New Cingular Wireless PCS, LLC
500 Enterprise Drive
Rocky Hill, Connecticut 06067
John Lawrence
Real Estate Consultant
95 Ryan Drive, Suite \#1
Raynham, MA 02767
Phone: (781)715-5532
jlawrence@clinellc.com

August 22, 2014
Town of East Hartford
Mayor Marcia Leclerc
740 Main Street
East Hartford, CT 06108

Re: Request for Tower Share - Notice
 New Cingular Wireless PCS, LLC ("AT\&T") Request for Approval of the Shared Use of an Existing Wireless Facility at 886 Main Street, East Hartford CT 06108. AT\&T site number: CT2490

Dear Mayor Leclerc:
New Cingular Wireless PCS, LLC ("AT\&T") intends to add antennas and associated equipment to the existing wireless facility located at 886 Main Street in East Hartford. The wireless facility is an existing rooftop and is owned by Hartford East Associates a Connecticut limited partnership, having a mailing address of 1704 Broad Street, Cranston RI 02905.

A Request for Tower Share is being filed with the Connecticut Siting Council as required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50aa. Please accept this letter as notification to the Town of East Hartford under the Tower Share Application Guidelines.

The attached letter fully sets forth AT\&T's proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact John Lawrence, Real Estate Consultant for AT\&T, at (781) 715-5532 or the Connecticut Siting Council, at (860) 827-2935.

Sincerely,
John Lawrence
Real Estate Consultant
Enclosure
Honorable Robert Stein, Chairmen of the Connecticut Siting Council

New Cingular Wireless
PCS, LLC
500 Enterprise Drive
Rocky Hill, Connecticut 06067
John Lawrence
Real Estate Consultant
95 Ryan Drive, Suite \#1
Raynham, MA 02767
Phone: (781)715-5532
jlawrence@clinellc.com
August 22, 2014
Chairman Robert Stein
and Members of the Connecticut Siting Council
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Re: Request for Tower Share New Cingular Wireless PCS, LLC ("AT\&T") Request for Approval of the Shared Use of an Existing Wireless Facility at $\mathbf{8 8 6}$ Main Street, East Hartford CT 06108. AT\&T site number: CT2490

Dear Chairman Stein and Members of the Council:
AT\&T proposes to share an existing wireless facility located at 886 Main Street, East Hartford CT 06108 (the "Facility"). The subject parcel is identified by the Town of East Hartford as Map 13 Lot 332. The property is owned by Hartford East Associates and is roughly 1.19+/acres.

Pursuant to Connecticut General Statues Section 16-50aa (the Statute), AT\&T requests a finding from the Connecticut Siting Council that the shared use of this facility is technically, legally, environmentally and economically feasible, will meet safety concerns, will avoid the unnecessary proliferation of towers and is in the public interest. AT\&T further requests an order approving the shared use of this Facility.

Siting Council Jurisdiction Over the Existing Facility

AT\&T is a telecommunication provider licensed by the FCC to provide service in the State of Connecticut, including but not limited to Hartford County. AT\&T has entered into an agreement with the owner of this Facility, Hartford East Associates for the location of this proposed equipment on the rooftop so that it may provide telecommunications services to the surrounding community.

Pursuant to Connecticut General Statutes § 16-50aa, the Council may approve the shared use of a telecommunications facility provided that such shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns.

The Facility was originally approved in 1994 for Metro Mobile CTS of Hartford, Inc. (Metro Mobile) ${ }^{1}$ as a wireless site including nine (9) antennas and equipment attached to and within different parts of the existing building at 886 Main Street. The Siting Council's jurisdiction over the Facility commenced at a time when the Siting Council's jurisdiction was based on technology (i.e. cellular systems) and not exclusively on towers. The Siting Council has since continued to exercise jurisdiction over this Facility including three (3) known antenna and equipment upgrades/changes. ${ }^{2}$ This regulation of the Facility extended not only to the antennas on the roof but also the associated equipment and connections elsewhere in the building and on the site. In essence, the building was legally made the support structure for and part of the Facility as a whole. As such, we understand that AT\&T's antennas and equipment at this Facility are also regulated by the Siting Council in this unique circumstance. ${ }^{3}$

I do note however that prior to learning of this unique jurisdictional circumstance AT\&T first commenced consultation with the Town of East Hartford regarding site plan review. AT\&T has incorporated the results of this municipal dialogue into the proposed collocation; notably the request for some new landscaping elements in the area of the proposed equipment shelter.

The purpose of this request is to use an existing Facility to develop AT\&T's wireless broadband network to provide high speed wireless data and to develop wireless service within the State of Connecticut and in this part of East Hartford, CT: thus avoiding the need for an additional tower in East Hartford. As the Council is aware AT\&T is licensed by the Federal Communications Commission ("FCC") to provide multiple technologies, including Global Systems for Mobile Communications ("GSM" or "2G"), Universal Mobile
Telecommunications Service ("UMTS" or "3G") and long-term evolution ("4G" or "LTE") services in Hartford County. AT\&T is building and enhancing its network to take advantage of its licensed spectrum, and improve its broadband high speed wireless voice and data services. By issuing an order approving AT\&T's shared use of this Facility, AT\&T will be able to proceed with obtaining a building permit for the proposed installation.

Existing Facility and Proposed Collocation

The existing Facility is a 100^{\prime} building located at 886 Main Street in East Hartford. Verizon Wireless is currently located at this Facility. A site plan of the facility is included in the drawings, prepared by Hudson Design Group with a last revision date of August 21, 2014 attached hereto.

AT\&T intends to install nine (9) OPA65R-LCUUH6 CCI panel antennas, twenty-seven (27) Ericsson RRUs and six (6) Surge arrestor mounted on new antenna frames on the existing rooftop. AT\&T has leased space for an equipment shelter with emergency backup generator which will be installed at grade level adjacent to the existing building.

[^0]Consistent with the requirements of the Statute, it is feasible for AT\&T to collocate at this facility. AT\&T is proposing to add new equipment to an existing Facility. Included with this application is a Structural Analysis Report from Hudson Design with a last revision date of February 14, 2014, which shows that the existing rooftop can support AT\&T's proposed equipment.

The Proposed Facility Will Not Have a Substantial Adverse Environmental Impact

Pursuant to Statute, the proposal will be environmentally feasible for the following reasons:

- There will be little increase in the visibility of the Facility with the addition of the antennas and associated equipment on the rooftop.
- There will be no increased impact on air quality because no air pollutants will be generated during normal operation of the facility.
- During construction, the proposed project will generate a small amount of traffic and noise as construction takes place. Upon completion, traffic will be limited to an average of one trip per month for maintenance and inspections.
- There will be no adverse impact to the health and safety of the surrounding community or workers at the facility due to the addition of AT\&T's antennas to the Facility.
AT\&T has performed an analysis of the radio frequency field emanating from the transmitting antennas on the tower to ensure compliance with the National Council on Radiation Protection and measurements (NCRP) standard for maximum permissible exposure (MPE) adopted by the FCC. The analysis dated August 13, 2014 indicates that AT\&T and other antennas on Facility will cumulatively emit 61.56% of the NCRP standard for maximum permissible exposure. The report indicates that maximum level of exposure will be well below the FCC's mandated radio frequency exposure limits. The report is attached hereto and the calculations are below.

Transmission Mode	Antenna Centerline AGL (ft)	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Number of Channels	Effective Radiated Power per Channel (Watts)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Standard Limits $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	\% MPE (Uncontrolled/ General Public)
Verizon cellular	103	869	9	288.00	0.0878	0.579333333	15.16\%
Verizon PCS	103	1970	11	307.00	0.1145	1	11.45\%
Verizon AWS	103	2145	1	1,750.00	0.0503	1	5.53\%
Verizon LTE	103	698	1	840.00	0.0285	0.465333333	6.12\%
AT\&T UMTS	107	850	2	500.00	0.0314	0.5667	5.54\%
AT\&T UMTS	107	1900	2	500.00	0.0314	1	3.14\%
AT\&T LTE $700 \mathrm{BC} / \mathrm{DE}$	107	700	2	500.00	0.0314	0.4007	0.73\%
AT\&T LTE 850	107	850	1	500.00	0.0157	0.5667	2.77\%
AT\&T LTE 1900	107	1900	2	500.00	0.0314	1	3.14\%
AT\&TLTE WCS	107	2300	1	500.00	0.0157	1	1.57\%
Iotal							61.56\%

- AT\&T expects to enhance safety in this portion of East Hartford by improving wireless telecommunications for local residents and travelers. AT\&T continues to develop its
network to provide its customers with quality and reliable coverage to comply with their FCC license, the site is a necessary part of AT\&T's network development.
- The overall visual impact on the Town of East Hartford will be decreased with the sharing of a single Facility versus the proliferation in different locations.
- This proposal is designed to provide reliable wireless coverage for this section of East Hartford, Connecticut.

Conclusion:

For the reasons stated above, the collocation of AT\&T's antennas and associated equipment to at this approved Facility would meet all the requirements set forth in the Statute. The proposal is legally, technically, economically and environmentally feasible and meets all public safety concerns. Therefore, AT\&T respectfully requests that the Council approve this request for the shared use of this Facility located at 886 Main Street, East Hartford Connecticut.

Respectfully yours,

John Lawrence
Real Estate Consultant
CC: \quad Mayor Marcia Leclerc, Town of East Hartford
Hartford East Associates
Michele Briggs, New Cingular Wireless PCS, LLC (via e-mail)

Michael Lawton
SAI Communications
260 Cedar Hill St.
Marlborough, MA 01752
Mike.Lawton@sai-comm.com

August 13, 2014

Connecticut Siting Council

Subject: AT\&T Wireless, CT2490 - East Hartford
Dear Connecticut Siting Council:
At the request of AT\&T Wireless, SAl Communications has performed an assessment of the RF Power Density at the proposed site located at 886 Main Street, East Hartford, CT.
Calculations were done in compliance with FCC OET Bulletin 65. This report provides an FCC compliance assessment based on a "worst-case" analysis that all transmitters are simultaneously operating at full power and pointing directly at the ground.

FCC OET Bulletin 65 formula:

$$
\mathrm{S}=\frac{2.56 * 1.64 * E R P}{4 * \pi * \mathrm{R}^{2}}
$$

Transmission Mode	Antenna Centerline AGL (ft)	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Number of Channels	Effective Radiated Power per Channel (Watts)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Standard Limits ($\mathrm{mW} / \mathrm{cm}^{2}$)	\% MPE (Uncontrolled/ General Public)
Verizon cellular	103	869	9	288.00	0.0878	0.579333333	15.16\%
Verizon PCS	103	1970	11	307.00	0.1145	1	11.45\%
Verizon AWS	103	2145	1	1,750.00	0.0593	1	5.93\%
Verizon LTE	103	698	1	840.00	0.0285	0.465333333	6.12\%
AT\&T UMTS	107	850	2	500.00	0.0314	0.5667	5.54\%
AT\&T UMTS	107	1900	2	500.00	0.0314	1	3.14\%
AT\&T LTE $700 \mathrm{BC} / \mathrm{DE}$	107	700	2	500.00	0.0314	0.4667	6.73\%
AT\&T LTE 850	107	850	1	500.00	0.0157	0.5667	2.77\%
AT\&T LTE 1900	107	1900	2	500.00	0.0314	1	3.14\%
AT\&T LTE WCS	107	2300	1	500.00	0.0157	1	1.57\%
Total							61.56\%

Conclusion: AT\&T's proposed antenna installation is calculated to be within 61.56% of FCC Standard for General Public/Uncontrolled Maximum Permissible Exposure (MPE).

Sincerely,

[^1]

THE SUBCONTRACTOR SHALL REVEW AND INSPECT THE EXITTING FACIIITY GROUNDING SYSTEM AND LIGHTNING
PROTECTION SYSTEM (AS DESIGNED AND INSTALED) FOR PROTECTION SYSTEM AS DESIINED AND INSTALLLDD FOR
STRCTCT COMPLANCE WTH THE NEC (AS ADOPLED BY THE
 TELCORDAA AND TIA GrOUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATTONS OR
ADVERSE FNDINGS TO THE CONTRACTOR FOR RESOLUTION
2. ALL GROUND ELECCTRODE SYSTEMS (INCLUDING TELECOMMUNCATION, RAOIO, LICHTNING PROTECTION, AND
AC POWER GES'S) SHALI BE BONIND TOETE C POWER GES'S) SHALL BE BONDED TOGETHER, AT OR CONOUCTORS IN ACCORDANCE WITH THE NEC.
3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTNG (PER IEEE
100 ANO 81) FOR NEW GROUND ELECTROOE SYSTEMS. THE SUBCONTRACTTR SHALL FURNISH ANN INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO

4EIAL RACEWAY SHALL NOT BE USED AS THE NEC EQUIRED EQUPMENT GROUND CONDUCTOR. STRANDED ACCORDANCE WTH THE NEC, SHALL BE FURNSHEED AND NSTALED WTH THE POWER CIRCUITS TO BTS EQUIPMENT
5. each bis Cabinet frame shall be directly CONNECTED TO THE MASTER GROUND BAR WTH GREEN
INSULATED SUPPLEMENTAL RQUPMENT GROUND WRES, 6 INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6
AWG STRANDED COPPER OR LARGER FOR INDOOR BTS 2 AWG STRANDED COPPER FOR OUTDOOR BTS
6. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTONS BELOW GRADE
7. APPROVED ANTIOXIDANT COATINGS (I.E., CONOUCTIVE GEL OR PASTE) SHALL BE USED ON
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMCALLY BONDED
THE TOWER GROUND BAR.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEE CONOUCTOR SHALL NOT BE USED FOR GROUNOING
0. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED
TO THE GROUND RNG, IN ACCORDANCE WTH THE NEC.

1. METAL CONDUTT SHALL BE MADE ELECTRICALLY CONTINOOUS WITH LISTED BONDING FITTINGS OR BY ONDDING ACROSS LHE DIsCONINUITY WITH 6 AWS COPPE
2. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING
20 FT . OR MORE $1 / 2^{\prime \prime}$ OR GREATER ELECTRICALIY CONDUCTVE REINFORCING STEEL WUST HAVE IT BONDED TO THE CROUND USING AN EXOTHERMIC WELD CONNECTION USING \#2 AWG SOLID tinned Copper ground wire, per nec 250.50
3. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING
DEFINTIONS SHAL APEIY

$$
\begin{aligned}
& \text { APPLYF CONSTRUCTION DRAWING, THE FOLLOWING } \\
& \text { CONTRACTOR - SAI } \\
& \text { SUBCONTRACTR - GENERAL CONTRACTOR (CONSTRUCTION) } \\
& \text { OWNER - ATET MOBILTTM }
\end{aligned}
$$

 CONFRM THAT THE WORK CAN BE ACCOMPLSHED AS SHOWN ON THE
CNSTRUCTON DRWWOS A AN DIICREPANCY FOUND SHALL BE BROUGTT TO
THE ATENTION OF CONTRCTOR.
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT
ACCORDANCE WITH ALL APLLCABLE COOES, REGULATONS, AND ORDINAN
 CARRIED OUT SHALL COMPLY WTH ALL APPLLCABLE MUNICIPAL AND UTLIITY
COMPANY SPECIFICATIONS AND LOCAL JURISICTIONAL CODES, ORDNANCES AND COMPAMY SPEELFIICATIONS
APPLICABLE REGULTIONS.
4. DRAWINGS PROVIDED Here are not to be scaled and are intended
To show outline only.
 ALL INSTALLATONS AS INDICATED ON THE DRAWINGS.
6. "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTFIES ITEMS THAT
WILL BE SUPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF
OF
7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUPMENT AND MATERIALS IN ACCORDANCE WTH
STATED OTHERWISE.
8. IF THE SPECIFED EQUPMENT CANNOT BE INSTALLED AS SHOWN ON THESE
DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALERNATVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR
 AND TELCO LLLAN DRAWING. SUBCONTRACTOR SHALL UTLIIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL
CONFIRM THE ACTUAL ROUTNG WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS,
PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SAALL BE REPARED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTON OF
OWNER. 11. SUBCONTTACTOR SHALL LLGGLLY AND PROPERLY DISPOSE OF ALL SCRAP
MATERIALS SUCH AS COAXIAL CABLES AND OTHER TEEMS REMOVED FROM THE MATERALLS SUCH AS COAXIAL CABLLES AND OTHE TTEMS RENOVED FROM THE
EXISTING FACLLITTY ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S
DESINAATED LOCATON. 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONOITION 13. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WTTH
AMERICAN CONCRETE INSTITUTE (ACI) 301 .
 AR-ENTRANED
CRECRETE EOR
REOUREMNTTS.
15. ALL STRUCTURAL STEEL WORK SHALL BE DEEALLED, FABRICATED AND
RECTED IN ACCORDANCE WITH AISC SPECIFICATONS

 AND OTHER MARAL IN HOT DEF
COMPATBLE ZINC RICH PAINT.
16. CONSTRUCTION SHALL COMPLY WITH UMTS SPECIIICATIONS AND
"GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTON OF AT\&T MOBILTT "GENERA
17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENIIONS AND
CONOITINS PRROR TO COMMENCNG ANY WRK. ALL DMESIONS OF

19. SINCE THE CELL STE IS ACTVE, ALL SAFETY PRECAUTIONS MUST BE
TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADDATON. EQUIPMENT SHOULD BE SHUUDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE TVE WORKERS TO DANGER, PERESONAL
EXPOSUE MONTORS AE ADVESED TO BE WORN TO ALERT OF ANY , 20. APPLLCABLE BULLING CODES:
SUBCONTRACTOR'S WORK SHALL COMPLY WTTH ALL APLLCABLE NATIONAL
STATE AN JURRSICTIION (AHU) FOR THE LOCATION. THE EDITION OF THE AHJ ADOPTE CODDE AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD
SHALL GOVERN THE DESIGN

GOVER THE DESIGN.
BULEDNG COEE: 2003 IBC WITH 2005 CT SUPPLEMENT \& 2009 CT
AMENDMENTS
ELECTTIICAL CODE: REFER TO ELECTRICAL DRAWINGS
LIGHTNNG COOE: REFER TO ELECTRCAL DRAWNGS
SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE
FOLOOING STANDARDS:
AMERICAN CONCRETE INSTTUTE (ACI) 318; BUIDDING CODE
RERUIREMENTS FOR STRUCTURAL CONCRETE;
AMERICAN Institute of steel construction (AISC)
manual of steel construction, asd, ninth eotion
TELLECOMMUNICATIONS INDUSTRY ASSOCIATION (TAA) 222-F,
STRUCTURAL STANDARDS FOR STEEL
ANTENNA TOWER AND ANTENNA SUPPORTING STRUCTURES: REFER
TO ELECTRICAL DRAWINS FOR SPECIFIC ELECTRICAL STANDARDS.
FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS
REGARDNG MATERAL, METHODS OF CONSTRUCTON, OR OTHER

Hudson

SPECIAL INSPECTION CHECKLIST	
BEFORE CONSTRUCTION	
	REPort rem
REQUIRED	ENGINEER OF RECORD APPROVED SHOP DRAWINGS'
REQUIRED	materal spegificatons repori ${ }^{2}$
N/A	Fabricator noe Inspectow
N/A	(NOE REPORT OF MONopote
REQUIRED	Packing sups ${ }^{\text {a }}$
Aodriont fising	
DURING CONSTRUCTION	
	REPort rem
REQUIRED	STEEL Inspectows
REQUIRED	HIGH STRENGTH Bolt Inspectows
N/A	High wno zone Inspectows
N/A	Founoatoo INSPECTONS
N/A	concrit coup strencil
REQUIRED	POST INSTALLED ANCHOR ROD VERIFICATION
N/A	base pate grout verrication
N/A	Certred wel mspecton
N/A	Earthwork: LIT ANO densir
N/4	on ste colo davaning
N/A	gur mine tension report
ADDITIONAL TESTINGAND INSPECTIONS:	
AFTER CONSTRUCTION	
	REPORT Item
REQUIRED	
N/A	POST INSTALLED ANCHOR ROD
REQUIRED	Phorocraphs
ADDITIONAL TESTINGAND INSPECTIONS:	

NOTES:

1. REQURED FOR ANY NEW SHOP FABRICATED FR 2. PRRVIDED BY MANUFACTURER, REQUIRED IF HIG 3. STRENGTH BOLTS OR STEEL

2. ANCHORING, FASTENING SCHEDULE.

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17):

 GENERAL: WHERE APPLICATION IS MADE FOR CONSTRUCTION, THE OWNEROR THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE OR THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHA
ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE AATNG AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE
APPROVED AGENCIES TO PERFORM INSPECTIONS DURING CONSTRUCT ON THE TPEES OF WORK LISTED IN THE INSPECTON CHECKLIST ABOVE. THE REGISTERED DESIIN PROFESSIONAL IN RESPONSIBLE CHARGE AND
ENGINEERS OF RECORD INVOLVED IN ITE DESIGN OF THE PROUECT ARE ENGINEERS OF RECORD INVOLVED IN THE DESIGN OF THE PROUECT ARE
PERMITED TO ACT AS THE APPROVEC AGENCY AND THER PERSONNEL PARE PERMITED TO ACT AS THE SPECIAL INSPECTOR FOR THE WORK DESIGNED BY THEM, PROVIDED
QUALIFICATION REQUREMENTS.
Statement of special inspections: the applicant shall submit a STATEMEN OF SPECILL INSPECTIONS: THE APPLCANT SHALL SUBMIT A
SAATEMENT OF SPCCIAL INSEECTIONS PREPARED BY THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLL CHARGE IN ACCORDANCE WITH
SECTION 107.1 AS A CONITION FOR ISSUANCE. THIS STATEMENT SHALL SECTION 107.1 AS A CONDITION FOR ISSUA
BE IN ACCORDANCE WITH SECTON 1705 .
REPORT REQUIREMENT: SPECIAL INSPECTORS SHALL KEEP RECORDS OF PEPORTS TO THE BULDAL OFECIOR SHALL FURNSH NSPECTIO REPORTS TO THE BUILDING OFFICILL, AND TO THE REGITERED DESIGN
PROFESSIONAL IN RESPONIILLE CHARGE. REPORTS SHALL INDICATE THA WOR INSPECTED WAS OR WAS NOT COMPLETED IN CONFORMANCE TO APPROVED CONSTRUCTION DOCUMENTS. DISCREPANCIES SHALL BE
BROUGHT TO THE IMMEDATE ATENTON OF THE CONTRACTOR FO CORRECTION. IF THEY ARE NOT CORRECTED, THE DISCREPANCIES SHAL BE BROUGHT TO THE ATTENTION OF THE BUILDING OFFIICAL AND TO THE
 REPORT DOC
SUBMITED.
IF PROJECT OWNER DOES NOT AUTHORIZE SPECIAL INSPECTIINS, THE
PROJJCCT OWNER TAKES FUUL RUSPONSIBUITY AND OWNERSHIP PROJECT OWNER TAKES FULL
MATERALS AND CONSTRUCTON.

27 NoRTHWESTERN DR
SALEM, NH O3079

Hudson

RF TABLE							NOTE：
SECTOR	SECTOR NAME	$\underset{\substack{\text { ANTENNA MAKE } \\ \text { Q MODEL }}}{ }$	ANTENNA COUNT	AZIMUTH	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { CENTER } \end{array}$	\＃Of Cables	REFER TO STRUCTURAL ANALYSIS BY：HUDSON DESIGN GROUP，LLC DATED：2／14／14
1	ALPHA	CCI－OPA65R－LCUUH6	3 PROPoSED	90＊＊	117＇土	（4）DC POWER \＆（2）FIBER	
2	beta	CCI－OPA65R－LCUUH6	3 PROPoSED	200＊	109＇土	（4）DC POWER \＆（2）FIBER	
3	gamma	CCI－OPA65R－LCUUH6	3 PROPoSED	350＊＊	117＇土	（4）DC POWER \＆（2）FIBER	

$\overline{0} \overline{8^{\prime}-0^{\prime \prime} 16^{\prime}-0^{\prime \prime}} \quad 32^{\prime \prime}-0^{\prime \prime} \quad 48^{8}-00^{\prime \prime}$WEST ELEVATION

CHAIRMAN
27 NORTHESTEERN OR
SAAEM，NH 03079

 \begin{tabular}{|c|c|}
\hline 5 \& $08 / 20 / 14$ RENSED FOR CONSTRUCTION

\hline 4 \& $07 / 22 / 14$ RESSED

\hline 3 \& $00 R$ CONSTRUCTION

\hline

\hline 3 \& $06 / 23 / 14$

\hline

\hline 2 \& $02 / 20 / 14$

\hline

\hline 1 \& $05 / 29 / 13$

\hline
\end{tabular} 0 04／18／13 ISSUED FOR REVEW

 SIIE NAME：

CT2490
EAST HARTFORD－
886 MAIN

SITE ADORESS：${ }^{886 \text { MAIN ST }}$
 EAST HARTFORD，CTO6108

SHEET TTLE：
ELEVATIONS

EROSION CONTROL

CONSTRUCTION SEQUENC

2) conyllete a "Call before you dig" prior to any on ste acturr. recall every 30
3) CUT AND STuMP AREAS OF Proposeso construction.
4) NTTAL TEMPORARY SEDMEN AND EROSION CONRPOL MEASURES AS Regured.

7) ESTABLSH R RoADWAY CENTERLINE WTH GRADE STAKES AND OFF SETS.
8) STOCKPLLE EXCAVATED SOLLS A MNMUM of 75 FEET FROM ANY WETLAND AREA.

10) ROUGH GRAOE DTCH STARTING FROM THE DOWNGRROENT LOCATON
11) MSTAL STONE LNNIG AND LevEL SPREEADRS AT CUUVERT OUULETS
12) stabluze graded slopes.
13) Construct ranaunas ano perform ste graing pacing hay bales ano sluaton
14) EXCAVATE FOR ANY SUSSURFACEE UTLITES.
15) STOCKPLIE EXCAVATED SOLIS A MNIMUM OF 75 FEET From Anr wetand area.
16) Establuh sedment and erosion controls around stockple solis.
17) Instal utulur servces
18) Install storu drannage starting at the most downceralent location.
19) INSTAL ALL RIP RAP at OuLlets for storm dranage.
20) NSTALL hay bait

${ }^{24)}$ begin excavation for and constructon of towers and platforus.
25) Finsh paving all roadwars, drves, anv parking areas.
26) complete permanent seedng ano lanoscarilla
27) No fow sial ge overid to any welino unt a heatiry stano of gras has
28) Arter grass has een fuly gerwnateo in all sedod aras, remove all temporary

IMPACT OF STORMWATER DURING CONSTRUCTION ACTVITY

CONSTRUCTION SPECIRCATIONS - SLIT FENCE

3) woven wre fence shall be fastene securely to the fence posts wit wre ties

MAINIENANCE - SILT FENCE

 EROSION CONTROL MEASURES:

TOWN OF EAST HARTFORD PLANNING AND ZONING COMMISSION SITE PLAN CERTIFICATE OF APPROVAL

MAINTENANCE - STRAW OR HAY BALES
)

3) NeEESSARY Repars or reppacement of bales shall ae accomplished

APPROVAL DATE EXPIRATION DATE

CHAIRMAN

SoO Enterrise Rive
ROCKY HiLl, CT 00067

1) OEsigese

 4) FIL MATERRLL SHALL BE FREE FROM STuMPS, wooo, Roots, Etc.

CHAIN LINK FENCE DETAIL
 9) Paved raoonars must te kept clean at all times.
10) Alaratch basin Inets wle ee protecteo wit low pont semmention
11) ALL STORM DRAMAGE OURITS WIL BE STABLIED AND CLEANED AS ReQured, 12) ALE DEEATERNG OPEERATONS MUST DISCHARGE DREETLY MTO A SEDIMENT FLITER
 CONSTRUCTION SPECIFCATIONS - STRAW OR HAY BALES 1) BALES SHALL BE PLACED IN A ROW WTH THE ENOS TGCHLY ADJONNG.

INLET PROTECTION
(TYPE 3) ($2-5$

SEDIMENTATION	CONTROL BARRIER
SCALE: N.T.S.	

TOWN OF EAST HARTFORD PLANING AND ZONING COMMISSION SITE PLAN CERTIFICATE OF APPROVAL
APPROVAL DATE
EXPIRATION DATE CHAIRMAN

1. Do Not Intall cabe groun kit at a den and always

GROUND WIRE TO GROUND 1 BAR CONNECTION DETAIL
N.t.s.

TYPICAL GROUND BAR
\square 3 CONNECTION DETAIL

NOTE:
CONTRACTOR TO CONFIRM ALL PARTS \& INSTALL AL
EQUPMENT TO MANUFACTURER'S RECOMMENDATONS.

PLUMBING DIAGRAM

AAR SHALL HAVE AN DOENTIECCAION TAG ATTACHED AT EAC SAR SHAL HAVE AN IDENT
END HAT WL LDNTYY TS
ORGIN AND DESTINATON.
SECTON "p" - SURGE PRODUCERS
CABLE ENTP PORTS (HATCH PLATES) (\#2)
GENERATOR FRAMEWORK (IF AVALLABLE) (\#\#) (\#2)
He
ELLOM GROUND BAR (COMERCIAL POWER COMON NEUTRAL/GROUND BOND (\#2)
+24V POWER SUPPLY RETURN BAR (\#2)
${ }_{-48 V}$ POWER SUPPLY RETURN BAR (\#\#2)
-48V Power SUPP.
RECTIFER FRAMES.
SECTION "A" - SURGE ABSORBERS
nterior ground ring (\#2)
XTERRAL EARTH GROUND FELLD (BuRED GROUND RING) (\#2) METALLIC COLD WATER PPE (IF AVALABLE) (\#2)
BULLING STELL (IF AVAIABE) (N2)

4 GROUND BAR - DETAIL

STEE ADORESS: 886 MAINST

886 MAINST
EAST HARIFORD, CT06108
\square
PLUMBING DIAGRAM \& GROUNDING DETAILS
\square

Revised STRUCTURAL ANALYSIS REPORT

For
CT 2490
EAST HARTFORD - 886 MAIN
886 Main Street
East Hartford, Connecticut 06108

Equipment Shelter on the Ground; Antennas Mounted on the Facade and on the Roof

Prepared for:

at\&t

500 ENTERPRISE DRIVE, SUITE 3A ROCKY HIL, CT 06067

Dated: February 14, 2014 (Rev. 2)
December 10, 2012 (Rev. 1) July 29, 2012

Prepared by:

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by AT\&T to conduct a structural evaluation of the structure supporting the proposed AT\&T equipment located in the areas depicted in the latest HDG's drawings.

This report represents this office's findings, conclusions and recommendations pertaining to the support of AT\&T's proposed Equipment.

This office conducted an on-site visual survey of the above areas on June 14, 2012. Attendees included Jose Xavier (HDG-Sr. Project Manager).

CONCLUSION SUMMARY:

Limited Building plans were available for our use. A limited visual survey of the structure was completed in or near the areas of the Proposed Work.

Based on our evaluation, we have determined that, in general, structural designs to support the proposed AT\&T Equipment within or near the Proposed Location can be completed and components installed with NO STRUCTURAL UPGRADES REQUIRED to the existing structure. Reference the attached HDG's drawings for all equipment locations.

However, HDG recommends locating the proposed roof top ballast mount on steel beams spanning over bearing walls to adequately distribute the proposed load as shown in the attached sketch. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

APPURTENACE/EQUIPMENT CONFIGURATION:

(9) OPA-65R-LCUU-H6 Antennas (72"x15"x9" - Wt. = 64 lbs . /each) (Three per sector)
(3) Surge Suppressor (Wt. = 20 lbs . / each) (One per sector)
(6) A2 Module (16.4 " $\times 15.2^{\prime \prime} \times 3.4^{\prime \prime}-$ W. $=22$ lbs. /each) (Two per sector)
(9) RRH (RRUS-11) (19.7 "x17"x7.2" - Wt. = 50 lbs . /each) (Three per sector)
(6) RRH (RRUS-12) (20.4"×18.5"×7.5" - Wt. = 58 lbs. /each) (Two per sector)
(3) RRH (RRUS-E2) (20.4" $\times 18.5$ " $\times 7.5$ " - Wt. $=58 \mathrm{lbs}$. /each) (One per sector)
(3) RRH (RRUS-32) (29.9" $\times 13.3$ " $\times 9.5$ " - Wt. $=77 \mathrm{lbs}$. /each) (One per sector)
(1) $\mathbf{1 1 . 5} \mathrm{FT} \times 20 \mathrm{FT}$ Equipment Shelter (Designed by others)

DESIGN CRITERIA:

1. International Building Code with 2005 Connecticut Supplement with 2009 Amendments

Wind Analysis:
Basic Wind Speed: 95 MPH (includes 3-second gust)
Exposure: C

Roof:
Ground Snow, Pg: 30 psf
Importance Factor, I: 1.0
Exposure Factor, Ce: 0.9
Thermal Factor, Ct: 1.0
Calculated Flat Roof Snow Load: $\mathbf{3 0}$ psf
(Category II)
(Exposure B- Fully Exposed)
($\mathrm{Pf}=0.7^{*} \mathrm{Ce}{ }^{*} \mathrm{Ct}^{*}{ }^{*} \mathrm{Pg}$)
2. EIA/TIA -222- F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: Hartford
Wind Load: 80 mph
Ice Thickness: 1 Inch
3. Approximate height above grade to the center of the Antennas:

$$
\begin{array}{ll}
117^{\prime}-"+/- & \text { (Alpha and Gamma sectors) } \\
109^{\prime}-01+/- & \text { (Beta sector) }
\end{array}
$$

EXISTING ROOF CONSTRUCTION:

The existing roof construction appears to consist of a roofing membrane over rigid insulation, on hollow precast concrete slabs supported by a system of bearing walls. (Building plans were not available at the time of our site visit).

EQUIPMENT SHELTER SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed $11.5^{\prime} \times 20$ equipment shelter (designed by others) be located at ground level and supported by a concrete slab.

RRH'S / SURGE SUPPRESSOR SUPPORT RECOMMENDATIONS:

- The new AT\&T Alpha and Gamma sectors' RRH's and surge suppressors are proposed to be mounted on unistrut components, secured to the new antenna mounting pipes.
- The new AT\&T Beta sector's RRH's and surge suppressors are proposed to be mounted on unistrut components secured to the non-penetrating roof top sled mounts.

ANTENNA SUPPORT RECOMMENDATIONS:

- The new AT\&T Alpha and Gamma sectors' antennas are proposed to be mounted on steel pipes and mounting brackets secured to the building façade using thru-bolts and backer plates.
- T The new AT\&T Beta sector's antennas are proposed to be mounted on steel pipes, supported by the non-penetrating roof top sled mounts.

OTHER SUPPORT RECOMMENDATIONS:

- HDG recommends installing the new sled mount on steel beams spanning over bearing walls to adequately distribute the proposed load.
- Secure the sled mount to the new steel beams.

Limitations and Assumptions:

1. Reference the latest HDG construction drawings for all the equipment locations.
2. All detail requirements will be designed and furnished in the construction drawings.
3. Mount all equipment per manufacturer's specifications.
4. If field conditions differ from what is assumed in this report, then the engineer of record is to be notified as soon as possible.

LOCATION OF PROPOSED EQUIPMENT:

Photo 1: Sample photo illustrating the area where the equipment shelter is proposed to be located.

Photo 2: Sample photo illustrating the sector B antennas are proposed to be located.

Photo 3: Sample photo illustrating the existing penthouse where the new sector C antennas are proposed to be located.

Alpha and Gamma Sectors' Calculations

EC	Checked by:
$2 / 14 / 2014$	

References:

* Strucłural Standards for Steel Antenna Towers and Antenna Supporting Structures (TIA/EIA-222-F).
Material Reference Notes:

2.3.1 Wind and Ice Loads

The total design wind load shall include the sum of he horizontal forces applied to the structure in the direction of the wind and the design wind load on guys and discrete appurtenances.

Ice loading, depending on tower height, elevation, and exposure, may be a significant load on the structure in most parts of the United States. If the structure is to be located where ice accumulation is expected, consideration shall be given to an ice load when specifying the requirements for the structure.

2.3.2 Horizontal Force Applied to each Section of the Structure

$$
\mathrm{F}=\mathrm{q}_{\mathrm{z}}{ }^{*} \mathrm{G}_{\mathrm{H}}\left[\mathrm{C}_{\mathrm{F}}{ }^{*} \mathrm{~A}_{\mathrm{E}}+\sum\left(\mathrm{C}_{A}{ }^{*} \mathrm{~A}_{A}\right)\right]
$$

(Not to exceed 2* $\mathrm{q}_{2}{ }^{*} \mathrm{G}^{*}{ }^{*} \mathrm{~A}_{G}$)
where $A_{G}=$ Gross area of one tower face $\left(\mathrm{ft}^{2}\right)$

2.3.3 Velocity Pressure $\left(\mathrm{C}_{\mathrm{z}}\right)$ and Exposure Coefficient $\left(\mathrm{K}_{Z}\right)$

$$
\begin{array}{ll}
\mathrm{C}_{2}=.00256^{*} \mathrm{~K}_{\mathrm{Z}} * \mathrm{~V}^{2} & \mathrm{~V}=\text { Basic Wind Speed for the Structure Location (mph) } \\
\mathrm{K}_{\mathrm{Z}}=(\mathrm{z} / 33)^{2 / 7} & \mathrm{Z}=\mathrm{Ht} . \text { above avg. ground level to midpoint of section (ft.) } \\
1.00 \leq \mathrm{K}_{\mathrm{Z}} \leq 2.58 & \mathrm{~A}_{\mathrm{E}}=\text { effective projected area of structural components in one face }
\end{array}
$$

2.3.4 Gust Response Factors $\left(G_{H}\right)$

2.3.4.1 For latticed structures, gust response factor $\left(G_{H}\right)$ shall be calculated from the equation:

$$
\mathrm{G}_{\mathrm{H}}=0.65+0.60 /(\mathrm{h} / 33)^{1 / 7}(\mathrm{~h} \text { in }(\mathrm{ft} .)) \quad 1.0<\mathrm{G}_{\mathrm{H}}<1.25
$$

2.3.4.2 For Tubular pole structures, the gust response factor $\left(G_{H}\right)$ shall be 1.69
2.3.4.3 One gust response factor shall apply for the entire structure.
2.3.4.4 When Cantilevered tubular or latticed pole structures are mounted on latticed structures, the gust response factor the the pole and the latticed structure shall be based on the height of the latticed structure without the pole. The stresses calculated for the pole structures and their connections to latticed structures shall be multiplied by 1.25 to compensate for the greater gust response for the mounted pole structures.
2.3.5 Structure Force Coetticients (Reterence Iable I)

Site Name:	East Hartford - 886 Main	
Site No.	CT2490	
Done by:	$\frac{\text { EC }}{2 / 14 / 2014}$	
Date:		

Date: 2/14/2014

Existing T-Mobile Feeder Lines

Velocity Pressure:

qz=	23.52	psf

[2.3.3]

Is member analyzing a tube pole structure?
If yes, then: Gh= 1.69

If no, then use value below:
Gh=
1.15
[2.3.4.1]

Gh= 1.69

Determine Cf:

If lattice structure see manual...

If cantlevered tube pole, then:
Use Correct Value form Table 1 Below:

TABLE 1 Coefficients (Cf) for Cantilevered Tubular Pole Structures					
$\begin{gathered} \text { C } \\ (\mathrm{mph} \mathrm{ft}) \end{gathered}$	Round	$\begin{gathered} 16 \text { Sided } \\ r<0.26 \end{gathered}$	$\begin{gathered} 16 \text { Sided } \\ r \geq 0.26 \end{gathered}$	12 Sides	8 Sided
<32	1.2	1.2	1.2	1.2	1.2
32 to 64	$130 / C^{1.3}$	1.78+1.40r-C/91.5-Cr/22.9	.72+(64-C)/44.8	$12.5 / \mathrm{C}^{\circ}$	1.2
>64	0.59	1.08-1.40r	0.72	1.03	1.2

Derivation of Structure Coefficient (Cf):

Dp = Avg. Diam. or Avg. Least width of Tubular Pole Structure:

Site Name:
Site No.
Done by: Date:
East Hartford - 886 Main

CT2490		
EC	Checked by:	MSC

D
$\mathrm{C}=\left(\mathrm{K}_{\mathrm{z}}\right)^{1 / 2} * \mathrm{~V} * \mathrm{Dp}$ (for Dp in ft [m]

C Round Only Member
(mph ft)

<32	1.2
$32<64$	0.27
>64	0.59

($\mathrm{Max} \mathrm{Cf}=1.2$)
($\mathrm{Min} \mathrm{Cf}=0.59$)

Determine Ae:
If tube structure, then use projected area including ice: If not a tube structure, then see manual.

\section*{| $\mathrm{Ae}=$ | 0.00 |
| ---: | ---: |
| | sf |}

[2.3.7]
2.3.7 The force coefficient $\left(C_{A}\right)$ applied to the projected area $\left(f^{2}\right)\left[m^{2}\right]$ of a linear appurtenance $\left(A_{A}\right)$ not considered as a structural component shall be determined from Table 3. The force coefficient for cylindrical members may be applied to the additional projected area of radial ice when specified. (Refer to Figure 1.)

Note: Linear interpolation may be used to aspect ratios other than shown
2.3.8 Regardless of location, linear appurtenances not considered as structural components in accordance with 2.3 .6 .3 shall be included in the term $\Sigma C_{A} A_{A}$.
2.3.9 The horizontal force (F) applied to a section of the structure may be assumed to be uniformly distributed based on the wind pressure at the mid-height of the section.

Site Name:
Site No.
Done by:
Date:
East Hartford - 886 Main

East Harlford - 886 Main CT2490 EC $2 / 14 / 2014$	

	Item \#1	Item \#2	Item \#3	Item \#4	Item \#5
Member Length (Inches):	72	20.4	19.7	29.9	23.5
Member Width (Inches):	15	18.5	17	13.3	9.7
Calculated Aspect Ratio:	5	1	1	2	

From Table 3 Above:

$\mathrm{Ca}=$	1.4	1.4	1.4	1.4	1.4

Determine Aa: (sf)

From above:

	Item \#	Item \#2	Item \#3	Item \# 4	Item \#5
$A \mathrm{a}=$	7.50	2.62	2.33	2.76	1.58
	10.50	3.67	3.26	3.87	2.22

Calculated Sums of Ca*Aa:
23.51 sf

Item I calculated force F:	Antenna	417.392906
Item 2 calculated force F:	RRUS-12/E2	145.855632
Item 3 calculated force F:	RRUS-11	129.430448
Item 4 calculated force F:	RRUS-32	153.689479
Item 5 calculated force F:	Surge Suppressor	88.0969564

$\mathrm{F}=$	934.47 Pounds

ICE WEIGHT CALCULATIONS

Project: CT2490 (Alpha \& Gamma) * Density of ice used = 56 PCF

Thickness of ice:

1

Weight of ice based on total radial SF area:

Depth (in):	9	
height (in):	72	
Width (in):	15	
Total weight of ice on object:		112 pounds ice
Weight of object:	64 pounds	
Combined weight of ice and object:		176 pounds

Per foot weight of ice:		Pipe
pipe weight per foot:	10.8	
pipe length (ft):	12	$=\left(7.5^{\prime}\right)$
diameter (in):	4.5	
Per foot weight of ice on object:		6 pounds ice /ft
Total weight of ice on object:		66 pounds
Total weight of pipe:		129.6 pounds
Combined weight of pip		196 pounds

Weight of ice based on total radial SF area:
RRH-11
Depth (in): 7.2
height (in): $\quad 19.7$
Width (in): 17
Total weight of ice on object: 31 pounds ice
Weight of object: 50 pounds
Combined weight of ice and object: 81 pounds $\times 3 / 2$

Weight of ice based on total radial SF area:
RRH-32
Depth (in): 9.5
height (in): 29.9
Width (in): $\quad 13.3$
Total weight of ice on object: $\quad 44$ pounds ice
Weight of object: $\quad 77$ pounds
Combined weight of ice and object: 121 pounds $/ 2$
Weight of ice based on total radial SF area:
RRH-12
$\begin{array}{lr}\text { Depth (in): } & 7.5 \\ \text { height (in): } & 20.4\end{array}$
Width (in): 18.5
Total weight of ice on object: 34 pounds ice
Weight of object: 58 pounds
Combined weight of ice and object: 92 pounds $\times 2 / 2$
Weight of ice based on total radial SF area:
Combined weight of ice and object: 42 pounds $\times 2 / 2$

Weight of ice based on total radial SF area:
Surge
Depth (in): 9.7
height (in): 23.5
Width (in): 9.7
Total weight of ice on object: 30 pounds ice
Weight of object:
20 pounds
Combined weight of ice and object: 50 pounds
Total Weight: 713 pounds

Beta Sector's Calculations

Site No.
Done by:
Date:

CT2490		
EC	Checked by:	MSC
$2 / 14 / 2014$		

References:

* Structural Standards for Steel Antenna Towers and Antenna Supporting Structures (TIA/EIA-222-F).
Material Reference Notes:

2.3.1 Wind and Ice Loads

The total design wind load shall include the sum of he horizontal forces applied to the structure in the direction of the wind and the design wind load on guys and discrete appurtenances.

Ice loading, depending on tower height, elevation, and exposure, may be a significant load on the structure in most parts of the United States. If the structure is to be located where ice accumulation is expected, consideration shall be given to an ice load when specifying the requirements for the structure.

2.3.2 Horizontal Force Applied to each Section of the Structure

$F=q_{Z}{ }^{*} \mathbf{G}_{H}\left[C_{F}{ }^{*} A_{E}+\sum\left(C_{A}{ }^{*} A_{A}\right)\right] \quad$ (Not to exceed $2^{*} q_{Z}{ }^{*} G_{H}{ }^{*} A_{G}$)
where $A_{G}=$ Gross area of one tower face $\left(\mathrm{ft}^{2}\right)$

2.3.3 Velocity Pressure $\left(\mathrm{q}_{\mathrm{z}}\right)$ and Exposure Coefficient $\left(\mathrm{K}_{\mathrm{z}}\right)$

$$
\mathrm{a}_{z}=.00256 * \mathrm{~K}_{2} * \mathrm{~V}^{2} \quad \mathrm{~V}=\text { Basic Wind Speed for the Structure Location (mph) }
$$

$$
\mathrm{K}_{\mathrm{L}}=(\mathrm{z} / 33)^{2 / 7} \quad \mathrm{z}=\mathrm{Ht} \text {. above avg. ground level to midpoint of section (ft.) }
$$

$1.00 \leq K_{l} \leq 2.58 \quad A_{E}=$ effective projected area of structural components in one face

2.3.4 Gust Response Factors (\mathbf{G}_{H})

2.3.4.1 For latticed structures, gust response factor $\left(G_{H}\right)$ shall be calculated from the equation:
$\mathrm{G}_{\mathrm{H}}=0.65+0.60 /(\mathrm{h} / 33)^{1 / 7}(\mathrm{~h}$ in (ft).
$1.0<G_{H}<1.25$
2.3.4.2 For Tubular pole structures, the gust response factor $\left(G_{H}\right)$ shall be 1.69
2.3.4.3 One gust response factor shall apply for the entire structure.
2.3.4.4 When Cantilevered tubular or latticed pole structures are mounted on latticed structures, the gust response factor the the pole and the latticed structure shall be based on the height of the latticed structure without the pole. The stresses calculated for the pole structures and their connections to latticed structures shall be multiplied by 1.25 to compensate for the greater gust response for the mounted pole structures.
2.3.5 Structure Force Coetticients (Keterence Iable I)

Site Name:
Site No.
Done by:

East Hartford - 886 Main		
CT2490		
EC	Checked by:	MSC
$2 / 14 / 2014$		

Date:
\square

Velocity Pressure:

qz $=$	23.05	psf

[2.3.3]

Is member analyzing a tube pole structure?
If yes, then: Gh= 1.69

If no, then use value below:

Gh=
1.16

Gh= 1.69
Determine Cf:

If lattice structure see manual...

If cantlevered tube pole, then:
Use Correct Value form Table 1 Below:

TABLE 1 Coefficients (Cf) for Cantilevered Tubular Pole Structures					
$\begin{gathered} \mathrm{C} \\ (\mathrm{mph} \mathrm{ft}) \end{gathered}$	Round	$\begin{gathered} 16 \text { Sided } \\ r<0.26 \end{gathered}$	$\begin{gathered} 16 \text { Sided } \\ r \geq 0.26 \end{gathered}$	12 Sides	8 Sided
<32	1.2	1.2	1.2	1.2	1.2
32 to 64	$130 / C^{1 / 3}$	1.78+1.40r-C/91.5-Cr/22.9	.72+(64-C)/44.8	$12.5 / \mathrm{C}^{5}$	1.2
>64	0.59	1.08-1.40r	0.72	1.03	1.2

Derivation of Structure Coefficient (Cf):

Dp = Avg. Diam. or Avg. Least width of Tubular Pole Structure:

Site Name:
Site No.
Done by:
Date:
East Hartford - 886 Main

CT2490		
EC	Checked by:	MSC

C Round Only Member
(mph ft)

<32	1.2
$32<64$	0.28
>64	0.59

$C=113.87$
$($ Max $C f=1.2)$ ($\operatorname{Min} \mathrm{Cf}=0.59$)

Determine Ae:
If tube structure, then use projected area including ice: If not a tube structure, then see manual.

[2.3.7]
2.3.7 The force coefficient $\left(C_{A}\right)$ applied to the projected area $\left(\mathrm{ft}^{2}\right)\left[\mathrm{m}^{2}\right]$ of a linear appurtenance $\left(A_{A}\right)$ not considered as a structural component shall be determined from Table 3. The force coefficient for cylindrical members may be applied to the additional projected area of radial ice when specified. (Refer to Figure 1.)

Note: Linear interpolation may be used to aspect ratios other than shown
2.3.8 Regardless of location, linear appurtenances not considered as structural components in accordance with 2.3 .6 .3 shall be included in the term $\Sigma C_{A} A_{A}$.
2.3.9 The horizontal force (F) applied to a section of the structure may be assumed to be uniformly distributed based on the wind pressure at the mid-height of the section.

Site Name: East Hartford - 886 Main
Site No.
Done by:
Date:
East Hartford - 886 Main

CT2490	
EC	Checked by:
$2 / 14 / 2014$	MSC

	Item \# 1	Item \#2	Item \#3	Item \#4	Item \#5
Member Length (Inches):	72	20.4	19.7	29.9	23.5
Member Width (Inches):	15	18.5	17	13.3	9.7
Calculated Aspect Ratio:	5	1	1	2	

From Table 3 Above:

$\mathrm{Ca}=$	1.4	1.4	1.4	1.4	1.4

Determine Aa: (sf)

From above:

	Item \# 1	Item \#2	Item \#3	Item \#4	Item \#5
$A \mathrm{C}=$	7.50	2.62	2.33	2.76	1.58
	10.50	3.67	3.26	3.87	2.22

Calculated Sums of Ca*Aa:
23.51 sf

Item 1 calculated force F:	Antenna	409.031424
Item 2 calculated force F:	RRUS-12/E2	142.933759
Item 3 calculated force F:	RRUS-11	126.837615
Item 4 calculated force F:	RRUS-32	150.610672
Item 5 calculated force F:	Surge Suppressor	86.3321417

Site Name:	East Hartford - 886 Main	
Site No.	CT2490	
Done by:	EC	Checked by: MSC
Date:	$2 / 14 / 2014$	

Calculate Total Ballast Required for Ballast Mount
WIND FORCES
Fantenna $=$
Frrh $=$
Fsurge $=$
Antenna Height $=$
RRH \& Surge Height =
Overturning at Ballast

$\underline{\text { Moment }}=$	$17312.5 \mathrm{lbs} .-\mathrm{ft}$	
Hold Down Force $=$	2308.33 lbs .	Per Side
Wa Ballast		
		Use Steel Frame
Equipment \quad Frame $=$		$25 \times[31.2+((7.5 / 2) \times 6)]$
	1485 lbs.	$19 \times[(7.5 / 2) \times 2]$
Total Ballast Required Wa=	823.33 lbs .	
Blocks Required Wa =	22 Assumed 38lbs Block (4"x8"x16" Solid)	
Wb Ballast		Use Steel Frame
		$25 \times[31.2+((7.5 / 2) \times 6)]$
Equipment		$19 \times[(7.5 / 2) \times 2]$
Frame	1701 lbs.	$7.2 \times 15 \times 2$ (ANGLES)
Antennas	192 lbs .	
RRH's	445 lbs.	
Surge Arrestor	20 lbs.	
Total $=$	2358 lbs.	
Total Ballast Required Wb $=$	-49.67 lbs.	
Blocks Required Wb=	-2 Assu	Ibs Block (4"x8"x16" Solid)

PROPOSED CONDITIONS

PROPOSED (3) AT\&T ANTENNAS, (7) RRH'S, (2) A2 MODULES \& (2) SURGE ARRESTORS MOUNTED TO UNISTRUT ON BUILDING FACADE (PAINT ANTENNAS TO MATCH) (GAMMA SECTOR)

VIEW SOUTHEAST FROM GOVERNOR ST.

$\begin{aligned} & \text { SITE NO: } \quad \text { CT2490 } \\ & \text { SITE NAME: EAST HARTFORL } \end{aligned}$		at\&t 550 COCHITUATE ROAD FRAMINGHAM, MA 01701		Hudson Deslgn Groupuc 75 SUMMIT STREET PHILMONT, NY 12565 600 OSGOOD STREET ANDOVER, MA 01845 \qquad		HIS STUDY DOES NOT CLAIM IN ANY WAY IS MEANT TO SHOW A BROAD PRRESENTATION OF AREAS WHERE THE ROPOSED INSTALLATION MAY BE VISIBLE ASED UPON THE BEST INFORMATION R TOPOGRAPHY AND VEGETATION CATIONS AVAILABLE TO DATE. PAGE 10 OF 14
		ATE: 08/18/14				
		Y:Vp				
	MAIN STREET				E: N.T.	
					EV	

VIEW SOUTHWEST FROM ELM ST.

$\begin{aligned} & \text { SITE NO: CT2490 } \\ & \text { SITE NAME: EAST HARTFORL } \end{aligned}$	at\&t 550 COCHITUATE ROAD FRAMINGHAM, MA 01701	27 NORTHWESTERN DR SALEM, NH 03079			HIS STUDY DOES NOT CLAIM IN ANY WAY IS MEANT TO SHOW A BROAD EPRESENTATION OF AREAS WHERE THE ROPOSED INSTALLATION MAY BE VISIBLE ASED UPON THE BEST INFORMATIONOR TOPOGRAPHY AND VEGETATION OCATIONS AVAILABLE TO DATE.
				俍E: 08/18/1	
				DRAWN BY: VP	
ADDRESS: 886 MAIN STREET				SCALE: N.T.S	
06108				REV: 1	

PROPOSED CONDITIONS

PROPOSED (3) AT\&T ANTENNAS, (7) RRH'S, (2) A2 MODULES \& (2) SURGE ARRESTORS MOUNTED TO UNISTRUT ON BUILDING FACADE (PAINT ANTENNAS TO MATCH) (ALPHA SECTOR)

VIEW SOUTHWEST FROM ELM ST.

SITE NO: \quad CT2490SITE NAME: EAST HARTFORD	at\&t 550 COCHITUATE ROAD FRAMINGHAM, MA 01701	27 NORTHWESTERN DR SALEM, NH 03079		SITE TYPE: RT	THIS STUDY DOES NOT CLAIM IN ANY WAY TO SHOW THE ONLY AREAS OF VISIBILITY. IT IS MEANT TO SHOW A BROAD REPRESENTATION OF AREAS WHERE THE PROPOSED INSTALLATION MAY BE VISIBLE BASED UPON THE BEST INFORMATION FOR TOPOGRAPHY AND VEGETATION LOCATIONS AVAILABLE TO DATE.
				DATE: 08/18/14	
				DRAWN BY: VP	
: 886 MAIN STREET				SCALE: N.T.S.	
EAST HARTFORD, CT 06108				REV: 1	

VIEW NORTHWEST FROM CENTRAL AVE.
(EQUIPMENT NOT VISIBLE)

$\begin{aligned} & \text { SITE NO: CT2490 } \\ & \text { SITE NAME: EAST HARTFORD } \end{aligned}$		at\&t 550 COCHITUATE ROAD FRAMINGHAM, MA 01701				HIS STUDY DOES NOT CLAIM IN ANY WAY IS MEANT TO SHOW A BROAD OPRESENTATION OF AREAS WHERE THE ROPOSED INSTALATION MAY BE VISIBLE ASED UPON THE BEST INFORMATION RR TOPOGRAPHY AND VEGETATION CATIONS AVAILABLE TO DATE. PAGE 14 OF 14
		18/14				
		:VP				
ADDRESS: 886 MAIN STREET EAST HARTFORD, CT 06108					N.T.S	
		REV:				

[^0]: ${ }^{1}$ Cellco Partnership d/b/a/ Verizon Wireless has since obtained Metro Mobile's rights and operates the antennas and equipment at this Facility.
 ${ }^{2}$ As per the Siting Council's Database of CSC-Approved Telecommunications Sites, Last Updated July 7, 2014 available at http://www.ct.gov/csc/lib/csc/cscdatabases/facilits.xlsx.
 ${ }^{3}$ Of note, recent Federal law and FCC guidance is in alignment with this process as it determined a "base station" to include a structure that currently supports or houses an antenna, transceiver, or other associated equipment including a building such as the one at 886 Main Street and requires approvals of these types of collocations.

[^1]: Michael Lawton
 SAI Communications

