Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 16, 2021

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 50 Plantation Road, East Windsor, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a water tower and related equipment on the ground, near the base of the water tower. The existing 132.5-foot tower was constructed in 1947 and, according to information presented in TS-CING-047-060405, was first used for telecommunications purposes by Sprint in 1996. On April 12, 2006, the Council, exercising jurisdiction over the existing tower, approved the tower share application filed by New Cingular Wireless PCS, LLC ("Cingular") (TS-CING-047-060405). A copy of the Council's approval of the Cingular tower share application is included in <u>Attachment 1</u>. AT&T; Sprint; T-Mobile, Metro PCS and Clearwire currently maintain antennas at various heights on the water tower and maintain radio equipment inside a fenced facility compound near the base of the tower. Cellco's shared use of the tower was approved by the Council in <u>Attachment 1</u>. Copies of the above-referenced approvals are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by replacing nine (9) existing antennas with three (3) Samsung MT6407-77A antennas; three (3) NHHSS-65B-R2B antennas; and three (3) NHH-65B-R2B antennas and installing three (3) remote radio heads ("RRHs") all at the same heights on the water tower. A set of project plans showing Cellco's proposed facility modifications and specifications for Cellco's new antennas and RRHs are included in

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. August 16, 2021 Page 2

<u>Attachment 2</u>. Please note that Cellco refers to its facility as its South Windsor North CT facility.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to East Windsor's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on its existing antenna mounting structure.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative general power density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing water tower, its foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

Melanie A. Bachman, Esq. August 16, 2021 Page 3

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Kunie MM

Kenneth C. Baldwin

Enclosures Copy to:

> Jason E. Bowsza, First Selectman Mike D'Amato, Acting Town Planner Plantation Properties, LLC, Property Owner Alex Tyurin

ATTACHMENT 1

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

Steven L. Levine Real Estate Consultant New Cingular Wireless PCS, LLC 500 Enterprise Drive Rocky Hill, CT 06067-3900

RE: **TS-CING-047-060405** - New Cingular Wireless PCS, LLC request for an order to approve tower sharing at an existing telecommunications facility located at 50 Plantation Road, East Windsor, Connecticut.

Dear Mr. Levine:

At a public meeting held April 12, 2006, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction. Please be advised that the validity of this action shall expire one year from the date of this letter.

The proposed shared use is to be implemented as specified in your letter dated April 4, 2006, including the placement of all necessary equipment and shelters within the tower compound.

Thank you for your attention and cooperation.

Very truly yours, Pamela B. Katz, P.E

Chairman

PBK/laf

c: The Honorable Linda L. Roberts, First Selectman, Town of East Windsor Laurie Whitten, Town Planner, Town of East Windsor Thomas J Regan, Esq., Brown Rudnick Berlack Israels LLP Christopher B. Fisher, Esq., Cuddy & Feder LLP

STATE OF CONNECTICUT *CONNECTICUT SITING COUNCIL* Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: <u>siting.council@ct.gov</u> Web Site: portal.ct.gov/csc

September 25, 2020

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **TS-VER-047-200827** - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 50 Plantation Road, East Windsor, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on September 24, 2020, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

- 1. Approval of any changes be delegated to Council staff;
- 2. Prior to Verizon's antenna installation, the tower modifications shall be installed in accordance with the Structural Analysis prepared by All Points Technology Corporation, dated July 9, 2020 and signed and stamped by Michael S. Trodden;
- 3. Within 45 days following completion of equipment installation, Verizon shall provide documentation certified by a Professional Engineer that its installation complied with the recommendations of the Structural Analysis;
- 4. Any deviation from the proposed installation as specified in the original tower share request and supporting materials with the Council shall render this decision invalid;
- 5. Any material changes to the proposed installation as specified in the original tower share request and supporting materials filed with the Council shall require an explicit request for modification to the Council pursuant to Connecticut General Statutes § 16-50aa, including all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65;
- 6. Not less than 45 days after completion of the proposed installation, the Council shall be notified in writing that the installation has been completed;
- 7. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by Verizon shall be removed within 60 days of the date the antenna ceased to function;
- 8. The validity of this action shall expire one year from the date of this letter; and

9. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and applies only to this request for tower sharing dated August 27, 2020. This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. Any deviation from the approved tower sharing request is enforceable under the provisions of Connecticut General Statutes § 16-50u.

The proposed shared use is to be implemented as specified in your letter dated August 27, 2020, including the placement of all necessary equipment and shelters within the tower compound.

Please be advised that the validity of this action shall expire one year from the date of this letter.

Thank you for your attention and cooperation.

Sincerely,

s/Melanie A. Bachman

Melanie Bachman Executive Director

MAB/IN/emr

c: The Honorable Jason E. Bowsza, First Selectman, Town of East Windsor (jbowsza@eastwindsorct.com)

ATTACHMENT 2

DRAWING INDEX

- T-1 TITLE SHEET
- C-1 COMPOUND PLAN, TANK ELEVATION, EQUIPMENT CONFIGURATION PLANS & ELEVATION.
- **RF BILL OF MATERIALS, MECHANICAL SPECIFICATIONS &** B-1 EQUIPMENT DETAILS.
- N-1 NOTES & SPECIFICATIONS

- 8

DESIGN BASIS GOVERNING CODESIDESIGN STANDARDS:	ENGINEER ALL CONTRACTORS SHALL SUBMITISHOP DRAWINGS OF ALL ECUIPMENT	CONDUCTOR IF DISITIVA ELECTRIC SERVICE IS TO REMAIN, CONTRACTOR SHALL BE	PADALS (TYP: NEW DEDICATED COMMUNICATION SITES) INHERE FEASIBLE WITH ENDIDER OWNER AVAILABLE, INS 741, A MINING MARKEN MARKING IN DEDICOLOGIA		Cellco Partnership d/b/a
2018 INTERNATIONAL BUILDING CODE (BC) AS AMENDED BY THE 2018 CONNECTICUT STATE BUILDING CODE/ASCE 7:0	Incaretti Automittati on ancie aparte interio prevenza o chi a costratti i all'accontracto in terminate nell'accontratti anti ano interiori accontracto interiore accontratti anti anti- regione accontracto interiore accontratti interiore schi interiore accontracto interiore accontratti interiore schi accontratti accontracto interiore accontratti interiore schi interiore accontracto interiore accontratti interiore schi accontratti accontracto interiore accontratti interiore schi accontratti accontracto interiore accontratti interiore accontratti accontracto interiore accontratti accontracto interiore accontratti accontracto interiore accontratti accontracto accontratti accontracto accontratti accontracto accontratti accontracto accontratti accontracto accontratti accontracto accontratti accontra	CONDUCTOR I DOSTING LEICTING SERVICE IS TO REMAIN, CONTRACTOR SIMUL EE VERRY THAT IT NEETS FROLEOT REQUIREMENTS WITHOUT MORE CONTRACTOR SHULL ORDER FROM COORDINU'S WITH AND CANA JARRYONIA REMATING THE REMAIN THE REFORM COORDINU'S WITH AND CANA JARRYONIA REMATING THE REMAIN THE REFORMANCE COURTING SHALL BE AS RECORD AND AS APPROVED BY THE LOCAL ITTI ITY WHERE SHALL BE AS RECORD AND AS APPROVED BY THE LOCAL	 EACH RACKLIS LENGTH SHALL BE MIN 20 FT, MAX 50 FT EXTEND RACKLIS PERFENDICUL AR FROM RINGS IN AS STRAIGHT UNE AS PORSHE F, AWAY FROM OTHER RING OFDLADS, BADIALS, DNI JUD RAN HO 		verizon
26500 CHITEHIA 19K CATEGORY (TOWER) (10C 2018 TABLE 1804 8) 19K CATEGORY (MOUNTS) (TIA-222-H TABLE 2-1)	ACL MANUALA MAD LODING IN ALL STED COLUMN, MINOR ALL MAD SHALL SE INSTALLED IN ACCORDANCE WITH MANUFACTURERS SECONMENDATIONS OF RECENTIONS. ALL TEMS OF EXAMINING OF MATERIAL THAT ARE OF ONE REVIEW OVER SHALL BE OFF	ALL EQUIPMENT, ENCLOSUFIES, ETC. SHALL BE SUITABLEFOR THE INSTALLED ENMFORMENT, MINIMUM NEMA 3R FOR ALL EXTERIOR	DURUS INVESTIGATES IN DRACE 4 FADALS FROM THE TOWER RMT TO THE 4 CORNERS OF THE AVAILABLE AREA ALL AMMANNE, RODALL CONTOURS OF THE CORNER POSTS AND GATE FORTS TO THE LYSS. FREETRALLY, NETALL A GROUND RING THATFOLLOWING THE FRENCE UNDER STORE COPINER CONTOURS THATFOLLOWING THE FRENCE UNDER STORE COPINER		
ND LOADS	WAUKPOTLICET THROUGHOUT ALL MATERIALS, EQUIPMENT, TOCUS, AND ITEMS UNDER THE TOTIMACTIVE REPERTANCE ITY ON THE UDENTER HALL LEE ADDICATELY RECURPED MARTIANED AND PROTECTED SO AS NOT TO SECONE DAMAGED OR OFFEN AVY HAZARD TO TERBOOKEL OFF	INSTALLATIONS WHING DRACED SHALL BE SPECIFICATION GRADE AND WRING DEVICE COVER PLATES SHALL BE PLASTIC WITH ENGRAVING AS SPECIFIED COLDS BHALL BE PLOTY, ALL DEVICES AND COVER PLATES SHALL BE OF THE SAME MANUFACTURES	THE FING		20 ALEXANDER DRIVE WALLINGFORD. CT 70482
ILTIMATE BASIC IMPTSPRET, U _{AT} 128 MPH (2018 CSBC APPENDIX N) ILSECOND GUST)	THE CONTRACTORS HOURS OF WORK SHALL BE IN ADDORIDANCE WITH	(*) I HE NAME MARKING WITH HER SPACED USER A SUTTABLE AND LETTO FREE SPACED DEVICE OR OPPLITUDE USER A SUTTABLE AND LETTO FREE SPACED DEVICE OR OPPLITUDE UNITABLE MARKAN EXCLUSION OF THE STATE AND A SUTTABLE AND A SUTTABLE RECORDER PERMEMENT A PROPER DEVICE DEVICE AND A SUTTABLE RECORDER FREE AND A SUTTABLE A REFERENCE INSCRIMENTS AND RECORDER OF INSCRIPTION OF THE RECORD RECORDER OF MARKAN AND POLICIPACIES OF INSCRIPTION OF THE RECORDER OF MARKAN AND POLICIPACIES OF INSCRIPTION OF INSCRIPTION RECORDER OF INSCRIPTION OF INSCRIPTION OF INSCRIPTION OF INSCRIPTION OF INSCRIPTION RECORDER OF INSCRIPTION OF INSCR	27 ANTENNAS & CABLES THESE SPECIFICATIONS SHALL INCLUDE THE DENERAL SPECIFICATIONS HERRIN THE CONTINUE OF SIMUL TURKEN AND INSTRULTAL INANIMISSION		ALL-POINTS
XPOSURE CATEGORY C (2018/IBC BEC. 1809/4.3) DE LOAD	LOOKLODER AND CRUNN/DER AND ER AFROVED BY THE OWNER SUSTRUCTOR BULL PROVIDE OVERTY TURNAR DRIVING ALL DRI BY CORPU AND AND AND AND AND AND AND AND AND AND	EQUIPMENT SERVED, ELECTRICAL SOURCE WITH OROUIT	REHRIN TC: COVIN-HOLDH BYMLE FURRER AND INSTITUL ALL IFANSINESICN CARES JUMPERS CONSICIONS (ARCUINOUS STRUKE ANTENNAS NOT STRUKENS CONSICIONS (ARCUINOUS STRUKE ANTENNAS CONTRACTOR FOR DAMAGE LODGENERY), JUMPERS BUTELTS TH SUPPLIES AT ANTENNAS AND EQUIPMENT INSICE SHELTIST OF STRUKENS AND EXPLOYED AND EXPLOYED ANTENNAS AND VERY ALL OF THE MATERNAS TO BE PROVIDED WITH OWNER PROCE TO SUMMITING DI AND OF DEPINION INTERNAS		TECHNOLOGY CORPORATIC
WGIC WIND SPEED (4) = CO MPH (TIA-222-H, ANNEX B) MICE 3-SEC GUST) SESION ICE THORNESS (1) = 1.50° (TIA-222-H, ANNEX B)	TERVORING/INCOMUTION SAVETY WHERE SUCH WORK SEXECUTED OR ENDOUNTREE RECOUNTREES NUMBER OF AN ADDRESS OF A SAVET OF THIS WORK, SHALL OR EXCLUSION AND ADDRESS OF ADDRESS AND SAVET SAVET AND ADDRESS OF ADDRESS OF ADDRESS AND SAVET SEX OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND SAVET SEX OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND SAVET SEX OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND SAVET SEX OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND SAVET SEX OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND SAVET SEX OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS AND SAVET ADDRESS OF ADDRESS	IDENTFORMON, AND VICINGES WITHIN CLOTERIAL CONTRACTOR IS REPORTED TERMINATIONE TO ALL POINTIAL FOR ALL PRAL TERMINATIONE TO ALL POINTIAL FOR THE ALL PRAL COMPLETELY REPORTED FOR THE ALL PRAL REPARED, INSINE Y, LED RAWTHE FOR ALL PRAL VERTICAL AND POPERLY COORD FOR THE TO ALL DATA THE SATULATION VERTICAL AND POPERLY COORD FOR THE TO ALL DATA THE SATULATION CONFIDENCE AND POPERLY COORD FOR THE TO ALL DATA THE SATULATION FOR THE ALL POPERLY COORD FOR THE TO ALL DATA THE SATULATION	ADD VERTY ALL OF THE MATERIALS TO BE PROVIDED WHY COMER PROFT TO SUBMITING BD AND ODERING MATERIALS ATTEN MATELIATION. THE TRANSMISSION LINE SYSTEM SAVELLEE PRAY, MATTENING CONNECTION CONTINUES AND ADDRESS TO BE TESTING PROCEED/RES FROM COMER OF MANUFACTURES PRICE TO EDDING.		567 VAUXHALL STREET EXTENSION - SUITE 311 WATTERFORD, OT 06305 PV (ADK/ 080)-682-4 WWW ALL/DVITSTECH CONVITSTECH CONVITSTECH CONVITSTECH CONV
SNOW LOAD	NSTALLATIONS ISHALL VIET ALL APPLICABLE CODE REVIPEMENTB ANDSHALL BE COMPLETELY REMOVED AFTER ITS PURPOSES HAVE SEEN SERVED ANN OWNTWA UNLITY, SERVICE, SI HAUDING, SUDAWIT, OR FITUPE DISTILLATION THE WORK SHALL BE REMOVED AND/OR FELOCATED /6		ANTENNAS CONNECTED: CONTRACTOR BHAU, OFTAN AND USE LATER' TESTING PROCEDURES FROM OWNER OR MANUFACTURE PRICE TO BIDING ANTENNA GABLES SHALL BE UNQUELY OCIOR-OCED AT THE		CONSTRUCTION DOCUMENTS
ROUND SNOW LOAD (P) = 30 PSF (2018 CSBC APPENDX N) DDE SNOW LOAD (P) = 30 PSF (2018 CSBC APPENDX N) (AN) EER 2018 CSBC ADD HART 11 (4575 2-10 EU.7.2-1, 3507 2-4,	DBSTRUCTING THE WORK SHALL BE FEROVED AND/OR FELOCATED AS SPECTRE IN THE CONSTRUCTION MANAGEM 7. ADDITION OF THE CONSTRUCTION MANAGEM 500/TRACTOR SHALL, MINEDATEN ADTIFY THE CONSTRUCTION MANAGEMAND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE ALL ADTIVITES IN APPED TED AFMAS UNTIL WORKSCH AND CRASE	20 GRADONULINAL THERE SECONDONS RHALL INCLUDE THE DIVERAL SPECIFICATIONS HEREIN ALL SYSTEMS AND FOUNDATION IN ACCOMPANY IN ACCOMPANY WITH BEST BUILISTICS REACTING: THE REGISTERISTICS THE ADAPT AND ADDISTRIC ELECTRICAL CODE (WHO), AND ALL OTHER APPLICABLE CODES AND REGULATIONS	BIDDNA WYTENKA KORELES SHALL DE UNIQUELY COLOR-OCCED AT THE ANTENNA KORELES SHALL DE UNIQUELY COLOR-OCCED AT THE ANTENNA KOREL SHALL DE UNIQUELY COLOR-OCCED AT THE CALLES AT THE COLUMNEST THE CONTINCTOT SHALL, SHALL SHALL DE UNIQUELY COLORED COLOR SHOLD THE COLUMNEST AND REFULIENTIAL HARTWARE UNIQUE SHOLD THE COLUMNEST AND REFULIENTIAL HARTWARE UNIQUE		NO DATE REVISION 0 07/07/21 FOR REVIEW: JRM
Element Loniz	VANAGER AND CRABE ALL ACTIVITIES IN APPEDITED ARMS UNTIL NOTIFIED BY THE CONSTRUCTION TO RESUME DREPATIONS ENST. ELECTRICAL AND MEDI WINGAL FRITURES, FIRING, WIRING AND EQUIPMENT OBSTRUCTING THE WORK SHALL BE REMOVED	ELECTRICAL CODE (VIC), AND ALL OTHER APPLICABLE CODES AND REGULATIONS ALL GROUNDING ELECTRICIES PRESENT AT BACH SERVICE LOCATION SHALL RE RONDED TOGETHER TO FORM THE GROUNDINGELECTRICE SYSTEM.	ALL CAPLES AND AMENNAS TO THE MANUFACTURERS AND OWNERS SECONDATIONS ANYTHING ONE OF STREET OF FORM DELECTED COMMAND CARE PS AS		
EFER TO SECTION 1613 OF THE 2015 IBC/2016 CONVECTICUT STATE ULDING CODE FOR SEISMIC CLASSIFICATION AND JOACHING ETERMINATION.	NOTIFED THE CONFIGNATION OF AN OWNER OF PHILING AND	ALL SOUPMENT ENCLOSURES, DEVICES, AND CONDUCTS SHALL BE	FOLLOWS BURG STATION ANTENNAS BURG STATION ANTENNAS TO DIMETER FOR CABLE LENGTHS UP TO 100 FT 1-SRF DAMETER FOR CABLE LENGTHS OREATER THWN 1/0 FT.		4 5 5
1 GENERAL: DREPARTORS LISED IN THESE SPECIFICATIONS INCLUDE THE DUCKING	05 STEEL: THESE SPECIFICATIONS SHALL INCLUDE THE DEVERAL SPECIFICATIONS HEREIN	ORELAPED BY THE MASTAL IATED OF A SPRAAT GROUNDING CONJUNCTOR AND AN IMPROVE MAN THAT AND AN AND AN ERECODE OF 8 CF THE SIZE RECOMENDATION THE DEVAMMAGE SHALL BE REPORTED FOR THAT AND AND AND AND AND AND AND AND REPORTED AND AND AND AND AND AND AND AND AND AN	POLICINE INME S INTERNAL AND S INTERNAL AND CALEBRA CONTRACT S IN TO TO TO TO TO TO TO TO TO TO TO TO SALATING AND S INTERNAL OF SALATING CONTRACT S INTERNAL S IN		6
2012/04/10/04 USED IN THESE SPECIFICATIONS INCLUDE THE DILLOWING ACI AMERICAN CONCRETE INSTITUTE AMERICAN INSTITUTE AMERICAN INSTITUTE	MATERNUS MURE FLANGE ASTM ARR2, OR 60 TURKO ASTM AR90, OR 8 PREF ACTM AR9, OR 8 BOLIS ASTM AR95 GRATING THE CALL OF AN AR95 DECTING METALS ASTM AR9 BOLING METALS ASTM AR9	DOND ALL METALLIO CONDUITS TOGETHER THAT ARE CONNECTED TO NON-METALLIC ENCLOSIVES INJECTION DEXES, AND TO AN ENCLOSURE WHERE A GROUND BUB IS SPECIFIED OR SUPPLEX ACCOMPLISH THIS BOND WITH GROUNDING CONDUCTORS IMMIAUX SYETI TO THE LAGGRED FOR UNDING CONDUCTORS IMMIAUX SYETI TO THE LAGGRED FOR UNDING CONDUCTORS IMMIAUX	INFORM DEPUTING FOR THE DATE OF THE DATE DATE DATE DATE DATE DATE DATE DAT		INTE OF CONNECTION
AMERICAN INSTITUTE OF STEEL CONSTRUCTION AISC AMERICAN INSTITUTE OF STEEL CONSTRUCTION ACC AMERICAN SCIENCE COLLENGAMEERS ARTH AMERICAN STANDARDS AND TESTING METHODS	BOLIS ASTM A325 SRATNO TYPE (3M,2(1-1/4/so/16/ bAF6) ENETING METALS ARTM A38	ENCLOSURE CONNECTED TO A GROUNDING TYPE BUSHING ROUALLY SIZED OR MAXIMUM GROUND WRE ACCOMMODATION LAWLARD IN STANDARD MANUFACTURE FOR THE CONDUIT SIZE WHICHEVER IS Loss EQUIVAENT BROWNING JUD LOVD SIDE ROMING CONDUCTORS	SETTOR 1 & BY COMMUL CASES OWNER BOHALDER INSTALLED WITH A MINIMUM NUMBER OF BEINDS WHERE POSSIBLE. CARLE BAHALI NOT BE LEFT LINTERMATED AND SHALL BE REALE DE MARCHATE VIA SETER REAL NOTAL LES ALLE STATEMOTO CASE. CONNECTONS BHALL BE COVERED WITH A WATERFORD CASE. CONNECTONS BHALL BE COVERED WITH A WATERFORD SHALCHAS KIT.		STATE TROS
AD ANERKAN CORFERE INSTITUTE ADMENSION CORFERE INSTITUTE ADMENSION CORFERE INSTITUTE ADMENSION INSTITUTE (STEEL, CONSTITUTE) ADMENSION INSTITUTE (STEEL) ADMENSION INTO INSTITUTE (STEEL) ADMENSION INTO INSTITUTE (STEEL) ADMENS	Determined were also also also also also also also also	павед рекулстратирание и теленование и состатирание и поредно состатирание и теленование и состатирание и поредности пор	INVERPENDE PERSINNA NU CONTRACTOR AVALLE VERME EXACTLEMENT AND DIRECTION OF TRAVEL IN RELE PRICE TO CONSTRUCTION CALLE AVALL DE FURMER ED AND INSTALLED WITHOUT SPLICES AND WITH CONNECTORS AT EVACUATIONS		
NERA NATIONAL FRE ARCTECTION ASSOCIATION	THE REAL PROCESSION OF THE PROCESSION OF THE PROCESSION OF THE PROCESSION OF THE PROPERTY OF T	UNIGO-BECILUMULANEA UN THE UNDERUNDED COMMUTORS SETUCE MAIN BONDING JUMPER AND GROUNDING ELECTICODI COMMUTORS RIVATI HE REPORT MAIN INTERNAL HET PER THEMISMAN OF ALL APPLICABLE CODES AND REGULATIONS	WITH CONNECTORS AT EACH END. 27 CALLE THAY. THESE SECONDATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREIN		* Uffelden *
CLUDE THESE GENERAL SPECIFICATIONS IS ENGINEER IS NOT RESPONSIBLE FOR NOR A GLARANTOR OF THE STALLING CONTRACTORS WORK, ADEQUACY OF ANY STE	HT THE TERM FEITURE AND AND CONCERNENCES THE READ AND THE TERM AND AND CONCERNON OF STRUCTURAL STEEL ON TWO ANY USE 568° TAMPETER GAI VANIZED ARTMA STOT POLITIR IN FRR OTHERWISE NOTED.	RELIGENCE AND ADDRESS OF ADDRESS	CNELE TRAY SHALL BE MADE OF ETHER CORRECTION RESISTANT METAL OR WITH A CORRECTION REPORTANT FINISH CARLE TRAY SHALL BE OF LADGER TRAY TYPE WITH PLAT COVER CLAMPED TO SIDE RALS.		B 33313 S Sional English
And table page-sets where the	ALL STEEL ANYTEINAL BRAZE BE GALVANEED AFTER INVERGATION IN ACCORDANCE WITH ABTM A123 ZINC (HOT-DIPPED GALVANZED) SOATINGS ON IRON AND STEEL PRODUCTS WITH A COATING WE GHT OF 2 CZISF	CONSIST OF BONDING ALL BOLIPINENT AND CONNECTIVE STRUCTURES TO LOCALIZED BINGLE-POINT GROUNDING CONNECTIONS (TYPICALLY GROUND BARS WHICH ARE BONDED TOGETHER AND TO AN IN GROUND SYSTEM. F. THE LRGS IS ON A BULDING, IT SHALL BE EMPOTYPELY	CABLE LADDER GVALL & SKED TO FTT ALL GABLES IN ACCORDANCE WITH VEG AND NEMA 11-15-84 CABLE LADDER TRAK 11-15-84 NO: CR EQUAL		SIONAL ENGLIST
A TRACE'S MALL COOPDINATE THEIR WORK WITH ALL OTHER TRACES ID OTHER WORK AND CONDITIONS AS APPROPRIATE OF RECLIFED TO YOD CONFLICTS. RESOLVE AND COORDINATE ALL CORFLICTS WITH L APPROTED WORK AND STIEL OPERATIONS. COORDINATE AND WITH THE	ALL BOL IS, WORKES AND MISCELEWIEUG INFORMATE ENPOSED TO WEATHER SHALL BE GALWIZED IN ACCORDANCE WITHASTMARS 2010 COSTINATION COLORIDA AND STEEL NAETWIER? 2010 COSTINATION COLORIDA AND STEEL NAETWIER? 2010 GOSTINATION COLORIDA AND STEEL NAETWIER?	BONDED TO THE ELECTRICAL BEN/DE MAIN RENORD JUNEER AND TO ADDITIONAL IN-GROUND ELECTRIDED AS MAY BE RECUED OF INDICATED. FTHE LEGS IS ON A DEDICATED COMMUNICATION BITE, ALL EQUIPMENT AREAS AND TOWERS SHALL EACH HAVE THER OWN.	INC. ON BOULD. ONLE, LADOTE TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH IMMUNUTURERS SPECIFICATIONS. ALL WORKWARKING HALL, CONSCIANT OT THESE REQUIREMENTS AND ALL UCCUR, AND STANDARDS TO ENSURE SAFE AND ADEOLATE OPINIONOS SPECTRA.		ONAL
TE SHALL BE WITH THE OWNER, OR OWNERS SPECIFIED PRESENTATIVE. FOR EVERYTHING RELATED TO THE INSTALLATION OF IS PROJECT. WORKSTALL BE INSTITUCE ACCOMPANCE WITH ALL APPLICATE F.	JP ALL DAMAGED GALWANZED STEEL WITH COLD ZWC: GALWANCK' THEY AGI V: OR 73ND IT: IN ACCORDINGE WITH MANI FACTURERS SUIDELINES. TOUCH UP DAMAGED NON-GALWANZED STEEL WITH SHART SAINT APPLIED IN SHOP OR RELD.	IN-GREAMD BING WITH FUFER BING BONDED TOGETHER AND ALL CONDUCTIVE STRUCTURES IN CLOSE PROXIMITY (FENCES), ICE BEILXIER, ICE LITER FOLHWERKT, FITO JAI RO REINTER TO RECITE & COMMON ELECTRICAL EXCLEDENTING, SYSTEM FOR ALL CONDUCTIVE ELEMENTS MILTO TOTI VITI JEDO	GROLINGING RYRTEM		DESIGN PROFESSIONALS OF RECOR
IS PROLECT. LOOKOMULE EN ISTINUT ADJUNDANUE WITHALLAPPUCABLE ITONIO OR ALLAPPLOAELE CODES AND SHALL ES ACCEPTABLE TO TONIO OR ALLAPPLOAELE CODES AND SHALL ES ACCEPTABLE TO TONIO OR ALLAPPLOAELE CODES AND SHALLAPPUCABLE DES TENDEST AUTORITIS AULLAPPU, INVERE COSETUCT EN IS DES TENDEST ESTINEST AULLAPPU, INVERT COSETUCT EN IS AND/OTENDIALUM COMPANY AULLAPPUCAMENTAL ADJUNCTION AND/OTENDIALUM COMPANY AULLAPPUCAMENTAL ADJUNCTION ANALOGEM TONIO OTENDIALUM COMPANY AULA ADDUNCTION ANALOGEM TONIO OTENDIALUM COMPANY AULANTARIA LAPPUCATION ANALOGEM TONIO OTENDIALUM COMPANY AULANTARIA LAPPUCATION ANALOGEM TONIO OTENDIALUM COMPANY AULANTARIA LAPPUCATIONALINA ANALOGEM TONIO OTENDIALUM COMPANY AULANTARIA ANALOGUM COMPANY AULANTARIA ANALOGUM TONIO OTENDIALUM COMPANY AULANTARIA ANALOGUM TONIO OTENDIALUM COMPANY AULANTARIA ANALOGUM TONIO OTENDIALUM COMPANY AULANTARIA ANALOGUM COMPANY AULANTARIA ANALOGUM TONIO OTENDIALUM COMPANY AULANTARIA ANALOGUM TONIO OTENIA ANALO		CONDUCTORS INN PS //WOSCUD BARE TIMED COPPER (SETC) FOR ALL NURPOUND CONDUCTORS INN PS //WOSCUD BARE TIMED COPPER (SETC) FOR ALL			PROF: MICHAEL S. TRODDEN P.E.
ETWEEN PLANS AND SPECIFICATIONS, PLAN SHALL APP Y WHERE DVPLICE EXISTS BETWEEN PLAN SHEETS, CONSTRUCTION MANAGEH HALL BE CONSULTED FRICK TO COMMENCING ANY WORK DVTT-VOTOR OLIVILE PROVIDE ALL LADOR, MATCHINES, INSURANCE,	APPROVAL OF THE ENGINEER DONTRACTOR TO REMOVE AND RE-INSTALL ALL FRE PROOFING AS RECURED DURING CONSTRUCTION	CONDUCTORS I MA JA WALESCE DARE TANED OCEPER (BETO) FOR ALL I MA JA WALESCE DARE TANED OCEPER (BETO) FOR ALL I MA JA JAN CORRECT REPORT I FRANCED FOR DONADA TELETINESSE, AND FOR INTERNITEM FORMATION OF INAUMAL LEMENTE SUCH AS DISCUSSED BAT TO DISCUSSE BAR MA JA BAN DONED FORMER DEEN STRANDED OCH ALL POLIMIENT			CORPORATION ADD: 567 VAUXHALL STREET EXT. SUITE 311
NITHATOR OVALL POWDE ALL LACON (MATERNAE) ASUBANCE SUPPORT, INSPECIALIZZO AND TRANSPORTATION AND AND C. POR A COMPLETE AND REPORT Y DEPENDENCE AND AS PERTIA TRADUCATION ON THE MAIN REPORT Y OF THE DEPANDER AND AS ECREED HEREN AND/OR OTHERWISE REQUIRED INTELETED INTO AND AND AND AND AND AS	AND STARE & AFTER COMPLETION. IT IS THE CONTRACTORS ROLE RESPONSIBILITY TO CETERWINE ERECTION PROCESSING AND ITS COMPONENT PARTS CURING ERECTION PARTS CURING ERECTION	 Natal, AL, IN-GROUND CONDUCTORS IN THE SAME HORIZONTAL PLANE OR IN A DOWNWARD DRECTION AWAY FROM THE TOWER AND EQUIPMENT AREAS AVID LONG RUNS. MAY: LINEQUIPUNS AS MUCH AS PUSSIBLE 			SUITE 311 WATERFORD, CT 06385 OWNER: PLANTATION PROPERTIES, L
Contacts Environment ALL BRETING CONDITIONS INSTALLATIONS, NO POLINIERS IN THE RELD PROCEDS INSTALLATIONS, STALLATION OF ANY WORK STALLATION OF ANY WORK ALL OWNERS ONS AND CONDITIONS IN THE DO PROCEDS ENDIDUCTION IN A DESCRIPTION OF AND A DESCRIPTION OF THE DO PROCEDS AND A DESCRIPTION OF AND A DESCRIPTION.	NUMBER DESIGNET INSCRIPTION IN THE DUBLINES AND INSCRIPTION OF THE DUBLING AND INSCRIPTION OF THE DUBLINES AND INSCRIPTION OF THE DUBLING	CARE OF INVESTIGATION OF THE OWNER THE OTHER AVIOL OVER SIME WAS ADDRESS TO AN AVIATION AND THE OTHER PLACE THEOLOGY MALE LIPPED THE WAS AN AVIATION AND AND THEY SIME FORSE MALE OF REAL RESS OF THE AVIATION AND AND MALE ALL COMPETINGS IN CONTRACT WITH EAST HAVING SOTTERED WELDING. WHICH AND AND AND AND AND AND AND SOTTERED WELDING.			ADDRESS: P.O. BOX 542 BROAD BROOK, CT 06016-05-
UD POLIPIENTIN THE REID PROCETORID, SARROLATICA JANT NATTACTORIS EANLA VERTINA ALL ONEVACIONA ANA OCINETTONIS IN THE UD PROCETOR FLANDAUL VERTINA ALL ONEVACIONAL ANA OCINETTONIS IN THE DATABATI SARROLATION AND DERISTINI OF ANY MARKING TO CLOSING DERISTINITICA AND CONTROL FOR ADDRESSION OF ANY MARKING TENTATIONA AND CONTROL AND CONTROL AND CONTROL AND DERISTINITICA AND CONTROL AND CONTROL AND CONTROL AND DERISTINGTO OF THE MODEL AND LOCUSED AND CONTROL AND CONTROL DERISTINGTO OF THE MODEL AND LOCUSED AND CONTROL AND CONTROL DERISTINGTO OF THE MODEL AND LOCUSED AND CONTROL AND CON	CONSTRUCTED IN ADDREAMING WITH THE UNITS TED INVOLVED THE ARK MANAULE OF STREEL CONSTRUCTION CONNECTIONS SHALL BE PROVIDED TO CONFORM TO THE REQUIREMENTS OF TYPE 2 DOWNERS LOTION	THE AT ANY HILD DAY, MALLY, THE TRANSPORT ANY THE TRANSPORT STATE FROM ONE DAY ANY THE TRANSPORT ANY THE TRANSPORT STATE FROM ONE DAY ANY THE TRANSPORT ANY THE TRANSPORT STATE FROM ONE DAY ANY THE TRANSPORT ANY THE TRANSPORT STATE FROM ONE DAY ANY THE TRANSPORT ANY THE TRANSPORT STATE FROM ONE DAY ANY THE TRANSPORT ANY THE TRANSPORT STATE FROM ONE DAY ANY THE TRANSPORT ANY THE TRANSPORT ANY THE TRANSPORT ANY THE TRANSPORT ANY THE TRANSPORT ANY THE TRANSPORT ANY TRANSPORT ANY THE TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPORT ANY TRANSPOR			
CLUERS'	TANKTE LITEM STRUCTLAR, CONNECTION ROLTS SHALL CONFORM TEASTM ADD. ALL BOLTS SHALL BE IMMAMD OF DAVETER AND EACH CONNECTIAN PREMITTER FROM LITEM AND AND ADD. IN THE ACH CONNECTIAN PREMITTER FROM AND STRUCTURE AND AND ADD. INC. INC. PREMITTER FROM AND STRUCTURE AND AND ADD. INC. INC. AND ADD. ADD. ADD. ADD. ADD. ADD. ADD. A	 ALL COMPLICTORS PASSING FROM A BOVE AROUND TO N-GROUND CONNECTION, WHERE EXPOSED, SHALL BE COVERED AND PROTECTED WITH A NON-METALLIC CONDUCT SEALED A TERTH 			
I DIVARITE MANAGEMENT FROM TO ALL WORK ANY ORBUPTIONS ALL DE KEPT TO A MINIMUM AND SHALL DE IMPLEMENTED ONLY XIV WITTEN APPROVAL OF THE OWNER CONTINCTOR SHALL RAFEQUARD ADVINST CHEATING ANY HAZARD	ALLOWARE FLOAD VALUER DESIGN CONNECTONE AT BEAM ENLISHON 10 KIPS (MP). ALL GALIED CONNECTONED (LIALL DE CONFLETED WITH DOUBLE VUTRICRA LOCK WARKER	ENDS. F 2 OR MORE IN-GROUND CONDUCTORS ARE IN THE SAVE PATH 12 BARR OVERLAPPING ROWTING FOLLOWING ANTHRE FING OR BADWL, OR SMILAR), COMBINE WITH A SHARED SINGLE CONSULTOR			
TECTING TENANT EGRESS OF COMPROMISING SITE SECURITY SABURES IGT TO ALL BELOW-ORADE WORK AND ANY SURPACEWORK IN A AN AREA FOR STRUCTURES OF VEHICLES, CONTRACTOR SHALL	DON TRACTOR DI VALL COMPLY WITH AWS CODE FOR PRECEDURES, APPEARANCE AND CUALITY OF WELDS, AND WELDING PROCESSES SHALL BE CUALIFIED IN ACCORDINGE WITH AWS STANDARD DI AUFOLTION APPCOPTURES, ALL WELDING SHALL BE PRECEMED	EQUIPMENTANZ TOWER ORCUND FINDE SHALL BE BONDED TO ANY CONDUCTIVE OBJECT OR STRUCTURE WITHIN 5 FEET OF EQUIPMENT GROUND FINDE AND WITHIN 20 FEET OF			
ANDE A MARKOUT BERVICE TO LENTIFY ANY UNDERGROUND NOTURES CONDUTS, AND PPEUNES IN THE AREA, ALL ENSTING MER, WATER, GAS, ELECTRIC, PEER OPTIC, AND OTHER DERGROUND UTILITIES IDENTIFIED OR ENCOUNTERED. SPALL BE TERMENT ALL TRUES, EVIDENCE ON THE DECUSED BY THE	JENG E70XX ELECTRODES AND SHALL CONFORM TO ARC AND D1.1 WHERE FLLET WELD SIZES ARE NOT SHOWN PROMIDE THE LARGER OF ULK R11 ET CAR MAMIN WARP FRAT TARE (F.2. JUN THE ARC "MAMIN OF STEEL CONSTRUCTION". AT THE COMPLETION OF WELDING ALL	TOMER CREAT AND REVER MISTLE DEMANDLAM 18 INCHES FROM FOUNDATIONS, FOOTINGS, AND SIMULAR NETALL ALL IN-GROUND RIVES, REVEALS, BONDS CONNECTING THEM, MID ALL SIMULAR GROUND RIVES.			
VITRACTOR WHEN DIGGING OR EXCAVATING IN ANY MANNER UNID OR NEAR SUBHUTLITES. CONTRACTOR IS RESPONSIBLE FOR WHE. REPLACEMENT. AND ALL DAWINGES DUE TO DAWINGE OF LITES BY HIS OPERATIONS.	Are sump contact that and the standard not an even of set of the standard	AND ALL SIMULAR OPCOMPAGE I MM 50 IND-VEB BELCKW GRAVE, OH 0 IND-HIS BELCW IHE FROST .RE VHACHEVER SIGEATER DEFIN IMM 2 TRETTEN/ SOLIDATIONE, ICCOTTEN DECUNDING TO AND TO AMY OF THESE STRUCTURES, DO NOT BOND TO VOLVEATION INTERVAL REPORTED.			
EXETING AND NEW EQUIPMENT AND INVITEMAL LOCATIONS, TIMA OFFICIATION INCLUMENT AND INVITEMAL LOCATIONS, ALLED OFFICIATION INCLUMENT AND RECEIPTIONS AND CENTRAL ALLED OFFICIATION OF THE RECEIPTION OF A DEPARTMENT OF THE PLANS, EXACT CONDITIONS BRAIL BE DETERMINED IN THE DEPART TAXABLE THE DEPARTMENT OF THE DEPARTMENT OF THE DEPARTMENT OF THE DEPARTMENT OF THE DEPARTMENT OF THE DEPARTMEN	WITH DOW CORNING 790 SILCONE BUILDING SEALANT OF EQUAL	SOND TO ANY OF THESE STRUCTURES, DO NOT BOND TO "OUNDATION INTERAL, REINFORCEMENT ALL COMPARING ORDER AND A COMMON AREA, COMPOUND, STRUCTURE, OR SMILLE BE BONDED TO A SINGLE-POINT			SOUTH WINDSOR NORTH CT
	THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREIN ALL ELECTRICAL CONDUCTORS - WELL/TRONSPALL SEXMINUM BODY TYPE THIN, THWINZ, CR	"CURRENT OF INTERNAL REINFORCEMENT, ACA, COMPOLIND, STRUCTURE, CRAMINAR HALL BE ISONOCI DO A BINDLEHOUT STRUCTURE, CRAMINAR BHALL BE ISONOCI DO A BINDLEHOUT DEALE TO THE BISTONIA IT SONICE INFORMATION DE STRUCTURE DEALE TO THE BISTONIA IT SONICE INFORMATION DE STRUCTURE BONDING TO AN IN-ORDINAL BIND INSTALL ZE DONDING COMJUNITORS INVIA MOI THE CONTRACTORY REVISION I Y AWAY FROM INCH CHEN AND PARALLEL TO THE IN-GROUND COMJUNICTOR UNIA NO THE CONNECTIONS			SITE 50 PLANTATION ROAD ADDRESS: EAST WINDSOR, CT 06016
UC FORMAL UNA GREEN FRANKLING MERCH IN ANY MOURIGHALL BETTHE LEBERONBIELTY OF THE CONTRACTOR, MY MAD ALL ADDITIONS DECATIONS, CHANGES, REPAIR, OR DEMOLITION AS ARESULT OF ILEE TO RENA ANY EXERTING CONTINUE RECEIPTING THE INTON OF THE OWNER OF ENGINEER SHALL BE THE FULL.	XHHW BR4ACH CHOUT CONDUCTORS SHALL BE SOFT DRAWN 95%	FROM BACH OTHER AND PARALLEL TO THE INLERGUIND CONDUCTOR WITH NO THE CONNECTIONS TOWER ORIGINATIONS BACH TOWER LISS INVALUE BONDED TO ITS FIND. SINGLE-LEDGED TOWERS, OR MONOPOLES, SHALL HAVE 2 BONDS ON OPPOSITE STORE			APT FILING NUMBER: CT141_12500
CONSIBILITY OF THE CONTRACTOR WITHOUT DE AY, CORT, OR VOES IN QUALITY. NOTES THE SACT SHALL APPLY UNLESS SPECIFICALLY NOTED REVISEO NT HE INCLUDED DRAWINGS OR IN SEPARATE FROMEO	MINIMUM CONSULTIVIT PROPERLY REPARED COPPER OF HERCER, DRIVENT CONSULTORING, INC. IN THE RECORDER OF ARROND, INC. INC. INC. INC. INC. INC. INC. INC.	 BOND TO TOWER BASE, NOT TO VEHTICAL TOWER STRUCTURE, AWAY FROM TOWER MOUNTING HARDWARE 			DATE: 07/07/21 CHECKED BY: JF
NAME IN VALUE AND	VISIBLE AS PASS-THROUGH IN ALL ENCLOSURES ALL CONDUIT, PACEXXXX, WIRD/AVX9, DUTTS, ITO SHALL BE LISTED AND SUITABLE FOR THE APPLICATION, ONLY THE FOLLOWING CONDUIS AS APPROVED AND LISTED FOR THE APPLICATION SHALL BE	 Store teams REFUL HIVE A COMMERCIPATION OF UNDER COMMENTS SACH BOND SHALL COMMENT OF 2 CONDUCTORS FROM THE TOWER TO TREAMS WITH A SHALLEL COMMENTS OF DESCRIPTION OF THE BAY COM 			VZW PROJECT CODE: 20171645681 VZW LOCATION CODE: 469756
TALL WITH CONSTRUCT AND A DEAL OUT THREAMED HAT DEAL AND AN WITH CONSTRUCT AND A DEAL OUT THREAMED AND AND AND AND AND AND AND AND AND AN	ELECTRICAL METALLIG TUBING(EMT)	 Bread De Sult, Mol A. Constructional di Bulla Cio Construit. Bread De Sult, Mol A. Constructional di Bulla Cio Construit. Bread De Sult, Mol A. Sult of Local Cio Construit. Bread De Sult, Mol A. Sult of Local Cio Cio Cio Cio Cio Cio Cio Cio Cio Cio			VZW FUZE ID: 16560063
	 PLEXELE METAL CONDUIT (FMC) AND LIQUID TIGHT PLEXELE METAL CONDUIT (LFMC). 	 Some recomment in the single-some inscription (SND BAR) Some recomment in the single-point ground to the sourcement applied shares with manual 2 contractors inscription opposite descriptions with MARLEL CONNECTORS In Technique Experiment in survivol cost in a set in the 			SHEET TITLE:
	EINLI COMPETITIONI IN VIENNING CHI AULUS TRALE EURIPHETTI COLLIDATE EINLI VIENNING CHI ALL'ENTITIO EURIPHETTI SI AUCOLI VIENNI IN COLLIS INI CHI VIENE EURIPHETTI SI AUCOLI VIENNI VIENNI VIENNI EURIPHETTI SI AUCOLI VIENNI VIENNI VIENNI ALL FITTIMOS, CONSCIENCI AUCULAU ALL FITTIMOS AUCULAU ALL FITTIM	COMMISSION OF CONTRACTOR AND CLUEN THE REALTER IS CONSIDERED TO BE EXPOSED TO A DIFECT JOHNNYA STRIKE, INSTALL A BUILDING LIGHTNING PROTECTION SYSTEM FER APPLICABLY VERSION OF VIPAL 783 COMMISSION OF CONSIDERTING			NOTES & SPECIFICATIONS
HH 3HHALE BARRERS, SAFETY GUARDS, SIGNAGE, AND SECLEDLY AS CUFED. ENVIONTHAD TO SPALL DE HESPONSIELE FOR THEF RESPECTIVE RE REPARTS INSPECTIONS TREMAL CRETERIZES A UC ALL AND REMOVED AND FOR THE THER CRETERIZES AND ALL	MAY BE LISED FOR SERVICES. EXTERIOR BELOW GRADE AND WET	AND TO THE BULLOW FIND AND THE BULLOW COMPONENT IS TOOTHER TYPICALLY CALLED THE HALD GROUND, DO NOT BOND ECUIPMENT TO THE HALD GROUND BOND ALLE BULHENT LODE INEN TO A SINGLEMORY OF INTERCE			
WHENNENT UP BAVE FEOLIFED FOR COMPLETION OF AND LEVAL JUPANOY OF THE FINISHED PROJECT. GONTRACTOR GVALL PROMIC ALL INCUSINARY TICOLS, INCUSIN MORS, MATERIALS, URBAINS, AND PERSONNEL RECLIFED FOR THE DISPONDER THE DISPONDER.	LOCATIONS MULLINGTREAD WIGHWARE BLARS NON EXPOSITION A BULING OR THAT HAS DURING OR THAT HAS CONSISTED BUTCH THAT HAS NOT TO COMPARE WIGHT A UNTERNAL DUCT WITH MINOR TO A UNTERNAL DUCT WITH MINOR THAT ALL DECONCOLSED EXCIPTION WITHIN A DUCT WITH MINOR THAT ALL DUCTOR ALL ACKET WITHIN A DUCT WITH MINOR THAT ALL DUCTOR ALL ACKET WITHIN A DUCT WITH THAT MINOR THAT ALL DUCTOR ALL ACKET WITHIN A DUCT WITH THAT ALL DUCTOR ALL ACKET WITHIN A DUCT WITH THAT ALL ALL DUCTOR ALL ACKET WITHIN A DUCT WITH MINOR TO MULTING THAT ALL ACKET WITHIN A DUCT WITH MINOR TO MULTING THAT ALL ACKET WITHIN A DUCT WITH MINOR ALL ACKET WITHIN A DUCT WITH MINOR ALL ACKET WITHIN A DUCT WITH MINOR ALL ALL ACKET WITHIN A DUCT WITH MINOR ALL ACKET WITHIN ACKET WITHIN ACKET WITHIN ALL ACKET WITHIN ACKET WITHIN ALL ACKET WITHIN ACKET WITHIN ALL ACKET WITHIN ACKET WITHIN ACKET WITHIN ACKET WITH	EQUIPMENT RIVE GROUND LEGR. BOND THE SNGLE-POINT OR LEGH TO THE EXTERNAL POLIPMENT RIVE GROUND FINE CORNERS. 9,4,421, GROUND PODS AT THE EQUIPMENT GROUND FINE CORNERS.			SHEET NUMBER:
CUTION OF THEIR WORK IN CONTRACTOR BURL CLARRAVITEE ALL MATERIALS AND ROMANSHE BY THEM TO BE FREE OF DEFECTS AND IVANIVABLE FOR ERCO OF ONE YEAR AFTER ACCEPTANCE OF THE INSTALLATION BY CULIERE AT DEPOSITE	WITHIN & DUDT WITH SMOOTH OR GOHHUGATED METAL JACKET AND NO CUTER COVERING OVER THE METAL JACKET IN HING ED SPACES, ALL CONDUITS SHALL DE CONSCALED EXCEPT TO VARE & FMAL CONNECTION TO FOLIMENT NOT MOLIVETI IN OR	GRUER FORSE DERIVERTIS SINCE DETWEEN AVY 2 ORDIND FORS SHALL BE NO CLOSED THAN THE'S DEPTH. THIS APPLIES TO ALL ROOM IN THE COMPLETE SYSTEM SINCE AND A DETAIL OF A DEPARTMENT OF A DEPARTMENT SINCE AND A DEPARTMENT OF AN INTER IF AN INFORMER F TO MISTLL VERTICALLY FACES AND CONTINUE THE SAMPTER ADDIN AND A DEPCTION AWAY FROM THE SAMPTER ADDING GROUND COMBLICTURE LEADER TO COMPLETE ADDING TO COMPLETE ADDING ADDING THE DEPARTMENT OF ADDING ADDING COMPLETE THE LEADER TO COMPLETE ADDING TO COMPLETE ADDING COMPLETE ADDING TO COMPLETE ADDING TO COMPLETE ADDING ADDING ADDING ADDING ADDING TO COMPLETE ADDING ADDI			N-1
COMPREAMD ENGINEER WORKSHALL BE PERFORMED BY LICENSED CONTRACTORS IN THE DE HAVING JURBEICTION / DEUXIDON, MODIFICIATION, ADDITION, OR OHNWOR IN DESIGN UI, NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE COMPRIG	AGAINST FINISH MATERNAL ALL INSTRUMENTATION OF A SECONDARY AND A SECONDARY APPOPERTY SYSTEM AND MAKENING REGISTRAL PAVE A SECONDARY APPOPERTY SYSTEM AND MAKENING REGISTRAL PAVE APPLICABLE CODES. THAT BONDS ALL ENDLOSUES BONES E NO SOND IT SHALL INOT BE USED AS A GROUNDING OF BOZING	 AND IN A DESCRIPTION OF A DESCRIPANCIPANTE DESCRIPTIONO OF A DESCRIPTIONO OF A DESCRIPTIONO OF			IN-I
LL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWNER OF	CONDUIT SHALL NOT BE USED AS A GROUNDING OF EXADING				

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 65° HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Effective Projective Area (EPA), frontal	0.26 m ² 2.799 ft ²
Effective Projective Area (EPA), lateral	0.22 m ² 2.368 ft ²
Grounding Type	RF connector body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	7-16 DIN Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	6

Remote Electrical Tilt (RET) Information, General

RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	2 female 2 male
Dimensions	
Width	301 mm 11.85 in
Length	1828 mm 71.969 in

Page 1 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 9, 2020

COMMSCOPE°

Depth

180 mm | 7.087 in

AISG RET UID

RET (SRET)

Conns

Array Layout

View from the front of the antenna (Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2360 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	900 W @ 50 °C

Remote Electrical Tilt (RET) Information, Electrical

Protocol	3GPP/AISG 2.0 (Single RET)
Power Consumption, idle state, maximum	2 W

Page 2 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by [®] or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 9, 2020

Power Consumption, normal conditions, maximum	13 W
Input Voltage	10–30 Vdc
Internal Bias Tee	Port 1 Port 3
Internal RET	High band (1) Low band (1)

Electrical Specifications

Frequency Band, MHz	698–806	806–896	1695–1880	1850–1990	1920–2200	2300–2360
Gain, dBi	14.9	15	17.7	17.9	18.4	18.7
Beamwidth, Horizontal, degrees	65	60	71	69	64	57
Beamwidth, Vertical, degrees	12.4	11.2	5.7	5.2	4.9	4.6
Beam Tilt, degrees	0–14	0–14	0–7	0–7	0–7	0–7
USLS (First Lobe), dB	13	14	18	18	19	18
Front-to-Back Ratio at 180°, dB	30	29	31	30	29	31
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	300	300	300	300	300	300

Electrical Specifications, BASTA

Frequency Band, MHz	698–806	806–896	1695–1880	1850–1990	1920–2200	2300–2360
Gain by all Beam Tilts, average, dBi	14.5	14.5	17.3	17.7	18.1	18.5
Gain by all Beam Tilts Tolerance, dB	±0.6	±1.1	±0.4	±0.4	±0.5	±0.3
Gain by Beam Tilt, average, dBi	0 ° 14.4 7 ° 14.6 14 ° 14.3	0 ° 14.7 7 ° 14.7 14 ° 14.1	0 ° 17.2 4 ° 17.3 7 ° 17.3	0 ° 17.6 4 ° 17.7 7 ° 17.7	0 ° 18.0 4 ° 18.2 7 ° 18.1	0 ° 18.3 4 ° 18.5 7 ° 18.6
Beamwidth, Horizontal Tolerance, degrees	±2	±2.1	±3	±4.1	±6.5	±2.9
Beamwidth, Vertical Tolerance, degrees	±0.7	±0.7	±0.3	±0.2	±0.3	±0.2
USLS, beampeak to 20° above beampeak, dB	13	14	16	16	17	15
Front-to-Back Total Power at 180° ± 30°, dB	23	22	27	27	25	25
CPR at Boresight, dB	22	21	23	23	22	19

Page 3 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 9, 2020

COMMSCOPE°

CPR at Sector, dB	10	7	16	13	11	4	
Mechanical Specifications							
Wind Loading at Velocity, frontal			278.0 N @ 150 km/h 63.6 lbf @ 150 km/h				
Wind Loading at Velocity, lateral		230.0 N @ 150 km/h 51.7 lbf @ 150 km/h					
Wind Loading at Velocity, maximum		120.7 lbf @ 150 km/h 537.0 N @ 150 km/h					
Wind Speed, maximum			241 km/h 1	49.75 mph			

Packaging and Weights

Width, packed	409 mm 16.102 in
Depth, packed	299 mm 11.772 in
Length, packed	1952 mm 76.85 in
Net Weight, without mounting kit	19.8 kg 43.651 lb
Weight, gross	32.3 kg 71.209 lb

Regulatory Compliance/Certifications

Agency	Classification
CHINA-ROHS	Below maximum concentration value
ISO 9001:2015	Designed, manufactured and/or distributed under this quality management system
REACH-SVHC	Compliant as per SVHC revision on www.commscope.com/ProductCompliance
ROHS	Compliant
ISO ISO	

Included Products

9001:2015

BSAMNT- Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 4 of 4

10-port sector antenna, 2x 698–896, 4x 1695–2200 and 4x 3100-4200 MHz, 65° HPBW, 2x RETs and 2x SBTs. Both high bandsshare the same electrical tilt.

- Perfect antenna to add 3.5GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, mid band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	10

Remote Electrical Tilt (RET) Information

RET Hardware	CommRET v2
RET Interface	4x 8 pin connector as per IEC 60130-9 Daisy chain in: Male / Daisy chain out: Female Pin3: RS485A(AISG_B), Pin5: RS485B(AISG_A), Pin6: DC 10~30V, Pin7: DC_ Return
RET Interface, quantity	2 female 2 male

Page 1 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 11, 2021

Input Voltage	10-30 Vdc
Internal RET	High band (1) Low band (1)
Power Consumption, active state, maximum	10 W
Power Consumption, idle state, maximum	2 W
Protocol	3GPP/AISG 2.0 (Single RET)
Dimensions	
Width	301 mm 11.85 in
Depth	181 mm 7.126 in

1828 mm | 71.969 in

Net Weight, without mounting kit

Array Layout

Length

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	AISG RET UID
R1	698-896	1 - 2	1	AISG1	CPxxxxxxxxxxxxxR1
B1	1695-2200	3 - 4	2	AISG2	CPxxxxxxxxxxxxxB1
B2	1695-2200	5 - 6	2	AISGZ	CPXXXXXXXXXXXXXXXXXXXX
P1	3100-4200	7 - 8	N1/A		NZA
P2	3100-4200	9 - 10	N/A	NA	N/A

23.1 kg | 50.927 lb

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

Page 2 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 11, 2021

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2200 MHz 3100 – 4200 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	1,000 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-188	0 1850–199	0 1920–220	0 3100-355	0 3550-370	0 3700-4200
Gain, dBi	14.8	15.2	17.4	17.8	18	17.5	17.3	17.6
Beamwidth, Horizontal, degrees	65	62	66	61	64	55	65	61
Beamwidth, Vertical, degrees	13	11.6	5.5	5.2	4.9	5.7	5.4	4.9
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	2	2	2
USLS (First Lobe), dB	15	15	16	18	18	17	17	17
Front-to-Back Ratio at 180°, dB	26	29	31	28	27	30	32	29
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	28	28	28
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-140	-140	-140

Page 3 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 11, 2021

COMMSCOPE°

Input Power per Port at 50°C,	300	300	300	300	300	100	100	100	
maximum, watts									

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-188	0 1850–199	0 1920–220	0 3100-355	0 3550-370	0 3700-4200
Gain by all Beam Tilts, average, dBi	14.6	14.8	17	17.5	17.7	17.1	16.9	17.1
Gain by all Beam Tilts Tolerance, dB	±0.4	±0.4	±0.6	±0.3	±0.4	±0.5	±0.7	±0.8
Gain by Beam Tilt, average, dBi	0 ° 14.6 7 ° 14.6 14 ° 14.4	0 ° 15.0 7 ° 14.9 14 ° 14.5	0 ° 16.9 3 ° 17.0 7 ° 16.8	0 ° 17.4 3 ° 17.5 7 ° 17.4	0 ° 17.5 3 ° 17.8 7 ° 17.6			
Beamwidth, Horizontal Tolerance, degrees	±1.7	±1.3	±7.2	±3.1	±6.2	±11.7	±7.4	±10.9
Beamwidth, Vertical Tolerance, degrees	±0.8	±0.8	±0.2	±0.2	±0.4	±0.4	±0.3	±0.4
USLS, beampeak to 20° above beampeak, dB	18	16	14	15	17	14		
Front-to-Back Total Power at 180° ± 30°, dB	22	25	25	25	24	26	25	23
CPR at Boresight, dB	24	17	16	21	19	15	16	14
CPR at Sector, dB	12	6	11	10	8	7	8	7

Mechanical Specifications

Wind Loading at Velocity, frontal	278.0 N @ 150 km/h 62.5 lbf @ 150 km/h
Wind Loading at Velocity, lateral	230.0 N @ 150 km/h 51.7 lbf @ 150 km/h
Wind Loading at Velocity, maximum	120.7 lbf @ 150 km/h 537.0 N @ 150 km/h
Wind Speed, maximum	241 km/h 149.75 mph

Packaging and Weights

Width, packed	1973 mm 77.677 in
Depth, packed	441 mm 17.362 in
Length, packed	337 mm 13.268 in
Weight, gross	35.1 kg 77.382 lb

Regulatory Compliance/Certifications

Agency	Classification
CHINA-ROHS	Below maximum concentration value
REACH-SVHC	Compliant as per SVHC revision on www.commscope.com/ProductCompliance

Page 4 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 11, 2021

Compliant

Included Products

BSAMNT-3 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 5 of 5

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 11, 2021

		Item	Specification		
[CBRS RRH] Spec.		Band	Band 48 (3.5 GHz)		
		Frequency	3550~3700 MHz		
		IBW	150 MHz		
		OBW	80 MHz		
		# of Carriers	5/10/15/20 MHz x 4 carriers		
		RF Chain	4TX / 4RX		
		RF Output Power	4 path x 5 W (Total: 20 W = 43 dBm)		
		& EIRP	(EIRP: 47 dBm / 10 MHz)		
	· · · · · · · · · · · · · · · · · · ·	RX Sensitivity	Typical : -101.5 dBm @ 1 Rx (3GPP 36.104, Wide Area)		
		Modulation	256-QAM support (1024-QAM with 1~2dB power back-off)		
		Input Power	-48 VDC (-38 to -57 VDC, 1 SKU),		
and an and and		input Fower	with clip-on AC-DC converter (Option)		
Handi		Power Consumption	About 160 Watt @ 100% RF load, typical conditions		
		Volume	Under 7L (w/o Antenna), Under 9.6L (with antenna)		
		Weight	Under 8.0 kg (18.64 lb) (w/o Antenna), Under 10.5 Kg (with ant.)		
		Operating Temperature	-40°C (-40°F) ~ 55°C (131°F) (W/o solar load)		
		Cooling	Natural convection		
		Unwanted Emission	3GPP 36.104 Category A		
			[B48] : FCC 47 CFR 96.41 e)		
		Optic Interface	20km, 2 ports (9.8Gbps x 2), SFP, single mode, duplex or Bi-Di		
		CPRI Cascade	Not supported		
Port		# of Antenna Port	4		
Standard Gua		External Alarm (UDA)	4		
Label		RET	AISG 2.2		
		TMA & built-in Bias-T I//F	Not supported		
		and PIM cancellation			
		Mounting Options	Pole, wall, tower, back to back, side by side (for external ant),		
			3 RRH with Clip-on Antenna on the pole		
		Antenna Type	Integrated (Clip-on) antenna (Option),		
Current Size: 216 x 307 x 105.5 mm (6.99L)			External antenna (Option)		
(8.5 x 12.1 x 4.1 inch	., excluding Port Guard)	NB-IoT	Not Supported (HW Resource reserved		
Design is subjec	ct to minor change		for 1 Guard Band NB-IoT per LTE carrier)		
	-	Spectrum Analyzer	TX/RX Support		
		External Alarm (UDA)	4 Current with CAM we are de		
		5G NR	Support with S/W upgrade		
		XRAN	Support with S/W upgrade		

ATTACHMENT 3

	General	Power	Density					
Site Name: South Winsdsor N	(East Windsor)							
Structure Height: 135 Ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	CALC. POWER DENS	FREQ.	MAX. PERMISS. EXP.	FRACTION MPE	Total
*AT&T-UMTS	0			28000	0.0000	1.0000	0.00%	
*AT&T-UMTS	0			3600	0.0000	1.0000	0.00%	
*AT&T-UMTS	1	4920	94	1970	0.2285	1.0000	2.28%	
*AT&T-UMTS	1	2925	102	869	0.1141	0.5793	1.97%	
*AT&T-UMTS	1	4550	102	2145	0.1775	1.0000	1.78%	
*AT&T-UMTS	1	2450	102	746	0.0956	0.4973	1.92%	
*AT&T-UMTS	2	414	114	850	0.0255	0.5667	0.45%	
*AT&T-PCS-UMTS	2	656	114	1900	0.0405	1.0000	0.40%	
*AT&T-LTE	2	1615	114	700	0.0996	0.4667	2.13%	
*AT&T-PCS-LTE	2	1942	114	1900	0.1198	1.0000	1.20%	
*AT&T-GSM	2	414	114	850	0.0255	0.5667	0.45%	
*Sprint-CDMA	1	438	126	850	0.0109	0.5667	0.19%	
*Sprint-LTE	2	438	126	850	0.0219	0.5667	0.39%	
*Sprint-CDMA	5	623	126	1900	0.0778	1.0000	0.78%	
*Sprint-LTE	2	1556	126	1900	0.0777	1.0000	0.78%	
*Sprint-LTE	8	778	126	2500	0.1554	1.0000	1.55%	
*Clearwire	2	153	126	2496	0.0076	1.0000	0.08%	
*Clearwire	1	211	130	11 GHz	0.0049	1.0000	0.05%	
*T-Mobile	2	24	120	2100	0.0013	1.0000	0.01%	
*T-Mobile	2	12	120	1950	0.0007	1.0000	0.01%	
*T-Mobile	2	12	120	2100	0.0007	1.0000	0.01%	
VZW 700	4	662	102	0.0091	751	0.5007	1.83%	
VZW Cellular	4	689	102	0.0095	869	0.5793	1.64%	
VZW PCS	4	1466	102	0.0203	1980	1.0000	2.03%	
VZW AWS VZW CBAND	4 4	1570 6531	102 102	0.0217	2125 3730	1.0000	2.17%	
VZW CBAND VZW CBRS	4 4	12	94	0.0903	3730	1.0000	9.03% 0.02%	
	4	12	34	0.0002	3023	1.0000	0.02 /0	33.15%
* Source: Siting Council								00.1070

ATTACHMENT 4

July 9, 2021

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Attn: Mr. David Vivian

Re: Structural Analysis Report Verizon Site I.D.: South Windsor North CT – LSub6 – Carrier Add 50 Plantation Road East Windsor, CT 06016

Project/Location Code: VZW FUZE I.D.: APT Filing No. 20171646071/469756 16560063 CT141_12500

Dear Mr. Vivian,

All-Points Technology Corp. (APT), a professional engineering corporation licensed in the State of Connecticut, performed a structural analysis of the above existing 133-ft± high elevated water reservoir to support a proposed antenna and appurtenance modification.

Details of the proposed antenna and appurtenance modification are included within the table on the following page. Reference is made to the Construction Drawings prepared by this office, marked Rev 0, dated 07/07/21.

The following information was utilized in the preparation of this assessment:

- Construction Drawings prepared by APT, marked Rev1, dated 11/06/2020
- Tank Reinforcement Drawings, prepared by APT, marked Rev0, dated 07/09/20.
- Structural Modification Design Report, prepared by APT, dated 07/09/20.
- SK-S1 Foundation Reinforcement Details, marked Rev1, dated 06/08/21.
- SK-S2 Reinforcement Details, marked Rev1, dated 06/30/21.

The structural analysis has been prepared in accordance with the following design standards:

- ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures
- AISC American Institute of Steel Construction Manual of Steel Construction, 14th Ed.
- IBC 2015 as amended by the 2018 Connecticut State Building Code.
- ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures

Design Criteria:

- Load Case 1: 125 mph (3-sec gust), Ultimate Wind Speed
- Load Case 2: 125 mph (3-sec gust), Ultimate Wind Speed 0.9 x Dead Load
- Structure Class II
- Exposure Category C
- Topographic Category 1

Note: Risk Category II used. (Water tank no longer in service).

Carrier	Antenna and Appurtenance Make/Model	Elevation	Status	Mount Type	Coax/Feed- Line
Clearwire	(2) 3-ft Dia. Microwave Dishes (Dragonwave A-ANT-23-G-2.5 est.)	125'±	E		(3) 1-1/4 RF
Clearwire	(3) Fiber Boxes	124'±	E	(3) Pipe Mounts	Hyrbriflex,
Clearwire	(3) Argus LLPX310R-V4 panel antennas	119'±	E		(2) 1/2",
Clearwire	(3) Remote Radio Units	116'±	E		(2) 2-1/4"
Sprint	(2) RFS APVX9ERR18-C-A20, (1) RFS APVXSPP18-C-A20, (3) ALU 800 MHz 2x50W RRHs & (3) ALU 1900MHz 4x40W RRHs	121′±	E	(3) Pipe Mounts	Innerduct
Clearwire	(1) Fiber Box	109'±	E	Catwalk Rail	n/a
MetroPCS/ T-Mobile	(3) RFS APXV18-206517S-C panel antennas	119'±	E	(3) Pipe Mounts	(6) 1-5/8
AT&T	 (6) Powerwave 7770 panel antennas, (2) Powerwave P65-17-XLH-RR panel antennas, (1) KMW AM-X-CD-16-65-00T-RET panel antenna (12) Powerwave LGP 21401 TMAs, (3) Ericsson RRUS-11, (3) Ericsson RRUS-12 and (3) Raycap DC2 Surge Suppressors (est.) 	112 - 113'±	E	(3) Pipe Mounts (shared with Clearwire & MetroPCS/T-Mobile)	(12) 1-5/8", (2) 5/8" & (1) 3/8" fiber/DC cables (est.)
Verizon	 (3) Commscope NHHSS-65B-R2B, (3) Commscope NHH-65B-R2B panel antennas, (3) Samsung MT6407-77A antennas (3) Samsung B5/B13 RRH-BR04C Remote Radio Heads (RRHs), (3) Samsung B2/B66A RRH-BR049 RRHs, (3) Samsung CBRS RT4401-48A RRHs (3) Raycap RHSDC-3315-PF-48 Over Voltage Protection Boxes (OVPs) 	102'/94'	Ρ	Custom Pipe Mounts Attached to Exist. Tank Legs	(3) 6x12 Low Inductance Hybrid Fiber Cables (Routed within Southwest Built-Up Lattice Leg Channels)
Clearwire	One (1) Fiber Box	10'±	E	Leg	n/a

The analysis consists was conducted utilizing the following equipment inventory (proposed equipment indicated in **bold** text):

Analysis Results:

The analysis was conducted in accordance with the criteria outlined above, with the aforementioned existing and proposed equipment loading. The following table summarizes the results of the analysis:

Component	Usage (%)			
New Sway Rods	94%			
Reinforced Wing Plates	97%			
Anchor Bolts	58%			

Notes:

ASTM A36 steel grade used for the basis of the new sway rod design.
 Existing anchor bolts include 1/8" corrosion allowance.

- 3. Anchor bolt usage includes (1) new ¾"dia. anchor bolt per leg.
- Assumes reservoir no longer used for water storage.
 Reinforced gusset plates (Pin bearing on plate controls).

Base Foundation:

Evaluation of the existing foundation system was limited to a global stability check with the existing and proposed loading. The existing foundation geometry was established through field investigation conducted by APT during May 2017, and during construction of the new build project during June 2021. Subgrade conditions were based on presumptive soil parameters per TIA-222-H Section 9.4, and Table F-1 (Annex F) & IBC 2015.

The calculated leg and base reactions with the above noted loading are as follows:

Load Effect	Calculated Base Reactions	Usage		
Axial	74 k	n/a		
Shear	70 k	n/a		
Overturning Moment	5291 ft-k	n/a		
Leg Uplift	95 k	0.75<1.0 (PASS)		
	1 kip = 1,000 lbs			

Conclusions:

Successful completion of the reinforcements detailed within the attached drawings, will result in a host structure that meet the requirements of the 2015 International Building Code, as amended by the 2018 Connecticut State Building Code.

Sincerely, All-Points Technology Corp., P.C.

Michael S. Trodden, P.E. Sr. Structural Engineer

Prepared by: All-Points Technology Corp., P.C.

Jun R. Mea

Jason R. Mead Department Manager -Structural Services

Limitations:

This report is based on the following:

- 1. Tower/structure is properly installed and maintained.
- 2. All members are in a non-deteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. Tower/structure is in plumb condition.
- 6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or reinforcing bracing members.
- 2. Reinforcing members in any manner.
- 3. Installing antenna mounts.
- 4. Extending tower/structure.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Calculations

(/	(APPENDIX N) MUNICIPALITY - SPECIFIC STRUCTURAL DESIGN PARAMETERS											
		Wind Design Parameters MCE Image: Constraint of the second										
Municipality	Ground Snow Load (psf)	Spectral Acceleration s (%g)		Ultimate Design Wind Speeds, V _{ult} (mph)		Nominal Design Wind Speeds,V _{asd} (mph)		Wind-Borne Debris Regions ¹		Hurricane-Prone Regions		
Muni		Ss	S1	Risk Cat.l	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV	Risk Cat. II & III except Occup I-2	Risk Cat III Occup I-2 & Risk Cat. IV	Hurrica Reç
East Hampton	30	0.177	0.062	120	130	140	93	101	108			Yes
East Hartford	30	0.180	0.064	115	125	135	89	97	105			Yes
East Haven	30	0.182	0.062	120	130	140	93	101	108		Туре В	Yes
East Lyme	30	0.164	0.059	125	135	145	97	105	112	Туре В	Type A	Yes
Easton	30	0.215	0.066	110	120	130	85	93	101			Yes
East Windsor	35	0.177	0.064	115	125	135	89	97	105			Yes
Ellington	35	0.176	0.064	115	125	135	89	97	105			Yes
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Туре А	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Туре В	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Туре А	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Туре В	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108		Туре В	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108			Yes
Hamden	30	0.185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0.172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0.175	0.065	110	120	125	85	93	97			Yes
Harwinton	35 30	0.183	0.065	110 120	120 130	130 140	85 93	93 101	101 108			Yes Yes
Hebron Kent	40	0.177	0.065	105	115	140	81	89	93			res
Killingly	40	0.100	0.065	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledyard	30	0.163	0.059	125	135	145	97	101	112		Туре А	Yes
Lisbon	30	0.169	0.000	125	135	145	97	105	112		Type A	Yes
Litchfield	40	0.184	0.065	110	120	145	85	93	97		- JPC A	Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Туре А	Yes
Madison	30	0.173	0.060	120	130	140	93	103	108		Type B	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Туре В	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	101			Yes

ASCE 7 Hazards Report

Address: 50 Plantation Rd Broad Brook, Connecticut 06016 Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 158.08 ft (NAVD 88) Latitude: 41.87543 Longitude: -72.564799

Wind

Results:

122 Vmph
76 Vmph
86 Vmph
93 Vmph
100 Vmph

Date Socessed:

AGGEUSE147200,1Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.177	S _{DS} :	0.189	
S ₁ :	0.064	S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F_v :	2.4	PGA :	0.088	
S _{MS} :	0.284	PGA _M :	0.141	
S _{M1} :	0.154	F _{PGA} :	1.6	
		e	1	

Seismic Design Category B

Data Accessed: Date Source:

Wed Jul 14 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Other Other <th< th=""><th>Ph. 860-663-1697 Fax_860-663-0635</th><th></th><th>Project:</th><th></th><th></th><th>Verizon</th><th>- South Wine</th><th>Verizon - South Windsor North CT - LSub6</th><th>T - LSub6</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Ph. 860-663-1697 Fax_860-663-0635		Project:			Verizon	- South Wine	Verizon - South Windsor North CT - LSub6	T - LSub6							
Interfact Interfact <t< th=""><th></th><th></th><th>Prepared:</th><th></th><th></th><th>07.09.2</th><th>-</th><th></th><th></th><th></th><th></th><th>Revised:</th><th></th><th>đ</th><th>APT Job No.</th><th></th></t<>			Prepared:			07.09.2	-					Revised:		đ	APT Job No.	
Terreteneration						Antenna and A	Appurtenance	Area Calcula	tions							
Instruction 20 81 61	Height	Carrier/Equipment	ltem Quantity	Dir	suo	Area	(ea)							Adjusted Net CfAa (ft2)	Weight (ea) (Ibs)	
Constrained Constraine Constrained Constrained Constrained Constrained Constrai	94.00	Prop. Verizon L Sub6 Antennas	2.00	35.1	-	_	-							7.25	87.1	
Constrained (Constrained) Constrained (Constraine) Constrained (Constrained) Con	94.00 1 02 00	Prop. Verizon LSub6 Antennas Pron Varizon Panel Antennas	1.00	35.1 72.0									5.18 2.94	5.18 23.06	87.1 60.0	
Constrained (Constrained) Constrained) Constrained (Constrained) Constraind) Constrained (Constrained) <td>102.00</td> <td>Prop. Verizon Panel Antennas</td> <td>2.00</td> <td>72.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.47</td> <td>16.47</td> <td>60.0</td> <td></td>	102.00	Prop. Verizon Panel Antennas	2.00	72.0									6.47	16.47	60.0	
Constrained (Constrained) Constrained) Constrated (Con	94.00 94.00	Prop. Verizon B2/B66A RRH BR049 Prop. Verizon B2/B66A RRH BR049	2:00	15.0 15.0									9.6	2.03	97.5 97.5	
Manual Matrix Manual	94.00	Prop. Verizon B5/B13 RRH BR04C	2.00	15.0					_				1.06	2.84	82.0	
Montonerset monotoner	94.00 94.00	Prop. Venizon Bove13 KKH BK04C Prop. Venizon Samsung CBRS RT44001-48A RRH	2.00	10.6									2.71	1.20	82.0 11.0	
W. Wang Former W. Wang	94.00	Prop. Verizon Samsung CBRS RT44001-48A RRH	0.1	1.0									0.01	0.01	11.0	
Weak Mean Constrained fragment of the constrai	102.00	Prop. Verizon 60VP	9 9 1 9	29.5									1.44	4.44	32.0	
Bit Mit Mich Mich Mit	98.00 98.00	Prop. Verizon Pipe Mounts (For Ant + KKHs) Prop. Verizon Mounts	3.00	180.0				_					1.50	31.50 12.60	115.0 80.0	
Matrix for the form of the form	112.00	Exist AT&T Panel Antennas (KMW AM-X-CD-16-65-00T-RET)	1.00	72.0		-		+		+			36.27	117.67 5.72	48.5	
Mathematic Registriction (Mathematic Registriction) Gene (Mathematic Registriction)	112.00	Exist: AT&T Panel Antennas (Powerwave P65-17-XLH-RR)	<u>6</u>	96.0									1.47	11.47	62.0	
Mithomene (157-10) 200 500 101 131 520 100 100 103 Mithomene (157-10) 200 143 143 143 143 143 143 Mithomene (157-101) 200 143 123 120 100 100 103 103 Mithomene (157-101) 200 143 123 120 100 100 103 103 103 103 Mithomene (157-101) 200 143 152 220 110 101 100 100 103	112.50	EXIST. A I & I Panel Anterinas (Рометиа и Роб-17-АСН-КК) Exist. AT&T Panel Antennas (Powerwave 7770)	0.4	90.0 55.0									2.97	8.03 16.08	39.0	
Mit (Finement (5774(1)) 400 144 8.2 2.6 0.28 1.57 F.M 1.31 1.20 0.00 6.88 6.48 <td>112.50</td> <td>Exist. AT&T Panel Antennas (Powerwave 7770)</td> <td>2.00</td> <td>55.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.48</td> <td>11.48</td> <td>39.0</td> <td></td>	112.50	Exist. AT&T Panel Antennas (Powerwave 7770)	2.00	55.0									1.48	11.48	39.0	
Rith (Fincen (RIG 1) Control (Fincen (RIG 1)) Control (Fi	113.50	Exist. AT&T TMAs (Powerwave LGP21401)	4.00 0.0	14.4									4.82	4.82 6 75	14.1	
Bit Bit Finctore FIBI 3) 10 07 72 22 110 FUL 130 301 100 303 301	113.50	Exist. AT&T RRUS (Ericcson RRUS 11)	2.00	19.7									90	4.24	50.0	
RNUE (Encon FNUE (2) 2 0 3 1 0 3 1 0 6	113.50	Exist. AT&T RRUs (Ericcson RRUS 11)	1.00	19.7							-		3.03	3.03	50.0	
RNU Control 244 100 244 100 244 100 244 100 341 341 341 St DC3-seled/GE 100 104 63 100 101 100 100 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 9 101 <td>113.50</td> <td>Exist. AT&T RRUs (Ericcson RRUS 12)</td> <td>2.00</td> <td>20.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>3.82</td> <td>4.78</td> <td>50.0</td> <td></td>	113.50	Exist. AT&T RRUs (Ericcson RRUS 12)	2.00	20.4							-		3.82	4.78	50.0	
Sin (DC2-486-006; att) 200 104 6.3 108 108 109 109 109 000 109 000 109 000 109 000	113.50	Exist. AT&T RRUs (Ericcson RRUS 12)	1.00	20.4							-		 3.41	3.41	50.0	
Sh (DC2-shelp-ORE, net) 10 0.4 6.3 10.8 10.6 10.6 10.6 0.00 </td <td>113.50</td> <td>Exist. AT&T SA (DC2-48-60-09E, est.)</td> <td>2.00</td> <td>10.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.19</td> <td>0.84</td> <td>16.0</td> <td></td>	113.50	Exist. AT&T SA (DC2-48-60-09E, est.)	2.00	10.4									1.19	0.84	16.0	
Anomane RFS pAVIV 3-SABCITSC) 20 22 64 22 64 22 64 22 64 24 64 24 64 24 64	113.50	Exist. AT&T SA (DC2-48-60-09E, est.)	1.00	10.4									0.60	0.60	16.0	
Montense (FFS APX) (B-2061/TS-C) 1.00 2.0 3.2 3.40 10.3 FLV 1.20 5.17	119.00	MetroPCS/T-Mobile Panel Antennas (RFS APXV18-206517S-C)	2.00	72.0				-		-			0.33	7.23	26.4	
Antimume (FS ANX) Saties) 200 720 118 7.0 5.90 6.10 FLVT 139 8.17 100 0.70 8.17 1.14 RFNB (000 MHZ RFN) 100 157 130 88 1.42 1.21 FLVT 130 8.17 100 8.77 8.17 8.17 100 1.65 3.70 2.86 1.87 1.00 1.67 3.70 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 2.86 1.87 1.00 1.90 2.86 2.8	119.00	MetroPCS/T-Mobile Panel Antennas (RFS APXV18-206517S-C)	1.00	72.0									5.17 5.50	5.17 12.40	26.4	
All Total T	121.00 121.00	Exist. Sprint Panel Antennas (RFS APXV Series) Exist. Sprint Panel Antennas (RFS APXV Series)	2.00	72.0 72.0					• •				6.34	11.44 8.17	57.0 57.0	
If Refs (1000 MHZ RFH) 200 250 110 140 130 255 141 130 255 141 130 255	115.50	Exist. Sprint RRHs (800 MHz RRH)	2.00	15.7					• •				3.70 or	2.59	53.0	
Herber (17) 100 250 111 113 2.25 FLM 132 2.55 100 <	112.50	Exist. Sprint RRHS (300 MHZ RRH) Exist. Sprint RRHS (1900 MHZ RRH)	2.00	25.0									8.08	3.56	0.08	
FPere Box (1474-49) 100 140 00 100	112.50	Exist. Sprint RRHs (1900 MHz RRH)	1.00	25.0					•				2.55	2.55 30.16	60.0	
Affentes (vgr24/F2)(F) 100 110 120 127 126 126 127 126 126 126 126 126 127 127 126 127 126 126 127 126	10.00	Exist. CW Fiber Box (14"x14"x8")	1.00	14.0				-			Ì		.02	1.02	18.0	
Member (Applic) 100 211 118 45 346 100 100 414 100 414 464 464 Member (Applic) 100 170 140 70 140 70 436 464	109.00 119.00	Exist. CW Fiber Box (14"x14"x8") Exist. CW Panel Antennas (ArgusLLPX310R-V4)	1.00 2.00	14.0 42.1									1.77	1.77 6.50	18.0 28.7	
Michail Tio	119.00	Exist. CW Panel Antennas (ArgusLLPX310R-V4) Evict CM PDHe (177-014 Eev)	1.00	42.1									4.64	4.64	28.7 50.0	
Deres (17/12/57 est) 200 120 60 720 60 720 61 720 61 720 63 720 64 720 66 720 66 720 66 720 66 720 721 723 723	116.00	Exist. CW RRHs (17*x14* Est)	1.00	17.0									2.15	2.15	50.0	
Will Bhere (AAMT2520-28) 100 550 650 551 100 100 100 100 100 Will Bhere (AAMT2520-25) 100 550 550 650 551 100 100 100 100 Will Bhere (AAMT2520-25) 100 550 551 100 100 100 100 100 Will Bhere (AAMT2520-25) 100 550 551 100 100 100 100 Will Bhere (AAMT2520-25) 100 550 551 551 551 551 opsafe (Par Mounts (P3200 est) 300 35 680 70 154 100 100 100 opsafe (Par Mounts (P3200 est) 300 35 680 70 154 74 74 opsafe (Par Mounts (P3200 est) 300 35 600 714 150 100 100 347 347 opsafe (Par Mounts (P3200 est) 300 35 600 714 714 714 710 710 opsafe (Par Mounts (P3200 est) 300 35 600 714 714 710 710 opsafe (Par Mounts (P3200 est) 300 35 714 714 710 710 749 <td>124.00</td> <td>Exist. CW Fiber Boxes (12*x12*x6* est.)</td> <td>2.00</td> <td>12.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.32</td> <td>0.92</td> <td>16.0</td> <td></td>	124.00	Exist. CW Fiber Boxes (12*x12*x6* est.)	2.00	12.0									1.32	0.92	16.0	
W Delia (A-MTT-23-5-25) 10 350 163 851 100 FL/T 1:30 1106 100 000 1108 774 cosed Ppe Mounts (P:32/0 est) 300 35 1080 70 283 003 R/ONND 0.70 144 100 100 4727 351 551 551 551 30.8 cosed Ppe Mounts (P:32/0 est) 300 35 680 70 35 114 155 003 R/ONND 0.70 146 100 100 347 347 347 347 347 347 347 347 347 347	125.00	Exist. CW MW Dishe (A-ANT-23-G-2.5)	1.00	35.0					_				1.06	11.06	47.6	
Constraint 200 35 160 70 144 100 100 551 551 551 seeded Pre-Mounts (P3200 rest) 300 35 860 70 144 100 100 551 551 551 seeded Pre-Mounts (P3200 rest) 300 35 860 70 144 100 100 439 439 347 seeder Pre-Mounts (P3200 rest) 300 35 860 114 155 005 ROUND 077 146 100 100 439 347 seed Pipe Mounts (P3200 rest) 300 35 600 8CUND 070 146 100 100 233 347 seed Pipe Mounts (P3200 rest) 300 35 600 8CUND 070 146 100 100 233 243 seed Pipe Mounts (P3200 rest) 300 35 146 77.14 ROUND 100 100 100 243 449 seed Pipe Mounts (P3200 rest) <	125.00	Exist. CW MW Dishe (A-ANT-23-G-2.5)	1.00	35.0									1.06	7.74 39.48	47.6	
The Mounte (P2x00 test) 200 3:0 3:0 3:0 3:0 3:0 3:0 3:0 3:0 3:0 3	117.00	Exist. AT&T/CW Exposed Pipe Mounts (P3x20' est.)	3.00	3.5						-			5.51	5.51	151.6	
sed Pipe Mounts (P2:52/201 et l) 300 30 46.0 30 15.38 R.OUND 103 1.90 1.00 2.83 2.83 2.93 3.49 3.00 35 1.46 17.14 R.OUND 1.03 1.90 1.00 1.00 2.83 4.49 4.49 4.49 4.49 4.49 4.49 4.49 4.4		Exist: A lix I exposed Pipe Mounts (P3x20' est.) Exist: AT&TMetro Excosed Pipe Mounts (P3x20' est.)	3.00	35.0									4.39 1.47	4.39 3.47	151.6	
osed Pipe Mounts (*3-20 est) 3.00 3.5 60.0 3.5 1.46 17.14 ROUND 1.03 1.50 1.00 4.49 4.49 4.49 4.49 4.49		Exist. AT&T Exposed Pipe Mounts (P2.5x20' est.)	3.00	3.0									2.83	2.83	115.8	
		Exist. Sprint Exposed Pipe Mounts (P3x20' est.)	3.00	3.5									1.49 0.69	4.49 20.69	151.6	
ens: sa nd RRU's considered not shielded from wind by attennals).							-			-			1		Total Sum Weight	
nhs: s and RRUs considered not shielded from wind by anemals).																
s and RRUs considered not sheleded from wind by antenna(s).	ents:															
	s and RRU's considered not sh	nielded from wind by antenna(s).														

All-Points Technology Corporation

Consulting Engineers	Subject:	Water Reservoir Wind Load Calculations		
3 Saddlebrook Drive,				
Killingworth, CT 06419	Project:	Verizon - South Windsor North CT - LSub	36	
Ph. 860-663-1697				
Fax. 860-663-0935	Prepared:	07.09.21	Revised:	CT141_12500

k Wind Load Distribution (ASCE 7-10) Tank Empty

Due to the height of the structure, the analytical method is requir	ed.			
Uttimate Wind Speed (3 Sec Gust), V = Risk Category = Epocure Category = Base Tower Cross-Section =	125 mph II C SQ	2015 IBC Section	no longer utilized as	a water tank and is empty.
Terrain Exposure Constants:				
Topographic Factor, Kzt =	1.00	ASCE 7-10	Sec. 26.8.2	
Wind Directionality Factor, Kd =	0.85 Tower	ASCE 7-10	Table 26.6-1	
	0.95 Standpipe/Reset	rvoir		
3-Sec Gust Speed Power Law Exponent a =	9.5	ASCE 7-10	Table 26.9-1	
Nominal Height of the Atmospheric Boundary Layer (zg) =	900	ASCE 7-10	Table 26.9-1	
Gust Response Factor, G (Tank) =	0.85	ASCE 7-10	Sec. 26.9.1	
K _{zenin} =	0.85	ASCE 7-10		
Velocity Pressure at height z, qz =	qz =0.00256 Kz Kzt Kd V ²	ASCE 7-10	(Eq. 29.3-1)	Sec. 29.3.2
Design Wind Load, P	F = qzGCfAf ≥ 10psf	ASCE 7-10	[Eq. 29.5-1]	Sec. 29.8

Water Tower Wind Load Calculation - Support Tower

Component	Top of Section Elevation	Bottom of Section Elevation	Δh	Outside Width at Top	at Bottom	Aleg	Agirts	AF	AR (Sway Rods)	Ag			
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft ²)							
Support Tower	109	74	35	14.85	21.77	100.00	0.00	100.00	9.13	640.85			
Support Tower	74	37	37	21.77	29.09	104.65	14.02	118.67	10.45	940.91			
Support Tower	37	0	37	29.09	36.41	104.65	18.83	123.48	11.61	1211.75			
		Sub-total	109										
	z bar	Kz	qz	e	CF	RR	DF	DR	DFAF	DRARRR	AE	F	OTM
	(ft)										(ft ²)	(kips)	(ft-kips)
	91.5	1.24	42.23	0.170	3.111	0.585	1.00	1.00	100.00	5.34	105.34	11.77	1076.52
	55.5	1.12	38.01	0.137	3.266	0.580	1.00	1.00	118.67	6.06	124.73	13.16	730.46
	18.5	0.89	30.16	0.111	3.392	0.576	1.00	1.00	123.48	6.69	130.17	11.32	209.44
												26	2016

Water Tower Wind Load Calculation - Stand Pipe, Reservoir and Appurtenances

Component	Elevation	Section of	Δh	Depth	Diameter	AF	AR	z bar	Kz	qz	CF	F	OTM
	(ft)	(ft)	(ft)	(ft)	(ft ²)	(ft ²)	(ft ²)	(ft)				(kips)	(ft-kips)
Stand-Pipe	100	74	26		3.00		78.00	87.0	1.23	46.70	0.70	2.17	188.58
Stand-Pipe	74	37	37		3.00		111.00	55.5	1.12	42.49	0.70	2.81	155.74
Stand-Pipe	37	0	37		3.00		111.00	18.5	0.89	33.71	0.70	2.23	41.19
Ladder	112.5	74	38.5	0.2		7.70		93.3	1.25	42.40	2.00	0.56	51.76
Ladder	74	37	37	0.2		7.40		55.5	1.12	38.01	2.00	0.48	26.54
Ladder	37	0	37	0.2		7.40		18.5	0.89	30.16	2.00	0.38	7.02
Dome Bulb	109	100	9				133.00	104.5	1.28	48.54	0.50	2.74	286.73
Reservoir Cylinder	127	109	18		19.00		342.00	118.0	1.31	49.80	0.50	7.24	854.12
Reservoir Ladder	129	109	20	0.2		4.00		119.0	1.31	44.64	2.00	0.30	36.12
Exposed Catwalk	112	109	3			4.00		110.5	1.29	43.95	2.00	0.30	33.02
Cone Roof	132.5	125.67	6.83				88.20	129.1	1.34	50.75	0.50	1.90	245.56
Finial	134.3	133.3	1		0.67		0.67	133.8	1.35	45.75	0.50	0.01	1.74
												21.11	1928.11

Water Tower Wind Load Calculation - Antennas & Appurtenances

Component	Top of Section Elevation	Bottom of Section Elevation	z bar	Kz	qz	CFAa (from Equip. Worksheet)	F	ОТМ
	(ft)	(ft)	(ft)			(ft ²)	(kips)	(ft-kips)
Exposed Coaxial Cables	112	74	93.0	1.25	47.36	15.05	0.61	56.34
Exposed Coaxial Cables	74	37	55.5	1.12	42.49	14.65	0.53	29.37
Exposed Coaxial Cables	37	10	23.5	0.93	35.46	10.69	0.32	7.57
CW MW Dishes	125	125	125.0	1.33	45.10	18.80	0.72	90.09
CW Fiber Boxes	124	124	124.0	1.32	45.02	1.58	0.06	7.50
Sprint Panels	121	121	121.0	1.32	44.79	19.61	0.75	90.35
CW Panels	119	119	119.0	1.31	44.64	11.14	0.42	50.27
MetroPCS/T-Mobile Panels	119	119	119.0	1.31	44.64	12.40	0.47	55.99
Exposed Pipe Mounts	117	117	117.0	1.31	49.71	20.69	0.87	102.29
CW RRHs	116	116	116.0	1.31	44.40	5.17	0.20	22.64
Sprint 800 MHz RRHs	115.5	115.5	115.5	1.30	44.36	4.44	0.17	19.34
Sprint 1900 MHz RRHs	112.5	112.5	112.5	1.30	44.11	6.11	0.23	25.77
AT&T RRUS, TMAS & SA	113.5	113.5	113.5	1.30	44.19	28.45	1.07	121.32
AT&T Panels	112.5	112.5	112.5	1.30	44.11	27.56	1.03	116.26
AT&T Panels	112	112	112.0	1.30	44.07	25.21	0.94	105.78
CW Fiber Boxes	109	109	109.0	1.29	43.82	1.77	0.07	7.18
Prop. Verizon Pipe Mounts	98	98	98.0	1.26	47.89	31.50	1.28	125.66
Prop. Verizon Mounts	98	98	98.0	1.26	42.85	12.60	0.46	44.97
Prop. Verizon Panels & OVPs	102	102	102.0	1.27	43.21	50.18	1.84	187.99
Prop. Verizon Panels & RRHs	94	94	94.0	1.25	42.47	23.37	0.84	79.31
CW Fiber Box	10	10	10.0	0.85	28.90	1.02	0.03	0.25
1						342.00	12.91	1346.25

orizont	al Force at Level 3 without Antennas
Horizont	al Force at Level 3 with Antennas
Horizont	al Force at Level 2 Girts without Antennas
Horizont	al Force at Level 2 Girts with Antennas
Horizont	al Force at Level 1 Girts without Antennas
Horizont	al Force at Level 1 Girts with Antennas

Base Shear (Water Tank) = Base Shear (Water Tank + Antennas) =

OTM (Water Tank) = OTM (Water Tank + Antennas) =

Overturning % Increase = If >10% check anchor bolts

Shear % Increase = If >10% check bracing (Gross tank material weight minus stand pipe & 1/2 spider rods + equipment weight used for foundation analysis)

٦

12.91	1346.25	
74.3	kips	(Gross ta
19.7 31.5 35.2 47.5 50.4 63.1		
57.4 70.3	kips kips	
	3944.5 5290.8	(ft-kips) (ft-kips)

34.1% 22.5%

All-Points Technology Corporation

nts Technology Corpo Consulting Engineers 3 Saddlebrook Drive, Killingworth, CT 06419 Ph. 860-663-1697 Fax. 860-663-0935

Subject: Project:

Prepared:

Sway Bracing & Anchor Bolt Analysis

Verizon - South Windsor North CT - LSub6

07.09.21

Sway Rod X - Bracing Ar	nalysis at Leve	el 1 (0 to 37-ft ± AGL)
X Bracing Rod Dia. (in)	1.5	New
Rod Yield Stress, Fy (psi)	36,000	ASTM A307 USED
Rod Tensile Stress, Fu (psi)	60,000	ASTM A307 USED
Angle of Sway Rod From Ground Plane (degrees)	50	
Un-threaded Portion Area (in ²)	1.767	(Nominal area, Ag)
Available Tension Strength (Turnbuckle)	52.50	kips (1 1/2" dia. UNC/4UN Class 2B)
Available Tension Strength (Clevis)	52.50	kips (#4, UNC Class 2B)
Available Tension Strength in Un-threaded Rod	57.26	(0.90*Fy*Ag)
Available Tension Strength in Threaded Rod	59.64	(0.75*75*Fu*Ag)
Net Ultimate Shear Force (one side)	63.12	kips
Ultimate Tension Force in Sway Rod	49.10	kips
Usage (Tension)	0.94	<1.0 OK

Assumes only one sway rod is engaged per side.

Sway Rod X - Bracing Ana	Iysis at Leve	I 2 (37 to 74-ft ± AGL)
X Bracing Rod Dia. (in)	1.5	New
Rod Yield Stress, Fy (psi)	36,000	ASTM A307 USED
Rod Tensile Stress, Fu (psi)	60,000	ASTM A307 USED
Angle of Sway Rod From Ground Plane (degrees)	59	
Un-threaded Portion Area (in ²)	1.767	(Nominal area, Ag)
Available Tension Strength (Turnbuckle)	52.50	kips (1 1/2" dia. UNC/4UN Class 2B)
Available Tension Strength (Clevis)	52.50	kips (#4, UNC Class 2B)
Available Tension Strength in Un-threaded Rod	57.26	(0.90*Fy*Ag)
Available Tension Strength in Threaded Rod	59.64	(0.75*75*Fu*Ag)
Net Ultimate Shear Force	47.51	kips
Ultimate Tension Force in Sway Rod	46.12	kips
Usage (Tension)	0.88	<1.0 OK

Assumes only one sway rod is engaged per side.

1	Sway Rod X - Bracing Ana	lysis at Level	13 (74 to 109-ft + AGL)
	X Bracing Rod Dia. (in)	1.375	New
	Rod Yield Stress, Fy (psi)	36,000	ASTM A307 USED
	Rod Tensile Stress, Fu (psi)	60,000	ASTM A307 USED
			ASTM ASUT USED
	Angle of Sway Rod From Ground Plane (degrees)	66	
	Un-threaded Portion Area (in ²)	1.485	(Nominal area, Ag)
	Available Tension Strength (Turnbuckle)	43.50	kips (1 3/8" dia. UNC/4UN Class 2B)
	Available Tension Strength (Clevis)	45.00	kips (#3-1/2, UNC Class 2B)
	Available Tension Strength in Un-threaded Rod	48.11	(0.90*Fy*Ag)
	Available Tension Strength in Threaded Rod	50.12	(0.75*75*Fu*Ag)
	Net Ultimate Shear Force	31.47	kips
	Ultimate Tension Force in Sway Rod	38.69	kips
	Usage (Tension)	0.89	<1.0 OK

Assumes only one sway rod is engaged per side.

Ancho	r Bolt Analysi	is
Anchor Rod Dia. (in)	1.375	1.5" dia. Bolts. 1/8" corrosion allowance used
Number of Exist. Anchor Bolts Per Leg	2	
Number of Legs	4	(Assumes central standpipe takes no shell DL)
Leg Circle Diameter (in)	594	Field verified
Bolt Tensile Stress (psi)	60,000	ASTM A7-39 used (tank built circa 1946)
Number of Threads per Inch	6	
Bolt Area (in ²)	1.485	(Gross area, Ag)
Net Bolt Area (in ²)	1.155	(Net Area, An)
Net Ultimate Uplift Tension Force Per Bolt	45.08	kips, (0.9DL + 1.0WL)
Total Ultimate Base Wind Shear	70.27	kips, (x1.0WL)
Ultimate Shear Per Leg	17.57	kips, (x1.0 WL)
Shear Per Anchor Bolt	8.78	kips, (x1.0 WL)
Available Bolt Tension Strength	50.19	kips
Available Bolt Shear Strength	30.14	kips
Additional Anchor Tension Strength	10.51	kips
Additional Anchor Shear Strength	19.02	kips
Usage	0.58	<1.0 OK

Note: Anchor bolt usage includes installation of (1) new 3/4" dia. anchor bolt per leg.

Revised:		APT Job No. CT141_12500
Sway Rod X - Base	Wing Plate Co	onnection Analysis (AISC 14th Ed. Sec D5)
Gussett Plate Thickness	0.375	Existing
Plate Yield Stress, Fy (psi)	33.000	ASTM A7-39 used (tank built circa 1946)
Plate Tensile Stress, Fu (psi)	60,000	ASTM A7-39 used (tank built circa 1946)
beff	1.380	in
b	1.950	in
Asf	2.488	in ²
a	2.380	in
d	1.875	in
Apb	0.703	in ²
Ultimate Force in Direction of Rod	49.10	kips
Available Tension Strength at Pin (Net)	46.58	kips
Available Long Shear Strength at Pin	67.18	kips
Available Bearing Strength at Pin	31.32	kips
Available Tension Strength (Gross area)	84.87	kips
Usage	1.57	>1.0 BEARING CONTROLS, ADD 1/4" THK, REINF, PLATE
•	0.97	
Reinf Usage	0.97	<1.0 OK
Sway Rod X - Gusset F	late Connectio	on Analysis (37 ± AGL) (AISC 14th Ed. Sec D5)
Gussett Plate Thickness	0.375	Existing (Assumed, V.I.F.)
		ASTM A7-39 used (tank built circa 1946)
Plate Yield Stress, Fy (psi)	33,000	
Plate Tensile Stress, Fu (psi) beff	60,000	ASTM A7-39 used (tank built circa 1946)
	1.380	in
b	2.960	in 2
Asf	2.511	in ²
a	2.410	in
d	1.875	in in ²
Apb	0.703	
Ultimate Force in Direction of Rod	49.10	kips
Available Tension Strength at Pin (Net)	46.58	kips
Available Long Shear Strength at Pin	67.79	kips
Available Bearing Strength at Pin	31.32	kips
Available Tension Strength (Gross area)	95.78	kips
Usage	1.57	>1.0 BEARING CONTROLS. ADD 1/4" THK. REINF. PLATE
Reinf Usage	0.97	<1.0 OK
Gussett Plate Thickness	0.375	on Analysis (74 ± AGL) (AISC 14th Ed. Sec D5) Existing (Assumed, V.I.F.)
Plate Yield Stress, Fy (psi)	33.000	ASTM A7-39 used (tank built circa 1946)
Plate Tensile Stress, Fu (psi)	60.000	ASTM A7-39 used (tank built circa 1946)
beff	1.380	in
b	2.380	in
Asf	2.488	in ²
a	2.380	in
d	1.875	in
Apb	0.703	in ²
Ultimate Force in Direction of Rod	46.12	lin kips
Available Tension Strength at Pin (Net)	46.12	kips
Available Long Shear Strength at Pin	67.18	kips
Available Bearing Strength at Pin	31.32	kips
Available Tension Strength (Gross area)	80.75	kips
Usage	1.47	>1.0 BEARING CONTROLS. ADD 1/4" THK. REINF. PLATE
Reinf Usage	0.92	<1.0 OK

Sway Rod X - Gusset Plate Connection Analysis (109 ± AGL) (AISC 14th Ed. Sec D5)								
Gussett Plate Thickness	0.375	Existing (Assumed, V.I.F.)						
Plate Yield Stress, Fy (psi)	33,000	ASTM A7-39 used (tank built circa 1946)						
Plate Tensile Stress, Fu (psi)	60,000	ASTM A7-39 used (tank built circa 1946)						
beff	1.380	in						
b	2.060	in						
Asf	2.376	in ²						
а	2.230	in						
d	1.875	in						
Apb	0.703	in ²						
Ultimate Force in Direction of Rod	38.69	kips						
Available Tension Strength at Pin (Net)	46.58	kips						
Available Long Shear Strength at Pin	64.14	kips						
Available Bearing Strength at Pin	31.32	kips						
Available Tension Strength (Gross area)	90.10	kips						
Usage	1.24	>1.0 BEARING CONTROLS. ADD 1/4" THK. REINF. PLATE						
Reinf Usage	0.79	<1.0 OK						

All-Points Technology Corporation								
Consulting Engineers	Subject:	Existing Built	Existing Built-Up Column, Lacing Bar and Girt Analysis					
3 Saddlebrook Drive,								
Killingworth, CT 06419	Project:	Verizon - Sou	Verizon - South Windsor North CT - LSub6					
Ph. 860-663-1697								
Fax. 860-663-0935	Prepared:	07.09.21	Revised:	APT Job No.	CT141_12500			

Lattice Column & Lacing Bar Analysis

Column Steel Yield Strength	33	ksi, ASTM A7-39 (tank built circa 1946)
Column Area	12.095	in ²
Lacing Bar Thickness	0.375	in
Lacing Bar Depth	2.25	in
Column Moment of Inertia, Ixx	257.41	in ⁴ (Calculated Externally)
Column Moment of Inertia, Iyy	286.94	in ⁴ (Calculated Externally)
Column Radius of Gyration, rxx	4.613	in (Calculated Externally)
Column Radius of Gyration, ryy	4.871	in (Calculated Externally)
Column Unbraced Length	445.200	in
Column Effective Length Factor, K Channel Flange Slenderness Ratio	1.000 5.868	(Calculated Externally)
Channel Web Slenderness Ratio	5.000 34.57	(Calculated Externally)
Lacing Plate Slenderness Ratio	6.00	(Calculated Externally)
Slenderness Parameters	0.00	(Galculated Externally)
b/t ≤ 0.56(E/Fy)^2	16.60	Channel Flange - Unstiffened Element
h/tw ≤ 1.49(E/Fy)^2	44.17	Channel Web - Stiffened Element
$b/t \le 0.45 (E/Fy)^{2}$	13.34	Lacing Plate - Unstiffened Element
Column Slenderness Ratio, KL/r	96.51	if < 200, OK
Column Floatia Bualding Stress, Fo	30.73	ksi
Column Elastic Buckling Stress, Fe	30.73	KSI
-	04.05	
Fcr	21.05	ksi
Column Design	000.47	luin n
Compressive Strength, Ø Pn	229.17	kips
		kips, (1.2DL + 1.0WL) Tank Empty
Ultimate Compressive Force, Pu	129.17	No longer used to store water.
Built-Up Column Usage	0.56	if <=1.0, OK
	0.00	
Length of Angle Chord	16.38	in
Between Lacing Bars, la	0 707	
Channel, ryy	0.797	in (Calculated Externally)
75% of Column KL/r	72.38	
La/rz	20.55	< 75% Column KL/r, OK
Length of Lacing Between	11.31	in
Channel Chords, Lb	0.400	
Radius of Gyration of Bar, rb	0.108	× 110 OK
lb/rb	104.51	if < 140, OK
Bar Elastic Buckling Stress, Fe	26.20	ksi
Fcr	19.48	ksi
Lacing Bar Design Compressive Strength, ⊘Pn bar	16.44	kips
Strength, © Ph bar Required Shearing Strength on		, kips, (2% Built-Up Column
Each Face of Latticed Column	2.29	Compression Strength)
Axial Force in Lacing Bar	3.24	kips, if < Lacing Bar
Lacing Bar Usage	0.20	if <=1.0, OK

Girt Steel Yield Strength	33	ksi, ASTM A7-39 (tank built circa 1946)
Built-Up Girt Area	5.226	in ²
Moment of Inertia, Ixx	30.86	in ⁴ (Calculated Externally)
Moment of Inertia, lyy	22.01	in ⁴ (Calculated Externally)
Radius of Gyration, rxx	2.430	in (Calculated Externally)
Radius of Gyration, ryy	2.052	in (Calculated Externally)
Unbraced Length	332.180	in
Effective Length Factor, K	1.000	
Lower Channel Flange Slenderness Ratio	5.598	(Calculated Externally)
Lower Channel Web Slenderness Ratio	21.88	(Calculated Externally)
Upper Channel Flange Slenderness Ratio	5.710	(Calculated Externally)
Upper Channel Web Slenderness Ratio	25.00	(Calculated Externally)
Slenderness Parameters		
b/t ≤ 0.56(E/Fy)^2	16.60	Channel Flange - Unstiffened Element
h/tw ≤ 1.49(E/Fy)^2	44.17	Channel Web - Stiffened Element
Slenderness Ratio, KL/r	161.88	if < 200, OK
Elastic Buckling Stress, Fe	10.92	ksi
Fcr	9.58	ksi
Design	45.05	Lin -
Compressive Strength, Ø Pn	45.05	kips
Ultimate Compressive Force, Pu	31.56	kips, (1.0WL)/Two Sides - Tank Empty No longer used to store water.
Lower Built-Up Girt Usage	0.70	if <=1.0, OK

Built-Up Girt Analysis - Level 1 - 37-ft+/- (C7x9.8 Toe Up Over C6x8.2 Vert, est.)

Built-Up Girt Analysis - Level 2 - 74-ft+/- (C6x8.2 Toe Up Over C6x8.2 Vert, est.)

Girt Steel Yield Strength	33	ksi, ASTM A7-39 (tank built circa 1946)
Built-Up Girt Area	4.76	in ²
Moment of Inertia, Ixx	29.11	in ⁴ (Calculated Externally)
Moment of Inertia, lyy	13.90	in ⁴ (Calculated Externally)
Radius of Gyration, rxx	2.473	in (Calculated Externally)
Radius of Gyration, ryy	1.709	in (Calculated Externally)
Unbraced Length	244.300	in
Effective Length Factor, K	1.000	
Lower Channel Flange Slenderness Ratio	5.710	(Calculated Externally)
Lower Channel Web Slenderness Ratio	25.00	(Calculated Externally)
Upper Channel Flange Slenderness Ratio	5.710	(Calculated Externally)
Upper Channel Web Slenderness Ratio	25.00	(Calculated Externally)
Slenderness Parameters		
b/t ≤ 0.56(E/Fy)^2	16.60	Channel Flange - Unstiffened Element
h/tw ≤ 1.49(E/Fy)^2	44.17	Channel Web - Stiffened Element
Slenderness Ratio, KL/r	142.95	if < 200, OK
Elastic Buckling Stress, Fe	14.01	ksi
Fcr	12.28	ksi
Design	52.62	kips
Compressive Strength, Ø Pn	52.02	NP3
Ultimate Compressive Force, Pu	23.75	kips, (1.0WL)/Two Sides - Tank Empty
Olimate Compressive Force, Pu	23.75	No longer used to store water.
Lower Built-Up Girt Usage	0.45	if <=1.0, OK

Project ID: Site Name: Date: CT141_12500 South Windsor North CT 07.09.21

Use (1) 3/4" DIA. Threaded Rod set in Hilti RE-500 Epoxy w/ 12" min. embedment

T _{allow} =	23070	lbs
V _{allow} =	49690	lbs
Anchor Quantity =	1.0	
f _{AN} =	0.69	<< Spacing Reduction Factor, 10"
f _{RN} =	0.66	<< Edge Distance Reduction Factor, 18"
f _{Av} =	0.58	<< Spacing Reduction Factor, 10"
f _{RV} =	0.66	<< Edge Distance Reduction Factor, 18" (Parallel)
f _{RV} =	0.74	<< Edge Distance Reduction Factor, 18" (Perpendicular)
f _{HV} =	1.00	<< Concrete Thickness Reduction Factor
LRFD Factor =	1	

Capacities:

T _{allow} =	10506.1	lbs	
V _{allow} =	19021.3	lbs	(Parallel)
V _{allow} =	21326.9	lbs	(Perpendicular)

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Project Title: Engineer: Project ID: Project Descr:

General Section Property Calculator

Printed: 9 JUL 2020, 10:23PM File: Lattice Column & Girt Section Properties.ec6

Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.31 ALL-POINTS TECHNOLOGY CORP.

Lic. # : KW-06006315 **DESCRIPTION:** Built - Up Latticed Column Section Properties

Final Section Properties

Total Area	:	12.095 in^2	lxx lyy	:	257.406 in^4 286.937 in^4	Sxx:-Y Sxx:+Y	:	42.901 in^3 42.901 in^3
	I C.G. dista	ance from Datum :	_			Syy:-X		41.345 in^3
X cg Dist.	:	0.0 in	Zxx	:	50.929 in^3	Sw:+X		41.345 in^3
Y og Dist.	:	0.0 in	Zyy	:	57.914 in^3	Cyy . IX		
Edge Distances	s from CG.	.:				r xx	:	4.613 in
+X	:	6.940 in	+Y	:	6.0 in	r yy	:	4.871 in
-X	:	-6.940 in	-Y	:	in			

Rotation of All Components @ Angle : 0.00 deg CCW

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Project Title: Engineer: Project ID: Project Descr:

/ ENGINEERING Title	e Block Line 6					Printed:	9 JUL 2020, 10:23PM			
General Section Proper	rty Calculator		File: Lattice Column & Girt Section Properties.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31							
Lic. # : KW-06006315						ALL-POINTS 1	TECHNOLOGY CORP.			
DESCRIPTION: Built - Up Latticed Column Section Properties										
Rectangular Shape : 2	Height =	0.0	00 in	Width =	0.000 in	Rotation =	0 deg CCW			
	Area =	0.0	00 in^2	Xcg= Ycg=	0.000 in 0.000 in					
Steel Shapes										
C12x20.7:1		Area =	6.04	7 in^2	Rotation = Xcg = Ycg =	180 deg CCW -4.698 in 0.000 in				
C12x20.7 : 2		Area =	6.04	7 in^2	Rotation = Xcg = Ycg =	0 deg CCW 4.698 in 0.000 in				

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing &

Project Title: Engineer: Project ID: Project Descr:

General Section Property Calculator Lic. # : KW-06006315

Printed: 9 JUL 2020, 10:22PM

File: Lattice Column & Girt Section Properties.ec6 Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.31 ALL-POINTS TECHNOLOGY CORP.

DESCRIPTION: Existing Level 1 Horz Girt Section Properties

Final Section Properties

Total Area	:	5.226 in^2	lxx lyy	:	30.862 in/4 22.007 in/4	Sxx:-Y Sxx:+Y	:	6.234 in^3 9.952 in^3
Calculated fina	I C.G. dista	ance from Datum :				Syy:-X		6.219 in^3
X cg Dist.	:	0.02912 in	Zxx	:	8.80 in^3		:	
Y cg Dist.	:	1.950 in	Zyy	:	8.289 in^3	Syy : +X	•	6.323 in^3
Edge Distance	s from CG.	:				r xx	:	2.430 in
+X	:	3.480 in	+Y	:	3.101 in	r yy	:	2.052 in
-X	:	-3.539 in	-Y	:	in			

Rotation of All Components @ Angle : 0.00 deg CCW

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing &

Project Title: Engineer: Project ID: Project Descr:

General Section Property Calculator Lic. # : KW-06006315

Printed: 9 JUL 2020, 10:23PM

File: Lattice Column & Girt Section Properties.ec6 Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.31 ALL-POINTS TECHNOLOGY CORP.

DESCRIPTION: Existing Level 2 Horz Girt Section Properties

Final Section Properties

Total Area	:	4.760 in^2	lxx	:	29.111 in/4	Sxx:-Y	:	6.080 in^3
Coloulated fina		tance from Datum :	lyy	:	13.899 in^4	Sxx : +Y	:	9.324 in^3
	I C.G. alsi		_			Syy:-X		4.570 in^3
X cg Dist.	:	0.03198 in	Zxx	:	8.510 in^3	Sw:+X		4.668 in^3
Y cg Dist.	:	1.788 in	Zyy	:	6.288 in^3	Зуу.тл	-	4.000 111 3
Edge Distance	s from CG	à:				rxx	:	2.473 in
+X	:	2.978 in	+Y	:	3.122 in	ryy		1.709 in
-X	:	-3.042 in	-Y	:	in	,,,	•	

Rotation of All Components @ Angle : 0.00 deg CCW

Use (1) 3/4" DIA. Threaded Rod set in Hilti RE-500 Epoxy w/ 12" min. embedment

T _{allow} =	23070	lbs	
V _{allow} =	49690	lbs	
Anchor Quantity =	1.0		
f _{AN} =	0.69	<< Spacing Reduction Factor, 10"	Reductions per Table 36 Hilti Anchor Fastening Technical
f _{RN} =	0.66	<< Edge Distance Reduction Factor, 18"	Guide (19th edition)
f _{Av} =	0.58	<< Spacing Reduction Factor, 10"	
f _{RV} =	0.66	<< Edge Distance Reduction Factor, 18" (Po	arallel)
f _{RV} =	0.74	<< Edge Distance Reduction Factor, 18" (Pe	erpendicular)
f _{HV} =	1.00	<< Concrete Thickness Reduction Factor	
LRFD Factor	1		

Capacities:

T _{allow} =	10506.1	lbs	
$V_{allow} =$	19021.3	lbs	(Parallel)
V _{allow} =	21326.9	lbs	(Perpendicular)

3 Saddlebrook Drive, Killingworth, CT 06419 PH: 860-663-1697: FAX: 860-663-0935 Verizon - South Windsor North CT

50 Plantation Road, East Windsor, CT 06016

APT FILING No. CT141_12500

Foundation Analysis Prepared by: JRM.

Checked by: MST, P.E.

Date/Rev: 07.09.21

<u>Elevaleu R</u>	eservoir Foundatio	on Analysis:
Max Reactions: Note: Structure no	longer utilized as a wa	ater tank and is empty.
Un-factored Base Axial Load =	<i>P</i> ≔74.3 • <i>kip</i>	(User Input) (Un-factored Axial Load Tank Self Weight +
Ultimate Base Shear Load =	V≔ 70.3 • <i>kip</i>	(User Input) Wireless Equip DL - Star Pipe & 1/2 x Spider Rod
Ultimate Base Moment =	<i>M</i> ≔5291 · ft · kip	(User Input) DL)
Load Factors:		
Dead Load Factor =	$DL_{f_1} := 0.9$	
Dead Load Factor =	<i>DL_{f2}</i> ≔1.2	
Wind Load Factor =	$WL_f \coloneqq 1.0$	
Foundation Data:	Foundation data of 2017 and June 20	obtained by field investigation during Ju 021.
Top Width of Frustrum Pyramid =	<i>W_{lop}</i> ≔ 67.3 <i>in</i>	(User Input)
Bot Width of Frustrum Pyramid =	W _{bot} := 127.43 <i>in</i>	(User Input)
Top Area of Frustrum Pyramid =	B _{1lop} := 4509.5 in ²	(User Input)
Bot Area of Frustrum Pyramid =	<i>B</i> _{2bot} ≔ 16396 <i>in</i> ²	(User Input)
Overall Depth of Pyramid =	<i>D</i> _f ≔ 74 <i>in</i>	(User Input)
Base Thickness =	T _{base} := 0.00 • <i>in</i>	(User Input)
Base Width =	<i>W_{base}</i> := 0.00 • <i>in</i>	(User Input)
Height of Foundation Above Grade =	$T_{ext} := 4.00 \cdot in$	(User Input)
Depth to Water Table =	D _{wt} := 99 • f t	(User Input) <u>Note:</u> Set Dwt to a
Water Tank Leg Circle Diameter =	<i>D_{circle}</i> ≔ 594.00 • <i>in</i>	(User Input) value greater than total depth of footin
Number of Legs =	N _{leg} := 4.00	(User Input) if water table does
Depth to Base of Foundation from Grade =	$D_{base} \coloneqq D_f + T_{base} -$	$T_{ext} = 5.833 \ ft$ not affect footing.
Material Data:		
Concrete Compressive Strength =	<i>f_c</i> := 3000 ∙ <i>psi</i>	(User Input)
Steel Reinforcment Yield Strength =	<i>F_y</i> := 40000 <i>psi</i>	(User Input)
Internal Friction Angle of Soil =	Φ _s ≔30• deg	(User Input)
Ultimate Soil Bearing Capacity =	q _s ≔ 8000 • psf	(User Input)
Unit Weight of Soil =	γ _{soil} ≔ 110 • pcf	(User Input)
Unit Weight of Concrete =	<i>γ_{conc}</i> ≔ 150 • <i>pcf</i>	(User Input)
Foundation Bouyancy =	<i>Bouyancy</i> ≔ 0	(User Input) (Yes=1 / No=0)
Depth to Neglect =	<i>D_n</i> ≔6 <i>in</i>	(User Input)
Cohesion of Clay Type Soil =	<i>c</i> := 0 • <i>ksf</i>	(User Input) (Use 0 for Sandy Sc
Coefficient of Friction Beween Concrete =	μ:=0.45	(User Input)
Coefficient of Lateral Soil Pressure =	$K_{\rho} \coloneqq \frac{1 + \sin\left(\Phi_{s}\right)}{1 - \sin\left(\Phi_{s}\right)} =$	3
Adjusted Concrete Unit Weight =	$\gamma_c = 150 \ pcf$	
Adjusted Soil Unit Weight =	γ _s = 110 pcf	

3 Saddlebrook Drive, Killingworth, CT 06419 PH: 860-663-1697: FAX: 860-663-0935 Verizon - South Windsor North CT

50 Plantation Road, East Windsor, CT 06016

APT FILING No. CT141_12500

Foundation Analysis Prepared by: JRM.

Checked by: MST, P.E.

F

Date/Rev: 07.09.21

	(V,W,c)
Factored Shear Force per Leg =	$V_{leg} \coloneqq \left(\frac{V \cdot WL_f}{N_{leg}}\right) = 17.575 \ \textit{kip}$
Factored Max Leg Uplift Force =	$U_{\text{plift}} \coloneqq \left(\frac{WL_f \cdot (4 \cdot M)}{N_{\text{leg}} \cdot D_{\text{circle}}}\right) - \left(\frac{DL_{f1} \cdot P}{N_{\text{leg}}}\right) = 90.17 \text{ kip}$
Factored Max Leg Compression Force =	$C_{ompression} \coloneqq \left(\frac{WL_f \cdot (4 \cdot M)}{N_{leg} \cdot D_{circle}}\right) + \left(\frac{DL_{f2} \cdot P}{N_{leg}}\right) = 129.18 \text{ kip}$
Calculate Foundation Volume:	
Volume of Frustum Pyramid Concrete Foundation =	$V_{Frutstum} \coloneqq \frac{1}{3} \cdot D_f \cdot \left(B_{1top} + B_{2bot} + \sqrt{B_{1top} \cdot B_{2bot}} \right) = 421.16 \ \mathbf{\hat{n}}^3$
Gross Volume of Conc =	$V_{conc} \coloneqq V_{Frulslum} = 421.16 \ \hbar^3$
Volume of Frustum Pyramid Below Grade (Minus Depth to Neglect) = V_{Fr}	$rutstumnet \coloneqq \frac{1}{3} \cdot \left(D_{base} \right) \cdot \left(B_{1top} + B_{2bot} + \sqrt{B_{1top} \cdot B_{2bot}} \right) = 398.4 \ \mathbf{ft}^3$
Net Volume of Conc =	$V_{concnet} \coloneqq V_{Frutstumnet} = 398.4 \ t^3$
Stability of Footing:	
Cross-Sectional Area of Resisting Soil at Base of Foundation =	$B_1 := B_{2bol} = 113.861 \ ft^2$
Cross-Sectional Area of Resisting Soil at Top of Foundation (Minus Depth to Neglect) =	$B_2 = 302.98 \ t^2$
Volume of Resisting Soil =	$V_{Soil} := \frac{1}{3} \cdot \left(\left(D_{base} \right) \cdot \left(B_1 + B_2 + \sqrt{B_1 \cdot B_2} \right) \right) - V_{concnel} = 773.28 \ \text{ft}^3$
Weight of Concrete =	$Wt_{conc} \coloneqq V_{conc} \cdot \gamma_c = 63.17 \ kip$
Weight of Resisting Soil =	$Wt_{soil} \coloneqq V_{Soil} \cdot \gamma_s = 85.06 \ kip$
Total Resisting Weight of Soil & Conc =	$Wt_{Total} \coloneqq (DL_{f1} \cdot Wt_{conc} + 0.75 Wt_{soil}) = 120.65 kip$
Uplift Interaction Ratio =	$Usage \coloneqq \left(\frac{U_{plift}}{Wt_{Total}}\right) = 0.75$
	$UsageCheck \coloneqq if\left(\frac{U_{\rho lift}}{Wt_{Total}} \le 1.05, "Okay", "No Good"\right)$

Appendix B

Reference Information

EAST > North East > New England > New England West > SOUTH WINDSORNORTH CT - water tank

Brauer, Mark - mark.brauer2@verizonwireless.com - 5/6/2021 9:28:39

Project Details	Location Information
Carrier Aggregation: false	Site ID: 2578557
MPT Id:	E-NodeB ID: 0068554,068554
eCIP-0: false	PSLC: 469756
Project Name: 5G L-Sub6 - Carrier Add	Switch Name:
FUZE Project ID: 16560063	Tower Owner:
Designed Sector Carrier 4G: 15	Tower Type:
Designed Sector Carrier 5G: 3	Site Type: MACRO
Additional Sector Carrier 4G: N/A	Street Address: 50 Plantation road
Additional Sector Carrier 5G: N/A	City: East Windsor
SiteTraker Project Id:	State: CT
FP Solution Type & Tech Type: MODIFICATION;5G_L-Sub6-Prep	Zip Code: 06016
Suffix:	County: Hartford
	Latitude: 41.87565194 / 41° 52' 32.347" N
	Longitude: -72.56482972 / 72° 33' 53.387" W

RFDS Project Scope: Sub 6 add CBRS add

~
-
O
Ξ
-
-
-
U)
a S
nna
enna (
nna
ntenna S
tenna S

Added															
700	850	1900	AWS	CBRS	L-Sub6 Make	Make	Model	Centerline	Tip Height	Azimuth	RET	4xRx	Inst. Type	Quantity	
LTE	5G	LTE				COMMSCOPE	NHH-65B-R2B	102	105	20(A) 140(B) 260(C)	true	true	PHYSICAL	e	
Ę	5G		LTE	5G		COMMSCOPE	NHHSS-65B-R2B	102	105	20(A) 140(B) 260(C)	true	true	PHYSICAL	e	
					5G	Samsung	MT6407-77A	94	95.5	20(A) 140(B) 260(C)	false	false	PHYSICAL	e	
Removed	ed														
700	850	1900	AWS		CBRS L-Sub6 Make	Make	Model	Centerline	Centerline Tip Height	Azimuth	RET	4xRx	Inst. Type Quantity	Quantity	
LTE	5G		LTE			COMMSCOPE	NNHH-65B-R4	102	105	20(A) 140(B) 260(C)	false	false	PHYSICAL	e	
		LTE				COMMSCOPE	NNHH-65B-R4	94	97	20(A) 140(B) 260(C)	false	false	PHYSICAL	e	
Retained	g														
700	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Centerline	Centerline Tip Height Azimuth	Azimuth	RET	4xRx	Inst. Type Quantity	Quantity	
									No d	No data available.					

Removed: 6 Retained: 0

Added: 9

Proprietary and Confidential. Not for disclosure outside of Verizon.

Page 2 of 8

Equipment Summary

Equipment Type Location 700	20	0	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Cable Size	Install Type	Quantity
Tower								Commscope	BASMNT-SBS-1-2			PHYSICAL	e
Tower						Π		Samsung	CBRS RRH - RT 4401-48A			PHYSICAL 3	9
Tower							5G	Samsung	MT6407-77A			PHYSICAL 3	6
Equipment Type Location		200	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Cable Size	Install Type	Quantity
									No data available.	ilable.			
Equipment Type Location		200	850	1900	AWS	CBRS	CBRS L-Sub6 Make	Make	Model	Cable Length Cable Size Install Type Quantity	Cable Size	Install Type	Quantity
Tower				LTE	LTE			Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL 3	3
Tower		LTE	5G					Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)			PHYSICAL	3
Tower												PHYSICAL	e
Tower												PHYSICAL	e

Service Info

100			2000			2013	
Outpot Outpo Outpo Outpo <td>Sector</td> <td></td> <td>02</td> <td>8</td> <td>01</td> <td>02</td> <td>03</td>	Sector		02	8	01	02	03
(100.00) (005.01)	Azimuth		140	260	20	140	260
Americande Omitodial Municada	Call / ENoda B ID		068554	06855.0	068554	DERSEA	068554
Memory Answer Answer Beneficient <b< td=""><td>Antenna Model</td><td></td><td>NNHH-65B-R4</td><td>NNHH-65B-R4</td><td>NHH-65B-R2B</td><td>NHH-65B-R2B</td><td>NHH-658-R28</td></b<>	Antenna Model		NNHH-65B-R4	NNHH-65B-R4	NHH-65B-R2B	NHH-65B-R2B	NHH-658-R28
Montolication Connectore Connectore Connectore Connectore Restriction 0							
Mutuality and anticipation and anticipation ant	Antenna Make		COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE
United Barbon	Antenna Centerline(Ft)		102	102	102	102	102
Fetred Town 11 4 2 5	Mechanical Down-Tilt(Deg.)		0	o	0	0	0
The sector is a constrained with the sector constrained with th	Electrical Down-Tilt		2	4	4	2	4
	Tip Height		105	105	105	105	105
TANENG TANENG	Regulatory Power		65.85	68.01	73.6	71.26	73.6
Truthing Tr	Total ERP (W)						
Mutual Mutual	TMA Make						
With the model of the model	Jaho MMT						
Mutuality (No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,			Camera	Comparing	Campertana	Comercia	Constant
Mused Tools Control of the							finction of the second
Material Tr, R.L.Mail and Sales dial dial dial dial dial dial Tensor and subset ATOL, Join 397.33 397.33 397.33 397.33 307.33 307.33 Curr, Join 200 00035.4 00035.4 00035.4 00035.4 00035.4 0005.4 Curr, Join 200 00055.4 00055.4 00055.4 00055.4 00055.4 00055.4 Curr, Join 200 00055.4 00055.4 00055.4 00055.4 00055.4 00055.4 Curr, Join 200 00055.4 00055.4 00055.4 00055.4 00055.4 Curr, Join 200 00055.4 00055.4 00055.4 00055.4 00055.4 Curr, Join 200 200 00055.4 00055.4 00055.4 00055.4 Curr, Join 200 200 200 200 00055.4 00055.4 Curr, Join 200 200 200 2005 20056 00055.4 Cur, Joi	KRU Model		B3/B13 KKH-BKU4C (KFVU1U-U2A)	(REVULJ KKH-BKU4C (KEVULU-DZA)	B3/B13 KKH-BKU4C (KFVU1U-DZA)	B3/B13 KKH-BKU4C (KFVU1U-DZA)	B3/B13 KKH-BKU4C (KFVUIU-D2)
Tumbulation 1967/95	Number of Tx, Rx Lines		4,4	4,4	4,4	4,4	4,4
Turned Totalis 500.33 500.2363 500.2363 500.2363 500.2363 Result 0.00 <t< td=""><td>Position</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Position						
Button ATOL, Joil ATOL, Joil<	Transmitter Id		1967283	1967288	10225856	10225859	10225862
Number Automation Automatio Automation Automation Automation Automation Auto	Source		ATOLL API	ATOLL API	ATOLL API	ATOLL API	ATOLL API
Setter International Anternational			I	I	ł	1	1
Sector Amon Martine Mar	1z 5GNR		0002			2GLS	
Curve Name Annum Model 0.005/0 0.006/0<	Sector		0002	0003	0001	0002	0003
Current Current Current <td>Azimuth</td> <td></td> <td>071</td> <td>260</td> <td>20</td> <td>140</td> <td>260</td>	Azimuth		071	260	20	140	260
Munchan Munchan <t< td=""><td></td><td></td><td></td><td>200</td><td>0060554</td><td>DOCOLE 4</td><td>200</td></t<>				200	0060554	DOCOLE 4	200
Anterna ModelNHH-G5B-R4NHH-G5B-R4NHH-G5B-R4NHH-G5B-R4NHH-G5B-R4NHH-G5B-R2Anterna Model $COMSCOPE$ $COMSCOPE$ $COMSCOPE$ $COMSCOPE$ $COMSCOPE$ $OMSCOPE$ OM	Cell / ENode B ID		0068554	0068554	900b4cc8d00	000854	006854
Anternal Mathematical Contractions Contractions <thcontractions< th=""> Contractions</thcontractions<>	Antenna Model	_	NNHH-65B-R4	NNHH-65B-R4	NHH-65B-R2B	NHH-65B-R2B	NHH-65B-R2B
Antomactions Antomaching Antotaching Antomaching Antomaching Antomaching Antoma							
Antone Contribution benation Proven Turk Mode Turk Mode Factor Turk Mode Turk Mode Turk Mode Antone Contribution Turk Mode Turk Mod Turk Mode Turk Mode T	Antenna Make		COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE
Module 0 <td>Antenna Centerline(Ft)</td> <td></td> <td>102</td> <td>102</td> <td>102</td> <td>102</td> <td>102</td>	Antenna Centerline(Ft)		102	102	102	102	102
Electrical Down-Title 1	Mechanical Down-Tilt(Deg.)		0	0	0	0	0
Regulation (1015) 105 (1012) 105 (1012) <th1< td=""><td>Electrical Down-Tilt</td><td></td><td>2</td><td>4</td><td>4</td><td>2</td><td>4</td></th1<>	Electrical Down-Tilt		2	4	4	2	4
Perform 32.8 316.8 32.6 30.07 300.07 300.07 TMA Medi TMA Medi FM Medi BIS13 RH Reform 33.1 316.8 316.8 300.07 300.07 300.05 Mumber of TA, Hules PR Mumber FM Mumber of TA, Hules Profine 513.18 RH Reford (FM ULU2A) 558.13 RH Reford (FM ULU2A) 588.14 Reford (FM ULU2A) 588.14 Reford (FM ULU2A) 588.14 Reford (FM ULU2A) 588.14 Reford (FM ULU2A)	Tip Height		105	105	105	105	105
Total EPP MI Total EPP MI Mode Mode Mode Mode Mode Mode Mode Mode	Regulatory Dower		316.68	324.8	306.07	200.63	780 06
Tumber (FV) TMA Make FMM Mede FMM			00.010	0.7740	10:000	600053	00000
Mutication Samsung							
RUMAGE Simsung Samsung Samsung <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
RUNded Number of Tx, Number Number of Tx, Number of Tx, Number Number of Tx, Number Number of Tx, Number Number Number Number Number of Tx, Number Number of Tx, Number Number	I'MA Model						
Runber of Sig13 RithBrodc (RFV01U-DZA) B5/B13 RithBrodc (RFV01U-DZA)	RRU Make		Samsung	Samsung	Samsung	Samsung	Samsung
Number of Tx, Rx, Lines 4.4 4.4 4.4 4.4 Number of Tx, Rx, Lines 4.0 1.0225645 1.0225645 1.0225645 1.0225645 4.4 Fansmitter id 1.0225645 1.0101, API 1.0101, API </td <td>RRU Model</td> <td></td> <td>B5/B13 RRH-BR04C (RFV01U-D2A)</td> <td>B5/B13 RRH-BR04C (RFV01U-D2A)</td> <td>B5/B13 RRH-BR04C (RFV01U-D2A)</td> <td>B5/B13 RRH-BR04C (RFV01U-D2A)</td> <td>B5/B13 RRH-BR04C (RFV01U-D2</td>	RRU Model		B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2A)	B5/B13 RRH-BR04C (RFV01U-D2
Position Position 1025645 10226645 10226645 10226845 10226845 10226845 1022885	Number of Tx, Bx Lines		4,4	4,4	4,4	4,4	4,4
Tanswinker 1022564 1022564 1022564 1022583	Position						
Total control ATOL, API ATOL, API Antenna Model ATOL, API ATOL, API Antenna Model ATOL, API ATOL, API Attenna Model ATOL, API ATOL, API Attenna Model ATOL, API ATOL, API ATOL, API ATOL, A	Teneral		10776645	1075646	10776952	1030504	33030001
Source Alot., M <			C+0C770T	040C770T	CCOC770T	+COC770T	CCOC770T
Settor 0002 0002 0002 0002 0002 0002 0001 <	Source		ATOLLAPI	ATOLL_API	ATOLLAPI	ATOLL API	ATOLL_API
Sector Of Of <th< td=""><td>11 LTC</td><td></td><td>0000</td><td></td><td></td><td>0100</td><td></td></th<>	11 LTC		0000			0100	
QI QI<			2000			2013	
20 140 260 260 140 068554 068554 068554 068554 068554 068554 NNHH-65B-R4 NNHH-65B-R4 NNHH-65B-R4 NHH-65B-R4B NHH-65B-R4B NHH-65B-R4B NHH-65B-R4B NNHH-65B-R4 NNHH-65B-R4 NNHH-65B-R4B NNHH-65B-R4B NHH-65B-R4B NHH-65B-R4B NHH-65B-R4B NHH-65B-R4B 068554 06854 07854 05105 05105 05115 05115	Sector		03	8	01	02	03
068554 068554 068554 068554 068554 NHH-65E-R4 NHH-65E-R4 NHH-65E-R4 NHH-65E-R2 068554 NHH-65E-R4 NHH-65E-R4 NHH-65E-R4 NHH-65E-R2 068554 OMSCOPE COMMSCOPE 068554 NHH-65E-R2 068554 0<	Azimuth		140	260	20	140	260
Intife5E.rd NnHi-65E.rd NnHi-65E.rd NHi-65E.r2 NHi-65E.r2B NHi-65E.r2B 0	Cell / ENode B ID		068554	068554	068554	068554	068554
Image: construction of the second s	Antenna Model		NNHH-658-84	NNHH-658-84	NHH-65R.R2R	NHH-658-R7R	NHH-658-R7R
COMMSCOPE COMMSCOPE COMMSCOPE COMMSCOPE DI2 DI2 <thdi2< th=""> DI2<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdi2<>							
94 94 94 94 102 102 102 2 9 9 0 <td< td=""><td>Antenna Make</td><td></td><td>COMMSCODE</td><td>COMMSCODE</td><td>COMMSCODE</td><td>COMMSCODE</td><td>COMMSCODE</td></td<>	Antenna Make		COMMSCODE	COMMSCODE	COMMSCODE	COMMSCODE	COMMSCODE
94 94 94 94 94 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 95 97 97 96 2					10000	10001	100000
0 2 2 2 2 2 2 97 97 97 105 105 105 224.16 224.16 224.16 267.15 267.15 267.15 224.16 224.16 224.16 267.15 267.15 267.15 288.ung Samsung Samsung Samsung Samsung 1967095 1967095 1967290 1967290 10225860 1967095 1967290 1072290 10225860 10225860			я,	5. 0	707	701	707
2 2	Mechanical Down-Tilt(Deg.)		0	0	0	0	0
97 97 97 97 105 105 105 105 224.16 224.16 224.16 224.16 267.15	Electrical Down-Tilt		2	2	2	2	2
224.16 224.16 224.16 267.15 267.15 267.15 224.16 224.16 224.16 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 267.15 196.729 196.729 196.729 196.728 196.728 267.11 ADI 267.11 ADI 267.11 ADI 267.11 ADI 267.15 267.15 <td>Tip Height</td> <td></td> <td>67</td> <td>67</td> <td>105</td> <td>105</td> <td>105</td>	Tip Height		67	67	105	105	105
B2/B66A RRH-BR049 (RFV01U-D1A) B2/B66A RRH-BR049 (RFV01U-D1A) B2/B66A RRH-BR049 (RFV01U-D1A) B2/B66A RRH-BR049 (RFV01U-D1A) Samsung Samsung 4,4 Samsung 4,4 Samsung 4,4 Samsung 5,000 Samsung Samsung 5,000 Samsung 5,000 Samsung 4,4 Samsung 4	Regulatory Power		224.16	224.16	267.15	267.15	267.15
B2/B66A RRH-BR049 (RFV01U-D1A) Samsung Samsung Samsung Samsung Samsung Samsung Samsung B2/B66A RRH-BR049 (RFV01U-D1A) B2/B66A RRH-BR049 (RFV01U-D1A) B2/B66A RRH-BR049 (RFV01U-D1A) B2/B66A RRH-BR049 (RFV01U-D1A) 4.4 4.4 4.4 4.4 4.4 196709 1967290 1967290 10225860 ATOUL API ATOUL API ATOUL API ATOUL API	Total ERP (W)						
B2/B66A RRH-BR049 (RFV01U-D1A) Samsung B2/B66A	TAA AAcho						
Samsung Samsung <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Samsung Samsung Samsung Samsung Samsung B2/B66A RRH-BR049 (RFV01U-D1A) 4.4 4.4 4.4 4.4 4.4 4.4 196709 196729 1967290 1022865 10228660 ATOUL API ATOUL API ATOUL API ATOUL API ATOUL API	FMA Model						
B2/B66A RRH-BR049 (RFV01U-D1A) 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,	RRU Make		Samsung	Samsung	Samsung	Samsung	Samsung
4,4 4,4 4,4 4,4 4,4 1967095 1967290 10225857 10225860 ATOLI API ATOLI API ATOLI API ATOLI API	RRU Model	B2/B66A RRH-BR049 (RFV01U-D1A)	B2/B66A RRH-BR049 (RFV01U-D1				
1967095 1967285 1967290 10225857 10225860 ATOLI API ATOLI API ATOLI API ATOLI API ATOLI API ATOLI API	Number of Tx, Rx Lines	4,4	4,4	4,4	4,4	4,4	4,4
1967095 1967285 1967290 10225857 10225860 ATOLI API ATOLI API ATOLI API ATOLI API ATOLI API	Position						
	Transmitter Id		1967285	1967290	10225857	10225860	10225863
	Source				ATOLI ADI	ATOLI API	ATOLI ADI

Total B <th>Sector Azimuth Cell / Flode B ID Antenna Model Antenna Make Antenna Centerline(Ft)</th> <th>8</th> <th>02 140</th> <th>03 260</th> <th>01 20</th> <th>02 140</th> <th>03</th>	Sector Azimuth Cell / Flode B ID Antenna Model Antenna Make Antenna Centerline(Ft)	8	02 140	03 260	01 20	02 140	03
Antone 200 0.003 0.004 0.004 0.004 Antone Motein 0005 000 0004	Azimuth Cell / Evode B ID Anterna Model Anterna Make Anterna Centerline(Ft)	00	140	260	20	140	300
Cut for calling and manu Model 00554 00554 00554 00554 Antonia Model Conneccient Connec	Cell / ENode B ID Antenna Model Antenna Make Antenna Centerline(Ft)		140	700	70	140	
Muther Control Untredset Muther Mut	Cell / ENdote B ID Antenna Model Antenna Make Antenna Centerline[Ft]	4V					7007
Affection Affection Affection Reduction 0 0 0 Reduction 0 <t< td=""><td>Antenna Centerline(Ft)</td><td>068554 NNHH-65B-R4</td><td>068554 NNHH-65R-R4</td><td>068554 NNHH-65R-R4</td><td>068554 NHHSS-65B-R2B</td><td>068554 NHHSS-658-828</td><td>068554 NHHSS-65R-R2B</td></t<>	Antenna Centerline(Ft)	068554 NNHH-65B-R4	068554 NNHH-65R-R4	068554 NNHH-65R-R4	068554 NHHSS-65B-R2B	068554 NHHSS-658-828	068554 NHHSS-65R-R2B
Anternation COMISCORE	Antenna Centerline(Ft)						
Antenial Constrained in Statistic Transmittion 102 Transmittion	Antenna Centerline(Ft)	COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE	COMMSCOPE
Methanical Sources 0 0 0 Filterial Torrent Torrent 10.3 10.3 10.3 Filterial Torrent Statistical		102	102	102	102	102	102
Electrical Down-Till 2 1 Transferey Transferey 103.64 103.64 103.64 Transferey Transferey 103.64 103.64 103.64 103.64 Mondon Transferey 103.64 103.64 103.64 103.64 Mondon Transferey Transferey 103.64 103.64 103.64 Mondon Transferey Transferey 103.64 103.64 103.64 Mondon Transferey 103.64 103.64 103.64 103.64 Mondon Transferey 101.64 101.64 103.64 103.64 Mondon Transferey 101.64 101.64 103.64 103.64 Mondon Transferey 101.64 101.64 101.64 101.64 Mondon Transferey Arrout 101.64 101.64 103.74 Mondon Transferey Arrout 101.64 101.64 101.64 Mondon Transfered Transferey Arrout	Mechanical Down-Tilt(Deg.)	a	a	0	0	0	0
Regulatory Preedic Townskiew (Nutwick American Ameri	Electrical Down-Tilt	2	2	2	0	0	0
Registerior Instant Instant Productor / Fxh. Line Productor / Fxh. Line Instant Instant Munder of Yxh. Line Sarroine, Sarroin		50 COT	COT	C01	501	501	C01
Total Sample Biology B		103.64	103.64	103.64	143.0b	143.00	143.00
Market Market							
Montes Internet (Internet) Sameung (Froutuna) Sameung (Froutuna) Sameung (Froutuna) Sameung (Froutuna) Number of 1, Rulling (Internet) Internet) 3.666, America (Froutuna) B.2666, America (Froutuna) B.2666, America (Froutuna) Number of 1, Rulling (Internet) Internet) 196733 196733 196734 3.93736 Cell Fabolic (Internet) Sameung (Froutuna) Internet) 196733 196736 196733 Cell Fabolic (Internet) Sameung (Froutuna) Internet) 196733 196736 196733 Cell Fabolic (Froutuna) Sameung (Froutuna) Internet) 196736 196736 196736 Cell Fabolic (Froutuna) Sameung (Froutuna) Internet) 196736 196736 19733 Cell Fabolic (Froutuna) Sameung (Froutuna) Internet) 196733 196736 19733 Matternet (Froutuna) Sameung (Froutuna) Sameung (Froutuna) 196736 196736 19733 Matternet (Froutuna) Froutuna) Froutuna) Froutuna) 196736 19733 Matternet (Froutuna) Fr	TMA Make						
Rundberdi Succes School Retri-Strately and and for OULDIAJ School Retri-Strately and Succes School Retri-Strately and and for OULDIAJ School Retri-Strately and and for OULPIAJ School Retrievely and and for OULPIAJ School Retrievely and for OULPIAJ Schoo			C a set a c a s				
Number of x, x, the basic	HHU Make		Samsung	Samsung	Samsung	Samsung	Samsung
Note 1				Z/D00A KKR-BKU49 (KFVULU-ULA)	12/1900A KKR-BKU49 (KFVULU-ULA)	DZ/BDOA KKR-BKU49 (KFVULU-ULA)	DZ/B00A KKH-BKU49 (KFVULU-UL
Toranial served served for the monoperative served for the monoperative served for the monoperative served for the monoperative served for the monoperative served for the monoperative for the mono	Number of LX, KX LINES	4,4	4,4	4,4	4,4	4,4	4,4
(1) (1) <td>Transfer</td> <td>CCL301</td> <td>2807201</td> <td>1007301</td> <td>10775050</td> <td>13030001</td> <td>1030501</td>	Transfer	CCL301	2807201	1007301	10775050	13030001	1030501
Cut Cut <td>Source</td> <td>ATOLL API</td> <td>ATOLL API</td> <td>ATOLL API</td> <td>ATOLL API</td> <td>TOOCZZOT ATOLL API</td> <td>ATOLL API</td>	Source	ATOLL API	ATOLL API	ATOLL API	ATOLL API	TOOCZZOT ATOLL API	ATOLL API
Mathematical Section Mathemati				1			
Selor Selor <th< td=""><td></td><td></td><td></td><td></td><td></td><td>2GLS</td><td></td></th<>						2GLS	
Cut Choke ID Annual Annual Conversion Conversion (Conversion) Conversion) Conversion <	Sector				19	20	21
Anton Kell Control Cold Control Cold Control Cold Control Cold Anton Cold Cold Cold Control Cold Control Cold Control Cold Control Cold Anton Cold Cold Cold Cold Cold Control Cold Control Cold Control Cold Control Cold Restand Cold Cold Cold Cold Cold Control Cold Control Cold Control Cold Control Cold Restand Cold Cold Cold Cold Cold Cold Control Cold Control Cold Control Cold Control Cold Restand Cold Cold Cold Cold Cold Cold Cold Col	Azimuth				20	140	260
Amount Mode Amount Market Amount Amount Market Amount Amount Amount Amount Amount Amount Amount Amou	Cell / ENode B ID				068554	068554	068554
Anternal Main	Antenna Model				NHHSS-65B-R2BT4	NHHSS-65B-R2BT4	NHHSS-65B-R2BT4
Automo Automo Made Commiscone Commiscone <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
Antend Construction Exercision Synchronic Transmission Synchronic Transmission Synchronic Transmission Synchronic Transmission Transmissio Transmittranaaaa Transmission Transmission Transmission Transmis	Antenna Make				CommScope	CommScope	CommScope
Medianial Down:TII(Des) Medianial Down:TII(Des) 0 0 Torrent Tire Torrent Tire 105 105 105 Torrent Tire Torrent Tire 105 100 105 Torrent Tire Torrent Tire 105 1000 100 Torrent Tire Torrent Tire 100 100 100 Torrent Tire Torrent Tire 100 100 100 Cert Fine Torrent Tire 000 <	Antenna Centerline(Ft)				102	102	102
Electration Converting Translate	Mechanical Down-Tilt(Deg.)				0	0	0
To heght Total RF (W) 105 105 105 Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) Total RF (W) With Account Foreitan CBR State HT (W) CBR State HT (W) Position Position Position 1022393 1022393 Sector Sector Total RF (W) 1022393 1022393 Sector Sector 1022393 1022393 1022393 Sector Sector 102293 102293 102293 Sector Sector 102293 102293 102393 Sector Sector 102293 102293 102293 Administic Sector 000 000 000 000 000 00 00 00	Electrical Down-Tilt				4	4	4
Totalize Number Totalize Number Sector Totalize Number Antimut Totalize Number Antimut Totalize Number Antimut Totalize Antimut	Tip Height				105	105	105
Transmiter (Transmiter (Tr	Regulatory Power				12.78	12.78	12.78
TMA Mate TMA Mate TMA Mate TMA Mate RNU Mate RNU Mate Positive Id Arrow Sector 2001 Anterna Mate 001 Materna Mate Samsurg Anterna Mate Samsurg Materna Mate Materna Materna Mate	Total ERP (W)						
TMA Mode TNA Mode FNU MOD	TMA Make						
Number of TA, Lines RNU Mide Samund (CBS RNH - FT1401.4 KA) Samund	TMA Model						
Number (T, R), Lines Position Targitude CBS RNH - FT4401-46A CBS RNH - FT4401-46A CBS RNH - FT4401-46A Position Position Source Targation Source 0 4,4 4,4 Position Position Factor 0 4,4 4,4 Position Factor 0001 001 0 0 Cell / Evolution Cell / Factor 0002 0002 0 0 Antoma Model Antoma Model Mintensor 0	RRU Make				Samsung	Samsung	Samsung
Number of x, Rulines Number of x, Rulines 4,4 4,4 Transmike (L Transmike (L 1022935 1022935 1022935 Sector Sector 1022593 1022935 1022935 1022935 Sector Sector 001 001 002 002 002 Anternal Model Anternal Model 001 0065554 002554 002554 002554 0005555 0005555 0005555 0005555 0005555 0005555 <td>RRU Model</td> <td></td> <td></td> <td></td> <td>CBRS RRH - RT4401-48A</td> <td>CBRS RRH - RT4401-48A</td> <td>CBRS RRH - RT4401-48A</td>	RRU Model				CBRS RRH - RT4401-48A	CBRS RRH - RT4401-48A	CBRS RRH - RT4401-48A
Tasinite id Tasinite id source 10225935 ATOLL, API 10225935 ATOLL, API 10225935 ATOLL, API Sector Sector Animula Coll, Apical Anterna Mode 5000 102 501 Coll, Telode E ID Anterna Mode 000 000 000 Anterna Mode 006554 100 006554 Anterna Mode 0066554 100 006554 Anterna Mode 000000000000000000000000000000000000	Number of Tx. Bx Lines				4.4	4.4	4.4
Tansmitte Id 1023535 10225336 10225336 Sector Sector 500 001 001, API Annuth Sector 001 001 100 Anterna Mode Anterna Mode 000 000 100 Anterna Mode Anterna Mode 000 000 000 100 Anterna Mode Anterna Mode 000 <td>Position</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	Position				-		
Source ATOLL, API ATOLL, API<	Transmitter Id				10225935	10225936	10225937
Sector Soctor Soctor Azimuth Azimuth Anterna Model 0001 002 Cell / Elvole B() 0003534 140 Cell / Elvole B() 0008554 0068554 Anterna Model Anterna Soctor 000 Anterna Anterna 5amsung 5amsung Anterna Certraler[1] 0 0 Metahateal Down-Till Paleight 0 0 Bestratory Power 0 0 Thy Height 0 0 Regulatory Power 751.94 751.94 Thy Model Taskung 5amsung Rub Model 751.94 751.94 Rub Model Number of 1, As Lines 9 Number of 1, As Lines 5amsung 5 Rub Model 700.1 Apt 4.4 Number of 1, As Lines 700.2 5971 4.4	Source				ATOLL API	ATOLL API	ATOLL API
Sector Azimuth Cell / Elvode B D Anterna Make Anterna Make Anterna Make Anterna Make Anterna Make Anterna Make Anterna Carl / Elvode B D Anterna Car							
0001 0002 0002 20 0068554 006856 0068554 MT6407-77A 8msung 94 94 94 0 0 0 0 9 95.5 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 MT6407-77A MT6407-77A MT6407-77A 95.5 751.94 751.94 7102.5971 74.4 4.4 74.4 4.4 4.4 4.4						2GLS	
20 100 0068554 0066554 MT6407-77A MT6407-77A 5amsung 94 94 94 94 9 95.5 95.5 751.94 751.94 751.94 751.94 MT6407-77A MT6407-77A 74 4.4 751.94 1022597 71022971 10225972 ATOLL API ATOLL API	Sector				0001	0002	0003
0068554 MT6407-77A MT6407-77A 5amsung 94 95 95 95.5 95.5 95.5 751.94 751.77 751.94 751.94 751.94 751.77 751.94 751.94 751.94 751.77 751.94 751.77 751.94 751.77 751.94 751.77 752.77 751.77 752	Azimuth				20	140	260
MT6407-77A MT6407-77A Samsung 94 94 0 6 95.5 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 764.07 7.77 7.4 4.4 7.4 7.02.5972	Cell / ENode B ID				0068554	0068554	0068554
Samsung Samsung 94 94 0 6 6 95.5 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94	Antenna Model				MT6407-77A	MT6407-77A	MT6407-77A
Samsung 94 94 94 0 6 6 95.5 95.5 751.94 751.94 751.94 752.97 751.94 752.97 752.97 752.97 752.97 752.97 752.97 752.97 752.97 752.97 752.97 752.97 752.97					4		
94 94 94 0 0 0 6 95.5 95.5 75194 75194 75194 75194 75194 75194 75194 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 771 70.25972 771 70.25972 771 70.25972 771 70.25972 771 70.25972 771 70.25972 771 70.25972 771 771 771 771 771 771 771 771 771 7	Antenna Make				Samsung	Samsung	Samsung
0 0 6 6 6 95.5 95.5 751.94	Antenna Centerline(Ft)				94	94	94
6 6 6 95.5 95.5 95.5 751.94 751.96 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 751.95 75	Mechanical Down-Tilt(Deg.)				0	0	0
95.5 751.94 751.94 751.94 771.94 MT6407-77A 4,4 4,4 4,4 4,4 1022597 ATOL API ATOL API ATOL API ATOL API	Electrical Down-Tilt				9	9	9
751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.94 751.97 751.94 751.97 751.94 751.97 751.94 751.97 751.94 75	Tip Height				95.5	95.5	95.5
Samsung MT6407-77A 4,4 M16407-77A 4,4 0,4 10225972 ATOLL API ATOLL API ATOLL API ATOLL API	Regulatory Power				751.94	751.94	751.94
Samsung MT6407-77A 4,4 10225972 ATOLL API ATOLL API ATOLL API ATOLL API	Total ERP (W)						
Samsung Samsung Samsung MT6407-77A 4,4 4,4 10225971 10225972 ATOLL API ATOLL API ATOLL API	TMA Make						
Samsung Samsung ME407-77A ME407-77A 4,4 4,4 10225971 10225922 ATOLL API ATOLL API	TMA Model						
MT6407-77A MT6407-77A 4,4 4,4 4,4 4,4 ATOLL API 10225972 ATOLL API ATOLL API	RRU Make				Samsung	Samsung	Samsung
4,4 4,4 10225971 10225972 ATOLL API ATOLL API	RRU Model				MT6407-77A	MT6407-77A	MT6407-77A
10225971 10225972 ATOLL API ATOLL API ATOLL API	Number of Tx, Rx Lines				4,4	4,4	4,4
10225971 10225972 ATOLL API ATOLL API	Position						
ATOLL API ATOLL API	Transmitter Id				10225971	10225972	10225973
	Source				ATOLL API	ATOLL API	ATOLL API

Proprietary and Confidential. Not for disclosure outside of Verizon.

Page 5 of 8

3
2
2
Ð
-
2
A
1
Ū
0
SL
5
S
æ
0

	39 GHz	
	31 GHz	
	28 GHz	
	2100	
	1900	
	850	
Callsigns	700	
Regulatory Callsign	Power	and the second second
Beamwidth		
Mechanical Gain	lit	
lectrical	III	
Height Azimuth (Th Electrical		
Tip Height		
Intenna Ma Antenna Mc Ant CL	Height AGL	
Sector Ante		

ഗ	
2	
0	
10	
-	
1	
-73	
\mathbf{u}	

Approved for Insvc	Yes	Yes	Yes	Yes	Νο	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Action	added	added	added	added	added	added	added	added	added	added				
Status	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
POPs/Sq Mi Status	1216.19	1216.19	1216.19	1216.19	1216.19	00	00	00.	1216,19	1216.19	1216.19	1216.19	1216.19	1216.19
Threshold (W)	1000	400	1640	1640					1640	1640				
Regulatory Power	73.6	306.07	267.15	267.15	12.78	12.78	12.78	12.78	143.06	143.06				
Freq Range 4	000-000	890.000-	000-000	000-000	UNLICENSED-UNLICE	000-000	000'-000'	000-000	000-000	000-000	000-000	000-000	000-000	000-000
Freq Range 3	000-000	845.000- 846.500	000-000	000-000	UNLICENSED-UNLICE	000-000	000-000	000-000	000'-000'	000000.	000-000	000-000	000'-000'	000-000
Freq Range 2	776.000- 787.000	869.000- 880.000	1975.000 1982.500	1970.000 1975.000	UNLICENSED-UNLICE	000-000	000'-000'	000000.	2110.000 2120.000	2120.000-	31075.000-31225.000	31225.000-31300.000	27700.000-27925.000	28150.000-28350.000
Freq Range 1	757.000	824.000- 835.000	1895.000- 1902.500	1890.000- 1895.000	UNLICENSED-UNLICE	3550.000-3650.000	3550.000-3650.000	3550.000-3650.000	1710.000	1730.000	29100,000-29250,000 31075,000-31225,000	31000.000-31075.000	27500.000-27600.001	27925.000-29050.000 28150.000-28350.000
Total MHZ	22.000	25.000	15.000	10.000	UNLICENSE	100.000	100.000	100.000	20.000	20.000	300.000	150.000	325.000	325.000
Wholly Owned	Yes	Yes	Yes	Yes	UNLICENSE UNLICENSE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Licensee	Cellco Partnership	Celko Partnership	Celico Partnership	Cellco Partnership	UNLICENSE	kin frieis tead hour L.P	kin frieis theref hour L.P	licto finica lebot france L.P	Celico Partnership	Celico Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership	Cellco Partnership
County	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford
State	ст	Ŀ	ст	ст	ст	t	ե	ե	Ŀ	t	ст	ст	ст	ст
Block	U	٩	U	Ľ	UNLICENSE UNLICENSE CT	0	0	0	۲	E)	A	œ	5	12
Market Number	REA001	CMA032	BTA184	BTA184	UNLICENSE	£006003	£0060Q	£0060Q	CMA032	BEA010	BTA184	BTA184	BTA184	BTA184
Radio Code	мu	ť	cw	CW	3.5 GHz	Γ	ЪГ	Ч	AW	AW	9	9	В	n
Market	Northeast	Hartford- New Britain- Bristol, CT	Hartford, CT	Hartford, CT	CBRS_CALL UNLICENSE 3.5 GHz	D09003 - Hartford, CT	D09003 - Hartford, CT	D09003 - Hartford, CT	Hartford- New Britain- Bristol, CT	New York-No. New Jer Long Island, NY-NJ- CT-PA- MA-	Hartford, CT	Hartford, CT	Hartford, CT	Hartford, CT
Callsign	WQJQ689	KNKA404	<i>WPOJ730</i>	KNLH251	CBRS_CALL	WRLD515	WRLD514	WRLD513	WQGB276	WQGA906	WPOH943	WPLM398	WRBA708	WRBA709

Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	°N N	No
Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active	Active
1216.19	1216.19	1216.19	1216.19	1216.19	1216.19	1216.19	1216.19	1216.19	1216.19	1216.19	1216.19
000'-000'	000-000.	000-000	000'-000'	000-000.	000'-000'	000'-000'	000-000.	000'-000'	000-000.	000'-000'	000-000'
000-000	000000.	000-000	000'-000'	000-000	000'-000'	000'-000'	000-000.	000-000	000.000.	000.000.	000000.
000-000	000-000	000-000	000'-000'	000-000	000-000	000'-000'	000-000	000000.	000-000	000-000	000-000
37600.000-37700.001	38500.000-38600.00	37700.000-37800.000	37800.000-37900.00	37900,000-38000,00	38000.000-38100.00	38100,000-38200,000	38200,000-38300,00	38300,000-38400,00	38400.000-38500.00	38600.000-38700.00	3700.000-3800.000
100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	P Yes
Straight Path um,	Straight Path um,	Straight Path um, LLC	Cellco Partnership								
Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford	Hartford
cT	cī	CI	cT	СТ	ст	ст	cT	ст	cT	cT	ст
M1	M10	M2	M3	M4	M5	M6	MZ	M8	6W	٤	A
PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	PEA001	REA001
3	В	В	ß	В	ß	3	В	n	В	В	cc
New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	New York, NY	PEND1050 Northeast
WRHD609	WRHD610	WRHD611	WRHD612	WRHD613	WRHD614	WRHD615	WRHD616	WRHD617	WRHD618	WRHD619	PEND1050

Upper level with SBS bracket

Lower level

11

Sub 6

July 7, 2021

Verizon 20 Alexander Drive Wallingford, CT 06492

Attn: Mr. David Vivian

Re: Mount Analysis Report – Lsub6 Verizon Wireless Site I.D.: South Windsor North CT 50 Plantation Road East Windsor, CT 06016

Project/Location Code: VZW FUZE I.D.: APT Filing No. 20171645681/469756 16560063 CT141_12500

Dear Mr. Vivian,

All-Points Technology Corp. (APT), a professional engineering corporation licensed in the State of Connecticut, has been retained by Verizon to assess the structural adequacy of the mounting assembly and its connection to the existing host structure to support the proposed equipment modification. An evaluation of the existing host structure is to be provided under separate cover.

Details of the proposed antenna and appurtenance installation are included within the table on the following page. Reference is made to the Construction Drawings prepared by this office, marked Rev 0, dated 07/07/21.

The following information was utilized in the preparation of this assessment:

- New Build Construction Drawings, prepared by APT, marked Rev1, dated 11/06/20.
- Mount Structural Analysis & Design Report, prepared by APT, dated 10/28/20.

The structural review has been prepared in accordance with the following design standards:

- · ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures
- · AISC American Institute of Steel Construction Manual of Steel Construction, 14th Ed.
- IBC 2015 as amended by the 2018 Connecticut State Building Code.
- ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures

The structural review has been prepared utilizing the following design criteria:

- 125 mph (3-second gust), Ultimate Wind Speed (equivalent to 97mph Nominal).
- 50 mph (3-second gust), Design Wind Speed with 1.50" Design Ice Thickness
- Risk Category II
- Exposure Category C
- Roof Live Load, LLr = 20 psf
- Minimum Roof Snow Load = 30 psf

The existing and proposed Verizon antenna/appurtenance and mount assembly loading consists of the following equipment (proposed equipment/equipment to be relocated indicated in **bold** text):

Antenna and Appurtenance Make/Model	Quantity	Status	Mount Type	Centerline
Commscope NHH-65B-R2B ² panel antennas	3	Р		102.0 ft±
Commscope NHHSS-65B-R2B ² panel antennas	з	Р		AGL
Samsung MT6407-77A panel antennas	З	Р	Three (3) custom mount	94.0 ft± AGL
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) Remote Radio Heads (RRHs)	3	Р	assemblies attached to existing decommissioned water tank leg.	
Samsung B2/B66a RRH-BR049 (RFV01U-D1A) Remote Radio Heads (RRHs)	3	Р		n/a
Samsung CBRS-RT4401-48A Remote Radio Heads (RRHs)	3	Р		
Raycap RHSDC-3315-PF-48 (60VP)	3	Р		
6x12 L.I. Hybrid Fiber Cable	3	Р	n/a	n/a

Notes:

- . ETR = Existing to Remain; ERL = Exist to be Relocated; P = Proposed.
- 2. Mount antennas via Commscope Side-by-Side Mounts (P/N: BSAMNT-SBS-1-2).
- 3. The above proposed equipment supersedes the equipment indicated within the new build construction

drawings prepared by this office, marked Rev1, dated 11/06/20.

The findings of this review are based upon comparative review of the proposed equipment loading, referenced design documentation, a rigorous mount analysis. Under the proposed loading, the maximum usage of the existing mounting assemblies as compared to the mount rating/capacity is 61%. Additionally, the proposed loading is less than the loading utilized in the referenced original new build design documentation. In conclusion, we find that the custom mount assemblies are adequate to support the proposed equipment modification.

Sincerely, All-Points Technology Corp. P.C.

Michael S. Trodden, P.E. Sr. Structural Engineer

Appendix A

Design Criteria

(/	APPEN	DIX N)	MUNIC	IPALII	T - SPE	CIFIC ST		RAL DE Design F		ARAMETE	:K2	
Municipality	Ground Snow Load (psf)	Spe Accele	CE ctral eration s		imate D d Speed (mph)	ds, V _{ult}	Nom	ninal De I Speeds (mph)	sign		Borne Regions ¹	Hurricane-Prone Regions
Munic	(p Ground S	S₅	S1	Risk Cat.l	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV	Risk Cat. II & III except Occup I-2	Risk Cat III Occup I-2 & Risk Cat. IV	Hurricaı Reg
East Hampton	30	0.177	0.062	120	130	140	93	101	108			Yes
East Hartford	30	0.180	0.064	115	125	135	89	97	105			Yes
East Haven	30	0.182	0.062	120	130	140	93	101	108		Type B	Yes
East Lyme	30	0.164	0.059	125	135	145	97	105	112	Type B	Type A	Yes
Easton	30	0.215	0.066	110	120	130	85	93	101			Yes
East Windsor	35	0.177	0.064	115	125	135	89	97	105			Yes
Ellington	35	0.176	0.064	115	125	135	89	97	105			Yes
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Type A	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Type B	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Type A	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Type B	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108		Type B	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108		71	Yes
Hamden	30	0.185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0.172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0.175	0.065	110	120	125	85	93	97			Yes
Harwinton	35	0.183	0.065	110	120	130	85	93	101			Yes
Hebron	30	0.177	0.063	120	130	140	93	101	108			Yes
Kent	40	0.188	0.065	105	115	120	81	89	93			
Killingly	40	0.171	0.062	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledyard	30	0.163	0.059	125	135	145	97	105	112		Type A	Yes
Lisbon	30	0.169	0.061	125	135	145	97	105	112		Type A	Yes
Litchfield	40	0.184	0.065	110	120	125	85	93	97		71	Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Type A	Yes
Madison	30	0.173	0.060	120	130	140	93	101	108		Type B	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105		<u> </u>	Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Type B	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	100		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Yes

ASCE 7 Hazards Report

Address: 50 Plantation Rd Broad Brook, Connecticut 06016 Standard:ASCE/SEI 7-16Risk Category:IISoil Class:

Elevation: 158.11 ft (NAVD 88) Latitude: 41.875463 Longitude: -72.564802

lce

Results:

Ice Thickness:	1.50 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Tue Jun 08 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Appendix B

Existing Mount Analysis

CT141_12500 South Windsor North CT 7/14/2021

(Based on ANSI/TIA-222-H-2018)

Site Name:		South	Windsor I	North CT
			Plantation	
<u>Site Address:</u>			Vindsor, C	
Site County:			Hartford	
Design Criteria:				
	Risk Category =	II		Table 1.5-1
	Exposure Category =	С		Section 26.7.3
Ultimate	Design Wind Speed, V =	125	mph	2018 CTSBC, Appendix N
Design	Wind Speed with Ice, V _i =	50	mph	Fig. B-9
	Design Ice Thickness, t _i =	1.50	in	Fig. B-9
	Importance Factor, I =	1.00		Table 2-3
	Basic Wind Speed, V _m =	30	mph	Section 16.3
	Maintenance Load, L _m =	500.0	lbs	Section 16.3
	Maintenance Load, $L_v =$	250.0	lbs	Section 16.3
Building Informatio	<u>n:</u>			
	Antenna Centerline, z =	102.0	ft., +/-	
Н	ost Structure Height, H =	132.5	ft., +/-	
Bulkhea	ad/Parapet Height, H _{ppt} =	-	ft., +/-	(max.)
Largest Windwar	d Face of Structure, W _s =	-	ft., +/-	
Wind Pressure Ana				
q _z = 0.00256	2 20 5 6 0	Section 2.6.11.6		
	<u>K, :</u> S	ee Next She	et	
	z _g =	900		Table 26.9-1
	α =	9.5		Table 26.9-1
	K _{zmin} =	0.85		Table 26.9-1
	$\underline{K_{zt}}$: $K_{zt} =$	1.00		Section 2.6.6
	$\underline{K_s}$: $K_s =$	1.00		Section 2.6.7
	$\underline{K_e}$: $K_e =$	1.00		Section 2.6.8
	<u>K_d : K_d =</u>	0.95		Section 16.6
		20.00		
	q _z ' =	38.00	psf	
F = a G. (FPA	$A_{A} = q_{z}G_{h}K_{a}[(EPA)_{N}cos^{2}(\Theta)]$	+(FPA)_sin ² /f	ə)]	Section 2.6.11.2
r = 4z Oh(L) F	$G_{h} = G_{h}$	1.00	-11	Section 2.0.11.2 Section 16.6
	K _a =	0.90		Section 16.6
	··a –	0.50		

CT141_12500 South Windsor North CT 7/14/2021 Project ID: Site Name: Date:

eet)	psf	psf	,
vious She	38.00	6.08	
(From Previous Sheet)	= -7	q _{zi} '=	-
Design Criteria: (

G_h = 1.00 Section 16.6

	psf	. <u>e</u>
	2.19	1.50
1	م يہ' =	ر =

							Dimensions	sions		Ë	at Panel Froi	Flat Panel Front Coefficient	t		Flat Panel Side Coefficient	e Coefficient		Front		
		#/Contor	Elev.			Height,	Width,	Depth,	Wght.,	Area,	Aspect			Area,	Aspect			Wind	Side Wind	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Description	#/ 36000	z, ft	K ₂	q _z , psf	in	'n	in	lbs	ft ²	Ratio	Ca	C _a A _a	ft²	Ratio	Ca	C_aA_a	Force, lbs	Force, lbs	Weight, lbs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MT6407-77A	1.0	94.0	1.249	47.47	35.1	16.1	5.5	87.1	3.92	2.180	1.20	4.71	1.341	6.382	1.37	1.840	202.0	79.0	87.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NHH-65B-R2B	1.0	102.0	1.271	48.29	72.0	11.9	7.1	56.3	5.92	6.073	1.36	8.05	3.542	10.155	1.51	5.331	350.0	232.0	56.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NHHSS-65B-R2B	1.0	102.0	1.271	48.29	72.0	11.9	7.1	63.6	5.92	6.073	1.36	8.05	3.561	10.099	1.50	5.354	350.0	233.0	63.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B2/B66A RRH-BR049 (RFV01U-D1A)	1.0	94.0	1.249	47.47	14.9	14.9	10.0	97.5	1.54	1.000	1.20	1.85	1.039	1.484	1.20	1.247	80.0	54.0	97.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B5/B13 RRH-BR04C (RFV01U-D2A)	1.0	94.0	1.249	47.47	14.9	14.9	8.1	82.0	1.54	1.000	1.20	1.85	0.842	1.830	1.20	1.011	80.0	44.0	82.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CBRS RT4401-48A RRH	1.0	94.0	1.249	47.47	10.6	8.9	3.0	11.0	0.66	1.191	1.20	0.79	0.221	3.533	1.25	0.275	34.0	12.0	11.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60VP	1.0	102.0	1.271	48.29	19.2	16.5	12.6	32.0	2.20	1.162	1.20	2.64	1.678	1.522	1.20	2.014	115.0	88.0	32.0
$ \frac{1}{4} \left(\begin{array}{cccccccc} Eiev, Eiev, eight, Dc, lew Werl, experiment for the far Panel Side Coefficient for the far Pa$																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Dimension	s with Ice		F	at Panel Froi	nt Coefficien	t		lat Panel Sid	e Coefficient				
																		Front		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Elev.			Ice Thick.,	Height,		Ice Wght.,	Area,	Aspect			Area,	Aspect			Wind	Side Wind	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Description	#/sector	z, ft	Υ, Κ	q _{ai} , psf	t _{iz} , in	.⊑		lbs	ft²	Ratio	Ca	C _a A _a	ff2	Ratio	Ca	C _a A _a	Force, lbs	Force, Ibs	Weight, lbs
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MT6407-77A	1.0	94.0	1.249	7.595	1.67	38.43	17.01	121.7	5.19	2.26	0.70	3.630	2.357	2.26	0.70	1.650	25.0	12.0	208.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NHH-65B-R2B	1.0	102.0	1.271	7.727	1.68	75.33	13.81	199.4	7.96	5.46	0.77	6.091	5.464	5.46	0.77	4.184	43.0	30.0	255.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NHHSS-65B-R2B	1.0	102.0	1.271	7.727	1.68	75.33	13.83	199.7	7.96	5.45	0.77	6.090	5.484	5.45	0.77	4.198	43.0	30.0	263.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2/B66A RRH-BR049 (RFV01U-D1A)	1.0	94.0	1.249	7.595	1.67	18.23	17.97	60.7	2.31	1.01	0.70	1.616	1.693	1.01	0.70	1.185	12.0	9.0	158.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B5/B13 RRH-BR04C (RFV01U-D2A)	1.0	94.0	1.249	7.595	1.67	18.23	16.98	57.6	2.31	1.07	0.70	1.616	1.452	1.07	0.70	1.017	12.0	7.0	139.6
1.0 102.0 1.271 7.727 1.68 22.54 20.76 86.5 3.11 1.09 0.70 2.176 2.498 1.09 0.70 1.748	CBRS RT4401-48A RRH	1.0	94.0	1.249	7.595	1.67	13.93	9.39	26.1	1.18	1.48	0.70	0.828	0.612	1.48	0.70	0.429	6.0	3.0	37.1
	60VP	1.0	102.0	1.271	7.727	1.68	22.54	20.76	86.5	3.11	1.09	0.70	2.176	2.498	1.09	0.70	1.748	16.0	13.0	118.5

						Dimensions	sions		Η̈́	at Panel Fror	Flat Panel Front Coefficient	*	ш	Flat Panel Side Coefficient	Coefficient		Front		
	#/Coctor	Elev.			Height,	Width,	Depth,	Wght. ¹ ,	Area,	Aspect			Area,	Aspect			Wind	Side Wind	
Description	#/ 261101	z, ft	K _z	q_{zW} , psf	in	in	i	lbs	ft ²	Ratio	Ca	C_aA_a	ft²	Ratio	Ca	C_aA_a	Force, lbs	Force, lbs V	Weight, Ibs
MT6407-77A	1.0	94	1.249	2.73	35.1	16.1	5.5	87.1	3.92	2.180	1.20	4.71	1.341	6.382	1.37	1.840	12.0	5.0	87.1
NHH-65B-R2B	1.0	102	1.271	2.78	72.0	11.9	7.1	56.3	5.92	6.073	1.36	8.05	3.542	10.155	1.51	5.331	21.0	14.0	56.3
NHHSS-65B-R2B	1.0	102	1.271	2.78	72.0	11.9	7.1	63.6	5.92	6.073	1.36	8.05	3.561	10.099	1.50	5.354	21.0	14.0	63.6
B2/B66A RRH-BR049 (RFV01U-D1A)	1.0	94	1.249	2.73	14.9	14.9	10.0	97.5	1.54	1.000	1.20	1.85	1.039	1.484	1.20	1.247	5.0	4.0	97.5
B5/B13 RRH-BR04C (RFV01U-D2A)	1.0	94	1.249	2.73	14.9	14.9	8.1	82.0	1.54	1.000	1.20	1.85	0.842	1.830	1.20	1.011	5.0	3.0	82.0
CBRS RT4401-48A RRH	1.0	94	1.249	2.73	10.6	8.9	3.0	11.0	0.66	1.191	1.20	0.79	0.221	3.533	1.25	0.275	2.0	1.0	11.0
60VP	1.0	102	1.271	2.78	19.2	16.5	12.6	32.0	2.20	1.162	1.20	2.64	1.678	1.522	1.20	2.014	7.0	6.0	32.0

<u>Notes:</u> 1- Includes mounting bracket weights.

Project ID: CT141_12500 Site Name: South Windsor North CT Date: 7/14/2021

(Based on NSTD-445 "Antenna Mounting System Classification Standard")

Mounting Assembly Evaluation:

	Vert. Direction	lbs	575	1100	575		Load, Ibs	500	250
- 4[6]	Vert. Di		0.50(F)	1.00(Fzi)	0.50(F)				ers
1100 (Fzi)	rection	lbs	1150	275	115			idividual LCs	nting memb
Ľ	Trans. Direction		1.00(F)	0.25(Fzi)	0.10(F)		Description	At each mounting location, individual LCs	At ends of each horizontal mounting members
1150 (F)	Direction	lbs	1150	275	115		Descr	each mount	ids of each h
Σ	Normal Direction		1.00(F)	0.25(Fzi)	0.10(F)			At	At er
Mount Classification:		Loading Condition	Extreme Wind	Extreme Ice	Maintenance		Loading Condition	Lm	Lv

Max Loading Condition: Commscope NHH-65B-R2B & NHHSS-65B-R2B Dual Mount:

Vert. Direction	%	20.9%	36.3%	20.9%	
Vert. D	sqI	119.9	399.1	119.9	
Frans. Direction	%	40.4%	21.8%	24.3%	
Trans. [sql	465.0	60.0	28.0	
Normal Direction	%	60.9%	31.3%	36.5%	
Normal	sqI	700.0	86.0	42.0	
	Loading Condition	Wind Load	Ice Load	Maintenance	

Since the proposed modification does not exceed the design loading per the previous design report, the existing mounting assembly is adequate to support the proposed equipment modification.

ATTACHMENT 5

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2017.

Information on the Property Records for the Municipality of East Windsor was last updated on 7/2/2021.

Property Summary Information

- Parcel Data And Values
- Outbuildings
- Sales

Parcel Information

Location:	50 PLANTATION RD	Property Use:	Vacant Land	Primary Use:	Commercial Vacant Land
Unique ID:	01162500	Map Block Lot:	016 50 001C	Acres:	0.78
490 Acres:	0.00	Zone:	A-1	Volume / Page:	0231/0053
Developers Map / Lot:		Census:	4842000		

Value Information

Appraised Value Assessed Value

Land 245,276 Buildings 0 Detached Outbuildings 21,368 Total 266,644

0 14,960 186,650

171,690

Owner's Information

Owner's Data PLANTATION PROPERTIES LLC P O BOX 542 BROAD BROOK CT 06016-0542

Pump House Utility 1960

Detached Outbuildings

Type:	Year Built: Length: Width: Area:
- 71	

154

Owner History - Sales

Owner Name	Volum	e Page Sale Date Dee	d Type Sale Price
PLANTATION PROPERTIES LLC	C 0231	0053 09/27/2001	\$1

PLANTATION PROPERTIES LLC 0231 0053 09/27/2001

Building Permits

Permit Number Permit Type Date Opened Reason

Google Map	
Unique Id:	01162500
Location:	50 PLANTATION
MBL:	016 50 001C
Primary Use:	Commercial Vaca
Zone:	A-1

Acres:

 0.78

 Appraised Value:

 \$266,644

 Assessed Value:

 \$186,650

 Back To Search

Print View

Information Published With Permission From The Assessor

ATTACHMENT 6

UNITED STATES POSTAL SERVICE ®				OUTH WINDSO ificate of Mail	
Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender Postmaster, per (name of receiving employee)	Affix Stamp Here Postmark with Date o	neopost	21 TATOR \$002 (ZIP 06 0410 122	105
USPS [®] Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1.	Jason E. Bowsza, First Selectman Town of East Windsor 11 Rye Street Broad Brook, CT 06016	STATEHOUSE	SA		
2.	Mike D'Amato, Acting Planner Town of East Windsor 11 Rye Street Broad Brook, CT 06016	AUG 16 2	121		
3.	Plantation Properties, LLC P.O. Box 542 Broad Brook, CT 06016	USPS			
4.					
5.					
6.					