Transcend Wireless

10 Industrial Ave,

June 24, 2016
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Notice of Exempt Modification
100 Sunset Ridge Road, East Hartford, CT
Latitude- 41.77180000
Longitude- -72.59030000
Dear Ms. Bachman,
T-Mobile currently maintains (9) existing antennas at the 120^{\prime} level of the existing 140^{\prime} lattice tower located at 100 Sunset Ridge Road in East Hartford, Connecticut (also known as 100 Sunset Ridge Drive). The tower and property is owned by the Town of East Hartford. T-Mobile now intends to replace (3) of its existing antennas with (3) new 1900 MHz antennas. These antennas would be installed at the same 120^{\prime} level of the tower. T-Mobile also intends to install (1) new hybrid fiber cable.

Enclosed is a letter from Jeffrey Cormier, Town Planner for the Town of East Hartford, indicating the Town no longer has a record of the original approval for this facility. The Council did not certificate this facility.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. 16-50j-72(b)(2). In accordance with R.C.S.A. 16-50j-73, a copy of this letter is being sent to the Mayor of the Town of East Hartford, the Honorable Marcia A. Leclerc, as well as the property and tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-72(b)(2).

1. The proposed modification will not result in an increase in the height of the existing structure
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereferenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey 07430
908-447-4716
krichers@transcendwireless.com
cc: Marcia A. Leclerc- as elected official
Town of East Hartford- as tower and property owner

- $95180 y$ purpueqs

LN3WกDOO BynD35

SECURE DOCUMENT

SECURE DOCUMENT

Standard Register

Standard Regis
4293104

DEVELOPMENT

June 14, 2016
Kyle Richers
Transcend Wireless
10 Industrial Ave, Suite 3
Mahwah, NJ 07430

Re: 100 Sunset Ridge Road - Conditions of Approval for Wireless Facility

Dear Mr. Richers:
Unfortunately I am unable to locate the original site plan approval for the telecommunications wireless tower facility located at 100 Sunset Ridge Road.

Please contact me with any questions.
Sincerely,

Jeffrey P. Cormier
Town Planner

Town of East Hartford Property Summary Report
 100 SUNSET RIDGE DR

MAP LOT:	$57-134 A$	CAMA PID:	13740
LOCATION:	100 SUNSET RIDGE DR		
OWNER NAME:	TOWN OF EAST HARTFORD / VETERANS MEMORIAL CLUBHSE		

OWNER OF RECORD
TOWN OF EAST HARTFORD
VETERANS MEMORIAL CLUBHSE
740 MAIN STREET

EAST HARTFORD, CT 06108

LIVING AREA:	6169	ZONING:	R2	ACREAGE:	1.64

SALES HISTORY			
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE
TOWN OF EAST HARTFORD VETERANS MEMORIAL CLUBHSE	$159 / 39$	01-Jan-1900	$\$ 0.00$

CURRENT PARCEL ASSESSMENT						
TOTAL:	$\$ 807,050.00$	IMPROVEMENTS:	$\$ 708,350.00$	LAND:	$\$ 98,700.00$	

ASSESSING HISTORY			
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE
2015	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2014	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2013	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2012	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2011	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$

Town of East Hartford Property Summary Report			
$\mathbf{1 0 0}$ SUNSET RIDGE DR			
MAP LOT:	$57-134 A$	CAMA PID:	13740
LOCATION:	100 SUNSET RIDGE DR		
OWNER NAME:	TOWN OF EAST HARTFORD / VETERANS MEMORIAL CLUBHSE		

BUILDING \# 1

YEAR BUILT	1930	EXT WALL 1	Stone/Masonry
STYLE	Cultural Facility	INT WALLS 1	Plaster
MODEL	Comm/Ind	HEAT FUEL	Other
STORIES	1.0	HEAT TYPE	Steam
OCCUPANCY	Exempt	AC TYPE	
ROOF	Drmrs/Ex Gable	BEDROOMS	15
ROOF COVER	Asphalt	FULL BATHS	
FLOOR COVER 1	Hardwood	HALF BATHS	0
\% BSMT	null	TOTAL ROOMS	null
\% FIN BSMT	null	\% REC RM	null
\% SEMI FIN BSMT	null	\% ATTIC FINISH	null
BSMT GARAGE	null		

EXTRA FEATURES		
DESCRIPTION	CODE	UNITS
Fin Bsmt	FBM	1567 S.F.
Fireplace	FPL	1 UNITS

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11737C
CT737/E Hartford Town SST 100 Sunset Ridge Road
East Hartford, CT 06118
June 17, 2016
EBI Project Number: 6216002848

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{1 0 . 8 9} \%$

June 17, 2016

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11737C - CT737/E Hartford Town SST

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{1 0 0}$ Sunset Ridge Road, East Hartford, CT, for the purpose of determining whether the emissions from the Proposed TMobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{1 0 0}$ Sunset Ridge
Road, East Hartford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
6) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
8) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antennas used in this modeling are the Ericsson AIR32 B66Aa/B2A \& Ericsson AIR21 B2A/B4P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR32 B66Aa/B2A has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Ericsson AIR21 B2A/B4P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antenna mounting height centerline of the proposed antennas is $\mathbf{~} \mathbf{2 0}$ feet above ground level (AGL).
11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
12) All calculations were done with respect to uncontrolled / general public threshold limits.

NEBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { Ericsson AIR32 } \\ \text { B66Aa/B2A } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR32 } \\ \text { B66Aa/B2A } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR32 } \\ \text { B66Aa/B2A } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08
Antenna A1 MPE\%	2.58	Antenna B1 MPE\%	2.58	Antenna C1 MPE\%	2.58
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	Channel Count	6
Total TX Power(W):	180	Total TX Power(W):	180	Total TX Power(W):	180
ERP (W):	7,002.81	ERP (W):	7,002.81	ERP (W):	7,002.81
Antenna A2 MPE\%	1.94	Antenna B2 MPE\%	1.94	Antenna C2 MPE\%	1.94
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ 6515 \text { DS-VTM } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ 6515 \text { DS-VTM } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ 6515 \mathrm{DS}-\mathrm{VTM} \end{gathered}$
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power(W):	30	Total TX Power(W):	30	Total TX Power(W):	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A3 MPE\%	0.51	Antenna B3 MPE\%	0.51	Antenna C3 MPE\%	0.51

Site Composite MPE\%	
Carrier	
T-Mobile (Per Sector Max)	$\mathbf{5 . 0 3} \%$
Clearwire	0.21%
AT\&T	2.53%
Public Works	0.62%
Fire	0.41%
Fire Admin	0.41%
Police Channels $\& 2$	1.02%
Parks \& Rec	0.17%
Health	0.25%
800	0.24
Site Total MPE \%:	$\mathbf{1 0 . 8 9} \%$

T-Mobile Sector A Total:	5.03%
T-Mobile Sector B Total:	5.03%
T-Mobile Sector C Total:	5.03%
Site Total:	

$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { T-Mobile_per sector } & \begin{array}{c}\# \\ \text { Channels }\end{array} & \begin{array}{c}\text { Watts ERP } \\ \text { (Per Channel) }\end{array} & \begin{array}{c}\text { Height } \\ (\mathbf{f e e t)}\end{array} & \begin{array}{c}\text { Total Power } \\ \text { Density } \\ \left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)\end{array} & \text { Frequency (MHz) } & \begin{array}{c}\text { Allowable } \\ \mathbf{M P E} \\ \left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)\end{array} \\ \hline \text { Calculated \% } \\ \mathbf{M P E}\end{array}\right]$
*Note: Totals may vary by 0.01% due to summing of remainders
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	5.03%
Sector B:	5.03%
Sector C:	5.03%
T-Mobile Per Sector Maximum:	5.03%
Site Total:	10.89%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 0 . 8 9 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

STRUCTURAL ANALYSIS REPORT

For
 CT11737C
 CT737/E HARTFORD TOWN SST
 100 SUNSET RIDGE ROAD EAST HARTFORD, CT 06118
 Antennas Mounted to the Tower

 Prepared for:

Transcend Wireless

Dated: June 10, 2016

Prepared by:

1600 Osgood Street Bldg. 20N Suite 3090

SCOPE OF WORK:

Hudson Design Group $\amalg C$ (HDG) has been authorized by T-Mobile to conduct a structural evaluation of the 140' self-supporting tower supporting the proposed T-Mobile's a ntennaslocated at elevation 120' above the ground level.

This report represents this office's findings, conclusions and recommendations perta ining to the support of T-Mobile's existing and proposed a ntennas listed below.

Record drawings of the existing tower were not available for our use. The previous structural a nalysis report prepared by EBI Consulting, dated August 6, 2014, wa s available and obtained for our use.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing tower is in conformance with the ANSI/TIA-222-F Sta ndard for the loading considered under the criteria listed in this report. The tower structure is rated at 59.6\% - (Legs at Tower Section 77 from EL.0' to EL.20' Controlling).

APPURIENANCES CONFGURATION:

Tenant	Appurtenances	Elev.	Mount
	Lightning Rod	138^{\prime}	Tower Leg
	(3) 7' Omni	138^{\prime}	Side Mount Sta nd off
	1' $^{\prime}$ Dish	135^{\prime}	Side Mount Sta nd off
	(3) 20' Omni	130^{\prime}	T- Fra me
T-Mobile	(3) AIR 21 B2A/B4P Antennas	120^{\prime}	T- Fra me
T-Mobile	(3) LNX-6515DS-A1M Antennas	120^{\prime}	T- Frame
T-Mobile	(3) RRUS-11	120^{\prime}	T- Fra me
T-Mobile	(3) TMA	120^{\prime}	T- Fra me
T-Mobile	(3) AIR 32 B66Aa/ B2a Antennas	120^{\prime}	T- Fra me
	(3) Pa nel Antennas	100^{\prime}	Side Mount Sta ndoff
	(3) RRH	100^{\prime}	Side Mount Sta ndoff
	2' Dish	100^{\prime}	Side Mount Sta ndoff
	1' Dish	(2) 1' Dish	90^{\prime}
	Tower Leg		
		Tower Leg	

*Proposed T-Mobile Appurtenances shown in Bold.

T-MOBILE EXISTING/ PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-Mobile	(6) $15 / 8$ '" Cables $^{\text {T-Mobile }}$	(1) Fiber Cable	120^{\prime}
Tower Fa ce			
T-Mobile	(1) Fiber Cable	120^{\prime}	Tower Face

*Proposed T-Mobile Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	$\mathbf{5 9 . 6} \%$	$0-20$	PASS	Controlling
Diagonals	50.1%	$100-120$	PASS	
Top Girts	0.8%	$120-140$	PASS	

DESIGN CRIERIA:

1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town: East Hartford
County: Hartford
Wind Load: 80 mph (fastest mile)
100 mph (3 second gust)
Nominal Ice Thickness: 0.5 inch
2. Approximate height above grade to proposed antennas: 120^{\prime}
*Calculations and referenced documents are attac hed.

ASSUMPIIONS:

1. The tower dimensions, member sizes and material strength are as indic ated in the previous structural analysis report prepared by EBI Consulting, dated August 6, 2014.
2. The existing appurtenances configuration is as stated in the previous structural a nalysis report prepared by EBI Consulting, dated August 6, 2014. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported asper the manufacturer's requirements.
3. The tower and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its membercapacities.
4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The a nalysis is limited to the primary support struc ture itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if a vailable), a nd installed properly.
6. The foundation of the tower was not checked due to lack of information. As-built foundation drawings and geotechnical report would be required to determine whether the foundation is capable of supporting the proposed loadings.

SUPPORTRECOMMENDATIONS:

HDG recommends that the proposed antennas be mounted on the existing T-frame supported by the tower.

ONGOING AND PERIODIC INSPECTION AND MAINIENANCE:

After the Contractor has suc cessfully completed the installation and the work has been accepted, the Owner will be responsible for the ongoing and periodic inspection and maintenance of the tower.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire tower structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1: It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

Photo 1: Photo illustrating the Tower with Appurtenances shown.

H Hudson Design Group LLC	Dob: CT11737C EAST HARTFORD, CT		
Hudson 1600 Osgood Street Bldg. 20N Suite 3090	Project 140 ft Self Supporting Tower		
rth Andover, MA 0184	Client: T-Mobile	Drawn by: kw	App'd:
	Code: $\mathrm{TIA} / \mathrm{EIA}-222-\mathrm{F}$	Date: 06/10/16	ale: NTS
FAX: (978) 336-5586	Path:		Dwg No. E-1

Hudson Design Groupuc	Job	CT11737C	EAST HARTFOR	$\begin{array}{\|ll\|} \hline \text { Page } & \\ & 1 \text { of } 9 \end{array}$
Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	140 ft Self Supporting Tower			$\begin{aligned} & \text { Date } \\ & \text { 08:41:27 06/10/16 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 140.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 8.00 ft at the top and 16.00 ft at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Basic wind speed of 80 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56 pcf.
A wind speed of 69 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tower Section Geometry
$\left.\begin{array}{cccccc}\hline \begin{array}{l}\text { Tower } \\ \text { Section }\end{array} & \begin{array}{c}\text { Tower } \\ \text { Elevation }\end{array} & \begin{array}{c}\text { Assembly } \\ \text { Database }\end{array} & \begin{array}{c}\text { Description }\end{array} & \begin{array}{c}\text { Section } \\ \text { Width }\end{array} & \begin{array}{c}\text { Number } \\ \text { of }\end{array} \\ & & & & \begin{array}{c}\text { Section } \\ \text { Length }\end{array} \\ & f t & 140.00-120.00 & & 8.00 & 1 \\ \hline \text { Sections }\end{array}\right]$

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	$f t$				Panels	
in		No	in				
T1	$140.00-120.00$	5.00	X Brace	No	No	0.0000	0.0000
T2	$120.00-100.00$	5.00	X Brace	No	No	0.0000	0.0000
T3	$100.00-80.00$	5.00	X Brace	No	No	0.0000	0.0000
T4	$80.00-60.00$	5.00	X Brace	No	No	0.0000	0.0000
T5	$60.00-40.00$	5.00	X Brace	No	No	0.0000	0.0000
T6	$40.00-20.00$	5.00	X Brace	No	No	0.0000	0.0000
T7	$20.00-0.00$	5.00	X Brace	No	No	0.0000	0.0000

Hudson Hudson Design Group LLC	Job	CT11737C	EAST HARTFOR	$\text { Page } 2 \text { of } 9$
	140 ft Self Supporting Tower			$\begin{aligned} & \hline \text { Date } \\ & \text { 08:41:27 06/10/16 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

Tower Section Geometry (cont'd)						
Tower Elevation ft	$\begin{gathered} \text { Leg } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { Leg } \\ & \text { Size } \end{aligned}$	Leg Grade	$\begin{gathered} \text { Diagonal } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$	Diagonal Grade
T1 140.00-120.00	Solid Round	$21 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 3/4x1 3/4x1/8	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T2 120.00-100.00	Solid Round	$21 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 3/4x1 3/4x1/4	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T3 100.00-80.00	Solid Round	$23 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2 1/2x2 1/2x5/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 80.00-60.00	Solid Round	3	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2 1/2x2 1/2x5/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 60.00-40.00	Solid Round	$31 / 4$	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2 1/2x2 1/2x5/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T6 40.00-20.00	Truss Leg	Pirod 105218	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L3x3x5/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T7 20.00-0.00	Truss Leg	Pirod 105219	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L3x3x5/16	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt					
Type		Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
T1 $140.00-120.00$	Equal Angle		Srade	Type	Size	

Tower Section Geometry (cont'd)

Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
T1 140.00-120.00	Equal Angle		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T2 120.00-100.00	Equal Angle		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T3 100.00-80.00	Equal Angle		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T4 80.00-60.00	Equal Angle		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T5 60.00-40.00	Equal Angle		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T6 40.00-20.00	Equal Angle		$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
T7 20.00-0.00	Equal Angle		$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$	Solid Round	9/16	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$

Hudson Design Group LLC 1600 Osgood Street Bldg．20N Suite 3090	Job	CT11737C	EAST HARTFORD	$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \text { of } 9 \end{aligned}$
	140 ft Self Supporting Tower			$\begin{aligned} & \text { Date } \\ & \text { 08:41:27 06/10/16 } \end{aligned}$
North Andover，MA 01845 Phone：（978）557－5553 FAX：（978）336－5586	Client		T－Mobile	Designed by kw

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset （Frac FW）	\＃	\＃ Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
Feedline Ladder（Af） ＊＊＊＊＊＊＊＊	C	Yes	Af（CfAe）	120．00－6．00	0.0000	0.45	1	1	0.0000	3.0000	12.0000	8.40
$\begin{aligned} & \text { LDF7-50A } \\ & \text { (1-5/8 FOAM) } \\ & \text { (T-Mobile - } \\ & \text { existing) } \end{aligned}$	C	Yes	Ar（CfAe）	120．00－6．00	－2．0000	0.44	6	3	0.0000	1.9800		0.82
$\begin{gathered} 15 / 8 \text { Fiber } \\ \text { Cable } \\ * * * * * * * * \end{gathered}$	C	Yes	Ar（CfAe）	120．00－6．00	－3．0000	0.46	1	1	1.9800	1.9800		1.04
$15 / 8$ Fiber Cable （T－Mobile－ proposed） ＊＊＊水水水水	C	Yes	Ar（CfAe）	120．00－6．00	－3．0000	0.47	1	1	0.0000	1.9800		1.04
3 ＂conduit	C	Yes	Ar（CfAe）	100．00－6．00	－4．0000	0.47	3	3	0.0000	3.5000		3.00
$\begin{gathered} \text { VXL5-50 (7/8 } \\ \text { FOAM) } \\ \text { ********** } \end{gathered}$	C	Yes	Ar（CfAe）	140．00－6．00	－4．0000	0.44	7	4	0.0000	1.0800		0.29

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets： Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment 0	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
Lightning Rod 2＂x15＇	B	From Leg	$\begin{aligned} & 0.50 \\ & 0.00 \\ & 7.50 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 3.00 \\ & 4.53 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 4.53 \end{aligned}$	$\begin{gathered} 80.00 \\ 103.14 \end{gathered}$
3＇Side Mount Standoff	A	From Leg	$\begin{aligned} & 1.50 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime} \text { Ice }$	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 45.00 \\ & 70.00 \end{aligned}$
3＇Side Mount Standoff	B	From Leg	$\begin{aligned} & 1.50 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime} \text { Ice }$	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 45.00 \\ & 70.00 \end{aligned}$
3＇Side Mount Standoff	C	From Leg	$\begin{aligned} & 1.50 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 45.00 \\ & 70.00 \end{aligned}$
Omni 2＂x7＇	A	From Leg	$\begin{aligned} & 3.00 \\ & 0.00 \\ & 5.00 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 1.40 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 30.00 \\ & 40.92 \end{aligned}$
Omni 2＂x7＇	B	From Leg	$\begin{aligned} & 3.00 \\ & 0.00 \\ & 5.00 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime} \text { Ice }$	$\begin{aligned} & 1.40 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 30.00 \\ & 40.92 \end{aligned}$
Omni 2＂x7＇	C	From Leg	$\begin{aligned} & 3.00 \\ & 0.00 \\ & 5.00 \end{aligned}$	0.0000	138.00	No Ice $1 / 2^{\prime \prime} \text { Ice }$	$\begin{aligned} & 1.40 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 30.00 \\ & 40.92 \end{aligned}$
3＇Side Mount Standoff	A	From Leg	$\begin{aligned} & 1.50 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	135.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 45.00 \\ & 70.00 \end{aligned}$
＊＊＊＊＊＊＊＊＊＊＊ Omni 3＂x20＇	A	From Leg	$\begin{aligned} & 3.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000	130.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 6.00 \\ & 8.03 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 8.03 \end{aligned}$	$\begin{aligned} & 50.00 \\ & 93.17 \end{aligned}$

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CT11737C	EAST HARTFORD	$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 9 \end{aligned}$
	Project	140 ft	Supporting Tower	$\begin{aligned} & \text { Date } \\ & \text { 08:41:27 06/10/16 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{2}{*}{Omni 3"x20'} \& B \& From Leg \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 6.00 \& 6.00 \& 50.00

\hline \& \& \& 0.00
0.00 \& \& \& 1/2" Ice \& 8.03 \& 8.03 \& 93.17

\hline \multirow[t]{3}{*}{Omni 3"x20'} \& C \& From Leg \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 6.00 \& 6.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& $1 / 2$ " Ice \& 8.03 \& 8.03 \& 93.17

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{**********}

\hline \multirow[t]{3}{*}{PiROD 12' T-Frame (T-Mobile - Existing)} \& A \& From Leg \& 1.50 \& 0.0000 \& 120.00 \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{PiROD 12' T-Frame} \& B \& From Leg \& 1.50 \& 0.0000 \& 120.00 \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{PiROD 12' T-Frame} \& C \& From Leg \& 1.50 \& 0.0000 \& 120.00 \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& A \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 6.85 \& 5.78 \& 104.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 6.70 \& 162.69

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& B \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 6.85 \& 5.78 \& 104.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 6.70 \& 162.69

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& C \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 6.85 \& 5.78 \& 104.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 6.70 \& 162.69

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{LNX-6515DS-A1M w/ Mount Pipe} \& A \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& $$
11.68
$$ \& \[

9.84
\] \& 83.27

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

12.40

\] \& \[

11.37
\] \& 172.93

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{LNX-6515DS-A1M w/ Mount Pipe} \& B \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 11.68 \& 9.84 \& 83.27

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.40 \& 11.37 \& 172.93

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{LNX-6515DS-A1M w/ Mount Pipe} \& C \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 11.68 \& 9.84 \& 83.27

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.40 \& 11.37 \& 172.93

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRUS 11} \& A \& From Leg \& 2.00 \& 0.0000 \& 120.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRUS 11} \& B \& From Leg \& 2.00 \& 0.0000 \& 120.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{RRUS 11} \& C \& From Leg \& 2.00 \& 0.0000 \& 120.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& $1 / 2$ " Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Gen. TMA} \& A \& From Leg \& 2.00 \& 0.0000 \& 120.00 \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Gen. TMA} \& B \& From Leg \& 2.00 \& 0.0000 \& 120.00 \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Gen. TMA} \& C \& From Leg \& 2.00 \& 0.0000 \& 120.00 \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multicolumn{10}{|l|}{**********}

\hline \multirow[t]{3}{*}{| AIR 32 B66Aa/B2a w/mount pipe |
| :--- |
| (T-Mobile - Proposed) |} \& A \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 7.40 \& 6.21 \& 153.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.97 \& 7.14 \& 215.61

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline AIR 32 B66Aa/B2a w/mount \& B \& From Leg \& 3.00 \& 0.0000 \& 120.00 \& No Ice \& 7.40 \& 6.21 \& 153.90

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\) Side
\[
f t^{2}
\] \& Weight

$l b$

\hline pipe \& \& \& $$
\begin{aligned}
& 0.00 \\
& 0.00
\end{aligned}
$$ \& \& \& 1/2" Ice \& 7.97 \& 7.14 \& 215.61

\hline AIR 32 B66Aa/B2a w/mount pipe \& C \& From Leg \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 120.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 7.40 \\
& 7.97
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 6.21 \\
& 7.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 153.90 \\
& 215.61
\end{aligned}
$$
\]

\hline ********** \& \& \& \& \& \& \& \& \&

\hline SO 101-1 \& A \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 3.75 \\
& 4.45
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.28 \\
& 1.39
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
84.00 \\
111.00
\end{gathered}
$$
\]

\hline SO 101-1 \& B \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.75 \\
& 4.45
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.28 \\
& 1.39
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
84.00 \\
111.00
\end{gathered}
$$
\]

\hline SO 101-1 \& C \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.75 \\
& 4.45
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.28 \\
& 1.39
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
84.00 \\
111.00
\end{gathered}
$$
\]

\hline Panel Antenna 6'x1'x4.5" w/mount pipe \& A \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 2.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 8.64 \\
& 9.29
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 5.49 \\
& 6.65
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
65.55 \\
127.19
\end{gathered}
$$
\]

\hline Panel Antenna 6'x1'x4.5" w/mount pipe \& B \& From Leg \& \[
$$
\begin{aligned}
& 4.00 \\
& 2.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 100.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 8.64 \\
& 9.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.49 \\
& 6.65
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
65.55 \\
127.19
\end{gathered}
$$
\]

\hline Panel Antenna 6'x1'x4.5" w/mount pipe \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 2.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 8.64 \\
& 9.29
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.49 \\
& 6.65
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
65.55 \\
127.19
\end{gathered}
$$
\]

\hline 9442 RRH 700 \& A \& From Leg \& \[
$$
\begin{aligned}
& 4.00 \\
& 2.00 \\
& 2.00
\end{aligned}
$$

\] \& 0.0000 \& 100.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 3.53 \\
& 3.80
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.60 \\
& 1.82
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.00 \\
& 64.97
\end{aligned}
$$
\]

\hline 9442 RRH 700 \& B \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 2.00 \\
& 2.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.53 \\
& 3.80
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.60 \\
& 1.82
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.00 \\
& 64.97
\end{aligned}
$$
\]

\hline 9442 RRH 700

*********** \& C \& From Leg \& $$
\begin{aligned}
& 4.00 \\
& 2.00 \\
& 2.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 3.53 \\
& 3.80
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.60 \\
& 1.82
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44.00 \\
& 64.97
\end{aligned}
$$
\]

\hline
\end{tabular}

Dishes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Dish \\
Type
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& \begin{tabular}{l}
\(3 d B\) \\
Beam \\
Width \\
0
\end{tabular} \& Elevation

ft \& | Outside Diameter |
| :--- |
| ft | \& \& Aperture Area

$$
f t^{2}
$$ \& Weight

\hline \multirow[t]{3}{*}{Andrew VHLP1} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{Paraboloid w/Radome} \& From \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{135.00} \& \multirow[t]{3}{*}{1.25} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.23 \\
& 1.40
\end{aligned}
$$
\]} \& 14.00

\hline \& \& \& Leg \& 0.00 \& \& \& \& \& \& \& \multirow[t]{2}{*}{27.00}

\hline \& \& \& \& 0.00 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Andrew VHLP2-11} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{Paraboloid w/Radome} \& From \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{100.00} \& \multirow[t]{3}{*}{2.00} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{2 \prime} \text { Ice }
\end{aligned}
$$} \& 3.14 \& 31.00

\hline \& \& \& Leg \& 0.00 \& \& \& \& \& \& \multirow[t]{2}{*}{3.41} \& \multirow[t]{2}{*}{41.00}

\hline \& \& \& \& 0.00 \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Andrew VHLP1} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{Paraboloid w/Radome} \& From \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{95.00} \& \multirow[t]{3}{*}{1.25} \& \multirow[t]{3}{*}{No Ice $1 / 2$ " Ice} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 1.23 \\
& 1.40
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 14.00 \\
& 27.00
\end{aligned}
$$
\]}

\hline \& \& \& Leg \& 0.00 \& \& \& \& \& \& \&

\hline \& \& \& \& 0.00 \& \& \& \& \& \& \&

\hline Andrew VHLP1 \& B \& Paraboloid \& From \& 2.00 \& 0.0000 \& \& 95.00 \& 1.25 \& No Ice \& 1.23 \& 14.00

\hline \& \& w/Radome \& Leg \& 0.00 \& \& \& \& \& 1/2" Ice \& 1.40 \& 27.00

\hline
\end{tabular}

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CT11737C	EAST HARTFORD, CT	Page 6 of 9
	140 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ 08: 41: 27 \\ 06 / 10 / 16 \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Dish Type	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustment 0	$3 d B$ Beam Width	Elevation ft	Outside Diameter ft		Aperture Area $f t^{2}$	Weight $l b$
Andrew VHLP1	C	Paraboloid w/Radome	From Leg	$\begin{aligned} & 0.00 \\ & 2.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.0000		100.00	1.25	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 14.00 \\ & 27.00 \end{aligned}$

Load Combinations

$\begin{gathered} \text { Comb. } \\ \text { No. } \end{gathered}$		Description
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CT11737C	EAST HARTFORD, CT	Page 7 of 9
	140 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ 08: 41: 27 \\ 06 / 10 / 16 \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

Location	Condition	Gov. Load Comb.	Vertical $l b$	Horizontal, X $l b$	Horizontal, Z $l b$
Leg C	Max. Vert	10	135258.16	12597.22	-7288.61
	Max. H_{x}	10	135258.16	12597.22	-7288.61
	Max. H_{z}	17	-95888.00	-19784.31	11426.89
	Min. Vert	4	-108795.88	-10544.19	6099.01
	Min. H_{x}	17	-95888.00	-19784.31	11426.89
	Min. H_{z}	10	135258.16	12597.22	-7288.61
	Lax. Vert	6	133581.16	-12934.68	-6635.18
	Max. H_{x}	25	-98964.08	20004.91	11175.08
	Max. H_{z}	25	-98964.08	20004.91	11175.08
	Min. Vert	12	-110466.07	10901.67	5549.75
	Min. H_{x}	6	133581.16	-12934.68	-6635.18
	Min. H_{z}	6	133581.16	-12934.68	-6635.18
	Leg A	Max. Vert	2	133624.40	-734.61
	Max. H_{x}	10	-54508.76	1052.01	14523.06
	Max. H_{z}	2	133624.40	-734.61	-6132.75
	Min. Vert	8	-110908.33	654.45	-14523.06
	Min. H_{x}	4	67581.95	-969.02	72252.92
	Min. H_{z}	21	-99310.78	328.40	-22942.69

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear x lb	Shear ${ }_{z}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	26420.41	0.00	0.00	7746.24	13382.81	0.03
Dead+Wind 0 deg - No Ice	26420.41	0.05	-22482.80	-1729523.31	13423.71	-20046.64
Dead+Wind 30 deg - No Ice	26420.41	10722.30	-18584.88	-1438970.08	-821061.26	-11166.87
Dead+Wind 60 deg - No Ice	26420.41	18265.15	-10541.18	-814412.35	-1411441.66	-268.27
Dead+Wind 90 deg - No Ice	26420.41	21435.44	19.25	9847.70	-1654440.30	10643.10
Dead+Wind 120 deg - No Ice	26420.41	19459.37	11249.64	877332.70	-1489861.49	19666.24
Dead+Wind 150 deg - No Ice	26420.41	10744.90	18608.41	1457110.61	-823430.66	21435.74
Dead+Wind 180 deg - No Ice	26420.41	0.01	21143.51	1658821.54	13429.45	18483.21
Dead+Wind 210 deg - No Ice	26420.41	-10744.90	18608.51	1457125.63	850289.97	11259.68
Dead+Wind 240 deg - No Ice	26420.41	-19459.37	11249.70	877326.19	1516697.14	380.48
Dead+Wind 270 deg - No Ice	26420.41	-21435.31	19.28	9850.28	1681212.10	-10642.55
Dead+Wind 300 deg - No Ice	26420.41	-18264.95	-10541.09	-814353.54	1438198.74	-18214.76
Dead+Wind 330 deg - No Ice	26420.41	-10722.13	-18584.73	-1438888.03	847861.87	-21528.87
Dead+Ice+Temp	38559.55	0.00	-0.00	14030.09	24593.45	-0.00
Dead+Wind 0 deg+Ice+Temp	38559.55	0.06	-21615.27	-1646376.99	24653.32	-11344.29
Dead+Wind 30 deg+Ice+Temp	38559.55	10105.47	-17514.39	-1344299.43	-758931.16	-6134.17
Dead+Wind 60 deg+Ice+Temp	38559.55	17092.31	-9864.78	-753219.55	-1304987.37	-111.17
Dead+Wind 90 deg+Ice+Temp	38559.55	20203.55	16.01	15797.01	-1541614.30	5893.86
Dead+Wind 120 deg+Ice+Temp	38559.55	18710.04	10814.43	845044.13	-1412289.09	11142.84
Dead+Wind 150 deg+Ice+Temp	38559.55	10124.34	17533.72	1374578.06	-760915.74	11728.31
Dead+Wind 180 deg+Ice+Temp	38559.55	0.02	19780.07	1554189.48	24656.76	10028.70
Dead+Wind 210 deg+Ice+Temp	38559.55	-10124.32	17533.81	1374599.34	810235.55	6210.74
Dead+Wind 240 deg+Ice+Temp	38559.55	-18710.03	10814.49	845044.48	1461596.10	201.51
Dead+Wind 270 deg+Ice+Temp	38559.55	-20203.44	16.03	15798.39	1590871.86	-5893.38
Dead+Wind 300 deg+Ice+Temp	38559.55	-17092.14	-9864.70	-753177.94	1354228.66	-9917.27
Dead+Wind 330 deg+Ice+Temp	38559.55	-10105.31	-17514.28	-1344235.67	808200.37	-11805.00
Dead+Wind 0 deg - Service	26420.41	0.02	-8782.34	-670865.23	13410.76	-7831.28
Dead+Wind 30 deg - Service	26420.41	4188.40	-7259.72	-557366.25	-312556.62	-4363.13
Dead+Wind 60 deg - Service	26420.41	7134.82	-4117.65	-313400.71	-543173.96	-104.80
Dead+Wind 90 deg - Service	26420.41	8373.22	7.52	8574.75	-638093.13	4158.55
Dead+Wind 120 deg - Service	26420.41	7601.32	4394.39	347433.90	-573807.46	7682.70
Dead+Wind 150 deg - Service	26420.41	4197.23	7268.91	573912.70	-313485.29	8372.82

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CT11737C	EAST HARTFORD, CT	Page 8 of 9
	140 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ 08: 41: 27 \\ 06 / 10 / 16 \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear ${ }_{z}$ lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead+Wind 180 deg - Service	26420.41	0.01	8259.19	652711.68	13414.65	7219.95
Dead+Wind 210 deg - Service	26420.41	-4197.23	7268.95	573925.21	340316.93	4398.62
Dead+Wind 240 deg - Service	26420.41	-7601.32	4394.41	347437.91	600635.74	148.63
Dead+Wind 270 deg - Service	26420.41	-8373.17	7.53	8575.49	664900.58	-4157.57
Dead+Wind 300 deg - Service	26420.41	-7134.75	-4117.61	-313381.98	569970.90	-7115.09
Dead+Wind 330 deg - Service	26420.41	-4188.33	-7259.66	-557339.40	339364.83	-8409.19

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	$P Z$	
Comb.	$l b$						
1	-0.00	-26420.41	0.00	-0.00	26420.41	-0.00	0.000\%
2	0.05	-26420.41	-22482.80	-0.05	26420.41	22482.80	0.000\%
3	10722.30	-26420.41	-18584.88	-10722.30	26420.41	18584.88	0.000\%
4	18265.15	-26420.41	-10541.18	-18265.15	26420.41	10541.18	0.000\%
5	21435.44	-26420.41	19.25	-21435.44	26420.41	-19.25	0.000\%
6	19459.37	-26420.41	11249.64	-19459.37	26420.41	-11249.64	0.000\%
7	10744.90	-26420.41	18608.41	-10744.90	26420.41	-18608.41	0.000\%
8	0.01	-26420.41	21143.51	-0.01	26420.41	-21143.51	0.000\%
9	-10744.90	-26420.41	18608.51	10744.90	26420.41	-18608.51	0.000\%
10	-19459.37	-26420.41	11249.70	19459.37	26420.41	-11249.70	0.000\%
11	-21435.31	-26420.41	19.28	21435.31	26420.41	-19.28	0.000\%
12	-18264.95	-26420.41	-10541.09	18264.95	26420.41	10541.09	0.000\%
13	-10722.13	-26420.41	-18584.73	10722.13	26420.41	18584.73	0.000\%
14	-0.00	-38559.56	0.00	-0.00	38559.55	0.00	0.000\%
15	0.04	-38559.56	-21615.32	-0.06	38559.55	21615.27	0.000\%
16	10105.48	-38559.56	-17514.44	-10105.47	38559.55	17514.39	0.000\%
17	17092.35	-38559.56	-9864.80	-17092.31	38559.55	9864.78	0.000\%
18	20203.60	-38559.56	16.02	-20203.55	38559.55	-16.01	0.000\%
19	18710.08	-38559.56	10814.47	-18710.04	38559.55	-10814.43	0.000\%
20	10124.35	-38559.56	17533.76	-10124.34	38559.55	-17533.72	0.000\%
21	0.01	-38559.56	19780.11	-0.02	38559.55	-19780.07	0.000\%
22	-10124.35	-38559.56	17533.84	10124.32	38559.55	-17533.81	0.000\%
23	-18710.07	-38559.56	10814.51	18710.03	38559.55	-10814.49	0.000\%
24	-20203.49	-38559.56	16.04	20203.44	38559.55	-16.03	0.000\%
25	-17092.18	-38559.56	-9864.72	17092.14	38559.55	9864.70	0.000\%
26	-10105.34	-38559.56	-17514.31	10105.31	38559.55	17514.28	0.000\%
27	0.02	-26420.41	-8782.34	-0.02	26420.41	8782.34	0.000\%
28	4188.40	-26420.41	-7259.72	-4188.40	26420.41	7259.72	0.000\%
29	7134.82	-26420.41	-4117.65	-7134.82	26420.41	4117.65	0.000\%
30	8373.22	-26420.41	7.52	-8373.22	26420.41	-7.52	0.000\%
31	7601.32	-26420.41	4394.39	-7601.32	26420.41	-4394.39	0.000\%
32	4197.23	-26420.41	7268.91	-4197.23	26420.41	-7268.91	0.000\%
33	0.01	-26420.41	8259.19	-0.01	26420.41	-8259.19	0.000\%
34	-4197.23	-26420.41	7268.95	4197.23	26420.41	-7268.95	0.000\%
35	-7601.32	-26420.41	4394.41	7601.32	26420.41	-4394.41	0.000\%
36	-8373.17	-26420.41	7.53	8373.17	26420.41	-7.53	0.000\%
37	-7134.75	-26420.41	-4117.61	7134.75	26420.41	4117.61	0.000\%
38	-4188.33	-26420.41	-7259.66	4188.33	26420.41	7259.66	0.000\%

Maximum Tower Deflections - Service Wind

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CT11737C	EAST HARTFORD, CT	$\text { Page } 9 \text { of } 9$
	140 ft Self Supporting Tower			$\begin{aligned} & \text { Date } \\ & \text { 08:41:27 06/10/16 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client		T-Mobile	Designed by kw

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	\circ	\circ	\circ
138.00		35	2.497	0.1368	0.0290	ft
135.00	Lightning Rod 2"x15'	35	2.411	0.1370	0.0292	Inf
130.00	Andrew VHLP1	35	2.266	0.1370	0.0293	604567
120.00	Omni 3"x20'	35	1.976	0.1356	0.0291	431447
100.00	PiROD 12' T-Frame	35	1.402	0.1240	0.0268	57395
95.00	Andrew VHLP2-11	35	1.267	0.1192	0.0259	50101

Section Capacity Table

$\left.\begin{array}{ccccccccc}\hline \text { Section } & \begin{array}{c}\text { Elevation } \\ \text { No. }\end{array} & f t & \begin{array}{c}\text { Component } \\ \text { Type }\end{array} & \text { Size } & \begin{array}{c}\text { Critical } \\ \text { Element }\end{array} & \begin{array}{c}P \\ l b\end{array} & \begin{array}{c}\text { SF } * P_{\text {allow }} \\ \text { lb }\end{array} & \begin{array}{c}\text { Pass } \\ \text { Capacity }\end{array} \\ \text { Fail }\end{array}\right]$

SITE NUMBER: CT11737C

100 SUNSET RIDGE ROAD

EAST HARTFORD, CT 06118
HARTFORD COUNTY

SITE NAME: CT737/E HARTFORD TOWN SST

RF DESIGN GUIDELINE: 792DB

DRMNG DRECTONS:

 CONTINE ON I-291 E FOR 5.6 MLLES THEN TAKE THE I-384 E EXTT. KEEP RIGHT TO CONTINUE ON

arrive at 100 SUnset ridge road east hartrord, ct 06118.

CALL BEFORE YOU DIG
call tou rere 1-800-922-4455 or oul 811 UNDERGROUND SERVICE ALERT

E TEC	SITE SAFETY NO
LOCATION	SPECIAL RESTRICTIONS
SECTOR A:	ACCESS NOT PERMITED
SECTOR B:	
ANTENNA/TMA/RRH	ACCESS NOT PERMITED
SECTOR C:	ACCESS NOT PERMITED
ANTENNA/TMA/RRH	
GPS/LMU:	UNRESTRICTED
radio cabinets:	UnRESTRICTED
PPC DISCONNECT:	UNRESTRICTED
MAIN CIRCUIT D/C:	UNRESTRICTED
niU/T demarc:	UnRESTRICTED
OTHER/SPECIAL:	None

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACLITY GROUNDING SYSTEM AND LIGHTNNG PROTECTION SYSTEM (AS DESIGNED AND
INSALLED) FOR STRTC COMLANCE WWH THE NEC AS ADPPED BY THE AH),
THE STE THE SITE-SPECIFIC (UL, LPI, OR NFPA LIGHTNG PROTECTION CODE, AND GENERA
COMPLIANE WITH TELCORDIA ANO TAA GROUNDING STANOARDS. THE COMPLANCE WTH TELCORDIA
SSBCONTACOTOR SALL RRPOR
CONTRACTOR FOR RESOLUTON.
2. ALL GROUND ELECTRODE SYSTEMS (INCLUING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER
OR BLOW GROE, TY TWO OR MORE COPER BONDING CONDUCTORS IN
ACORDANCE WITH THE NEC.
3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO

4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EOUPMENT GROUND
CONDUCTORA. STRANDED COPPER CONDUCTORS WWTH GREEN INSULATION, SIZED IN

- Con licuts to bs taurnen.

6. EXOOTHERMIC welds shall be used for all grounding connections below
7. APPROVED ANTIOXIDANT COATTINS (I.E. CONNUCTIVE GEL OR PASTE) SHALL BE
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALI BONDED OR
BOLTED TO GROUND BAR.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED
FOR GROUNDING CONNECTONS.
10. MISCELANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND NEC.
11. METAL CONDUIT SHALL BE MADE ELECTRICALY CONTINUOUS WITH LISTED BONDING
FITINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH 6 AWS COPPER WIRE UL APPROVED GROUNOING TTPE CONDUIT CLAMPS.
12. ALL NEW STRUCTURES WTTH A FOUNDATION AND/OR FOOTING hAVING 20 fT. OR MORE OF $1 / 2$ IN. OR GREAER ELECTRICALY CONOCCTINE REANFORCIIG STEEL
MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING \#2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC
250.50

GENERAL NOTES

FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS
CONTRACTOR - TRANSEEN WIRELESS
SUTCONTRACTOR
OWNER-T-MOBLE
2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VIST
THE CELL SITE TO FAMLLARIZE WITH THE EXISTNG CONDITINS AND TO CONFIRM
 DRAWINGS.
CONTRACTOR.
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH
ALL APPLCABLE CODES, REGULATONS, AND ORDINANCES. SUBCONTRACTOR SHA ALL APPLCABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTRR SHALL
ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORINANCES, RULES,

4. DRAWINGS Provided here are not to be scaled and are intended to show
outune only.
5. UNLLSS NOTED OTHERWISE, THE WORK SHALL INCLUUE FURNISHING MATERIALS, EQUPMENT, APPURTENANCES, AND LABOR NECES
INSTALALTONS AS INOICATED ON THE DRAWINGS.
 THE SUBCONTRACTOR SHALL INSTALL ALL EQUPMENT AND MATERALS IN
ACCORDANE WTH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFCALLY ACCORDANCE WTH
STATED OTHERWISE.
8. IF THE SPECIFED EQUPMENT CANNOT BE INSTALLED AS SHOWN ON THESE SRAWINGS, THE SUBCONTRACTOR SHALL PR
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUUT, POWER AND T1
 ADD NEW TRAYS AS NECESSARY
ROUTNG WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHAL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS,
LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE
SUBCONTRACTOR'S EXPENSE TO THE SATISACTION OF OWNER.
11. SUBCONTRACTOR SHALL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS
SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING SUCH AS COAXAL CABLES AND OTHER TTEMS REMOVED FROM THE EXXISTING
FACILITTM ANTENAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON. LOCATION.
12. SUbcontractor shall leave premises in clean condition.
13. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN
CONCRETE INSTTUTE (ACI) 301.

15. ALL STRUCTURAL STEEL WORK SHALL BE DETALLED, FABRICCTED AND ERECTED IN
ACCORDANCE WITH AISC SPECIFCATIONS. ALL STRUCTURAL STEEL SHALE BE ASTM

IS ERECTED USING A COMPATIBLE ZINC RICH PAIN.
16. CONSTRUCTION SHALL COMPLY WITH SPECIIICATIONS AND "GENERAL CONSTRUCTION
SERVICES FOR CONSTRUCTION OF T-MOBILE SITES."
17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR
TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTON SHOWN
 CONTRACTOR OF ANY
WITH CONSTRUCTION.

USUALLY IN LOW TRAFFIC PERIODS AFIER MIDNIGH.
19. SINCE THE CELL SITE IS ACTVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORERS TO DANGER. PERSONAL RF EXPOSURE MONTT
BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.
20. APPLICABLE BULLDING CODES:

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE,
AND LOCAL COODS AS ADOPTED BY THE LOCAL AUTHORITY HAVING UURISICTION
 DESIGN.
BULIING CODE: 2003 IBC WITH 2005 CT SUPPLEMENT, $+2009 \& 2013$ AMENMENTS:
ELLCCTITIAL COEE: REFER TO ELECTRICAL DRAWINGS
LIGHTENING CODE: REFER TO ELLCTRICAL DRAWINGS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE
FOLOWING STANDARDS:
AMERICAN CONCRETE INSTITUTE (ACC) 318; BUILDING CODE
REQUIREMENTS FOR STRUCTURAL CONCRETE;
american institute of steel construction (aisc)
manual of steel construction, Asd, fourteenth edition;
TELECOMMUNLCATONS INDUSTRY ASSOCIATION (TAA) 222-F,
STRUCTURAL STANDARDS FOR STEEL
EQUIPMENT AND ANTENA SUPPORTING STRUCTURES; REFER
TO ELECTRICAL DRAWINGS FOR SPECIFIC ELECTRICAL STANDARDS.
FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS
REGARDING MATERAL, METHOOS OF CONSTRUCTON, OR OTHER REQUREMENT, MOST RESTRICTVE REQUUREMENT SHALL GOVERN. WHERE THERE E IS CONFLCT' BEEWEEN A GENERAL REQUIR
REQUREMENT SHALL GOVERN.

Transcend Wireless	
	$\begin{array}{ll}\text { ANSCEND WIRELESS } & \\ \text { INDUSTRIAL AVE } & \text { TEL: }(201)\end{array}$
	HECKED BY:
	PPROVED BY:
	SUBMITTALS
Rex.	
	O4/27/1/6 SSLEV For Rever
	SITE NUMBER: CT11737C SITE NAME: T737/E HARTFO TOWN SST Ste Aodess: 100 SUNSET RIDEE ROA EAST HARTFORD, CT OT 061 HARTFORD COUNTY
SHEET TITLE general notes	

GN-1

