KEnNETH C. BALDWIN

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 16, 2021

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification - Facility Modification 50 Plantation Road, East Windsor, Connecticut

Dear Attorney Bachman:
Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a water tower and related equipment on the ground, near the base of the water tower. The existing 132.5 -foot tower was constructed in 1947 and, according to information presented in TS-CING-047-060405, was first used for telecommunications purposes by Sprint in 1996. On April 12, 2006, the Council, exercising jurisdiction over the existing tower, approved the tower share application filed by New Cingular Wireless PCS, LLC ("Cingular") (TS-CING-047-060405). A copy of the Council's approval of the Cingular tower share application is included in Attachment 1. AT\&T; Sprint; T-Mobile, Metro PCS and Clearwire currently maintain antennas at various heights on the water tower and maintain radio equipment inside a fenced facility compound near the base of the tower. Cellco's shared use of the tower was approved by the Council in September of 2020 (TS-VER-047-200827). Copies of the above-referenced approvals are included in Attachment 1.

Cellco now intends to modify its facility by replacing nine (9) existing antennas with three (3) Samsung MT6407-77A antennas; three (3) NHHSS-65B-R2B antennas; and three (3) NHH-65B-R2B antennas and installing three (3) remote radio heads ("RRHs") all at the same heights on the water tower. A set of project plans showing Cellco's proposed facility modifications and specifications for Cellco's new antennas and RRHs are included in

Melanie A. Bachman, Esq.
August 16, 2021
Page 2

Attachment 2. Please note that Cellco refers to its facility as its South Windsor North CT facility.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to East Windsor's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas will be installed on its existing antenna mounting structure.
2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative general power density table for Cellco's modified facility is included in Attachment 3. The modified facility will be capable of providing Cellco's 5G wireless service.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing water tower, its foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in Attachment 5. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

Melanie A. Bachman, Esq.
August 16, 2021
Page 3

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § $16-50 \mathrm{j}-72(\mathrm{~b})(2)$.

Enclosures
Copy to:
Jason E. Bowsza, First Selectman
Mike D'Amato, Acting Town Planner
Plantation Properties, LLC, Property Owner
Alex Tyurin

ATTACHMENT 1

April 13, 2006

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

Steven L. Levine
Real Estate Consultant
New Cingular Wireless PCS, LLC
500 Enterprise Drive
Rocky Hill, CT 06067-3900
RE: TS-CING-047-060405 - New Cingular Wireless PCS, LLC request for an order to approve tower sharing at an existing telecommunications facility located at 50 Plantation Road, East Windsor, Connecticut.

Dear Mr. Levine:
At a public meeting held April 12, 2006, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § $16-50 \mathrm{u}$ including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction. Please be advised that the validity of this action shall expire one year from the date of this letter.

The proposed shared use is to be implemented as specified in your letter dated April 4, 2006, including the placement of all necessary equipment and shelters within the tower compound.

Thank you for your attention and cooperation.

STATE OF CONNECTICUT
CONNECTICUT SITING COUNCIL
Ten Franklin Square, New Britain, CT 06051
Phone: (860) 827-2935 Fax: (860) 827-2950
E-Mail: siting.council@ct.gov
Web Site: portal.ct.gov/csc

September 25, 2020
Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597
RE: TS-VER-047-200827 - Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 50 Plantation Road, East Windsor, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on September 24, 2020, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

1. Approval of any changes be delegated to Council staff;
2. Prior to Verizon's antenna installation, the tower modifications shall be installed in accordance with the Structural Analysis prepared by All Points Technology Corporation, dated July 9, 2020 and signed and stamped by Michael S. Trodden;
3. Within 45 days following completion of equipment installation, Verizon shall provide documentation certified by a Professional Engineer that its installation complied with the recommendations of the Structural Analysis;
4. Any deviation from the proposed installation as specified in the original tower share request and supporting materials with the Council shall render this decision invalid;
5. Any material changes to the proposed installation as specified in the original tower share request and supporting materials filed with the Council shall require an explicit request for modification to the Council pursuant to Connecticut General Statutes § 16-50aa, including all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65;
6. Not less than 45 days after completion of the proposed installation, the Council shall be notified in writing that the installation has been completed;
7. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by Verizon shall be removed within 60 days of the date the antenna ceased to function;
8. The validity of this action shall expire one year from the date of this letter; and
9. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and applies only to this request for tower sharing dated August 27, 2020. This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. Any deviation from the approved tower sharing request is enforceable under the provisions of Connecticut General Statutes § 16-50u.

The proposed shared use is to be implemented as specified in your letter dated August 27, 2020, including the placement of all necessary equipment and shelters within the tower compound.

Please be advised that the validity of this action shall expire one year from the date of this letter.
Thank you for your attention and cooperation.
Sincerely,

s/ Melanie A. Bachman

Melanie Bachman
Executive Director

MAB/IN/emr

c: The Honorable Jason E. Bowsza, First Selectman, Town of East Windsor (jbowsza@eastwindsorct.com)

ATTACHMENT 2

DRAWING INDEX
T-1 TITLE SHEET
C-1 COMPOUND PLAN, TANK ELEVATION, EQUIPMENT CONFIGURATION PLANS \& ELEVATION.

B-1 RF BILL OF MATERIALS, MECHANICAL SPECIFICATIONS \& EQUIPMENT DETAILS.

N-1 NOTES \& SPECIFICATIONS

verizon WIRELESS SERVICES FACILITY SOUTH WINDSOR NORTH CT 50 PLANTATION ROAD EAST WINDSOR, CT 06016

SITE DIRECTIONS
START: 20 ALEXANDER DRIVE

SתMSUNG

S/MSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5 G experiences to users in the U.S..

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C -Band spectrum.
Samsung C-Band massive MIMO Radio covers the entire CBand 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.
This helps operators reduce their CAPEX as they now need less products to cover the same area than before.
Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280 MHz bandwidth, and delivers a 200 W output power. despite the above advanced performance, the Radio has a compact size of 50.9 L and 79.4 lbs . This makes it easy to install the Radio.
It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

C Technical Specifications

Item	Specification
Tech	NR
Band	n 77
Frequency Band	$3700-3980 \mathrm{MHz}$
EIRP	$78.5 \mathrm{dBm}(53.0 \mathrm{dBm}+25.5 \mathrm{dBi})$
IBW/OBW	$280 \mathrm{MHz} / 200 \mathrm{MHz}$
Installation	Pole/Wall
Size/ Weight	$16.06 \times 35.06 \times 5.51$ inch $(50.86 \mathrm{~L}) /$ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

6-port sector antenna, $2 \times 698-896$ and $4 \times 1695-2360 \mathrm{MHz}, 65^{\circ}$ HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for $4 x$ Rx or $4 \times$ MIMO

General Specifications

Antenna Type Sector
Band Multiband
4
RF Connector Quantity, high band
2
RF Connector Quantity, low band
6
RF Connector Quantity, total
Light gray
$0.26 \mathrm{~m}^{2}$ $2.799 \mathrm{ft}^{2}$
$0.22 \mathrm{~m}^{2}$ $2.368 \mathrm{ft}^{2}$
RF connector body grounded to reflector and mounting bracket
Outdoor usage | Wind loading figures are validated by wind tunnelmeasurements described in white paper WP-112534-EN
Fiberglass, UV resistant
Low loss circuit board
Aluminum
7-16 DIN Female
Bottom
Remote Electrical Tilt (RET) Information, General

RET Interface

RET Interface, quantity

Dimensions

NHH-65B-R2B

Depth
Array Layout

View from the front of the antenna
(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	$1695-2360 \mathrm{MHz} \mathrm{\quad \mid} \mathrm{\quad 698-896MHz}$Polarization $\pm 45^{\circ}$ Total Input Power, maximum $900 \mathrm{~W} @ 50^{\circ} \mathrm{C}$ Remote Electrical Tilt (RET) Information, Electrical Protocol $3 G P P / A I S G 2.0$ (Single RET) Power Consumption, idle state, maximum 2 W.

NHH-65B-R2B

Power Consumption, normal conditions, maximum
Input Voltage
Internal Bias Tee
Internal RET

13 W
$10-30$ Vdc
Port 1 | Port 3
High band (1) | Low band (1)

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	14.9	15	17.7	17.9	18.4	18.7
Beamwidth, Horizontal, degrees	65	60	71	69	64	57
Beamwidth, Vertical, degrees	12.4	11.2	5.7	5.2	4.9	4.6
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	0-7
USLS (First Lobe), dB	13	14	18	18	19	18
Front-to-Back Ratio at $18 \mathbf{0}^{\circ}$, dB	30	29	31	30	29	31
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR \| Return loss, dB	1.5\|14.0	1.5\|14.0	1.5\|14.0	1.5\|14.0	1.5\|14.0	1.5\|14.0
PIM, 3rd Order, 2×20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	300	300	300	300	300	300

Electrical Specifications, BASTA

Frequency Band, MHz	$\mathbf{6 9 8 - 8 0 6}$	$\mathbf{8 0 6 - 8 9 6}$
Gain by all Beam Tilts, average, dBi	14.5	14.5
Gain by all Beam Tilts Tolerance, dB	± 0.6	± 1.1
Gain by Beam Tilt, average, dBi	$0^{\circ} \mid 14.4$ $7^{\circ} \mid 14.6$ $14^{\circ} \mid 14.3$	$0^{\circ} \mid 14.7$ $7^{\circ} \mid 14.7$ $14^{\circ} \mid 14.1$
Beamwidth, Horizontal Tolerance, degrees	± 2	± 2.1
Beamwidth, Vertical Tolerance, degrees	± 0.7	± 0.7
USLS, beampeak to 20 above beampeak, dB	13	14
Front-to-Back Total Power at $\mathbf{1 8 0} \pm \mathbf{3 0}$, dB	23	22
CPR at Boresight, dB	22	21

$\mathbf{1 6 9 5 - 1 8 8 0}$	$\mathbf{1 8 5 0 - 1 9 9 0}$	$\mathbf{1 9 2 0 - 2 2 0 0}$	$\mathbf{2 3 0 0} \mathbf{- 2 3 6 0}$
17.3	17.7	18.1	18.5
± 0.4	± 0.4	± 0.5	± 0.3
$0^{\circ} \mid 17.2$	$0^{\circ} \mid 17.6$	$0^{\circ} \mid 18.0$	$0^{\circ} \mid 18.3$
$4^{\circ} \mid 17.3$			
$7^{\circ} \mid 17.3$	$4^{\circ} \mid 17.7$	$4^{\circ} \mid 18.2$	$4^{\circ} \mid 18.5$
± 3	± 4.1	$7^{\circ} \mid 18.1$	$7^{\circ} \mid 18.6$
± 6.5	± 2.9		
± 0.3	± 0.2	± 0.3	± 0.2
16	16	17	15
27	27	25	25
23	23	22	

Mechanical Specifications

Wind Loading at Velocity, frontal
Wind Loading at Velocity, lateral
Wind Loading at Velocity, maximum
Wind Speed, maximum

Packaging and Weights
Width, packed
Depth, packed
Length, packed
Net Weight, without mounting kit
Weight, gross
278.0 N @ 150 km/h | 63.6 lbf @ 150 km/h
$230.0 \mathrm{~N} @ 150 \mathrm{~km} / \mathrm{h}$ | $51.7 \mathrm{lbf} @ 150 \mathrm{~km} / \mathrm{h}$
120.7 lbf @ 150 km/h | $537.0 \mathrm{~N} @ 150 \mathrm{~km} / \mathrm{h}$

241 km/h | 149.75 mph

Regulatory Compliance/Certifications

Agency

CHINA-ROHS
ISO 9001:2015
REACH-SVHC
ROHS

Classification

Below maximum concentration value
Designed, manufactured and/or distributed under this quality management system
Compliant as per SVHC revision on www.commscope.com/ProductCompliance
Compliant

ISO
9001:2015

Included Products

BSAMNT- _ Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor top 3 - bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

10-port sector antenna, 2x 698-896, 4x 1695-2200 and 4x 3100-4200 MHz , $65^{\circ} \mathrm{HPBW}, 2 \times$ RETs and $2 \times$ SBTs. Both high bandsshare the same electrical tilt.

- Perfect antenna to add 3.5 GHz CBRS to macro sites
- Low band and mid band performance mirrors the performance of existing NHH hex port antennas
- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One LB RET and one HB RET. Both high bands are controlled by one RET to ensure same tilt level for 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector inner conductor and body grounded to reflector and mounting bracket
Performance Note	Outdoor usage
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	$4.3-10$ Female
RF Connector Location	Bottom RF Connector Quantity, high band RF Connector Quantity, mid band RF Connector Quantity, low band RF Connector Quantity, total Remote Electrical Tilt (RET) Information RET Hardware RET Interface

NHHSS-65B-R2BT2

Input Voltage

Internal RET

Power Consumption, active state, maximum
Power Consumption, idle state, maximum
Protocol
Dimensions

Depth
Length
Net Weight, without mounting kit
$10-30 \mathrm{Vdc}$
High band (1) | Low band (1)
10 W
2 W
3GPP/AISG 2.0 (Single RET)

301 mm | 11.85 in
181 mm | 7.126 in
1828 mm | 71.969 in
$23.1 \mathrm{~kg} \mathrm{\mid} 50.927 \mathrm{lb}$

Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	AISG RET UID
R1	$698-896$	$1-2$	1	AISG1	CPxxxxxxxxxxxxxxxxR1
B1	$1695-2200$	$3-4$	2	AISG2	CPxxxxxxxxxxxxxxxB1
B2	$1695-2200$	$5-6$			
P1	$3100-4200$	$7-8$	N/A	NA	N/A
P2	$3100-4200$	9.10			

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

NHHSS-65B-R2BT2

Electrical Specifications

Impedance

Operating Frequency Band
Polarization
Total Input Power, maximum

50 ohm
$1695-2200 \mathrm{MHz}$ | $3100-4200 \mathrm{MHz}$ | $698-896 \mathrm{MHz}$
$\pm 45^{\circ}$
$1,000 \mathrm{~W} @ 50^{\circ} \mathrm{C}$

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-18	1850-	920-	100	550	3700-4200
Gain, dBi	14.8	15.2	17.4	17.8	18	17.5	17.3	17.6
Beamwidth, Horizontal, degrees	65	62	66	61	64	55	65	61
Beamwidth, Vertical, degrees	13	11.6	5.5	5.2	4.9	5.7	5.4	4.9
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	2	2	2
USLS (First Lobe), dB	15	15	16	18	18	17	17	17
Front-to-Back Ratio at 180°, dB	26	29	31	28	27	30	32	29
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	28	28	28
VSWR \| Return loss, dB	1.5114 .0	1.5114.0	1.5114.0	1.5114.0	1.5174.0	1.5114.0	1.5114 .0	1.5114.0
PIM, 3rd Order, 2×20 W, dBc	-153	-153	-153	-153	-153	-140	-140	-140

NHHSS-65B-R2BT2

| Input Power per Port at $\mathbf{5 0}^{\circ} \mathbf{C}$, | 300 | 300 | 300 | 300 | 300 | 100 | 100 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | maximum, watts

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1	850	1920-	3100	355	0-4200
Gain by all Beam Tilts, average, dBi	14.6	14.8	17	17.5	17.7	17.1	16.9	17.1
Gain by all Beam Tilts Tolerance, dB	± 0.4	± 0.4	± 0.6	± 0.3	± 0.4	± 0.5	± 0.7	± 0.8
Gain by Beam Tilt, average, dBi	$\begin{aligned} & 0^{\circ} \mid 14.6 \\ & 7^{\circ} 144.6 \\ & 14^{\circ} \mid 14.4 \end{aligned}$	$\begin{aligned} & 0^{\circ} \mid 15.0 \\ & 7^{\circ} 114.9 \\ & 14^{\circ} \mid 14.5 \end{aligned}$	$\begin{aligned} & 0^{\circ} 116.9 \\ & 3^{\circ} 117.0 \\ & 7^{\circ} \mid 16.8 \end{aligned}$	$\begin{aligned} & 0^{\circ} \mid 17.4 \\ & 3^{\circ} \mid 17.5 \\ & 7^{\circ} \mid 17.4 \end{aligned}$	$\begin{aligned} & 0^{\circ} 117.5 \\ & 3^{\circ} 117.8 \\ & 7^{\circ} 117.6 \end{aligned}$			
Beamwidth, Horizontal Tolerance, degrees	± 1.7	± 1.3	± 7.2	± 3.1	± 6.2	± 11.7	± 7.4	± 10.9
Beamwidth, Vertical Tolerance, degrees	± 0.8	± 0.8	± 0.2	± 0.2	± 0.4	± 0.4	± 0.3	± 0.4
USLS, beampeak to 20° above beampeak, dB	18	16	14	15	17	14		
Front-to-Back Total Power at $180^{\circ} \pm 30^{\circ}, \mathrm{dB}$	22	25	25	25	24	26	25	23
CPR at Boresight, dB	24	17	16	21	19	15	16	14
CPR at Sector, dB	12	6	11	10	8	7	8	7

Mechanical Specifications

Wind Loading at Velocity, frontal
Wind Loading at Velocity, lateral
Wind Loading at Velocity, maximum
Wind Speed, maximum

Packaging and Weights

Width, packed
Depth, packed
Length, packed
Weight, gross

```
278.0 N @ 150 km/h | 62.5 lbf @ 150 km/h
230.0 N @ 150 km/h | 51.7 lbf @ 150 km/h
120.7 lbf @ 150 km/h | 537.0 N @ 150 km/h
241 km/h | 149.75 mph
```


Regulatory Compliance/Certifications

Agency
CHINA-ROHS
REACH-SVHC

Classification
Below maximum concentration value
Compliant as per SVHC revision on www.commscope.com/ProductCompliance

NHHSS-65B-R2BT2

Included Products

BSAMNT-3

- Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.
* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance
[CBRS RRH] Spec.

Item	Specification
Band	Band 48 (3.5 GHz)
Frequency	$3550^{\sim} 3700 \mathrm{MHz}$
IBW	150 MHz
OBW	80 MHz
\# of Carriers	$5 / 10 / 15 / 20 \mathrm{MHz} \times 4$ carriers
RF Chain	$4 \mathrm{TX} / 4 \mathrm{RX}$
RF Output Power	4 path x 5 W (Total: 20 W = 43 dBm) \& EIRP
(EIRP: 47 dBm / 10 MHz)	

ATTACHMENT 3

	General	Power	Density					
Site Name: South Winsdsor N (East Windsor)								
Structure Height: 135 Ft								
CARRIER	\# OF CHAN.	WATTS ERP	HEIGHT	CALC. POWER DENS	FREQ.	$\begin{gathered} \text { MAX. } \\ \text { PERMISS. } \end{gathered}$	FRACTION MPE	Total
*AT\&T-UMTS	0			28000	0.0000	1.0000	0.00\%	
*AT\&T-UMTS	0			3600	0.0000	1.0000	0.00\%	
*AT\&T-UMTS	1	4920	94	1970	0.2285	1.0000	2.28\%	
*AT\&T-UMTS	1	2925	102	869	0.1141	0.5793	1.97\%	
*AT\&T-UMTS	1	4550	102	2145	0.1775	1.0000	1.78\%	
*AT\&T-UMTS	1	2450	102	746	0.0956	0.4973	1.92\%	
*AT\&T-UMTS	2	414	114	850	0.0255	0.5667	0.45\%	
*AT\&T-PCS-UMTS	2	656	114	1900	0.0405	1.0000	0.40\%	
*AT\&T-LTE	2	1615	114	700	0.0996	0.4667	2.13\%	
*AT\&T-PCS-LTE	2	1942	114	1900	0.1198	1.0000	1.20\%	
*AT\&T-GSM	2	414	114	850	0.0255	0.5667	0.45\%	
*Sprint-CDMA	1	438	126	850	0.0109	0.5667	0.19\%	
*Sprint-LTE	2	438	126	850	0.0219	0.5667	0.39\%	
*Sprint-CDMA	5	623	126	1900	0.0778	1.0000	0.78\%	
*Sprint-LTE	2	1556	126	1900	0.0777	1.0000	0.78\%	
*Sprint-LTE	8	778	126	2500	0.1554	1.0000	1.55\%	
*Clearwire	2	153	126	2496	0.0076	1.0000	0.08\%	
*Clearwire	1	211	130	11 GHz	0.0049	1.0000	0.05\%	
*T-Mobile	2	24	120	2100	0.0013	1.0000	0.01\%	
*T-Mobile	2	12	120	1950	0.0007	1.0000	0.01\%	
*T-Mobile	2	12	120	2100	0.0007	1.0000	0.01\%	
VZW 700	4	662	102	0.0091	751	0.5007	1.83\%	
VZW Cellular	4	689	102	0.0095	869	0.5793	1.64\%	
VZW PCS	4	1466	102	0.0203	1980	1.0000	2.03\%	
VZW AWS	4	1570	102	0.0217	2125	1.0000	2.17\%	
VZW CBAND	4	6531	102	0.0903	3730	1.0000	9.03\%	
VZW CBRS	4	12	94	0.0002	3625	1.0000	0.02\%	
								33.15\%
* Source: Siting Council								

ATTACHMENT 4

July 9, 2021
Verizon Wireless
20 Alexander Drive
Wallingford, CT 06492
Attn: Mr. David Vivian
Re: Structural Analysis Report
Verizon Site I.D.: South Windsor North CT - LSub6 - Carrier Add
50 Plantation Road
East Windsor, CT 06016
Project/Location Code:
20171646071/469756
VZW FUZE I.D.:
APT Filing No.
16560063
CT141_12500
Dear Mr. Vivian,
All-Points Technology Corp. (APT), a professional engineering corporation licensed in the State of Connecticut, performed a structural analysis of the above existing $133-\mathrm{ft} \pm$ high elevated water reservoir to support a proposed antenna and appurtenance modification.

Details of the proposed antenna and appurtenance modification are included within the table on the following page. Reference is made to the Construction Drawings prepared by this office, marked Rev 0, dated 07/07/21.

The following information was utilized in the preparation of this assessment:

- Construction Drawings prepared by APT, marked Rev1, dated 11/06/2020
- Tank Reinforcement Drawings, prepared by APT, marked Revo, dated 07/09/20.
- Structural Modification Design Report, prepared by APT, dated 07/09/20.
- SK-S1 - Foundation Reinforcement Details, marked Rev1, dated 06/08/21.
- SK-S2 - Reinforcement Details, marked Rev1, dated 06/30/21.

The structural analysis has been prepared in accordance with the following design standards:

- ASCE/SEI 7-10 - Minimum Design Loads for Buildings and Other Structures
- AISC - American Institute of Steel Construction Manual of Steel Construction, $14^{\text {th }}$ Ed.
- IBC 2015 - as amended by the 2018 Connecticut State Building Code.
- ANSI/TIA-222-H - Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures

Design Criteria:

- Load Case 1: 125 mph (3-sec gust), Ultimate Wind Speed
- Load Case 2: $125 \mathrm{mph}(3-\mathrm{sec}$ gust), Ultimate Wind Speed $0.9 \times$ Dead Load
- Structure Class II
- Exposure Category C
- Topographic Category 1

Note: Risk Category II used. (Water tank no longer in service).

The analysis consists was conducted utilizing the following equipment inventory (proposed equipment indicated in bold text):

Carrier	Antenna and Appurtenance Make/Model	Elevation	Status	Mount Type	Coax/FeedLine
Clearwire	(2) 3-ft Dia. Microwave Dishes (Dragonwave A-ANT-23-G-2.5 est.)	125' \pm	E	(3) Pipe Mounts	(3) $1-1 / 4 \mathrm{RF}$ Hyrbriflex,
Clearwire	(3) Fiber Boxes	$124^{\prime} \pm$	E		
Clearwire	(3) Argus LLPX310R-V4 panel antennas	119'土	E		(2) 2-1/4" Innerduct
Clearwire	(3) Remote Radio Units	$116{ }^{\prime} \pm$	E		
Sprint	(2) RFS APVX9ERR18-C-A20, (1) RFS APVXSPP18-C-A20, (3) ALU $1900 \mathrm{MHz} 4 \times 40 \mathrm{~W}$ RRHs	$121^{\prime} \pm$	E	(3) Pipe Mounts	
Clearwire	(1) Fiber Box	109'土	E	Catwalk Rail	n/a
MetroPCS/ T-Mobile	(3) RFS APXV18-206517S-C panel antennas	$119^{\prime} \pm$	E	(3) Pipe Mounts	(6) 1-5/8
AT\&T	(6) Powerwave 7770 panel antennas, (2) Powerwave P65-17-XLH-RR panel antennas, (1) KMW AM-X-CD-16-65-00T-RET panel antenna (12) Powerwave LGP 21401 TMAs, (3) Ericsson RRUS-11, (3) Ericsson RRUS-12 and (3) Raycap DC2 Surge Suppressors (est.)	$\begin{aligned} & 112- \\ & 113^{\prime} \pm \end{aligned}$	E	(3) Pipe Mounts (shared with Clearwire \& MetroPCS/T-Mobile)	(12) 1-5/8", (2) $5 / 8^{\prime \prime} \&(1)$ 3/8" fiber/DC cables (est.)
Verizon	(3) Commscope NHHSS-65B-R2B, (3) Commscope NHH-65B-R2B panel antennas, (3) Samsung MT6407-77A antennas (3) Samsung B5/B13 RRH-BRO4C Remote Radio Heads (RRHs), (3) Samsung B2/B66A RRH-BR049 RRHs, (3) Samsung CBRS RT4401-48A RRHs (3) Raycap RHSDC-3315-PF-48 Over Voltage Protection Boxes (OVPs)	102'/94'	P	Custom Pipe Mounts Attached to Exist. Tank Legs	(3) 6×12 Low Inductance Hybrid Fiber Cables (Routed within Southwest Built-Up Lattice Leg Channels)
Clearwire	One (1) Fiber Box	$10^{\prime} \pm$	E	Leg	n/a

Analysis Results:

The analysis was conducted in accordance with the criteria outlined above, with the aforementioned existing and proposed equipment loading. The following table summarizes the results of the analysis:

Component	Usage (\%)
New Sway Rods	94%
Reinforced Wing Plates	97%
Anchor Bolts	58%

Notes:

1. ASTM A36 steel grade used for the basis of the new sway rod design.
2. Existing anchor bolts include $1 / 8^{\prime \prime}$ corrosion allowance.
3. Anchor bolt usage includes (1) new $3 / 4$ "dia. anchor bolt per leg.
4. Assumes reservoir no longer used for water storage.
5. Reinforced gusset plates (Pin bearing on plate controls).

Base Foundation:

Evaluation of the existing foundation system was limited to a global stability check with the existing and proposed loading. The existing foundation geometry was established through field investigation conducted by APT during May 2017, and during construction of the new build project during June 2021. Subgrade conditions were based on presumptive soil parameters per TIA-222-H Section 9.4, and Table F-1 (Annex F) \& IBC 2015.
The calculated leg and base reactions with the above noted loading are as follows:

Load Effect	Calculated Base Reactions	Usage
Axial	74 k	n / a
Shear	70 k	n/a
Overturning Moment	$5291 \mathrm{ft}-\mathrm{k}$	n/a
Leg Uplift	95 k	$0.75<1.0$ (PASS)

Conclusions:

Successful completion of the reinforcements detailed within the attached drawings, will result in a host structure that meet the requirements of the 2015 International Building Code, as amended by the 2018 Connecticut State Building Code.

Sincerely,
All-Points Technology Corp., P.C.

Michael S. Trodden, P.E. Sr. Structural Engineer

Prepared by:
All-Points Technology Corp., P.C.

Jason R. Mead
Department Manager Structural Services

Limitations:

This report is based on the following:

1. Tower/structure is properly installed and maintained.
2. All members are in a non-deteriorated condition.
3. All required members are in place.
4. All bolts are in place and are properly tightened.
5. Tower/structure is in plumb condition.
6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

1. Replacing or reinforcing bracing members.
2. Reinforcing members in any manner.
3. Installing antenna mounts.
4. Extending tower/structure.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Calculations

（APPENDIX N）				AL	－SP	IC S	UCT	RAL	IGN	RAME		
				Wind Design Parameters								
		MCE Spectral Acceleration \mathbf{s} $(\% \mathrm{~g})$		Ultimate Design Wind Speeds，Vult （mph）			Nominal Design Wind Speeds，$V_{\text {asd }}$ （mph）			Wind－Borne Debris Regions ${ }^{1}$		
		S_{s}	S_{1}	Risk Cat．I	Risk Cat．II	Risk Cat III－IV	Risk Cat．I	Risk Cat． II	Risk Cat． III－IV			
East Hampton	30	0.177	0.062	120	130	140	93	101	108			Yes
East Hartford	30	0.180	0.064	115	125	135	89	97	105			Yes
East Haven	30	0.182	0.062	120	130	140	93	101	108		Type B	Yes
East Lyme	30	0.164	0.059	125	135	145	97	105	112	Type B	Type A	Yes
Easton	30	0.215	0.066	110	120	130	85	93	101			Yes
East Windsor	35	0.177	0.064	115	125	135	89	97	105			Yes
Ellington	35	0.176	0.064	115	125	135	89	97	105			Yes
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Type A	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Type B	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Type A	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Type B	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108		Type B	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108			Yes
Hamden	30	0.185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0.172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0.175	0.065	110	120	125	85	93	97			Yes
Harwinton	35	0.183	0.065	110	120	130	85	93	101			Yes
Hebron	30	0.177	0.063	120	130	140	93	101	108			Yes
Kent	40	0.188	0.065	105	115	120	81	89	93			
Killingly	40	0.171	0.062	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledyard	30	0.163	0.059	125	135	145	97	105	112		Type A	Yes
Lisbon	30	0.169	0.061	125	135	145	97	105	112		Type A	Yes
Litchfield	40	0.184	0.065	110	120	125	85	93	97			Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Type A	Yes
Madison	30	0.173	0.060	120	130	140	93	101	108		Type B	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105			Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Type B	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	101			Yes

Address:

50 Plantation Rd
Broad Brook, Connecticut 06016

ASCE 7 Hazards Report

Wind

Results:

Wind Speed:	122 Vmph
10 -year MRI	76 Vmph
25 -year MRI	86 Vmph
50 -year MRI	93 Vmph
100 -year MRI	100 Vmph

Date Socessed:

MABElSU47200,1Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, incorporating errata of March 12, 2014
Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class:
D - Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.177
$\mathrm{~S}_{1}:$	0.064
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.284
$\mathrm{~S}_{\mathrm{M} 1}:$	0.154

Seismic Design Category B

Data Accessed:
Date Source:

Wed Jul 142021
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Designer Comments: (1) Existing TMA's and RRU's considered not shielded from wind by antenna(s).

Water Tower Wind Load Calculation - Stand Pipe, Reservoir and Appurtenances

Component	$\begin{aligned} & \text { Top or securon } \\ & \text { Elevation } \\ & \text { (ft) } \end{aligned}$	$\begin{gathered} \text { Boitumior } \\ \text { Section } \\ \text { (ti) } \end{gathered}$	$\begin{aligned} & \hline \Delta h \\ & \text { (tit) } \end{aligned}$	Depth (t)	Diameter (tt^{2})	$\begin{aligned} & \mathrm{AF} \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline A R \\ & \left(t^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { z bar } \\ & \text { (tit) } \end{aligned}$	Kz	qz	CF	$\underset{(\mathrm{k} \mid \mathrm{ps})}{\mathrm{F}}$	$\begin{gathered} \hline \text { OTM } \\ \text { (tI-kips) } \end{gathered}$
Stand-Pipe	100	74	26		3.00		78.00	87.0	${ }^{1.23}$	46.70	0.70	2.17	188.58
Stand-Pipe	74	37	37		3.00		111.00	55.5	1.12	42.49	0.70	2.81	155.74
Stand-Pipe	37	0	37		3.00		111.00	18.5	0.89	33.71	0.70	2.23	41.19
Ladder	112.5	74	38.5	0.2		7.70		93.3	1.25	42.40	2.00	0.56	51.76
Ladder	74	37	37	0.2		7.40		55.5	1.12	38.01	2.00	0.48	26.54
Ladder	37	0	37	0.2		7.40		18.5	0.89	30.16	2.00	0.38	7.02
Dome Bulb	109	100	9				${ }^{133.00}$	104.5	1.28	48.54	0.50	2.7	286.73
Reservoir Cylinder	127	109	18		19.00		342.00	118.0	1.31	49.80	0.50	7.24	854.12
Reservoir Ladder	129	109	20	0.2		4.00		119.0	1.31	44.64	2.00	0.30	36.12
Exposed Catwalk	112	109	3			4.00		110.5	1.29	43.95	2.00	0.30	33.02
Cone Roof	132.5	125.67	6.83				88.20	129.1	1.34	50.75	0.50	1.90	245.56
Finial	134.3	133.3	1		0.67		0.67	${ }^{133.8}$	1.35	45.75	0.50	0.01	1.74
												21.11	1928.11

Water Tower Wind Load Calculation - Antennas \& Appurtenances

Component	$\substack{\text { Top of Section } \\ \text { Elevation } \\ \text { (It) }}$	$\begin{gathered} \text { Bottom of } \\ \text { Section } \\ \text { Elevation } \\ \text { (tt) } \end{gathered}$	2 bar (ti)	Kz	qz		(kips)	$\begin{gathered} \text { отм } \\ (\mathrm{tt}-\mathrm{kips}) \end{gathered}$	
Exposed Coaxial Cables	112 74	74 37	93.0 555	${ }^{1.25}$	47.36 4.29	15.05 1.45 1	${ }_{0}^{0.65}$	56.34 297	
Exposed Coaxial Cables Exposed Coaxial Cables	74 37	37 10	55.5 23.5	1.12 0.93	42.49 35.46	14.65 10.69	- $\begin{aligned} & 0.53 \\ & 0.32\end{aligned}$	${ }_{7}^{29.57}$	
CW MW Dishes	125	125	${ }_{125.0}$	1.33	45.10	18.80	0.72	90.09	
CW Fiber Boxes	124	124	124.0	1.32	45.02	1.58	0.06	7.50	
Sprint Panels CW Panels	121 119	121 119	121.0 119.0	1.32 1.31 1	44.79 44.64	19.61 11.14	0.75 0.42	90.35 50.27	
CW Panels MetrocS $/$-Mobile Panels	119 119	119 119	119.0 119.0	1.31 1.31	44.64 44.64	11.14 12.40	- ${ }^{0.42}$	50.27 55.99	
Exposed Pipe Mounts	117	117	117.0	1.31	49.71	20.69	0.87	102.29	
CW RRHs	116	116	116.0	1.31	44.40	5.17	0.20	22.64	
Sprint 800 MHz RRHs	115.5 112.5 12.5	115.5 112.5	115.5 112.5 10.5	1.30 1.30	44.36 44.11	4.44 6.11	0.17 0.23	19.34 25.77	
	${ }_{113.5}$	111.5 113.5	112.5 113.5	1.30 1.30 1.30	${ }_{44.19}^{44.19}$	6.411 28.85	a 1.23 1.07	${ }_{121.32}^{25.7}$	
ATET Panels	112.5	112.5	112.5	1.30	44.11	27.56	1.03	116.26	
ATETPanels	112	112	${ }^{112.0}$	1.30	44.07	25.21	0.94	105.78	
$\xrightarrow{\text { CW Fiber Boxes }}$	109 98	109 98	109.0 98.0	1.29 1.26	43.82 47.89	1.77 31.50	0.07 1.28	7.18 125.66	
Prop. Verizon Mounts	98	98	98.0	1.26	42.85	${ }^{12.60}$	- 0.46	44.97	
Prop. Verizon Panels $\&$ OvPs	${ }^{102}$	${ }^{102}$	${ }^{1020}$	1.27	43.21	50.18	${ }^{1.84}$	187.99	
Prop. Verizon Panels \& RRHs CW Fiber Box	94 10	94 10	94.0 10.0	1.25 0.85	42.47 88.90	$\begin{gathered} 23.37 \\ 1.02 \end{gathered}$	0.84 0.03	79.31 0.25	
CW Fiber Box			10.0	0.85		$\begin{gathered} 1.02 \\ 342.00 \\ \hline \end{gathered}$	0.03 12.91	$\begin{gathered} 0.25 \\ 1346.25 \\ \hline \end{gathered}$	
			Total Axial	ove			74.3	kips	(Gross tank material weight minus stand pipe \& $1 / 2$ spider rods + equipment weight used for foundation a analysis)
			Horizontal	Level	t Anten		19.7		
			Horizontal	Level	ntennas		31.5 35.2		
			Horizontal	Level	with Ante		47.5		
			Horizontal	Level	without A	ennas	50.4		
			Horizontal	Level	with Ante		63.1		
			Base Shear Base Shear	Tank)			57.4 70.3	$\underset{\substack{\text { kips } \\ \text { kips }}}{ }$	
			Base Shear	Tank	as) $=$		70.3		
			OTM (Wate					3944.5 52908	${ }^{\text {(tt-kipss) }}$
			OTM (Wate	Anten				5290.8	(tt-kips)
			Overturnin If $>10 \%$ che	ease =				34.1\%	
			Shear \% In If $>10 \%$ che					22.5\%	

Consulting Engineers 3 Saddlebrook Drive, Killingworth, CT 06419 Ph. 860-663-1697 Fax. 860-663-0935						
		Subject: Sway Bracing \& Anchor Bo				
		Project: Verizon - South Windsor \mathbf{N}				
		Prepared: 07.09.21	Revised:		APT Job No. CT141_12500	
Sway Rod X - Bracing Analysis at Level 1 (0 to 37-ft \pm AGL)			Sway Rod X - Base Wing Plate Connection Analysis (AlSC 14th Ed. Sec D5)			
X Bracing Rod Dia. (in)	1.5	New	Gussett Plate Thickness	0.375	Existing	
Rod Yield Stress, Fy (psi)	36,000	ASTM A307 USED	Plate Yield Stress, Fy (psi)	33,000	ASTM A7-39 used (tank built circa 1946)	
Rod Tensile Stress, Fu (psi)	60,000	ASTM A307 USED	Plate Tensile Stress, Fu (psi)	60,000	ASTM A7-39 used (tank built circa 1946)	
Angle of Sway Rod From Ground Plane (degrees)	50		beff	1.380		
Un-threaded Portion Area (in ${ }^{2}$)	1.767	(Nominal area, Ag)	b	1.950	in	
Available Tension Strength (Turnbuckle)	52.50	kips (1 1/2" dia. UNC/4UN Class 2B)	Asf	2.488	in^{2}	
Available Tension Strength (Clevis)	52.50	kips (\#4, UNC Class 2B)	a	2.380	in	
Available Tension Strength in Un-threaded Rod	57.26	(0.90*Fy*Ag)	d	1.875	in	
Available Tension Strength in Threaded Rod	59.64	($0.755^{*} 75^{*} \mathrm{Fu}{ }^{*} \mathrm{Ag}$)	Apb	0.703	in^{2}	
Net Ultimate Shear Force (one side)	63.12	kips	Ultimate Force in Direction of Rod	49.10	kips	
Ultimate Tension Force in Sway Rod	49.10	kips	Available Tension Strength at Pin (Net)	46.58	kips	
Usage (Tension)	0.94	<1.0 OK	Available Long Shear Strength at Pin	67.18	kips	
Assumes only one sway rod is engaged per side.			Available Bearing Strength at Pin Available Tension Strength (Gross area) Usage Reinf Usage	31.32	kips	
			84.87	kips		
			1.57	>1.0 BEARING CONTROLS. ADD 1/4" THK. REINF. PLATE		
Sway Rod X - Bracing Analysis at Level 2 (37 to 74-ft \pm AGL)				0.97	<1.0 OK	
X Bracing Rod Dia. (in)Rod Yield Stress, Fy (psi)Rod Tensile Stress, Fu (psi)Angle of Sway Rod From Ground Plane (degrees)		New ASTM A307 USED				
	$\begin{aligned} & 36,000 \\ & 60,000 \end{aligned}$	ASTM A307 USED		Sway Rod X - Gusset Plate Connection Analysis (37 \pm AGL) (AISC 14th Ed. Sec D5)		
	59		Gussett Plate Thickness	0.375	Existing (Assumed, V.I.F.)	
Un-threaded Portion Area (in 2)Available Tension Strength (Turnbuckle)	1.767	(Nominal area, Ag)	Plate Yield Stress, Fy (psi)	33,000	ASTM A7-39 used (tank built circa 1946)	
	52.50	kips ($11 / 2^{\prime \prime}$ dia. UNC/4UN Class 2B)	Plate Tensile Stress, Fu (psi)	60,000	ASTM A7-39 used (tank built circa 1946)	
Available Tension Strength (Turnbuckle) Available Tension Strength (Clevis)	52.50	kips (\#4, UNC Class 2B)	beff	1.380		
Available Tension Strength in Un-threaded Rod	57.26	$\left(0.90^{*} \mathrm{Fy*} \mathrm{Ag}\right)$	b	2.960		
Available Tension Strength in Threaded Rod	59.64	$\left(0.75^{*} 75^{*} \mathrm{Fu}{ }^{*} \mathrm{Ag}\right)$	Asf	2.511	in^{2}	
Net Ultimate Shear ForceUltimate Tension Force in Sway Rod	47.51	kips	a	2.410		
	46.12 0.88	kips	${ }_{\text {d }}$	1.875	in	
Usage (Tension)	0.88	<1.0 OK	Apb	0.703	in^{2}	
Assumes only one sway rod is engaged per side.			Ultimate Force in Direction of Rod Available Tension Strength at Pin (Net) Available Long Shear Strength at Pin	49.10	kips	
			46.58	kips		
				67.79	kips	
Sway Rod X - Bracing Analysis at Level 3 (74 to 109-ft \pm AGL)				Available Bearing Strength at Pin Available Tension Strength (Gross area) Usage Reinf Usage	31.32	kips
X Bracing Rod Dia. (in)	${ }^{1.375}$	New	95.78		kips	
Rod Yield Stress, Fy (psi)	36,000	ASTM A307 USED	1.57		>1.0 BEARING CONTROLS. ADD $1 / 4$ " THK. REINF. PLATE	
Rod Tensile Stress, Fu (psi)Angle of Sway Rod From Ground Plane (degrees)	60,000	ASTM A307 USED	0.97		$<1.0 \mathrm{OK}$	
	66					
Un-threaded Portion Area (in^{2})	1.485	(Nominal area, Ag)				
Available Tension Strength (Turnbuckle) Available Tension Strength (Clevis)	43.50	kips ($13 / 8^{\prime \prime}$ dia. UNC/4UN Class 2B) kips (\#3-1/2, UNC Class 2B)	Sway Rod X - Gusset Plate Connection Analysis (74 \pm AGL) (AISC 14th Ed. Sec D5)			
	45.00		Gussett Plate Thickness	0.375	Existing (Assumed, V.I.F.)	
Available Tension Strength in Un-threaded Rod	48.11	(0.90* ${ }^{*}{ }^{*} \mathrm{Ag}$)	Plate Yield Stress, Fy (psi)	$33,000$	ASTM A7-39 used (tank built circa 1946)	
Available Tension Strength in Threaded Rod	50.12	($0.75^{*} 75^{*} \mathrm{Fu} \mathrm{Ag}^{*}$)	Plate Tensile Stress, Fu (psi)	60,000	ASTM A7-39 used (tank built circa 1946)	
Net Ultimate Shear Force	31.47	kips	beff	1.380		
Ultimate Tension Force in Sway Rod	38.69	kips	b	2.380		
Usage (Tension)	0.89	<1.0 OK	Asf	2.488	in^{2}	
Assumes only one sway rod is engaged per side.			a	2.380		
			$\stackrel{\text { d }}{\text { Apb }}$	1.875		
			$\stackrel{\text { Apb }}{ }$	0.703	in^{2}	
Anchor Bolt Analysis			Available Tension Strength at Pin (Net)	46.12 46.58	kips kips	
Anchor Rod Dia. (in)	1.375	1.5 " dia. Bolts. $1 / 8$ " corrosion allowance used	Available Long Shear Strength at Pin	67.18	kips	
Number of Exist. Anchor Bolts Per Leg	2		Available Bearing Strength at Pin	31.32	kips	
Number of Legs	4	(Assumes central standpipe takes no shell DL)	Available Tension Strength (Gross area)	80.75	kips	
Leg Circle Diameter (in)	594	Field verified	Usage	1.47	>1.0 BEARING CONTROLS. ADD $1 / 4 "$ THK. REINF. PLATE	
Bolt Tensile Stress (psi)	60,000	ASTM A7-39 used (tank built circa 1946)	Reinf Usage	0.92	<1.0 OK	
Number of Threads per Inch	6					
Bolt Area (in^{2})	1.485	(Gross area, Ag)				
Net Bolt Area (in ${ }^{2}$) Net Ultimate Uplift Tension Force Per Bolt	1.155	(Net Area, An)	Sway Rod X - Gusset Plate Connection Analysis (109 \pm AGL) (AISC 14th Ed. Sec D5)			
	45.08	kips, (0.9DL + 1.0WL)	Gussett Plate Thickness	0.375	Existing (Assumed, V.I.F.)	
Total Ultimate Base Wind Shear	70.27	kips, (x1.0WL)	Plate Yield Stress, Fy (psi)	33,000	ASTM A7-39 used (tank built circa 1946)	
Ultimate Shear Per Leg	17.57	kips, (x1.0 WL)	Plate Tensile Stress, Fu (psi)	60,000	ASTM A7-39 used (tank built circa 1946)	
Shear Per Anchor Bolt	8.78	kips, (x1.0 WL)	beff	1.380	in	
Available Bolt Tension Strength	50.19 30.14	kips	b	2.060	$\operatorname{lin}_{\mathrm{in}^{2}}$	
Available Bolt Shear Strength Additional Anchor Tension Strength	30.14 10.51	kips kips	Asf a	2.376 2.230	$\begin{aligned} & \text { in }^{2} \\ & \text { in } \end{aligned}$	
Additional Anchor Shear Strength	19.02	kips	d	1.875	in	
Usage	0.58	<1.0 OK	Apb	0.703	in^{2}	
Note: Anchor bolt usage includes installation of (1) new 3/4" dia. anchor bolt per leg.			Ultimate Force in Direction of Rod	38.69	kips	
			Available Tension Strength at Pin (Net)	46.58	kips	
			Available Long Shear Strength at Pin	64.14	kips	
			Available Bearing Strength at Pin	31.32	kips	
			Available Tension Strength (Gross area)	90.10 1.24	kips	
			Usage Reinf Usage	1.24 0.79	>1.0 BEARING CONTROLS. ADD $1 / 4$ " THK. REINF. PLATE <1.0 OK	

All-Points Technology Corporation

Consulting Engineers	Subject:	Existing Built-Up Column, Lacing Bar and Girt Analysis			
3 Saddlebrook Drive,					
Killingworth, CT 06419	Project:	Verizon - South Windsor North CT - LSub6			
Ph. 860-663-1697					
Fax. 860-663-0935	Prepared:	07.09.21	Revised:	APT Job No.	CT141_12500

Lattice Column \& Lacing Bar Analysis

Column Steel Yield Strength	33	ksi, ASTM A7-39 (tank built circa 1946)
Column Area	12.095	in ${ }^{2}$
Lacing Bar Thickness	0.375	in
Lacing Bar Depth	2.25	in
Column Moment of Inertia, Ixx	257.41	in ${ }^{4}$ (Calculated Externally)
Column Moment of Inertia, lyy	286.94	in ${ }^{4}$ (Calculated Externally)
Column Radius of Gyration, rxx	4.613	in (Calculated Externally)
Column Radius of Gyration, ryy	4.871	in (Calculated Externally)
Column Unbraced Length	445.200	
Column Effective Length Factor, K	1.000	
Channel Flange Slenderness Ratio	5.868	(Calculated Externally)
Channel Web Slenderness Ratio	34.57	(Calculated Externally)
Lacing Plate Slenderness Ratio	6.00	(Calculated Externally)
Slenderness Parameters		
$\mathrm{b} / \mathrm{t} \leq 0.56(\mathrm{E} / \mathrm{Fy})^{\wedge} 2$	16.60	Channel Flange - Unstiffened Element
$\mathrm{h} / \mathrm{tw} \leq 1.49$ (E/Fy)^2	44.17	Channel Web - Stiffened Element
$\mathrm{b} / \mathrm{t} \leq 0.45(\mathrm{E} / \mathrm{Fy})^{\wedge} 2$	13.34	Lacing Plate - Unstiffened Element
Column Slenderness Ratio, KL/r	96.51	if < 200, OK
Column Elastic Buckling Stress, Fe	30.73	ksi
Fcr	21.05	ksi
Column Design Compressive Strength, \varnothing Pn	229.17	kips
Ultimate Compressive Force, Pu	129.17	kips, (1.2DL + 1.0WL) Tank Empty No longer used to store water.
Built-Up Column Usage	0.56	if <=1.0, OK
Length of Angle Chord Between Lacing Bars, la	16.38	in
Channel, ryy	0.797	in (Calculated Externally)
75\% of Column KL/r	72.38	
La/rz	20.55	< 75% Column KL/r, OK
Length of Lacing Between Channel Chords, Lb	11.31	in
Radius of Gyration of Bar, rb	0.108	
$\mathrm{lb} / \mathrm{rb}$	104.51	if < 140, OK
Bar Elastic Buckling Stress, Fe	26.20	ksi
Fcr	19.48	ksi
Lacing Bar Design Compressive		
Strength, \varnothing Pn bar	16.44	kips
Required Shearing Strength on	2.29	kips, (2\% Built-Up Column
Each Face of Latticed Column		Compression Strength)
Axial Force in Lacing Bar	3.24	kips, if < Lacing Bar
Lacing Bar Usage	0.20	if <=1.0, OK

Built-Up Girt Analysis - Level 1-37-ft+-- (C7x9.8 Toe Up Over C6x8.2 Vert, est.)

Girt Steel Yield Strength	33	ksi, ASTM A7-39 (tank built circa 1946)
Built-Up Girt Area	5.226	
Moment of Inertia, Ixx	30.86	in ${ }^{4}$ (Calculated Externally)
Moment of Inertia, Iyy	22.01	in ${ }^{4}$ (Calculated Externally)
Radius of Gyration, rxx	2.430	in (Calculated Externally)
Radius of Gyration, ryy	2.052	in (Calculated Externally)
Unbraced Length	332.180	
Effective Length Factor, K	1.000	
Lower Channel Flange Slenderness Ratio	5.598	(Calculated Externally)
Lower Channel Web Slenderness Ratio	21.88	(Calculated Externally)
Upper Channel Flange Slenderness Ratio	5.710	(Calculated Externally)
Upper Channel Web Slenderness Ratio	25.00	(Calculated Externally)
Slenderness Parameters		
$\mathrm{b} / \mathrm{t} \leq 0.56$ (E/Fy) ${ }^{\text {2 }}$	16.60	Channel Flange - Unstiffened Element
$\mathrm{h} / \mathrm{tw} \leq 1.49$ (E/Fy) ${ }^{\wedge} 2$	44.17	Channel Web - Stiffened Element
Slenderness Ratio, KL/r	161.88	if < 200, OK
Elastic Buckling Stress, Fe	10.92	ksi
Fcr	9.58	ksi
Design	45.05	
Compressive Strength, \varnothing Pn	45.05	
Ultimate Compressive Force, Pu	31.56	kips, (1.0WL)/Two Sides - Tank Empty No longer used to store water.
Lower Built-Up Girt Usage	0.70	if <=1.0, OK

Built-Up Girt Analysis - Level 2-74-ft+-- (C6x8.2 Toe Up Over C6x8.2 Vert, est.)

Girt Steel Yield Strength	33	ksi, ASTM A7-39 (tank built circa 1946)
Built-Up Girt Area	4.76	
Moment of Inertia, Ixx	29.11	in ${ }^{4}$ (Calculated Externally)
Moment of Inertia, lyy	13.90	in ${ }^{4}$ (Calculated Externally)
Radius of Gyration, rxx	2.473	in (Calculated Externally)
Radius of Gyration, ryy	1.709	in (Calculated Externally)
Unbraced Length Effective Length Factor, K	$\begin{gathered} 244.300 \\ 1.000 \end{gathered}$	
Lower Channel Flange Slenderness Ratio	5.710	(Calculated Externally)
Lower Channel Web Slenderness Ratio	25.00	(Calculated Externally)
Upper Channel Flange Slenderness Ratio	5.710	(Calculated Externally)
Upper Channel Web Slenderness Ratio	25.00	(Calculated Externally)
Slenderness Parameters		
$\mathrm{b} / \mathrm{t} \leq 0.56$ (E/Fy) ${ }^{\text {d }}$ 2	16.60	Channel Flange - Unstiffened Element
$\mathrm{h} / \mathrm{tw} \leq 1.49$ (E/Fy) ${ }^{\text {® }} 2$	44.17	Channel Web - Stiffened Element
Slenderness Ratio, KL/r	142.95	if < 200, OK
Elastic Buckling Stress, Fe	14.01	ksi
Fcr	12.28	ksi
Compressive Strength, \varnothing Pn	52.62	kips
Ultimate Compressive Force, Pu	23.75	kips, (1.0WL)/Two Sides - Tank Empty No longer used to store water.
Lower Built-Up Girt Usage	0.45	if <=1.0, OK

Project ID:
Site Name:
Date:
CT141_12500

South Windsor North CT 07.09.21

Use (1) 3/4" DIA. Threaded Rod set in Hilti RE-500 Epoxy w/ 12" min. embedment

$$
\begin{array}{rlcl}
\mathrm{T}_{\text {allow }}= & 23070 & \mathrm{lbs} \\
\mathrm{~V}_{\text {allow }}= & 49690 & \mathrm{lbs} \\
\text { Anchor Quantity }= & 1.0 & \\
\mathrm{f}_{\mathrm{AN}}= & 0.69 & \begin{array}{l}
\text { <<Spacing Reduction Factor, 10" }
\end{array} \\
\mathrm{f}_{\mathrm{RN}}= & 0.66 & \text { <<Edge Distance Reduction Factor, 18" } \\
\mathrm{f}_{\mathrm{Av}}= & 0.58 & \begin{array}{l}
\text { <<Spacing Reduction Factor, 10" }
\end{array} \\
\mathrm{f}_{\mathrm{RV}}= & 0.66 & \text { <<Edge Distance Reduction Factor, 18" (Parallel) } \\
\mathrm{f}_{\mathrm{RV}}= & 0.74 & \text { <<Edge Distance Reduction Factor, 18" (Perpendicular) } \\
\mathrm{f}_{\mathrm{HV}}= & 1.00 & \text { <<Concrete Thickness Reduction Factor } \\
\text { LRFD Factor }= & 1 &
\end{array}
$$

Capacities:

$$
\begin{array}{llll}
\mathbf{T}_{\text {allow }}= & 10506.1 & \mathrm{lbs} & \\
\mathbf{V}_{\text {allow }}= & 19021.3 & \mathrm{lbs} & \text { (Parallel) } \\
\mathbf{V}_{\text {allow }}= & 21326.9 & \mathrm{lbs} & \text { (Perpendicular) }
\end{array}
$$

Title Block Line 1
Project Title:
You can change this area
Engineer: using the "Settings" menu item

Project ID: and then using the "Printing \& Title Block" selection. Title Block Line 6
General Section Property Calculator
DESCRIPIION: Built -Up Latticed Column Section Properties

Final Section Properties

Rotation of All Components @ Angle : 0.00 deg CCW
\square

Title Block Line 1
Project Title:
You can change this area
Engineer: using the "Settings" menu item

Project ID: and then using the "Printing \& Title Block" selection.
Title Block Line 6
General Section Property Calculator
Project Descr:

Lic. \# : KW-06006315
DESCRIPIION: Built -Up Latticed Column Section Properties

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing \& Title Block" selection. Title Block Line 6

Project Title:
Engineer:
Project ID:
Project Descr:

General Section Property Calculator
DESCRIPIION: Existing Level 1 Horz Girt Section Properties

Final Section Properties

Total Area	:	5.226 in ^2	Ixx		30.862 in^4	Sxx:-Y	$6.234 \mathrm{in}^{\wedge} 3$
Calculated final C.G. distance from Datum:			lyy		22.007 in^4	Sxx: + Y	9.952 in ^3
Xcg Dist.	.	0.02912 in	Zxx	:	8.80 in ${ }^{\text {³ }}$	Sys : - X	$6.219 \mathrm{in}^{\wedge} 3$
Y cg Dist.	:	1.950 in	Zyy		8.289 in ^3	Syy : +X	$6.323 \mathrm{in}^{\wedge} 3$
Edge Distances from CG :						rxX	2.430 in
+X	:	3.480 in			3.101 in	ryy	2.052 in
-X	:	-3.539 in			in		

Rotation of All Components @ Angle : 0.00 deg CCW

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing \& Title Block" selection. Title Block Line 6

Project Title:
Engineer:
Project ID:
Project Descr:

General Section Property Calculator
DESCRIPIION: Existing Level 2 Horz Girt Section Properties

Final Section Properties

Total Area	:	$4.760 \mathrm{in}^{\wedge} 2$	Ixx	$29.111 \mathrm{in} \wedge 4$	Sxx:-Y		$6.080 \mathrm{in}^{\wedge} 3$
Calculated final C.G. distance from Datum:			lyy	13.899 in^4	Sxx: +Y		$9.324 \mathrm{in}^{\wedge} 3$
Xcg Dist.	.	0.03198 in	Zxx	8.510 in ^3	Syy : - X		$4.570 \mathrm{in}^{\wedge} 3$
Y cg Dist.	:	1.788 in	Zyy	6.288 in ^3	Syy : +X		$4.668 \mathrm{in}^{\wedge}$
Edge Distances from CG :					rxx		2.473 in
+X	:	2.978 in	+Y	3.122 in	ryy		1.709 in
-X	:	-3.042 in	-Y	in			

Rotation of All Components @ Angle : 0.00 deg CCW

Project ID:	CT141NB7760
Site Name:	South Windsor North CT
Date:	$7 / 10 / 2020$
Sheet:	of

Use (1) 3/4" DIA. Threaded Rod set in Hilti RE-500 Epoxy w/ 12" min. embedment

$\begin{aligned} & \mathrm{T}_{\text {allow }}= \\ & \mathrm{V}_{\text {allow }}= \end{aligned}$ Anchor Quantity =	$\begin{gathered} 23070 \\ 49690 \\ 1.0 \end{gathered}$	$\begin{aligned} & \text { lbs } \\ & \text { lbs } \end{aligned}$
$\begin{aligned} & \mathrm{f}_{\mathrm{AN}}= \\ & \mathrm{f}_{\mathrm{RN}}= \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.66 \end{aligned}$	<< Spacing Reduction Factor, 10" \ll Edge Distance Reduction Factor, 18" Reductions per Table 36 Hilti Anchor Fastening Technical Guide (19th edition)
$\mathrm{f}_{\mathrm{Av}}=$	0.58	<< Spacing Reduction Factor, 10"
$\mathrm{f}_{\mathrm{RV}}=$	0.66	<< Edge Distance Reduction Factor, 18" (Parallel)
$\mathrm{f}_{\mathrm{RV}}=$	0.74	<< Edge Distance Reduction Factor, 18" (Perpendicular)
$\mathrm{f}_{\mathrm{HV}}=$	1.00	<< Concrete Thickness Reduction Factor
LRFD Factor	1	

Capacities:

$$
\begin{array}{llll}
\mathbf{T}_{\text {allow }}= & 10506.1 & \mathrm{lbs} & \\
\mathbf{V}_{\text {allow }}= & 19021.3 & \mathrm{lbs} & \text { (Parallel) } \\
\mathbf{V}_{\text {allow }}= & 21326.9 & \mathrm{lbs} & \text { (Perpendicular) }
\end{array}
$$

Verizon - South Windsor North CT 50 Plantation Road, East Windsor, CT 06016

APT FILING No. CT141_12500
Foundation Analysis
Prepared by: JRM.
Checked by: MST, P.E.

3 Saddlebrook Drive,
Killingworth, CT 06419 PH: 860-663-1697: FAX: 860-663-0935

Elevated Reservoir Foundation Analysis:

Max Reactions:
Note: Structure no longer utilized as a water tank and is empty.

Determine Maximum Uplift and Compression Forces at Leg:

$\begin{array}{ll}\text { Factored Shear Force per Leg }= & V_{\text {leg }}:=\left(\frac{V \cdot W L_{f}}{N_{l e g}}\right)=17.575 \mathrm{kip} \\ \text { Factored Max Leg Uplift Force }= & U_{\text {plift }}:\left(\frac{W L_{f} \cdot(4 \cdot M)}{N_{l e g} \cdot D_{\text {circle }}}\right)-\left(\frac{D L_{f 1} \cdot P}{N_{l e g}}\right)=90.17 \mathrm{kip} \\ \text { Factored Max Leg Compression Force }= & C_{\text {ompression }}:=\left(\frac{W L_{f} \cdot(4 \cdot M)}{N_{l e g} \cdot D_{\text {circle }}}\right)+\left(\frac{D L_{f 2} \cdot P}{N_{l e g}}\right)=129.18 \mathrm{kip}\end{array}$

Calculate Foundation Volume:

Volume of Frustum Pyramid Concrete Foundation =

$$
V_{\text {Frutstum }}:=\frac{1}{3} \cdot D_{f} \cdot\left(B_{1 t o p}+B_{2 b o t}+\sqrt{B_{1 t o p} \cdot B_{2 \text { bot }}}\right)=421.16 \mathrm{ft}^{3}
$$

Gross Volume of $\mathrm{Conc}=$

$$
V_{\text {conc }}:=V_{\text {Frutstum }}=421.16 \mathrm{ft}^{3}
$$

Volume of Frustum Pyramid Below Grade (Minus Depth to Neglect) $=$

$$
V_{\text {Frutstumnet }}:=\frac{1}{3} \cdot\left(D_{\text {base }}\right) \cdot\left(B_{1 t o p}+B_{2 b o t}+\sqrt{B_{1 t o p} \cdot B_{2 b o t}}\right)=398.4 \mathrm{ft}^{3}
$$

Net Volume of Conc $=$
$V_{\text {concnet }}:=V_{\text {Frutstumnet }}=398.4 \mathrm{ft}^{3}$

Stability of Footing:

Cross-Sectional Area of Resisting Soil $\quad B_{1}:=B_{2 b o l}=113.861 \mathrm{ft}^{2}$
at Base of Foundation =
Cross-Sectional Area of Resisting Soil
$B_{2}:=302.98 \mathrm{ft}^{2}$
at Top of Foundation (Minus Depth to
Neglect) $=$
Volume of Resisting Soil $=$
$V_{\text {soil }}:=\frac{1}{3} \cdot\left(\left(D_{\text {base }}\right) \cdot\left(B_{1}+B_{2}+\sqrt{B_{1} \cdot B_{2}}\right)\right)-V_{\text {concnet }}=773.28 \mathrm{ft}^{3}$
Weight of Concrete $=$
$W t_{\text {conc }}:=V_{\text {conc }} \cdot \gamma_{c}=63.17 \mathrm{kip}$
Weight of Resisting Soil =
$W t_{\text {soil }}:=V_{\text {Soil }} \cdot \gamma_{s}=85.06 \mathrm{kip}$
Total Resisting Weight of Soil \& Conc $=W t_{\text {Total }}:=\left(D L_{f 1} \cdot W t_{\text {conc }}+0.75 W t_{\text {soil }}\right)=120.65 \mathrm{kip}$

Uplift Interaction Ratio =
Usage : $=\left(\frac{U_{\text {plitt }}}{W t_{\text {Total }}}\right)=0.75$
UsageCheck: if $\left(\frac{U_{\text {plitt }}}{W t_{\text {Total }}} \leq 1.05\right.$, "Okay", "No Good" $)$
UsageCheck = "Okay"

Appendix B

Reference Information

verizon
fuze|RFDs
EAST > North East > New England > New England West > SOUTH WINDSOR NORTH CT - water tank Brauer, Mark - mark.brauer2@verizonwireless.com - 5/6/2021 9:28:39
Location Information
Site ID: 2578557
E-NodeB ID: 0068554,068554
PSLC: 469756
Switch Name:
ower Owner:
Tower Type:
Site Type: MACRO
eet Address: 50 Plantation road
City: East Windsor
State: CT
Zip Code: 06016
County: Hartford
Latitude: $41.87565194 / 41^{\circ} 52^{\prime} 32.3477^{\prime \prime} \mathrm{N}$
Longitude: $-72.56482972{\text { / } 72^{\circ} 33^{\prime} 53.387^{\prime \prime} \mathrm{W}}^{2}$
Equipment Summary

Equipment Type	Location	700	850	1900	Aws	CBRS	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity
Mount	Tower							Commscope	BASMNT-SBS-1-2			PHYSICAL	3
RRU	Tower					LTE		Samsung	CBRS RRH-RT4401-48A			PHYSICAL	3
RRU	Tower						5 s	Samsung	MT6407-77A			PHYSICAL	3
Removed													
Equipment Type	Location	700	850	1900	aws	cbrs	L-Sub6	Make	Model	Cable Length	Cable Size	Install Type	Quantity
									No data a	sabbe.			
Retained													
Equipment Type	Location	700	850	1900	aws	cbrs	L-Sub 6	Make	Model	Cable Length	Cable Size	Install Type	Quantity
RRU	Tower			Lte	LTE			Samsung	B2/B66A RRH-BR049 (RFV01U-D1A)			PHYSICAL	3
RRU	Tower	LTE	$5 G$					Samsung	B5/B13 RRH-BRO4C (RFV01U-D2A)			PHYSICAL	3
Hybrid Cable	Tower											PhYSICAL	3
ovp Box	Tower											PHYSICAL	3

$$
\begin{aligned}
& \begin{array}{c}
\text { Electrical } \\
\text { Tiit }
\end{array} \\
& \begin{array}{c}
\text { Azimuth (Tr Ele } \\
\text { Tit } \\
\text { Tit } \\
\hline
\end{array} \\
& \underset{\substack{\text { Antenna Ma Antenna Mc Ant CL } \\
\text { Height AGL }}}{\text { Tip Height }} \text { A }
\end{aligned}
$$

Callsigns																			
Callsign	Market	$\begin{aligned} & \text { Radio } \\ & \text { Code } \end{aligned}$	Market Number	Block	State	County	Licensee Name	Wholly Owned	Total MHZ	Freq Range 1	Freq Range 2	Freq Range 3	Freq Range 4	Regulatory Power	Threshold (W)	POPs/Sq Mi	Status	Action	Approved for Insve
WOJQ689	Northeast	wu	REA001	c	CT	Hartford	cello Parterstip	Yes	22.000	$\begin{aligned} & 746.000- \\ & 757.000 \end{aligned}$	$\begin{aligned} & 776.000- \\ & 787.000 \end{aligned}$.000-000	.000.000	73.6	1000	1216.19	Active	added	Yes
KNKA404	Hartford- New Britain- Bristol, CT	CL	CMAO32	A	ct	Hartford	Celko Partersstip	Yes	25.000	$\begin{aligned} & 824.000- \\ & 835.000 \end{aligned}$	$869.000-$ 880.000	$\begin{aligned} & 845.000- \\ & 846.500 \end{aligned}$	$\begin{aligned} & 890.000- \\ & 891.500 \end{aligned}$	306.07	400	1216.19	Active	added	Yes
WPOJ730	Hartford, CT	cw	BTA184	c	ct	Hartford	Celko Parterstip	Yes	15.000	$\begin{aligned} & 1895.000- \\ & 1902.500 \end{aligned}$	$\begin{aligned} & 1975.000 \\ & 1982.500 \end{aligned}$.000-000	.000-000	267.15	1640	1216.19	Active	added	Yes
KNLH251	Hartford, CT	cw	BTA184	F	CT	Hartford	Cello Parterstip	Yes	10.000	$\begin{aligned} & 1890.000- \\ & 1895.000 \end{aligned}$	$\begin{aligned} & 1970.000 \\ & 1975.000 \end{aligned}$.000-.000	.000-000	267.15	1640	1216.19	Active	added	Yes
CBRS_CALL	UNLICENSE	3.5 GHz	UNLICENSE	UNLICENS:	CT	Hartford	UNLICENSE	UNLICENSE	UNLICENSE	uncesteanuce	uncessounce	uncerseownues	uncensedunce	12.78		1216.19	Active	added	No
WRLD515	D09003 - Hartford, CT	PL	D09003	o	CT	Hartford	lesulivatiothon LP	Yes	100.000	353000.356000	.000-000	.000-000	.000-000	12.78		. 00	Active	added	Yes
WRLD514	D09003 - Hartford, CT	PL	D09003	0	CT	Hartford	leanhenthathan LP	Yes	100.000	355000-3650000	.000-000	.000-000	.000-.000	12.78		. 00	Active	added	Yes
WRLD513	D09003 - Hartford, CT	PL	D09003	0	ct	Hartford	leanlientiontine LP	Yes	100.000	355000.3650.000	.000-000	.000-000	.000-000	12.78		. 00	Active	added	Yes
WQGB276	Hartford- New Britain- Bristol, CT	aw	CMAO32	A	CT	Hartford	Celko Partresthip	Yes	20.000	$\begin{aligned} & 1710.000 \\ & 1720.000 \end{aligned}$	$\begin{aligned} & 21110.000 \\ & 2120.000 \end{aligned}$.000-000	.000-.000	143.06	1640	1216.19	Active	added	Yes
WQGA906	New York-No. New Jer.Long Island, NY-NJ-CT-PA-MA-	AW	bea010	B	ct	Hartford	Celko Parterstip	Yes	20.000	$\begin{aligned} & 1720.000 \\ & 1730.000 \end{aligned}$	$\begin{aligned} & 2120.000- \\ & 2130.000 \end{aligned}$.000-000	.000-000	143.06	1640	1216.19	Active	added	Yes
WPOH943	Hartford, CT	LD	BTA184	A	ст	Hartford	Cellco Patresstip	Yes	300.000	2100002828500x	30150003225000	.000-000	.000-000			1216.19	Active		No
WPLM398	Hartford, CT	LD	BTA184	B	CT	Hartford	Calco Patresstip	Yes	150.000	35000003sursoox	3ersoossmano	.000-000	.000-000			1216.19	Active		No
WRBA708	Hartford, CT	uU	BTA184	L1	CT	Hartford	Cellco Patresstip	Yes	325.000	2550000.28500001	270000027x5 200	.000-000	.000-000			1216.19	Active		Yes
WRBA709	Hartford, CT	uu	BTA184	L2	CT	Hartford	Calco Patresstip	Yes	325.000	2Ysamearasoox	28550×0.3830000	.000-000	.000-000			1216.19	Active		Yes

100.000	stemocsumex	．000．000	．000．000	．000－000
100.000	\％swacusema	．000．000	．000．000	．000－000
100.000	stromosumax	．000．000	．000．000	．000－000
100.000	зтmancrsmea	．000．000	．000．000	．000－000
100.000	3manomsemen	．000．000	．000．000	．000－000
100.000	3monossume	．000．000	．000．000	．000－000
100.000	manomsumax	．000．000	．000．000	．000－000
100.000	3manomanem	．000．000	．000．000	．000－000
100.000		．000．000	．000．000	．000－000
100.000	зemooussma	．000．000	．000．000	．000－000
100.000	onssumeso	．000．000	．000．000	．000－000
100.000	sumosemano	．000．000	．000．000	．000－000

\pm	¢	${ }_{5}$	¢	¢	¢	${ }^{5}$	${ }^{5}$	\pm	5	\pm	5

$\bar{\Sigma}$	울	ก	$\stackrel{m}{2}$	$\frac{ \pm}{2}$	$\stackrel{\square}{2}$	$\stackrel{\circ}{2}$	E	$\stackrel{\infty}{2}$	$\stackrel{9}{2}$	₹	＊
$\begin{aligned} & \text { oे } \\ & \text { 湈 } \end{aligned}$		$\begin{aligned} & \text { す⿳亠丷厂囗⿱㇒木几 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ob } \\ & \text { 湈 } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { 岕 } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { 嫟 } \end{aligned}$				$\begin{aligned} & \text { ذ⿳亠口冋巳心 } \\ & \hline \end{aligned}$		产

	з	з	亏	з	з	з	з	3	з	3	з	8

1
1
1

产豙豙

交

豪童

WRHD619	$\begin{array}{l}\text { Now } \\ \text { York，NY }\end{array}$
PENDD050	Northeast

July 7, 2021
Verizon
20 Alexander Drive
Wallingford, CT 06492
Attn: Mr. David Vivian
Re: Mount Analysis Report - Lsub6
Verizon Wireless Site I.D.: South Windsor North CT
50 Plantation Road
East Windsor, CT 06016

Project/Location Code:
VZW FUZE I.D.:
APT Filing No.

20171645681/469756
16560063
CT141_12500

Dear Mr. Vivian,
All-Points Technology Corp. (APT), a professional engineering corporation licensed in the State of Connecticut, has been retained by Verizon to assess the structural adequacy of the mounting assembly and its connection to the existing host structure to support the proposed equipment modification. An evaluation of the existing host structure is to be provided under separate cover.

Details of the proposed antenna and appurtenance installation are included within the table on the following page. Reference is made to the Construction Drawings prepared by this office, marked Rev 0, dated 07/07/21.

The following information was utilized in the preparation of this assessment:
New Build Construction Drawings, prepared by APT, marked Rev1, dated 11/06/20.
Mount Structural Analysis \& Design Report, prepared by APT, dated 10/28/20.
The structural review has been prepared in accordance with the following design standards:

ASCE/SEI 7-10 - Minimum Design Loads for Buildings and Other Structures
AISC - American Institute of Steel Construction Manual of Steel Construction, $14^{\text {th }}$ Ed.
IBC 2015 - as amended by the 2018 Connecticut State Building Code.
ANSI/TIA-222-H - Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures

The structural review has been prepared utilizing the following design criteria:
125 mph (3-second gust), Ultimate Wind Speed (equivalent to 97mph Nominal).
50 mph (3-second gust), Design Wind Speed with 1.50" Design Ice Thickness Risk Category II
Exposure Category C
Roof Live Load, LLr = 20 psf
Minimum Roof Snow Load $=30$ psf

The existing and proposed Verizon antenna/appurtenance and mount assembly loading consists of the following equipment (proposed equipment/equipment to be relocated indicated in bold text):

Antenna and Appurtenance Make/Model	Quantity	Status	Mount Type	Centerline
Commscope NHH-65B-R2B ${ }^{2}$ panel antennas	3	P	Three (3) custom mount assemblies attached to existing decommissioned water tank leg.	$102.0 \mathrm{ft} \pm$
Commscope NHHSS-65B-R2B² panel antennas	3	P		AGL
Samsung MT6407-77A panel antennas	3	P		$94.0 \mathrm{ft} \pm$ AGL
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) Remote Radio Heads (RRHs)	3	P		n/a
Samsung B2/B66a RRH-BR049 (RFV01U-D1A) Remote Radio Heads (RRHs)	3	P		
Samsung CBRS-RT4401-48A Remote Radio Heads (RRHs)	3	P		
Raycap RHSDC-3315-PF-48 (60VP)	3	P		
6x12 L.I. Hybrid Fiber Cable	3	P	n/a	n/a

Notes:

1. $E T R=$ Existing to Remain; ERL = Exist to be Relocated; $P=$ Proposed.
2. Mount antennas via Commscope Side-by-Side Mounts (P/N: BSAMNT-SBS-1-2).
3. The above proposed equipment supersedes the equipment indicated within the new build construction drawings prepared by this office, marked Rev1, dated 11/06/20.

The findings of this review are based upon comparative review of the proposed equipment loading, referenced design documentation, a rigorous mount analysis. Under the proposed loading, the maximum usage of the existing mounting assemblies as compared to the mount rating/capacity is 61%. Additionally, the proposed loading is less than the loading utilized in the referenced original new build design documentation. In conclusion, we find that the custom mount assemblies are adequate to support the proposed equipment modification.

Sincerely,
All-Points Technology Corp. P.C.

Michael S. Trodden, P.E.
Sr. Structural Engineer

Appendix A

Design Criteria

(APPENDIX N)				AL	S	IC	C	AL	GN	RAME		
				Wind Design Parameters								
		MCE Spectral Acceleration \mathbf{s} $(\% \mathrm{~g})$		Ultimate Design Wind Speeds, Vult (mph)			Nominal Design Wind Speeds, $V_{\text {asd }}$ (mph)			Wind-Borne Debris Regions ${ }^{1}$		
		S_{s}	S_{1}	Risk Cat.I	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV			
East Hampton	30	0.177	0.062	120	130	140	93	101	108			Yes
East Hartford	30	0.180	0.064	115	125	135	89	97	105			Yes
East Haven	30	0.182	0.062	120	130	140	93	101	108		Type B	Yes
East Lyme	30	0.164	0.059	125	135	145	97	105	112	Type B	Type A	Yes
Caston	30	0.215	0.068	110	120	130	85	93	101			Yes
East Windsor	35	0.177	0.064	115	125	135	89	97	105			Yes
Cllington	35	0.176	0.064	115	125	135	89	97	105			Yes
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Type A	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Type B	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Type A	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Type B	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108		Type B	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108			Yes
Hamden	30	0.185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0.172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0.175	0.065	110	120	125	85	93	97			Yes
Harwinton	35	0.183	0.065	110	120	130	85	93	101			Yes
Hebron	30	0.177	0.063	120	130	140	93	101	108			Yes
Kent	40	0.188	0.065	105	115	120	81	89	93			
Killingly	40	0.171	0.062	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledyard	30	0.163	0.059	125	135	145	97	105	112		Type A	Yes
Lisbon	30	0.169	0.061	125	135	145	97	105	112		Type A	Yes
Litchfield	40	0.184	0.065	110	120	125	85	93	97			Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Type A	Yes
Madison	30	0.173	0.060	120	130	140	93	101	108		Type B	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105			Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Type B	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	101			Yes

AMERICAN SOCIETY OF CIVIL ENGINEERS

Address:

50 Plantation Rd Broad Brook, Connecticut 06016

ASCE 7 Hazards Report

Ice

Results:

Ice Thickness: $\quad 1.50 \mathrm{in}$.
Concurrent Temperature: 5 F

Gust Speed:
Data Source:
Date Accessed:

50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Tue Jun 082021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Appendix B

Existing Mount Analysis

Project ID:
Site Name: South Windsor North CT
Date:
CT141_12500
(Based on ANSI/TIA-222-H-2018)

Site Name:	South Windsor North CT
Site Address:	50 Plantation Road East Windsor, CT 06016
Site County:	Hartford

Design Criteria:

Risk Category =	11		Table 1.5-1
Exposure Category =	C		Section 26.7.3
Ultimate Design Wind Speed, V =	125	mph	2018 CTSBC, Appendix N
Design Wind Speed with Ice, $\mathrm{V}_{\mathrm{i}}=$	50	mph	Fig. B-9
Design Ice Thickness, $\mathrm{t}_{\mathrm{i}}=$	1.50	in	Fig. B-9
Importance Factor, I =	1.00		Table 2-3
Basic Wind Speed, $\mathrm{V}_{\mathrm{m}}=$	30	mph	Section 16.3
Maintenance Load, $L_{m}=$	500.0	lbs	Section 16.3
Maintenance Load, $L_{v}=$	250.0	lbs	Section 16.3

Building Information:
Antenna Centerline, $\mathrm{z}=102.0 \mathrm{ft} .,+/-$
Host Structure Height, $\mathrm{H}=132.5 \mathrm{ft}$ = $+/-$
Bulkhead/Parapet Height, $\mathrm{H}_{\mathrm{ppt}}=\quad-\quad \mathrm{ft} .,+/-\quad$ (max.)
Largest Windward Face of Structure, $\mathrm{W}_{\mathrm{s}}=\quad$ - ft., +/-

Table 1.5-1
Section 26.7.3
2018 CTSBC, Appendix N
Fig. B-9
Fig. B-9

Section 16.3

Section 16.3

Antenna Centerline, $\mathrm{z}=$	102.0	$\mathrm{ft.}+,/-$	
Host Structure Height, $\mathrm{H}=$	132.5	$\mathrm{ft.}+,/-$	
Bulkhead $/$ Parapet Height, $\mathrm{H}_{\text {pt }}=$	-	$\mathrm{ft.}+,/-$	(max.)
Largest Windward Face of Structure, $\mathrm{W}_{\mathrm{s}}=$	-	$\mathrm{ft},.+/-$	

Wind Pressure Analysis:

$\mathrm{q}_{\mathrm{z}}=0.00256 \mathrm{~K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{e}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{2}$	Section 2.6.11.6		
K_{z} :	See Next Sheet		
	$\mathrm{z}_{\mathrm{g}}=$	900	Table 26.9-1
	$\alpha=$	9.5	Table 26.9-1
	$\mathrm{K}_{\mathrm{zmin}}=$	0.85	Table 26.9-1
$\mathrm{K}_{7 \pm}$:	$\mathrm{K}_{\mathrm{zt}}=$	1.00	Section 2.6.6
$\underline{K_{s}}$:	$\mathrm{K}_{\mathrm{s}}=$	1.00	Section 2.6.7
$\underline{K_{\rho}}$:	$K_{e}=$	1.00	Section 2.6.8
K_{d} :	$K_{\text {d }}=$	0.95	Section 16.6
	$\mathrm{q}^{\prime}{ }^{\prime}=$	38.00	

$$
\mathrm{F}=\mathrm{q}_{\mathrm{z}} \mathrm{G}_{\mathrm{h}}(\mathrm{EPA})_{\mathrm{A}}=\mathrm{q}_{\mathrm{z}} \mathrm{G}_{\mathrm{h}} \mathrm{~K}_{\mathrm{a}}\left[(\mathrm{EPA})_{N} \cos ^{2}(\theta)+(\mathrm{EPA})_{T} \sin ^{2}(\theta)\right]
$$

Section 2.6.11.2

$$
\mathrm{G}_{\mathrm{h}}=\quad 1.00 \quad \text { Section } 16.6
$$

$$
\mathrm{K}_{\mathrm{a}}=0.90 \quad \text { Section } 16.6
$$

Notes:
T: $\frac{A L L}{\text { ALSOLOGY CORPORATION }}$
(Based on NSTD-445 "Antenna Mounting System Classification Standard")

Mount Classification:	M		R	1100	-4[6]	
	Normal Direction		Trans. Direction		Vert. Direction	
Loading Condition		lbs		lbs		lbs
Extreme Wind	1.00(F)	1150	1.00(F)	1150	0.50(F)	575
Extreme Ice	0.25(Fzi)	275	0.25(Fzi)	275	1.00(Fzi)	1100
Maintenance	0.10(F)	115	0.10(F)	115	0.50(F)	575
Loading Condition	Description					Load, lbs
Lm	At each mounting location, individual LCs At ends of each horizontal mounting members					500
Lv						250

ATTACHMENT 5

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2017.

Information on the Property Records for the Municipality of East Windsor was last updated on 7/2/2021.

Property Summary Information

- Parcel Data And Values
- Outbuildings
- Sales

Parcel Information

Location:	50 PLANTATION RD	Property Use:	Vacant Land	Primary Use:	Commercial Vacant Land
Unique ID:	01162500	Map Block Lot:	01650 001C	Acres:	0.78
490 Acres:	0.00	Zone:	A-1	Volume / Page:	0231/0053
Developers Map / Lot:		Census:	4842000		

Value Information

	Appraised	
Land	245,276	171,690
Buildings	0	0
Detached Outbuildings 21,368	14,960	
Total	266,644	186,650
		Owner's Information

Owner's Data
PLANTATION PROPERTIES LLC
P O BOX 542
BROAD BROOK CT 06016-0542

Detached Outbuildings

Type: Year Built: Length: Width: Area:
Pump House Utility 1960
154

Owner History - Sales

Owner Name	Volume Page Sale Date Deed Type Sale Price	
PLANTATION PROPERTIES LLC 0231	0053	$09 / 27 / 2001$

Permit Number Permit Type Date Opened Reason

Google Map

Unique Id:

Location:
50 PLANTATION
MBL:
01650001 C
Primary Use:
Commercial Vaca
Zone:

Acres:

Appraised Value:
\$266,644

Assessed Value:

Back To Search

Print View

Information Published With Permission From The Assessor

ATTACHMENT 6

SOUTH WINDSOR NORTH

