



## STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051  
Phone: (860) 827-2935 Fax: (860) 827-2950  
E-Mail: [siting.council@ct.gov](mailto:siting.council@ct.gov)  
Web Site: [portal.ct.gov/csc](http://portal.ct.gov/csc)

### VIA ELECTRONIC MAIL

December 7, 2021

Eric Breun  
Site Acquisition Specialist  
Transcend Wireless  
10 Industrial Avenue, Suite 3  
Mahwah, NJ 07430  
[ebreun@transcendwireless.com](mailto:ebreun@transcendwireless.com)

RE: **EM-T-MOBILE-039-211022** – T-Mobile notice of intent to modify an existing telecommunications facility located at 35 Old Route 44, Eastford, Connecticut.

Dear Mr. Breun:

The Connecticut Siting Council (Council) is in receipt of your correspondence of December 1, 2021 submitted in response to the Council's November 29, 2021 notification of an incomplete request for exempt modification with regard to the above-referenced matter.

The submission renders the request for exempt modification complete and the Council will process the request in accordance with the Federal Communications Commission 60-day timeframe.

Thank you for your attention and cooperation.

Sincerely,

A handwritten signature in black ink that reads "Melanie A. Bachman".

Melanie A. Bachman  
Executive Director

MAB/FOC/emr

10 INDUSTRIAL AVE,  
SUITE 3  
MAHWAH NJ 07430

PHONE: 201.684.0055  
FAX: 201.684.0066



---

December 1, 2021

Members of the Siting Council  
Connecticut Siting Council  
10 Franklin Square  
New Britain, CT 06051

RE: Notice of Exempt Modification - EM-T-Mobile-039-211022 Incomplete Response  
35 Old Route 44, Eastford, CT 06242  
Latitude: 41.52216  
Longitude: -72.0353  
T-Mobile Site#: CTHA724A - Sprint Keep Project

Dear Ms. Bachman:

T-Mobile/Sprint currently maintains six (6) antennas at the 165-foot level of the existing 190-foot Guyed Tower at 35 Old Route 44, Eastford, Connecticut. The 190-foot Guyed Tower is owned and operated by Everest Infrastructure. The ground space is owned by Priscilla Armitage. T-Mobile now intends to remove all Sprint equipment including antennas, cables, and ground equipment. T-mobile will be adding six (6) antennas. The new antennas will be installed at the same 165-foot level. The new antennas support 5G services.

**Planned Modifications:**

**Tower:**

Remove

(6) Sprint Antennas  
(6) Sprint RRHs  
All Sprint Cables

Install New:

(3) APXVAALL24 43-U-NA20 Antennas  
(3) AIR6449 Antennas  
(3) Ericsson Radio 4480 B71+B85  
(3) Ericsson 4460 B25+B66  
(3) 6/24 Hybrid Cables

**Ground:**

Install New:

- (1) B160
- (1) Enclosure 6160
- (1) 10' x 4' Concrete Pad
- (1) 25 KW Diesel Fueled Back-up Generator

To Be Removed:

All Sprint Ground Equipment

The Siting Council approved tower sharing on December 19, 2000 (TS-VER-039-001117). The tower was approved by Eastford in 1998. The proposed modifications do not conflict with the conditions given.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-SOj-73, a copy of this letter is being sent to First Selectman - Jacqueline Dubois, Elected Official, and Susan Welshman, Land Use Clerk, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,  
**Eric Breun**  
Transcend Wireless  
Cell: 201-658-7728  
Email: [ebreun@transcendwireless.com](mailto:ebreun@transcendwireless.com)

Attachments

cc: Jacqueline Dubois - as First Selectman of Eastford  
Susan Welshman - Land Use Clerk  
Everest Infrastructure - Tower Owner  
Priscilla Armitage - Land Owner

1 OF 1

ERIC BREUN  
2016587728  
10 INDUSTRIAL AVE  
MAHWAH NJ 07430

1 LBS

ERIC BREUN  
2016587728  
10 INDUSTRIAL AVE  
MAHWAH NJ 07430

SHIP TO:  
JACQUELINE DUBOIS  
16 WESTFORD ROAD  
**EASTFORD CT 06242**

SHIP TO:  
PRISCILLA ARMITAGE  
35 OLD KIMBALL ROAD  
**BROOKLYN CT 06234**

**CT 063 0-01**



**CT 063 0-02**



**UPS GROUND**

TRACKING #: 1Z V25 742 03 9256 9065



BILLING: P/P

Reference #1: CTHA724A

XOL 21.10.03 NV45 43.0A 10/2021\*

1 OF 1

ERIC BREUN  
2016587728  
10 INDUSTRIAL AVE  
MAHWAH NJ 07430

1 LBS

ERIC BREUN  
2016587728  
10 INDUSTRIAL AVE  
MAHWAH NJ 07430

SHIP TO:  
PRISCILLA ARMITAGE  
35 OLD KIMBALL ROAD  
**BROOKLYN CT 06234**

**CT 063 0-01**



**CT 063 0-02**



**UPS GROUND**

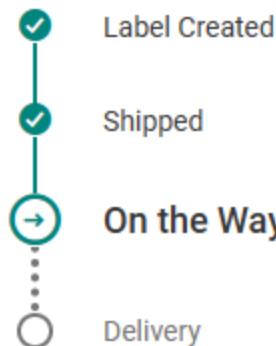
TRACKING #: 1Z V25 742 03 9034 3052



BILLING: P/P

Reference #1: CTHA724A

XOL 21.10.03 NV45 43.0A 10/2021\*






Your shipment  
1ZV257420398266103

Estimated delivery

**Check back tomorrow for an updated delivery date.**



**Ship To**  
ALLEGHENY, PA US

**Hello, your package has been delivered.**

**Delivery Date:** Wednesday, 10/20/2021

**Delivery Time:** 3:58 PM

**Left At:** OFFICE

**Signed by:** WOLFE

**TRANSCEND WIRELESS**

**Tracking Number:** [1ZV257420392569065](#)

**Ship To:**  
JACQUELINE DUBOIS  
16 WESTFORD ROAD  
EASTFORD, CT 06242  
US

**Number of Packages:** 1

**UPS Service:** UPS Ground

**Package Weight:** 1.0 LBS

**Reference Number:** CTHA724A

Hello, your package has been delivered.

**Delivery Date:** Wednesday, 10/20/2021

**Delivery Time:** 3:58 PM

**Left At:** OFFICE

**Signed by:** WOLFE

## TRANSCEND WIRELESS

**Tracking Number:** [1ZV257420396056094](#)

SUSAN WELSHMAN

**Ship To:**  
16 WESTFORD ROAD  
EASTFORD, CT 06242  
US

**Number of Packages:** 1

**UPS Service:** UPS Ground

**Package Weight:** 1.0 LBS

**Reference Number:** [CTHA724A](#)

Hello, your package has been delivered.

**Delivery Date:** Wednesday, 10/20/2021

**Delivery Time:** 4:01 PM

**Left At:** FRONT DOOR

## Experience UPS My Choice® Premium Today

Be in total control of how, when and where  
your packages are delivered.

[Upgrade to Premium Now](#)

[Set Delivery Instructions](#)

[Manage Preferences](#)

## TRANSCEND WIRELESS

**Tracking Number:** [1ZV257420390343052](#)

PRISCILLA ARMITAGE

**Ship To:**  
35 OLD KIMBALL ROAD  
BROOKLYN, CT 06234  
US

**Number of Packages:** 1

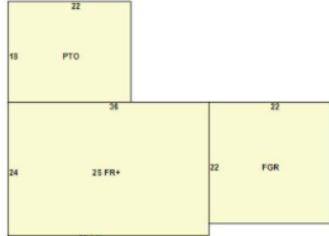
**UPS Service:** UPS Ground

**Package Weight:** 1.0 LBS

**Reference Number:** [CTHA724A](#)

### Parcel Information

|                       |                 |                |             |                |             |
|-----------------------|-----------------|----------------|-------------|----------------|-------------|
| Location:             | 35 OLD ROUTE 44 | Property Use:  | Residential | Primary Use:   | Residential |
| Unique ID:            | 00068300        | Map Block Lot: | 20 26 5     | Acres:         | 52.80       |
| 490 Acres:            | 51.19           | Zone:          |             | Volume / Page: | 0067/0650   |
| Developers Map / Lot: |                 | Census:        | 9022        |                |             |


### Value Information

|                       | Appraised Value | Assessed Value |
|-----------------------|-----------------|----------------|
| Land                  | 302,700         | 162,400        |
| Buildings             | 142,300         | 99,610         |
| Detached Outbuildings | 118,700         | 83,090         |
| Total                 | 563,700         | 345,100        |

### Owner's Information

| Owner's Data                                                                                          |
|-------------------------------------------------------------------------------------------------------|
| PRISCILLA D ARMITAGE REVOC TRUST EST OF<br>TENIS ELAINE L<br>35 OLD KIMBALL ROAD<br>BROOKLYN CT 06234 |

### Building 1



|                         |                           |                   |            |                |           |
|-------------------------|---------------------------|-------------------|------------|----------------|-----------|
| Building Use:           | Single Family             | Style:            | Colonial   | Living Area:   | 1,764     |
| Stories:                | 2.00                      | Construction:     | Wood Frame | Year Built:    | 1965      |
| Total Rooms:            | 7                         | Bedrooms:         | 3          | Full Baths:    | 1         |
| Half Baths:             | 1                         | Fireplaces:       | 1          | Heating:       | Hot Water |
| Fuel:                   | Oil                       | Cooling Percent:  | 0          | Basement Area: | 864       |
| Basement Finished Area: | 0                         | Basement Garages: | 0          | Roof Material: | Asphalt   |
| Siding:                 | Vinyl Siding/Brick Veneer | Units:            |            |                |           |

### Special Features

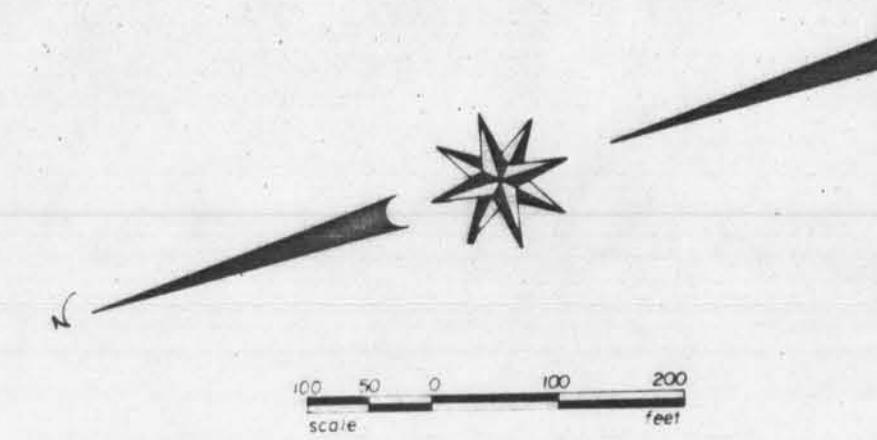
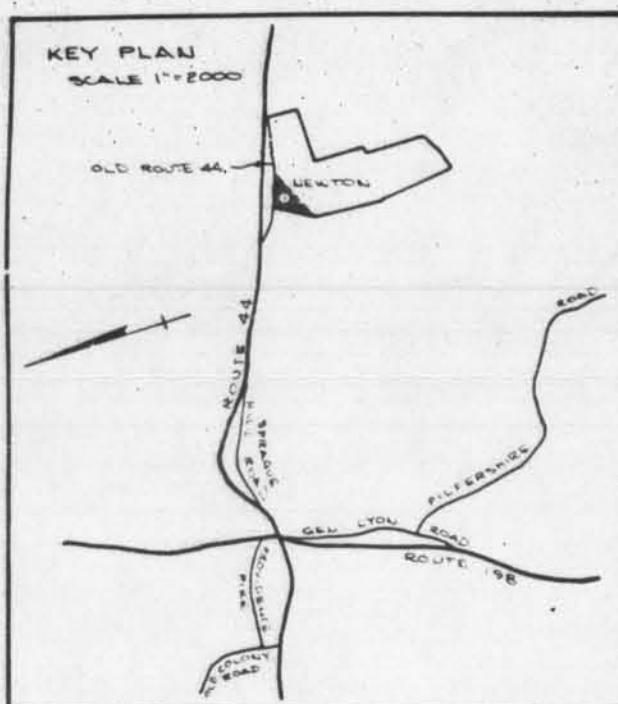
|                     |     |
|---------------------|-----|
| Fireplace 2 Story   | 1   |
| Unfinished Basement | 864 |

### Attached Components

| Type:        | Year Built: | Area: |
|--------------|-------------|-------|
| Frame Garage | 1965        | 484   |
| Patio        | 1965        | 396   |

### Detached Outbuildings

| Type:              | Year Built: | Length: | Width: | Area: |
|--------------------|-------------|---------|--------|-------|
| 6 Ft Chain Fence   | 1998        | 0.00    | 0.00   | 72    |
| Garage w Loft Good | 1998        | 36.00   | 48.00  | 925   |
| Frame Shed         | 1998        | 8.00    | 8.00   | 64    |
| Shed w Loft        | 2009        | 12.00   | 20.00  | 240   |
| Cell Tower         | 1998        | 0.00    | 0.00   | 1     |



### Owner History - Sales

| Owner Name                              | Volume | Page | Sale Date  | Deed Type | Sale Price |
|-----------------------------------------|--------|------|------------|-----------|------------|
| ARMITAGE RALPH WHITON                   | 0074   | 0979 | 10/13/2020 |           | \$0        |
| PRISCILLA D ARMITAGE REVOC TRUST EST OF | 0067   | 0650 | 06/24/2015 |           | \$0        |
| ARMITAGE PRISCILLA D                    | 0037   | 0634 | 01/22/1997 |           | \$180,000  |
| NEWTON ROBERT G+FRANCES                 | 0019   | 0389 | 11/27/1970 |           | \$0        |

### Building Permits

| Permit Number | Permit Type      | Date Opened | Reason                                                |
|---------------|------------------|-------------|-------------------------------------------------------|
| 14-0561       | Miscellaneous    | 06/10/2014  | COMM TOWER, REPLC ANTNAS & ADD RADIO EQPMNT           |
| 13-0481       | Miscellaneous    | 11/13/2012  | ANTENNA, LANDOWNER PRISCILLA ARMITAGE 647-9883        |
| 09-0179       | Miscellaneous    | 03/13/2009  | POCKET WIRELESS, WIRE CELL TOWER BUILDING NEW GRNDING |
| 08-0158       | Miscellaneous    | 11/24/2008  | INSTALL OF ANTENNAS, 647-9883                         |
| 00-048        | Miscellaneous    | 03/13/2001  | TOWER ADDN                                            |
| 00-09         | Comm Renovations | 09/09/2000  | Commercial, CORDLESS DATE TRSFR                       |
| 98-049        | Miscellaneous    | 05/13/1999  | TELE EQ PAD, 201512476                                |
| 98-84         | Miscellaneous    | 05/28/1998  | HORSE BARN, 974-3828                                  |
| 96-71         | Miscellaneous    | 04/06/1998  | TOWER, 645-2549                                       |

16



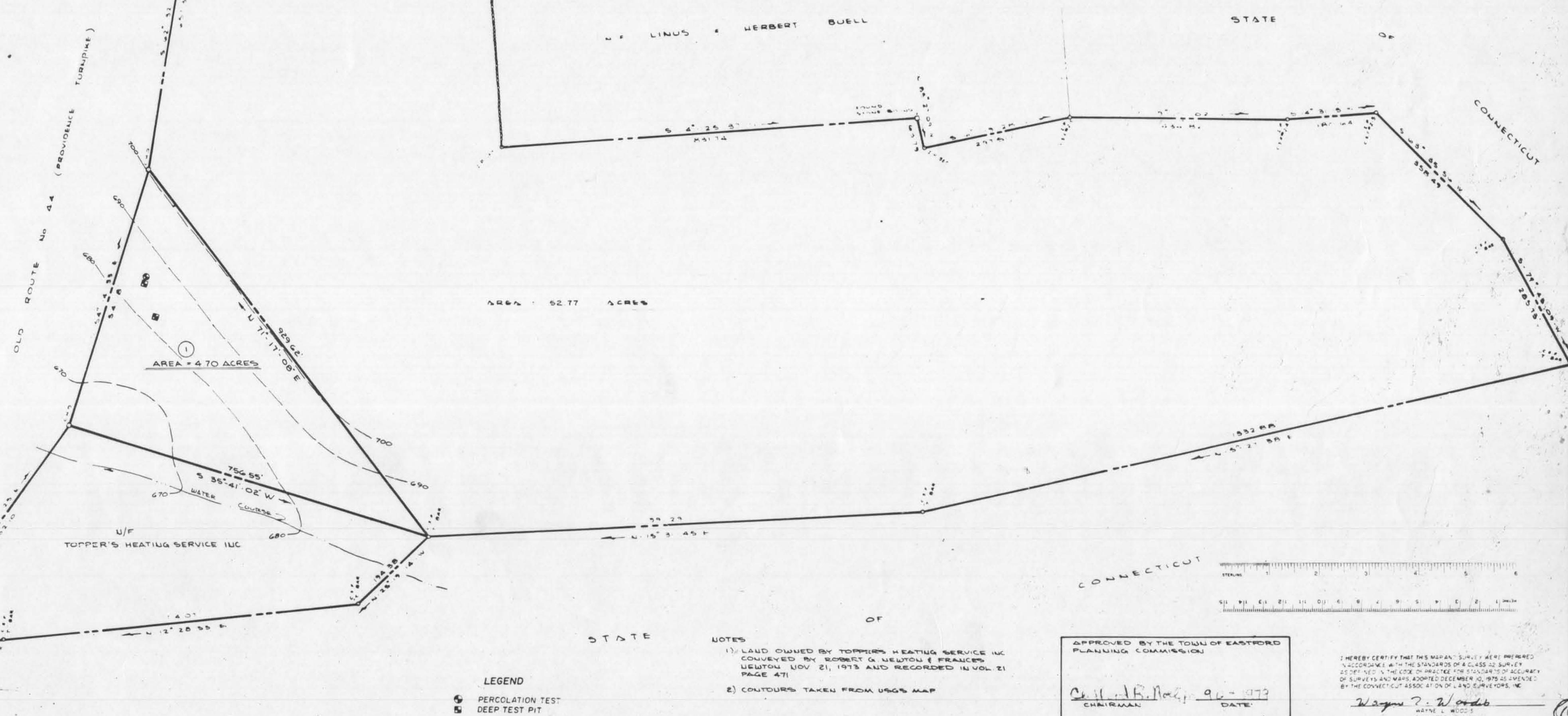
SUBDIVISION PLAN OF LAND

***SURVEYED FOR***

*ROBERT G. AND FRANCES NEWTON*

OLD ROUTE No. 44

CONNECTICUT


SCALE 1" = 100'

APRIL 24, 1979

SCALE 1" = 100' APRIL 24, 1979

SCALE 1" = 100'

KIELTYKA, WOODIS & PIKE  
LAND SURVEYORS



NOTES  
1) LAND OWNED BY TOPPIRS HEATING SERVICE INC  
CONVEYED BY ROBERT G. NEWTON & FRANCES  
NEWTON NOV 21, 1973 AND RECORDED IN VOL 21  
PAGE 471

2) CONTOURS TAKEN FROM USGS M

APPROVED BY THE TOWN OF EASTFORD  
PLANNING COMMISSION

C. H. A. B. Noh, 96-973  
CHINAMAN DATE:

I HEREBY CERTIFY THAT THIS MAP AND SURVEY WERE PREPARED IN ACCORDANCE WITH THE STANDARDS OF A CLASS A2 SURVEY AS DEFINED IN THE CODE OF PRACTICE FOR STANDARDS OF ACCURACY OF SURVEYS AND MAPS, ADOPTED DECEMBER 10, 1975 AS AMENDED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC.

Wayne L. Woods

CONN REG NO 6647

Fig. 40-28, Pg. 28-36

# **TOWN OF EASTFORD**

Date 3/8/98

## APPLICATION FOR BUILDING PERMIT

**A PERMIT MUST BE OBTAINED AND FEE PAID  
BEFORE BEGINNING WORK.**

**SEPARATE PERMITS ARE REQUIRED FOR PLUMBING - HEATING - ELECTRICAL**

The undersigned hereby applies for permit to do work according to the following specifications, same to be in all respects in accordance with the laws and building regulations of the State of Connecticut, Basic Building Code, Local regulations and ordinances of the Town of Eastford, Connecticut. A final inspection is required before the building can be occupied or a Certificate of Use or Occupancy is issued.

**APPLICATION MUST BE TYPED OR PRINTED**

Lot No. 5 House No. 35 Road Old Route 44

Builder \_\_\_\_\_ Address \_\_\_\_\_ Phone \_\_\_\_\_

Architect \_\_\_\_\_ Address \_\_\_\_\_ Phone \_\_\_\_\_  
TOWNEY CO. \_\_\_\_\_ TOWNEY \_\_\_\_\_

Type of building FIRE NUDS Size of building 180'  
Floor area 1st floor 11/12 2nd fl 11/12

Total for week \_\_\_\_\_ 2nd week \_\_\_\_\_ Total \_\_\_\_\_

Type of heat: Hot Water  Hot Air  Steam  Electric  Wood   
Type of work: Original  Alteration  Addition  Repair  Demolition

Approvals:  Septic Perc  Wetlands  Driveway  Fire Marshal  Planning

Signature Pamela Amstutz Building Official Alvin H Kilburn

| Type | Foundations | Roof Type | Floor Const. | Tiling           | Spec. | Size | Sp |
|------|-------------|-----------|--------------|------------------|-------|------|----|
| Fam. | Stone       | Gable     | Wood Joist   | Bath Fl. & Wsct. | Joist |      |    |

|              |          |         |          |                  |          |
|--------------|----------|---------|----------|------------------|----------|
| Concrete     | 4000 psi | Hip     | Concrete | Bath Fl. & Walls | 2nd Flr. |
| Conc. Blocks |          | Gambrel |          | Bath Fl. only    |          |
| Piers        |          |         |          |                  | Rafter   |

| Building Official |                                                                 |             |              |             |   |                  |                  |          |       |      |  |  |
|-------------------|-----------------------------------------------------------------|-------------|--------------|-------------|---|------------------|------------------|----------|-------|------|--|--|
| Type              | Foundations                                                     | Roof Type   | Floor Const. |             |   | Tiling           |                  | Spec.    | Size  | Span |  |  |
| Single Fam.       | Stone                                                           | Gable       | Wood Joist   |             |   | Bath Fl. & Wsct. |                  | Joist    |       |      |  |  |
| Two Fam.          | Concrete <i>4000 psi</i>                                        | Hip         | Concrete     |             |   | Bath Fl. & Walls |                  | 2nd Flr. |       |      |  |  |
| Apt. House        | Conc. Blocks                                                    | Gambrel     |              |             |   | Bath Fl. only    |                  | Rafter   |       |      |  |  |
| Stores            | Piers                                                           | Truss       | Flooring     |             |   | Toilet-Rooms     |                  | Girder   |       |      |  |  |
| Modular           | Thickness                                                       | Flat        |              |             |   | Ceramic          |                  | Column   |       |      |  |  |
| Office            |                                                                 | Roof Pitch  | Hardwood     | 1           | 2 | 3                | Other            |          | Sill  |      |  |  |
| Factory           |                                                                 |             |              |             |   |                  |                  |          | Post  |      |  |  |
| Gas Sta.          |                                                                 |             | Roofing      | Res. Tile   |   |                  | Footing          |          | Plate |      |  |  |
| Com. Gar.         |                                                                 |             |              | Rugs        |   |                  | Size             |          | Stud  |      |  |  |
| Private Gar. Att. |                                                                 |             | Asph. Sh.    | Plywood     |   |                  | Stone            |          |       |      |  |  |
| Base. Gar.        |                                                                 |             |              |             |   |                  | Conc.            |          |       |      |  |  |
| Farm Building     |                                                                 |             | Wood Sh.     |             |   |                  | Drains           |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Inspection       |          |       |      |  |  |
|                   |                                                                 |             | Built-up     |             |   |                  | Key-way          |          |       |      |  |  |
|                   |                                                                 |             |              | Comp. Roll. |   |                  | Footing          |          |       |      |  |  |
|                   |                                                                 |             |              | Interior    |   |                  | Foundation       |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Size of Flues    |          |       |      |  |  |
| No. of Rooms      | Clpbds. or Wd. Shin.                                            |             |              | 1           | 2 | 3                | Rough Framing    |          |       |      |  |  |
| No. of Bathrooms  | Plain Bds. or Nov. 8-DG                                         |             |              |             |   |                  | Rough Electrical |          |       |      |  |  |
| <b>Insulation</b> |                                                                 |             | Cellar       | Plas.       |   |                  | Rough Plumbing   |          |       |      |  |  |
| R-30 Ceiling      | Vinyl                                                           | Whole       |              | Gyp. Bd.    |   |                  | Heating          |          |       |      |  |  |
| R-19 Walls        | Alum.                                                           | Part        |              | Ins. Bd.    |   |                  | Insulation       |          |       |      |  |  |
|                   | Conc. Blocks                                                    | None        |              | Wood        |   |                  | Chimneys         |          |       |      |  |  |
|                   | Br. Com. <input type="checkbox"/> Face <input type="checkbox"/> | Conc. Floor |              | Layout      |   |                  | Stone            |          |       |      |  |  |
|                   | Log                                                             | Dirt Floor  |              | Cond.       |   |                  | Brick            |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Block            |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Factory Built    |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Steel            |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Chimneys         |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Fireplace        |          |       |      |  |  |
|                   |                                                                 |             |              |             |   |                  | Final            |          |       |      |  |  |

**SWIMMING POOL — Above Ground**

In Ground

Fence

**State Approved**

**REMARKS:**

**THIS PERMIT EXPIRES ONE YEAR FROM DATE OF ISSUE**



STATE OF CONNECTICUT  
CONNECTICUT SITING COUNCIL

December 19, 2000

Ten Franklin Square  
New Britain, Connecticut 06051  
Phone: (860) 827-2935  
Fax: (860) 827-2950

Sandy M. Carter  
Verizon Wireless  
20 Alexander Drive  
P.O. Box 5029  
Wallingford, CT 06492

RE: **TS-VER-039-001117** - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 35 Old Route 44, Eastford, Connecticut.

Dear Ms. Carter:

At a public meeting held December 14, 2000, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction.

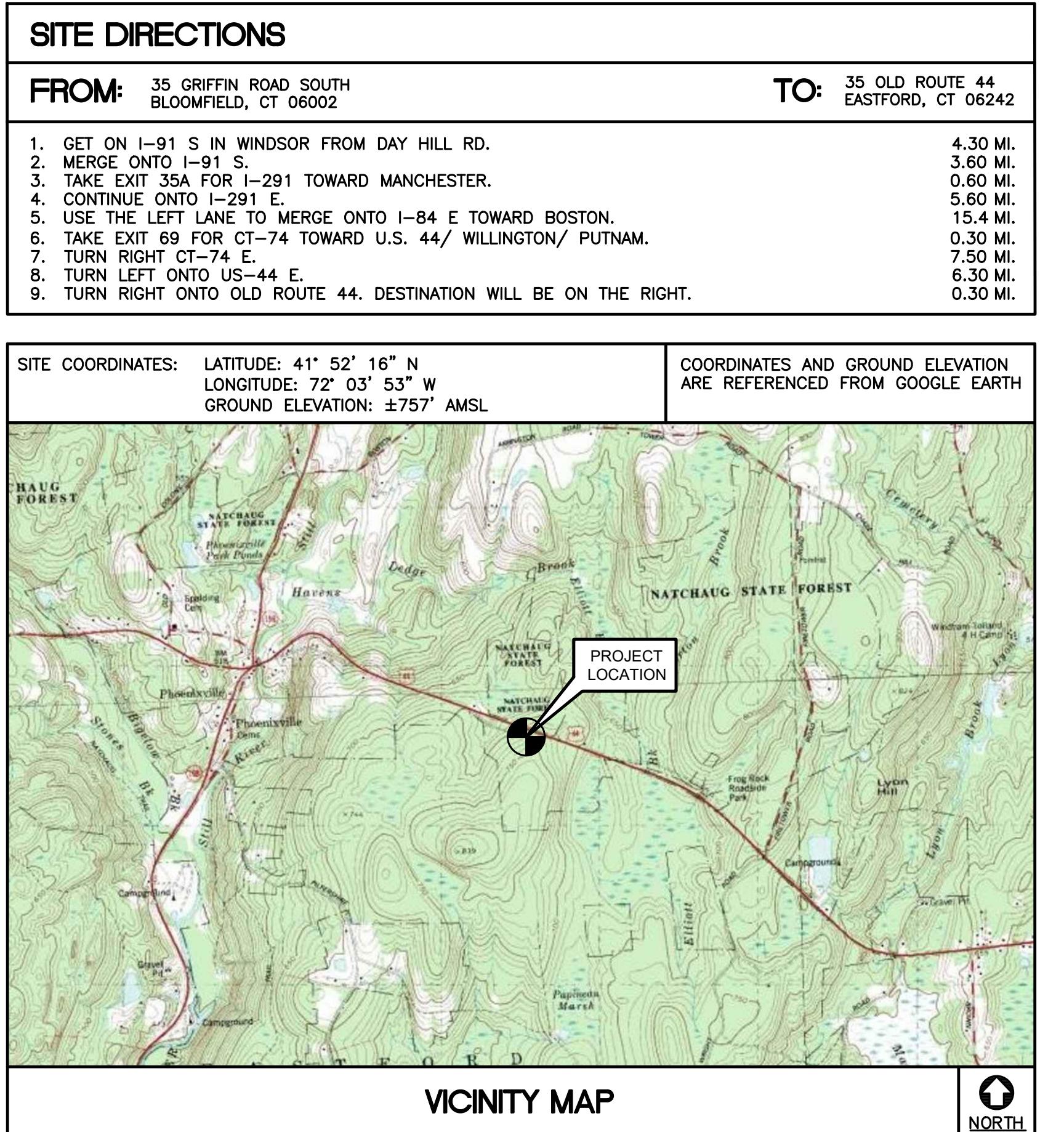
The proposed shared use is to be implemented as specified in your letter dated November 16, 2000.

Thank you for your attention and cooperation.

Very truly yours,

Mortimer A. Gelston  
Chairman

MAG/FOC/laf


c: Honorable Richard L. Woodward, First Selectman, Town of Eastford  
Robert J. Francis, Cordless Data Transfer, Inc.  
Ronald C. Clark, Nextel Communications  
Julie M. Cashin, Esq., Hurwitz & Sagarin, LLC



SPRINT ID: CT33CX016  
 SITE ID: CTHA724A  
 35 OLD ROUTE 44  
 EASTFORD, CT 06242

|                                          |            |
|------------------------------------------|------------|
| T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS) |            |
| 67E5A998E                                | 6160       |
| T-MOBILE A+L TEMPLATE (PROVIDED BY RFDS) |            |
| 67E5998E                                 | _1xAIR+1OP |

| GENERAL NOTES                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.                                                                       | 10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.                                                                                                                                                                       |
| 2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.              | 11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.                               |
| 3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.                                                                                                                                                                               | 12. ANY AND ALL ERRORS, DISCREPANCIES, AND 'MISSING' ITEMS ARE TO BE BROUGHT TO THE ATTENTION OF THE T-MOBILE CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO 'EXTRA' WILL BE ALLOWED FOR MISSING ITEMS. |
| 4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.                                                                                                                                                       | 13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.                                                                                                                             |
| 5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL, AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.                                                                                                                                                        | 14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.                                                                                      |
| 6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT. | 15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.                                                                                      |
| 7. LOCATION OF EQUIPMENT, AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.                                                                                                                          | 16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUITS AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.                                                      |
| 8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.                                                                                                      | 17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.                                            |
| 9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.                                       | 18. THE CONTRACTOR SHALL CONTACT 'CALL BEFORE YOU DIG' AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.              |
|                                                                                                                                                                                                                                                                                                                                                                                                   | 19. CONTRACTOR SHALL COMPLY WITH THE OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.                                                             |



| PROJECT SUMMARY                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|
| THE PROPOSED SCOPE OF WORK CONSISTS OF A MODIFICATION TO THE EXISTING UNMANNED TELECOMMUNICATIONS FACILITY INCLUDING THE FOLLOWING: |  |
| 1. REMOVE EXISTING SPRINT EQUIPMENT                                                                                                 |  |
| 2. INSTALL (1) APXVAALL24_43-U-NA20 ANTENNA PER SECTOR. TOTAL (3)                                                                   |  |
| 3. INSTALL (1) ERICSSON AIR6449 B41 ANTENNA PER SECTOR TOTAL (3)                                                                    |  |
| 4. INSTALL (1) RADIO 4480 B71+B85 PER SECTOR. TOTAL OF (3)                                                                          |  |
| 5. INSTALL (1) RADIO 4460 B25+B66 PER SECTOR. TOTAL OF (3)                                                                          |  |
| 6. INSTALL 150A BREAKER                                                                                                             |  |
| 7. REMOVE ALL EXISTING HYBRID, INSTALL (3) 6/24 4AWG HYBRIDS                                                                        |  |
| 8. INSTALL (1) T-MOBILE POWER ENCLOSURE 6160                                                                                        |  |
| 9. INSTALL (1) T-MOBILE BATTERY CABINET B160                                                                                        |  |
| 10. INSTALL (1) PROPOSED 2.0 STD (8' LONG) PIPE MAST PER SECTOR FOR POSI. ANTENNA. TOTAL OF (3)                                     |  |
| 11. INSTALL (1) NEW 25 KW DIESEL FUELED BACKUP GENERATOR ON A PROPOSED 10' x 4' CONC. SLAB-ON-GRADE WITHIN THE EXISTING COMPOUND    |  |
| 12. INSTALL (1) 200A AUTOMATIC TRANSFER SWITCH                                                                                      |  |
| PROJECT SUMMARY (STRUCTURAL)                                                                                                        |  |
| FOR REQUIRED STRUCTURAL MODIFICATIONS, SEE SHEET(S) S-1 FOR ADDITIONAL DETAILS. NEW ANTENNA MOUNTS TO BE INSTALLED                  |  |

| PROJECT INFORMATION  |                                                                                                                                                             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPRINT ID:           | CT33CX016                                                                                                                                                   |
| SITE ID:             | CTHA724A                                                                                                                                                    |
| SITE ADDRESS:        | 35 OLD ROUTE 44<br>EASTFORD, CT 06242                                                                                                                       |
| APPLICANT:           | T-MOBILE NORTHEAST, LLC<br>35 GRIFFIN ROAD SOUTH<br>BLOOMFIELD, CT 06002                                                                                    |
| CONTACT PERSON:      | KYLE RICHERS<br>TRANSCEND WIRELESS,<br>(908) 447-4716                                                                                                       |
| ENGINEER OF RECORD:  | CENTEK ENGINEERING, INC.<br>63-2 NORTH BRANFORD RD.<br>BRANFORD, CT 06405                                                                                   |
|                      | CARLO F. CENTORE, PE<br>(203) 488-0580 EXT. 122                                                                                                             |
| PROJECT COORDINATES: | LATITUDE: 41° 52' 16" N<br>LONGITUDE: 72° 03' 53" W<br>GROUND ELEVATION: 757' ± AMSL<br>SITE COORDINATES AND GROUND ELEVATION REFERENCED FROM GOOGLE EARTH. |

| SHEET INDEX |                                              |
|-------------|----------------------------------------------|
| SHT. NO.    | DESCRIPTION                                  |
| T-1         | TITLE SHEET                                  |
| N-1         | GENERAL NOTES AND SPECIFICATIONS             |
| C-1         | SITE LOCATION PLAN                           |
| C-2         | COMPOUND PLAN AND ELEVATION                  |
| C-3         | EQUIPMENT PLANS                              |
| C-4         | ANTENNA PLANS AND ELEVATIONS                 |
| C-5         | TYPICAL EQUIPMENT DETAILS                    |
| S-1         | STRUCTURAL DETAILS                           |
| E-1         | ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING |
| E-2         | TYPICAL ELECTRICAL DETAILS                   |
| E-3         | TYPICAL ELECTRICAL DETAILS                   |
| E-4         | ELECTRICAL SPECIFICATIONS                    |

|                            |                    |        |          |          |                    |
|----------------------------|--------------------|--------|----------|----------|--------------------|
| PROFESSIONAL ENGINEER SEAL | CENTEK engineering |        | Sprint   | T-Mobile | Transcend Wireless |
|                            | Engineering        | Centek |          |          |                    |
| DATE:                      | 04/21/21           | SCALE: | AS NOTED | JOB NO.: | 21005.20           |
| TITLE SHEET                |                    |        |          |          |                    |
| T-1                        |                    |        |          |          |                    |
| Sheet No. 1 of 12          |                    |        |          |          |                    |

## NOTES AND SPECIFICATIONS

### DESIGN BASIS:

GOVERNING CODE: 2015 INTERNATIONAL BUILDING (IBC) AS MODIFIED BY THE 2018 CONNECTICUT STATE BUILDING CODE.

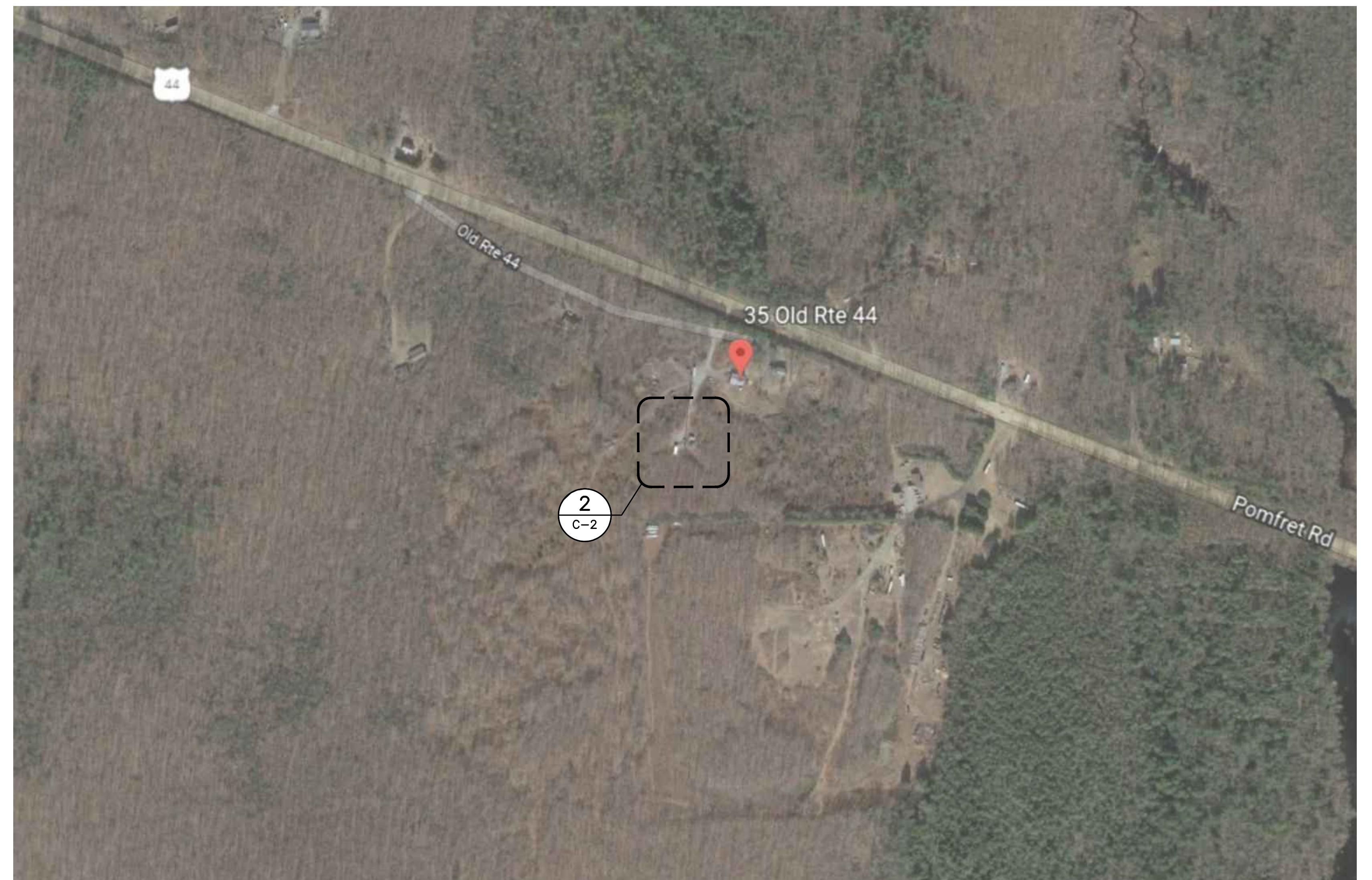
1. DESIGN CRITERIA:
  - RISK CATEGORY II (BASED ON IBC TABLE 1604.5)
  - ULTIMATE DESIGN SPEED (TOWER STRUCTURE): 127 MPH (V<sub>asd</sub>) (EXPOSURE B/ IMPORTANCE FACTOR 1.0 BASED ON ASCE 7-10).

### SITE NOTES

1. THE CONTRACTOR SHALL CALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.
2. ACTIVE EXISTING UTILITIES, WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY, PRIOR TO PROCEEDING, SHOULD ANY UNCOVERED EXISTING UTILITY PRECLUDE COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
3. THE AREAS OF THE COMPOUND DISTURBED BY THE WORK SHALL BE RETURNED TO THEIR ORIGINAL CONDITION.
4. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
5. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.

### GENERAL NOTES

1. ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2018 CONNECTICUT SUPPLEMENT, INCLUDING THE TIA/EIA-222 REVISION "G" "STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND SUPPORTING STRUCTURES." 2017 CONNECTICUT FIRE SAFETY CODE, NATIONAL ELECTRICAL CODE AND LOCAL CODES.
2. CONTRACTOR SHALL REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUBCONTRACTORS AND ALL RELATED PARTIES. THE SUBCONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.
3. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS.
4. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
5. CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, PLUMBING, ELECTRICAL AND HVAC. PERMITS SHALL BE PAID FOR BY THE RESPECTIVE SUBCONTRACTORS.
6. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SITE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THEY ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURNISH AN "AS-BUILT" SET OF DRAWINGS TO OWNER UPON COMPLETION OF PROJECT.
7. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
8. THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEDURE AND SEQUENCE, AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.
9. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
10. ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
11. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
12. ANY AND ALL ERRORS, DISCREPANCIES, AND "MISSED" ITEMS, ARE TO BE BROUGHT TO THE ATTENTION OF THE SITE OWNER'S CONSTRUCTION MANAGER DURING THE BIDDING PROCESS BY THE CONTRACTOR. ALL THESE ITEMS ARE TO BE INCLUDED IN THE BID. NO "EXTRA" WILL BE ALLOWED FOR MISSED ITEMS.
13. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE OWNER.
14. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
15. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
16. COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTENANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
17. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
18. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PRIOR TO ANY EXCAVATIONS AT 1-800-922-4455. ALL UTILITIES SHALL BE IDENTIFIED AND CLEARLY MARKED. CONTRACTOR SHALL MAINTAIN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
19. THE CONTRACTOR SHALL COMPLY WITH OWNER'S ENVIRONMENTAL ENGINEER ON ALL METHODS AND PROVISIONS FOR ALL EXCAVATION ACTIVITIES INCLUDING SOIL DISPOSAL. ALL BACKFILL MATERIALS TO BE PROVIDED BY THE CONTRACTOR.
20. THE COUNTY/CITY/TOWN WILL MAKE PERIODIC FIELD OBSERVATION AND INSPECTIONS TO MONITOR THE INSTALLATION, MATERIALS, WORKMANSHIP AND EQUIPMENT INCORPORATED INTO THE PROJECT TO ENSURE COMPLIANCE WITH THE DESIGN PLANS, SPECIFICATIONS, CONTRACT DOCUMENTS AND APPROVED SHOP DRAWINGS.


### STRUCTURAL STEEL

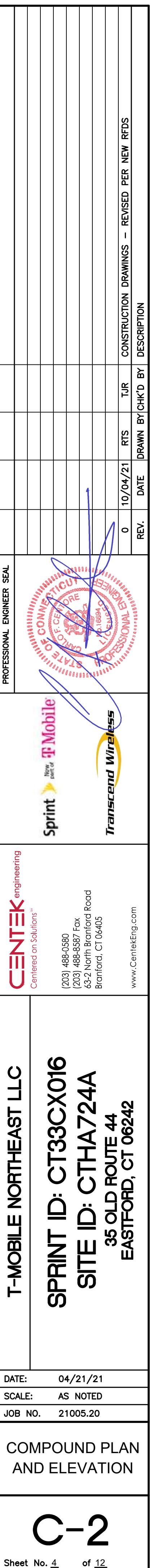
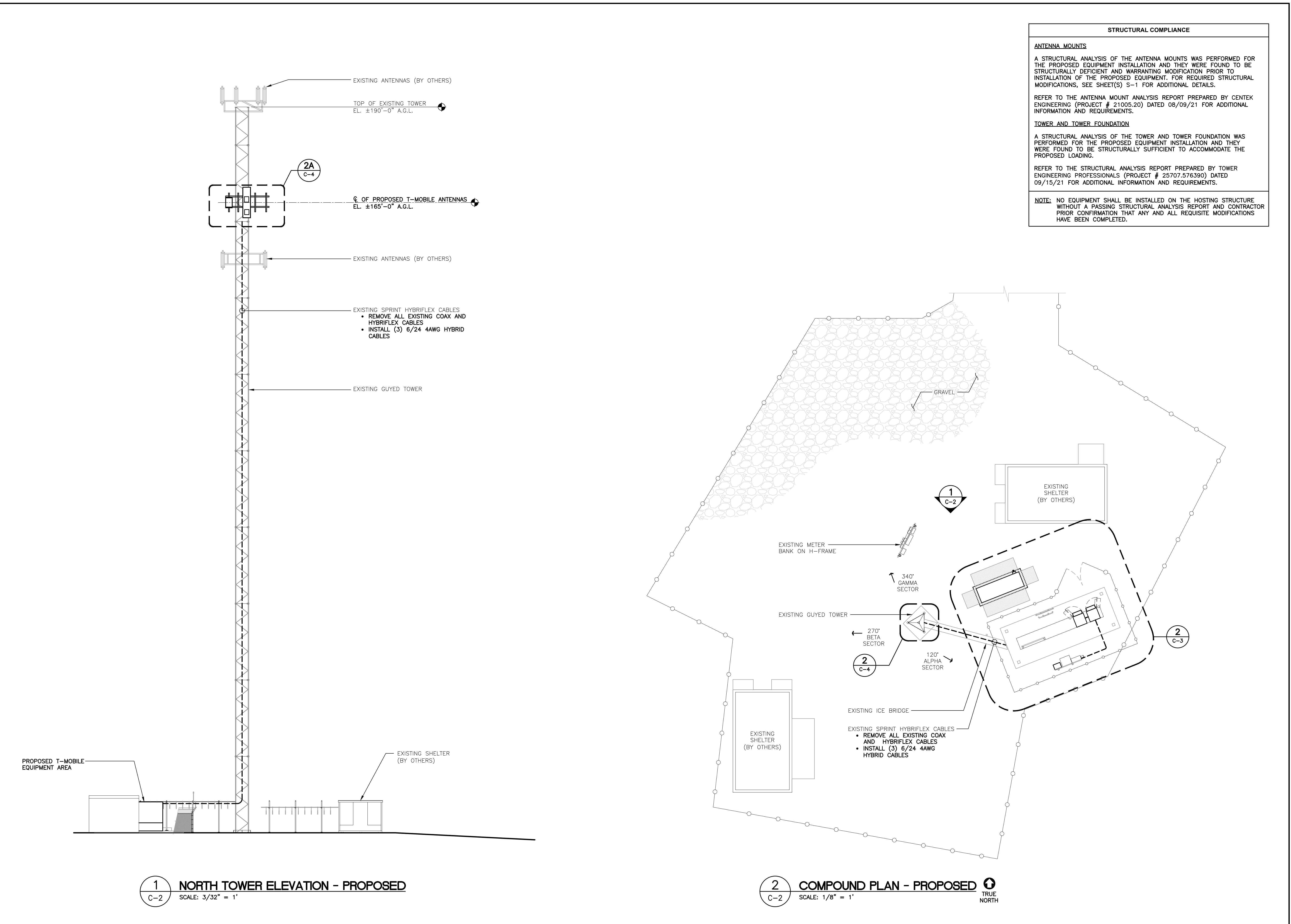
1. ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD)
- A. STRUCTURAL STEEL (W SHAPES)---ASTM A992 (FY = 50 KSI)
- B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36 (FY = 36 KSI)
- C. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY = 46 KSI)
- D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500 GRADE B, (FY = 42 KSI)
- E. PIPE---ASTM A53 (FY = 35 KSI)
- F. CONNECTION BOLTS---ASTM A325-N
- G. U-BOLTS---ASTM A36
- H. ANCHOR RODS---ASTM F 1554
- I. WELDING ELECTRODE---ASTM E 70XX
2. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
3. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
4. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
5. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
6. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
7. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
8. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
9. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
10. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
11. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF 1/4 INCHES.
12. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE 3/4" DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
13. LOCK WASHER ARE NOT PERMITTED FOR A325 STEEL ASSEMBLIES.
14. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
15. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
16. FABRICATE BEAMS WITH MILL CAMBER UP.
17. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED 1/4" IN THE FULL HEIGHT OF THE COLUMN.
18. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.
19. INSPECTION AND TESTING OF ALL WELDING AND HIGH STRENGTH BOLTING SHALL BE PERFORMED BY AN INDEPENDENT TESTING LABORATORY.
20. FOUR COPIES OF ALL INSPECTION TEST REPORTS SHALL BE SUBMITTED TO THE ENGINEER WITHIN TEN (10) WORKING DAYS OF THE DATE OF INSPECTION.

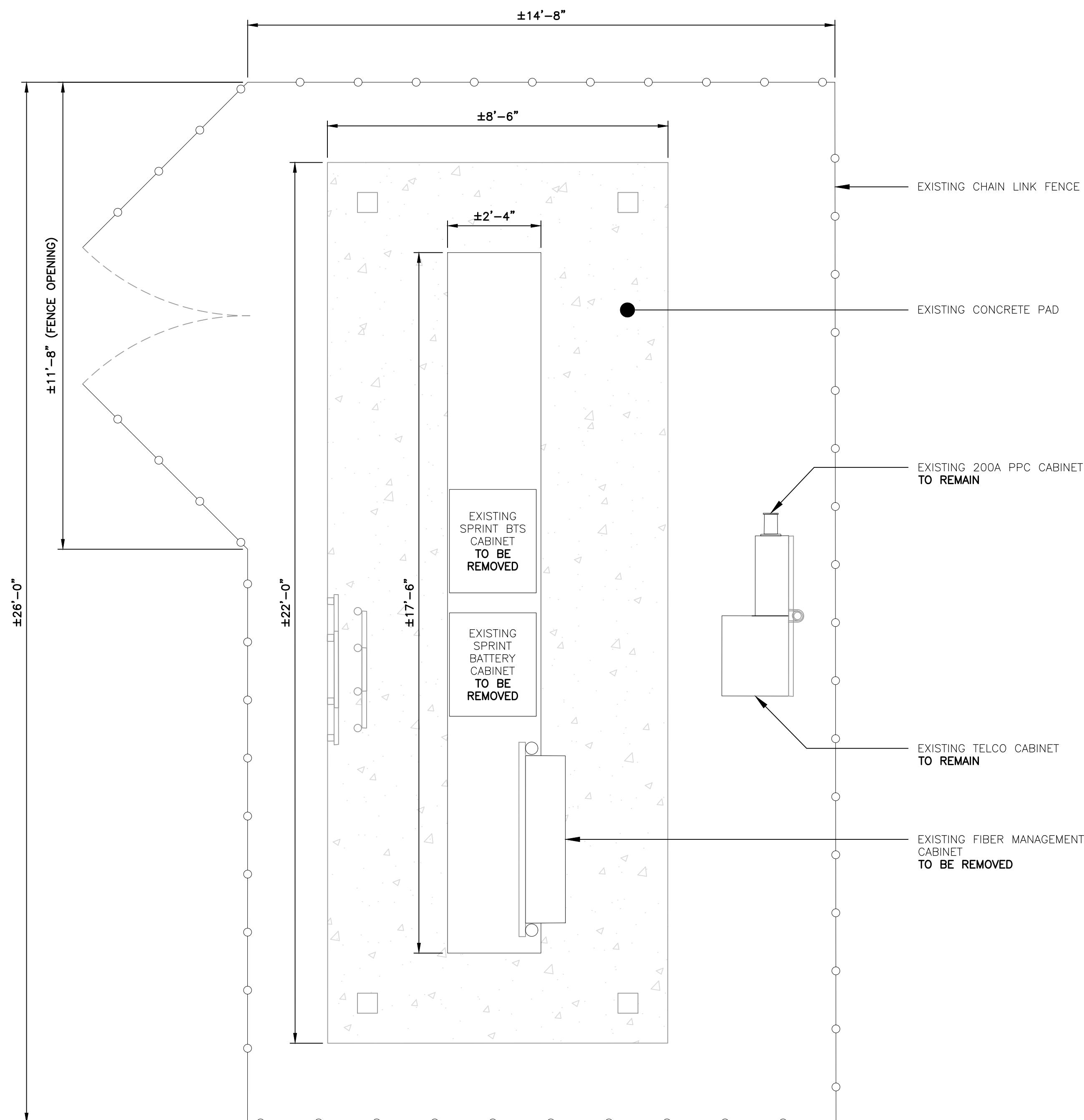
|                                                                                    |                                              |                                              |                    |
|------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------|
| PROFESSIONAL ENGINEER SEAL                                                         | CENTEK engineering<br>Centered on Solutions™ |                                              |                    |
|                                                                                    | Sprint                                       | T-Mobile                                     | Transcend Wireless |
| SPRINT ID: CT33CX016<br>SITE ID: CTHA724A<br>35 OLD ROUTE 44<br>EASTFORD, CT 06242 |                                              | CONSTRUCTION DRAWINGS - REVISED PER NEW RFDs |                    |
| REV.                                                                               | DATE                                         | DRAWN BY                                     | CHKD BY            |
| 0                                                                                  | 10/04/21                                     | RTS                                          | TUR                |
| Sheet No. 2 of 12                                                                  |                                              |                                              |                    |
| DATE:                                                                              | 04/21/21                                     |                                              |                    |
| SCALE:                                                                             | AS NOTED                                     |                                              |                    |
| JOB NO.:                                                                           | 21005.20                                     |                                              |                    |
| GENERAL NOTES AND SPECIFICATIONS                                                   |                                              |                                              |                    |
| N-1                                                                                |                                              |                                              |                    |

NOTE:  
ALL COAX LENGTHS TO BE MEASURED  
AND VERIFIED IN FIELD BEFORE ORDERING

| ANTENNA SCHEDULE |                   |                          |                              |                                                                                                      |         |                                                        |                 |                                   |
|------------------|-------------------|--------------------------|------------------------------|------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|-----------------|-----------------------------------|
| SECTOR           | EXISTING/PROPOSED | ANTENNA                  | SIZE (INCHES)<br>(L x W x D) | ANTENNA  HEIGHT | AZIMUTH | (E/P) RRU (QTY)                                        | (E/P) TMA (QTY) | (QTY) PROPOSED COAX               |
| A1               | PROPOSED          | RFS-APXVAALL24_43-U-NA20 | 95.9 x 24 x 8.5              | 165'                                                                                                 | 120°    | (P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1) |                 | (1) 6/24 4AWG HYBRID CABLE (220') |
| A2               | PROPOSED          | ERICSSON-AIR6449 B41     | 33.1 x 20.6 x 8.6            | 165'                                                                                                 | 120°    |                                                        |                 |                                   |
| B1               | PROPOSED          | RFS-APXVAALL24_43-U-NA20 | 95.9 x 24 x 8.5              | 165'                                                                                                 | 270°    | (P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1) |                 | (1) 6/24 4AWG HYBRID CABLE (220') |
| B2               | PROPOSED          | ERICSSON-AIR6449 B41     | 33.1 x 20.6 x 8.6            | 165'                                                                                                 | 270°    |                                                        |                 |                                   |
| C1               | PROPOSED          | RFS-APXVAALL24_43-U-NA20 | 95.9 x 24 x 8.5              | 165'                                                                                                 | 340°    | (P) RADIO 4480 B71+B85 (1), (P) RADIO 4460 B25+B66 (1) |                 | (1) 6/24 4AWG HYBRID CABLE (220') |
| C2               | PROPOSED          | ERICSSON-AIR6449 B41     | 33.1 x 20.6 x 8.6            | 165'                                                                                                 | 340°    |                                                        |                 |                                   |

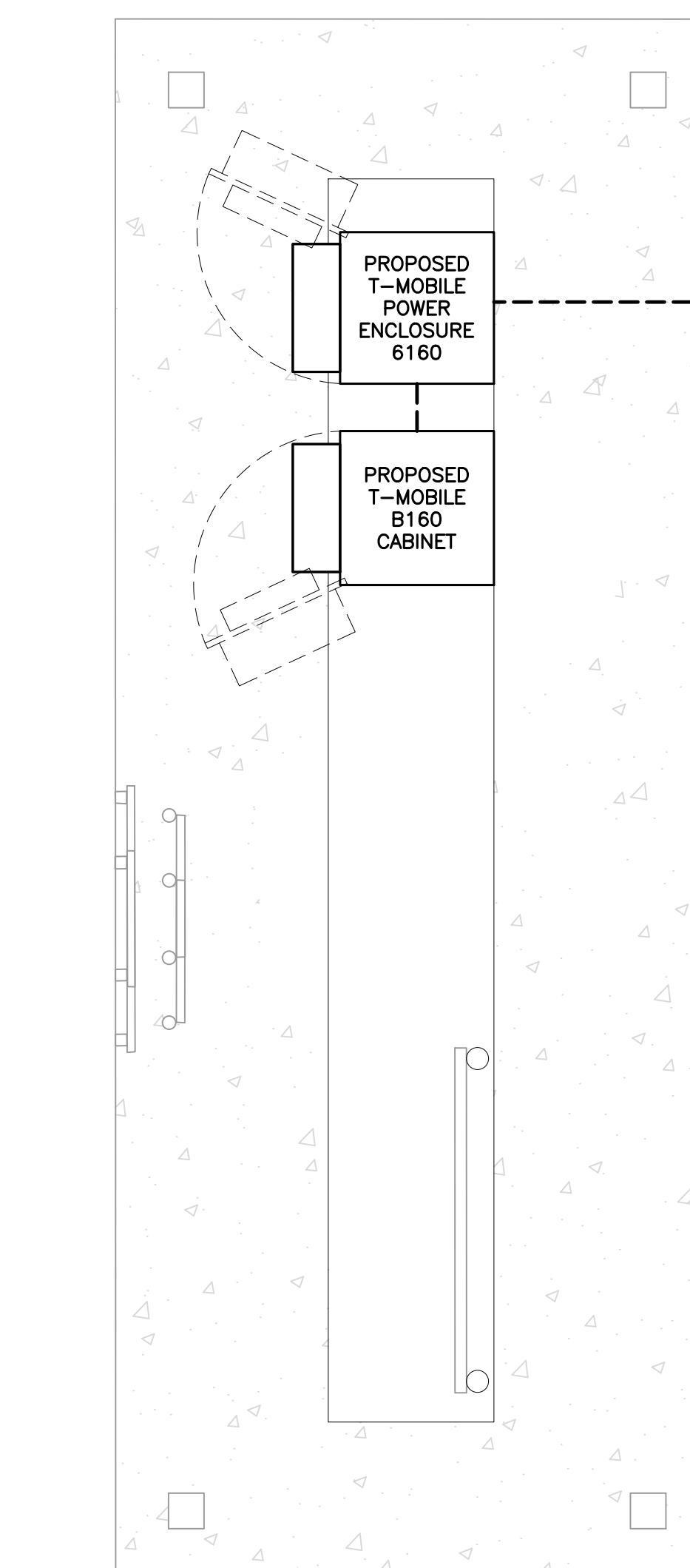
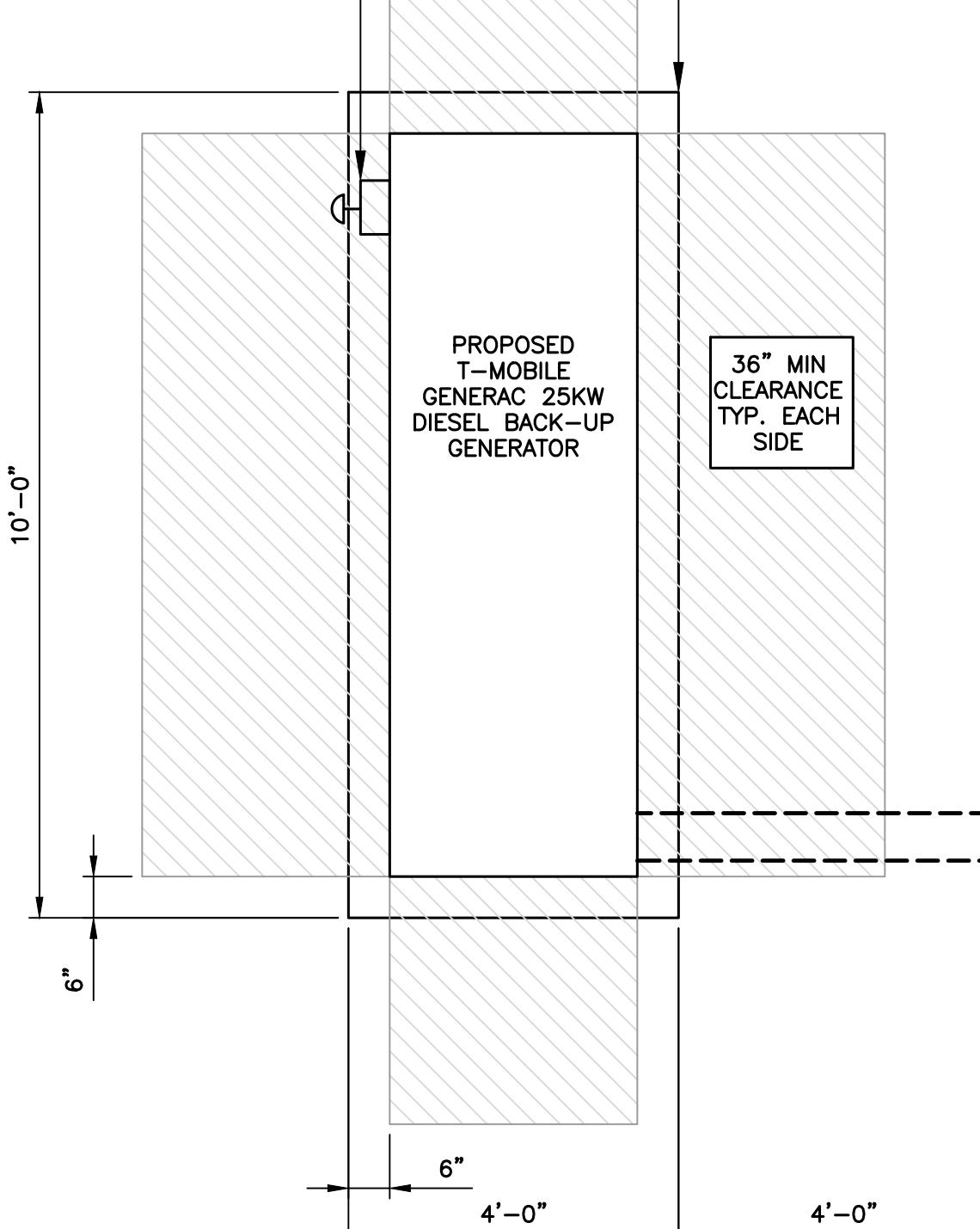




1  
C-1 SITE LOCATION PLAN  
SCALE: NOT TO SCALE


TRUE  
NORTH

|                            |          |
|----------------------------|----------|
| PROFESSIONAL ENGINEER SEAL |          |
| DATE                       | 10/04/21 |
| SCALE                      | AS NOTED |
| JOB NO.                    | 21005.20 |
| SITE LOCATION PLAN         |          |
| C-1                        |          |
| Sheet No. 3                | of 12    |

**SPRINT ID: CT33CX016**  
**SITE ID: CTHA724A**  
**35 OLD ROUTE 44**  
**EASTFORD, CT 06242**




**CENTEK** engineering  
Centered on Solutions™  
(203) 484-5380  
(203) 484-5382 Fax  
632 North Brantford Road  
Brantford, CT 06405  
www.CentekEng.com





PROPOSED T-MOBILE -  
10'-0" x 4'-0"  
CONCRETE GENERATOR PAD

EMERGENCY GENERATOR SHUT-OFF  
SWITCH MOUNTED TO EXTERIOR OF  
GENERATOR ENCLOSURE, IN LOCATION  
UNAFFECTED BY DOOR SWINGS, PER  
2019 NFPA 110 5.6.5.6.1

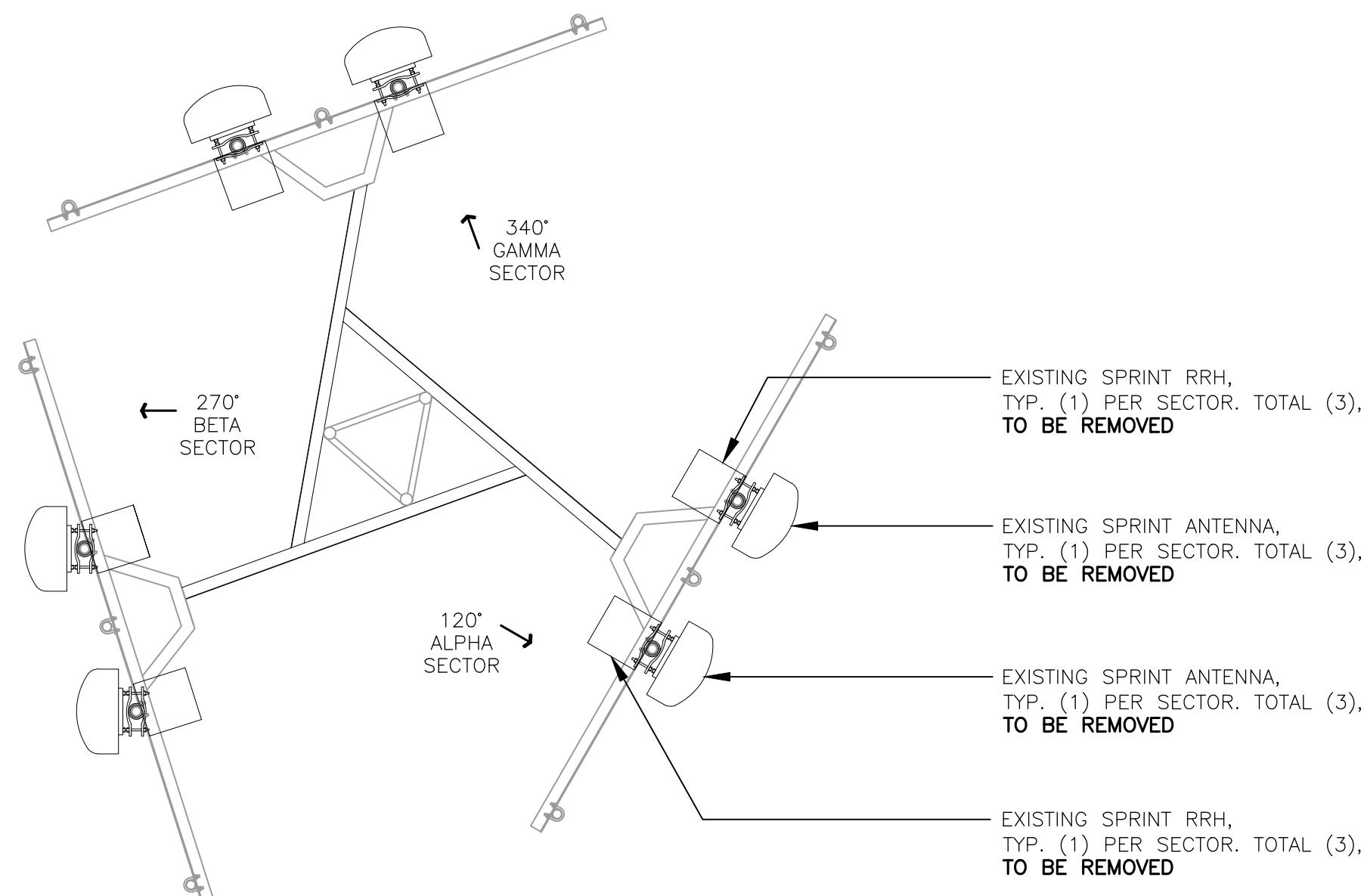


1  
C-3

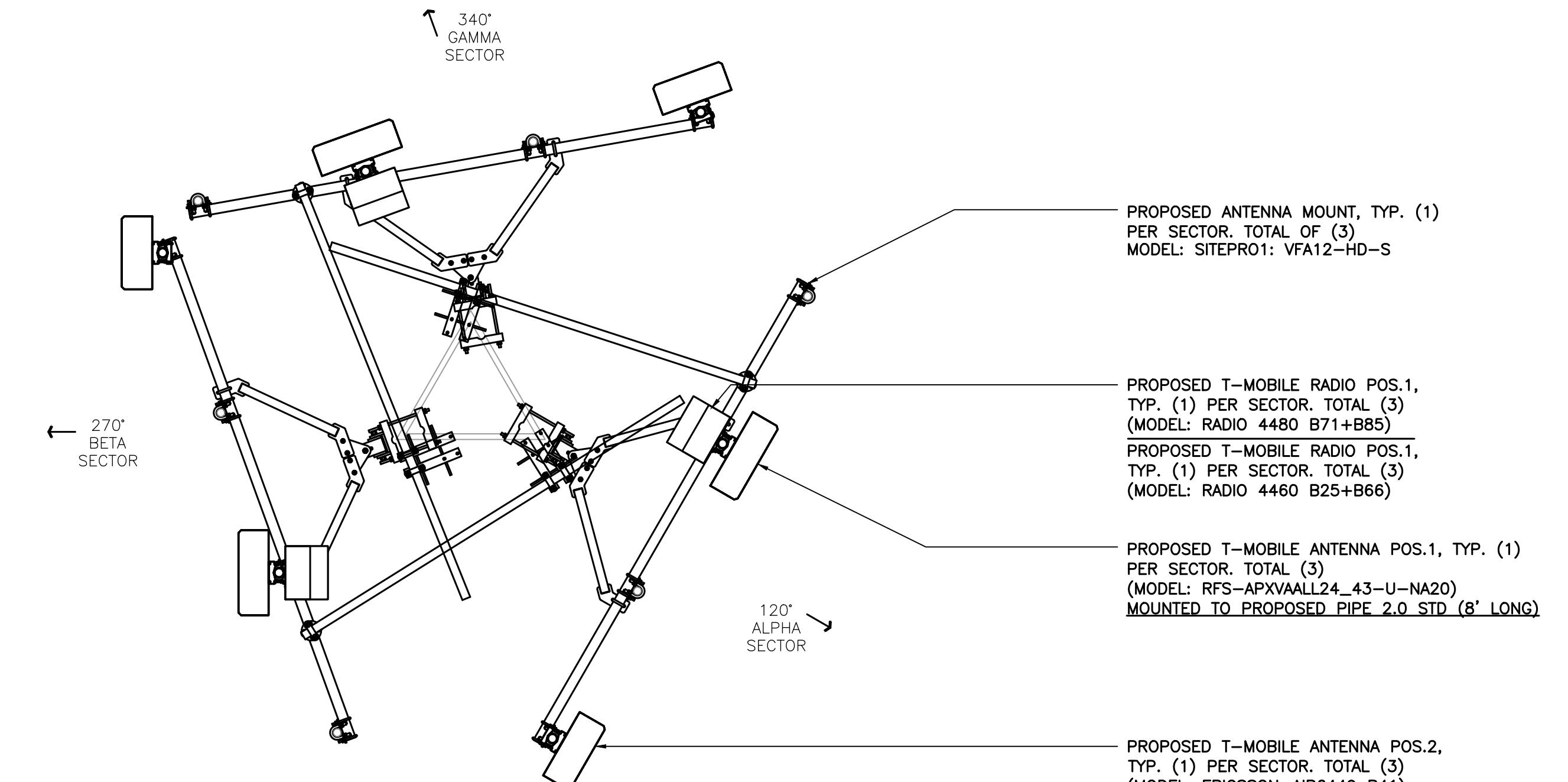
EXISTING EQUIPMENT PLAN

SCALE: 1/2" = 1'

TRUE NORTH

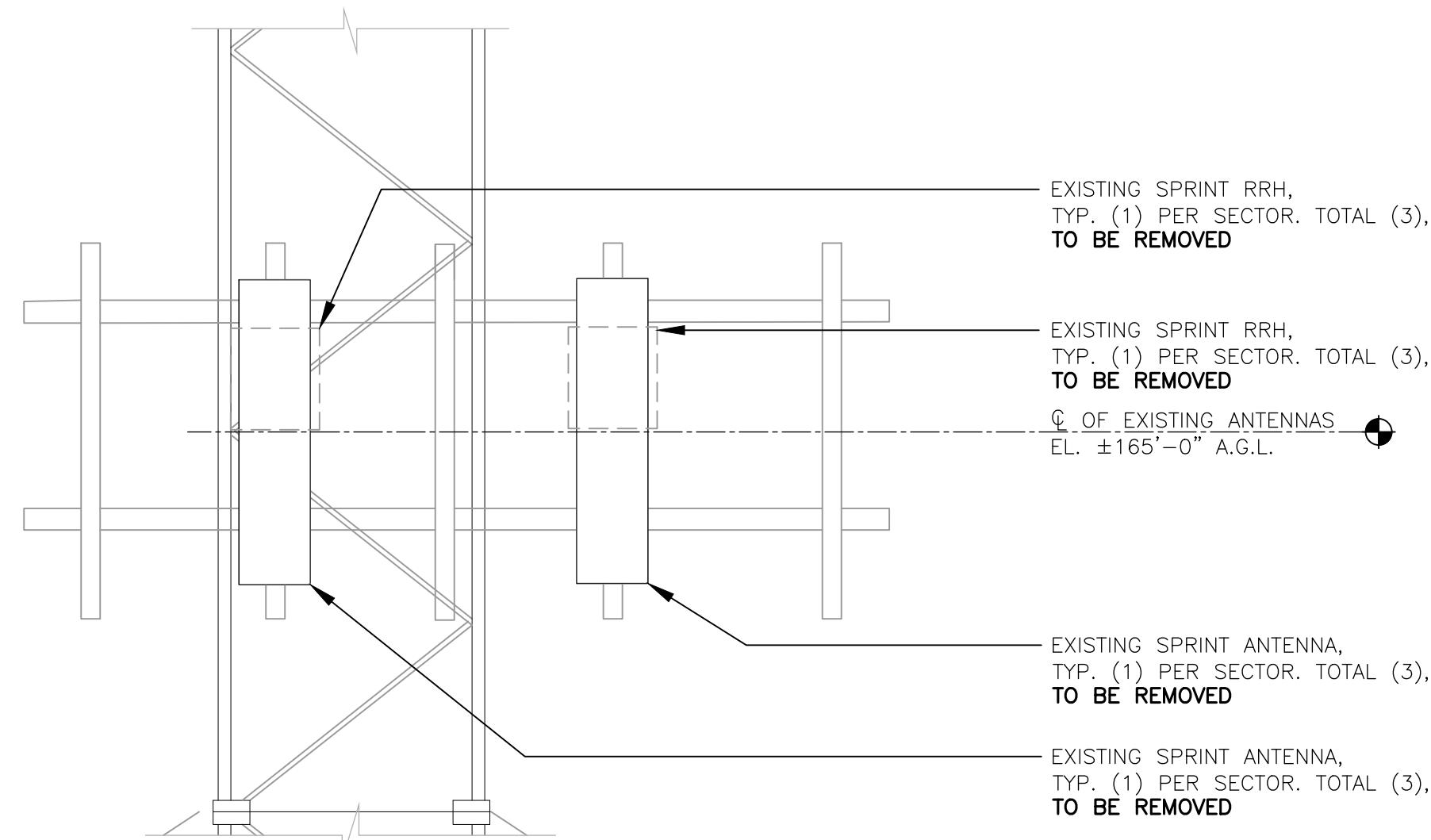

2  
C-3

PROPOSED EQUIPMENT PLAN

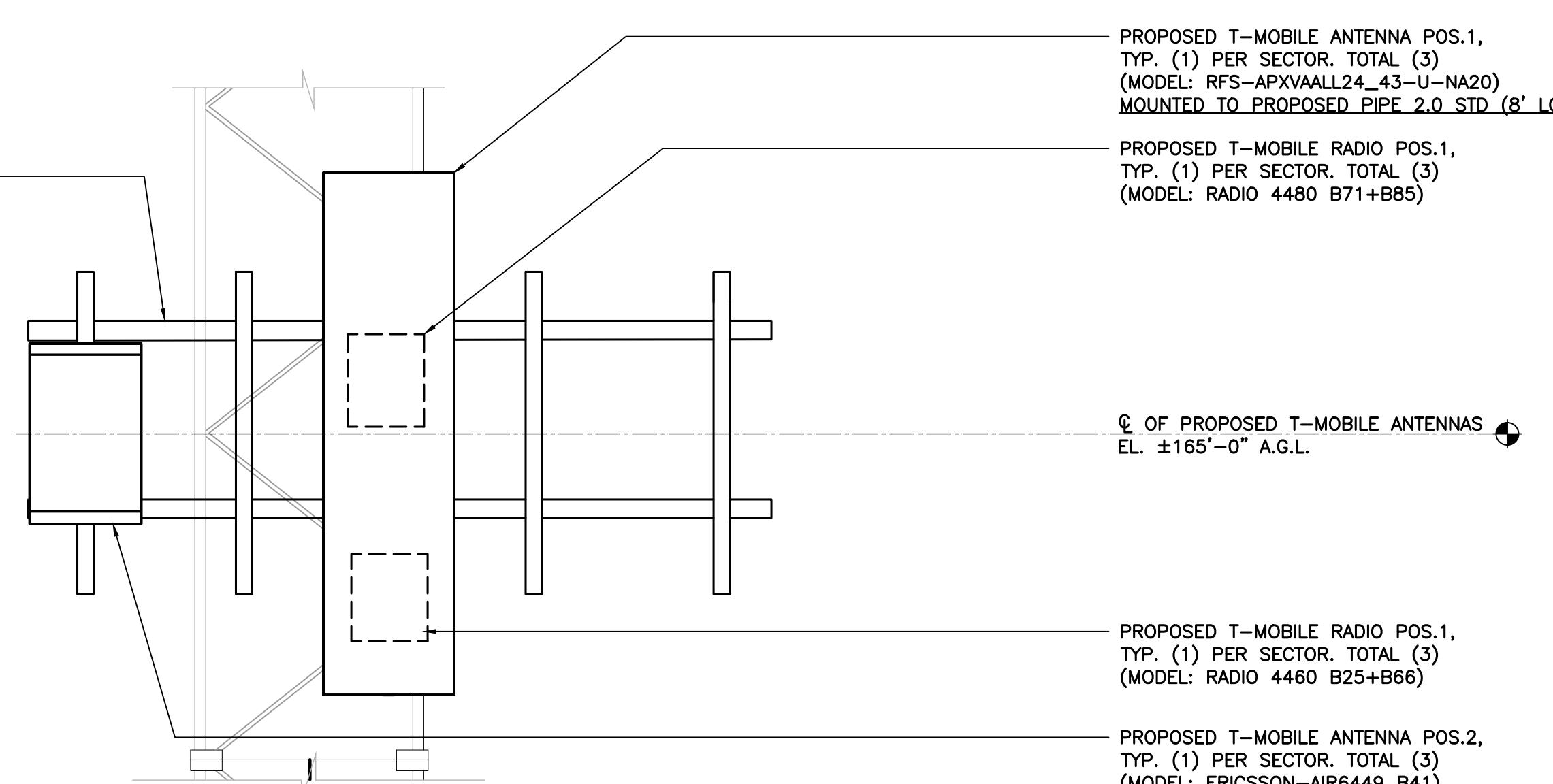

SCALE: 1/2" = 1'

TRUE NORTH

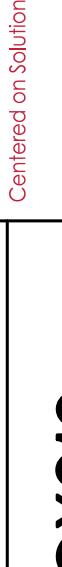
| EQUIPMENT PLANS            |                    | CONSTRUCTION DRAWINGS - REVISED PER NEW RFDS |                                              |
|----------------------------|--------------------|----------------------------------------------|----------------------------------------------|
| PROFESSIONAL ENGINEER SEAL |                    |                                              |                                              |
| Sprint                     | Transcend Wireless |                                              |                                              |
| DATE: 04/21/21             | REV. 0             | DATE: 10/04/21                               | RTS                                          |
| SCALE: AS NOTED            |                    |                                              | TUR                                          |
| JOB NO. 21005.20           |                    |                                              | CONSTRUCTION DRAWINGS - REVISED PER NEW RFDS |
| EQUIPMENT PLANS            |                    | CONSTRUCTION DRAWINGS - REVISED PER NEW RFDS |                                              |
| C-3                        |                    | CONSTRUCTION DRAWINGS - REVISED PER NEW RFDS |                                              |
| Sheet No. 5 of 12          |                    | CONSTRUCTION DRAWINGS - REVISED PER NEW RFDS |                                              |



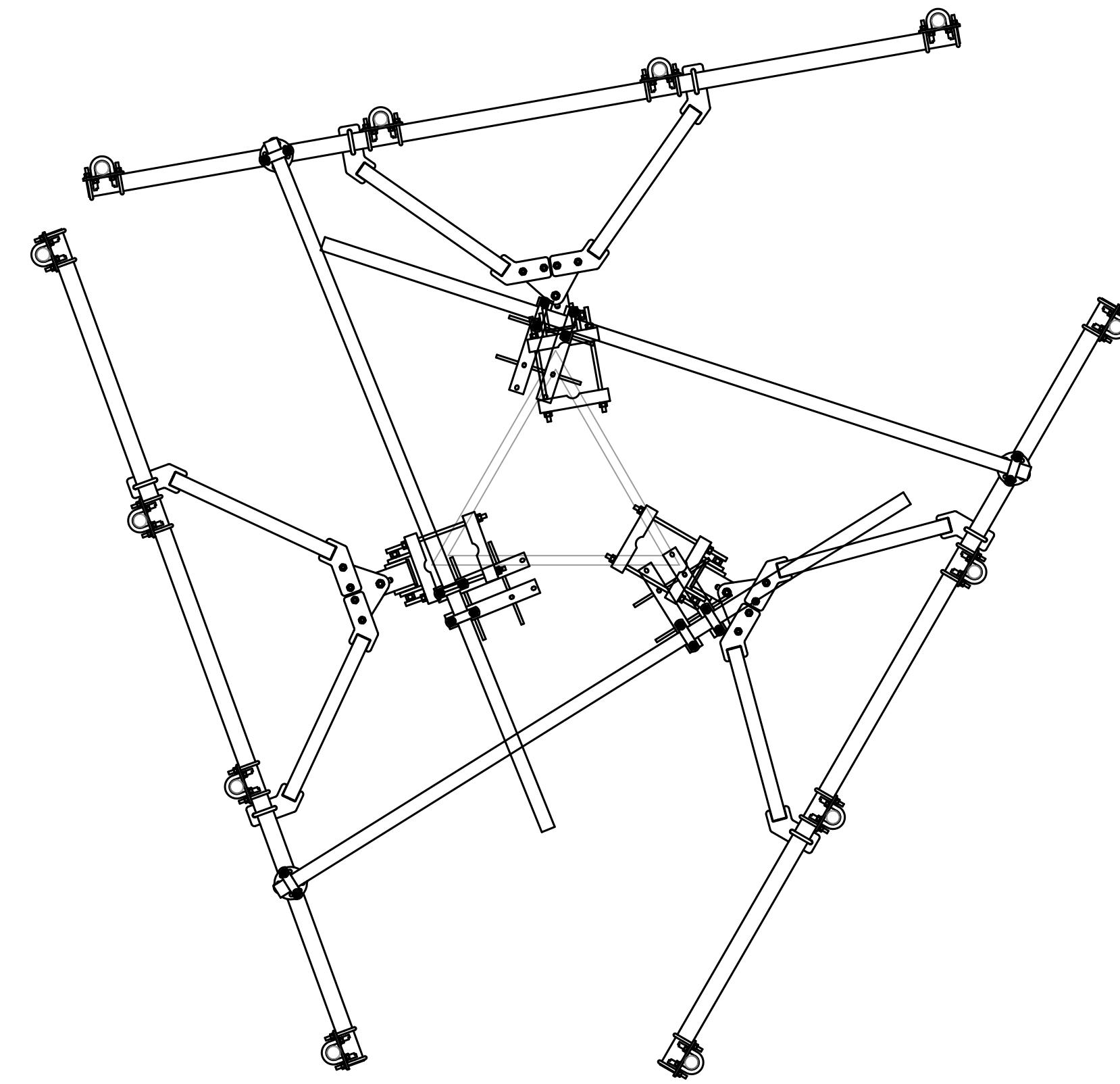

1 C-4 **ANTENNA PLAN - EXISTING** SCALE: 1/2" = 1' 




**2** **ANTENNA PLAN - PROPOSED** 

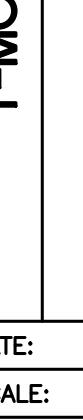

C-4 SCALE: 1/2" = 1'

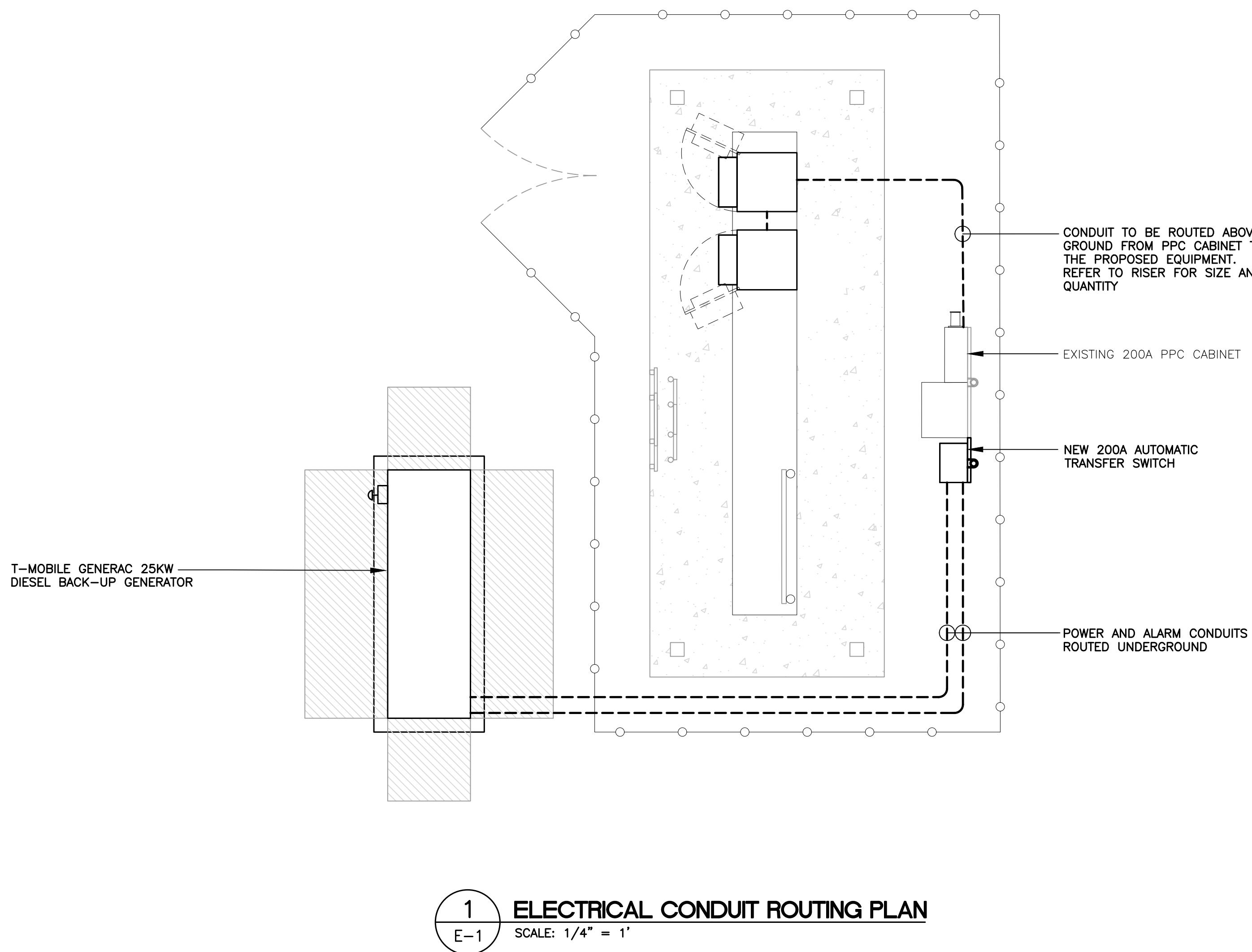



**1A** **ANTENNA ELEVATION - EXISTING**  
C-4      SCALE: 1/2" = 1'

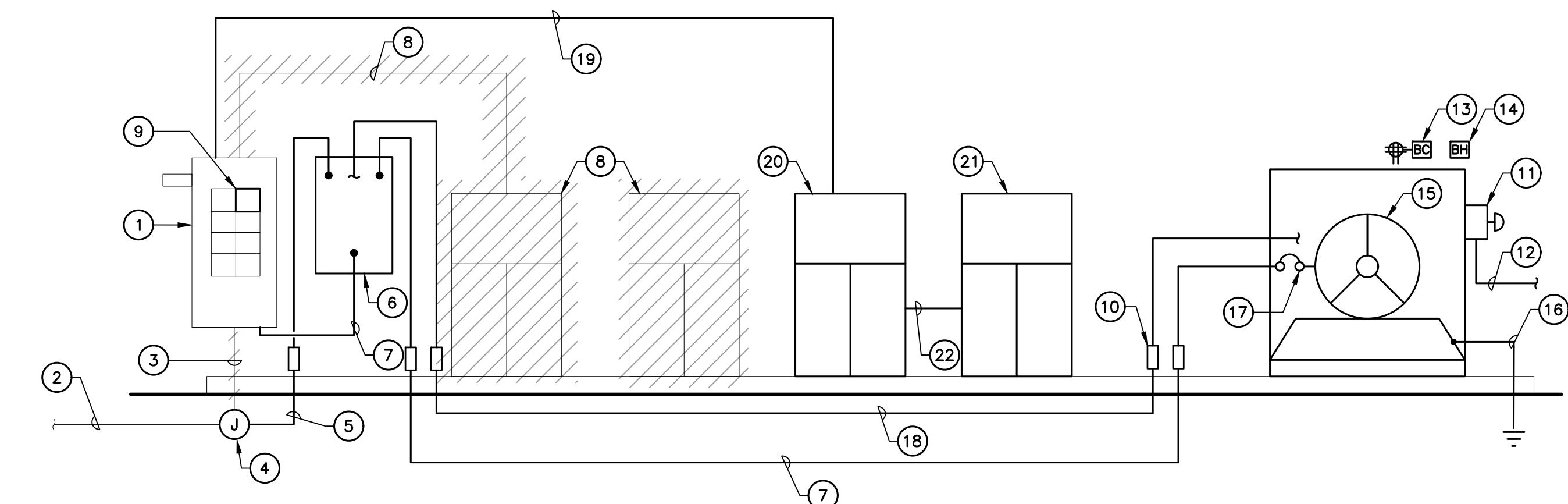


**2A** **ANTENNA ELEVATION - PROPOSED**  
C-4 SCALE:  $1/2'' = 1'$


|                                                                                                                |          |                                                                                                                                                                                |          |                                                                                       |          |
|----------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|----------|
| T-MOBILE NORTHEAST LLC                                                                                         |          | CENTEK engineering<br>Centered on Solutions <sup>SM</sup>                                                                                                                      |          | PROFESSIONAL ENGINEER SEAL                                                            |          |
| <b>SPRINT ID: CT33CX016</b><br><b>SITE ID: CTHA724A</b><br><b>35 OLD ROUTE 44</b><br><b>EASTFORD, CT 06242</b> |          | <br> |          |  |          |
| DATE:                                                                                                          | 04/21/21 | SCALE:                                                                                                                                                                         | AS NOTED | REV.                                                                                  | 10/04/21 |
| JOB NO.                                                                                                        | 21005.20 |                                                                                                                                                                                |          | RTS                                                                                   | TJR      |
|                                                                                                                |          |                                                                                                                                                                                |          | CONSTRUCTION DRAWINGS – REVISED PER NEW RFDS                                          |          |
|                                                                                                                |          |                                                                                                                                                                                |          | DRAWN BY CHK'D BY DESCRIPTION                                                         |          |
| <b>ANTENNA PLANS<br/>AND ELEVATIONS</b><br><br><b>C-4</b>                                                      |          |                                                                                                                                                                                |          |                                                                                       |          |
| Sheet No. 6 of 12                                                                                              |          |                                                                                                                                                                                |          |                                                                                       |          |

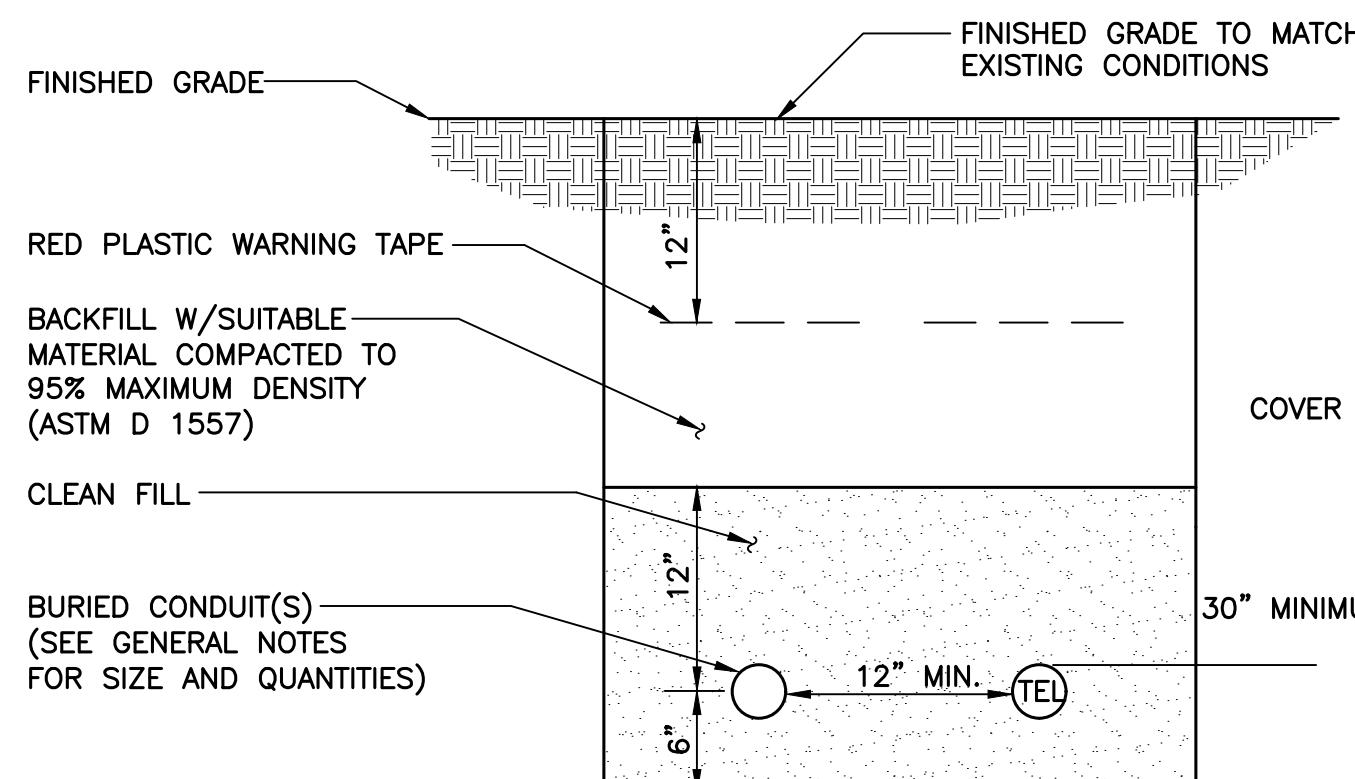






## **SITEPRO1: VFA12-HD-S**

**1** **TYPICAL ANTENNA MOUNT DETAIL**

| PROFESSIONAL ENGINEER SEAL                                                            |  |  |  |
|---------------------------------------------------------------------------------------|--|--|--|
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| <b>T-MOBILE NORTHEAST LLC</b>                                                         |  |  |  |
| <b>SPRINT ID: CT33CX016</b>                                                           |  |  |  |
| <b>SITE ID: CTHA724A</b>                                                              |  |  |  |
| <b>35 OLD ROUTE 44</b>                                                                |  |  |  |
| <b>EASTFORD, CT 06242</b>                                                             |  |  |  |
| <b>DATE: 04/21/21</b>                                                                 |  |  |  |
| <b>SCALE: AS NOTED</b>                                                                |  |  |  |
| <b>JOB NO. 21005.20</b>                                                               |  |  |  |
| <b>STRUCTURAL DETAILS</b>                                                             |  |  |  |
| <b>S-1</b>                                                                            |  |  |  |
| Sheet No. 8 of 12                                                                     |  |  |  |

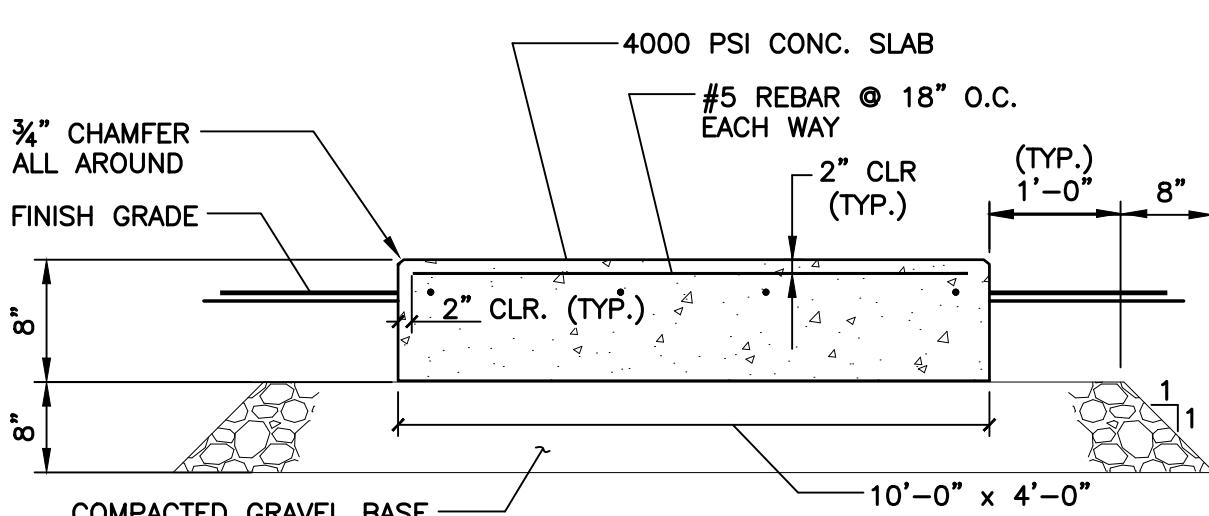



| RISER DIAGRAM NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RISER DIAGRAM NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol style="list-style-type: none"> <li>EXISTING PPC CABINET TO REMAIN.</li> <li>EXISTING POWER CONDUIT AND CONDUCTORS PREVIOUSLY SERVING EXISTING PANEL.</li> <li>SECTION OF CONDUIT AND CONDUCTORS TO BE REMOVED.</li> <li>JUNCTION BOX SIZED PER NEC.</li> <li>EXTEND EXISTING CONDUITS AND CONDUCTORS TO NEW ATS.</li> <li>NEW 200A, 2 SOURCE AUTOMATIC TRANSFER SWITCH.</li> <li>(3) #3/0 AWG, (1) #6 AWG GROUND, 2-1/2" CONDUIT.</li> <li>EXISTING CABINETS AND ASSOCIATED CONDUITS, CONDUCTORS AND CIRCUIT BREAKERS TO BE REMOVED</li> <li>NEW 150A/2P CIRCUIT BREAKER TO SERVE NEW EQUIPMENT.</li> <li>EXPANSION COUPLING TYPICAL.</li> <li>REMOTE GENERATOR SHUT OFF SWITCH IN BREAK GLASS ENCLOSURE MOUNTED TO EXTERIOR OF GENERATOR ENCLOSURE PER 2019 NFPA 110 5.6.5.6.1.</li> <li>3/4" CONDUIT AND CONDUCTORS REQUIRED FOR PROPER OPERATION OF EMERGENCY GENERATOR SHUT OFF SWITCH.</li> </ol> | <ol style="list-style-type: none"> <li>GENERATOR BATTERY CHARGER AND CONVENIENCE GFCI OUTLET WIRED TO EXISTING PANEL OUTLET TO BE MOUNTED IN WEATHERPROOF ENCLOSURE.</li> <li>GENERATOR BLOCK HEATER WIRED TO EXISTING PANEL SERVING T-MOBILE EQUIPMENT.</li> <li>EMERGENCY BACK UP GENERATOR.</li> <li>GENERATOR GROUNDING PER NEC AND MANUFACTURER'S REQUIREMENTS. BOND TO EXISTING GROUNDING SYSTEM. (MINIMUM OF (1) #2 AWG GROUND)</li> <li>GENERATOR OUTPUT CIRCUIT BREAKER.</li> <li>1" CONDUIT FOR GENERATOR CONTROL AND SIGNAL WIRING.</li> <li>(1) 1/0 AWG, (1) #6 AWG GROUND, 1-1/2" CONDUIT.</li> <li>NEW T-MOBILE EQUIPMENT CABINET</li> <li>NEW T-MOBILE BATTERY CABINET</li> <li>DC CONDUIT AND CONDUCTORS FOR BATTERY CABINET CONNECTION PER MANUFACTURERS SPECIFICATIONS.</li> </ol> |



|                                              |                    |
|----------------------------------------------|--------------------|
| PROFESSIONAL ENGINEER SEAL                   |                    |
| SPRINT ID: CT33CX016                         | Sprint             |
| SITE ID: CTHA724A                            | T-Mobile           |
| 35 OLD ROUTE 44                              | Transcend Wireless |
| EASTFORD, CT 06242                           |                    |
| DATE: 04/21/21                               |                    |
| SCALE: AS NOTED                              |                    |
| JOB NO. 21005.20                             |                    |
| ELECTRICAL RISER DIAGRAM AND CONDUIT ROUTING |                    |
| E-1                                          |                    |

Sheet No. 9 of 12




1 TYPICAL ELECTRICAL/TEL TRENCH DETAIL  
E-2 SCALE: NOT TO SCALE

SCALE: NOT TO SCALE

NOTES:

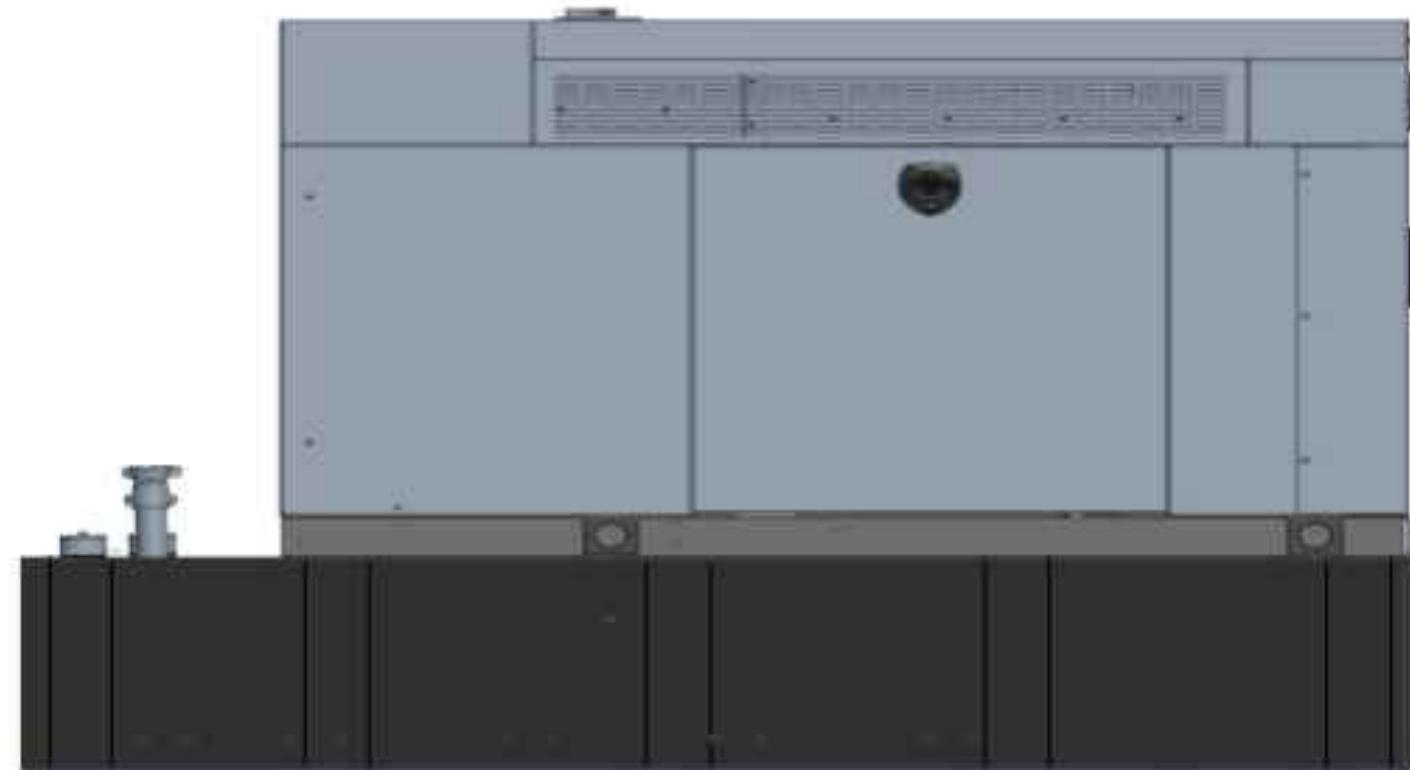
1. THE CLEAN FILL SHALL PASS THROUGH A 3/8" MESH SCREEN AND SHALL NOT CONTAIN SHARP STONES. OTHER BACKFILL SHALL NOT CONTAIN ASHES, CINDERS, SHELLS, FROZEN MATERIAL, LOOSE DEBRIS OR STONES LARGER THAN 2" IN MAXIMUM DIMENSION.
2. WHERE EXISTING UTILITIES ARE LIKELY TO BE ENCOUNTERED, CONTRACTOR SHALL HAND DIG AND PROTECT EXISTING UTILITIES.



**2** **TYPICAL CONCRETE PAD DETAIL**  
E-2 **SCALE: NOT TO SCALE**

E-2      SCALE: NOT TO SCALE




| AUTOMATIC TRANSFER SWITCH         |         |         |           |     |                   |
|-----------------------------------|---------|---------|-----------|-----|-------------------|
| ITEM                              | PHASE   | VOLTAGE | ENCLOSURE | AMP | DIMENSIONS        |
| ITEM: GENERAC<br>MODEL: RXSC200A3 | 1-PHASE | 120/240 | NEMA-3R   | 200 | 17.3" L x 12.5" W |

4 AUTOMATIC TRANSFER SWITCH DETAIL

---

E-2 SCALE: NOT TO SCALE

## 4 AUTOMATIC



**3** **PROPOSED GENERATOR DETAIL**  
E-2 SCALE: NOT TO SCALE

E-2 SCALE: NOT TO SCALE

| Backup Power Generator        |                 |        |              |                      |                              |           |
|-------------------------------|-----------------|--------|--------------|----------------------|------------------------------|-----------|
| Equipment                     | Power Generated | Fuel   | Model Number | Fuel Tank Size (Gal) | Dimensions                   | Weight    |
| MAKE: GENERAC<br>MODEL: RD025 | 25 KW, AC       | DIESEL | 7192-0       | 229                  | 103.4" L x 35.0" W x 91.7" H | 2123 LBS. |

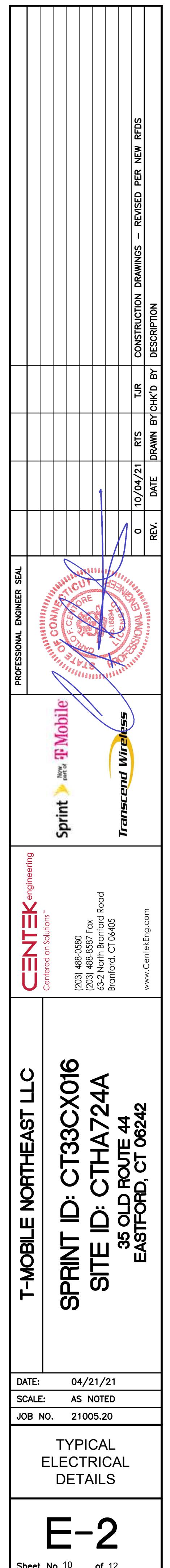
## NOTES

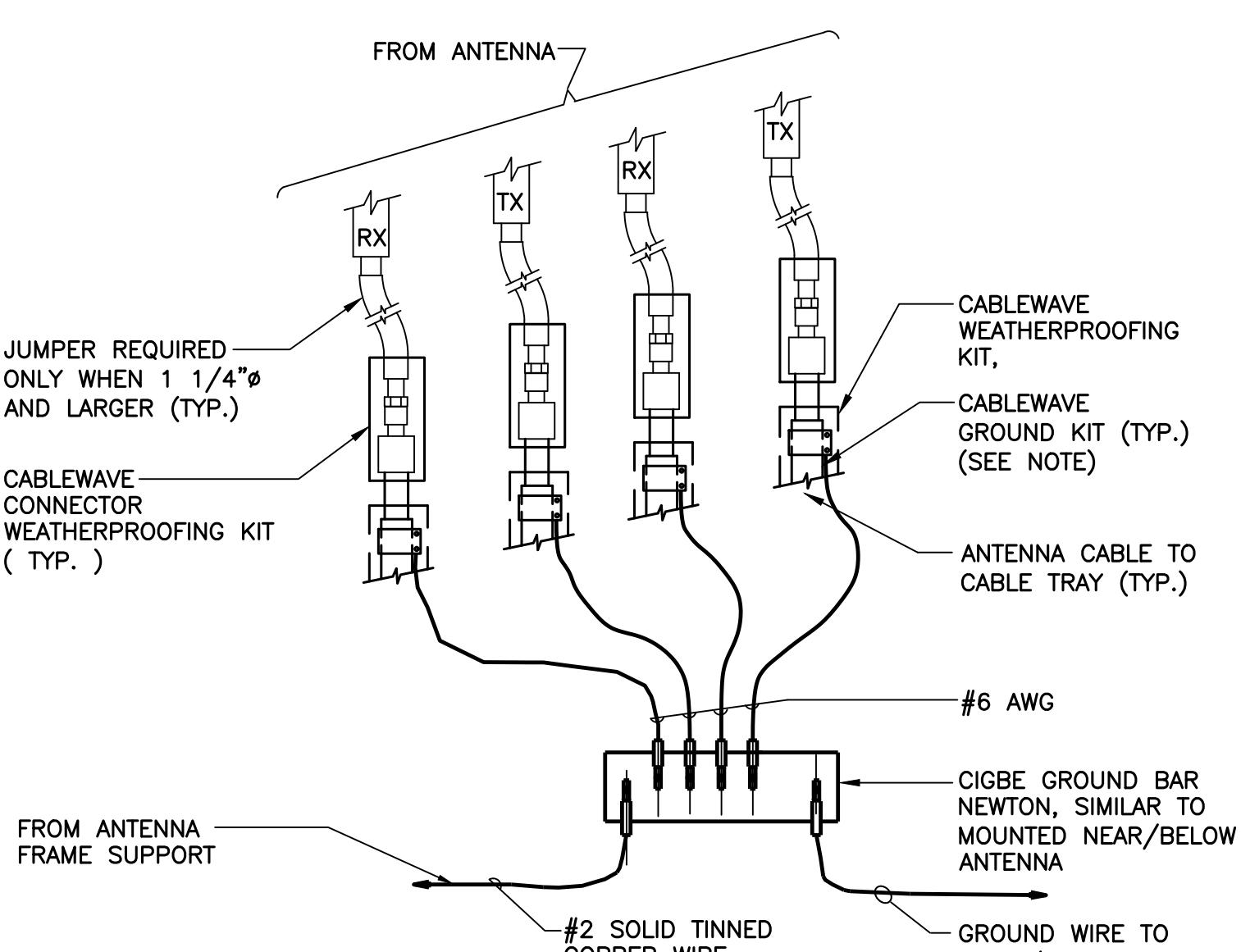
NOTES:

1. FUEL LEVEL/SECONDARY CONTAINMENT SHALL BE ALARMED AND IN COMMUNICATION WITH T-MOBILE'S NOC.
2. CONTRACTOR TO COORDINATE FINAL EQUIPMENT MODEL SELECTION AND ALL OPTIONAL FEATURES WITH T-MOBILE'S CONSTRUCTION MANAGER PRIOR TO ORDERING.



SIGN NAME: REGULATORY, NFPA 704 HAZARD ID


DESCRIPTION: MOUNT ON GENERATOR ACCESS DOOR.  
CONSULT WITH GENERATOR MANUFACTURER MSDS SHEET FOR BLUE AND RES POSITIONS


NOTES: 1) SIGNS EXPOSED TO WEATHER SHOULD BE CHECKED ANNUALLY FOR READABILITY.  
2) SIGNS MUST BE UPDATED IF CHEMICAL STORAGE OR HAZARD INFORMATION FOR THE LOCATION CHANGES.  
3) THE GC MUST REVIEW WITH LOCAL JURISDICTION WHEN FILLING FOR PERMITS, AS EACH JURISDICTION MAY HAVE DIFFERENT REQUIREMENTS AND COMPLY WITH POSTING REQUIREMENTS OR DIRECTIVES FROM THE LOCAL JURISDICTION.

**5 E-2 NFPA 704 DIAMOND SIGNAGE DETAIL**

---

5 NFPA 704 DIA





**NOTES:**

1 CONNECTION OF GROUND WIRES TO GROUND BAR  
F-3 SCALE: NOT TO SCALE

E-3 SCALE: NOT TO SCALE

ES

COPPER GROUND BAR, 1/4" x 4" x 20", NEWTON INSTRUMENT  
HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.  
TORS, NEWTON INSTRUMENT CAT. NO. 3061-4.  
LOCK WASHERS, NEWTON INSTRUMENT CO. CAT. NO. 3015-8.  
MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056.  
1 x 1" STAINLESS STEEL TRUSS SPANNER MACHINE SCREWS.

# 2 GROUND BAR DETAIL

---

F-3 SCALE: NOT TO SCALE

E-3      SCALE: NOT TO SCALE

#6 AWG STRANDED COPPER GROUND WIRE (GROUNDED TO GROUND BAR)  
(STANDARD CABLEWAVE GROUNDING KIT)

CABLE GROUND KIT

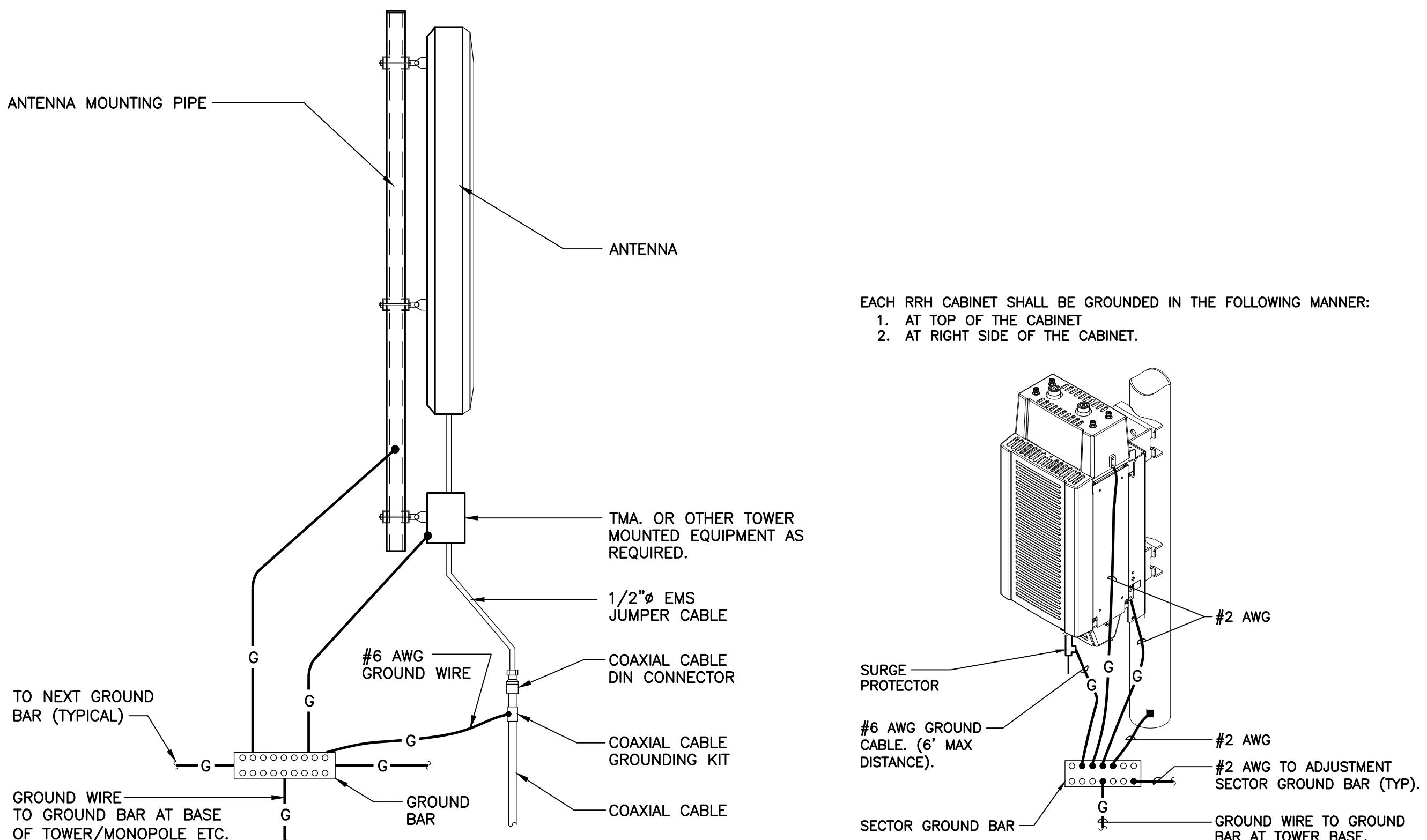
CABLEWAVE WEATHERPROOFING KIT

ANTENNA CABLE

1 1/4" DIA. MAX.

ENCLOSURE

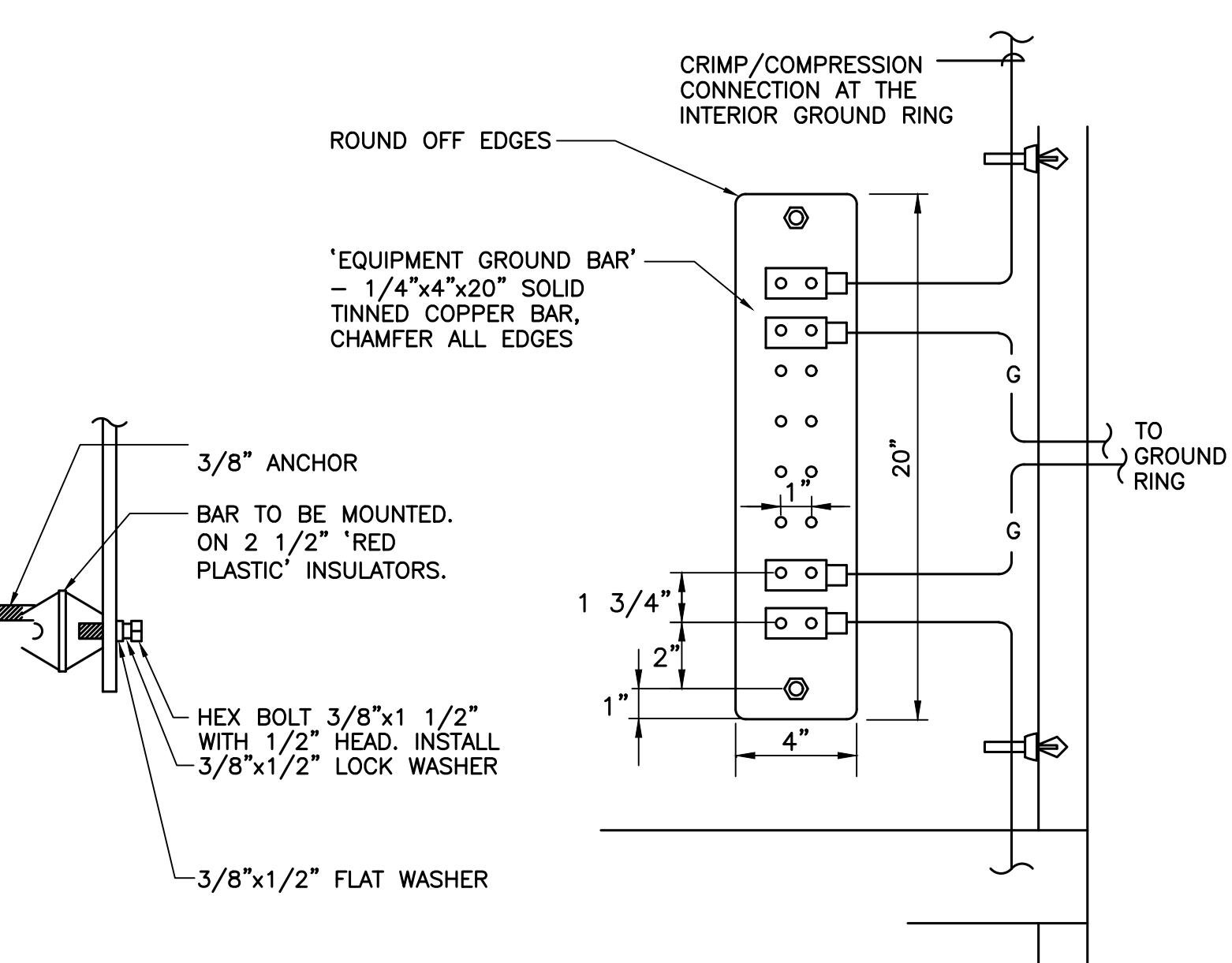
3 3/4"


6"

12" APPROX.

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.

# 3 ANTENNA CABLE GROUNDING DETAIL


E-3 SCALE: NOT TO SCALE



4 TYPICAL ANTENNA GROUNDING DETAIL  
E-3 SCALE: NOT TO SCALE

**RRH POLE MOUNT GROUNDING**

**6** **EQUIPMENT GROUND BAR DETAIL**  
E-3 SCALE: NOT TO SCALE



## GROUNDING SCHEMATIC NOTES

1 #6 AWG

**7** **ELECTRICAL SCHEMATIC DIAGRAM**  
E-3 SCALE: NOT TO SCALE

## ELECTRICAL SPECIFICATIONS

### SECTION 16010

#### 1.02. GENERAL REQUIREMENTS

- A. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE MADE IN STRICT ACCORDANCE WITH ALL LOCAL, STATE AND NATIONAL CODES AND REGULATIONS WHICH MAY APPLY AND NOTHING IN THE DRAWINGS OR SPECIFICATIONS SHALL BE INTERPRETED AS AN INFRINGEMENT OF SUCH CODES OR REGULATIONS.
- B. THE ELECTRICAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE COMPLETE INSTALLATION AND COORDINATION OF THE ENTIRE ELECTRICAL SERVICE. ALL ACTIVITIES TO BE COORDINATED THROUGH OWNERS REPRESENTATIVE, DESIGN ENGINEER AND OTHER AUTHORITIES HAVING JURISDICTION OF TRADES.
- C. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND PAY ALL FEES THAT MAY BE REQUIRED FOR THE ELECTRICAL WORK AND FOR THE SCHEDULING OF ALL INSPECTIONS THAT MAY BE REQUIRED BY THE LOCAL AUTHORITY.
- D. THE CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATION WITH THE BUILDING OWNER FOR NEW AND/OR DEMOLITION WORK INVOLVED.
- E. NO MATERIAL OTHER THAN THAT CONTAINED IN THE "LATEST LIST OF ELECTRICAL FITTINGS" APPROVED BY THE UNDERWRITERS' LABORATORIES, SHALL BE USED IN ANY PART OF THE WORK. ALL MATERIAL FOR WHICH LABEL SERVICE HAS BEEN ESTABLISHED SHALL BEAR THE U.L. LABEL.
- F. THE CONTRACTOR SHALL GUARANTEE ALL NEW WORK FOR A PERIOD OF ONE YEAR FROM THE ACCEPTANCE DATE BY THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING WARRANTIES FROM ALL EQUIPMENT MANUFACTURERS FOR SUBMISSION TO THE OWNER.
- G. DRAWINGS INDICATE GENERAL ARRANGEMENT OF WORK INCLUDED IN CONTRACT. CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE MODIFICATIONS TO THE LAYOUT OF THE WORK TO PREVENT CONFLICT WITH WORK OF OTHER TRADES AND FOR THE PROPER INSTALLATION OF WORK. CHECK ALL DRAWINGS AND VISIT JOB SITE TO VERIFY SPACE AND TYPE OF EXISTING CONDITIONS IN WHICH WORK WILL BE DONE, PRIOR TO SUBMITAL OF BID.
- H. THE ELECTRICAL CONTRACTOR SHALL SUPPLY THREE (3) COMPLETE SETS OF APPROVED DRAWINGS, ENGINEERING DATA SHEETS, MAINTENANCE AND OPERATING INSTRUCTION MANUALS FOR ALL SYSTEMS AND THEIR RESPECTIVE EQUIPMENT. THESE MANUALS SHALL BE INSERTED IN VINYL COVERED 3-RING BINDERS AND TURNED OVER TO OWNER'S REPRESENTATIVE ONE (1) WEEK PRIOR TO FINAL PUNCH LIST.
- I. ALL WORK SHALL BE INSTALLED IN A NEAT AND WORKMAN LIKE MANNER AND WILL BE SUBJECT TO THE APPROVAL OF THE OWNER'S REPRESENTATIVE.
- J. ALL EQUIPMENT AND MATERIALS TO BE INSTALLED SHALL BE NEW, UNLESS OTHERWISE NOTED.
- K. BEFORE FINAL PAYMENT, THE CONTRACTOR SHALL PROVIDE A COMPLETE SET OF PRINTS (AS-BUILTS), LEGIBLY MARKED IN RED PENCIL TO SHOW ALL CHANGES FROM THE ORIGINAL PLANS.
- L. PROVIDE TEMPORARY POWER AND LIGHTING IN WORK AREAS AS REQUIRED.
- M. SHOP DRAWINGS:
  - 1. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF SHOP DRAWINGS ON ALL EQUIPMENT AND MATERIALS PROPOSED FOR USE ON THIS PROJECT, GIVING ALL DETAILS, WHICH INCLUDE DIMENSIONS, CAPACITIES, ETC.
  - 2. CONTRACTOR SHALL SUBMIT SIX (6) COPIES OF ALL TEST REPORTS CALLED FOR IN THE SPECIFICATIONS AND DRAWINGS.
- N. THE ENTIRE ELECTRICAL INSTALLATION SHALL BE IN ACCORDANCE WITH OWNER'S SPECIFICATIONS, AND REQUIREMENTS OF ALL LOCAL AUTHORITIES HAVING JURISDICTION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO COORDINATE WITH APPROPRIATE INDIVIDUALS TO OBTAIN ALL SUCH SPECIFICATIONS AND REQUIREMENTS. NOTHING CONTAINED IN, OR OMITTED FROM, THESE DOCUMENTS SHALL RELIEVE CONTRACTOR FROM THIS OBLIGATION.

### SECTION 16111

#### 1.01. CONDUITS

- A. MINIMUM CONDUIT SIZE FOR BRANCH CIRCUITS, LOW VOLTAGE CONTROL AND ALARM CIRCUITS SHALL BE 3/4". CONDUITS SHALL BE PROPERLY FASTENED AS REQUIRED BY THE N.E.C.
- B. THE INTERIOR OF RACEWAYS/ENCLOSURES INSTALLED UNDERGROUND SHALL BE CONSIDERED TO BE WET LOCATION, INSULATED CONDUCTORS SHALL BE LISTED FOR USE IN WET LOCATIONS. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.
- C. CONDUIT INSTALLED UNDERGROUND SHALL BE INSTALLED TO MEET MINIMUM COVER REQUIREMENTS OF TABLE 300.5.
- D. PROVIDE RIGID GALVANIZED STEEL CONDUIT (RMC) FOR THE FIRST 10 FOOT SECTION WHEN LEAVING A BUILDING OR SECTIONS PASSING THROUGH FLOOR SLABS
- E. ONLY LISTED PVC CONDUIT AND FITTINGS ARE PERMITTED FOR THE INSTALLATION OF ELECTRICAL CONDUCTORS, SUITABLE FOR UNDERGROUND APPLICATIONS.

| CONDUIT SCHEDULE SECTION 16111 |                            |                                                                                                                                    |                                                      |
|--------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| CONDUIT TYPE                   | NEC REFERENCE              | APPLICATION                                                                                                                        | MIN. BURIAL DEPTH (PER NEC TABLE 300.5) <sup>2</sup> |
| EMT                            | ARTICLE 358                | INTERIOR CIRCUITING, EQUIPMENT ROOMS, SHELTERS                                                                                     | N/A                                                  |
| RMC, RIGID GALV. STEEL         | ARTICLE 344, 300.5, 300.50 | ALL INTERIOR/ EXTERIOR CIRCUITING, ALL UNDERGROUND INSTALLATIONS.                                                                  | 6 INCHES                                             |
| PVC, SCHEDULE 40               | ARTICLE 352, 300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE NOT SUBJECT TO PHYSICAL DAMAGE. <sup>1</sup> | 18 INCHES                                            |
| PVC, SCHEDULE 80               | ARTICLE 352, 300.5, 300.50 | INTERIOR/ EXTERIOR CIRCUITING AND GROUNDING SYSTEMS, UNDERGROUND INSTALLATIONS, WHERE SUBJECT TO PHYSICAL DAMAGE. <sup>1</sup>     | 18 INCHES                                            |
| LIQUID TIGHT FLEX, METAL       | ARTICLE 350                | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                                          | N/A                                                  |
| FLEX. METAL                    | ARTICLE 348                | SHORT LENGTHS (MAX. 3FT.) WIRING TO VIBRATING EQUIPMENT IN WET LOCATIONS.                                                          | N/A                                                  |

<sup>1</sup> PHYSICAL DAMAGE IS SUBJECT TO THE AUTHORITY HAVING JURISDICTION.

<sup>2</sup> UNDERGROUND CONDUIT INSTALLED UNDER ROADS, HIGHWAYS, DRIVEWAYS, PARKING LOTS SHALL HAVE MINIMUM DEPTH OF 24".

<sup>3</sup> WHERE SOLID ROCK PREVENTS COMPLIANCE WITH MINIMUM COVER DEPTHS, WIRING SHALL BE INSTALLED IN PERMITTED RACEWAY FOR DIRECT BURIAL. THE RACEWAY SHALL BE COVERED BY A MINIMUM OF 2' OF CONCRETE EXTENDING DOWN TO ROCK.

### SECTION 16123

#### 1.01. CONDUCTORS

- A. ALL CONDUCTORS SHALL BE TYPE THWN (INT. APPLICATION) AND XHHW (EXT. APPLICATION). 75 DEGREE C, 600 VOLT INSULATION, SOFT ANNEALED STRANDED COPPER. #10 AWG AND SMALLER SHALL BE SPLICED USING ACCEPTABLE SOLDERLESS PRESSURE CONNECTORS. #8 AWG AND LARGER SHALL BE SPLICED USING COMPRESSION SPLIT-BOLT TYPE CONNECTORS. #12 AWG SHALL BE THE MINIMUM SIZE CONDUCTOR FOR LINE VOLTAGE BRANCH CIRCUITS. REFER TO PANEL SCHEDULE FOR BRANCH CIRCUIT CONDUCTOR SIZE(S). CONDUCTORS SHALL BE COLOR CODED FOR CONSISTENT PHASE IDENTIFICATION:

|      |                  |                          |
|------|------------------|--------------------------|
| LINE | COLOR            | COLOR                    |
| A    | BLACK            | BROWN                    |
| B    | RED              | ORANGE                   |
| C    | BLUE             | YELLOW                   |
| N    | CONTINUOUS WHITE | GREY                     |
| G    | CONTINUOUS GREEN | GREEN WITH YELLOW STRIPE |

- B. MINIMUM BENDING RADIUS FOR CONDUCTORS SHALL BE 12 TIMES THE LARGEST DIAMETER OF BRANCH CIRCUIT CONDUCTOR.

### SECTION 16130

#### 1.01. BOXES

- A. FURNISH AND INSTALL OUTLET BOXES FOR ALL DEVICES, SWITCHES, RECEPTACLES, ETC.. BOXES TO BE ZINC COATED STEEL.
- B. FURNISH AND INSTALL PULL BOXES IN MAIN FEEDERS RUNS WHERE REQUIRED. PULL BOXES SHALL BE GALVANIZED STEEL WITH SCREW REMOVABLE COVERS, SIZE AND QUANTITY AS REQUIRED. PROVIDE WEATHERPROOF CONSTRUCTION IN WET LOCATIONS.

### SECTION 16140

#### 1.01. WIRING DEVICES

- A. THE FOLLOWING LIST IS PROVIDED TO CONVEY THE QUALITY AND RATING OF WIRING DEVICES WHICH ARE TO BE INSTALLED. A COMPLETE LIST OF ALL DEVICES MUST BE SUBMITTED BEFORE INSTALLATION FOR APPROVAL.
  - 1. 15 MINUTE TIMER SWITCH - INTERMATIC #FF15M (INTERIOR LIGHTS)
  - 2. DUPLEX RECEPTACLE - P&S #2095 (GFCI) SPECIFICATION GRADE
  - 3. SINGLE POLE SWITCH - P&S #CSB20AC2 (20A-120V HARD USE) SPECIFICATION GRADE
  - 4. DUPLEX RECEPTACLE - P&S #5362 (20A-120V HARD USE) SPECIFICATION GRADE
- B. PLATES - ALL PLATES USED SHALL BE CORROSION RESISTANT TYPE 304 STAINLESS STEEL. PLATES SHALL BE FROM SAME MANUFACTURER AS SWITCHES AND RECEPTACLES. PROVIDE WEATHERPROOF HOUSING FOR DEVICES LOCATED IN WET LOCATIONS.
- C. OTHER MANUFACTURERS OF THE SWITCHES, RECEPTACLES AND PLATES MAY BE SUBMITTED FOR APPROVAL BY THE ENGINEER.

### SECTION 16170

#### 1.01. DISCONNECT SWITCHES

- A. FUSIBLE AND NON-FUSIBLE, 600V, HEAVY DUTY DISCONNECT SWITCHES SHALL BE AS MANUFACTURED BY SQUARE "D". PROVIDE FUSES AS CALLED FOR ON THE CONTRACT DRAWINGS. AMPERE RATING SHALL BE CONSISTENT WITH LOAD BEING SERVED. DISCONNECT SWITCH COVER SHALL BE MECHANICALLY INTERLOCKED TO PREVENT COVER FROM OPENING WHEN THE SWITCH IS IN THE "ON" POSITION. EXTERIOR APPLICATIONS SHALL BE NEMA 3R CONSTRUCTION WITH PADLOCK FEATURE.

### SECTION 16190

#### 1.01. SEISMIC RESTRAINT

- A. ALL DEVICES SHALL BE INSTALLED IN ACCORDANCE WITH ZONE 2 SEISMIC REQUIREMENTS.

### SECTION 16195

#### 1.01. LABELING AND IDENTIFICATION NOMENCLATURE FOR ELECTRICAL EQUIPMENT

- A. CONTRACTOR SHALL FURNISH AND INSTALL NON-METALLIC ENGRAVED BACK-LIT NAMEPLATES ON ALL PANELS AND MAJOR ITEMS OF ELECTRICAL EQUIPMENT.
- B. LETTERS TO BE WHITE ON BLACK BACKGROUND WITH LETTERS 1-1/2 INCH HIGH WITH 1/4 INCH MARGIN.
- C. IDENTIFICATION NOMENCLATURE SHALL BE IN ACCORDANCE WITH OWNER'S STANDARDS.

### SECTION 16450

#### 1.01. GROUNDS

- A. ALL NON-CURRENT CARRYING PARTS OF THE ELECTRICAL AND TELEPHONE CONDUIT SYSTEMS SHALL BE MECHANICALLY AND ELECTRICALLY CONNECTED TO PROVIDE AN INDEPENDENT RETURN PATH TO THE EQUIPMENT GROUNDING SOURCES.
- B. GROUNDING SYSTEM WILL BE IN ACCORDANCE WITH THE LATEST ACCEPTABLE EDITION OF THE NATIONAL ELECTRICAL CODE AND REQUIREMENTS PER LOCAL INSPECTOR HAVING JURISDICTION.

#### C. GROUNDING OF PANELBOARDS:

- 1. PANELBOARD SHALL BE GROUNDED BY TERMINATING THE PANELBOARD FEEDER'S EQUIPMENT GROUND CONDUCTOR TO THE EQUIPMENT GROUND BAR KIT(S) LUGGED TO THE CABINET. ENSURE THAT THE SURFACE BETWEEN THE KIT AND CABINET ARE BARE METAL TO BARE METAL. PRIME AND PAINT OVER TO PREVENT CORROSION.
- 2. CONDUIT(S) TERMINATING INTO THE PANELBOARD SHALL HAVE GROUNDING TYPE BUSHINGS. THE BUSHINGS SHALL BE BONDED TOGETHER WITH BARE #10 AWG COPPER CONDUCTOR WHICH IN TURN IS TERMINATED INTO THE PANELBOARD'S EQUIPMENT GROUND BAR KIT(S).

#### D. EQUIPMENT GROUNDING CONDUCTOR:

- 1. EACH EQUIPMENT GROUND CONDUCTOR SHALL BE SIZED IN ACCORDANCE WITH THE N.E.C. ARTICLE 250-122.
- 2. THE MINIMUM SIZE OF EQUIPMENT GROUND CONDUCTOR SHALL BE #12 AWG COPPER.
- 3. EACH FEEDER OR BRANCH CIRCUIT SHALL HAVE EQUIPMENT GROUND CONDUCTOR(S) INSTALLED IN THE SAME RACEWAY(S).

#### E. CELLULAR GROUNDING SYSTEM:

- CONTRACTOR SHALL PROVIDE A CELLULAR GROUNDING SYSTEM WITH THE MAXIMUM AC RESISTANCE TO GROUND OF 10 OHM BETWEEN ANY POINT ON THE GROUNDING SYSTEM AS MEASURED BY 3-POINT GROUNDING TEST. (REFER TO SECTION 16960).

PROVIDE THE CELLULAR GROUNDING SYSTEM AS SPECIFIED ON DRAWINGS, INCLUDING, BUT NOT LIMITED TO:

- 1. GROUND BARS
- 2. EXTERIOR GROUNDING (WHERE REQUIRED DUE TO MEASURED AC RESISTANCE GREATER THAN SPECIFIED).
- 3. ANTENNA GROUND CONNECTIONS AND PLATES.

- F. CONTRACTOR, AFTER COMPLETION OF THE COMPLETE GROUNDING SYSTEM BUT PRIOR TO CONCEALMENT/BURIAL OF SAME, SHALL NOTIFY OWNER'S PROJECT ENGINEER WHO WILL HAVE A DESIGN ENGINEER VISIT SITE AND MAKE A VISUAL INSPECTION OF THE GROUNDING GRID AND CONNECTIONS OF THE SYSTEM.

- G. ALL EQUIPMENT SHALL BE BONDED TO GROUND AS REQUIRED BY N.E.C., MFG. SPECIFICATIONS, AND OWNER'S SPECIFICATIONS.

### SECTION 16470

#### 1.01. DISTRIBUTION EQUIPMENT

- A. REFER TO CONTRACT DRAWINGS FOR DETAILS AND SCHEDULES.

### SECTION 16477

#### 1.01. FUSES

- A. FUSES SHALL BE NONRENEWABLE TYPE AS MANUFACTURED BY "BUSSMAN" OR APPROVED EQUAL FUSES RATED TO 1/10 AMPERE UP TO 600 AMPERES SHALL BE EQUIVALENT TO BUSSMAN TYPE LPN-RK (250V) UL CLASS RK1, LOW PEAK, DUAL ELEMENT, TIME-DELAY FUSES. FUSES SHALL HAVE SEPARATE SHORT CIRCUIT AND OVERLOAD ELEMENTS AND HAVE AN INTERRUPTING RATING OF 200 KAIC. UPON COMPLETION OF WORK, PROVIDE ONE SPARE SET OF FUSES FOR EACH TYPE INSTALLED.

### SECTION 16960

#### 1.01. TESTS BY INDEPENDENT ELECTRICAL TESTING FIRM

- A. CONTRACTOR SHALL RETAIN THE SERVICES OF A LOCAL INDEPENDENT ELECTRICAL TESTING FIRM (WITH MINIMUM 5 YEARS COMMERCIAL EXPERIENCE IN THE ELECTRICAL TESTING INDUSTRY) AS SPECIFIED BY OWNER TO PERFORM:

TEST 1: THERMAL OVERLOAD AND MAGNETIC TRIP TEST, AND CABLE INSULATION TEST FOR ALL CIRCUIT BREAKERS RATED 100 AMPS OR GREATER.

TEST 2: RESISTANCE TO GROUND TEST ON THE CELLULAR GROUNDING SYSTEM.

THE TESTING FIRM SHALL INCLUDE THE FOLLOWING INFORMATION WITH THE REPORT:

- 1. TESTING PROCEDURE INCLUDING THE MAKE AND MODEL OF TEST EQUIPMENT.
- 2. CERTIFICATION OF TESTING EQUIPMENT CALIBRATION WITHIN SIX (6) MONTHS OF DATE OF TESTING. INCLUDE CERTIFICATION LAB ADDRESS AND TELEPHONE NUMBER.
- 3. GRAPHICAL DESCRIPTION OF TESTING METHOD ACTUALLY IMPLEMENTED.
- B. THESE TESTS SHALL BE PERFORMED IN THE PRESENCE AND TO THE SATISFACTION OF OWNER'S CONSTRUCTION REPRESENTATIVE. TESTING DATA SHALL BE INITIALED AND DATED BY THE CONSTRUCTION REPRESENTATIVE AND INCLUDED WITH THE WRITTEN REPORT/ANALYSIS.
- C. THE CONTRACTOR SHALL FORWARD SIX (6) COPIES OF THE INDEPENDENT ELECTRICAL TESTING FIRM'S REPORT/ANALYSIS TO ENGINEER A MINIMUM OF TEN (10) WORKING DAYS PRIOR TO THE JOB TURNOVER.
- D. CONTRACTOR TO PROVIDE A MINIMUM OF ONE (1) WEEK NOTICE TO OWNER AND ENGINEER FOR ALL TESTS REQUIRING WITNESSING.

### SECTION 16961

#### 1.01. TESTS BY CONTRACTOR

- A. ALL TESTS AS REQUIRED UPON COMPLETION OF WORK, SHALL BE MADE BY THIS CONTRACTOR. THESE SHALL BE CONTINUITY AND INSULATION TESTS; TEST TO DETERMINE THE QUALITY OF MATERIALS, ETC. AND SHALL BE MADE IN ACCORDANCE WITH N.E.C. RECOMMENDATIONS. ALL FEEDERS AND BRANCH CIRCUIT WIRING (EXCEPT CLASS 2 SIGNAL CIRCUITS) MUST BE TESTED FREE FROM SHORT CIRCUIT AND GROUND FAULT CONDITIONS AT 500V IN A REASONABLY DRY AMBIENT OF APPROXIMATELY 70 DEGREES F.

- B. CONTRACTOR SHALL PERFORM LOAD PHASE BALANCING TESTS. CIRCUITS SHALL BE CONNECTED TO THE PANELBOARDS SO THAT THE NEW LOAD IS DISTRIBUTED AS EQUALLY AS POSSIBLE BETWEEN EACH LOAD AND NEUTRAL. 10% SHALL BE CONSIDERED AS A REASONABLE AND ACCEPTABLE ALLOWANCE. BRANCH CIRCUITS SHALL BE BALANCED ON THEIR OWN PANELBOARDS; FEEDER LOADS SHALL, IN TURN, BE BALANCED ON THE SERVICE EQUIPMENT. REASONABLE LOAD TEST SHALL BE ARRANGED TO VERIFY LOAD BALANCE IF REQUESTED BY THE ENGINEER.

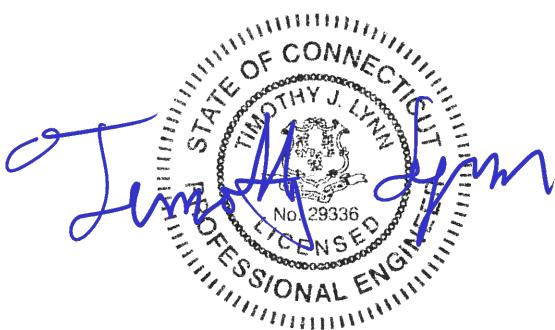
- C. ALL TESTS, UPON REQUEST, SHALL BE REPEATED IN THE PRESENCE OF OWNER'S REPRESENTATIVE. ALL TESTS SHALL BE DOCUMENTED AND TURNED OVER TO OWNER. OWNER SHALL HAVE THE AUTHORITY TO STOP ANY OF THE WORK NOT BEING PROPERLY INSTALLED. ALL SUCH DETECTED WORK SHALL BE REPAIRED OR REPLACED AT NO ADDITIONAL EXPENSE TO THE OWNER AND THE TESTS SHALL BE REPEATED.

|                                                                                                                                                      |  |                                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------|--|
| T-MOBILE NORTHEAST LLC                                                                                                                               |  | SPRINT ID: CT33CX016<br>SITE ID: CTHA724A<br>35 OLD ROUTE 44<br>EASTFORD, CT 06242 |  |
| CENTEK engineering<br>Centered on Solutions™<br>(203) 484-5380<br>(203) 484-5382<br>632 North Benton Road<br>Branford, CT 06405<br>www.CentekEng.com |  | DATE: 04/21/21<br>SCALE: AS NOTED<br>JOB NO.: 21005.20                             |  |
| ELECTRICAL SPECIFICATIONS                                                                                                                            |  |                                                                                    |  |
| E-4<br>Sheet No. 12 of 12                                                                                                                            |  |                                                                                    |  |

**Structural Analysis Report**

*Antenna Mount Analysis*

*T-Mobile Site #: CTHA724A*


*35 Old Route 44  
Eastford, CT*

*Centek Project No. 21005.20*

*Date: May 3, 2021*

*Rev 2: August 9, 2021*

*Max Stress Ratio = 80.6%*



**Prepared for:**

*T-Mobile USA  
35 Griffin Road  
Bloomfield, CT 06002*

**CENTEK** Engineering, Inc.  
Structural Analysis – Mount Analysis  
T-Mobile Site Ref. ~ CTHA724A  
Eastford, CT  
Rev 2 ~ August 9, 2021

## **Table of Contents**

### **SECTION 1 – REPORT**

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

### **SECTION 2 – CALCULATIONS**

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT

### **SECTION 3 – REFERENCE MATERIALS (NOT INCLUDED WITHIN REPORT)**

- RF DATA SHEET, DATED 07/20/2021

August 9, 2021

Mr. Kyle Richers  
Transcend Wireless  
10 Industrial Ave., Suite 3  
Mahwah, NJ 07430

*Re: Structural Letter ~ Antenna Mount  
T-Mobile – Site Ref: CTHA724A  
35 Old Route 44  
Eastford, CT 06242*

*Centek Project No. 21005.20*

Dear Mr. Richers,

Centek Engineering, Inc. has reviewed the T-Mobile antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the **proposed mount, consisting of three (3) V-frame sector mounts (SitePro P/N: VFA12-HD-S)** to support the proposed equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2015 International Building Code as modified by the 2018 Connecticut State Building Code (CTBC) including ASCE 7-10 and *ANSI/TIA-222-G Structural Standards for Steel Antenna Towers and Supporting Structures*.

The loads considered in this analysis consist of the following:

- **T-Mobile:**  
**V-Frames:** Three (3) Ericsson AIR6449 panel antennas, three (3) RFS APXVAALL24\_43-U-NA20 panel antennas, three (3) Ericsson 4480 B71+B85 remote radio heads and three (3) Ericsson 4460 B25+B66 remote radio heads mounted on three (3) V-Frames with a RAD center elevation of 165-ft +/- AGL.


The antenna mount was analyzed per the requirements of the 2015 International Building Code as modified by the 2018 Connecticut State Building Code considering a nominal design wind speed of 101 mph for Eastford as required in Appendix N of the 2018 Connecticut State Building Code.

A structural analysis of tower and foundation needs to be completed prior to any work.

Based on our review of the installation, it is our opinion that the **subject antenna mount has sufficient capacity** to support the aforementioned antenna configuration. If there are any questions regarding this matter, please feel free to call.

Respectfully Submitted by:

  
Timothy J. Lynn, PE  
Structural Engineer



Prepared by:

  
Fernando J. Palacios  
Engineer

**CENTEK** Engineering, Inc.  
Structural Analysis – Mount Analysis  
T-Mobile Site Ref. ~ CTHA724A  
Eastford, CT  
Rev 2 ~ August 9, 2021

## **Section 2 - Calculations**

**Development of Design Heights, Exposure Coefficients, and Velocity Pressures Per TIA-222-G**
**Wind Speeds**

 Basic Wind Speed  $V := 101$  mph

(User Input - 2018 CSBC Appendix N)

 Basic Wind Speed with Ice  $V_i := 50$  mph

(User Input per Annex B of TIA-222-G)

**Input**

Structure Type = Structure\_Type := Lattice (User Input)

Structure Category = SC := 1 (User Input)

Exposure Category = Exp := C (User Input)

Structure Height = h := 190 ft (User Input)

Height to Center of Antennas = z := 165 ft (User Input)

Radial Ice Thickness = t\_i := 1.00 in (User Input per Annex B of TIA-222-G)

Radial Ice Density = Id := 56.00pcf (User Input)

Topographic Factor = K\_zt := 1.0 (User Input)

K\_a := 1.0 (User Input)

Gust Response Factor = G\_H = 1.11 (User Input)

**Output**

 Wind Direction Probability Factor =  $K_d := \begin{cases} 0.95 & \text{if Structure_Type = Pole} \\ 0.85 & \text{if Structure_Type = Lattice} \end{cases} = 0.85$  (Per Table 2-2 of TIA-222-G)

(Per Table 2-3 of TIA-222-G)

 Importance Factors =  $I_{Wind} := \begin{cases} 1 & \text{if SC = 1} \\ 0.87 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \\ 1.15 & \text{if SC = 4} \end{cases}$ 
 $I_{Wind\_w\_Ice} := \begin{cases} 1 & \text{if SC = 1} \\ 0 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \\ 1.00 & \text{if SC = 4} \end{cases}$ 
 $I_{Ice} := \begin{cases} 1 & \text{if SC = 1} \\ 0 & \text{if SC = 2} \\ 1.00 & \text{if SC = 3} \\ 1.25 & \text{if SC = 4} \end{cases}$ 

$K_{iz} := \left( \frac{z}{33} \right)^{0.1} = 1.175$

Velocity Pressure Coefficient Antennas =

$t_{iz} := 2.0 \cdot t_i \cdot I_{ice} \cdot K_{iz} \cdot K_{zt}^{0.35} = 2.349$

$K_z := 2.01 \cdot \left( \left( \frac{z}{zg} \right)^2 \right)^{\frac{2}{\alpha}} = 1.406$

Velocity Pressure w/o Ice Antennas =

$qz := 0.00256 \cdot K_d \cdot K_z \cdot V^2 \cdot I_{Wind} = 31$

psf

Velocity Pressure with Ice Antennas =

$q_{ice} := 0.00256 \cdot K_d \cdot K_z \cdot V_i^2 \cdot I_{Wind} = 8$

psf

**Development of Wind & Ice Load on Antennas**
**Antenna Data:**

|                             |                                             |              |              |
|-----------------------------|---------------------------------------------|--------------|--------------|
| Antenna Model =             | RFS APXVAALL24_43-U-NA20                    |              |              |
| Antenna Shape =             | Flat                                        | (User Input) |              |
| Antenna Height =            | $L_{ant} := 95.9$                           | in           | (User Input) |
| Antenna Width =             | $W_{ant} := 24.0$                           | in           | (User Input) |
| Antenna Thickness =         | $T_{ant} := 8.5$                            | in           | (User Input) |
| Antenna Weight =            | $WT_{ant} := 150$                           | lbs          | (User Input) |
| Number of Antennas =        | $N_{ant} := 1$                              |              | (User Input) |
| Antenna Aspect Ratio =      | $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 4.0$ |              |              |
| Antenna Force Coefficient = | $Ca_{ant} = 1.27$                           |              |              |

**Wind Load (without ice)**

|                                  |                                                                          |     |
|----------------------------------|--------------------------------------------------------------------------|-----|
| Surface Area for One Antenna =   | $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 16$                    | sf  |
| Total Antenna Wind Force Front = | $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 701$ | lbs |
| Surface Area for One Antenna =   | $SA_{ants} := \frac{L_{ant} \cdot T_{ant}}{144} = 5.7$                   | sf  |
| Total Antenna Wind Force Side =  | $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ants} = 248$ | lbs |

**Wind Load (with ice)**

|                                         |                                                                                                 |     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----|
| Surface Area for One Antenna w/ Ice =   | $SA_{ICEantF} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 20$  | sf  |
| Total Antenna Wind Force w/ Ice Front = | $F_{Iant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 216$              | lbs |
| Surface Area for One Antenna w/ Ice =   | $SA_{ICEants} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz})}{144} = 9.2$ | sf  |
| Total Antenna Wind Force w/ Ice Side =  | $F_{Iant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEants} = 99$               | lbs |

**Gravity Load (without ice)**

|                          |                                |     |
|--------------------------|--------------------------------|-----|
| Weight of All Antennas = | $WT_{ant} \cdot N_{ant} = 150$ | lbs |
|--------------------------|--------------------------------|-----|

**Gravity Loads (ice only)**

|                                 |                                                                                                                                    |       |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| Volume of Each Antenna =        | $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 2 \cdot 10^4$                                                                    | cu in |
| Volume of Ice on Each Antenna = | $V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 2 \cdot 10^4$ | cu in |
| Weight of Ice on Each Antenna = | $W_{ICEant} := \frac{V_{ice}}{1728} \cdot 1 \text{d} = 601$                                                                        | lbs   |
| Weight of Ice on All Antennas = | $W_{ICEant} \cdot N_{ant} = 601$                                                                                                   | lbs   |

**Development of Wind & Ice Load on Antennas**

**Antenna Data:**

|                             |                                             |              |              |
|-----------------------------|---------------------------------------------|--------------|--------------|
| Antenna Model =             | Ericsson - AIR6449 B41                      |              |              |
| Antenna Shape =             | Flat                                        | (User Input) |              |
| Antenna Height =            | $L_{ant} := 33.1$                           | in           | (User Input) |
| Antenna Width =             | $W_{ant} := 20.5$                           | in           | (User Input) |
| Antenna Thickness =         | $T_{ant} := 8.3$                            | in           | (User Input) |
| Antenna Weight =            | $WT_{ant} := 103$                           | lbs          | (User Input) |
| Number of Antennas =        | $N_{ant} := 1$                              | (User Input) |              |
| Antenna Aspect Ratio =      | $Ar_{ant} := \frac{L_{ant}}{W_{ant}} = 1.6$ |              |              |
| Antenna Force Coefficient = | $Ca_{ant} = 1.2$                            |              |              |

**Wind Load (without ice)**

|                                  |                                                                          |     |
|----------------------------------|--------------------------------------------------------------------------|-----|
| Surface Area for One Antenna =   | $SA_{antF} := \frac{L_{ant} \cdot W_{ant}}{144} = 4.7$                   | sf  |
| Total Antenna Wind Force Front = | $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antF} = 196$ | lbs |
| Surface Area for One Antenna =   | $SA_{antS} := \frac{L_{ant} \cdot T_{ant}}{144} = 1.9$                   | sf  |
| Total Antenna Wind Force Side =  | $F_{ant} := qz \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{antS} = 79$  | lbs |

**Wind Load (with ice)**

|                                         |                                                                                                 |     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|-----|
| Surface Area for One Antenna w/ Ice =   | $SA_{ICEantF} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz})}{144} = 6.6$ | sf  |
| Total Antenna Wind Force w/ Ice Front = | $F_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantF} = 67$                | lbs |
| Surface Area for One Antenna w/ Ice =   | $SA_{ICEantS} := \frac{(L_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz})}{144} = 3.4$ | sf  |
| Total Antenna Wind Force w/ Ice Side =  | $F_{ant} := qz_{ice} \cdot G_H \cdot Ca_{ant} \cdot K_a \cdot SA_{ICEantS} = 35$                | lbs |

**Gravity Load (without ice)**

|                                 |                                                                                                                            |       |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|
| Weight of All Antennas =        | $WT_{ant} \cdot N_{ant} = 103$                                                                                             | lbs   |
| <b>Gravity Loads (ice only)</b> |                                                                                                                            |       |
| Volume of Each Antenna =        | $V_{ant} := L_{ant} \cdot W_{ant} \cdot T_{ant} = 5632$                                                                    | cu in |
| Volume of Ice on Each Antenna = | $V_{ice} := (L_{ant} + 2 \cdot t_{iz}) \cdot (W_{ant} + 2 \cdot t_{iz}) \cdot (T_{ant} + 2 \cdot t_{iz}) - V_{ant} = 6749$ | cu in |
| Weight of Ice on Each Antenna = | $W_{ICEant} := \frac{V_{ice}}{1728} \cdot Id = 219$                                                                        | lbs   |
| Weight of Ice on All Antennas = | $W_{ICEant} \cdot N_{ant} = 219$                                                                                           | lbs   |

**Development of Wind & Ice Load on RRUS's**

**RRUS Data:**

|                          |                                                |              |              |
|--------------------------|------------------------------------------------|--------------|--------------|
| RRUS Model =             | Ericsson 4480 B71+B85                          |              |              |
| RRUS Shape =             | Flat                                           | (User Input) |              |
| RRUS Height =            | $L_{RRUS} := 21.8$                             | in           | (User Input) |
| RRUS Width =             | $W_{RRUS} := 15.7$                             | in           | (User Input) |
| RRUS Thickness =         | $T_{RRUS} := 7.5$                              | in           | (User Input) |
| RRUS Weight =            | $WT_{RRUS} := 84$                              | lbs          | (User Input) |
| Number of RRUS's =       | $N_{RRUS} := 1$                                |              |              |
| RRUS Aspect Ratio =      | $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.4$ |              |              |
| RRUS Force Coefficient = | $Ca_{RRUS} = 1.2$                              |              |              |

**Wind Load (without ice)**

|                             |                                                                            |     |
|-----------------------------|----------------------------------------------------------------------------|-----|
| Surface Area for One RRUS = | $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.4$                  | sf  |
| Total RRUS Wind Force =     | $F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 99$ | lbs |
| Surface Area for One RRUS = | $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.1$                  | sf  |
| Total RRUS Wind Force =     | $F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 47$ | lbs |

**Wind Load (with ice)**

|                                    |                                                                                                    |     |
|------------------------------------|----------------------------------------------------------------------------------------------------|-----|
| Surface Area for One RRUS w/ Ice = | $SA_{ICERRUSF} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz})}{144} = 3.8$ | sf  |
| Total RRUS Wind Force w/ Ice =     | $F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 38$               | lbs |
| Surface Area for One RRUS w/ Ice = | $SA_{ICERRUSS} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz})}{144} = 2.2$ | sf  |
| Total RRUS Wind Force w/ Ice =     | $F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSS} = 23$               | lbs |

**Gravity Load (without ice)**

|                       |                                 |     |
|-----------------------|---------------------------------|-----|
| Weight of All RRUSs = | $WT_{RRUS} \cdot N_{RRUS} = 84$ | lbs |
|-----------------------|---------------------------------|-----|

**Gravity Loads (ice only)**

|                              |                                                                                                                                |       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
| Volume of Each RRUS =        | $V_{RRUS} := L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 2567$                                                                    | cu in |
| Volume of Ice on Each RRUS = | $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 4027$ | cu in |
| Weight of Ice on Each RRUS = | $W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 130$                                                                           | lbs   |
| Weight of Ice on All RRUSs = | $W_{ICERRUS} \cdot N_{RRUS} = 130$                                                                                             | lbs   |

**Development of Wind & Ice Load on RRUS's**

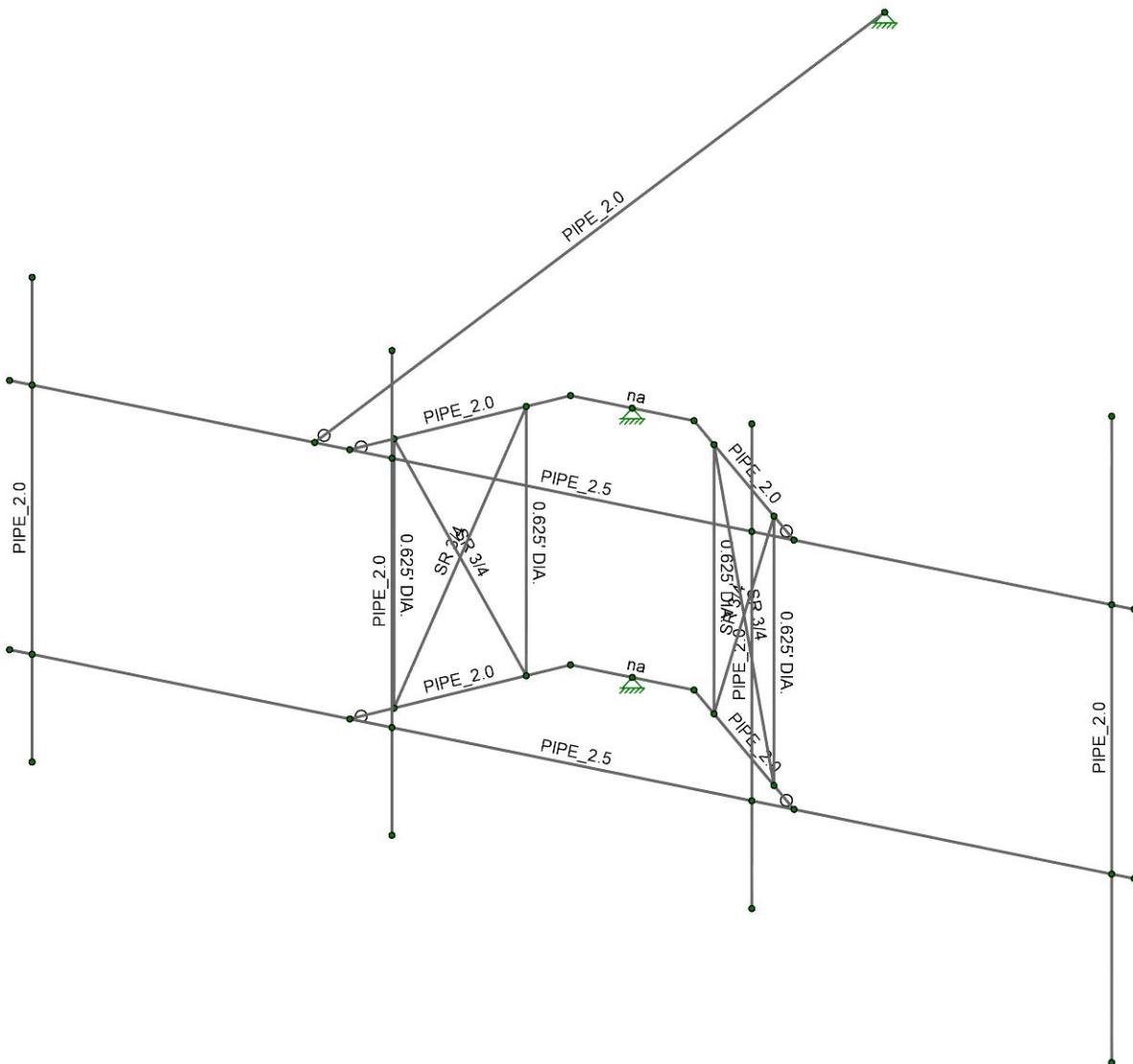
**RRUS Data:**

|                          |                                                |              |              |
|--------------------------|------------------------------------------------|--------------|--------------|
| RRUS Model =             | Ericsson 4460 B25+B66                          |              |              |
| RRUS Shape =             | Flat                                           | (User Input) |              |
| RRUS Height =            | $L_{RRUS} := 19.6$                             | in           | (User Input) |
| RRUS Width =             | $W_{RRUS} := 15.7$                             | in           | (User Input) |
| RRUS Thickness =         | $T_{RRUS} := 12.1$                             | in           | (User Input) |
| RRUS Weight =            | $WT_{RRUS} := 109$                             | lbs          | (User Input) |
| Number of RRUS's =       | $N_{RRUS} := 1$                                |              |              |
| RRUS Aspect Ratio =      | $Ar_{RRUS} := \frac{L_{RRUS}}{W_{RRUS}} = 1.2$ |              |              |
| RRUS Force Coefficient = | $Ca_{RRUS} = 1.2$                              |              |              |

**Wind Load (without ice)**

|                             |                                                                            |     |
|-----------------------------|----------------------------------------------------------------------------|-----|
| Surface Area for One RRUS = | $SA_{RRUSF} := \frac{L_{RRUS} \cdot W_{RRUS}}{144} = 2.1$                  | sf  |
| Total RRUS Wind Force =     | $F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSF} = 89$ | lbs |
| Surface Area for One RRUS = | $SA_{RRUSS} := \frac{L_{RRUS} \cdot T_{RRUS}}{144} = 1.6$                  | sf  |
| Total RRUS Wind Force =     | $F_{RRUS} := qz \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{RRUSS} = 68$ | lbs |

**Wind Load (with ice)**


|                                    |                                                                                                    |     |
|------------------------------------|----------------------------------------------------------------------------------------------------|-----|
| Surface Area for One RRUS w/ Ice = | $SA_{ICERRUSF} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz})}{144} = 3.4$ | sf  |
| Total RRUS Wind Force w/ Ice =     | $F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSF} = 35$               | lbs |
| Surface Area for One RRUS w/ Ice = | $SA_{ICERRUSS} := \frac{(L_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz})}{144} = 2.8$ | sf  |
| Total RRUS Wind Force w/ Ice =     | $F_{IRRUS} := qz_{ice} \cdot G_H \cdot Ca_{RRUS} \cdot K_a \cdot SA_{ICERRUSS} = 29$               | lbs |

**Gravity Load (without ice)**

|                       |                                  |     |
|-----------------------|----------------------------------|-----|
| Weight of All RRUSs = | $WT_{RRUS} \cdot N_{RRUS} = 109$ | lbs |
|-----------------------|----------------------------------|-----|

**Gravity Loads (ice only)**

|                              |                                                                                                                                |       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
| Volume of Each RRUS =        | $V_{RRUS} := L_{RRUS} \cdot W_{RRUS} \cdot T_{RRUS} = 3723$                                                                    | cu in |
| Volume of Ice on Each RRUS = | $V_{ice} := (L_{RRUS} + 2 \cdot t_{iz}) \cdot (W_{RRUS} + 2 \cdot t_{iz}) \cdot (T_{RRUS} + 2 \cdot t_{iz}) - V_{RRUS} = 4603$ | cu in |
| Weight of Ice on Each RRUS = | $W_{ICERRUS} := \frac{V_{ice}}{1728} \cdot Id = 149$                                                                           | lbs   |
| Weight of Ice on All RRUSs = | $W_{ICERRUS} \cdot N_{RRUS} = 149$                                                                                             | lbs   |



Envelope Only Solution

Centek Engineering

FJP

21005.20

CTHA724A - AMA

Member Framing

SK-2

Jul 28, 2021 at 08:51 AM

Mount.R3D

**Model Settings**

|                                               |     |
|-----------------------------------------------|-----|
| Number of Reported Sections                   | 5   |
| Number of Internal Sections                   | 97  |
| Member Area Load Mesh Size (in <sup>2</sup> ) | 144 |
| Consider Shear Deformation                    | Yes |
| Consider Torsional Warping                    | Yes |

|                                                    |     |
|----------------------------------------------------|-----|
| Approximate Mesh Size (in)                         | 12  |
| Transfer Forces Between Intersecting Wood Walls    | Yes |
| Increase Wood Wall Nailing Capacity for Wind Loads | Yes |
| Include P-Delta for Walls                          | Yes |
| Optimize Masonry and Wood Walls                    | Yes |
| Maximum Number of Iterations                       | 3   |

|                    |     |
|--------------------|-----|
| Single             | No  |
| Multiple (Optimum) | Yes |
| Maximum            | No  |

|                                                 |     |
|-------------------------------------------------|-----|
| Global Axis corresponding to vertical direction | Y   |
| Convert Existing Data                           | Yes |

|                                 |    |
|---------------------------------|----|
| Default Global Plane for z-axis | XZ |
|---------------------------------|----|

|                              |       |
|------------------------------|-------|
| Plate Local Axis Orientation | Nodal |
|------------------------------|-------|

|                      |                          |
|----------------------|--------------------------|
| Hot Rolled Steel     | AISC 15th (360-16): LRFD |
| Stiffness Adjustment | Yes (Iterative)          |
| Notional Annex       | None                     |
| Connections          | AISC 15th (360-16): LRFD |
| Cold Formed Steel    | AISI S100-10: ASD        |
| Stiffness Adjustment | Yes (Iterative)          |
| Wood                 | AWC NDS-12: ASD          |
| Temperature          | < 100F                   |
| Concrete             | ACI 318-11               |
| Masonry              | ACI 530-11: ASD          |
| Aluminum             | AA ADM1-10: ASD          |
| Structure Type       | Building                 |
| Stiffness Adjustment | Yes (Iterative)          |
| Stainless            | AISC 14th (360-10): ASD  |
| Stiffness Adjustment | Yes (Iterative)          |

|                                                                |                          |
|----------------------------------------------------------------|--------------------------|
| Analysis Methodology                                           | Exact Integration Method |
| Parmer Beta Factor                                             | 0.65                     |
| Compression Stress Block                                       | Rectangular Stress Block |
| Analyze using Cracked Sections                                 | Yes                      |
| Leave room for horizontal rebar splices (2*d bar spacing)      | No                       |
| List forces which were ignored for design in the Detail Report | Yes                      |

|                                                           |           |
|-----------------------------------------------------------|-----------|
| Column Min Steel                                          | 1         |
| Column Max Steel                                          | 8         |
| Rebar Material Spec                                       | ASTM A615 |
| Warn if beam-column framing arrangement is not understood | No        |
| Number of Shear Regions                                   | 4         |
| Region 2 & 3 Spacing Increase Increment (in)              | 4         |

|      |           |
|------|-----------|
| Code | ASCE 7-10 |
|------|-----------|

---

**Model Settings (Continued)**

---

**Hot Rolled Steel Properties**

| Label | E [ksi]     | G [ksi] | Nu    | Therm. C... | Density [k...] | Yield [ksi] | Ry | Fu [ksi] | Rt |     |
|-------|-------------|---------|-------|-------------|----------------|-------------|----|----------|----|-----|
| 1     | A36 Gr.36   | 29000   | 11154 | 0.3         | 0.65           | 0.49        | 36 | 1.5      | 58 | 1.2 |
| 2     | A572 Gr.50  | 29000   | 11154 | 0.3         | 0.65           | 0.49        | 50 | 1.1      | 58 | 1.2 |
| 3     | A992        | 29000   | 11154 | 0.3         | 0.65           | 0.49        | 50 | 1.1      | 58 | 1.2 |
| 4     | A500 Gr.42  | 29000   | 11154 | 0.3         | 0.65           | 0.49        | 42 | 1.3      | 58 | 1.1 |
| 5     | A500 Gr.46  | 29000   | 11154 | 0.3         | 0.65           | 0.49        | 46 | 1.2      | 58 | 1.1 |
| 6     | A53 Grad... | 29000   | 11154 | 0.3         | 0.65           | 0.49        | 35 | 1.5      | 58 | 1.2 |

**Hot Rolled Steel Section Sets**

| Label | Shape         | Type        | Design List | Material | Design Rule | Area [in <sup>2</sup> ] | Iyy [in <sup>4</sup> ] | Izz [in <sup>4</sup> ] | J [in <sup>4</sup> ] |       |
|-------|---------------|-------------|-------------|----------|-------------|-------------------------|------------------------|------------------------|----------------------|-------|
| 1     | Antenna...    | PIPE_2.0    | Column      | Pipe     | A53 Grad... | Typical                 | 1.02                   | 0.627                  | 0.627                | 1.25  |
| 2     | Horizontal... | PIPE_2.5    | Beam        | Pipe     | A53 Grad... | Typical                 | 1.61                   | 1.45                   | 1.45                 | 2.89  |
| 3     | Outrigger...  | PIPE_2.0    | Beam        | Pipe     | A53 Grad... | Typical                 | 1.02                   | 0.627                  | 0.627                | 1.25  |
| 4     | Stabilizer... | PIPE_2.0    | Beam        | Pipe     | A53 Grad... | Typical                 | 1.02                   | 0.627                  | 0.627                | 1.25  |
| 5     | 0.625" Di...  | 0.625' DIA. | Column      | BAR      | A36 Gr.36   | Typical                 | 0.307                  | 0.007                  | 0.007                | 0.015 |
| 6     | 0.75"Dia....  | SR 3/4      | Column      | BAR      | A36 Gr.36   | Typical                 | 0.442                  | 0.016                  | 0.016                | 0.031 |

**Hot Rolled Member Properties**

| Label | Shape | Length [ft] | Lb y-y [ft] | Lb z-z [ft] | Lcomp t... | Lcomp... | L-Torqu... | K y-y | K z-z | Cb | Function |
|-------|-------|-------------|-------------|-------------|------------|----------|------------|-------|-------|----|----------|
| 1     | M1    | Horizon...  | 12.5        | Segment     |            | Lbyy     |            |       |       |    | Lateral  |
| 2     | M2    | Horizon...  | 12.5        | Segment     |            | Lbyy     |            |       |       |    | Lateral  |
| 3     | M3    | Stabiliz... | 10.18       |             |            | Lbyy     |            |       |       |    | Lateral  |
| 4     | M4    | Outrigg...  | 2.521       | Segment     | Segment    | Lbyy     |            |       |       |    | Lateral  |
| 5     | M5    | Outrigg...  | 2.521       | Segment     | Segment    | Lbyy     |            |       |       |    | Lateral  |
| 6     | M6    | Outrigg...  | 2.521       | Segment     | Segment    | Lbyy     |            |       |       |    | Lateral  |
| 7     | M7    | Outrigg...  | 2.521       | Segment     | Segment    | Lbyy     |            |       |       |    | Lateral  |
| 8     | M8    | 0.625"...   | 3.333       |             |            |          |            |       |       |    | Lateral  |
| 9     | M9    | 0.625"...   | 3.333       |             |            |          |            |       |       |    | Lateral  |
| 10    | M10   | 0.75"Di...  | 3.659       | 1.83        | 1.83       | Lbyy     |            |       |       |    | Lateral  |
| 11    | M11   | 0.625"...   | 3.333       |             |            |          |            |       |       |    | Lateral  |
| 12    | M12   | 0.75"Di...  | 3.659       | 1.83        | 1.83       | Lbyy     |            |       |       |    | Lateral  |
| 13    | M13   | 0.625"...   | 3.333       |             |            |          |            |       |       |    | Lateral  |
| 14    | M14   | 0.75"Di...  | 3.659       | 1.83        | 1.83       | Lbyy     |            |       |       |    | Lateral  |
| 15    | M15   | 0.75"Di...  | 3.659       | 1.83        | 1.83       | Lbyy     |            |       |       |    | Lateral  |
| 16    | PS.2  | Antenn...   | 6           |             |            | Lbyy     |            |       |       |    | Lateral  |
| 17    | PS.1  | Antenn...   | 8           |             |            | Lbyy     |            |       |       |    | Lateral  |
| 18    | M19   | Antenn...   | 6           |             |            | Lbyy     |            |       |       |    | Lateral  |
| 19    | M21A  | Antenn...   | 6           |             |            | Lbyy     |            |       |       |    | Lateral  |

**Primary Member Properties**

| Label | I Node | J Node | K Node | Rotate(deg) | Section/S...  | Type   | Design List | Material    | Design Rule |
|-------|--------|--------|--------|-------------|---------------|--------|-------------|-------------|-------------|
| 1     | M1     | N2     | N34    |             | Horizontal... | Beam   | Pipe        | A53 Grad... | Typical     |
| 2     | M2     | N1     | N33    |             | Horizontal... | Beam   | Pipe        | A53 Grad... | Typical     |
| 3     | M3     | N7     | N8     |             | Stabilizer... | Beam   | Pipe        | A53 Grad... | Typical     |
| 4     | M4     | N10    | N20    |             | Outrigger...  | Beam   | Pipe        | A53 Grad... | Typical     |
| 5     | M5     | N9     | N19    |             | Outrigger...  | Beam   | Pipe        | A53 Grad... | Typical     |
| 6     | M6     | N28    | N22    |             | Outrigger...  | Beam   | Pipe        | A53 Grad... | Typical     |
| 7     | M7     | N27    | N21    |             | Outrigger...  | Beam   | Pipe        | A53 Grad... | Typical     |
| 8     | M8     | N12    | N11    |             | 0.625" Di...  | Column | BAR         | A36 Gr.36   | Typical     |
| 9     | M9     | N18    | N17    |             | 0.625" Di...  | Column | BAR         | A36 Gr.36   | Typical     |
| 10    | M10    | N12    | N17    |             | 0.75"Di....   | Column | BAR         | A36 Gr.36   | Typical     |
| 11    | M11    | N26    | N25    |             | 0.625" Di...  | Column | BAR         | A36 Gr.36   | Typical     |
| 12    | M12    | N18    | N11    |             | 0.75"Di....   | Column | BAR         | A36 Gr.36   | Typical     |
| 13    | M13    | N24    | N23    |             | 0.625" Di...  | Column | BAR         | A36 Gr.36   | Typical     |
| 14    | M14    | N26    | N23    |             | 0.75"Di....   | Column | BAR         | A36 Gr.36   | Typical     |
| 15    | M15    | N24    | N25    |             | 0.75"Di....   | Column | BAR         | A36 Gr.36   | Typical     |
| 16    | PS.2   | N5     | N6     |             | Antenna...    | Column | Pipe        | A53 Grad... | Typical     |
| 17    | PS.1   | N37    | N38    |             | Antenna...    | Column | Pipe        | A53 Grad... | Typical     |

**Primary Member Properties (Continued)**

|    | Label | I Node | J Node | K Node | Rotate(deg) | Section/S... | Type   | Design List | Material    | Design Rule |
|----|-------|--------|--------|--------|-------------|--------------|--------|-------------|-------------|-------------|
| 18 | M19   | N41A   | N42A   |        |             | Antenna...   | Column | Pipe        | A53 Grad... | Typical     |
| 19 | M20   | N19    | N21    |        |             | RIGID        | None   | None        | RIGID       | Typical     |
| 20 | M21   | N20    | N22    |        |             | RIGID        | None   | None        | RIGID       | Typical     |
| 21 | M21A  | N41B   | N42B   |        |             | Antenna...   | Column | Pipe        | A53 Grad... | Typical     |

**Nodes**

|    | Label | X [ft]   | Y [ft]    | Z [ft]    | Temp [deg F] | Detach From Dia... |
|----|-------|----------|-----------|-----------|--------------|--------------------|
| 1  | N1    | 0        | 0.        | 0.        |              |                    |
| 2  | N2    | 0        | 3.333334  | 0.        |              |                    |
| 3  | N3    | 0.25     | 0.        | 0.        |              |                    |
| 4  | N4    | 0.25     | 3.333334  | 0.        |              |                    |
| 5  | N5    | 0.25     | -1.333333 | 0.        |              |                    |
| 6  | N6    | 0.25     | 4.666667  | 0.        |              |                    |
| 7  | N7    | 3.390625 | 3.333334  | 0.        |              |                    |
| 8  | N8    | 6.025403 | 3.333334  | -9.833125 |              |                    |
| 9  | N9    | 3.78125  | 0.        | 0.        |              |                    |
| 10 | N10   | 3.78125  | 3.333334  | 0.        |              |                    |
| 11 | N11   | 4.138628 | 0.        | -0.357378 |              |                    |
| 12 | N12   | 4.138628 | 3.333334  | -0.357378 |              |                    |
| 13 | N17   | 5.206335 | 0.        | -1.425085 |              |                    |
| 14 | N18   | 5.206335 | 3.333334  | -1.425085 |              |                    |
| 15 | N19   | 5.563713 | 0.        | -1.782463 |              |                    |
| 16 | N20   | 5.563713 | 3.333334  | -1.782463 |              |                    |
| 17 | N21   | 6.936287 | 0.        | -1.782463 |              |                    |
| 18 | N22   | 6.936287 | 3.333334  | -1.782463 |              |                    |
| 19 | N23   | 7.293665 | 0.        | -1.425085 |              |                    |
| 20 | N24   | 7.293665 | 3.333334  | -1.425085 |              |                    |
| 21 | N25   | 8.361372 | 0.        | -0.357378 |              |                    |
| 22 | N26   | 8.361372 | 3.333334  | -0.357378 |              |                    |
| 23 | N27   | 8.71875  | 0.        | 0.        |              |                    |
| 24 | N28   | 8.71875  | 3.333334  | 0.        |              |                    |
| 25 | N29   | 12.25    | 0.        | 0.        |              |                    |
| 26 | N30   | 12.25    | 3.333334  | 0.        |              |                    |
| 27 | N33   | 12.5     | 0.        | 0.        |              |                    |
| 28 | N34   | 12.5     | 3.333334  | 0.        |              |                    |
| 29 | N35   | 6.25     | 3.333334  | -1.782463 |              |                    |
| 30 | N36   | 6.25     | 0.        | -1.782463 |              |                    |
| 31 | N35A  | 4.25     | 0.        | 0.        |              |                    |
| 32 | N36A  | 4.25     | 3.333334  | 0.        |              |                    |
| 33 | N37   | 12.25    | -2.333333 | 0         |              |                    |
| 34 | N38   | 12.25    | 5.666667  | 0         |              |                    |
| 35 | N39   | 8.25     | 0.        | 0.        |              |                    |
| 36 | N40   | 8.25     | 3.333334  | 0.        |              |                    |
| 37 | N41A  | 8.25     | -1.333333 | 0.        |              |                    |
| 38 | N42A  | 8.25     | 4.666667  | 0.        |              |                    |
| 39 | N41B  | 4.25     | -1.333333 | 0.        |              |                    |
| 40 | N42B  | 4.25     | 4.666667  | 0.        |              |                    |

**Basic Load Cases**

|   | BLC Desc...  | Category | X Gravity | Y Gravity | Z Gravity | Nodal | Point | Distributed | Area(Me... | Surface(P... |
|---|--------------|----------|-----------|-----------|-----------|-------|-------|-------------|------------|--------------|
| 1 | Self Weight  | None     |           | -1        |           |       |       |             |            |              |
| 2 | Equipmen...  | None     |           |           |           |       | 6     |             |            |              |
| 3 | Ice Weight   | None     |           |           |           |       | 6     |             |            |              |
| 4 | Wind w/ I... | None     |           |           |           |       | 6     | 17          |            |              |
| 5 | Wind X       | None     |           |           |           |       | 6     | 17          |            |              |
| 6 | Wind w/ I... | None     |           |           |           |       | 6     | 16          |            |              |
| 7 | Wind Z       | None     |           |           |           |       | 6     | 16          |            |              |

**Equipment Weight**

| Member Label |      | Direction | Magnitude [k, k-ft] | Location [(ft, %)] | Inactive [(k, k-ft), (in,... |
|--------------|------|-----------|---------------------|--------------------|------------------------------|
| 1            | PS.1 | Y         | -0.075              | 1.083              | Active                       |
| 2            | PS.1 | Y         | -0.075              | 5.917              | Active                       |
| 3            | PS.2 | Y         | -0.052              | 3.417              | Active                       |
| 4            | PS.2 | Y         | -0.052              | 5.333              | Active                       |
| 5            | PS.1 | Y         | -0.084              | 1                  | Active                       |
| 6            | PS.1 | Y         | -0.109              | 7                  | Active                       |

**Ice Weight**

| Member Label |      | Direction | Magnitude [k, k-ft] | Location [(ft, %)] | Inactive [(k, k-ft), (in,... |
|--------------|------|-----------|---------------------|--------------------|------------------------------|
| 1            | PS.1 | Y         | -0.301              | 1.083              | Active                       |
| 2            | PS.1 | Y         | -0.301              | 5.917              | Active                       |
| 3            | PS.2 | Y         | -0.11               | 3.417              | Active                       |
| 4            | PS.2 | Y         | -0.11               | 5.333              | Active                       |
| 5            | PS.1 | Y         | -0.13               | 1                  | Active                       |
| 6            | PS.1 | Y         | -0.149              | 7                  | Active                       |

**Wind w/ Ice X**

| Member Label |      | Direction | Magnitude [k, k-ft] | Location [(ft, %)] | Inactive [(k, k-ft), (in,... |
|--------------|------|-----------|---------------------|--------------------|------------------------------|
| 1            | PS.1 | X         | 0.05                | 1.083              | Active                       |
| 2            | PS.1 | X         | 0.05                | 5.917              | Active                       |
| 3            | PS.2 | X         | 0.018               | 3.417              | Active                       |
| 4            | PS.2 | X         | 0.018               | 5.333              | Active                       |
| 5            | PS.1 | X         | 0.023               | 1                  | Active                       |
| 6            | PS.1 | X         | 0.029               | 7                  | Active                       |

**Wind X**

| Member Label |      | Direction | Magnitude [k, k-ft] | Location [(ft, %)] | Inactive [(k, k-ft), (in,... |
|--------------|------|-----------|---------------------|--------------------|------------------------------|
| 1            | PS.1 | X         | 0.124               | 1.083              | Active                       |
| 2            | PS.1 | X         | 0.124               | 5.917              | Active                       |
| 3            | PS.2 | X         | 0.04                | 3.417              | Active                       |
| 4            | PS.2 | X         | 0.04                | 5.333              | Active                       |
| 5            | PS.1 | X         | 0.047               | 1                  | Active                       |
| 6            | PS.1 | X         | 0.068               | 7                  | Active                       |

**Wind w/ Ice Z**

| Member Label |      | Direction | Magnitude [k, k-ft] | Location [(ft, %)] | Inactive [(k, k-ft), (in,... |
|--------------|------|-----------|---------------------|--------------------|------------------------------|
| 1            | PS.1 | Z         | 0.108               | 1.083              | Active                       |
| 2            | PS.1 | Z         | 0.108               | 5.917              | Active                       |
| 3            | PS.2 | Z         | 0.034               | 3.417              | Active                       |
| 4            | PS.2 | Z         | 0.034               | 5.333              | Active                       |
| 5            | PS.1 | Z         | 0.028               | 1                  | Active                       |
| 6            | PS.1 | Z         | 0.035               | 7                  | Active                       |

**Wind Z**

| Member Label |      | Direction | Magnitude [k, k-ft] | Location [(ft, %)] | Inactive [(k, k-ft), (in,... |
|--------------|------|-----------|---------------------|--------------------|------------------------------|
| 1            | PS.1 | Z         | 0.351               | 1.083              | Active                       |
| 2            | PS.1 | Z         | 0.351               | 5.917              | Active                       |
| 3            | PS.2 | Z         | 0.098               | 3.417              | Active                       |
| 4            | PS.2 | Z         | 0.098               | 5.333              | Active                       |
| 5            | PS.1 | Z         | 0.099               | 1                  | Active                       |
| 6            | PS.1 | Z         | 0.089               | 7                  | Active                       |

**Wind w/ Ice X**

| Member Label | Direction | Start Magnitud... | End Magnitude... | Start Location [... | End Location [... | Inactive [(k, k-f... |        |
|--------------|-----------|-------------------|------------------|---------------------|-------------------|----------------------|--------|
| 1            | PS.2      | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 2            | PS.1      | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 3            | M19       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 4            | M3        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 5            | M4        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 6            | M5        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 7            | M8        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 8            | M12       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 9            | M10       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 10           | M9        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 11           | M7        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 12           | M6        | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 13           | M13       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 14           | M15       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 15           | M14       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 16           | M11       | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 17           | M21A      | X                 | 0.002            | 0.002               | 0                 | %100                 | Active |

**Wind X**

| Member Label | Direction | Start Magnitud... | End Magnitude... | Start Location [... | End Location [... | Inactive [(k, k-f... |        |
|--------------|-----------|-------------------|------------------|---------------------|-------------------|----------------------|--------|
| 1            | PS.2      | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 2            | PS.1      | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 3            | M19       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 4            | M3        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 5            | M4        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 6            | M5        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 7            | M8        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 8            | M12       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 9            | M10       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 10           | M9        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 11           | M7        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 12           | M6        | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 13           | M13       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 14           | M15       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 15           | M14       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 16           | M11       | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 17           | M21A      | X                 | 0.007            | 0.007               | 0                 | %100                 | Active |

**Wind w/ Ice Z**

| Member Label | Direction | Start Magnitud... | End Magnitude... | Start Location [... | End Location [... | Inactive [(k, k-f... |        |
|--------------|-----------|-------------------|------------------|---------------------|-------------------|----------------------|--------|
| 1            | M1        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 2            | M2        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 3            | M19       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 4            | M9        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 5            | M8        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 6            | M12       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 7            | M10       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 8            | M5        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 9            | M4        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 10           | M11       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 11           | M13       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 12           | M15       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 13           | M14       | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 14           | M7        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 15           | M6        | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |
| 16           | M21A      | Z                 | 0.002            | 0.002               | 0                 | %100                 | Active |

## Wind Z

| Member Label | Direction | Start Magnitud... | End Magnitude... | Start Location [... | End Location [... | Inactive [(k, k-f... |        |
|--------------|-----------|-------------------|------------------|---------------------|-------------------|----------------------|--------|
| 1            | M1        | Z                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 2            | M2        | Z                 | 0.007            | 0.007               | 0                 | %100                 | Active |
| 3            | M19       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 4            | M9        | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 5            | M8        | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 6            | M12       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 7            | M10       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 8            | M5        | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 9            | M4        | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 10           | M11       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 11           | M13       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 12           | M15       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 13           | M14       | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 14           | M7        | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 15           | M6        | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |
| 16           | M21A      | Z                 | 0.006            | 0.006               | 0                 | %100                 | Active |

## **Load Combinations**

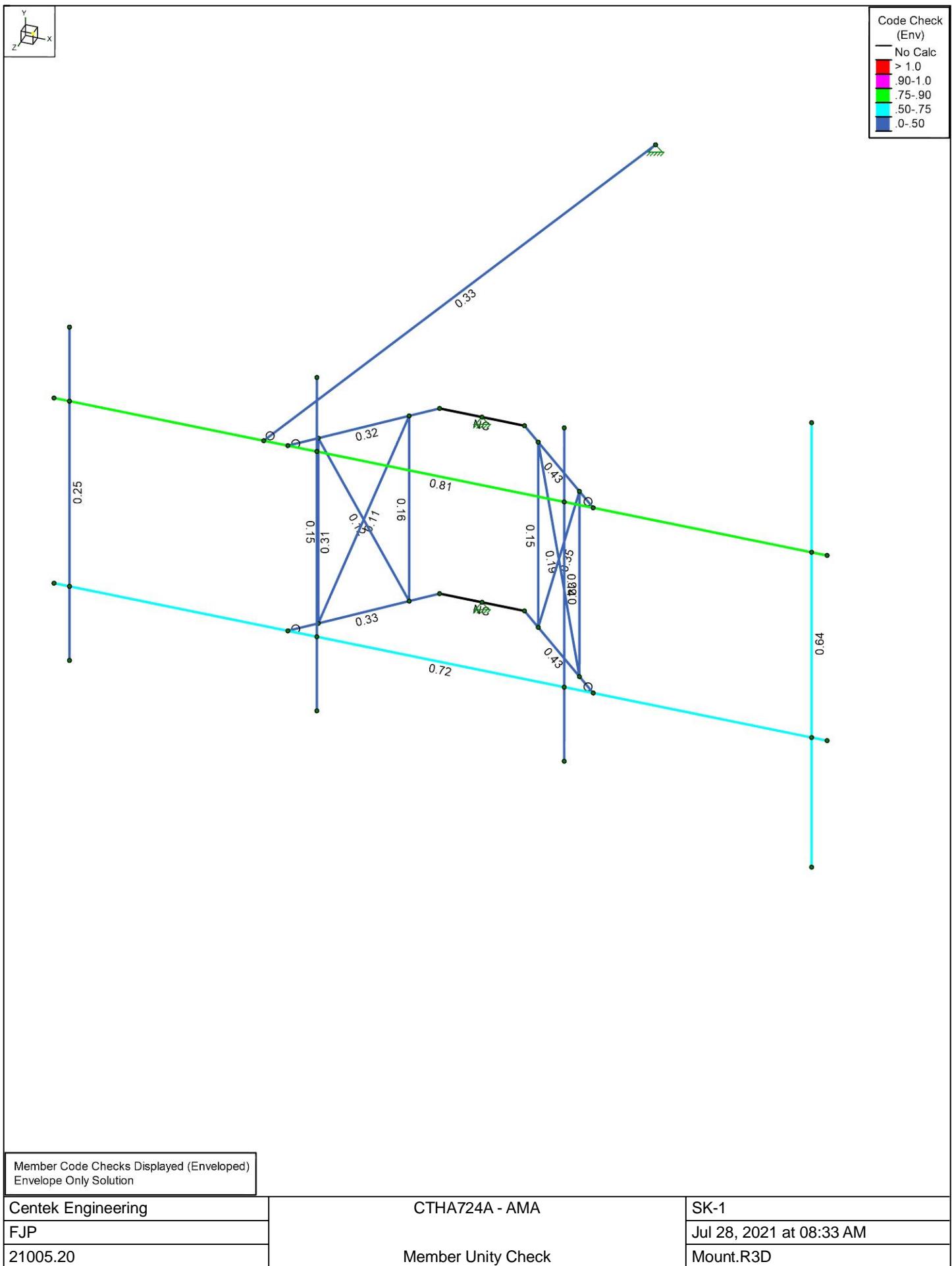
## *Node Reactions*

| Node... |         | X [k] | LC     | Y [k] | LC    | Z [k] | LC     | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|---------|---------|-------|--------|-------|-------|-------|--------|-----------|----|-----------|----|-----------|----|
| 1       | N8      | max   | 0.2    | 1     | 0.022 | 4     | 2.781  | 4         | 0  | 6         | 0  | 6         | 0  |
| 2       |         | min   | -0.748 | 4     | 0.016 | 2     | -0.974 | 1         | 0  | 1         | 0  | 1         | 0  |
| 3       | N35     | max   | 0.365  | 5     | 1.011 | 3     | 0.624  | 2         | 0  | 6         | 0  | 6         | 0  |
| 4       |         | min   | -1.912 | 3     | 0.31  | 5     | -4.464 | 4         | 0  | 1         | 0  | 1         | 0  |
| 5       | N36     | max   | 1.701  | 6     | 1.009 | 6     | 1.056  | 3         | 0  | 6         | 0  | 6         | 0  |
| 6       |         | min   | -0.326 | 2     | 0.365 | 2     | -0.957 | 5         | 0  | 1         | 0  | 1         | 0  |
| 7       | Totals: | max   | 0      | 6     | 2.038 | 6     | 0      | 3         |    |           |    |           |    |
| 8       |         | min   | -1.588 | 2     | 0.702 | 5     | -2.522 | 5         |    |           |    |           |    |

## ***Node Displacements***

| Node... |    | X [in] | LC     | Y [in] | LC     | Z [in] | LC     | X Rota... | LC         | Y Rota... | LC         | Z Rota... | LC         |   |
|---------|----|--------|--------|--------|--------|--------|--------|-----------|------------|-----------|------------|-----------|------------|---|
| 1       | N1 | max    | 0.046  | 2      | 0.109  | 5      | 0.087  | 5         | 1.076e...  | 4         | 1.263e...  | 5         | 7.882e...  | 1 |
| 2       |    | min    | -0.27  | 4      | -0.026 | 1      | -0.101 | 3         | -1.586e... | 2         | -1.018e... | 3         | -3.093e... | 5 |
| 3       | N2 | max    | 0.033  | 1      | 0.109  | 5      | 0.601  | 5         | 1.116e...  | 4         | 1.567e...  | 5         | 8.033e...  | 1 |
| 4       |    | min    | -0.088 | 5      | -0.026 | 1      | -0.019 | 3         | -1.66e...  | 2         | -8.273e... | 3         | -3.137e... | 5 |
| 5       | N3 | max    | 0.046  | 2      | 0.1    | 5      | 0.074  | 2         | 1.076e...  | 4         | 1.263e...  | 5         | 7.881e...  | 1 |
| 6       |    | min    | -0.27  | 4      | -0.024 | 1      | -0.1   | 6         | -1.586e... | 2         | -1.018e... | 3         | -3.093e... | 5 |
| 7       | N4 | max    | 0.033  | 1      | 0.1    | 5      | 0.554  | 5         | 1.116e...  | 4         | 1.567e...  | 5         | 8.032e...  | 1 |
| 8       |    | min    | -0.088 | 5      | -0.024 | 1      | -0.017 | 3         | -1.66e...  | 2         | -8.273e... | 3         | -3.137e... | 5 |
| 9       | N5 | max    | 0.058  | 2      | 0.1    | 5      | 0.099  | 2         | 1.076e...  | 4         | 1.263e...  | 5         | 8.344e...  | 1 |
| 10      |    | min    | -0.319 | 4      | -0.024 | 1      | -0.169 | 6         | -1.586e... | 2         | -1.018e... | 3         | -3.093e... | 5 |
| 11      | N6 | max    | 0.035  | 3      | 0.1    | 5      | 0.736  | 4         | 1.15e-02   | 4         | 1.567e...  | 5         | 6.163e...  | 1 |
| 12      |    | min    | -0.037 | 5      | -0.024 | 1      | -0.032 | 2         | -1.66e...  | 2         | -8.273e... | 3         | -3.138e... | 5 |
| 13      | N7 | max    | 0.033  | 1      | 0.072  | 6      | 0.014  | 1         | 6.265e...  | 4         | 1.516e...  | 5         | 6.663e...  | 1 |
| 14      |    | min    | -0.088 | 5      | 0.011  | 2      | -0.039 | 5         | -7.934e... | 2         | -1.093e... | 1         | -1.254e... | 5 |
| 15      | N8 | max    | 0      | 4      | 0      | 2      | 0      | 1         | 2.228e...  | 4         | 5.266e...  | 1         | 1.219e...  | 1 |
| 16      |    | min    | 0      | 1      | 0      | 4      | 0      | 4         | 1.028e...  | 2         | -7.744e... | 5         | -2.399e... | 5 |
| 17      | N9 | max    | 0.046  | 2      | 0.07   | 6      | 0.06   | 2         | 4.612e...  | 4         | 4.216e...  | 5         | 3.596e...  | 1 |
| 18      |    | min    | -0.27  | 4      | 0.014  | 2      | -0.365 | 4         | -5.43e...  | 2         | -1.453e... | 3         | -1.302e... | 5 |

**Node Displacements (Continued)**


| Node... |      | X [in] | LC     | Y [in] | LC     | Z [in] | LC     | X Rota... | LC        | Y Rota... | LC        | Z Rota... | LC        |   |
|---------|------|--------|--------|--------|--------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| 19      | N10  | max    | 0.032  | 1      | 0.07   | 6      | 0.02   | 1         | 5.656e... | 4         | 1.392e... | 5         | 3.796e... | 1 |
| 20      |      | min    | -0.087 | 5      | 0.013  | 2      | -0.109 | 5         | -6.857... | 2         | -9.859... | 1         | -1.217... | 5 |
| 21      | N11  | max    | 0.036  | 2      | 0.077  | 6      | 0.051  | 2         | 4.29e-03  | 4         | 2.153e... | 2         | 8.257e... | 2 |
| 22      |      | min    | -0.214 | 4      | 0.013  | 2      | -0.309 | 4         | -3.55e... | 2         | -1.306... | 4         | -1.632... | 4 |
| 23      | N12  | max    | 0.021  | 1      | 0.077  | 6      | 0.009  | 2         | 4.563e... | 4         | 2.944e... | 3         | 2.979e... | 2 |
| 24      |      | min    | -0.068 | 5      | 0.013  | 2      | -0.092 | 4         | -4.896... | 2         | -4.255... | 5         | -1.953... | 4 |
| 25      | N17  | max    | 0.009  | 2      | 0.075  | 6      | 0.024  | 2         | 2.07e-03  | 4         | 2.061e... | 2         | -5.253... | 2 |
| 26      |      | min    | -0.051 | 4      | 0.006  | 2      | -0.147 | 4         | 9.903e... | 2         | -1.211... | 4         | -4.766... | 6 |
| 27      | N18  | max    | -0.001 | 2      | 0.075  | 6      | -0.011 | 2         | 2.128e... | 4         | 3.184e... | 2         | -3.878... | 2 |
| 28      |      | min    | -0.016 | 4      | 0.006  | 2      | -0.044 | 4         | 1.23e-07  | 2         | -3.662... | 4         | -4.786... | 6 |
| 29      | N19  | max    | 0      | 2      | 0.056  | 6      | 0.015  | 1         | 7.253e... | 3         | 1.872e... | 1         | -6.234... | 2 |
| 30      |      | min    | 0      | 4      | 0.005  | 2      | -0.096 | 5         | 2.483e... | 5         | -1.17e... | 5         | -6.745... | 6 |
| 31      | N20  | max    | 0      | 1      | 0.055  | 6      | -0.009 | 2         | 7.634e... | 6         | -1.098... | 2         | -6.321... | 2 |
| 32      |      | min    | 0      | 5      | 0.005  | 2      | -0.029 | 4         | 3.198e... | 2         | -3.543... | 4         | -6.739... | 6 |
| 33      | N21  | max    | 0      | 5      | -0.005 | 2      | 0.096  | 5         | 7.253e... | 3         | 1.872e... | 1         | -6.234... | 2 |
| 34      |      | min    | 0      | 3      | -0.056 | 6      | -0.015 | 1         | 2.483e... | 5         | -1.17e... | 5         | -6.745... | 6 |
| 35      | N22  | max    | 0      | 4      | -0.005 | 2      | 0.029  | 4         | 7.634e... | 6         | -1.098... | 2         | -6.321... | 2 |
| 36      |      | min    | 0      | 2      | -0.055 | 6      | 0.009  | 2         | 3.198e... | 2         | -3.543... | 4         | -6.739... | 6 |
| 37      | N23  | max    | 0.008  | 2      | -0.009 | 2      | 0.148  | 4         | 1.348e... | 2         | 2.062e... | 2         | -7.111... | 2 |
| 38      |      | min    | -0.052 | 4      | -0.083 | 6      | -0.024 | 2         | -1.817... | 4         | -1.231... | 4         | -5.451... | 6 |
| 39      | N24  | max    | -0.001 | 2      | -0.01  | 2      | 0.046  | 4         | 3.445e... | 2         | 3.733e... | 2         | -5.259... | 2 |
| 40      |      | min    | -0.016 | 4      | -0.083 | 6      | 0.01   | 2         | -1.371... | 4         | -3.968... | 4         | -5.362... | 6 |
| 41      | N25  | max    | 0.036  | 2      | -0.019 | 2      | 0.313  | 4         | 1.625e... | 2         | 2.175e... | 2         | -1.247... | 2 |
| 42      |      | min    | -0.215 | 4      | -0.094 | 6      | -0.052 | 2         | -5.426... | 4         | -1.307... | 4         | -5.429... | 6 |
| 43      | N26  | max    | 0.022  | 1      | -0.019 | 2      | 0.102  | 4         | 2.906e... | 2         | 2.959e... | 3         | -6.001... | 2 |
| 44      |      | min    | -0.07  | 5      | -0.094 | 6      | -0.011 | 2         | -3.725... | 4         | -4.613... | 5         | -5.097... | 6 |
| 45      | N27  | max    | 0.045  | 2      | -0.026 | 2      | 0.369  | 4         | 7.436e... | 2         | 2.318e... | 2         | -1.948... | 2 |
| 46      |      | min    | -0.271 | 4      | -0.106 | 6      | -0.061 | 2         | -7.048... | 4         | -3.332... | 4         | -8.256... | 6 |
| 47      | N28  | max    | 0.033  | 1      | -0.023 | 2      | 0.122  | 5         | 7.805e... | 2         | 1.714e... | 2         | -1.308... | 2 |
| 48      |      | min    | -0.09  | 5      | -0.106 | 6      | -0.022 | 1         | -2.377... | 4         | -2.736... | 4         | -8.291... | 6 |
| 49      | N29  | max    | 0.046  | 2      | -0.117 | 2      | 2.296  | 4         | 1.06e-03  | 2         | 1.998e... | 2         | -4.12e... | 2 |
| 50      |      | min    | -0.272 | 4      | -0.61  | 6      | -0.15  | 2         | -1.639... | 4         | -5.111... | 4         | -9.35e... | 6 |
| 51      | N30  | max    | 0.034  | 1      | -0.117 | 2      | 1.875  | 4         | 1.082e... | 2         | 1.999e... | 2         | -2.216... | 2 |
| 52      |      | min    | -0.09  | 5      | -0.61  | 6      | -0.103 | 2         | -4.021... | 4         | -4.851... | 4         | -9.377... | 6 |
| 53      | N33  | max    | 0.046  | 2      | -0.117 | 2      | 2.449  | 4         | 1.06e-03  | 2         | 1.998e... | 2         | -4.125... | 2 |
| 54      |      | min    | -0.272 | 4      | -0.638 | 6      | -0.156 | 2         | -1.639... | 4         | -5.111... | 4         | -9.35e... | 6 |
| 55      | N34  | max    | 0.034  | 1      | -0.124 | 2      | 2.02   | 4         | 1.082e... | 2         | 1.999e... | 2         | -2.217... | 2 |
| 56      |      | min    | -0.09  | 5      | -0.638 | 6      | -0.109 | 2         | -4.021... | 4         | -4.851... | 4         | -9.378... | 6 |
| 57      | N35  | max    | 0      | 3      | 0      | 5      | 0      | 4         | 7.634e... | 6         | -1.098... | 2         | -6.321... | 2 |
| 58      |      | min    | 0      | 5      | 0      | 3      | 0      | 2         | 3.198e... | 2         | -3.543... | 4         | -6.739... | 6 |
| 59      | N36  | max    | 0      | 2      | 0      | 2      | 0      | 5         | 7.253e... | 3         | 1.872e... | 1         | -6.234... | 2 |
| 60      |      | min    | 0      | 6      | 0      | 6      | 0      | 3         | 2.483e... | 5         | -1.17e... | 5         | -6.745... | 6 |
| 61      | N35A | max    | 0.046  | 2      | 0.066  | 3      | 0.054  | 2         | 3.789e... | 4         | 2.064e... | 5         | 1.437e... | 2 |
| 62      |      | min    | -0.27  | 4      | 0.013  | 5      | -0.382 | 4         | -4.925... | 2         | -1.538... | 3         | -1.485... | 4 |
| 63      | N36A | max    | 0.033  | 1      | 0.066  | 3      | 0.024  | 1         | 4.991e... | 4         | 1.111e... | 5         | 1.033e... | 2 |
| 64      |      | min    | -0.088 | 5      | 0.013  | 5      | -0.18  | 5         | -6.054... | 2         | -4.964... | 1         | -1.42e... | 4 |
| 65      | N37  | max    | 0.101  | 2      | -0.117 | 2      | 2.887  | 4         | 1.058e... | 2         | 1.998e... | 2         | 2.399e... | 2 |
| 66      |      | min    | -0.444 | 4      | -0.611 | 6      | -0.18  | 2         | -2.207... | 4         | -5.111... | 4         | -9.271... | 6 |
| 67      | N38  | max    | 0.288  | 3      | -0.117 | 2      | 1.799  | 5         | 1.085e... | 2         | 1.999e... | 2         | -3.491... | 2 |
| 68      |      | min    | 0.06   | 5      | -0.61  | 6      | -0.073 | 1         | -2.603... | 4         | -4.851... | 4         | -9.464... | 6 |
| 69      | N39  | max    | 0.045  | 2      | -0.017 | 5      | 0.195  | 4         | 6.776e... | 2         | 2.372e... | 2         | -1.302... | 2 |
| 70      |      | min    | -0.271 | 4      | -0.066 | 3      | -0.048 | 2         | -6.083... | 4         | -2.845... | 4         | -5.969... | 6 |
| 71      | N40  | max    | 0.033  | 1      | -0.017 | 5      | -0.01  | 3         | 6.967e... | 2         | 1.633e... | 2         | -8.731... | 2 |
| 72      |      | min    | -0.089 | 5      | -0.066 | 3      | -0.017 | 4         | -2.217... | 4         | -2.21e... | 5         | -5.994... | 6 |
| 73      | N41A | max    | 0.025  | 2      | -0.017 | 5      | 0.293  | 4         | 6.776e... | 2         | 2.372e... | 2         | -1.256... | 2 |
| 74      |      | min    | -0.321 | 4      | -0.066 | 3      | -0.058 | 2         | -6.121... | 4         | -2.845... | 4         | -5.969... | 6 |
| 75      | N42A | max    | 0.122  | 3      | -0.017 | 5      | -0.001 | 2         | 6.967e... | 2         | 1.633e... | 2         | -9.194... | 2 |
| 76      |      | min    | -0.046 | 5      | -0.066 | 3      | -0.052 | 4         | -2.179... | 4         | -2.21e... | 5         | -5.994... | 6 |

**Node Displacements (Continued)**

| Node... |      | X [in] | LC     | Y [in] | LC    | Z [in] | LC     | X Rota... | LC        | Y Rota... | LC        | Z Rota... | LC        |   |
|---------|------|--------|--------|--------|-------|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|---|
| 77      | N41B | max    | 0.048  | 2      | 0.066 | 3      | 0.062  | 2         | 3.751e... | 4         | 2.064e... | 5         | 1.9e-04   | 2 |
| 78      |      | min    | -0.294 | 4      | 0.013 | 5      | -0.443 | 4         | -4.925... | 2         | -1.538... | 3         | -1.485... | 4 |
| 79      | N42B | max    | 0.046  | 3      | 0.066 | 3      | 0.033  | 3         | 5.03e-03  | 4         | 1.111e... | 5         | 5.696e... | 2 |
| 80      |      | min    | -0.066 | 5      | 0.013 | 5      | -0.102 | 5         | -6.054... | 2         | -4.964... | 1         | -1.42e... | 4 |

**LRFD**

| Member | Shape | Code...   | Loc [ft] | LC    | Shear... | Loc [ft] | Dir   | LC | phi*P... | phi*P... | phi*M... | phi*M... | Cb    | Eqn   |       |
|--------|-------|-----------|----------|-------|----------|----------|-------|----|----------|----------|----------|----------|-------|-------|-------|
| 1      | M1    | PIPE...   | 0.806    | 8.203 | 4        | 0.299    | 3.776 |    | 4        | 14.559   | 50.715   | 3.596    | 3.596 | 2.405 | H1-1b |
| 2      | M2    | PIPE...   | 0.722    | 8.594 | 4        | 0.238    | 8.724 |    | 4        | 14.559   | 50.715   | 3.596    | 3.596 | 2.354 | H1-1b |
| 3      | M3    | PIPE...   | 0.329    | 5.09  | 4        | 0.006    | 10.18 |    | 1        | 9.492    | 32.13    | 1.872    | 1.872 | 1.136 | H1-1a |
| 4      | M4    | PIPE...   | 0.323    | 2.521 | 3        | 0.120    | 2.521 |    | 3        | 32.032   | 32.13    | 1.872    | 1.872 | 1.724 | H1-1b |
| 5      | M5    | PIPE...   | 0.331    | 2.521 | 6        | 0.114    | 2.521 |    | 3        | 32.032   | 32.13    | 1.872    | 1.872 | 1.749 | H1-1b |
| 6      | M6    | PIPE...   | 0.429    | 2.022 | 6        | 0.160    | 0.499 |    | 6        | 32.032   | 32.13    | 1.872    | 1.872 | 1.325 | H1-1b |
| 7      | M7    | PIPE...   | 0.425    | 2.022 | 6        | 0.176    | 0.499 |    | 6        | 32.032   | 32.13    | 1.872    | 1.872 | 1.329 | H1-1b |
| 8      | M8    | 0.625'... | 0.148    | 3.333 | 5        | 0.044    | 3.333 |    | 4        | 1.058    | 9.94     | 0.104    | 0.104 | 2.261 | H1-1b |
| 9      | M9    | 0.625'... | 0.157    | 3.333 | 5        | 0.042    | 3.333 |    | 4        | 1.058    | 9.94     | 0.104    | 0.104 | 2.27  | H1-1b |
| 10     | M10   | SR 3/4    | 0.117    | 3.659 | 5        | 0.038    | 3.659 |    | 4        | 6.954    | 14.314   | 0.179    | 0.179 | 3.19  | H1-1b |
| 11     | M11   | 0.625'... | 0.145    | 0     | 5        | 0.043    | 0     |    | 4        | 1.058    | 9.94     | 0.104    | 0.104 | 2.156 | H1-1b |
| 12     | M12   | SR 3/4    | 0.108    | 0     | 1        | 0.044    | 3.659 |    | 4        | 6.954    | 14.314   | 0.179    | 0.179 | 2.606 | H1-1b |
| 13     | M13   | 0.625'... | 0.152    | 0     | 1        | 0.041    | 0     |    | 4        | 1.058    | 9.94     | 0.104    | 0.104 | 2.621 | H1-1b |
| 14     | M14   | SR 3/4    | 0.349    | 0     | 6        | 0.038    | 0     |    | 4        | 6.954    | 14.314   | 0.179    | 0.179 | 1.985 | H1-1a |
| 15     | M15   | SR 3/4    | 0.186    | 3.659 | 6        | 0.037    | 0     |    | 4        | 6.954    | 14.314   | 0.179    | 0.179 | 2.289 | H1-1b |
| 16     | PS.2  | PIPE...   | 0.250    | 1.375 | 4        | 0.084    | 3.375 |    | 4        | 20.867   | 32.13    | 1.872    | 1.872 | 1.557 | H1-1b |
| 17     | PS.1  | PIPE...   | 0.636    | 5.667 | 3        | 0.120    | 2.333 |    | 4        | 14.916   | 32.13    | 1.872    | 1.872 | 4.368 | H1-1b |
| 18     | M19   | PIPE...   | 0.334    | 1.375 | 3        | 0.133    | 4.625 |    | 4        | 20.867   | 32.13    | 1.872    | 1.872 | 1.553 | H1-1b |
| 19     | M21A  | PIPE...   | 0.306    | 1.375 | 4        | 0.197    | 1.375 |    | 4        | 20.867   | 32.13    | 1.872    | 1.872 | 1.556 | H1-1b |



**Member Code Checks Displayed (Enveloped)  
Envelope Only Solution**

|                    |                |                          |
|--------------------|----------------|--------------------------|
| Centek Engineering | CTHA724A - AMA | SK-1                     |
| FJP                |                | Jul 28, 2021 at 08:33 AM |
| 21005.20           |                | Member Unity Check       |

September 15, 2021



Tower Engineering Professionals  
326 Tryon Road  
Raleigh, NC 27603  
(919) 661-6351  
[Structures@tepgroup.net](mailto:Structures@tepgroup.net)

Thomas Rigg  
Everest Infrastructure Partners  
Two Allegheny Center, Nova Tower 2, Suite 703  
Pittsburg, PA 15212  
(603) 498-7462

**Subject: Structural Analysis Report**

**Carrier Designation:** **T-Mobile Co-Locate**  
**Carrier Site Number:** CTHA724A  
**Carrier Site Name:** -

**Client Designation:** **Site Number:** 702497  
**Site Name:** Eastford CDT

**Engineering Firm Designation:** **TEP Project Number:** 25707.576390

**Site Data:** **35 Old Route 44, Eastford, Windham County, CT 06242**  
**Latitude 41° 52' 16.70", Longitude -72° 03' 53.60"**  
**190± Foot - Guyed Tower**

Dear Thomas Rigg,

*Tower Engineering Professionals* is pleased to submit this “**Structural Analysis Report**” to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the stress level for the tower and foundation structure, under the following load case, to be:

**LC1: Existing + Proposed + Reserved Loading**  
Note: See Table 1 for the existing, proposed, and reserved loading

**Sufficient Capacity**

| Structure Capacity | Foundation Capacity |
|--------------------|---------------------|
| 62.6%              | 61.4%               |

The analysis has been performed in accordance with the ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures, Antennas, and Small Wind Turbine Support Structures and the 2018 Connecticut State Building Code.

All modifications and equipment proposed in this report shall be installed in accordance with the appurtenances listed in Table 1 for the determined available structural capacity to be effective.

We at *Tower Engineering Professionals* appreciate the opportunity of providing our continuing professional services to you and *Everest*. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Kedis Wasef / WHW

Respectfully submitted by:

Aaron T. Rucker, P.E.



## TABLE OF CONTENTS

### 1) INTRODUCTION

### 2) ANALYSIS CRITERIA

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information

### 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

### 4) ANALYSIS RESULTS

Table 3 - Section Capacity (Summary)

Table 4 - Tower Component Stresses vs. Capacity

Table 5 - Dish Twist/Sway Results for 60 mph Service Wind Speed

4.1) Recommendations

### 5) APPENDIX A

tnxTower Output

### 6) APPENDIX B

Additional Calculations

## 1) INTRODUCTION

The tower is a 190± Foot model G42WPAR Guyed Tower designed by Fred A. Nudd Corporation in March of 1998. Toe tower was originally designed for a basic wind speed of 85 mph with no ice and 63.8 mph with 1/2" radial ice per ANSI/EIA/TIA-222-E. The tower has been modified per reinforcement drawings prepared by Fred A. Nudd Corporation in July of 2000. Modification consists of extending the tower 10-ft. All information provided to TEP was assumed to be accurate and complete.

## 2) ANALYSIS CRITERIA

|                                 |                      |
|---------------------------------|----------------------|
| <b>TIA-222 Revision:</b>        | ANSI/TIA-222-H       |
| <b>Type of Analysis:</b>        | Comprehensive        |
| <b>Risk Category:</b>           | II                   |
| <b>Wind Speed:</b>              | 120 mph (Ultimate)   |
| <b>Exposure Category:</b>       | B                    |
| <b>Topographic Procedure:</b>   | Method 1 (Kzt = 1.0) |
| <b>Ice Thickness:</b>           | 1.0 in               |
| <b>Wind Speed with Ice:</b>     | 50 mph               |
| <b>Seismic Design Category:</b> | B                    |
| <b>Seismic Ss:</b>              | 0.182                |
| <b>Seismic S1:</b>              | 0.055                |
| <b>Service Wind Speed:</b>      | 60 mph               |

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information

| Existing/<br>Proposed/<br>Reserved | Mount<br>Level<br>(ft) | Ant<br>CL<br>(ft) | Qty                 | Antenna Model                         | Mount<br>Type           | Qty<br>Coax | Coax<br>Size      | Coax<br>Location | Owner/<br>Tenant |
|------------------------------------|------------------------|-------------------|---------------------|---------------------------------------|-------------------------|-------------|-------------------|------------------|------------------|
| Reserved                           | 195.2                  | 195.7             | 6                   | <i>JMA Wireless<br/>MX06FRO660-03</i> | (3)<br>Sector<br>Mounts | 2           | 1 5/8"Ø<br>Hybrid | CA Face          | Verizon          |
|                                    |                        |                   | 3                   | <i>Samsung MT6407-77A</i>             |                         |             |                   |                  |                  |
|                                    |                        |                   | 3                   | <i>Samsung<br/>B2/B66A RRH-BR049</i>  |                         |             |                   |                  |                  |
|                                    |                        |                   | 3                   | <i>Samsung<br/>B5/B13 RRH-BR04C</i>   |                         |             |                   |                  |                  |
|                                    |                        |                   | 1                   | <i>Raycap RVZDC-6627-PF-48</i>        |                         |             |                   |                  |                  |
| Existing                           | 195.2                  | 195.7             | 3                   | Commscope<br>LNX-8513DS-A1M           |                         | 12          | 1-5/8             | CA Face          | Verizon          |
| To Be<br>Removed                   | 195.2                  | 195.7             | 6                   | <i>Andrew HBXX-6517DS-A2M</i>         | (3)<br>Sector<br>Mounts | 1           | Hybrid            | CA Face          | Verizon          |
|                                    |                        |                   | 3                   | <i>Antel BXA-70063-6CF</i>            |                         |             |                   |                  |                  |
|                                    |                        |                   | 1                   | <i>RFS DB-B1-6-12AB-0Z</i>            |                         |             |                   |                  |                  |
|                                    |                        |                   | 3                   | <i>Nokia UHBA B13 RRH 4x30</i>        |                         |             |                   |                  |                  |
|                                    |                        |                   | 3                   | <i>Nokia UHIE B66A RRH 4x45</i>       |                         |             |                   |                  |                  |
| Existing                           | 177.0                  | -                 | Empty Sector Mounts |                                       |                         |             | -                 | -                | Nextel           |

Table 1 - Existing, Proposed, and Reserved Antenna and Cable Information - Continued

| Existing/<br>Proposed/<br>Reserved | Mount<br>Level<br>(ft) | Ant<br>CL<br>(ft) | Qty | Antenna Model                    | Mount<br>Type                    | Qty<br>Coax  | Coax<br>Size                     | Coax<br>Location | Owner/<br>Tenant |
|------------------------------------|------------------------|-------------------|-----|----------------------------------|----------------------------------|--------------|----------------------------------|------------------|------------------|
| <i>Proposed</i>                    | 165.0                  | 165.0             | 3   | <i>RFS APXVAALL24</i>            | <i>(3)<br/>Sector<br/>Mounts</i> | 3            | <i>Hybrid</i>                    | <i>AB Face</i>   | <i>T-Mobile</i>  |
|                                    |                        |                   | 3   | <i>Ericsson AIR6449 B41</i>      |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Ericsson Radio 4460</i>       |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Ericsson Radio 4480</i>       |                                  |              |                                  |                  |                  |
| <i>To Be<br/>Removed</i>           | 165.0                  | 165.0             | 3   | <i>Commscope DT465B-2XR</i>      | <i>(3)<br/>Sector<br/>Mounts</i> | 4            | <i>1-1/4"Ø</i>                   | <i>AB Face</i>   | <i>T-Mobile</i>  |
|                                    |                        |                   | 3   | <i>RFS APXV9ERR19-C-A20</i>      |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Alcatel Lucent 4x45W 1900</i> |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Alcatel Lucent TD-RRH8x20</i> |                                  |              |                                  |                  |                  |
| <i>Existing</i>                    | 150.0                  | 151.5             | 3   | <i>KMW EPBQ-654L8H8-L2</i>       | <i>(3)<br/>Sector<br/>Mounts</i> | 12<br>2<br>1 | <i>1-5/8<br/>3/4"Ø<br/>3/8"Ø</i> | <i>AB Face</i>   | <i>AT&amp;T</i>  |
|                                    |                        |                   | 6   | <i>Powerwave RA21.7770.00</i>    |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Ericsson RRUS 11 B12</i>      |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 6   | <i>Powerwave LGP21401</i>        |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Powerwave LGP21901</i>        |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 3   | <i>Kathrein 78210256</i>         |                                  |              |                                  |                  |                  |
|                                    |                        |                   | 1   | <i>Raycap DC6-48-60-18-8F</i>    |                                  |              |                                  |                  |                  |

### 3) ANALYSIS PROCEDURE

**Table 2 - Documents Provided**

| Document                             | Remarks                                                                                       | Source  |
|--------------------------------------|-----------------------------------------------------------------------------------------------|---------|
| Tower and Foundation Design          | Fred A. Nudd Corporation, dated March 31, 1998<br>Drawing No.: 98-5874-1                      | Everest |
| Tower Extension Design               | Fred A. Nudd Corporation, dated July 31, 2000<br>Drawing No.: 00-5874A-1                      | Everest |
| Geotechnical Report                  | Tower Engineering Professionals, Inc., dated September 22, 2009<br>TEP No. 090004.14          | TEP     |
| Previous Structural Analysis         | Fred A. Nudd Corporation, dated February 20, 2018<br>Project No. 117-23243.5                  | Everest |
| Tower Mapping Report                 | Tower Engineering Professionals, Inc., dated June 22, 2020<br>TEP No. 25707.416423            | TEP     |
| Maintenance and Condition Assessment | Tower Engineering Professionals, Inc., dated June 26, 2020<br>TEP No. 25707                   | TEP     |
| Construction Drawings                | CENTEK Engineering, dated June 15, 2021<br>Project No. 21005.20, Rev. B                       | Everest |
| Previous Mount Analysis              | Maser Consulting Connecticut, dated July 23, 2021<br>Project No. 21777322A, Rev. 1            | Everest |
| Previous Mount Modification Design   | Maser Consulting Connecticut, dated July 23, 2021<br>Project No. 21777322A                    | Everest |
| Construction Drawings                | All-Points Technology Corporation, dated July 26, 2021<br>APT Filing No.: CT141_12380, Rev. 1 | Everest |
| Previous Mount Analysis              | CENTEK Engineering, dated August 9, 2021<br>Project No. 21005.20                              | Everest |
| Supplemental Geotechnical Report     | Tower Engineering Professionals, Inc.                                                         | TEP     |
| Correspondence                       | Correspondence in reference to the existing, proposed, and reserved loading.                  | Everest |

#### 3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

### 3.2) Analysis Assumptions

- 1) The tower and foundation were built and maintained in accordance with the manufacturer's specification.
- 2) The configuration of existing antennas, transmission cables, mounts and other appurtenances are as specified in the tower mapping report by TEP.
- 3) Unless specified by the client or tower mapping, the location of the existing and proposed coax is assumed by TEP and listed in Table 1.
- 4) All tower components are in sufficient condition to carry their full design capacity.
- 5) Serviceability with respect to antenna twist, tilt, roll, or lateral translation, is not checked and is left to the carrier or tower owner to ensure conformance.
- 6) All antenna mounts and mounting hardware are structurally sufficient to carry the full design capacity requirements of appurtenance wind area and weight as provided by the original manufacturer specifications. It is the carrier's responsibility to ensure compliance to the structural limitations of the existing and/or proposed antenna mounts. TEP did not analyze antennas supporting mounts as part of this structural analysis report.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the tower.

## 4) ANALYSIS RESULTS

**Table 3 - Section Capacity (Summary)<sup>2</sup>**

| Section No. | Elevation (ft)    | Component Type | Size              | Critical Element | P (lb) | $\sigma P_{allow}$ (lb) | % Capacity | Pass / Fail |
|-------------|-------------------|----------------|-------------------|------------------|--------|-------------------------|------------|-------------|
| T1          | 190.833 - 180.833 | Leg            | P2.5x0.203        | 2                | -10803 | 76921                   | 14.0       | Pass        |
| T2          | 180.833 - 160.833 | Leg            | P2.5x0.203        | 35               | -29402 | 76921                   | 38.2       | Pass        |
| T3          | 160.833 - 140.833 | Leg            | P2.5x0.203        | 95               | -35908 | 76921                   | 46.7       | Pass        |
| T4          | 140.833 - 120.833 | Leg            | P2.5x0.203        | 155              | -44360 | 76921                   | 57.7       | Pass        |
| T5          | 120.833 - 100.833 | Leg            | P2.5x0.203        | 215              | -48150 | 76921                   | 62.6       | Pass        |
| T6          | 100.833 - 80.8333 | Leg            | P2.5x0.203        | 276              | -34125 | 73258                   | 46.6       | Pass        |
| T7          | 80.8333 - 60.8333 | Leg            | P2.5x0.203        | 336              | -35467 | 73258                   | 48.4       | Pass        |
| T8          | 60.8333 - 40.8333 | Leg            | P2.5x0.203        | 395              | -41522 | 76921                   | 54.0       | Pass        |
| T9          | 40.8333 - 20.8333 | Leg            | P2.5x0.203        | 455              | -43414 | 76921                   | 56.4       | Pass        |
| T10         | 20.8333 - 0.8333  | Leg            | P2.5x0.203        | 515              | -43392 | 76830                   | 56.5       | Pass        |
| T1          | 190.833 - 180.833 | Diagonal       | 5/8               | 28               | 1557   | 10437                   | 14.9       | Pass        |
| T2          | 180.833 - 160.833 | Diagonal       | 5/8               | 46               | 5445   | 10437                   | 52.2       | Pass        |
| T3          | 160.833 - 140.833 | Diagonal       | 5/8               | 133              | 3506   | 10437                   | 33.6       | Pass        |
| T4          | 140.833 - 120.833 | Diagonal       | 5/8               | 166              | 2676   | 10437                   | 25.6       | Pass        |
| T5          | 120.833 - 100.833 | Diagonal       | 5/8               | 252              | 4031   | 10437                   | 38.6       | Pass        |
| T6          | 100.833 - 80.8333 | Diagonal       | 5/8               | 330              | 2682   | 10437                   | 25.7       | Pass        |
| T7          | 80.8333 - 60.8333 | Diagonal       | 5/8               | 345              | 1302   | 10437                   | 12.5       | Pass        |
| T8          | 60.8333 - 40.8333 | Diagonal       | 5/8               | 440              | 2099   | 10437                   | 20.1       | Pass        |
| T9          | 40.8333 - 20.8333 | Diagonal       | 5/8               | 466              | 1398   | 10437                   | 13.4       | Pass        |
| T10         | 20.8333 - 0.8333  | Diagonal       | 5/8               | 535              | 2475   | 10437                   | 23.7       | Pass        |
| T1          | 190.833 - 180.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 26               | -695   | 9639                    | 7.2        | Pass        |
| T2          | 180.833 - 160.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 50               | -3502  | 9639                    | 36.3       | Pass        |
| T3          | 160.833 - 140.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 137              | -2543  | 9639                    | 26.4       | Pass        |
| T4          | 140.833 - 120.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 170              | -1872  | 9639                    | 19.4       | Pass        |

| Section No. | Elevation (ft)    | Component Type              | Size              | Critical Element | P (lb) | øP <sub>allow</sub> (lb) | % Capacity       | Pass / Fail |
|-------------|-------------------|-----------------------------|-------------------|------------------|--------|--------------------------|------------------|-------------|
| T5          | 120.833 - 100.833 | Horizontal                  | L1 1/2x1 1/2x3/16 | 257              | -2894  | 9639                     | 30.0             | Pass        |
| T6          | 100.833 - 80.8333 | Horizontal                  | L1 1/2x1 1/2x3/16 | 326              | -1801  | 9639                     | 18.7             | Pass        |
| T7          | 80.8333 - 60.8333 | Horizontal                  | L1 1/2x1 1/2x3/16 | 350              | -929   | 9639                     | 9.6              | Pass        |
| T8          | 60.8333 - 40.8333 | Horizontal                  | L1 1/2x1 1/2x3/16 | 436              | -1452  | 9639                     | 15.1             | Pass        |
| T9          | 40.8333 - 20.8333 | Horizontal                  | L1 1/2x1 1/2x3/16 | 470              | -912   | 9639                     | 9.5              | Pass        |
| T10         | 20.8333 - 0.8333  | Horizontal                  | L1 1/2x1 1/2x3/16 | 539              | -1734  | 9639                     | 18.0             | Pass        |
| T2          | 180.833 - 160.833 | Top Girt                    | L1 1/2x1 1/2x3/16 | 37               | -510   | 9639                     | 5.3              | Pass        |
| T3          | 160.833 - 140.833 | Top Girt                    | L1 1/2x1 1/2x3/16 | 99               | -2004  | 9639                     | 20.8             | Pass        |
| T4          | 140.833 - 120.833 | Top Girt                    | L1 1/2x1 1/2x3/16 | 157              | -769   | 9639                     | 8.0              | Pass        |
| T5          | 120.833 - 100.833 | Top Girt                    | L1 1/2x1 1/2x3/16 | 219              | -925   | 9639                     | 9.6              | Pass        |
| T6          | 100.833 - 80.8333 | Top Girt                    | L1 1/2x1 1/2x3/16 | 278              | -1014  | 9639                     | 10.5             | Pass        |
| T7          | 80.8333 - 60.8333 | Top Girt                    | L1 1/2x1 1/2x3/16 | 338              | -615   | 9180                     | 6.7              | Pass        |
| T9          | 40.8333 - 20.8333 | Top Girt                    | L1 1/2x1 1/2x3/16 | 457              | -752   | 9639                     | 7.8              | Pass        |
| T10         | 20.8333 - 0.8333  | Top Girt                    | L1 1/2x1 1/2x3/16 | 517              | -752   | 9639                     | 7.8              | Pass        |
| T1          | 190.833 - 180.833 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 9                | -270   | 9639                     | 2.8              | Pass        |
| T2          | 180.833 - 160.833 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 42               | -2153  | 9639                     | 22.3             | Pass        |
| T3          | 160.833 - 140.833 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 100              | -622   | 9639                     | 6.5              | Pass        |
| T4          | 140.833 - 120.833 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 162              | -975   | 9639                     | 10.1             | Pass        |
| T5          | 120.833 - 100.833 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 221              | -1101  | 9639                     | 11.4             | Pass        |
| T6          | 100.833 - 80.8333 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 281              | -591   | 9180                     | 6.4              | Pass        |
| T7          | 80.8333 - 60.8333 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 341              | -615   | 9180                     | 6.7              | Pass        |
| T8          | 60.8333 - 40.8333 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 400              | -721   | 9639                     | 7.5              | Pass        |
| T9          | 40.8333 - 20.8333 | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 460              | -752   | 9639                     | 7.8              | Pass        |
| T10         | 20.8333 - 0.8333  | Bottom Girt                 | L1 1/2x1 1/2x3/16 | 521              | 190    | 17086                    | 1.1              | Pass        |
| T1          | 190.833 - 180.833 | Guy A@190.833               | 9/16              | 576              | 10563  | 22050                    | 47.9             | Pass        |
| T3          | 160.833 - 140.833 | Guy A@157.444               | 5/8               | 590              | 10252  | 26711                    | 38.4             | Pass        |
| T5          | 120.833 - 100.833 | Guy A@117.444               | 9/16              | 607              | 6377   | 22050                    | 28.9             | Pass        |
| T8          | 60.8333 - 40.8333 | Guy A@60.75                 | 9/16              | 615              | 6225   | 22050                    | 28.2             | Pass        |
| T1          | 190.833 - 180.833 | Guy B@190.833               | 9/16              | 575              | 10936  | 22050                    | 49.6             | Pass        |
| T3          | 160.833 - 140.833 | Guy B@157.444               | 5/8               | 584              | 11023  | 26711                    | 41.3             | Pass        |
| T5          | 120.833 - 100.833 | Guy B@117.444               | 9/16              | 602              | 7207   | 22050                    | 32.7             | Pass        |
| T8          | 60.8333 - 40.8333 | Guy B@60.75                 | 9/16              | 614              | 7052   | 22050                    | 32.0             | Pass        |
| T1          | 190.833 - 180.833 | Guy C@190.833               | 9/16              | 574              | 10569  | 22050                    | 47.9             | Pass        |
| T3          | 160.833 - 140.833 | Guy C@157.444               | 5/8               | 577              | 10860  | 26711                    | 40.7             | Pass        |
| T5          | 120.833 - 100.833 | Guy C@117.444               | 9/16              | 595              | 6813   | 22050                    | 30.9             | Pass        |
| T8          | 60.8333 - 40.8333 | Guy C@60.75                 | 9/16              | 613              | 6535   | 22050                    | 29.6             | Pass        |
| T1          | 190.833 - 180.833 | Top Guy Pull-Off@190.833    | L1 3/4x1 3/4x3/16 | 6                | 3776   | 21130                    | 17.9             | Pass        |
| T8          | 60.8333 - 40.8333 | Top Guy Pull-Off@60.75      | L1 3/4x1 3/4x3/16 | 398              | 1990   | 21130                    | 9.4              | Pass        |
| T3          | 160.833 - 140.833 | Bottom Guy Pull-Off@157.444 | L 2 x 2 x 5/16    | 147              | -2719  | 29713                    | 9.1              | Pass        |
| T5          | 120.833 - 100.833 | Bottom Guy Pull-Off@117.444 | L 2 x 2 x 5/16    | 267              | -2698  | 29713                    | 9.1              | Pass        |
| T3          | 160.833 - 140.833 | Torque Arm Top@157.444      | L3x3x1/4          | 580              | 10084  | 41835                    | 24.1<br>43.1 (b) | Pass        |

| Section No. | Elevation (ft)    | Component Type            | Size     | Critical Element | P (lb) | øP <sub>allow</sub> (lb) | % Capacity       | Pass / Fail |
|-------------|-------------------|---------------------------|----------|------------------|--------|--------------------------|------------------|-------------|
| T5          | 120.833 - 100.833 | Torque Arm Top@117.444    | L3x3x1/4 | 598              | 5280   | 41835                    | 12.6<br>22.6 (b) | Pass        |
| T3          | 160.833 - 140.833 | Torque Arm Bottom@157.444 | L3x3x1/4 | 593              | -7387  | 46203                    | 16.0<br>17.7 (b) | Pass        |
| T5          | 120.833 - 100.833 | Torque Arm Bottom@117.444 | L3x3x1/4 | 611              | -4294  | 46203                    | 9.3<br>11.7 (b)  | Pass        |
|             |                   |                           |          |                  |        |                          | Summary          |             |
|             |                   |                           |          |                  |        | Leg (T5)                 | 62.6             | Pass        |
|             |                   |                           |          |                  |        | Diagonal (T2)            | 52.2             | Pass        |
|             |                   |                           |          |                  |        | Horizontal (T2)          | 36.3             | Pass        |
|             |                   |                           |          |                  |        | Top Girt (T3)            | 20.8             | Pass        |
|             |                   |                           |          |                  |        | Bottom Girt (T2)         | 22.3             | Pass        |
|             |                   |                           |          |                  |        | Guy A (T1)               | 47.9             | Pass        |
|             |                   |                           |          |                  |        | Guy B (T1)               | 49.6             | Pass        |
|             |                   |                           |          |                  |        | Guy C (T1)               | 47.9             | Pass        |
|             |                   |                           |          |                  |        | Top Guy Pull-Off (T1)    | 17.9             | Pass        |
|             |                   |                           |          |                  |        | Bottom Guy Pull-Off (T3) | 9.1              | Pass        |
|             |                   |                           |          |                  |        | Torque Arm Top (T3)      | 43.1             | Pass        |
|             |                   |                           |          |                  |        | Torque Arm Bottom (T3)   | 17.7             | Pass        |
|             |                   |                           |          |                  |        | Bolt Checks              | 43.1             | Pass        |
|             |                   |                           |          |                  |        | <b>RATING =</b>          | <b>62.6</b>      | <b>Pass</b> |

**Table 4 - Tower Component Stresses vs. Capacity**

| Notes | Component                        | Elevation (ft) | % Capacity | Pass / Fail |
|-------|----------------------------------|----------------|------------|-------------|
| 1,2   | Base Foundation Soil Interaction | -              | 24.5       | Pass        |
| 1,2   | Base Foundation Structural       | -              | 36.4       | Pass        |
| 1,2   | Anchor Foundation Uplift         | -              | 33.8       | Pass        |
| 1,2   | Anchor Foundation Lateral        | -              | 61.4       | Pass        |
| 1,2   | Guy Anchor Shaft                 | -              | 52.7       | Pass        |

|                                                                 |              |
|-----------------------------------------------------------------|--------------|
| <b>Structure Rating (max from all components)<sup>2</sup> =</b> | <b>62.6%</b> |
|-----------------------------------------------------------------|--------------|

Notes:

- 1) See additional documentation in "Appendix B - Additional Calculations" for calculations supporting the % capacity listed.
- 2) Rating per TIA-222-H, Section 15.5

**Table 5 - Dish Twist/Sway Results for 60 mph Service Wind Speed**

| Elevation<br>(ft) | Dish Model | Beam Deflection |            |             |
|-------------------|------------|-----------------|------------|-------------|
|                   |            | Deflection (in) | Tilt (deg) | Twist (deg) |
| -                 | -          | -               | -          | -           |

#### **4.1) Recommendations**

- 1) If the load differs from that described in Table 1 of this report or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
- 2) The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

**APPENDIX A**  
**TNX TOWER OUTPUT**

|                      |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|----------------------|--------|-------------|-------|-------|-------|---------|-------------------|---------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| Section              | T-10   | 19          | 78    | 79    | 17    | 18      | 19                | 78                  | 79 | 17 | 18 | 19 | 14 | 15 | 16 | 17 | 18 | 19 | 78 | 79 | 17 | 18 | 19 | T-2 | T-3 | T-4 | T-5 | T-6 | T-7 | T-8 | T-9 | T-10 |
| Legs                 |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Leg Grade            |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Diagonals            |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Diagonal Grade       |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Top Girls            |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Bottom Girls         |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Horizontals          |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Top Guy Pull-Offs    |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Bottom Guy Pull-Offs |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Face Width (ft)      |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| # Panels @ (ft)      |        |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
| Weight (lb)          | 6826.8 |             |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        | 6 @ 3.31944 |       |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        |             | 661.1 |       |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        |             |       | 660.7 |       |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        |             |       |       | 664.1 |         |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        |             |       |       |       | 1503 lb |                   |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        |             |       |       |       |         | 123476 lb (Axial) |                     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |
|                      |        |             |       |       |       |         |                   | 2217 lb-ft (Torque) |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     |     |     |     |     |     |     |      |

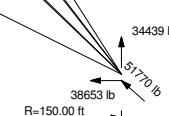


### DESIGNED APPURTENANCE LOADING

| TYPE                               | ELEVATION | TYPE                               | ELEVATION |
|------------------------------------|-----------|------------------------------------|-----------|
| 5/8" x 4' Lightning Rod            | 190       | APXVAALL24_43-U-NA20 w/ mount pipe | 165       |
| SitePro 1 VFA12-HD (1)             | 190       | AIR6449 B41 w/ Mount Pipe          | 165       |
| 4.5" dia. x 10'                    | 190       | AIR6449 B41 w/ Mount Pipe          | 165       |
| 3.5" Dia. x 4-ft                   | 190       | AIR6449 B41 w/ Mount Pipe          | 165       |
| SitePro 1 VFA12-HD (1)             | 190       | RADIO 4460 B2/B25 B66_TMO          | 165       |
| 4.5" dia. x 10'                    | 190       | RADIO 4460 B2/B25 B66_TMO          | 165       |
| 3.5" Dia. x 4-ft                   | 190       | RADIO 4480 B71_TMO                 | 165       |
| SitePro 1 VFA12-HD (1)             | 190       | RADIO 4480 B71_TMO                 | 165       |
| 4.5" dia. x 10'                    | 190       | RADIO 4480 B71_TMO                 | 165       |
| (2) MX06FR0660-02 w/ Mount Pipe    | 190       | Sector Mount [SM 803-3]            | 150       |
| (2) MX06FR0660-02 w/ Mount Pipe    | 190       | EPBO-654L8H w/ Mount Pipe          | 150       |
| (2) MX06FR0660-02 w/ Mount Pipe    | 190       | EPBO-654L8H w/ Mount Pipe          | 150       |
| MT6407-77Aw/ Mount Pipe            | 190       | EPBQ-654L8H w/ Mount Pipe          | 150       |
| MT6407-77Aw/ Mount Pipe            | 190       | (2) RA21_7770.00 w/ Mount pipe     | 150       |
| MT6407-77Aw/ Mount Pipe            | 190       | (2) RA21_7770.00 w/ Mount pipe     | 150       |
| RVZDC-6627-PF-48                   | 190       | (2) RA21_7770.00 w/ Mount pipe     | 150       |
| B2/B66A RRH-BR049                  | 190       | RRUS 11                            | 150       |
| B2/B66A RRH-BR049                  | 190       | RRUS 11                            | 150       |
| B2/B66A RRH-BR049                  | 190       | RRUS 11                            | 150       |
| B5/B13 RRH-BR04C                   | 190       | (2) LGP21401                       | 150       |
| B5/B13 RRH-BR04C                   | 190       | (2) LGP21401                       | 150       |
| B5/B13 RRH-BR04C                   | 190       | (2) LGP21401                       | 150       |
| LNX-8513DS-A1M w/ 8' MP            | 190       | LGP219nn (Diplex)                  | 150       |
| LNX-8513DS-A1M w/ 8' MP            | 190       | LGP219nn (Diplex)                  | 150       |
| LNX-8513DS-A1M w/ 8' MP            | 190       | LGP219nn (Diplex)                  | 150       |
| Sector Mount [SM 803-3]            | 177       | 782 10253                          | 150       |
| SitePro VFA12-HD Sector Mount (3)  | 165       | 782 10253                          | 150       |
| APXVAALL24_43-U-NA20 w/ mount pipe | 165       | 782 10253                          | 150       |
| APXVAALL24_43-U-NA20 w/ mount pipe | 165       | DC6-48-60-18-F                     | 150       |

### SYMBOL LIST

| MARK | SIZE              | MARK | SIZE |
|------|-------------------|------|------|
| A    | L1 3/4x1 3/4x3/16 |      |      |


### MATERIAL STRENGTH

| GRADE   | Fy     | Fu     | GRADE | Fy     | Fu     |
|---------|--------|--------|-------|--------|--------|
| A572-55 | 55 ksi | 70 ksi | A36   | 36 ksi | 58 ksi |

### TOWER DESIGN NOTES

1. Tower designed for Exposure B to the TIA-222-H Standard.
2. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
3. Tower is also designed for a 50 mph basic wind with 1.00 in. ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 62.6%

ALL REACTIONS ARE FACORED



|                                                                                                                                     |                                                  |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|
| <b>tnxTower</b>                                                                                                                     | <b>Job</b><br>Eastford CDT (702497)              | <b>Page</b><br>1 of 31           |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | <b>Project</b><br>TEP No. 25707.576390           | <b>Date</b><br>10:15:37 09/10/21 |
| <b>Client</b><br>Everest Infrastructure Partners                                                                                    | <b>Designed by</b><br>W. Harrison Welch,<br>E.I. |                                  |

|                                                                                                                                     |                                                  |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------|
| <b>tnxTower</b>                                                                                                                     | <b>Job</b><br>Eastford CDT (702497)              | <b>Page</b><br>2 of 31           |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | <b>Project</b><br>TEP No. 25707.576390           | <b>Date</b><br>10:15:37 09/10/21 |
| <b>Client</b><br>Everest Infrastructure Partners                                                                                    | <b>Designed by</b><br>W. Harrison Welch,<br>E.I. |                                  |

## Tower Input Data

The main tower is a 3x guyed tower with an overall height of 190.83 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 3.50 ft at the top and 3.50 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 751.87 ft.

Basic wind speed of 120 mph.

Risk Category II.

Exposure Category B.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

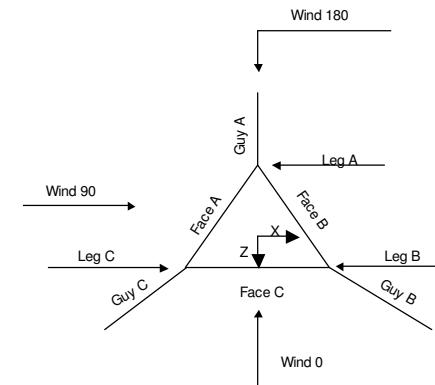
I-Beam base is 0.83 ft above the pivot.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.05.

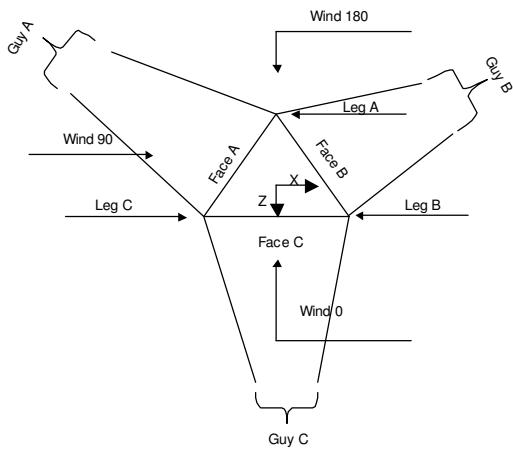
Safety factor used in guy design is 0.9524.

Tower analysis based on target reliabilities in accordance with Annex S.


Load Modification Factors used:  $K_{es}(F_v) = 0.95$ ,  $K_{es}(t_i) = 0.85$ .

Maximum demand-capacity ratio is: 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.


## Options

|                                     |                                      |
|-------------------------------------|--------------------------------------|
| Consider Moments - Legs             | Distribute Leg Loads As Uniform      |
| Consider Moments - Horizontals      | Assume Legs Pinned                   |
| Consider Moments - Diagonals        | ✓ Assume Rigid Index Plate           |
| Use Moment Magnification            | ✓ Use Clear Spans For Wind Area      |
| Use Code Stress Ratios              | ✓ Use Clear Spans For $KL/r$         |
| Use Code Safety Factors - Guys      | ✓ Retension Guys To Initial Tension  |
| Escalate Ice                        | ✓ Bypass Mast Stability Checks       |
| Always Use Max Kz                   | ✓ Use Azimuth Dish Coefficients      |
| Use Special Wind Profile            | ✓ Project Wind Area of Appurt.       |
| ✓ Include Bolts In Member Capacity  | ✓ Autocalc Torque Arm Areas          |
| Leg Bolts Are At Top Of Section     | Add IBC .6D+W Combination            |
| ✓ Secondary Horizontal Braces Leg   | ✓ Sort Capacity Reports By Component |
| Use Diamond Inner Bracing (4 Sided) | Triangulate Diamond Inner Bracing    |
| ✓ SR Members Have Cut Ends          | Treat Feed Line Bundles As Cylinder  |
| SR Members Are Concentric           | Ignore $KL/r$ For 60 Deg. Angle Legs |
|                                     | Known                                |



**Corner & Starmount Guyed Tower**

|                                                                                                                                     |                                           |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|
| <b>tnxTower</b>                                                                                                                     | Job<br>Eastford CDT (702497)              | Page<br>3 of 31           |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Project<br>TEP No. 25707.576390           | Date<br>10:15:37 09/10/21 |
| Client<br>Everest Infrastructure Partners                                                                                           | Designed by<br>W. Harrison Welch,<br>E.I. |                           |



**Face Guyed**

**Tower Section Geometry**

| Tower Section | Tower Elevation | Assembly Database | Description | Section Width | Number of Sections | Section Length |
|---------------|-----------------|-------------------|-------------|---------------|--------------------|----------------|
|               |                 |                   |             | ft            |                    | ft             |
| T1            | 190.83-180.83   |                   |             | 3.50          | 1                  | 10.00          |
| T2            | 180.83-160.83   |                   |             | 3.50          | 1                  | 20.00          |
| T3            | 160.83-140.83   |                   |             | 3.50          | 1                  | 20.00          |
| T4            | 140.83-120.83   |                   |             | 3.50          | 1                  | 20.00          |
| T5            | 120.83-100.83   |                   |             | 3.50          | 1                  | 20.00          |
| T6            | 100.83-80.83    |                   |             | 3.50          | 1                  | 20.00          |
| T7            | 80.83-60.83     |                   |             | 3.50          | 1                  | 20.00          |
| T8            | 60.83-40.83     |                   |             | 3.50          | 1                  | 20.00          |
| T9            | 40.83-20.83     |                   |             | 3.50          | 1                  | 20.00          |
| T10           | 20.83-0.83      |                   |             | 3.50          | 1                  | 20.00          |

**Tower Section Geometry (cont'd)**

|                                                                                                                                     |                                           |                           |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|
| <b>tnxTower</b>                                                                                                                     | Job<br>Eastford CDT (702497)              | Page<br>4 of 31           |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Project<br>TEP No. 25707.576390           | Date<br>10:15:37 09/10/21 |
| Client<br>Everest Infrastructure Partners                                                                                           | Designed by<br>W. Harrison Welch,<br>E.I. |                           |

| Tower Section | Tower Elevation | Diagonal Spacing | Bracing Type | Has K Brace End Panels | Has Horizontals | Top Girt Offset | Bottom Girt Offset |
|---------------|-----------------|------------------|--------------|------------------------|-----------------|-----------------|--------------------|
| T1            | 190.83-180.83   | 3.31             | TX Brace     | No                     | Yes             | 0.000           | 1.000              |
| T2            | 180.83-160.83   | 3.31             | TX Brace     | No                     | Yes             | 1.000           | 1.000              |
| T3            | 160.83-140.83   | 3.31             | TX Brace     | No                     | Yes             | 1.000           | 1.000              |
| T4            | 140.83-120.83   | 3.31             | TX Brace     | No                     | Yes             | 1.000           | 1.000              |
| T5            | 120.83-100.83   | 3.31             | TX Brace     | No                     | Yes             | 1.000           | 1.000              |
| T6            | 100.83-80.83    | 3.31             | TX Brace     | No                     | Yes             | 1.000           | 1.000              |
| T7            | 80.83-60.83     | 3.31             | TX Brace     | No                     | Yes             | 1.0000          | 1.0000             |
| T8            | 60.83-40.83     | 3.31             | TX Brace     | No                     | Yes             | 1.0000          | 1.0000             |
| T9            | 40.83-20.83     | 3.31             | TX Brace     | No                     | Yes             | 1.0000          | 1.0000             |
| T10           | 20.83-0.83      | 3.32             | TX Brace     | No                     | Yes             | 1.0000          | 0.0000             |

**Tower Section Geometry (cont'd)**

| Tower Elevation  | Leg Type | Leg Size   | Leg Grade           | Diagonal Type | Diagonal Size | Diagonal Grade  |
|------------------|----------|------------|---------------------|---------------|---------------|-----------------|
| T1 190.83-180.83 | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T2 180.83-160.83 | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T3 160.83-140.83 | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T4 140.83-120.83 | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T5 120.83-100.83 | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T6 100.83-80.83  | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T7 80.83-60.83   | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T8 60.83-40.83   | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T9 40.83-20.83   | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |
| T10 20.83-0.83   | Pipe     | P2.5x0.203 | A572-55<br>(55 ksi) | Solid Round   | 5/8           | A36<br>(36 ksi) |

**Tower Section Geometry (cont'd)**

| Tower Elevation  | Top Girt Type | Top Girt Size     | Top Girt Grade  | Bottom Girt Type | Bottom Girt Size  | Bottom Girt Grade |
|------------------|---------------|-------------------|-----------------|------------------|-------------------|-------------------|
| T1 190.83-180.83 | Equal Angle   | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi) | Equal Angle      | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)   |
| T2 180.83-160.83 | Equal Angle   | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi) | Equal Angle      | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)   |
| T3 160.83-140.83 | Equal Angle   | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi) | Equal Angle      | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)   |
| T4 140.83-120.83 | Equal Angle   | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi) | Equal Angle      | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)   |
| T5 120.83-100.83 | Equal Angle   | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi) | Equal Angle      | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)   |

|                                                                                                                                                            |         |                                 |             |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 5 of 31                 |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Tower Elevation ft | Top Girt Type | Top Girt Size     | Top Girt Grade  | Bottom Girt Type | Bottom Girt Size  | Bottom Girt Grade |
|--------------------|---------------|-------------------|-----------------|------------------|-------------------|-------------------|
| T6 100.83-80.83    | Equal Angle   | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36 | Equal Angle      | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36   |
| T7 80.83-60.83     | Equal Angle   | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36 | Equal Angle      | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36   |
| T8 60.83-40.83     | Equal Angle   | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36 | Equal Angle      | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36   |
| T9 40.83-20.83     | Equal Angle   | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36 | Equal Angle      | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36   |
| T10 20.83-0.83     | Equal Angle   | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36 | Equal Angle      | L1 1/2x1 1/2x3/16 | (36 ksi)<br>A36   |

### Tower Section Geometry (cont'd)

| Tower Elevation ft | No. of Mid Girts | Mid Girt Type | Mid Girt Size | Mid Girt Grade  | Horizontal Type | Horizontal Size   | Horizontal Grade |
|--------------------|------------------|---------------|---------------|-----------------|-----------------|-------------------|------------------|
| T1 190.83-180.83   | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T2 180.83-160.83   | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T3 160.83-140.83   | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T4 140.83-120.83   | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T5 120.83-100.83   | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T6 100.83-80.83    | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T7 80.83-60.83     | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T8 60.83-40.83     | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T9 40.83-20.83     | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |
| T10 20.83-0.83     | None             | Flat Bar      |               | A36<br>(36 ksi) | Single Angle    | L1 1/2x1 1/2x3/16 | A36<br>(36 ksi)  |

### Tower Section Geometry (cont'd)

| Tower Elevation ft | Gusset Area (per face) | Gusset Thickness | Gusset Grade    | Adjust. Factor $A_f$ | Adjust. Factor $A_r$ | Weight Mult. | Double Angle Stitch Bolt Spacing Diagonals in | Double Angle Stitch Bolt Spacing Horizontals in | Double Angle Stitch Bolt Spacing Redundants in |
|--------------------|------------------------|------------------|-----------------|----------------------|----------------------|--------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------|
| T1 190.83-180.83   | 0.00                   | 0.0000           | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| T2 180.83-160.83   | 0.00                   | 0.0000           | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| T3 160.83-140.83   | 0.00                   | 0.0000           | A36             | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |

|                                                                                                                                                            |         |                                 |             |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 6 of 31                 |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Tower Elevation ft | Gusset Area (per face) $ft^2$ | Gusset Thickness in | Gusset Grade    | Adjust. Factor $A_f$ | Adjust. Factor $A_r$ | Weight Mult. | Double Angle Stitch Bolt Spacing Diagonals in | Double Angle Stitch Bolt Spacing Horizontals in | Double Angle Stitch Bolt Spacing Redundants in |
|--------------------|-------------------------------|---------------------|-----------------|----------------------|----------------------|--------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------|
| 160.83-140.83      | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 140.83-120.83      | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 120.83-100.83      | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 100.83-80.83       | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 80.83-60.83        | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 60.83-40.83        | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 40.83-20.83        | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |
| 20.83-0.83         | 0.00                          | 0.0000              | A36<br>(36 ksi) | 1                    | 1                    | 1            | 36.0000                                       | 36.0000                                         | 36.0000                                        |

### Tower Section Geometry (cont'd)

| Tower Elevation ft | Calc K Single Angles | Calc K Solid Rounds | Legs | K Factors <sup>1</sup> |               |              |       |        |             |             |     |
|--------------------|----------------------|---------------------|------|------------------------|---------------|--------------|-------|--------|-------------|-------------|-----|
|                    |                      |                     |      | X Brace Diags          | K Brace Diags | Single Diags | Girts | Horiz. | Sec. Horiz. | Inner Brace |     |
| T1                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 190.83-180.83      | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 180.83-160.83      | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| T3                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 160.83-140.83      | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| T4                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 140.83-120.83      | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| T5                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 120.83-100.83      | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| T6                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 100.83-80.83       | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 0.5         | 1   |
| T7                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 80.83-60.83        | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 0.5         | 1   |
| T8                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 60.83-40.83        | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 0.5         | 1   |
| T9                 | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 1   |
| 40.83-20.83        | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 0.5         | 1   |
| T10                | Yes                  | Yes                 | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 1           | 0.5 |
| 20.83-0.83         |                      |                     | 1    | 1                      | 1             | 1            | 1     | 1      | 1           | 0.5         | 1   |

<sup>1</sup>Note: K-factors are applied to member segment lengths. K-braces without inner supporting members will have the K-factor in the out-of-plane direction applied to the overall length.

### Tower Section Geometry (cont'd)

|                                                                                                                                                        |                                 |  |  |  |  |  |                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|----------------------------|--|
| <b>ttxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job                             |  |  |  |  |  | Page                       |  |
|                                                                                                                                                        | Eastford CDT (702497)           |  |  |  |  |  | 7 of 31                    |  |
|                                                                                                                                                        | Project                         |  |  |  |  |  | Date                       |  |
|                                                                                                                                                        | TEP No. 25707.576390            |  |  |  |  |  | 10:15:37 09/10/21          |  |
|                                                                                                                                                        | Client                          |  |  |  |  |  | Designed by                |  |
|                                                                                                                                                        | Everest Infrastructure Partners |  |  |  |  |  | W. Harrison Welch,<br>E.I. |  |

| Tower Elevation ft | Leg                 |   | Diagonal            |   | Top Girt            |   | Bottom Girt         |      | Mid Girt            |   | Long Horizontal     |      | Short Horizontal    |   |
|--------------------|---------------------|---|---------------------|---|---------------------|---|---------------------|------|---------------------|---|---------------------|------|---------------------|---|
|                    | Net Width Deduct in | U    | Net Width Deduct in | U | Net Width Deduct in | U    | Net Width Deduct in | U |
| T1 190.83-180.83   | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T2 180.83-160.83   | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T3 160.83-140.83   | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T4 140.83-120.83   | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T5 120.83-100.83   | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T6 100.83-80.83    | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T7 80.83-60.83     | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T8 60.83-40.83     | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T9 40.83-20.83     | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |
| T10 20.83-0.83     | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 1 | 0.0000              | 0.75 | 0.0000              | 1 | 0.0000              | 0.75 |                     |   |

| Tower Elevation ft | Redundant Horizontal |      | Redundant Diagonal  |      | Redundant Sub-Diagonal |      | Redundant Sub-Horizontal |      | Redundant Vertical  |      | Redundant Hip       |      | Redundant Hip Diagonal |      |
|--------------------|----------------------|------|---------------------|------|------------------------|------|--------------------------|------|---------------------|------|---------------------|------|------------------------|------|
|                    | Net Width Deduct in  | U    | Net Width Deduct in | U    | Net Width Deduct in    | U    | Net Width Deduct in      | U    | Net Width Deduct in | U    | Net Width Deduct in | U    | Net Width Deduct in    | U    |
| T1 190.83-180.83   | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 |
| T2 180.83-160.83   | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T3 160.83-140.83   | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T4 140.83-120.83   | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T5 120.83-100.83   | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T6 100.83-80.83    | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T7 80.83-60.83     | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T8 60.83-40.83     | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T9 40.83-20.83     | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |
| T10 20.83-0.83     | 0.0000               | 0.75 | 0.0000              | 0.75 | 0.0000                 | 0.75 | 0.0000                   | 0.75 | 0.0000              | 0.75 | 0.0000              | 0.75 |                        |      |

|                                                                                                                                                        |                                 |  |  |  |  |  |                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|----------------------------|--|
| <b>ttxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job                             |  |  |  |  |  | Page                       |  |
|                                                                                                                                                        | Eastford CDT (702497)           |  |  |  |  |  | 8 of 31                    |  |
|                                                                                                                                                        | Project                         |  |  |  |  |  | Date                       |  |
|                                                                                                                                                        | TEP No. 25707.576390            |  |  |  |  |  | 10:15:37 09/10/21          |  |
|                                                                                                                                                        | Client                          |  |  |  |  |  | Designed by                |  |
|                                                                                                                                                        | Everest Infrastructure Partners |  |  |  |  |  | W. Harrison Welch,<br>E.I. |  |

| Tower Elevation ft | Leg Connection Type | Leg    | Diagonal     |        | Top Girt     |        | Bottom Girt  |        | Mid Girt     |        | Long Horizontal |        | Short Horizontal |        |   |
|--------------------|---------------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|--------|-----------------|--------|------------------|--------|---|
|                    |                     |        | Bolt Size in | No.    | Bolt Size in    | No.    | Bolt Size in     | No.    |   |
| T2 180.83-160.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T3 160.83-140.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T4 140.83-120.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T5 120.83-100.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T6 100.83-80.83    | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T7 80.83-60.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T8 60.83-40.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T9 40.83-20.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |
| T10 20.83-0.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                | 0.0000 | 0 |

| Tower Elevation ft | Leg Connection Type |        | Leg          |        | Diagonal     |        | Top Girt     |        | Bottom Girt  |        | Mid Girt     |        | Long Horizontal |        | Short Horizontal |     |
|--------------------|---------------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|--------|-----------------|--------|------------------|-----|
|                    | Bolt Size in        | No.    | Bolt Size in |        | Bolt Size in    |        | Bolt Size in     |     |
|                    |                     |        | Bolt Size in | No.    | Bolt Size in    | No.    | Bolt Size in     | No. |
| T1 190.83-180.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T2 180.83-160.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T3 160.83-140.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T4 140.83-120.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T5 120.83-100.83   | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T6 100.83-80.83    | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T7 80.83-60.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T8 60.83-40.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T9 40.83-20.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |
| T10 20.83-0.83     | Flange              | 0.7500 | 4            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0            | 0.0000 | 0               | 0.0000 | 0                |     |

| Tower Elevation ft | Guy Elevation ft | Guy Grade | Guy Size | Initial Tension % | Guy Modulus | Guy Weight ksi | L<sub>a</sub> | Anchor Radius | Anchor Azimuth Adj ° | Anchor Elevation | End Fitting % | Guy Data | |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |




<tbl\_r cells="14" ix="4" maxcspan="1" maxrspan="1

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 9 of 31                    |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

### Guy Data (cont'd)

| Guy Elevation ft | Diagonal Grade   | Diagonal Type | Upper Diagonal Size | Lower Diagonal Size | Is Strap. | Pull-Off Grade | Pull-Off Type | Pull-Off Size     |
|------------------|------------------|---------------|---------------------|---------------------|-----------|----------------|---------------|-------------------|
| 190.83           | A572-50 (50 ksi) | Solid Round   |                     |                     | No        | A36 (36 ksi)   | Equal Angle   | L1 3/4x1 3/4x3/16 |
| 157.44           | A572-50 (50 ksi) | Solid Round   |                     |                     | No        | A36 (36 ksi)   | Equal Angle   | L 2 x 2 x 5/16    |
| 117.44           | A572-50 (50 ksi) | Solid Round   |                     |                     | No        | A36 (36 ksi)   | Equal Angle   | L 2 x 2 x 5/16    |
| 60.75            | A572-50 (50 ksi) | Solid Round   |                     |                     | No        | A36 (36 ksi)   | Equal Angle   | L1 3/4x1 3/4x3/16 |

### Guy Data (cont'd)

| Guy Elevation ft | Cable Weight A lb | Cable Weight B lb | Cable Weight C lb | Cable Weight D lb | Tower Intercept A ft | Tower Intercept B ft | Tower Intercept C ft | Tower Intercept D ft |
|------------------|-------------------|-------------------|-------------------|-------------------|----------------------|----------------------|----------------------|----------------------|
| 190.833          | 162               | 162               | 162               |                   | 5.49                 | 5.49                 | 5.49                 |                      |
|                  |                   |                   |                   |                   | 4.0 sec/pulse        | 4.0 sec/pulse        | 4.0 sec/pulse        |                      |
| 157.444          | 176               | 176               | 176               |                   | 4.41                 | 4.41                 | 4.41                 |                      |
|                  |                   |                   |                   |                   | 3.6 sec/pulse        | 3.6 sec/pulse        | 3.6 sec/pulse        |                      |
| 117.444          | 127               | 127               | 127               |                   | 3.38                 | 3.38                 | 3.38                 |                      |
|                  |                   |                   |                   |                   | 3.2 sec/pulse        | 3.2 sec/pulse        | 3.2 sec/pulse        |                      |
| 60.75            | 107               | 107               | 107               |                   | 2.44                 | 2.44                 | 2.44                 |                      |
|                  |                   |                   |                   |                   | 2.7 sec/pulse        | 2.7 sec/pulse        | 2.7 sec/pulse        |                      |

### Guy Data (cont'd)

| Guy Elevation ft | Calc K Single Angles | Calc K Solid Rounds | Torque Arm     |                | Pull Off       |                | Diagonal       |                |
|------------------|----------------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                  |                      |                     | K <sub>x</sub> | K <sub>y</sub> | K <sub>x</sub> | K <sub>y</sub> | K <sub>x</sub> | K <sub>y</sub> |
| 190.833          | No                   | No                  | 1              | 1              | 1              | 1              | 1              | 1              |
| 157.444          | No                   | No                  | 1              | 1              | 1              | 1              | 1              | 1              |
| 117.444          | No                   | No                  | 1              | 1              | 1              | 1              | 1              | 1              |
| 60.75            | No                   | No                  |                |                | 1              | 1              | 1              | 1              |

### Guy Data (cont'd)

|                                                                                                                                                            |         |                                 |             |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 10 of 31                |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Guy Elevation ft | Torque-Arm   |        |                     |      | Pull Off     |        |                     |   | Diagonal     |        |                     |      |
|------------------|--------------|--------|---------------------|------|--------------|--------|---------------------|---|--------------|--------|---------------------|------|
|                  | Bolt Size in | Number | Net Width Deduct in | U    | Bolt Size in | Number | Net Width Deduct in | U | Bolt Size in | Number | Net Width Deduct in | U    |
| 190.833          | 0.0000       | 0      | 0.0000              | 1    | 0.0000       | 0      | 0.0000              | 1 | 0.6250       | 0      | 0.0000              | 0.75 |
| 157.444          | A325N        | 2      | 0.0000              | 0.75 | 0.7500       | 0      | 0.0000              | 1 | 0.6250       | 0      | 0.0000              | 0.75 |
| 117.444          | A325N        | 2      | 0.0000              | 0.75 | 0.7500       | 0      | 0.0000              | 1 | 0.6250       | 0      | 0.0000              | 0.75 |
| 60.75            | A325N        | 0      | 0.0000              | 0.75 | 0.0000       | 0      | 0.0000              | 1 | 0.6250       | 0      | 0.0000              | 0.75 |

### Guy Pressures

| Guy Elevation ft | Guy Location | z     | q <sub>c</sub> | q <sub>c</sub> | Ice Thickness in |
|------------------|--------------|-------|----------------|----------------|------------------|
|                  |              | β     | psf            | Ice psf        |                  |
| 190.833          | A            | 95.42 | 28             | 5              | 0.9452           |
|                  | B            | 95.42 | 28             | 5              | 0.9452           |
|                  | C            | 95.42 | 28             | 5              | 0.9452           |
| 157.444          | A            | 78.72 | 27             | 5              | 0.9272           |
|                  | B            | 78.72 | 27             | 5              | 0.9272           |
|                  | C            | 78.72 | 27             | 5              | 0.9272           |
| 117.444          | A            | 58.72 | 25             | 4              | 0.9004           |
|                  | B            | 58.72 | 25             | 4              | 0.9004           |
|                  | C            | 58.72 | 25             | 4              | 0.9004           |
| 60.75            | A            | 30.37 | 20             | 4              | 0.8430           |
|                  | B            | 30.37 | 20             | 4              | 0.8430           |
|                  | C            | 30.37 | 20             | 4              | 0.8430           |

### Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                | Face or Leg | Allow Shield | Exclude From Torque Calculation | Component Type | Placement | Face Offset in | Lateral Offset (Frac FW) | # Per Row | Clear Spacing in | Width or Diameter in | Perimeter in | Weight plf |      |
|----------------------------|-------------|--------------|---------------------------------|----------------|-----------|----------------|--------------------------|-----------|------------------|----------------------|--------------|------------|------|
| Climbing Ladder            | A           | No           | No                              | Ar (CaAa)      | 190.00 -  | 0.0000         | -0.25                    | 1         | 1                | 1.5000               | 1.5000       | 5.41       |      |
| Safety Line 3/8"           | A           | No           | No                              | Ar (CaAa)      | 190.00 -  | 0.0000         | -0.25                    | 1         | 1                | 0.3750               | 0.3750       | 0.22       |      |
| ****                       |             |              |                                 |                |           |                |                          |           |                  |                      |              |            |      |
| LDF7-50A (1-5/8 FOAM)      | A           | No           | No                              | Ar (CaAa)      | 190.00 -  | 0.0000         | 0.375                    | 12        | 8                | 0.5000               | 1.9800       | 0.82       |      |
| 6x12 Hybrid                | A           | No           | No                              | Ar (CaAa)      | 190.00 -  | 2.0000         | 0.3                      | 2         | 2                | 0.5000               | 1.4930       | 1.87       |      |
| ****                       |             |              |                                 |                |           |                |                          |           |                  |                      |              |            |      |
| FDH1204-48S E2-100M (6x24) | B           | No           | No                              | Ar (CaAa)      | 165.00 -  | 8.00           | 0.0000                   | -0.25     | 4                | 4                    | 0.5000       | 1.6730     | 2.22 |
| ****                       |             |              |                                 |                |           |                |                          |           |                  |                      |              |            |      |
| LDF7-50A (1-5/8 FOAM)      | B           | No           | No                              | Ar (CaAa)      | 151.50 -  | 8.00           | 0.0000                   | 0.375     | 12               | 4                    | 0.5000       | 1.9800     | 0.82 |
| FB-L98-002-XXX(3/8")       | B           | No           | No                              | Ar (CaAa)      | 151.50 -  | 8.00           | 0.0000                   | 0.45      | 1                | 1                    | 0.3937       | 0.3937     | 0.06 |
| WR-E82G1(3/8")             | B           | No           | No                              | Ar (CaAa)      | 151.50 -  | 0.2500         | 0.45                     | 2         | 1                | 0.5000               | 0.8220       | 0.38       |      |

|                                                                                                                                                        |         |                                 |             |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 11 of 31                |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Description | Face or Leg | Allow Shield | Exclude From Torque Calculation | Component Type | Placement ft | Face Offset in | Lateral Offset (Frac FW) | # Per Row | # Spacing in | Clear Diameter in | Width or Perimeter in | Weight plf |
|-------------|-------------|--------------|---------------------------------|----------------|--------------|----------------|--------------------------|-----------|--------------|-------------------|-----------------------|------------|
| 4)          |             |              |                                 |                | 8.00         |                |                          |           |              |                   |                       |            |
| ***         |             |              |                                 |                |              |                |                          |           |              |                   |                       |            |

### Feed Line/Linear Appurtenances - Entered As Area

| Description | Face or Leg | Allow Shield | Exclude From Torque Calculation | Component Type | Placement ft | Total Number | C <sub>A</sub> A <sub>A</sub> | Weight |
|-------------|-------------|--------------|---------------------------------|----------------|--------------|--------------|-------------------------------|--------|
| ****        |             |              |                                 |                |              |              | ft <sup>2</sup> /ft           | plf    |
| ****        |             |              |                                 |                |              |              |                               |        |

### Feed Line/Linear Appurtenances Section Areas

| Tower Section | Tower Elevation ft | Face | A <sub>R</sub> ft <sup>2</sup> | A <sub>F</sub> ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> In Face ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> Out Face ft <sup>2</sup> | Weight lb |
|---------------|--------------------|------|--------------------------------|--------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------|
| T1            | 190.83-180.83      | A    | 0.000                          | 0.000                          | 26.236                                                | 0.000                                                  | 176       |
|               |                    | B    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T2            | 180.83-160.83      | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 2.788                                                 | 0.000                                                  | 37        |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T3            | 160.83-140.83      | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 40.902                                                | 0.000                                                  | 291       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T4            | 140.83-120.83      | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 64.979                                                | 0.000                                                  | 391       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T5            | 120.83-100.83      | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 64.979                                                | 0.000                                                  | 391       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T6            | 100.83-80.83       | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 64.979                                                | 0.000                                                  | 391       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T7            | 80.83-60.83        | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 64.979                                                | 0.000                                                  | 391       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T8            | 60.83-40.83        | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 64.979                                                | 0.000                                                  | 391       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T9            | 40.83-20.83        | A    | 0.000                          | 0.000                          | 57.242                                                | 0.000                                                  | 384       |
|               |                    | B    | 0.000                          | 0.000                          | 64.979                                                | 0.000                                                  | 391       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T10           | 20.83-0.83         | A    | 0.000                          | 0.000                          | 38.074                                                | 0.000                                                  | 287       |
|               |                    | B    | 0.000                          | 0.000                          | 41.695                                                | 0.000                                                  | 251       |
|               |                    | C    | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |

|                                                                                                                                                        |         |                                 |             |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 12 of 31                |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

### Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower Section | Tower Elevation ft | Face or Leg | Ice Thickness in | A <sub>R</sub> ft <sup>2</sup> | A <sub>F</sub> ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> In Face ft <sup>2</sup> | C <sub>A</sub> A <sub>A</sub> Out Face ft <sup>2</sup> | Weight lb |
|---------------|--------------------|-------------|------------------|--------------------------------|--------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------|
| T1            | 190.83-180.83      | A           | 1.010            | 0.000                          | 0.000                          | 38.486                                                | 0.000                                                  | 526       |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T2            | 180.83-160.83      | A           | 1.002            | 0.000                          | 0.000                          | 83.790                                                | 0.000                                                  | 1142      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 5.645                                                 | 0.000                                                  | 79        |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T3            | 160.83-140.83      | A           | 0.990            | 0.000                          | 0.000                          | 83.528                                                | 0.000                                                  | 1134      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 55.492                                                | 0.000                                                  | 808       |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T4            | 140.83-120.83      | A           | 0.976            | 0.000                          | 0.000                          | 83.233                                                | 0.000                                                  | 1125      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 80.067                                                | 0.000                                                  | 1178      |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T5            | 120.83-100.83      | A           | 0.959            | 0.000                          | 0.000                          | 82.894                                                | 0.000                                                  | 1114      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 79.676                                                | 0.000                                                  | 1167      |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T6            | 100.83-80.83       | A           | 0.941            | 0.000                          | 0.000                          | 82.494                                                | 0.000                                                  | 1102      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 79.216                                                | 0.000                                                  | 1154      |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T7            | 80.83-60.83        | A           | 0.917            | 0.000                          | 0.000                          | 82.007                                                | 0.000                                                  | 1087      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 78.654                                                | 0.000                                                  | 1139      |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T8            | 60.83-40.83        | A           | 0.888            | 0.000                          | 0.000                          | 81.375                                                | 0.000                                                  | 1068      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 77.926                                                | 0.000                                                  | 1120      |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T9            | 40.83-20.83        | A           | 0.844            | 0.000                          | 0.000                          | 80.462                                                | 0.000                                                  | 1040      |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 76.875                                                | 0.000                                                  | 1092      |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |
| T10           | 20.83-0.83         | A           | 0.760            | 0.000                          | 0.000                          | 54.020                                                | 0.000                                                  | 697       |
|               |                    | B           | 0.000            | 0.000                          | 0.000                          | 48.023                                                | 0.000                                                  | 667       |
|               |                    | C           | 0.000            | 0.000                          | 0.000                          | 0.000                                                 | 0.000                                                  | 0         |

### Feed Line Center of Pressure

| Section | Elevation ft  | CP <sub>X</sub> in | CP <sub>Z</sub> in | CP <sub>X</sub> Ice in | CP <sub>Z</sub> Ice in |
|---------|---------------|--------------------|--------------------|------------------------|------------------------|
| T1      | 190.83-180.83 | -2.3916            | -9.5592            | -2.5539                | -6.7382                |
| T2      | 180.83-160.83 | -2.3935            | -10.3126           | -2.6395                | -7.5803                |
| T3      | 160.83-140.83 | 1.3229             | -8.8012            | 0.8381                 | -6.6862                |
| T4      | 140.83-120.83 | 3.4010             | -7.4172            | 2.8368                 | -5.5337                |
| T5      | 120.83-100.83 | 3.3846             | -7.3932            | 2.8416                 | -5.5541                |
| T6      | 100.83-80.83  | 3.4010             | -7.4172            | 2.8715                 | -5.6147                |
| T7      | 80.83-60.83   | 3.4010             | -7.4172            | 2.8946                 | -5.6686                |
| T8      | 60.83-40.83   | 3.3928             | -7.4052            | 2.9189                 | -5.7305                |
| T9      | 40.83-20.83   | 3.4010             | -7.4172            | 2.9681                 | -5.8417                |
| T10     | 20.83-0.83    | 2.4517             | -6.1729            | 1.9313                 | -4.8107                |

### Shielding Factor Ka

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 13 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Tower Section | Feed Line Record No. | Description               | Feed Line Segment Elev. | $K_a$ No Ice | $K_a$ Ice |
|---------------|----------------------|---------------------------|-------------------------|--------------|-----------|
| T1            | 1                    | Climbing Ladder           | 180.83 - 190.00         | 0.6000       | 0.5397    |
| T1            | 2                    | Safety Line 3/8           | 180.83 - 190.00         | 0.6000       | 0.5397    |
| T1            | 4                    | LDF7-50A (1-5/8 FOAM)     | 180.83 - 190.00         | 0.6000       | 0.5397    |
| T1            | 5                    | 6x12 Hybrid               | 180.83 - 190.00         | 0.6000       | 0.5397    |
| T2            | 1                    | Climbing Ladder           | 160.83 - 180.83         | 0.6000       | 0.5557    |
| T2            | 2                    | Safety Line 3/8           | 160.83 - 180.83         | 0.6000       | 0.5557    |
| T2            | 4                    | LDF7-50A (1-5/8 FOAM)     | 160.83 - 180.83         | 0.6000       | 0.5557    |
| T2            | 5                    | 6x12 Hybrid               | 160.83 - 180.83         | 0.6000       | 0.5557    |
| T2            | 7                    | FDH1204-48SE2-100M (6x24) | 160.83 - 165.00         | 0.6000       | 0.5557    |
| T3            | 1                    | Climbing Ladder           | 140.83 - 160.83         | 0.6000       | 0.5568    |
| T3            | 2                    | Safety Line 3/8           | 140.83 - 160.83         | 0.6000       | 0.5568    |
| T3            | 4                    | LDF7-50A (1-5/8 FOAM)     | 140.83 - 160.83         | 0.6000       | 0.5568    |
| T3            | 5                    | 6x12 Hybrid               | 140.83 - 160.83         | 0.6000       | 0.5568    |
| T3            | 7                    | FDH1204-48SE2-100M (6x24) | 140.83 - 160.83         | 0.6000       | 0.5568    |
| T3            | 9                    | LDF7-50A (1-5/8 FOAM)     | 140.83 - 151.50         | 0.6000       | 0.5568    |
| T3            | 10                   | FB-L98-002-XXX(3/8)       | 140.83 - 151.50         | 0.6000       | 0.5568    |
| T3            | 11                   | WR-E82G1(3/4)             | 140.83 - 151.50         | 0.6000       | 0.5568    |
| T4            | 1                    | Climbing Ladder           | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 2                    | Safety Line 3/8           | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 4                    | LDF7-50A (1-5/8 FOAM)     | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 5                    | 6x12 Hybrid               | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 7                    | FDH1204-48SE2-100M (6x24) | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 9                    | LDF7-50A (1-5/8 FOAM)     | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 10                   | FB-L98-002-XXX(3/8)       | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T4            | 11                   | WR-E82G1(3/4)             | 120.83 - 140.83         | 0.6000       | 0.5617    |
| T5            | 1                    | Climbing Ladder           | 100.83 - 120.83         | 0.6000       | 0.5637    |
| T5            | 2                    | Safety Line 3/8           | 100.83 - 120.83         | 0.6000       | 0.5637    |
| T5            | 4                    | LDF7-50A (1-5/8 FOAM)     | 100.83 - 120.83         | 0.6000       | 0.5637    |
| T5            | 5                    | 6x12 Hybrid               | 100.83 - 120.83         | 0.6000       | 0.5637    |
| T5            | 7                    | FDH1204-48SE2-100M (6x24) | 100.83 - 120.83         | 0.6000       | 0.5637    |
| T5            | 9                    | LDF7-50A (1-5/8 FOAM)     | 100.83 -                | 0.6000       | 0.5637    |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 14 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Tower Section | Feed Line Record No. | Description               | Feed Line Segment Elev. | $K_a$ No Ice | $K_a$ Ice |
|---------------|----------------------|---------------------------|-------------------------|--------------|-----------|
| T5            | 10                   | FB-L98-002-XXX(3/8)       | 120.83 - 100.83         | 0.6000       | 0.5637    |
| T5            | 11                   | WR-E82G1(3/4)             | 120.83 - 100.83         | 0.6000       | 0.5637    |
| T6            | 1                    | Climbing Ladder           | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 2                    | Safety Line 3/8           | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 4                    | LDF7-50A (1-5/8 FOAM)     | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 5                    | 6x12 Hybrid               | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 7                    | FDH1204-48SE2-100M (6x24) | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 9                    | LDF7-50A (1-5/8 FOAM)     | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 10                   | FB-L98-002-XXX(3/8)       | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T6            | 11                   | WR-E82G1(3/4)             | 80.83 - 100.83          | 0.6000       | 0.5698    |
| T7            | 1                    | Climbing Ladder           | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 2                    | Safety Line 3/8           | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 4                    | LDF7-50A (1-5/8 FOAM)     | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 5                    | 6x12 Hybrid               | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 7                    | FDH1204-48SE2-100M (6x24) | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 9                    | LDF7-50A (1-5/8 FOAM)     | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 10                   | FB-L98-002-XXX(3/8)       | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T7            | 11                   | WR-E82G1(3/4)             | 60.83 - 80.83           | 0.6000       | 0.5751    |
| T8            | 1                    | Climbing Ladder           | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 2                    | Safety Line 3/8           | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 4                    | LDF7-50A (1-5/8 FOAM)     | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 5                    | 6x12 Hybrid               | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 7                    | FDH1204-48SE2-100M (6x24) | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 9                    | LDF7-50A (1-5/8 FOAM)     | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 10                   | FB-L98-002-XXX(3/8)       | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T8            | 11                   | WR-E82G1(3/4)             | 40.83 - 60.83           | 0.6000       | 0.5812    |
| T9            | 1                    | Climbing Ladder           | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 2                    | Safety Line 3/8           | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 4                    | LDF7-50A (1-5/8 FOAM)     | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 5                    | 6x12 Hybrid               | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 7                    | FDH1204-48SE2-100M (6x24) | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 9                    | LDF7-50A (1-5/8 FOAM)     | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 10                   | FB-L98-002-XXX(3/8)       | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T9            | 11                   | WR-E82G1(3/4)             | 20.83 - 40.83           | 0.6000       | 0.5922    |
| T10           | 1                    | Climbing Ladder           | 0.83 - 20.83            | 0.6000       | 0.6000    |
| T10           | 2                    | Safety Line 3/8           | 0.83 - 20.83            | 0.6000       | 0.6000    |
| T10           | 4                    | LDF7-50A (1-5/8 FOAM)     | 8.00 - 20.83            | 0.6000       | 0.6000    |
| T10           | 5                    | 6x12 Hybrid               | 8.00 - 20.83            | 0.6000       | 0.6000    |
| T10           | 7                    | FDH1204-48SE2-100M (6x24) | 8.00 - 20.83            | 0.6000       | 0.6000    |
| T10           | 9                    | LDF7-50A (1-5/8 FOAM)     | 8.00 - 20.83            | 0.6000       | 0.6000    |
| T10           | 10                   | FB-L98-002-XXX(3/8)       | 8.00 - 20.83            | 0.6000       | 0.6000    |
| T10           | 11                   | WR-E82G1(3/4)             | 8.00 - 20.83            | 0.6000       | 0.6000    |

### Discrete Tower Loads

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>ttxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 15 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Description                     | Face or Leg | Offset Type | Offsets: Horz<br>ft | Vert<br>ft | Azimuth Adjustment | Placement ft | CsA <sub>A</sub> Front | CsA <sub>A</sub> Side | Weight |
|---------------------------------|-------------|-------------|---------------------|------------|--------------------|--------------|------------------------|-----------------------|--------|
| 5/8" x 4' Lightning Rod         | C           | From Leg    | 0.00                | 0.000      | 190.00             | No Ice       | 0.25                   | 0.25                  | 4      |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 0.66         | 0.66                   | 7                     |        |
|                                 |             |             | 2.00                |            | 1" Ice             | 0.97         | 0.97                   | 12                    |        |
| ***Verizon***                   |             |             |                     |            |                    |              |                        |                       |        |
| SitePro 1 VFA12-HD (1)          | A           | From Leg    | 1.50                | 0.000      | 190.00             | No Ice       | 13.20                  | 9.20                  | 631    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 19.50        | 14.60                  | 946                   |        |
|                                 |             |             | 5.20                |            | 1" Ice             | 25.80        | 19.50                  | 1419                  |        |
| 4.5" dia. x 10'                 | A           | From Leg    | 0.00                | 0.000      | 190.00             | No Ice       | 3.63                   | 3.63                  | 108    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.24         | 5.24                   | 139                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 5.85         | 5.85                   | 177                   |        |
| 3.5" Dia. x 4-ft                | A           | From Face   | 0.00                | 0.000      | 190.00             | No Ice       | 1.11                   | 1.11                  | 41     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 1.36         | 1.36                   | 51                    |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 1.62         | 1.62                   | 65                    |        |
| SitePro 1 VFA12-HD (1)          | B           | From Leg    | 1.50                | 0.000      | 190.00             | No Ice       | 13.20                  | 9.20                  | 631    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 19.50        | 14.60                  | 946                   |        |
|                                 |             |             | 5.20                |            | 1" Ice             | 25.80        | 19.50                  | 1419                  |        |
| 4.5" dia. x 10'                 | B           | From Leg    | 0.00                | 0.000      | 190.00             | No Ice       | 3.63                   | 3.63                  | 108    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.24         | 5.24                   | 139                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 5.85         | 5.85                   | 177                   |        |
| 3.5" Dia. x 4-ft                | B           | From Face   | 0.00                | 0.000      | 190.00             | No Ice       | 1.11                   | 1.11                  | 41     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 1.36         | 1.36                   | 51                    |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 1.62         | 1.62                   | 65                    |        |
| SitePro 1 VFA12-HD (1)          | C           | From Leg    | 1.50                | 0.000      | 190.00             | No Ice       | 13.20                  | 9.20                  | 631    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 19.50        | 14.60                  | 946                   |        |
|                                 |             |             | 5.20                |            | 1" Ice             | 25.80        | 19.50                  | 1419                  |        |
| 4.5" dia. x 10'                 | C           | From Leg    | 0.00                | 0.000      | 190.00             | No Ice       | 3.63                   | 3.63                  | 108    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.24         | 5.24                   | 139                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 5.85         | 5.85                   | 177                   |        |
| 3.5" Dia. x 4-ft                | C           | From Face   | 0.00                | 0.000      | 190.00             | No Ice       | 1.11                   | 1.11                  | 41     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 1.36         | 1.36                   | 51                    |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 1.62         | 1.62                   | 65                    |        |
| SitePro 1 VFA12-HD (1)          | C           | From Leg    | 1.50                | 0.000      | 190.00             | No Ice       | 13.20                  | 9.20                  | 631    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 19.50        | 14.60                  | 946                   |        |
|                                 |             |             | 5.20                |            | 1" Ice             | 25.80        | 19.50                  | 1419                  |        |
| 4.5" dia. x 10'                 | C           | From Leg    | 0.00                | 0.000      | 190.00             | No Ice       | 3.63                   | 3.63                  | 108    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.24         | 5.24                   | 139                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 5.85         | 5.85                   | 177                   |        |
| 3.5" Dia. x 4-ft                | C           | From Face   | 0.00                | 0.000      | 190.00             | No Ice       | 1.11                   | 1.11                  | 41     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 1.36         | 1.36                   | 51                    |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 1.62         | 1.62                   | 65                    |        |
| SitePro 1 VFA12-HD (1)          | C           | From Leg    | 1.50                | 0.000      | 190.00             | No Ice       | 13.20                  | 9.20                  | 631    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 19.50        | 14.60                  | 946                   |        |
|                                 |             |             | 5.20                |            | 1" Ice             | 25.80        | 19.50                  | 1419                  |        |
| 4.5" dia. x 10'                 | C           | From Leg    | 0.00                | 0.000      | 190.00             | No Ice       | 3.63                   | 3.63                  | 108    |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.24         | 5.24                   | 139                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 5.85         | 5.85                   | 177                   |        |
| 3.5" Dia. x 4-ft                | C           | From Face   | 0.00                | 0.000      | 190.00             | No Ice       | 1.11                   | 1.11                  | 41     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 1.36         | 1.36                   | 51                    |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 1.62         | 1.62                   | 65                    |        |
| (2) MX06FRO660-02 w/ Mount Pipe | A           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 10.11                  | 8.99                  | 71     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 10.68        | 10.15                  | 159                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 11.22        | 11.03                  | 254                   |        |
| (2) MX06FRO660-02 w/ Mount Pipe | B           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 10.11                  | 8.99                  | 71     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 10.68        | 10.15                  | 159                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 11.22        | 11.03                  | 254                   |        |
| (2) MX06FRO660-02 w/ Mount Pipe | C           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 10.11                  | 8.99                  | 71     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 10.68        | 10.15                  | 159                   |        |
|                                 |             |             | 5.00                |            | 1" Ice             | 11.22        | 11.03                  | 254                   |        |
| MT6407-77A w/ Mount Pipe        | A           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 4.91                   | 2.68                  | 96     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.26         | 3.14                   | 136                   |        |
|                                 |             |             | 5.70                |            | 1" Ice             | 5.61         | 3.62                   | 180                   |        |
| MT6407-77A w/ Mount Pipe        | B           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 4.91                   | 2.68                  | 96     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.26         | 3.14                   | 136                   |        |
|                                 |             |             | 5.70                |            | 1" Ice             | 5.61         | 3.62                   | 180                   |        |
| MT6407-77A w/ Mount Pipe        | C           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 4.91                   | 2.68                  | 96     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 5.26         | 3.14                   | 136                   |        |
|                                 |             |             | 5.70                |            | 1" Ice             | 5.61         | 3.62                   | 180                   |        |
| RVZDC-6627-PF-48                | A           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 3.79                   | 2.51                  | 32     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 4.04         | 2.73                   | 63                    |        |
|                                 |             |             | 5.70                |            | 1" Ice             | 4.30         | 2.95                   | 99                    |        |
| B2/B66A RRH-BR049               | A           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 1.88                   | 1.25                  | 84     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 2.05         | 1.39                   | 103                   |        |
|                                 |             |             | 5.70                |            | 1" Ice             | 2.22         | 1.54                   | 124                   |        |
| B2/B66A RRH-BR049               | B           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 1.88                   | 1.25                  | 84     |
|                                 |             |             | 0.00                |            | 1/2" Ice           | 2.05         | 1.39                   | 103                   |        |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>ttxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 16 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Description                        | Face or Leg | Offset Type | Offsets: Horz<br>ft | Vert<br>ft | Azimuth Adjustment | Placement ft | CsA <sub>A</sub> Front | CsA <sub>A</sub> Side | Weight |
|------------------------------------|-------------|-------------|---------------------|------------|--------------------|--------------|------------------------|-----------------------|--------|
| B2/B66A RRH-BR049                  | C           | From Leg    | 3.25                | 0.000      | 190.00             | 1" Ice       | 2.22                   | 1.54                  | 124    |
|                                    |             |             | 0.00                |            | 1/2" Ice           | 2.05         | 1.39                   | 103                   |        |
| B5/B13 RRH-BR04C                   | A           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 1.88                   | 1.01                  | 70     |
|                                    |             |             | 0.00                |            | 1/2" Ice           | 2.05         | 1.14                   | 87                    |        |
| B5/B13 RRH-BR04C                   | B           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 1.88                   | 1.01                  | 70     |
|                                    |             |             | 0.00                |            | 1/2" Ice           | 2.05         | 1.14                   | 87                    |        |
| LNX-8513DS-A1M w/ 8' MP            | A           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 8.63                   | 7.31                  | 68     |
|                                    |             |             | 0.00                |            | 1/2" Ice           | 9.30         | 8.59                   | 140                   |        |
| LNX-8513DS-A1M w/ 8' MP            | B           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 8.63                   | 7.31                  | 68     |
|                                    |             |             | 0.00                |            | 1/2" Ice           | 9.30         | 8.59                   | 140                   |        |
| LNX-8513DS-A1M w/ 8' MP            | C           | From Leg    | 3.25                | 0.000      | 190.00             | No Ice       | 8.63                   | 7.31                  | 68     |
|                                    |             |             | 0.00                |            | 1/2" Ice           | 9.30         | 8.59                   | 140                   |        |
| **Abandoned**                      |             |             |                     |            |                    |              |                        |                       |        |
| Sector Mount [SM 803-3]            | C           | None        |                     |            | 0.000              | 177.00       | No Ice                 | 40.01                 | 40.01  |
|                                    |             |             |                     |            |                    |              | 1/2" Ice               | 50.70                 | 50.70  |
|                                    |             |             |                     |            |                    |              | 1" Ice                 | 61.54                 | 61.54  |
| **T-Mobile***                      |             |             |                     |            |                    |              |                        |                       |        |
| Sitepro VFA12-HD Sector Mount (3)  | A           | None        |                     |            | 0.000              | 165.00       | No Ice                 | 29.70                 | 20.70  |
|                                    |             |             |                     |            |                    |              | 1/2" Ice               | 43.88                 | 32.85  |
|                                    |             |             |                     |            |                    |              | 1" Ice                 | 58.05                 | 43.88  |
| APXVAALL24_43-U-NA20 w/ mount pipe | A           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 20.24                  | 11.03                 | 169    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 20.89                 | 12.46  |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 21.55                 | 13.56  |
| APXVAALL24_43-U-NA20 w/ mount pipe | B           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 20.24                  | 11.03                 | 169    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 20.89                 | 12.46  |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 21.55                 | 13.56  |
| APXVAALL24_43-U-NA20 w/ mount pipe | C           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 20.24                  | 11.03                 | 169    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 20.89                 | 12.46  |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 21.55                 | 13.56  |
| AIR6449 B41 w/ Mount Pipe          | A           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 5.89                   | 3.28                  | 118    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 6.26                  | 3.74   |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 6.63                  | 4.22   |
| AIR6449 B41 w/ Mount Pipe          | B           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 5.89                   | 3.28                  | 118    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 6.26                  | 3.74   |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 6.63                  | 4.22   |
| RADIO 4460 B2/B25 B66_TMO          | A           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 2.14                   | 1.69                  | 109    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 2.32                  | 1.85   |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 2.51                  | 2.02   |
| RADIO 4460 B2/B25 B66_TMO          | B           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 2.14                   | 1.69                  | 109    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 2.32                  | 1.85   |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 2.51                  | 2.02   |
| RADIO 4460 B2/B25 B66_TMO          | C           | From Leg    | 3.25                | 0.000      | 165.00             | No Ice       | 2.14                   | 1.69                  | 109    |
|                                    |             |             | 0.00                |            |                    |              | 1/2" Ice               | 2.32                  | 1.85   |
|                                    |             |             | 0.00                |            |                    |              | 1" Ice                 | 2.51                  | 2.02   |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>ttxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 17 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Description                           | Face or Leg | Offset Type | Offsets: Horz<br>ft          | Vert<br>ft | Azimuth Adjustment | Placement                              | CsA <sub>A</sub> Front       | CsA <sub>A</sub> Side        | Weight               |
|---------------------------------------|-------------|-------------|------------------------------|------------|--------------------|----------------------------------------|------------------------------|------------------------------|----------------------|
| RADIO 4480 B71_TMO                    | A           | From Leg    | 3.25<br>0.00<br>0.00         | 0.000      | 165.00             | No Ice<br>1/2" Ice<br>1" Ice           | 2.85<br>3.06<br>3.28         | 1.38<br>1.54<br>1.71         | 93<br>114<br>139     |
| RADIO 4480 B71_TMO                    | B           | From Leg    | 3.25<br>0.00<br>0.00         | 0.000      | 165.00             | No Ice<br>1/2" Ice<br>1" Ice           | 2.85<br>3.06<br>3.28         | 1.38<br>1.54<br>1.71         | 93<br>114<br>139     |
| RADIO 4480 B71_TMO                    | C           | From Leg    | 3.25<br>0.00<br>0.00         | 0.000      | 165.00             | No Ice<br>1/2" Ice<br>1" Ice           | 2.85<br>3.06<br>3.28         | 1.38<br>1.54<br>1.71         | 93<br>114<br>139     |
| ***AT&T***<br>Sector Mount [SM 803-3] | C           | None        |                              | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 40.01<br>50.70<br>61.54      | 40.01<br>50.70<br>61.54      | 985<br>1694<br>2578  |
| EPBQ-654L8H8 w/ Mount Pipe            | A           | From Leg    | 3.00<br>1.50<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 11.69<br>12.41<br>13.14      | 11.33<br>12.86<br>14.41      | 131<br>228<br>334    |
| EPBQ-654L8H8 w/ Mount Pipe            | B           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 11.69<br>12.41<br>13.14      | 11.33<br>12.86<br>14.41      | 131<br>228<br>334    |
| EPBQ-654L8H8 w/ Mount Pipe            | C           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 11.69<br>12.41<br>13.14      | 11.33<br>12.86<br>14.41      | 131<br>228<br>334    |
| (2) RA21.7770.00 w/Mount pipe         | A           | From Leg    | 3.00<br>1.50<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 6.73<br>7.18<br>7.64         | 5.23<br>5.99<br>6.76         | 72<br>128<br>192     |
| (2) RA21.7770.00 w/Mount pipe         | B           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 6.73<br>7.18<br>7.64         | 5.23<br>5.99<br>6.76         | 72<br>128<br>192     |
| (2) RA21.7770.00 w/Mount pipe         | C           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 6.73<br>7.18<br>7.64         | 5.23<br>5.99<br>6.76         | 72<br>128<br>192     |
| RRUS 11                               | A           | From Leg    | 3.00<br>0.00<br>1.50<br>1.50 | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice<br>1" Ice | 2.79<br>3.00<br>3.21<br>3.21 | 1.19<br>1.34<br>1.50<br>1.50 | 51<br>72<br>95<br>95 |
| RRUS 11                               | B           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 2.79<br>3.00<br>3.21         | 1.19<br>1.34<br>1.50         | 51<br>72<br>95       |
| RRUS 11                               | C           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 2.79<br>3.00<br>3.21         | 1.19<br>1.34<br>1.50         | 51<br>72<br>95       |
| (2) LGP21401                          | A           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 1.10<br>1.24<br>1.38         | 0.35<br>0.44<br>0.54         | 14<br>21<br>30       |
| (2) LGP21401                          | B           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 1.10<br>1.24<br>1.38         | 0.35<br>0.44<br>0.54         | 14<br>21<br>30       |
| (2) LGP21401                          | C           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 1.10<br>1.24<br>1.38         | 0.35<br>0.44<br>0.54         | 14<br>21<br>30       |
| LGP219nn (Diplex)                     | A           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 0.23<br>0.29<br>0.36         | 0.16<br>0.21<br>0.28         | 6<br>8<br>11         |
| LGP219nn (Diplex)                     | B           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 0.23<br>0.29<br>0.36         | 0.16<br>0.21<br>0.28         | 6<br>8<br>11         |
| LGP219nn (Diplex)                     | C           | From Leg    | 3.00<br>0.00<br>1.50         | 0.000      | 150.00             | No Ice<br>1/2" Ice<br>1" Ice           | 0.23<br>0.29<br>0.36         | 0.16<br>0.21<br>0.28         | 6<br>8<br>11         |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>ttxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 18 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Description     | Face or Leg | Offset Type | Offsets: Horz<br>ft  | Vert<br>ft | Azimuth Adjustment | Placement                    | CsA <sub>A</sub> Front | CsA <sub>A</sub> Side | Weight        |
|-----------------|-------------|-------------|----------------------|------------|--------------------|------------------------------|------------------------|-----------------------|---------------|
| 782 10253       | A           | From Leg    | 1.50<br>3.00<br>0.00 | 0.000      | 150.00             | 1" Ice<br>No Ice<br>1/2" Ice | 0.36<br>0.11<br>0.15   | 0.28<br>0.06<br>0.10  | 11<br>3<br>4  |
| 782 10253       | B           | From Leg    | 1.50<br>3.00<br>0.00 | 0.000      | 150.00             | 1" Ice<br>No Ice<br>1/2" Ice | 0.20<br>0.11<br>0.15   | 0.14<br>0.06<br>0.10  | 6<br>3<br>4   |
| 782 10253       | C           | From Leg    | 1.50<br>3.00<br>0.00 | 0.000      | 150.00             | 1" Ice<br>No Ice<br>1/2" Ice | 0.20<br>0.11<br>0.15   | 0.14<br>0.06<br>0.10  | 6<br>3<br>4   |
| DC6-48-60-18-8F | A           | From Leg    | 1.50<br>0.25<br>0.00 | 0.000      | 150.00             | 1" Ice<br>No Ice<br>1/2" Ice | 0.20<br>1.21<br>1.89   | 0.14<br>1.21<br>1.89  | 6<br>33<br>55 |
|                 |             |             |                      | 0.00       |                    | 1" Ice                       | 2.11                   | 2.11                  | 80            |

| Load Combinations |                                                    |
|-------------------|----------------------------------------------------|
| Comb. No.         | Description                                        |
| 1                 | Dead Only                                          |
| 2                 | 1.2 Dead+1.0 Wind 0 deg - No Ice+1.0 Guy           |
| 3                 | 1.2 Dead+1.0 Wind 30 deg - No Ice+1.0 Guy          |
| 4                 | 1.2 Dead+1.0 Wind 60 deg - No Ice+1.0 Guy          |
| 5                 | 1.2 Dead+1.0 Wind 90 deg - No Ice+1.0 Guy          |
| 6                 | 1.2 Dead+1.0 Wind 120 deg - No Ice+1.0 Guy         |
| 7                 | 1.2 Dead+1.0 Wind 150 deg - No Ice+1.0 Guy         |
| 8                 | 1.2 Dead+1.0 Wind 180 deg - No Ice+1.0 Guy         |
| 9                 | 1.2 Dead+1.0 Wind 210 deg - No Ice+1.0 Guy         |
| 10                | 1.2 Dead+1.0 Wind 240 deg - No Ice+1.0 Guy         |
| 11                | 1.2 Dead+1.0 Wind 270 deg - No Ice+1.0 Guy         |
| 12                | 1.2 Dead+1.0 Wind 300 deg - No Ice+1.0 Guy         |
| 13                | 1.2 Dead+1.0 Wind 330 deg - No Ice+1.0 Guy         |
| 14                | 1.2 Dead+1.0 Icc+1.0 Temp+Guy                      |
| 15                | 1.2 Dead+1.0 Wind 0 deg+1.0 Icc+1.0 Temp+1.0 Guy   |
| 16                | 1.2 Dead+1.0 Wind 30 deg+1.0 Icc+1.0 Temp+1.0 Guy  |
| 17                | 1.2 Dead+1.0 Wind 60 deg+1.0 Icc+1.0 Temp+1.0 Guy  |
| 18                | 1.2 Dead+1.0 Wind 90 deg+1.0 Icc+1.0 Temp+1.0 Guy  |
| 19                | 1.2 Dead+1.0 Wind 120 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 20                | 1.2 Dead+1.0 Wind 150 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 21                | 1.2 Dead+1.0 Wind 180 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 22                | 1.2 Dead+1.0 Wind 210 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 23                | 1.2 Dead+1.0 Wind 240 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 24                | 1.2 Dead+1.0 Wind 270 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 25                | 1.2 Dead+1.0 Wind 300 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 26                | 1.2 Dead+1.0 Wind 330 deg+1.0 Icc+1.0 Temp+1.0 Guy |
| 27                | Dead+Wind 0 deg - Service+Guy                      |
| 28                | Dead+Wind 30 deg - Service+Guy                     |
| 29                | Dead+Wind 60 deg - Service+Guy                     |
| 30                | Dead+Wind 90 deg - Service+Guy                     |
| 31                | Dead+Wind 120 deg - Service+Guy                    |
| 32                | Dead+Wind 150 deg - Service+Guy                    |
| 33                | Dead+Wind 180 deg - Service+Guy                    |

|                                                                                                                                     |         |                                 |             |                         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b>                                                                                                                     | Job     | Eastford CDT (702497)           | Page        | 19 of 31                |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                     | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Comb. No. | Description                     |
|-----------|---------------------------------|
| 34        | Dead+Wind 210 deg - Service+Guy |
| 35        | Dead+Wind 240 deg - Service+Guy |
| 36        | Dead+Wind 270 deg - Service+Guy |
| 37        | Dead+Wind 300 deg - Service+Guy |
| 38        | Dead+Wind 330 deg - Service+Guy |

### Maximum Tower Deflections - Service Wind

| Section No. | Elevation ft      | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|-------------------|---------------------|-----------------|--------|---------|
| T1          | 190.833 - 180.833 | 1.658               | 37              | 0.098  | 0.216   |
| T2          | 180.833 - 160.833 | 1.462               | 37              | 0.098  | 0.177   |
| T3          | 160.833 - 140.833 | 1.015               | 37              | 0.082  | 0.070   |
| T4          | 140.833 - 120.833 | 0.786               | 37              | 0.057  | 0.197   |
| T5          | 120.833 - 100.833 | 0.503               | 37              | 0.031  | 0.068   |
| T6          | 100.833 - 80.8333 | 0.569               | 37              | 0.009  | 0.273   |
| T7          | 80.8333 - 60.8333 | 0.605               | 30              | 0.012  | 0.706   |
| T8          | 60.8333 - 40.8333 | 0.430               | 31              | 0.013  | 0.746   |
| T9          | 40.8333 - 20.8333 | 0.533               | 36              | 0.023  | 0.847   |
| T10         | 20.8333 - 0.8333  | 0.405               | 36              | 0.053  | 0.360   |

### Critical Deflections and Radius of Curvature - Service Wind

| Elevation ft | Appurtenance                      | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|-----------------------------------|-----------------|---------------|--------|---------|------------------------|
| 190.83       | Guy                               | 37              | 1.658         | 0.098  | 0.216   | 30013                  |
| 190.00       | 5/8" x 4' Lightning Rod           | 37              | 1.643         | 0.098  | 0.213   | 30013                  |
| 177.00       | Sector Mount [SM 803-3]           | 37              | 1.374         | 0.096  | 0.151   | 30371                  |
| 165.00       | Sitepro VFA12-HD Sector Mount (3) | 37              | 1.093         | 0.086  | 0.074   | 13916                  |
| 157.44       | Guy                               | 37              | 0.966         | 0.078  | 0.083   | 13295                  |
| 150.00       | Sector Mount [SM 803-3]           | 37              | 0.885         | 0.069  | 0.143   | 196299                 |
| 117.44       | Guy                               | 37              | 0.491         | 0.027  | 0.071   | 8767                   |
| 60.75        | Guy                               | 31              | 0.430         | 0.013  | 0.746   | 8256                   |

### Maximum Tower Deflections - Design Wind

| Section No. | Elevation ft      | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|-------------------|---------------------|-----------------|--------|---------|
| T1          | 190.833 - 180.833 | 10.840              | 6               | 0.741  | 0.734   |
| T2          | 180.833 - 160.833 | 9.292               | 6               | 0.732  | 0.659   |
| T3          | 160.833 - 140.833 | 6.143               | 6               | 0.628  | 0.390   |
| T4          | 140.833 - 120.833 | 3.959               | 6               | 0.466  | 0.584   |
| T5          | 120.833 - 100.833 | 2.296               | 12              | 0.256  | 0.339   |
| T6          | 100.833 - 80.8333 | 2.158               | 12              | 0.070  | 0.823   |
| T7          | 80.8333 - 60.8333 | 2.089               | 12              | 0.049  | 1.451   |
| T8          | 60.8333 - 40.8333 | 1.692               | 12              | 0.048  | 1.599   |
| T9          | 40.8333 - 20.8333 | 1.716               | 6               | 0.086  | 1.442   |

|                                                                                                                                     |         |                                 |             |                         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b>                                                                                                                     | Job     | Eastford CDT (702497)           | Page        | 20 of 31                |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                     | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Section No. | Elevation ft     | Horz. Deflection in | Gov. Load Comb. | Tilt ° | Twist ° |
|-------------|------------------|---------------------|-----------------|--------|---------|
| T10         | 20.8333 - 0.8333 | 1.188               | 6               | 0.192  | 0.821   |

### Critical Deflections and Radius of Curvature - Design Wind

| Elevation ft | Appurtenance                      | Gov. Load Comb. | Deflection in | Tilt ° | Twist ° | Radius of Curvature ft |
|--------------|-----------------------------------|-----------------|---------------|--------|---------|------------------------|
| 190.83       | Guy                               | 6               | 10.840        | 0.741  | 0.734   | 13483                  |
| 190.00       | 5/8" x 4' Lightning Rod           | 6               | 10.714        | 0.741  | 0.730   | 13483                  |
| 177.00       | Sector Mount [SM 803-3]           | 6               | 8.667         | 0.721  | 0.602   | 16395                  |
| 165.00       | Sitepro VFA12-HD Sector Mount (3) | 6               | 6.737         | 0.657  | 0.415   | 3928                   |
| 157.44       | Guy                               | 6               | 5.711         | 0.603  | 0.400   | 3550                   |
| 150.00       | Sector Mount [SM 803-3]           | 6               | 4.884         | 0.546  | 0.485   | 8075                   |
| 117.44       | Guy                               | 12              | 2.204         | 0.217  | 0.368   | 2498                   |
| 60.75        | Guy                               | 12              | 1.691         | 0.048  | 1.599   | 5019                   |

### Bolt Design Data

| Section No. | Elevation ft | Component Type | Bolt Grade | Bolt Size in | Number Of Bolts | Maximum Load per Bolt lb | Allowable Load per Bolt lb | Ratio Load Allowable | Allowable Ratio | Criteria     |
|-------------|--------------|----------------|------------|--------------|-----------------|--------------------------|----------------------------|----------------------|-----------------|--------------|
| T1          | 190.833      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
| T2          | 180.833      | Leg            | A325N      | 0.7500       | 4               | 2251                     | 30101                      | 0.075                | 1.05            | Bolt Tension |
| T3          | 160.833      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
|             |              | Torque Arm     | A325N      | 0.7500       | 2               | 5042                     | 11147                      | 0.452                | 1.05            | Member Block |
|             |              | Top@157.444    |            |              |                 |                          |                            |                      |                 | Shear        |
|             |              | Torque Arm     | A325N      | 0.7500       | 2               | 3694                     | 19880                      | 0.186                | 1.05            | Bolt Shear   |
|             |              | Bottom@157.444 |            |              |                 |                          |                            |                      |                 |              |
|             |              | 4              |            |              |                 |                          |                            |                      |                 |              |
| T4          | 140.833      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
| T5          | 120.833      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
|             |              | Torque Arm     | A325N      | 0.7500       | 2               | 2640                     | 11147                      | 0.237                | 1.05            | Member Block |
|             |              | Top@117.444    |            |              |                 |                          |                            |                      |                 | Shear        |
|             |              | Torque Arm     | A325N      | 0.7500       | 2               | 1374                     | 11147                      | 0.123                | 1.05            | Member Block |
|             |              | Bottom@117.444 |            |              |                 |                          |                            |                      |                 | Shear        |
|             |              | 4              |            |              |                 |                          |                            |                      |                 |              |
| T6          | 100.833      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
| T7          | 80.8333      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
| T8          | 60.8333      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
| T9          | 40.8333      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |
| T10         | 20.8333      | Leg            | A325N      | 0.7500       | 4               | 0                        | 30101                      | 0.000                | 1.05            | Bolt Tension |

### Guy Design Data

|                                                                                                                                                        |         |                                 |             |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 21 of 31                |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Section No. | Elevation           | Size     | Initial Tension lb | Breaking Load lb | Actual $T_a$ lb | Allowable $\phi T_a$ lb | Required S.F. | Actual S.F. |
|-------------|---------------------|----------|--------------------|------------------|-----------------|-------------------------|---------------|-------------|
| T1          | 190.83 (A)<br>(576) | 9/16 EHS | 3500               | 35000            | 10563           | 22050                   | 0.952         | 1.988       |
|             | 190.83 (B)<br>(575) | 9/16 EHS | 3500               | 35000            | 10936           | 22050                   | 0.952         | 1.920       |
|             | 190.83 (C)<br>(574) | 9/16 EHS | 3500               | 35000            | 10569           | 22050                   | 0.952         | 1.987       |
| T3          | 157.44 (A)<br>(589) | 5/8 EHS  | 4240               | 42400            | 10163           | 26711                   | 0.952         | 2.503       |
|             | 157.44 (A)<br>(590) | 5/8 EHS  | 4240               | 42400            | 10252           | 26711                   | 0.952         | 2.481       |
|             | 157.44 (B)<br>(583) | 5/8 EHS  | 4240               | 42400            | 10339           | 26711                   | 0.952         | 2.460       |
|             | 157.44 (B)<br>(584) | 5/8 EHS  | 4240               | 42400            | 11023           | 26711                   | 0.952         | 2.308       |
|             | 157.44 (C)<br>(577) | 5/8 EHS  | 4240               | 42400            | 10860           | 26711                   | 0.952         | 2.342       |
|             | 157.44 (C)<br>(578) | 5/8 EHS  | 4240               | 42400            | 10052           | 26711                   | 0.952         | 2.531       |
| T5          | 117.44 (A)<br>(607) | 9/16 EHS | 3500               | 35000            | 6377            | 22050                   | 0.952         | 3.293       |
|             | 117.44 (A)<br>(608) | 9/16 EHS | 3500               | 35000            | 6161            | 22050                   | 0.952         | 3.409       |
|             | 117.44 (B)<br>(601) | 9/16 EHS | 3500               | 35000            | 6459            | 22050                   | 0.952         | 3.251       |
|             | 117.44 (B)<br>(602) | 9/16 EHS | 3500               | 35000            | 7207            | 22050                   | 0.952         | 2.914       |
|             | 117.44 (C)<br>(595) | 9/16 EHS | 3500               | 35000            | 6813            | 22050                   | 0.952         | 3.083       |
|             | 117.44 (C)<br>(596) | 9/16 EHS | 3500               | 35000            | 6332            | 22050                   | 0.952         | 3.316       |
| T8          | 60.75 (A)<br>(615)  | 9/16 EHS | 3500               | 35000            | 6225            | 22050                   | 0.952         | 3.374       |
|             | 60.75 (B)<br>(614)  | 9/16 EHS | 3500               | 35000            | 7052            | 22050                   | 0.952         | 2.978       |
|             | 60.75 (C)<br>(613)  | 9/16 EHS | 3500               | 35000            | 6535            | 22050                   | 0.952         | 3.214       |

### Compression Checks

### Leg Design Data (Compression)

| Section No. | Elevation            | Size       | L     | $L_a$ | Kl/r           | A               | $P_u$  | $\phi P_u$ | Ratio $\frac{P_u}{\phi P_u}$ |
|-------------|----------------------|------------|-------|-------|----------------|-----------------|--------|------------|------------------------------|
|             |                      |            | ft    | ft    | ft             | in <sup>2</sup> | lb     | lb         |                              |
| T1          | 190.833 -<br>180.833 | P2.5x0.203 | 10.00 | 3.31  | 41.9<br>K=1.00 | 1.7040          | -10803 | 73258      | 0.147 <sup>1</sup>           |
| T2          | 180.833 -<br>160.833 | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00 | 1.7040          | -29402 | 73258      | 0.401 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00 | 1.7040          | -35908 | 73258      | 0.490 <sup>1</sup>           |
| T4          | 140.833 -<br>120.833 | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00 | 1.7040          | -44360 | 73258      | 0.606 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00 | 1.7040          | -48150 | 73258      | 0.657 <sup>1</sup>           |
| T6          | 100.833 -            | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00 | 1.7040          | -34125 | 73258      | 0.466 <sup>1</sup>           |

|                                                                                                                                                        |         |                                 |             |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>tnxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 22 of 31                |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Section No. | Elevation                                                                                                        | Size       | L     | $L_a$ | Kl/r                                                                                           | A               | $P_u$  | $\phi P_u$ | Ratio $\frac{P_u}{\phi P_u}$ |
|-------------|------------------------------------------------------------------------------------------------------------------|------------|-------|-------|------------------------------------------------------------------------------------------------|-----------------|--------|------------|------------------------------|
|             |                                                                                                                  |            | ft    | ft    | ft                                                                                             | in <sup>2</sup> | lb     | lb         |                              |
| T7          | 80.8333 -<br>80.8333 -<br>60.8333 -<br>60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 - | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00 | 1.7040          | -35467 | 73258      | 0.484 <sup>1</sup>           |
| T8          | 80.8333 -<br>80.8333 -<br>60.8333 -<br>60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 - | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00 | 1.7040          | -41522 | 73258      | 0.567 <sup>1</sup>           |
| T9          | 80.8333 -<br>80.8333 -<br>60.8333 -<br>60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 - | P2.5x0.203 | 20.00 | 3.31  | 41.9<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00<br>K=1.00 | 1.7040          | -43414 | 73258      | 0.593 <sup>1</sup>           |
| T10         | 80.8333 -<br>80.8333 -<br>60.8333 -<br>60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 - | P2.5x0.203 | 20.00 | 3.32  | 42.0<br>K=1.00<br>K=1.00                                                                       | 1.7040          | -43392 | 73172      | 0.593 <sup>1</sup>           |

<sup>1</sup> DL controls

<sup>1</sup>  $P_u$  /  $\phi P_u$  controls

| Horizontal Design Data (Compression) |                                                                                                                               |                   |      |       |                                                                                                           |                 |       |            |                              |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-------|-----------------------------------------------------------------------------------------------------------|-----------------|-------|------------|------------------------------|
| Section No.                          | Elevation                                                                                                                     | Size              | L    | $L_a$ | Kl/r                                                                                                      | A               | $P_u$ | $\phi P_u$ | Ratio $\frac{P_u}{\phi P_u}$ |
|                                      |                                                                                                                               |                   | ft   | ft    | ft                                                                                                        | in <sup>2</sup> | lb    | lb         |                              |
| T1                                   | 190.833 -<br>180.833                                                                                                          | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96                                                                                           | 0.5273          | -695  | 9180       | 0.076 <sup>1</sup>           |
| T2                                   | 180.833 -<br>160.833                                                                                                          | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96                                                                                           | 0.5273          | -3502 | 9180       | 0.381 <sup>1</sup>           |
| T3                                   | 160.833 -<br>140.833                                                                                                          | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96                                                                                           | 0.5273          | -2543 | 9180       | 0.277 <sup>1</sup>           |
| T4                                   | 140.833 -<br>120.833                                                                                                          | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96                                                                                           | 0.5273          | -1872 | 9180       | 0.204 <sup>1</sup>           |
| T5                                   | 120.833 -<br>100.833                                                                                                          | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96                                                                                           | 0.5273          | -2894 | 9180       | 0.315 <sup>1</sup>           |
| T6                                   | 100.833 -<br>80.8333 -<br>80.8333 -<br>60.8333 -<br>60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 - | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96 | 0.5273          | -1801 | 9180       | 0.196 <sup>1</sup>           |
| T7                                   | 80.8333 -<br>80.8333 -<br>60.8333 -<br>60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 -              | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96           | 0.5273          | -929  | 9180       | 0.101 <sup>1</sup>           |
| T8                                   | 60.8333 -<br>40.8333 -<br>40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 -                                                     | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96                                         | 0.5273          | -1452 | 9180       | 0.158 <sup>1</sup>           |
| T9                                   | 40.8333 -<br>20.8333 -<br>20.8333 -<br>0.8333 -                                                                               | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96<br>K=0.96<br>K=0.96<br>K=0.96                                                             | 0.5273          | -912  | 9180       | 0.099 <sup>1</sup>           |
| T10                                  | 20.8333 -<br>0.8333 -                                                                                                         | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96                                                                                           | 0.5273          | -1734 | 9180       | 0.189 <sup>1</sup>           |

<sup>1</sup>  $P_u$  /  $\phi P_u$  controls

| Top Girt Design Data (Compression) |                      |                   |      |       |                 |                 |       |            |                              |
|------------------------------------|----------------------|-------------------|------|-------|-----------------|-----------------|-------|------------|------------------------------|
| Section No.                        | Elevation            | Size              | L    | $L_a$ | Kl/r            | A               | $P_u$ | $\phi P_u$ | Ratio $\frac{P_u}{\phi P_u}$ |
|                                    |                      |                   | ft   | ft    | ft              | in <sup>2</sup> | lb    | lb         |                              |
| T2                                 | 180.833 -<br>160.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273          | -510  | 9180       | 0.056 <sup>1</sup>           |
| T3                                 | 160.833 -<br>140.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273          | -2004 | 9180       | 0.218 <sup>1</sup>           |
| T4                                 | 140.833 -<br>120.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 128.2<br>K=0.96 | 0.5273          | -769  | 9180       | 0.084 <sup>1</sup>           |

|                                                                                                                                                        |         |                                 |             |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>ttxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 23 of 31                |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Section No. | Elevation         | Size              | L    | L <sub>a</sub> | KI/r   | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|-------------------|-------------------|------|----------------|--------|-----------------|----------------|-----------------|------------------------------|
|             | ft                |                   | ft   | ft             |        | in <sup>2</sup> | lb             | lb              |                              |
|             | 120.833           |                   |      |                | K=0.96 |                 |                |                 |                              |
| T5          | 120.833 - 100.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2  | 0.5273          | -925           | 9180            | 0.101 <sup>1</sup>           |
| T6          | 100.833 - 80.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2  | 0.5273          | -1014          | 9180            | 0.110 <sup>1</sup>           |
| T7          | 80.8333 - 60.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2  | 0.5273          | -615           | 9180            | 0.067 <sup>1</sup>           |
| T9          | 40.8333 - 20.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2  | 0.5273          | -752           | 9180            | 0.082 <sup>1</sup>           |
| T10         | 20.8333 - 0.8333  | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2  | 0.5273          | -752           | 9180            | 0.082 <sup>1</sup>           |

<sup>1</sup> DL controls

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Bottom Girt Design Data (Compression)

| Section No. | Elevation         | Size              | L    | L <sub>a</sub> | KI/r  | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|-------------------|-------------------|------|----------------|-------|-----------------|----------------|-----------------|------------------------------|
|             | ft                |                   | ft   | ft             |       | in <sup>2</sup> | lb             | lb              |                              |
|             | 190.833 - 180.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -270           | 9180            | 0.029 <sup>1</sup>           |
| T2          | 180.833 - 160.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -2153          | 9180            | 0.235 <sup>1</sup>           |
| T3          | 160.833 - 140.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -622           | 9180            | 0.068 <sup>1</sup>           |
| T4          | 140.833 - 120.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -975           | 9180            | 0.106 <sup>1</sup>           |
| T5          | 120.833 - 100.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -1101          | 9180            | 0.120 <sup>1</sup>           |
| T6          | 100.833 - 80.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -591           | 9180            | 0.064 <sup>1</sup>           |
| T7          | 80.8333 - 60.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -615           | 9180            | 0.067 <sup>1</sup>           |
| T8          | 60.8333 - 40.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -721           | 9180            | 0.079 <sup>1</sup>           |
| T9          | 40.8333 - 20.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26           | 128.2 | 0.5273          | -752           | 9180            | 0.082 <sup>1</sup>           |

<sup>1</sup> DL controls

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Bottom Guy Pull-Off Design Data (Compression)

| Section No. | Elevation         | Size           | L    | L <sub>a</sub> | KI/r  | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|-------------------|----------------|------|----------------|-------|-----------------|----------------|-----------------|------------------------------|
|             | ft                |                | ft   | ft             |       | in <sup>2</sup> | lb             | lb              |                              |
|             | 160.833 - 140.833 | L 2 x 2 x 5/16 | 3.50 | 3.26           | 100.3 | 1.1500          | -2719          | 28298           | 0.096 <sup>1</sup>           |
| T5          | 120.833 - 100.833 | L 2 x 2 x 5/16 | 3.50 | 3.26           | 100.3 | 1.1500          | -2698          | 28298           | 0.095 <sup>1</sup>           |

|                                                                                                                                                        |         |                                 |             |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-------------------------|
| <b>ttxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 24 of 31                |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21       |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch, E.I. |

| Section No. | Elevation | Size | L  | L <sub>a</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|-----------|------|----|----------------|------|-----------------|----------------|-----------------|------------------------------|
|             | ft        |      | ft | ft             |      | in <sup>2</sup> | lb             | lb              |                              |

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Torque-Arm Bottom Design Data

| Section No. | Elevation               | Size     | L    | L <sub>a</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|-------------------------|----------|------|----------------|------|-----------------|----------------|-----------------|------------------------------|
|             | ft                      |          | ft   | ft             |      | in <sup>2</sup> | lb             | lb              |                              |
| T3          | 160.833 - 140.833 (581) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -6988          | 44003           | 0.159 <sup>1</sup>           |
| T3          | 160.833 - 140.833 (582) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -6797          | 44003           | 0.154 <sup>1</sup>           |
| T3          | 160.833 - 140.833 (587) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -7112          | 44003           | 0.162 <sup>1</sup>           |
| T3          | 160.833 - 140.833 (588) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -7105          | 44003           | 0.161 <sup>1</sup>           |
| T3          | 160.833 - 140.833 (593) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -7235          | 44003           | 0.164 <sup>1</sup>           |
| T5          | 120.833 - 100.833 (599) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -3713          | 44003           | 0.084 <sup>1</sup>           |
| T5          | 120.833 - 100.833 (600) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -3556          | 44003           | 0.081 <sup>1</sup>           |
| T5          | 120.833 - 100.833 (605) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -3958          | 44003           | 0.090 <sup>1</sup>           |
| T5          | 120.833 - 100.833 (606) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -3974          | 44003           | 0.090 <sup>1</sup>           |
| T5          | 120.833 - 100.833 (611) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -4294          | 44003           | 0.098 <sup>1</sup>           |
| T5          | 120.833 - 100.833 (612) | L3x3x1/4 | 3.50 | 3.38           | 69.3 | 1.4400          | -4203          | 44003           | 0.096 <sup>1</sup>           |

<sup>1</sup> P<sub>u</sub> / φP<sub>n</sub> controls

### Tension Checks

### Leg Design Data (Tension)

| Section No. | Elevation         | Size       | L     | L <sub>a</sub> | KI/r | A               | P <sub>u</sub> | φP <sub>n</sub> | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|-------------------|------------|-------|----------------|------|-----------------|----------------|-----------------|------------------------------|
|             | ft                |            | ft    | ft             |      | in <sup>2</sup> | lb             | lb              |                              |
| T2          | 180.833 - 160.833 | P2.5x0.203 | 20.00 | 0.08           | 1.1  | 1.7040          | 9005           | 84351           | 0.107 <sup>1</sup>           |
| T3          | 160.833 - 140.833 | P2.5x0.203 | 20.00 | 0.08           | 1.1  | 1.7040          | 9005           | 84351           | 0.107 <sup>1</sup>           |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 25 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

<sup>1</sup>  $P_u / \phi P_n$  controls

### Diagonal Design Data (Tension)

| Section No. | Elevation            | Size | L    | $L_a$ | KI/r  | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------|------|------|-------|-------|-----------------|-------|------------|------------------------------|
|             |                      |      | ft   | ft    | ft    | in <sup>2</sup> | lb    | lb         | $\phi P_n$                   |
| T1          | 190.833 -<br>180.833 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 1557  | 9940       | 0.157 <sup>1</sup>           |
| T2          | 180.833 -<br>160.833 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 5445  | 9940       | 0.548 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 3506  | 9940       | 0.353 <sup>1</sup>           |
| T4          | 140.833 -<br>120.833 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 2676  | 9940       | 0.269 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 4031  | 9940       | 0.405 <sup>1</sup>           |
| T6          | 100.833 -<br>80.8333 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 2682  | 9940       | 0.270 <sup>1</sup>           |
| T7          | 80.8333 -<br>60.8333 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 1302  | 9940       | 0.131 <sup>1</sup>           |
| T8          | 60.8333 -<br>40.8333 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 2099  | 9940       | 0.211 <sup>1</sup>           |
| T9          | 40.8333 -<br>20.8333 | 5/8  | 4.81 | 4.48  | 344.4 | 0.3068          | 1398  | 9940       | 0.141 <sup>1</sup>           |
| T10         | 20.8333 -<br>0.8333  | 5/8  | 4.82 | 4.49  | 345.1 | 0.3068          | 2475  | 9940       | 0.249 <sup>1</sup>           |

<sup>1</sup>  $P_u / \phi P_n$  controls

### Horizontal Design Data (Tension)

| Section No. | Elevation            | Size              | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------|-------------------|------|-------|------|-----------------|-------|------------|------------------------------|
|             |                      |                   | ft   | ft    | ft   | in <sup>2</sup> | lb    | lb         | $\phi P_n$                   |
| T1          | 190.833 -<br>180.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 292   | 17086      | 0.017 <sup>1</sup>           |
| T2          | 180.833 -<br>160.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 510   | 17086      | 0.030 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 622   | 17086      | 0.036 <sup>1</sup>           |
| T4          | 140.833 -<br>120.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 769   | 17086      | 0.045 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 834   | 17086      | 0.049 <sup>1</sup>           |
| T6          | 100.833 -<br>80.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 591   | 17086      | 0.035 <sup>1</sup>           |
| T7          | 80.8333 -<br>60.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 615   | 17086      | 0.036 <sup>1</sup>           |
| T8          | 60.8333 -<br>40.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 721   | 17086      | 0.042 <sup>1</sup>           |
| T9          | 40.8333 -<br>20.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 752   | 17086      | 0.044 <sup>1</sup>           |
| T10         | 20.8333 -<br>0.8333  | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 752   | 17086      | 0.044 <sup>1</sup>           |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 26 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

\* DL controls

<sup>1</sup>  $P_u / \phi P_n$  controls

### Top Girt Design Data (Tension)

| Section No. | Elevation            | Size              | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------|-------------------|------|-------|------|-----------------|-------|------------|------------------------------|
|             |                      |                   | ft   | ft    | ft   | in <sup>2</sup> | lb    | lb         | $\phi P_n$                   |
| T2          | 180.833 -<br>160.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 510   | 17086      | 0.030 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 1695  | 17086      | 0.099 <sup>1</sup>           |
| T4          | 140.833 -<br>120.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 769   | 17086      | 0.045 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 834   | 17086      | 0.049 <sup>1</sup>           |
| T6          | 100.833 -<br>80.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 591   | 17086      | 0.035 <sup>1</sup>           |
| T7          | 80.8333 -<br>60.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 615   | 17086      | 0.036 <sup>1</sup>           |
| T8          | 60.8333 -<br>40.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 721   | 17086      | 0.042 <sup>1</sup>           |
| T9          | 40.8333 -<br>20.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 752   | 17086      | 0.044 <sup>1</sup>           |
| T10         | 20.8333 -<br>0.8333  | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 752   | 17086      | 0.044 <sup>1</sup>           |

\* DL controls

<sup>1</sup>  $P_u / \phi P_n$  controls

### Bottom Girt Design Data (Tension)

| Section No. | Elevation            | Size              | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------|-------------------|------|-------|------|-----------------|-------|------------|------------------------------|
|             |                      |                   | ft   | ft    | ft   | in <sup>2</sup> | lb    | lb         | $\phi P_n$                   |
| T1          | 190.833 -<br>180.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 187   | 17086      | 0.011 <sup>1</sup>           |
| T2          | 180.833 -<br>160.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 1375  | 17086      | 0.080 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 622   | 17086      | 0.036 <sup>1</sup>           |
| T4          | 140.833 -<br>120.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 769   | 17086      | 0.045 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 834   | 17086      | 0.049 <sup>1</sup>           |
| T6          | 100.833 -<br>80.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 591   | 17086      | 0.035 <sup>1</sup>           |
| T7          | 80.8333 -<br>60.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 1097  | 17086      | 0.064 <sup>1</sup>           |
| T8          | 60.8333 -<br>40.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 721   | 17086      | 0.042 <sup>1</sup>           |
| T9          | 40.8333 -<br>20.8333 | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 752   | 17086      | 0.044 <sup>1</sup>           |
| T10         | 20.8333 -<br>0.8333  | L1 1/2x1 1/2x3/16 | 3.50 | 3.26  | 85.7 | 0.5273          | 190   | 17086      | 0.011 <sup>1</sup>           |

|                                                                                                                                                        |         |                                 |             |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 27 of 31                   |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

\* DL controls

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

### Top Guy Pull-Off Design Data (Tension)

| Section No. | Elevation            | Size              | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------|-------------------|------|-------|------|-----------------|-------|------------|------------------------------|
|             | ft                   |                   | ft   | ft    |      | in <sup>2</sup> | lb    | lb         |                              |
| T1          | 190.833 -<br>180.833 | L1 3/4x1 3/4x3/16 | 3.50 | 3.26  | 72.9 | 0.6211          | 3776  | 20123      | 0.188 <sup>1</sup>           |
| T8          | 60.833 -<br>40.833   | L1 3/4x1 3/4x3/16 | 3.50 | 3.26  | 72.9 | 0.6211          | 1990  | 20123      | 0.099 <sup>1</sup>           |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

### Bottom Guy Pull-Off Design Data (Tension)

| Section No. | Elevation            | Size           | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------|----------------|------|-------|------|-----------------|-------|------------|------------------------------|
|             | ft                   |                | ft   | ft    |      | in <sup>2</sup> | lb    | lb         |                              |
| T3          | 160.833 -<br>140.833 | L 2 x 2 x 5/16 | 3.50 | 3.26  | 65.1 | 1.1500          | 2262  | 37260      | 0.061 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 | L 2 x 2 x 5/16 | 3.50 | 3.26  | 65.1 | 1.1500          | 1649  | 37260      | 0.044 <sup>1</sup>           |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

### Torque-Arm Top Design Data

| Section No. | Elevation                  | Size     | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------------|----------|------|-------|------|-----------------|-------|------------|------------------------------|
|             | ft                         |          | ft   | ft    |      | in <sup>2</sup> | lb    | lb         |                              |
| T3          | 160.833 -<br>140.833 (579) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 9121  | 39843      | 0.229 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (580) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 10084 | 39843      | 0.253 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (585) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 9187  | 39843      | 0.231 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (586) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 9007  | 39843      | 0.226 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (591) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 8826  | 39843      | 0.222 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (592) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 9622  | 39843      | 0.241 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (597) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 5195  | 39843      | 0.130 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (598) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 5280  | 39843      | 0.133 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (603) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 5108  | 39843      | 0.128 <sup>1</sup>           |

|                                                                                                                                                        |         |                                 |             |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>tnxTower</b><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 28 of 31                   |
|                                                                                                                                                        | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                        | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Section No. | Elevation                  | Size     | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------------|----------|------|-------|------|-----------------|-------|------------|------------------------------|
|             | ft                         |          | ft   | ft    |      | in <sup>2</sup> | lb    | lb         |                              |
| T5          | 120.833 -<br>100.833 (604) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 5056  | 39843      | 0.127 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (609) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 5155  | 39843      | 0.129 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (610) | L3x3x1/4 | 4.81 | 4.65  | 60.3 | 0.9159          | 5277  | 39843      | 0.132 <sup>1</sup>           |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

### Torque-Arm Bottom Design Data

| Section No. | Elevation                  | Size     | L    | $L_a$ | KI/r | A               | $P_u$ | $\phi P_n$ | Ratio $\frac{P_u}{\phi P_n}$ |
|-------------|----------------------------|----------|------|-------|------|-----------------|-------|------------|------------------------------|
|             | ft                         |          | ft   | ft    |      | in <sup>2</sup> | lb    | lb         |                              |
| T3          | 160.833 -<br>140.833 (581) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2630  | 39843      | 0.066 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (582) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2613  | 39843      | 0.066 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (587) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2802  | 39843      | 0.070 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (588) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2802  | 39843      | 0.070 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (593) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2819  | 39843      | 0.071 <sup>1</sup>           |
| T3          | 160.833 -<br>140.833 (594) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2816  | 39843      | 0.071 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (599) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2135  | 39843      | 0.054 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (600) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 1836  | 39843      | 0.046 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (605) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2201  | 39843      | 0.055 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (606) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2185  | 39843      | 0.055 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (611) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2747  | 39843      | 0.069 <sup>1</sup>           |
| T5          | 120.833 -<br>100.833 (612) | L3x3x1/4 | 3.50 | 3.38  | 43.8 | 0.9159          | 2374  | 39843      | 0.060 <sup>1</sup>           |

<sup>1</sup>  $P_u$  /  $\phi P_n$  controls

### Section Capacity Table

| Section No. | Elevation            | Component Type | Size       | Critical Element | P lb   | $\phi P_{allow}$ lb | % Capacity | Pass Fail |
|-------------|----------------------|----------------|------------|------------------|--------|---------------------|------------|-----------|
|             | ft                   |                |            |                  |        |                     |            |           |
| T1          | 190.833 -<br>180.833 | Leg            | P2.5x0.203 | 2                | -10803 | 76921               | 14.0       | Pass      |
| T2          | 180.833 -<br>160.833 | Leg            | P2.5x0.203 | 35               | -29402 | 76921               | 38.2       | Pass      |
| T3          | 160.833 -<br>140.833 | Leg            | P2.5x0.203 | 95               | -35908 | 76921               | 46.7       | Pass      |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>ttxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 29 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Section No. | Elevation ft      | Component Type | Size              | Critical Element | P lb   | $\phi P_{allow}$ lb | % Capacity | Pass Fail |
|-------------|-------------------|----------------|-------------------|------------------|--------|---------------------|------------|-----------|
| T4          | 140.833 - 120.833 | Leg            | P2.5x0.203        | 155              | -44360 | 76921               | 57.7       | Pass      |
| T5          | 120.833 - 100.833 | Leg            | P2.5x0.203        | 215              | -48150 | 76921               | 62.6       | Pass      |
| T6          | 100.833 - 80.833  | Leg            | P2.5x0.203        | 276              | -34125 | 73258               | 46.6       | Pass      |
| T7          | 80.833 - 60.833   | Leg            | P2.5x0.203        | 336              | -35467 | 73258               | 48.4       | Pass      |
| T8          | 60.833 - 40.833   | Leg            | P2.5x0.203        | 395              | -41522 | 76921               | 54.0       | Pass      |
| T9          | 40.833 - 20.833   | Leg            | P2.5x0.203        | 455              | -43414 | 76921               | 56.4       | Pass      |
| T10         | 20.833 - 0.8333   | Leg            | P2.5x0.203        | 515              | -43392 | 76830               | 56.5       | Pass      |
| T1          | 190.833 - 180.833 | Diagonal       | 5/8               | 28               | 1557   | 10437               | 14.9       | Pass      |
| T2          | 180.833 - 160.833 | Diagonal       | 5/8               | 46               | 5445   | 10437               | 52.2       | Pass      |
| T3          | 160.833 - 140.833 | Diagonal       | 5/8               | 133              | 3506   | 10437               | 33.6       | Pass      |
| T4          | 140.833 - 120.833 | Diagonal       | 5/8               | 166              | 2676   | 10437               | 25.6       | Pass      |
| T5          | 120.833 - 100.833 | Diagonal       | 5/8               | 252              | 4031   | 10437               | 38.6       | Pass      |
| T6          | 100.833 - 80.833  | Diagonal       | 5/8               | 330              | 2682   | 10437               | 25.7       | Pass      |
| T7          | 80.833 - 60.833   | Diagonal       | 5/8               | 345              | 1302   | 10437               | 12.5       | Pass      |
| T8          | 60.833 - 40.833   | Diagonal       | 5/8               | 440              | 2099   | 10437               | 20.1       | Pass      |
| T9          | 40.833 - 20.833   | Diagonal       | 5/8               | 466              | 1398   | 10437               | 13.4       | Pass      |
| T10         | 20.833 - 0.8333   | Diagonal       | 5/8               | 535              | 2475   | 10437               | 23.7       | Pass      |
| T1          | 190.833 - 180.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 26               | -695   | 9639                | 7.2        | Pass      |
| T2          | 180.833 - 160.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 50               | -3502  | 9639                | 36.3       | Pass      |
| T3          | 160.833 - 140.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 137              | -2543  | 9639                | 26.4       | Pass      |
| T4          | 140.833 - 120.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 170              | -1872  | 9639                | 19.4       | Pass      |
| T5          | 120.833 - 100.833 | Horizontal     | L1 1/2x1 1/2x3/16 | 257              | -2894  | 9639                | 30.0       | Pass      |
| T6          | 100.833 - 80.833  | Horizontal     | L1 1/2x1 1/2x3/16 | 326              | -1801  | 9639                | 18.7       | Pass      |
| T7          | 80.833 - 60.833   | Horizontal     | L1 1/2x1 1/2x3/16 | 350              | -929   | 9639                | 9.6        | Pass      |
| T8          | 60.833 - 40.833   | Horizontal     | L1 1/2x1 1/2x3/16 | 436              | -1452  | 9639                | 15.1       | Pass      |
| T9          | 40.833 - 20.833   | Horizontal     | L1 1/2x1 1/2x3/16 | 470              | -912   | 9639                | 9.5        | Pass      |
| T10         | 20.833 - 0.8333   | Horizontal     | L1 1/2x1 1/2x3/16 | 539              | -1734  | 9639                | 18.0       | Pass      |
| T2          | 180.833 - 160.833 | Top Girt       | L1 1/2x1 1/2x3/16 | 37               | -510   | 9639                | 5.3        | Pass      |
| T3          | 160.833 - 140.833 | Top Girt       | L1 1/2x1 1/2x3/16 | 99               | -2004  | 9639                | 20.8       | Pass      |
| T4          | 140.833 - 120.833 | Top Girt       | L1 1/2x1 1/2x3/16 | 157              | -769   | 9639                | 8.0        | Pass      |
| T5          | 120.833 - 100.833 | Top Girt       | L1 1/2x1 1/2x3/16 | 219              | -925   | 9639                | 9.6        | Pass      |
| T6          | 100.833 - 80.8333 | Top Girt       | L1 1/2x1 1/2x3/16 | 278              | -1014  | 9639                | 10.5       | Pass      |

|                                                                                                                                                            |         |                                 |             |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------|
| <b>ttxTower</b><br><br><b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Job     | Eastford CDT (702497)           | Page        | 30 of 31                   |
|                                                                                                                                                            | Project | TEP No. 25707.576390            | Date        | 10:15:37 09/10/21          |
|                                                                                                                                                            | Client  | Everest Infrastructure Partners | Designed by | W. Harrison Welch,<br>E.I. |

| Section No. | Elevation ft      | Component Type   | Size              | Critical Element | P lb  | $\phi P_{allow}$ lb | % Capacity | Pass Fail |
|-------------|-------------------|------------------|-------------------|------------------|-------|---------------------|------------|-----------|
| T7          | 80.8333 - 60.8333 | Top Girt         | L1 1/2x1 1/2x3/16 | 338              | -615  | 9180                | 6.7        | Pass      |
| T9          | 40.8333 - 20.8333 | Top Girt         | L1 1/2x1 1/2x3/16 | 457              | -752  | 9639                | 7.8        | Pass      |
| T10         | 20.8333 - 0.8333  | Top Girt         | L1 1/2x1 1/2x3/16 | 517              | -752  | 9639                | 7.8        | Pass      |
| T1          | 190.833 - 180.833 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 9                | -270  | 9639                | 2.8        | Pass      |
| T2          | 180.833 - 160.833 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 42               | -2153 | 9639                | 22.3       | Pass      |
| T3          | 160.833 - 140.833 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 100              | -622  | 9639                | 6.5        | Pass      |
| T4          | 140.833 - 120.833 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 162              | -975  | 9639                | 10.1       | Pass      |
| T5          | 120.833 - 100.833 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 221              | -1101 | 9639                | 11.4       | Pass      |
| T6          | 100.833 - 80.8333 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 281              | -591  | 9180                | 6.4        | Pass      |
| T7          | 80.8333 - 60.8333 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 341              | -615  | 9180                | 6.7        | Pass      |
| T8          | 60.8333 - 40.8333 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 400              | -721  | 9639                | 7.5        | Pass      |
| T9          | 40.8333 - 20.8333 | Bottom Girt      | L1 1/2x1 1/2x3/16 | 460              | -752  | 9639                | 7.8        | Pass      |
| T10         | 20.8333 - 0.8333  | Bottom Girt      | L1 1/2x1 1/2x3/16 | 521              | 190   | 17086               | 1.1        | Pass      |
| T1          | 190.833 - 180.833 | Guy A@190.833    | 9/16              | 576              | 10563 | 22050               | 47.9       | Pass      |
| T3          | 160.833 - 140.833 | Guy A@157.444    | 5/8               | 590              | 10252 | 26711               | 38.4       | Pass      |
| T5          | 120.833 - 100.833 | Guy A@117.444    | 9/16              | 607              | 6377  | 22050               | 28.9       | Pass      |
| T8          | 60.8333 - 40.8333 | Guy A@60.75      | 9/16              | 615              | 6225  | 22050               | 28.2       | Pass      |
| T1          | 190.833 - 180.833 | Guy B@190.833    | 9/16              | 575              | 10936 | 22050               | 49.6       | Pass      |
| T3          | 160.833 - 140.833 | Guy B@157.444    | 5/8               | 584              | 11023 | 26711               | 41.3       | Pass      |
| T5          | 120.833 - 100.833 | Guy B@117.444    | 9/16              | 602              | 7207  | 22050               | 32.7       | Pass      |
| T8          | 60.8333 - 40.8333 | Guy B@60.75      | 9/16              | 614              | 7052  | 22050               | 32.0       | Pass      |
| T1          | 190.833 - 180.833 | Guy C@190.833    | 9/16              | 574              | 10569 | 22050               | 47.9       | Pass      |
| T3          | 160.833 - 140.833 | Guy C@157.444    | 5/8               | 577              | 10860 | 26711               | 40.7       | Pass      |
| T5          | 120.833 - 100.833 | Guy C@117.444    | 9/16              | 595              | 6813  | 22050               | 30.9       | Pass      |
| T8          | 60.8333 - 40.8333 | Guy C@60.75      | 9/16              | 613              | 6535  | 22050               | 29.6       | Pass      |
| T1          | 190.833 - 180.833 | Top Guy          | L1 3/4x1 3/4x3/16 | 6                | 3776  | 21130               | 17.9       | Pass      |
| T8          | 60.8333 - 40.8333 | Top Guy          | L1 3/4x1 3/4x3/16 | 398              | 1990  | 21130               | 9.4        | Pass      |
| T3          | 160.833 - 140.833 | Bottom Guy       | L 2 x 2 x 5/16    | 147              | -2719 | 29713               | 9.1        | Pass      |
| T5          | 120.833 - 100.833 | Bottom Guy       | L 2 x 2 x 5/16    | 267              | -2698 | 29713               | 9.1        | Pass      |
| T3          | 160.833 - 140.833 | Pull-Off@157.444 | L 2 x 2 x 5/16    | 267              | -2698 | 29713               | 9.1        | Pass      |
| T5          | 120.833 - 100.833 | Pull-Off@117.444 | L 2 x 2 x 5/16    | 267              | -2698 | 29713               | 9.1        | Pass      |
| T3          | 160.833 - 140.833 | Torque Arm       | L3x3x1/4          | 580              | 10084 | 41835               | 24.1       | Pass      |
| T5          | 120.833 - 100.833 | Torque Arm       | L3x3x1/4          | 598              | 5280  | 41835               | 12.6       | Pass      |
| T3          | 160.833 - 140.833 | Top@117.444      | L3x3x1/4          | 593              | -7387 | 46203               | 22.6 (b)   | Pass      |
|             |                   | Torque Arm       | L3x3x1/4          | 593              | -7387 | 46203               | 16.0       | Pass      |

|                                                                                                                                     |                                 |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| <b>tnxTower</b>                                                                                                                     | Job<br>Eastford CDT (702497)    | Page<br>31 of 31                          |
| <b>Tower Engineering Professionals, Inc.</b><br>326 Tryon Road<br>Raleigh, NC 27603<br>Phone: (919) 661-6151<br>FAX: (919) 661-6350 | Project<br>TEP No. 25707.576390 | Date<br>10:15:37 09/10/21                 |
| Client                                                                                                                              | Everest Infrastructure Partners | Designed by<br>W. Harrison Welch,<br>E.I. |

| Section No. | Elevation ft | Component Type | Size     | Critical Element         | P lb  | $\phi P_{allow}$ lb | % Capacity | Pass | Fail |
|-------------|--------------|----------------|----------|--------------------------|-------|---------------------|------------|------|------|
|             | 140.833      | Bottom@157.444 |          |                          |       |                     | 17.7 (b)   |      |      |
| T5          | 120.833 -    | Torque Arm     | L3x3x1/4 | 611                      | -4294 | 46203               | 9.3        | Pass |      |
|             | 100.833      | Bottom@117.444 |          |                          |       |                     | 11.7 (b)   |      |      |
|             |              |                |          | Summary                  |       |                     |            |      |      |
|             |              |                |          | Leg (T5)                 |       | 62.6                |            | Pass |      |
|             |              |                |          | Diagonal (T2)            |       | 52.2                |            | Pass |      |
|             |              |                |          | Horizontal (T2)          |       | 36.3                |            | Pass |      |
|             |              |                |          | Top Girt (T3)            |       | 20.8                |            | Pass |      |
|             |              |                |          | Bottom Girt (T2)         |       | 22.3                |            | Pass |      |
|             |              |                |          | Guy A (T1)               |       | 47.9                |            | Pass |      |
|             |              |                |          | Guy B (T1)               |       | 49.6                |            | Pass |      |
|             |              |                |          | Guy C (T1)               |       | 47.9                |            | Pass |      |
|             |              |                |          | Top Guy Pull-Off (T1)    |       | 17.9                |            | Pass |      |
|             |              |                |          | Bottom Guy Pull-Off (T3) |       | 9.1                 |            | Pass |      |
|             |              |                |          | Torque Arm Top (T3)      |       | 43.1                |            | Pass |      |
|             |              |                |          | Torque Arm Bottom (T3)   |       | 17.7                |            | Pass |      |
|             |              |                |          | Bolt Checks              |       | 43.1                |            | Pass |      |
|             |              |                |          | RATING =                 |       | 62.6                |            | Pass |      |

**APPENDIX B**  
**ADDITIONAL CALCULATIONS**

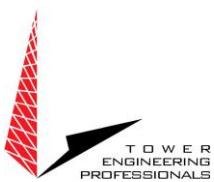


|                                |       |      |
|--------------------------------|-------|------|
| Uplift: Path B / R = 150.0 ft: | 33.8% | Pass |
| Shear: Path B / R = 150.0 ft:  | 61.4% | Pass |

Eastford CDT (702497)

TEP #: 25707.576390  
nalysis: KFW 9/15/2021  
Check: WHW 9/15/2021

Guy Anchor Analysis\_v1.5.10


**Code Revisions:** ANSI/TIA-222-H  
ACI 318-14

**Number of Soil Borings:** 3

**Boring: 1** B-4 **Water Table:** 99.00-ft

**Boring: 2** B-2 **Water Table:** 99.00-ft

**Boring: 3** B-3 **Water Table:** 99.00-ft



Eastford CDT (702497)

|         |       |      |
|---------|-------|------|
| Uplift: | 31.3% | Pass |
| Shear:  | 54.9% | Pass |

TEP #: 25707.576390  
 Analysis: KFW 9/15/2021  
 Check: WHW 9/15/2021

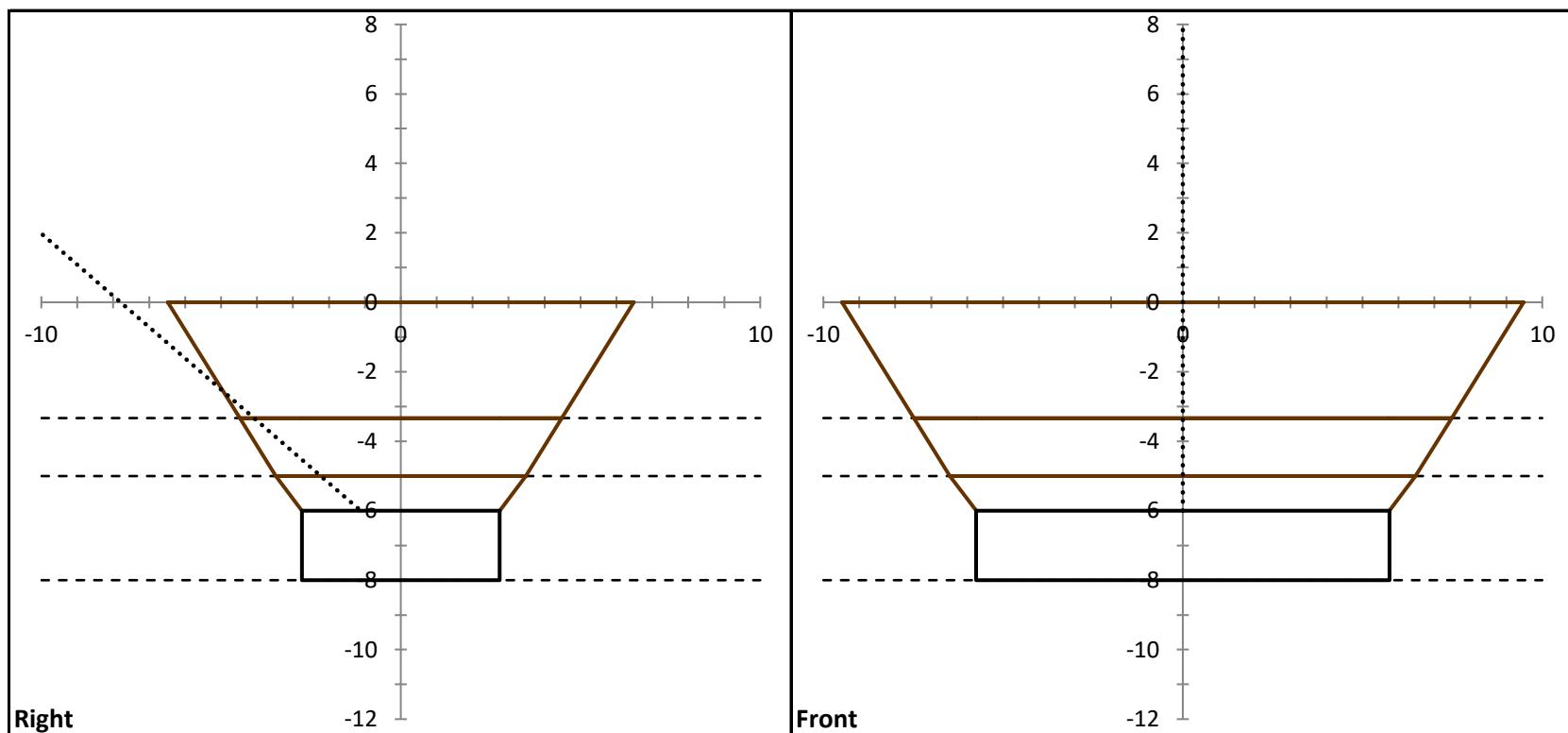
Guy Anchor Analysis\_v1.5.10 - Uplift

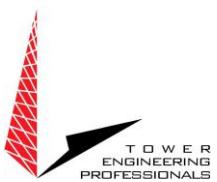
|           |          |            |          |              |          |                     |         |
|-----------|----------|------------|----------|--------------|----------|---------------------|---------|
| Guy Path: | A        | Length:    | 11.50 ft | Block Depth: | 6.00 ft  | Uplift:             | 32.38 k |
| Radius:   | 150.0-ft | Width:     | 5.50 ft  | Groundwater: | 99.00 ft | Shear:              | 36.05 k |
| Boring:   | 1        | Thickness: | 2.00 ft  |              |          | Resultant:          | 48.46 k |
|           |          | Toe:       | 0.00 ft  |              |          | Installation Angle: | 41.9°   |

| SOIL WEIGHT |                      |                       |                       |                       |                       |                       |                         |                                  |                           |                              |                              |
|-------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|----------------------------------|---------------------------|------------------------------|------------------------------|
| Layer       | Layer Thickness (ft) | Block t in Layer (ft) | L <sub>BOT</sub> (ft) | W <sub>BOT</sub> (ft) | L <sub>TOP</sub> (ft) | W <sub>TOP</sub> (ft) | SF Around Perimeter (k) | Volume of Toe (ft <sup>3</sup> ) | Volume (ft <sup>3</sup> ) | W <sub>SOIL, ABOVE</sub> (k) | W <sub>SOIL, SIDES</sub> (k) |
| 3           | 1.000                | 0.000                 | 11.500                | 5.500                 | 12.953                | 6.953                 | 0.000                   | 0.000                            | 76.305                    | 7.147                        | 1.475                        |
| 2           | 1.667                | 0.000                 | 12.953                | 6.953                 | 14.956                | 8.956                 | 0.000                   | 0.000                            | 185.604                   | 11.914                       | 9.059                        |
| 1           | 3.333                | 0.000                 | 14.956                | 8.956                 | 18.962                | 12.962                | 0.000                   | 0.000                            | 623.908                   | 23.822                       | 46.680                       |

| Layer | Block t in Layer (ft) | Skin Friction (ksf) | SF Sides (k) | SF Front (k) | SF Back (k) |
|-------|-----------------------|---------------------|--------------|--------------|-------------|
| 3     | 2.00                  | 0.00                | 0.00         | 0.00         | 0.00        |

| Cohesive Soil SF | Total Soil Weight         |         |
|------------------|---------------------------|---------|
|                  | Above                     | Sides   |
| SF: 0.00 k       | W <sub>S</sub> : 42.88 k  | 57.21 k |
| φSF: 0.00 k      | φW <sub>S</sub> : 38.60 k | 42.91 k |


Total Concrete Weight


V<sub>↑GW</sub>: 126.50 ft<sup>3</sup>  
 V<sub>↓GW</sub>: 0.00 ft<sup>3</sup>  
 W<sub>C</sub>: 18.98 k  
 φW<sub>C</sub>: 17.08 k

Total Skin Friction

SF: 0.00 k  
 φSF: 0.00 k

Uplift: 32.38 k  
 U<sub>ALLOW</sub>: 98.58 k  
 Capacity: 31.3%





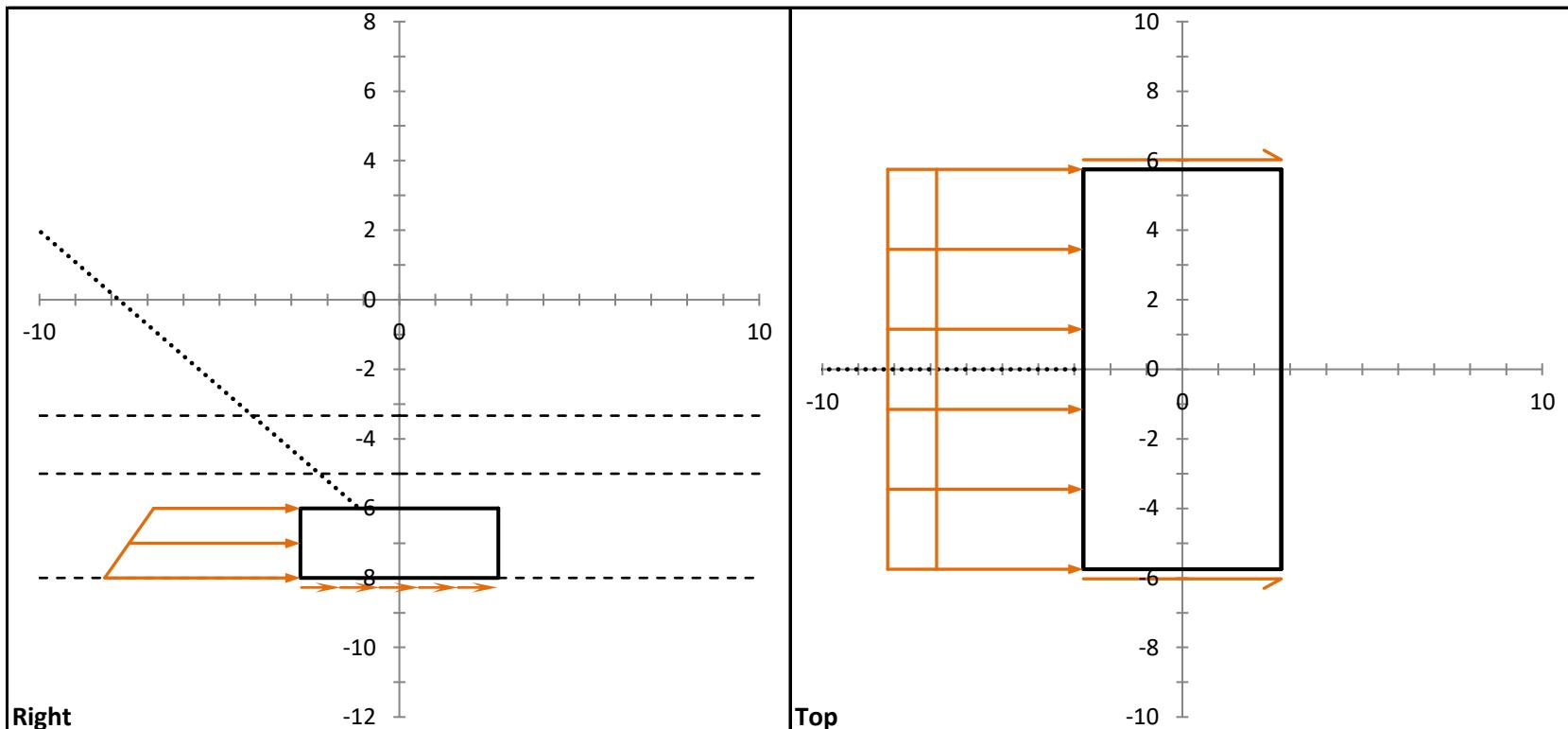
Eastford CDT (702497)

TEP #: 25707.576390

Analysis: KFW 9/15/2021

Check: WHW 9/15/2021

Guy Anchor Analysis\_v1.5.10 - Shear


|           |          |            |          |              |          |                     |         |
|-----------|----------|------------|----------|--------------|----------|---------------------|---------|
| Guy Path: | A        | Length:    | 11.50 ft | Block Depth: | 6.00 ft  | Uplift:             | 32.38 k |
| Radius:   | 150.0-ft | Width:     | 5.50 ft  | Groundwater: | 99.00 ft | Shear:              | 36.05 k |
| Boring:   | 1        | Thickness: | 2.00 ft  |              |          | Resultant:          | 48.46 k |
|           |          |            |          |              |          | Installation Angle: | 41.9°   |

| PASSIVE PRESSURE RESISTANCE |            |                     |  |                          |                        |                          |  |       |                   |                   |                  |
|-----------------------------|------------|---------------------|--|--------------------------|------------------------|--------------------------|--|-------|-------------------|-------------------|------------------|
| Layer                       | Depth (ft) | Depth of Block (ft) |  | $\sigma'_{vo,Top}$ (ksf) | $\gamma_{Layer}$ (pcf) | $\sigma'_{vo,Bot}$ (ksf) |  | $K_p$ | $P_{p,Top}$ (ksf) | $P_{p,Bot}$ (ksf) | Resistance (kip) |
| 3                           | 6.00       | 2.00                |  | 0.678                    | 113.00                 | 0.904                    |  | 3.85  | 2.612             | 3.482             | 70.08            |

| Layer | Block t in Layer (ft) | Skin Friction (ksf) | SF Sides (k) | SF Top (k) | SF Bottom (k) | Weights |         |
|-------|-----------------------|---------------------|--------------|------------|---------------|---------|---------|
|       |                       |                     |              |            |               | $W_s$   | $W_c$   |
| 3     | 2.00                  | 0.00                | 0.00         | 0.00       | 0.00          | 42.88 k | 57.21 k |

|                  |         |
|------------------|---------|
| Uplift SF:       | 0.00 k  |
| $U_{ALLOW}$ :    | 98.58 k |
| $U_{Eff}$ :      | 32.38 k |
| $F_\perp$ :      | 29.48 k |
| $\mu$ :          | 0.45    |
| Friction:        | 13.27 k |
| $\phi$ Friction: | 9.95 k  |

| Total Skin Friction |        | H: 36.1 k            |
|---------------------|--------|----------------------|
| SF:                 | 0.00 k | $H_{ALLOW}$ : 62.5 k |
| $\phi$ SF:          | 0.00 k | Capacity: 54.9%      |





Eastford CDT (702497)

|         |       |      |
|---------|-------|------|
| Uplift: | 33.8% | Pass |
| Shear:  | 61.4% | Pass |

TEP #: 25707.576390  
 Analysis: KFW 9/15/2021  
 Check: WHW 9/15/2021

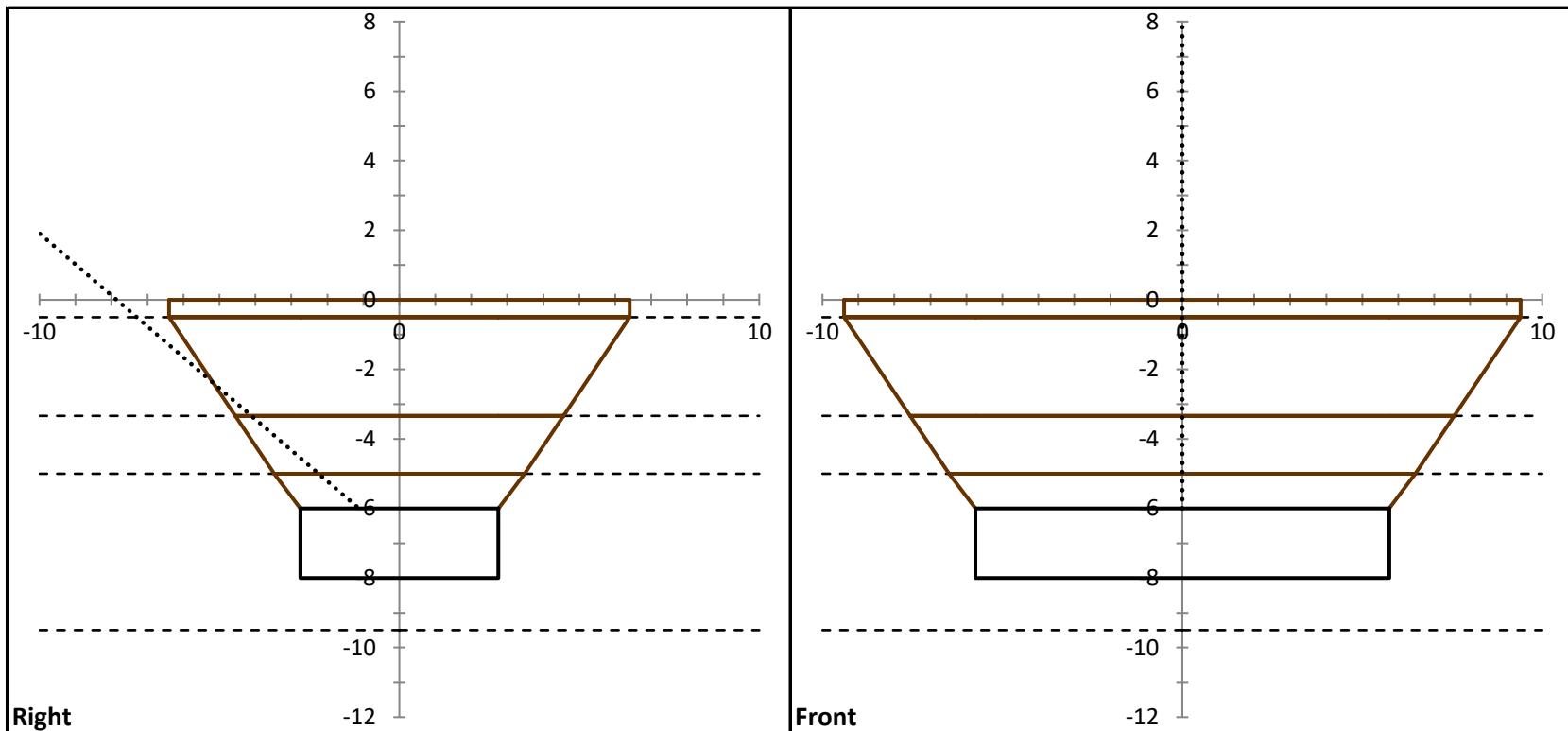
Guy Anchor Analysis\_v1.5.10 - Uplift

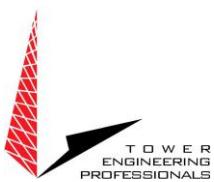
**Guy Path:** B      **Length:** 11.50 ft      **Block Depth:** 6.00 ft      **Uplift:** 34.44 k  
**Radius:** 150.0-ft      **Width:** 5.50 ft      **Groundwater:** 99.00 ft      **Shear:** 38.65 k  
**Boring:** 2      **Thickness:** 2.00 ft      **Resultant:** 51.77 k  
**Toe:** 0.00 ft      **Installation Angle:** 41.7°

| SOIL WEIGHT |                      |                       |                       |                       |                       |                       |                         |                                  |                           |                              |                              |
|-------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|----------------------------------|---------------------------|------------------------------|------------------------------|
| Layer       | Layer Thickness (ft) | Block t in Layer (ft) | L <sub>BOT</sub> (ft) | W <sub>BOT</sub> (ft) | L <sub>TOP</sub> (ft) | W <sub>TOP</sub> (ft) | SF Around Perimeter (k) | Volume of Toe (ft <sup>3</sup> ) | Volume (ft <sup>3</sup> ) | W <sub>SOIL, ABOVE</sub> (k) | W <sub>SOIL, SIDES</sub> (k) |
| 4           | 1.000                | 0.000                 | 11.500                | 5.500                 | 12.953                | 6.953                 | 0.000                   | 0.000                            | 76.305                    | 7.147                        | 1.475                        |
| 3           | 1.667                | 0.000                 | 12.953                | 6.953                 | 15.118                | 9.118                 | 0.000                   | 0.000                            | 188.665                   | 11.914                       | 9.405                        |
| 2           | 2.833                | 0.000                 | 15.118                | 9.118                 | 18.798                | 12.798                | 0.000                   | 0.000                            | 529.639                   | 20.248                       | 39.601                       |
| 1           | 0.500                | 0.000                 | 18.798                | 12.798                | 18.798                | 12.798                | 0.000                   | 0.000                            | 120.285                   | 2.214                        | 6.206                        |

| Layer | Block t in Layer (ft) | Skin Friction (ksf) | SF Sides (k) | SF Front (k) | SF Back (k) |
|-------|-----------------------|---------------------|--------------|--------------|-------------|
| 4     | 2.00                  | 0.00                | 0.00         | 0.00         | 0.00        |

| Cohesive Soil SF | Total Soil Weight         |         |
|------------------|---------------------------|---------|
|                  | Above                     | Sides   |
| SF: 0.00 k       | W <sub>S</sub> : 41.52 k  | 56.69 k |
| φSF: 0.00 k      | φW <sub>S</sub> : 37.37 k | 42.52 k |


Total Concrete Weight


V<sub>↑GW</sub>: 126.50 ft<sup>3</sup>  
 V<sub>↓GW</sub>: 0.00 ft<sup>3</sup>  
 W<sub>C</sub>: 18.98 k  
 φW<sub>C</sub>: 17.08 k

Total Skin Friction

SF: 0.00 k  
 φSF: 0.00 k

Uplift: 34.44 k  
 U<sub>ALLOW</sub>: 96.96 k  
 Capacity: 33.8%





Eastford CDT (702497)

TEP #: 25707.576390

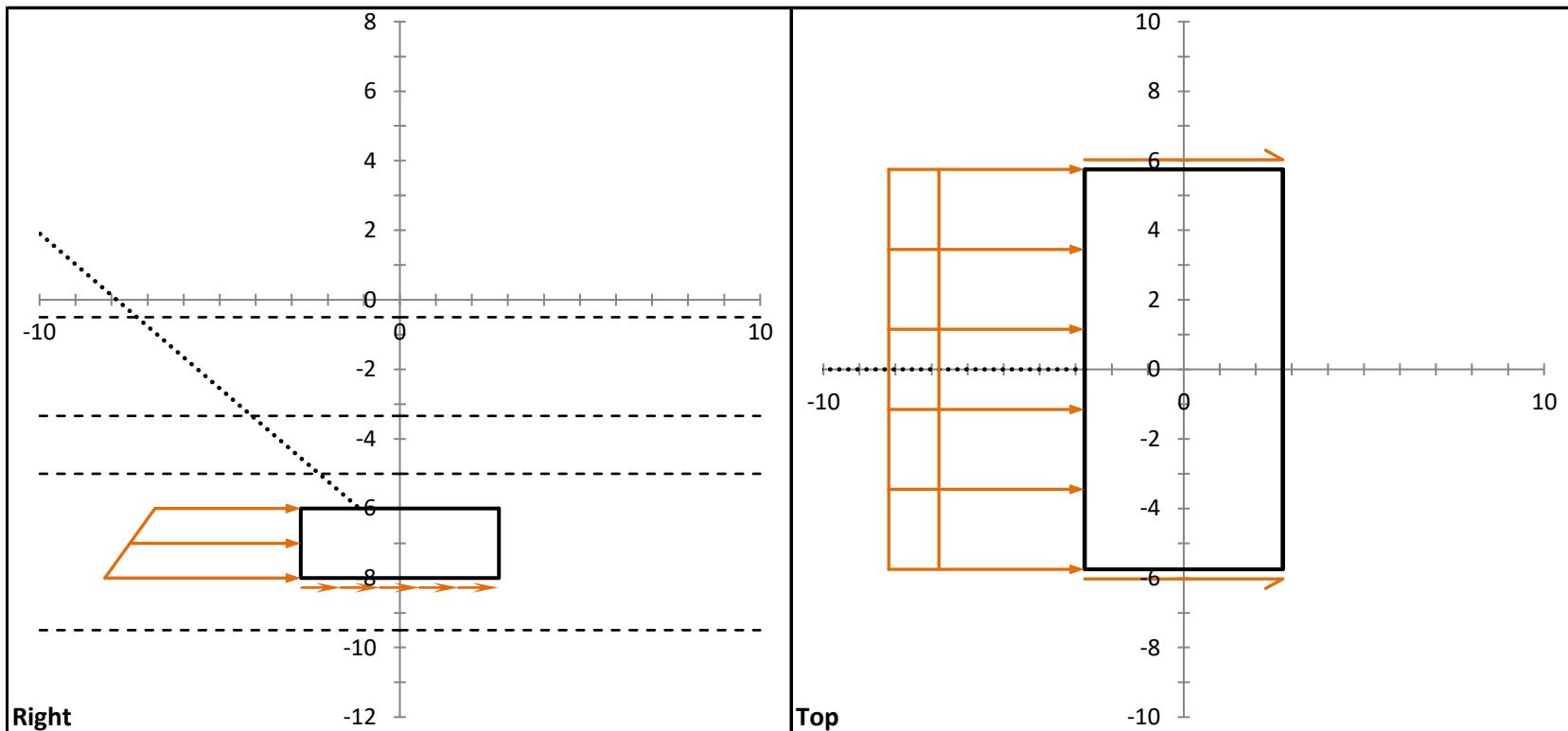
Analysis: KFW 9/15/2021

Check: WHW 9/15/2021

Guy Anchor Analysis\_v1.5.10 - Shear

|           |          |            |          |              |          |                     |         |
|-----------|----------|------------|----------|--------------|----------|---------------------|---------|
| Guy Path: | B        | Length:    | 11.50 ft | Block Depth: | 6.00 ft  | Uplift:             | 34.44 k |
| Radius:   | 150.0-ft | Width:     | 5.50 ft  | Groundwater: | 99.00 ft | Shear:              | 38.65 k |
| Boring:   | 2        | Thickness: | 2.00 ft  |              |          | Resultant:          | 51.77 k |
|           |          |            |          |              |          | Installation Angle: | 41.7°   |

| PASSIVE PRESSURE RESISTANCE |            |                     |  |                          |                        |                          |  |       |                   |                   |                  |
|-----------------------------|------------|---------------------|--|--------------------------|------------------------|--------------------------|--|-------|-------------------|-------------------|------------------|
| Layer                       | Depth (ft) | Depth of Block (ft) |  | $\sigma'_{vo,Top}$ (ksf) | $\gamma_{Layer}$ (pcf) | $\sigma'_{vo,Bot}$ (ksf) |  | $K_p$ | $P_{p,Top}$ (ksf) | $P_{p,Bot}$ (ksf) | Resistance (kip) |
| 4                           | 6.00       | 2.00                |  | 0.657                    | 113.00                 | 0.883                    |  | 3.85  | 2.529             | 3.399             | 68.17            |


| Layer | Block t in Layer (ft) | Skin Friction (ksf) | SF Sides (k) | SF Top (k) | SF Bottom (k) | Weights |         |
|-------|-----------------------|---------------------|--------------|------------|---------------|---------|---------|
|       |                       |                     |              |            |               | $W_s$   | $W_c$   |
| 4     | 2.00                  | 0.00                | 0.00         | 0.00       | 0.00          | 41.52 k | 56.69 k |

|                  |         |
|------------------|---------|
| Uplift SF:       | 0.00 k  |
| $U_{ALLOW}$ :    | 96.96 k |
| $U_{Eff}$ :      | 34.44 k |
| $F_{\perp}$ :    | 26.06 k |
| $\mu$ :          | 0.45    |
| Friction:        | 11.73 k |
| $\phi$ Friction: | 8.79 k  |

Total Skin Friction

|            |        |
|------------|--------|
| SF:        | 0.00 k |
| $\phi$ SF: | 0.00 k |

|               |        |
|---------------|--------|
| H:            | 38.7 k |
| $H_{ALLOW}$ : | 59.9 k |
| Capacity:     | 61.4%  |





Eastford CDT (702497)

|         |       |      |
|---------|-------|------|
| Uplift: | 33.3% | Pass |
| Shear:  | 59.9% | Pass |

TEP #: 25707.576390  
 Analysis: KFW 9/15/2021  
 Check: WHW 9/15/2021

Guy Anchor Analysis\_v1.5.10 - Uplift

|           |          |            |          |              |          |                     |         |
|-----------|----------|------------|----------|--------------|----------|---------------------|---------|
| Guy Path: | C        | Length:    | 11.50 ft | Block Depth: | 6.00 ft  | Uplift:             | 32.81 k |
| Radius:   | 150.0-ft | Width:     | 5.50 ft  | Groundwater: | 99.00 ft | Shear:              | 36.67 k |
| Boring:   | 3        | Thickness: | 2.00 ft  |              |          | Resultant:          | 49.21 k |
|           |          | Toe:       | 0.00 ft  |              |          | Installation Angle: | 41.8°   |

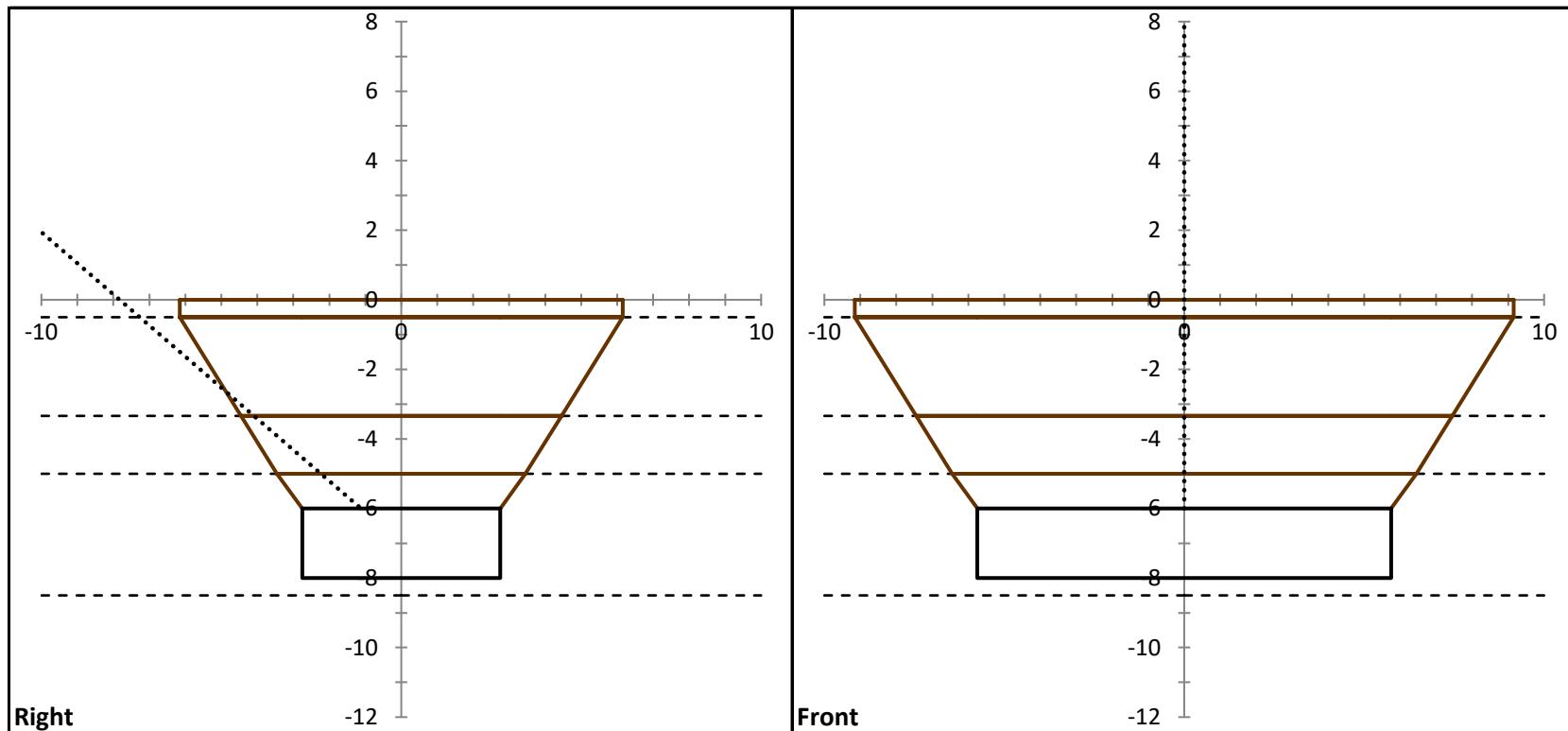
| SOIL WEIGHT |                      |                       |                       |                       |                       |                       |                         |                                  |                           |                              |                              |
|-------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|----------------------------------|---------------------------|------------------------------|------------------------------|
| Layer       | Layer Thickness (ft) | Block t in Layer (ft) | L <sub>BOT</sub> (ft) | W <sub>BOT</sub> (ft) | L <sub>TOP</sub> (ft) | W <sub>TOP</sub> (ft) | SF Around Perimeter (k) | Volume of Toe (ft <sup>3</sup> ) | Volume (ft <sup>3</sup> ) | W <sub>SOIL, ABOVE</sub> (k) | W <sub>SOIL, SIDES</sub> (k) |
| 4           | 1.000                | 0.000                 | 11.500                | 5.500                 | 12.900                | 6.900                 | 0.000                   | 0.000                            | 75.807                    | 7.147                        | 1.419                        |
| 3           | 1.667                | 0.000                 | 12.900                | 6.900                 | 14.904                | 8.904                 | 0.000                   | 0.000                            | 183.685                   | 11.914                       | 8.842                        |
| 2           | 2.833                | 0.000                 | 14.904                | 8.904                 | 18.308                | 12.308                | 0.000                   | 0.000                            | 501.687                   | 20.248                       | 36.443                       |
| 1           | 0.500                | 0.000                 | 18.308                | 12.308                | 18.308                | 12.308                | 0.000                   | 0.000                            | 112.670                   | 2.214                        | 5.673                        |

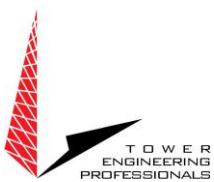
| Layer | Block t in Layer (ft) | Skin Friction (ksf) | SF Sides (k) | SF Front (k) | SF Back (k) |
|-------|-----------------------|---------------------|--------------|--------------|-------------|
| 4     | 2.00                  | 0.00                | 0.00         | 0.00         | 0.00        |

| Cohesive Soil SF | Total Soil Weight         |         |
|------------------|---------------------------|---------|
|                  | Above                     | Sides   |
| SF: 0.00 k       | W <sub>S</sub> : 41.52 k  | 52.38 k |
| φSF: 0.00 k      | φW <sub>S</sub> : 37.37 k | 39.28 k |

Total Concrete Weight

V<sub>↑GW</sub>: 126.50 ft<sup>3</sup>  
 V<sub>↓GW</sub>: 0.00 ft<sup>3</sup>  
 W<sub>C</sub>: 18.98 k  
 φW<sub>C</sub>: 17.08 k


Total Skin Friction


SF: 0.00 k  
 φSF: 0.00 k

Uplift: 32.81 k

U<sub>ALLOW</sub>: 93.73 k

Capacity: 33.3%





Eastford CDT (702497)

TEP #: 25707.576390

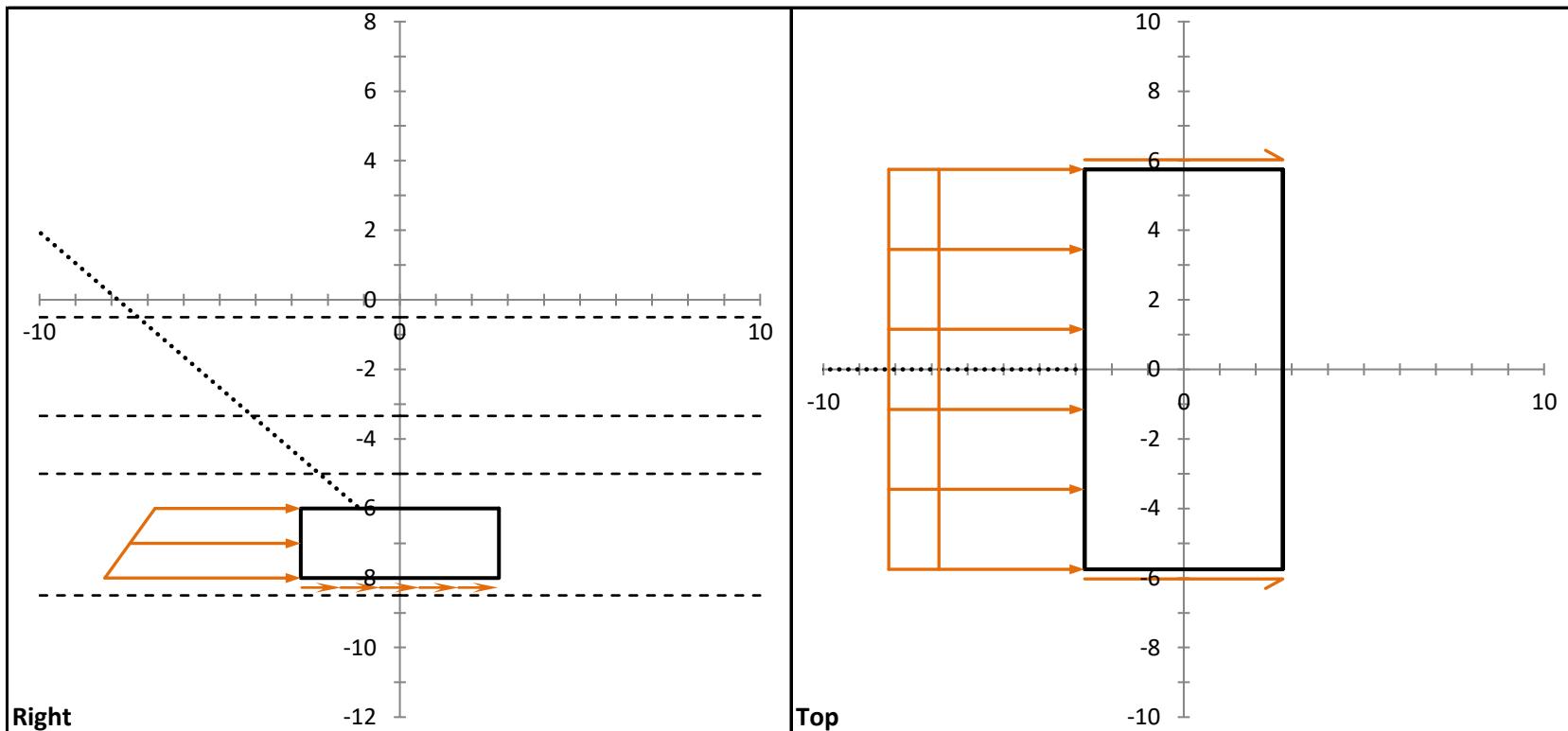
Analysis: KFW 9/15/2021

Check: WHW 9/15/2021

Guy Anchor Analysis\_v1.5.10 - Shear

|           |          |            |          |              |          |                     |         |
|-----------|----------|------------|----------|--------------|----------|---------------------|---------|
| Guy Path: | C        | Length:    | 11.50 ft | Block Depth: | 6.00 ft  | Uplift:             | 32.81 k |
| Radius:   | 150.0-ft | Width:     | 5.50 ft  | Groundwater: | 99.00 ft | Shear:              | 36.67 k |
| Boring:   | 3        | Thickness: | 2.00 ft  |              |          | Resultant:          | 49.21 k |
|           |          |            |          |              |          | Installation Angle: | 41.8°   |

| PASSIVE PRESSURE RESISTANCE |            |                     |  |                          |                        |                          |  |       |                   |                   |                  |
|-----------------------------|------------|---------------------|--|--------------------------|------------------------|--------------------------|--|-------|-------------------|-------------------|------------------|
| Layer                       | Depth (ft) | Depth of Block (ft) |  | $\sigma'_{vo,Top}$ (ksf) | $\gamma_{Layer}$ (pcf) | $\sigma'_{vo,Bot}$ (ksf) |  | $K_p$ | $P_{p,Top}$ (ksf) | $P_{p,Bot}$ (ksf) | Resistance (kip) |
| 4                           | 6.00       | 2.00                |  | 0.657                    | 113.00                 | 0.883                    |  | 3.69  | 2.423             | 3.257             | 65.31            |


| Layer | Block t in Layer (ft) | Skin Friction (ksf) | SF Sides (k) | SF Top (k) | SF Bottom (k) | Weights |         |
|-------|-----------------------|---------------------|--------------|------------|---------------|---------|---------|
|       |                       |                     |              |            |               | $W_s$   | $W_c$   |
| 4     | 2.00                  | 0.00                | 0.00         | 0.00       | 0.00          | 41.52 k | 52.38 k |

|                  |         |
|------------------|---------|
| Uplift SF:       | 0.00 k  |
| $U_{ALLOW}$ :    | 93.73 k |
| $U_{Eff}$ :      | 32.81 k |
| $F_{\perp}$ :    | 27.69 k |
| $\mu$ :          | 0.45    |
| Friction:        | 12.46 k |
| $\phi$ Friction: | 9.35 k  |

Total Skin Friction

|            |        |
|------------|--------|
| SF:        | 0.00 k |
| $\phi$ SF: | 0.00 k |

|               |        |
|---------------|--------|
| H:            | 36.7 k |
| $H_{ALLOW}$ : | 58.3 k |
| Capacity:     | 59.9%  |



## Pier and Pad Foundation

|            |              |
|------------|--------------|
| Site #:    | 702497       |
| Site Name: | Eastford CDT |
| TEP #:     | 25707.57639  |

|                   |       |
|-------------------|-------|
| TIA-222 Revision: | H     |
| Tower Type:       | Guyed |

|                                  |                                     |
|----------------------------------|-------------------------------------|
| Top & Bot. Pad Rein. Different?: | <input checked="" type="checkbox"/> |
| Block Foundation?:               | <input type="checkbox"/>            |
| Rectangular Pad?:                | <input type="checkbox"/>            |

| Superstructure Analysis Reactions         |         |         |
|-------------------------------------------|---------|---------|
| Compression, $P_{comp}$ :                 | 123.476 | kips    |
| Base Shear, $V_u$ comp:                   | 1.503   | kips    |
|                                           |         |         |
| Moment, $M_u$ :                           | 0       | ft-kips |
| Tower Height, $H$ :                       | 190     | ft      |
|                                           |         |         |
| BP Dist. Above Fdn, $bp_{dist}$ :         | 0       | in      |
| Bolt Circle / Bearing Plate Width, $BC$ : | 42      | in      |

| Pier Properties                  |        |    |
|----------------------------------|--------|----|
| Pier Shape:                      | Square |    |
| Pier Diameter, $d_{pier}$ :      | 2      | ft |
| Ext. Above Grade, $E$ :          | 1      | ft |
| Pier Rebar Size, $Sc$ :          | 5      |    |
| Pier Rebar Quantity, $mc$ :      | 8      |    |
| Pier Tie/Spiral Size, $St$ :     | 4      |    |
| Pier Tie/Spiral Quantity, $mt$ : | 5      |    |
| Pier Reinforcement Type:         | Tie    |    |
| Pier Clear Cover, $cc_{pier}$ :  | 3      | in |

| Pad Properties                                 |     |    |
|------------------------------------------------|-----|----|
| Depth, $D$ :                                   | 4.5 | ft |
| Pad Width, $W_1$ :                             | 5.5 | ft |
| Pad Thickness, $T$ :                           | 1.5 | ft |
| Pad Rebar Size (Top dir. 2), $Sp_{top2}$ :     | 5   |    |
| Pad Rebar Quantity (Top dir. 2), $mp_{top2}$ : | 0   |    |
| Pad Rebar Size (Bottom dir. 2), $Sp_2$ :       | 5   |    |
| Pad Rebar Quantity (Bottom dir. 2), $mp_2$ :   | 5   |    |
| Pad Clear Cover, $cc_{pad}$ :                  | 3   | in |

| Material Properties                     |     |     |
|-----------------------------------------|-----|-----|
| Rebar Grade, $F_y$ :                    | 60  | ksi |
| Concrete Compressive Strength, $F'_c$ : | 3   | ksi |
| Dry Concrete Density, $\delta_c$ :      | 150 | pcf |

| Soil Properties                     |        |         |
|-------------------------------------|--------|---------|
| Total Soil Unit Weight, $\gamma$ :  | 113    | pcf     |
| Ultimate Gross Bearing, $Q_{ult}$ : | 32.375 | ksf     |
| Cohesion, $C_u$ :                   |        | ksf     |
| Friction Angle, $\varphi$ :         | 38     | degrees |
| SPT Blow Count, $N_{blows}$ :       |        |         |
| Base Friction, $\mu$ :              | 0.47   |         |
| Neglected Depth, $N$ :              | 3.33   | ft      |
| Foundation Bearing on Rock?:        | No     |         |
| Groundwater Depth, $gw$ :           | N/A    | ft      |

--Toggle between Gross and Net



## Anchor Shaft Analysis

**Eastford (CDT)**

**TEP #:** 25707.576390

**Analysis:** WHW 9/10/2021

**Check:** WHW 9/10/2021

**Code Revisions:** ANSI/TIA-222-H

**Number of Anchor Rings:** 1

| Radius (ft) | Reaction (k) | Shaft Area (in <sup>2</sup> ) | F <sub>y</sub> (ksi) | φT <sub>n</sub> (k) | Capacity (%) | Pass/Fail |
|-------------|--------------|-------------------------------|----------------------|---------------------|--------------|-----------|
| 150.0       | 51.08        | 2.41                          | 48.00                | 92.36               | 52.7%        | Pass      |
|             |              |                               |                      |                     |              |           |
|             |              |                               |                      |                     |              |           |
|             |              |                               |                      |                     |              |           |
|             |              |                               |                      |                     |              |           |
|             |              |                               |                      |                     |              |           |

|                                        |                                                |
|----------------------------------------|------------------------------------------------|
| <b>RAN Template:</b><br>67E5A998E 6160 | <b>A&amp;L Template:</b><br>67E5998E_1xAIR+1OP |
|----------------------------------------|------------------------------------------------|

## Section 1 - Site Information

**Site ID:** CTHA724A  
**Status:** Draft  
**Version:** 1  
**Project Type:** Sprint Retain  
**Approved:** Not Approved  
**Approved By:** Not Approved  
**Last Modified:** 7/9/2021 3:32:53 PM  
**Last Modified By:** Scott.Clemons@T-Mobile.com

**Site Name:** CTHA724A  
**Site Class:** Guyed Tower  
**Site Type:** Structure Non Building  
**Plan Year:** 2021  
**Market:** CONNECTICUT CT  
**Vendor:** Ericsson  
**Landlord:** Not Specified

**Latitude:** 41.87131600  
**Longitude:** -72.06488900  
**Address:** 35 Old Route 44  
**City, State:** Eastford, CT  
**Region:** NORTHEAST

**RAN Template:** 67E5A998E 6160

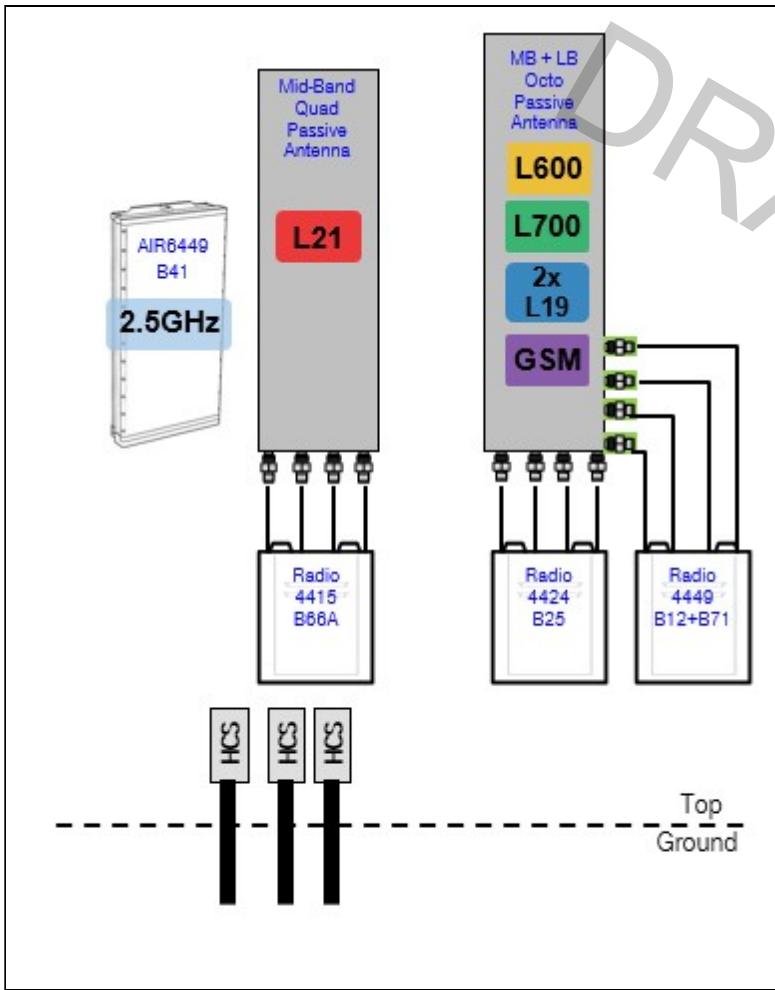
**AL Template:** 67E5998E\_1xAIR+1OP

**Sector Count:** 3

**Antenna Count:** 6

**Coax Line Count:** 0

**TMA Count:** 0


**RRU Count:** 6

## Section 2 - Existing Template Images

----- This section is intentionally blank. -----

## Section 3 - Proposed Template Images

67D5A998C\_1xAIR+1xQP+1xOP.jpg



Notes:

## Section 4 - Siteplan Images

----- This section is intentionally blank. -----

DRAFT

|                                 |                                     |
|---------------------------------|-------------------------------------|
| RAN Template:<br>67E5A998E 6160 | A&L Template:<br>67E5998E_1xAIR+1OP |
|---------------------------------|-------------------------------------|

## Section 5 - RAN Equipment

### Existing RAN Equipment

----- This section is intentionally blank. -----

### Proposed RAN Equipment

Template: 67E5A998E 6160

| Enclosure            | 1                                                         | 2                         | 3                         | 4                               |
|----------------------|-----------------------------------------------------------|---------------------------|---------------------------|---------------------------------|
| Enclosure Type       | Ancillary Equipment (Ericsson)                            | Enclosure 6160            | B160                      | RBS 6601                        |
| Baseband             |                                                           | BB 6648<br>L2500<br>N2500 | BB 6648<br>L1900<br>L2100 | BB 6648<br>L700<br>L600<br>N600 |
| Hybrid Cable System  | PSU 4813                                                  |                           |                           |                                 |
| Transport System     |                                                           | CSR IXRe V2 (Gen2)        |                           |                                 |
| Functionality Groups | Ericsson Hybrid Trunk 6/24 4AWG<br>*Select Length* (x 3 ) |                           |                           |                                 |

#### RAN Scope of Work:

CT33XC016  
 Existing & planned azimuth: 120/270/340  
 Existing 200A service  
 Add generator.

|                                 |                                     |
|---------------------------------|-------------------------------------|
| RAN Template:<br>67E5A998E 6160 | A&L Template:<br>67E5998E_1xAIR+1OP |
|---------------------------------|-------------------------------------|

## Section 6 - A&L Equipment

Existing Template: Custom  
 Proposed Template: 67E5998E\_1xAIR+1OP

| Sector 1 (Proposed) view from behind |                                       |                                                 |                                       |                                                 |                                                        |                |
|--------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------|
| Coverage Type                        | A - Outdoor Macro                     |                                                 |                                       |                                                 |                                                        |                |
| Antenna                              | 1                                     |                                                 |                                       | 2                                               |                                                        |                |
| Antenna Model                        | RFS - APXVAALL24_43-U-NA20 (Octo)     |                                                 |                                       |                                                 | Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO) |                |
| Azimuth                              | 120                                   |                                                 |                                       |                                                 | 120                                                    |                |
| M. Tilt                              | 0                                     |                                                 |                                       |                                                 | 0                                                      |                |
| Height                               | 165                                   |                                                 |                                       |                                                 | 165                                                    |                |
| Ports                                | P1                                    | P2                                              | P3                                    | P4                                              | P5                                                     | P6             |
| Active Tech.                         | L700<br>N600                          | L700<br>N600                                    | L2100<br>G1900                        | L2100<br>G1900                                  | L2500<br>N2500                                         | L2500<br>N2500 |
| Dark Tech.                           |                                       |                                                 |                                       |                                                 |                                                        |                |
| Restricted Tech.                     |                                       |                                                 |                                       |                                                 |                                                        |                |
| Decomm. Tech.                        |                                       |                                                 |                                       |                                                 |                                                        |                |
| E. Tilt                              | (2)                                   | (2)                                             | (2)                                   | (2)                                             | (2)                                                    | (2)            |
| Cables                               | Coax Jumper<br>(x2)                   | Coax Jumper<br>(x2)                             | Coax Jumper<br>(x2)                   | Coax Jumper<br>(x2)                             |                                                        |                |
| TMAs                                 |                                       |                                                 |                                       |                                                 |                                                        |                |
| Diplexers / Combiners                |                                       |                                                 |                                       |                                                 |                                                        |                |
| Radio                                | Radio 4480<br>B71+B85 (At<br>Antenna) | SHARED<br>Radio 4480<br>B71+B85 (At<br>Antenna) | Radio 4460<br>B25+B66 (At<br>Antenna) | SHARED<br>Radio 4460<br>B25+B66 (At<br>Antenna) |                                                        |                |
| Sector Equipment                     |                                       |                                                 |                                       |                                                 |                                                        |                |

Unconnected Equipment:

Scope of Work:

\*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

|                                 |                                     |
|---------------------------------|-------------------------------------|
| RAN Template:<br>67E5A998E 6160 | A&L Template:<br>67E5998E_1xAIR+1OP |
|---------------------------------|-------------------------------------|

| Sector 2 (Proposed) view from behind |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
|--------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------|----------------|----------------|--|--|--|--|--|--|--|--|
| Coverage Type                        | A - Outdoor Macro                     |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Antenna                              | 1                                     |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Antenna Model                        | RFS - APXVAALL24_43-U-NA20 (Octo)     |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Azimuth                              | 270                                   |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| M. Tilt                              | 0                                     |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Height                               | 165                                   |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Ports                                | P1                                    | P2                                              | P3                                    | P4                                              | P5             | P6             |  |  |  |  |  |  |  |  |
| Active Tech.                         | L700<br>N600                          | L700<br>N600                                    | L2100<br>G1900                        | L2100<br>G1900                                  | L2500<br>N2500 | L2500<br>N2500 |  |  |  |  |  |  |  |  |
| Dark Tech.                           |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Restricted Tech.                     |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Decomm. Tech.                        |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| E. Tilt                              | (2)                                   | (2)                                             | (2)                                   | (2)                                             | (2)            | (2)            |  |  |  |  |  |  |  |  |
| Cables                               | Coax Jumper<br>(x2)                   | Coax Jumper<br>(x2)                             | Coax Jumper<br>(x2)                   | Coax Jumper<br>(x2)                             |                |                |  |  |  |  |  |  |  |  |
| TMAs                                 |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Diplexers / Combiners                |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Radio                                | Radio 4480<br>B71+B85 (At<br>Antenna) | SHARED<br>Radio 4480<br>B71+B85 (At<br>Antenna) | Radio 4460<br>B25+B66 (At<br>Antenna) | SHARED<br>Radio 4460<br>B25+B66 (At<br>Antenna) |                |                |  |  |  |  |  |  |  |  |
| Sector Equipment                     |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Unconnected Equipment:               |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
| Scope of Work:                       |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |
|                                      |                                       |                                                 |                                       |                                                 |                |                |  |  |  |  |  |  |  |  |

\*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

|                                 |                                     |
|---------------------------------|-------------------------------------|
| RAN Template:<br>67E5A998E 6160 | A&L Template:<br>67E5998E_1xAIR+1OP |
|---------------------------------|-------------------------------------|

| Sector 3 (Proposed) view from behind |                                       |                                                 |                                       |                                                        |                |                |
|--------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------|--------------------------------------------------------|----------------|----------------|
| Coverage Type                        | A - Outdoor Macro                     |                                                 |                                       |                                                        |                |                |
| Antenna                              | 1                                     |                                                 |                                       | 2                                                      |                |                |
| Antenna Model                        | RFS - APXVAALL24_43-U-NA20 (Octo)     |                                                 |                                       | Ericsson - AIR6449 B41 (Active Antenna - Massive MIMO) |                |                |
| Azimuth                              | 340                                   |                                                 |                                       | 340                                                    |                |                |
| M. Tilt                              | 0                                     |                                                 |                                       | 0                                                      |                |                |
| Height                               | 165                                   |                                                 |                                       | 165                                                    |                |                |
| Ports                                | P1                                    | P2                                              | P3                                    | P4                                                     | P5             | P6             |
| Active Tech.                         | L700<br>N600                          | L700<br>N600                                    | L2100<br>G1900                        | L2100<br>G1900                                         | L2500<br>N2500 | L2500<br>N2500 |
| Dark Tech.                           |                                       |                                                 |                                       |                                                        |                |                |
| Restricted Tech.                     |                                       |                                                 |                                       |                                                        |                |                |
| Decomm. Tech.                        |                                       |                                                 |                                       |                                                        |                |                |
| E. Tilt                              | (2)                                   | (2)                                             | (2)                                   | (2)                                                    | (2)            | (2)            |
| Cables                               | Coax Jumper<br>(x2)                   | Coax Jumper<br>(x2)                             | Coax Jumper<br>(x2)                   | Coax Jumper<br>(x2)                                    |                |                |
| TMAs                                 |                                       |                                                 |                                       |                                                        |                |                |
| Diplexers / Combiners                |                                       |                                                 |                                       |                                                        |                |                |
| Radio                                | Radio 4480<br>B71+B85 (At<br>Antenna) | SHARED<br>Radio 4480<br>B71+B85 (At<br>Antenna) | Radio 4460<br>B25+B66 (At<br>Antenna) | SHARED<br>Radio 4460<br>B25+B66 (At<br>Antenna)        |                |                |
| Sector Equipment                     |                                       |                                                 |                                       |                                                        |                |                |
| Unconnected Equipment:               |                                       |                                                 |                                       |                                                        |                |                |
| Scope of Work:                       |                                       |                                                 |                                       |                                                        |                |                |
|                                      |                                       |                                                 |                                       |                                                        |                |                |

\*A dashed border indicates shared equipment. Any connected equipment is denoted with the SHARED keyword.

|                                        |                                                |
|----------------------------------------|------------------------------------------------|
| <b>RAN Template:</b><br>67E5A998E 6160 | <b>A&amp;L Template:</b><br>67E5998E_1xAIR+1OP |
|----------------------------------------|------------------------------------------------|

## Section 7 - Power Systems Equipment

### Existing Power Systems Equipment

----- This section is intentionally blank. -----

### Proposed Power Systems Equipment

|                |                |
|----------------|----------------|
| Enclosure      | 1              |
| Enclosure Type | Enclosure 6160 |



# EBI Consulting

environmental | engineering | due diligence

## RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA724A

35 Old Route 44  
Eastford, Connecticut 06242

**October 18, 2021**

**EBI Project Number: 6221006194**

| <b>Site Compliance Summary</b>                                      |                  |
|---------------------------------------------------------------------|------------------|
| Compliance Status:                                                  | <b>COMPLIANT</b> |
| Site total MPE% of<br>FCC general<br>population<br>allowable limit: | <b>11.59%</b>    |



October 18, 2021

T-Mobile  
Attn: Jason Overbey, RF Manager  
35 Griffin Road South  
Bloomfield, Connecticut 06002

## Emissions Analysis for Site: CTHA724A

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **35 Old Route 44 in Eastford, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu\text{W}/\text{cm}^2$ ). The number of  $\mu\text{W}/\text{cm}^2$  calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu\text{W}/\text{cm}^2$ ). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400  $\mu\text{W}/\text{cm}^2$  and 467  $\mu\text{W}/\text{cm}^2$ , respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000  $\mu\text{W}/\text{cm}^2$ . Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

## CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 35 Old Route 44 in Eastford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. For power density calculations, the broadcast footprint of the AIR6449 antenna has been considered. Due to the beamforming nature of this antenna, the actual beam locations vary depending on demand and are narrow in nature. Using the broadcast footprint accounts for the potential location of beams at any given time.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 1 NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.



- 6) 2 LTE channels (AWS Band – 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 7) 1 LTE Traffic channel (LTE 1C and 2C BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 60 Watts.
- 8) 1 LTE Broadcast channel (LTE 1C and 2C BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 20 Watts.
- 9) 1 NR Traffic channel (BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 120 Watts.
- 10) 1 NR Broadcast channel (BRS Band - 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 40 Watts.
- 11) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 12) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 13) The antennas used in this modeling are the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector A, the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector B, the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied



specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 14) The antenna mounting height centerline of the proposed antennas is 165 feet above ground level (AGL).
- 15) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 16) All calculations were done with respect to uncontrolled / general population threshold limits.



## T-Mobile Site Inventory and Power Data

| Sector:             | A                                                            | Sector:             | B                                                            | Sector:             | C                                                            |
|---------------------|--------------------------------------------------------------|---------------------|--------------------------------------------------------------|---------------------|--------------------------------------------------------------|
| Antenna #:          | <b>I</b>                                                     | Antenna #:          | <b>I</b>                                                     | Antenna #:          | <b>I</b>                                                     |
| Make / Model:       | RFS<br>APXVAALL24_43-U-NA20                                  | Make / Model:       | RFS<br>APXVAALL24_43-U-NA20                                  | Make / Model:       | RFS<br>APXVAALL24_43-U-NA20                                  |
| Frequency Bands:    | 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz | Frequency Bands:    | 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz | Frequency Bands:    | 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 1900 MHz / 2100 MHz |
| Gain:               | 12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd    | Gain:               | 12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 15.45 dBd    | Gain:               | 12.95 dBd / 12.95 dBd / 13.65 dBd / 15.45 dBd / 16.45 dBd    |
| Height (AGL):       | 165 feet                                                     | Height (AGL):       | 165 feet                                                     | Height (AGL):       | 165 feet                                                     |
| Channel Count:      | 13                                                           | Channel Count:      | 13                                                           | Channel Count:      | 13                                                           |
| Total TX Power (W): | 560 Watts                                                    | Total TX Power (W): | 560 Watts                                                    | Total TX Power (W): | 560 Watts                                                    |
| ERP (W):            | 17,868.72                                                    | ERP (W):            | 17,868.72                                                    | ERP (W):            | 17,868.72                                                    |
| Antenna A1 MPE %:   | <b>3.36%</b>                                                 | Antenna B1 MPE %:   | <b>3.36%</b>                                                 | Antenna C1 MPE %:   | <b>3.36%</b>                                                 |
| Antenna #:          | <b>2</b>                                                     | Antenna #:          | <b>2</b>                                                     | Antenna #:          | <b>2</b>                                                     |
| Make / Model:       | Ericsson AIR 6449                                            | Make / Model:       | Ericsson AIR 6449                                            | Make / Model:       | Ericsson AIR 6449                                            |
| Frequency Bands:    | 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz                    | Frequency Bands:    | 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz                    | Frequency Bands:    | 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz                    |
| Gain:               | 22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd                  | Gain:               | 22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd                  | Gain:               | 22.65 dBd / 17.3 dBd / 22.65 dBd / 17.3 dBd                  |
| Height (AGL):       | 165 feet                                                     | Height (AGL):       | 165 feet                                                     | Height (AGL):       | 165 feet                                                     |
| Channel Count:      | 4                                                            | Channel Count:      | 4                                                            | Channel Count:      | 4                                                            |
| Total TX Power (W): | 240 Watts                                                    | Total TX Power (W): | 240 Watts                                                    | Total TX Power (W): | 240 Watts                                                    |
| ERP (W):            | 36,356.09                                                    | ERP (W):            | 36,356.09                                                    | ERP (W):            | 36,356.09                                                    |
| Antenna A2 MPE %:   | <b>5.17%</b>                                                 | Antenna B2 MPE %:   | <b>5.17%</b>                                                 | Antenna C2 MPE %:   | <b>5.17%</b>                                                 |



| Site Composite MPE %        |               |
|-----------------------------|---------------|
| Carrier                     | MPE %         |
| T-Mobile (Max at Sector A): | 8.53%         |
| Verizon                     | 1.35%         |
| AT&T                        | 1.71%         |
| <b>Site Total MPE % :</b>   | <b>11.59%</b> |

| T-Mobile MPE % Per Sector |        |
|---------------------------|--------|
| T-Mobile Sector A Total:  | 8.53%  |
| T-Mobile Sector B Total:  | 8.53%  |
| T-Mobile Sector C Total:  | 8.53%  |
| Site Total MPE % :        | 11.59% |

| T-Mobile Maximum MPE Power Values (Sector A)    |            |                         |               |                                                   |                                |                                             |                  |
|-------------------------------------------------|------------|-------------------------|---------------|---------------------------------------------------|--------------------------------|---------------------------------------------|------------------|
| T-Mobile Frequency Band / Technology (Sector A) | # Channels | Watts ERP (Per Channel) | Height (feet) | Total Power Density ( $\mu\text{W}/\text{cm}^2$ ) | Frequency (MHz)                | Allowable MPE ( $\mu\text{W}/\text{cm}^2$ ) | Calculated % MPE |
| T-Mobile 600 MHz LTE                            | 2          | 591.73                  | 165.0         | 1.68                                              | 600 MHz LTE                    | 400                                         | 0.42%            |
| T-Mobile 600 MHz NR                             | 1          | 1577.94                 | 165.0         | 2.24                                              | 600 MHz NR                     | 400                                         | 0.56%            |
| T-Mobile 700 MHz LTE                            | 2          | 695.22                  | 165.0         | 1.98                                              | 700 MHz LTE                    | 467                                         | 0.42%            |
| T-Mobile 1900 MHz GSM                           | 4          | 1052.26                 | 165.0         | 5.99                                              | 1900 MHz GSM                   | 1000                                        | 0.60%            |
| T-Mobile 1900 MHz LTE                           | 2          | 2104.51                 | 165.0         | 5.99                                              | 1900 MHz LTE                   | 1000                                        | 0.60%            |
| T-Mobile 2100 MHz LTE                           | 2          | 2649.42                 | 165.0         | 7.54                                              | 2100 MHz LTE                   | 1000                                        | 0.75%            |
| T-Mobile 2500 MHz LTE IC & 2C Traffic           | 1          | 11044.63                | 165.0         | 15.71                                             | 2500 MHz LTE IC & 2C Traffic   | 1000                                        | 1.57%            |
| T-Mobile 2500 MHz LTE IC & 2C Broadcast         | 1          | 1074.06                 | 165.0         | 1.53                                              | 2500 MHz LTE IC & 2C Broadcast | 1000                                        | 0.15%            |
| T-Mobile 2500 MHz NR Traffic                    | 1          | 22089.26                | 165.0         | 31.41                                             | 2500 MHz NR Traffic            | 1000                                        | 3.14%            |
| T-Mobile 2500 MHz NR Broadcast                  | 1          | 2148.13                 | 165.0         | 3.05                                              | 2500 MHz NR Broadcast          | 1000                                        | 0.31%            |
|                                                 |            |                         |               |                                                   |                                | <b>Total:</b>                               | <b>8.53%</b>     |

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.



## Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| T-Mobile Sector                    | Power Density Value (%) |
|------------------------------------|-------------------------|
| Sector A:                          | 8.53%                   |
| Sector B:                          | 8.53%                   |
| Sector C:                          | 8.53%                   |
| T-Mobile Maximum MPE % (Sector A): | 8.53%                   |
| Site Total:                        | 11.59%                  |
| Site Compliance Status:            | <b>COMPLIANT</b>        |

The anticipated composite MPE value for this site assuming all carriers present is **11.59%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.