New Cingular Wireless
PCS, LLC
500 Enterprise Drive
Rocky Hill, Connecticut 06067
Tim Whalen
Real Estate Consultant
95 Ryan Drive, Suite \#1
Raynham, MA 02767
Phone: (781)375-8318
twhalen@clinellc.com
August 11, 2017
Chairman Robert Stein
and Members of the Connecticut Siting Council
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Re: Request for Tower Share - Notice
 New Cingular Wireless PCS, LLC ("AT\&T") Request for Approval of the Shared Use of an Existing Wireless Facility 100 Sunset Ridge East Hartford, CT 06108. AT\&T site number: CT3438

Dear Chairman Stein and Members of the Council:
AT\&T proposes to share an existing wireless facility located at 100 Sunset Ridge East Hartford, CT 06108 (the "Facility"). The subject parcel is identified by the Town of East Hartford as Map 57 Lot 134A. The property is owned by the Town of East Hartford and is roughly 1.46+/- acres.

Pursuant to Connecticut General Statues Section 16-50aa (the Statute), AT\&T requests a finding from the Connecticut Siting Council that the shared use of this facility is technically, legally, environmentally and economically feasible, will meet safety concerns, will avoid the unnecessary proliferation of towers and is in the public interest. AT\&T further requests an order approving the shared use of this Facility.

Siting Council Jurisdiction Over the Existing Facility

AT\&T is a telecommunication provider licensed by the FCC to provide service in the State of Connecticut, including but not limited to Hartford County. AT\&T in the process of entering into an agreement with the owner of this Facility, The Town of East Hartford, for the location of this proposed equipment on the tower so that it may provide telecommunications services to the surrounding community.

Pursuant to Connecticut General Statutes § 16-50aa, the Council may approve the shared use of a telecommunications facility provided that such shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns.

The Facility currently hold the Towns EMS equipment at the 120 ' and 155 ' level with equipment attached to and running down different parts of the existing Tower at 100 Sunset Ridge. This regulation of the Facility extended not only to the antennas on the tower but also the associated equipment and connections elsewhere on the site. In essence, the building was legally made as a tower and primarily the support structure for and part of the Facility as a whole. As such, we understand that AT\&T's antennas and equipment at this Facility are regulated by the Siting Council.

The purpose of this request is to use an existing Facility to develop AT\&T's wireless broadband network to provide high speed wireless data and to develop wireless service within the State of Connecticut and in this part of East Hartford, CT: thus avoiding the need for an additional tower in East Hartford. As the Council is aware AT\&T is licensed by the Federal Communications Commission ("FCC") to provide multiple technologies, including Global Systems for Mobile Communications ("GSM" or "2G"), Universal Mobile
Telecommunications Service ("UMTS" or "3G") and long-term evolution ("4G" or "LTE") services in Hartford County. AT\&T is building and enhancing its network to take advantage of its licensed spectrum, and improve its broadband high speed wireless voice and data services. By issuing an order approving AT\&T's shared use of this Facility, AT\&T will be able to proceed with obtaining a building permit for the proposed installation.

Existing Facility and Proposed Collocation

The existing Facility is a 140 ' tower located at 100 Sunset Ridge in East Hartford. The Town’s Fire an EMS equipment is currently on the facility. A site plan of the facility is included in the drawings, prepared by Advanced Engineering Group with a last revision date of May 4, 2017 attached hereto.

AT\&T intends to install three (3) Kathrein 800-107-99 panel antennas, twelve (12) Ericsson RRUs and three (3) Surge arrestors with associated cabling mounted on new antenna frames on the existing tower. AT\&T has leased space for ground equipment which will be installed at grade level next to the existing tower.

Consistent with the requirements of the Statute, it is feasible for AT\&T to collocate at this facility. AT\&T is proposing to add new equipment to an existing Facility. Included with this application is a Structural Analysis Report from Advanced Engineering Group with a last revision date of May 4, 2017, which shows that the existing tower can support AT\&T’s proposed equipment.

The Proposed Facility Will Not Have a Substantial Adverse Environmental Impact

Pursuant to Statute, the proposal will be environmentally feasible for the following reasons:

- There will be little increase in the visibility of the Facility with the addition of the antennas and associated equipment on the tower.
- There will be no increased impact on air quality because no air pollutants will be generated during normal operation of the facility.
- During construction, the proposed project will generate a small amount of traffic and noise as construction takes place. Upon completion, traffic will be limited to an average of one trip per month for maintenance and inspections.
- There will be no adverse impact to the health and safety of the surrounding community or workers at the facility due to the addition of AT\&T's antennas to the Facility. AT\&T has performed an analysis of the radio frequency field emanating from the transmitting antennas on the tower to ensure compliance with the National Council on Radiation Protection and measurements (NCRP) standard for maximum permissible exposure (MPE) adopted by the FCC. The analysis dated June 6, 2017 indicates that AT\&T and other antennas on Facility will cumulatively emit 13.42% of the NCRP standard for maximum permissible exposure. The report indicates that maximum level of exposure will be well below the FCC's mandated radio frequency exposure limits. The report is attached hereto and the calculations are below.

Site Composite MPE\%	
Carrier	MPE\%
AT\&T - Max Sector Value	$\mathbf{6 . 3 5} \%$
T-Mobile	3.74%
Clearwire	0.21%
Public Works	0.62%
Fire	0.41%
Fire Admin	0.41%
Police Channels $\& 2$	1.02%
Parks \& Rec	0.17%
Health	0.25%
800	0.24%
Site Total MPE \%:	$\mathbf{1 3 . 4 2} \%$

- AT\&T expects to enhance safety in this portion of East Hartford by improving wireless telecommunications for local residents and travelers. AT\&T continues to develop its network to provide its customers with quality and reliable coverage to comply with their FCC license, the site is a necessary part of AT\&T's network development.
- The overall visual impact on the Town of East Hartford will be decreased with the sharing of a single Facility versus the proliferation in different locations.
- This proposal is designed to provide reliable wireless coverage for this section of East Hartford, Connecticut.

Conclusion:

For the reasons stated above, the collocation of AT\&T's antennas and associated equipment to at this approved Facility would meet all the requirements set forth in the Statute. The proposal is legally, technically, economically and environmentally feasible and meets all public safety concerns. Therefore, AT\&T respectfully requests that the Council approve this request for the shared use of this Facility located at 100 Sunset Ridge, East Hartford CT.

Respectfully yours,
Tim Whalen
Real Estate Consultant

CC: Mayor Marcia Leclerc, Town of East Hartford (landlord and governing body)
> UPS tracking: 1Z9Y45030320836878
Peter Bonzani, Chair, Planning and Zoning Commission
> UPS tracking: 1Z9Y45030327779267
Milton Gregory Grew, Director of Inspections and Permits
> UPS tracking: 1Z9Y45030328787489

LETTER OF AUTHORIZATION

AT\&T SITE No.: 10578403

AT\&T SITE NAME: CT3438
ADDRESS: 100 Sunset Ridge, East Hartford CT

MARCIA A. LE,LLERC, MAYOROf TOUN OF EAST HARDin East Hartford CT, authorize AT\&T and/or their agent, to act as our non-exclusive agent for the sole purpose of filing and consummating any land use or building permit applications) necessary to obtain approval of the applicable jurisdiction for the AT\&T installation of telecommunications equipment on the above-described property.

We understand that this application may be denied, modified or approved with conditions, and that any such conditions of approval or modifications will be the sole responsibility of the carrier and will be complied with prior to issuance of a permit.

Landlord Printed Name:

Town of East Hartford Property Summary Report
 100 SUNSET RIDGE DR

MAP LOT:	$57-134 A$	CAMA PID:	13740
LOCATION:	100 SUNSET RIDGE DR		
OWNER NAME:	TOWN OF EAST HARTFORD / VETERANS MEMORIAL CLUBHSE		

SALES HISTORY			
OWNER	BOOK / PAGE	SALE DATE	SALE PRICE
TOWN OF EAST HARTFORD VETERANS MEMORIAL CLUBHSE	$159 / 39$	01-Jan-1900	$\$ 0.00$

CURRENT PARCEL ASSESSMENT						
TOTAL:	$\$ 836,930.00$	IMPROVEMENTS:	$\$ 738,230.00$	LAND:	$\$ 98,700.00$	

ASSESSING HISTORY			
FISCAL YEAR	TOTAL VALUE	IMPROVEMENT VALUE	LAND VALUE
2016	$\$ 836,930.00$	$\$ 738,230.00$	$\$ 98,700.00$
2015	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2014	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2013	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$
2012	$\$ 807,050.00$	$\$ 708,350.00$	$\$ 98,700.00$

Town of East Hartford Property Summary Report					
$\mathbf{1 0 0}$ SUNSET RIDGE DR					
MAP LOT:	$57-134 A$	CAMA PID:	13740		
LOCATION:	100 SUNSET RIDGE DR				
OWNER NAME:	TOWN OF EAST HARTFORD / VETERANS MEMORIAL CLUBHSE				

BUILDING \# 1

YEAR BUILT	1930	EXT WALL 1	Stone/Masonry
STYLE	Cultural Facility	INT WALLS 1	Plaster
MODEL	Comm/Ind	HEAT FUEL	Other
STORIES	1.0	HEAT TYPE	Steam
OCCUPANCY	Exempt	AC TYPE	
ROOF	Drmrs/Ex Gable	BEDROOMS	15
ROOF COVER	Asphalt	FULL BATHS	
FLOOR COVER 1	Hardwood	HALF BATHS	
\% BSMT	null	TOTAL ROOMS	0
\% FIN BSMT	null	\% REC RM	null
\% SEMI FIN BSMT	null	\% ATTIC FINISH	null
BSMT GARAGE	null	FIREPLACES	null

EXTRA FEATURES		
DESCRIPTION	CODE	UNITS
Fin Bsmt	FBM	1567 S.F.
Fireplace	FPL	1 UNITS

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility
Site ID: CT3438

East Hartford Sunset Ridge
100 Sunset Ridge
East Hartford, CT 6108

June 12, 2017
Centerline Communications Project Number: 950012-004

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 3 . 4 2} \%$

June 12, 2017
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT3438 - East Hartford Sunset Ridge

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at 100 Sunset Ridge, East Hartford, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(\mathrm{~b})(1)-(\mathrm{b})(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at $\mathbf{1 0 0}$ Sunset Ridge, East Hartford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	700 MHz	2	60
LTE	850 MHz	2	60
LTE	$2300 \mathrm{MHz}(\mathrm{WCS})$	2	60
LTE	$1900 \mathrm{MHz}($ PCS $)$	2	60

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ $\mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2300 MHz (WCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Kathrein 800-10799	110
B	1	Kathrein $800-10799$	110
C	1	Kathrein $800-10799$	110

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	$\begin{gathered} \text { Kathrein } \\ 800-10799 \end{gathered}$	$700 \mathrm{MHz} / 850 \mathrm{MHz} /$ 2300 MHz (WCS) / 1900 MHz (PCS)	$\begin{gathered} 13.75 / 14.35 / \\ 14.55 / 15.05 \end{gathered}$	8	480	13,372.79	6.35
Sector A Composite MPE\%							6.35
$\begin{gathered} \text { Antenna } \\ \text { B1 } \end{gathered}$	Kathrein 800-10799	$700 \mathrm{MHz} / 850 \mathrm{MHz}$ / 2300 MHz (WCS) / 1900 MHz (PCS)	$\begin{aligned} & 13.75 / 14.35 / \\ & 14.55 / 15.05 \\ & \hline \end{aligned}$	8	480	13,372.79	6.35
Sector B Composite MPE\%							6.35
Antenna C1	Kathrein 800-10799	$\begin{gathered} 700 \mathrm{MHz} / 850 \mathrm{MHz} / \\ 2300 \mathrm{MHz} \text { (WCS) / } \\ 1900 \mathrm{MHz} \text { (PCS) } \\ \hline \end{gathered}$	$\begin{gathered} 13.75 / 14.35 / \\ 14.55 / 15.05 \end{gathered}$	8	480	13,372.79	6.35
Sector C Composite MPE\%							6.35

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE\%	
Carrier	MPE \%
AT\&T - Max Sector Value	$\mathbf{6 . 3 5 \%}$
T-Mobile	3.74%
Clearwire	0.21%
Public Works	0.62%
Fire	0.41%
Fire Admin	0.41%
Police Channels 1\&2	1.02%
Parks \& Rec	0.17%
Health	0.25%
800	0.24%
Site Total MPE \%:	$\mathbf{1 3 . 4 2} \%$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	6.35%
AT\&T Sector B Total:	6.35%
AT\&T Sector C Total:	6.35%
Site Total:	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	6.35%
Sector B:	6.35%
Sector C:	6.35%
AT\&T Maximum Total	
(per sector):	6.35%
Site Total:	13.42%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 3 . 4 2} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

Structural Analysis Report

140' Self-Supporting Tower
100 Sunset Ridge
East Hartford, Connecticut 06108
AT\&T Site Number: CT3438

May 4, 2017

Prepared By:
CO ADVANCED
ENGINEERING GROUP, P.C.
500 North Broadway
East Providence, RI 02914

Prepared for
Centerline Communications
95 Ryan Drive
Raynham MA 02767

May 4, 2017
Mr. Jeffery Dellicolli
Project Manager
Centerline Communications
95 Ryan Drive
Raynham MA 02767

STRUCTURAL ANALYSIS

Structure	140 ' Self-Supporting Tower
Client	Centerline Communications
Location	100 Sunset Ridge, East Hartford, CT

EXECUTIVE SUMMARY

Advanced Engineering Group, P.C. (AEG) has performed a structural analysis of the existing $140^{\prime} \pm$ selfsupporting tower (SST) at the above-referenced address in order to ascertain the structural capacity of the tower with the proposed AT\&T inventory consisting of:

- Three (3) Kathrein 800-10799 panel antennas (1 per sector)
- Six (6) Ericsson RRUS 11 Remote Radio Heads (RRHs) (2 per sector)
- Six (6) RRUS 32 RRHs (2 per sector)
- Three (3) DC-6-48-60-18 surge suppressors (1 per sector)
- Three (3) Sector Frames
- One (1) $1 / 2$ " fiber cable
- Four (4) $1 / 2$ " DC cables

Based on the analysis performed, the existing self-supporting tower is structurally adequate and is in conformance with the ANSI/TIA 222-G standard when analyzed for the existing tower inventory and the proposed AT\&T inventory referenced above.

If you have any questions, of if we can be of further assistance, please do not hesitate to contact us.
Very truly yours

Marc R. Chretien, P.E.
Advanced Engineering Group. P.C.

Table of Contents

INTRODUCTION1
SOURCES 1
ANALYSIS 2
CONCLUSIONS AND RECOMMENDATIONS 4
LIMITATIONS AND ASSUMPTIONS 4
APPENDIX A - Tower Schematic 5
APPENDIX B - Photos 6
APPENDIX C - Calculations 7

INTRODUCTION

At the request of Jeffery Dellicolli, Centerline Communications, on behalf of AT\&T, Advanced Engineering Group, P.C. (AEG) has performed a structural analysis of the existing $140^{\prime} \pm$ SST at the above-referenced address in order to ascertain the structural capacity of the tower with the proposed AT\&T inventory with respect to the ANSI/TIA-222-G Standard, "Structural Standard for Antenna Supporting Structures and Antennas". The scope of this independent analysis is to determine the overall stability and the adequacy of structural members and member connections, as available and stated. This analysis assumes that the structure has been properly installed and maintained with no structural defects. Installation procedures and related loading are not within the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

SOURCES

	Source	Information	Reference
Tower	AEG Records	Previous report by URS Corporation (URS), dated $3 / 18 / 09$	URS Project No.: 36917334/HPC-024
Foundation	AEG Records	Previous report by URS Corporation (URS), dated $3 / 18 / 09$	URS Project No.: 36917334/HPC-024
Existing Inventory	AEG Records	Previous report by URS Corporation (URS), dated $3 / 18 / 09$	URS Project No.: 36917334/HPC-024
AEG, visual inspection from grade	Antennas and mount heights	Field inspection, 2/24/14	
Proposed Inventory	Centerline Communications	RFDS Document	NEW- ENGLAND_CONNECTICUT_S3438A_2017 -New- Site_New_ra9161_2051677677_10578403_ 156889_07-18-2016_Preliminary-In- Progress_v1.00.pdf

Note: Unless otherwise noted, all information regarding the structural elements of the existing tower is based on the above-referenced URS report. This office performed a site inspection on February 24, 2014, and conducted a visual survey of the tower and appurtenances from the ground. Since the tower was not climbed, a conditional assessment was not performed during the survey. The existing tower
inventory is based on the visual inspection by this office on $2 / 24 / 14$. Any inventory that could not be positively identified is based on information contained in the URS report. If any discrepancies are found to exist between the as-built tower (and inventory) and the information contained in this report, the results of this report are to be considered void and invalid, and this office is to be contacted so that the analysis can be revised.

ANALYSIS

The structural analysis was done in accordance with EIA/TIA-222-G, "Structural Standard for Antenna Supporting Structures and Antennas", and the American Institute of Steel Construction (AISC), Manual of Steel Construction, Allowable Stress Design, Ninth Edition. The computer program used to model the structure is tnxTower (ver. 7.0.7.0), a commercially available program developed and maintained by Tower Numerics, Inc. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. Stresses are internally calculated for various dead, live, wind, and ice load cases and then applied as external loads on the structure. Any applicable exemptions, as per Section 15.6 of the TIA-222-G Standard for existing structures originally designed in accordance with a previous revision of the TIA-222 Standard, have been taken. Selected output from the analysis is included in Appendix C. The analysis was conducted using the following parameters:

Load Cases	Full Wind	105 mph w/o ice
	Ice	$50 \mathrm{mph} \mathrm{w} / 1 "$ radial ice
	Service	60 mph
Structure Criteria	Structure Classification	Class II
	Exposure Category	B

Existing Tower Inventory

Elevation	Quantity	Make	Mount	Lines	Size \& Location
137	3	2"x8' omni whip	4' stand-off	3	7/8" / T-bracket
$137 \prime$	1	2"x20' omni whip	4' stand-off	1	7/8" / T-bracket
133^{\prime}	1	2' Dish	Stand-off	1	1/2"/Tower Face

CT3438 Structural Analysis, East Hartford, CT

Elevation	Quantity	Make	Mount	Lines	Size \& Location
120	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	AIR21 TMA	Sector Frames	12	1-5/8" / T-bracket
120	3	2.5"x20' omni whip	Sector Frames	3	7/8" / T-bracket
110	3	HBX-6516DS-TOM (1)	Leg	6	1-5/8" / Tower Face (1)
100	$\begin{aligned} & 3 \\ & 1 \\ & 1 \end{aligned}$	12"x72" panel 2' dish 3' dish	Dual Stand-off	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	1/2" / Tower Face 2" Flex Conduit
80	1	8' omni whip	4' stand-off	1	1/2" / Tower Face

(1) To be removed

Proposed Tower Inventory

Elevation	Quantity	Make	Mount	Lines	Size \& Location
110	3	Kathrein 800-10799	(3) Sabre 12' V-Boom	1	Fiber trunk
	6	RRUS-11	w/ tie-backs	4	DC line
	6	RRUS-32			On face of Tower
	3	DC6-48-60-18			

The following table summarizes the results of the analysis based on stresses of individual members:

Member	Capacity	Location	Results
Leg	56.6	$60^{\prime}-80^{\prime}$	Pass
Horizontal	3.7	140^{\prime}	Pass
Diagonal	65.7	$100^{\prime}-120^{\prime}$	Pass

Foundation as-built information was not available nor provided for this report. Therefore, the in-place capacity of the foundation could not be verified. A more thorough and accurate assessment of the foundation capacity will require site-specific foundation information. However, since the tower stresses are well below the allowable, it is the opinion of this office that the foundation can be considered structurally adequate..

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the structural analysis, it is the opinion of this office that the existing 140 ' \pm SST located at the above-referenced address is capable of supporting the proposed AT\&T loads without structural modifications.

LIMITATIONS AND ASSUMPTIONS

This engineering analysis is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. AEG has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities ('as-new’ condition).
- The tower member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type \& industry practice.
- Mounts/Platforms are considered adequate to support the loading. No actual analysis of the platform/ mount itself is performed, with the analysis being limited to analyzing the structure.
- The soil parameters are as per data supplied or as assumed and stated in the calculations. Refer to the Appendix. If no data is available, the foundation system is assumed to support the structure with its new reactions.
- All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report. All guy cable assemblies, as applicable, are assumed to develop the rated breaking strength of the wire.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.
If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, AEG should be contacted to review any contradictory information to determine its effect.

APPENDIX A - Tower Schematic

APPENDIX B - Photos

Existing Antennas

Tower Overview

Existing tower base

Existing cables, typ.

APPENDIX C - Calculations

tnxTower Advanced Engineering Group 500 North Broadway East Providence, RI 02914 Phone: 401-354-2403 FAX:	Job CT3438A		Page of 14
	Project	East Hartford Sunset Ridge	
	Client	Centerline Communications	Designed by MRC

Tower Input Data

The main tower is a $3 x$ free standing tower with an overall height of 140.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 8.00 ft at the top and 16.00 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Basic wind speed of 105 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 1.00 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Weld together tower sections have flange connections..
Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC
Specifications..
Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards..
Welds are fabricated with ER-70S-6 electrodes..
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

UnXTOWer	Job	CT3438A

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of	Section Length
	$f t$			$f t$	Sections	

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	$f t$						Panels

UnXTOWer	Job	CT3438A

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	$\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$	Diagonal Grade
T1 140.00-120.00	Solid Round	$21 / 4$	$\begin{gathered} \mathrm{A} 572-50 \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L1 3/4x1 3/4x1/8	$\begin{gathered} \mathrm{A} 36 \\ (36000 \mathrm{psi}) \end{gathered}$
T2 120.00-100.00	Solid Round	$21 / 4$	$\begin{gathered} \text { A572-50 } \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L1 3/4x $13 / 4 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$
T3 100.00-80.00	Solid Round	$23 / 4$	$\begin{gathered} \text { A572-50 } \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L2 1/2x2 1/2x5/16	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$
T4 80.00-60.00	Solid Round	3	$\begin{gathered} \mathrm{A} 572-50 \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L2 1/2x2 1/2x5/16	$\begin{gathered} \mathrm{A} 36 \\ (36000 \mathrm{psi}) \end{gathered}$
T5 60.00-40.00	Solid Round	$31 / 4$	$\begin{gathered} \text { A572-50 } \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L2 1/2x2 1/2x5/16	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$
T6 40.00-20.00	Truss Leg	Pirod 105218	$\begin{gathered} \mathrm{A} 572-50 \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L3x3x5/16	$\begin{gathered} \mathrm{A} 36 \\ (36000 \mathrm{psi}) \end{gathered}$
T7 20.00-0.00	Truss Leg	Pirod 105219	$\begin{gathered} \text { A572-50 } \\ (50000 \mathrm{psi}) \end{gathered}$	Single Angle	L3x3x5/16	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Type	Size	Grade	Type	Size	
$f t$						
T1 $140.00-120.00$	Single Angle	L3x3x3/8		A36	Single Angle	
			$(36000 \mathrm{psi})$		A36	

Tower Section Geometry (cont'd)

Tower Elevation \qquad $f t$	Gusset Area (per face) \qquad	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
$\begin{gathered} \text { T1 } 140.00- \\ 120.00 \end{gathered}$	0.00	0.00	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00
$\begin{gathered} \text { T2 } 120.00- \\ 100.00 \end{gathered}$	0.00	0.00	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00
$\begin{gathered} \text { T3 } 100.00- \\ 80.00 \end{gathered}$	0.00	0.00	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00
T4 80.00-60.00	0.00	0.00	$\begin{gathered} \text { A36 } \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00
T5 60.00-40.00	0.00	0.00	$\begin{gathered} \mathrm{A} 36 \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00
T6 40.00-20.00	0.00	0.00	$\begin{gathered} \mathrm{A} 36 \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00
T7 20.00-0.00	0.00	0.00	$\begin{gathered} \mathrm{A} 36 \\ (36000 \mathrm{psi}) \end{gathered}$	1	1	1.05	36.00	36.00	36.00

tndTOWer	Job	Page
	Project	CT3438A

Tower Section Geometry (cont'd)

			K Factors ${ }^{1}$							
Tower	Calc	Calc	Legs	X	K	Single	Girts	Horiz.	Sec.	Inner
Elevation	K	K		Brace	Brace	Diags			Horiz.	Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X	X	X	X	X	X	X
$f t$				Y						
T1 140.00-	No	No	1	1	1	1	1	1	1	1
120.00				1	1	1	1	1	1	1
T2 120.00-	No	No	1	1	1	1	1	1	1	1
100.00				1	1	1	1	1	1	1
T3 100.00-	No	No	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T4 80.00-	No	No	1	1	1	1	1	1	1	1
60.00				1	1	1	1	1	1	1
T5 60.00-	No	No	1	1	1	1	1	1	1	1
40.00				1	1	1	1	1	1	1
T6 40.00-	No	No	1	1	1	1	1	1	1	1
20.00				1	1	1	1	1	1	1
T7 20.00-0.00	No	No	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

${ }^{1}$ Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

	Truss-Leg K Factors				
		Truss-Legs Used As Leg Members			
Tower	Leg	X	Truss-Legs		Used As Inner Members
Elevation	Panels	Brace	Brace	Panels	Brace

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
$\begin{gathered} \text { T1 } 140.00- \\ 120.00 \end{gathered}$	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
$\begin{gathered} \text { T2 } 120.00- \\ 100.00 \end{gathered}$	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
$\begin{gathered} \text { T3 } 100.00- \\ 80.00 \end{gathered}$	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T4 80.00-60.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1
T5 60.00-40.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1

tnxTOWer	Job	Page
	Project	CT3438A

Tower Elevation $f t$	Leg		Diagonal		Top Girt		Bottom Girt		Mid Girt		Long Horizontal			Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in		Net Width Deduct in		Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in		U	Net Width Deduct in	U
T6 40.00-20.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00		1	0.00	1
T7 20.00-0.00	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	0.00	1	1	0.00	1

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Allow Shield \& Component Type \& Placement
ft \& Face Offset in \& \begin{tabular}{l}
Lateral \\
Offset \\
(Frac FW)
\end{tabular} \& \# \& \& \(C_{A} A_{A}\)

$f t^{2} / f t$ \& Weight
plf

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \hline \text { LDF7-50A (1- } \\
& \text { 5/8 FOAM) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{CaAa (In Face)} \& \multirow[t]{3}{*}{120.00-6.00} \& \multirow[t]{3}{*}{-2.00} \& \multirow[t]{3}{*}{0.45} \& \multirow[t]{3}{*}{12} \& No Ice \& 0.20 \& 0.82

\hline \& \& \& \& \& \& \& \& 1/2" Ice \& 0.30 \& 2.33

\hline \& \& \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.40 \& 4.46

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { LDF7-50A (1- } \\
& \text { 5/8 FOAM) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{CaAa (In Face)} \& \multirow[t]{3}{*}{120.00-6.00} \& \multirow[t]{3}{*}{-4.00} \& \multirow[t]{3}{*}{0.4} \& \multirow[t]{3}{*}{6} \& No Ice \& 0.20 \& 0.82

\hline \& \& \& \& \& \& \& \& 1/2" Ice \& 0.30 \& 2.33

\hline \& \& \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.40 \& 4.46

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { LDF5-50A } \\
& \text { (7/8 FOAM) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{CaAa (In Face)} \& \multirow[t]{3}{*}{140.00-6.00} \& \multirow[t]{3}{*}{-3.00} \& \multirow[t]{3}{*}{-0.4} \& \multirow[t]{3}{*}{7} \& No Ice \& 0.11 \& 0.33

\hline \& \& \& \& \& \& \& \& 1/2" Ice \& 0.21 \& 1.30

\hline \& \& \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.31 \& 2.88

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { LDF4RN-50A } \\
& (1 / 2 \text { FOAM })
\end{aligned}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{CaAa (In Face)} \& \multirow[t]{3}{*}{100.00-6.00} \& \multirow[t]{3}{*}{2.00} \& \multirow[t]{3}{*}{0.42} \& \multirow[t]{3}{*}{2} \& No Ice \& 0.06 \& 0.15

\hline \& \& \& \& \& \& \& \& 1/2" Ice \& 0.16 \& 0.84

\hline \& \& \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.26 \& 2.14

\hline \multirow[t]{3}{*}{| 2" Rigid |
| :--- |
| Conduit |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{CaAa (In Face)} \& \multirow[t]{3}{*}{100.00-6.00} \& \multirow[t]{3}{*}{2.00} \& \multirow[t]{3}{*}{0.45} \& \multirow[t]{3}{*}{2} \& No Ice \& 0.20 \& 2.80

\hline \& \& \& \& \& \& \& \& 1/2" Ice \& 0.30 \& 4.33

\hline \& \& \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.40 \& 6.47

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { LDF4.5-50 } \\
& \text { (5/8 FOAM) }
\end{aligned}
$$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{No} \& \multirow[t]{3}{*}{CaAa (In Face)} \& \multirow[t]{3}{*}{110.00-6.00} \& \multirow[t]{3}{*}{3.00} \& \multirow[t]{3}{*}{0} \& \multirow[t]{3}{*}{6} \& No Ice \& 0.09 \& 0.15

\hline \& \& \& \& \& \& \& \& 1/2" Ice \& 0.19 \& 0.99

\hline \& \& \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.29 \& 2.43

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation \(f t\) \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& | $C_{A} A_{A}$ |
| :--- |
| In Face |
| $f t^{2}$ | \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 15.260 \& 0.000 \& 46.20

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& 0.000 \& 0.000 \& 71.280 \& 0.000 \& 295.20

\hline \& \& B \& 0.000 \& 0.000 \& 15.260 \& 0.000 \& 46.20

\hline \& \& C \& 0.000 \& 0.000 \& 5.220 \& 0.000 \& 9.00

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& 0.000 \& 0.000 \& 71.280 \& 0.000 \& 295.20

\hline \& \& B \& 0.000 \& 0.000 \& 25.780 \& 0.000 \& 164.20

\hline \& \& C \& 0.000 \& 0.000 \& 10.440 \& 0.000 \& 18.00

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& 0.000 \& 0.000 \& 71.280 \& 0.000 \& 295.20

\hline \& \& B \& 0.000 \& 0.000 \& 25.780 \& 0.000 \& 164.20

\hline \& \& C \& 0.000 \& 0.000 \& 10.440 \& 0.000 \& 18.00

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& 0.000 \& 0.000 \& 71.280 \& 0.000 \& 295.20

\hline \& \& B \& 0.000 \& 0.000 \& 25.780 \& 0.000 \& 164.20

\hline \& \& C \& 0.000 \& 0.000 \& 10.440 \& 0.000 \& 18.00

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& 0.000 \& 0.000 \& 71.280 \& 0.000 \& 295.20

\hline \& \& B \& 0.000 \& 0.000 \& 25.780 \& 0.000 \& 164.20

\hline \& \& C \& 0.000 \& 0.000 \& 10.440 \& 0.000 \& 18.00

\hline
\end{tabular}

tnxTower Advanced Engineering Group 500 North Broadway East Providence, RI 02914 Phone: 401-354-2403 FAX:	Job CT3438A		Page 6 of 14 Date 14:46:41 05/04/17
	Project	East Hartford Sunset Ridge	
	Client	Centerline Communications	Designed by MRC

Tower Section	Tower Elevation	Face	A_{R}	A_{F}	$C_{A} A_{A}$	$C_{A} A_{A}$	Weight
	$f t$			t^{2}	$f t^{2}$	In Face	Out Face

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation \(f t\) \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& \[
$$
\begin{gathered}
C_{A} A_{A} \\
\text { In Face } \\
{f t^{2}}^{2} \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2} \\
\hline
\end{gathered}
$$

\] \& | Weight |
| :--- |
| $l b$ |

\hline \multirow[t]{3}{*}{T1} \& \multirow[t]{3}{*}{140.00-120.00} \& A \& \multirow[t]{3}{*}{2.294} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 79.489 \& 0.000 \& 1459.64

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \multirow[t]{3}{*}{T2} \& \multirow[t]{3}{*}{120.00-100.00} \& A \& \multirow[t]{3}{*}{2.256} \& 0.000 \& 0.000 \& 233.703 \& 0.000 \& 4694.31

\hline \& \& B \& \& 0.000 \& 0.000 \& 78.425 \& 0.000 \& 1413.56

\hline \& \& C \& \& 0.000 \& 0.000 \& 32.290 \& 0.000 \& 558.63

\hline \multirow[t]{3}{*}{T3} \& \multirow[t]{3}{*}{100.00-80.00} \& A \& \multirow[t]{3}{*}{2.211} \& 0.000 \& 0.000 \& 230.476 \& 0.000 \& 4537.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 123.068 \& 0.000 \& 2276.12

\hline \& \& C \& \& 0.000 \& 0.000 \& 63.505 \& 0.000 \& 1072.12

\hline \multirow[t]{3}{*}{T4} \& \multirow[t]{3}{*}{80.00-60.00} \& A \& \multirow[t]{3}{*}{2.156} \& 0.000 \& 0.000 \& 226.525 \& 0.000 \& 4344.41

\hline \& \& B \& \& 0.000 \& 0.000 \& 120.653 \& 0.000 \& 2170.34

\hline \& \& C \& \& 0.000 \& 0.000 \& 62.188 \& 0.000 \& 1016.85

\hline \multirow[t]{3}{*}{T5} \& \multirow[t]{3}{*}{60.00-40.00} \& A \& \multirow[t]{3}{*}{2.085} \& 0.000 \& 0.000 \& 221.388 \& 0.000 \& 4094.01

\hline \& \& B \& \& 0.000 \& 0.000 \& 117.514 \& 0.000 \& 2032.81

\hline \& \& C \& \& 0.000 \& 0.000 \& 60.476 \& 0.000 \& 944.99

\hline \multirow[t]{3}{*}{T6} \& \multirow[t]{3}{*}{40.00-20.00} \& A \& \multirow[t]{3}{*}{1.981} \& 0.000 \& 0.000 \& 213.913 \& 0.000 \& 3754.64

\hline \& \& B \& \& 0.000 \& 0.000 \& 112.946 \& 0.000 \& 1847.97

\hline \& \& C \& \& 0.000 \& 0.000 \& 57.984 \& 0.000 \& 848.76

\hline \multirow[t]{3}{*}{T7} \& \multirow[t]{3}{*}{20.00-0.00} \& A \& \multirow[t]{3}{*}{1.775} \& 0.000 \& 0.000 \& 139.351 \& 0.000 \& 2312.23

\hline \& \& B \& \& 0.000 \& 0.000 \& 72.714 \& 0.000 \& 1131.80

\hline \& \& C \& \& 0.000 \& 0.000 \& 37.126 \& 0.000 \& 512.28

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ $I c e$	$C P_{Z}$ Ice in
	ft	in	in	in	-5.57
	$140.00-120.00$	0.21	-4.30	0.27	-8.28
T1	$120.00-100.00$	-0.07	-8.72	-0.02	-5.89
T2	$100.00-80.00$	0.84	-6.53	1.05	-6.59
T3	$80.00-60.00$	0.90	-7.23	1.14	-7.94
T5	$60.00-40.00$	1.00	-8.60	1.32	-8.55
T6	$40.00-20.00$	1.04	-9.32	1.37	-8.50
T7	$20.00-0.00$	0.97	-8.96	1.33	

Shielding Factor Ka

$\begin{array}{|c|c|c|c|c|c|}\hline \text { Tower } \\
\text { Section }\end{array} \begin{array}{c}\text { Feed Line } \\
\text { Record No. }\end{array} \quad$ Description \(\left.\quad $$
\begin{array}{c}\text { Feed Line } \\
\text { Segment Elev. }\end{array}
$$ \begin{array}{c}K_{a}

No Ice\end{array}\right]\)| K_{a} |
| :---: |
| Ice |

tnxTower Advanced Engineering Group 500 North Broadway East Providence, RI 02914 Phone: $\begin{aligned} & \text { 401-354-2403 } \\ & \text { FAX: } \end{aligned}$	Job 6 CT3438A		Page of 14 Date 14:46:41 $05 / 04 / 17$
	Project	East Hartford Sunset Ridge	
	Client	Centerline Communications	Designed by MRC

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	$\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$	$\begin{aligned} & K_{a} \\ & \text { Ice } \\ & \hline \end{aligned}$
T1	3	LDF5-50A (7/8 FOAM)	$\begin{array}{r} 120.00- \\ 140.00 \end{array}$	0.6000	0.6000
T2	1	LDF7-50A (1-5/8 FOAM)	$100.00-$ 120.00	0.6000	0.6000
T2	2	LDF7-50A (1-5/8 FOAM)	$100.00-$ 120.00	0.6000	0.6000
T2	3	LDF5-50A (7/8 FOAM)	$100.00-$ 120.00	0.6000	0.6000
T2	7	LDF4.5-50 (5/8 FOAM)	$100.00-$ 110.00	0.6000	0.6000
T3	1	LDF7-50A (1-5/8 FOAM)	80.00-100.00	0.6000	0.6000
T3	2	LDF7-50A (1-5/8 FOAM)	80.00-100.00	0.6000	0.6000
T3	3	LDF5-50A (7/8 FOAM)	80.00-100.00	0.6000	0.6000
T3	5	LDF4RN-50A (1/2 FOAM)	80.00-100.00	0.6000	0.6000
T3	6	2" Rigid Conduit	80.00-100.00	0.6000	0.6000
T3	7	LDF4.5-50 (5/8 FOAM)	80.00-100.00	0.6000	0.6000
T4	1	LDF7-50A (1-5/8 FOAM)	60.00-80.00	0.6000	0.6000
T4	2	LDF7-50A (1-5/8 FOAM)	60.00-80.00	0.6000	0.6000
T4	3	LDF5-50A (7/8 FOAM)	60.00-80.00	0.6000	0.6000
T4	5	LDF4RN-50A (1/2 FOAM)	60.00-80.00	0.6000	0.6000
T4	6	2" Rigid Conduit	60.00-80.00	0.6000	0.6000
T4	7	LDF4.5-50 (5/8 FOAM)	60.00-80.00	0.6000	0.6000
T5	1	LDF7-50A (1-5/8 FOAM)	40.00-60.00	0.6000	0.6000
T5	2	LDF7-50A (1-5/8 FOAM)	40.00-60.00	0.6000	0.6000
T5	3	LDF5-50A (7/8 FOAM)	40.00-60.00	0.6000	0.6000
T5	5	LDF4RN-50A (1/2 FOAM)	40.00-60.00	0.6000	0.6000
T5	6	2" Rigid Conduit	40.00-60.00	0.6000	0.6000
T5	7	LDF4.5-50 (5/8 FOAM)	40.00-60.00	0.6000	0.6000
T6	1	LDF7-50A (1-5/8 FOAM)	20.00-40.00	0.6000	0.6000
T6	2	LDF7-50A (1-5/8 FOAM)	20.00-40.00	0.6000	0.6000
T6	3	LDF5-50A (7/8 FOAM)	20.00-40.00	0.6000	0.6000
T6	5	LDF4RN-50A (1/2 FOAM)	20.00-40.00	0.6000	0.6000
T6	6	2" Rigid Conduit	20.00-40.00	0.6000	0.6000
T6	7	LDF4.5-50 (5/8 FOAM)	20.00-40.00	0.6000	0.6000
T7	1	LDF7-50A (1-5/8 FOAM)	6.00-20.00	0.6000	0.6000
T7	2	LDF7-50A (1-5/8 FOAM)	6.00-20.00	0.6000	0.6000
T7	3	LDF5-50A (7/8 FOAM)	6.00-20.00	0.6000	0.6000
T7	5	LDF4RN-50A (1/2 FOAM)	6.00-20.00	0.6000	0.6000
T7	6	2" Rigid Conduit	6.00-20.00	0.6000	0.6000
T7	7	LDF4.5-50 (5/8 FOAM)	6.00-20.00	0.6000	0.6000

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline Pirod 4' Side Mount Standoff (1) \& A \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.00 \& 137.00 \& No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice \& \[

$$
\begin{aligned}
& 2.72 \\
& 4.91 \\
& 7.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.72 \\
& 4.91 \\
& 7.10
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
50.00 \\
89.00 \\
128.00
\end{gathered}
$$
\]

\hline | Pirod 4' Side Mount Standoff |
| :--- |
| (1) | \& B \& From Leg \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.00 \& 137.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{2} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.72 \\
& 4.91
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.72 \\
& 4.91
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.00 \\
& 89.00
\end{aligned}
$$
\]

\hline
\end{tabular}

thxTOWer	Job	Page
	Project	CT3438A

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
O
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.10 \& 7.10 \& 128.00

\hline \multirow[t]{2}{*}{| Pirod 4' Side Mount Standoff |
| :--- |
| (1) |} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 2.00

0.00 \& \multirow[t]{2}{*}{0.00} \& \multirow[t]{2}{*}{137.00} \& No Ice
$1 / 2$ Ice \& 2.72
4.91 \& 2.72
4.91 \& 50.00
89.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.10 \& 7.10 \& 128.00

\hline \multirow[t]{3}{*}{2"x8' Omni Whip} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{137.00} \& No Ice \& 1.60 \& 1.60 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.42 \& 2.42 \& 42.45

\hline \& \& \& 4.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.24 \& 3.24 \& 60.14

\hline \multirow[t]{3}{*}{20'x2.5" Omni Whip} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{137.00} \& No Ice \& 5.00 \& 5.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 7.03 \& 86.96

\hline \& \& \& 10.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.07 \& 9.07 \& 136.55

\hline \multirow[t]{3}{*}{2"x8' Omni Whip} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{137.00} \& No Ice \& 1.60 \& 1.60 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.42 \& 2.42 \& 42.45

\hline \& \& \& 4.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.24 \& 3.24 \& 60.14

\hline \multirow[t]{3}{*}{2"x8' Omni Whip} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{137.00} \& No Ice \& 1.60 \& 1.60 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.42 \& 2.42 \& 42.45

\hline \& \& \& 4.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.24 \& 3.24 \& 60.14

\hline \multirow[t]{3}{*}{Pirod 12' T-Frame Sector Mount (1)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& \& \& \& 1/2" Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{Pirod 12' T-Frame Sector Mount (1)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& \& \& \& 1/2" Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{Pirod 12' T-Frame Sector Mount (1)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& \& \& \& 1/2" Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& \& \& \& 1" Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{(2) AIR21 w/Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 6.05 \& 5.43 \& 99.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.42 \& 6.07 \& 153.35

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.80 \& 6.72 \& 214.19

\hline \multirow[t]{3}{*}{(2) AIR21 w/Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 6.05 \& 5.43 \& 99.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.42 \& 6.07 \& 153.35

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.80 \& 6.72 \& 214.19

\hline \multirow[t]{3}{*}{(2) AIR21 w/Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 6.05 \& 5.43 \& 99.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.42 \& 6.07 \& 153.35

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.80 \& 6.72 \& 214.19

\hline \multirow[t]{3}{*}{20'x2.5" Omni Whip} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 5.00 \& 5.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 7.03 \& 86.96

\hline \& \& \& 10.00 \& \& \& 1" Ice \& 9.07 \& 9.07 \& 136.55

\hline \multirow[t]{3}{*}{20'x2.5" Omni Whip} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 5.00 \& 5.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 7.03 \& 86.96

\hline \& \& \& 10.00 \& \& \& 1" Ice \& 9.07 \& 9.07 \& 136.55

\hline \multirow[t]{3}{*}{20'x2.5" Omni Whip} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 5.00 \& 5.00 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.03 \& 7.03 \& 86.96

\hline \& \& \& 10.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.07 \& 9.07 \& 136.55

\hline \multirow[t]{3}{*}{RFS Twin TMA} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 1.00 \& 0.41 \& 13.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.13 \& 0.50 \& 20.62

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.26 \& 0.59 \& 30.11

\hline \multirow[t]{3}{*}{RFS Twin TMA} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 1.00 \& 0.41 \& 13.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.13 \& 0.50 \& 20.62

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.26 \& 0.59 \& 30.11

\hline \multirow[t]{3}{*}{RFS Twin TMA} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 1.00 \& 0.41 \& 13.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.13 \& 0.50 \& 20.62

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.26 \& 0.59 \& 30.11

\hline \multirow[t]{3}{*}{| Pirod 4' Side Mount Standoff |
| :--- |
| (1) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{100.00} \& No Ice \& 2.72 \& 2.72 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.91 \& 4.91 \& 89.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.10 \& 7.10 \& 128.00

\hline \multirow[t]{2}{*}{| Pirod 4' Side Mount Standoff |
| :--- |
| (1) |} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 1.00 \& \multirow[t]{2}{*}{0.00} \& \multirow[t]{2}{*}{100.00} \& No Ice \& 2.72 \& 2.72 \& 50.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.91 \& 4.91 \& 89.00

\hline
\end{tabular}

thxTOWer	Job	Page
	Project	CT3438A

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
\(\circ\)
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \& \& \multirow{4}{*}{From Leg} \& 0.00 \& \& \& 1" Ice \& 7.10 \& 7.10 \& 128.00

\hline \multirow[t]{3}{*}{| Pirod 4' Side Mount Standoff |
| :--- |
| (1) |} \& \multirow[t]{3}{*}{C} \& \& 1.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{100.00} \& No Ice \& 2.72 \& 2.72 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.91 \& 4.91 \& 89.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 7.10 \& 7.10 \& 128.00

\hline \multirow[t]{3}{*}{12"x72" Panel} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{100.00} \& No Ice \& 8.13 \& 4.96 \& 71.90

\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 8.59 \& 5.89 \& 129.56

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 6.71 \& 194.80

\hline \multirow[t]{3}{*}{12"x72" Panel} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{100.00} \& No Ice \& 8.13 \& 4.96 \& 71.90

\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 8.59 \& 5.89 \& 129.56

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 6.71 \& 194.80

\hline \multirow[t]{3}{*}{12"x72" Panel} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{100.00} \& No Ice \& 8.13 \& 4.96 \& 71.90

\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 8.59 \& 5.89 \& 129.56

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.05 \& 6.71 \& 194.80

\hline \multirow[t]{3}{*}{Pirod 12' T-Frame Sector Mount (1)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{Pirod 12 ' T-Frame Sector Mount (1)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{Pirod 12' T-Frame Sector Mount (1)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 13.60 \& 13.60 \& 465.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 18.40 \& 18.40 \& 600.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.20 \& 23.20 \& 735.00

\hline \multirow[t]{3}{*}{800-10799} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 15.39 \& 10.53 \& 141.46

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 16.10 \& 12.12 \& 246.83

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 16.80 \& 13.74 \& 362.98

\hline \multirow[t]{3}{*}{800-10799} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 15.39 \& 10.53 \& 141.46

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 16.10 \& 12.12 \& 246.83

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 16.80 \& 13.74 \& 362.98

\hline \multirow[t]{3}{*}{800-10799} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 15.39 \& 10.53 \& 141.46

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 16.10 \& 12.12 \& 246.83

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 16.80 \& 13.74 \& 362.98

\hline \multirow[t]{3}{*}{(2) RRUS 11} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 2.79 \& 1.19 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.00 \& 1.34 \& 71.87

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.21 \& 1.50 \& 95.78

\hline \multirow[t]{3}{*}{(2) RRUS 11} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 2.79 \& 1.19 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.00 \& 1.34 \& 71.87

\hline \& \& \& 2.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.21 \& 1.50 \& 95.78

\hline \multirow[t]{3}{*}{(2) RRUS 11} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 2.79 \& 1.19 \& 51.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.00 \& 1.34 \& 71.87

\hline \& \& \& 2.00 \& \& \& $1{ }^{\text {" Ice }}$ \& 3.21 \& 1.50 \& 95.78

\hline \multirow[t]{3}{*}{(2) RRUS 32} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 3.33 \& 2.43 \& 77.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.57 \& 2.65 \& 105.00

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 3.82 \& 2.87 \& 136.63

\hline \multirow[t]{3}{*}{(2) RRUS 32} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 3.33 \& 2.43 \& 77.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.57 \& 2.65 \& 105.00

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 3.82 \& 2.87 \& 136.63

\hline \multirow[t]{3}{*}{(2) RRUS 32} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.50 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 3.33 \& 2.43 \& 77.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.57 \& 2.65 \& 105.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.82 \& 2.87 \& 136.63

\hline \multirow[t]{3}{*}{DC-6-48-60-18} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 0.81 \& 0.81 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.30 \& 1.30 \& 35.38

\hline \& \& \& -3.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.48 \& 1.48 \& 53.11

\hline \multirow[t]{3}{*}{DC-6-48-60-18} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{110.00} \& No Ice \& 0.81 \& 0.81 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.30 \& 1.30 \& 35.38

\hline \& \& \& -3.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.48 \& 1.48 \& 53.11

\hline \multirow[t]{2}{*}{DC-6-48-60-18} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Leg} \& 3.00 \& \multirow[t]{2}{*}{0.00} \& \multirow[t]{2}{*}{110.00} \& No Ice \& 0.81 \& 0.81 \& 20.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.30 \& 1.30 \& 35.38

\hline
\end{tabular}

tnxTOWer	Job	Page
	Project	CT3438A

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[b]{4}{*}{| Pirod 4' Side Mount Standoff |
| :--- |
| (1) |} \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& -3.00 \& \& \& 1" Ice \& 1.48 \& 1.48 \& 53.11

\hline \& \& \& 1.00 \& 0.00 \& 80.00 \& No Ice \& 2.72 \& 2.72 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.91 \& 4.91 \& 89.00

\hline \& \multirow{4}{*}{A} \& \multirow{4}{*}{From Leg} \& 0.00 \& \& \& 1" Ice \& 7.10 \& 7.10 \& 128.00

\hline \multirow[t]{3}{*}{2"x8' Omni Whip} \& \& \& 4.00 \& 0.00 \& 80.00 \& No Ice \& 1.60 \& 1.60 \& 30.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.42 \& 2.42 \& 42.45

\hline \& \& \& 4.00 \& \& \& 1" Ice \& 3.24 \& 3.24 \& 60.14

\hline
\end{tabular}

Dishes

Description	Face or Leg	Dish Type	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$	Azimuth Adjustment -	$3 d B$ Beam Width 。	Elevation	Outside Diameter $f t$		Aperture Area $f t^{2}$	Weight
P2F-52	A	Paraboloid w/o Radome	From	3.00	0.00		133.00	2.00	No Ice	3.10	17.00
			Face	0.00					1/2" Ice	3.41	34.49
				0.03					$1{ }^{1 \prime}$ Ice	3.71	51.98
P3F-52	A	Paraboloid w/o Radome	From	3.00	0.00		100.00	3.00	No Ice	7.10	90.00
			Face	0.00					1/2" Ice	7.46	128.31
				0.03					$1{ }^{1 /}$ Ice	7.83	166.62
P2F-52	B	Paraboloid w/o Radome	From	3.00	0.00		100.00	2.00	No Ice	3.10	17.00
			Face	2.00					1/2" Ice	3.41	34.49
				0.03					$1{ }^{1 \prime}$ Ice	3.71	51.98

Truss-Leg Properties

Designation	Area	Area Ice	Self Weight	Ice Weight	Equiv. Diameter	Equiv. Diameter Ice	$\begin{gathered} \text { Leg } \\ \text { Area } \end{gathered}$
	$i n^{2}$	$i n^{2}$	$l b$	$l b$	in	in	$i n^{2}$
Pirod 105218	2263.47	6856.27	754.52	2409.82	7.86	23.81	7.22
Pirod 105219	2441.87	6746.07	944.27	2340.82	8.48	23.42	9.42

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	$K l / r$	A	P_{u}	ϕP_{n}	Ratio P_{u}	
	$f t$									

tnxTower Advanced Engineering Group 500 North Broadway	Job CT3438A		Page
			11 of 14
	East Hartford Sunset Ridge		Date 14:46:41 05/04/17
East Providence, RI 02914 Phone: 401-354-2403 FAX:	Client	Centerline Communications	Designed by MRC

Section No.	Elevation	Size	L	L_{u}	Kl/r	A$i n^{2}$	P_{u} $l b$	$\begin{gathered} \phi P_{n} \\ l b \end{gathered}$	Ratio P_{u}
	$f t$		$f t$	$f t$					ϕP_{n}
					$\mathrm{K}=1.00$				\checkmark
T2	120-100	$21 / 4$	20.00	5.00	$\begin{gathered} 106.7 \\ \mathrm{~K}=1.00 \end{gathered}$	3.98	-32306.30	77870.40	0.415^{1}
T3	100-80	$23 / 4$	20.00	5.00	$\begin{gathered} 87.3 \\ \mathrm{~K}=1.00 \end{gathered}$	5.94	-77732.60	153147.00	0.508^{1}
T4	80-60	3	20.03	5.01	$\begin{gathered} 80.1 \\ \mathrm{~K}=1.00 \end{gathered}$	7.07	-112536.00	198902.00	0.566^{1}
T5	60-40	$31 / 4$	20.03	5.01	$\begin{gathered} 74.0 \\ \mathrm{~K}=1.00 \end{gathered}$	8.30	-141211.00	250223.00	0.564^{1}
T6	40-20	Pirod 105218	20.03	10.02	$\begin{gathered} 32.4 \\ \mathrm{~K}=1.00 \end{gathered}$	7.22	-164635.00	300681.00	0.548^{1}
T7	20-0	Pirod 105219	20.03	10.02	$\begin{gathered} 28.4 \\ \mathrm{~K}=1.00 \end{gathered}$	9.42	-189025.00	399868.00	0.473^{1} 1

${ }^{1} P_{u} / \phi P_{n}$ controls

Truss-Leg Diagonal Data

Section	Elevation	Diagonal Size	L_{d}	$K l / r$	ϕP_{n}	A	V_{u}	ϕV_{n} No.	$f t$

Diagonal Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$			$l b$	$l b$	ϕP_{n}
T1	140-120	L1 3/4x1 3/4x1/8	9.43	4.61	$\begin{gathered} 159.4 \\ K=1.00 \end{gathered}$	0.42	-1436.75	3751.65	0.383^{1}
T2	120-100	L1 3/4x1 3/4x1/4	9.43	4.61	$\begin{gathered} 161.9 \\ \mathrm{~K}=1.00 \end{gathered}$	0.81	-4595.68	6999.86	0.657^{1}
T3	100-80	L2 1/2x2 1/2x5/16	9.43	4.58	$\begin{gathered} 112.4 \\ \mathrm{~K}=1.00 \end{gathered}$	1.46	-6414.08	24313.80	0.264^{1}
T4	80-60	L2 1/2x2 $1 / 2 \times 5 / 16$	10.52	5.26	$\begin{gathered} 129.1 \\ \mathrm{~K}=1.00 \end{gathered}$	1.46	-4618.35	19680.00	0.235^{1}
T5	60-40	L2 1/2x $21 / 2 \times 5 / 16$	12.31	6.15	$\begin{gathered} 150.8 \\ \mathrm{~K}=1.00 \end{gathered}$	1.46	-4620.43	14501.70	0.319^{1}
T6	40-20	L3x3x5/16	16.01	7.70	$\begin{gathered} 156.9 \\ K=1.00 \end{gathered}$	1.78	-5785.65	16326.10	0.354^{1}
T7	20-0	L3x3x5/16	18.45	8.93	$\begin{gathered} 181.9 \\ \mathrm{~K}=1.00 \end{gathered}$	1.78	-6863.28	12157.80	0.565^{1}

tnxTOWer	Job	Page
	Project	CT3438A

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	140-120	L3x3x3/8	8.00	7.81	$\begin{gathered} 159.7 \\ \mathrm{~K}=1.00 \end{gathered}$	2.11	-693.44	18687.70	0.037^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		in^{2}	$l b$	$l b$	ϕP_{n}
T1	140-120	$21 / 4$	20.00	5.00	106.7	3.98	2971.06	178924.00	0.017^{1}
T2	120-100	$21 / 4$	20.00	5.00	106.7	3.98	25038.00	178924.00	0.140^{1}
T3	100-80	$23 / 4$	20.00	5.00	87.3	5.94	66743.50	267281.00	$0.250{ }^{1}$
T4	80-60	3	20.03	5.01	80.1	7.07	97547.70	318086.00	0.307^{1}
T5	60-40	$31 / 4$	20.03	5.01	74.0	8.30	122239.00	373310.00	0.327^{1}
T6	40-20	Pirod 105218	20.03	10.02	32.4	7.22	142109.00	324713.00	0.438^{1}
T7	20-0	Pirod 105219	20.03	10.02	28.4	9.42	162137.00	424115.00	0.382^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Truss-Leg Diagonal Data

Section No.	$\begin{gathered} \text { Elevation } \\ f t \\ \hline \end{gathered}$	Diagonal Size	$\begin{aligned} & L_{d} \\ & f t \end{aligned}$	Kl/r	$\begin{gathered} \phi P_{n} \\ l b \end{gathered}$	$\begin{gathered} A \\ i n^{2} \end{gathered}$	$\begin{aligned} & V_{u} \\ & l b \end{aligned}$	$\begin{gathered} \phi V_{n} \\ l b \end{gathered}$	Stress Ratio
T6	40-20	0.5	1.46	119.0	324713.00	0.20	622.70	3377.71	0.184
T7	20-0	0.625	1.45	94.4	424115.00	0.31	921.38	6957.62	0.132

thxTOWer	Job	Page
	Project	CT3438A

Diagonal Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
	$f t$		$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
T1	140-120	L1 3/4x1 3/4x1/8	9.43	4.61	101.3	0.42	1276.80	13668.80	$0.093{ }^{1}$
T2	120-100	L1 $3 / 4 \times 13 / 4 \times 1 / 4$	9.43	4.61	104.5	0.81	4566.09	26325.00	0.173^{1}
T3	100-80	L2 1/2x2 1/2x5/16	9.43	4.58	72.3	1.46	6207.57	47304.00	$0.131{ }^{1}$
T4	80-60	L2 1/2x $21 / 2 \times 5 / 16$	10.08	5.04	79.5	1.46	4586.17	47304.00	$0.097{ }^{1}$
T5	60-40	L2 1/2x2 1/2x5/16	12.77	6.37	100.5	1.46	4461.81	47304.00	0.094^{1}
T6	40-20	L3x3x5/16	16.01	7.70	100.3	1.78	5361.72	57672.00	$0.093{ }^{1}$
T7	20-0	L3x3x5/16	18.45	8.93	116.2	1.78	6266.13	57672.00	0.109^{1}

${ }^{1} P_{u} / \phi P_{n}$ controls

Top Girt Design Data (Tension)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		in ${ }^{2}$	$l b$	$l b$	ϕP_{n}
T1	140-120	L3x3x3/8	8.00	7.81	102.7	2.11	459.63	68364.00	$0.007{ }^{1}$

${ }^{1} P_{u} / \phi P_{n}$ controls

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T1	140-120	Leg	$21 / 4$	3	-5284.06	77870.40	6.8	Pass
T2	120-100	Leg	$21 / 4$	33	-32306.30	77870.40	41.5	Pass
T3	100-80	Leg	$23 / 4$	60	-77732.60	153147.00	50.8	Pass
T4	80-60	Leg	3	87	-112536.00	198902.00	56.6	Pass
T5	60-40	Leg	$31 / 4$	114	-141211.00	250223.00	56.4	Pass
T6	40-20	Leg	Pirod 105218	141	-164635.00	300681.00	54.8	Pass
T7	20-0	Leg	Pirod 105219	156	-189025.00	399868.00	47.3	Pass
T1	140-120	Diagonal	L1 3/4x $13 / 4 \times 1 / 8$	9	-1436.75	3751.65	38.3	Pass
T2	120-100	Diagonal	L1 3/4x $13 / 4 \times 1 / 4$	35	-4595.68	6999.86	65.7	Pass
T3	100-80	Diagonal	L2 $1 / 2 \times 21 / 2 \times 5 / 16$	62	-6414.08	24313.80	26.4	Pass
T4	80-60	Diagonal	L2 $1 / 2 \times 21 / 2 \times 5 / 16$	98	-4618.35	19680.00	23.5	Pass
T5	60-40	Diagonal	L2 1/2x2 1/2x5/16	125	-4620.43	14501.70	31.9	Pass
T6	40-20	Diagonal	L3x3x5/16	152	-5785.65	16326.10	35.4	Pass
T7	20-0	Diagonal	L3x3x5/16	161	-6863.28	12157.80	56.5	Pass

tnxTower Advanced Engineering Group 500 North Broadway	Job		$\text { Page } \quad \text { 14 of } 14$
	CT3438A		
	Project	East Hartford Sunset Ridge	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:46:41 05/04/17 } \end{array}$
East Providence, RI 02914 Phone: 401-354-2403 FAX:	Client	Centerline Communications	Designed by MRC

| Section | Elevation | Component |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $f t$ | Type |

4. THE SCOPE OF MORR SHALL MCLUDE FURNSMMG AL

 6. THE Contracion shal obian authrazan To procel
 cleary derne
7. THE CONTRACTOR SHALL MSTAL ALL EOUPMENT ANO MITRRLIS

8. THE Conraction Stril prono e fll Sg of conspracion

9. THE CONTRACTOR SHML SUPERNSE ANO DRECT THE PROEET

 MRROVEENNS AS SHOWN HEREIII

14. THE CONTRACOR SHAL COOPIY WTH ALL OSFA REQurements

 OR constricc AM Porion of He work tir is wi

22. ATEMM MSTALITON SAML Be Covocucro gr fild cews
23. COXXAL CALE COMECTOPS ANO TRMSMIER EQuMMENC

24. MHEN PANT TO MACCH IS SPECIRED For Ninema
 Splyarion sill ie in iccoronce wir He Mh

26. AA UTHIM Mork Shal de in Accoronce wit local unum

ELECTRICAL AND GROUNDING NOTES

 OTHE EOUIFMENO, ORNEWAY OR

30. DURING CONSTRUCTION. PER FCC MANDATE, ENHANCED EMERCENC 31. For Mricss coumuncanon sisius. Paicci owers

 specifitions
2. APPLCABLE BUILDING COOE

 BULDING COOE:
2009 ITIERNATONAL BULDING CODE

SUBCONTRACTOR'S WORK SHALL COMPLY WTH THE LATEST EDTION OF
THE FOLOWNGG STANDARD:
AMERICAN CONCRETE INSTIUTE (ACC) 318; BUILDING COOE
REQUREMENS FOR STRUCTUAL CONCRIE;
MERICAN INSTTUUTE OF STEEL CONSTRUCTION (AISC)
aANUAL OF STEEL CONSTRUCTION, ASD, NNTH EDTION:
ILELECMMUNICATONS INOUSTRY ASSOCIATON (TAA) 222-G,
STRUCTURAL STANAROS FOR STEL

15. USE \#6 COPPER STRANDED WRE WIH GREEN COLOR
ISSUATION FOR ABOVE GRADE GROUNOING (UNESSS OTHE
 RAWING. 16. ALL GROUND CONNECTIONS TO BE BURNOY HYGROUND
COMPRSSION TPE CONECTORS OR CAOWELD EXOHHERMCC WELD.
 Galvanzed Steel.

 18. CONNECTIONS TO GROUNO BARS SHAL BE MADE WTH TWO
HOLECOPRSSIIN TPE OPPER LUGS. APPLY OXIE INHBTING
COMPOUND TO ALL LOCATINS. 19. BoND ANIENNA MOUNING BRACEETS, COAXAL CABLE GROUND
KIS, ANO ALNA TO EGB PACEE NEAR THE ANIENNA LOCATON. 20. APPLY OXIDE INHIBIING COMPOUND TO ALL COMPRESSION
TTPE GROUND CONNECTONS. 21. CONTRACTOR SHAL PROODE AND INSTAL OMNN DIRECTONA
EEECTRONC MAREER SYSTEM (EMS) BALS OVER EACH GROUND

23.CONTRACTOR SHALL CONOUCT ANTENNA, COAX, AND LNA TESTS) AND RECORD RESULISS FOR PROUECT CLOSE OLTS

ABBREVIATIONS

AGL	ABOVE GRADE LEVEL	G.C.	GENERAL CONTRACTOR	RF	RADIO FREQUENCY
AWG	AMERICAN WIRE GAUGE	MGB	MASTER GROUND BUS		
BCW	BARE COPPER WIRE	MIN	MNIMUM	TBD	TO BE DETERMINED
BTS	BASE TRANSCEVER STATION	(P)	PROPOSED/NEW	TBR	TO BE REMOVED
(E)	EXISTING	N.T.S.	NOT TO SCALE	TBRR	TO BE REMOVED
EG	EQUPMENT GROUND	REF	REFERENCE		AND REPLACED
EGR	EQUPMPENT GROUND RING	REQ	REQUIRED	TTPICAL	
(F)	FUTURE				

No.	оате	RESSIONS		снкк	GENERAL NOTES	
0	03/15/17	ISSUED FOR RENEW	M ${ }^{\text {B }}$	mec		
$\begin{array}{\|l\|} \hline \frac{1}{2} \\ \hline \end{array}$	03/28/171	Rension	Mв	Mrc		
$\frac{3}{3}$	040/07/17	$\xrightarrow{\text { Revision }}$ Revion	M ${ }_{\text {M }}$	${ }_{\text {mac }}^{\text {mac }}$		
					SHEET No.	GN-1

