Turnkey Wireless Development

Northeast Site Solutions
Denise Sabo
199 Brickyard Rd Farmington, CT 06032 860-209-4690
denise@northeastsitesolutions.com

February 7, 2017

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
269 Flanders Road, East Lyme CT 06357
Latitude: 41.36210400
Longitude: -72.20698700
T-Mobile Site\#: CT11039D_L700

Dear Ms. Bachman:
T-Mobile currently maintains two (2) antennas at the 92-foot level of the existing 85-foot transmission pole located at 269 Flanders Road, East Lyme CT. The electric transmission pole is owned by CL\&P d/b/a Eversource. The property which holds the utility easment is owned by Chalet Susse Intntl, Inc. T-Mobile now intends to install three (3) new $700 / 1900 / 2100 \mathrm{MHz}$. The new antennas would be installed at the 92-foot level of the tower. T-Mobile also intends to make the following modifications.

Planned Modifications:

Remove: NONE

Remove and Replace:
(2) APX16DWV-16DWV-SE-A20 (Remove) - (2) Commscope SBNHH-1D65A (Replace)

Install New:
(1) Commscope SBNHH-1D65A
(3) Smart Bias-T
(10) 1-1/4" Coax

Existing to Remain: (8) 1-1/4" Coax

This facility was approved by the CT Siting Council. Petition No. 396 - Dated July 14, 1998. The petition was approved for Omnipoint to install two (2) antenna on the existing CL\&P 90-foot monopole structure. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman Mark C. Nickerson, Elected Official and William Mulholland, Zoning Official for the Town of East Lyme, as well as the property owner and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site. •
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Denise Sabo

Mobile: 860-209-4690
Fax: 413-521-0558
Office: 199 Brickyard Rd, Farmington, CT 06032
Email: denise@northeastsitesolutions.com

Attachments

cc: Mark C. Nickerson- First Selectman - as elected official
William Mulholland- Zoning Official
CL\&P d/b/a Eversource - as tower owner
Chalet Sussie Intntl, Inc - property owner- Utility Easement

Exhibit A

Petition No. 530
AT\&T Wireless PCS, LLC
East Lyme, Connecticut
Staff Report
November 28, 2001

On November 5, 2001, Connecticut Siting Council (Council) member Gerald J. Heffernan and Christina Lepage and Robert Mercier of the Council staff met with AT\&T Wireless PCS, Inc. (AT\&T) representatives Peter Carbone and Karen Couture on Flanders Road, East Lyme, Connecticut for inspection of an electric transmission structure. The property and structure is owned by Connecticut Light and Power Co. (CL\&P). AT\&T with the agreement of CL\&P, proposes to modify the structure by installing antennas and associated equipment for telecommunications use and is petitioning the Council for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) is required for the modification.

AT\&T proposes the installation of six panel antennas on a pipe extension. The antennas would extend approximately 10 -feet above the existing 98 -foot transmission line monopole structure (\# 6077). The height at the top of the antennas would be about 109-feet above ground level (AGL), with a centerline of 108 -feet AGL.

Equipment cabinets will be located on a 12 -foot by 20 -foot concrete pad within a 16 -foot by 33 -foot compound with an 8 -foot high stockade fence with 1 -foot of barbed wire near to the base of the tower. Placement of the proposed equipment compound would be within a vegetated area adjacent to a cleared area. The proposed compound would require the removal of some vegetation. AT\&T investigated the possible use of the cleared area as a location of the equipment compound and have determined that they can not use the cleared area because it is owned by the Department of Transportation (DOT). The DOT has refused AT\&T request for a lease or easement over their land in similar proposals. An underground conduit from an existing utility pole will provide power and telephone service to the site. A gravel access drive will be constructed for direct access to the site.

The zoning designation of this site is Commercial (CA). AT\&T identified that the surrounding landscape is comprised of transmission towers, high voltage lines, right-of-way, the railroad station, Interstate 95 and commercial uses. The nearest residence is 350 feet to the north.

The worst-case power density for the telecommunications operations at the site has been calculated to be 2.77% of the applicable standard for uncontrolled environments.

AT\&T contends that the proposed modification of the structure would not cause a substantial adverse environmental impact and would prevent the construction of a new tower in the area. AT\&T also states that the proposed facility would not be out of scale with the existing surrounding landscape.

Exhibit B

The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

1:5460
$1^{\prime \prime=455 '}$

269 FLANDERS RD

| Location | 269 FLANDERS RD | Mblu $31.0 / 6-1 / / /$ |
| ---: | :--- | ---: | :--- |
| Acct\# 008282 | Owner | CHALET SUSSE INTNTL INC |
| Assessment $\$ 593,250$ | Appraisal $\$ 847,500$ | |
| PID 6970 | Building Count | 1 |

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2016	\$0	\$847,500	\$847,500
Assessment			
Valuation Year	Improvements	Land	Total
2016	\$0	\$593,250	\$593,250

Owner of Record

Owner CHALET SUSSE INTNTL INC Sale Price $\$ 0$

Co-Owner
Address PO BOX 657
ONE CHALET DR
WILTON, NH 03086

Sale Price $\quad \$ 0$
Certificate
Book \& Page 306/431
Sale Date 07/08/1987

Ownership History

Ownership History

No Data for Ownership History

Building Information

Building 1 : Section 1

Year Built:

Living Area:	0			
Replacement Cost:	$\$ 0$			
Building Percent				
Good:				
Replacement Cost				
Less Depreciation:	$\$ 0$			
Building Attributes				
Field				Description

Style	Vacant Land
Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	

Building Photo

(http://images.vgsi.com/photos2/EastLymeCTPhotos//\01\01\1
Building Layout

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

| Extra Features | Legend |
| :--- | :--- | :--- |
| No Data for Extra Features | |

Land

Land Use

Use Code	3900	Size (Acres)	26.64
Description	DEVEL LAND	Frontage	0
Zone	CA	Depth	0
Neighborhood	0030	Assessed Value	$\$ 593,250$
Alt Land Appr	No	Appraised Value	$\$ 847,500$

Outbuildings

No Data for Outbuildings

Valuation History

Appraisal					
	Valuation Year	Improvements			
2015			Land	Total	
2014		$\$ 0$	$\$ 750,100$	$\$ 750,100$	
2013		$\$ 0$	$\$ 750,100$	$\$ 750,100$	

Assessment					
	Valuation Year	Improvements			
2015			Land	Total	
2014		$\$ 0$	$\$ 525,070$	$\$ 525,070$	
2013		$\$ 0$	$\$ 525,070$	$\$ 525,070$	

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

TOWER EQUIPMENT SCHEDULE										
$\begin{gathered} \text { ANTENNA } \\ \text { MARK } \end{gathered}$	sECToR	antenna mooel	ORTENNM		RAOIO	TMA MOOEL	EQuipment	SURGE PROTECTION	COAX/CABLE	TECHNoLogr
${ }^{\text {a }}$	ALPHA	(1) ComMSCOPE SBNHH -1065 (P)	10°	${ }^{92}$			(1) ANOREW SMART bAA T (${ }^{\text {P }}$			U1900/G1900/U1200/ L2100/L700
${ }^{1}$	BETA	(1) ComMscope SBNHH-1054 (P)	165	${ }^{92}$			(1) Anorew Smart bas t (P)		(4) (2) $1-1 / 1 / 4^{\circ}$ $1-\operatorname{coasx}(\mathrm{E})$ (E)	U1900/G1900/U1200/ L2100/L700
c1	camma	$\begin{aligned} & \text { (1) ConMscope } \\ & \text { SBNHH-1065A }(P) \end{aligned}$	250°	${ }^{92}$			(1) ANOREW SMART BAS T ${ }^{(P)}$		(6) $1-1 / 4^{+} \operatorname{coax}(\mathrm{P})$	U1900/G1900/U1200/ L2100/L700

IABLE NOTE:
(P) EDNOTES PROPOSED EQUPMENT
(E) DENOTES EXISTING EQUIPMENT

EQUPMENT NOTES
THE HYRRD CABLE LENGTH SHOWN IS ONLY AN ESTMMATE \& SHOULD
NOT BE USED FOR OROERNG MATERALS. CONFIRM THE REQURED HYBRID
CABLE LENGTH W /T-MOBLE PRIOR TO ORDERING OR INSTALLATION.
2. THE CNTTACTOR SAML TEST THE OPTICAL IIPER ATEER NSTALLATION IN

T-MOBLEEE W/T-MOBILE STANDARDS \& SUPPLY THE RESULTS TO
3. THE CONT/THE FINAL T-MOBLE RFDS PRIOR TO INSTALLATION.
4. ALL EXISTING \& PROPOMED ANTENNA CABLES SHALL BE COLOR CODED

6. REFER TO EQUIPMENT MANUFACTURER'S SPECCIICATION SHEETS FOR
ADDTIONAL INFORMATON NOT LISED ABOVE.

TOWER LOADING SUMMARY				
$\begin{aligned} & \text { ExITTING } \\ & \text { OUANTIT } \end{aligned}$	REMOVE QUANTITY	EQulpment TPPE	OUADITr	Total
2	2	Panel antenna	3	3
8	0	coax cable	10	18
0	0	TMA	0	0
0	0	Diplexer	0	0
0	0	RRUS-11 812 GROUND MOUNTED	3	3
0	0	Smart bas T	3	3

RFDS REFERENCE:

SIDE VIEW

CENERAL ELECTRICAL NOTES:
 PAY FOR ALL PERMITS AND RELATED FEES.
2. ALL EQUIPMENT AND MATERIAL FURNSHED AND INSTALLED UNDER THIS CONTRACT SHALL BE UNDERWRTTERS LABORATORES (U.L.) LISTED, NEW, FREE FROM DEFECTS, AND SHALL BE GURANTEED FOR A PERIOD OF ONE
YER FRO ADTE OF FINL ACEETACE BY ONER OR HS REPERENATVE SHOLD ANT ROBLE DEVELOP DURING THIS PERIOD DUE TO FAULY WORKMASHHP, MATERAL, OR EQUPMENT, THE CONTRACTOR SHALL
FURNISH ALL NECESSARY MATERILLS AND LABOR TO CORECT' THE TROUBLE WTHOUT COST TO THE OWNER.
3. ALL WORK SHALL BE EXECUTED IN A WORKMAN LIEE MANNER AND SHALL PRESENT A NEAT MECHANICAL APPEARANCE WHENCOMPLEEDESCNTRACCOR SHOULD AVOIO DAMAGE TO EXISING AILTES WHEREVER POSIIBLE

4. ELECTRICAL WORK SHALL INCLUDE, BUT NOT BE LIMITED TO, ALL LABOR, MATERIALS AND EQUPMENT REQURED
TO COMPLETE ELECTRICAL POWER AND LIGHTING SYSTEMS, TELEPHONE AND COMMUNCATION SYSTEMS,

 ENGINEERING AND EQUPMENT SUPPLERS' DRAWINGS. SHOULD THERE BE ANY QUESTION OR PROBLEM
CONCERNNG THE NEEESSARY PROVISIONS TO BE MADE. PROPER DRECTONS SHALL BE OBTANED BEFORE CONCERNING THE NECESSARY
PROCEEDNG WITH ANY WORK.
6. PROVIDE POWER AND TELEPHONE TO SERVICE POINTS PER UTILTY COMPANY REQUREMENTS CONTRACTOR SHALL
CONTACT UTLITY SERVICE PLANNERS ANO OBTAIN ALL SERVICE REQUIREMENTS AND NCCUDE COSTS FOR SUCH IN THER BID.
7. SERVICE EOUPMENT SHALL HUVE A SHORT CIRCUIT WITHSTAND RATING EXCEEDDNG THE MAXIMUM AVILABLE FAUL
CURRENT AT THE SUPPLY TERMINL ON THE UTLITT TRANSFORMER SECONDARY, THE INSULATION SHALL

FROM THE ELECTRICAL SERVICE PROVIIDR.
8. ALL WIRES SHALL BE STRANDED COPPER WTTH THHN/THWN AND 600 VOLTS INSULATION. ALL GROUND
CONDCTORS TO BE PROPERLY SIZED COPPER. (STRANDED OR SOLID)

 PROVIDE PULL BOXES AS NEEDED WHERE CONDUT REQUREMENTS EXE
CAPS SHALL BE PROVIDED AT ALL SPARE CONOUTTS FOR FUUURE USE
11. ALL ELECTRICAL EQUIPMENT SHALL BE ANCHORED TO WTHSTAND LOCAL WIND SPEED REQUIREMENTS AND
DESIGNED FOR OUTDOOR EXPOSURE.
12. ALL COAX, POWER AND TELEEHONE SYSTEM CONDUTS SHALL HAVE AMINMUM $24^{* \prime}$ SCH. 80 PVC RADUS
SWEPS TO
EOUPMENT, PULLBOXES, GUY, ETC., UNLESS OTHERWISE NOTED, OR AS REQURED BY UTLITY
13. FUSE TTPE SHALL be bussman rki Low PEAK fuse (LPN-RK-140).
14. UPON COMPLETION OF THE JOB, THE CONTRACTOR SHALL FURNISH AS-BULL DRAWINGS TO THE OWNER.
15. GENERAL GROUNDING CRTERIA
1ST STEP: GROUND TO EXISTI

PIPE LINE. (WHERE APPLICABLE) THEN TEST GROURL STEEL AND TO THE EXISTING COLD WATER METAL

 DERENDING UPON OWNER PREFERENCE. WHERE THE GROUND CONDUCTOR FRON THE ROOF MOUNTED
EOPIMET IS RUTE IN CNDUTT THE CONDI SHAL BE EFECTVELY GROUNDED TO THE GROUND EOUPMENT IS ROUTED $\operatorname{INDONDUT,~THE~CONDUTGUALL~BE~EFFECT)~}$
CONOUCTOR AT BOTH END OF THE CONDUIT. (GUY INSTALATONS):

FOR INSTALATIONS WHERE WOODEN STRUCTURES, TOWERS, CONCRETE SILOS ETC. ARE ENCOUNTERED A
PARATE DOWNLEAD SHAL
SE PROVIDED FROM THE 3 ANTENNAS SEPARATED BY A MINIMUM OF 12 INCHES PARATE DOWNLLEAD SHALL BE PROVIDED FROM THE SANTENAS SERARAED BY A MNIMUM OF 12 INCHES
FROM THE COAXIAL CABLES. THE GROUND CONOUCTOR SHALL BE SECURELY FASTENED TO THE EXTERIOR
 IMPROVEMENT
ABOVE STEPS.

17. CONTRACTOR (GROUND).

18. CONTRACTOR TO PROVIDE GUTTER TAP.
19. There shall be a minimum clearance of 48" between front of electrical equipment and any wall or

(1) TWO HOLE LUG CONNECTION DETAIL

Exhibit D

Centered on Solutions" ${ }^{\text {" }}$

$$
\begin{gathered}
\text { Structural Analysis of } \\
\text { Antenna Mast and Tower } \\
\hline
\end{gathered}
$$

T-Mobile Site Ref: CT11039D

Eversource Structure No. 6076 85' Electric Transmission Pole (Finney)

$$
269 \text { Flanders Road }
$$ East Lyme, CT

CENTEK Project No. 16162.02

Rev 1: January 3, 2017 Rev 2: January 17, 2017

Prepared for:
T-Mobile USA
35 Griffin Road
Bloomfield, CT 06002

Table of Contents

SECTION 1 -
 REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

SECTION 2- CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
- RISA 3-D
- PLS POLE

SECTION 3- DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- NU DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

- MAST REPLACEMENT DRAWINGS

SECTION 5 -
 TIA-222-G LOAD CALCULATIONS FOR MAST ANALYSIS

- WIND \& ICE LOAD

SECTION 6 - MAST ANALYSIS PER TIA-222-G

- LOAD CASES AND COMBINATIONS (TIA/EIA LOADING)
- RISA 3-D ANALYSIS REPORT
- MAST CONNECTION ANALYSIS

SECTION 7 - NECS/NU LOAD CALCULATIONS FOR OBTAINING APPLIED TO UTILITY STRUCTURE

- WIND LOAD

SECTION 8 - MAST ANALYSIS PER NESC/NU FOR OBTAINING

 REACTIONS APPLIED TO UTILITY STRUCTURE- LOAD CASES AND COMBINATIONS (NESC/NU LOADING)
- RISA 3-D ANALYSIS REPORT

SECTION 9 - CL\&P POLE ANALYSIS

- NESC LOAD CALCULATIONS ON CL\&P POLE
- RISA 3-D ANALYSIS REPORT
- CL\&P POLE ANALYSIS
- FLANGE BOLTS AND PLATE ANALYSIS
- ANCHOR BOLTS AND PLATE ANALYSIS
- FOUNDATION ANALYSIS

SECTION 10 - REFERENCE MATERIAL

- RFDS SHEET
- EQUIPMENT CUT SHEETS

lntroduction

The purpose of this report is to analyze the existing mast and 85 ' tower located at 269 Flanders Road in East Lyme, CT for the proposed antenna and equipment upgrade by T-Mobile.

The existing/proposed loads consist of the following:

- T-MOBILE (Existing to be removed):

Antennas: Two (2) RFS APX16DWV-16DWVS-E-A20 panel antennas mounted on a mast with a RAD center elevation of $92-\mathrm{ft}$ above tower base plate.

- T-MOBILE (Existing to remain):

Coax Cables: Eight (8) 1-1/4" \varnothing coax cables running on the outside of the tower as indicated in section 4 of this report.

- T-MOBILE (Proposed):

Antennas: Three (3) Andrew SBNHH-1D65A panel antennas and three (3) Andrew ATSBT-TOP-FM-4G Smart Bias Tees mounted on a mast with a RAD center elevation of 92-ft above tower base plate.
Coax Cables: Ten (10) 1-1/4" \varnothing coax cables running on the outside of the tower as indicated in section 4 of this report.

Primary assumptionsused in the analysis

- Design steel stresses are defined by AISC-LRFD $14^{\text {th }}$ edition for design of the antenna Mast and antenna supporting elements.
- ASCE-48-05 "Design of Steel Transmission Pole Structures", defines steel stresses for evaluation of the utility pole.
- All utility pole members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- Pipe mast will be properly installed and maintained.
- No residual stresses exist due to incorrect pole erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Pipe mast and utility pole will be in plumb condition.
- Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.

Analysis

Structural analysis of the existing antenna mast was independently completed using the current version of RISA-3D computer program licensed to CENTEK Engineering, Inc.
The existing mast consisting of a 4" (O.D. $=4.5^{\prime \prime}$) Sch. $80 \times 17^{\prime}$ long pipe conforming to ASTM A53 Grade B ($\mathrm{Fy}=35 \mathrm{ksi}$) connected at two points to the existing pole was analyzed for its ability to resist loads prescribed by the TIA-222-G standard and found to be structurally inadequate.

A proposed mast consisting of a 6 " (O.D. $=6.63$ ") Sch. $80 \times 16^{\prime}$ long pipe conforming to ASTM A53 Grade $\mathrm{B}(\mathrm{Fy}=35 \mathrm{ksi})$ connected at two points to the existing pole was designed for to resist loads prescribed by the TIA-222-G. Section 5 of this report details these gravity and lateral wind loads. NESC prescribed loads were also applied to the mast in order to obtain reactions needed for analyzing the utility pole structure. These loads are developed in Section 7 of this report. Load cases and combinations used in RISA-3D for TIA/EIA loading and for NESC/NU loading are listed in report Sections 6 and 8, respectively. An envelope solution was first made to determine maximum and minimum forces, stresses, and deflections to confirm the selected section as adequate. Additional analyses were then made to determine the NESC forces to be applied to the pole structure.
The RISA-3D program contains a library of all AISC shapes and corresponding section properties are computed and applied directly within the program. The program's Steel Code Check option was also utilized. The forces calculated in RISA-3D using NESC guidelines were then applied to the pole. Maximum usage for the pole was calculated considering the additional forces from the mast and associated appurtenances.

Design Basis

Our analysis was performed in accordance with TIA-222-G, ASCE-48-05 "Design of Steel Transmission Pole Structures Second Edition", NESC C2-2007 and Northeast Utilities Design Criteria.

- UTILITY POLE ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility pole to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the NU Design Criteria Table, NESC C2-2007 ~ Construction Grade B, and ASC-48-05.
Load cases considered:
Load Case 1: NESC Heavy
Wind Pressure..................................... 4.0 psf
Radial Ice Thickness............................. 0.5"
Vertical Overload Capacity Factor............. 1.50
Wind Overload Capacity Factor................ 2.50
Wire Tension Overload Capacity Factor...... 1.65
Load Case 2: NESC Extreme
Wind Speed...................................... $120 \mathrm{mph}{ }^{(1)}$
Radial Ice Thickness............................. 0"
Note 1: NESC C2-2007, Section25, Rule 250C: Extreme Wind Loading, 1.25 x Gust Response Factor (wind speed: 3second gust)

- MAST ASSEMBLY ANALYSIS

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with the NU Design Criteria Table, TIA-222-G and AISC standards.
Load cases considered:
Load Case 1:
Wind Speed...................................... 105 mph ${ }^{(2016 \text { CSBC Appendix-N) }}$
Radial Ice Thickness.............................. 0"
Load Case 2:
Wind Pressure
50 mph wind pressure
Radial Ice Thickness.
0.75 "

Results

- MAST ASSEMBLY

The proposed mast was determined to be structurally adequate.

Member	Stress Ratio (\% of capacity)	Result
Pipe 6" Sch. 80	43.2%	PASS
Bracket Plate	52.0%	PASS

- UTILITY TOWER

This analysis finds that the subject utility structure is adequate to support the existing mast and related appurtenances. The tower stresses meet the requirements set forth by the ASCE-48-05 "Design of Steel Transmission Pole Structures", for the applied NESC Heavy and HiWind load cases. The detailed analysis results are provided in Section 9 of this report. The analysis results are summarized as follows:

A maximum usage of 55.0% occurs in the utility tower under the NESC Heavy loading condition. TOWER SECTION:
The utility tower was found to be within allowable limits.

Tower Section	Stress Ratio (\% of capacity)	Result
Base	55.0%	PASS

- FOUNDATION AND ANCHORS

The existing foundation consists of a 8 -ft square $\times 8.0$ - ft long reinforced concrete pier with twelve (12) rock anchors embedded 22 -ft into rock. The base of the tower is connected to the foundation by means of twenty (20) $2.25^{\prime \prime} \varnothing$, ASTM A615-75 anchor bolts embedded into the concrete foundation structure. Foundation information was obtained from Northeast Utilities drawing 01087-60000.

BASE REACTIONS:

From analysis of CL\&P pole based on NESC/NU prescribed loads.

Load Case	Transverse	Axial	Overturning Moment
NESC Heavy Wind x-direction	64.7 kips	65.9 kips	4022.6 ft -kips
NESC Extreme Wind x-direction	65.2 kips	34.5 kips	3903.5 ft -kips
NESC Heavy Wind y-direction	5.8 kips	65.9 kips	255.7 ft -kips
NESC Extreme Wind y-direction	20.8 kips	34.5 kips	925.1 ft -kips

Note 1 -10\% increase applied to tower base reactions per OTRM 051
ANCHOR BOLTS:
The anchor bolts were found to be within allowable limits.

Pole Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Anchor Bolts	Tension	47.2%	PASS

BASE PLATE:

The base plate was found to be within allowable limits.

Pole Component	Design Limit	Stress Ratio (percentage of capacity)	Result
Base Plate	Bending	84.0%	PASS

FOUNDATION:

The foundation was found to be within allowable limits.

Foundation	Design Limit	Allowable Limit	Proposed Loading ${ }^{(4)}$	Result
Reinf. Conc. Pier w/ Rock Anchors	OTM $^{(1)}$	$1.0 \mathrm{FS}^{(2)}$	$1.11 \mathrm{FS}^{(2)}$	PASS
Pressure	$50 \mathrm{ksf}^{(3)}$	27.7 ksf	PASS	

Note 1: OTM denotes overturning moment.
Note 2: FS denotes Factor of Safety
Note 3: Bearing Capacity based on Weak Rock.
Note 4: 10% increase to PLS base reactions used in foundation analysis per OTRM 051.

Conclusion

This analysis shows that the subject utility pole is adequate to support the proposed T-Mobile equipment upgrade.
The analysis is based, in part on the information provided to this office by Eversource and T-Mobile. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.
Please feel free to call with any questions or comments.
Respectfully Submitted by:
 Structural Engineer

STANDARD CONDITIONS FORFURNISHINGOF PROFESSIONAL ENGINEERINGSERVICESON EXISTING STRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

GENERAL DESCRIPTIONOFSTRUCTURAL ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems \& conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5\% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation - draw a polygon with any number of sides to create a mesh of well-formed quadrilateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges - web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases \& rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.
- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot \& print virtually everything with color coding \& labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000,EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd \& 3rd, HSS Specification, CAN/CSA-S16.11994 \& 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, MarinoIWARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Rev 2 ~ January 17, 2017

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member \& joint deflections, beam \& plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

GENERAL DESCRIPTIONOF STRUCTURAL ANALYSIS PROGRAM~PLS-TOWER

PLS-TOWER is a Microsoft Windows program for the analysis and design of steel latticed towers used in electric power lines or communication facilities. Both self-supporting and guyed towers can be modeled. The program performs design checks of structures under user specified loads. For electric power structures it can also calculate maximum allowable wind and weight spans and interaction diagrams between different ratios of allowable wind and weight spans.

Modeling Features:

- Powerful graphics module (stress usages shown in different colors)
- Graphical selection of joints and members allows graphical editing and checking
- Towers can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces
- Can extract geometry and connectivity information from a DXF CAD drawing
- CAD design drawings, title blocks, drawing borders or photos can be tied to structure model
- XML based post processor interface
- Steel Detailing Neutral File (SDNF) export to link with detailing packages
- Can link directly to line design program PLS-CADD
- Automatic generation of structure files for PLS-CADD
- Databases of steel angles, rounds, bolts, guys, etc.
- Automatic generation of joints and members by symmetries and interpolations
- Automated mast generation (quickly builds model for towers that have regular repeating sections) via graphical copy/paste
- Steel angles and rounds modeled either as truss, beam or tension-only elements
- Guys are easily handled (can be modeled as exact cable elements)

Analysis Features:

- Automatic handling of tension-only members
- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Automatic calculation of tower dead, ice, and wind loads as well as drag coefficients according to:
- ASCE 74-1991
- NESC 2002
- NESC 2007
- IEC 60826:2003
- EN50341-1:2001 (CENELEC)
- EN50341-3-9:2001 (UK NNA)
- EN50341-3-17:2001 (Portugal NNA)
- ESAA C(b)1-2003 (Australia)
- TPNZ (New Zealand)
- REE (Spain)
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Minimization of problems caused by unstable joints and mechanisms
- Automatic bandwidth minimization and ability to solve large problems
- Design checks according to (other standards can be added easily):
- ASCE Standard 10-90

Rev 2 ~ January 17, 2017

- AS 3995 (Australian Standard 3995)
- BS 8100 (British Standard 8100)
- EN50341-1 (CENELEC, both empirical and analytical methods are available)
- ECCS 1985
- NGT-ECCS
- PN-90/B-03200
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- EDF/RTE Resal
- IS 802 (India Standard 802)

Results Features:

- Design summaries printed for each group of members
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Capability to batch run multiple tower configurations and consolidate the results
- Automated optimum angle member size selection and bolt quantity determination

Tool for interactive angle member sizing and bolt quantity determination.

Criteria for Designof PCS Facilities On or Extending Above Metal Electric Transmission Towers\&Analysis of Transmission Towers Supporting PCSMasts

lntroduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA-222 covering the design of telecommunications structures specifies a working strength/allowable stress design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed some defined percentage of failure strength (allowable stress).

ANSI Standard C2-2007 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the NU effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 50 -year recurrence (2% annual probability). The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.
| Note 1: Prepared from documentation provide from Northeast Utilities.

PCSMast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA 222-G:

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "NU Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

Northeast Utilities Overhead Transmission Standards

 (Attachment A
NU Design Criteria

Communication Antennas on Transmission Structures (CL\&P \& WMECo Only)

Shape Factor Criteria shall be per TIA Shape Factors.
2) STEP 2 - The electric transmission structure analysis and evaluation shall be performed in accordance with NESC requirements and shall include the mast and antenna loads determined from NESC applied loading conditions (not TIA/EIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)

The structure shall be analyzed using yield stress theory in accordance with Attachment A, "NU Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:
a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
b) Conductors and related devices and hardware (wire loads will be provided by NU).
c) Electric Transmission Structure
i) The loads from the wireless communication equipment components based on NESC and NU Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower.
ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2

iii) When Coaxial Cables are mounted along side the pole structure, the shape multiplier shall be:

Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.3

d) The uniform loadings and factors specified for the above components in Attachment A, "NU Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.
Note: The NESC does not require ice load be included in the supporting structure. (Ice on conductors and shield wire only, and NU will provide these loads).
e) Mast reaction loads shall be evaluated for local effects on the transmission structure members at the attachment points.

Communication Antennas on Transmission Structures (CL\&P \& WMECo Only)

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$4 / 28 / 10$
Checked by	Date	

INPUT DATA

TOWER ID: \square

Structure Height (ft) : \square

Wind Zone : SE Coastal CT (red)
Tower Type: O Suspension
(-) Strain

Wind Speed :
120 mph

Extreme Wind Model : PCS Addition

Shield Wire Properties:

	BACK
NAME $=$	$3 / 8 \mathrm{CW}$
DESCRIPTION $=$	$3 / 8$
STRANDING $=$	$3 / 8 \mathrm{CW}$
DIAMETER $=$	$7 \# 8 \mathrm{Cu}$ Weld
WEIGHT $=$	$7 / 8$
	0.385 in
$0.324 \mathrm{lb} / \mathrm{ft}$	0.385 in

Conductor Properties:

Horizontal Line Tensions:

BACK
AHEAD

	Shield	Conductor	Shield	Conductor
NESC HEAVY $=$	4,200	10,000	4,200	10,000
EXTREME WIND $=$	3,610	9,643	3,743	10,961
LONG. WIND $=$	na	na	na	na
250D COMBINED $=$	na	na	na	na
NESC W/O OLF $=$	na	na	na	na
60 DEG F NO WIND $=$	2,408	4,288	1,769	4,478

Line Geometry:

LINE ANGLE (deg) =					SUM
	BACK:	14	AHEAD:	14	
WIND SPAN (ft) $=$	BACK:	184	AHEAD:	299	483
WEIGHT SPAN (ft) =	BACK:	216	AHEAD:	471	687

	Page	of
Spec. Number	Sheet	of
Computed by	Date	$4 / 28 / 10$
Checked by	Date	

WIRE LOADING AT ATTACHMENTS

TOWER ID:
6076

Wind Span	$=$
Weight Span	$=$
Total Angle	$=$483 ft 687 ft 28 degrees

Broken Wire Span = AHEAD SPAN
Type of Insulator Attachment $=$ STRAIN

1. NESC RULE 250B Heavy Loading:

	INTACT CONDITION			BROKEN WIRE CONDITION		
Horizontal	Longitudinal	Vertical	Horizontal	Longitudinal	Vertical	
	Shield Wire $=$	$3,910 \mathrm{lb}$	0 lb	901 lb	$1,889 \mathrm{lb}$	$6,724 \mathrm{lb}$
Conductor $=$	$2,927 \mathrm{lb}$	0 lb	$2,658 \mathrm{lb}$	$4,351 \mathrm{lb}$	$16,010 \mathrm{lb}$	836 lb

2. NESC RULE 250C Transverse Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	$2,687 \mathrm{lb}$	148 lb	256 lb
Conductor $=$	$1,972 \mathrm{lb}$ $1,471 \mathrm{lb}$ $1,131 \mathrm{lb}$		

3. NESC RULE 250C Longitudinal Extreme Wind Loading:

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	\#VALUE! \#VALUE! Conductor $=$ \#VALUE! \#VALUE!	$1,131 \mathrm{lb}$	

4. NESC RULE 250D Extreme Ice \& Wind Loading:

	Horizontal		Longitudinal
Shield Wire $=$	Vertical		
\#VALUE!	\#VALUE!	$1,406 \mathrm{lb}$	
Conductor $=$	\#VALUE!	\#VALUE!	$2,987 \mathrm{lb}$

5. NESC RULE 250B w/o OLF's

	Horizontal		Longitudinal
Shield Wire $=$	Vertical		
\#VALUE!	\#VALUE!	601 lb	
Conductor $=$	\#VALUE!	\#VALUE!	$1,772 \mathrm{lb}$

6. 60 Deg. F, No Wind

	Horizontal	Longitudinal
Shield Wire $=$	Vertical	
$1,011 \mathrm{lb}$	620 lb	223 lb
Conductor $=$	$2,121 \mathrm{lb}$	184 lb
984 lb		

7. Construction

	Horizontal	Longitudinal	Vertical
Shield Wire $=$	$1,516 \mathrm{lb}$ 930 lb 334 lb Conductor $=181 \mathrm{lb}$ 277 lb $3,476 \mathrm{lb}$		

NOTE: All loads include required overload factors (OLF's).

ANTENNA MAST DESIGN

 STRUCT. NO. 6076 T-MOBILE CT11039D 269 FLANDERS ROAD EAST LYME, CT 06357

DESIGN BASIS

. GOVERNING CODE: 2012 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CT STATE SUPPLEMENT.
2. TIA-222-G, ASCE-48-05 - "DESIGN OF STEEL TRANSMISSION POLE STRUCTURES, NESC C2-2007 AND NORTHEAST UTILITIES DESIGN CRITERIA.
3. DESIGN CRITERIA

WIND LOAD: (ANTENNA MAST) NOMINAL DESIGN WIND SPEED $(V)=105 \mathrm{MPH}$ (2016 CSBC: APPENDIX ' N ')
WIND LOAD: (UTILITY POLE \& FOUNDATION) BASIC WIND SPEED (V) $=120 \mathrm{MPH}$ ($3-$ SECOND GUST) BASED ON NESC C2-2007, SECTION 25 RULE 250 C .

1. REFER TO STRUCTURAL ANALYSIS AND REINFORCEMENT DESIGN PREPARED BY CENTEK ENGINEERING, INC., FOR T-MOBILE DATED $1 / 17 / 17$.
2. TOWER GEOMETRY AND STRUCTURE MEMBER SIZES WERE OBTAINED FROM THE ORIGINAL TOWER DESIGN DRAWINGS PREPARED BY THE FINNEY STEEL POLE CO., INC. DATED DECEMBER 1, 1971.
3. THE TEMPORARY DETACHMENT AND/OR REPLACEMENT OF TOWER MEMBERS SHALL BE DONE ONE AT A TIME AND SHALL BE CONDUCTED ON DAYS WITH LESS THAN 15 MPH WIND PRESENT. NO MEMBER SHALL BE LEFT DISCONNECTED
FOR THE NEXT WORKING DAY.
4. ALL STEEL REINFORCEMENT SHOWN HEREIN APPLIES TO ALL SIDES OF THE TOWER.
5. ALL REPLACEMENT STEEL MEMBERS SHALL BE INSTALLED WITH A325-N BOLTS (SIZE TO MATCH EXISTING). UNLESS OTHERWISE NOTED BELOW.
6. THE TOWER STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER REINFORCEMENTS ARE COMPLETE. IT IS THE CONTRACTOR'S SOLE RESPONSIBILITY TO DETERMINE ERECTION PROCEDURE \& SEQUENCE AND TO
INSURE THE SAFETY OF THE TOWER STRUCTURE AND ITS COMPONENT PARTS DURING ERECTION. THIS INCLUDES PROVIDING AND MAINTAINING ADEQUATE SHORING, BRACING, UNDERPINNING, TEMPORARY ANCHORS, GUYING, BARRICADES, ETC. AS MAY BE REQUIRED FOR THE PROTECTION OF EXISTING PROPERTY, CONSTRUCTION WORKERS, AND FOR PUBLIC SAFETY. MAINTAIN EXISTING SITE OPERATIONS AND COORDINATE WORK WITH TOWER OWNER.
7. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE GOVERNING BUILDING CODE.
8. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS SCOPE OF WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS COSTS.
9. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK. THIS INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. CONTRACTOR SHALL TAKE FIELD MEASUREMENTS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK.
10. TOWER REINFORCEMENTS SHALL BE CONDUCTED BY FIELD CREWS EXPERIENCED IN THE ASSEMBLY AND ERECTION OF TRANSMISSION STRUCTURES. ALL SAFETY PROCEDURES, THE INDUSTRY AND IN COMPLIANCE WITH OSHA.
11. EXISTING COAXIAL CABLES AND ALL ACCESSORIES SHALL BE RELOCATED AS NECESSARY AND REINSTALLED BY THE CONY ARE IN CONFLICT WITH THE TOWER REINFORCEMENT THEY ARE IN CONFLICT WITH THE TOWER REINFORCEMENT WORK.
12. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMmEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORILY RESOLVED.
13. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.

STRUCTURAL STEEL

ALL STRUCTURAL STEEL IS DESIGNED BY ALLOWABLE STRESS DESIGN (ASD).
2. MATERIAL SPECIFICATIONS
A. STRUCTURAL STEEL (W SHAPES)---ASTM A992
$(\mathrm{FY}=50 \mathrm{KSI})$
B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36
$(\mathrm{FY}=36 \mathrm{KSI})$.
C. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY $=46 \mathrm{KSI}$)
D. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500

GRADE B, $(F Y=42 \mathrm{KSI})$
E. PIPE---ASTM A53 GRADE B (FY = 35 KSI$)$
3. FASTENER SPECIFICATIONS
A. CONNECTION BOLTS---ASTM A325-N, UNLESS

OTHERWISE SCHEDULED.
B. U-BOLTS---ASTM A307
C. ANCHOR RODS---ASTM F1554
C. ANCHOR RODS---ASTM F1554
D. WELDING ELECTRODES---ASTM E70XX FOR A36 \& A572_GR50 STEELS, ASTM E80XX FOR A572_GR65 STEEL.
4. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE
SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS, ELEVATIONS AND DETAILS.
5. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE LATEST PROVISIONS OF AISC MANUAL OF STEEL CONSTRUCTION.
6. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
7. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE.
8. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
9. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS, ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH ASTM 780.
10. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ASTM A123 "ZINC (HOT DIPPED G
ON IRONS AND STEEL PRODUCTS.
11. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
12. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING THE SCHEDULED ELECTRODES AND WELDING SHALL CONFORM TO AISC AND D1.1 WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLET J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION" 9TH EDITION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL
BE REPAIRED.
13. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR FABRICAIED, DAMAGED OR OTHERWISE MISFITTING
NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
14. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF $1 / 4$ INCHES.
15. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE $3 / 4^{\prime \prime}$ DIAMETER ASIM A325. ALL BOLTS SHALL BE
MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS UNLESS OTHERWISE ON THE DRAWINGS.
16. LOCK WASHER ARE NOT PERMITTED FOR A325 BOLTED STEEL ASSEMBLIES.
17. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
18. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER OTHER BEARING SURFACES
ENTIRE CROSS SECTION.
19. FABRICATE BEAMS WITH MILL CAMBER UP.
20. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED $1 / 4^{\prime \prime}$ IN THE FULL HEIGHT OF THE COLUMN.
21. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL

structural
NOTES
N-4

SCHEDULING IN ADVANCE ALL REQUIRED INSPECTIONS SCHEDULING IN ADVANCE
AND TESTS WITH THE MI.

MODIFICATION INSPECTION REPORT REQUIREMENTS

PRE-CONSTUCTION		during Construction		POST-CONSTRUCTION	
$\begin{aligned} & \text { SCHEDULED } \\ & \text { TEM } \end{aligned}$	REPORT TEM	$\underset{\substack{\text { SCHEDULED } \\ \text { ITEM }}}{\text { sen }}$ TTEM	REPORT TEM	$\begin{gathered} \text { SCHEDULED } \\ \text { TEM } \end{gathered}$	REPORT ITEM
\times	EOR MODIFICATION INSPECTION DRawing	-	FOUNDATIONS	\times	MODIFICATION INSPECTOR RECORD REDLINE DRAWING
\times	EOR APPROVED SHOP DRAWINGS	-	EARTHWORK: BACKFILL MATERIAL \& COMPACTION	-	POST-INSTALLED ANCHOR ROD PULL-OUT TEST
-	EOR APPROVED POST-INSTALLED ANCHOR MPII	-	REBAR \& FORMWORK GEOMETRY VERIFICATION	x	PHOTOGRAPHS
-	FABRICATION INSPECTION	-	CONCRETE TESTING		
-	FABRICATOR CERTIFIED WELDER INSPECTION	x	STEEL INSPECTION		
x	MATERIAL CERTIFICATIONS	-	POST InStalled anchor rod verification		
		-	base plate grout verification		
		-	CONTRACTOR'S CERTIFIED WELD INSPECTION		
		-	ON-SITE COLD Galvanizing verification		
		X	CONTRACTOR AS-BUILT REDLINE DRAWINGS		

CORRECTION OF FAILING MODIFICATION

 INSPECTION1. SHOULD THE STRUCTURAL MODIFICATION NOT COMPLY WITH THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS, THE GC SHALL WORK WITH THE MODIFICATIÓN INSPECTOR IN A VIABLE REMEDIATION PLAN AS FOLLOWS:

- CORRECT ALL DEFICIENCIES TO COMPLY WITH THE CONTRACT DOCUMENTS AND COORDINATE WITH THE MI FOR A FOLLOW UP INSPECTION.
WITH CLIENT AUTHORIZATION, THE GC MAY WORK WITH THE EOR BUI REANALITE THE MODIFICATION USING

REQUIRED PHOTOGRAPHS

1. THE GC AND MI SHALL AT MINIMUM PHOTO DOCUMENT THE FOLLOWING FOR INCLUSION IN THE MODIFICATION INSPECTION REPORT:
-PRE-CONSTRUCTION: GENERAL CONDITION OF THE
SITE. DURING CONSTRUCTION: RAW MATERIALS, CRITICAL DETAILS, WELD PREPARATION, BOLT INSTALLATION \& TORQUE, FINAL INSTALIED CONDITION \& SURFACE POST-CONSTRUC
2. THE GC IS REQUIRED TO CONTACT THE GC UPON AUTHORIZATION TO PROCEED WITH CONSTRUCTION BY THE CLIENT TO:

- REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS
WORK WITH THE MI IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS.
- DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS.

2. THE GC IS RESPONSIBLE FOR COORDINATING AND

MODIFICATION INSPECTOR (MI)

1. THE MI SHALL CONTACT THE GC UPON AUTHORIZATION BY HE CLIENT TO:

- REVIEW THE MODIFICATION INSPECTION REPORT REQUIREMENTS
- WORK WITH THE GC IN DEVELOPMENT OF A SCHEDULE - DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS.

2. THE MI IS RESPONSIBLE FOR COLLECTION OF ALL INSPECTION AND TEST REPORTS, REVIEWING REPORTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING ON-SITE INSPECTIONS AND COMPILATION \& SUBMISSION CLIENT AND THE EOR.

GENERAL CONTRACTOR (GC)

 GC) AND THE MODFICATION INSPECTOR (MI) COMMENCE COMMUNICATION UPON AUTHORIZATION TO PROCEED BY THE CLIENT. EACH PARTY SHALL BE PROACTIVE IN CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED AVAILABLE.4. THE GC SHALL PROVIDE THE MI WITH A MINIMUM OF BUSINESS DAYS NOTICE OF IMPENDING INSPECTIONS
5. WHEN POSSIBLE, THE GC AND MI SHALL BE ON SITE DURING THE MODIFICATION INSPECTION TO HAVE ANY NOTED DEFICIENCIES ADDR
MODIFICATION INSPECTION.

二 NT 二人 engineering	Subject：	Loads on T－Mobile Equipmnet Structure \＃ 6076
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L．Checked by：C．F．C． Job No． 16162.02

Development of Design Heights，Exposure Coefficients，

 and Velocity Pressures Per TIA－222－G Wind Speeds

二N小示	Subject：	Loads on T－Mobile Equipmnet Structure \＃ 6076
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L．Checked by：C．F．C． Job No． 16162.02

Development of Wind \＆Ice Load on Mast

Mast Data：	（Pipe 6＂Sch．80）	（User Input）
Mast Shape $=$	Round	（User Input）
Mast Diameter $=$	$\mathrm{D}_{\text {mast }}:=6.63 \quad$ in	（User Input）
Mast Length $=$	$\mathrm{L}_{\text {mast }}:=17 \quad \mathrm{ft}$	（User Input）
Mast Thickness $=$	$\mathrm{tr}_{\text {mast }}:=0.432 \quad$ in	（User Input）
Mast Aspect Ratio $=$	$\mathrm{Ca}_{\text {mast }}=\frac{12 \mathrm{~L}_{\text {mast }}}{\mathrm{D}_{\text {mast }}}=30.8$	

Wind Load（without ice）

Mast Projected Surface Area $=$

Total Mast Wind Force＝

Wind Load（with ice）

Mast Projected Surface Area w／Ice＝

Total Mast Wind Force w／Ice＝

Gravity Loads（without ice）

Weight of the mast＝

Gravity Loads（ice only）
Ice Area per Linear Foot＝

Weight of Ice on Mast＝
$A_{\text {mast }}:=\frac{D_{\text {mast }}}{12}=0.553$
$q z_{A T \& T} \cdot G_{H} \cdot C_{\text {mast }} \cdot A_{\text {mast }}=34$

AICE $_{\text {mast }}:=\frac{\left(D_{\text {mast }}+2 \cdot t_{i z}\right)}{12}=0.899 \quad \mathrm{sf} / \mathrm{ft}$
$q z_{\text {ice．} A T \& T} \cdot G_{H} \cdot C a_{\text {mast }} \cdot$ AICE $_{\text {mast }}=11$

Self Weight
（Computed internally by Risa－3D）
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(D_{\text {mast }}+t_{i z} \cdot 2\right)^{2}-D_{\text {mast }}^{2}\right]=56.8$
$W_{\text {ICEmast }}:=I d \cdot \frac{A i_{\text {mast }}}{144}=22$
plf

BLC 4

plf
BLC 1
sq in
plf
pf
F

BLC 3

二 NT 二人 engineering	Subject：	Loads on T－Mobile Equipmnet Structure \＃ 6076
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L．Checked by：C．F．C． Job No． 16162.02

Development of Wind \＆Ice Load on Antennas

Antenna Data：

Antenna Model $=$	Andrew SBNHH－1D65A	
Antenna Shape $=$	Flat	（User Input）
Antenra Height $=$	$\mathrm{L}_{\mathrm{ant}}:=55.5 \quad$ in	（User Input）
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=11.9 \quad$ in	（User Input）
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=7.1 \quad$ in	（User Input）
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=33.5 \quad$ lbs	（User Input）
Number of Anternas $=$	$\mathrm{Nr}_{\mathrm{ant}}:=3$	（User Input）
Antenna Aspect Ratio $:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{W}_{\mathrm{ant}}}=4.7$		
Antenna Force Coefficient $=$	$\mathrm{Ca}_{\mathrm{ant}}=1.3$	

Wind Load（without ice）

> Surface Area for One Antenna =
> Antenna Projected Surface A rea =
> Total Antema Wind Force =

$$
\begin{aligned}
& \mathrm{SA}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{~W}_{\mathrm{ant}}}{144}=4.6 \\
& \mathrm{~A}_{\mathrm{ant}}:=\mathrm{SA}_{\mathrm{ant}} \cdot \mathrm{~N}_{\mathrm{ant}}=13.8 \\
& \mathrm{~F}_{\mathrm{ant}}:=\mathrm{qZ}_{\mathrm{AT}} \mathrm{H} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{~A}_{\mathrm{ant}}=923
\end{aligned}
$$

BLC 5

SA ICEant $:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=6.7 \quad \mathrm{sf}$
AlCEant $:=$ SA $_{\text {ICEant }} \cdot N_{\text {ant }}=20$ sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice．AT\＆T $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICEant }}=264 \quad \mathrm{lbs}$

BLC 4

$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\mathrm{ant}}=101$
lbs
BLC 2
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=4689$
Cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{w}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{ant}}=6090$
cu in
$W_{\text {ICEant }}:=\frac{\text { Vice }}{1728} \cdot$ Id $=197$
lbs
$W_{\text {ICEant }} N_{\text {ant }}=592$
lbs

二NTT	Subject:	Loads on T-Mobile Equipmnet Structure \# 6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$	Andrew ATSBT-TOP-FM-4G	
Antenna Shape $=$	Flat	
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=5.63$	in
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=3.7$	in
(User Input)	(User Input)	
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=2.0$	in
Antenna Weight $=$	$\mathrm{WT}_{\text {ant }}:=2$	(User Input)
Number of Anternas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$	(User Input)
Antenna Aspect Ratio $=$	$\mathrm{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{W}_{\mathrm{ant}}}=1.5$	
Antenna Force Coefficient $=$	$\mathrm{Ca}_{\mathrm{ant}}=1.2$	

Wind Load (without ice)

Surface Area for One Antenna =

Antenna Projected Surface A rea $=$

Total Antema Wind Force =

Wind Load (with ice)

Surface Area for One Antenna w/ Ice $=$

Antenna Projected Surface Area w Ice =

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)
Weight of All Antennas =
Gravity Loads (ice only)
Volum e of Each Antenna =

Volum e of Ice on Each Antenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }} \cdot W_{\text {ant }}}{144}=0.1$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot N_{\text {ant }}=0.4$
$F_{\text {ant }}:=q z_{A T \& T} \cdot G_{H} \cdot C a_{a n t} \cdot K_{a} \cdot A_{a n t}=27$

SA $_{\text {ICEant }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.5 \quad \mathrm{sf}$
A ICEant $:=$ SA $_{\text {ICEant }} \cdot N_{\text {ant }}=1.6 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.AT\&T $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICE }}$ ant $=20 \quad \mathrm{lbs}$
$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\mathrm{ant}}=6$
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}{ }^{-} \mathrm{T}_{\mathrm{ant}}=42$
$\mathrm{v}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{w}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {ant }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{ant}}=431$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=14$
$\mathrm{W}_{\text {ICEant }} \cdot \mathrm{N}_{\text {ant }}=42 \mathrm{lbs}$
lbs
BLC 5

BLC 4
lbs

Cu in
cu in
lbs

BLC 2

bs
lbs

二 NT 二人 engineering	Subject：	Loads on T－Mobile Equipmnet Structure \＃ 6076
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L．Checked by：C．F．C． Job No． 16162.02

Development of Wind \＆Ice Load on Coax Cables

Coax Cable Data： Coax Type $=\quad$ HELIAX 1－1／4＂

Shape $=$
Coax Outside Diameter $=$ Coax Cable Length $=$ Weight of Coax per foot $=$ Total Number of Coax＝ No．of Coax Projecting Outside Face of Mast＝

> Coax aspect ratio,

Coax Cable Force Factor Coefficient $=$

Wind Load（without ice）

Coax projected surface area $=$

Total Coax Wind Force＝

Wind Load（with ice）

Coax projected surface area w／Ice＝

Total Coax Wind Force w／Ice＝

Gravity Loads（without ice）

Weight of all cables w／o ice

Gravity Loads（ice only）
Ice Area per Linear Foot＝

Ice Weight All Coax per foot＝

Round		（User Input）
$\mathrm{D}_{\text {coax }}:=1.55$	in	（User Input）
$\mathrm{L}_{\text {coax }}:=11$	ft	（User Input）
$\mathrm{Wt}_{\text {coax }}:=0.66$	plf	（User Input）
$\mathrm{N}_{\text {coax }}:=18$		（User Input）
$N P_{\text {coax }}:=4$		（User Input）

$\operatorname{Ar}_{\text {coax }}:=\frac{\left(L_{\text {coax }} \cdot 12\right)}{D_{\text {coax }}}=85.2$
$\mathrm{Ca}_{\text {coax }}=1.2$
$\begin{array}{ll}\mathrm{A}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\operatorname{coax}} \mathrm{D}_{\text {coax }}\right)}{12}=0.5 & \mathrm{sf} / \mathrm{ft} \\ \mathrm{F}_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot \mathrm{qZ} \mathrm{AT}_{\mathrm{AT}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{A}_{\operatorname{coax}}=32 & \text { plf }\end{array}$
BLC 5
$\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \cdot D_{\text {coax }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{12}=0.9 \quad \mathrm{sf} / \mathrm{ft}$
$\mathrm{Fi}_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot q \mathrm{Z}_{\text {ice．AT\＆T }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{AlCE}_{\text {coax }}=11 \quad$ plf
BLC 4
$W T_{\text {coax }}:=W t_{\text {coax }} \cdot N_{\text {coax }}=12 \quad$ plf
$A i_{\text {coax }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {coax }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)^{2}-\mathrm{D}_{\text {coax }}^{2}\right]=23.7$
$s q$ in
$W T i_{\text {coax }}:=N_{\text {coax }} \cdot \frac{A d \cdot \frac{A i_{c o a x}}{144}}{}=166$
plf

BLC 2
LC 2
in
BLC 3

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587	Subject:	is of TIA/EIA Wind nly ted Load Cases yme, CT Prepared by: T.J.L.	and Ice Loads Checked by: C.F.C.	Analysis of Job No. 16162.02
Load Case	Description			
1	Self Weight (Mast) Weight of Appurtenances Weight of Ice Only TIA Wind with Ice TIA Wind			
2				
3				
4				
5				
Footnotes:				

	CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587	Subject:	Analys Load C East Ly 16	is of TIA/ Combinati yme, CT Prepared by		Wind and Table	d Ice Check	Loads	or An . C .	alysis	f Mas	Only	b No.	16162.02
Load Combination	Description	Envelope Soultion	Wind Factor	P-Delta	BLC	Factor								
1	1.2D + 1.6W		1	Y	1	1.2	2	1.2	5	1.6				
2	$0.9 \mathrm{D}+1.6 \mathrm{~W}$		1	Y	1	0.9	2	0.9	5	1.6				
3	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$		1	Y	1	1.2	2	1.2	3	1.0	4	1.0		
	Footnotes: BLC = Basic Load Case D = Dead Load Di = Dead Load of Ice W = Wind Load W = Wind Load w/ Ice													

\qquad

Global

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Increase Nailing Capacity for Wind?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automaticly Iterate Stiffness for Walls?	No
Maximum Iteration Number for Wall Stiffnes3	
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF\&PA NDS-97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05: ASD
Aluminum Code	AA ADM1-05: ASD - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

\qquad

Global, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct Z	.035
Ct X	.035
T Z (sec)	Not Entered
T X (sec)	Not Entered
R Z	8.5
R X	8.5
Ca	.36
Cv	.54
Nv	1
Occupancy Category	4
Seismic Zone	3
Seismic Detailing Code	ASCE 7-05
Om Z	1
Om X	1
Rho Z	1
Rho X	1

Footing Overturning Safety Factor	1.5
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	3
Footing Concrete Ec (ksi)	4000
Lamda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	$\# 3$
Footing Top Bar Cover (in)	3.5
Footing Bottom Bar	$\# 3$
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	1.5
Pedestal Ties	$\# 3$

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11.	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	. 49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	. 3	. 65	49	35	1.5	58	1.2

\qquad

Hot Rolled Steel Design Parameters

	Label	Shape	Lengt.	Lbyy[ft]	Lbzz[ft]	Lcomp t...	Lcomp b...	.L-torqu...	Kyy	Kzz	Cb	Function
1	M1	Mast	16									Lateral

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design ... A [in2]		lyy [in4] Izz [in4]		J [in4]
1	Mast	PIPE_6.0X	Beam	Pipe	A53 Gr. B	Typical	7.83	38.3	38.3	76.6

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design R...
1	M1	BOTCO..	TOPMA...\|			Mast	Beam	Pipe	A53 Gr. B	Typical

Joint Coordinates and Temperatures

Label									$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$		0	Temp $[\mathrm{F}]$	Detach From \ldots
1	BOTCONNECTION	0	1	0	0										
2	TOPCONNECTION	0	5	0	0										
3	TOPMAST	0	17	0	0										

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	BOTCONNECTION	Reaction	Reaction	Reaction				
2	TOPCONNECTION	Reaction		Reaction		Reaction		

Member Point Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction		Magnitude $[k, k-\mathrm{ft}]$	Location[ft, $\%]$
1	M 1	Y	-.101	14
2	M 1	Y	-.006	14

Member Point Loads (BLC 3: Weight of Ice Only)

Member Label		Direction		Magnitude[k,k-ft]
1	M 1	Y	-.592	Location[ft,\%]
2	M 1	Y	-.042	14

Member Point Loads (BLC 4 : TIA Wind with Ice)

Member Label	Direction		Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$.264
1	M 1	X	.02	14
2	M 1	X	Location[ft,\%]	

Member Point Loads (BLC 5 : TIA Wind)

Member Label								Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	M1	X	.923	14						
2	M1	X	.027	14						

\qquad

Joint Loads and Enforced Displacements
L,D,M
Direction
Magnitude[(k,k-ft), (in,rad), ($\left.\left.k^{\star} S^{\wedge} 2 / f t, k^{\star} S^{\wedge} 2^{\star f t}\right)\right]$
\qquad No Data to Print ...

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	- 012	-. 012	7	11

Member Distributed Loads (BLC 3 : Weight of Ice Only)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 022	-. 022	0	0
2	M1	Y	-. 166	-. 166	7	11

Member Distributed Loads (BLC 4 : TIA Wind with Ice)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 011	. 011	0	11
2	M1	X	. 011	. 011	7	11

Member Distributed Loads (BLC 5 : TIA Wind)

Member Label		Direction	Start Magnitude[k/ft,F] End Magnitude[k/ft,F]		Start Location[ft,\%]	End Location $[\mathrm{ft}, \%]$
1	M 1	X	.034	.034	0	11
2	M	X	.032	.032	7	11

Basic Load Cases

BLC Description		Category	X Gra...	Y Gravity	Z Gra.	Joint	Point	Distrib.	Area(...	Surfa...
1	Self Weight	None		-1						
2	Weight of Appurtenances	None					2	1		
3	Weight of Ice Only	None					2	2		
4	TIA Wind with Ice	None					2	2		
5	TIA Wind	None					2	2		

Load Combinations

Description		Sol... PDelta		SR...BLC Fact.. BLC Fact..															
1	1.2D + 1.6W	Yes	Y	1	1.2	2	1.2	5	1.6										
2	0.9D + 1.6W	Yes	Y	1	9	2	9	5	1.6										
3	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$	Yes	Y	1	1.2	2	1.2	3	1	4	1								

Envelope Member Section Forces

Member		Sec		Axial[k]	LC	y Shear[k]	LC	z Shear[k]		LC y-y Mo...LC z-z Mo..					LC
1	M1	1	max	2.348	3	-. 819	3	0	1	0	1	0	1	0	1
2			min	. 523	2	-4.292	1	0	1	0	1	0	1	0	1
3		2	max	2.132	3	-. 863	3	0	1	0	1	0	1	17.603	1
4			min	. 427	2	-4.51	1	0	1	0	1	0	1	3.363	3
5		3	max	1.735	3	1.841	1	0	1	0	1	0	1	9.626	1
6			min	. 321	2	. 353	3	0	1	0	1	0	1	1.825	3

Envelope Member Section Forces (Continued)

Member		Sec	Axial[k]		LC	y Shear[k]	LC	z Shear[k]	LC Torqu... LC y-y Mo...LC z-z Mo... LC						
7		4	max	. 978	3	1.524	1	0	1	0	1	0	1	3.055	1
8			min	. 192	2	. 287	3	0	1	0	1	0	1	. 579	3
9		5	max	0	1	. 004	1	0	1	0	1	0	1	0	1
10			min	0	1	. 003	3	0	1	0	1	0	1	0	1

Envelope Member Section Stresses

Member Sec				Axial[ksi]							LC y-Bot[ksi]		LC z-Top[ks		LC z-Bot[ksi]		
1	M1	1	max	. 3	3	-. 209	3	0	1	0	1	0	1	0	1	0	1
2			min	. 067	2	-1.096	1	0	1	0	1	0	1	0	1	0	1
3		2	max	. 272	3	-. 22	3	0	1	-3.493	3	18.283	1	0	1	0	1
4			min	. 055	2	-1.152	1	0	1	-18.283	1	3.493	3	0	1	0	1
5		3	max	. 222	3	. 47	1	0	1	-1.896	3	9.998	1	0	1	0	1
6			min	. 041	2	. 09	3	0	1	-9.998	1	1.896	3	0	1	0	1
7		4	max	. 125	3	. 389	1	0	1	-. 601	3	3.174	1	0	1	0	1
8			min	. 025	2	. 073	3	0	1	-3.174	1	. 601	3	0	1	0	1
9		5	max	0	1	0	1	0	1	0	1	0	1	0	1	0	1
10			min	0	1	0	3	0	1	0	1	0	1	0	1	0	1

Envelope Joint Reactions

Joint			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft] LC		MZ [k-ft] LC	
1	BOTCONNE...	max	4.292	1	2.348	3	0	1	0	1	0	1	0	1
2		min	. 819	3	. 523	2	0	1	0	1	0	1	0	1
3	TOPCONNE.	max	-1.268	3	0	1	0	1	0	1	0	1	0	1
4		min	-6.615	1	0	1	0	1	0	1	0	1	0	1
5	Totals:	max	-. 449	3	2.348	3	0	1						
6		min	-2.323	1	. 523	2	0	1						

Envelope Joint Displacements

Joint			X [in]	LC	Y [in]	LC	Z [in]	LC X Rotatio... LC			Rotatio... LC		LC Z Rotation..	LC
1	BOTCONNE...	max		3	0	2	0	1	0	1	0	1	$1.784 \mathrm{e}-3$	1
2		min	0	1	0	3	0	1	0	1	0	1	3.405e-4	3
3	TOPCONNE.	max	0	1	0	2	0	1	0	1	0	1	-7.399e-4	3
4		min	0	3	0	3	0	1	0	1	0	1	-3.875e-3	1
5	TOPMAST	max	1.963	1	0	2	0	1	0	1	0	1	-3.269e-3	3
6		min	. 374	3	-. 001	3	0	1	0	1	0	1	-1.718e-2	1

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	BOTCONNECTION	4.292	. 698	0	0	0	0
2	1	TOPCONNECTION	-6.615	0	0	0	0	0
3	1	Totals:	-2.323	. 698	0			
4	1	COG (ft):	X: 0	Y: 10.187	Z: 0			

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	BOTCONNECTION	4.289	523	0	0	0	0
2	2	TOPCONNECTION	-6.612	0	0	0	0	0
3	2	Totals:	-2.323	523	0			
4	2	COG (ft):	X: 0	Y: 10.187	Z: 0			

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	$\mathrm{Z}[\mathrm{k}]$	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	3	BOTCONNECTION	. 819	2.348	0	0	0	0
2	3	TOPCONNECTION	-1.268	0	0	0	0	0
3	3	Totals:	-. 449	2.348	0			
4	3	COG (ft):	X: 0	Y: 11.256	Z: 0			

Ttopmast

Loads: LC 1, 1.2D + 1.6W

CENTEK Engineering, INC.	Structure \# 6076 Mast	
tjl, cfc		Dec 22, 2016 at 11:15 AM
16162.02 /T-Mobile CT110..		TIA.r3d

Loads: LC 2, 0.9D + 1.6W

CENTEK Engineering, INC.	Structure \# 6076 Mast	
tjl, cfc		Dec 22, 2016 at 11:15 AM
16162.02 /T-Mobile CT110..		TIA.r3d

Loads: LC 3, 1.2D + 1.0Di + 1.0Wi

CENTEK Engineering, INC.	Structure \# 6076 Mast LC \#3 Loads	
tjl, cfc		Dec 22, 2016 at 11:15 AM
16162.02 /T-Mobile CT110...		TIA.r3d

CENTEK Engineering, INC.		
tijl, cfc	Structure \# 6076 Mast	Dec 22, 2016 at 11:17 AM
$16162.02 /$ T-Mobile CT110...	LC \#3 Reactions and Deflected Shape	TIA.r3d

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection
	Location:	East Lyme, CT
	Rev. 2: 1/17/17	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Mast Connection:

Reactions at Top Connection:

Horizontal $=$	Horizontal $:=6.7 \cdot \mathrm{kips}$	(User Input from Risa 3D)
Vertical $=$	Vertical $:=0 \cdot \mathrm{kips}$	(User Input from Risa 3D)
Moment $=$	Moment $:=0 \cdot \mathrm{kips} \cdot \mathrm{ft}$	(User Input from Risa 3D)
ast Diameter $=$	Mast $_{\mathrm{d}}:=6.625 \cdot \mathrm{in}$	(User Input)

Check Pipe to Bracket U-Bolts:

Bolt Data:
Bolt Grade $=$
Number of Bolts $=$
Bolt Diameter $=$
Bolt Area $=$
Desing Tensile Stress $=$
Design Shear Stress $=$

A307
$n_{b}:=4$
$d_{b}:=0.5$ in
$a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}^{2}=0.196 \cdot \mathrm{in}^{2}$
$F_{\mathrm{t}}:=33.8 \cdot \mathrm{ksi}$
$F_{V}:=20.3 \cdot \mathrm{ksi}$
(User Input)
(User Input)
(2 U-Bolts)
(User Input)
(User Input)
(User Input)
(User Input)

Check Bolt Stresses:

Wind Acting Parallel to Bolts:

> Shear Force per Bolt =
> Shear Stress per Bolt =

Allowable Tensile Stress Adjusted for Shear =

Tension Force Each Bolt =

Tension Stress Each Bolt =

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{V} . \text { conn }}:=\frac{\text { Vertical }}{n_{\mathrm{b}}}=0 \cdot \mathrm{kips} \\
& \mathrm{~F}_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{V} . \mathrm{conn}}}{a_{\mathrm{b}}}=0 \cdot \mathrm{ksi} \\
& \text { Condition1 }:=\mathrm{if}\left(\mathrm{~F}_{\mathrm{V} . \mathrm{act}}<\mathrm{F}_{\mathrm{V}}, \text { "OK" }, \text { "Overstressed" }\right) \\
& \text { Condition1 }=\text { "OK" }
\end{aligned}
$$

$F_{\mathrm{t} . \mathrm{adj}}:=\sqrt{\mathrm{F}_{\mathrm{t}}^{2}-4.39 \cdot \mathrm{~F}_{\mathrm{v} . \mathrm{act}}}{ }^{2}=33.8 \cdot \mathrm{ksi}$
$F_{\text {tension.bolt }}:=\frac{\text { Horizontal }}{n_{b}}=1.675 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=8.5 \cdot \mathrm{ksi}$

Condition2 := if $\left(F_{\text {t.act }}<F_{\text {t.adj }}\right.$, "OK" , "Overstressed" $)$

Condition2 = "OK"

二NT $=1$ engineering	Subject:	Mast Connection
	Location:	East Lyme, CT
	Rev. 2: 1/17/17	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Wind Acting Perpendicular to Bolts:

Shear Force per Bolt $=$	$\mathrm{F}_{\mathrm{V} . \mathrm{conn}}:=\frac{\text { Horizontal }}{\mathrm{n}_{\mathrm{b}}}=1.68 \cdot \mathrm{kips}$
Shear Stress per Bolt $=$	$\mathrm{F}_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{V} . \mathrm{conn}}}{\mathrm{a}_{\mathrm{b}}}=8.53 \cdot \mathrm{ksi}$
	Condition $3:=\mathrm{if}\left(\mathrm{F}_{\mathrm{V} . \mathrm{act}}<\mathrm{F}_{\mathrm{V}}\right.$, "OK", "Overstressed" $)$
	Condition $3=$ "OK"

Check Bracket:

Bracket Plate Data:

Plate Yield Strength $=$	$\mathrm{Fy}_{\mathrm{bp}}:=36 \cdot \mathrm{ksi}$	(User Input)
Base Plate Thickness $=$	$\mathrm{t}_{\mathrm{bp}}:=0.375 \cdot \mathrm{in}$	(User Input)
Mast to Face of Tower $=$	$\mathrm{d}:=5.125 \cdot \mathrm{in}$	(User Input)
Plate Section Modulus $=$	$\mathrm{S}_{\mathrm{bp}}:=2.04 \cdot \mathrm{in}^{3}$	(User Input)

Check Bracket Plate Bending Stress:

Maximum Bending Plate $=$	$M_{b p}:=$ Horizontal $\cdot \mathrm{d}=34.34 \cdot \mathrm{in} \cdot \mathrm{kips}$
Maximum Bending Stress in Plate $=$	$\mathrm{f}_{\mathrm{bp}}:=\frac{M_{\mathrm{bp}}}{S_{b p}}=17 \cdot \mathrm{ksi}$
Allowable Bending Stress in Plate $=$	$\mathrm{F}_{\mathrm{bp}}:=0.9 \cdot \mathrm{Fy}_{\mathrm{bp}}=32.4 \cdot \mathrm{ksi}$
Plate Bending Stress \% of Capacity $=$	$\frac{\mathrm{f}_{\mathrm{bp}}}{\mathrm{F}_{\mathrm{bp}}} \cdot 100=52$
Condition3 $=$	Condition1:= if $\left(\frac{f_{b p}}{F_{b p}}<1.00\right.$, "Ok" , "Overstressed" $)$
	Condition1 $=$ "Ok"

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection
	Location:	East Lyme, CT
	Rev. 2: 1/17/17	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Check Bracket to Tower Connection:

Bolt Data:

Bolt Grade $=$	A 325	(User Input)
Number of Bolts $=$	$\mathrm{n}_{\mathrm{b}}:=4$	(User Input)
Bolt Diameter $=$	$\mathrm{d}_{\mathrm{b}}:=0.5 \mathrm{in}$	(User Input)
Bolt Spacing Horizontal $=$	$\mathrm{S}_{\mathrm{bH}}:=15 \mathrm{in}$	(User Input)
Bolt Spacing Vertical $=$	$\mathrm{S}_{\mathrm{bV}}:=9 \mathrm{in}$	(User Input)
Bolt Area $=$	$\mathrm{a}_{\mathrm{b}}:=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}_{\mathrm{b}}^{2}=0.196 \cdot \mathrm{in}^{2}$	(User Input)
Desing Tensile Stress $=$	$\mathrm{F}_{\mathrm{t}}:=67.5 \cdot \mathrm{ksi}$	(User Input)
Design Shear Stress $=$	$\mathrm{F}_{\mathrm{v}}:=40.5 \cdot \mathrm{ksi}$	(User Input)

Check Bolt Stresses:
Wind Acting Parallel to Bolts:

Shear Force per Bolt $=$

Shear Stress per Bolt =

Allowable Tensile Stress Adjusted for Shear =
Tension Force Each Bolt =

Tension Stress Each Bolt =
$F_{\text {V.conn }}:=\frac{\text { Vertical }}{n_{b}}+\frac{\text { Vertical. } \frac{\text { Mast }_{d}}{2}}{S_{b V} \cdot \frac{n_{b}}{2}}=0$. kips
$F_{\text {v.act }}:=\frac{F_{\text {v.conn }}}{a_{b}}=0 . \mathrm{ksi}$
Condition1:= if ($\mathrm{F}_{\mathrm{v} . \mathrm{act}}<\mathrm{F}_{\mathrm{V}}$, "OK" , "Overstressed" $)$

Condition1 = "OK"
$F_{\text {t.adj }}:=\sqrt{F_{t}^{2}-4.39 \cdot F_{\mathrm{v} . \mathrm{act}}}{ }^{2}=67.5 \cdot \mathrm{ksi}$
$F_{\text {tension.bolt }}:=\frac{\text { Horizontal }}{\mathrm{n}_{\mathrm{b}}}+\frac{\text { Horizontal. } \frac{\mathrm{Mast}_{\mathrm{d}}}{2}}{\mathrm{~S}_{\mathrm{bH}} \cdot \frac{\mathrm{n}_{\mathrm{b}}}{2}}=2.415 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{\mathrm{b}}}=12.3 \cdot \mathrm{ksi}$
Condition2 := if($F_{t . a c t}<F_{\text {t.adj }}$,"OK" , "Overstressed" $)$
Condition2 = "OK"

C $=\mathrm{NT}=\mathrm{K}$ engineering	Subject:	Mast Connection
	Location: Rev. 2: 1/17/17	East Lyme, CT Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Wind Acting Perpendicular to Bolts:

$F_{\text {V.conn }}:=\frac{\text { Vertical + Horizontal }}{n_{b}}+\frac{\text { Vertical } \cdot \frac{\text { Mast }_{d}}{2}}{S_{b V} \cdot \frac{n_{b}}{2}}=1.68 \cdot \mathrm{kips}$
Shear Stress per Bolt $=$

Allowable Tensile Stress Adjusted for Shear =

Tension Force Each Bolt =

Tension Stress Each Bolt $=$
$F_{\text {t.adj }}:=\sqrt{F_{t}^{2}-4.39 \cdot F_{v . a c t}{ }^{2}}=65.09 \cdot \mathrm{ksi}$
$F_{\text {tension.bolt }}:=\frac{\text { Horizontal } \cdot \mathrm{d}}{\mathrm{S}_{\mathrm{bH}} \cdot \frac{\mathrm{n}_{\mathrm{b}}}{2}}=1.145 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=5.8 \cdot \mathrm{ksi}$

Condition4 := if ($\mathrm{F}_{\mathrm{t} . \mathrm{act}}<\mathrm{F}_{\mathrm{t} . \mathrm{adj}}$, "OK" , "Overstressed" $)$

Condition4 = "OK"

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection
	Location:	East Lyme, CT
	Rev. 2: 1/17/17	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Reactions at Bottom Connection:

Horizontal $=$	Horizontal := 4.3•kips	(User Input from Risa 3D)
Vertical $=$	Vertical $:=0.7 \cdot \mathrm{kips}$	(User Input from Risa 3D)
Moment $=$	Moment $:=0 \cdot \mathrm{kips} \cdot \mathrm{ft}$	(User Input from Risa 3D)
Mast Diameter $=$	Mast $_{\mathrm{d}}:=6.625 \cdot \mathrm{in}$	(User Input)

Check Pipe to Bracket U-Bolts:

Bolt Data:		
Bolt Grade $=$	A 307	$\mathrm{n}_{\mathrm{b}}:=4$
Number of Bolts $=$	$\mathrm{d}_{\mathrm{b}}:=0.5 \mathrm{in}$	(User Input)
Bolt Diameter $=$	$\mathrm{a}_{\mathrm{b}}:=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}_{\mathrm{b}}{ }^{2}=0.196 \cdot \mathrm{in}^{2}$	(User Input)
Bolt Area $=$	$\mathrm{F}_{\mathrm{t}}:=33.8 \cdot \mathrm{ksi}$	(User Input)
Desing Tensile Stress $=$	$\mathrm{F}_{\mathrm{V}}:=20.3 \cdot \mathrm{ksi}$	(User Input)
Design Shear Stress $=$	(User Input)	

Check Bolt Stresses:

Wind Acting Parallel to Bolts:

$$
\begin{array}{cl}
\text { Shear Force per Bolt }= & \mathrm{F}_{\mathrm{V} . \mathrm{conn}}:=\frac{\text { Vertical }}{n_{\mathrm{b}}}=0.175 \cdot \mathrm{kips} \\
\text { Shear Stress per Bolt }= & \mathrm{F}_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{V} . \mathrm{conn}}}{\mathrm{a}_{\mathrm{b}}}=0.89 \cdot \mathrm{ksi} \\
& \text { Condition1:= if }\left(\mathrm{F}_{\mathrm{V} . \mathrm{act}}<\mathrm{F}_{\mathrm{V}}, \text { "OK" , "Overstressed" }\right) \\
& \text { Condition1 }=\text { "OK" }
\end{array}
$$

Allowable Tensile Stress Adjusted for Shear =

Tension Force Each Bolt = Tension Stress Each Bolt =

A307
$F_{\mathrm{V}}:=20.3 \cdot \mathrm{ks}$
(User Input)
$F_{\text {t.adj }}:=\sqrt{{F_{t}}^{2}-4.39 \cdot F_{\mathrm{v} . \mathrm{act}}{ }^{2}}=33.75 \cdot \mathrm{ksi}$
$F_{\text {tension.bolt }}:=\frac{\text { Horizontal }}{n_{b}}=1.075 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=5.5 \cdot \mathrm{ksi}$

Condition2 := if $\left(F_{\text {t.act }}<F_{\text {t.adj }}\right.$, "OK" , "Overstressed" $)$

Condition2 = "OK"

二NTT N - engineering	Subject:	Mast Connection
	Location:	East Lyme, CT
	Rev. 2: 1/17/17	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Wind Acting Perpendicular to Bolts:

Shear Force per Bolt $=$	$F_{\mathrm{V} . \mathrm{conn}}:=\frac{\text { Horizontal }}{n_{b}}=1.08 \cdot \mathrm{kips}$
Shear Stress per Bolt $=$	$\mathrm{F}_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{V} . \mathrm{conn}}}{a_{\mathrm{b}}}=5.47 \cdot \mathrm{ksi}$
	Condition $3:=\mathrm{if}\left(\mathrm{F}_{\mathrm{V} . \mathrm{act}}<\mathrm{F}_{\mathrm{V}}\right.$, "OK" , "Overstressed" $)$
	Condition $3=$ "OK"

Check Bracket:

Bracket Plate Data:
Plate Yield Strength $=$

$\mathrm{Fy}_{\mathrm{bp}}:=36 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{t}_{\mathrm{bp}}:=0.375 \cdot \mathrm{in}$	(User Input)
$\mathrm{d}:=5.125 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\mathrm{bp}}:=2.04 \cdot \mathrm{in}^{3}$	(User Input)

Check Bracket Plate Bending Stress:

Maximum Bending Plate $=$	$M_{\mathrm{bp}}:=$ Horizontal $\cdot \mathrm{d}=22.04 \cdot \mathrm{in} \cdot \mathrm{kips}$
Maximum Bending Stress in Plate $=$	$\mathrm{f}_{\mathrm{bp}}:=\frac{\mathrm{M}_{\mathrm{bp}}}{\mathrm{S}_{\mathrm{bp}}}=11 \cdot \mathrm{ksi}$
Allowable Bending Stress in Plate $=$	$\mathrm{F}_{\mathrm{bp}}:=0.9 \cdot \mathrm{Fy} \mathrm{y}_{\mathrm{bp}}=32.4 \cdot \mathrm{ksi}$
Plate Bending Stress \% of Capacity $=$	$\frac{\mathrm{f}_{\mathrm{bp}}}{\mathrm{F}_{\mathrm{bp}}} \cdot 100=33.3$
Condition3 $=$	Condition1:= if $\left(\frac{\mathrm{f}_{\mathrm{bp}}}{\mathrm{F}_{\mathrm{bp}}}<1.00\right.$, "Ok" , "Overstressed" $)$
Condition1 $=$ "Ok"	

$\square \equiv N T=K \text { engineering }$	Subject:	Mast Connection
	Location: Rev. 2: 1/17/17	East Lyme, CT Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Check Bracket to Tower Connection:

Bolt Data:

Bolt Grade $=$	A 325	(User Input)
Number of Bolts $=$	$\mathrm{n}_{\mathrm{b}}:=4$	(User Input)
Bolt Diameter $=$	$\mathrm{d}_{\mathrm{b}}:=0.5 \mathrm{in}$	(User Input)
Bolt Spacing Horizontal $=$	$\mathrm{S}_{\mathrm{bH}}:=17 \mathrm{in}$	(User Input)
Bolt Spacing Vertical $=$	$\mathrm{S}_{\mathrm{bV}}:=9 \mathrm{in}$	(User Input)
Bolt Area $=$	$\mathrm{a}_{\mathrm{b}}:=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}_{\mathrm{b}}^{2}=0.196 \cdot \mathrm{mn}^{2}$	(User Input)
Desing Tensile Stress $=$	$\mathrm{F}_{\mathrm{t}}:=67.5 \cdot \mathrm{ksi}$	(User Input)
Design Shear Stress $=$	$\mathrm{F}_{\mathrm{V}}:=40.5 \cdot \mathrm{ksi}$	(User Input)

Check Bolt Stresses:
Wind Acting Parallel to Bolts:

Shear Force per Bolt $=$

Shear Stress per Bolt $=$

Allowable Tensile Stress Adjusted for Shear =

Tension Force Each Bolt =

Tension Stress Each Bolt =
$F_{\text {V.conn }}:=\frac{\text { Vertical }}{n_{b}}+\frac{\text { Vertical } \cdot \frac{\text { Mast }_{d}}{2}}{S_{b V} \cdot \frac{n_{b}}{2}}=0.304 \cdot \mathrm{kips}$
$\mathrm{F}_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{V} . \mathrm{conn}}}{\mathrm{a}_{\mathrm{b}}}=1.55 \cdot \mathrm{ksi}$
Condition1 := if $\left(F_{\text {v.act }}<F_{V}\right.$, "OK" , "Overstressed" $)$

Condition1 = "OK"
$F_{t . a d j}:=\sqrt{F_{t}^{2}-4.39 \cdot F_{v . a c t}}{ }^{2}=67.42 \cdot \mathrm{ksi}$
$F_{\text {tension.bolt }}:=\frac{\text { Horizontal }}{n_{b}}+\frac{\text { Horizontal. } \frac{\text { Mast }_{d}}{2}}{S_{b H} \cdot \frac{n_{b}}{2}}=1.494 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{\mathrm{b}}}=7.6 \cdot \mathrm{ksi}$
Condition2 := if $\left(F_{\text {t.act }}<F_{\text {t.adj }}\right.$, "OK" , "Overstressed" $)$

Condition2 = "OK"

二NT $=\mathrm{K}$ engineering	Subject:	Mast Connection
	Location:	East Lyme, CT
	Rev. 2: 1/17/17	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Wind Acting Perpendicular to Bolts:

Shear Force per Bolt $=$

$F_{\text {V.conn }}:=\frac{\text { Vertical }+ \text { Horizontal }}{n_{b}}+\frac{\text { Vertical } \cdot \frac{\text { Mast }_{d}}{2}}{S_{b V} \cdot \frac{n_{b}}{2}}=1.38 \cdot \mathrm{kips}$
Shear Stress per Bolt $=$

Allowable Tensile Stress Adjusted for Shear =

Tension Force Each Bolt =

Tension Stress Each Bolt =
$F_{\mathrm{V} . \mathrm{act}}:=\frac{\mathrm{F}_{\mathrm{V} . \mathrm{conn}}}{\mathrm{a}_{\mathrm{b}}}=7.02 \cdot \mathrm{ksi}$
Condition3:= if $\left(F_{\text {v.act }}<F_{\mathrm{V}}\right.$, "OK" , "Overstressed" $)$
Condition3 = "OK"
$F_{t . a d j}:=\sqrt{F_{t}^{2}-4.39 \cdot F_{\mathrm{v} . \mathrm{act}}{ }^{2}}=65.88 \cdot \mathrm{ksi}$
$F_{\text {tension.bolt }}:=\frac{\text { Horizontal.d }}{S_{b H} \cdot \frac{n_{b}}{2}}=0.648 \cdot \mathrm{kips}$
$F_{\text {t.act }}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=3.3 \cdot \mathrm{ksi}$

Condition4 $:=$ if $\left(F_{\text {t.act }}<F_{\text {t.adj }}\right.$, "OK", "Overstressed" $)$
Condition4 = "OK"

$\pm N T=K$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

$\pm N T=K$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Development of Wind \& Ice Load on Mast

Mast Data:
Mast Shape $=$
Mast Diameter $=$

Mast Length =
Mast Thickness =

Wind Load (NESC Extreme)

$$
\text { Mast Projected Surface Area }=
$$

Total Mast Wind Force (Above NU Structure) =
Total Mast Wind Force (Below NU Structure) $=$

Wind Load (NESE Heavy)

Mast Projected Surface Area w/ Ice =

Total Mast Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of the mast $=$

Gravity Loads (ice only)

Ice Area per Linear Foot =

Weight of Ice on Mast =
Mast Projected Surface Area $=$
Total Mast Wind Force (Above NU Structure) $=$
Total Mast Wind Force (Below NU Structure) $=$
(Pipe 6" Sch. 80)
Round
$D_{\text {mast }}:=6.63 \quad$ in
$\mathrm{L}_{\text {mast }}:=17$
$t_{\text {mast }}:=0.432$ in (User Input)
$A_{\text {mast }}:=\frac{D_{\text {mast }}}{12}=0.553 \quad \mathrm{sf} / \mathrm{ft}$
$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{R}} \cdot \mathrm{A}_{\text {mast }} \cdot \mathrm{m}=36 \quad$ plf
$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{R}} \cdot \mathrm{A}_{\text {mast }}=29 \quad$ plf

AICE $_{\text {mast }}:=\frac{\left(\mathrm{D}_{\text {mast }}+2 \cdot \mathrm{Ir}\right)}{12}=0.636 \quad \mathrm{sf} / \mathrm{ft}$
$\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{R}} \cdot \mathrm{AICE}_{\text {mast }}=3 \quad$ plf
plf BLC 4

Self Weight (Computed internally by Risa-3D) pl
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(D_{\text {mast }}+\operatorname{Ir} \cdot 2\right)^{2}-D_{\text {mast }}{ }^{2}\right]=11.2 \quad$ sq in
$W_{\text {ICEmast }}:=\mathrm{Id} \cdot \frac{A i_{\text {mast }}}{144}=4$
plf

二 NT 二人 K engineering	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃6076
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L Checked by：C．F．C． Job No． 16162.02

Development of Wind \＆Ice Load on Antennas

Antenna Data：

Antenna Model $=$	Andrew SBNHH－1D65A		
Antenna Shape $=$	Flat		（User Input）
Antenna Height $=$	$\mathrm{L}_{\mathrm{ant}}:=55.5$	in	（User Input）
Antenna Width $=$	$\mathrm{W}_{\mathrm{ant}}:=11.9$	in	（User Input）
Antenna Thickness $=$	$\mathrm{T}_{\mathrm{ant}}:=7.1$	in	（User Input）
Antenna Weight $=$	$\mathrm{WT}_{\mathrm{ant}}:=33.5$	lbs	（User Input）
Number of Antemas $=$	$\mathrm{N}_{\mathrm{ant}}:=3$		（User Input）

Wind Load（NESC Extreme）

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna $=$ Antenna Projected Surface A rea＝

Total Antema Wind Force＝

Wind Load（NESC Heavy）

Assumes Maximum Possible Wind Pressure Applied to all Antennas Simultaneously

Surface Area for One Antenna w／Ice＝

Antenna Projected Surface Area w Iœ＝

Total Antenna Wind Force w／Ice＝

Gravity Load（without ice）

Weight of All Antennas＝
$\mathrm{WT}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=101$

Gravity Load（ice only）

Volum e of Each Antenna＝

Volum e of Ice on Each Antenna＝

Weight of Ice on Each Antenna＝

Weight of Ice on All Antennas＝
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+1\right)\left(\mathrm{W}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+1\right)-\mathrm{V}_{\mathrm{ant}}=1214$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=39$
$\mathrm{W}_{\text {ICEant }} \mathrm{N}_{\text {ant }}=118$
lbs

Cu in cu in

$\pm N T=K$ engineering	Subject:	Load Analysis of T-Mobile Equipment on Structure \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Development of Wind \& Ice Load on Antennas

Antenna Data:
Antenna Model $=$
Antenna Shape $=$
Antenna Height $=$
Antenna Width $=$
Antenna Thickness $=$
Antenna Weight $=$

Wind Load (NESC Extreme)

Assumes Maximum Possible Wind Pressure

 Applied to all Antennas SimultaneouslySurface Area for One Antenna $=$ Antenna Projected Surface A rea $=$

Total Antema Wind Force =
Wind Load (NESC Heavy)

Assumes Maximum Possible Wind Pressure

 Applied to all Antennas SimultaneouslySurface Area for One Antenna w/ Ice =

Antenna Projected Surface Areaw $\mathrm{I} œ=$

Total Antenna Wind Force w/ Ice =

Gravity Load (without ice)

Weight of All Antennas =

Gravity Load (ice only)

Volum e of Each Antenna =

Volum e of Ice on Each Antenna =

Weight of Ice on Each Antenna =

Weight of Ice on All Antennas =
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\text {ant }} \cdot W_{\text {ant }}}{144}=0.1$
sf
$\mathrm{A}_{\mathrm{ant}}:=\mathrm{SA}_{\mathrm{ant}} \cdot \mathrm{N}_{\mathrm{ant}}=0.4$
$F_{\text {ant }}:=q z \cdot C_{F} \cdot A_{a n t} \cdot m=35$

SA ICEant $:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+1\right)}{144}=0.2$ sf

AlCEant $^{:=}$SA $_{\text {ICEant }} \cdot N_{\text {ant }}=0.6$ sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {ICEant }}=4$
lbs
BLC 4
$W T_{\text {ant }} \cdot N_{\text {ant }}=6$
lbs
BLC 2
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}}{ }^{-} \mathrm{T}_{\mathrm{ant}}=42$
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+1\right)\left(\mathrm{W}_{\mathrm{ant}}+1\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+1\right)-\mathrm{V}_{\mathrm{ant}}=52$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=2$
lbs
$W_{\text {ICEant }} N_{\text {ant }}=5$
cu in
cu in
lbs
n

BLC 3

二 NT 二人 K engineering	Subject：	Load Analysis of T－Mobile Equipment on Structure \＃6076
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L Checked by：C．F．C． Job No． 16162.02

Development of Wind \＆Ice Load on Coax Cables

Existing Coax Cable Data：

Coax Type $=$	HELIAX 1－1／4＂		
Shape $=$	Round		（User Input）
Coax Outside Diameter $=$	$\mathrm{D}_{\text {coax }}:=1.55$	in	（User Input）
Coax Cable Length $=$	$\mathrm{L}_{\text {coax }}:=11$	ft	（User Input）
Weight of Coax per foot $=$	$\mathrm{Wt}_{\text {coax }}:=0.66$	plf	（User Input）
Total Number of Coax $=$	$\mathrm{N}_{\text {coax }}:=18$		（User Input）
Ontside Face of Mast $=$	$\mathrm{NP}_{\text {coax }}:=4$		（User Input）

Wind Load（NESC Extreme）

Coax projected surface area $=$

Total Coax Wind Force（Above NU Structure）＝

Wind Load（NESC Heavy）

Coax projected surface area w／Ice＝

Total Coax Wind Force w／Ice＝

Gravity Loads（without ice）

Weight of all cables w／o ice

Gravity Load（ice only）

Ice Area per Linear Foot＝

Ice Weight All Coax per foot $=$
$\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \cdot \mathrm{D}_{\text {coax }}+2 \cdot \mathrm{Ir}\right)}{12}=0.6$
$\mathrm{Fi}_{\text {coax }}:=\mathrm{p} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{AICE}_{\text {coax }}=3$
$\mathrm{WT}_{\text {coax }}:=\mathrm{Wt}_{\text {coax }} \cdot \mathrm{N}_{\text {coax }}=12$
$A i_{\text {coax }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\operatorname{coax}}+2 \cdot \mathrm{rr}\right)^{2}-\mathrm{D}_{\operatorname{coax}}{ }^{2}\right]=3.2$

plf
plf
ft
plf
BLC 5
ft
plf
BLC 4

BLC 2
sq in

BLC 3

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587	Subject:	Analysis of NESC Heavy for Obtaining Reactions Tabulated Load Cases East Lyme, CT Prepared by: T.J.L.	d and NESC Extr ed to Utility Pole Checked by: C.F.C.	ind Job No. 16162.02
Load Case	Description			
1		Self Weight (Mast)		
2		Weight of Appurtenances		
3		Weight of Ice Only		
4		NESC Heavy Wind		
5		NESC Extreme Wind		
Footnotes:				

CENTEK engineering, INC. Consulting Engineers 63-2 North Branford Road Branford, CT 06405 Ph. 203-488-0580 / Fax. 203-488-8587		```Subject: Analysis of NESC Heavy Wind and NESC Extreme Wind for Obtaining Reactions Applied to Utility Pole Load Combinations Table Location: East Lyme, CT Date: 10/25/16 Prepared by: T.J.L. Checked by: C.F.C.```										Job No. 16162.02		
Load Combination	Description	Envelope Soultion	Wind Factor	P-Delta	BLC	Factor								
1	NESC Heavy Wind		1		1	1.5	2	1.5	3	1.5	4	2.5		
2	NESC Extreme Wind		1		1	1	2	1	5	1				
Footnotes: (1) BLC = Basic Load Case														

Global

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Increase Nailing Capacity for Wind?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automaticly Iterate Stiffness for Walls?	No
Maximum Iteration Number for Wall Stiffnes3	
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF\&PA NDS-97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05: ASD
Aluminum Code	AA ADM1-05: ASD - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

Global, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct Z	.035
Ct X	.035
T Z (sec)	Not Entered
T X (sec)	Not Entered
R Z	8.5
R X	8.5
Ca	.36
Cv	.54
Nv	1
Occupancy Category	4
Seismic Zone	3
Seismic Detailing Code	ASCE 7-05
Om Z	1
Om X	1
Rho Z	1
Rho X	1

Footing Overturning Safety Factor	1.5
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	3
Footing Concrete Ec (ksi)	4000
Lamda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	$\# 3$
Footing Top Bar Cover (in)	3.5
Footing Bottom Bar	$\# 3$
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	1.5
Pedestal Ties	$\# 3$

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11.	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	. 49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	. 49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	. 3	. 65	. 49	35	1.5	58	1.2

\qquad
Structure \# 6076 Mast

Hot Rolled Steel Design Parameters

	Label	Shape	Lengt.	Lbyy[ft]	Lbzz[ft]	Lcomp t...	Lcomp b...	L-torqu...	Kyy	Kzz	Cb	Function
1	M1	Existing Mast	16									Lateral

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design	A [in2]	lyy [in4] Izz [in4		J [in4]
1	Existing Mast	PIPE 6.0X	Column	Pipe	A53 Gr. B	Typical	7.83	38.3	38.3	76.6

Member Primary Data

	Label	I Joint J Joint	K Joint	Rotate(d...	Section/Shape	Type		Design List	Material	Design R...
1	M1	BOTCO...TOPMA...			Existing Mast	Column	Pipe	A53 Gr. B	Typical	

Joint Coordinates and Temperatures

Label									$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$		0	Temp $[\mathrm{F}]$	Detach From \ldots
1	BOTCONNECTION	0	1	0	0										
2	TOPCONNECTION	0	5	0	0										
3	TOPMAST	0	17	0	0										

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	BOTCONNECTION	Reaction	Reaction	Reaction				
2	TOPCONNECTION	Reaction		Reaction		Reaction		

Member Point Loads (BLC 2 : Weight of Appurtenances)

Member Label	Direction		Magnitude $[k, k-\mathrm{ft}]$	Location[ft,\%]
1	M 1	Y	-.101	14
2	M 1	Y	-.006	14

Member Point Loads (BLC 3 : Weight of Ice Only)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M1	Y	-.118	14
2	M1	Y	-.005	14

Member Point Loads (BLC 4 : NESC Heavy Wind)

Member Label	Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$.097	Location[ft,\%]
1	M 1	X	.004	14
2	M 1	X	14	

Member Point Loads (BLC 5 : NESC Extreme Wind)

Member Label	Direction		Magnitude[k,k-ft]	Location[ft,\%]
1	M1	X	1.111	14
2	M1	X	.035	14

\qquad

Joint Loads and Enforced Displacements

Joint Label	Direction	Magnitude[(k,k-ft), (in,rad), ($\left.\left.k^{\star} s^{\wedge} 2 / f t, k^{*} s^{\wedge} 2^{\star} f t\right)\right]$

Member Distributed Loads (BLC 2 : Weight of Appurtenances)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 012	-. 012	7	11

Member Distributed Loads (BLC 3 : Weight of Ice Only)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 004	-. 004	0	11
2	M1	Y	-. 023	-. 023	7	11

Member Distributed Loads (BLC 4 : NESC Heavy Wind)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 003	. 003	0	11
2	M1	X	. 003	. 003	7	11

Member Distributed Loads (BLC 5 : NESC Extreme Wind)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 029	. 029	0	7
2	M1	X	. 036	. 036	7	11
3	M1	X	. 038	. 038	7	11

Basic Load Cases

BLC Description		Category	X Gra... Y Gravity		Z Gra... Joint			Distrib..Area(... Surfa...		
1	Self Weight	None		-1						
2	Weight of Appurtenances	None					2	1		
3	Weight of Ice Only	None					2	2		
4	NESC Heavy Wind	None					2	2		
5	NESC Extreme Wind	None					2	3		

Load Combinations

Description		Sol... PDelta		SR...BLC Fact.		C Fact		LC Fact		LC Fact			act.. BLC Fact.. BLC Fact.. BLC Fact...						
1	NESC Heavy Wind on PC...	Yes	Y	1	1.5	2	1.5	3	1.5	4	2.5								-
2	NESC Extreme Wind on P...	Yes	Y	1	1	2	1	5	1										
3	Self Weight			1	1														

Envelope Joint Reactions

Joint			X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	BOTCONNE...	max	3.217	2	1.26	1	0	1	0	1	0	1	0	1
2		min	. 703	1	. 581	2	0	1	0	1	0	1	0	1
3	TOPCONNE...	max	-1.068	1	0	1	0	1	0	1	0	1	0	1
4		min	-4.862	2	0	1	0	1	0	1	0	1	0	1
5	Totals:	max	-. 365	1	1.26	1	0	1						

Envelope Joint Reactions (Continued)

LC	Y [k]	LC					
2	.581	2		\min	-1.645	2	.581
:---	:---	:---	:---				

Z [k] 0 LC 1

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	BOTCONNECTION	703	1.26	0	0	0	0
2	1	TOPCONNECTION	-1.068	0	0	0	0	0
3	1	Totals:	-. 365	1.26	0			
4	1	COG (ft):	X: 0	Y: 10.678	Z: 0			

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	BOTCONNECTION	3.217	. 581	0	0	0	0
2	2	TOPCONNECTION	-4.862	0	0	0	0	0
3	2	Totals:	-1.645	. 581	0			
4	2	COG (ft):	X: 0	Y: 10.187	Z: 0			

Loads: LC 1, NESC Heavy Wind on PCS Structure

Centek Engineering		
til, cfc		
16162.02 / T-Mobile CT110...	Structure \# 6076 Mast	
	LC \#1 Loads	Dec 22, 2016 at 11:19 AM
		NESC.r3d

Results for LC 1, NESC Heavy Wind on PCS Structure
Z-direction Reaction Units are k and k-ft

Centek Engineering		
tjl, cfc		
16162.02 / T-Mobile CT110...	Structure \# 6076 Mast	
	LC \#1 Reactions	Dec 22, 2016 at 11:19 AM

Loads: LC 2, NESC Extreme Wind on PCS Structure

Centek Engineering					
tjl, cfc	Structure \# 6076 Mast	Dec 22, 2016 at 11:19 AM			
16162.02 / T-Mobile CT110...	LC \#2 Loads	NESC.r3d			

Results for LC 2, NESC Extreme Wind on PCS Structure
Z-direction Reaction Units are k and k-ft

Centek Engineering		
tjl, cfc		
16162.02 / T-Mobile CT110...	Structure \# 6076 Mast	
	LC \#2 Reactions	Dec 22, 2016 at 11:21 AM

$=N \mathrm{NT}=\mathrm{K}$ engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Development of Wind \& Ice Load on CL\&P Pole

Pole Data:		
Shape $=$	Flat	
Width Side $=$	$\mathrm{W}_{\text {side }}:=25$	in
Width Top $=$	$\mathrm{W}_{\text {top }}:=18$	in
Width Bottom $=$	$\mathrm{W}_{\text {bot }}:=56.25$	in
Length $=$	$\mathrm{L}_{\text {top }}:=85$	ft
Area Top $=$	$\mathrm{A}_{\text {bot }}:=110.5$	sq in
Area Bottom $=$	$\mathrm{W}_{\text {steel }}:=490$	pcf
Weight of Steel $=$	$\mathrm{Ai}_{\text {top }}:=40$	sq in
Area Top Ice $=$	$\mathrm{Ai}_{\text {bot }}:=80$	sq in

Gravity Loads (without ice)

Weight Pole Top $=$
Weight Pole Bottom =

Gravity Loads (ice only)

\qquad

Weight of Ice on Pole Tqp =

Weight of Ice on Pole Bottom =
$W_{\text {ICE.top }}:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {top }}}{144}=16$
$W_{\text {ICE. bot }}:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {bot }}}{144}=31$
$W t_{\text {top }}:=\frac{A_{\text {top }}}{144} \cdot W_{\text {steel }}=167$
$W_{\text {bot }}:=\frac{A_{\text {bot }}}{144} \cdot W_{\text {steel }}=376$
plf
BLC 2
plf
plf
BLC 2
plf
plf

BLC 3

BLC 3

二 NTEK engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Wind Load (NESC Extreme)

Pole Projected Surface Area Top $=$
Pole Projected Surface A rea Bottom $=$
Pole Projected Surface A rea Side $=$
Total Pole Wind Force Top $=$
Total Pole Wind Force Bottom $=$
Total Pole Wind Force Side $=$

Wind Load (NESE Heavy)

Pole Projected Surface A rea w/ Ice Top =

Pole Projected Surface A rea w/ Ice Bottom =

Pole Projected Surface Area w/ Iœ Side =

Total Pole Wind Force w/ Ice Top =

Total Pole Wind Force w/ Ice Bottom =

Total Pole Wind Force w/ Ice Side =

$$
\begin{array}{ll}
\mathrm{AICE}_{\text {top }}:=\frac{\left(\mathrm{W}_{\text {top }}+2 \cdot \mathrm{lr}\right)}{12}=1.583 & \mathrm{sq} \mathrm{ft} / \mathrm{ft} \\
\mathrm{AICE}_{\text {bot }}:=\frac{\left(\mathrm{W}_{\mathrm{bot}}+2 \cdot \mathrm{lr}\right)}{12}=4.771 & \mathrm{sq} \mathrm{ft} / \mathrm{ft} \\
\mathrm{AICE}_{\text {side }}:=\frac{\left(\mathrm{W}_{\text {side }}+2 \cdot \mathrm{lr}\right)}{12}=2.167 & \mathrm{sq} \mathrm{ft} / \mathrm{ft} \\
\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {top }}=10 & \mathrm{plf} \\
\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {bot }}=31 & \mathrm{plf} \\
\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {side }}=14 & \mathrm{plf}
\end{array}
$$

$\mathrm{sq} \mathrm{ft} / \mathrm{ft}$
$\mathrm{sq} \mathrm{ft} / \mathrm{ft}$
$\mathrm{sq} \mathrm{ft} / \mathrm{ft}$
plf
plf
plf

BLC 7

BLC 7

BLC 5

BLC 6

BLC 6

BLC 4

Development of Wind \& Ice Load on CL\&P Pole Arms

ARM Data:

Shape $=$	Flat
Depth of Arm at Top $=$	ARM $_{\text {d } 1}:=19$
Depth of Arm at Bottom $=$	ARM $_{d 2}:=5$
Width of Arm at Top $=$	ARM $_{\mathrm{W} 1}:=19$
Width of Arm at Bottom $=$	ARM $_{\mathrm{W} 2}:=5$
Thickness of Arm Wall $=$	ARM $_{\mathrm{t}}:=0.25$

ARM $_{t}:=0.25$
$A_{\text {armtop }}:=\left(A R M_{d 1} \cdot A R M_{W 1}\right)-\left[\left(A R M_{W 1}-2 A R M_{t}\right) \cdot\left(A R M_{d 1}-2 A R M_{t}\right)\right]$
$A_{\text {armbot }}:=\left(A R M_{d 2} \cdot A R M_{W 2}\right)-\left[\left(A R M_{W 2}-2 A R M_{t}\right) \cdot\left(A R M_{d 2}-2 A R M_{t}\right)\right]$
$\mathrm{Wt}_{\text {top }}:=\frac{\mathrm{A}_{\text {armtop }}}{144} \cdot \mathrm{~W}_{\text {steel }}=64$
plf BLC 2
$W t_{\text {bot }}:=\frac{A_{\text {armbot }}}{144} \cdot W_{\text {steel }}=16$
plf
BLC 2

Gravity Loads (ice only)

Arm Area w/ Ice Top =
Arm Area w/ Ice Bott am =
Weight of Ice on Arm Top =
Weight of Ice on Arm Bottom =
$A i_{\text {armtop }}:=\left(A R M_{d 1}+2 \cdot I r\right) \cdot\left(A R M_{W 1}+2 \cdot I r\right)-A R M_{d 1} \cdot A R M_{W 1}=39$
$A i_{\text {armbot }}:=\left(A R M_{d 2}+2 \cdot I r\right) \cdot\left(A R M_{W 2}+2 \cdot I r\right)-A R M_{d 2} \cdot A R M_{W 2}=11$
$\mathrm{W}_{\text {ICE.top }}:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {armtop }}}{144}=15 \quad$ plf

W ICE.bot $:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {armbot }}}{144}=4$
plf

BLC 3

BLC 3

- $=\mathrm{NT}$ 二人 K engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Wind Load (NESC Extreme)

Arm Projected Surface Area Top =	$A_{\text {top }}:=\frac{\text { ARM }_{\mathrm{d} 1}}{12}=1.583$	sq ft/ft	
Arm Projected Surface A rea Bottom =	$\mathrm{A}_{\text {bot }}:=\frac{\text { ARM }_{\mathrm{d} 2}}{12}=0.417$	sq ft/ft	
Total Arm Wind Force Top =	$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {top }}=93$	plf	BLC 7
Total Arm Wind Force Bottom $=$	$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {bot }}=24$	plf	BLC 7
Wind Load (NESE Heavy)			
Arm Projected Surface Area w Iœ Top =	$\text { AICE }_{\text {top }}:=\frac{\left(\mathrm{ARM}_{\mathrm{d} 1}+2 \cdot \mathrm{Ir}\right)}{12}=1.667$	sq ft/ft	
Arm Projected Surface Area w Iœ Bottom =	$\mathrm{AlCE}_{\mathrm{bot}}:=\frac{\left(\mathrm{ARM}_{\mathrm{d} 2}+2 \cdot \mathrm{Ir}\right)}{12}=0.5$	sq ft/ft	
Total Arm Wind Force w/ Ice Top =	$\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AlCE}_{\text {top }}=11$	plf	BLC 6
Total Arm Wind Force w/ Ice Bottom =	p. $\cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {bot }}=3$	plf	BLC 6

Development of Wind \& Ice Load on CL\&P Pole Arms

ARM Data:

Shape $=$	Flat
Depth of Arm at Top $=$	ARM $_{\text {d } 1}:=16$
Depth of Arm at Bottom $=$	ARM $_{\text {d2 }}:=5$
Width of Arm at Top $=$	ARM $_{\mathrm{W} 1}:=16$
Width of Arm at Bottom $=$	ARM $_{\mathrm{W} 2}:=5$
Thickness of Arm Wall $=$	ARM $_{\mathrm{t}}:=0.25$

$w 1 \quad \overline{w ? ~}$

ARM $_{\mathrm{t}}:=0.25$

Gravity Loads (without ice)

Arm Area Top $=$
Arm Area B ottom $=$
Weight Arm Top $=$
Weight Arm Bottom $=$

Gravity Loads (ice only)

Arm Area w/ Ice Top =

Arm Area w/ Ice Bottam =

Weight of Ice on Arm Top =

Weight of Ice on Arm Bottom =
$A i_{\text {armtop }}:=\left(A R M_{d 1}+2 \cdot I r\right) \cdot\left(A R M_{W 1}+2 \cdot I r\right)-A R M_{d 1} \cdot A R M_{W 1}=33$
$A i_{\text {armbot }}:=\left(A R M_{d 2}+2 \cdot I r\right) \cdot\left(A R M_{W 2}+2 \cdot I r\right)-A R M_{d 2} \cdot A R M_{W 2}=11$
$W_{\text {ICE.top }}:=$ Id $\cdot \frac{\mathrm{Ai}_{\text {armtop }}}{144}=13$
plf
plf
BLC 3
$W_{\text {ICE.bot }}:=\frac{\mathrm{Ai}_{\text {armbot }}}{144}=4$

- $=\mathrm{NT}$ 二人 K engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Wind Load (NESC Extreme)			
Arm Projected Surface Area Top =	$\mathrm{A}_{\mathrm{top}}:=\frac{\text { ARM }_{\mathrm{d} 1}}{12}=1.333$	sq ft/ft	
Arm Projected Surface A rea Bottom =	$\mathrm{A}_{\text {bot }}:=\frac{\text { ARM }_{\mathrm{d} 2}}{12}=0.417$	sq ft/ft	
Total Arm Wind Force Top =	$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {top }}=78$	plf	BLC 7
Total Arm Wind Force Bottom =	$\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {bot }}=24$	plf	BLC 7
Wind Load (NESE Heavy)			
Arm Projected Surface Area w Iœ Top =	$\mathrm{AICE}_{\mathrm{top}}:=\frac{\left(\mathrm{ARM}_{\mathrm{d} 1}+2 \cdot \mathrm{Ir}\right)}{12}=1.417$	sq ft/ft	
Arm Projected Surface Area w Iœ Bottom =	$\mathrm{AICE}_{\mathrm{bot}}:=\frac{\left(\mathrm{ARM}_{\mathrm{d} 2}+2 \cdot \mathrm{Ir}\right)}{12}=0.5$	sq ft/ft	
Total Arm Wind Force w/ Ice Top =	$\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {top }}=9$	plf	BLC 6
Total Arm Wind Force w/ Ice Bottom =	p. $\cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {bot }}=3$	plf	BLC 6

二 NTEK engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Development of Wind \& Ice Load on CL\&P Pole Arms

ARM Data:

Shape $=$	Flat
Depth of Arm at Top $=$	ARM $_{\mathrm{d} 1}:=12$
Depth of Arm at Bottom $=$	ARM $_{\mathrm{d} 2}:=5$
Width of Arm at Top $=$	ARM $_{\mathrm{W} 1}:=12$
Width of Arm at Bottom $=$	$\mathrm{ARM}_{\mathrm{W} 2}:=5$
Thickness of Arm Wall $=$	$\mathrm{ARM}_{\mathrm{t}}:=0.25$

Gravity Loads (without ice)

Arm Area Top $=$
Arm Area B otom $=$

Weight Arm Top $=$

Weight Arm Bottom =

Gravity Loads (ice only)

Arm Area w/ Ice Top =

Arm Area w/ Ice Bottom =

Weight of Ice on Arm Top =

Weight of Ice on Arm Bottom =
$A_{\text {armtop }}:=\left(A R M_{d 1} \cdot A R M_{W 1}\right)-\left[\left(A R M_{W 1}-2 A R M_{t}\right) \cdot\left(A R M_{d 1}-2 A R M_{t}\right)\right]$
$A_{\text {armbot }}:=\left(A R M_{d 2} \cdot A R M_{W 2}\right)-\left[\left(A R M_{W 2}-2 A R M_{t}\right) \cdot\left(A R M_{d 2}-2 A R M_{t}\right)\right]$
$W t_{\text {top }}:=\frac{A_{\text {armtop }}}{144} \cdot W_{\text {steel }}=40$
plf BLC 2
$W t_{\text {bot }}:=\frac{A_{\text {armbot }}}{144} \cdot W_{\text {steel }}=16$
plf
BLC 2
$A i_{\text {armtop }}:=\left(A R M_{d 1}+2 \cdot I r\right) \cdot\left(A R M_{W 1}+2 \cdot I r\right)-A R M_{d 1} \cdot A R M_{W 1}=25$
$A i_{\text {armbot }}:=\left(A R M_{d 2}+2 \cdot I r\right) \cdot\left(A R M_{W 2}+2 \cdot I r\right)-A R M_{d 2} \cdot A R M_{W 2}=11$
$\mathrm{W}_{\text {ICE.top }}:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {armtop }}}{144}=10$
plf
plf
BLC 3
$W_{\text {ICE.bot }}:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {armbot }}}{144}=4$

C=NT $=\mathrm{K}$ engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Wind Load (NESC Extreme)

Arm Projected Surface Area Top =
 Arm Projected Surface A rea Bottom =
 Total Arm Wind Force Top = Total Arm Wind Force Bottom =
 Wind Load (NESE Heavy)

Arm Projected Surface A rea w Ice Top =

Arm Projected Surface Area w/ Iœ Bottom =

Total Arm Wind Force w/ Ice Top =

Total Arm Wind Force w/ Ice Bottom =

$A_{\text {top }}:=\frac{\mathrm{ARM}_{\mathrm{d} 1}}{12}=1$	sq ft/ft
$\mathrm{A}_{\text {bot }}:=\frac{\mathrm{ARM}_{\mathrm{d} 2}}{12}=0.417$	sq ft/ft
qz $\cdot C d_{F} \cdot A_{\text {top }}=59$	plf
qz $\cdot C d_{F} \cdot A_{\text {bot }}=24$	plf

AICE $_{\text {top }}:=\frac{\left(\mathrm{ARM}_{\mathrm{d} 1}+2 \cdot \mathrm{rr}\right)}{12}=1.083 \quad \mathrm{sq} \mathrm{ft} / \mathrm{ft}$

AICE $_{\text {bot }}:=\frac{\left(\mathrm{ARM}_{\mathrm{d} 2}+2 \cdot \mathrm{Ir}\right)}{12}=0.5$
$\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {top }}=7$
$p \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{AICE}_{\text {bot }}=3$

BLC 7

BLC 7

BLC 6

BLC 6

二 NTEK engineering	Subject:	Load Analysis of Pole \#6076
	Location:	East Lyme, CT
	Rev. 0: 10/27/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Development of Wind \& Ice Load on Coax Cables

Coax Cable Data:

Coax Type =

Shape $=$
Coax Outside Diameter $=$

Coax Cable Length =

Weight of Coax per foot $=$

Total Number of Coax=

No. of Coax Projecting Outside Face of Pole =

Wind Load (NESC Extreme)

Coax projected surface area $=$

Total Coax Wind Force (Below NU Structure) =

Wind Load (NESC Heavy)

Coax projected surface area w/ Ice =

Total Coax Wind Force w/ Ice =

Gravity Loads (without ice)

Weight of all cables w/o ice

Gravity Load (ice only)

Ice Area per Linear Foot =

Ice Weight All Coax per foot =

HELIAX 1-1/4"
Round

$\mathrm{D}_{\text {coax }}:=1.55$	in	(User Input)
$\mathrm{L}_{\text {coax }}:=85$	ft	(User Input)
$\mathrm{Wt}_{\text {coax }}:=0.66$	plf	(User Input)
$\mathrm{N}_{\text {coax }}:=18$		(User Input)
$\mathrm{NP}_{\text {coax }}:=0$		(User Input)

plf
BLC 16
sq in
plf

BLC 17
$A_{\text {coax }}:=\frac{\left(N P_{\text {coax }} D_{\text {coax }}\right)}{12}=0$
$\mathrm{F}_{\text {coax }}:=\mathrm{qz} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{A}_{\text {coax }}=0$
plf
BLC 19 \& 21
ft
plf
$\mathrm{Fi}_{\text {coax }}:=\mathrm{p} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{AICE}_{\text {coax }}=0$
BLC 18 \& 20

$$
\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\operatorname{coax}} \cdot \mathrm{D}_{\text {coax }}+2 \cdot \mathrm{rr}\right)}{12}=0.1
$$

\qquad
Model Name

Global

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Increase Nailing Capacity for Wind?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automaticly Iterate Stiffness for Walls?	No
Maximum Iteration Number for Wall Stiffnes3	
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 9th: ASD
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI 1999: ASD
Wood Code	AF\&PA NDS-97: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-02
Masonry Code	ACI 530-05: ASD
Aluminum Code	AA ADM1-05: ASD - Building

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	PCA Load Contour
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

\qquad

Global, Continued

Seismic Code	UBC 1997
Seismic Base Elevation (ft)	Not Entered
Add Base Weight?	No
Ct Z	.035
Ct X	.035
T Z (sec)	Not Entered
T X (sec)	Not Entered
R Z	8.5
R X	8.5
Ca	.36
Cv	.54
Nv	1
Occupancy Category	4
Seismic Zone	3
Seismic Detailing Code	ASCE 7-05
Om Z	1
Om X	1
Rho Z	1
Rho X	1

Footing Overturning Safety Factor	1.5
Check Concrete Bearing	No
Footing Concrete Weight (k/ft^3)	0
Footing Concrete f'c (ksi)	3
Footing Concrete Ec (ksi)	4000
Lamda	1
Footing Steel fy (ksi)	60
Minimum Steel	0.0018
Maximum Steel	0.0075
Footing Top Bar	$\# 3$
Footing Top Bar Cover (in)	3.5
Footing Bottom Bar	$\# 3$
Footing Bottom Bar Cover (in)	3.5
Pedestal Bar	$\# 3$
Pedestal Bar Cover (in)	1.5
Pedestal Ties	$\# 3$

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11..	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr. 36	29000	11154	. 3	. 65	49	36	1.5	58	1.2
2	A572 Gr. 50	29000	11154	. 3	. 65	49	50	1.1	58	1.2
3	A992	29000	11154	. 3	. 65	. 49	50	1.1	58	1.2
4	A500 Gr. 42	29000	11154	. 3	. 65	49	42	1.3	58	1.1
5	A500 Gr. 46	29000	11154	. 3	. 65	. 49	46	1.2	58	1.1
6	A53 Gr. B	29000	11154	. 3	65	49	35	1.5	58	1.2

Hot Rolled Steel Design Parameters

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design ... A [in2]		lyy [in4] Izz [in4		J [in4]
1	CL\&P Pole \# 844	W21×44	Column	Wide Flange	A992	Typical	13	20.7	843	77
2	arm	W8x28	Beam	Wide Flange	A992	Typical	8.25	21.7	98	. 537

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d..	Section/Shape	Type	Design List	Material	Design R...
1	M1	BOTTO...	TOP-PO...			CL\&P Pole \# 844	Column	Wide Flange	A992	Typical
2	M2	ARM1-L.	ARM1			arm	Beam	Wide Flange	A992	Typical
3	M3	ARM1-R..	ARM1			arm	Beam	Wide Flange	A992	Typical
4	M4	ARM2-L..	ARM2			arm	Beam	Wide Flange	A992	Typical
5	M5	ARM2-R..	ARM2			arm	Beam	Wide Flange	A992	Typical
6	M6	ARM3-L...	ARM3			arm	Beam	Wide Flange	A992	Typical
7	M7	ARM3-R..	ARM3			arm	Beam	Wide Flange	A992	Typical
8	M8	ARM4-R..	ARM4			arm	Beam	Wide Flange	A992	Typical
9	M9	ARM4-L.	ARM4			arm	Beam	Wide Flange	A992	Typical

Joint Coordinates and Temperatures

	Label	$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From .
1	BOTTOM-POLE	0	0	0	0	
2	ARM1-LEFT	-9.33	47.75	0	0	
3	ARM2-LEFT	-11.67	59.75	0	0	
4	ARM3-LEFT	-9	71.75	0	0	
5	ARM4-LEFT	-5.75	84.75	0	0	
6	TOP-POLE	0	85	0	0	
7	ARM1-RIGHT	9.33	47.75	0	0	
8	ARM2-RIGHT	11.67	59.75	0	0	
9	ARM3-RIGHT	9	71.75	0	0	
10	ARM4-RIGHT	5.75	84.75	0	0	
11	ARM1	0	46.5	0	0	
12	ARM2	0	58.3	0	0	
13	ARM3	0	70.5	0	0	
14	ARM4	0	84	0	0	
15	BOTTOM-BRACE	0	79	0	0	
16	TOP-BRACE	0	83	0	0	

Joint Label		X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad] Z Rot.[k-ft/rad]		Footing
1	BOTTOM-POLE	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction	
2	ARM2-LEFT							
3	ARM1-LEFT							

Member Point Loads

$\begin{array}{|ccc}\hline \text { Member Label } & \text { Direction } & \text { Magnitude[k,k-ft] }\end{array} \quad$ Location[ft,\%] $]$

Joint Loads and Enforced Displacements (BLC 8 : x-direction NESC Heavy Wire Load)

Joint Label				L,D,M
1	ARM4-LEFT	L	Y	Magnitude [(k,k-ft), (in,rad), ($\left.\left.\mathrm{k}^{\star} \mathrm{s}^{\wedge} 2 / \mathrm{ft}, \mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{*} \mathrm{ft}\right)\right]$
2	ARM4-RIGHT	L	Y	-.901
3	ARM3-LEFT	L	Y	-.901
4	ARM3-RIGHT	L	Y	-2.658
5	ARM2-RIGHT	L	Y	-2.658
6	ARM2-LEFT	L	Y	-2.658
7	ARM1-LEFT	L	Y	-2.658
8	ARM1-RIGHT	L	Y	-2.658
9	ARM4-LEFT	L	X	-2.658
10	ARM4-RIGHT	L	X	3.91
11	ARM3-LEFT	L	X	3.91
12	ARM3-RIGHT	L	X	8.927
13	ARM2-LEFT	L	X	8.927
14	ARM2-RIGHT	L	X	8.927
15	ARM1-LEFT	L	X	8.927
16	ARM1-RIGHT	L	X	8.927

Joint Loads and Enforced Displacements (BLC 9 : x-driection NESC Extreme Wire Lo)

	Joint Label	L, D, M	Direction	Magnitude[(k,k-ft), (in,rad), ($\left.\left.k^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{ft}, \mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{\star} \mathrm{ft}\right)\right]$
1	ARM4-LEFT	L	Y	-. 256
2	ARM4-RIGHT	L	Y	-. 256
3	ARM3-LEFT	L	Y	-1.131
4	ARM3-RIGHT	L	Y	-1.131
5	ARM2-LEFT	L	Y	-1.131
6	ARM2-RIGHT	L	Y	-1.131
7	ARM1-RIGHT	L	Y	-1.131
8	ARM1-LEFT	L	Y	-1.131
9	ARM4-LEFT	L	X	2.687
10	ARM4-RIGHT	L	X	2.687
11	ARM3-LEFT	L	X	7.972
12	ARM3-RIGHT	L	X	7.972
13	ARM2-RIGHT	L	X	7.972
14	ARM2-LEFT	L	X	7.972
15	ARM1-LEFT	L	X	7.972
16	ARM1-RIGHT	L	X	7.972

Joint Loads and Enforced Displacements (BLC $10:$ z-direction NESC Heavy Wire Lo)

Joint Label				L, Direction
1	ARM4-LEFT	L	Y	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, $\left.\left.\mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{\star} \mathrm{ft}\right)\right]$
2	ARM4-RIGHT	L	Y	-.901
3	ARM3-LEFT	L	Y	-.901
4	ARM3-RIGHT	L	Y	-2.658
5	ARM2-LEFT	L	Y	-2.658
6	ARM2-RIGHT	L	Y	-2.658
7	ARM1-LEFT	L	Y	-2.658
8	ARM1-RIGHT	L	Y	-2.658

Joint Loads and Enforced Displacements (BLC 11 : z-direction NESC Extreme Wire Lo)

Joint Label				
1	ARM4-LEFT	L,M	Direction	Magnitude[(k,k-ft), (in,rad), ($\left.\left.\mathrm{k}^{\star} \mathrm{s}^{\wedge} 2 / \mathrm{ft}, \mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{\star} \mathrm{ft}\right)\right]$
2	ARM4-RIGHT	L	Y	-.256
3	ARM3-LEFT	L	Y	-.256
4	ARM3-RIGHT	L	Y	-1.131
5	ARM2-LEFT	L	Y	-1.131
6	ARM2-RIGHT	L	Y	-1.131
7	ARM1-LEFT	L	Y	-1.131
8	ARM1-RIGHT	L	Y	-1.131

Joint Loads and Enforced Displacements (BLC 12 : x-direction NESC Heavy Mast Reac)

Joint Label		L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), ($\left.\left.\mathrm{k}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{ft}, \mathrm{k}^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{ft}\right)\right]$
1	TOP-BRACE	L	X	1.068
2	BOTTOM-BRACE	L	X	-. 703
3	TOP-BRACE	L	Y	-1.26

Joint Loads and Enforced Displacements (BLC 13 : x-direction NESC Extreme Mast Re)

Joint Label				
1	TOP-BRACE	D,M	Direction	Magnitude[(k,k-ft), (in,rad), ($\left.\left.\mathrm{k}^{\star} \mathrm{s}^{\wedge} 2 / \mathrm{ft}, \mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{\star} \mathrm{ft}\right)\right]$
2	BOTTOM-BRACE	L	X	4.862
3	TOP-BRACE	L	X	-3.217

Joint Loads and Enforced Displacements (BLC 14 : z-direction NESC Heavy Mast Reac)

	Joint Label	L, D,M	Direction	Magnitude[(k, $\left.\mathrm{k}-\mathrm{ft}),(\mathrm{in}, \mathrm{rad}),\left(\mathrm{k}^{\star} \mathrm{s}^{\wedge} 2 / \mathrm{ft}, \mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{\star} \mathrm{ft}\right)\right]$
1	TOP-BRACE	L	Z	1.068
2	BOTTOM-BRACE	L	Z	-.703
3	TOP-BRACE	L	Y	-1.26

Joint Loads and Enforced Displacements (BLC 15 : z-direction NESC Extreme Mast Re)

Joint Label				L,D,M
1	TOP-BRACE	L	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/ft, $\left.\left.\mathrm{k}^{\star} \mathrm{s}^{\wedge} 2^{\star} \mathrm{ft}\right)\right]$
2	BOTTOM-BRACE	L	Z	4.862
3	TOP-BRACE	L	Y	-3.217

Member Distributed Loads (BLC 2 : Weight Pole and Arms)

	Member Label	Direction	Start Magnitude [k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 376	-. 167	0	0
2	M9	Y	-. 016	-. 04	0	0

Member Distributed Loads (BLC 2 : Weight Pole and Arms) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
3	M8	Y	-. 016	-. 04	0	0
4	M6	Y	-. 016	-. 054	0	0
5	M7	Y	-. 016	-. 054	0	0
6	M3	Y	-. 016	-. 054	0	0
7	M2	Y	-. 016	-. 054	0	0
8	M4	Y	-. 016	-. 064	0	0
9	M5	Y	-. 016	-. 064	0	0

Member Distributed Loads (BLC 3 : Weight of Ice Only on Pole and A)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 031	-. 016	0	0
2	M9	Y	-. 004	-. 01	0	0
3	M8	Y	-. 004	-. 01	0	0
4	M6	Y	-. 004	-. 013	0	0
5	M7	Y	-. 004	-. 013	0	0
6	M3	Y	-. 004	-. 013	0	0
7	M2	Y	-. 004	-. 013	0	0
8	M4	Y	-. 004	-. 015	0	0
9	M5	Y	-. 004	-. 015	0	0

Member Distributed Loads (BLC 4 : x-direction NESC Heavy Wind on P)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	. 014	. 014	0	0

Member Distributed Loads (BLC 5 : x-direction NESC Extreme Wind on)

Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location $[\mathrm{ft}, \%]$	End Location $[\mathrm{ft}, \%]$	
1	M 1	X	.122	.122	0	0

Member Distributed Loads (BLC 6 : z-direction NESC Heavy Wind)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Z	. 031	. 01	0	0
2	M8	Z	. 003	. 007	0	0
3	M9	Z	. 003	. 007	0	0
4	M7	Z	. 003	. 009	0	0
5	M6	Z	. 003	. 009	0	0
6	M3	Z	. 003	. 009	0	0
7	M2	Z	. 003	. 009	0	0
8	M5	Z	. 003	. 011	0	0
9	M4	Z	. 003	. 011	0	0

Member Distributed Loads (BLC 7 : z-direction NESC Extreme Wind)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Z	. 275	. 088	0	0
2	M8	Z	. 024	. 059	0	0
3	M9	Z	. 024	. 059	0	0
4	M7	Z	. 024	. 078	0	0
5	M6	Z	. 024	. 078	0	0
6	M2	Z	. 024	. 078	0	0
7	M3	Z	. 024	. 078	0	0

Member Distributed Loads (BLC 7: z-direction NESC Extreme Wind) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
8	M5	Z	024	. 093	0	0
9	M4	Z	. 024	093	0	0

Member Distributed Loads (BLC 16: Weight of Coax Cables)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Y	-. 012	-. 012	0	0

Member Distributed Loads (BLC 17: Weight of Ice on Coax Cables)

Member Label							Direction
1	Start Magnitude[k/ft,F] End Magnitude[kftt,F]	Start Location $[f t, \%]$	End Location $[f t, \%]$				

Member Distributed Loads (BLC 18 : x-direction NESC Heavy Coax)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	0	0	0	0

Member Distributed Loads (BLC 19 : x-direction NESC Extreme Coax)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	X	0	0	0	0

Member Distributed Loads (BLC 20 : z-direction NESC Heavy Coax)

	Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude[k/ft,F]	Start Location[ft,\%]	End Location[ft,\%]
1	M1	Z	0	0	0	0

Member Distributed Loads (BLC 21 : z-direction NESC Extreme Coax)

Member Label	Direction	Start Magnitude[k/ft,F]	End Magnitude $[\mathrm{k} / \mathrm{ft}, \mathrm{F}]$	Start Location $[\mathrm{ft}, \%]$	End Location $[\mathrm{ft}, \%]$	
1	M 1	Z	0	0	0	0

Basic Load Cases

	BLC Description	Category	X Gra.	Y Gravity	Z Gra.	Joint	Point	Distrib.	Area(...	Surfa...
1	Self Weight (Not Used)	None								
2	Weight Pole and Arms	None						9		
3	Weight of Ice Only on Pole and A	None						9		
4	x-direction NESC Heavy Wind on P	None						1		
5	x-direction NESC Extreme Wind on	None						1		
6	z-direction NESC Heavy Wind	None						9		
7	z-direction NESC Extreme Wind	None						9		
8	x-direction NESC Heavy Wire Load	None				16				
9	x-driection NESC Extreme Wire Lo	None				16				
10	z-direction NESC Heavy Wire Lo	None				8				
11	z-direction NESC Extreme Wire Lo	None				8				
12	x-direction NESC Heavy Mast Reac	None				3				
13	x-direction NESC Extreme Mast Re	None				3				
14	z-direction NESC Heavy Mast Reac	None				3				
15	z-direction NESC Extreme Mast Re	None				3				
16	Weight of Coax Cables	None						1		
17	Weight of Ice on Coax Cables	None						1		
18	x-direction NESC Heavy Coax	None						1		

\qquad

Basic Load Cases (Continued)

BLC Description		Category	X Gra..	Y Gravity	Z Gra..	Joint	Point	Distrib.	Area(Surfa...
19	x-direction NESC Extreme Coax	None						1		
20	z-direction NESC Heavy Coax	None						1		
21	z-direction NESC Extreme Coax	None						1		

Load Combinations

Description		Sol... PDelta		SR...BLC Fact.. BLC Fact..															
1	x-direction NESC Heavy W...			2	1.5	3	1.5	4	2.5	8	1	12	1	16	1.5	17	1.5	18	2.5
2	x-direction NESC Extreme	Yes		2	1	5	1	9	1	13	1	16	1	19	1				
3	z-direction NESC Heavy W	Yes		2	1.5	3	1.5	6	2.5	10	1	14	1	16	1.5	17	1.5	20	2.5
4	z-direction NESC Extreme.	Yes		2	1	7	1	11	1	15	1	16	1	21	1				

Envelope Joint Reactions

Joint			$\mathrm{X}[\mathrm{k}]$	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	BOTTOM-PO..	max	0	3	65.854	1	0	1	0	1	0	1	4022.619	1
2		min	-65.221	2	34.537	2	-20.817	4	-925.041	4	0	1	0	3
3	Totals:	max	0	3	65.854	1	0	1						
4		min	-65.221	2	34.537	2	-20.817	4						

Joint Reactions

	LC	Joint Label		$\mathrm{X}[\mathrm{k}]$	$\mathrm{K}]$	$\mathrm{k}]$		$\mathrm{MX}[\mathrm{k}-\mathrm{ft}]$	MY $[\mathrm{k}-\mathrm{ft}]$		$\mathrm{MZ}[\mathrm{k}-\mathrm{ft}]$
1	1	BOTTOM-POLE	-64.722		0	0	0	4022.619			
2	1	Totals:	-64.722	65.854	0						
3	1	COG (ft):	$\mathrm{X}: 0$	$\mathrm{Y}: 46.955$	$\mathrm{Z}: 0$						

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	$\mathrm{Z}[\mathrm{k}]$	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	2	BOTTOM-POLE	-65.221	34.537	0	0	0	3903.536
2	2	Totals:	-65.221	34.537	0			
3	2	COG (ft):	X: 0	Y: 45.004	Z: 0			

Joint Reactions

	LC	Joint Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	3	BOTTOM-POLE	0	65.854	-5.833	-255.738	0	0
2	3	Totals:	0	65.854	-5.833			
3	3	COG (ft):	$\mathrm{X}: 0$	Y: 46.955	Z: 0			

Joint Reactions

| | LC | Joint Label | | $\mathrm{X}[\mathrm{k}]$ | $\mathrm{Z}[\mathrm{k}]$ | $\mathrm{k}]$ | $\mathrm{NX}[\mathrm{k}-\mathrm{ft}]$ | $\mathrm{MY}[\mathrm{k}-\mathrm{ft}]$ | $\mathrm{MZ}[\mathrm{k}-\mathrm{ft}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | BOTTOM-POLE | 0 | 34.537 | -20.817 | -925.041 | 0 | 0 | |
| 2 | 4 | Totals: | 0 | 34.537 | -20.817 | | | | |
| 3 | 4 | COG (ft): | $\mathrm{X}: 0$ | $\mathrm{Y}: 45.004$ | $\mathrm{Z}: 0$ | | | | |

Member M1, LC 1: x-direction NESC Heavy Wind

Member M1 , LC 2: x-direction NESC Extreme Wind

Member M1 , LC 3: z-direction NESC Heavy Wind

Member M1 , LC 4: z-direction NESC Extreme Wind

Loads: LC 2, x-direction NESC Extreme Wind

Centek Engineering		
tjl, cfc		Pole \#6076
		LC \#2 Loads

Loads: LC 3, z-direction NESC Heavy Wind

Centek Engineering		
tjl, cfc		Pole \#6076
		LC \#3 Loads

C=NT $=\mathrm{K}$ engineering	Subject:	Pole \#6076
Banford, ст Ostos Fit $2013488-859$	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Pole Analysis:

Pole Properties:

Wide Flange Moment of Inertia ly = Wide Flange Moment of Inertia Ix=

Wide Flange Area $=$ Flange $\mathrm{Wdith}=$ Wide Flange Depth =

Tower Width Top = Tower Width Base = Plate Thickness Tq = Plate Thickness Base =

Length of Pole $=$ Nominal Bending Stress = Modulus of Elasticity =

Member Forces:

Bending Moment x-direction Top $=$
Bending Moment x-direction Midspan $=$
Bending Moment x-direction Bottom $=$
Bending Moment y-direction Top $=$
Bending Moment y -direction Midspan $=$ Bending Moment y -direction Bottom $=$

Axial Force Top $=$

Axial Force Bottom =

Increment Length =

Number of Increments =
$\mathrm{I}_{\mathrm{yy}}:=70.4 \cdot \mathrm{in}^{4}$
$I_{x x}:=1830 \cdot \mathrm{in}^{4}$
$A_{w f}:=20.1 \cdot$ in 2
$b_{f}:=8.97 \cdot$ in
$d_{w f}:=23.73 \cdot \mathrm{in}$
$W_{\text {TTop }}:=18 \cdot$ in
$\mathrm{W}_{\text {TBase }}:=56.25 \cdot \mathrm{in}$
Plt ${ }_{\text {tTop }}:=0.25$ in
Plt tBase $:=0.625 \cdot$ in
$\mathrm{L}_{\text {pole }}:=85 \cdot \mathrm{ft}$
$F_{b}:=60 \cdot \mathrm{ksi}$
E := 29000.ksi
$M_{\text {xtop }}:=0 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$M_{\text {xmid }}:=1304 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$M_{\text {xbot }}:=4023 \cdot k i p \cdot f t$
$M_{y t o p}:=0 \cdot k i p \cdot f t$
$\mathrm{M}_{\mathrm{ymid}}:=259 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$M_{y b o t}:=924 k i p . f t$
$P_{\text {top }}:=0 \cdot k i p$
$P_{\text {bot }}:=62 \cdot$ kip

Ic : $=5 \cdot \mathrm{ft}$
$N:=\frac{L_{\text {pole }}}{\text { Ic }}$
(User Input)
(User Input from RISA-3D)
(User Input)
(User Input)

C三NT $=\mathrm{K}$ engineering	Subject:	Pole \#6076
	Location: Rev. 1: 12/22/16	East Lyme, CT Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

$\mathrm{i}:=0 . . \mathrm{N}$

$$
d_{i}:=\| \begin{aligned}
& x \leftarrow(\mathrm{l} \cdot \mathrm{i} \cdot \mathrm{i}) \\
& \mathrm{d} \leftarrow\left(\mathrm{~L}_{\text {pole }}-\mathrm{x}\right)
\end{aligned}
$$

C=NT $=\mathrm{K}$ engineering	Subject:	Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Bending Moment x-direction @ 5' Increments =

$$
M_{x_{i}}:=\left\{\begin{array}{l}
\Delta M_{x} \leftarrow \frac{\left(M_{x m i d}-M_{\text {xtop }}\right)}{0.5 \cdot L_{\text {pole }}} \cdot\left(d_{i}-\frac{L_{\text {pole }}}{2}\right) \text { if } d_{i}>\frac{L_{\text {pole }}}{2} \\
\Delta M_{x} \leftarrow \frac{\left(M_{\text {xbot }}-M_{\text {xmid }}\right)}{0.5 \cdot L_{\text {pole }}} \cdot d_{i} \text { if } d_{i} \leq \frac{L_{\text {pole }}}{2} \\
M_{x} \leftarrow M_{x \text { xid }}-\Delta M_{x} \text { if } d_{i}>\frac{L_{\text {pole }}}{2} \\
M_{x} \leftarrow M_{x \text { xot }}-\Delta M_{x} \text { if } d_{i} \leq \frac{L_{\text {pole }}}{2}
\end{array}\right.
$$

Bending Moment y-direction @ 5' Increments =

$$
M_{y_{i}}: \| \begin{aligned}
& \Delta M_{y} \leftarrow \frac{\left(M_{y \text { yid }}-M_{\text {ytop }}\right)}{0.5 \cdot L_{\text {pole }}} \cdot\left(d_{i}-\frac{L_{\text {pole }}}{2}\right) \text { if } d_{i}>\frac{L_{\text {pole }}}{2} \\
& \Delta M_{y} \leftarrow \frac{\left(M_{y \text { ybot }}-M_{y m i d}\right)}{0.5 \cdot L_{\text {pole }}} \cdot d_{i} \text { if } d_{i} \leq \frac{L_{\text {pole }}}{2} \\
& M_{y} \leftarrow M_{y m i d}-\Delta M_{y} \text { if } d_{i}>\frac{L_{\text {pole }}}{2} \\
& M_{y} \leftarrow M_{y b o t}-\Delta M_{y} \text { if } d_{i} \leq \frac{L_{\text {pole }}}{2}
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{y}_{\mathrm{i}}}=\left(\begin{array}{c}
0 \\
30 \\
61 \\
91 \\
122 \\
152 \\
183 \\
213 \\
244 \\
298 \\
376 \\
455 \\
533 \\
611 \\
689 \\
768 \\
846 \\
924
\end{array}\right) \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

二NT $=\mathrm{K}$ engineering	Subject:	Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Tower Width =
$\mathrm{W}_{\mathrm{Tx}_{\mathrm{i}}:}:=\left\{\begin{array}{l}\Delta \mathrm{W}_{\mathrm{T} . \mathrm{x}} \leftarrow \frac{\left(\mathrm{W}_{\text {TBase }}-\mathrm{W}_{\text {TTop }}\right)}{L_{\text {pole }}} \cdot \mathrm{d}_{\mathrm{i}} \\ \mathrm{W}_{\mathrm{Tx}} \leftarrow \mathrm{W}_{\text {TBase }}-\Delta \mathrm{W}_{\mathrm{T} \cdot \mathrm{x}}\end{array}\right.$

Plate Thickness =

$$
\text { Plt }_{\mathrm{t}}:=\left(\begin{array}{c}
0.25 \\
0.25 \\
0.25 \\
0.25 \\
0.25 \\
0.25 \\
0.25 \\
0.4375 \\
0.4375 \\
0.4375 \\
0.4375 \\
0.4375 \\
0.4375 \\
0.625 \\
0.625 \\
0.625 \\
0.625 \\
0.625
\end{array}\right) \cdot \text { in }
$$

Plate Area $=$
$\mathrm{Plt}_{\mathrm{A}_{\mathrm{i}}}:=\mathrm{W}_{\mathrm{Tx}_{\mathrm{i}}} \cdot\left(\mathrm{Plt}_{\mathrm{t}}^{\mathrm{i}}\right)$

Plt $_{\mathrm{i}}=\left(\begin{array}{c}4.5 \\ 5.063 \\ 5.625 \\ 6.188 \\ 6.75 \\ 7.313 \\ 7.875 \\ 14.766 \\ 15.75 \\ 16.734 \\ 17.719 \\ 18.703 \\ 19.688 \\ 29.531 \\ 30.938 \\ 32.344 \\ 33.75 \\ 35.156\end{array}\right) \mathrm{in}^{2}$

$=\mathrm{NT}=\mathrm{K}$ engineering	Subject:	Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C Job No. 16162.02

Distance from Wide Flange Centroid to Built-up Section Centroid =

$$
\mathrm{d}_{\mathrm{x}_{\mathrm{i}}}:=\frac{\mathrm{W}_{\mathrm{T} \mathrm{x}_{\cdot i}}}{2}-\frac{\mathrm{b}_{\mathrm{f}}}{2}
$$

Distance from Plate Centroid to Built-up Section Centroid =

$$
\mathrm{d}_{\mathrm{y}_{\mathrm{i}}}:=\frac{\mathrm{Plt}_{\mathrm{t}_{\mathrm{i}}}}{2}+\frac{\mathrm{d}_{\mathrm{wf}}}{2}
$$

Total Bult-up Section Area =

$$
\mathrm{A}_{\mathrm{Tot}_{\mathrm{i}}}:=2 \cdot\left(\mathrm{Plt}_{\mathrm{A}_{\mathrm{i}}}+\mathrm{A}_{\mathrm{wf}}\right)
$$

- $=\mathrm{NT}=\mathrm{K}$ engineering	Subject:	Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

$$
\begin{gathered}
\text { Built of Section Moment of Inertia } \mathrm{Ix}= \\
\mathrm{I}_{\mathrm{x}_{\mathrm{i}}}:=2 \cdot\left[\mathrm{I}_{\mathrm{yy}}+\mathrm{A}_{\mathrm{wf}} \cdot\left(\mathrm{~d}_{\mathrm{x}_{\mathrm{i}}}\right)^{2}+\frac{1}{12} \cdot \mathrm{PI}_{\mathrm{t}_{\mathrm{i}}} \cdot\left(\mathrm{w}_{\mathrm{T} \mathrm{x}_{\mathrm{i}}}\right)^{3}\right]
\end{gathered}
$$

Built of Section Moment of Inertia Iy =
$\mathrm{I}_{\mathrm{y}_{\mathrm{i}}}:=2 \cdot\left[\mathrm{I}_{\mathrm{xx}}+\frac{1}{12} \cdot \mathrm{~W}_{\mathrm{Tx} \cdot \mathrm{i}} \cdot\left(\mathrm{PIt}_{\mathrm{t}_{\mathrm{i}}}\right)^{3}+\mathrm{PIt}_{\mathrm{A}_{\mathrm{i}}}\left(\mathrm{d}_{\mathrm{y}_{\mathrm{i}}}\right)^{2}\right]$

Location:

Rev. 1: 12/22/16

$$
\mathrm{S}_{\mathrm{x}_{\mathrm{i}}}:=\frac{\mathrm{I}_{\mathrm{x}_{\mathrm{i}}}}{\frac{\mathrm{~W}_{\mathrm{Tx}_{i j}}}{2}}
$$

Built of Section Modulus $S x=\quad S_{x_{i}}:=\frac{{ }^{I_{x_{i}}}}{\frac{W_{T x_{i}}}{2}} \quad$ Built of Section Modulus $S y=\quad S_{y_{i}}:=\frac{{ }^{I_{y_{i}}}}{\text { Plt }_{t_{i}}+\frac{d_{w f}}{2}}$

East Lyme, CT

Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

C $=N \mathrm{~N}=\mathrm{K}$ engineering	Subject:	Pole \#6076
	Location: Rev. 1: 12/22/16	East Lyme, CT Prepared by: T.J.L Checked by: C.F.C. Job No. 16162.02

Maximum Bending Stress x-direction $=$	$\mathrm{f}_{\text {bxmax }}:=33 \cdot \mathrm{ksi}$
Percent Stressed =	$\frac{f_{b x m a x}}{F_{b}}=55 . \%$
	Bending_Check_x := if $\left(\mathrm{f}_{\mathrm{bxmax}}<\mathrm{F}_{\mathrm{b}}\right.$, "OK", "NG" $)$
	Bending_Check_x = "OK"
Maximum Bending Stress y-direction =	$\mathrm{f}_{\text {bymax }}:=9.8 \cdot \mathrm{ksi}$
Percent Stressed $=$	$\frac{f_{\text {bymax }}}{F_{b}}=16.3 . \%$
	Bending_Check_y $:=$ if $\left(\mathrm{f}_{\text {bymax }}<\mathrm{F}_{\mathrm{b}}\right.$, "OK", "NG" $)$
	Bending_Check_y = "OK"

$\pm N T=K$ engineering	Subject:	Anchor Bolts and Base Plate Analysis xdirection Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Anchor Bolt and Base Plate Anal ysis:

Input Data:

Tower Reactions:

Overturning Moment =

Shear Force $=$

Axial Force $=$

Anchor Bolt Data:
Use ASTM A615 Grade 60
Number of Anchor Bolts =

Bolt "Column" Distance $=$
Bolt Ultimate Strength =
Bolt Yield Strength =

Bolt Modulus =

Diameter of A nchor Bolts =

Threads per Inch =

Base Plate Data:
Use ASTM A36

Plate Yield Strength $=$

Base Plate Thickness =

OM := 4023•ft•kips
Shear := 64.7•kips

Axial := 65.9.kips
$\mathrm{N}:=20$
$\mathrm{I}:=3.0 \cdot \mathrm{in}$
$\mathrm{F}_{\mathrm{u}}:=90 \cdot \mathrm{ksi}$
$F_{y}:=60 \cdot \mathrm{ksi}$
$\mathrm{E}:=29000 \cdot \mathrm{ksi}$
$D:=2.25 \cdot \mathrm{in}$
$\mathrm{n}:=4.5$
bp $:=36 \cdot \mathrm{ksi}$
$\mathrm{t}_{\mathrm{bp}}:=2.5 \cdot \mathrm{in}$
(Input From Risa3D) (Input From Risa3D)
(Input From Risa3D)
(User Input)

二NT $=\mathrm{K}$ engineering	Subject:	Anchor Bolts and Base Plate Analysis xdirection Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Geometric Layout Data:

Distance from Bolts to Centroid of Pole:

$d_{1}:=19.375$ in	(User Input)
$d_{2}:=25.375$ in	(User Input)
$d_{3}:=31.375$ in	(User Input)

Critical Distances For Bending in Plate:
$m a_{1}:=2.125$ in $^{\text {in }} \quad$ (User Input)

Effective Width of Baseplate for Bending =
$B_{\text {eff }}:=37.25$ in
(User Input)

ANCHOR BOLT AND PLATE GEOMETRY

$=N T=K$ engineering	Subject:	Anchor Bolts and Base Plate Analysis x direction Pole \#6076
	Location:	
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

Polar Moment of Inertia $=$

Gross Area of Bolt =

$$
\mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}=3.976 \cdot \mathrm{in}^{2}
$$

$$
\text { Net Are of Bolt }=\quad \quad \mathrm{A}_{\mathrm{n}}:=\frac{\pi}{4} \cdot\left(\mathrm{D}-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2}=3.248 \cdot \mathrm{in}^{2}
$$

$$
\mathrm{D}_{\mathrm{n}}:=\frac{2 \cdot \sqrt{\mathrm{~A}_{\mathrm{n}}}}{\sqrt{\pi}}=2.033 \cdot \mathrm{in}
$$ Net Diameter $=\quad \quad D_{n}:=\frac{2 \cdot \sqrt{A_{n}}}{\sqrt{\pi}}=2.033 \cdot$ in

Radius of Gyration of Bolt $=$

Section Modulus of Bolt $=$

Check Ancha Bolt Tension Force:

Allowable Tensile Force (Gross Area) =

Bolt Tension \% of Capacity =

Condition1 =

$$
I_{p}:=\left[\left(d_{1}\right)^{2} \cdot 4+\left(d_{2}\right)^{2} \cdot 4+\left(d_{3}\right)^{2} \cdot 12\right]=15890 \cdot \mathrm{in}^{2}
$$

$r:=\frac{D_{n}}{4}=0.508 \cdot$ in
$S_{x}:=\frac{\pi \cdot D_{n}^{3}}{32}=0.826 \cdot \mathrm{in}^{3}$

> Maximum Tensile Force =

Conarion
$\mathrm{T}_{\text {Max }}:=\mathrm{OM} \cdot \frac{\mathrm{d}_{3}}{\mathrm{I}_{\mathrm{p}}}-\frac{\text { Axial }}{\mathrm{N}}=92 \cdot \mathrm{kips}$
$T_{A L L}:=\left(A_{n} \cdot F_{y}\right)=194.9 \cdot k i p s$
$\frac{\mathrm{T}_{\text {Max }}}{\mathrm{T}_{\text {ALL }}} \cdot 100=47.2$

Condition1: $=$ if $\left(\frac{T_{\text {Max }}}{T_{A L L}} \leq 1.00\right.$, "OK" , "Overstressed" $)$

Condition1 = "OK"
Note Shear stress is negligible

二NT $二 \mathbf{N}$ - engineering	Subject:	Anchor Bolts and Base Plate Analysis xdirection Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Base Plate Analysis:

$$
\begin{aligned}
& \text { Force from Bolts }=\quad \mathrm{T}_{1}:=\frac{\mathrm{OM} \cdot \mathrm{~d}_{3}}{\mathrm{I}_{\mathrm{p}}}-\frac{\text { Axial }}{\mathrm{N}}=92 \cdot \mathrm{kips} \\
& \text { Applied Bending Stress in Plate }=\quad \quad f_{b p}:=\frac{6 \cdot\left(6 T_{1} \cdot \mathrm{ma}_{1}\right)}{\mathrm{B}_{\mathrm{eff}} \mathrm{t}_{\mathrm{bp}}{ }^{2}}=30.24 \cdot \mathrm{ksi} \\
& \text { Allowable Bending Stress in Plate }= \\
& F_{b p}:=F y_{b p}=36 \cdot \mathrm{ksi} \\
& \text { Plate Bending Stress \% of Capacity }=\quad \frac{f_{b p}}{F_{b p}} \cdot 100=84 \\
& \text { Condition3 }= \\
& \text { Condition2 := if }\left(\frac{f_{b p}}{F_{b p}}<1.00, \text { "Ok" , "Overstressed" }\right) \\
& \text { Condition2 = "Ok" }
\end{aligned}
$$

$=N T=K$ engineering	Subject:	Anchor Bolts and Base Plate Analysis ydirection CL\&P Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Anchor Bolt and Base Plate Anal ysis:

Input Data:

Tower Reactions:

Overturning Moment =

Shear Force =

Axial Force $=$

Anchor Bolt Data:
Use ASTM A615 Grade 60
Number of Anchor Bolts =

Bolt "Column" Distance =
Bolt Ultimate Strength =
Bolt Yield Strength =

Bolt Modulus =

Diameter of A nchor Bolts =

Threads per Inch =

Base Plate Data
Use ASTM A36

Plate Yield Strength =

Base Plate Thickness =

OM := 924•ft•kips
Shear := 20.8•kips

Axial := 34.6•kips
$N:=20$
$\mathrm{I}:=3.0 \cdot \mathrm{in}$
$\mathrm{F}_{\mathrm{u}}:=90 \cdot \mathrm{ksi}$
$F_{y}:=60 \cdot \mathrm{ksi}$
$\mathrm{E}:=29000 \cdot \mathrm{ksi}$
$D:=2.25 \cdot \mathrm{in}$
$\mathrm{n}:=4.5$
bp $\cdot=36 \cdot \mathrm{ksi}$
$\mathrm{t}_{\mathrm{bp}}:=2.5 \cdot \mathrm{in}$
(Input From RISA-3D) (Input From Risa-3D)
(Input From Risa-3D)
(User Input)

$=N T=K$ engineering	Subject:	Anchor Bolts and Base Plate Analysis ydirection CL\&P Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Geometric Layout Data:

Distance from Bolts to Centroid of Pole:

$d_{1}:=3.625$ in	(User Input)
$d_{2}:=9.625 \mathrm{in}$	(User Input)
$d_{3}:=15.625$ in	(User Input)

Critical Distances For Bending in Plate:

Effective Width of Baseplate for Bending =
$B_{\text {eff }}:=18.125$ in
(User Input)

ANCHOR BOLT AND PLATE GEOMETRY

二NT $=\mathrm{K}$ engineering	Subject:	Anchor Bolts and Base Plate Analysis ydirection CL\&P Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Anchor Bolt Analysis:

Calculated Anchor Bolt Properties:

Polar Moment of Inertia =

Gross Area of Bolt =

$$
\mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}=3.976 \cdot \mathrm{in}^{2}
$$

$$
\text { Net Area of Bolt }=\quad \quad A_{n}:=\frac{\pi}{4} \cdot\left(D-\frac{0.9743 \cdot \mathrm{in}}{\mathrm{n}}\right)^{2}=3.248 \cdot \mathrm{in}^{2}
$$

Net Diameter $=$

$$
I_{p}:=\left[\left(d_{1}\right)^{2} \cdot 4+\left(d_{2}\right)^{2} \cdot 4+\left(d_{3}\right)^{2} \cdot 12\right]=3353 \cdot \mathrm{in}^{2}
$$

$$
\mathrm{D}_{\mathrm{n}}:=\frac{2 \cdot \sqrt{\mathrm{~A}_{\mathrm{n}}}}{\sqrt{\pi}}=2.033 \cdot \mathrm{in}
$$

Radius of Gyration of Bolt $=$

Section Modulus of Bolt $=$

Check Anchor Bolt Tension Force:

Maximum Tensile Force $=$

Allowable Tensile Force (Gross Area) =

Bolt Tension \% of Capacity =

Condition1 $=$
$\mathrm{T}_{\text {Max }}:=\mathrm{OM} \cdot \frac{\mathrm{d}_{3}}{\mathrm{I}_{\mathrm{p}}}-\frac{\text { Axial }}{\mathrm{N}}=49.9 \cdot \mathrm{kips}$
$T_{A L L}:=\left(A_{n} \cdot F_{y}\right)=194.9 \cdot k i p s$
$\frac{\mathrm{T}_{\text {Max }}}{\mathrm{T}_{\text {ALL }}} \cdot 100=25.6$

Condition1: $=$ if $\left(\frac{T_{\text {Max }}}{T_{\text {ALL }}} \leq 1.00\right.$, "OK" , "Overstressed" $)$

Condition1 = "OK"

Note Shear stress is negligible

$=N T$ 二人 engineering	Subject:	Anchor Bolts and Base Plate Analysis ydirection CL\&P Pole \#6076
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Base Plate Analysis:

$$
\begin{array}{ll}
\qquad \text { Force from Bolts }= & C_{1}:=\frac{O M \cdot d_{3}}{I_{p}}+\frac{A x i a l}{N}=53.403 \cdot \mathrm{kips} \\
\text { Applied Bending Stress in Plate }= & f_{b p}:=\frac{6 \cdot\left(3 C_{1} \cdot \mathrm{ma}_{1}\right)}{B_{\mathrm{eff}} \cdot \mathrm{t}_{\mathrm{bp}}}=26.52 \cdot \mathrm{ksi} \\
\text { Allowable Bending Stress in Plate }= & \mathrm{F}_{\mathrm{bp}}:=\mathrm{Fy}_{\mathrm{bp}}=36 \cdot \mathrm{ksi} \\
\text { Plate Bending Stress \% of Capacity }= & \frac{f_{b p}}{F_{b p}} \cdot 100=73.7 \\
\text { Condition3 }= & \text { Condition3:= if }\left(\frac{f_{b p}}{F_{b p}}<1.00, \text { "Ok" , "Overstressed" }\right) \\
& \text { Condition3 = "Ok" }
\end{array}
$$

二NT = 人 engineering	Subject:	FOUNDATION ANALYSIS
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Foundation:

 Input Data:Tower Data

Overturning Moment $=$
Shear Force =

Axial Force $=$

Tower Height =

Footing Data:
Depth to Bottom of Footing =
Length of Pier $=$
Extension of Pier Above Grade $=$
Width of Pier $=$

Depth of Soil $=$
Depth of Rock $=$

Material Properties:
Concrete Compressive Strength $=$
Steel Reinforcment Yield Strength $=$
Anchor Bolt Yield Strength $=$
Internal Friction Angle of Soil =
Allowable Soil Bearing Capacity =
Allowable Rock Bearing Capacity =
Unit Weight of Soil = Unit Weight of Concrete $=$

Unit Weight of Rock $=$
Foundation Bouyancy $=$
Depth to Neglect $=$
Cohesion of Clay Type Soil =
Seismic Zone Factor $=$
Coefficient of Friction Between Concrete $=$

$\mathrm{OM}:=4023 \cdot 1 \cdot 1 \cdot \mathrm{ft} \cdot \mathrm{kips}=4425 \cdot \mathrm{ft} \cdot \mathrm{kips}$	(User Input from PLS-Pole)
Shear $:=65 \cdot \mathrm{kip} \cdot 1.1=71.5 \cdot \mathrm{kips}$	(User Input from PLS-Pole)
Axial $:=65 \cdot 9 \cdot \mathrm{kip} \cdot 1.1=72.49 \cdot \mathrm{kips}$	(User Input from PLS-Pole)
$\mathrm{H}_{\mathrm{t}}:=85 \cdot \mathrm{ft}$	(User Input)

$D_{f}:=7.5 \cdot f t$
$L_{p}:=8 \cdot f t$
$\mathrm{L}_{\text {pag }}:=0.5 \cdot \mathrm{ft}$
$W_{p}:=8 \cdot f t$
$\mathrm{D}_{\text {Soil }}:=7.5 \cdot \mathrm{ft}$
$\mathrm{D}_{\text {rock }}:=22 \cdot \mathrm{ft}$
$\mathrm{f}_{\mathrm{c}}:=3000 \cdot \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}:=60000 \cdot \mathrm{psi}$
$\mathrm{f}_{\mathrm{ya}}:=75000 \cdot \mathrm{psi}$
$\Phi_{\mathrm{S}}:=30 \cdot \mathrm{deg}$
$\mathrm{q}_{\mathrm{S}}:=4000 \cdot \mathrm{psf}$
$\mathrm{q}_{\text {rock }}:=50000 \cdot \mathrm{psf}$
$\gamma_{\text {soil }}:=120 \cdot$ pcf
$\gamma_{\text {conc }}:=150 \cdot p c f$
$\gamma_{\text {rock }}:=160 \cdot$ pcf
Bouyancy := 0
$\mathrm{n}:=1.0 \cdot \mathrm{ft}$
$\mathrm{c}:=0 \cdot \mathrm{ksf}$
$Z:=2$
$\mu:=0.45$
(User Input)
(User Input) $\quad(Y e s=1 / \mathrm{No}=0$)
(User Input)
(User Input) (Use 0 for Sandy Soil)
(User Input) (UBC-1997 Fig 23-2)
(User Input)

- $=\mathrm{NT}$ 二人 K engineering	Subject:	FOUNDATION ANALYSIS
	Location:	East Lyme, CT
Elanford, CTos40s Fi, 20314888.8593	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Rock Anchor Properties:

ASTM A615 Grade 60

Bolt Ultimate Strength =	$\mathrm{F}_{\mathrm{u}}:=90 \cdot \mathrm{ksi}$	(User Input)	
Bolt Yield Strength =	$\mathrm{F}_{\mathrm{y}}:=60 \cdot \mathrm{ksi}$	(User Input)	
Anchor Diameter $=$	$\mathrm{d}_{\mathrm{ra}}:=3.81 \cdot \mathrm{in}$	(User Input)	(3 \# 10 Bars)
Hole Diameter $=$	$\mathrm{d}_{\text {Hole }}:=4 \cdot \mathrm{in}$	(User Input)	
Grout Strength =	$\tau:=120 \cdot \mathrm{psi}$	(User Input)	(Assumed Conservative Value)
to Rock Anchor Group 1 =	$\mathrm{D}_{\mathrm{a} 1}:=15 \cdot \mathrm{in}$	(User Input)	
to Rock Anchor Group 2 =	$\mathrm{D}_{\mathrm{a} 2}:=45 \cdot \mathrm{in}$	(User Input)	
Rock Anchors in Group 1 =	$\mathrm{N}_{\mathrm{a} 1}:=4$	(User Input)	
Rock Anchors in Group 2 =	$\mathrm{N}_{\mathrm{a} 2}:=8$	(User Input)	
Number of Rock Anchors =	$\mathrm{N}_{\text {atot }}:=12$	(User Input)	

二NT $=1 / \mathrm{K}$ engineering	Subject:	FOUNDATION ANALYSIS
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Area $1=$
$\mathrm{A} 1_{\mathrm{S}}:=\frac{1}{2} \cdot \tan \left(\Phi_{\mathrm{s}}\right) \cdot \mathrm{D}_{\mathrm{soil}}{ }^{2}=16.238 \mathrm{ft}^{2}$

Area $2=$
$A 2_{S}:=\tan \left(\Phi_{\mathrm{S}}\right) \cdot D_{\text {rock }} \cdot \mathrm{D}_{\text {soil }}=95.263 \mathrm{ft}^{2}$
sf

Distance to Centroid $1=$
$\mathrm{Y} 1:=\tan \left(\Phi_{\mathrm{S}}\right) \cdot D_{\text {rock }}+\frac{1}{3} \cdot \tan \left(\Phi_{\mathrm{S}}\right) \cdot \mathrm{D}_{\text {Soil }}=14.145 \mathrm{ft} \quad \mathrm{ft}$

Distance to Centroid $2=$
$\mathrm{Y} 2:=\frac{1}{2} \cdot \tan \left(\Phi_{\mathrm{s}}\right) \cdot D_{\text {rock }}=6.351 \mathrm{ft}$
ft

Distance from Toe to Centroid of Soil =
$Y_{\text {soil }}:=\frac{\left(A 1_{S} \cdot Y 1+A 2_{S} \cdot Y 2\right)}{\left(A 1_{S}+A 2_{S}\right)}+W_{p}=15.49 \mathrm{ft}$

Area $1=$
$\mathrm{A} 1_{\mathrm{r}}:=\frac{1}{2} \cdot \tan \left(\Phi_{\mathrm{S}}\right) \cdot \mathrm{D}_{\text {rock }}{ }^{2}=139.719 \mathrm{ft}^{2}$
sf

Area $2=$
$A 2_{r}:=W_{p} \cdot D_{\text {rock }}=176 \mathrm{ft}^{2}$
sf

Distance to Centroid $1=$
$\mathrm{Y} 1:=\mathrm{W}_{\mathrm{p}}+\frac{1}{3} \cdot \tan \left(\Phi_{\mathrm{S}}\right) \cdot \mathrm{D}_{\text {rock }}=12.234 \mathrm{ft}$
ft

Distance to Centroid $2=$
$\mathrm{Y} 2:=\frac{W_{\mathrm{p}}}{2}=4 \mathrm{ft}$
ft
Distance from Toe to Centroid of Rock =
$Y_{\text {rock }}:=\frac{\left(A 1_{r} \cdot Y 1+A 2_{r} \cdot Y 2\right)}{\left(A 1_{r}+A 2_{r}\right)}=7.64 \mathrm{ft}$
ft

二NT $=\mathrm{K}$ engineering	Subject:	FOUNDATION ANALYSIS
	Location:	East Lyme, CT
	Rev. 1: 12/22/16	Prepared by: T.J.L. Checked by: C.F.C. Job No. 16162.02

Stability of Footing:

> Adjusted Concrete Unit Weight =
> Adjusted Soil Unit Weight =
> Coefficient of Lateral Soil Pressure $=$
> Passive Pressure $=$
> Ultimate Shear =
> Weight of Concrete $\mathrm{Pad}=$ Total Weight of Soil = Total Weight of Rock =
> Resisting Moment $=$ Overturning Moment =
> Factor of Safety Actual $=$
> Factor of Safety Required $=$
> $\gamma_{c}:=\operatorname{if}\left(\right.$ Bouyancy $\left.=1, \gamma_{\text {conc }}-62.4 \mathrm{pcf}, \gamma_{\text {conc }}\right)=150 \cdot \mathrm{pcf}$
> $\gamma_{\mathrm{S}}:=$ if $\left(\right.$ Bouyancy $\left.=1, \gamma_{\text {soil }}-62.4 \mathrm{pcf}, \gamma_{\text {soil }}\right)=120 \cdot \mathrm{pcf}$
> $K_{\mathrm{p}}:=\frac{1+\sin \left(\Phi_{\mathrm{s}}\right)}{1-\sin \left(\Phi_{\mathrm{S}}\right)}=3$
> $P_{\text {top }}:=0=0 \cdot \mathrm{ksf}$
> $P_{\text {bot }}:=K_{p} \cdot \gamma_{S} \cdot D_{\text {soil }}+c \cdot 2 \cdot \sqrt{K_{p}}=2.7 \cdot k s f$
> $P_{\text {ave }}:=\frac{P_{\text {top }}+P_{\text {bot }}}{2}=1.35 \cdot \mathrm{ksf}$
> $A_{p}:=W_{p} \cdot\left(L_{p}-L_{p a g}\right)=60{f t^{2}}^{2}$
> $S_{u}:=P_{\text {ave }} \cdot A_{p}=81 \cdot k i p$
> $W T_{C}:=\left(W_{p}^{2} \cdot L_{p}\right) \cdot \gamma_{C}=76.8 \cdot k i p$
> $\mathrm{WT}_{\text {Stot }}:=\left(\mathrm{A} 1_{\mathrm{S}}+\mathrm{A} 2_{\mathrm{S}}\right) \cdot \mathrm{W}_{\mathrm{p}} \cdot \gamma_{\mathrm{S}}=107 \cdot \mathrm{kips}$
> $W T_{\text {Rtot }}:=\left(A 1_{r}+A 2_{r}\right) \cdot W_{p} \cdot \gamma_{\text {rock }}=404.1 \cdot \mathrm{kips}$
> $M_{r}:=\left(W T_{C}+A x i a l\right) \cdot \frac{W_{p}}{2}+S_{u} \cdot \frac{\left(L_{p}-L_{\text {pag }}\right)}{3}+W T_{\text {Stot }} \cdot Y_{\text {soil }}+W T_{R t o t} \cdot Y_{\text {rock }}=5546 \cdot k i p \cdot f t$
> $M_{\mathrm{ot}}:=\mathrm{OM}+$ Shear $\cdot \mathrm{L}_{\mathrm{p}}=4997 \cdot \mathrm{kip} \cdot \mathrm{ft}$
> FS $:=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{ot}}}=1.11$
> $\mathrm{FS}_{\text {req }}:=1.0$
> OverTurning_Moment_Check := if(FS \geq FS req , "Okay", "No Good" $)$
> OverTurning_Moment_Check = "Okay"

二 $=\mathrm{NT}$ 二人 engineering	Subject：	FOUNDATION ANALYSIS
	Location：	East Lyme，CT
	Rev．1：12／22／16	Prepared by：T．J．L．Checked by：C．F．C． Job No． 16162.02

Rock Anchor Check：

$$
\begin{array}{cl}
\text { Polar Moment of Inertia }= & \mathrm{I}_{\mathrm{p}}:=\left(\mathrm{D}_{\mathrm{a} 1}{ }^{2} \cdot \mathrm{~N}_{\mathrm{a} 1}+\mathrm{D}_{\mathrm{a} 2}{ }^{2} \cdot \mathrm{~N}_{\mathrm{a} 2}\right)=17100 \cdot \mathrm{in}^{2} \\
\text { Maximum Tension Force }= & \mathrm{T}_{\mathrm{Max}}:=\frac{\mathrm{OM} \cdot \mathrm{D}_{\mathrm{a} 2}}{\mathrm{I}_{\mathrm{p}}}-\frac{\mathrm{Axial}+\mathrm{WT}_{\mathrm{c}}}{\mathrm{~N}_{\mathrm{atot}}}=127.3 \cdot \mathrm{kips} \\
\text { Gross A rea of Bolt Group }= & \mathrm{A}_{\mathrm{g}}:=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{ra}}{ }^{2}=11.401 \cdot \mathrm{in}^{2} \\
\text { Allowable Tension }= & \mathrm{T}_{\mathrm{all}}:=\mathrm{A}_{\mathrm{g}} \cdot \mathrm{~F}_{\mathrm{y}}=684.1 \cdot \mathrm{kips} \\
& \frac{\mathrm{~T}_{\mathrm{Max}}}{\mathrm{~T}_{\mathrm{all}}}=18.6 \cdot \% \\
& \text { Condition1:= if(} \left.\mathrm{T}_{\mathrm{Max}}<\mathrm{T}_{\mathrm{all}}, " \mathrm{OK} ", ~ " \mathrm{NG} "\right) \\
& \text { Condition1 }=\text { "OK" }
\end{array}
$$

Check Bond Strength：

$$
\begin{array}{ll}
\text { Bond Strength }= & \text { Bond_Strength }:=d_{\text {Hole }} \cdot \pi \cdot \mathrm{D}_{\text {rock }} \cdot \tau=398 \cdot \mathrm{kips} \\
& \frac{\mathrm{~T}_{\text {Max }}}{\text { Bond_Strength }}=32 \cdot \% \\
& \text { Condition2 }:=\operatorname{if}\left(\mathrm{T}_{\text {Max }}<\text { Bond_Strength, "OK" , "NG" }\right) \\
& \text { Condition } 2=\text { "OK" }
\end{array}
$$

Bearing Pressure Caused by Footing：

$P_{2}:=\frac{M_{o t} \cdot D_{a 2}}{I_{p}}=157.8 \cdot \mathrm{kips}$
$P_{1}:=\frac{M_{\mathrm{ot}} \cdot D_{\mathrm{a} 1}}{\mathrm{I}_{\mathrm{p}}}=52.6 \cdot \mathrm{kips}$

Area of the Mat $=\quad A_{\text {mat }}:=\left(W_{p} \cdot \frac{W_{p}}{2}\right)=32 \mathrm{ft}^{2}$

Maximum Pressure in Mat $=$

$$
\begin{aligned}
& \text { Max_Pressure_Check:= if }\left(P_{\max }<q_{\text {rock }}, \text { "Okay" }, \text { "No Good" }\right) \\
& \text { Max_Pressure_Check = "Okay" }
\end{aligned}
$$

CT11039D_2.2_L700

Section 1 - Site Information

Section 2 - Existing Template Images

Section 4 - Siteplan Images

- This section is intentionally blank. -----

CT11039D_2.2_L700

RAN Scope of Work:

\qquad

CT11039D_2.2_L700
Section 6 - A\&L Equipment

Existing Template: 4B Proposed Template: 1HP_704Bu			
Sector 1 (Existing) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna			
Antenna Model	APX16DWV-16DWV-S-E-A20 (Quad)		
Azimuth	10		
M. Tilt	0		
Height	(97)		
Ports	P1		P2
Active Tech.	U1900 G1900	U2100 L2100	
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(3)	
Cables	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	
TMAs	Generic Style 1A - Twin PCS	Generic Style 1B - Twin AWS	
Diplexers / Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:			
Scope of Work:			

Sector 1 (Proposed) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	SBNHH-1D65A (Hex)		
Azimuth	10		
M. Tilt	0		
Height	97		
Ports	P1	P2	P3
Active Tech.	U1900 G1900	U2100 L2100	L700
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(3)	
Cables	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.
TMAs	Generic Style 1A - Twin PCS	Generic Style 1B - Twin AWS	
Diplexers / Combiners			
Radio			
Sector Equipment			Andrew Smart Bias T
Unconnected Equipment:			
Scope of Work:			
TMA's located on Ground			

CT11039D_2.2_L700

Sector 2 (Existing) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna			
Antenna Model	APX16DWV-16DWV-S-E-A20 (Quad)		
Azimuth	250		
M. Tilt	0		
Height	97		
Ports	P1		P2
Active Tech.	U1900 G1900	U2100 L2100	
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(3)	
Cables	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	
TMAs	Generic Style 1A - Twin PCS	Generic Style 1B - Twin AWS	
Diplexers / Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:Scope of Work:			

Sector 2 (Proposed) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	SBNHH-1D65A (Hex)		
Azimuth	165		
M. Tilt	0		
Height	(97)		
Ports	P1	P2	P3
Active Tech.	U1900 G1900	U2100 L2100	L700
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(3)	
Cables	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.
TMAs	Generic Style 1A - Twin PCS	Generic Style 1B - Twin AWS	
Diplexers / Combiners			
Radio			
Sector Equipment			Andrew Smart Bias T
Unconnected Equipment:			
Scope of Work:			
TMA's located on Ground			

Sector 3 (Proposed) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	SBNHH-1D65A (Hex)		
Azimuth	(250)		
M. Tilt	0		
Height	97		
Ports	P1	P2	P3
Active Tech.	U1900 G1900	U2100 L2100	L700
Dark Tech.			
Restricted Tech.			
Decomm. Tech.			
E. Tilt	(2)	(3)	
Cables	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.	1-1/4" Coax-115 ft. 1-1/4" Coax-115 ft.
TMAs	Generic Style 1A - Twin PCS	Generic Style 1B - Twin AWS	
Diplexers / Combiners			
Radio			
Sector Equipment			Andrew Smart Bias T
Unconnected Equipment:			
Scope of Work:			
TMA's located on Ground			

SBNHH-1D65A

Andrew® Tri-band Antenna, 698-896 and $2 x$ 1695-2360 MHz, 65° horizontal beamwidth, internal RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	13.6	13.7	16.5	16.9	17.1	17.6
Beamwidth, Horizontal, degrees	66	61	70	65	62	61
Beamwidth, Vertical, degrees	17.6	15.9	7.1	6.6	6.2	5.5
Beam Tilt, degrees	0-18	0-18	0-10	0-10	0-10	0-10
USLS, dB	16	13	13	13	12	12
Front-to-Back Ratio at 180°, dB	25	27	28	28	27	29
CPR at Boresight, dB	20	16	20	23	17	20
CPR at Sector, dB	10	5	11	6	1	4
Isolation, dB	25	25	25	25	25	25
Isolation, Intersystem, dB	30	30	30	30	30	30
VSWR \| Return Loss, dB	1.5 \| 14.0	$1.5 \mid 14.0$	1.5 \| 14.0	1.5 \| 14.0	1.5 \| 14.0	1.5 \| 14.0
PIM, 3rd Order, $2 \times 20 \mathrm{~W}, \mathrm{dBc}$	-153	-153	-153	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350	350	350	300
Polarization	$\pm 45^{\circ}$					
Impedance	50 ohm					

Electrical Specifications, BASTA*

Frequency Band, MHz
Gain by all Beam Tilts, average, dBi
Gain by all Beam Tilts Tolerance, dB

Gain by Beam Tilt, average, dBi

Beamwidth, Horizontal Tolerance, degrees
Beamwidth, Vertical Tolerance, degrees
USLS, dB
Front-to-Back Total Power at $180^{\circ} \pm 30^{\circ}, \mathrm{dB}$
CPR at Boresight, dB
CPR at Sector, dB

698-806

13.1 806-896 1695-1880 1850-1990 1920-2180 2300-236
$\begin{array}{lllll}13.1 & 16.1 & 16.5 & 16.7 & 17.2\end{array}$

± 0.5	± 0.5	± 0.5	± 0.3	± 0.5	± 0.4

$0^{\circ}{ }^{\circ} 13.40^{\circ}\left|13.4 \quad 0^{\circ}\right| 16.0 \quad 0^{\circ}{ }^{\circ}\left|16.3 \quad 0^{\circ}{ }^{\circ}\right| 16.5 \quad 0^{\circ}{ }^{\circ} \mid 17.0$
$9 \circ\left|13.1 \quad 9^{\circ}\right| 13.1 \quad 5^{\circ}\left|16.2 \quad 5^{\circ}\right| 16.5 \quad 5^{\circ}\left|16.8 \quad 5^{\circ}\right| 17.3$
$18^{\circ}\left|12.7 \quad 18^{\circ}\right| 12.7 \quad 10^{\circ}\left|16.1 \quad 10^{\circ}\right| 16.5 \quad 10^{\circ}\left|16.6 \quad 10^{\circ}\right| 16.9$

| ± 3.1 | ± 5.4 | ± 2.8 | ± 4 | ± 6.6 | ± 4.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll} \pm 1.8 & \pm 1.4 & \pm 0.3 & \pm 0.4 & \pm 0.5 & \pm 0.3\end{array}$

15	14	15	15	15	14

22	21	26	26	24	25

22	16	22	25	21	22

* CommScope ${ }^{\circledR}$ supports NGMN recommendations on Base Station Antenna Standards (BASTA). To learn more about the benefits of BASTA, download the whitepaper Time to Raise the Bar on BSAs.

General Specifications

Antenna Brand	Andrew $®$
Antenna Type	DualPoI $®$ multiband with internal RET
Band	Multiband
Brand	DualPol $®$ \| Teletilt $®$
Operating Frequency Band	$1695-2360 \mathrm{MHz} \mathrm{\mid} 698-896 \mathrm{MHz}$

Mechanical Specifications

Color	Light gray Lightning Protection
dc Ground	
Radiator Material	Aluminum I Low loss circuit board
Radome Material	Fiberglass, UV resistant
RF Connector Interface	$7-16$ DIN Female
RF Connector Location	Bottom
RF Connector Quantity, total	6
Wind Loading, maximum	$445.0 \mathrm{~N} \mathrm{@} 150 \mathrm{~km} / \mathrm{h}$
	100.0 lbf @ $150 \mathrm{~km} / \mathrm{h}$
Wind Speed, maximum	$241.4 \mathrm{~km} / \mathrm{h} \mathrm{\mid} 150.0 \mathrm{mph}$

Dimensions

Depth	$180.0 \mathrm{~mm} \mathrm{\mid} 7.1 \mathrm{in}$
Length	$1409.0 \mathrm{~mm} \mathrm{\mid} 55.5 \mathrm{in}$
Width	$301.0 \mathrm{~mm} \mathrm{\mid} 11.9 \mathrm{in}$
Net Weight	$15.2 \mathrm{~kg} \mathrm{\mid} 33.5 \mathrm{lb}$

Remote Electrical Tilt (RET) Information

Input Voltage	$10-30 \mathrm{Vdc}$
Power Consumption, idle state, maximum	2.0 W
Power Consumption, normal conditions, maximum	13.0 W
Protocol	3GPP/AISG 2.0 (Multi-RET)
RET Interface	8 -pin DIN Female \| 8-pin DIN Male
RET Interface, quantity	1 female \| 1 male
RET System	Teletilt®

Regulatory Compliance/Certifications

Agency

RoHS 2011/65/EU
China RoHS SJ/T 11364-2006
ISO 9001:2008

Classification

Compliant by Exemption
Above Maximum Concentration Value (MCV)
Designed, manufactured and/or distributed under this quality management system

Included Products

BSAMNT-1 - Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

Exhibit E

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11039D

90' Utility Tower
269 Flanders Road (CL\&P Tower
East Lyme, CT 06357
January 22, 2017
EBI Project Number: 6217000226

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{3 . 4 0} \%$

January 22, 2017

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11039D-90' Utility Tower

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 269 Flanders Road (CL\&P Tower, East Lyme, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 269 Flanders Road (CL\&P Tower, East Lyme, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
5) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
6) Since all radios are ground mounted there are additional cabling losses accounted for. For each ground mounted RF path the following losses were calculated. 0.80 dB of additional cable loss for all ground mounted 700 MHz Channels, 1.40 dB of additional cable loss for all ground mounted 1900 MHz channels and 1.48 dB of additional cable loss for all ground mounted 2100 MHz channels. This is based on manufacturers Specifications for 115 feet of 1-1/4" coax cable on each path.
7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
8) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antennas used in this modeling are the Commscope SBNHH-1D65A for $700 \mathrm{MHz}, 1900$ MHz (PCS) and 2100 MHz (AWS) channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Commscope SBNHH-1D65A has a maximum gain of $\mathbf{1 4 . 7} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz and a maximum gain of $\mathbf{1 0 . 9}$ dBd at its main lobe at 700 MHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antenna mounting height centerline of the proposed antennas is $\mathbf{9 2}$ feet above ground level (AGL).
11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
12) All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

\(\left.$$
\begin{array}{|r|c|r|r|r|}\hline \text { Sector: } & \text { A } & \text { Sector: } & \text { B } & \text { Sector: } \\
\hline \text { Antenna \#: } & \mathbf{1} & \text { Antenna \#: } & \mathbf{1} & \text { C } \\
\hline \text { Make / Model: } & \begin{array}{c}\text { Commscope } \\
\text { SBNHH-1D65A }\end{array}
$$ \& Make / Model: \& Commscope \& Antenna \#:

\hline Gain: \& 14.7 \mathrm{dBd} / 10.9 \mathrm{dBd} \& Gain: \& 14.7 \mathrm{dBd} / 10.9 \mathrm{dBd} \& Make / Model:\end{array}\right]\)| Commscope |
| :---: |
| SBNHH-1D65A |
| Height (AGL): |

Site Composite MPE\%	
Carrier	MPE\%
T-Mobile (Per Sector Max)	$\mathbf{3 . 4 0} \%$
No Additional Carriers Located At This Facility	NA
Site Total MPE \%:	$\mathbf{3 . 4 0} \%$

T-Mobile Sector A Total:	3.40%
T-Mobile Sector B Total:	3.40%
T-Mobile Sector C Total:	3.40%
Site Total:	

*NOTE: Totals may vary by 0.01% due to summing of remainders
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	3.40%
Sector B:	3.40%
Sector C:	3.40%
T-Mobile Per Sector	
Maximum:	3.40%
Site Total:	3.40%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{3 . 4 0 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

