

November 24, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

50 Plantation Road, East Windsor, CT 06088

Latitude: 41.876640 N Longitude: -72.56483 W

Site# BOBDL00148B_Dish_East_Windsor_TS_Zoning

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 50 Plantation Road, East Windsor, Connecticut BOHVN00184A.

Northeast Site Solutions

4 Angela's Way, Burlington CT 06013 denise@northeastsitesolutions.com

Denise Sabo

Dish Wireless LLC proposes to install three (3) 600/19005G MHz antenna and six (6) RRUs, at the 85-foot level of the existing 133-foot water tank, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated November 23, 2021, Exhibit C. Also included is a structural analysis prepared by Albul Engineering LLC, dated November 22, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the Town of East Windsor, Planning & Zoning Commission on October 8, 1996. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to The Honorable Jason Bowsza, First Selectman for the Town of East Windsor, Ruthanne Calabrese, Zoning & Wetlands Compliance Official, Planning & Development for the Town of Town of East Windsor, as well as the property owner Plantation Properties, LLC and Plantation Properties, LLC water tank owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 133-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 85-feet.
- 2. The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4.The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 29.45% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing water tank has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in East Windsor. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 85-foot level of the existing 133-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through East Windsor.

Sincerely,

Deníse Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: The Honorable Jason Bowsza First Selectman Town of East Windsor East Windsor Town Hall 11 Rye Street Broad Brook, CT 06016

Ruthanne Calabrese
Zoning & Westland Compliance Official
Planning & Development
Town of East Windsor
East Windsor Town Hall
11 Rye Street
Broad Brook, CT 06016

Plantation Properties, LLC P.O. Box 542 Broad Brook, CT 06016

Plantation Properties, LLC, Tower Owner

Exhibit A

Original Facility Approval

TOWN OF EAST WINDSOR - PLANNING & ZONING COMMISSION OCTOBER 8, 1996 - PUBLIC HEARING #1273

CONDITIONS OF APPROVAL

SBA, INC. - APPLICANT DEAN A. & CAREN E. RASMUSSEN - OWNERS SITE PLAN APPROVAL S/S PLANTATION ROAD BROAD BROOK, CONNECTICUT

Motion by: Sonia Morell

Seconded by: Brian Chisholm

TO APPROVE the application of SBA, Inc. for Site Plan Approval to place communication antennae on an existing water tower and to locate support equipment adjacent to tower, on property located on the south side of Plantation Road. This property, which is owned by Dean A. and Caren E. Rasmussen, is presently zoned A-1 and is shown on Assessor's Map 40, Block 50, Lot 1C. This approval is subject to conformance with the referenced plans and the following conditions:

Referenced Plans:

- "Property Survey Prepared for Dean & Caren Rasmussen 47 Plantation Road, East Windsor Connecticut Proposed Sprint Spectrum LP Improvements added to survey by SEA Consultants, Inc. Rocky Hill, CT" Dated Received by East Windsor Planning and Zoning Commission September 10, 1996.
- "Lucent Technologies/Bechtel Alliance SSLP Project, Rasmussen Water Tower Site Plan" by SEA Consultants Inc. Dated 9/9/96 and stamped "received" by the East Windsor Planning and Zoning Commission on September 10, 1996.

Conditions to be met prior to signing mylars:

1. A copy of this approval Motion shall be recorded on the land records.

Conditions to be met prior to the issuance of a Zoning Permit:

 A mylar copy of the referenced plans shall be submitted for the East Windsor Planning and Zoning Commission signature prior to the issuance of zoning permits.

Conditions to be met Prior to Certificate of Compliance:

3. All conditions of this approval motion shall be complied with.

SBA, INC. - APPLICANT DEAN A. & CAREN E. RASMUSSEN - OWNERS SITE PLAN APPROVAL S/S PLANTATION ROAD BROAD BROOK, CONNECTICUT

General Conditions:

- 4. No work may begin until a Zoning and Building Permit have been issued.
- 5. Construction of improvements as approved by this special use/site plan approval must commence by October 8, 1997 and all improvements must be completed within 1 year from the start of construction, otherwise approval shall become null and void unless an extension is granted by the Commission.
- 6. This Site Plan Approval is for the specific use identified in the application. Any changes in use or tenancy require a new zoning permit and may require additional Commission approvals.
- 7. No structures or buildings other than what are shown on the approved plans shall be erected without further Site Plan Review by the Commission.
- 8. This project shall be constructed and maintained in accordance with the referenced plans. Minor modifications to the approved plans which result in lesser impacts may be allowed subject to staff review and approval.
- 9. By acceptance of this permit and conditions, the applicant and owner acknowledge the right of Town staff to periodically enter upon the subject property for the purpose of determining compliance with the terms of this approval.

VOTE: In Favor: Unanimous

ZONING PERMIT

EAST WINDSOR, CONNECTICUT

PLEASE NOTE THAT THIS IS NOT A BUILDING PERMIT

FREADE WILL THAT I	10 10 10 110 110
This Permit is hereby applied for in a East Windsor Zoning Regulations for:	ccordance with the requirements of the
Principal Building - new X Principal Building - add. Other:	Accessory Structure Change of Use:
Lot located at <u>or near 47 Plantation Roa</u> (House No.) (Str	on <u>south</u> side of street
Tax Map No. 40 Block No. 50 Lot No. 10	_ EWLR Map No
Zoning District: A-1 Lot Area:	
Lot Owner: Dean & Caren Rasmussen Address: 47 Plantation Road East Win	dsor, CT Telephone: (860) 627-9368
Applicant: SBA, Inc agent for SPRINT PC Address: 9 Barnes Industrial Road Wallingford, CT	Telephone: <u>(203) 237-1747</u>
Proposed Use: <u>Erection of telecommunicat</u> ment.	ion_antennae and ground support equip-
Proposed Structures: 3-antenna panel arra 1. Dimensions 10' X 25" X (hgt) 5' 2. Dimensions 8.5' X 30" X (hgt) 5! 3. Dimensions X X (hgt) 4. Parking Spaces: Required Provided 5. Signage: Allowed N/A Proposed	Present Uses:
6. Coverage: AllowedBldg N/AProposed18_6_sf Bldg N/A	
(By)(Dated)	11. DEP Permit 12. Army Corps of Engr. Permit 13. Floodproof Certif. Date 14. Flood Elevation 15. Other Approvals ED subject to conformance with/to the East or Plot Plan: (Revised) (Revised)
As-Builts Required: 1/4 Foundation (i	including elevation)

Permit void if (a) Work/activity not commenced within 1 year of date of issuance; or

(b) Construction authorized not completed within 2 years of date of

Exhibit B

Property Card

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2017.

Information on the Property Records for the Municipality of East Windsor was last updated on 7/2/2021.

Parcel Information

Location:	50 PLANTATION RD	Property Use:	Vacant Land	Primary Use:	Commercial Vacant Land
Unique ID:	01162500	Map Block Lot:	016 50 001C	Acres:	0.78
490 Acres:	0.00	Zone:	A-1	Volume / Page:	0231/0053
Developers Map / Lot:		Census:	4842000		

Value Information

	Appraised Value	Assessed Value
Land	245,276	171,690
Buildings	0	0
Detached Outbuildings	21,368	14,960

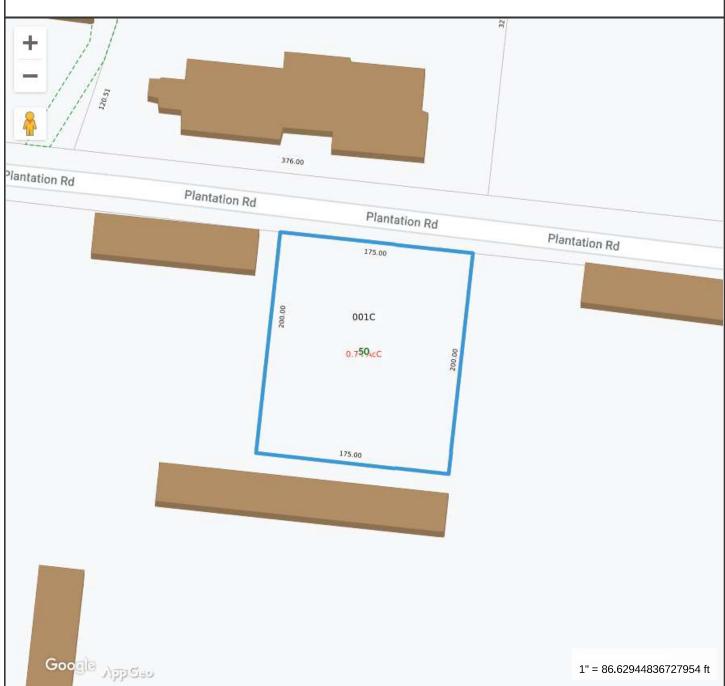
	Appraised Value	Assessed Value
Total	266,644	186,650

Owner's Information

Owner's Data

PLANTATION PROPERTIES LLC P O BOX 542 BROAD BROOK CT 06016-0542

Detached Outbuildings


Туре:	Year Built:	Length:	Width:	Area:
Pump House Utility	1960			154

Owner History - Sales

Owner Name	Volume	Page	Sale Date	Deed Type	Sale Price
PLANTATION PROPERTIES LLC	0231	0053	09/27/2001		\$1

Information Published With Permission From The Assessor

CTHA535A

Property Information

Property ID 01162500 Location P O BOX 542 Owner

MAP FOR REFERENCE ONLY NOT A LEGAL DOCUMENT

Town of East Windsor, CT makes no claims and no warranties, expressed or implied, concerning the validity or accuracy of the GIS data presented on this map.

Geometry updated 5/21/2021 Data updated 5/15/2020 Print map scale is approximate. Critical layout or measurement activities should not be done using this resource.

Exhibit C

Construction Drawings

ESN wireless.

DISH Wireless L.L.C. SITE ID:

BOBDL00148B

DISH Wireless L.L.C. SITE ADDRESS:

50 PLANTATION ROAD EAST WINDSOR, CT 06088

CONNECTICUT CODE COMPLIANCE

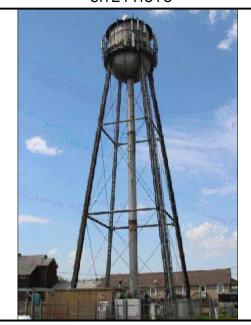
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS MECHANICAL

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:


- TOWER SCOPE OF WORK:

 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (3) PROPOSED ANTENNA MOUNTS (1 PER SECTOR)
- INSTALL PROPOSED JUMPERS
 INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (3) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) (1 PER SECTOR) INSTALL (3) PROPOSED HYBRID CABLES

- INSTALL (1) PROPOSED METAL PLATFORM
 INSTALL (1) PROPOSED ICE BRIDGE
- INSTALL (1) PROPOSED PPC CABINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET
- PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO-FIBER BOX
- INSTALL (1) PROPOSED GPS LINIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)
 INSTALL (1) PROPOSED METER SOCKET

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INF	FORMATION	PROJECT DIRECTORY		
PROPERTY OWNER: ADDRESS:	TBD 50 PLANTATION ROAD EAST WINDSOR, CT 06088		DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120	
TOWER TYPE:	WATER TANK			
TOWER CO SITE ID:	TBD	TOWER OWNER:	TBD	
TOWER APP NUMBER:	TBD			
COUNTY:	HARTFORD	SITE DESIGNER:	INFINIGY	
LATITUDE (NAD 83):	41° 52° 32.3″ N 41.875640 N		1033 WATERVLIET SHAKER RD ALBANY, NY 12205	
LONGITUDE (NAD 83):	-72° 33′ 53.4″ W -72.56483 W		(518) 690-0790	
ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL	SITE ACQUISITION:	APRIL PARROTT (203) 927-4317	
ZONING DISTRICT:	TBD	CONSTRUCTION MA	NAGER: JAVIER SOTO	
PARCEL NUMBER:	TBD		(617) 839-6514	
OCCUPANCY GROUP:	U	RF ENGINEER:	BOSSENER CHARLES (917) 567-9837	
CONSTRUCTION TYPE:	V-B		(817) 307-8037	
POWER COMPANY:	EVERSOURCE			
TELEPHONE COMPANY:	AT&T			

DIRECTIONS

DIRECTIONS FROM TOURS OF DISTINCTION AIRPORT:

DEPART AND HEAD TOWARD MASSACO ST, TURN RIGHT ONTO MASSACO ST, TURN LEFT ONTO US-202 E / CT-10 / HOPMEADOW ST, TURN RIGHT ONTO CT-315 / TARIFFVILLE RD, KEEP RIGHT TO STAY ON CT-315 / ELM ST, TURN RIGHT ONTO CT-189 / STATE HIGHWAY 189, TAKE THE RAMP ON THE LEFT FOR CT-187 NORTH AND HEAD TOWARD E GRANBY / SUFFIELD, BEAR RIGHT ONTO SEYMOUR RD, BEAR RIGHT ONTO INTERNATIONAL DR, AT THE ROUNDABOUT, TAKE THE 1ST EXIT, TURN RIGHT ONTO CT-20 / RAINBOW RD, TAKE THE RAMP ON THE RIGHT AND FOLLOW SIGNS FOR CT-20 EAST, TAKE THE RAMP ON THE LEFT FOR I-91 NORTH AND HEAD TOWARD SPRINGFIELD, AT EXIT 44, HEAD RIGHT ON THE RAMP FOR US-5 SOUTH TOWARD E WINDSOR, TURN RIGHT ONTO US-5 S / PROSPECT HILL RD, THEN IMMEDIATELY TURN LEFT ONTO ONTO CT-191 / PHELPS RD, BEAR RIGHT ONTO TROMLEY RD, ROAD NAME CHANGES TO CEMETERY RD, TURN LEFT ONTO OMELIA RD, THEN IMMEDIATELY TURN RIGHT ONTO ELLSWORTH RD, KEEP STRAIGHT TO GET ONTO RYE ST, TURN LEFT ONTO PLANTATION RD, ARRIVE AT, 50 PLANTATION ROAD, EAST WINDSOR, CT 06088.

VICINITY MAP

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2300 W. HIGGINS RD. SUITE 300 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

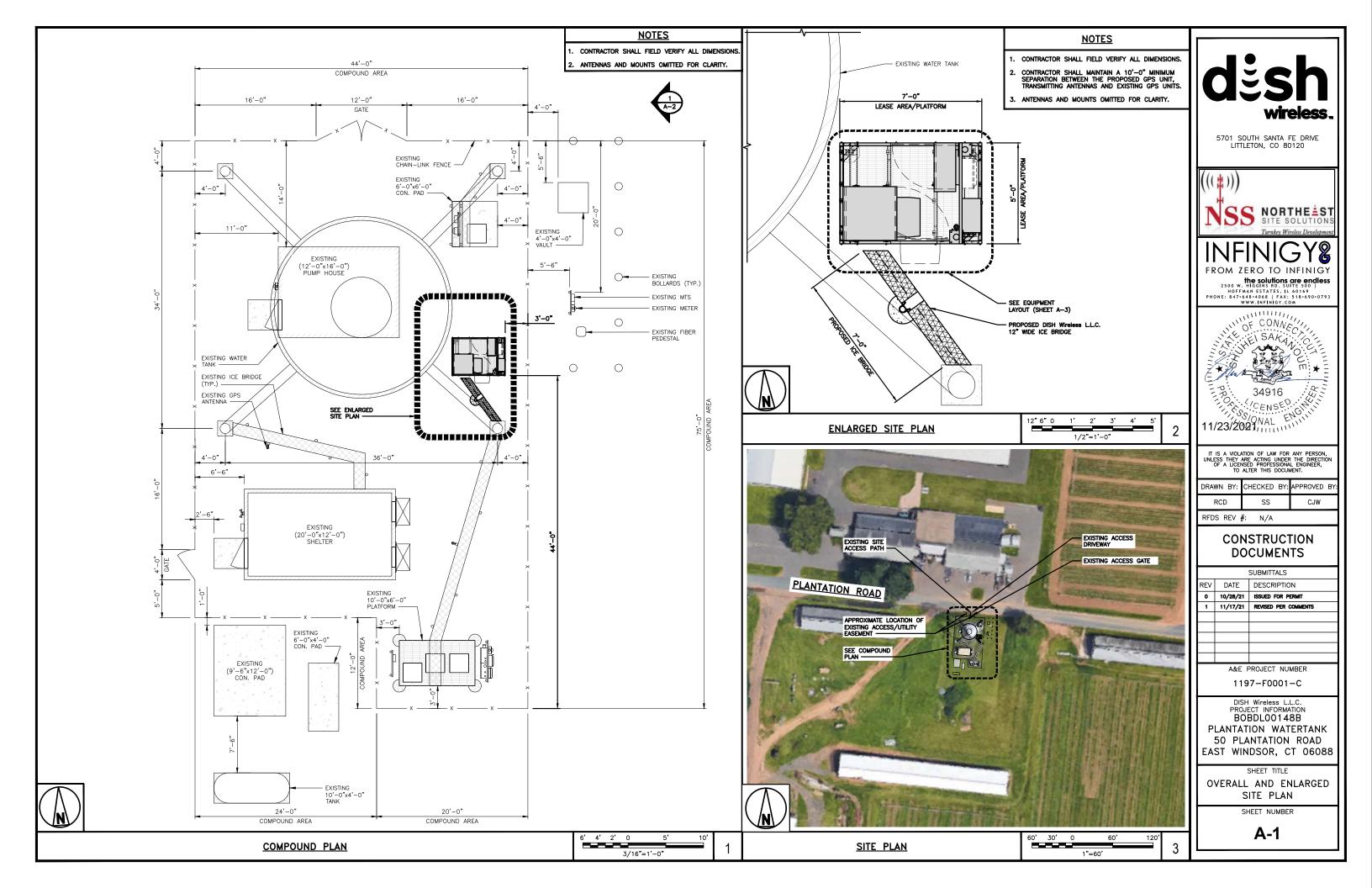
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

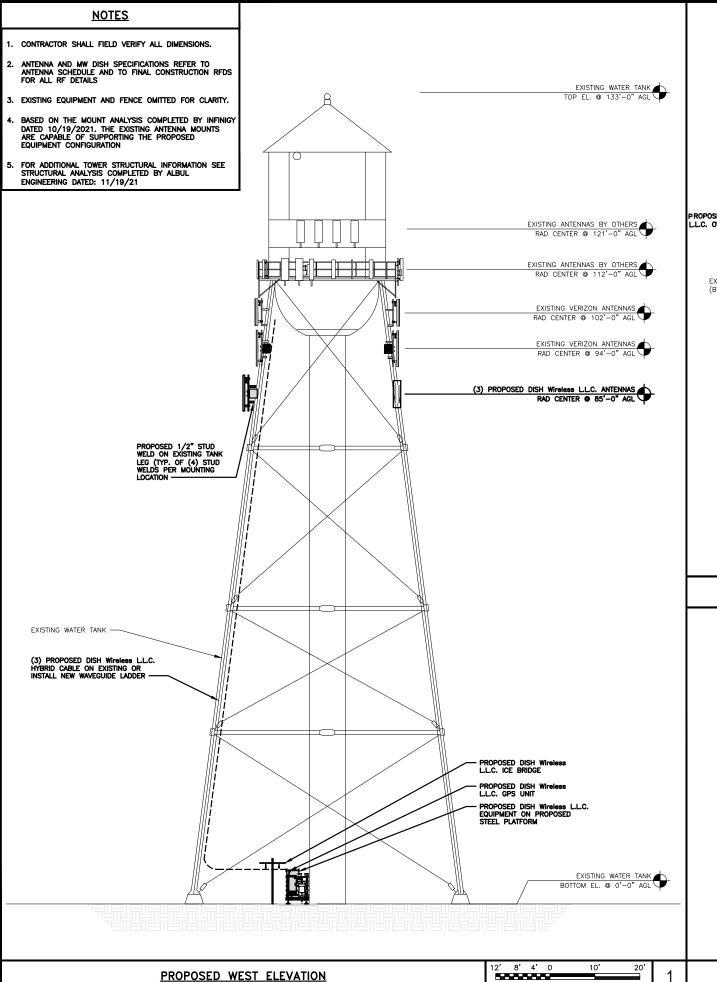
RCD SS C.IW	DRAWN	BY:	CHECKED	BY:	APPROVED	E
KOD 39 COM	RCD		SS		CJW	

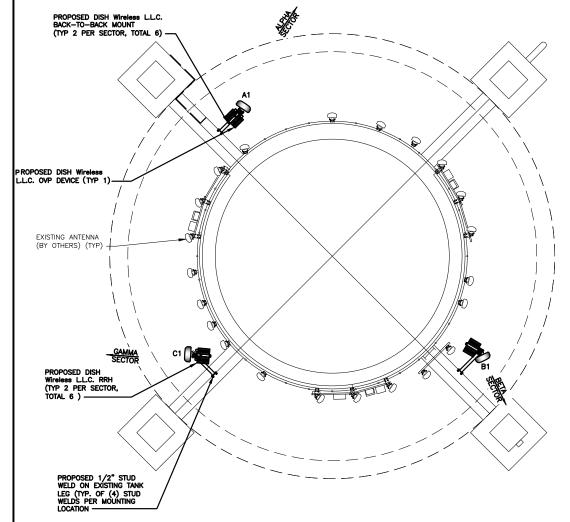
RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS							
REV	DATE	DESCRIPTION						
0	10/28/21	ISSUED FOR PERMIT						
1	11/17/21	REVISED PER COMMENTS						
A&E PROJECT NUMBER								


DISH Wireless L.L.C.
PROJECT INFORMATION BOBDL00148B PLANTATION WATERTANK 50 PLANTATION ROAD EAST WINDSOR, CT 06088


1197-F0001-C


SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

ANTENNA TRANSMISSION CABLE SECTOR POSITION FEED LINE TYPE AND LENGTH MANUFACTURER - MODEL EXISTING OR RAD CENTER TECHNOLOGY SIZE (HxW) AZMUITH ALPHA A1 JMA WIRELESS - MX08FR0665-2 30° 85'-0" (6) HIGH-CAPACITY HYBRID CABLE (160' LONG) B1 72.0" x 20.0 150° 85'-0" BETA PROPOSED JMA WIRELESS - MX08FR0665-GAMMA C1 JMA WIRELESS - MX08FR0665-21 5G 72.0" × 20.0" 270° 85'-0" PROPOSED

NOTES

1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.

ANTENNA LAYOUT

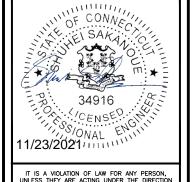
2. ANTENNA OR RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

		RRH		4
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY	-
ALPHA	A1	FUJITSU - TA08025-B604	5G	ĺ,
	A1	FUJITSU - TA08025-B605	5G	
BETA	B1	FUJITSU - TA08025-B604	5G	
	B1	FUJITSU - TA08025-B605	5G	
GAMMA	C1	FUJITSU - TA08025-B604	5G	
	C1	FUJITSU - TA08025-8605	5G	

- CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

6' 4' 2' 0

3/16"=1'-0"


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY&

FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFAM RESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY:	APPROVED BY
	RCD	SS	CJW

CONSTRUCTION **DOCUMENTS**

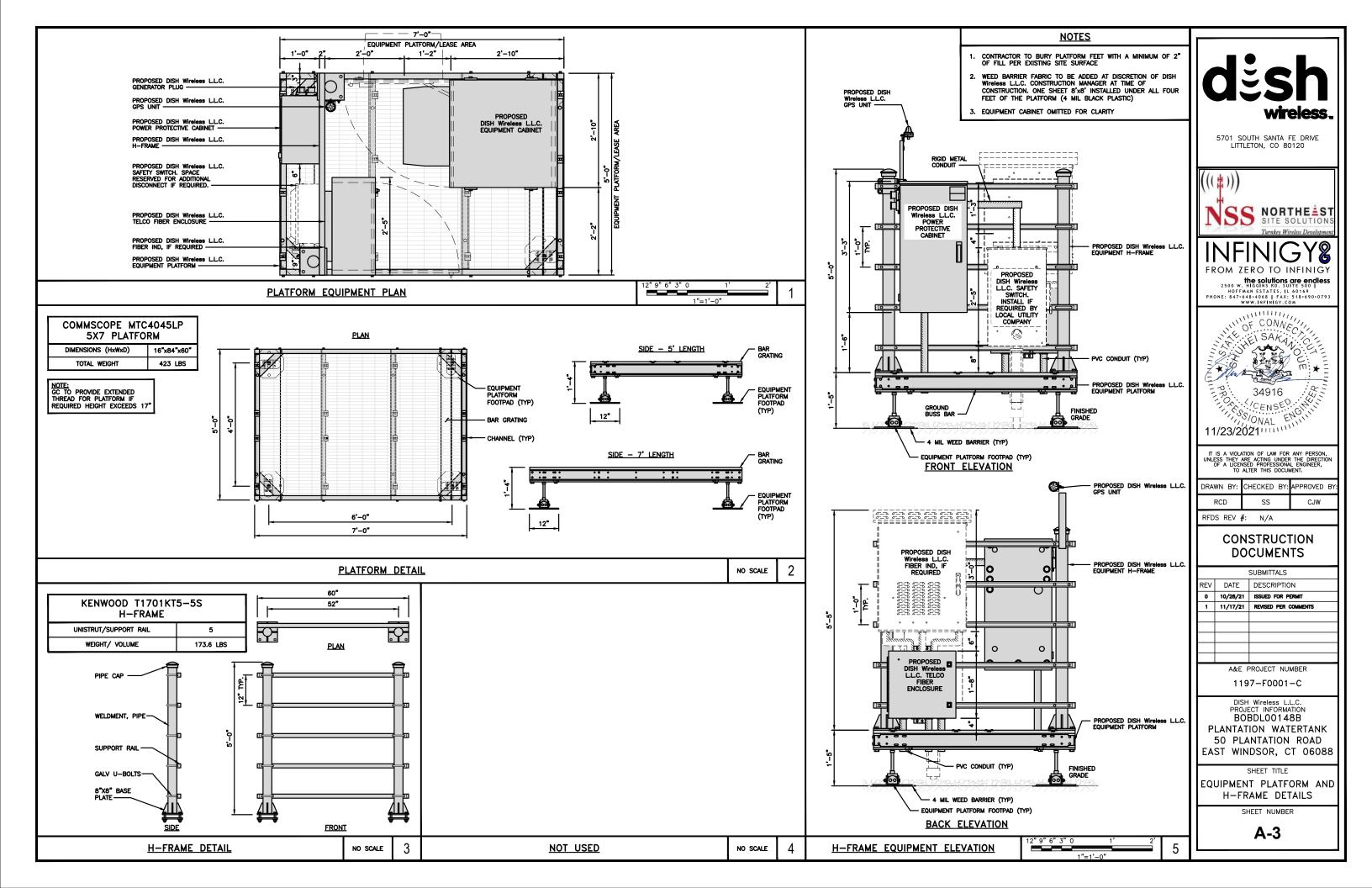
	SUBMITTALS							
REV	DATE	DESCRIPTION						
0	10/28/21	ISSUED FOR PERMIT						
1	11/17/21	REVISED PER COMMENTS						

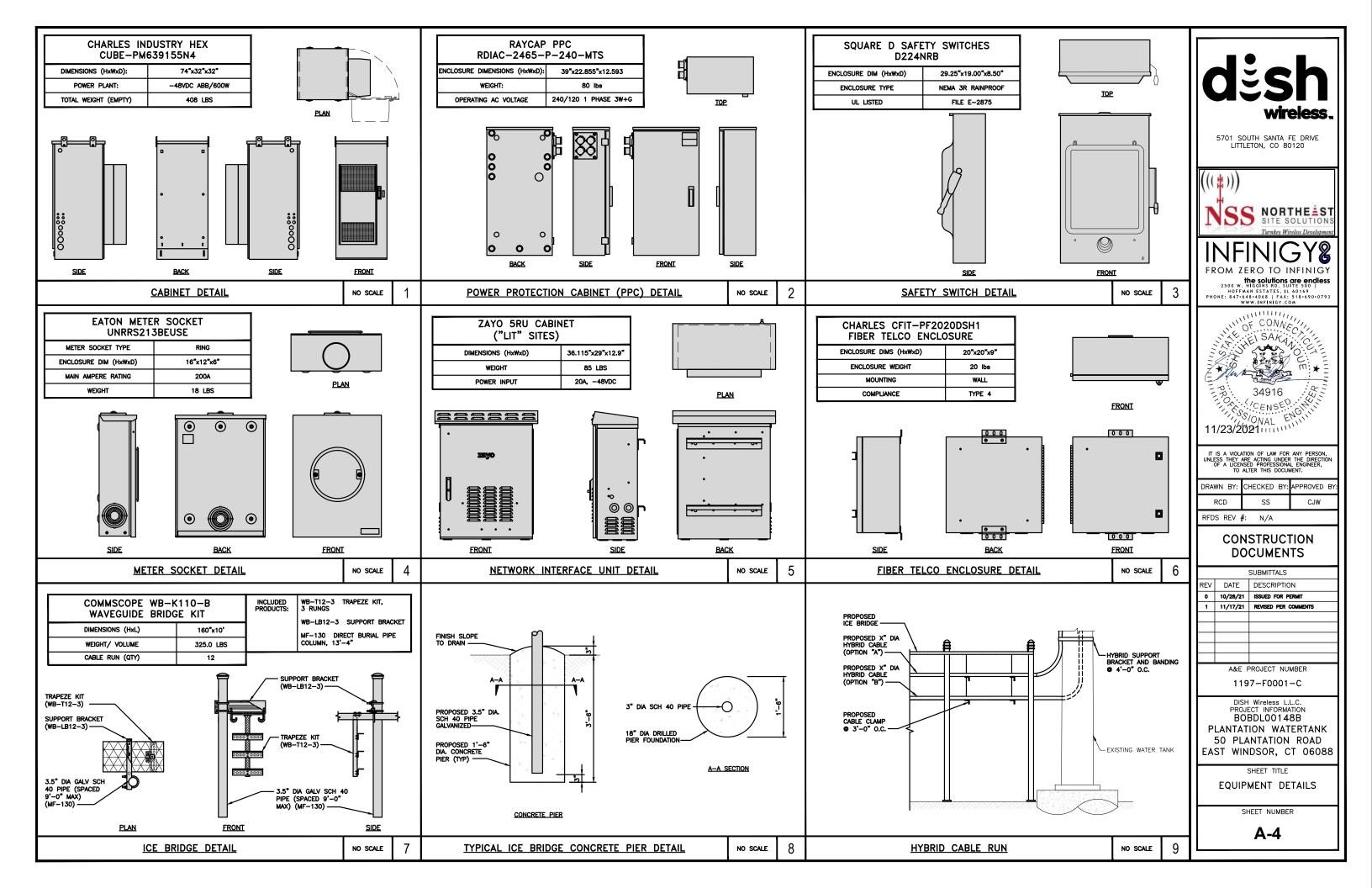
A&E PROJECT NUMBER

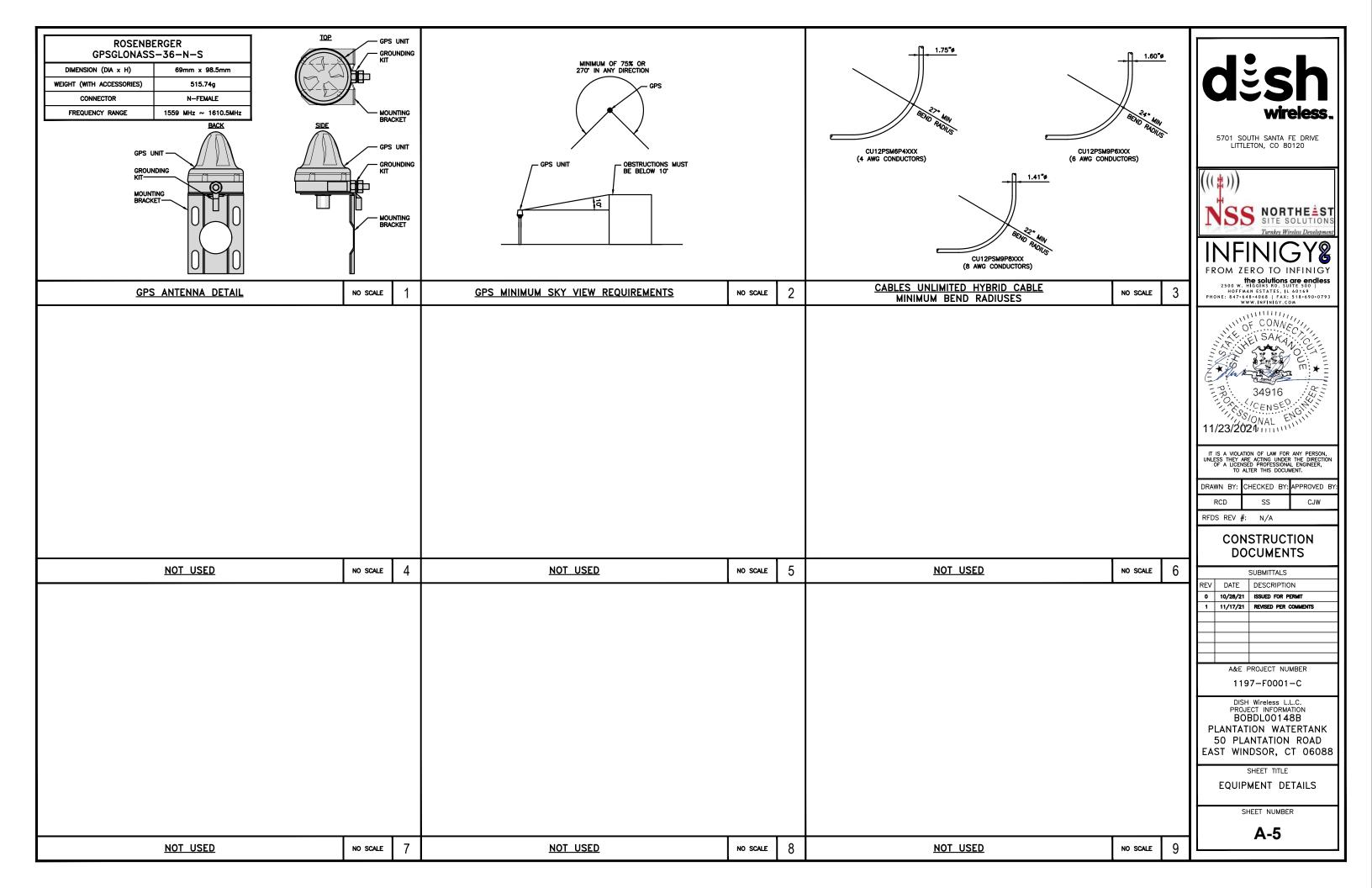
1197-F0001-C

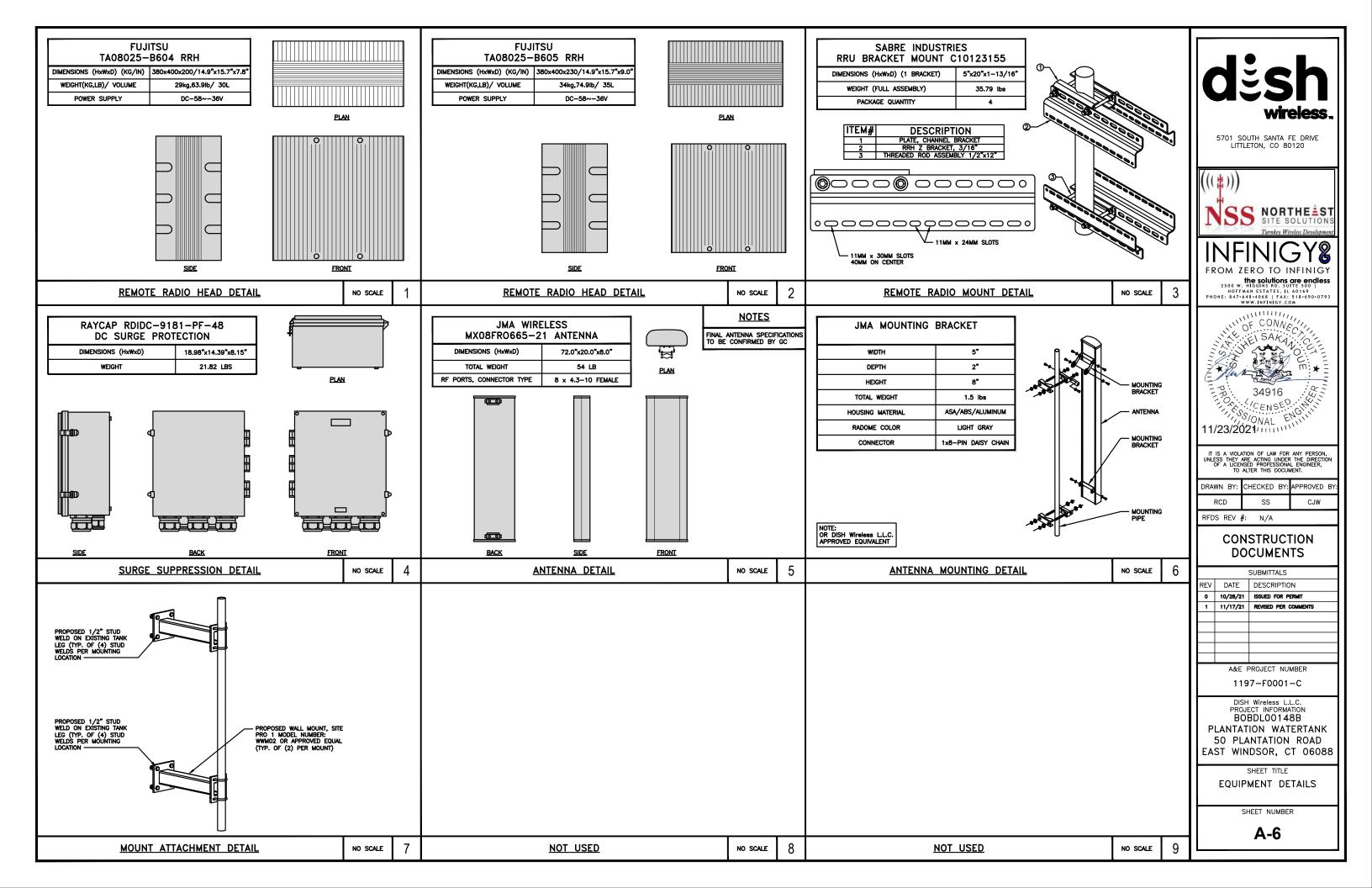
DISH Wireless L.L.C. PROJECT INFORMATION BOBDL00148B PLANTATION WATERTANK 50 PLANTATION ROAD EAST WINDSOR, CT 06088

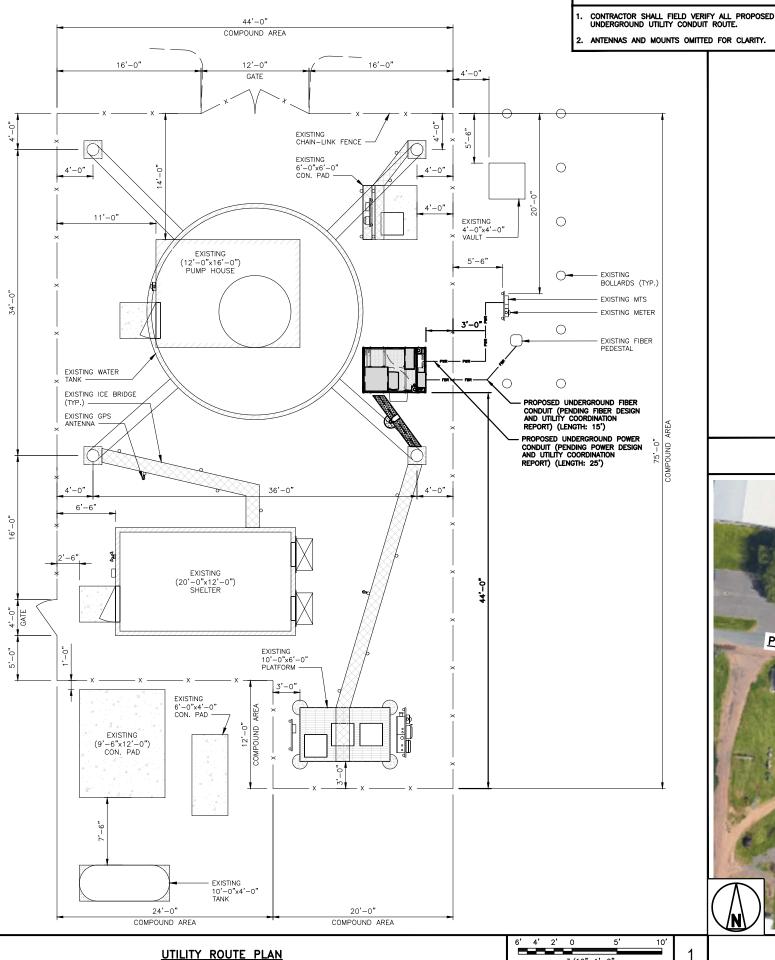
SHEET TITLE


ELEVATION, ANTENNA LAYOUT AND SCHEDULE


SHEET NUMBER


A-2


ANTENNA SCHEDULE


NO SCALE

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING ± 24 V and ± 48 V conductors. RED MARKINGS SHALL IDENTIFY ± 24 V and blue markings shall identify ± 48 V.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.

NOTES

3/16"=1'-0'

- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. FIBER ROUTE IS PRELIMINARY, FINAL FIBER ROUTE TO BE DETERMINED ONCE UCR (UTILITY COORDINATION REPORT) HAS BEEN FINALIZED.

ELECTRICAL NOTES

EXISTING ACCESS DRIVEWAY EXISTING SITE ACCESS PATH EXISTING ACCESS GATE PLANTATION ROAD APPROXIMATE LOCATION OF SEE COMPOUND PLAN PROPOSED UNDERGROUND FIBER CONDUIT (PENDING FIBER DESIGN AND UTILITY COORDINATION REPORT) (LENGTH: 15') PROPOSED UNDERGROUND POWER CONDUIT (PENDING POWER DESIGN AND UTILITY COORDINATION REPORT) (LENGTH: 25')

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

VFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFAM RESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED E	BY: APPROVED BY
RCD	SS	CJW
RFDS REV	#: N/A	

CONSTRUCTION **DOCUMENTS**

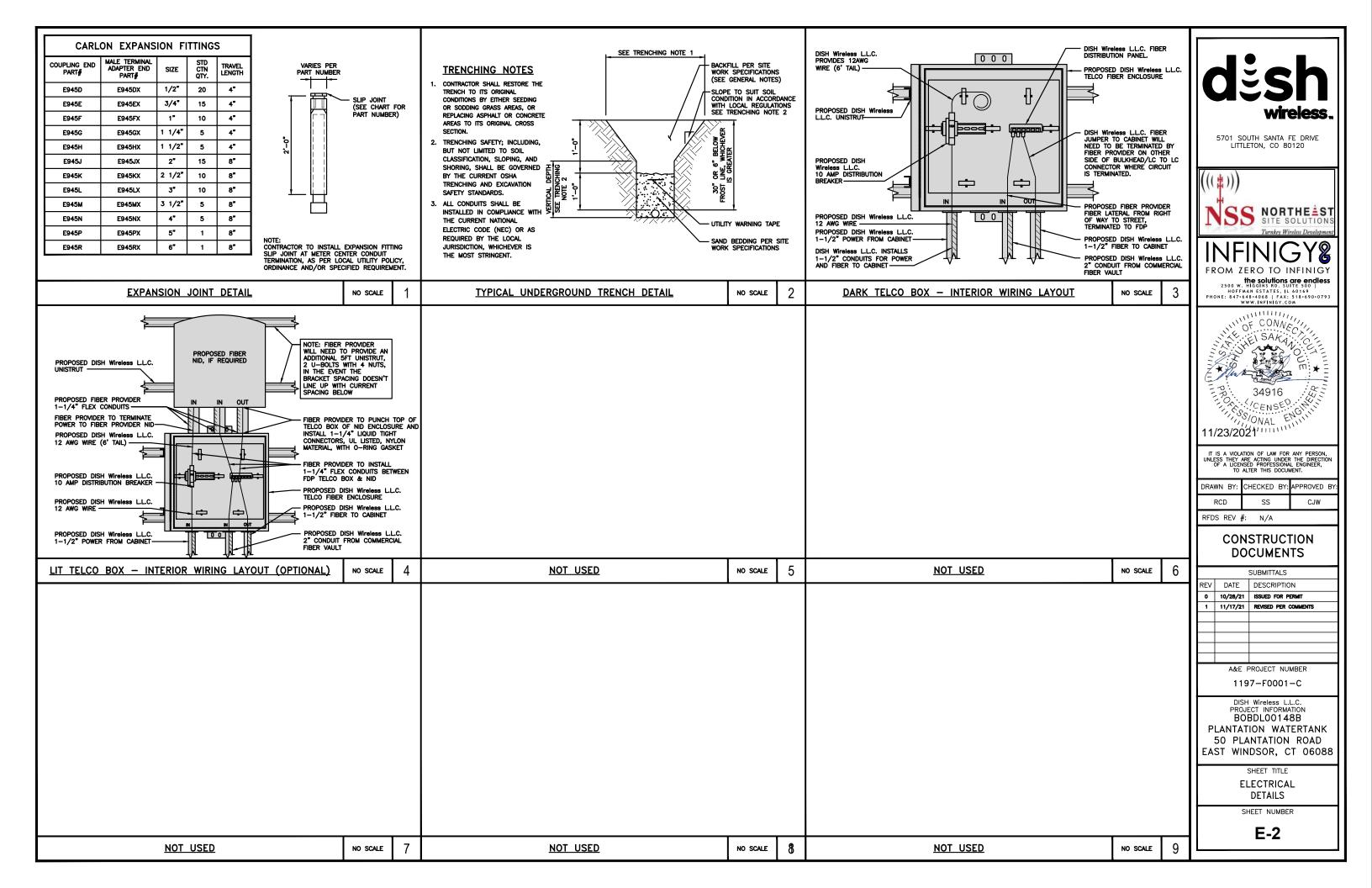
	SUBMITTALS						
REV	DATE	DESCRIPTION					
0	10/28/21	ISSUED FOR PERMIT					
-	11/17/21	REVISED PER COMMENTS					
	∧ 9a⊑ [DOLECT NUMBER					

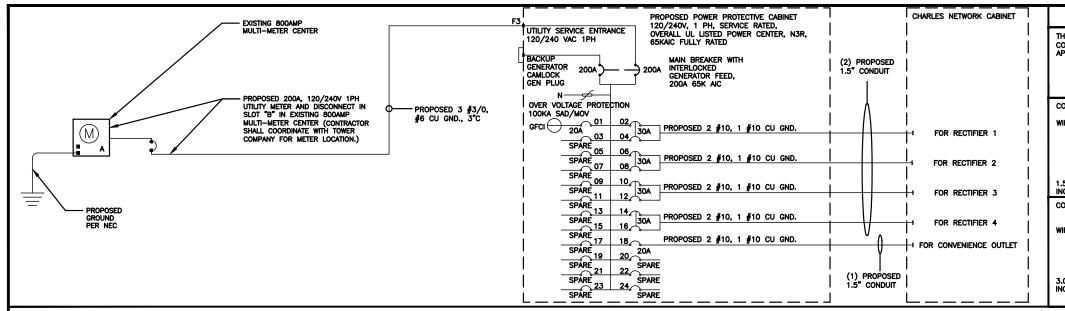
A&E PROJECT NUMBER

1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION BOBDL00148B PLANTATION WATERTANK 50 PLANTATION ROAD EAST WINDSOR, CT 06088

SHEET TITLE


ELECTRICAL/FIBER ROUTE PLAN AND NOTES


SHEET NUMBER

E-1

OVERALL UTILITY ROUTE PLAN

1"=60

NOTES

THERE ARE A TOTAL OF (10) CURRENT CARRYING CONDUCTORS IN A SINGLE CONDUIT. ADJUSTABLE FACTOR OF 50% PER NEC TABLE 310.15(B)(3)(σ) SHALL

#10 FOR 15A/1P BREAKER: 0.5 x 40A = 15.0A #8 FOR 20A-25A/2P BREAKER: 0.5 x 55A = 27.5A

ASSUME 1.5" EMT AT 40% FILL PER NEC 358, TABLE 4 - 0.814A SQ. IN AREA CONDUIT SIZING:

USING THWN-2, CU. (INCLUDING 3 GROUND WIRES)
#6 - 0.0507 SQ. IN X 8 = 0.4056 SQ. IN
#8 - 0.0366 SQ. IN X 2 = 0.0732 SQ. IN
#10 - 0.0211 SQ. IN X 4 = 0.0844 SQ. IN <GROUND
#12 - 0.0133 SQ. IN X 1 = 0.0133 SQ. IN <GROUND

1.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OR (15) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

= 0.4475 SQ. IN

(CHARLES ABB GE INFINITY DC PLANT) WITH MULTI-METER CENTER 120V240V 1PH SOURCE

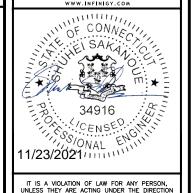
2

NO SCALE

		PR	OPOS	SED	P	AN	EL	S	CHE	ULE		
LOAD SERVED		AMPS TTS)	TRIP	CKT	PI	HASE		CKT #	TRIP		AMPS TTS)	LOAD SERVED
	L1	L2	1	#				#		L1	L2	
-SPARE-				1	\sim	A	丕	2		2880		ABB/GE INFINITY
-SPARE-				3	М	В	А	4	30A		2880	RÉCTIFIER 1
-SPARE-				5	М	A	ጥ	6	704	2880		ABB/GE INFINITY
-SPARE-				7	\sim	В	Ч	8	30A		2880	RÉCTIFIER 2
-SPARE-				9	\sim	Α	Ŋ	10	30A	2880		ABB/GE INFINITY
-SPARE-				11	${f \Omega}$	В	囜	12	JUA		2880	RÉCTIFIER 3
-SPARE-				13	\sim	Α	ጥ	14	30A	2880		ABB/GE INFINITY
-SPARE-				15	\sim	В	2	16	5		2880	RÉCTIFIER 4
-SPARE-				17	М	A	Ч	18	20A	1920		CHARLES GFCI OUTLET
-SPARE-				19	М	В	ΛЧ	20				-SPARE-
-SPARE-				21	\sim	A	A	22				-SPARE-
-SPARE-				23	\leq	В	Ч	24				-SPARE-
VOLT AMPS										13440	11520	
200A MCB, 1¢, 3W,	120/24	0V	Li			L2						
MB RATING: 65,000	AIC		134	40	1	1520		VOL	T AMPS	5		
•			14	0		96		AMF	S			
				14	40			MAX	AMPS			
				1	75			MAX	125%			

PANEL SCHEDULE NO SCALE (CHARLES ABB GE INFINITY DC PLANT) WITH MULTI-METER CENTER 120V240V 1PH SOURCE

ASSUME 3.0" SCH 40 PVC AT 40% FILL PER NEC 352, TABLE 4 - 1.216A SQ. IN AREA WIRES: USING THHN, CU. (INCLUDING 2 GROUND WIRES) #3/0 - 0.1318 SQ. IN X 3 = 0.3954 SQ. IN #2 - 0.0521 SQ. IN X 1 = 0.0521 SQ. IN


3.0° EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OR (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY&

FROM ZERO TO INFINIGY the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFAM RESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW

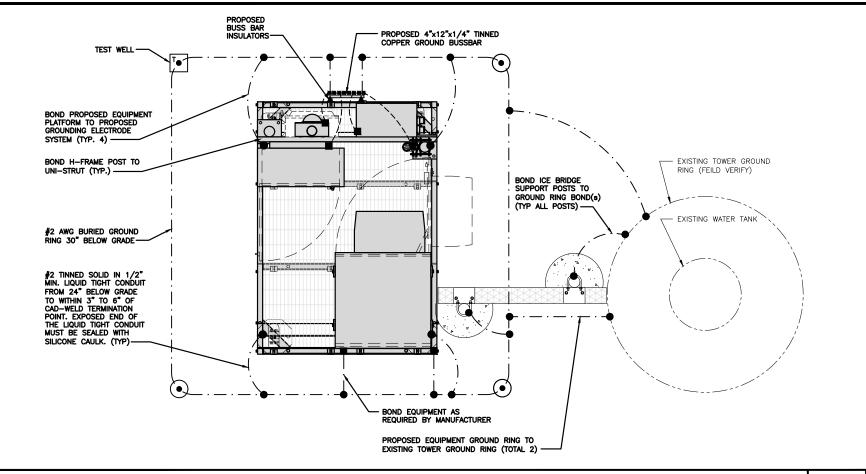
RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

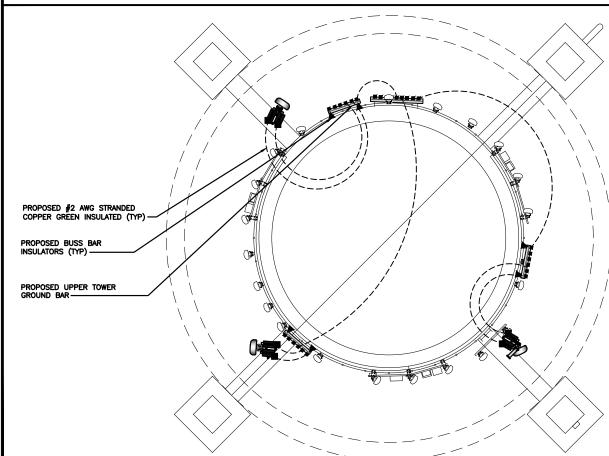
	SUBMITTALS						
REV	DATE	DESCRIPTION					
0	10/28/21	ISSUED FOR PERMIT					
1	11/17/21	REVISED PER COMMENTS					
	A&F PROJECT NUMBER						

1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION BOBDL00148B PLANTATION WATERTANK 50 PLANTATION ROAD EAST WINDSOR, CT 06088


SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE


SHEET NUMBER

E-3

NOT USED 3 **FAULT CALCULATIONS** NO SCALE NO SCALE

TYPICAL EQUIPMENT GROUNDING PLAN

EXOTHERMIC CONNECTION

GROUND BUS BAR

GROUND ROD


(•)

NO SCALE

NO SCALE

■ MECHANICAL CONNECTION

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #6 AWG STRANDED & INSULATED - · - - #2 AWG SOLID COPPER TINNED

▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FORMAL PROPERTY. AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- © Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K Interior unit Bonds: Metal Frames, Cabinets and Individual Metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST BOST AND ACCROSS CAST OFFICE AND ACCROSS CAST OFFI AND ACCROSS
- (M) <u>Exterior unit bonds</u>: Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE DEFERENCE CROUND BADE.
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO TOWER STEEL.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | 2300 W. HIGGINS RD. SUITE 300 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD		SS		CJW	

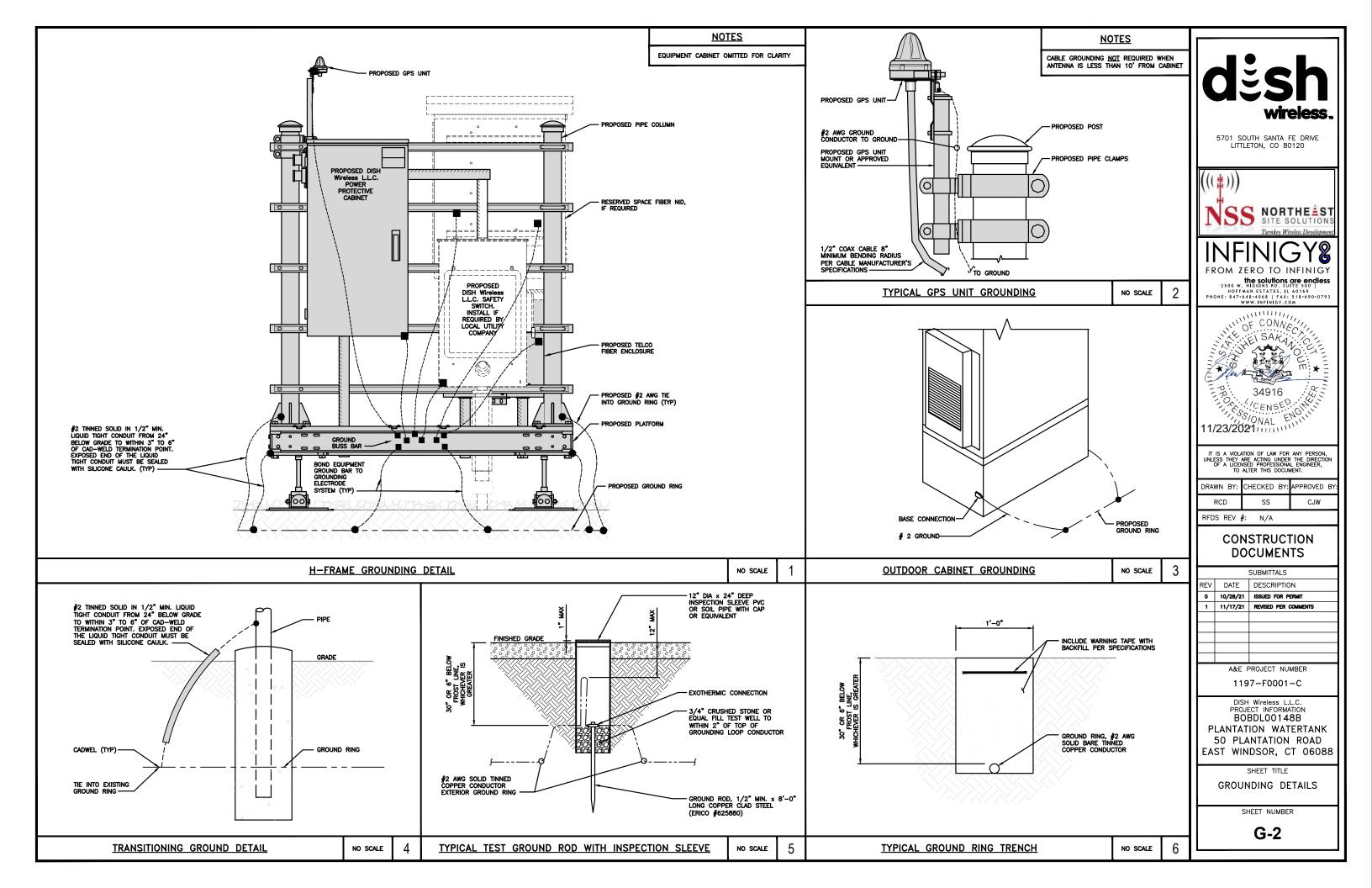
RFDS REV #: N/A

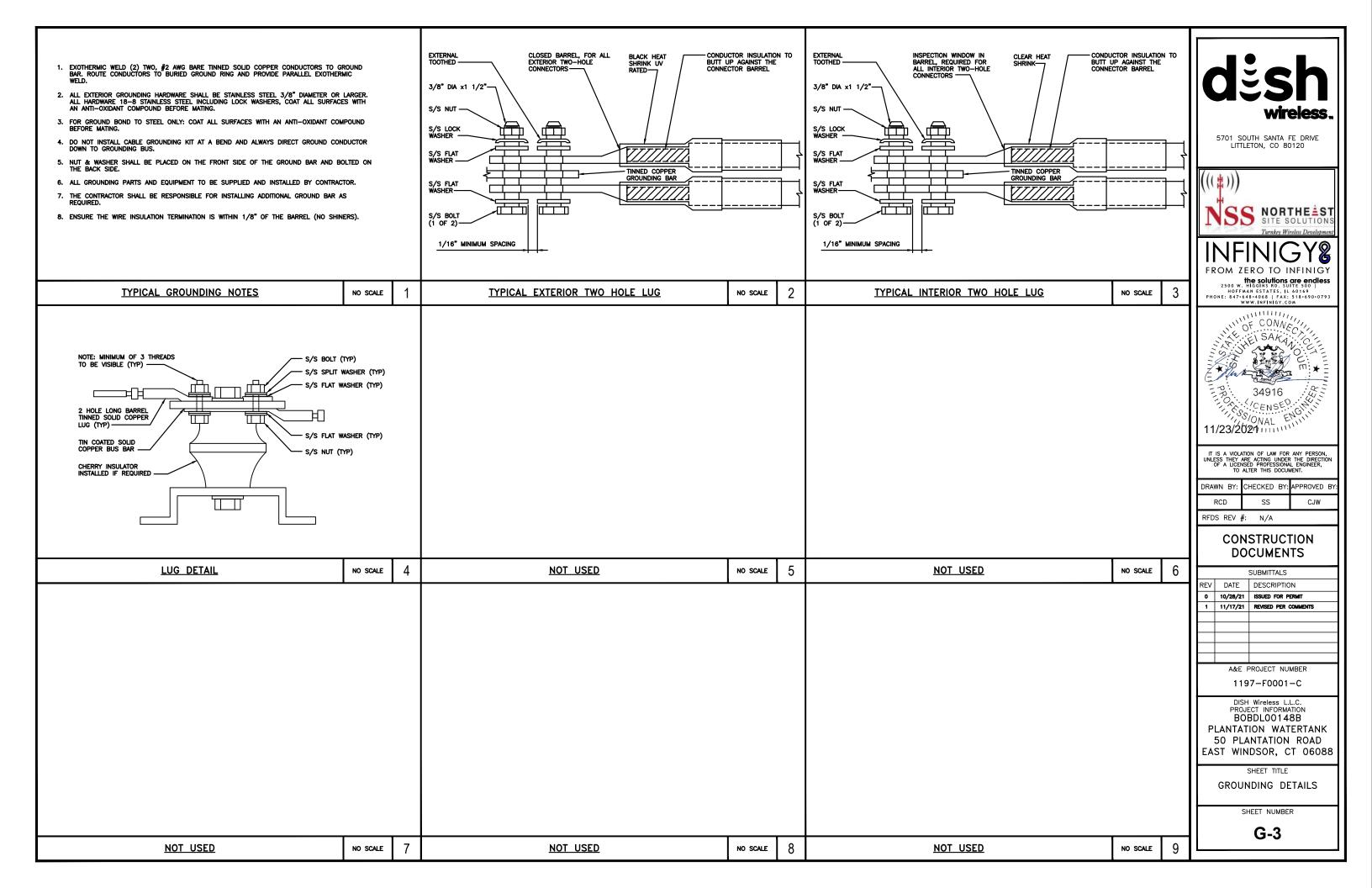
CONSTRUCTION **DOCUMENTS**

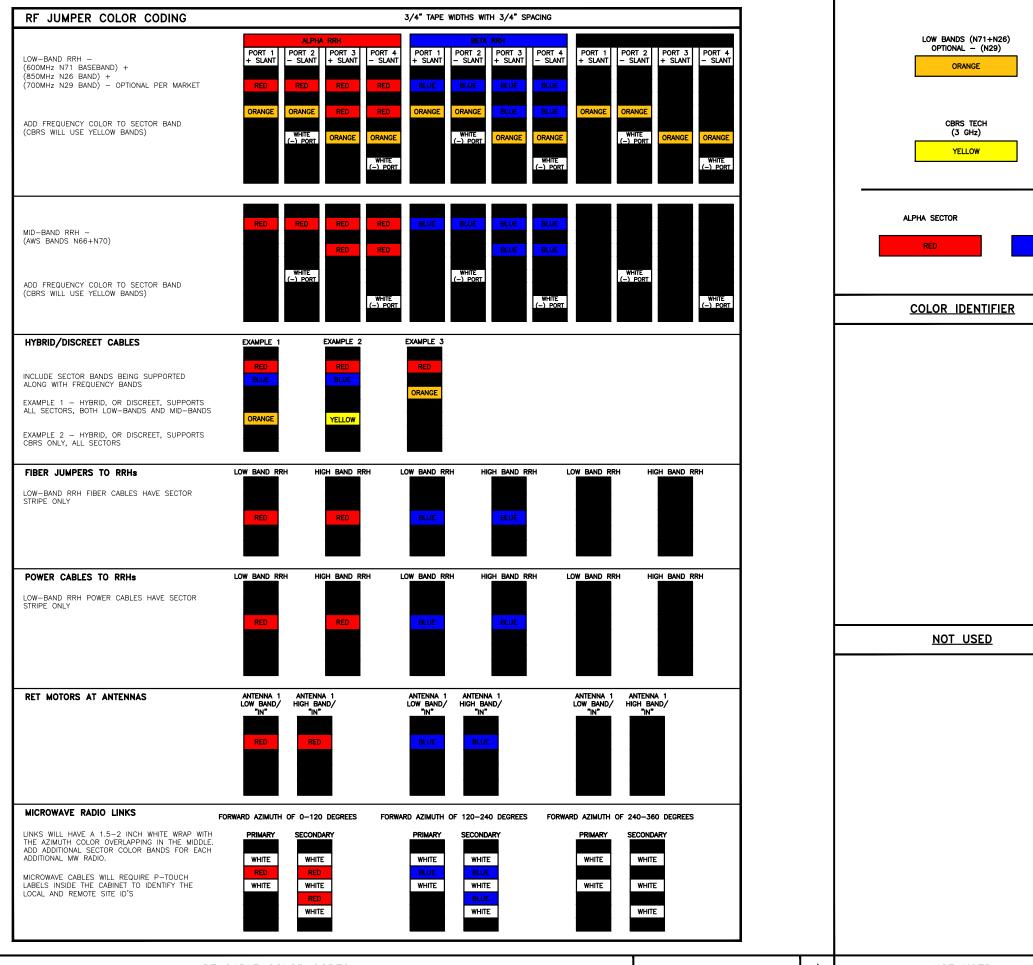
		SUBMITTALS
REV DATE		DESCRIPTION
0	10/28/21	ISSUED FOR PERMIT
1	11/17/21	REVISED PER COMMENTS
	A&E F	PROJECT NUMBER

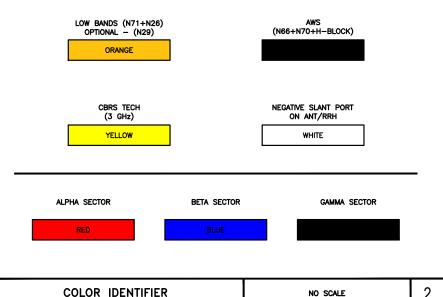
1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION BOBDL00148B PLANTATION WATERTANK 50 PLANTATION ROAD EAST WINDSOR, CT 06088


SHEET TITLE


GROUNDING PLANS AND NOTES


SHEET NUMBER


G-1

GROUNDING KEY NOTES

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COB

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD		SS		CJW	

RFDS REV #: N/A

NO SCALE

CONSTRUCTION DOCUMENTS

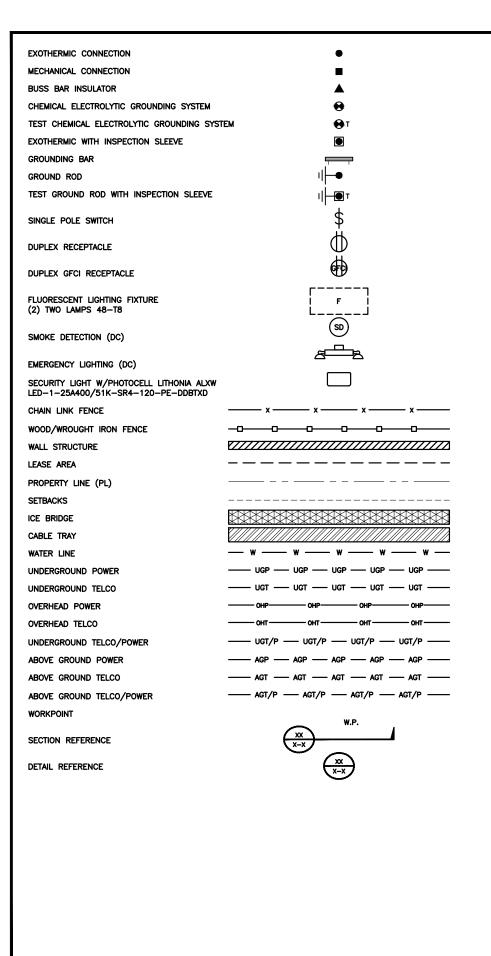
	SUBMITTALS							
	REV	DATE	DESCRIPTION					
	0	10/28/21	ISSUED FOR PERMIT					
	1	11/17/21	REVISED PER COMMENTS					
I.								
		A&F F	PROJECT NUMBER					

A&E PROJECT NUMBER

1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00148B
PLANTATION WATERTANK
50 PLANTATION ROAD
EAST WINDSOR, CT 06088

SHEET TITLE


RF

CABLE COLOR CODE

SHEET NUMBER

RF-1

RF CABLE COLOR CODES No scale 1 NOT USED No scale

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT		
		LB(S)	POUND(S)
ADDL	ADDITIONAL	LF	LINEAR FEET
AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
AFG	ABOVE FINISHED GRADE	MAS	MASONRY
AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	мв	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	
APPROX	APPROXIMATE		MASTER GROUND BAR
		MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
ВМ	BEAM		
BTC	BARE TINNED COPPER CONDUCTOR	#	NUMBER
BOF	BOTTOM OF FOOTING	NTS	NOT TO SCALE
		oc	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING	P/C	PRECAST CONCRETE
CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	
COL	COLUMN		PRIMARY CONTROL UNIT
COMM	COMMON	PRC	PRIMARY RADIO CABINET
CONC	CONCRETE	PP	POLARIZING PRESERVING
CONSTR		PSF	POUNDS PER SQUARE FOOT
		PSI	POUNDS PER SQUARE INCH
DBL	DOUBLE	PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT	QTY	QUANTITY
DF	DOUGLAS FIR	RAD	RADIUS
DIA	DIAMETER	RECT	
DIAG	DIAGONAL		RECTIFIER
DIM	DIMENSION	REF	REFERENCE
DWG	DRAWING	REINF	REINFORCEMENT
DWL	DOWEL	REQ'D	REQUIRED
		RET	REMOTE ELECTRIC TILT
EA	EACH	RF	RADIO FREQUENCY
EC	ELECTRICAL CONDUCTOR	RMC	RIGID METALLIC CONDUIT
EL.	ELEVATION	RRH	REMOTE RADIO HEAD
ELEC	ELECTRICAL		REMOTE RADIO UNIT
EMT	ELECTRICAL METALLIC TUBING	RRU	
ENG	ENGINEER	RWY	RACEWAY
EQ	EQUAL	SCH	SCHEDULE
EXP	EXPANSION	SHT	SHEET
EXT	EXTERIOR	SIAD	SMART INTEGRATED ACCESS DEVICE
EW	EACH WAY	SIM	SIMILAR
		SPEC	SPECIFICATION
FAB	FABRICATION THE PROPERTY OF TH	SQ	SQUARE
FF	FINISH FLOOR	SS	STAINLESS STEEL
FG	FINISH GRADE	STD	STANDARD
FIF	FACILITY INTERFACE FRAME	STL	STEEL
FIN	FINISH(ED)	TEMP	TEMPORARY
FLR	FLOOR		
FDN	FOUNDATION	THK	THICKNESS
FOC	FACE OF CONCRETE	TMA	TOWER MOUNTED AMPLIFIER
FOM	FACE OF MASONRY	TN	TOE NAIL
FOS		TOA	TOP OF ANTENNA
	FACE OF STUD	TOC	TOP OF CURB
FOW	FACE OF WALL	TOF	TOP OF FOUNDATION
FS	FINISH SURFACE	TOP	TOP OF PLATE (PARAPET)
FT	FOOT	TOS	TOP OF STEEL
FTG	FOOTING	TOW	TOP OF WALL
GA	GAUGE		
GEN	GENERATOR	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
GFCI	GROUND FAULT CIRCUIT INTERRUPTER	TYP	TYPICAL
GLB	GLUE LAMINATED BEAM	UG	UNDERGROUND
GLV	GALVANIZED	UL	UNDERWRITERS LABORATORY
GPS	GLOBAL POSITIONING SYSTEM	UNO	UNLESS NOTED OTHERWISE
		UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
GND	GROUND	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
GSM	GLOBAL SYSTEM FOR MOBILE	VIF	VERIFIED IN FIELD
HDG	HOT DIPPED GALVANIZED		
HDR	HEADER	W	WIDE
HGR	HANGER	W/	WITH
HVAC	HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
HT	HEIGHT	WP	WEATHERPROOF
IGR	INTERIOR GROUND RING	WT	WEIGHT
.511			

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCD		SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
0	10/28/21	ISSUED FOR PERMIT					
1	11/17/21	REVISED PER COMMENTS					
	∧ 8eE [DRO IECT NILIMBER					

A&E PROJECT NUMBER

1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00148B
PLANTATION WATERTANK
50 PLANTATION ROAD
EAST WINDSOR, CT 06088

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.
- "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS. DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER AUTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR, EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY **PROCEDURES**
- ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS. LATEST APPROVED REVISION.
- CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16 THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER. EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION
- CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

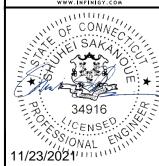
1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES. AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF
- SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS
- PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE
- CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are endless 2300 W. HIGGINS RD. SUITE 300 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

lL	DRAWN BY:		CHECKED BY:		APPROVED BY	
	RCD		SS		CJW	

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS						
	REV	DATE	DESCRIPTION				
	٥	10/28/21	ISSUED FOR PERMIT				
	-	11/17/21	REVISED PER COMMENTS				
Ш							
	A&E PROJECT NUMBER						

1197-F0001-C

DISH Wireless L.L.C. BOBDL00148B PLANTATION WATERTANK 50 PLANTATION ROAD EAST WINDSOR, CT 06088

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi at 28 days, unless noted otherwise. No more than 90 minutes shall elapse from batch time to time of placement unless approved by the engineer of record. Temperature of concrete shall not exceed 90°f at time of placement.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERYIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

FROM ZERO TO INFINIGY

the solutions are enalless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:		CHE	CKED	BY:	APPROVED	BY:
RCD			SS		CJW	
RFDS REV		#:	N/A			

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	10/28/21	ISSUED FOR PERMIT				
1	11/17/21	REVISED PER COMMENTS				
	A&E PROJECT NUMBER					

1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00148B
PLANTATION WATERTANK
50 PLANTATION ROAD
EAST WINDSOR, CT 06088

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY&

FROM ZERO TO INFINIGY

the solutions are endless

v. HIGGINS RD. SUITE 500 |

2500 W. HIĞGİNS RD. SÜİTE 500 | HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 | FAX: 518-690-0793 WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RCD SS CJW	DRAWN BY:	CHECKED BY:	APPROVED BY:
	RCD	SS	CJW

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
0	10/28/21	ISSUED FOR PERMIT				
1	11/17/21	REVISED PER COMMENTS				
	A&E PROJECT NUMBER					

.... -----

1197-F0001-C

DISH Wireless L.L.C.
PROJECT INFORMATION
BOBDL00148B
PLANTATION WATERTANK
50 PLANTATION ROAD
EAST WINDSOR, CT 06088

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: November 22, 2021

Sean Benack Infinigy Engineering, PLLC 1033 Watervliet Shaker Road Albany, NY 12205 (518) 210-6979 SBenack@infinigy.com Albul Engineering, LLC 3840 E. Robinson Road Amherst, NY 14228 (716) 650-8147 dalbul@albuleng.com

Subject: Water Tank Structural Analysis Report

Dish Wireless Site Name: Plantation Watertank

Site Number: BOBDL00148B

Infinigy Engineering Site Number: 2039-Z5555C

Albul Engineering Job Number: 2021IE-005-SA

Site Data: 50 Plantation Road, East Windsor, CT, Hartford County

Latitude: 41° 52' 32.30", Longitude: -72° 33' 53.23"

132.5 Foot Water Tank

Dear Mr. Benack,

Per your request, Albul Engineering has performed a structural analysis to evaluate the structural capacity of the water tank located at the above referenced address for the addition of wireless telecommunication appurtenance by Dish Wireless. The analysis has been performed in accordance with the TIA-222-G and ANSI/AWWA D100-11 standards, and local code requirements based upon an ultimate 3-second gust wind speed of 135 mph.

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified AISC, TIA and AWWA code requirements. The water tank is therefore deemed **adequate** to support the proposed loading as listed in this report.

Structural Usage Ratio: 93.3%

We at Albul Engineering appreciate the opportunity of providing our continuing professional services to Infinigy Engineering, PLLC and Dish Wireless. If you have any questions or need further assistance on this or any other projects, please give us a call.

Sincerely,

Dmitriy Albul, P.E. Director of Engineering No. 26725

No. 26725

CENSE

MALENGIA

MALENGI

11-22-21

APPENDIX A

Albul Engineering Job No: 2021IE-005-SA

Page 2

Phone: (716) 800-1364

CONTENTS

1.0	INTRODUCTION
1.1	DOCUMENTS PROVIDED
2.0	EXISTING AND PROPOSED EQUIPMENT
3.0	CODES AND LOADING
4.0	STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES
5.0	ANALYSIS AND ASSUMPTIONS
6.0	RESULTS AND CONCLUSION

PHOTOS AND CALCULATIONS

Albul Engineering Job No: 2021IE-005-SA

Page 3

Phone: (716) 800-1364

1.0 <u>INTRODUCTION</u>

The existing water tank is a 19' diameter by 132.5' tall elevated water tank supported by four double channel legs. The proposed antenna mount will be installed on the water tank legs. The proposed Wish Wireless appurtenance will be mounted approximately at 85' above ground level centerline. The water tank also supports equipment from other carriers that was considered in this analysis.

1.1 <u>DOCUMENTS PROVIDED</u>

The structural analysis of the site is based on the following documents provided:

- Site Visit Photos, dated May 18, 2021
- Mount Analysis Report by Infinigy Engineering, November 22, 2021
- Construction Drawings by Infinigy Engineering, November 17, 2021
- Radio Frequency Data Sheet by Dish Wireless, dated September 21, 2021
- Structural Modification Design Report by AllPoints Technology, dated July 9, 2020

Albul Engineering Job No: 2021IE-005-SA

Page 4

Phone: (716) 800-1364

2.0 EXISTING AND PROPOSED EQUIPMENT

The analysis is based on the following appurtenances:

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	125.0 ²	2	Dragonwave	A-ANT-23-G-2.5		4 4 / 4 !!
	119.0 ²	3	Argus	LLPX310R-V4	3	1-1/4"
	116.0 ²	3	-	RRUs		Hyrbriflex
	121.0 ²	2	RFS	APVX9ERR18-C-A20	2	1/2" Coax
120.0 ²		1	RFS	APVXSPP18-C-A20		2-1/4"
	117.0	15	-	Pipe Mounts	2	2-1/4 Innerduct
	116.0 ²	3	Alcatel Lucent	800 MHz 2x50W		1-5/8"
	116.0-	3	Alcatel Lucent	1900MHz 4x40W	6	Coax
	119.0 ²	3	RFS	APXV18-206517S-C		
	119.0-	3	-	Pipe Mounts	-	-
		6	Powerwave	7770		4 E/0"
		2	Powerwave	P65-17-XLH-RR		
442.02	113.0 ²	1	KMW	AM-X-CD-16-65-00T- RET	12	1-5/8" Coax
113.0 ²		12	Powerwave	LGP 21401	2	5/8" Coax
		3	Ericsson	RRUS-11		3/8"
		3	3 Ericsson RRUS-12	RRUS-12] 1	Coax
		3	Raycap	DC2		
109.0 ²	109.0 ²	1	-	Fiber Box	-	-
		3	JMA	MX08FRO665-21		
85.0 ¹	85.0 ¹	3	Fujitsu	TA08025-B605	6	Llybrid
05.0		3	Fujitsu	TA08025-B604	0	Hybrid
		1	Raycap	RDIDC-3045-PF-48		
10.0 ²	10.0 ²	1	-	Fiber Box	-	-

Notes:

- 1. Proposed Equipment by Dish Wireless
- 2. Existing Equipment by other carriers.

Albul Engineering Job No: 2021IE-005-SA

Page 5

Phone: (716) 800-1364

3.0 CODES AND LOADING

The analysis has been performed in accordance with the following codes and loading as adopted in Hartford County, Connecticut:

- 2018 Connecticut Building Code (2015 IBC)
- Structural Standard for Steel Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures - ANSI/TIA-222-G
- Factory-Coated Bolted Carbon Steel Tanks for Water Storage ANSI/AWWA D103-09
- Ultimate Wind Speed: 135 MPH
- Structure Class: IIIExposure Category: CTopographic Category: 1

4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

The analysis is based on a site visit performed by Albul Engineering and the documents listed in Section 1.1. The condition of existing water tank has been verified and assumed to be correct. Unless otherwise noted, the structure and the foundation system are assumed to be in good condition, free of defects and can achieve theoretical strength.

It is assumed that the structure has been maintained and shall be maintained during its service. The superstructure and the foundation system are assumed to be designed with proper engineering practice and fabricated, constructed and erected in accordance with the design documents. Albul Engineering will accept no liability which may arise due to any existing deficiency in design, material, fabrication, erection, construction, etc. or lack of maintenance. Contractor should inspect the condition of the existing structure, mounts and connections and notify Albul Engineering for any discrepancies and deficiencies before proceeding with the construction.

The analysis results presented in this report are only applicable for the previously mentioned proposed loading. Any deviation of the proposed equipment and placement will require Albul Engineering to generate an additional structural analysis.

5.0 ANALYSIS AND ASSUMPTIONS

The existing water tank was evaluated by method of comparing lateral loads and reaction as allowed by 2015 International Existing Building Code and 2015 International Building Code based upon an ultimate 3-second gust wind speed of 135 mph.

Client: Infinigy Engineering, PLLC Site Name: Plantation Watertank

Albul Engineering Job No: 2021IE-005-SA

Page 6

Phone: (716) 800-1364

6.0 **RESULTS AND CONCLUSION**

Based on the results of the structural analysis, we have found that the subject water is adequate to support the proposed loading. The structures' elements would be loaded to the following capacities:

> Water Tank Overturning Capacity: 67.4% Water Tank Legs: 93.3% Water Tank Leg Anchor Bolts: 81.8%

Should you have any questions or need any clarifications about this report, please contact Albul Engineering at (716) 800-1364.

Sincerely,

Albul Engineering, LLC

Dmitriy V. Albul, P.E. Connecticut Professional Engineer License No. 26725

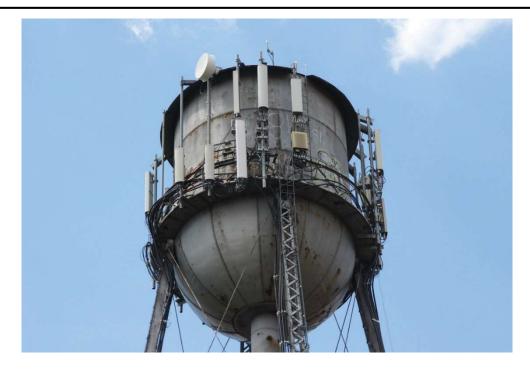
Client: Infinigy Engineering, PLLC Site Name: Plantation Watertank Albul Engineering Job No: 2021IE-005-SA

Page 7

Phone: (716) 800-1364

APPENDIX A: PHOTOS AND CALCULATIONS

WATER TANK ELEVATION


Client: Infinigy Engineering, PLLC Site Name: Plantation Watertank

Albul Engineering Job No: 2021IE-005-SA

Page 8

Phone: (716) 800-1364

EXISTING EQUIPMENT BY OTHERS

COMPARISON OF OVERTURNING MOMENTS

 Carrier Site Name:
 Plantation Watertank

 Carrier Site Number:
 BOBDL00148B

 Project Number:
 2021IE-005-SA

 Date:
 11/22/21

WT Members	Quantity	Member Area (ft²)	Centerline (ft)	Pw (psf)	Fa (lb)	Moment (lb-ft)
WT Bowl	1	563.2	116.7	25.3	14222.2	1659259.2
Legs	4	109.5	54.5	51.8	5673.4	1236808.5
*Diagonals 0-37 ft	8	5.8	18.5	18.0	104.6	15484.5
*Diagonals 37-74 ft	8	5.3	55.5	21.6	113.4	50340.8
*Diagonals 74-109 ft	8	4.2	91.5	24.0	101.7	74460.0
**Horizontals at 37 ft	4	17.9	37.0	47.8	853.2	126269.2
**Horizontals at 74 ft	4	13.9	74.0	55.3	765.9	226700.3
Spider Rods at 37 ft	4	1.6	37.0	19.8	31.9	4728.2
Spider Rods at 74 ft	4	1.3	74.0	22.9	29.8	8819.7
Catwalk	1	19.5	107.0	59.7	1164.5	124603.9
Standpipe	1	300.0	50.0	21.1	6338.1	316903.7
Ladder	1	19.3	59.0	52.7	1014.2	59836.8

^{*} Total of 8 Diagonals 6 Projected into oone face

WT Overturning Moment = 3,904,215

Appurtenance Model/Description	Quantity	Effective Area (ft ²)	Centerline (ft)	q _z (psf)	Fa (lb)	Moment (lb-ft)
Dragonwave A-ANT-23-G-2.5 (by others)	2	8.02	125.0	36.3	148.4	37105.3
Argus LLPX310R-V4 (by other)	3	4.30	119.0	35.9	78.8	28148.1
RRUs (by othere)	3	1.98	116.0	35.7	36.1	12577.5
RFS APVX9ERR18-C-A20 (by other)	2	8.02	121.0	36.1	147.5	35703.2
RFS APVXSPP18-C-A20 (by other)	1	8.02	121.0	36.1	147.5	17851.6
Alcatel Lucent 800 MHz 2x50W (by other)	3	1.70	116.0	35.7	31.0	10786.0
Alcatel Lucent 1900MHz 4x40W (by other)	3	2.31	116.0	35.7	42.1	14664.9
RFS APXV18-206517S-C (by other)	3	5.17	119.0	35.9	94.7	33793.4
Powerwave 7770 (by other)	6	5.51	113.0	35.5	99.8	67683.9
Powerwave P65-17-XLH-RR (by other)	2	11.47	113.0	35.5	207.8	46964.4
KMW AM-X-CD-16-65-00T-RET (by other)	1	8.02	113.0	35.5	145.4	16433.0
Powerwave LGP 21401 (by other)	12	1.10	113.0	35.5	20.0	27130.1
Ericsson RRUS-11 (by other)	3	2.79	113.0	35.5	50.6	17145.8
Ericsson RRUS-12 (by other)	3	3.15	113.0	35.5	57.0	19321.6
Raycap DC2 (by otherT)	3	0.55	113.0	35.5	9.9	3354.4
Fiber Box (by other)	1	1.63	109.0	35.3	29.4	3202.1
JMA MX08FRO665-21 (Dish Wireless) 3 12		12.49	85.0	33.5	266.5	67945.9
Fujitsu TA08025-B605 (Dish Wireless)	3	1.95	85.0	33.5	41.6	10605.8
Fujitsu TA08025-B604 (Dish Wireless)	3	1.95	85.0	33.5	41.6	10605.8
Raycap RDIDC-3045-PF-48 (Dish Wireless)	1	2.28	85.0	33.5	48.6	4127.6
Fiber Box (by othere)	1	1.63	10.0	21.3	22.2	222.1
Mounts (by othern)	6	5.25	94.0	34.2	114.4	64526.7
Mounts (by other)	3	1.46	117.0	35.8	26.7	9355.4
Mounts (by other)	3	0.96	117.0	35.8	17.5	6151.5
Mounts (by other)	3	1.65	117.0	35.8	30.1	10572.9
Mounts (by other)	3	2.09	117.0	35.8	38.2	13392.4
Mounts (by other)	3	2.63	117.0	35.8	48.0	16852.6
Mounts (Dish Wireless)	6	3.26	85.0	33.5	69.6	35472.1

Appurtenances Overturning Moment = 641,696

Feedline Model/Description	Quantity Exposed to Wind	Width (in)	Height (ft)	q _z (psf)	Fa (lb)	Moment (lb-ft)
(3) 1-1/4" RF Hyrbriflex (Clearwire/Sprint)	1	1.25	120.0	31.6	221.8	14417.1
(2) 1/2" Coax Cable (Clearwire/Sprint)	2	0.50	120.0	31.6	177.4	11533.7
(2) 2-1/4" Innerduct (Clearwire/Sprint)	2	2.25	120.0	31.6	798.5	51901.6
(6) 1-5/8" Coax Cables (T-Mobile)	3	1.63	120.0	31.6	865.0	56226.7
(12) 1-5/8" Coax Cables (AT&T)	6	1.63	112.0	31.2	1582.9	96558.3
(2) 5/8" Coax Cable (AT&T)	2	0.63	112.0	31.2	202.9	12379.3
(1) 3/8" fiber/DC cable (AT&T)	1	0.38	112.0	31.2	60.9	3713.8
(6) Hybrid Cables (Dish Wireless)	6	1.63	85.0	29.6	1104.2	52449.8

Feedlines Overturning Moment = 299,180

WT Overturning Moment = 3,904,215 lb-ft
Overturning Moment Due to Appurtenances & Feedlines = 940,876 lb-ft

Overturning Moment Percentage Increase = 24.1%

Overturning Moment Percentage Increase exceeds allowable 10% and therefore complete structural analysis require

^{**}Total of 4 Horizontals

WATER TANK OVERTURNING AND LEG CAPACITY CHECK

Carrier Site Name:Plantation WatertankCarrier Site Number:BOBDL00148BJob Number:2021IE-005-SADate:11/22/2021

TIA-222 Revision
WT Overturning Moment =
Moment Due to Appurtenances & Feedlines =
WT Total Overturning Moment =
Water Weight =
Empty WT Weight =
WT Weight (Filled w/ Water) =
Leg Q-ty =
Moment of Inertia =
Radious fo Inertia =
Leg Area =
Distance from COG to Outer Leg =
WT Resistance Moment =
Overturning Safety Factor =

G	
3,904	kip-ft
941	kip-ft
4,845	kip-ft
340.5	kips
78.0	kips
418.5	kips
4	
102.185	ft4
17.500	ft
0.084	ft2
25.750	ft
10,776	kip-ft
1.5	

Overturning Capacity

Leg Compressive Load = Leg Compressive Capacity =

224.51	kips
240.7	kips

WT Leg Compressive Capacity

93.3%

67.4%

ANCHOR BOLT CALCULATIONS (EMPTY WATER TANK)

Carrier Site Name:Plantation WatertankCarrier Site Number:BOBDL00148BJob Number:2021IE-005-SADate:11/22/2021

	11, 22, 2021	
Input Information:	Existing Bo	lts
TIA-222 Revision	G	
# Bolts, N	2	
Bolt Diameter, d	1.5	in
Threads per Inch, n	6	
Bolt Ultimate Tensile Stress, F _u	60	ksi
Steel Grade	A7-39	(Assumed)
Applied Vertical Load P	86.63	kips
Applied Shear S	16.60	kips
Net Bolt Cross-Sectional Area, A _n	1.405	in ² (each)
Gross Rod Cross-Sectional Area, Ag	1.767	in ² (each)
Maximum Tensile Force (per bolt), P _u	43.31	kips
Maximum Shear Force (per bolt), V _u	8.300	kips
Detail Type Coefficient, η	0.70	
Nominal Tensile Strength (per bolt), R _{nt}	84.31	kips
Nominal Shear Rupture Strength (per bolt), \mathbf{R}_{nv}	53.01	kips
Anchor Rod Interaction Equation	0.82	

% Capacity 81.8%

The Bolt Group is Adequate for Loading

Exhibit E

Mount Analysis

1033 WATERVLIET SHAKER RD ALBANY, NY 12205

Mount Analysis Report

October 19, 2021

Dish Wireless Site Number	BOBDL00148B
Job Number	2039-Z5555C
Client	Northeast Site Solutions
Carrier	Dish Wireless
	50 Plantation Road,
Site Location	East Windsor, CT 06088
Site Location	41.875640 N NAD83
	72.56483 W NAD83
Mount Centerline EL.	85 ft
Mount Classification	Stand-Off
Structural Usage Ratio	66%
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA and ASCE code requirements. The proposed antenna mounts for the proposed carrier are therefore deemed **adequate** to support the final loading configuration as listed in this report.

Dmitriy Albul, P.E. Engineering Consultant to Infinigy

Mount Analysis Report

October 19, 2021

Contents

Introduction	3
Supporting Documentation	3
Analysis Code Requirements	3
Conclusion	3
Final Configuration Loading	4
Structure Usages	4
Assumptions and Limitations	4
Calculations	Appended

October 19, 2021

Introduction

Infinigy Engineering has been requested to perform a mount analysis of proposed antenna mount from the Dish Wireless equipment. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA-3D Version 19.0 analysis software.

Supporting Documentation

Mount Drawings	Site Pro 1 Assembly Drawings No. WWM02	
Mount Drawings	Site Pro 1 Assembly Drawings No. TAM-2U	
Construction Drawings	Infinigy Engineering PLLC, Job No. 2039-Z5555C, dated July 22, 2021	
RF Design Sheet	Dish Wireless Revision 2, dated September 21, 2021	

Analysis Code Requirements

Wind Speed	135 mph (3-second Gust, V _{ult} .)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 1.0" ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	2018 Connecticut Building Code (2015 IBC)
Structure Class	III
Exposure Category	C
Topographic Method	Method 2
Topographic Category	1
Spectral Response	Ss=0.177, S ₁ =0.064
Site Class	D – Stiff Soil (Assumed)
HMSL	158.35 ft.

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The proposed antenna mounts are therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Dmitriy Albul, P.E. Professional Engineer | Engineering Consultant to Infinigy 1033 Watervliet Shaker Road, Albany, NY 12205 (O) (518) 690-0790 | (M) (518) 699-4428 www.infinigy.com

BOBDL00148B Page | 3

October 19, 2021

Final Configuration Loading

Mount	Rad.	Vert.	Horiz.			
CL	HT	O/S	O/S	Qty	Appurtenance	Carrier
(ft)	(ft)	(ft)	(ft)*			
			-	3	JMA MX08FRO665-21	
05.0	05.0		-	3	Fujitsu TA08025-B605	Dish
85.0	85.0	-	-	3	Fujitsu TA08025-B604	Wireless
			-	1	Raycap RDIDC-9181-PF-48	

Structure Usages

Mount Pipes	66%	Pass
Arms	10%	Pass
Connections*	19%	Pass
Rating	<u>66%</u>	Pass

^{*} Assumed (1) 1/2" UNC Welding stud bolt, of (4) per connection.

Assumptions and Limitations

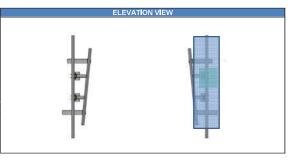
Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

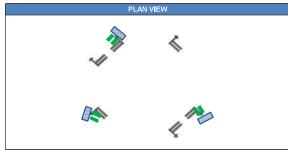
Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

BOBDL00148B Page | 4

INFINIGY8 FROM ZERO TO INFINIGY the solutions are endless


Date:	10/19/2021
Site Name:	BOBDL00148B
Project Engineer:	DVA
Project No:	2039-Z5555C
Customer:	Northeast Site Solutions
Carrier:	Dish Wireless


Building Code:	2015	
TIA Standard:	G	
Mount Type:	T-Arm (Multiple)	
Mount Centerline:	85	ft
Superstructure Height:	133	ft
Structure Type:	Other Chimney/Tank/Similar	

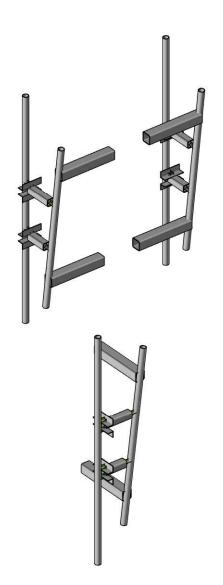
	Factors			
Gh:	1.000			
K _{zmin} :	0.850			
K _z :	1.223			
K _d :	0.950			
K _{zt} :	1.000			
Ka:	1.000			
I wind:	1.150			
l ice:	1.250			

q _z :	37.40	psf
Surface Wind Pressure:	108.42	psf

Site Information]	
Exposure Category:	С	1
Risk Category:	III	
Ultimate Wind Speed:	135	mph
Design Wind Speed:	105	mph
Ice Thickness:	1.00	in
Ice Wind Speed:	50.0	mph
Escalated Ice Thickness:	2.75	in
Topographic Method:	2	
Topographic Category:	1	1

Table 1. Equipment Specifications and Wind Pressure

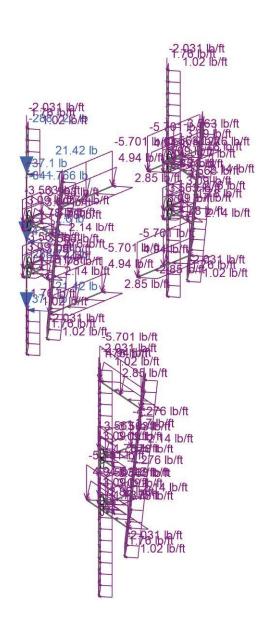
Manufacturer	Model	Elevation	Pipe Label	Weight (lb)	Height (in)	Width (in)	Depth (in)	EPA _N	EPA _⊤	EPA N w/ ice	EPA T w/ ice	q _z :	q z ice:	q z live:
JMA	MX08FRO665-21	85	20, 107, 24	64.50	72	20	8	12,49	5.87	16,79	9.76	1,22	37.40	7.44
Fujitsu	TA08025-B605	85	20, 107, 24	74.90	14.9	15.7	9	1.84	1.08	3.4	2,36	1,22	37.40	7.44
Fujitsu	TA08025-B604	85	20, 107, 24	63,90	14.9	15.7	7.8	1.84	0.95	3.4	2,18	1,22	37.40	7.44
Raycap	RDIDC-9181-PF-48	85	3	21 85	16	14	8	1 77	1 05	3.31	2 34	1 22	37 40	7 4 4

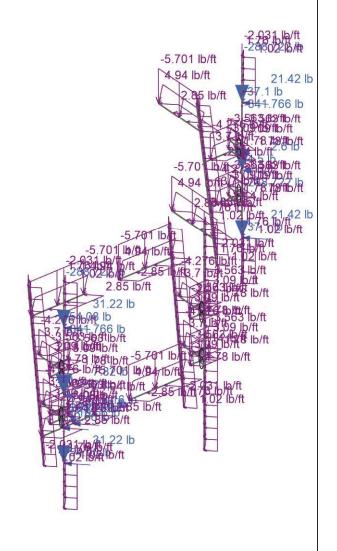

Table 2. Equipment Wind and Seismic Loads

Manufacturer	Model	Wind Lo	oad (F _A), lb	Wind	Load Ice Case (I	F _A), l b	Wind Load	Service Case
JMA	MX08FRO665-21	467	219	125	73	500	38	18
Fujitsu	TA08025-B605	69	40	25	18	89	6	3
Fujitsu	TA08025-B604	69	35	25	16	86	6	3
Ravcap	RDIDC-9181-PF-48	66	39	25	17	86	5	3

Table 3. Hot Rolled Member Capacities

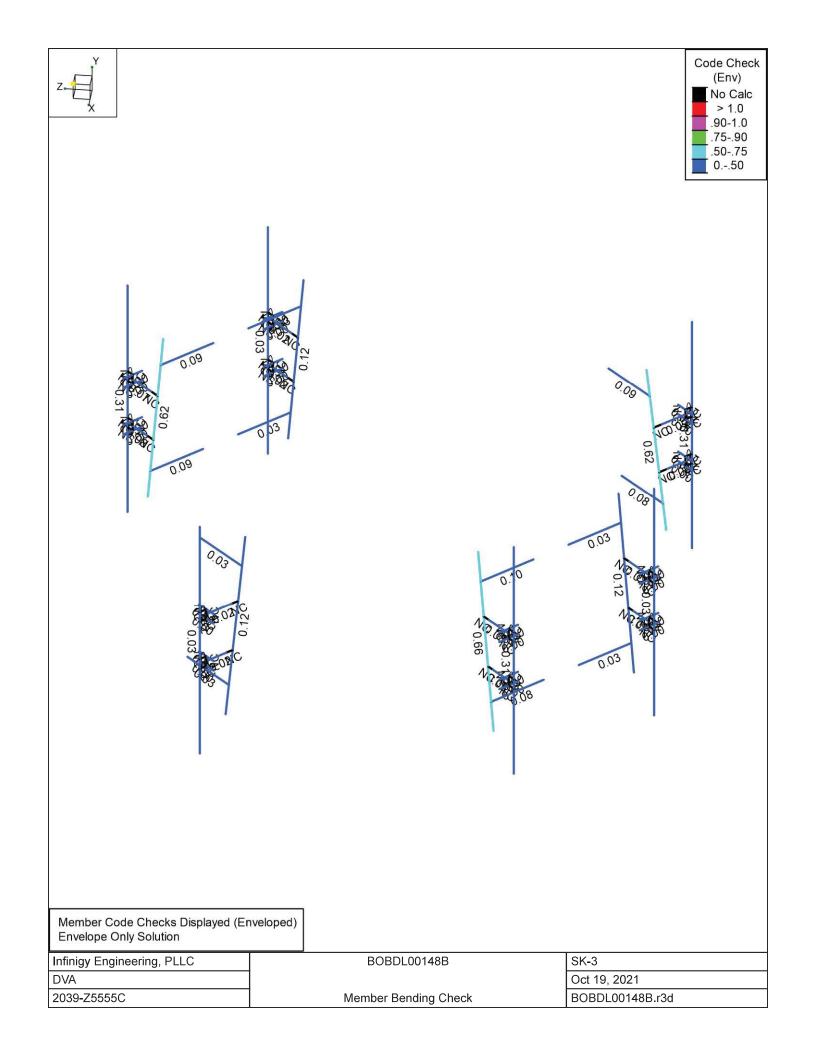
Member Name	Member Shape	Wind load (plf)	Wind Load Ice (plf)	Weight Ice (plf)	Bending Check	Shear Check	Total Capacity	Controlling Capacity
Arm 2	HSS3X3X5	18.70	4.28	2.43	9%	7%	9%	
Mount Pipe	PIPE_2.0	8.88	2.03	2.25	31%	13%	31%	66%
Pipe Mount	PIPE_2.0	8.88	2.03	2.25	66%	46%	66%	00 /0
Arm	HSS4X4X4	24.94	5.70	2.72	10%	2%	10%	

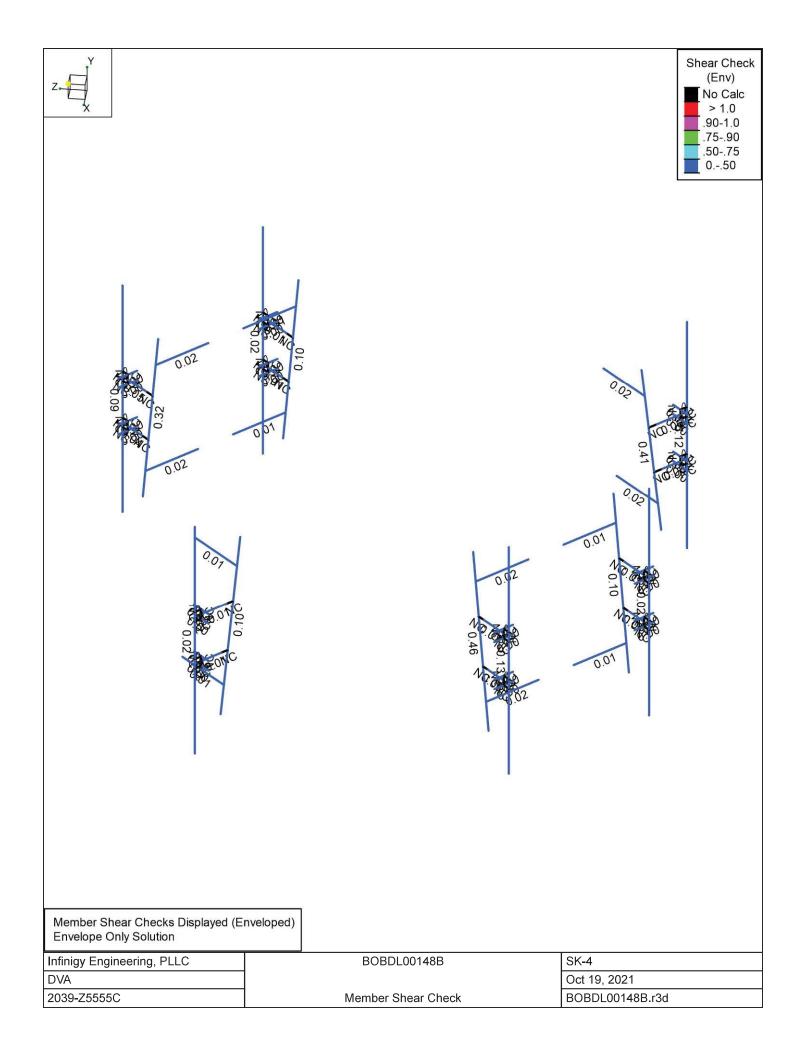




Envelope Only Solution

Infinigy Engineering, PLLC	BOBDL00148B	SK-1
DVA		Oct 19, 2021
2039-Z5555C	Proposed Configuration Model	BOBDL00148B.r3d





Loads: LC 34, 1.2D + 1.0Di +1.0Wi AZI 210 Envelope Only Solution

Infinigy Engineering, PLLC	BOBDL00148B	SK-2
DVA		Oct 19, 2021
2039-Z5555C	Controlling Load Case	BOBDL00148B.r3d

the solutions are endless

Company Designer

: Infinigy Engineering, PLLC

: DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM

Checked By:_

Model Settings

Solution

Members

Number of Reported Sections	5
Number of Internal Sections	100
Member Area Load Mesh Size (in²)	9
Consider Shear Deformation	Yes
Consider Torsional Warping	Yes

Wall Panels

Approximate Mesh Size (in)	12
Transfer Forces Between Intersecting Wood Walls	Yes
Increase Wood Wall Nailing Capacity for Wind Loads	Yes
Include P-Delta for Walls	Yes
Optimize Masonry and Wood Walls	Yes
Maximum Number of Iterations	3

Processor Core Utilization

Single	No
Multiple (Optimum)	Yes
Maximum	No

Axis

Vertical Global Axis

Global Axis corresponding to vertical direction	Υ
Convert Existing Data	Yes

Default Member Orientation

Default Global Plane for z-axis	XZ
---------------------------------	----

Plate Axis

Codes

AISC 13th (360-05): LRFD
Yes (Iterative)
None
AISC 13th (360-05): LRFD
AISI S100-07: LRFD
Yes (Iterative)
AF&PA NDS-05/08: ASD
< 100F
ACI 318-05
ACI 530-05: Strength
AA ADM1-05: ASD
Building
Yes (Iterative)
AISC 14th (360-10): LRFD
Yes (Iterative)

Concrete

Column Design

Analysis Methodology	Exact Integration Method
Parme Beta Factor	0.65

Compression Stress Block	Rectangular Stress Block
Analyze using Cracked Sections	Yes
Leave room for horizontal rebar splices (2*d bar spacing)	No

Company Designer

: Infinigy Engineering, PLLC

: DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021

1:59:43 PM	
Checked By:	
•	_

Model Settings (Continued)

List forces which were ignored for design in the Detail Report	Yes

Rebar

Column Min Steel	1
Column Max Steel	8
Rebar Material Spec	ASTM A615
Warn if beam-column framing arrangement is not understood	No

Shear Reinforcement

Choar Remote China		
	Number of Shear Regions	4
	Region 2 & 3 Spacing Increase Increment (in)	4

Seismic

RISA-3D Seismic Load Options

THO TOD COOMING EGGG OPHONE	
Code	ASCE 7-10
Risk Category	I or II
Drift Cat	Other
Base Elevation (ft)	
Include the weight of the structure in base shear calcs	Yes

Site Parameters

$S_1(g)$	1
SD ₁ (g)	1
SD _s (g)	1
T _L (sec)	5

Structure Characteristics

TZ (sec)	
TX (sec)	
C _t X	0.02
C₁Exp. Z	0.75
C _t Exp. X	0.75
RZ	3
RX	3
$\Omega_0 Z$	1
$\Omega_0 X$	1
C_dZ	4
C _d X	4
ρΖ	1
ρΧ	1

: Infinigy Engineering, PLLC: DVA Company Designer

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM

Checked By : ___

Member Primary Data

	Member Primary Data												
	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule				
1	M1	N6	N5		Pipe Mount	Column	Pipe	A53 Gr.B	Typical				
2	M2	N3	N4		Arm	Beam	Tube	A500 Gr.B Rect	Typical				
3	M3	N1	N2		Arm	Beam	Tube	A500 Gr.B Rect	Typical				
4	M4	N7	N14		RIGID	None	None	RIGID	Typical				
5	M5	N8	N15		RIGID	None	None	RIGID	Typical				
6	M6	N15	N17		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical				
7	M7	N14	N16		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical				
8	M8	N18	N19	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
9	M9	N20	N17		RIGID	None	None	RIGID	Typical				
10	M10	N23	N22	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
11	M11	N21	N17		RIĞID	None	None	RIGID	Typical				
12	M12	N25	N26	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
13	M13	N24	N16		RIGID	None	None	RIGID	Typical				
14	M14	N27	N16		RIGID	None	None	RIGID	Typical				
15	M15	N29	N28	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
16	M16	N20	N30		RIGID	None	None	RIGID	Typical				
17	M17	N21	N31		RIGID	None	None	RIGID	Typical				
18	M18	N24	N32		RIGID	None	None	RIGID	Typical				
19	M19	N27	N33		RIGID	None	None	RIGID	Typical				
20	M20	N34	N35		Mount Pipe	Column	Pipe	A53 Gr.B	Typical				
21	M21 M22	N50	N41 N39		RIGID Pipe Mount	None Column	None Pipe	RIGID A53 Gr.B	Typical				
23	M23	N48 N41	N53		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical Typical				
24	M24	N38	N65		Mount Pipe	Column	Pipe	A53 Gr.B	Typical				
25	M25	N45	N36		Arm	Beam	Tube	A500 Gr.B Rect	Typical				
26	M26	N37	N53		RIGID	None	None	RIGID	Typical				
27	M27	N37	N63		RIGID	None	None	RIGID	Typical				
28	M28	N56	N40		RIGID	None	None	RIGID	Typical				
29	M29	N42	N43	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
30	M30	N62	N44		RIGID	None	None	RIGID	Typical				
31	M31	N47	N46		Arm	Beam	Tube	A500 Gr.B Rect	Typical				
32	M32	N49	N51		RIGID	None	None	RIGID	Typical				
33	M33	N51	N52		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical				
34	M34	N59	N52		RIGID	None	None	RIGID	Typical				
35	M35	N62	N52		RIGID	None	None	RIGID	Typical				
36	M36	N56	N53		RIGID	None	None	RIGID	Typical				
37	M37	N54	N55	270	Angle HBrace		Single Angle	A36 Gr.36	Typical				
38	M38	N58	N57	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
39	M39	N59	N64		RIGID	None	None	RIGID	Typical				
40	M40	N60	N61	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
41	M41	N73	N95		Mount Pipe	Column	Pipe	A53 Gr.B	Typical				
42	M42	N92	N77		RIGID	None	None	RIGID	Typical				
43	M43	N81	N74		Pipe Mount	Column	Pipe	A53 Gr.B	Typical				
44	M44	N82	N84		RIGID	None	None	RIGID	Typical				
45	M45	N89	N85		RIGID	None	None	RIGID	Typical				
46	M46	N88	N69 N67		RIGID	None None	None	RIGID	Typical				
47	M47	N88 N76	N67 N68	90	RIGID		None Single Angle	RIGID A36 Gr.36	Typical				
48	M48 M49	N83	N75	90	Angle RIGID	HBrace None	Single Angle None	RIGID	Typical Typical				
50	M50	N92	N85		RIGID	None	None	RIGID	Typical				
51	M51	N89	N94		RIGID	None	None	RIGID	Typical				
52	M52	N90	N91	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
53	M53	N84	N85	210	Arm 2	Beam	Tube	A500 Gr.B Rect	Typical				
54	M54	N66	N67		RIGID	None	None	RIGID	Typical				
55	M55	N66	N93		RIGID	None	None	RIGID	Typical				
56	M56	N75	N67		Arm 2	Beam	Tube A500 Gr.B F		Typical				
57	M57	N70	N71	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical				
58	M58	N78	N72		Arm	Beam	Tube	A500 Gr.B Rect	Typical				
1				1					71				

Company : Infinigy Engineering, PLLC Designer : DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM

Checked By : ___

Member Primary Data (Continued)

	011112 01 1 1 11111	ary Data (COII	tirra ou j						
	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
59	M59	N80	N79		Arm	Beam		A500 Gr.B Rect	Typical
60	M60	N86	N87	270	Angle	HBrace	Single Angle		Typical
61	M61	N110	N101		RIGID	None	None	RIGID	Typical
62	M62	N108	N99		Pipe Mount	Column	Pipe	A53 Gr.B	Typical
63	M63	N101	N113		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
64	M64	N98	N125		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
65	M65	N105	N96		Arm	Beam	Tube	A500 Gr.B Rect	Typical
66	M66	N97	N113		RIGID	None	None	RIGID	Typical
67	M67	N97	N123		RIGID	None	None	RIGID	Typical
68	M68	N116	N100		RIGID	None	None	RIGID	Typical
69	M69	N102	N103	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
70	M70	N122	N104		RIGID	None	None	RIGID	Typical
71	M71	N107	N106		Arm	Beam	Tube	A500 Gr.B Rect	Typical
72	M72	N109	N111		RIGID	None	None	RIGID	Typical
73	M73	N111	N112		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
74	M74	N119	N112		RIGID	None	None	RIGID	Typical
75	M75	N122	N112		RIGID	None	None	RIGID	Typical
76	M76	N116	N113		RIGID	None	None	RIGID	Typical
77	M77	N114	N115	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical
78	M78	N118	N117	90	Angle	HBrace	Single Angle		Typical
79	M79	N119	N124		RIGID	None	None	RIGID	Typical
80	M80	N120	N121	270	Angle	HBrace	Single Angle		Typical
81	M81	N152	N129	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
82	M82	N132	N155		RIGID	None	None	RIGID	Typical
83	M83	N149	N150	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical
84	M84	N127	N139		RIGID	None	None	RIGID	Typical
85	M85	N143	N137		Pipe Mount	Column	Pipe	A53 Gr.B	Typical
86	M86	N139	N148		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
87	M87	N136	N134		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
88	M88	N142	N130		Arm	Beam	Tube	A500 Gr.B Rect	Typical
89	M89	N135	N148		RIGID	None	None	RIGID	Typical
90	M90	N135	N154		RIGID	None	None	RIGID	Typical
91	M91	N151	N138		RIGID	None	None	RIGID	Typical
92	M92	N140	N131	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
93	M93	N153	N141		RIGID	None	None	RIGID	Typical
94	M94	N126	N133		Arm	Beam	Tube	A500 Gr.B Rect	Typical
95	M95	N144	N146		RIGID	None	None	RIGID	Typical
96	M96	N146	N147		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
97	M97	N132	N147		RIGID	None	None	RIGID	Typical
98	M98	N153	N147		RIGID	None	None	RIGID	Typical
99	M99	N151	N148	070	RIGID	None	None	RIGID	Typical
100	M100	N145	N128	270	Angle	HBrace	Single Angle		Typical
101	M101	N182	N158	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
102	M102	N161	N185	070	RIGID	None	None	RIGID	Typical
103	M103	N179	N180	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical
104	M104	N157	N171		RIGID	None	None	RIGID	Typical
105	M105	N175	N169		Pipe Mount	Column	Pipe	A53 Gr.B	Typical
106	M106	N171	N178		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
107	M107	N168	N164		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
108	M108	N174	N159		Arm	Beam	Tube	A500 Gr.B Rect	Typical
109	M109	N163	N178		RIGID	None	None	RIGID	Typical
110	M110	N163	N184		RIGID	None	None	RIGID	Typical
111	M111	N181	N170	00	RIGID	None	None Single Apple	RIGID	Typical
112	M112	N172	N160	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
113	M113	N183	N173		RIGID	None	None	RIGID	Typical
114	M114	N156	N162		Arm	Beam	Tube	A500 Gr.B Rect	Typical
115	M115	N176	N165		RIGID	None	None	RIGID	Typical
116	M116	N165	N177		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical

Company Designer : Infinigy Engineering, PLLC

: DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM

Checked By : __

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
117	M117	N161	N177		RIGID	None	None	RIGID	Typical
118	M118	N183	N177		RIGID	None	None	RIGID	Typical
119	M119	N181	N178		RIGID	None	None	RIGID	Typical
120	M120	N166	N167	270	Angle	HBrace	Single Angle	A36 Gr.36	Typical

Node Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	Y Rot [k-ft/rad]
1	N3	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction
3	N45	Reaction Reaction		Reaction	Reaction
4	N47	Reaction	Reaction	Reaction	Reaction
5	N78	Reaction	Reaction	Reaction	Reaction
6	N80	Reaction	Reaction	Reaction	Reaction
7	N105	Reaction	Reaction	Reaction	Reaction
8	N107	Reaction	Reaction	Reaction	Reaction
9	N126	Reaction	Reaction	Reaction	Reaction
10	N142	Reaction	Reaction	Reaction	Reaction
11	N156	Reaction	Reaction Reaction		Reaction
12	N174	N174 Reaction		Reaction	Reaction

Hot Rolled Steel Section Sets

	Label	Shape Type Design List		Material	Design Rule	Area [in²]	lyy [in⁴]	Izz [in⁴]	J [in⁴]	
1	Arm 2	HSS3X3X5	Beam	Tube	A500 Gr.B Rect	Typical	2.94	3.45	3.45	5.94
2	Mount Pipe	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
3	Angle	L2.5x2.5x3	HBrace	Single Angle	A36 Gr.36	Typical	0.901	0.535	0.535	0.011
4	Pipe Mount	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
5	Arm	HSS4X4X4	Beam	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8

Basic Load Cases

	240:0 2044 04000				
	BLC Description	Category	Y Gravity	Point	Distributed
1	Self Weight	DL	-1	20	
2	Wind Load AZI 0	WLX		40	248
3	Wind Load AZI 30	None		40	248
4	Wind Load AZI 60	None		40	248
5	Wind Load AZI 90	WLZ		40	248
6	Wind Load AZI 120	None		40	248
7	Wind Load AZI 150	None		40	248
8	Wind Load AZI 180	None		40	248
9	Wind Load AZI 210	None		40	248
10	Wind Load AZI 240	None		40	248
11	Wind Load AZI 270	None		40	248
12	Wind Load AZI 300	None		40	248
13	Wind Load AZI 330	None		40	248
14	Ice Weight	OL1		20	120
15	Ice Wind Load AZI 0	OL2		40	248
16	Ice Wind Load AZI 30	None		40	248
17	Ice Wind Load AZI 60	None		40	248
18	Ice Wind Load AZI 90	OL3		40	248
19	Ice Wind Load AZI 120	None		40	248
20	Ice Wind Load AZI 150	None		40	248
21	Ice Wind Load AZI 180	None		40	248
22	Ice Wind Load AZI 210	None		40	248
23	Ice Wind Load AZI 240	None		40	248
24	Ice Wind Load AZI 270	None		40	248
25	Ice Wind Load AZI 300	None		40	248
26	Ice Wind Load AZI 330	None		40	248
29	Service Live Loads	LL			

Company : Infinigy Engineering, PLLC Designer : DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM

Checked By : ___

Load Combinations

Description		Load Combinations								
1,2DL+1,6WLAZIO							BLC	Factor	BLC	Factor
1			_							
1										
1,2DL+1,6WLAZ190	3									
6										
Table 1,000 1,00	5		Yes		1		5			
8			Yes		1		6			
1.20L+1.6W.A2I210	7		Yes	Υ	1		7	1.6		
10			Yes		1					
11	9	1.2DL + 1.6WL AZI 210	Yes	Υ	1	1.2	9	1.6		
12	10	1.2DL + 1.6WL AZI 240	Yes	Υ	1	1.2	10	1.6		
13	11	1.2DL + 1.6WL AZI 270	Yes	Υ	1	1.2	11	1.6		
13	12	1.2DL + 1.6WL AZI 300	Yes	Υ	1	1.2	12	1.6		
14				Υ	1	1.2	13			
15			_		1					
16			Yes	Υ	1					
17										
18										
19			_							
20										
21										
22										
23										
24										
25					-					
1.2D + 1.0Di + 1.0Wi AZI 0 Yes Y 1 1.2 14 1 15 1										
1.2D + 1.0Di +1.0Wi AZI 0 Yes Y 1 1.2 14 1 15 1	26		_							
12D + 1.0Di +1.0Wi AZI 30	27								15	1
1.2D + 1.0Di + 1.0Wi AZI 60			_							
1.2D + 1.0Di + 1.0Wi AZI 120			_							
1.2D + 1.0Di + 1.0Wi AZI 120 Yes Y 1 1.2 14 1 19 1 12 14 1 20 1 13 1.2D + 1.0Di + 1.0Wi AZI 180 Yes Y 1 1.2 14 1 20 1 1 13 1 1 14 1 15 1 1 1 1 1 1 1										-
1.2D + 1.0Di + 1.0Wi AZI 150										
1.2D + 1.0Di + 1.0Wi AZI 180 Yes Y								-		
34								_		· ·
35										
36										
37 1.2D + 1.0Di + 1.0Wi AZI 300 Yes Y 1 1.2 14 1 25 1 38 1.2D + 1.0Di + 1.0Wi AZI 330 Yes Y 1 1.2 14 1 26 1 39 (1.2 + 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 1.2 27 1 28 40 (1.2 + 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 1.2 27 1 28 41 (1.2 + 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 1.2 27 0.5 28 0.866 42 (1.2 + 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -0.56 28 0.5 45 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
38 1.2D + 1.0Di + 1.0Wi AZI 330 Yes Y 1 1.2 14 1 26 1 39 (1.2 + 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 1.2 27 1 28 40 (1.2 + 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 1.2 27 0.866 28 0.5 41 (1.2 + 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 1.2 27 0.5 28 0.866 42 (1.2 + 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 1.2 27 -0.5 28 0.866 42 (1.2 + 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -0.5 28 0.866 45 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1										
39										-
40 (1.2 + 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 1.2 27 0.866 28 0.5 41 (1.2 + 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 1.2 27 0.5 28 0.866 42 (1.2 + 0.2Sds)DL + 1.0E AZI 190 Yes Y 1 1.2 27 -0.5 28 0.866 43 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.5 28 0.866 45 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -1 28 46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.566 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 270 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 +										I
41 (1.2 + 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 1.2 27 0.5 28 0.866 42 (1.2 + 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 1.2 27 28 1 43 (1.2 + 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.866 28 0.5 45 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -1 28 46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 -0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.5 28 -0.866										0.5
42 (1.2 + 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 1.2 27 -0.5 28 0.866 43 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.866 28 0.5 45 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -1 28 46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 370 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.5 28 -0.866 51 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 1 28										
43 (1.2 + 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 1.2 27 -0.5 28 0.866 44 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.866 28 0.5 45 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -1 28 46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 270 Yes Y 1 1.2 27 -0.5 28 -0.866 49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 2	41							0.5		
44 (1.2 + 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 1.2 27 -0.866 28 0.5 45 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -1 28 46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 270 Yes Y 1 1.2 27 -0.5 28 -0.866 49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866								0.5		
45 (1.2 + 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 1.2 27 -1 28 46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -1 49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 -0.5 28 0.866			_							
46 (1.2 + 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 1.2 27 -0.866 28 -0.5 47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 270 Yes Y 1 1.2 27 0.5 28 -1 49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2										0.5
47 (1.2 + 0.2Sds)DL + 1.0E AZI 240 Yes Y 1 1.2 27 -0.5 28 -0.866 48 (1.2 + 0.2Sds)DL + 1.0E AZI 270 Yes Y 1 1.2 27 28 -1 49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 0.866 28 0.5 53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150			_							0.5
48 (1.2 + 0.2Sds)DL + 1.0E AZI 270 Yes Y 1 1.2 27 28 -1 49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 0.866 28 0.5 53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 -0.5 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150										
49 (1.2 + 0.2Sds)DL + 1.0E AZI 300 Yes Y 1 1.2 27 0.5 28 -0.866 50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 0.866 28 0.5 53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 -0.5 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.5 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-0.5</td> <td></td> <td></td>			_					-0.5		
50 (1.2 + 0.2Sds)DL + 1.0E AZI 330 Yes Y 1 1.2 27 0.866 28 -0.5 51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 0.866 28 0.5 53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 -0.5 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.5 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28										
51 (0.9 - 0.2Sds)DL + 1.0E AZI 0 Yes Y 1 0.9 27 1 28 52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 0.866 28 0.5 53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 -0.5 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.866 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28										
52 (0.9 - 0.2Sds)DL + 1.0E AZI 30 Yes Y 1 0.9 27 0.866 28 0.5 53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.866 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28								0.866		-0.5
53 (0.9 - 0.2Sds)DL + 1.0E AZI 60 Yes Y 1 0.9 27 0.5 28 0.866 54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.866 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28								1		
54 (0.9 - 0.2Sds)DL + 1.0E AZI 90 Yes Y 1 0.9 27 28 1 55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.866 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28	52									
55 (0.9 - 0.2Sds)DL + 1.0E AZI 120 Yes Y 1 0.9 27 -0.5 28 0.866 56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.866 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28					-			0.5		
56 (0.9 - 0.2Sds)DL + 1.0E AZI 150 Yes Y 1 0.9 27 -0.866 28 0.5 57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28	54		_							
57 (0.9 - 0.2Sds)DL + 1.0E AZI 180 Yes Y 1 0.9 27 -1 28										
										0.5
58 (0.9 - 0.2Sds)DL + 1.0E AZI 210 Yes Y 1 0.9 27 -0.866 28 -0.5										
	58	(0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.9	27	-0.866	28	-0.5

Company Designer : Infinigy Engineering, PLLC

: DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM Checked By : ___

Load Combinations (Continued)

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
59	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Υ	1	0.9	27	-0.5	28	-0.866
60	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Υ	1	0.9	27		28	-1
61	(0.9 - 0.2Sds)DL + 1.0E AZI 300	Yes	Υ	1	0.9	27	0.5	28	-0.866
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Υ	1	0.9	27	0.866	28	-0.5
63	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 0	Yes	Υ	1	1	2	0.082	29	1.5
64	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 30	Yes	Υ	1	1	3	0.082	29	1.5
65	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 60	Yes	Υ	1	1	4	0.082	29	1.5
66	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 90	Yes	Υ	1	1	5	0.082	29	1.5
67	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 120	Yes	Υ	1	1	6	0.082	29	1.5
68	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 150	Yes	Υ	1	1	7	0.082	29	1.5
69	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 180	Yes	Υ	1	1	8	0.082	29	1.5
70	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 210	Yes	Υ	1	1	9	0.082	29	1.5
71	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 240	Yes	Υ	1	1	10	0.082	29	1.5
72	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 270	Yes	Υ	1	1	11	0.082	29	1.5
73	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 300	Yes	Υ	1	1	12	0.082	29	1.5
74	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 330	Yes	Υ	1	1	13	0.082	29	1.5

Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [lb-in]	LC
1	N3	max	422.157	14	619.73	34	413.689	16	0	74	8874.493	23	Ō	74
2		min	-780.629	8	44.633	15	-521.307	10	0	1	-11680.699	5	0	1
3	N1	max	845.05	2	667.806	28	605.399	4	0	74	13097.079	11	0	74
4		min	-486.315	20	54.486	21	-497.4	22	0	1	-8266.228	17	0	1
5	N45	max	445.223	13	582.96	37	459.917	17	0	74	13210.157	9	0	74
6		min	-344.16	19	48.807	18	-809.469	11	0	1	-8442.241	15	0	1
7	N47	max	337.631	15	589.658	31	825.537	5	0	74	9400.683	21	0	74
8		min	-438.744	9	48.693	24	-476.239	23	0	1	-12221.824	3	0	1
9	N78	max	195.027	14	114.869	34	218.967	17	0	74	5571.639	6	0	74
10		min	-291.576	8	17.449	15	-271.357	11	0	1	-4611.825	24	0	1
11	N80	max	299.006	2	114.842	28	268.764	5	0	74	4949.768	18	0	74
12		min	-202.501	20	17.375	21	-216.404	23	0	1	-5273.716	12	0	1
13	N105	max	291.575	2	114.866	38	218.968	17	0	74	4611.838	22	0	74
14		min	-195.029	20	17.446	19	-271.357	11	0	1	-5571.585	4	0	1
15	N107	max	202.506	14	114.839	32	268.766	5	0	74	5273.738	10	0	74
16		min	-299.006	8	17.372	25	-216.408	23	0	1	-4949.815	16	0	1
17	N126	max	268.765	2	114.841	29	299.008	5	0	74	5273.722	7	0	74
18		min	-216.406	20	17.373	22	-202.505	23	0	1	-4949.763	25	0	1
19	N142	max	218.963	14	114.868	35	195.028	17	0	74	4611.772	19	0	74
20		min	-271.354	8	17.447	16	-291.576	11	0	1	-5571.531	13	0	1
21	N156	max	510.112	14	585.24	34	337.446	18	0	74	17081.229	13	0	74
22		min	-610.859	8	74.353	15	-708.594	37	0	1	-14283.162	19	0	1
23	N174	max	621.942	2	578.542	28	707.365	31	0	74	13262.95	25	0	74
24		min	-520.974	20	74.467	21	-330.561	24	0	1	-18059.365	7	0	1
25	Totals:	max	4537.257	14	4181.874	34	4477.464	5						
26		min	-4537.261	8	1243.448	15	-4477.461	23		, in the second				

Envelope AISC 13TH (360-05): LRFD Member Steel Code Checks

	Member	Shape	Code Check	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-in]	phi*Mn z-z [lb-in]	Cb	Eqn
1	M1	PIPE_2.0	0.655	60	34	0.458	60		9	20866.847	32130	22459.5	22459.5	2.536	H1-1b
2	M22	PIPE_2.0	0.623	60	31	0.413	60		6	20866.847	32130	22459.5	22459.5	2.542	H1-1b
3	M105	PIPE_2.0	0.616	60	34	0.316	60		8	20866.847	32130	22459.5	22459.5	2.656	H1-1b
4	M20	PIPE_2.0	0.308	36	3	0.131	40		3	14916.096	32130	22459.5	22459.5	2.322	H1-1b
5	M24	PIPE_2.0	0.308	36	11	0.116	40		12	14916.096	32130	22459.5	22459.5	3	H1-1b
6	M107	PIPE_2.0	0.308	36	13	0.087	40		3	14916.096	32130	22459.5	22459.5	2.565	H1-1b
7	M85	PIPE_2.0	0.118	60	4	0.102	60		4	20866.847	32130	22459.5	22459.5	2.867	H1-1b
8	M43	PIPE_2.0	0.118	60	3	0.102	60		3	20866.847	32130	22459.5	22459.5	2.867	H1-1b
9	M62	PIPE_2.0	0.118	60	7	0.102	60		7	20866.847	32130	22459.5	22459.5	2.867	H1-1b

Company Designer : Infinigy Engineering, PLLC

: DVA

Job Number : 2039-Z5555C Model Name: BOBDL00148B 10/19/2021 1:59:43 PM

Checked By : ___

Envelope AISC 13TH (360-05): LRFD Member Steel Code Checks (Continued)

	N // !-	. Ch	0-4-05-1	l astro	1. ~	Ole a see Ole a d	1 51 - 2	D:			k-:*D C !!! :	1 - (*N/I)	Landa (*N.A.)	1 01-	
	Member] phi*Mn y-y [lb-in]			Eqn
10	M2	HSS4X4X4	0.096		34	0.016	0		_	137201.855		194166	194166		H1-1b
11		HSS4X4X4	0.093	0	7	0.018	0	Z		137201.855		194166	194166		H1-1b
12	M33	HSS3X3X5	0.092	0	11	0.058	0	Z				120060	120060		H1-1b
13	M31	HSS4X4X4	0.091		31	0.017	0	Z		137201.855		194166	194166		H1-1b
14		HSS4X4X4	0.089		34	0.018	0		_	137201.855		194166	194166		H1-1b
15	M23	HSS3X3X5	0.086	0	5	0.061	0	Z	_	120799.83		120060	120060		H1-1b
16	M7	HSS3X3X5	0.084	0	2	0.065	0	Z	_			120060	120060		H1-1b
17	M3	HSS4X4X4	0.082	24	34	0.018	0		_	137201.855		194166	194166		H1-1b
18	M116	HSS3X3X5	0.08	0	7	0.043	0	Z	-	121152.154		120060	120060		H1-1b
19	M6	HSS3X3X5	0.078	0	8	0.069	0	Z	_	120799.83		120060	120060		H1-1b
20	M25	HSS4X4X4	0.077		31	0.017	0	Z		137201.855		194166	194166		H1-1b
21		HSS3X3X5	0.072	0	13	0.045	0	Z		120799.83		120060	120060		H1-1b
22	M87	PIPE_2.0	0.035	36	9	0.022	37		_	14916.096		22459.5	22459.5		H1-1b
23	M64	PIPE_2.0	0.035	36	12	0.022	37			14916.096		22459.5	22459.5		H1-1b
24	M41	PIPE_2.0	0.035	36	10	0.022	37			14916.096		22459.5	22459.5		H1-1b
25	M58	HSS4X4X4	0.029	0	6	0.007	0	Z	_	137201.855		194166	194166		H1-1b
26	M65	HSS4X4X4	0.029	0	4	0.007	0	Z	_	137201.855		194166	194166		H1-1b
27	M88	HSS4X4X4	0.029	0	13	0.007	0	Z	_	137201.855		194166	194166		H1-1b
28	M71	HSS4X4X4	0.027	0	10	0.007	0	Z	_	137201.855		194166	194166		H1-1b
29	M94	HSS4X4X4	0.027	0	7	0.007	0	Z		137201.855		194166	194166		H1-1b
30	M59	HSS4X4X4	0.027	0	12	0.007	0	Z		137201.855		194166	194166		H1-1b
31	M96	HSS3X3X5	0.02	0	11	0.011	0	Z		121152.154		120060	120060		H1-1b
32	M53	HSS3X3X5	0.02	0	8	0.011	0	Z	4	121152.154	121716	120060	120060	1.284	H1-1b
33	M73	HSS3X3X5	0.02	0	2	0.011	0	Z	6	121152.154	121716	120060	120060	1.284	H1-1b
34	M86	HSS3X3X5	0.019	0	5	0.012	0	Z	10	120799.83	121716	120060	120060	1.347	H1-1b
35	M63	HSS3X3X5	0.019	0	8	0.012	0	Z		120799.83		120060	120060	1.347	H1-1b
36	M56	HSS3X3X5	0.019	0	2	0.012	0	Z	9	120799.83	121716	120060	120060	1.347	H1-1b
37	M101	L2.5x2.5x3	0.002	4.25	13	0	4.25	у	25	28263.998	29192.4	10470.885	23661.955	1.5	H2-1
38	M112	L2.5x2.5x3	0.002	4.25	12	0	4.25	У	25	28263.998	29192.4	10470.885	23661.955	1.5	H2-1
39	M40	L2.5x2.5x3	0.002	4.25	4	0	4.25	У	15	28263.998	29192.4	10470.885	23661.955	1.5	H2-1
40	M12	L2.5x2.5x3	0.002	4.25	7	0	4.25	У	18	28263.998	29192.4	10470.885	23661.955	1.5	H2-1
41	M69	L2.5x2.5x3	0.002	4.25	10	0	4.25	У	22	28263.998	29192.4	10470.885	23661.955	1.5	H2-1
42	M92	L2.5x2.5x3	0.002	4.25		0				28263.998		10470.885	23661.955		H2-1
43	M78	L2.5x2.5x3	0.002	4.25		0				28263.998		10470.885	23661.955		H2-1
44	M81	L2.5x2.5x3	0.002	4.25		0				28263.998		10470.885	23661,955		H2-1
45	M60	L2.5x2.5x3	0.002	4.25		0				28263.998		10470.885	23661.955		H2-1
46	M52	L2.5x2.5x3	0.002	4.25		0				28263.998		10470.885	23661.955	1.5	H2-1
47	M83	L2.5x2.5x3	0.002	4.25		0				28263.998		10470.885	23661.955		H2-1
48	M100	L2.5x2.5x3	0.002	4.25		0	4.25		_	28263.998		10470.885	23661.955	1.5	H2-1
49	M10	L2.5x2.5x3	0.002	4.25		0	4.25	٧	_	28263.998		10470.885	23661.955		H2-1
50	M15	L2.5x2.5x3	0.002	4.25		0		v		28263.998		10470.885	23661.955		H2-1
51		L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
52		L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
53	M57	L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
54		L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
55	M38	L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
56	M29	L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
57	M37	L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
58	M8	L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
59		L2.5x2.5x3		4.25		0				28263.998		10470.885	23661.955		H2-1
60		L2.5x2.5x3		4.25	6	0				28263.998		10470.885	23661.955		H2-1
00	101 120		0.002	7.20		<u> </u>	7.20	y			20102.7	10-770.000		1.0	14-1

BOLT CONNECTION CALCULATION

BOLT PROPERTIES

Date:	10/19/2021
Site:	BOBDL00148B
Engineer:	DVA
Job No:	2039-Z5555C
Connection Location:	Arm to Tank Leg (Stud)

Bolt Capacity Equation	TIA-222-G	
Connection Type	Welded Stud	
Bolt Size, d	1/2	in
Threads per Inch, n	13	
Bolt Ultimate Tensile Stress, F _u	60	ksi
Threads Exclusion	N	
Shear Plane	1	
		•

Net Bolt Cross-Sectional Area, \mathbf{An} Gross Bolt Cross-Sectional Area, \mathbf{Ag} Tensile Steel Strength (per bolt), $\mathbf{\phi R}_{nt}$ Shear Steel Strength (per bolt), $\mathbf{\phi R}_{nv}$

in ²	0.142
in ²	0.196
lbs	8656
lbs	6492
-	

FROM ZERO TO INFINIGY the solutions are endless

BOLT CONNECTION CALCULATION

BOLT GROUP CHECK

10/19/2021	BOBDL00148B	DVA	2039-Z5555C	tion: Arm to Tank Leg (Stud)
Date:	Site:	Engineer:	Job No:	Connection Location

Bolt Group Pattern

7.0

0.9

5.0

4.0

3.0

2.0

1.0

	TC	Loads Properties			
Controlling LC:	13				
Load Point Number:	N156				
X-Coordinate (in.)	4.00				
Y-Coordinate (in.)	4.00				
Z-Coordinate (in.)	00.00				
Shear Load, Px (lbs)	22,000	0	0	0	0
Shear Load, Py (lbs)	-167.000	0	0	0	0
Axial Load, Pz (lbs)	695,000	0	0	0	0
Moment, Mx (Ib-in)	0000	0	0	0	0
Moment, My (Ib-in)	-17081.000	0	0	0	0
Moment, Mz (Ib-in)	0.000	0	0	0	0

	λ	0'0	8.0
Member Properties	X	0'0	8.0
Memk		Start Coordinates:	Dimentions:

 No.
 Bolt Type
 Xo (in)
 Yo (in)
 Yo (in)
 Axial (lbs)
 Sheat Azial (lbs)
 Sheat Azial (lbs)
 Sheat Azial (lbs)
 Axial (lbs)
 Axial (lbs)
 Azial (lbs)
 <

Number of Bolts

erties:	Ë	. ⊑	in.^2	in.^2	in.^2	
Bolt Group Properties:	4.00	4.00	70.7	7.07	14.14	
	Xc =	Д К	C.y =	II ×	c.xy =	

Steel Bolt Usage	

0.9

4.0

2.0

0.0

0.0

ae	Xo (in)	Yo (in)	Axial (Ibs)	Shear (Ibs)	Tension	Shear	Combined	Max. Capacity
ed	1.0	1.0	-1249.67	42.11	%0'0	%9'0	0.6%	%9.0
ed	7.0	1.0	1597.17	42.11	18.5%	%9 ⁻ 0	18.5%	18.5%
ed	1.0	7.0	-1249.67	42.11	%0'0	%9'0	0.6%	%9'0
ed	7.0	7.0	1597.17	42.11	18.5%	%9 ⁻ 0	18.5%	18.5%

Loads at Center of Gravity of Bolt Group:

695.00 22.00 -167.00 0.00 -17081.00 0.00

Total Capacity of Bolt Group:

18.5%

Exhibit F

Power Density/RF Emissions Report

Radio Frequency Emissions Analysis Report

Site ID: BOBDL00148B

Plantation Watertank 50 Plantation Road East Windsor, CT 06088

November 2, 2021

Fox Hill Telecom Project Number: 210657

Site Compliance	Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	29.45 %

November 2, 2021

Dish Wireless 5701 South Santa Fe Drive Littleton, CO 80120

Emissions Analysis for Site: **BOBDL00148B – Plantation Watertank**

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at **50 Plantation Road, East Windsor, CT**, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed radio system installation for **Dish** on the subject site located at **50 Plantation Road**, **East Windsor**, **CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since **Dish** is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the water tank. For this report the sample point is the top of a 6-foot person standing at the base of the water tank.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5G	600 MHz	4	61.5
5G	1900 MHz (PCS)	4	40
5G	2100 MHz (AWS)	4	40

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
A	1	JMA MX08FRO665-21	85
В	1	JMA MX08FRO665-21	85
С	1	JMA MX08FRO665-21	85

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed **Dish** configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna	Antenna Make /		Antenna Gain		Total TX		
ID	Model	Frequency Bands	(dBd)	Channel Count	Power (W)	ERP (W)	MPE %
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
A1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	13.01
Sector A Composite MPE%						13.01	
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
B1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	13.01
Sector B Composite MPE%						13.01	
		600 MHz/					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
C1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	13.01
Sector C Composite MPE%						13.01	

Table 3: Dish Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum **Dish** MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each **Dish** Sector as well as the composite MPE value for the site.

Site Composite MPE%					
Carrier	MPE%				
Dish – Max Per Sector Value	13.01 %				
AT&T	12.59 %				
Sprint	3.69 %				
Clearwire	0.13 %				
T-Mobile	0.03 %				
Site Total MPE %:	29.45 %				

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	13.01 %				
Dish Sector B Total:	13.01 %				
Dish Sector C Total:	13.01 %				
Site Total:	29.45 %				

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated **Dish** sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Dish _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
Dish 600 MHz 5G	4	858.77	85	19.79	600 MHz	400	4.95%
Dish 1900 MHz (PCS) 5G	4	1,648.39	85	37.98	1900 MHz (PCS)	1000	3.80%
Dish 2100 MHz (AWS) 5G	4	1,849.52	85	42.62	2100 MHz (AWS)	1000	4.26%
						Total:	13.01%

Table 6: Dish Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (%)			
Sector A:	13.01 %			
Sector B:	13.01 %			
Sector C:	13.01 %			
Dish Maximum Total (per sector):	13.01 %			
Site Total:	29.45 %			
Site Compliance Status:	COMPLIANT			

The anticipated composite MPE value for this site assuming all carriers present is **29.45** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan Principal RF Engineer

Fox Hill Telecom, Inc Holden, MA 01520 (978)660-3998

Exhibit G

Letter of Authorization

[Insert Letterhead]

Plantation Properties, LLC P.O. Box 542 Broad Brook, CT06016-0542

Anntation Properties, LLC - Letter of Authorization

CT - CONNECTICUT SITING COUNCIL Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain. CT 06051

Re:

Tower Share Application

Plantation Properties, LLC - telecommunications site at:

50 Plantation Road, East Windsor, CT 06088

Plantation Properties, LLC ("Plantation Properties") hereby authorizes DISH Wireless LLC, including the Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below

Plantation Properties ID/Name:

Customer Site ID: BOBDL00148B / Plantation Water tank Site Address: 50 Plantation Road, East Windsor, CT 06088

Plantation Properties. LLC

Date: 10-1-2 10/../2021

Name: DEAN ROSMUSSON Title: MEMBER

[Insert Letterhead]

Plantation Properties, LLC P.O. Box 542 Broad Brook, CT06016-0542

Mantation Properties, LLC - Letter of Authorization

CT - CONNECTICUT SITING COUNCIL
Melanie A. Bachman
Executive Director
Connecticut Siting Counci
10 Franklin Square
New Britain. CT 06051

Re:

Tower Share Application

Plantation Properties, LLC - telecommunications site at: 50 Plantation Road, East Windsor, CT 06088

Plantation Properties, LLC ("Plantation Properties") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below

Plantation Properties ID/Name:

Customer Site ID: BOBDL00148B / Plantation Water tank Site Address: 50 Plantation Road, East Windsor, CT 06088

Plantation Properties. LLC

med moeth w

Date: 10-1-21 10/../2021

Name: DEAN ROSMUSSEN
Title: MEMBER

Exhibit H

Recipient Mailings

BOBDL 0014813

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

11/23/2021 03:20 PM Product Qty Unit Price Price Prepaid Mail \$0.00 Broad Brook, CT 06016 Weight: O Tb 8.20 oz Acceptance Date: Tue 11/23/2021 Tracking #: 9405 5036 9930 0071 2102 08 Prepaid Mail \$0.00 Broad Brook, CT 06016 Weight: 0 lb 8.20 oz Acceptance Date: Tue 11/23/2021 Tracking #: 9405 5036 9930 0071 2101 85 Prepaid Mail \$0.00 Broad Brook, CT 06016 Weight: 0 lb 8.20 oz Acceptance Date: Tue 11/23/2021 Tracking #: 9405 5036 9930 0071 2101 78 Grand Total: \$0.00

WEBSTER BANK

NORTHEAST SITE SOLUTIONS, LLC

1053 FARMINGTON AVE STE G FARMINGTON, CT 06032

11/23/2021

PAY TO THE ORDER OF.

Connecticut Siting Council

*625.00

EXACTLY SIX HUNDRED TWENTY-FIVE DOLLARS

DOLLARS

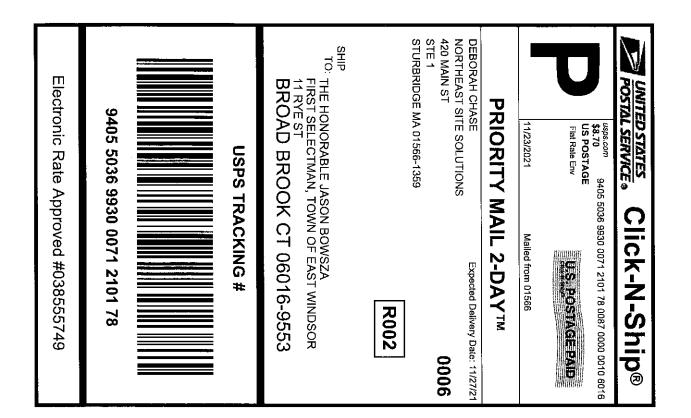
Connecticut Siting Council 10 Franklin Square New Britain CT 06051

MEMO

Jin Wellen AUTHORIZED SIGNATURE

#OO4938# #211170101#10 0010608887#

NORTHEAST SITE SOLUTIONS, LLC


4938

Vendor#: 10023 Connecticut Siting Chack/Total: Date: 11/23/2021 *625.00 Check#: 4938 This Check Discount Invoice Date Job/Description Balance Retain Invoice# 625.00 625.00 506 DISH 5G NSD BOS BOBDL00148B CSC 11/23/2021

NORTHEAST SITE SOLUTIONS, LLC

4938

10023 Connecticut Siting Co**Chei**tk Total: *625.00 Check#: 4938 Date: 11/23/2021 Vendor#: Discount This Check Balance Retain Invoice# Invoice Date Job/Description 625.00 625.00 BOBDL00148B CSC 11/23/2021 506 DISH 5G NSD BOS

Cut on dotted line.

Instructions

- Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0071 2101 78

Trans. #: Print Date: Ship Date: Expected

Delivery Date:

549084980 11/23/2021 11/23/2021 11/27/2021 Priority Mail® Postage:

\$8.70 \$8.70

From:

DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

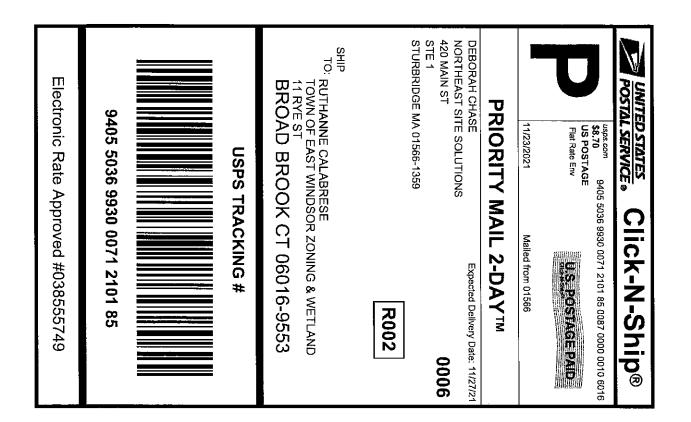
420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

To: THE HONORABLE JASON BOWSZA

FIRST SELECTMAN, TOWN OF EAST WINDSOR


11 RYE ST

BROAD BROOK CT 06016-9553

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service!

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0071 2101 85

Trans. #: Print Date: Ship Date: Delivery Date: 549084980 11/23/2021 11/23/2021 11/27/2021

Priority Mail® Postage: Total:

\$8.70 \$8,70

From:

DEBORAH CHASE

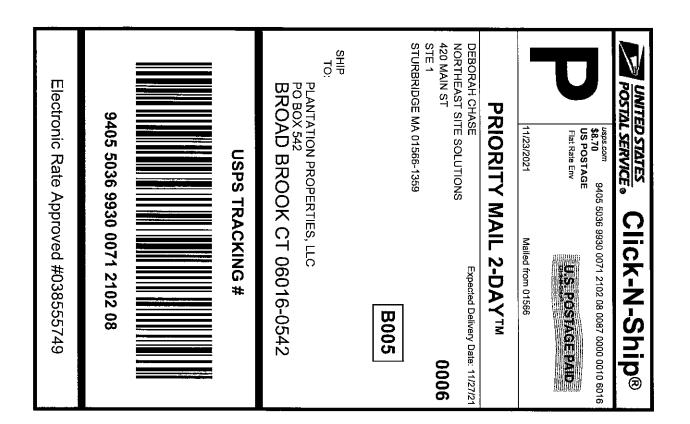
NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

RUTHANNE CALABRESE


TOWN OF EAST WINDSOR ZONING & WETLAND

OFFICIAL

BROAD BROOK CT 06016-9553

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

VINITED STATES
POSTAL SERVICE • Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Cut on dotted line.

Instructions

- Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0071 2102 08

Trans. #: Print Date: Ship Date: Expected Delivery Date: 549084980 11/23/2021 11/23/2021 11/27/2021 Priority Mail® Postage:

\$8.70 \$8.70

From:

To:

DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

510

PLANTATION PROPERTIES, LLC

PO BOX 542

BROAD BROOK CT 06016-0542

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

UNITED STATES Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Shipment Confirmation Acceptance Notice

A. Mailer Action

Note To Mailer: The labels and volume associated to this form online, **must** match the labeled packages being presented to the USPS® employee with this form.

Shipment Date: 11/23/21

Shipped From:

DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359

Type of Mail	Volume		
Priority Mail®	3		
Priority Mail Express™*	0		
International Mail*	0		
First-Class Package Service - Retail™	0		
Parcel Select® Ground	0		
Other	0		
Total Volume	3		

^{*}Start time for products with service guarantees will begin when mail arrives at the local Post Office™ and items receive individual processing and acceptance scans.

B. USPS Action

- USPS EMPLOYEE: Please scan upon pickup or receipt of mail. Leave form with customer or in customer's mail receptacle. Employee verifies the package volume count on the Package Pickup Carrier Manifest.
 - If the volume on the manifest matches the volume being collected from the customer, the employee should make the 1:YES selection by pressing the number 1 on the keypad of the handheld scanner, or on the keyboard of the POS ONE terminal.
 - If the volume on the manifest does not match the volume being collected from the customer, the employee should make the 2:NO selection. The mail should still be collected and dispatched as normal.

USPS SCAN

9475 7036 9930 0394 0653 42