

Turnkey Wireless Development

Northeast Site Solutions Denise Sabo 199 Brickyard Rd Farmington, CT 06032 860-209-4690 denise@northeastsitesolutions.com

July 23, 2018

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

100 Sunset Ridge Road, East Hartford CT 06108

Latitude: 41.771800 Longitude: -72.590300

T-Mobile Site#: CT11737C_L700 4x2

Dear Ms. Bachman:

T-Mobile is requesting to file an exempt modification for an existing 140-foot Lattice Tower located at 100 Sunset Ridge Road, East Hartford CT. T-Mobile currently maintains nine (9) antennas at the 120-foot level of the existing 140-foot tower. The tower and property are owned by the Town of East Hartford. T-Mobile now intends to replace three (3) existing antenna with three (3) new 600/700 MHz antenna. The new antennas would be installed at the 120-foot and level of the tower.

Planned Modifications:

Remove:

NONE

Remove and Replace:

- (3) LNX6515DS A1M (Remove) (3) APXVAARR24-43-U-NA20 Antenna (Replace)
- (3) RRU (Remove) (3) RRU 4449 B71+B12 (Replace)

Install New:

NONE

Existing to Remain:

- (6) 1-5/8" Coax
- (1) Hybrid line
- (3) AIR21 B2A_B4P Antenna
- (3) AIR32DB B66Aa B2a Antenna
- (3) TMA

This facility was first approved by the Connecticut Siting Council. TS No. TS-T-Mobile-043-060621 – Approved in 2006 for the addition of Omnipoint telecommunication equipment to existing tower. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-SOj-73, a copy of this letter is being sent to Mayor Marcia A. Leclerc, as Elected Official for the Town of East Hartford and Jeffrey Cormier, Town Planner as well as the property owner and the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Denise Sabo

Mobile: 860-209-4690 Fax: 413-521-0558

Office: 199 Brickyard Rd, Farmington, CT 06032 Email: denise@northeastsitesolutions.com

Attachments

cc: Mayor Marcia A. Leclerc - as elected official Jeffrey Cormier - Town Planner Town of East Hartford - Tower and property owner

Exhibit A

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

July 28, 2006

Karina Fournier Zoning Department T-Mobile 30 Cold Spring Road Rocky Hill, CT 06067

RE:

TS-T-MOBILE-043-060621 - Omnipoint Communications, Inc. request for an order to approve tower sharing at a telecommunications facility located at 100 Sunset Ridge Drive, East Hartford, Connecticut.

Dear Ms. Fournier:

At a public meeting held July 27, 2006, the Connecticut Siting Council (Council) ruled that the shared use of this tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Any additional change to this facility may require an explicit request to this agency pursuant to General Statutes § 16-50aa or notice pursuant to Regulations of Connecticut State Agencies Section 16-50j-73, as applicable. Such request or notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

This decision applies only to this request for tower sharing and is not applicable to any other request or construction. Please be advised that the validity of this action shall expire one year from the date of this letter.

The proposed shared use is to be implemented as specified in your letter dated June 21, 2006, including the placement of all necessary equipment and shelters within the tower compound.

Thank you for your attention and cooperation.

1 25 10

truly yours.

Colin C. Tait Chairman

CCT/MP/laf

c: The Honorable Melody A. Currey, Mayor, Town of East Hartford Michael J. Dayton, Town Planner, Town of East Hartford

Exhibit B

Town of East Hartford Property Summary Report

100 SUNSET RIDGE DR

MAP LOT: 57-134A **CAMA PID:** 13740

LOCATION: 100 SUNSET RIDGE DR

OWNER NAME: TOWN OF EAST HARTFORD / VETERANS MEMORIAL CLUBHSE

OWNER OF RECORD

TOWN OF EAST HARTFORD
VETERANS MEMORIAL CLUBHSE
740 MAIN STREET

EAST HARTFORD, CT 06108

LIVING AREA: 6169 ZONING: R2 ACREAGE: 1.64

SALES HISTORY			
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE
TOWN OF EAST HARTFORD VETERANS MEMORIAL CLUBHSE	159/ 39	01-Jan-1900	\$0.00

CURRENT PARCEL ASSESSMENT					
TOTAL:	\$836,930.00	IMPROVEMENTS:	\$738,230.00	LAND:	\$98,700.00

ASSESSING HISTORY			
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE
2017	\$836,930.00	\$738,230.00	\$98,700.00
2016	\$836,930.00	\$738,230.00	\$98,700.00
2015	\$807,050.00	\$708,350.00	\$98,700.00
2014	\$807,050.00	\$708,350.00	\$98,700.00
2013	\$807,050.00	\$708,350.00	\$98,700.00

Town of East Hartford Property Summary Report

100 SUNSET RIDGE DR

MAP LOT:	57-134A	CAMA PID:	13740	
LOCATION:	100 SUNSET RIDGE DR			
OWNER NAME:	TOWN OF EAST HARTEORE	/ VETERANS MEMORIAL CL	LIBHSE	

BUILDING #1

YEAR BUILT	1930	EXT WALL 1	Stone/Masonry
STYLE	Cultural Facility	INT WALLS 1	Plaster
MODEL	Comm/Ind	HEAT FUEL	Other
STORIES	1.0	HEAT TYPE	Steam
OCCUPANCY	Exempt	AC TYPE	None
ROOF	Drmrs/Ex Gable	BEDROOMS	
ROOF COVER	Asphalt	FULL BATHS	15
FLOOR COVER 1	Hardwood	HALF BATHS	
% BSMT	null	TOTAL ROOMS	0
% FIN BSMT	null	% REC RM	null
% SEMI FIN	null	% ATTIC FINISH	null
BSMT GARAGE	null	FIREPLACES	null

13740 03/24/2016

EXTRA FEATURES		
DESCRIPTION CODE		UNITS
Fin Bsmt	FBM	1567 S.F.
Fireplace	FPL	1 UNITS

Exhibit C

ANTENNA UPGRADES BY

T··Mobile·

T-MOBILE NORTHEAST LLC

PROJECT: L700 4X2

SITE NUMBER: CT11737C

SITE NAME: CT737/E HARTFORD TOWN SST

SITE ADDRESS: 100 SUNSET RIDGE RD

EAST HARTFORD, CT 06108

(RF CONFIGURATION 67D92DB)

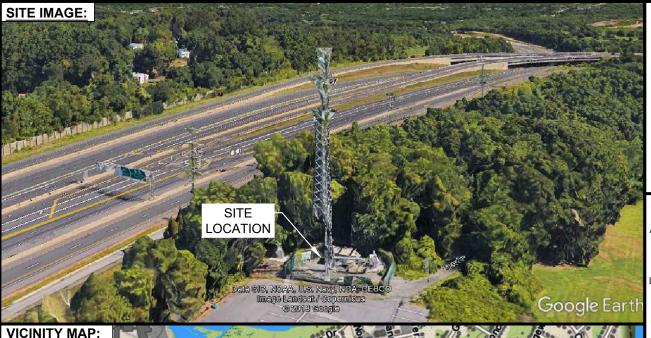
PROJECT SCOPE:

UPGRADE OF EXISTING WIRELESS FACILITY AS FOLLOWS: REPLACE (3) EXISTING ANTENNAS, REPLACE(3) REMOTE RADIO UNITS AT ANTENNAS.

PROJECT NOTES:

- THIS IS AN UNMANNED TELECOMMUNICATION FACILITY AND NOT FOR **HUMAN HABITATION:** HANDICAPPED ACCESS IS NOT REQUIRED. POTABLE WATER OR SANITARY SERVICE IS NOT REQUIRED. NO OUTDOOR STORAGE OR ANY SOLID WASTE RECEPTACLES REQUIRED.
- CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE. CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ARCHITECT/ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK FAILURE TO NOTIFY THE ARCHITECT/ENGINEER PLACES THE RESPONSIBILITY ON THE CONTRACTOR TO CORRECT THE DISCREPANCIES AT THE CONTRACTOR'S EXPENSE.
- DEVELOPMENT AND USE OF THE SITE WILL CONFORM TO ALL APPLICABLE CODES, ORDINANCES AND SPECIFICATIONS.
- REFER TO STRUCTURAL ANALYSIS REPORT TITLED " STRUCTURAL ANALYSIS REPORT - SELF SUPPORT TOWER " SITE ID: CT11737C, DATED JUNE 25, 2018, PREPARED BY DESTEK.

APPLICABLE STATE ADOPTION CODES:


2016 CONNECTICUT STATE BUILDING CODE (CSBC)

ANSI/TIA-222-G-2005 STRUCTURAL STANDARD FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS.

2014 NATIONAL ELECTRICAL CODE (NFPA 70) FOR POWER AND GROUNDING REQUIREMENTS

APPROVALS:

FSA CM	DATE
RF ENGINEER	DATE
FOPS	DATE
T-MOBILE ENGINEERING AND DEVELOPMENT	DATE
	DATE
	DATE

PROJECT INFORMATION:

ADDRESS: 100 SUNSET RIDGE RD

EAST HARTFORD, CT 06108

STRUCTURE TYPE: LATTICE TOWER

41.771800 N, -72.590300 W COORDINATES:

ZONING DISTRICT: 13740 PARCEL ID: TOWER HEIGHT: 140'-0" AGL 124'-0" AGL

TOP OF T-MOBILE ANTENNAS ELEV:

PROJECT TEAM:

APPLICANT: T-MOBILE NORTHEAST, LLC.

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002

TOWN OF EAST HARTFORD VETERANS LANDLORD:

MEMORIAL CLUBHSE 740 MAIN STREET EAST HARTFORD, CT 06108

NORTHEAST SITE SOLUTIONS PROJECT MANAGER:

420 MAIN STREET, BLDG 4 STURBRIDGE, MA 01566 SHELDON FREINCLE SHELDON@NORTHEASTSITE SOLUTIONS.COM

201-776-8521

CONSULTANTS: FORESITE LLC

462 WALNUT ST NEWTON, MA 02460 SAFED MOSSAVAT

SMOSSAVAT@FORESITELLC.COM

617-212-3123

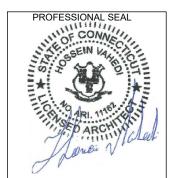
SHEET INDEX:

SITE

LOCATION

TITLE SHEET **GENERAL NOTES** A-1: PI AN A-2: **ELEVATION** ANTENNA PLAN A-3: ANTENNA DETAILS A-4: **GROUNDING DETAILS** APPLICANT:

T··Mobile· T-MOBILE NORTHEAST LLC


35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100

CONSULTANT:

462 WALNUT STREET NEWTON, MA 02460 617-212-3123

HIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE"

REV	DESCRIPTION	DATE
Α	PRELIMINARY	07/03/18
В	REVISED PER COMMENTS	07/09/18
С	REVISED PER NEW RFDS	07/19/18
0	ISSUED FOR PERMIT	07/24/18

SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108

T-1: TITLE SHEET

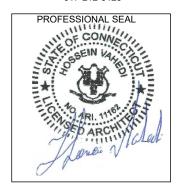
GENERAL NOTES:

- 1. THE CONTRACTOR SHALL GIVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK. THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES.
- 2. THE ARCHITECT/ENGINEER HAS MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE CONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID CONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF THESE DOCUMENTS.
- 3. THE CONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF NOTIFYING (IN WRITING) THE CLIENT'S REPRESENTATIVE OF ANY CONFLICTS, ERRORS, OR OMISSIONS PRIOR TO THE SUBMISSION OF CONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK.
- 5. THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE HIMSELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONSTRUCTION DOCUMENTS.
- 6. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S / VENDOR'S SPECIFICATIONS UNLESS NOTED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE PRECEDENCE
- 7. THE CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS DURING CONSTRUCTION.
- 8. THE CONTRACTOR SHALL COMPLY WITH ALL PERTINENT SECTIONS OF THE BASIC STATE BUILDING CODE, LATEST EDITION, AND ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJEC
- 9. THE CONTRACTOR SHALL NOTIFY THE CLIENT'S REPRESENTATIVE IN WRITING WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE CONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE CLIENT'S REPRESENTATIVE.
- 10. THE WORK SHALL CONFORM TO THE CODES AND STANDARDS OF THE FOLLOWING AGENCIES AS FURTHER CITED HEREIN:
- A. ASTM: AMERICAN SOCIETY FOR TESTING AND MATERIALS, AS PUBLISHED IN "COMPILATION OF ASTM STANDARDS BUILDING CODES" OR LATEST EDITION.
- B. AWS: AMERICAN WELDING SOCIETY INC. AS PUBLISHED IN "STANDARD D1.1-08, STRUCTURAL WELDING CODE" OR LATEST EDITION.
- C. AISC: AMERICAN INSTITUTE FOR STEEL CONSTRUCTION AS PUBLISHED IN "CODE FOR STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES"; "SPECIFICATIONS FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS" (LATEST EDITION).
- 11. BOLTING:
- A. BOLTS SHALL BE CONFORMING TO ASTM A325 HIGH STRENGTH, HOT DIP GALVANIZED WITH ASTM A153 HEAVY HEX TYPE NUTS.
- B. BOLTS SHALL BE 3/4" MINIMUM (UNLESS OTHERWISE NOTED)
- C. ALL CONNECTIONS SHALL BE 2 BOLTS MINIMUM.
- 12. FABRICATION:
- A. FABRICATION OF STEEL SHALL CONFORM TO THE AISC AND AWS STANDARDS AND CODES (LATEST EDITION).
- B. ALL STRUCTURAL STEEL SHALL BE HOT—DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 (LATEST EDITION), UNLESS OTHERWISE NOTED.
- 13. ERECTION OF STEEL:
- A. PROVIDE ALL ERECTION EQUIPMENT, BRACING, PLANKING, FIELD BOLTS, NUTS, WASHERS, DRIFT PINS, AND SIMILAR MATERIALS WHICH DO NOT FORM A PART OF THE COMPLETED CONSTRUCTION BUT ARE NECESSARY FOR ITS PROPER ERECTION
- B. ERECT AND ANCHOR ALL STRUCTURAL STEEL IN ACCORDANCE WITH AISC REFERENCE STANDARDS. ALL WORK SHALL BE ACCURATELY SET TO ESTABLISHED LINES AND ELEVATIONS AND RIGIDLY FASTENED IN PLACE WITH SUITABLE ATTACHMENTS TO THE CONSTRUCTION OF THE BUILDING.
- C. TEMPORARY BRACING, GUYING AND SUPPORT SHALL BE PROVIDED TO KEEP THE STRUCTURE SAFE AND ALIGNED AT ALL TIMES DURING CONSTRUCTION, AND TO PREVENT DANGER TO PERSONS AND PROPERTY. CHECK ALL TEMPORARY LOADS AND STAY WITHIN SAFE CAPACITY OF ALL BUILDING COMPONENTS.

- 14. ANTENNA INSTALLATION:
- A. INSTALL ANTENNAS AS INDICATED ON DRAWINGS AND CLIENT'S REPRESENTATIVE SPECIFICATIONS.
- B. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS.
- C. INSTALL COAXIAL / FIBER CABLES AND TERMINATIONS BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTORS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS.
- 15. ANTENNA AND COAXIAL / FIBER CABLE GROUNDING:
- A. ALL EXTERIOR #6 GREEN GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE WEATHER SEALED WITH ANDREWS CONNECTOR/SPLICE WEATHERPROOFING KIT TYPE #221213 OR EQUAL.
- B. ALL COAXIAL / FIBER CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF COAXIAL / FIBER CABLE (NOT WITHIN BENDS).
- 16. RELATED WORK, FURNISH THE FOLLOWING WORK AS SPECIFIED UNDER CONSTRUCTION DOCUMENTS, BUT COORDINATE WITH OTHER TRADES PRIOR TO BID:
- A. FLASHING OF OPENING INTO OUTSIDE WALLS
- B. SEALING AND CAULKING ALL OPENINGS
- C PAINTING
- D. CUTTING AND PATCHING
- 17. REQUIREMENTS OF REGULATORY AGENCIES:
- A. FURNISH U.L. LISTED EQUIPMENT WHERE SUCH LABEL IS AVAILABLE. INSTALL IN CONFORMANCE WITH U.L. STANDARDS WHERE APPLICABLE.
- B. INSTALL ANTENNA, ANTENNA CABLES, GROUNDING SYSTEM IN ACCORDANCE WITH DRAWINGS AND SPECIFICATION IN EFFECT AT PROJECT LOCATION AND RECOMMENDATIONS OF STATE AND LOCAL BUILDING CODES, AND SPECIAL CODES HAVING JURISDICTION OVER SPECIFIC PORTIONS OF WORK. THIS WORK INCLUDES BUT IS NOT LIMITED TO THE FOLLOWING:
- C. TIA-EIA 222 (LATEST EDITION). STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES.
- D. FAA FEDERAL AVIATION ADMINISTRATION ADVISORY CIRCULAR AC 70/7460-IH, OBSTRUCTION MARKING AND LIGHTING.
- E. FCC FEDERAL COMMUNICATIONS COMMISSION RULES AND REGULATIONS FORM 715, OBSTRUCTION MARKING AND LIGHTING SPECIFICATION FOR ANTENNA STRUCTURES AND FORM 715A, HIGH INTENSITY OBSTRUCTION LIGHTING SPECIFICATIONS FOR ANTENNA STRUCTURES.
- F. AISC AMERICAN INSTITUTE OF STEEL CONSTRUCTION SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 BOLTS (LATEST EDITION).
- G. NEC NATIONAL ELECTRICAL CODE ON TOWER LIGHTING KITS.
- H. UL UNDERWRITER'S LABORATORIES APPROVED ELECTRICAL PRODUCTS.
- I. IN ALL CASES, PART 77 OF THE FAA RULES AND PARTS 17 AND 22 OF THE FCC RULES ARE APPLICABLE AND IN THE EVENT OF CONFLICT, SUPERSEDE ANY OTHER STANDARDS OR SPECIFICATIONS.
- J. 2009 LIFE SAFETY CODE NFPA 101.

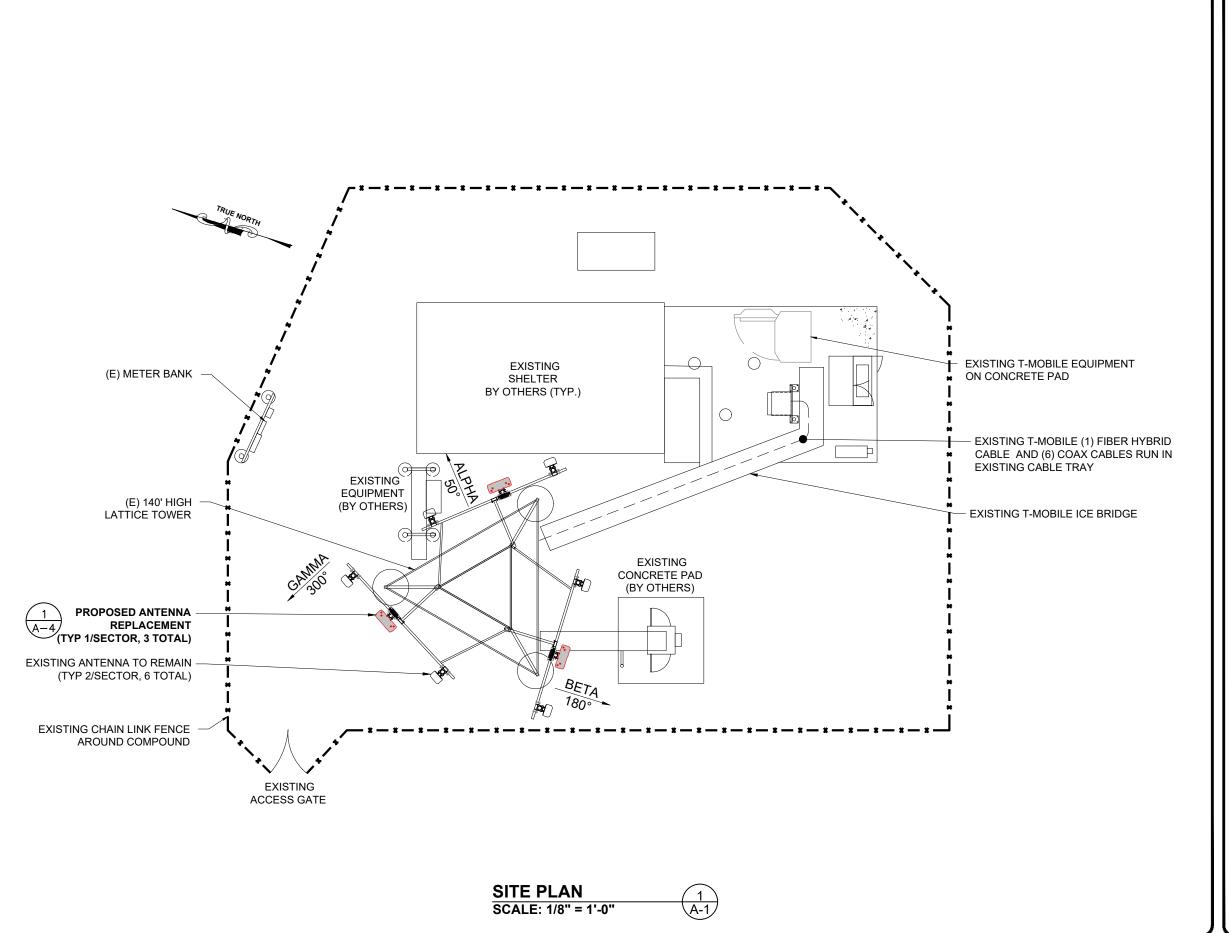
APPLICANT:

T - Mobile - T-MOBILE NORTHEAST LLC


35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100

CONSULTANT:

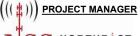
rchitects . Engineers . Surveyors 462 WALNUT STREET NEWTON, MA 02460 617-212-3123


THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

REV	DESCRIPTION	DATE
Α	PRELIMINARY	07/03/18
В	REVISED PER COMMENTS	07/09/18
С	REVISED PER NEW RFDS	07/19/18
0	ISSUED FOR PERMIT	07/24/18

SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108

SHEET TITLE:


N-1: NOTES AND DISCLAIMERS

APPLICANT:

T • • Mobile • T-Mobile • T-Mobile NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100

SS NORTHE ST SITE SOLUTIONS Turnkey Wireless Development

Turnkey Wireless Development 420 MAIN STREET, BLDG 4 STURBRIDGE, MA 01566 203-275-6669

CONSULTANT:

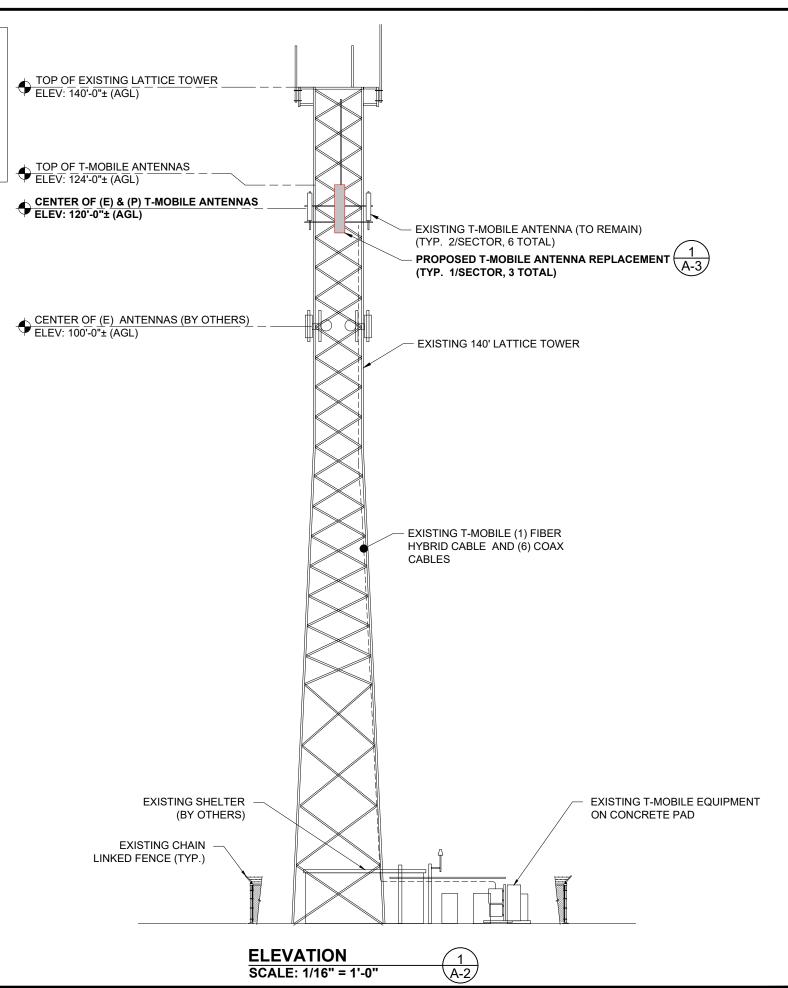
Architects . Engineers . Surveyors

462 WALNUT STREET NEWTON, MA 02460 617-212-3123

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

REV	DESCRIPTION	DATE
Α	PRELIMINARY	07/03/18
В	REVISED PER COMMENTS	07/09/18
С	REVISED PER NEW RFDS	07/19/18
0	ISSUED FOR PERMIT	07/24/18

SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108


SHEET TITLE:

A-1: PLAN

STRUCTURAL NOTES:

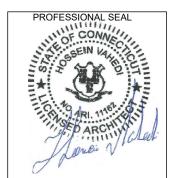
PRIOR TO COMMENCING CONSTRUCTION, GC SHALL REFER TO TOWER STRUCTURAL ANALYSIS PROVIDED BY DESTEK TO DETERMINE IF THERE ARE ANY SUPPLEMENTAL OR SPECIAL REQUIREMENTS FOR TOWER TOP EQUIPMENT AND FOR CABLE BUNDLING, SHIELDING, MOUNTING OR RELOCATION ARRANGEMENTS.

REFER TO STRUCTURAL ANALYSIS REPORT TITLED "
STRUCTURAL ANALYSIS REPORT - SELF SUPPORT TOWER " SITE
ID: CT11737C, DATED JUNE 25, 2018, PREPARED BY DESTEK.

APPLICANT:

T - Mobile - T-MOBILE NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100


Turnkey Wireless Development 420 MAIN STREET, BLDG 4 STURBRIDGE, MA 01566 203-275-6669

CONSULTANT:

Architects . Engineers . Surveyors

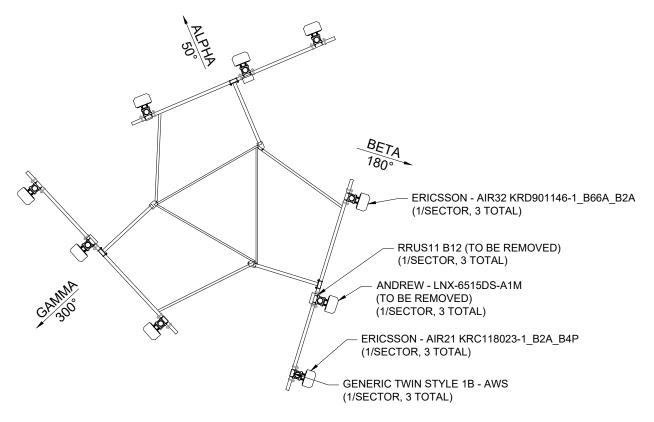
462 WALNUT STREET NEWTON, MA 02460 617-212-3123

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

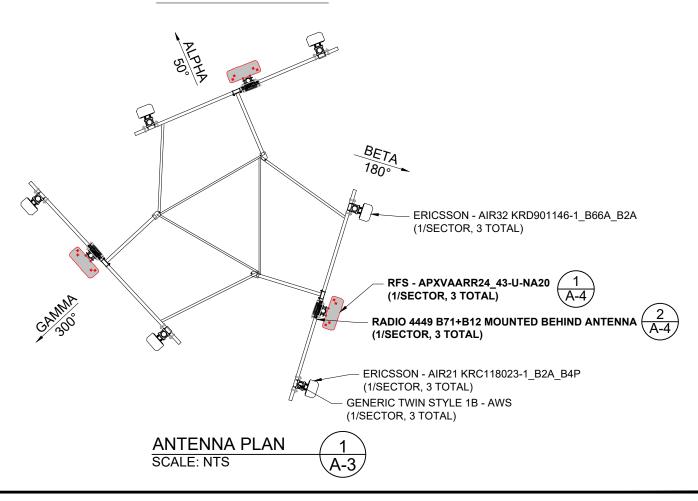
REV	DESCRIPTION	DATE
Α	PRELIMINARY	07/03/18
В	REVISED PER COMMENTS	07/09/18
С	REVISED PER NEW RFDS	07/19/18
0	ISSUED FOR PERMIT	07/24/18
	·	

SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108

SHEET TITLE


A-2: ELEVATION

STRUCTURAL NOTES:


PRIOR TO COMMENCING CONSTRUCTION, GC SHALL REFER TO TOWER STRUCTURAL ANALYSIS PROVIDED BY DESTEK TO DETERMINE IF THERE ARE ANY SUPPLEMENTAL OR SPECIAL REQUIREMENTS FOR TOWER TOP EQUIPMENT AND FOR CABLE BUNDLING, SHIELDING, MOUNTING OR RELOCATION ARRANGEMENTS.

REFER TO STRUCTURAL ANALYSIS REPORT TITLED "
STRUCTURAL ANALYSIS REPORT - SELF SUPPORT TOWER " SITE
ID: CT11737C, DATED JUNE 25, 2018, PREPARED BY DESTEK.

EXISTING ANTENNA PLAN

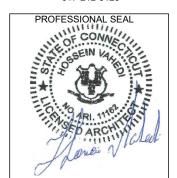
FINAL ANTENNA PLAN

APPLICANT:

T - Mobile - T-Mobile - T-Mobile NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100

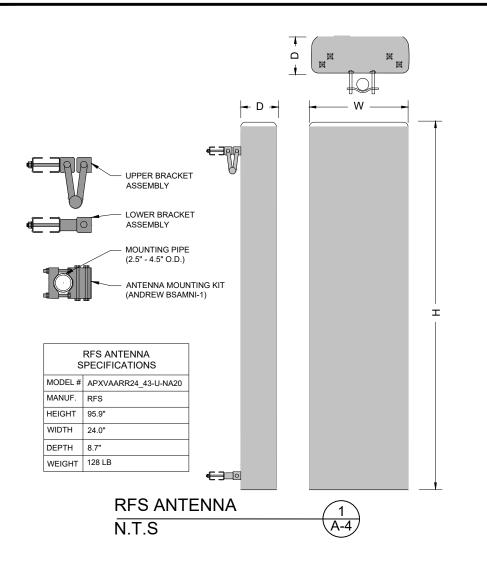
Turnkey Wireless Development
420 MAIN STREET, BLDG 4
STURBRIDGE, MA 01566

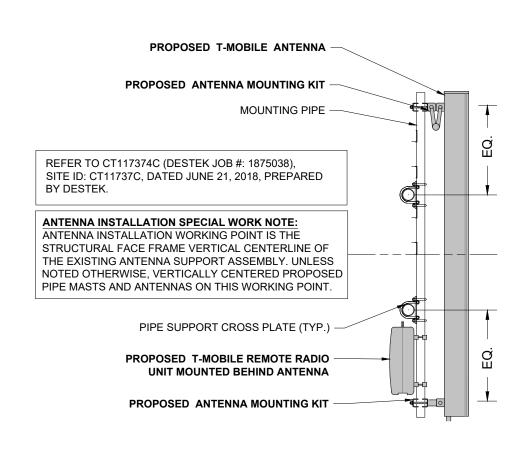

TURBRIDGE, MA 01566 203-275-6669

CONSULTANT:

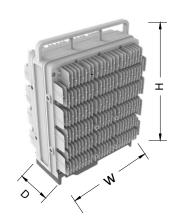
Architects . Engineers . Surveyors

462 WALNUT STREET NEWTON, MA 02460 617-212-3123

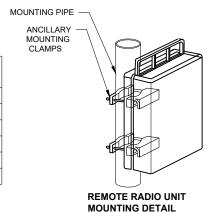

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".


REV	DESCRIPTION	DATE
Α	PRELIMINARY	07/03/18
В	REVISED PER COMMENTS	07/09/18
С	REVISED PER NEW RFDS	07/19/18
0	ISSUED FOR PERMIT	07/24/18

SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108


SHEET TITL

A-3: ANTENNA PLAN AND DETAILS



ANTENNA MOUNTING DETAIL

	REMOTE RADIO UNIT SPECIFICATIONS			
MODEL#	RADIO 4449 B71+B12			
MANUF.	ERICSSON			
HEIGHT 14.9"				
WIDTH	13.2"			
DEPTH	10.4"			
WEIGHT 74 LB				

N.T.S

RADIO 4449 B71+B12 REMOTE RADIO UNIT

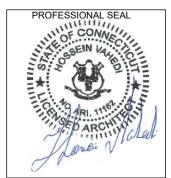
N.T.S

APPLICANT:

T - Mobile - T-MOBILE NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100

SITE SOLUTIONS
Turnkey Wireless Development
420 MAIN STREET, BLDG 4


STURBRIDGE, MA 01566 203-275-6669

CONSULTANT:

462 WALNUT STREET

462 WALNUT STREET NEWTON, MA 02460 617-212-3123

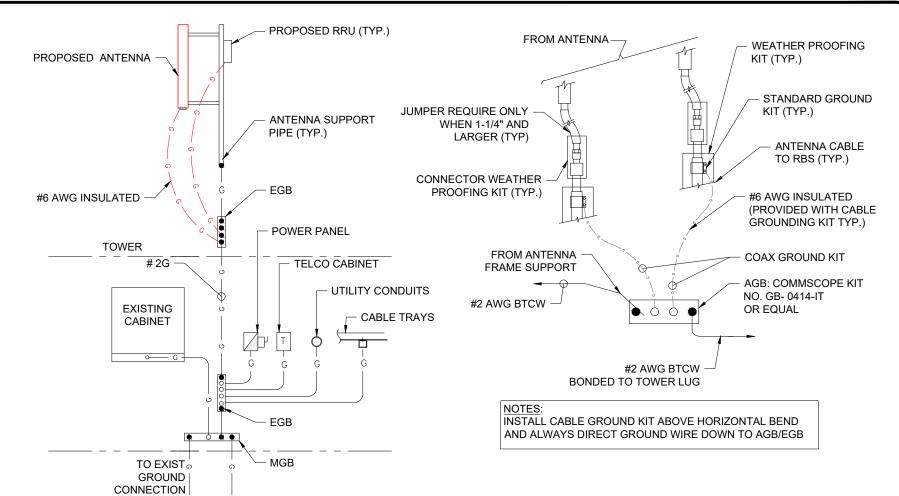
THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

ш			
	REV	DESCRIPTION	DATE
	Α	PRELIMINARY	07/03/18
	В	REVISED PER COMMENTS	07/09/18
	С	REVISED PER NEW RFDS	07/19/18
	0	ISSUED FOR PERMIT	07/24/18
ı			

SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108

SHEET TITLE:
A-4: ANTENNA DETAILS

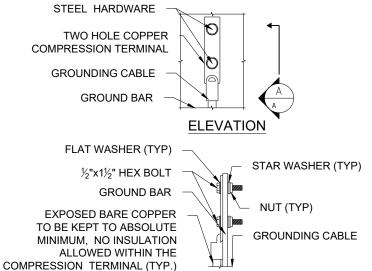
ENCLOSURE.


ELECTRICAL & GROUNDING NOTES

- 1. ALL ELECTRICAL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE NATIONAL ELECTRICAL CODE (NEC) AS WELL AS APPLICABLE STATE AND LOCAL CODES.
- 2. ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PRODUCED PER SPECIFICATION REQUIREMENTS.
- 3. THE ELECTRICAL WORK INCLUDES ALL LABOR AND MATERIAL DESCRIBED BY DRAWINGS AND SPECIFICATION INCLUDING INCIDENTAL WORK TO PROVIDE COMPLETE OPERATING AND APPROVED ELECTRICAL SYSTEM.
- 4. GENERAL CONTRACTOR SHALL PAY FEES FOR PERMITS, AND RESPONSIBLE FOR OBTAINING SAID PERMITS AND COORDINATION OF INSPECTIONS.
- 5. ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) ND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE METAL OR NONMETALLIC CONDUITS.
- RIGID STEEL CONDUITS SHALL BE GROUNDED AT BOTH ENDS.
 ELECTRICAL WIRING SHALL BE COPPER WITH TYPE XHHW, THWN, OR THIN INSULATION.
- 8. RUN ELECTRICAL CONDUIT OR CABLING BETWEEN ELECTRICAL ROOM AND PROPOSED CELL SITE ARE PEDESTAL AS INDICATED ON THIS DRAWING. PROVIDE FULL LENGTH PULL ROPE. COORDINATE INSTALLATION WITH UTILITY COMPANY.

 9. RUN TELCO CONDUIT OR CABLE BETWEEN TELEPHONE UTILITY DEMARCATION POINT AND PROPOSED CELL SITE TELECOM CABINET AND RBS CABINET AS INDICATED ON DRAWING A -1. PROVIDE FULL LENGTH PULL ROPE INSTALLED TELCO CONDUIT. PROVIDE GREENLEE CONDUIT MEASURING TAPE AT EACH END.

 10. ALL EQUIPMENT LOCATED OUTSIDE SHALL HAVE NAME 3R
- 11. GROUNDING SHALL COMPLY WITH NEC ART. 250.
- 12. GROUNDING COAX CABLE SHIELDS MINIMUM AT BOTH ENDS USING MANUFACTURES COAX CABLE GROUNDING KITS SUPPLIED BY PROJECT OWNER.
- 13. USE #6 COPPER STRANDED WIRE WITH GREEN COLOR INSTALLATION FOR ABOVE GRADE GROUNDING (UNLESS OTHERWISE SPECIFIED) AND #2 SOLID TINNED BARE COPPER WIRE FOR BELOW GRADE GROUNDING AS INDICATED ON THE GROUND.


 14. ALL GROUND CONNECTION TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD. DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH GALVANIZED STEEL.
- 15. ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED. GROUNDING LEADS SHOULD NEVER BE BENT AS RIGHT ANGLE. ALWAYS MAKE AT LEAST 12" RADIUS BENDS. #6 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY BOND ANY METER OBJECTS WITHIN 7 FEET OF PROPOSED EQUIPMENT OR CABINET TO MASTER GROUND BAR.
- 16. CONNECTIONS TO MGB SHALL BE ARRANGED IN THREE MAIN GROUPS: SURGE PROCEDURES (COAXIAL CABLE GROUND KITS, TELCO AND POWER PANEL GROUND); (GROUNDING ELECTRODE RING OR BUILDING STEEL); NON-SURGING OBJECTS (EGB GROUND IN RBS UNIT).
- 17. CONNECTIONS TO GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.
- 18. APPLY OXIDE INHIBITING COMPOUND TO ALL COMPRESSION TYPE GROUND CONNECTION.19. BOND ANTENNA MOUNTING BRACKETS, COAXIAL CABLE
- GROUND KITS, AND ALNA TO EGB PLACED NEAR THE ANTENNA LOCATION.
- 20 BOND ANTENNA EGB'S AND MGB TO WATER MAIN.
- 21. TEST COMPLETED GROUND SYSTEM AND RECORD RESULTS FOR PROJECT CLOSE-OUT DOCUMENTATION.
- 22. BOND ANY METAL OBJECTS WITHIN 7 FEET OF PROPOSED EQUIPMENT OR CABINET TO MASTER GROUND BAR.
 23. VERIFY PROPOSED SERVICE UPGRADE WITH LOCAL UTILITY
- COMPANY PRIOR TO CONSTRUCTION.

TOWER TOP CABLE GROUNDING DETAIL SCALE: N.T.S

SECTION A-A

NOTES:

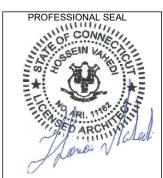
- 1. "DOUBLING UP" OR "STACKING " OF CONNECTIONS IS NOT PERMITTED.
- 2. OXIDE INHIBITING COMPOUND TO BE USED AT ALL LOCATIONS.

TYPICAL GROUND BAR CONNECTIONS DETAIL SCALE: N.T.S

APPLICANT:

T - Mobile - T-MOBILE NORTHEAST LLC

35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 860-692-7100


420 MAIN STREET, BLDG 4 STURBRIDGE, MA 01566 203-275-6669

CONSULTANT:

Architects . Engineers . Surveyors

462 WALNUT STREET NEWTON, MA 02460 617-212-3123

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF FORESITE, LLC. AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED. DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

	REV	DESCRIPTION	DATE
	Α	PRELIMINARY	07/03/18
	В	REVISED PER COMMENTS	07/09/18
	С	REVISED PER NEW RFDS	07/19/18
	0	ISSUED FOR PERMIT	07/24/18
Ц			

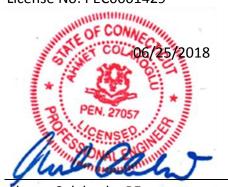
SITE NUMBER: CT11737C SITE NAME: CT737/E HARTFORD TOWN SST SITE ADDRESS: 100 SUNSET RIDGE RD EAST HARTFORD, CT 06108

> SHEET TITLE: E-1: GROUNDING AND ELECTRICAL DETAILS

Exhibit D

STRUCTURAL ANALYSIS REPORT SELF SUPPORT TOWER

Prepared For:


T-Mobile Northeast, LLC 35 Griffin Road South Bloomfield, CT 06002

Structure Rating

Self-Support Tower: Pass(51.1%)

Sincerely, Destek Engineering, LLC License No: PEC0001429

Ahmet Colakoglu, PE Connecticut Professional Engineer License No: 27057

Site ID: CT11737C
Site Name: 100 Sunset Ridge Road,
East Hartford, CT 06118

Destek Job No: 1875038 June 25, 2018

CONTENTS

- 1.0 SUBJECT AND REFERENCES
- 1.1 STRUCTURE
- 2.0 EXISTING AND PROPOSED APPURTENANCES
- 3.0 CODES AND LOADING
- 4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES
- 5.0 ANALYSIS AND ASSUMPTIONS
- 6.0 RESULTS AND CONCLUSION

APPENDIX

A -CALCULATIONS

1.0 SUBJECT AND REFERENCES

The purpose of this analysis is to evaluate the structural capacity of the existing 140 feet tall self-support tower, located at 100 Sunset Ridge Road, East Hartford, CT 06118 for the additions and alterations proposed by T-Mobile.

The structural analysis of the site is based on the following documents provided to Destek Engineering, LLC (Destek):

- Structural Analysis Report prepared by Hudson Design Group, dated 06/10/2016.
- Construction Drawings prepared by Hudson Design Group, dated 05/10/2016
- RFDS provided by T-Mobile, dated 05/14/2018.
- Site Audit pictures, dated 01/27/2017.

1.1 STRUCTURE

The subject structure is a 3-sided 140 feet tall, self-support tower formed by 7 sections which are X-braced using single angle diagonals. The tower tapers from 16.0 feet wide at the base to 8 feet wide at 80 feet. Between 80 and 140 feet, the tower is 8.0 feet wide. Please refer to the software output in Appendix A, for tower geometry, member sizes and other details.

2.0 EXISTING AND PROPOSED APPURTENANCES

This analysis was based on the following existing and proposed appurtenances:

Existing Configuration of T-MOBILE Appurtenances:

RAD CENTER (FT)	ANTENNA & TMA	COAX	MOUNT
	(3) AIR21 KRC118023-1_B2A/B4P	(6) 1-5/8"	
120	(3) LNX-6515DS-A1M	+	(3) Sector
	(3) AIR32 KRD901146-1_B66A/B2A	(1) 9x18 hybrid	Mounts
	(3) RRUS11_B12	+	iviounts
	(3) Generic Twin Style 1B-AWS TMA	(1) 6x12 hybrid	

Proposed and Final Configuration of T-MOBILE Appurtenances:

RAD CENTER (FT)	ANTENNA & TMA	COAX	MOUNT
120	(3) APXVAARR24_43-U-NA20 (3)) AIR32 KRD901146-1_B66A/B2A (3) AIR21 KRC118023-1_B2A/B4P (3) Radio 4449 B12/B71 (3) Generic Twin Style 1B-AWS TMA	(6) 1-5/8'' + (1) 6x12 hybrid	(3) Sector Mounts

Existing and Remaining Appurtenances by Others:

RAD CENTER (FT)	ANTENNA & TMA	COAX	MOUNT
138	Lightning Rod		(3) Side-Arm
138	(3) 7' Omni		Mounts
135	1' Dish	(7) 7/8"	Pipe Mount
130	(3) 20' Omni	, , ,	(3) Sector Mounts
100	(3) Panel Antenna		
100	(3) 9442 RRH 700	(2) 22	(2) Cido Amo
100	2' Dish	(3) 3" (3) Side conduit Mou	(3) Side-Arm
100	1' Dish		iviounts
95	(2) 1' Dish		

3.0 CODES AND LOADING

The tower was analyzed per *TIA/EIA-222-G* as referenced by the *2016 Connecticut State Building Code* with all of the adopted Addendums and Supplements. The following wind loading was used in compliance with the standard for Hartford, CT:

- Basic wind speed 97 mph without ice (W_o)
- Basic wind speed 50 mph with 1" escalating ice (W_i)
- Exposure Category C
- Topographic Category 1
- Structure Class II

The following load combinations were used with wind blowing at 0°, 30°, 45°, 60°, and 90° measured from a line normal to the face of the self-support Tower.

- 1.2 D + 1.6 W₀
- 0.9 D + 1.6 W₀
- 1.2 D + 1.0 D_i + 1.0 W_i

D: Dead Load of structure and appurtenances

W₀: Wind Load, without ice W_i: Wind Load, with ice

D_i: Weight of Ice

4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

The analysis is based on the information provided to Destek and is assumed to be current and correct. Unless otherwise noted, the structure and the foundation system are assumed to be in good condition, free of defects and can achieve theoretical strength.

It is assumed that the structure has been maintained and shall be maintained during its service. The superstructure and the foundation system are assumed to be designed with proper engineering practice and fabricated, constructed and erected in accordance with the design documents. Destek will accept no liability which may arise due to any existing deficiency in design, material, fabrication, erection, construction, etc. or lack of maintenance.

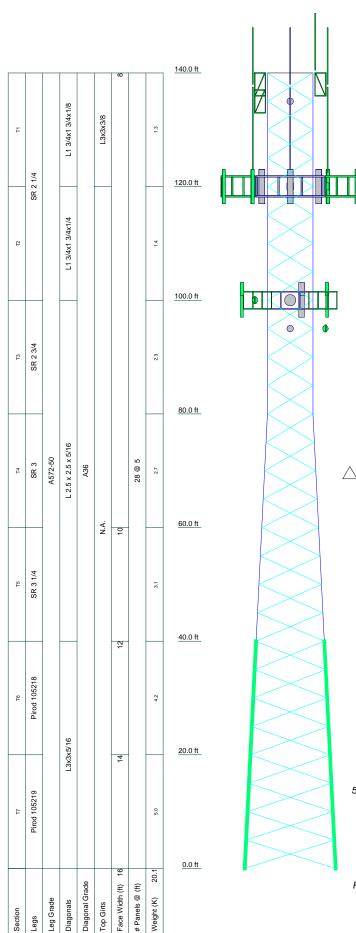
The analysis results presented in this report are only applicable for the previously mentioned existing and proposed additions and alterations. Any deviation of the proposed equipment and placement, etc., will require Destek to generate an additional structural analysis.

5.0 ANALYSIS AND ASSUMPTIONS

The tower was analyzed by utilizing tnxTower, a non-linear, three-dimensional, finite element-analysis software package, a product of Tower Numerics, Inc. Software output for this analysis is provided in Appendix A of this report.

All member end connection details are sufficient to resist the maximum supported member loading.

Page 3


6.0 RESULTS AND CONCLUSION

Based on a structural analysis per ANSI/TIA-222-G, the existing self-support tower **has adequate** structural capacity for the proposed changes by T-Mobile. For the aforementioned load combinations and as a maximum, the tower diagonals between 100' and 120' are stressed to **51.1%** of capacity. The tower legs between 0' and 20' are stressed to **46.3%** of capacity. The existing foundation could not be analyzed as there were no information pertaining to the tower and the guy anchor foundation.

Therefore, the proposed additions and alterations by T-Mobile **can** be implemented as intended with the conditions outlined in this report.

Should you have any questions about this report, please contact us at (770) 693-0835.

APPENDIX A CALCULATIONS & COAX LAYOUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 2"x15"	138	RADIO 4449 B12/B71	120
Omni 2"x7'	138	RADIO 4449 B12/B71	120
Omni 2"x7'	138	RADIO 4449 B12/B71	120
Omni 2"x7'	138	6'-P2x0.154	120
3' Side Mount Standoff	138	6'-P2x0.154	120
3' Side Mount Standoff	138	6'-P2x0.154	120
3' Side Mount Standoff	138	PiROD 12' T-Frame	120
3' Side Mount Standoff	135	PiROD 12' T-Frame	120
Andrew VHLP1	135	PiROD 12' T-Frame	120
Omni 3"x20'	130	AIR 21 B2A/B4P w/ Mount Pipe	120
Omni 3"x20'	130	Panel Antenna 6'x1'x4.5"	100
Omni 3"x20'	130	Panel Antenna 6'x1'x4.5"	100
AIR 21 B2A/B4P w/ Mount Pipe	120	9442 RRH 700	100
AIR 21 B2A/B4P w/ Mount Pipe	120	9442 RRH 700	100
Gen. TMA	120	9442 RRH 700	100
Gen. TMA	120	Side Arm Mount [SO 101-1]	100
Gen. TMA	120	Side Arm Mount [SO 101-1]	100
AIR -32 B2A/B66AA w/ Mount Pipe	120	Side Arm Mount [SO 101-1]	100
AIR -32 B2A/B66AA w/ Mount Pipe	120	Panel Antenna 6'x1'x4.5"	100
AIR -32 B2A/B66AA w/ Mount Pipe	120	Andrew VHLP2-11	100
APXVAARR24_43-U-NA20 w/ Mount	120	Andrew VHLP1	100
Pipe		Andrew VHLP1	95
APXVAARR24_43-U-NA20 w/ Mount Pipe	120	Andrew VHLP1	95
APXVAARR24_43-U-NA20 w/ Mount Pipe	120		

MATERIAL STRENGTH

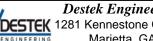
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-G Standard.
- 3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.6. Tower Structure Class II.
- 7. Topographic Category 1 with Crest Height of 0.00 ft
- 8. TOWER RATING: 51.1%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:


SHEAR: 18 K UPLIFT: -135 K SHEAR: 15 K

DOWN: 165 K

AXIAI 99 K MOMENT SHEAR 9 K 768 kip-ft

TORQUE 3 kip-ft 50 mph WIND - 1.0000 in ICE AXIAL 32 K MOMENT SHEAR' 2135 kip-ft

TORQUE 15 kip-ft REACTIONS - 97 mph WIND

Destek Engineering, LLC. **DESTEK** 1281 Kennestone Cir. Suite#100 Marietta, GA 30066 Phone: (770) 693-0835

FAX:

ob: CT11737C			
Project: 1875038			
Client: Fore Site LLC	Drawn by:	App'd:	
Code: TIA-222-G	Date: 06/22/18	Scale:	NT
Path:		Dwg No). F-

4	70
tnv	ower

Destek Engineering, LLC. 1281 Kennestone Cir. Suite#100 Marietta, GA 30066

> Phone: (770) 693-0835 FAX:

Job		Page
	CT11737C	1 of 21
Project		Date
	1875038	20:21:17 06/22/18
Client	Fore Site LLC	Designed by Ahmet Colakoglu

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 140.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 8.00 ft at the top and 16.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Hartford County, Connecticut.

Basic wind speed of 97 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification
- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)

 SR Members Have Cut Ends
 SR Members Are Concentric

- Distribute Leg Loads As Uniform
- Assume Legs Pinned
- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
- ✓ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.
 Autocalc Torque Arm Areas
 Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist. Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Job

Destek Engineering, LLC. 1281 Kennestone Cir. Suite#100 Marietta, GA 30066 Phone: (770) 693-0835

FAX:

	CT11737C	
Project		
	1875038	
Client		
	Fore Site LLC	

Page

Date

2 of 21

20:21:17 06/22/18

Ahmet Colakoglu

Designed by

	Wind 180	
	•	
Wind 90	Leg A	
Leg C	Z Leg	В
	Face C	
	†	
	Wind Normal	

Triangular Tower

	Tower Section Geometry											
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number	Section						
section	Elevation	Dalabase		wiain	of Sections	Length						
	ft			ft		ft						
T1	140.00-120.00			8.00	1	20.00						
T2	120.00-100.00			8.00	1	20.00						
T3	100.00-80.00			8.00	1	20.00						
T4	80.00-60.00			8.00	1	20.00						
T5	60.00-40.00			10.00	1	20.00						
T6	40.00-20.00			12.00	1	20.00						
Т7	20.00-0.00			14 00	1	20.00						

	Tower Section Geometry (cont'd)												
Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset						
	ft	ft		Panels		in	in						
T1	140.00-120.00	5.00	X Brace	No	No	0.0000	0.0000						
T2	120.00-100.00	5.00	X Brace	No	No	0.0000	0.0000						
T3	100.00-80.00	5.00	X Brace	No	No	0.0000	0.0000						
T4	80.00-60.00	5.00	X Brace	No	No	0.0000	0.0000						
T5	60.00-40.00	5.00	X Brace	No	No	0.0000	0.0000						
T6	40.00-20.00	5.00	X Brace	No	No	0.0000	0.0000						
T7	20.00-0.00	5.00	X Brace	No	No	0.0000	0.0000						

tnxT	ower
	UNUI

Job		Page
	CT11737C	3 of 21
Project		Date
	1875038	20:21:17 06/22/18
Client	Fore Site LLC	Designed by Ahmet Colakoglu

	Tower Section Geometry (cont'd)										
Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal					
Elevation ft	Туре	Size	Grade	Туре	Size	Grade					
Γ1 140.00-120.00	Solid Round	2 1/4	A572-50	Equal Angle	L1 3/4x1 3/4x1/8	A36					
			(50 ksi)			(36 ksi)					
Γ2 120.00-100.00	Solid Round	2 1/4	A572-50	Equal Angle	L1 3/4x1 3/4x1/4	A36					
			(50 ksi)			(36 ksi)					
ГЗ 100.00-80.00	Solid Round	2 3/4	A572-50	Equal Angle	L 2.5 x 2.5 x 5/16	A36					
			(50 ksi)	-		(36 ksi)					
T4 80.00-60.00	Solid Round	3	A572-50	Equal Angle	L 2.5 x 2.5 x 5/16	A36					
			(50 ksi)	-		(36 ksi)					
T5 60.00-40.00	Solid Round	3 1/4	A572-50	Equal Angle	L 2.5 x 2.5 x 5/16	A36					
			(50 ksi)	-		(36 ksi)					
T6 40.00-20.00	Truss Leg	Pirod 105218	A572-50	Equal Angle	L3x3x5/16	A36					
	-		(50 ksi)			(36 ksi)					
T7 20.00-0.00	Truss Leg	Pirod 105219	A572-50	Equal Angle	L3x3x5/16	A36					
			(50 ksi)	-		(36 ksi)					

Tower Section Geometry (cont'd)											
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade					
Γ1 140.00-120.00	Equal Angle	L3x3x3/8	A36 (36 ksi)	Solid Round		A36 (36 ksi)					

Tower Section Geometry (cont'd)										
Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade					
~										
Solid Round			Solid Round	9/16	A572-50					
		(50 ksi)			(50 ksi)					
Solid Round		A572-50	Solid Round	9/16	A572-50					
		(50 ksi)			(50 ksi)					
Solid Round		A572-50	Solid Round	9/16	A572-50					
		(50 ksi)			(50 ksi)					
Solid Round		A572-50	Solid Round	9/16	A572-50					
		(50 ksi)			(50 ksi)					
Solid Round			Solid Round	9/16	À572-50					
		(50 ksi)			(50 ksi)					
Solid Round		` '	Solid Round	9/16	A572-50					
2 TO MITO			2 10 and	2.20	(50 ksi)					
Solid Round		` '	Solid Round	9/16	A572-50					
Dona Rouna			John Round	<i>7/</i> 10	(50 ksi)					
	Solid Round Solid Round Solid Round Solid Round Solid Round	Secondary Horizontal Type Solid Round	Secondary Horizontal Type Secondary Horizontal Size Secondary Horizontal Grade Solid Round A572-50 (50 ksi) Solid Round A572-50 (50 ksi)	Secondary Horizontal Type Secondary Horizontal Size Secondary Horizontal Grade Inner Bracing Type Solid Round A572-50 (50 ksi) Solid Round Solid Round Solid Round Solid Round	Secondary Horizontal Horizontal Function Horizontal Type Secondary Horizontal Grade Inner Bracing Type Inner Bracing Size Solid Round A572-50 Solid Round (50 ksi) Solid Round 9/16 Solid Round A572-50 Solid Round (50 ksi) Solid Round 9/16 Solid Round A572-50 Solid Round (50 ksi) Solid Round 9/16 Solid Round A572-50 Solid Round (50 ksi) Solid Round 9/16 Solid Round A572-50 Solid Round 9/16 Solid Round (50 ksi) Solid Round A572-50 Solid Round 9/16 Solid Round A572-50 Solid Round 9/16 Solid Round A572-50 Solid Round 9/16 Solid Round A572-50 Solid Round 9/16					

Job		Page
	CT11737C	4 of 21
Project		Date
	1875038	20:21:17 06/22/18
Client	Fore Site LLC	Designed by Ahmet Colakoglu

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	0
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
	- 2						Diagonals	Horizontals	Redundants
ft	ft ²	in					in	in	in
T1	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
140.00-120.00			(36 ksi)						
T2	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
120.00-100.00			(36 ksi)						
T3	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
100.00-80.00			(36 ksi)						
T4 80.00-60.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T5 60.00-40.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T6 40.00-20.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						
T7 20.00-0.00	0.00	0.0000	A36	1	1	1	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	No	No	1	1	1	1	1	1	1	1
140.00-120.00				1	1	1	1	1	1	1
T2	No	No	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T3	No	No	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T4	No	No	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T5	No	No	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T6	No	No	1	1	1	1	1	1	1	0.5
40.00-20.00				1	1	1	1	1	1	0.85
T7 20.00-0.00	No	No	1	1	1	1	1	1	1	0.5
				1	1	1	1	1	1	0.85

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

_	Truss-Leg K Factors										
	Truss-Legs Used As Leg Members Truss-Legs Used As Inner Members										
Tower	Leg	X	Z	Leg	X	Z					
Elevation	Panels	Brace	Brace	Panels	Brace	Brace					
ft		Diagonals	Diagonals		Diagonals	Diagonals					

Job	Page
CT11737C	5 of 21
Project	Date
1875038	20:21:17 06/22/18
Client Fore Site LLC	Designed by Ahmet Colakoglu

T6	1	0.5	0.85	1	0.5	0.85
40.00-20.00						
T7 20.00-0.00	1	0.5	0.85	1	0.5	0.85

Tower Section Geometry (cont'd)

Tower	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid C	irt	Long Hor	rizontal	Short Hor	izontal
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net Width	U	Net Width	U	Net Width	U	Net Width	U
	Deduct		Deduct		Deduct		Deduct		Deduct		Deduct		Deduct	
	in		in		in		in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00-120.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T4 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg			ft	in	(Frac FW)		Row	in	in	in	plf
Feedline	C	No	Af (CaAa)	120.00 - 6.00	0.0000	0.45	1	1	0.0000	3.0000		8.40
Ladder (Af) ****												
LDF7-50A	C	No	Ar (CaAa)	120.00 - 6.00	-2.0000	0.44	6	3	0.0000	1.9800		0.82
(1-5/8 FOAM)												
1 5/8 Fiber	C	No	Ar (CaAa)	120.00 - 6.00	-3.0000	0.46	1	1	0.0000	1.9800		1.04
Cable												
1 5/8 Fiber	C	No	Ar (CaAa)	120.00 - 6.00	-3.0000	0.47	1	1	0.0000	1.9800		1.04
Cable												
3" conduit	C	No	Ar (CaAa)	100.00 - 6.00	-4.0000	0.47	3	3	0.0000	3.5000		3.00
VXL5-50 (7/8	C	No	Ar (CaAa)	140.00 - 6.00	-4.0000	0.44	7	4	0.0000	1.0800		0.29
FOAM)												

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft ²	ft^2	ft^2	ft ²	K
T1	140.00-120.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	15.120	0.000	0.04
T2	120.00-100.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00

tnxTower

Job	Page
CT11737C	6 of 21
Project	Date
1875038	20:21:17 06/22/18
Fore Site LLC	Designed by Ahmet Colakoglu

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
		С	0.000	0.000	56.800	0.000	0.35
T3	100.00-80.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	77.800	0.000	0.53
T4	80.00-60.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	77.800	0.000	0.53
T5	60.00-40.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	77.800	0.000	0.53
T6	40.00-20.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	77.800	0.000	0.53
T7	20.00-0.00	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	54.460	0.000	0.37

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft ²	ft^2	K
T1	140.00-120.00	A	2.294	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	27.938	0.000	0.38
T2	120.00-100.00	A	2.256	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	106.297	0.000	1.99
T3	100.00-80.00	A	2.211	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	147.367	0.000	2.71
T4	80.00-60.00	A	2.156	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	145.568	0.000	2.64
T5	60.00-40.00	A	2.085	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	143.229	0.000	2.55
T6	40.00-20.00	A	1.981	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	139.827	0.000	2.43
T7	20.00-0.00	A	1.775	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	93.156	0.000	1.53

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	140.00-120.00	-3.2523	1.8258	-0.8503	0.4774
T2	120.00-100.00	-7.1222	4.2596	-4.9064	2.9659
T3	100.00-80.00	-7.4541	4.1855	-4.8126	2.8008
T4	80.00-60.00	-8.1477	4.6423	-5.2903	3.1085
T5	60.00-40.00	-9.5058	5.5302	-6.1880	3.6870

4	100
<i>iny i</i>	ower

Job	Page
CT11737C	7 of 21
Project	Date
1875038	20:21:17 06/22/18
Fore Site LLC	Designed by Ahmet Colakoglu

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T6	40.00-20.00	-8.9196	5.2634	-5.1834	3.1334
T7	20.00-0.00	-7.8200	4.6558	-4.6154	2.7970

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	1	Segment Elev.	No Ice	Ice
T1	7	VXL5-50 (7/8 FOAM)	120.00 -	0.6000	0.6000
		,	140.00		
T2	1	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
		. ,	120.00		
T2	3	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000
			120.00		
T2	4	1 5/8 Fiber Cable	100.00 -	0.6000	0.6000
			120.00		
T2	5	1 5/8 Fiber Cable	100.00 -	0.6000	0.6000
			120.00		
T2	7	VXL5-50 (7/8 FOAM)	100.00 -	0.6000	0.6000
			120.00		
T3	1	Feedline Ladder (Af)		0.6000	0.6000
T3	3	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T3	4	1 5/8 Fiber Cable		0.6000	0.6000
T3	5	1 5/8 Fiber Cable		0.6000	0.6000
T3	6		80.00 - 100.00	0.6000	0.6000
T3	7	VXL5-50 (7/8 FOAM)		0.6000	0.6000
T4	1	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T4	3	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0.6000	0.6000
T4	4	1 5/8 Fiber Cable		0.6000	0.6000
T4	5	1 5/8 Fiber Cable	60.00 - 80.00	0.6000	0.6000
T4	6	3" conduit	60.00 - 80.00	0.6000	0.6000
T4	7	VXL5-50 (7/8 FOAM)		0.6000	0.6000
T5	1	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T5	3	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T5	4	1 5/8 Fiber Cable	40.00 - 60.00	0.6000	0.6000
T5	5	1 5/8 Fiber Cable	40.00 - 60.00	0.6000	0.6000
T5	6	3" conduit	40.00 - 60.00	0.6000	0.6000
T5	7	VXL5-50 (7/8 FOAM)	40.00 - 60.00	0.6000	0.6000
T6 T6	1 3	Feedline Ladder (Af)	20.00 - 40.00 20.00 - 40.00	0.6000	0.5178
-		LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6000	0.5178
T6 T6	4	1 5/8 Fiber Cable 1 5/8 Fiber Cable	20.00 - 40.00	0.6000 0.6000	0.5178 0.5178
T6	5	3" conduit	20.00 - 40.00	0.6000	0.5178
T6	6 7	VXL5-50 (7/8 FOAM)		0.6000	0.5178
T7	1	Feedline Ladder (Af)	20.00 - 40.00 6.00 - 20.00	0.6000	0.5178
17 T7	3	LDF7-50A (1-5/8 FOAM)	6.00 - 20.00	0.6000	0.5668
T7	4	1 5/8 Fiber Cable	6.00 - 20.00	0.6000	0.5668
T7	5	1 5/8 Fiber Cable	6.00 - 20.00	0.6000	0.5668
T7	6	3" conduit	6.00 - 20.00	0.6000	0.5668
T7	7	VXL5-50 (7/8 FOAM)	6.00 - 20.00	0.6000	0.5668
1 /	1	VALS-30 (7/8 FUAM)	0.00 - 20.00	0.0000	0.5008

tnvl	ower
	UWEI

١,	Job	Page
	CT11737C	8 of 21
	Project	Date
	1875038	20:21:17 06/22/18
	Client Fore Site LLC	Designed by Ahmet Colakoglu

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft	0	ft		ft²	ft ²	K
			ft						
**** Lightning Rod 2"x15'	В	From Leg	0.50	0.0000	138.00	No Ice	3.00	3.00	0.08
Lightining Rod 2 X13	ь	110III Leg	0.00	0.0000	138.00	1/2" Ice	4.53	4.53	0.10
			7.50			1" Ice	6.06	6.06	0.13
138ft									
Omni 2"x7'	A	From Leg	3.00 0.00	0.0000	138.00	No Ice 1/2" Ice	1.40 2.13	1.40 2.13	0.03 0.04
			5.00			1/2 Ice 1" Ice	2.13	2.13	0.04
Omni 2"x7'	В	From Leg	3.00	0.0000	138.00	No Ice	1.40	1.40	0.03
			0.00			1/2" Ice	2.13	2.13	0.04
			5.00			1" Ice	2.86	2.86	0.05
Omni 2"x7'	C	From Leg	3.00	0.0000	138.00	No Ice	1.40	1.40	0.03
			0.00			1/2" Ice	2.13	2.13	0.04
3' Side Mount Standoff	A	From Leg	5.00 1.50	0.0000	138.00	1" Ice No Ice	2.86 1.50	2.86 1.50	0.05 0.04
3 Side Would Standon	А	From Leg	0.00	0.0000	136.00	1/2" Ice	2.20	2.20	0.04
			0.00			1" Ice	2.90	2.90	0.10
3' Side Mount Standoff	В	From Leg	1.50	0.0000	138.00	No Ice	1.50	1.50	0.04
			0.00			1/2" Ice	2.20	2.20	0.07
	_		0.00			1" Ice	2.90	2.90	0.10
3' Side Mount Standoff	C	From Leg	1.50	0.0000	138.00	No Ice 1/2" Ice	1.50	1.50	0.04
			0.00			1" Ice	2.20 2.90	2.20 2.90	0.07 0.10
135ft			0.00			1 100	2.90	2.90	0.10
3' Side Mount Standoff	C	From Leg	1.50	0.0000	135.00	No Ice	1.50	1.50	0.04
			0.00			1/2" Ice	2.20	2.20	0.07
			0.00			1" Ice	2.90	2.90	0.10
130ft			2.00	0.0000	120.00		- 00	- 00	0.05
Omni 3"x20'	A	From Leg	3.00 0.00	0.0000	130.00	No Ice 1/2" Ice	6.00 8.03	6.00 8.03	0.05 0.09
			0.00			1" Ice	10.06	8.03 10.06	0.09
Omni 3"x20'	В	From Leg	3.00	0.0000	130.00	No Ice	6.00	6.00	0.05
			0.00			1/2" Ice	8.03	8.03	0.09
			0.00			1" Ice	10.06	10.06	0.14
Omni 3"x20'	C	From Leg	3.00	0.0000	130.00	No Ice	6.00	6.00	0.05
			0.00			1/2" Ice	8.03	8.03	0.09
120ft T Mobile			0.00			1" Ice	10.06	10.06	0.14
AIR 21 B2A/B4P w/ Mount	A	From Leg	3.00	0.0000	120.00	No Ice	6.16	5.55	0.10
Pipe	••	110111 2008	0.00	0.0000	120.00	1/2" Ice	6.60	6.30	0.16
•			0.00			1" Ice	7.03	7.00	0.22
AIR 21 B2A/B4P w/ Mount	В	From Leg	3.00	0.0000	120.00	No Ice	6.16	5.55	0.10
Pipe			0.00			1/2" Ice	6.60	6.30	0.16
AIR 21 B2A/B4P w/ Mount	С	Enom Loo	0.00	0.0000	120.00	1" Ice No Ice	7.03 6.16	7.00	0.22
Pipe	C	From Leg	3.00 0.00	0.0000	120.00	1/2" Ice	6.60	5.55 6.30	0.10 0.16
Tipe			0.00			1" Ice	7.03	7.00	0.22
Gen. TMA	A	From Leg	3.00	0.0000	120.00	No Ice	0.68	0.45	0.01
			0.00			1/2" Ice	0.80	0.56	0.02
a	_		0.00	0.0000	120.00	1" Ice	0.92	0.67	0.02
Gen. TMA	В	From Leg	3.00	0.0000	120.00	No Ice	0.68	0.45	0.01
			0.00			1/2" Ice 1" Ice	0.80 0.92	0.56 0.67	0.02 0.02
Gen. TMA	С	From Leg	3.00	0.0000	120.00	No Ice	0.92	0.67	0.02
	Č		2.00	0.0000	123.00	1.0 100	0.00	0.10	0.01

4	M
Inx	'ower

Job		Page
	CT11737C	9 of 21
Project		Date
	1875038	20:21:17 06/22/18
Client	Fore Site LLC	Designed by Ahmet Colakoglu

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	$C_A A_A$ Side	Weight
	Leg		Lateral						
			Vert ft	0	ft		ft ²	ft^2	K
			ft ft		Ji		Ji	Ji	Λ
			0.00			1/2" Ice	0.80	0.56	0.02
			0.00			1" Ice	0.92	0.67	0.02
AIR -32 B2A/B66AA w/	A	From Leg	3.00	0.0000	120.00	No Ice	6.75	6.07	0.15
Mount Pipe			0.00			1/2" Ice	7.20	6.87	0.21
AIR -32 B2A/B66AA w/	В	Enom Loo	0.00 3.00	0.0000	120.00	1" Ice No Ice	7.65 6.75	7.58 6.07	0.28 0.15
Mount Pipe	Ь	From Leg	0.00	0.0000	120.00	1/2" Ice	7.20	6.87	0.13
Would I ipe			0.00			1" Ice	7.65	7.58	0.28
AIR -32 B2A/B66AA w/	C	From Leg	3.00	0.0000	120.00	No Ice	6.75	6.07	0.15
Mount Pipe			0.00			1/2" Ice	7.20	6.87	0.21
•			0.00			1" Ice	7.65	7.58	0.28
APXVAARR24_43-U-NA20	A	From Leg	3.00	0.0000	120.00	No Ice	20.48	11.02	0.16
w/ Mount Pipe			0.00			1/2" Ice	21.23	12.55	0.30
	-		0.00	0.0000	120.00	1" Ice	21.99	14.10	0.44
APXVAARR24_43-U-NA20	В	From Leg	3.00	0.0000	120.00	No Ice	20.48	11.02	0.16
w/ Mount Pipe			0.00			1/2" Ice 1" Ice	21.23 21.99	12.55	0.30 0.44
APXVAARR24_43-U-NA20	С	From Leg	3.00	0.0000	120.00	No Ice	20.48	14.10 11.02	0.44
w/ Mount Pipe	C	110m Leg	0.00	0.0000	120.00	1/2" Ice	21.23	12.55	0.10
w/ Would Tipe			0.00			1" Ice	21.99	14.10	0.44
RADIO 4449 B12/B71	A	From Leg	3.00	0.0000	120.00	No Ice	1.65	1.30	0.08
			0.00			1/2" Ice	1.81	1.44	0.09
			0.00			1" Ice	1.98	1.60	0.11
RADIO 4449 B12/B71	В	From Leg	3.00	0.0000	120.00	No Ice	1.65	1.30	0.08
			0.00			1/2" Ice	1.81	1.44	0.09
			0.00			1" Ice	1.98	1.60	0.11
RADIO 4449 B12/B71	C	From Leg	3.00	0.0000	120.00	No Ice	1.65	1.30	0.08
			0.00			1/2" Ice	1.81	1.44	0.09
6'-P2x0.154	A	Enom Loo	0.00 3.00	0.0000	120.00	1" Ice No Ice	1.98 1.43	1.60 1.43	0.11 0.02
0-P2X0.134	А	From Leg	0.00	0.0000	120.00	1/2" Ice	1.43	1.43	0.02
			0.00			1" Ice	2.29	2.29	0.05
6'-P2x0.154	В	From Leg	3.00	0.0000	120.00	No Ice	1.43	1.43	0.02
·	_		0.00			1/2" Ice	1.92	1.92	0.03
			0.00			1" Ice	2.29	2.29	0.05
6'-P2x0.154	C	From Leg	3.00	0.0000	120.00	No Ice	1.43	1.43	0.02
			0.00			1/2" Ice	1.92	1.92	0.03
			0.00			1" Ice	2.29	2.29	0.05
PiROD 12' T-Frame	A	From Leg	3.00	0.0000	120.00	No Ice	12.20	12.20	0.36
			0.00			1/2" Ice	17.60	17.60	0.49
PiROD 12' T-Frame	В	From Leg	0.00 3.00	0.0000	120.00	1" Ice No Ice	23.00 12.20	23.00 12.20	0.62 0.36
FIROD 12 1-Frame	ь	From Leg	0.00	0.0000	120.00	1/2" Ice	17.60	17.60	0.30
			0.00			1" Ice	23.00	23.00	0.42
PiROD 12' T-Frame	C	From Leg	3.00	0.0000	120.00	No Ice	12.20	12.20	0.36
			0.00			1/2" Ice	17.60	17.60	0.49
			0.00			1" Ice	23.00	23.00	0.62
100ft									
Panel Antenna 6'x1'x4.5"	A	From Leg	4.00	0.0000	100.00	No Ice	8.64	8.64	0.07
			2.00			1/2" Ice	9.29	9.29	0.13
D 1 A 4 CL 41 4 C''	Б	г .	0.00	0.0000	100.00	1" Ice	9.94	9.94	0.19
Panel Antenna 6'x1'x4.5"	В	From Leg	4.00	0.0000	100.00	No Ice	8.64	8.64	0.07
			2.00 0.00			1/2" Ice 1" Ice	9.29 9.94	9.29 9.94	0.13 0.19
Panel Antenna 6'x1'x4.5"	С	From Leg	4.00	0.0000	100.00	No Ice	9.94 8.64	9.94 8.64	0.19
i and Amonia U XI X4.J	C	1 Tom Leg	2.00	0.0000	100.00	1/2" Ice	9.29	9.29	0.07
			0.00			1" Ice	9.94	9.94	0.19

4	Manua ana
<i>inx i</i>	ower

Job	Page
CT11737C	10 of 21
Project	Date
1875038	20:21:17 06/22/18
Fore Site LLC	Designed by Ahmet Colakoglu

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft ²	K
9442 RRH 700	A	From Leg	4.00	0.0000	100.00	No Ice	3.02	1.50	0.04
			2.00			1/2" Ice	3.26	1.69	0.06
			2.00			1" Ice	3.50	1.88	0.09
9442 RRH 700	В	From Leg	4.00	0.0000	100.00	No Ice	3.02	1.50	0.04
			2.00			1/2" Ice	3.26	1.69	0.06
			2.00			1" Ice	3.50	1.88	0.09
9442 RRH 700	C	From Leg	4.00	0.0000	100.00	No Ice	3.02	1.50	0.04
			2.00			1/2" Ice	3.26	1.69	0.06
			2.00			1" Ice	3.50	1.88	0.09
Side Arm Mount [SO 101-1]	A	From Leg	2.00	0.0000	100.00	No Ice	3.75	1.28	0.08
		_	0.00			1/2" Ice	4.45	1.39	0.11
			0.00			1" Ice	5.15	1.50	0.14
Side Arm Mount [SO 101-1]	В	From Leg	2.00	0.0000	100.00	No Ice	3.75	1.28	0.08
		_	0.00			1/2" Ice	4.45	1.39	0.11
			0.00			1" Ice	5.15	1.50	0.14
Side Arm Mount [SO 101-1]	C	From Leg	2.00	0.0000	100.00	No Ice	3.75	1.28	0.08
		C	0.00			1/2" Ice	4.45	1.39	0.11
			0.00			1" Ice	5.15	1.50	0.14

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	K
*** ***135ft***											
Andrew VHLP1	A	Paraboloid	From	2.00	0.0000		135.00	1.25	No Ice	1.23	0.01
		w/Radome	Leg	0.00					1/2" Ice	1.40	0.03
			_	0.00					1" Ice	1.57	0.04
100ft											
Andrew VHLP2-11	Α	Paraboloid	From	4.00	0.0000		100.00	2.00	No Ice	3.14	0.05
		w/Radome	Leg	0.00					1/2" Ice	3.41	0.07
95ft				0.00					1" Ice	3.68	0.09
Andrew VHLP1	Α	Paraboloid	From	2.00	0.0000		95.00	1.25	No Ice	1.23	0.01
		w/Radome	Leg	0.00					1/2" Ice	1.40	0.03
				0.00					1" Ice	1.57	0.04
95ft											
Andrew VHLP1	В	Paraboloid	From	2.00	0.0000		95.00	1.25	No Ice	1.23	0.01
		w/Radome	Leg	0.00					1/2" Ice	1.40	0.03
100ft				0.00					1" Ice	1.57	0.04
Andrew VHLP1	C	Paraboloid	From	2.00	0.0000		100.00	1.25	No Ice	1.23	0.01
		w/Radome	Leg	0.00					1/2" Ice	1.40	0.03
				0.00					1" Ice	1.57	0.04

Destek Engineering, LLC. 1281 Kennestone Cir. Suite#100

Marietta, GA 30066 Phone: (770) 693-0835 FAX:

Job	Page		
CT11737C	11 of 21		
Project	Date		
1875038	20:21:17 06/22/18		
Fore Site LLC	Designed by Ahmet Colakoglu		

Truss-Leg Properties

Section Designation	Area	Area Ice	Self Weight	Ice Weight	Equiv. Diameter	Equiv. Diameter Ice	Leg Area
	in^2	in^2	K	K	in	in	in^2
Pirod 105218	2263.4687	6856.2743	0.72	2.41	7.8593	23.8065	7.2158
Pirod 105219	2441.8688	6746.0737	0.90	2.34	8.4787	23.4239	9.4248

Load Combinations

Comb.	Description
No.	· · · · · · · · · · · · · · · · · · ·
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
20	e
22	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service

4. 7	100
tnv	ower
	UNUI

Job	Page
CT11737C	12 of 21
Project	Date
1875038	20:21:17 06/22/18
Client	Designed by
Fore Site LLC	Ahmet Colakoglu

Comb.		Description	
No.			
48	Dead+Wind 270 deg - Service		
49	Dead+Wind 300 deg - Service		
50	Dead+Wind 330 deg - Service		

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Type		Load		Moment	Moment
	J	<i>J</i> 1		Comb.	K	kip-ft	kip-ft
T1	140 - 120	Leg	Max Tension	15	3.28	0.00	0.01
			Max. Compression	18	-4.74	0.06	-0.04
			Max. Mx	8	-0.74	0.18	0.03
			Max. My	2	-0.15	-0.02	-0.18
			Max. Vy	20	0.20	0.00	-0.05
			Max. Vx	2	0.22	-0.01	0.03
		Diagonal	Max Tension	22	1.15	0.00	0.00
			Max. Compression	10	-1.26	0.00	0.00
			Max. Mx	33	-0.08	0.04	0.00
			Max. My	24	-1.02	0.00	0.00
			Max. Vy	33	-0.04	0.04	0.00
			Max. Vx	24	-0.00	0.00	0.00
		Top Girt	Max Tension	19	0.14	0.00	0.00
		1	Max. Compression	22	-0.18	0.00	0.00
			Max. Mx	26	-0.08	-0.22	0.00
			Max. My	24	-0.01	0.00	0.00
			Max. Vy	26	-0.11	0.00	0.00
			Max. Vx	24	0.00	0.00	0.00
T2	120 - 100	Leg	Max Tension	15	22.63	0.01	0.01
			Max. Compression	18	-28.30	0.10	-0.05
			Max. Mx	20	-1.82	0.16	-0.01
			Max. My	24	-2.03	0.08	0.16
			Max. Vy	20	1.31	0.02	-0.09
			Max. Vx	2	1.33	-0.01	0.07
		Diagonal	Max Tension	20	3.53	0.00	0.00
			Max. Compression	20	-3.58	0.00	0.00
			Max. Mx	34	0.62	0.04	0.00
			Max. My	20	-2.77	0.01	0.01
			Max. Vy	34	-0.04	0.04	0.00
			Max. Vx	20	-0.00	0.01	0.01
T3	100 - 80	Leg	Max Tension	15	53.83	0.01	0.00
			Max. Compression	18	-63.81	0.18	-0.10
			Max. Mx	20	-3.22	0.24	-0.03
			Max. My	24	-4.13	0.10	0.24
			Max. Vy	8	-0.43	-0.06	-0.08
			Max. Vx	2	0.47	-0.01	0.11
		Diagonal	Max Tension	16	5.25	0.00	0.00
			Max. Compression	16	-5.39	0.00	0.00
			Max. Mx	34	0.62	0.08	-0.00
			Max. My	24	-4.80	-0.00	0.01
			Max. Vy	34	-0.06	0.08	-0.00
			Max. Vx	24	-0.00	-0.00	0.01
T4	80 - 60	Leg	Max Tension	15	76.98	-0.06	-0.01
		. 0	Max. Compression	18	-91.08	0.12	0.00
			Max. Mx	18	-71.77	0.20	-0.00
			Max. My	12	-5.10	-0.04	-0.27
			Max. Vy	2	0.08	0.20	0.02
			Max. Vx	12	0.12	-0.04	-0.27
		Diagonal	Max Tension	4	3.62	0.00	0.00
		8	Max. Compression	2	-3.74	0.00	0.00

inxiower	tnx1	ower
----------	------	------

Job	Page
CT11737C	13 of 21
Project	Date
1875038	20:21:17 06/22/18
Fore Site LLC	Designed by Ahmet Colakoglu

No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
			Max. Mx	35	1.09	0.08	0.01
			Max. My	16	-3.38	-0.01	-0.01
			Max. Vy	33	0.07	0.08	0.01
			Max. Vx	36	-0.00	0.00	0.00
T5	60 - 40	Leg	Max Tension	15	96.31	-0.07	-0.01
			Max. Compression	18	-114.65	0.21	-0.00
			Max. Mx	2	-113.06	0.21	0.02
			Max. My	12	-7.70	0.00	-0.30
			Max. Vy	3	-0.06	0.21	0.02
			Max. Vx	12	0.10	0.00	-0.30
		Diagonal	Max Tension	4	3.96	0.00	0.00
			Max. Compression	2	-3.99	0.00	0.00
			Max. Mx	33	0.76	0.10	-0.01
			Max. My	38	-0.38	0.09	0.01
			Max. Vy	33	0.08	0.10	-0.01
			Max. Vx	38	0.00	0.00	0.00
T6	40 - 20	Leg	Max Tension	15	114.25	-2.40	0.00
		Č	Max. Compression	18	-137.60	2.50	-0.00
			Max. Mx	18	-120.10	2.98	-0.00
			Max. My	16	-7.31	-0.04	2.63
			Max. Vy	19	-0.61	2.97	-0.00
			Max. Vx	12	0.45	-0.01	-2.18
		Diagonal	Max Tension	4	4.66	0.00	0.00
			Max. Compression	2	-4.79	0.00	0.00
			Max. Mx	35	1.15	0.15	0.02
			Max. My	38	-0.49	0.13	0.02
			Max. Vy	33	0.10	0.15	0.02
			Max. Vx	38	0.00	0.00	0.00
T7	20 - 0	Leg	Max Tension	15	132.68	-2.32	0.01
		8	Max. Compression	18	-161.61	0.00	-0.00
			Max. Mx	35	-82.82	13.15	-0.00
			Max. My	16	-9.61	-0.16	3.22
			Max. Vy	29	-3.22	-4.32	0.00
			Max. Vx	12	-0.69	-0.12	-3.15
		Diagonal	Max Tension	30	7.62	0.00	0.00
		Diagonai	Max. Compression	2	-6.08	0.00	0.00
			Max. Mx	33	-1.35	0.17	0.02
			Max. My	38	-3.21	0.16	0.02
			Max. Vy	33	0.10	0.17	0.02
			Max. Vx	38	-0.01	0.00	0.02

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
Leg C	Max. Vert	18	164.76	15.61	-9.02
_	Max. H _x	18	164.76	15.61	-9.02
	Max. H _z	7	-132.97	-13.07	7.54
	Min. Vert	7	-132.97	-13.07	7.54
	Min. H _x	7	-132.97	-13.07	7.54
	Min. H _z	18	164.76	15.61	-9.02
Leg B	Max. Vert	10	162.71	-15.82	-8.58
	Max. H _x	23	-134.50	13.30	7.21
	Max. H _z	23	-134.50	13.30	7.21
	Min. Vert	23	-134.50	13.30	7.21
	Min. H _x	10	162.71	-15.82	-8.58

tnx1	ower
O TOOU I	

Job	Page
CT11737C	14 of 21
Project	Date
1875038	20:21:17 06/22/18
Client Fore Site LLC	Designed by Ahmet Colakoglu

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
	Min. Hz	10	162.71	-15.82	-8.58
Leg A	Max. Vert	2	162.76	-0.52	17.99
	Max. H _x	19	-68.89	1.37	-7.87
	Max. H _z	2	162.76	-0.52	17.99
	Min. Vert	15	-135.11	0.44	-15.17
	Min. H _x	6	81.06	-1.22	8.82
	Min. H _z	15	-135.11	0.44	-15.17

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	26.78	-0.00	0.00	8.00	13.62	0.00
1.2 Dead+1.6 Wind 0 deg - No	32.13	0.00	-28.03	-2106.81	16.39	-13.99
Ice	2110	0.00	20.02	2105.55	12.20	12.00
0.9 Dead+1.6 Wind 0 deg - No	24.10	0.00	-28.03	-2107.57	12.28	-13.98
Ice 1.2 Dead+1.6 Wind 30 deg - No Ice	32.13	13.02	-22.58	-1711.41	-976.16	-7.48
0.9 Dead+1.6 Wind 30 deg - No Ice	24.10	13.02	-22.58	-1712.47	-979.49	-7.47
1.2 Dead+1.6 Wind 60 deg - No Ice	32.13	22.33	-12.89	-974.71	-1689.63	0.07
0.9 Dead+1.6 Wind 60 deg - No Ice	24.10	22.33	-12.89	-976.35	-1692.40	0.07
1.2 Dead+1.6 Wind 90 deg - No Ice	32.13	26.04	0.03	12.47	-1967.21	6.77
0.9 Dead+1.6 Wind 90 deg - No Ice	24.10	26.04	0.03	10.06	-1969.76	6.76
1.2 Dead+1.6 Wind 120 deg - No Ice	32.13	24.26	14.02	1069.09	-1814.78	12.87
0.9 Dead+1.6 Wind 120 deg - No Ice	24.10	24.26	14.02	1065.85	-1817.46	12.86
1.2 Dead+1.6 Wind 150 deg - No Ice	32.13	13.06	22.61	1734.21	-979.42	14.49
0.9 Dead+1.6 Wind 150 deg - No Ice	24.10	13.05	22.61	1730.44	-982.74	14.48
1.2 Dead+1.6 Wind 180 deg - No Ice	32.13	0.00	25.86	1987.46	16.40	12.60
0.9 Dead+1.6 Wind 180 deg - No Ice	24.10	0.00	25.86	1983.49	12.29	12.59
1.2 Dead+1.6 Wind 210 deg - No Ice	32.13	-13.06	22.61	1734.25	1012.23	7.60
0.9 Dead+1.6 Wind 210 deg - No Ice	24.10	-13.05	22.61	1730.48	1007.34	7.59
1.2 Dead+1.6 Wind 240 deg - No Ice	32.13	-24.26	14.02	1069.10	1847.57	0.07
0.9 Dead+1.6 Wind 240 deg - No Ice	24.10	-24.26	14.02	1065.86	1842.04	0.07
1.2 Dead+1.6 Wind 270 deg - No Ice	32.13	-26.04	0.03	12.47	1999.92	-6.77
0.9 Dead+1.6 Wind 270 deg - No Ice	24.10	-26.03	0.03	10.06	1994.26	-6.76
1.2 Dead+1.6 Wind 300 deg - No Ice	32.13	-22.33	-12.89	-974.65	1722.32	-11.62
0.9 Dead+1.6 Wind 300 deg -	24.10	-22.33	-12.89	-976.28	1716.86	-11.61

4.	1
tnvl	ower
	UNUI

Job	Page
CT11737C	15 of 21
Project	Date
1875038	20:21:17 06/22/18
Client Fore Site LLC	Designed by Ahmet Colakoglu

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice						
1.2 Dead+1.6 Wind 330 deg -	32.13	-13.02	-22.58	-1711.31	1008.89	-14.62
No Ice						
0.9 Dead+1.6 Wind 330 deg -	24.10	-13.02	-22.58	-1712.37	1003.99	-14.60
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	99.35	0.00	-0.00	40.07	69.88	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	99.35	0.00	-8.73	-647.74	69.97	-2.61
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	99.35	4.20	-7.29	-537.69	-263.35	-1.35
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	99.35	7.31	-4.22	-294.10	-509.19	0.20
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	99.35	8.40	0.01	40.83	-596.31	1.61
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120 deg+1.0	99.35	7.56	4.37	384.36	-525.31	2.65
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150 deg+1.0	99.35	4.21	7.29	618.79	-264.17	2.92
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180 deg+1.0	99.35	0.00	8.46	710.83	69.97	2.51
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210 deg+1.0	99.35	-4.21	7.29	618.80	404.11	1.38
Ice+1.0 Temp	00.25		4.05	20125		0.45
1.2 Dead+1.0 Wind 240 deg+1.0	99.35	-7.56	4.37	384.36	665.25	-0.17
Ice+1.0 Temp	00.25	0.40	0.04	40.02	7 0 < 2 0	
1.2 Dead+1.0 Wind 270 deg+1.0	99.35	-8.40	0.01	40.83	736.23	-1.61
Ice+1.0 Temp	00.25	5.04	4.00	20100	540.40	2.55
1.2 Dead+1.0 Wind 300 deg+1.0	99.35	-7.31	-4.22	-294.09	649.10	-2.57
Ice+1.0 Temp	00.25	4.20	7.20	527.66	402.27	2.05
1.2 Dead+1.0 Wind 330 deg+1.0	99.35	-4.20	-7.29	-537.66	403.27	-2.95
Ice+1.0 Temp	26.78	0.00	-6.70	-497.83	13.65	-3.35
Dead+Wind 20 dea Service	26.78 26.78	3.11	-6.70 -5.40	-497.83 -403.32	-223.57	-3.35 -1.79
Dead+Wind 60 dea Service	26.78	5.34	-3.40 -3.08	-403.32 -227.25	-225.57 -394.09	0.02
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	26.78	6.23	0.01	-227.23 8.69	-394.09 -460.43	1.62
Dead+Wind 120 deg - Service	26.78	5.80	3.35	261.23	-400.43 -424.01	3.08
Dead+Wind 150 deg - Service	26.78	3.12	5.41	420.20	-224.35	3.46
Dead+Wind 180 deg - Service	26.78	0.00	6.18	480.72	13.65	3.40
Dead+Wind 210 deg - Service	26.78	-3.12	5.41	420.21	251.66	1.82
Dead+Wind 240 deg - Service	26.78	-5.80	3.35	261.24	451.32	0.02
Dead+Wind 240 deg - Service Dead+Wind 270 deg - Service	26.78	-6.23	0.01	8.69	487.72	-1.62
Dead+Wind 300 deg - Service	26.78	-5.34	-3.08	-227.23	421.37	-2.78
Dead+Wind 300 deg - Service	26.78	-3.11	-5.40	-403.30	250.86	-3.49

Solution Summary

	Sui	n of Applied Force.	S	<u> </u>	Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-26.78	0.00	0.00	26.78	-0.00	0.000%
2	0.00	-32.13	-28.03	-0.00	32.13	28.03	0.001%
3	0.00	-24.10	-28.03	-0.00	24.10	28.03	0.002%
4	13.02	-32.13	-22.58	-13.02	32.13	22.58	0.001%
5	13.02	-24.10	-22.58	-13.02	24.10	22.58	0.002%
6	22.33	-32.13	-12.89	-22.33	32.13	12.89	0.001%
7	22.33	-24.10	-12.89	-22.33	24.10	12.89	0.002%
8	26.04	-32.13	0.03	-26.04	32.13	-0.03	0.001%
9	26.04	-24.10	0.03	-26.04	24.10	-0.03	0.002%
10	24.26	-32.13	14.02	-24.26	32.13	-14.02	0.001%

4	100
<i>iny i</i>	ower

Job		Page
	CT11737C	16 of 21
Proje	ect	Date
	1875038	20:21:17 06/22/18
Clier	Fore Site LLC	Designed by Ahmet Colakoglu

	Sur	n of Applied Force			Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
11	24.26	-24.10	14.02	-24.26	24.10	-14.02	0.002%
12	13.06	-32.13	22.61	-13.06	32.13	-22.61	0.001%
13	13.06	-24.10	22.61	-13.05	24.10	-22.61	0.002%
14	0.00	-32.13	25.86	-0.00	32.13	-25.86	0.001%
15	0.00	-24.10	25.86	-0.00	24.10	-25.86	0.002%
16	-13.06	-32.13	22.61	13.06	32.13	-22.61	0.001%
17	-13.06	-24.10	22.61	13.05	24.10	-22.61	0.002%
18	-24.26	-32.13	14.02	24.26	32.13	-14.02	0.001%
19	-24.26	-24.10	14.02	24.26	24.10	-14.02	0.002%
20	-26.04	-32.13	0.03	26.04	32.13	-0.03	0.001%
21	-26.04	-24.10	0.03	26.03	24.10	-0.03	0.002%
22	-22.33	-32.13	-12.89	22.33	32.13	12.89	0.001%
23	-22.33	-24.10	-12.89	22.33	24.10	12.89	0.002%
24	-13.02	-32.13	-22.58	13.02	32.13	22.58	0.001%
25	-13.02	-24.10	-22.58	13.02	24.10	22.58	0.002%
26	0.00	-99.35	0.00	-0.00	99.35	0.00	0.000%
27	0.00	-99.35	-8.73	-0.00	99.35	8.73	0.000%
28	4.20	-99.35	-7.29	-4.20	99.35	7.29	0.000%
29	7.31	-99.35	-4.22	-7.31	99.35	4.22	0.000%
30	8.40	-99.35	0.01	-8.40	99.35	-0.01	0.000%
31	7.56	-99.35	4.37	-7.56	99.35	-4.37	0.000%
32	4.21	-99.35	7.29	-4.21	99.35	-7.29	0.000%
33	0.00	-99.35	8.46	-0.00	99.35	-8.46	0.000%
34	-4.21	-99.35	7.29	4.21	99.35	-7.29	0.000%
35	-7.56	-99.35	4.37	7.56	99.35	-4.37	0.000%
36	-8.40	-99.35	0.01	8.40	99.35	-0.01	0.000%
37	-7.31	-99.35	-4.22	7.31	99.35	4.22	0.000%
38	-4.20	-99.35	-7.29	4.20	99.35	7.29	0.000%
39	0.00	-26.78	-6.70	-0.00	26.78	6.70	0.001%
40	3.11	-26.78	-5.40	-3.11	26.78	5.40	0.001%
41	5.34	-26.78	-3.08	-5.34	26.78	3.08	0.001%
42	6.23	-26.78	0.01	-6.23	26.78	-0.01	0.001%
43	5.80	-26.78	3.35	-5.80	26.78	-3.35	0.001%
44	3.12	-26.78	5.41	-3.12	26.78	-5.41	0.001%
45	0.00	-26.78	6.18	-0.00	26.78	-6.18	0.001%
46	-3.12	-26.78	5.41	3.12	26.78	-5.41	0.001%
47	-5.80	-26.78	3.35	5.80	26.78	-3.35	0.001%
48	-6.23	-26.78	0.01	6.23	26.78	-0.01	0.001%
49	-5.34	-26.78	-3.08	5.34	26.78	3.08	0.001%
50	-3.11	-26.78	-5.40	3.11	26.78	5.40	0.001%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	6	0.00000001	0.00000001
2	Yes	9	0.00000001	0.00005001
3	Yes	8	0.00000001	0.00012601
4	Yes	9	0.00000001	0.00005189
5	Yes	8	0.00000001	0.00013222
6	Yes	9	0.00000001	0.00005362
7	Yes	8	0.00000001	0.00013785
8	Yes	9	0.00000001	0.00005188
9	Yes	8	0.00000001	0.00013220
10	Yes	9	0.00000001	0.00005001
11	Yes	8	0.00000001	0.00012601

tnx1	ower
01000 <u>T</u>	

FAX:

Job		Page
	CT11737C	17 of 21
Project		Date
	1875038	20:21:17 06/22/18
Client	Fore Site LLC	Designed by Ahmet Colakoglu

12	Yes	9	0.00000001	0.00005202
13	Yes	8	0.00000001	0.00013253
14	Yes	9	0.00000001	0.00005370
15	Yes	8	0.00000001	0.00013804
16	Yes	9	0.00000001	0.00005191
17	Yes	8	0.00000001	0.00013225
18	Yes	9	0.00000001	0.00004995
19	Yes	8	0.00000001	0.00012586
20	Yes	9	0.0000001	0.00005189
21	Yes	8	0.00000001	0.00013220
22	Yes	9	0.0000001	0.00005368
23	Yes	8	0.00000001	0.00013798
24	Yes	9	0.00000001	0.00005201
25	Yes	8	0.0000001	0.00013251
26	Yes	8	0.00000001	0.00008493
27	Yes	9	0.00000001	0.00013176
28	Yes	9	0.0000001	0.00012675
29	Yes	9	0.00000001	0.00012570
30	Yes	9	0.00000001	0.00012653
31	Yes	9	0.00000001	0.00013154
32	Yes	9	0.00000001	0.00013516
33	Yes	9	0.00000001	0.00013925
34	Yes	9	0.00000001	0.00014080
35	Yes	9	0.00000001	0.00014205
36	Yes	9	0.00000001	0.00014073
37	Yes	9	0.00000001	0.00013923
38	Yes	9	0.00000001	0.00013526
39	Yes	8	0.00000001	0.00013880
40	Yes	8	0.00000001	0.00013917
41	Yes	8	0.00000001	0.00014031
42	Yes	8	0.0000001	0.00013914
43	Yes	8	0.00000001	0.00013880
44	Yes	8	0.0000001	0.00014000
45	Yes	8	0.00000001	0.00014124
46	Yes	8	0.00000001	0.00014007
47	Yes	8	0.00000001	0.00013922
48	Yes	8	0.00000001	0.00013998
49	Yes	8	0.00000001	0.00014114
50	Yes	8	0.00000001	0.00013993

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	140 - 120	1.892	47	0.1012	0.0120
T2	120 - 100	1.464	47	0.1002	0.0116
T3	100 - 80	1.040	47	0.0915	0.0104
T4	80 - 60	0.672	47	0.0752	0.0089
T5	60 - 40	0.387	47	0.0553	0.0067
T6	40 - 20	0.179	47	0.0375	0.0043
T7	20 - 0	0.052	47	0.0164	0.0022

Critical Deflections and Radius of Curvature - Service Wind

4 7	
tnx I	ower

Job	Page
CT11737C	18 of 21
Project	Date
1875038	20:21:17 06/22/18
Fore Site LLC	Designed by Ahmet Colakoglu

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
138.00	Lightning Rod 2"x15'	47	1.850	0.1013	0.0120	Inf
135.00	Andrew VHLP1	47	1.786	0.1014	0.0119	Inf
130.00	Omni 3"x20'	47	1.679	0.1013	0.0119	913061
120.00	AIR 21 B2A/B4P w/ Mount Pipe	47	1.464	0.1002	0.0116	665596
100.00	Andrew VHLP2-11	47	1.040	0.0915	0.0104	77291
95.00	Andrew VHLP1	47	0.941	0.0880	0.0100	67969

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	140 - 120	7.739	18	0.4134	0.0502
T2	120 - 100	5.989	18	0.4092	0.0486
T3	100 - 80	4.256	18	0.3735	0.0434
T4	80 - 60	2.752	18	0.3067	0.0371
T5	60 - 40	1.587	18	0.2259	0.0281
T6	40 - 20	0.735	18	0.1533	0.0182
T7	20 - 0	0.216	18	0.0669	0.0093

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	٥	ft
138.00	Lightning Rod 2"x15"	18	7.565	0.4136	0.0501	448437
135.00	Andrew VHLP1	18	7.303	0.4139	0.0500	448437
130.00	Omni 3"x20'	18	6.866	0.4138	0.0497	224218
120.00	AIR 21 B2A/B4P w/ Mount Pipe	18	5.989	0.4092	0.0486	165690
100.00	Andrew VHLP2-11	18	4.256	0.3735	0.0434	18838
95.00	Andrew VHLP1	18	3.851	0.3593	0.0419	16593

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	140 - 120	2 1/4	20.00	5.00	106.7	3.9761	-4.74	77.87	0.061
					K=1.00				
T2	120 - 100	2 1/4	20.00	5.00	106.7	3.9761	-28.30	77.87	0.363 1
					K=1.00				
Т3	100 - 80	2 3/4	20.00	5.00	87.3	5.9396	-63.81	153.15	0.417^{-1}
					K=1.00				
T4	80 - 60	3	20.03	5.01	80.1	7.0686	-91.08	198.90	0.458^{-1}

tnx1	ower
01000 <u>T</u>	

Job	Page
CT11737C	19 of 21
Project	Date
1875038	20:21:17 06/22/18
Fore Site LLC	Designed by Ahmet Colakoglu

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T5	60 - 40	3 1/4	20.03	5.01	K=1.00 74.0 K=1.00	8.2958	-114.65	250.22	0.458 1
Т6	40 - 20	Pirod 105218	20.03	5.01	32.4 K=1.00	7.2158	-137.60	300.68	0.458 1
Т7	20 - 0	Pirod 105219	20.03	5.01	28.4 K=1.00	9.4248	-161.61	399.87	0.404 1

¹ P_u / ϕP_n controls

	Truss-Leg Diagonal Data										
Section No.	Elevation ft	Diagonal Size	L_d ft	Kl/r	$\phi P_n \ K$	A in ²	$V_u \ K$	${\displaystyle ^{\displaystyle \varphi V_{n}}_{\displaystyle K}}$	Stress Ratio		
T6	40 - 20	0.5	1.46	119.0	324.71	0.1963	0.61	3.38	0.180		
T7	20 - 0	0.625	1.45	94.4	424.12	0.3068	3.22	6.96	0.463		

	Diagonal Design Data (Compression)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	K	K	ϕP_n		
T1	140 - 120	L1 3/4x1 3/4x1/8	9.43	4.61	159.4 K=1.00	0.4219	-1.26	3.75	0.336 1		
T2	120 - 100	L1 3/4x1 3/4x1/4	9.43	4.61	161.9 K=1.00	0.8125	-3.58	7.00	0.511 1		
Т3	100 - 80	L 2.5 x 2.5 x 5/16	9.43	4.58	112.4 K=1.00	1.4600	-5.39	24.31	0.221 1		
T4	80 - 60	L 2.5 x 2.5 x 5/16	10.96	5.48	134.5 K=1.00	1.4600	-3.61	18.24	0.198 1		
T5	60 - 40	L 2.5 x 2.5 x 5/16	12.77	6.37	156.4 K=1.00	1.4600	-3.98	13.48	0.296 1		
Т6	40 - 20	L3x3x5/16	14.63	6.92	140.9 K=1.00	1.7800	-4.79	20.25	0.237 1		
T7	20 - 0	L3x3x5/16	16.53	7.87	160.3 K=1.00	1.7800	-6.08	15.64	0.389 1		

¹ P_u / ϕP_n controls

		Top (Girt Des	ign D	oata (C	compre	ession)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ΦP_n
T1	140 - 120	L3x3x3/8	8.00	7.81	159.7 K=1.00	2.1100	-0.18	18.69	0.009 1

inxiower	tnx1	ower
----------	------	------

Job	Page
CT11737C	20 of 21
Project	Date
1875038	20:21:17 06/22/18
Client Fore Site LLC	Designed by Ahmet Colakoglu

Tension Checks

Leg Design Data (Tension)									
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	140 - 120	2 1/4	20.00	5.00	106.7	3.9761	3.28	178.92	0.018 1
T2	120 - 100	2 1/4	20.00	5.00	106.7	3.9761	22.63	178.92	0.126^{-1}
T3	100 - 80	2 3/4	20.00	5.00	87.3	5.9396	53.83	267.28	0.201^{-1}
T4	80 - 60	3	20.03	5.01	80.1	7.0686	76.98	318.09	0.242^{-1}
T5	60 - 40	3 1/4	20.03	5.01	74.0	8.2958	96.31	373.31	0.258^{-1}
T6	40 - 20	Pirod 105218	20.03	5.01	32.4	7.2158	114.25	324.71	0.352^{-1}
T7	20 - 0	Pirod 105219	20.03	5.01	28.4	9.4248	132.68	424.12	0.313^{-1}

¹ P_u / ϕP_n controls

Truss-Leg Diagonal Data									
Section No.	Elevation ft	Diagonal Size	L_d ft	Kl/r	$\phi P_n \ K$	A in ²	V_u K	$\phi V_n \ K$	Stress Ratio
T6 T7	40 - 20 20 - 0	0.5 0.625	1.46 1.45	119.0 94.4	324.71 424.12	0.1963 0.3068	0.61 3.22	3.38 6.96	0.180 0.463

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	140 - 120	L1 3/4x1 3/4x1/8	9.43	4.61	101.3	0.4219	1.15	13.67	0.084
T2	120 - 100	L1 3/4x1 3/4x1/4	9.43	4.61	104.5	0.8125	3.53	26.32	0.134^{-1}
T3	100 - 80	L 2.5 x 2.5 x 5/16	9.43	4.58	72.3	1.4600	5.25	47.30	0.111^{-1}
T4	80 - 60	L 2.5 x 2.5 x 5/16	10.96	5.48	86.4	1.4600	3.62	47.30	0.077^{-1}
T5	60 - 40	L 2.5 x 2.5 x 5/16	12.77	6.37	100.5	1.4600	3.96	47.30	0.084^{-1}
T6	40 - 20	L3x3x5/16	14.63	6.92	90.0	1.7800	4.66	57.67	0.081^{-1}
T7	20 - 0	L3x3x5/16	16.53	7.87	102.4	1.7800	7.62	57.67	0.132^{-1}

¹ P_u / ϕP_n controls

Top Girt Design Data (Tension)

¹ P_u / ϕP_n controls

4.	1
tnvl	ower
	UNUI

Job		Page
CT11	737C	21 of 21
Project		Date
1875	5038	20:21:17 06/22/18
Client Fore S	ite LLC	Designed by Ahmet Colakoglu

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.	ft		ft	ft		in^2	K	K	$\frac{P_u}{\phi P_n}$
T1	140 - 120	L3x3x3/8	8.00	7.81	102.7	2.1100	0.14	68.36	0.002 1

¹ P_u / ϕP_n controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
T1	140 - 120	Leg	2 1/4	1	-4.74	77.87	6.1	Pass
T2	120 - 100	Leg	2 1/4	31	-28.30	77.87	36.3	Pass
T3	100 - 80	Leg	2 3/4	58	-63.81	153.15	41.7	Pass
T4	80 - 60	Leg	3	85	-91.08	198.90	45.8	Pass
T5	60 - 40	Leg	3 1/4	112	-114.65	250.22	45.8	Pass
T6	40 - 20	Leg	Pirod 105218	139	-137.60	300.68	45.8	Pass
T7	20 - 0	Leg	Pirod 105219	166	-155.63	399.87	46.3	Pass
T1	140 - 120	Diagonal	L1 3/4x1 3/4x1/8	8	-1.26	3.75	33.6	Pass
T2	120 - 100	Diagonal	L1 3/4x1 3/4x1/4	34	-3.58	7.00	51.1	Pass
T3	100 - 80	Diagonal	L 2.5 x 2.5 x 5/16	66	-5.39	24.31	22.1	Pass
T4	80 - 60	Diagonal	L 2.5 x 2.5 x 5/16	92	-3.61	18.24	19.8	Pass
T5	60 - 40	Diagonal	L 2.5 x 2.5 x 5/16	119	-3.98	13.48	29.6	Pass
T6	40 - 20	Diagonal	L3x3x5/16	146	-4.79	20.25	23.7	Pass
T7	20 - 0	Diagonal	L3x3x5/16	173	-6.08	15.64	38.9	Pass
T1	140 - 120	Top Girt	L3x3x3/8	6	-0.18	18.69	0.9	Pass
							Summary	
						Leg (T7)	46.3	Pass
						Diagonal (T2)	51.1	Pass
						Top Girt (T1)	0.9	Pass
						RATING =	51.1	Pass

Exhibit E

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11737C

CT737/E Hartford Town SST 100 Sunset Ridge Road East Hartford, CT 06108

July 16, 2018

EBI Project Number: 6218005054

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general	20.22.9/				
population allowable limit:	20.23 %				

July 16, 2018

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11737C - CT737/E Hartford Town SST

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **100 Sunset Ridge Road, East Hartford, CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz Band are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **100 Sunset Ridge Road, East Hartford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
- 5) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These channels have a transmit power of 30 Watts.
- 6) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These channels have a transmit power of 30 Watts.

- 7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 8) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antennas used in this modeling are the **Ericsson AIR32 B66A/B2A**, **Ericsson AIR21 B2A/B4P** & the **RFS APXVAARR24_43-U-NA20** for 600 MHz, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) channels. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 10) The antenna mounting height centerline of the proposed antennas (both panel antennas and microwave dish) is **120 feet** above ground level (AGL).
- 11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 12) All calculations were done with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	С
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR32 B66A/B2A	Make / Model:	Ericsson AIR32 B66A/B2A	Make / Model:	Ericsson AIR32 B66A/B2A
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)
Channel Count	2	Channel Count	2	Channel Count	2
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08
Antenna A1 MPE%	2.58	Antenna B1 MPE%	2.58	Antenna C1 MPE%	2.58
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR21 B2A/B4P	Make / Model:	Ericsson AIR21 B2A/B4P	Make / Model:	Ericsson AIR21 B2A/B4P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz (PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A2 MPE%	1.29	Antenna B2 MPE%	1.29	Antenna C2 MPE%	1.29
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	RFS APXVAARR24_43- U-NA20	Make / Model:	RFS APXVAARR24_43- U-NA20	Make / Model:	RFS APXVAARR24_43- U-NA20
Gain:	12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 13.35 dBd	Gain:	12.95 dBd / 13.35 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	600 MHz / 700 MHz	Frequency Bands	600 MHz / 700 MHz	Frequency Bands	600 MHz / 700 MHz
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	120	Total TX Power(W):	120	Total TX Power(W):	120
ERP (W):	2,481,08	ERP (W):	2,481,08	ERP (W):	2,481,08
Antenna A3 MPE%	1.59	Antenna B3 MPE%	1.59	Antenna C3 MPE%	1.59

Site Summary Tables

Site Composite MPE%					
Carrier	MPE%				
T-Mobile (Per Sector Max)	5.46 %				
Sprint	5.20%				
Clearwire	0.09%				
AT&T	6.36%				
Public Works	0.62%				
Fire	0.41%				
Fire Admin	0.41%				
Police Channels 1&2	1.02%				
Parks & Rec	0.17%				
Health	0.25%				
800	0.24%				
Site Total MPE %:	20.23 %				

T-Mobile Sector A Total:	5.46 %					
T-Mobile Sector B Total:	5.46 %					
T-Mobile Sector C Total:	5.46 %					
Site Total:	20.23 %					

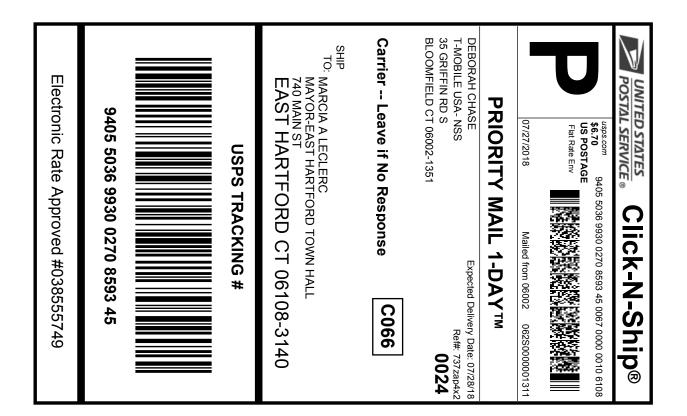
T-Mobile Max Power Values (Per Sector)

T-Mobile _Max Power Values (per sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE
T-Mobile PCS - 1900 MHz LTE	2	2,334.27	120	12.91	PCS - 1900 MHz	1000	1.29%
T-Mobile AWS - 2100 MHz LTE	2	2,334.27	120	12.91	AWS - 2100 MHz	1000	1.29%
T-Mobile PCS - 1900 MHz GSM	2	1,167.14	120	6.46	PCS - 1900 MHz	1000	0.65%
T-Mobile AWS - 2100 MHz UMTS	2	1,167.14	120	6.46	AWS - 2100 MHz	1000	0.65%
T-Mobile 600 MHz LTE	2	591.73	120	3.27	600 MHz	400	0.81%
T-Mobile 700 MHz LTE	2	648.82	120	3.59	700 MHz	467	0.77%
						Total:	5.46%

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.


The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)		
Sector A:	5.46 %		
Sector B:	5.46 %		
Sector C:	5.46 %		
T-Mobile Per Sector	5 46 9/		
Maximum (Per Sector):	5.46 %		
Site Total:	20.23 %		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is **20.23%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit F

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0270 8593 45

Trans. #: 440445520 Print Date: 07/27/2018 Ship Date: 07/27/2018 07/28/2018 Delivery Date:

Priority Mail® Postage: Total

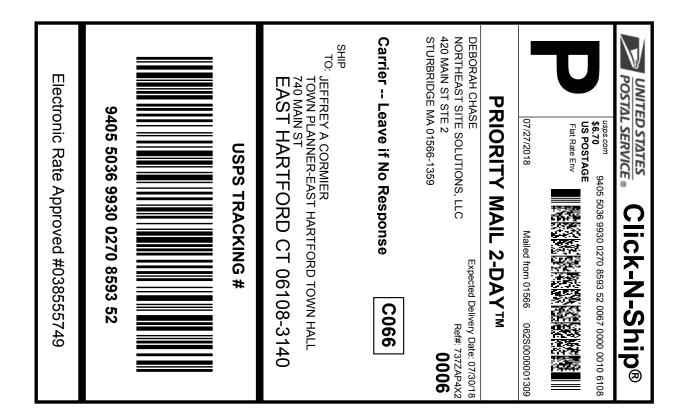
\$6.70

Ref#: 737zap4x2

From: **DEBORAH CHASE**

T-MOBILE USA- NSS 35 GRIFFIN RD S

BLOOMFIELD CT 06002-1351


MARCIA A LECLERC

MAYOR-EAST HARTFORD TOWN HALL

740 MAIN ST

EAST HARTFORD CT 06108-3140

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0270 8593 52

Trans. #: 440445520 Print Date: 07/27/2018 Ship Date: 07/27/2018 07/30/2018 Delivery Date:

Priority Mail® Postage: Total

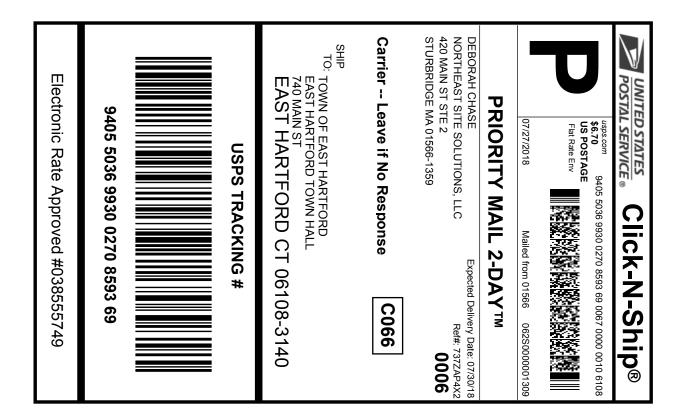
\$6.70

Ref#: 737ZAP4X2 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS, LLC

420 MAIN ST STE 2

STURBRIDGE MA 01566-1359


JEFFREY A CORMIER

TOWN PLANNER-EAST HARTFORD TOWN HALL

740 MAIN ST

EAST HARTFORD CT 06108-3140

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0270 8593 69

Trans. #: 440445520 Print Date: 07/27/2018 Ship Date: 07/27/2018 07/30/2018 Delivery Date:

Priority Mail® Postage: Total

\$6.70

From: DEBORAH CHASE Ref#: 737ZAP4X2

NORTHEAST SITE SOLUTIONS, LLC

420 MAIN ST STF 2

STURBRIDGE MA 01566-1359

TOWN OF EAST HARTFORD

EAST HARTFORD TOWN HALL

740 MAIN ST

EAST HARTFORD CT 06108-3140

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.