the mount is ces below and provided photo documentat	
Comments:		
Certifying Individual:		
Company:		
Employee Name: Contact Phone:		
Email:		
Date:		
	ation completed in conjunction with th	ne equipment change / installation?
☐ Yes ☐	No	
Special Instructions / Va	lidation as required from the MA or M	lod Drawings:
Issue:		
Response:		
Contractor certifies that starting work:	the climbing facility / safety climb wa	s not damaged or obstructed prior to
□ Yes □	No	
Contractor certifies no n	new damage/obstructions created duri	ing the current installation:
□Yes □	No	
Contractor to certify the site:	condition of the safety climb and veri	ify no obstructions when leaving the
☐ Safety climb in☐ Safety Climb O	good condition with no obstructions bstructed	☐ Safety Climb Damaged

Comments:			


Structure: 468248-VZW - EASTON NORTH 2 CT

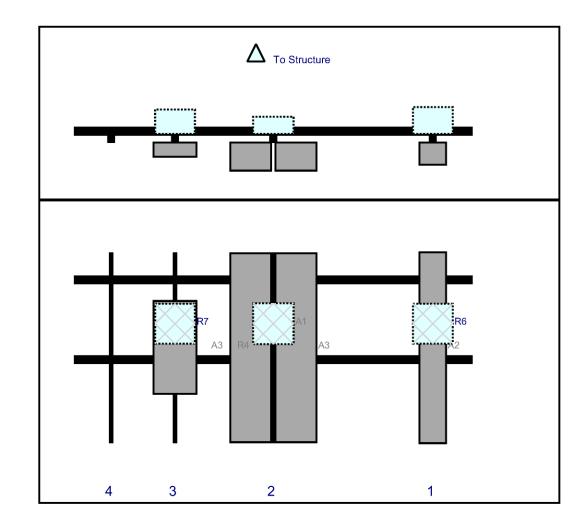
Sector: **A** 11/23/2021

Structure Type: Monopole 10117165

Mount Elev: 127.50 Page: 1

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	DB846F65ZAXY	72	10	135	1	а	Front	36	0	Retained	04/20/2021
R6	RF4439d-25A	15	15	135	1	а	Behind	27	0	Added	
A3	MX06FRO660-03	71.3	15.4	75	2	а	Front	36	-8.5	Added	
A3	MX06FRO660-03	71.3	15.4	75	2	b	Front	36	8.5	Added	
A1	TD-850B-LTE78-43	15.4	15.2	75	2	а	Behind	27	0	Added	
R4	MT6407-77A	35.1	16.1	38	3	а	Front	36	0	Added	
R7	RF4440d-13A	15	15	38	3	а	Behind	27	0	Added	


Structure: 468248-VZW - EASTON NORTH 2 CT

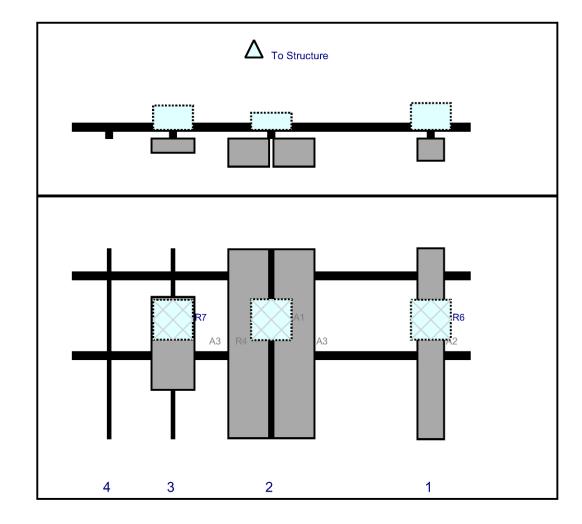
Sector: **B** 11/23/2021

Structure Type: Monopole 10117165

Mount Elev: 127.50 Page: 2

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	DB846F65ZAXY	72	10	135	1	а	Front	36	0	Retained	04/20/2021
R6	RF4439d-25A	15	15	135	1	а	Behind	27	0	Added	
A3	MX06FRO660-03	71.3	15.4	75	2	а	Front	36	-8.5	Added	
A3	MX06FRO660-03	71.3	15.4	75	2	b	Front	36	8.5	Added	
A1	TD-850B-LTE78-43	15.4	15.2	75	2	а	Behind	27	0	Added	
R4	MT6407-77A	35.1	16.1	38	3	а	Front	36	0	Added	
R7	RF4440d-13A	15	15	38	3	а	Behind	27	0	Added	


Structure: 468248-VZW - EASTON NORTH 2 CT

Sector: **C** 11/23/2021

Structure Type: Monopole 10117165

Mount Elev: 127.50 Page: 3

Front View Looking at Structure

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A2	DB846F65ZAXY	72	10	135	1	а	Front	36	0	Retained	04/20/2021
R6	RF4439d-25A	15	15	135	1	а	Behind	27	0	Added	
A3	MX06FRO660-03	71.3	15.4	75	2	а	Front	36	-8.5	Added	
A3	MX06FRO660-03	71.3	15.4	75	2	b	Front	36	8.5	Added	
A1	TD-850B-LTE78-43	15.4	15.2	75	2	а	Behind	27	0	Added	
R4	MT6407-77A	35.1	16.1	38	3	а	Front	36	0	Added	
R7	RF4440d-13A	15	15	38	3	а	Behind	27	0	Added	

Maser Consulting Connecticut

<u>Subject</u> TIA-222-H Usage

<u>Site Information</u> Site ID: 468248-VZW / EASTON NORTH 2 CT

Site Name: EASTON NORTH 2 CT

Carrier Name: Verizon Wireless Address: 206 Everett RD

Easton, Connecticut 06612

Fairfield County

Latitude: 41.290344° Longitude: -73.282669°

<u>Structure Information</u>
Tower Type: 150-Ft Monopole

Mount Type: 12.50-Ft Platform

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Peter Albano, PE Project Manager

MOUNT MODIFICATION DRAWINGS EXISTING 12.50' PLATFORM

verizon

Doing Business as

Daystro 201 Olice Egynnig Elegi diliyte fissiki. Betaviy e Referencesser Berlin Libralia financi iv te ju vi vi birila ve merati o o vitori Elegimi ili Klasaj ing ne far judi mada. Striketi o eleki ganisa ingile pripase eliku üle ogran nilkanosesi.

www.colliersengineering.com

Colliers Engineering & Design

TOWER OWNER SITE NUMBER: CT46131 TOWER OWNER: SBA

CARRIER SITE NAME: EASTON NORTH 2 CT CARRIER SITE NUMBER: 468248 FUZE ID: 2567027

206 EVERETT ROAD FAIRFIELD COUNTY **EASTON, CT 06612**

LONGITUDE: 73.282669° W LATITUDE: 41.290344° N

PROJECT INFORMATION DESIGN CRITERIA

SHEET DESCRIPTION	TITLE SHEET	SBOM-I BILL OF MATERIALS	SGN-I GENERAL NOTES	CLIMBING FACILITY DETAIL	MODIFICATION DETAILS	MOUNT PHOTOS	SPECIFICATION SHEETS									
SHEET	ST-I	SBOM-I	SGN-I	SCF-I	-SS-	58-2										
APPLICANT/LESSEE		COMPANT: VERIZON WIRELESS	CLIENT REPRESENTATIVE	ST EGEN INCHES		PROJECT MANAGER	ACTION OF THE SECTION		E-MAIL: PETER ALBANO@COLLIERSENGINEERING.COM				CONTRACTOR PMI REQUIREMENTS	MOCTGAMS/WEV IMB// SBEETH	VZW LOCATION CODE (PSLC): 468248	AINALTSIS DATE: 11/23/2021
WIND LOADS	BASIC WIND SPEED (3 SECOND GUST), V = 117 MPH	EXPOSURE CATEGORY C	TOPOGRAPHIC CATEGORY I	MEAN BASE ELEVATION (AMSL) = 428.45	ICETOADS	Ham of - V. Hallo Giv Coa & Casas Giv Man	CENTRAL STEELD (S SECOND COST), V = SOUTHER	SEISMICLOADS	2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	SHORT TERM MORE GROUND MOTION St = 216	LONG TERM MCER GROUND MOTION, \$ = .055					

COLLIERS ENGINEERING & DESIGN ALL RIGHTS RESERVED

EASTON NORTH 2 CT 468248

SITE NAME:

SHEET INDEX

206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

TITLE SHEET ST-I

Collices Engineering & Design

				BILL OF MATERIALS		
			SEC	SECTION I - VZWSMART KITS		
QUANTITY	MANUFACTURER	PART NUMBER	DESCRIPTION	NOTES	UNIT WEIGHT (LBS.)	WEIGHT (LBS.)
_		VZWSMART-PLK I	SUPPORT RAIL KIT		504	504
_		VZWSMART-PLK5	KICKER KIT	CONTRACTOR TO VERIEY THE LENGTH REQUIRED AND TRIM AS NECESSARY IN ACCORDANCE WITH THE STRUCTURAL STEEL' NOTES ON SHEET SGN-1.	291	291
_		VZWSMART-PLK7	MONOPOLE COLLAR MOUNT ASSEMBLY		150	150
_		VZWSMART-MSK6	BACK TO BACK CROSSOVER PLATE		34	34
	VZWSMART					
			SECTION	SECTION 2 - OTHER REQUIRED PARTS		
QUANTITY	MANUFACTURER	PART NUMBER	DESCRIPTION	NOTES	UNIT WEIGHT (LBS.)	WEIGHT (LBS.)
_			36" LONG, P2 STD	GALVANIZED	=	Ξ
					TOTAL	000

VZWSM	VZWSMART KITS - APPROVED VENDORS
	COMMSCOPE
CONTACT	SALYADOR ANGUIANO
PHONE	(817) 304-7492
EMAIL	SALVADOR.ANGUIANO@COMMSCOPECOM
WEBSITE	WWW.COMMSCOPE.COM
	METROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)
EMAIL	KENT@METROSITELLC.COM
WEBSITE	METROSITEFABRICATORS.COM
	PERFECTVISION
CONTACT	WIRELESS SALES
PHONE	(844) 887-6723
EMAIL	WWW.PERFECT-VISION.COM
WEBSITE	WIRELESSSALES@PERFECT-VISION.COM
	SABRE INDUSTRIES, INC.
CONTACT	ANGIE WELCH
PHONE	(866) 428-6937
EMAIL	AKWELCH@SABREINDUSTRIES.COM
WEBSITE	WWW.SABRESITESOLUTIONS.COM
	SITE PRO 1
CONTACT	PAULA BOSWELL
PHONE	(972) 236-9843
EMAIL	PAULA BOSWELL@VALMONT.COM

NOTES:

- THE MANUFACTURERS LISTED ARE THE APPROVED VENDORS FOR THE VZW MOUNT KITS. REACH MANUFACTURER WILL BE AWARE FOR WHICH KITS HAVE BEEN THROUGH THE VZW APPROVAL, PROCESS AND THEY ARE IN TURN APPROVED TO SELL. PLEASE NOTE THAT THE MATERIAL UTILIZED ON THE MOUNT MODIFICATIONS WILL BE REVIEWED AS A PART OF THE DESKTOP PHI COMPLETED BY THE SMART TOOL VENDOR. IT WILL BE REQUIRED THAT THE VZW KITS SPECIFIED ARE UTILIZED IN THE MODIFICATIONS.
- ALL MATERIALS REQUIRED FOR THE DESIGNED MODIFICATIONS BUT NOT LISTED IN THIS SHEET ARE ASSUMED TO BE PROVIDED BY THE CONTRACTOR. 5

	COMMSCOPE
CONTACT	SALVADOR ANGUIANO
PHONE	(817) 304-7492
EMAIL	SALVADOR.ANGUIANO@COMMSCOPE.COM
WEBSITE	WWW.COMMSCOPE.COM
~	METROSITE FABRICATORS, LLC
CONTACT	KENT RAMEY
PHONE	(706) 335-7045 (O), (706) 982-9788 (M)
EMAIL	KENT@METROSITELLC.COM
WEBSITE	METROSITEFABRICATORS.COM
	PERFECTVISION
CONTACT	WIRELESS SALES
PHONE	(844) 887-6723
EMAIL	WWW.PERFECT-VISION.COM
WEBSITE	WIRELESSSALES@PERFECT-VISION.COM
	SABRE INDUSTRIES, INC.
CONTACT	ANGIE WELCH
PHONE	(866) 428-6937
EMAIL	AKWELCH@SABREINDUSTRIES.COM
WEBSITE	WWW.SABRESITESOLUTIONS.COM
	SITE PRO 1
CONTACT	PAULA BOSWELL
PHONE	(972) 236-9843
EMAIL	PAULA BOSWELL@VALMONT.COM
WEBSITE	WWW.SITEPROLCOM

Colliers & Design

www.colliersengneering.com

Dayast O 201 Cake Egyusing Energ allays Besnul. Techning and at find which membranes the best allowed be used by the part or behalf by setting membrand on the comit of the damag layer and on the open meditation dataford on select quebe representation of the control of the con

Doing Business as

verizon

SITE NAME:

EASTON NORTH 2 CT 468248 206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

Colliers Engineering & Design

BILL OF MATERIALS

SBOM-I

- SEE MODIFICATION NOTES
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE REPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT PLAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK,
- THE CONTRACTOR SHALL BE RESOURIBLE FOR PROTECTING ALL EXISTING SITEMPORPHERS THOUGHOUS CONSTRUCTION. THE CONTRACTOR SHALL BEPAIR AND PARAGE AS A RESULT OF CONTRACTOR SHALL BEPAIR AND PARAGE AS A RESULT OF A SATISTICATION OF THE SACULTY AT THE CONTRACTOR'S EXPENSE TO THE SATISTICATION OF THE OWNER.
- THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATTERIALS, EQUIPMENT FOR DEADS REQUIRED TO COMPLIFE THIS PROJECT ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MAUL/ACTURENS RECOMMENDATIONS.
 - THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIF THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWNIGS.
- THE CONTRACTOR SHALL VERIFY LAL ENTING DIPERSIONS AND CONDITIONS RIGHT OF CONDITIONS RIGHT OF CONDITIONS FROM TO COMPRECIONS ANY WORK ALL DIPERSIONS OF EXITED CONTRACTOR SHAVING HERE DRAWNES WHERE REVERIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTOR MANAGER OF ANY DISCREMANIES RIGHT TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- TAKEN THE CELL STEM YE SECTION, CALL SKETT PRECALTIONS NUST BE TAKEN WHEN WORKING AROUND HIGH LENGT OF EETTHOWNGNETT CHANNES OF EETTHOWNGNETT CHANNES OF ESTHOTOWN WORD THAT COLLID DETOGET HE WORKERS TO DANGER BESTONAL PROPOSITE HE WORKERS TO DANGER BESTONAL PROPOSITED TO BE WORN TO ALERT OF ANY POTTANT ORANGENOUS ARE REQUISED TO BE WORN TO ALERT OF ANY POTTANTALL TO AMERICAL SERVICES.
- NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).

GENERAL NOTES

- THEE MODIFICATIONS HAVE BEEN DEIGNUD IN ACCORDANCE WITH THE GOVERNUM ROVISIONS OF THE TELECOMPHUNICATIONS INDUSTRY STANDARD THAT MATERIALS AND SERVICES ROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
 - CONTRACTOR SHALL TAKE ALI PRECALITIONS INCESSARY TO REVENT DAWAGETO DESINANG STRUCTURES. ANY DAWAGETO DESTINA STRUCTURES AS, ARBUIT OF THE CONTRACTORS WORK OR REOM MARKED UP TO THE CAUSES SHALL BERDANDED AT THE CONTRACTORS EVERNES TO THE SATISFACTION OF THE OWNER.
- CONTRACTOR SHALL VERIFY ALL DETRINGNESSONS AND EXISTING CONDITIONS
 BEFORE ESCENINISM, OWEN, CADERNOR OF VETRALLA, MORE PREPARING OS SHO DAWNINGS, ANY DISCERBANCIES BETWEEN FELLO CONDITIONS AND THE CONTRACTOR DOLWHEN SHALL BE BEDOLGHT TO THE PREPARTE CONTRACTOR DOLWHEN SHALL BE BEDOLGHT TO THE PREPARTE PRISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DAAWINGS, OR ATY CONDITIONS THAT WOULD INTERFER WITH THE INSTALLATION OF THE PRODING THAT WOULD INTERFER WITH THE INSTALLATION OF THE PRODING THAT WOULD INTERFER WITH THE INSTALLATION
- 4 IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFED ON THEE PARK WILL EACCOMPLISHED BY KNOWLEDGEABLE WORKHEN WITH TOWER CONSTRUCTION DEPRIENCE.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLET YES RONSIBLE FOR ALL CONTRUCTON METHODS, MEANS. TECHNIQUES, SEQUENCES, AND PROCEDURE.
 - ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, RECTOR PLANS, AGGING FAUNS, CLIBING DEVENA, AND RESCUE PLANS, SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE RECTORNO OF THE WORD NOT NUMBED HEARD AND SHALL MET ANGENERAL STATE TEDITON, OSHA, AND GENERAL INDUSTRY. STANDARDS, ALL RIGGING PLÁNS SHALL ADHERE TO ANSITTA-312 (LATEST EDITION) INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED EDITION THE ARQUIRED TO A CASS IV CONSTRUCTION.
 - THE CONTRACTOR IS SOLEY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE

TOTAL TOTAL STRUCTURE CONTRACTOR HALL STRUCTURE LIPES THE STRUCTURE LIPES AND STRUCTURE CONTRACTOR HALL IRRODOR TOTAL STRUCTURE LIPES AND STRUCTUR

ALL PROPOSED ANDIOR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE RIND OF THE BOLT IS ATTLEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTBINING IS COPPLETED.

ALL INSTALLATIONS PERFORMED ON THIS STRUCTURE SHALL BE COMPLETED IN ACCORDANCE WITH THE GOVERNION BROWISIONS OF THE STANDARD POR INSTALLATION ALTERATION AND MAINTENANCE OF ANTENINA SUPPORTING STRUCTURES AND ANTENNAS. ANSWITH-332.

ALL HOLES IN STEEL MEMBERS SHALL BE SIZED 1/16" LARGER THAN THE BOLT DIAMETER. STANDARD HOLES SHALL BE USED UNLESS NOTED OTHERWISE

WELDING NOTES

14. ALL EXISTING PAINTEDIGALVANIZED SURRACES DAMAGED DURING REHAB INCLUDINA ARGA UNDIGS STIFFIRE RUTS SHALL IE WHE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING (ZNAGA OR ZINC COTE), AND REPAINTED TO MATCH THE EXISTING RINA (IF APPLICABLE).

GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.

ALL WELDING SHALL BE DONE IN ACCORDANCE WITH AWS DI 0 (LATEST BEDTING), THIS SHALL INCLUDE A CERTIFIED WELD INSPECTION (CW) FOR ACCEPTANCE OR REJECTION OF ALL WELDING OFBRATIONS, REE DURING AND POST INSTALLATION, SING THE ACCEPTANCE CRITERA OF AWS DILIA

CONTRACTOR IS REPONSIBLE FOR COMMISSIONING A THIRD PARTY CERTHER UND INSPECTOR (CW) THROUGHOUT THE BYTIRETY OF THE PROJECT A PASSING CWI REPORT SHALL BE RROYIDED TO THE ENGINERN UPON COMPLETION OF THE RROJECT.

- 10. CONTRACTOR SHALL SECURE SITE BACK TO BKISTING CONDITION UNDER SUFFERWAY ON THE ALL THOR. ECOSPAGE, GROUNDING, AND SURROUNDING GRADE SHALL BE REPLACED AND SIRPARED AS REQUIRED TO ACHOEF COWINE ARROW, POSTITVE DRAINAGE ANY MONTOWER SITE SHALL BE MANTANED.
 - OWNERCHORS ENFERT INTS SUPPORTED BY HER THE CLINE AND THE STRUCTURE NOT SECRETICALLY DEFAULD IN HE CONTRACT COCHEMINATED IN HE CONNECTIONS SHALL BE DESIGNED. COCHEMINATED AND INSECTED BY THE REPOSETS SHALL BE DESIGNED. COCHEMINATED AND INSECTED BY THE REPOSET SUBMIT SIGNED AND SELECT ON THE REPOSET SUBMIT SIGNED AND SELECT OF ALL MANUATIONS DIRECT SUBMIT SHALL BE REPOSET SUBMIT SHALL BY THE STRUCT SHALL BY T
 - 12. DO NOT SCALE DRAWINGS.

 - 13. DO NOT USE THESE DRAWINGS FOR ANY OTHER SITE.

THE CERTIFIED WAS DURSECTORS ALTER, IDPOCATE, AN WARITER CONTINUED OF STRANDINGS REE, DURING, AND POST IN THE PROTOGRAPHS AND POST IN THE PROTOGRAPHS AND DOCUMENTATIONS SIZE DURING, AND POST IN WITH PROTOGRAPHS AND DOCUMENTATION SUPPORTING THE ACCEPTANCE OR RECEIVED OF ALL WITHOUT ALL WAS DURING THE ACCEPTANCE OR DOCUMENTATION AND PROTOGRAPHS THE ACCEPTANCE OR DOCUMENTATION AND PROTOGRAPHS THE PROTOGRAPHS AND PROTOGRAPHS THE PROTOGRAPHS THE PROTOGRAPHS AND P

- ALL MATERAL UTILIZED FOR THIS PROJECT MUST BE NEW AND REE OF ANY DEFECTS, ANY MATERIAL SUSSTITUTIONS, INCLUDING BUT NOT LIMITED TO ALTIERED SIZE AND/OR STRENGTHS, MUST BE APROVED BY THE OWNER. AND ENGINEER IN WRITING.
 - THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.

STRUCTURAL STEEL

OXY FUE GAS WELDING OR BRAZING IS STRICTLY PROHIBITED SPECIFICALLY, NO TORCH CUTTING IS PERMITTED ON SITE ALL HOLES SHALL BECUT WITH A GRINDER.

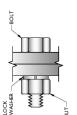
IN CASES WHERE A WELD IS SPECIFED BETWEEN TWO MEMBERS IN WHICH THERE IS A GAP IN BETWEEN, THE WELD IS TO BE BUILT-UP SUCH THAT THE SIZE OF WELD ON THE MEMBER IS EQUAL TO THAT SHOWN IN THE DRAWINGS.

CONTRACTOR SHALL EXERCISE CAUTION WHEN WELDING A GALVANIZED SURFACE

CONTRACTOR SHALL HAVE A FIRE PROTECTION PLAN IN PLACE THAT CONFORMS WITH ALL OSHA, ANSI/ASSP A 10,48, ANSI/249.1, AND LOCAL JURISDICTIONAL REQUIREMENTS.

- DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL.
 SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS
 SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.

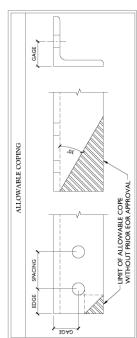
 - a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION (15TH EDITION).
- b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490
- BOLTS
- STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN: c. AISC CODE OF STANDARD PRACTICE
- CHANNELS, ANGLES, PLATES, ETC. ASTM A36 (GR 36) STEEL PIPE ASTM A53 (GR 35) BOLTS ASTM A325
- NUTS LOCK WASHERS
- ALL SUSTITUTIONS ROPOSCED BY THE CONTRACTOR SHALL BE APPROVED NO WARTHWO BY THE BROINERS CONTRACTOR SHALL REQUIRE IN COCCURENT OF THE SUSSITUL BE SURBERTED AND SHALL PROPRIED BY THE SUSSITUL BE SURBERTED AND SEND CONTRACTOR SHALL SHALL DIFFERENCES FROM THE CHARGINAL DESIGN. INCLUDING WANTENANCE, REPARA NUD REPARAMENT SHALL BE NOTED STRUKE SEP OF AND SHALL SH SUB-CONTRACTORS, SHALL BE PROVIDED TO THE ENGINEER. CONTRACTOR SHALL PROVIDE ADDITIONAL DOCUMENTATION AND/OR SPECIFICATIONS TO THE DOSINEER AS REQUESTED. ASTM A563 LOCKING STRUCTURAL GRADE
 - PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
- a. SUBMIT SHOP DRAWINGS TO


PETER.ALBANO@COLLIERSENGINEERING.COM

- b. PROVIDE MASER CONSULTING PROJECT # AND MASER CONSULTING PROJECT ENGINEER CONTACT IN THE BODY OF THE EMAIL
- DRILL NO HOLES IN ANY NEW OR EXETING STRUCTURAL STEE MEMBERS OTHER THAN THORS SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION IN ADDITIONAL NEW STEEL SHALL BEPAINTED TO MATCH EXISTING STEEL CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.

 - ALL BOLT ASSEMBLES FOR STRUCTURAL NEMBERS REPRESENTED IN THIS DRAWNING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH THA.222-H SECTION 49.3 REQUIRENENTS. CONTRACTOR SHALL PROTECT CUT ENDS OF ALL FIELD-CUT STEEL WITH TWO (2) COATS OF COLD GALVANIZATION (ZINGA OR ZING COTE).
- WHERE CONNECTIONS ARE NOT FULLY DETAILED ON THESE DRAWINGS, FABRICATOR SHALL DESIGN CONNECTIONS TO RESIST LOADS AND FORCES WHERE SHOWN ON DRAWINGS AND AS OUTLINED IN SPECIFICATIONS.
- FOR MEMBERS BEING REPLACED, PROVIDE NEW BOLTS AND MATCH EXISTING SIZE AND GABLE MAINTAIN ABIG REQUIREMENTS FOR MINIMUM BOLT STANCE AND SPACING.

1/8 2 1/4 2 5/8 ٣ MIN. EDGE DISTANCE 8/ - /4 1/2 3/4 2/8 BOLT SCHEDULE (IN.) 1 | | | 6 × | 5 / | 6 91/11×91/6 15/16 x 1 1/8 11/16 × 7/8 STANDARD SHORT HOLE SLOT 13/16 x 1 13/16 91/1 91/11 15/16 9//6 BOLT DIAMETER 1/5 2/8 3/4 2/8


WORKABLE	WORKABLE GAGES (IN.)
LEG	GAGE
4	2 1/2
3 1/2	2
3	1 3/4
2 1/2	1 3/8
2	8/1

- ALL DIMENSIONS REPRESENTED IN THE AGOVET PABLES ARE AGE OF CHINING REQUIREMENTS. CONTRACTOR SHALL VERP EXCISTING CONDITIONS IN HELD AND MOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED. NOTES:
 - THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS OF PROPOSED MENBERS WITHIN THESE DRAWNINGS MAY VARY ROW THE AISC MINIMUM REQUIREMENTS.

TYP. BOLT ASSEMBLY

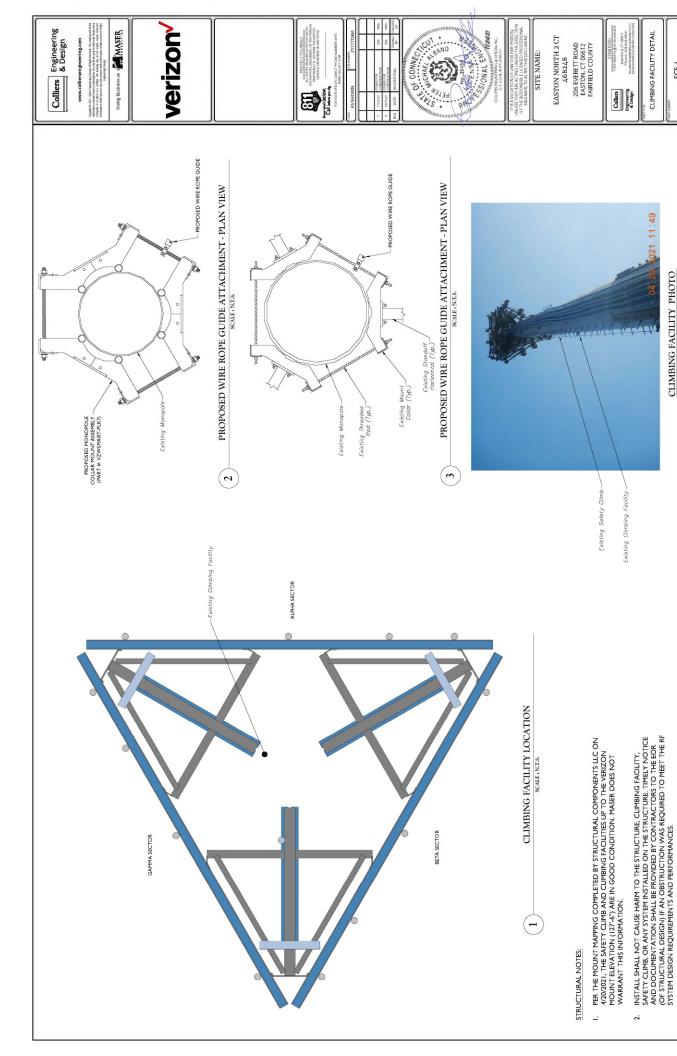
- SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS
- MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED.

Doing Business as

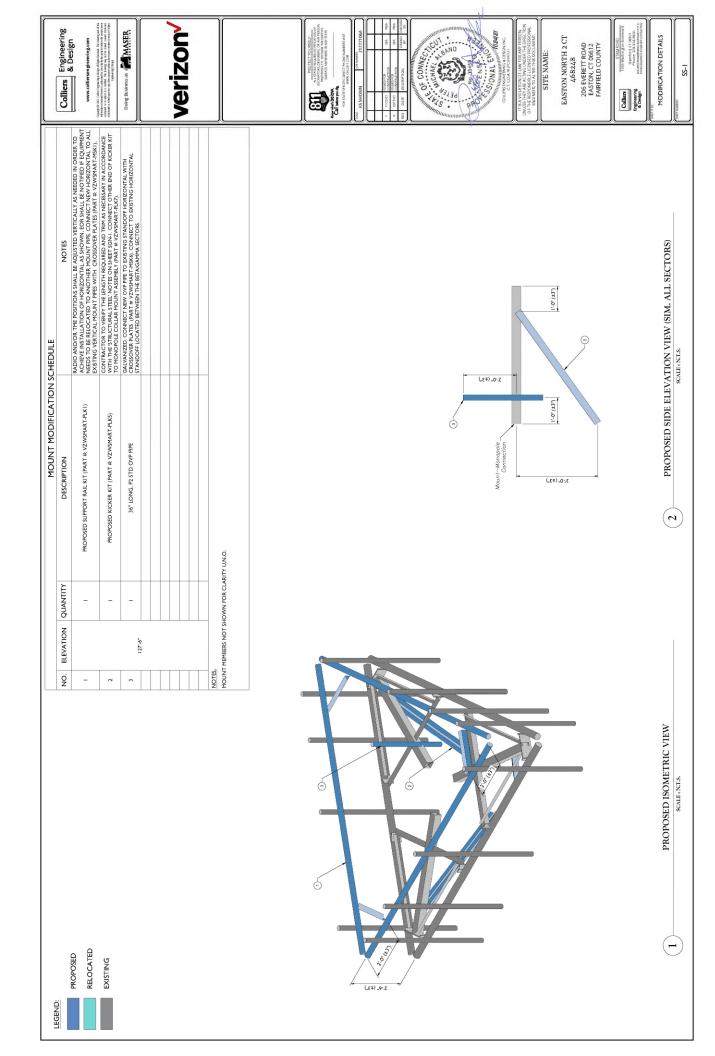
Colliers Engineering & Design

www.colliersengineering.com Japajdo 20. Olike Eugeneiig E Deip Affijus Besed. Bech Abertalementeriel Been Leidenel bu under Mit Pir pir Perham Instruction of William 1 comfile. The Gamen in quies de public Affijuste on efel quada modernie proposalite (de open militor Verizon

SS/ONAL ENGINEER 11/24/21 SEL WICHAE


SITE NAME:

EASTON NORTH 2 CT 468248 206 EVERETT ROAD EASTON, CT 06612 FAIRFIELD COUNTY

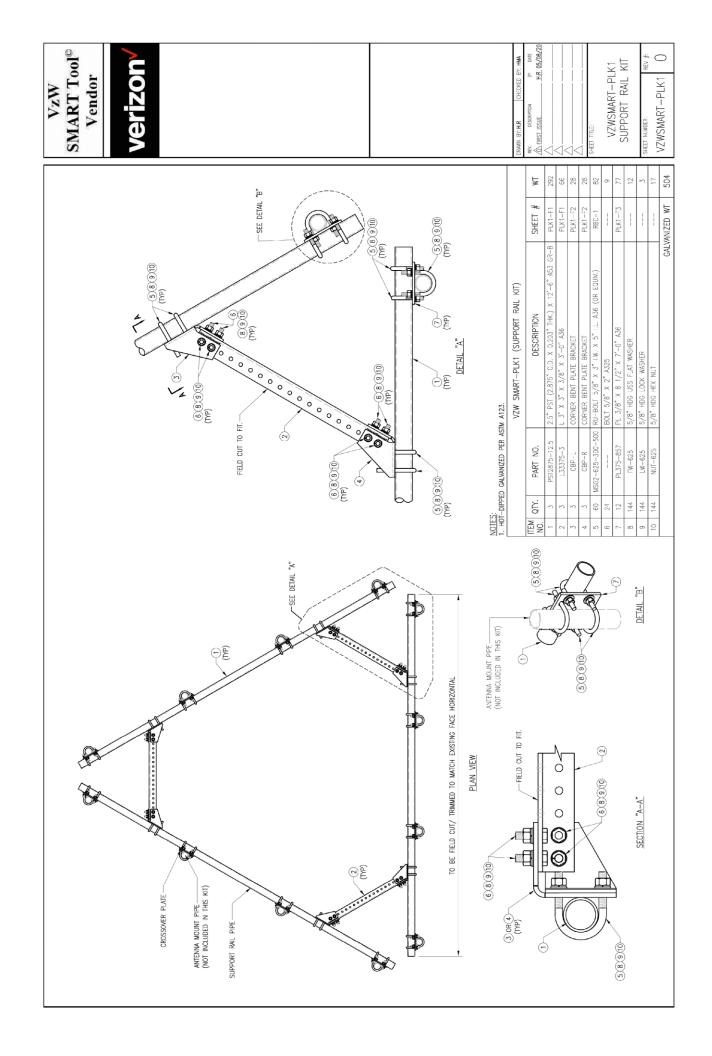

Colliers Engineering & Design

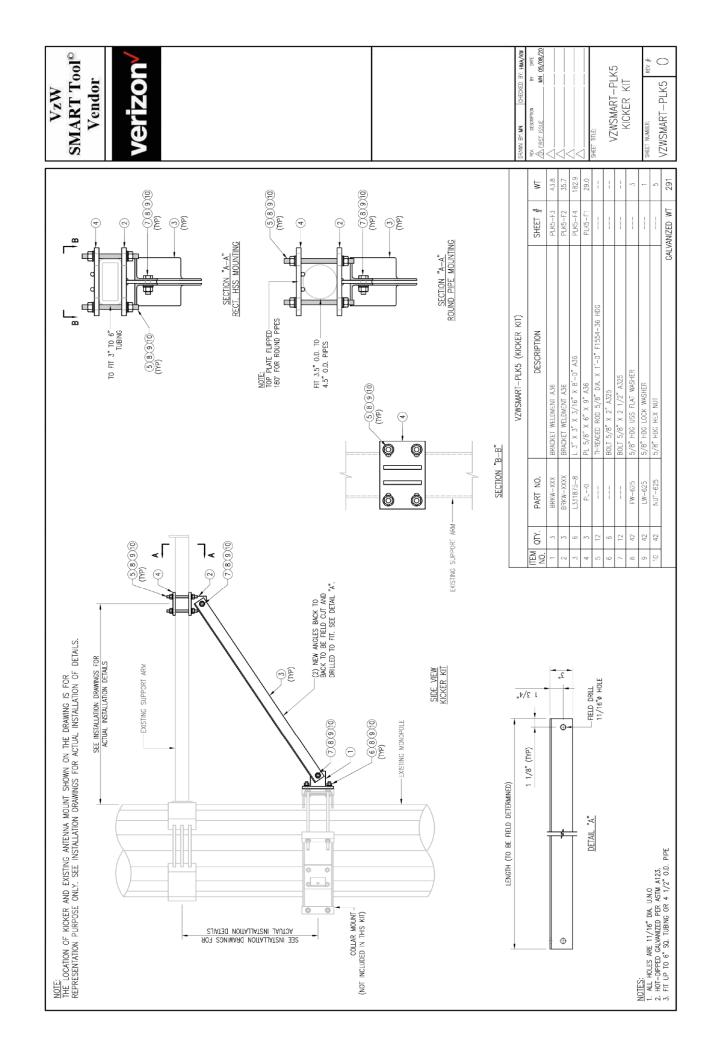
MODIFICATION NOTES

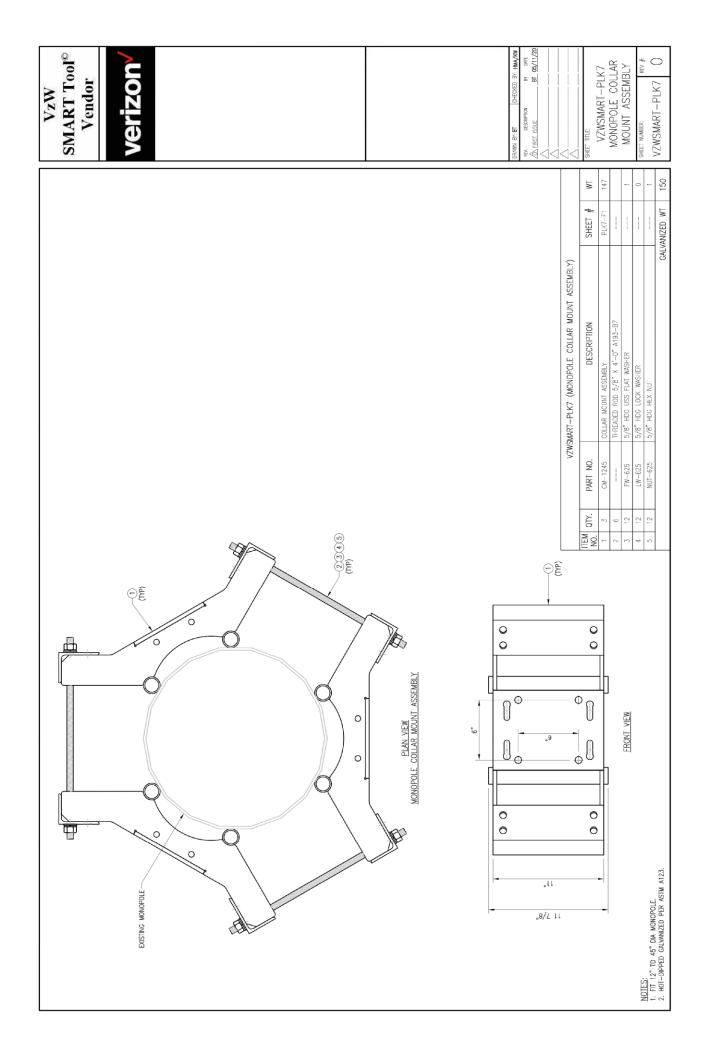
NOT SCALE DRAWINGS FOR CONSTRUCT SGN-I

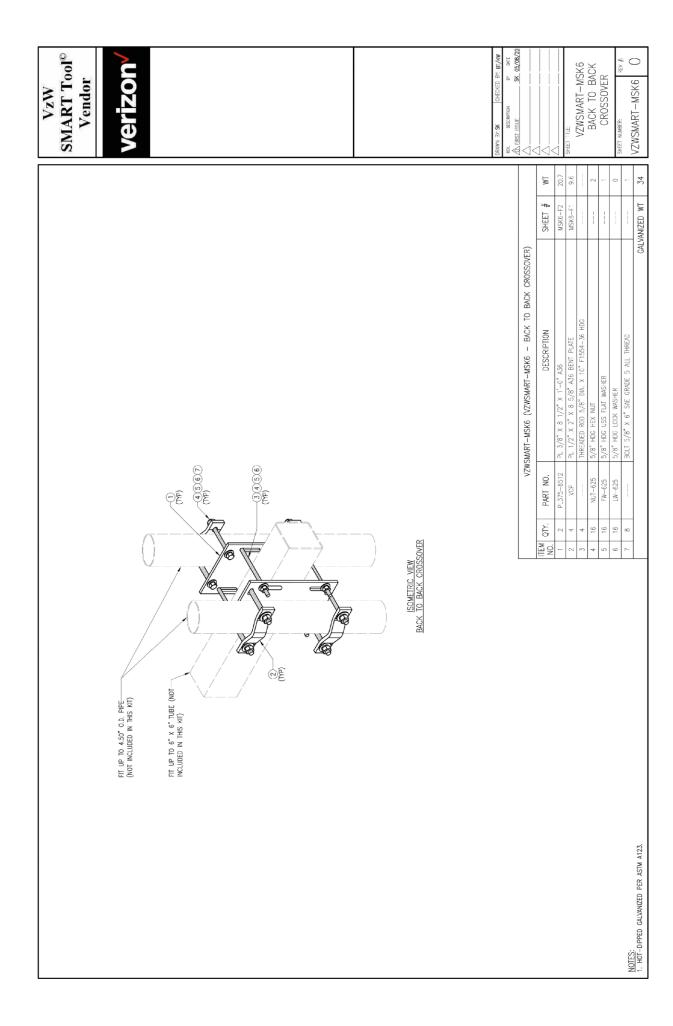
SCF-I

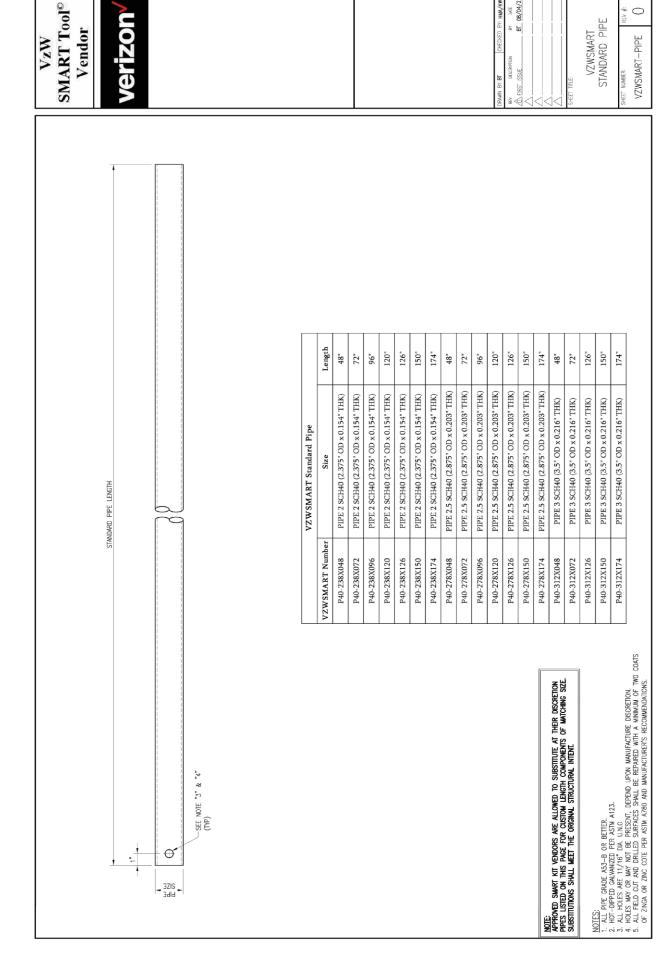
MOUNT PHOTO 4


MOUNT PHOTO 3


Colliers Engineering & Design


Doing Business as


MOUNT PHOTO 2


MOUNT PHOTO 1

BT 08/04/21

0

ATTACHMENT 5

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2021.

Total

Information on the Property Records for the Municipality of Easton was last updated on 2/11/2022.

		• •	arece information		
Location:	206 EVERETT ROAD	Property Use:	Residential	Primary Use:	Residential

Parcel Information

1						
Unique ID:		00010600	Map Block Lot:	9610 9611 1	Acres:	37.59
490 Acres:		34.48	Zone:	R3	Volume / Page:	0681/0372
Developers	Map / Lot:	1834 1835	Census:	1052		

	Value Information	
	Appraised Value	Assessed Value
Land	686,000	341,740
Buildings	216,300	151,410
Detached Outbuildings	93,600	65,520

995,900

Owner's Information

Owner's Data BARNEY JOAN 1/2 INT & BARNEY DAVID 1/2 108 HIRAM HILL ROAD MONROE. CT 06468

Building 1

558,670

ATTACHMENT 6

EASTON NORTH 2 Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender TOTAL NO. of Pieces Received at Post Office™		Affix Stamp Here Postmark with Date of Receipt.			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving e	neopost 03/25/2022 US POSTAGE \$002.99 ZIP 06103 041L12203937				
USPS® Tracking Number Firm-specific Identifier	- (Name, Street, City,	dress State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3.	David Bindleglass, First Town of Easton 225 Center Road Easton, CT 06612 Mark DeLieto, Zoning Town of Easton 225 Center Road Easton, CT 06612 Joan and David Barney 108 Hiram Hill Road Monroe, CT 06468	Enforcement Officer		MAR 25 PUZ	100 Mills 100 Mi	
5.						
6.						